
Modelling Neuron-Glial Network Interactions at the Whole-Brain Scale for Human 

Neuroimaging Applications 

 

Obaï Bin Ka’b Ali 

 

 

 

 

 

A Thesis 

In the Department 

of 

Physics 

 

 

 

 

 

Presented in Partial Fulfillment of the Requirements 

For the Degree of 

Doctor of Philosophy (Physics) at 

Concordia University 

Montreal, Quebec, Canada 

 

 

February 2024 

 

© Obaï Bin Ka’b Ali, 2024 

 



 

 



iii 

 

Abstract 

Modelling Neuron-Glial Network Interactions at the Whole-Brain Scale for 
Human Neuroimaging Applications 

Obaï Bin Ka’b Ali, Ph.D. 

Concordia University, 2024 

Glial cells, together with their neighboring neurons, constitute an integral functional unit within 

brain circuitry, rather than isolated elements. Astrocytes, for instance, are strategically situated 

around neurons and profoundly modulate neuronal circuits. They achieve this by forming gap-

junction networks that actively monitor and regulate synaptic and extrasynaptic transmission of 

glutamate and GABA. Consequently, recent neuroscientific research firmly proposes that our 

understanding of brain function should incorporate a neuron-glial perspective. This approach 

necessitates an in-depth comprehension of neuron-glial interactions and emphasizes the critical 

role of computational modelling, which is essential due to the inherent nonlinearity and multiscale 

nature of these interactions. Despite this recognition, there is a notable deficiency in computational 

frameworks that elaborate on the neuron-glial perspective, particularly at the whole-brain level. 

This thesis addresses this significant gap. 

The objective of this thesis is to underscore the significance of neuron-glial network interactions 

to whole-brain computational processes, particularly at the scale relevant to neuroimaging data. It 

conceptualizes the brain as a dynamic network-of-networks, wherein glial assemblies and neuronal 

populations communicate via various channels (mediated by glutamatergic and GABAergic 

transmission systems) and across diverse spatiotemporal scales, with structural constraints 

imposed by gap-junctional and axonal densities. The thesis introduces a biophysically plausible 

dynamical model of neuron-glial network interactions at the whole-brain scale, employing neural 

mass network and compartmental modelling techniques. It reveals how glial networks contribute 

to whole-brain activity and the emergence of functional connectivity patterns, using simulations 

grounded in multilayer network and dynamic system theories. The thesis further presents two 

neuroimaging applications. The first elucidates the influence of glial networks in the non-invasive 

electrophysiological reconstruction of resting-state functional networks. This offers a biologically 

informed computational framework to refine and assess empirical methodologies in whole-brain 

electrophysiological connectomics. The second generates credible mechanistic hypotheses for 

large-scale network dysfunctions, resistance, and adaptations in brains afflicted by Alzheimer 

disease. This aims to inform potential empirical investigations. 

This timely thesis represents a critical step towards resolving longstanding neuron-glial questions 

through computational approaches, setting a foundation for an era where real-world 

experimentation and computational modeling mutually inform and advance our understanding of 

the brain. 
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Introduction 

This doctoral thesis ventures into the uncharted territory of incorporating glial cells into 

biophysical models of whole-brain activity, aiming to bridge this gap at the spatiotemporal 

resolution pertinent to human neuroimaging data. The significance of this endeavor is underscored 

by the current state of neuroscientific research, where the potential contributions of glial cells to 

brain dynamics are yet to be fully integrated into computational models at the mesoscales and 

macroscales. 

(De Pittà & Berry, 2019), in their seminal review which serves as the introductory chapter to the 

“Computational Glioscience” book, underscore the conspicuous absence of modeling efforts 

dedicated to elucidating neuron-glial interactions beyond the microscales. Their exhaustive review 

of the field revealed a specific lack of whole-brain models that consider glial cells, with only a 

limited number of models addressing neural assembly scales. Notably, the model developed by 

(Garnier et al., 2016), which constitutes a foundational element of this thesis, stands out as one of 

the few attempts in this direction. 

This gap in glial modeling is further evidenced by the comprehensive review conducted by 

(Griffiths et al., 2022), which surveys key advancements in whole-brain modeling spanning from 

the 1940s to 2021. This review traces the evolution of neural models from their origins to 

contemporary implementations, offering insights into current models and speculating on future 

trajectories for the field. Remarkably, their discourse omits any reference to “glia”, “astrocyte”, or 

“oligodendrocyte”, highlighting the fact that these critical cellular components have not yet been 

systematically incorporated into mainstream whole-brain modeling frameworks. 

(Kastanenka et al., 2020) further illuminate the neuron-centric bias pervasive in systems 

neuroscience. An analysis of recent editions (years: 2015–2017) of three leading international 

conferences in Systems and Computational Neuroscience (Conference and Workshop on Neural 

Information Processing Systems: NIPS, Organization for Computational Neurosciences: OCNS, 

and Computational and Systems Neuroscience: COSYNE) revealed that among approximately 

3000 presentations, less than 1% addressed non-neuronal cells. This stark statistic underscores the 

overwhelming focus on neuronal perspectives. This oversight is also particularly perplexing from 

the perspective of glial research given the burgeoning evidence of glial cells’ vital contributions 

across the spectrum of brain physiology and pathology, at times rivaling or even superseding 

neuronal functions. 

The disparity in attention to glial cells versus neurons in the broader neuroscientific discourse is 

highlighted by provocative and insightful titles from leading figures in the field, such as 

“Astrocytes, from brain glue to communication elements: the revolution continues” by (Volterra & 

Meldolesi, 2005), “The Other Brain: The Scientific and Medical Breakthroughs That Will Heal 

Our Brains and Revolutionize Our Health” by (Fields, 2011), “Glia as architects of central nervous 

system formation and function” by (Allen & Lyons, 2018), “Astrocytes usurp neurons as a disease 

focus” by (Liddelow & Sofroniew, 2019), and “Glial Man: A Revolution in Neuroscience” by 

(Agid & Magistretti, 2020). These works, among others, underscore a paradigm shift in 

neuroscience, advocating for a more inclusive understanding that recognizes glial cells as central 

to brain function and not merely as ancillary components. 
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Despite the significant advancements in neuroscience, critical gaps in our understanding persist, 

particularly regarding the roles of glial cells in brain functioning. The traditional neuron-centric 

view of the brain is increasingly challenged by emerging evidence, prompting a reassessment of 

brain function through a neuron-glial perspective (De Pittà & Berry, 2019). This reevaluation is 

not merely academic but carries profound implications for our understanding of brain physiology, 

the etiology of neurological disorders, and the development of therapeutic interventions (De Pittà 

& Berry, 2019). 

The adoption of computational modeling approaches, complemented by empirical data, stands as 

a promising avenue for exploring neuron-glial interactions (De Pittà & Berry, 2019). Biophysical 

models, by design, distill complex real-world systems into their most salient features, allowing for 

systematic exploration and hypothesis testing through simulations. These models serve as 

invaluable tools for generating predictions, guiding experimental inquiries, and synthesizing 

disparate mechanisms into one coherent framework of brain function (Griffiths et al., 2022). 

In this computational context, the exploration of glial roles in brain functioning emerges as a 

critical contemporary endeavor (De Pittà & Berry, 2019). The integration of glial cells into 

computational models of brain activity not only enriches our conceptualization of neural dynamics 

but also aligns with the evolving recognition of glial cells as integral to the brain’s connectome 

and pivotal actors for cerebral computation (Fields et al., 2015; Kastanenka et al., 2020). This shift 

towards a more inclusive neuron-glial mindset represents a frontier in neuroscience, promising to 

unveil new dimensions of brain function and offering fresh perspectives on longstanding questions 

in the field (De Pittà & Berry, 2019). 

The overarching aim of this doctoral thesis is to illuminate the pivotal role of neuron-glial network 

interactions within the computational landscape of the whole brain, especially as it pertains to the 

resolutions accessible through neuroimaging technologies, through a biophysical whole-brain 

neuron-glial model. The thesis posits the brain as a dynamic network-of-networks, where glial 

assemblies and neuronal populations engage in intricate communication through mechanisms 

mediated by glutamatergic and GABAergic transmission systems, navigating across various 

spatiotemporal scales within the structural confines dictated by gap-junctional and axonal 

densities. 

The inaugural chapter (Background, starting on page 4) lays a robust foundation by providing an 

in-depth background necessary for comprehending the biophysical model at the core of this thesis. 

This chapter doubles as a literature review, setting the stage for a nuanced discussion that 

encapsulates the thesis’s contributions to the field while acknowledging the broad scope of the 

topics covered. 

The second chapter (Neuron-astrocyte mass network model ― foundations for whole-brain 

modelling, starting on page 92) marks the first of several original contributions within this thesis, 

detailing the mathematical framework underpinning the whole-brain neuron-glial model. It 

elucidates the model’s foundational hypotheses and introduces a strategy for its parameterization 

based on biologically plausible criteria, setting a precedent for subsequent chapters. 

Building on the foundations laid in the previous chapter, the third chapter (Dialogue mechanisms 

between astrocytic and neuronal networks ― a whole brain modelling approach, starting on page 

117) presents the second original contribution, elucidating the significant impact of astrocytic 
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networks on modulating whole-brain activity and connectivity patterns. The insights garnered here 

are crucial and form a cornerstone for the remainder of the thesis. 

The fourth chapter (A neuron-glial perspective of MEG connectomics ― establishing a 

biologically plausible computational framework to guide and evaluate empirical methodologies, 

starting on page 169), representing the third original contribution, applies the developed model to 

a specific neuroimaging application centered around electrophysiological connectomics. Given the 

inherent challenges associated with empirical electrophysiological connectomics methods, this 

chapter aims to provide a biologically informed computational framework to refine and evaluate 

these methodologies. This endeavor not only champions the neuron-glial perspective in a field 

traditionally focused on neurons, but also strives to enhance the methodological rigor in whole-

brain electrophysiological connectomics, with the ultimate aim of aligning model predictions with 

empirical electrophysiological data. 

The fifth chapter (Exploring mechanisms of network dysfunction, resistance, and adaptation in 

Alzheimer disease ― a research proposal for empirical insight, starting on page 220) outlines a 

future research trajectory that builds directly on this thesis, offering preliminary insights into 

generating mechanistic hypotheses, that can be tested empirically, for understanding large-scale 

network dysfunctions, resistance, and adaptations in brains afflicted by Alzheimer disease. 

The penultimate chapter (Discussion, starting on page 239) serves as a general discussion, 

reflecting on the thesis’s contributions to enriching scholarly discourse and advancing the field. 

The concluding chapter (Conclusion, starting on page 249) encapsulates the aspirations of this 

thesis, articulating the hope that the presented multidisciplinary work will foster a deeper 

appreciation for the complexity of brain function and encourage further exploration of the integral 

roles played by both neuronal and glial components in shaping the brain’s computational 

landscape. 
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Chapter 1 Background 

1.1 Neuro-glial–vascular interactions: from cellular to assemblies to large-
scale networks 

The neuro-glial–vascular perspective (Giaume et al., 2010) posits that brain functioning is the 

result of dynamic interactions between neurons (e.g., glutamatergic pyramidal cells, GABAergic 

interneurons), glia (e.g., astrocytes, oligodendrocytes, microglia), and the vasculature (e.g., blood 

capillaries, pericytes). It further asserts that our understanding of brain complexity and functioning 

is bound to stagnate at an impasse as long as non-neuronal cells remain absent from neuroscientific 

theories, because non-neuronal cells (glia in particular) are as pertinent to the brain’s connectome 

(i.e., the complete mapping of anatomical and functional connectivity in the brain) as any neuronal 

cells (De Pittà & Berry, 2019; Fields et al., 2015). 

In this section, we delve into significant research on the intricate connections between neurons, 

glial cells, and the vascular system. The aim of this section is to illuminate the fundamental 

biological principles underpinning these interactions, providing sufficient insight to grasp the 

biophysical model that constitutes the essence of this thesis. 

1.1.1 Neuro-glial–vascular cellular unit 

 
Figure 1.1. Neuro-glial–vascular unit. Figure from: (Allen & Barres, 2009). Permission obtained. ― See text for 

explanation. 
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Figure 1.1 presents a basic sketch of the anatomical arrangement between neuronal, glial, and 

vascular compartments. 

On the one hand, neurons intercommunicate through chemical synapses (though not exclusively, 

e.g., gap-junctions are also used and are orders of magnitude faster than chemical synapses at 

relaying signals (Coombes & Wedgwood, 2023; Nagy et al., 2018). At chemical synapses, neuronal 

signalling between two neurons (i.e., presynaptic and postsynaptic) includes electrical action 

potential propagation down axons to a presynaptic terminal, which then triggers presynaptic 

terminal depolarization and neurotransmitter releases, which in turn induces neurotransmitter 

bindings to the receptors of the postsynaptic membrane, which subsequently encourages 

depolarization of the postsynaptic neuron, to finally propagate the signal further to (potentially) 

other neurons (Allen & Barres, 2009). 

On the other hand, glial cells envelop and wrap around every structural part of neurons across the 

central nervous system, owing to their intricate branched morphology, all the while remaining 

electrically non-excitable. For example, astrocytes make contact with and ensheath synapses and 

blood vessels to fuel, maintain, and modulate neurotransmission, oligodendrocytes wrap myelin 

around axons to speed up neuronal transmission, and microglia engulf dead cells and debris while 

keeping the brain under surveillance for damage or infection (Allen & Barres, 2009). 

1.1.2 Zooming into astrocytes at the tripartite synapse 
Figure 1.2 goes a step beyond the previous section by illustrating astrocytic functions at 

glutamatergic synapses. Astrocytes are the most prominently studied glial type in current literature, 

and a central focus in this thesis. Below, I encapsulate some of its key properties and functions, 

particularly those integral to the materials presented in the subsequent chapters of this thesis which 

will focus on neuron-astrocyte interactions. 

Before starting, it is worth mentioning that the underlying findings are based on decades of 

research, yet some aspects remain debated and subject to revision. Recent authoritative references 

that provide foundational knowledge in this field include an introduction to the “Computational 

Glioscience” book (De Pittà & Berry, 2019) and an encyclopedia entry (De Pittà, 2020). 



6 

 

 
Figure 1.2. Interactions between glutamatergic neurons, astrocytes, and vasculature. Figure from: (De Pittà & Berry, 

2019). Permission obtained. ― See text for explanation. Pathways: yellow (calcium signaling); red (gliotransmission); 

green (cytokine signaling); turquoise (glutamate–glutamine cycle); blue (potassium buffering); purple (lactate shuttle); 

brown (pH buffering); orange (glutathione metabolism); magenta (vascular coupling). Relevant acronyms 

alphabetically ordered: 20-HETE (20-hydroxy-eicosatetraenoic acid); AA (arachidonic acid); ADP (adenosine 

diphosphate); ATP (adenosine triphosphate); Ca2+ (calcium); EAAT (excitatory amino acid transporter); EETs 

(epoxyeicosatrieonic acids); ER (endoplasmic reticulum); GABA (gamma-aminobutyric acid); GAT3 (gamma-

aminobutyric acid transporter 3); GJC (gap junction channels); Gln (glutamine); Glu (glutamate); GLUT1 (glucose 

transporter); GS (glutamine synthetase); IP3 (inositol 1,4,5-trisphosphate); Lac (lactate); LDH (lactate 

dehydrogenase); MCT1 and MCT2 (monocarboxylate transporters); mGluR (metabotropic glutamate receptor); Na+ 

(sodium); NMDA (N-methyl-D-aspartate; a ionotropic glutamate receptor); PAG (phosphate-activated glutaminase); 

PLA2 (phospholipase A2); PGs (prostaglandins); SNAT1/2 (sodium-coupled neutral amino acid transporters). 

Astrocytic network anatomy. Astrocytes provide a tiled arrangement of brain space (i.e., they each 

are characteristically territorial by occupying non-overlapping domains) where each tile is a mini-

circuit (i.e., composed of an astrocyte contacting many synapses, e.g., in the human brain, one 

astrocyte can ensheath 270–2000 thousand synapses), and they form a gap-junction-coupled 

syncytium (i.e., a multinucleate mass of cytoplasm resulting from the fusion of cells; e.g., GJC in 

Figure 1.2) supporting cell-cell (i.e., network) communication mediated by calcium signalling 

(yellow pathway in Figure 1.2) (De Pittà, 2020; Giaume et al., 2010; Kastanenka et al., 2020; 

Vasile et al., 2017). Gap junctions (see Figure 1.3) are specialized structures, constructed from 

connexin proteins, facilitating direct cell-to-cell communication through channels that regulate the 
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exchange of ions and small molecules, with mechanisms to open and close as needed (Lallouette 

et al., 2019; Stephan et al., 2021; Vasile et al., 2017). The suggested functional purpose of this 

astrocytic anatomical configuration posits that astrocytes act as physical barriers between the 

synaptic connections of neighbouring neurons while finely regulating extracellular 

neurotransmitter diffusion (De Pittà, 2020). 

 
Figure 1.3. Principle of gap junctional coupling. Caption and figure from: (Stephan et al., 2021). Publisher’s 

permission: http://creativecommons.org/licenses/by/4.0/. ― (A) Structural organization of gap junctions. Gap 

junctions are integral membrane proteins that connect the cytosol of neighboring cells. Two pairs of connexons 

(hexamers of connexins; Cx) form a pore enabling diffusion for ions and small molecules. EL, extracellular loop; CL, 

cytoplasmic loop; M, transmembrane helix. (B) (Pan-/)glial coupling. Astrocytes mainly express Cx43 and Cx30, 

whereas oligodendrocytes mainly express Cx47 and Cx32. Homotypic gap junctions couple astrocytes (Cx43:Cx43, 

Cx30:Cx30) and oligodendrocytes (Cx47:Cx47, C30:Cx30). Heterotypic gap junctions are formed by different 

connexons connecting astrocytes and oligodendrocytes (Cx43:Cx47, Cx30:Cx32). 

Astrocytic neurotransmitter regulation. Critically, astrocytes are equipped with excitatory amino 

acid transporters (EAAT in Figure 1.2) to play a pivotal role in maintaining cerebral homeostasis, 

which serve as two mechanisms. On the one hand, they serve as the principal mechanism for the 

uptake and regulation of glutamate in the mature brain (e.g., turquoise pathway in Figure 1.2). 

Given that glutamate acts as an exclusively excitatory neurotransmitter, its excessive presence can 

induce neuronal overstimulation and potentially lead to excitotoxicity (De Pittà, 2020; Pankevich 

et al., 2011; Scimemi, 2019). On the other hand, they serve as an intrasynaptic pathway of neural 

excitability modulation (De Pittà, 2020). It is noteworthy that neurons can participate in glutamate 

reuptake though at a negligible rate compared to astrocytes. They can do so thanks to e.g., vesicular 

glutamate transporters (not drawn in Figure 1.2), in, e.g., a recycling process maintaining an 

adequate supply of glutamate for neurotransmission whereby the taken-up glutamate can be reused 

as a neurotransmitter (Hori & Takahashi, 2012; Vigneault et al., 2015). 

Astrocytic network calcium-mediated signaling. Intercommunications among astrocytes can be 

initiated by glutamatergic neurotransmission and perpetuated in a feedback loop via glutamatergic 

gliotransmission (yellow and red pathways in Figure 1.2). For example, when glutamate is released 

into the extracellular space in response to neuronal firing, a spillover portion reaches the glutamate 

receptors of an astrocyte (mGluR in Figure 1.2). This event sets off a series of action, including 

intracellular productions of inositol 1,4,5-trisphosphate (IP3) within the targeted astrocyte. This, in 

turn, promotes calcium (Ca2+) release from the astrocyte’s endoplasmic reticulum (ER) as well as 

http://creativecommons.org/licenses/by/4.0/
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diffusion through gap junctions to adjacent astrocytes whereby the diffusing molecule induces 

intracellular calcium releases within the adjacent astrocytes via their endoplasmic reticulum. 

Consequently, this cascade of events may lead to astrocytic glutamate releases (i.e., gliotransmitter 

releases) into the extracellular space, facilitated, e.g., by exocytosis. Importantly, the astrocytic 

glutamate releases may diffuse and bind to both pre-terminal and post-terminal neuronal glutamate 

receptors (NMDA), ultimately inducing, independently of neuronal firing, both de novo glutamate 

release from the pre-synaptic neuron and depolarization of the post-synaptic neuron. 

Astrocytic neurometabolism regulation. In addition to neurotransmission, astrocytes also play a 

crucial role in neurometabolism. Neurometabolism (not to be confused with neurotransmission) 

refers to the processes involved in the production, breakdown, and utilization of molecules that 

provide energy and support the functioning of neural cells. The glutamate-glutamine cycle and the 

astrocyte-to-neuron lactate shuttle are two examples of metabolic pathways relying on glutamate 

(and GABA) uptake by astrocytic transporters. 

The glutamate-glutamine cycle (turquoise pathway in Figure 1.2) starts by converting the taken-

up glutamate into glutamine (Gln) through the glutamine synthetase (GS) enzyme within 

astrocytes. The synthetized glutamine is then shuttled back to neurons via sodium-coupled neutral 

amino acid transporters (SNATs in Figure 1.2), before undergoing reconversion to glutamate 

through phosphate-activated glutaminase (PAG) activity. The resulting glutamate can finally 

undergo either oxidative metabolism within mitochondria or be used to replenish synaptic vesicles. 

It is noteworthy that at GABAergic inhibitory synapses, GABA can be synthetized from glutamate 

through the glutamate decarboxylase enzyme within neurons, and possibly involve astrocytic 

uptake via GABA transporters (GAT3). See also Figure 1.4 and (Angulo et al., 2008; Yoon & Lee, 

2014) for more information on GABA’s role, as a gliotransmitter. Moreover, the expression of 

astrocytic excitatory amino acid transporters and GABA transporters can be influenced by 

intracellular calcium. 

In a glutamate-mediated lactate shuttle (purple pathway in Figure 1.2), astrocytic glutamate uptake 

leads to an increase in the ratio of adenosine diphosphate to adenosine triphosphate (ADP and ATP 

in Figure 1.2) within the astrocyte. The elevated ratio then triggers the utilization of glucose 

through anaerobic glycolysis in astrocytes. This glycolytic process may be accompanied by 

glycogenolysis (breakdown of glycogen) or the uptake of glucose from the blood circulation via 

glucose transporters (GLUT1). Afterwards, lactate dehydrogenase (LDH) catalyzes the conversion 

of pyruvate (Pyr), a product of glycolysis, into lactate and vice versa. Finally, lactate (Lac), as 

produced in astrocytes, is transported to neurons through monocarboxylate transporters (MCTs), 

and once in neurons, lactate can be converted back to pyruvate and used as an energy substrate. 
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Figure 1.4. Two potential pathways for GABA production in glial cells. Caption and figure from: (Angulo et al., 2008). 

Permission obtained. ― Glucose oxidation and glutamate–glutamine cycle pathway: As in neurons, GABA can be 

produced in glial cells from glutamate accumulated by uptake or generated in the TCA cycle. Glutamate decarboxylase 

activity was reported in glial cells; this enzyme can convert glutamate into GABA. Note that in glial cells glutamate 

is also converted into glutamine by the action of the glia-specific enzyme glutamine synthetase (GS), and that pyruvate 

generated by glycolysis would enter the TCA cycle through oxaloacetate rather than through acetyl-CoA as it is the 

case in neurons. Putrescine oxidation pathway: GABA can also be produced from putrescine through the monoamine 

oxidase pathway which requires acetyl coenzyme A (acetyl-CoA). Putrescine is acetylated in mono-acetylputrescine 

before oxidation by monoamine oxidase in N-acetyl-γ-aminobutyraldehyde. A second oxidation step leads to N-acetyl-

γ-aminobutyrate, which is then de-acetylated into GABA. This pathway can continue with GABA entering the TCA 

cycle for further oxidation via the successive actions of the GABA-α-ketoglutaric acid aminotransferase and of the 

succinate semialdehyde dehydrogenase, but GABA produced from putrescine can also accumulate in glial cells and 

be released (see text from (Angulo et al., 2008) for details). 

Astrocytic blood flow regulation. With respect to the vascular system, astrocytes are master 

regulators of cerebral blood flow through calcium-dependent vasoconstriction and vasodilation 

processes (magenta pathway in Figure 1.2). Both processes start with calcium-induced production 

of arachidonic acid (AA in Figure 1.2) from phospholipase A2 (PLA2). Subsequently, arachidonic 

acid can be converted into prostaglandis (PGs) and epoxyeicosatrieonic acids (EETs) by 

cyclooxygenases; or it can move through the endfeet to the smooth muscle surrounding capillaries 

where it is transformed into 20-hydroxy-eicosatetraenoic acid (20-HETE) by ω-hydroxylase. The 

former pathway leads to vasodilation at astrocytic endfeet processes, while the latter leads to 

vasoconstriction. 

Astrocytic other processes. Figure 1.2 illustrates additional significant interaction pathways 

between astrocytes and glutamatergic neurons. These pathways include cytokine signaling (green 

pathway), potassium buffering (blue pathway), pH buffering (brown pathway), and glutathione 

metabolism (orange pathway). However, a detailed exposition of these pathways is not provided 

here, as they are not central to the subsequent sections of this thesis. Instead, functional diagrams 

are presented in Figure 1.5, which serve as a complementary synthesis to Figure 1.2. The diagrams 

are also useful for the modeling sections that will follow, offering a cohesive visual representation 

that aids in understanding the complex interactions discussed. 
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Figure 1.5. Feedback and feedforward pathways in neuron-glial interactions. Caption and figure from: (De Pittà, 

2020). Permission obtained. ― (A) Presynaptic pathway of gliotransmission stimulated by presynaptically released 

neurotransmitters; (B) postsynaptic pathway of gliotransmission stimulated by presynaptically released 

neurotransmitters; (C) presynaptic pathway of gliotransmission triggered by postsynaptic endocannabinoid release; 

(D) postsynaptic pathway of gliotransmission mediated by postsynaptic endocannabinoid release; (E) modulation of 

glutamatergic gliotransmission by cytokine tumor necrosis factor alpha (TNFα). (F) Potassium (K+) buffering and 

regulation of neuronal activity; (G) glutamate-glutamine cycle (GCC); (H) astrocyte-to-neuron lactate shuttle (ANLS); 

(I) extracellular pH homeostasis; (J) glutathione synthesis; (K) neurovascular coupling; and (L) glia-mediated 

regulation of action potential conduction. [Ca2+]𝑖  intracellular (cytosolic) calcium concentration; [Cys]𝑖  ([Gln]𝑖 ) 



11 

 

intracellular cysteine (glutamine) concentration, [ECB]𝑒  ( [TNFα]𝑒 ) extracellular endocannabinoid (TNFα) 

concentration, [K+]𝑒  ( [H+]𝑒 ) extracellular K+ (H+) concentration, [NT]𝑒  ( [Glu]𝑒 ) extracellular neurotransmitter 

(glutamate) concentration, 𝑣𝑚 membrane potential, AP action potential, LPS lipopolysaccharide, SDF1α stromal cell-

derived factor 1 alpha. 𝑖 indicates that activities can be described either for neuronal or glial ensembles. 

Astrocytic hypothesized neuromodulator regulation. Neuromodulators (e.g., norepinephrine, 

serotonin, acetylcholine, dopamine) play a crucial role in governing brain states by regulating key 

processes including brain plasticity, response to important stimuli, and the sleep-wake cycle 

(Bargmann, 2012; Katz, 1999; Marder, 2012; Mattson & Arumugam, 2018; Pacholko et al., 2020; 

Shine, 2019; Shine et al., 2019). Given their wide-reaching influence, it is notable how 

neuromodulators impact extensive and diverse brain regions, a phenomenon that extends beyond 

the scope of simple extracellular diffusion. Astrocytes, due to their strategic positioning and unique 

capabilities, are hypothesized to significantly enhance the impact of neuromodulators across broad 

neuronal networks. Indeed, as we have reported earlier, astrocytes form networks, and each 

astrocyte interacts with numerous synapses while releasing various gliotransmitters like glutamate 

and adenosine triphosphate (ATP) which influence various brain mechanisms. Additionally, 

astrocytes play a role in regulating the balance between excitation and inhibition in neuronal 

circuits by modulating extracellular potassium levels (Figure 1.2). Importantly, they express 

receptors for all major neuromodulators, positioning them as key players in neuromodulatory 

processes. It is therefore without surprise that astrocytes are hypothesized to not only influence 

individual synapses, but also play a pivotal role in broader synaptic communication and brain state 

transitions by extending the reach of neuromodulators (Pacholko et al., 2020). The potential of 

astrocytes to amplify neuromodulator effects on neuronal networks is thought to occur through 

several mechanisms (e.g., see Figure 1.6) such as: alterations in astrocytic calcium dynamics, the 

release of gliotransmitters, and the regulation of potassium homeostasis. 

 
Figure 1.6. Proposed schematic for astrocytes as intermediary or amplifier of serotonin-mediated (5HT) inhibition. 

Caption and figure from: (Pacholko et al., 2020). Publisher’s permission: http://creativecommons.org/licenses/by/4.0/. 

― (A) Deng and Lei (Deng & Lei, 2008) show 5HT effects on inhibition in the auditory cortex are mediated by 5HT2A 

receptors, Gαq/11, and task-3 potassium channel inhibition. (B) Evidence was recently provided that astrocytes may be 

an intermediary in the effects of 5HT on cortical inhibition in the somatosensory cortex (Quon et al., 2018; Wotton et 

al., 2018), as the application of purinergic antagonists and disruption of astrocytic metabolism blocked the effects of 

5HT. It appears possible that 5HT promotes astrocytic ATP release downstream of 5HT2A stimulation, leading to 

interneuron depolarization (P2Y also linked to Gαq/11). It is not clear whether astrocytes mediate 5HT effects entirely 

or merely serve to amplify the effects given their strategic position. 

http://creativecommons.org/licenses/by/4.0/
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1.1.3 Zooming into astrocytes along the vascular tree 
The previous section was thorough in discussing astrocytic roles and neuron-astrocyte interactions, 

but it slightly underrepresented the vascular components’ contributions in comparison. This section 

provides a more balanced depiction of the neuro-glia–vascular unit by underscoring the importance 

of the blood-brain barrier and the blood circulation system in supporting brain function. 

The regulation of cerebral blood flow involves complex interactions between neurons, astrocytes, 

endothelial cells (which are cells forming the inner cellular lining of all blood vessels), and mural 

cells (i.e., smooth muscle cells (SMCs) and pericytes), with various signaling molecules mediating 

these interactions (e.g., see Figure 1.7). These findings come from a variety of studies conducted 

in different parts of the central nervous system and through both in vivo and in vitro research 

methods (Kugler et al., 2021; Sweeney et al., 2018). 

Neuron–mural-cells interaction. E.g., see Figure 1.7. Adenosine triphosphate (ATP) and 

noradrenaline (NA) released by neurons cause SMCs and pericytes to either constrict or relax, 

affecting blood flow. This is mediated through specific receptors on the cells. Neurons produce 

nitric oxide (NO), leading to the relaxation of these cells and an increase in blood flow. The effect 

of NO on pericytes may vary across different brain regions. During neuronal activity, extracellular 

potassium (K+) can either relax or constrict SMCs and pericytes by acting on potassium and 

calcium channels. 

Astrocyte–mural-cells interaction. E.g., see Figure 1.7. ATP affects astrocytes and may lead to 

changes in calcium levels within these cells. This is still debated in scientific research. Increased 

calcium in astrocytes triggers the production of various compounds (like arachidonic acid (AA) 

and its metabolites) that regulate blood flow by acting on SMCs and pericytes. 

Endothelial–mural-cells interaction. E.g., see Figure 1.7. Acetylcholine (ACh) from neurons or 

blood interacts with receptors on endothelial cells, increasing NO production. This relaxes mural 

cells, thereby increasing blood flow. Shear stress and other factors also enhance the production of 

NO and other compounds in endothelial cells, leading to the relaxation of SMCs and increased 

blood flow. ACh or raised extracellular potassium levels can cause endothelial cells to 

hyperpolarize, which can spread through gap junctions to increase blood flow. 
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Figure 1.7. Key cellular and molecular pathways regulating cerebral blood flow. Caption and figure from: (Sweeney 

et al., 2018). Permission obtained. ― See also text for summary. Neuron–mural cells crosstalk: ATP and noradrenaline 

(NA) released by neurons (green) act on SMCs and pericytes through adenosine A2A receptors (A2AR) or α2-adrenergic 

receptors (α2A), respectively, causing cell depolarization and constriction, which reduces blood flow. Adenosine acts 

via purinergic P2X and P2Y receptors to hyperpolarize SMCs and pericytes (pink), which increases blood flow. 

Neuropeptide Y (NPY) causes SMCs contraction. In both SMCs and pericytes, NO produced by neurons leads to 

hyperpolarization resulting in blood flow increase. Pericyte response to NO may vary by brain region, indicated by 

dashed arrows. Extracellular K+ released during neuronal activation can act on K+ (inward rectifier, KIR) and Ca2+ 

(voltage-gated, VGCC) channels in SMCs and pericytes to hyperpolarize and relax the cells, or depolarize and contract 

cells. Astrocyte–mural cells crosstalk: ATP acts on P2X or P2Y receptors on astrocytes, which (according to some 

studies) can increase intracellular [Ca2+]. However, the role of arteriolar astrocyte [Ca2+] changes remains debatable 

(indicated by dashed arrows). [Ca2+] increase triggers production of AA and its metabolites (PGE2, through PGE2 

receptor EP4, EP4R; 20-HETE; epoxyeicosatetraenoic acids, EETs) that act on SMCs and pericytes to regulate blood 

flow. Alternatively, neurons may release AA to be further metabolized by astrocytes, indicated by dashed line. 

Endothelial–mural cells crosstalk: ACh released from neurons or blood-derived ACh act on endothelial muscarinic 

ACh receptors (MRs) to increase endothelial NO production, causing hyperpolarization and relaxation of mural cells 

(yellow), which increases blood flow. Shear stress can also increase NO endothelial production, as well as production 

of AA, EETs, and prostacyclin (PGI2), which hyperpolarize and relax SMCs, increasing arteriolar blood flow. ACh or 

an increase in extracellular [K+] can activate KIR or calcium-activated K+ (KCa) channels on endothelial cells, leading 

to endothelial hyperpolarization that can propagate via gap junctions (GJs) between endothelial cells in a retrograde 

direction to increase blood flow. Altogether these findings are informed from various central nervous system regions 

and from both in vivo and in vitro studies. 

The integrity of the blood-brain barrier (BBB), e.g., see Figure 1.8, is also the result of complex 

interactions among neurons, astrocytes, endothelial cells, and mural cells, each contributing 

through specific signaling pathways to maintain the barrier’s stability and function (Kugler et al., 

2021; Sweeney et al., 2018). 

BBB integrity and cell signaling. E.g., see Figure 1.8. The BBB is maintained by special proteins 

in endothelial cells. These proteins include tight junction (TJ) and adherens junction (AJ) proteins, 
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which essentially act as barriers. Additionally, the BBB controls the movement of substances from 

the blood into the brain, a process known as transcytosis, which is normally kept at low levels. 

Pericyte–endothelial-cells interaction. E.g., see Figure 1.8. Notch ligands from endothelial cells 

interact with Notch3 receptors on pericytes, promoting pericyte survival. Platelet-derived growth 

factor-BB (PDGF-BB) binds to receptors on pericytes, aiding their survival, proliferation, and 

migration. Vascular endothelial growth factor-A (VEGFA) binds to receptors on endothelial cells, 

supporting their survival. Pericyte-derived Notch ligands bind to endothelial Notch1 receptors, 

contributing to BBB stability. Transforming growth factor-β (TGFβ) signaling occurs between 

pericytes and endothelial cells in both directions. Pericyte-secreted angiopoietin-1 (Angpt1) binds 

to receptors on endothelial cells to encourage their proliferation. 

Astrocyte–pericyte and astrocyte–endothelial-cells interactions. E.g., see Figure 1.8. Astrocytes 

secrete certain proteins (APOE2 and APOE3) that suppress inflammatory pathways in pericytes to 

maintain BBB stability. Astrocyte-produced laminin also maintains BBB integrity. Astrocyte-

secreted Sonic hedgehog (Shh) interacts with receptors on endothelial cells to further enhance 

BBB stability. 

Smooth-muscle–endothelial cells interaction. E.g., see Figure 1.8. SMCs interact with endothelial 

cells through various signaling molecules to promote BBB stability and SMC survival. 

Neuron–endothelial-cells interaction. E.g., see Figure 1.8. Neurons secrete signaling molecules 

such as Wnt proteins that interact with receptors on endothelial cells, promoting endothelial cell 

differentiation during brain vasculogenesis. 

 
Figure 1.8. Key cellular and molecular pathways regulating blood-brain barrier (BBB) integrity. Caption and figure 

from: (Sweeney et al., 2018). Permission obtained. ― See also text for summary. BBB integrity is maintained by tight 

junction (TJ) and adherens junction (AJ) proteins between endothelial cells and low-level bulk-flow transcytosis. 

Pericyte–endothelial cells crosstalk: Notch ligands–Notch3 receptor signaling promotes pericyte survival. Platelet-
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derived growth factor-BB (PDGF-BB) binds to PDGFRβ on pericytes, causing pericyte survival, proliferation, and 

migration. Vascular endothelial growth factor-A (VEGFA) binds to endothelial VEGF receptor-2 (VEGFR2) 

mediating endothelial survival. Pericyte-derived notch ligands bind to endothelial Notch1 receptor, which mediates 

BBB stability, as does endothelial sphingosine-1 phosphate (S1P). Transforming growth factor-β (TGFβ) and TGFβ 

receptor-2 (TGFβR2) signaling occurs bidirectionally between pericytes and endothelial cells. Pericyte-secreted 

angiopoietin-1 (Angpt1) binds Tie2 receptors on endothelial cells to promote proliferation. Astrocyte–endothelial cells 

crosstalk: astrocyte-secreted APOE2 and APOE3, in contrast to APOE4, suppress the pro-inflammatory signaling 

cyclophilin A–NF-κB–matrix metalloproteinase-9 (MMP9) pathway in pericytes to maintain BBB stability. Similarly, 

astrocyte-produced laminin maintains BBB stability. Astrocyte-secreted sonic hedgehog (Shh) interacts with patched-

1 (PTCH1) at the endothelium to further promote BBB stability. SMC–endothelial cells crosstalk: ephrin B2 (EphB2) 

on the endothelium promotes BBB stability. PDGF-BB binds PDGFRβ on SMCs to promote survival and migration. 

Endothelial-secreted jagged-1 (Jag-1) binds Notch3 to promote SMC maturation and survival. Neuron–endothelial 

cells crosstalk: neuron-secreted Wnt is a ligand of frizzled (FZD) at the endothelium that promotes endothelial cell 

differentiation. 

1.1.4 Zooming out to neuro-glial–vascular networks, the connectome 
Reflecting on the previous figures, it becomes clear that glial cells, especially astrocytes, exhibit 

structural and functional characteristics that profoundly influence neuronal activity and 

connectivity, as well as neurovascular coupling, across a spectrum of spatiotemporal scales (De 

Pittà & Berry, 2019; Fields et al., 2015; Giaume et al., 2010; Kastanenka et al., 2020). Such insights 

call for a re-evaluation of existing neuron-based modelling paradigms to incorporate glial-

mediated effects. 

The connectome. A prime example of this shift in perspective is the concept of the connectome, 

exemplified by Fields and colleagues (Fields et al., 2015), and central to this thesis. Historically, 

the term connectome predominantly referred to the mapping of neuronal and synaptic connections. 

For instance, in their review, Park and Friston (Park & Friston, 2013) acknowledged the 

fundamental role of non-neuronal cells in the brain’s connectome, primarily through a graphical 

representation of the brain microscopic scale (see Figure 1.9). However, this recognition did not 

extend to detailed examination and discussion, as the review predominantly focused on neuronal 

aspects. Yet, as our preceding discussions reveal, a comprehensive depiction of the connectome 

must also integrate glial cells and vascular components alongside neuronal elements. This 

expanded view is gaining traction in recent research (Blanchard et al., 2016; Figley & Stroman, 

2011; Jolivet et al., 2015; Kugler et al., 2021; Lu et al., 2019; Magistretti & Allaman, 2015; 

Schaeffer & Iadecola, 2021), which highlight the necessity of integrative approaches. It is 

noteworthy that while many studies contribute to this evolving understanding of the connectome, 

they do not always explicitly focus on or label their research as investigating the neuro-glia–

vascular unit, despite clearly examining aspects closely related to it (Ahmed et al., 2016; Del 

Guerra et al., 2018; J. Y. Hansen et al., 2022; Mattson & Arumugam, 2018; Shafiei et al., 2023; 

Tesler et al., 2023; Voigt et al., 2023; Zhang et al., 2014). This can occur due to various reasons, 

such as differences in research focus and researchers’ specialized knowledge, terminology used, 

or the rapidly evolving nature of the neuroscientific field. Nonetheless, the consensus seems to be 

that by considering neurons, glia, and vascular components in unison within the connectome, we 

can more effectively decode the complexities of brain function in health and disease (e.g., see 

Figure 1.10). This unified perspective not only propels forward the field of neuroscience but also 

lays the foundation for innovative neuroscientific investigations and the development of new 

therapeutic approaches (Barreto et al., 2012; Blanco-Suárez et al., 2017; W. S. Chung et al., 2015; 

Haim et al., 2015; Kugler et al., 2021; B. Liu et al., 2017; Mattson & Arumugam, 2018; Rowley 

et al., 2012; Sweeney et al., 2018; Q. Wang et al., 2017). 
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Figure 1.9. Node, edge, and organization in the brain network. Caption and figure from: (Park & Friston, 2013). 

Reprinted with permission from AAAS. ― (A) Schematic of the multiscale hierarchical organization of brain 

networks: from neurons and macrocolumns to macroscopic brain areas. A network is composed of nodes and their 

links, called edges. A node, defined as an interacting unit of a network, is itself a network composed of smaller nodes 

interacting at a lower hierarchical level. (B) Depictions of “edges” in a brain network, as defined by three types of 

connectivity: structural, functional, and effective. Structural connectivity refers to anatomical connections and 

(macroscopically) is usually estimated by fiber tractography from diffusion tensor MRI (DTI). These connections are 

illustrated with broken lines in the bottom images. Functional and effective connectivity are generally inferred from 

the activity of remote nodes as measured by using BOLD-fMRI or EEG/MEG signals. Functional connectivity, defined 

by the correlation or coherence between nodes, does not provide directionality or causality and is therefore depicted 

without arrows. Because effective connectivity is estimated by using a model of neuronal interactions, it can evaluate 

directionality. This is illustrated by the one-sided arrows. Adjacency (or connectivity) matrices subserve graph 

theoretical analyses of brain systems and encode structural and functional connectivity between pairs of nodes. 
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Figure 1.10. Collaborative approach to neurodegeneration. Caption and figure from: (Ahmed et al., 2016). Publisher’s 

permission: http://creativecommons.org/licenses/by-nc/4.0/. ― Neurodegenerative network map: proposed way 

forward for a collaborative approach based on phenotypic variation, imaging, pathology and genetics for investigating 

the neural networks and their contribution to the pathophysiological bases of neurodegenerative conditions. A better 

understanding of the neural networks involved is likely to translate into better targeted treatments based on these 

networks. DTI, diffusion tensor imaging; PET, positron emission tomography. 

Spatiotemporal scales of neuro-glial–vascular network interactions. The spatiotemporal scale of 

neuro-glial–vascular interactions in neural networks is remarkably diverse and multifaceted, where 

neurons and glia serve as functional agents, and where astrocytes serve as bridges between 

neuronal and vascular processes (Fields et al., 2015). Spatially, they span from subcellular levels, 

where astrocytes and microglia interact with individual synapses, to extensive brain networks 

where oligodendrocytes influence large-scale communication through myelination. Temporally, 

these interactions range from rapid synaptic changes to slower modifications in myelination 

influenced by learning throughout development and aging. 

Astrocytes in neural networks. Astrocytes support neuronal function by supplying nutrients, 

maintaining ion balance, and removing waste (Fields et al., 2015). They convert glucose to lactate 

for neurons and are involved in brain repair after injury by forming glial scars. Additionally, they 

help form and maintain synapses and modulate neurotransmitter levels in synapses, preventing 

excitotoxicity and releasing various gliotransmitters with profound influences on neuronal 

dynamics. Astrocytes also maintain the blood-brain barrier and regulate cerebral blood flow 

through neurovascular coupling, responding to neuronal activity and adjusting blood vessel 

diameter. 

http://creativecommons.org/licenses/by-nc/4.0/
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Microglia in neural networks. Microglia, as the central nervous system’s resident immune cells, 

are crucial for synaptic pruning, immune defense, and responding to neural injuries (Fields et al., 

2015). They modulate synaptic activity and support neurogenesis. Disruptions in microglia’s 

functioning can lead to neurological diseases like Alzheimer disease, and they play varying roles 

in traumatic brain injury and synaptic plasticity. 

Oligodendrocytes in neural networks. Oligodendrocytes are key for myelination in the central 

nervous system, wrapping axons with myelin sheaths for efficient signal transmission (Fields et 

al., 2015). Myelination begins prenatally and is influenced throughout aging by environmental 

factors. Oligodendrocytes are crucial for saltatory conduction and are dynamically regulated by 

neuronal activity, indicating their role in neural plasticity. 

Vascular contributions to neural networks. Vascular components are essential for supporting 

neural networks, with neurovascular interactions forming a crucial metabolic network (Fields et 

al., 2015). Astrocytes regulate cerebral blood flow, and neural activity influences vascular 

patterning. Vascular cells also contribute to neuronal development and differentiation. 

Astrocytic networks as integral pathways of information transfer. To go a step further, it has been 

shown that astrocytic gap-junction networks offer a parallel and alternative path for information 

transfer (not necessarily through computations) within the brain alongside neuronal pathways (De 

Pittà, 2020; De Pittà & Berry, 2019; Fields et al., 2015; Kastanenka et al., 2020; Kiyoshi & Zhou, 

2019; Stephan et al., 2021). These astrocytic networks are posited to cover the whole-brain and 

naturally encompass all the temporal scales mentioned above and even more (De Pittà, 2020; 

Fields et al., 2015). Moreover, the fact that astrocytic networks mediate neurovascular couplings 

adds yet another dimension whereby the properties of the vascular network itself (e.g., including 

the cross-sectional area, length, and elasticity of vessels, the heterogeneity of the vascularization 

of brain regions, e.g., see Figure 1.11) constrain neural dynamics (L.-P. Bernier et al., 2021; M. 

Bernier et al., 2018; Hösli et al., 2022; Reichold et al., 2009; Schaeffer & Iadecola, 2021; Tesler et 

al., 2023; Uludağ & Blinder, 2018) in a non-trivial way. This means that the complete knowledge 

of all structural paths amongst and between glia and neurons do not represent all the possible ways 

information transfer may be constrained. Finally, dynamic diffusion-based information transfer 

(e.g., as discussed earlier with neuromodulators) are also prominent in the brain (Marder, 2012; 

Pacholko et al., 2020). 
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Figure 1.11. Segmental heterogeneity of cerebral arteries and diversity of vascular and perivascular cells. Caption and 

figure from: (Schaeffer & Iadecola, 2021). Permission obtained. ― (a) The internal carotid artery has a thick layer of 

SMCs surrounded by nerves arising from cranial autonomic ganglia (extrinsic innervation) embedded in perivascular 

connective tissue (adventitia). The internal elastic lamina separates SMCs from the endothelial cell monolayer. In the 

middle cerebral artery (MCA) and pial arteriolar branches, the SMC layer becomes progressively thinner, and a 

perivascular nerve plexus surrounds the vascular wall. Penetrating arterioles dive into the substance of the brain 

surrounded by a perivascular space where perivascular macrophages (PVMs) and other cells reside. As the vessel 

becomes smaller (intraparenchymal arterioles), the vascular basement membrane fuses with the glial basement 

membrane and perivascular nerves are replaced by nerve terminals from interneurons or subcortical pathways 

(intrinsic innervation). In capillaries, SMCs are replaced by pericytes. Vascular diameters indicated under the vascular 

segments refer to the human cerebral circulation. Venous SMCs are morphologically, functionally and molecularly 

distinct from arterial SMCs. (b) Each segment of the cerebrovascular tree is characterized by diverse vascular and 

perivascular cells. The vascular and astroglial membranes delimit the perivascular space, which disappears when these 

membranes fuse together. Pial arterioles give rise to penetrating arterioles, the first-order branch of which is defined 

as precapillary arterioles (Hartmann et al., 2021). For mural and endothelial cells, genes enriched in each vascular 

segment are also indicated. For SMCs, the database from ref. (Vanlandewijck et al., 2018) was used, in which 

segmental assignment was validated by in situ hybridization. For endothelial cells, ref. (Kalucka et al., 2020) was 



20 

 

used, in which the segmental assignment was predicted in silico. A–C represents marker endothelial genes at the 

arteriolar–capillary transition and C–V at the capillary–venular transition. BM, basement membrane; ICA, internal 

carotid artery. 

Spatiotemporal scales of neuro-glial–vascular interactions in aging and disease. In anticipation 

for the discussion chapter of this thesis, it is worth briefly mentioning the spatiotemporal scales of 

the aging brain in a context where lifestyle factors including diet, physical and mental exercise, 

and sleep contribute to shaping the connectome. This adds yet another dimension to the complex 

interplay between neurons, glial cells, and vascular elements within neural networks (e.g., see 

Figure 1.12). Indeed, in the context of brain aging and susceptibility to neurodegenerative diseases, 

the coupling between neurons, glial cells, and vascular components take other forms than the ones 

described earlier (Mattson & Arumugam, 2018). Neurons undergo functional decline and 

degeneration, significantly impacting synaptic transmission and cognitive capabilities. Glial cells 

assume pivotal roles in maintaining brain homeostasis, but their altered functions in aging can 

contribute to inflammatory processes and exacerbate neuronal damage. Neuroinflammation, 

primarily mediated by microglial activation, is a key pathological feature in aging brains and 

neurodegenerative diseases. Furthermore, vascular dysfunctions, such as impaired blood flow and 

blood-brain barrier breakdown, further contribute to the pathophysiology of neurodegenerative 

conditions. Collectively, these interdependent roles which are profoundly modulated by lifestyle 

factors, and which reflect spatial interactions extending from the subcellular level to encompass 

large-scale networks throughout the brain as well as temporal interactions ranging from 

milliseconds to years, underscore the complexity of brain aging and the pathogenesis of 

neurodegenerative diseases. 

 
Figure 1.12. Working model for how intermittent metabolic challenges bolster brain health during aging, whereas a 

chronic positive energy balance hastens brain aging and associated brain diseases. Caption and figure from: (Mattson 

& Arumugam, 2018). Permission obtained. ― Left: eating and lifestyle patterns that result in intermittent depletion 

of liver glycogen stores and mobilization of fatty acids to generate ketones (fasting and exercise) also typically increase 

neuronal network activity in many brain regions. Signaling pathways are activated in brain cells that upregulate the 

expression of trophic factors and activate transcription factors that induce the expression of genes encoding proteins 

that enhance neural plasticity and resilience during aging. These adaptations to intermittent metabolic switching 
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include mitochondrial biogenesis and stress resistance; adaptive modifications of neurotransmitter signaling pathways; 

upregulation of autophagy, antioxidant defenses, and DNA repair; stimulation of neurogenesis; and suppression of 

inflammation. In these ways intermittent metabolic switching counteracts core brain aging mechanisms, thereby 

slowing age-related declines in neurological function and reducing the risk of AD, PD, and stroke. Right: sedentary 

overindulgent lifestyles accelerate brain aging and increase the risk of AD, PD, and stroke. A chronic positive energy 

balance results in metabolic morbidity (insulin resistance and dyslipidemia) and reduced activation of signaling 

pathways that promote synaptic plasticity and cellular stress resistance. As a consequence, neurons suffer: impaired 

mitochondrial function, autophagy, and DNA repair; excessive oxidative stress; dysregulated neuronal network 

activity and Ca2+ homeostasis; the accumulation of potentially toxic protein aggregates; and inflammation. In these 

ways, metabolic complacency accelerates age-related decrements in brain function and increases the risk of AD, PD, 

and stroke. 

Glial contributions to brain structures. Highly relevant to this thesis is how brain architecture 

involves an intricate interplay between white-matter axons, cortical folding, and glia (notably, 

radial glia and astrocytes). Radial glial cells not only provide structural support for neuron 

migration but also regulate neuronal proliferation and contribute to mechanical forces required for 

cortical folding (Van Essen, 2020). Astrocytes, serve as stem cells in neurogenic regions of the 

adult brain, like the hippocampal dentate gyrus, and contribute to the generation of new neurons 

(Morrens et al., 2012). These glial cells create an environment that supports neurogenesis and are 

themselves generated alongside new neurons. This ongoing neurogenesis in adulthood is linked to 

cognitive functions and could be related to the structural changes observed in gyrification. 

Recent research emphasizes that understanding these dynamics is key to unraveling the 

complexities of not only brain development but also cognitive ability throughout lifespan, 

particularly in species with highly folded cortices like humans (Pang et al., 2023; Van Essen, 2020). 

Disruptions in these processes have profound implications in neurodevelopmental and 

neuropsychiatric disorders, highlighting the significance of glia in brain architecture. Additionally, 

though this is of lesser importance, these processes have direct consequences on the ability to non-

invasively image electrophysiological activity, as I will detail later. 

Concerning the relation between white-matter axons and cortical folding, white-matter axons 

facilitate communication between brain regions and crucially contribute to the brain’s structural 

and functional connectivity, but the relationship between axonal arrangement and cortical folding 

is nuanced. For instance, white matter wiring significantly influences gray matter and folding 

patterns to the extent that diffusion tensor imaging data can be used to predict T1-weighted data 

(Zaman et al., 2020). Similarly, the interplay between cerebral cortex growth and axonal fiber 

tension has been identified as a key factor in the formation of regular cortical folding patterns, with 

neural wiring possibly being the major regulator of these patterns (Chavoshnejad et al., 2021). 

Conversely, tension-induced fiber growth plays a role in white matter organization during brain 

folding, with mechanical feedback contributing to brain connectivity (Garcia et al., 2021). 

Regarding the relation between glia and cortical development, advances in imaging, genetics, and 

molecular biology have deepened our understanding of glial cells in cortical folding. For instance, 

tension-based morphogenesis is a significant concept that describes how mechanical tension along 

axons, dendrites, and glial processes contributes to central nervous system morphogenesis, 

including cortical folding (Van Essen, 2020). Similarly, the glial framework concept in white 

matter tracts (which refers to the spatial alignment of astrocytes and myelinating oligodendrocytes 

along their neighboring axons) provides insights into white matter fiber architecture in human and 

primate brains, highlighting the significance of radial glia in guiding axonal orientations (Schurr 

& Mezer, 2021). 

Beyond morphogenesis and development, it is worth also motivating further research on how the 

interplay between glial cells, white-matter axons, and cortical folding affect the large-scale brain 
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networks subserving behavior and cognition throughout lifespan (Pang et al., 2023). In the 

discussion chapter of this thesis, I will be specifically talking about the topology of astrocytic 

networks throughout the brain and its relationships with cortical folding, and how such topology 

support brain architectures. How this is relevant could be highlighted by few specialized research. 

For instance, during adolescence, age-related changes in cortical folding in the frontoparietal 

cortex have been shown to contribute to cognitive development in this period (Y. S. Chung et al., 

2017). In mid-life adults, increased cortical gyrification, particularly in the frontal regions, is 

positively related to working memory and mental flexibility, suggesting that greater cortical 

folding is associated with better cognitive function (Gautam et al., 2015). More generally, the 

degree of gyrification, particularly in the neocortical regions, has been linked to general cognitive 

ability in humans. Regions like the prefrontal cortex, inferior parietal lobule, and temporoparietal 

junction, which show increased gyrification, are correlated with higher general cognitive ability 

(Gregory et al., 2016). Studies in schizophrenia, a condition marked by cognitive deficits, show a 

relationship between altered gyrification patterns and disruptions in neural connectivity (White & 

Hilgetag, 2011). How glial anatomy and function as well as neuron-glial interactions contribute to 

these structure-function relationships? 

Altogether, these studies, amongst others (Llinares-Benadero & Borrell, 2019; Mota et al., 2019; 

Shinmyo et al., 2022), underscore the complex interplay between the structural features of the 

brain, such as gyrification, and the functional roles of glial cells in supporting neuronal health and 

neurogenesis, which are crucial for cognitive abilities throughout life. Further research in this area 

could provide deeper insights into how these relationships evolve in adulthood and contribute to 

cognitive resilience or decline. 
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1.2 Dynamical systems theory 

Dynamical systems and differential equations. Dynamical systems theory fundamentally revolves 

around the concept of differential equations. These equations, typically denoted as 

d𝑋 d𝑡⁄ = 𝐹𝜇(𝑋), are the formal framework describing the temporal evolution of a system’s state 

variable 𝑋 (which quantifies the system’s characteristics) in conformity with a governing law 𝐹𝜇. 

Here, 𝜇  usually represents a constant vector-parameter, encapsulating certain system-specific 

parameters or external conditions. Generally, the analytical resolution of differential equations is 

a non-trivial if not impossible endeavor, instead, a triangulation of algebraic, geometric, and 

numerical methodologies is employed (Strogatz, 2018). 

Phase space and trajectories. In a geometrical perspective, a system’s solution can always be 

represented in a phase space. The phase space is the geometric space spanned by the state 

variables. For example, a one-dimensional system is represented on a phase line, while a two-

dimensional system uses a phase plane. Each point in this space uniquely represents a system’s 

state, and a velocity vector at any point in this space indicates the direction and magnitude of the 

system’s motion (i.e., the change in the system’s state) at that point. The collection of all such 

vectors constitutes a vector field. This vector field serves as a guide for the system’s flow (i.e., the 

system’s dynamics) which specifies how a system’s state may evolve over time for all possible 

initial conditions. Given an initial condition, the system’s unique solution traces out a curve in the 

phase space, known as phase trajectory or orbit, that follows the system’s flow. The graphical 

representation of phase trajectories is termed phase portrait. These trajectories and portrait help in 

qualitatively predicting the system’s dynamics and its sensitivity to initial conditions. It is 

noteworthy that this prediction approach does not require the analytical solving of the differential 

equation, since the right-hand side of the differential equation, 𝐹𝜇(𝑋) , provides the velocity 

vectors. As trajectories evolve, they tend to converge to specific sets known as attractors. These 

attractors can take various forms, such as fixed-points, limit cycles, or strange attractors, each with 

distinct characteristics. A fixed-point attractor corresponds to a steady state or equilibrium point, 

where the system settles into a stable configuration. Limit cycles represent simple closed orbits 

leading to periodic oscillations in the system. Strange attractors are more complex, characterized 

by a fractal structure, and they signify chaotic behavior, where the system exhibits deterministic 

yet aperiodic oscillations. An attractor is considered structurally stable if small changes in the 

system’s parameters lead to only small changes in its form. When a system contains multiple 

attractors, it exhibits multistability, meaning that the system’s long-term behavior depends on its 

initial conditions. Each attractor is associated with a basin of attraction, comprising all initial 

conditions that eventually lead to that attractor. These basins are separated by boundaries, which 

can sometimes be fractal in nature. The complexity of basin boundaries is essential for 

understanding the predictability and stability of dynamical systems (e.g., see (Dudkowski et al., 

2016)). Figure 1.13 illustrates the main concepts discussed thus far. 

Bifurcation analysis. Bifurcation analysis (Strogatz, 2018) is crucial for cataloging the dynamic 

behaviors of a system, particularly in observing changes such as the emergence or disappearance 

of oscillatory behavior. This process involves systematically characterizing the different types of 

solution 𝑋 that arise for different values of the parameter 𝜇. A bifurcation occurs when a qualitative 

change in the system’s output is observed due to a smooth change in 𝜇, indicating a transition in 

the system’s dynamical state. 
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Bifurcation types. Bifurcations are either local or global, based on whether they can be detected 

by stability analysis near fixed points. They are also characterized by their codimension, i.e., the 

number of parameters that must be varied for the bifurcation to occur. This classification (Strogatz, 

2018) helps in comprehensively understanding the dynamics and potential transitions in the system 

(though it has limitations, as I will explain later). 

In more details, local bifurcations occur near fixed points and are detectable through stability 

analysis, often involving the evaluation of the system’s Jacobian matrix. These bifurcations are 

characterized by changes in asymptotic stability, indicated by the crossing of the real parts of one 

or several eigenvalues of the Jacobian matrix through zero. This leads to changes in the local 

stability of the system’s fixed points or limit cycles. Local bifurcations in models of neural 

populations encompass a variety of types such as Andronov–Hopf, saddle-node, saddle-focus, 

saddle-saddle, pitchfork, transcritical, and period-doubling bifurcations (e.g., see Figure 1.14). Of 

theses examples, all are typically codimension-1 bifurcations except for the saddle-focus and 

saddle-saddle. Altogether, these types of bifurcations are essential for understanding complex 

behaviors in neural population models, as they represent different ways in which the dynamics of 

these systems can change in response to variations in parameters. 

• Andronov–Hopf bifurcations. These arise when a pair of complex conjugate eigenvalues 

traverse the imaginary axis. This marks a pivotal change from a stable state (indicated by 

a negative real part) to cyclic behavior (positive real part), often resulting in system 

oscillations. The harmonicity of these oscillations is influenced by the system’s amplitude 

and degree of nonlinearity. 

• Saddle-node and saddle-focus bifurcations. Known alternatively as tangential or fold 

bifurcations, they occur when a stable fixed point (node or focus) and an unstable fixed 

point (saddle) collide and annihilate each other due to parameter variations. 

• Saddle-saddle bifurcations: These take place when the colliding fixed points are both 

saddle points. At the critical juncture of these bifurcations, the points become non-

hyperbolic, characterized by a zero second derivative, indicating a loss of asymptotic 

stability. 

• Pitchfork bifurcations. These occur in systems where there’s a symmetry. A pitchfork 

bifurcation can be either supercritical or subcritical. In a supercritical pitchfork bifurcation, 

a stable fixed point bifurcates into two stable fixed points and one unstable fixed point as 

a parameter changes. In a subcritical pitchfork bifurcation, the opposite occurs: two 

unstable fixed points and one stable fixed point merge into a single stable fixed point as 

the parameter is varied. 

• Transcritical bifurcations. These involve the exchange of stability between two 

intersecting fixed points as a parameter is varied. In this type of bifurcation, a stable and 

an unstable fixed point collide and swap their stability, meaning that the previously stable 

point becomes unstable and vice versa. 

• Period-doubling bifurcations. Also known as flip bifurcations, these occur when a system 

with a periodic orbit (cycle) undergoes a bifurcation resulting in a new periodic orbit with 

double the period of the original. This type of bifurcation is often associated with the onset 

of chaos, as repeated period-doubling can lead to increasingly complex, chaotic behavior 

in the system. 

Global bifurcations, also referred to as catastrophic bifurcations, necessitate a comprehensive 

analysis of the system’s vector field, extending beyond the local vicinity of fixed points. These 

bifurcations, often involving interactions between larger invariant sets of the system, are marked 
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by significant alterations in the system’s structure, characterized by the sudden emergence or 

disappearance of fixed points and limit cycles as parameters are smoothly varied. Such 

transformations indicate a fundamental change in the system’s structural stability. 

• A key family within global bifurcations is the saddle family, where the interaction and 

subsequent annihilation of colliding fixed points typify global bifurcation phenomena. An 

archetypal example of this is the infinite period bifurcation. In this scenario, a stable fixed 

point (either a node or focus) is linked to a saddle point through a specific path known as 

a heteroclinic orbit. As a system parameter is adjusted towards a critical value, these two 

fixed points converge progressively until they collide and cease to exist. Consequently, the 

heteroclinic orbit transforms into a periodic orbit, initiating continuous oscillations within 

the system. Conversely, approaching this bifurcation from the opposite parameter direction 

leads to a deceleration of oscillations, culminating in an infinite period at the critical point 

where the periodic orbit reverts to a heteroclinic orbit. 

• Furthermore, global bifurcations encompass homoclinic and heteroclinic bifurcations. 

These involve interactions where periodic orbits either collide with saddle points 

(homoclinic) or with orbits from different saddle points (heteroclinic). Such collisions are 

instrumental in understanding the intricate dynamics of systems, including the transition to 

chaotic behavior. 

To finish, when it is useful to consider higher-dimensional parameter spaces in the analysis of the 

behavior and stability of neural population models, the following higher codimension bifurcations 

typically occur. 

• Bautin (or generalized Hopf) bifurcation. This bifurcation, occurring at codimension 2, is 

observed when an Andronov–Hopf bifurcation undergoes a transition from supercritical to 

subcritical due to the alteration of a second system parameter. In this scenario, the system 

experiences a change in the nature of the bifurcation, affecting the stability and type of 

periodic orbits that emerge. 

• Bogdanov–Takens bifurcation. This bifurcation, also of codimension 2, is a critical point 

where Andronov–Hopf bifurcations, saddle-node bifurcations, and homoclinic curves 

intersect. This convergence signifies complex dynamical behaviors, including the potential 

for the emergence of homoclinic orbits and complex oscillatory patterns. 

• Cusp bifurcation. Characterized as a codimension 2 bifurcation, the cusp bifurcation occurs 

when two branches of the saddle-node bifurcation curve meet tangentially. This interaction 

leads to the phenomenon of hysteresis, where the system’s response to changing parameters 

exhibits a form of lag or delayed reaction. 

Bifurcation diagrams. Bifurcation diagrams (Strogatz, 2018) are a crucial tool for investigating 

bifurcations in dynamical systems. In their simplest form, which pertains to codimension-1 

bifurcations, these diagrams illustrate how stable and unstable fixed points (equilibrium points 

where the time derivatives of state variables are zero) and limit cycles (closed, repeating 

trajectories in state space) vary as a function of one or more system parameters. This representation 

allows for the visualization of how small changes in parameters can qualitatively change the 

behavior of a system and help in pinpointing exact values of parameters where qualitative changes 

in the system’s behavior occur (i.e., the bifurcation points). Each type of bifurcation reviewed 

earlier has distinct characteristics that can be visually represented. 

Limitations. Bifurcation analysis, as a qualitative approach is particularly useful in systems where 

exact solutions to the differential equations are complex or infeasible to obtain. However, it is also 
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essential to recognize that such predictions have limitations. For instance, in systems exhibiting 

chaotic behavior, small variations in initial conditions can lead to vastly different outcomes, a 

phenomenon known as sensitivity to initial conditions or the butterfly effect (Vannitsem, 2017). 

This sensitivity implies that long-term predictions in chaotic systems can be inherently uncertain, 

even though the systems are deterministic. Furthermore, in complex systems, the dynamics can be 

influenced by various factors, including nonlinear interactions, which may not be fully captured 

by simple trajectory analysis. Therefore, while trajectory analysis in phase space is a powerful tool, 

it must be used with an understanding of its limitations and in conjunction with other analytical 

and computational methods (Breakspear, 2017; Kotyrba, 2015; Strogatz, 2018). 

 
Figure 1.13. Dynamical system. Caption and figure from: (Breakspear, 2017). Permission obtained. ― A dynamical 

system is defined by a differential equation d𝑋 d𝑡⁄ = 𝑓(𝑋). Here 𝑋 is composed of the two state variables 𝑥 (the cell 

membrane potential) and 𝑦 (the conductance of a fast-depolarizing ion channel). (a) The phase space is the geometric 

space spanned by the state variables: in this case, simply the Cartesian plane composed of axes for 𝑥 and 𝑦. The 

dynamical system then defines a vector of length and direction given by 𝑓(𝑥; 𝑦)  at each point—that is, for each 

combination of membrane potential and ion channel conductance. (b) The flow (also called a vector field) is the set 

of all such vectors and shows how the dynamical system will flow through phase space: here, a distinctive clockwise 

flow is evident. (c) An orbit is a solution to the flow—a smooth line that is tangent to the flow. (d) Orbits converge 

onto the attractors, the long-term solutions of the system. Here there is just a single limit cycle attractor (red) reached 

from many different starting points (other colors). (e–g) By adding a slow recovery variable z (middle), the system 

can show a simple limit cycle (e, top), corresponding to regular spiking (e, bottom); or a more complex limit cycle (f, 
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top), yielding regular bursting (f, bottom); or a chaotic (strange) attractor (g, top) with irregular spiking (g, bottom) 

when the time scales of the spiking and recovery variable mix. 

 
Figure 1.14. Equilibria of a two-dimensional dynamical system. Caption and figure from: (Izhikevich, 2007). 

Publisher’s permission: http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US. ― Classification of equilibria 

of a two-dimensional dynamical system according to the trace (τ) and the determinant (Δ) of the Jacobian matrix. The 

shaded region corresponds to stable equilibria. 

 

  

http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US
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1.3 Neural network modelling: from the past 50 years to the present 

 
Figure 1.15. Timeline of major developments in and pertaining to whole-brain modelling. Caption and figure from: 

(Griffiths et al., 2022). Permission obtained. ― Shown are a selection of key publications and events that have had a 
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major influence on the development of whole-brain modelling and adjacent fields. Particularly important entries are 

indicated in bold italics. The earliest neural population model formulations were outlined by (Shimbel & Rapoport, 

1948), (Beurle, 1956), and (Uttley, 1955), building on the seminal work of (McCulloch & Pitts, 1943). Arguably most 

central in the entire timeline is the period 1970–1975, during which the key contributions of (Wilson & Cowan, 1972), 

(F. H. Lopes da Silva et al., 1974), (Freeman, 1972), (Freeman, 1975), and (Nunez, 1974) were published. 

The field of biophysical neural population modeling, which explores the collective behavior of 

neural assemblies (predominantly neurons), has a rich history that extends back to the 1940s (e.g., 

see Figure 1.15). This long-standing tradition of research has led to significant advancements in 

our understanding of neural dynamics at the population and whole-brain levels (Breakspear, 2017; 

Cook et al., 2022; Coombes & Wedgwood, 2023; Griffiths et al., 2022; Hutt, 2015; Liley, 2015). 

In this section, history starts in the 1970s for the sake of conciseness, and the focus is on the 

seminal works of Wilson and Cowan, and Lopes da Silva and colleagues, whose pioneering models 

and perspectives have significantly shaped contemporary neural modeling practices (Griffiths et 

al., 2022). Notably, the Wilson–Cowan and Lopes da Silva models and their various modern 

variants or extensions are central to the current landscape of neural modeling (Breakspear, 2017; 

Cook et al., 2022; Coombes & Wedgwood, 2023; Griffiths et al., 2022; Hutt, 2015; Liley, 2015). 

These models uniquely encapsulate the collective dynamics of neuronal populations, arising from 

the intricate interactions of different neuronal subtypes. Additionally, while they share similarities 

with single-neuron behaviors, they offer a distinct perspective as their properties and behaviors are 

not entirely deducible from studies of individual neurons. The essence of these low-dimensional 

models lies in their ability to simplify neural complexity based on some neurobiological principles. 

They achieve this by representing the interplay between excitatory and inhibitory neuron pools at 

a mesoscopic scale (see Figure 1.16 bottom) through average metrics or mean fields, representing 

for instance mean firing rates or mean soma membrane potentials (e.g., as illustrated in Figure 1.16 

top). Such mesoscale models are attractive because they align with the widely accepted view that 

behavior is a manifestation of macroscopic neuronal activity, and their spatial domain closely 

matches the millimeter to centimeter resolution of non-invasive neuroimaging techniques like 

functional magnetic resonance imaging, electroencephalography, and magnetoencephalography, 

thereby making them particularly relevant for human brain function studies (Breakspear, 2017; 

Cook et al., 2022; Coombes & Wedgwood, 2023; Griffiths et al., 2022; Hutt, 2015; Liley, 2015). 
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Figure 1.16. Diagram of neural mass approximation and hierarchical spatial organization of the brain. Left figure. 

Caption and figure adapted from: (Cook et al., 2022). Publisher’s permission: 

https://creativecommons.org/licenses/by/4.0. ― Diagram of neural mass approximation. A single neuron description 

starts on the top, where models such as Hodgkin–Huxley are appropriate to describe quantities such as membrane 

potential and spike frequency. Increasing in scale, abstracted neuronal models such as leaky integrate-and-fire are used 

to model signal transmission amongst interconnected neurons. At larger scales on the bottom, individually addressing 

neurons becomes mathematically intractable, so a continuum approximation is typically made. Models at this scale 

include neural field models and neural mass models, which describe the evolution of aggregate quantities across 

different populations of neurons. Neurons are grouped together by the type and time-scale of post-synaptic signals 

they send. Aggregate quantities used in ensemble descriptions of neural dynamics include mean membrane potential 

and mean spike rate of sub-populations, which are closely related by a sigmoidal wave-to-pulse transfer function. | 

Right figure. Caption and figure from: (Lawn et al., 2023). Publisher’s permission: 

http://creativecommons.org/licenses/by/4.0/. ― The hierarchical micro-, macro-, and meso-scale organisation of the 

brain. The brain is a complex system whose constitutive parts span vastly different spatial resolutions. Here, these are 

described as a hierarchy with interactions across micro-, meso-, and macro-scale levels. The definitions of these levels 

are somewhat arbitrary, but this loose demarcation has proven conceptually useful (Fornito et al., 2019; Suárez et al., 

2020; Swanson & Lichtman, 2016; van den Heuvel et al., 2019; Wong-Lin et al., 2021). 

In delving deeper into this thesis, it is also pertinent to clarify certain terminologies that have 

emerged in the field of modeling mesoscopic and macroscopic neural dynamics, and which have 

been used interchangeably at times, leading to some confusion. While terms like neural mass 

models, neural population models, neural field models, and mean field models are related, they 

each have distinct features. Adopting the classification proposed by Bojak (Bojak, 2014), neural 

mass models and neural population models are synonymous. These models, originating from 

Freeman’s pioneering work on neural mass action (Freeman, 1975), describe the dynamics of 

neuronal populations at a singular spatial point, emphasizing collective temporal behavior while 

overlooking spatial variation. They are particularly useful in EEG and MEG signal simulations, 

offering insights into the temporal patterns of brain activity (Byrne et al., 2020, 2022). Neural field 

models represent a broader category, encompassing the attributes of neural mass models while also 

https://creativecommons.org/licenses/by/4.0
http://creativecommons.org/licenses/by/4.0/
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incorporating the spatial characteristics of neural activity. This category is instrumental in 

unraveling spatially dependent neural phenomena, such as the propagation of neural waves, 

thereby providing a more comprehensive understanding of neural dynamics across both space and 

time (Byrne et al., 2020, 2022). Mean field models in neuroscience is a class of models that 

simplify neural network dynamics by averaging neuronal behaviors. This approach is conceptually 

different from the mean-field approximation in statistical mechanics, which simplifies a network 

of interacting neurons to a single average unit (Martínez-Cancino & Sotero Diaz, 2011), even 

though recent publications use this latter concept in yet another way (Bandyopadhyay et al., 2022), 

indicating a dynamic and evolving usage of the term. 

1.3.1 Neural mass models 
Neural mass modelling is a sophisticated and refined framework that facilitates a nuanced 

understanding of localized mesoscale neural dynamics (Breakspear, 2017; Cook et al., 2022; 

Coombes & Wedgwood, 2023; Griffiths et al., 2022; Liley, 2015). It also adeptly navigates the 

intricacies inherent in spatially extended neural populations such as the neocortex (Breakspear, 

2017; Cook et al., 2022; Coombes & Wedgwood, 2023; Griffiths et al., 2022; Liley, 2015). The 

framework involves abstracting from the intricate neurophysiology of individual neural cells 

(primarily neurons in historical contexts) to elucidate collective neural behavior through 

meticulous mathematical formulations spanning various layers of abstraction, from fully 

phenomenological to rigorously exact, all aligned with the principles of physics (Breakspear, 2017; 

Cook et al., 2022; Coombes & Wedgwood, 2023; Griffiths et al., 2022; Liley, 2015). 

This modelling approach relies on two fundamental tenets (Liley, 2015): on the one hand, there is 

a deliberate decision to consider the enumeration of individual cells within a specified population 

as unnecessary; on the other hand, it posits that structural connectivity among these cells is both 

random and nonspecific, eliminating the need for detailed inner circuitry specifications. 

Consequently, the complexities associated with spatial and temporal intricacies in neural activity 

within a delimited population are set aside in favor of characterizing the dynamic state through 

effective averages (mean fields) or macrostates (Liley, 2015). Critically, this characterization 

assumes negligible interneural propagation delays, as described in the next sections, and lacks 

specific spatial structures in connectivity (Liley, 2015). Accordingly, extensions must be made 

when modeling spatially extended neural populations, such as the neocortex, where there is a 

discernible spatial organization in neural connectivity (Liley, 2015). For instance, see also Sections 

1.3.7 and 1.3.8, models must either instantiate networks of neural populations or posit a continuous 

spatial distribution with interactions governed by spatially dependent connectivity functions 

(Liley, 2015). 

Within the neuronal mass modelling context, the notion of a “mean neuron” materializes as a 

mathematical abstraction resulting from spatially averaging functionally homogeneous and 

densely coupled neurons across a defined physical domain where the hypotheses of “dispensable 

inner circuitry details” as well as “uncorrelated membrane potential fluctuations due to spiking” 

both hold (Liley, 2015). The dynamics of neural populations are then conceptualized as a cascade 

of physiological transformations, encompassing synaptic input, transduction of postsynaptic 

potentials, neuronal cable delays, and action potential generation; all encapsulated within the 

representation of a mean neuron (Liley, 2015). The pioneering works of Wilson and Cowan 

(Wilson & Cowan, 1972) illustrate well these concepts. 
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Wilson and Cowan derived a pair of coupled nonlinear ordinary differential equations describing 

the short-time averaged dynamics of the spatial mean firing rates of interacting excitatory and 

inhibitory neuronal populations. Of crucial significance was their introduction of the sigmoidal 

firing rate function and an explicit cortical meso-circuit quantitatively defined by population 

(synaptic) connectivity coefficients. These two conceptual innovations are what virtually all 

subsequent mean field formulations have retained. The sigmoidal firing rate function formally 

represents the relationship between mean (soma) neuronal population membrane potential and the 

generation of axonal spike trains, and the cortical meso-circuit captures all possible feedforward 

and feedback connections between spatially circumscribed populations of excitatory and inhibitory 

neurons. 

1.3.2 The Wilson–Cowan model 

 
Figure 1.17. The Wilson–Cowan mass model. Schematic representation of the Wilson–Cowan neuronal population 

model circuit topology and the form of its postsynaptic response (Wilson & Cowan, 1972). This model considers 

functionally differentiated excitatory (Ex) and inhibitory (In) neuronal populations. Open circles represent excitatory 

connections and filled circles inhibitory ones. Figure inspiration from: (Liley, 2015). 

Wilson and Cowan modelled cortical and thalamic neural tissue as comprised of two interacting, 

but functionally distinct, excitatory (Ex) and inhibitory (In) neuronal subpopulations. They derived 

the following pair of equations describing, in an inherently straightforward way, the proportion of 

excitatory or inhibitory cells firing per unit time (𝐹•) at time 𝑡 + 𝜏•: 

where the first factor in both equations represent the proportion of excitatory or inhibitory cells 

which are sensitive (i.e., not refractory) at time 𝑡, and the second factors maps, through postulated 

subpopulation response functions (𝑆•), the average levels of excitation within the subpopulations 

(𝑉•) at time 𝑡 to expected proportion of cells receiving at least threshold excitation per unit time. 

The constants 𝑟•  are the absolute refractory periods and the constants 𝜏•  are synaptic operating 

delays (i.e., time lapses between excitation reaching threshold and the consequent appearance of 

action potentials). It is noteworthy that in these equations, it is posited that the probability of a 

neuron being sensitive to input is independent of the probability that it is currently excited above 

its threshold. This assumption allows for the representation of neuronal firing rates, 𝐹• , as the 

product of these two probabilities. While acknowledging that this assumption may not always hold, 

given the likely correlation between a neuron’s recent firing activity and its subsequent propensity 

to fire, Wilson and Cowan argued that it serves as a reasonable approximation in the context of a 

densely interconnected population of neurons. Indeed, within large neuronal populations featuring 

 
𝐹Ex(𝑡 + 𝜏Ex) = (1 − ∫ 𝐹Ex(𝑇) d𝑇

𝑡

𝑡−𝑟Ex

)𝑆Ex(𝑉Ex(𝑡)) 

𝐹In(𝑡 + 𝜏In) = (1 − ∫ 𝐹In(𝑇) d𝑇
𝑡

𝑡−𝑟In

)𝑆In(𝑉In(𝑡)) 

(1.1) 
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random and nonspecific connectivity, excitability levels of subpopulations are subject to spatial 

and temporal fluctuations, and the thresholds for activation among individual neurons are also 

variable. This inherent variability across the population justifies the simplifying assumption of 

negligible correlation and thereby statistical independence between sensitivity and excitation 

above threshold. 

The subpopulation response functions (𝑆• ) are typically given a sigmoidal or logistic form, 

consistent with empirical observations, and such functions formally represent the relationship 

between mean (soma) neuronal population membrane potential and the generation of axonal spike 

trains. For example, 

which for large 𝑣  saturates to 𝑆•
∞  (for Wilson–Cowan model, 𝑆•

∞ = 1 ), and where 𝜃•  are 

thresholds at which the value 𝑆•
∞ 2⁄   (i.e., here, 0.5) is attained, and 𝛾•  are positive steepness 

parameters. Noting that, this functional form is not derived from a biophysical model, rather it is 

seen as a physiologically consistent choice. Wilson and Cowan called 𝑆•  response functions 

because these functions give the expected proportion of cells in a subpopulation which would 

respond to a given level of excitation if none of them were initially in the absolute refractory state. 

The average levels of excitation within the subpopulations (𝑉•) at time 𝑡, typically incorporate the 

interactions between subpopulations whereby excitatory (inhibitory) neurons make their neighbors 

more (less) likely to become active. Concretely, assuming that individual cells sum their inputs in 

an all-to-all topology of interactions (as in Figure 1.17), they take the following convolution 

integral forms: 

where the positive constants 𝐶▲→■  describe the synaptic connection density strengths from 

subpopulation of type ▲  to type ■ , the time-varying quantities 𝑞•  encode external inputs (e.g., 

from distant brain regions) to each subpopulation, and the convolution kernels ℎ•  are the 

subpopulation postsynaptic impulse responses. 

From a physiological perspective, the time course of the postsynaptic potential felt at the neuronal 

soma represents a combination of the kinetics of neurotransmitter action such as glutamate and 

GABA, and neuronal cable delays. For instance, if these effects are ignored, the Dirac delta 

impulse response corresponding to the arrival of a single presynaptic action potential become the 

simplest of all models (1.4). 

where Γ•  is the peak amplitude (positive for excitatory postsynaptic potentials, negative for 

inhibitory postsynaptic potentials) and 𝛿 is the Dirac delta function. In practice, it is desirable to 

describe the postsynaptic impulse responses (also called synaptic filters) more flexibly, and so 

 
𝑆•(𝑣) =

𝑆•
∞

1 + e−𝛾•(𝑣−𝜃•)
 (1.2) 

 
𝑉Ex(𝑡) = ∫ ℎEx(𝑡 − 𝑇)(𝐶

Ex→Ex𝐹Ex(𝑇) − 𝐶
In→Ex𝐹In(𝑇) + 𝑞Ex(𝑇)) d𝑇

𝑡

−∞

 

𝑉In(𝑡) = ∫ ℎIn(𝑡 − 𝑇)(𝐶
Ex→In𝐹Ex(𝑇) − 𝐶

In→In𝐹In(𝑇) + 𝑞In(𝑇)) d𝑇
𝑡

−∞

 

(1.3) 

 ℎ•(𝑡) = Γ•𝛿(𝑡) (1.4) 
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common choices include the exponential function (1.5), the difference of two exponential 

functions (1.6), and Rall’s α-function (1.7). 

where e is Euler’s number, Θ is the Heaviside step function, and the parameters 𝜇 and 𝜇 are time 

constants. In Equation (1.6), 𝜇 is a decay time constant while 𝜇 is a rise time constant, and 𝜇 > 𝜇. 

For instance, assuming unitary Dirac delta impulse responses, and by reinterpreting 𝜏• ≪ 𝑟• as the 

combined characteristic time scale for uniform synaptic, cable, and axonal delays, we obtain from 

(1.1) and (1.3), after first-order Taylor expansion about 𝜏•: 

This pair of coupled ordinary differential equations is the well-known spatially lumped Wilson–

Cowan equations (Wilson & Cowan, 1972). 

It is noteworthy that in their original paper, Wilson and Cowan assumed a rapidly decaying 

exponential form for the postsynaptic impulse response, e.g., as given by Equation (1.5) instead of 

a Dirac delta impulse responses, and they dealt away with the integrals in Equation (1.1) and 

Equation (1.3) using the first mean value theorem for definite integrals (which is one procedure of 

time coarse graining), to end up with a mathematically equivalent system defined by Equation 

(1.8), of course up to multiplicative constants. Moreover, they assessed the appropriateness of the 

resulting system of ordinary differential equations by comparing solutions to Equation (1.1) with 

those obtained from Equation (1.8). The major difference that is observed between the two cases 

is that the solution to Equation (1.1) generally involves a damped oscillation with period equal to 

twice the refractory period, whereas the solution to Equation (1.8) approaches the same asymptotic 

value monotonically. Wilson and Cowan argued that the temporally coarse-grained equations are 

valid in physiologically reasonable conditions because the damped oscillations, being almost 

entirely dependent on the length of the absolute refractory period (1–2 ms), are not of great 

functional importance. In current practices of mesoscale modelling, the refractory periods are often 

if not always ignored (i.e., set to zero). 

The system of equations defined by Equation (1.8) and subsequent extensions and modifications, 

are widely used in the modeling of coupled neuronal population activity. Additionally, there are 

direct extensions of these equations (Breakspear, 2017; Cook et al., 2022; Coombes & Wedgwood, 

2023; Griffiths et al., 2022; Hutt, 2015; Liley, 2015; Wilson & Cowan, 1973) to continuously 

distributed populations of interacting excitatory and inhibitory neurons in planar sheets (i.e., 

accounting for spatial domain, through partial differential equations; see also Section 1.3.7). 

In preparation for the model extensions to come below, it is worth discussing more about the 

postsynaptic impulse responses ℎ . In general, ℎ  can be written as Green’s function of a linear 

differential operator 𝑄, so that: 

 
ℎ(𝑡) =

1

𝜇
e−𝑡 𝜇⁄ Θ(𝑡) (1.5) 

 
ℎ(𝑡) =

1

𝜇 − 𝜇
(e−𝑡 𝜇⁄ − e−𝑡 𝜇̃⁄ )Θ(𝑡) (1.6) 

 
ℎ(𝑡) =

1

𝜇2
𝑡e−𝑡 𝜇⁄ Θ(𝑡) (1.7) 

 𝜏Ex𝐹̇Ex = −𝐹Ex + (1 − 𝑟Ex𝐹Ex)𝑆Ex(𝐶
Ex→Ex𝐹Ex − 𝐶

In→Ex𝐹In + 𝑞Ex) 
𝜏In𝐹̇In = −𝐹In + (1 − 𝑟In𝐹In)𝑆In(𝐶

Ex→In𝐹Ex − 𝐶
In→In𝐹In + 𝑞In) 

(1.8) 
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In practice, the operator 𝑄  is found by taking the Laplace transform of ℎ  with respect to 𝑡  and 

identifying, Laplace’s variable 𝑠  with d d𝑡⁄  , 𝑠2  with d2 d𝑡2⁄  , etc. For concrete examples, the 

operators associated with Equation (1.5), Equation (1.6), and Equation (1.7) are, respectively: 

With these formulations, integrals (i.e., in fact convolutions, herefrom denoted ∗) as in Equation 

(1.3) are readily replaced by differential equations, so that, for instance, if ℎ is the α-function as 

defined in Equation (1.7), then: 

Using these formulations, the forthcoming sections will delve into voltage-based models, 

presenting an alternative to the Wilson–Cowan model, which is rate-based or activity-based. 

Unlike the Wilson–Cowan model, which is formulated in terms of firing rates, voltage-based 

models are described in terms of membrane potentials. 

Before going to other models, it is interesting to portray some of the dynamical behaviors of the 

Wilson–Cowan model, following the preceding chapter on bifurcation theory. 

 
Figure 1.18. Bifurcation diagram of the Wilson–Cowan mass model. Caption and figure from: (Coombes & 

Wedgwood, 2023), in the chapter “Population models”. Permission obtained. ― Hopf (HB) and saddle-node (SN) 

bifurcation curves in the Wilson–Cowan model. Here, 𝑆•(𝑉) = (1 + e
−𝑉)−1 , 𝑟Ex = 𝑟In = 0 , 𝜏Ex = 3 , 𝜏In = 8 , 

𝐶Ex→Ex = 𝐶In→In = 𝐶Ex→In = 10 , and 𝐶In→Ex = 12 . The insets show the phase plane (𝐹Ex -nullcline (called E-

 𝑄ℎ(𝑡) = 𝛿(𝑡) (1.9) 

 
𝑄 = 𝜇 (

1

𝜇
+
d

d𝑡
 ) (1.10) 

 
𝑄 = 𝜇𝜇 (

1

𝜇
+
d

d𝑡
 ) (
1

𝜇
+
d

d𝑡
 ) (1.11) 

 
𝑄 = 𝜇2 (

1

𝜇
+
d

d𝑡
 )
2

 (1.12) 

 
𝑉(𝑡) = (𝐹 ∗ ℎ)(𝑡) ⟺ (

d2

d𝑡2
+
2

𝜇

d

d𝑡
+
1

𝜇2
 ) 𝑉(𝑡) =

1

𝜇2
𝐹(𝑡) (1.13) 
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nullcline in the figure) in grey and 𝐹In-nullcline (called I-nullcline in the figure) in dashed grey) for a parameter set 

supporting an inhibition-stabilised network with (𝑞Ex; 𝑞In) = (0;−0.647)  and a sustained oscillation with 

(𝑞Ex; 𝑞In) = (0;−1); In the figure 𝑞Ex = 𝑝𝐸 and 𝑞In = 𝑝𝐼 . Black lines denote numerically determined trajectories. 

The Wilson–Cowan model also supports Bogdanov–Takens bifurcations which occur when the saddle-node and Hopf 

curves intersect, as well as a saddle-node-on-an-invariant-circle bifurcations when the saddle-node curve lies between 

the two Hopf curves, and a saddle-separatrix loop and a double limit cycle. 

The two insets of Figure 1.18 show phase planes (𝐹Ex; 𝐹In)  for a parameter set (𝑞Ex; 𝑞In) 
supporting damped oscillations (a so-called inhibition-stabilised network) and a parameter set 

supporting sustained oscillations, both assuming 𝑟Ex  and 𝑟In  are null. The primary focus of the 

figure is a two-parameter bifurcation diagram, plotted in the (𝑞Ex; 𝑞In)  parameter space. This 

diagram traces both Hopf and saddle-node bifurcations, the latter indicating where the number of 

fixed points shifts from one to three. Transitioning between a regime of damped and sustained 

oscillations can be achieved by crossing the supercritical Hopf bifurcation line. Thanks to the 

straightforward structure of the Wilson–Cowan equations, the two-parameter bifurcation diagram 

depicted in Figure 1.18 can be derived analytically. Indeed, to determine equilibrium points 

(𝐹̅Ex; 𝐹̅In), one can solve the system (1.14) after expressing the reciprocal function of 𝑆•, denoted 

as 𝑆−1•. 

Choosing 𝑆•(𝑉) = (1 + e
−𝑉)−1 , provides 𝑆−1•(𝐹) = ln(𝐹 (1 − 𝐹)⁄ ) , and the Jacobian matrix, 

evaluated at (𝐹̅Ex; 𝐹̅In) is: 

In the Wilson–Cowan model, it is possible to configure a scenario where two stable fixed points 

are separated by a saddle, as illustrated in Figure 1.19. In this setup, the stable manifold of the 

saddle point serves as a threshold. Consequently, when stochastic forces are introduced, the system 

exhibits bistable switching behavior. This dynamic is characterized by networks of neurons 

alternating between periods of elevated membrane potentials (referred to as the up state), lasting 

about 4 seconds, and phases of inactivity (the down state). Ermentrout and Terman (Ermentrout & 

Terman, 2010) have proposed this model configuration as a simplified representation of up-down 

state transitions, which are commonly observed in both extracellular and intracellular neuronal 

recordings. Coombes and Wedgwood, in the chapter “Population models” of (Coombes & 

Wedgwood, 2023), also provide further discussion on this subject, highlighting its practical 

applications in modeling neuronal behaviors. 

 𝑞Ex = 𝑆
−1
Ex(𝐹̅Ex) − 𝐶

Ex→Ex𝐹̅Ex + 𝐶
In→Ex𝐹̅In 

𝑞In = 𝑆
−1
In(𝐹̅In) − 𝐶

Ex→In𝐹̅Ex + 𝐶
In→In𝐹̅In 

(1.14) 

 

𝐽 = [
(−1 + 𝐶Ex→Ex𝐹̅Ex(1 − 𝐹̅Ex)) 𝜏Ex⁄ −𝐶In→Ex𝐹̅Ex(1 − 𝐹̅Ex) 𝜏Ex⁄

𝐶Ex→In𝐹̅In(1 − 𝐹̅In) 𝜏In⁄ (−1 − 𝐶In→In𝐹̅In(1 − 𝐹̅In)) 𝜏In⁄
] (1.15) 
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Figure 1.19. Bistability in the Wilson–Cowan mass model. Caption and figure from: (Coombes & Wedgwood, 2023), 

in the chapter “Population models”. Permission obtained. ― Bistability in the Wilson–Cowan model (𝐹Ex-nullcline 

(called E-nullcline in the figure) in grey and 𝐹In-nullcline (called I-nullcline in the figure) in dashed grey). The dotted 

black line shows the stable manifold of the saddle point. With the addition of coloured noise, the system can switch 

back and forth between the up and down states as shown in the inset. Here, 𝑆•(𝑉) = (1 + e
−𝑉)−1, 𝑟Ex = 𝑟In = 0, 

𝜏Ex = 5, 𝜏In = 3, 𝐶Ex→Ex = 16, 𝐶In→Ex = 10, 𝐶In→In = 6, 𝐶Ex→In = 24, 𝑞Ex = −3.7, and 𝑞In = −6.7. 

To conclude, the Wilson–Cowan model effectively mimics the overall activity (though not 

specifically the EEG) of a neural network comprising both excitatory and inhibitory neuron 

populations. Furthermore, as will be shown next, when enhanced by incorporating more realistic 

synaptic and network interactions, these models demonstrate considerable success in aligning with 

neuroimaging data (Breakspear, 2017; Cook et al., 2022; Coombes & Wedgwood, 2023; Griffiths 

et al., 2022; Liley, 2015). One of the earliest and notable examples in this context is the Zetterberg 

model (Zetterberg et al., 1978) for EEG rhythm analysis, described hereinafter in Section 1.3.4. 

This model, drawing on earlier concepts developed by Lopes da Silva and colleagues (F. H. Lopes 

da Silva et al., 1974), also described below in Section 1.3.3, is structured around three interacting 

neural mass models that together represent a simplified cortical column. It includes distinct 

populations for pyramidal cells, inhibitory interneurons, and secondary excitatory neurons. Since 

its inception, the Zetterberg model has gained broader recognition, particularly through the works 

of Jansen and Rit (Jansen & Rit, 1995), described in Section 1.3.5, and has been instrumental in 

advancing our understanding of many brain dynamics, such as epileptic and mesoscopic gamma-

band electrophysiological activities (Liley et al., 2012). 
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1.3.3 The Lopes da Silva models 

 
Figure 1.20. The Lopes da Silva 1974-model. Schematic representation of the Lopes da Silva neuronal population 

model circuit topology and the form of its postsynaptic response (F. H. Lopes da Silva et al., 1974). This model 

considers functionally differentiated excitatory (Ex) and inhibitory (In) neuronal populations. Open circles represent 

excitatory connections and filled circles inhibitory ones. Figure inspiration from: (Liley, 2015). 

Lopes da Silva and colleagues (F. H. Lopes da Silva et al., 1974) proposed a lumped neuronal 

population model to explain the rhythmic origins of the mammalian alpha rhythm. In this neuronal 

mass model, a feedforward population of excitatory neurons receives external excitatory input and 

inhibitory feedback from inhibitory interneurons (e.g., see Figure 1.20). The equations describing 

the model are succinctly written as: 

where the symbols are defined as in the previous section, and now ℎ•  describe the shape of 

postsynaptic impulse responses using the difference of two exponential functions (1.6) with time 

constants that differ between subpopulations. It is worth recognising here the subpopulation 

response functions (𝑆•), as introduced earlier, which specify the nonlinear (sigmoidal) relationship 

between average membrane potential and mean neuronal population firing rate, and, compared to 

the Wilson–Cowan model, the disregard of the influence of the refractory period (i.e., thereby 

assuming that the proportion of excitatory neurons and of inhibitory neurons firing per unit of time 

at instant 𝑡 is equal to the impulse density of the populations of excitatory and inhibitory neurons). 

These response functions will be called wave-to-pulse functions from now onwards. 

It is noteworthy that the works of Lopes da Silva and colleagues (F. H. Lopes da Silva et al., 1974) 

came around the same time as the works of Wilson and Cowan (Wilson & Cowan, 1972, 1973), 

with a focus on EEG signal generation and it was inspired by the works of Freeman (Freeman, 

1975) who introduced the system approach to study neural masses, and it represents an alternative 

approach to formulating a neuronal population model by developing equations of motion in terms 

of the mean (soma) membrane potential of the respective neural masses instead of firing rates. The 

inclusion of such lumped postsynaptic dynamics was found sufficient to produce oscillatory 

activity in the alpha (8–13 Hz) electroencephalographic band (F. H. Lopes da Silva et al., 1974). A 

particular advantage to this formulation is that the mean soma membrane potential can be more 

naturally linked to mesoscopic and macroscopic physiological measurements such as the local 

field potential, the EEG, and the electrocorticogram. 

It is also worth mentioning that in their 1974 publication, Lopes da Silva and colleagues (F. H. 

Lopes da Silva et al., 1974) intentionally reduced the complexity of their population model (in 

terms of connection topology) by not assuming any explicit interactions within the subpopulations 

 𝑉Ex(𝑡) = (𝑞Ex ∗ ℎEx − 𝐶
In→Ex𝐹In ∗ ℎIn)(𝑡) 

𝑉In(𝑡) = (𝐶
Ex→In𝐹Ex ∗ ℎEx)(𝑡) 

𝐹Ex(𝑡) = 𝑆Ex(𝑉Ex(𝑡)); 𝐹In(𝑡) = 𝑆In(𝑉In(𝑡)) 
(1.16) 
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themselves nor any external input upon the inhibitory interneurons (i.e., compared to the Wilson–

Cowan model, it was assumed that 𝐶Ex→Ex = 𝐶In→In = 0 and 𝑞In = 0). An extension with four 

subpopulation of neurons was soon after published (F. H. Lopes da Silva et al., 1976) assuming 

the meso-circuit shown in Figure 1.21. In this extended model, a main subpopulation of excitatory 

neurons simultaneously feedforwards to a main inhibitory subpopulation and a secondary 

excitatory subpopulation. The same main excitatory subpopulation receives an external excitatory 

input as well as feedback from both the main inhibitory subpopulation and the secondary excitatory 

subpopulation. This external input also drives an intermediate excitatory subpopulation which 

inhibits the main inhibitory subpopulation. Additionally, but not represented in Figure 1.21, the 

main inhibitory subpopulation receives its own external inputs, one excitatory and the other 

inhibitory. Finally, to remain consistent between the two publications (F. H. Lopes da Silva et al., 

1974, 1976), the self feedback loops of the main subpopulations were kept inactive in this extended 

model. This extended model (the analysis of which was still in its preliminary phase in 1976) was 

found sufficient to produce oscillatory activity in the theta (4–8 Hz) electrophysiological band as 

well as some epileptiform discharges. 

 
Figure 1.21. The Lopes da Silva 1976-model. Schematic representation of the updated Lopes da Silva neuronal 

population model circuit topology (F. H. Lopes da Silva et al., 1976) which emphasizes excitatory and inhibitory 

feedback. Explanation in text. 

The next section further extends the models of Lopes da Silva and colleagues (F. H. Lopes da Silva 

et al., 1974, 1976). But before going further, it is useful to introduce an alternative representation, 

a block diagram, as in Figure 1.22. 

 
Figure 1.22. Block diagram for the Lopes da Silva 1974-model. Reproduced from (F. H. Lopes da Silva et al., 1974) 

by using the symbols introduced in equation (1.16). 

The block diagram of Figure 1.22 illustrates two primary types of blocks: linear dynamic blocks 

(i.e., filters) and non-linear blocks. The linear blocks represent the synaptic dynamics through their 
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impulse response (i.e., ℎEx or ℎIn), modeling postsynaptic potentials. They capture how synaptic 

inputs from other neurons are integrated over time, reflecting the temporal processing of excitatory 

and inhibitory inputs at the synapses. The non-linear blocks represent the generation process of 

neuronal firing rates as a static non-linear function (i.e., 𝑆Ex or 𝑆In) of membrane potentials (i.e., 

𝑉Ex  or 𝑉In ). The outputs 𝐹Ex  and 𝐹In  from these blocks denote the corresponding intensities of 

action potentials for excitatory and inhibitory neuron subpopulations, respectively. Additionally, 

the diagram includes a summation unit representing cell soma. In this unit, the excitatory and 

inhibitory postsynaptic potentials are aggregated, with excitatory inputs contributing positively 

and inhibitory inputs negatively to the overall membrane potential. This summation mimics the 

integrative nature of neuronal processing. The interconnectivity between the two neuron 

subpopulations, excitatory and inhibitory, are depicted through the coefficients 𝐶Ex→In  and 

𝐶In→Ex. From the perspective of the excitatory subpopulation, this arrangement forms a negative 

feedback loop. 

1.3.4 Zetterberg model 
The two-population model proposed by Lopes da Silva et al. (F. H. Lopes da Silva et al., 1974) 

was further developed by Zetterberg et al. (Zetterberg et al., 1978) by extending it to a three-

population model (see diagram in Figure 1.23) consisting of a main population of excitatory 

neurons (Ex), a main population of inhibitory interneurons (In), and a secondary population of 

excitatory neurons (ex). The model allows the main excitatory neurons to interact with inhibitory 

interneurons giving negative feedback and with a third set of excitatory neurons giving positive 

feedback. It also allows for a linear positive feedback loop for the main excitatory subset to 

represent collateral connections. The equations describing it are succinctly written as: 

where two types of excitatory impulse responses, ℎEx and ℎdEx, are distinguished through a delay 

𝜏d whereby ℎdEx(𝑡) = ℎEx(𝑡 − 𝜏d); two types of excitatory inputs, 𝑞Ex and 𝑞ex, represent specific 

and non-specific inputs, respectively; and all other symbols remain consistent with the previous 

sections. In this model, the difference of two exponential functions (1.6) was retained to describe 

the shape of postsynaptic potentials ℎ•, and the subpopulation wave-to-pulse functions 𝑆• were 

revisited to account for the refractory periods introduced by Wilson and Cowan (see Section 1.3.2) 

while assuming a sigmoidal shape defined piecewise as in Equation (1.18). 

where 𝟏𝐴 is the characteristic function of a set 𝐴. For practical purposes, Zetterberg and colleagues 

assumed that 𝑆Ex = 𝑆In. 

This three-population model has been found sufficient to produce signals that resemble EEG 

background activity and certain types of paroxysmal activity, in particular spikes. Moreover, the 

model supported the hypothesis that epileptic spikes are generated in a population of neurons that 

operate close to dynamic instability. 

 𝑉Ex(𝑡) = ((𝐶
Ex→Ex𝐹Ex + 𝑞Ex) ∗ ℎEx + (𝐶

ex→Ex𝐹ex + 𝑞ex) ∗ ℎdEx

− 𝐶In→Ex𝐹In ∗ ℎIn)(𝑡) 

𝑉In(𝑡) = (𝐶
Ex→In𝐹Ex ∗ ℎEx)(𝑡) 

𝑉ex(𝑡) = (𝐶
Ex→ex𝐹Ex ∗ ℎEx)(𝑡) 

𝐹Ex(𝑡) = 𝑆Ex(𝑉Ex(𝑡)); 𝐹In(𝑡) = 𝑆In(𝑉In(𝑡)); 𝐹ex(𝑡) = 𝑆Ex(𝑉ex(𝑡)) 

(1.17) 

 𝑆•(𝑉•) = 𝑆•
∞ (e𝛾•(𝑉•−𝜃•)𝟏𝑉•≤𝜃•(𝑉•) + (2 − e

−𝛾•(𝑉•−𝜃•))𝟏𝑉•>𝜃•(𝑉•)) (1.18) 
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Figure 1.23. The Zetterberg model. Block diagram for the Zetterberg model. Reproduced from (Zetterberg et al., 1978) 

by using the symbols introduced in equation (1.16). 

1.3.5 The Jansen–Rit model 
Jansen and Rit, in their seminal work (Jansen & Rit, 1995), built upon the foundational models of 

Lopes da Silva and colleagues as well Zetterberg and colleagues (F. H. Lopes da Silva et al., 1974, 

1976; Zetterberg et al., 1978). Their research focused on systematically varying the parameters of 

the postsynaptic impulse response. This approach was aimed at accounting for the observed 

variations in spontaneous EEG signals and in the visual evoked potential. Concurrently, they 

rigorously constrained the parameterization of connectivity constants, reflecting the evolving and 

maturing literature at the time. Initially conceptualized to model thalamic tissue, their model has 

since been adapted and is now prevalently employed for simulating cortical neuronal population 

dynamics. This model, with block diagram representation in Figure 1.25, assumes that a 

subpopulation of feedforward pyramidal cells ( Pyr ) receives feedback from inhibitory 

interneurons (InIn) and excitatory interneurons (ExIn) as well as arbitrary excitatory inputs. It is 

clearly a simplification of the Zetterberg model, such that its equations read: 

 𝑉Pyr(𝑡) = ((𝐶
ExIn→Pyr𝐹ExIn + 𝑞Ex) ∗ ℎEx − 𝐶

InIn→Pyr𝐹InIn ∗ ℎIn)(𝑡) 

𝑉InIn(𝑡) = (𝐶
Pyr→InIn𝐹Pyr ∗ ℎEx)(𝑡) 

𝑉ExIn(𝑡) = (𝐶
Pyr→ExIn𝐹Pyr ∗ ℎEx)(𝑡) 

𝐹Pyr(𝑡) = 𝑆 (𝑉Pyr(𝑡)) ; 𝐹InIn(𝑡) = 𝑆(𝑉InIn(𝑡)); 𝐹ExIn(𝑡) = 𝑆(𝑉ExIn(𝑡)) 

(1.19) 
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where symbols remain consistent with the previous sections. Here, α-functions as defined in 

Equation (1.7) were chosen to describe the shapes of postsynaptic impulse responses. Besides, a 

single wave-to-pulse function 𝑆 was specified for all subpopulations using a sigmoid function as 

defined in Equation (1.2). These modelling choices, together with the empirically motivated 

parameterization of the other constants will prove highly influential, laying a foundation for 

numerous scientific studies for decades. 

 
Figure 1.24. The Jansen–Rit model. Block diagram for the Jansen–Rit model. Redrawn from (Jansen & Rit, 1995) by 

using the symbols introduced in equation (1.20). 

In practice, the model is equivalently reformulated using a different set of variables as in Figure 

1.25. In this case, using the equivalence stated earlier in Equation (1.13), the resulting second order 

ordinary differential equations are succinctly given by: 

or, equivalently, after expansions: 
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(1.20) 
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where the positive constants 𝜇Ex , ΓEx , 𝜇In , and ΓIn  determine the shape of the postsynaptic 

response functions as ℎEx(𝑡) = ΓEx 𝜇Ex⁄ 𝑡e−𝑡 𝜇Ex⁄ Θ(𝑡)  and ℎIn(𝑡) = ΓIn 𝜇In⁄ 𝑡e−𝑡 𝜇In⁄ Θ(𝑡) , the 

positive constants 𝐶▲→■ describe the connection strengths from neurons of type ▲ to neurons of 

type ■, the time varying quantity 𝑞Ex  is an external input, the sigmoidal firing rate function 𝑆 

instantaneously transforming average membrane potential into average firing rates, and the 

overdots denote temporal derivatives. The formulation in Equation (1.22) is the one frequently 

encountered in literature. 

 
Figure 1.25. Alternative block diagram for the Jansen–Rit model. Block diagram for the Jansen–Rit model. Redrawn 

from (Jansen & Rit, 1995) by using the symbols introduced in equation (1.22). 

It is noteworthy that the aspect of self-feedback, as discussed and modelled by Zetterberg and 

colleagues (Zetterberg et al., 1978), specifically the parameter 𝐶Pyr→Pyr (see diagram in Figure 

1.23), initially didn’t gain much attention but resurfaced decades later in the works of Sotero and 

colleagues (Sotero et al., 2007) and others. This aspect, along with other simplifications made by 

Jansen and Rit, was revisited and incorporated into newer models. The revised set of equations, 

with the addition of the self-feedback term emphasized in bold font, now reads: 

  

 
𝐸̈Pyr =

ΓEx
𝜇Ex

𝑆(𝑉Ex − 𝑉In) −
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(1.21) 
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Sotero and colleagues (Sotero et al., 2007), employed this updated neural mass model within a 

realistically coupled network (see Section 1.3.8) to explore the generation of EEG rhythms. Their 

research demonstrated that the model could effectively replicate many characteristics of the 

temporal dynamics and the spectrum of human EEG rhythms. Garnier and colleagues (Garnier et 

al., 2015) provided a thorough modern bifurcation analysis of the same neuronal mass model, 

highlighting the significance of incorporating such excitatory self-feedback mechanism, while 

identifying new parameter sets with practical implications for neuroscience research. 

Concurrently, Youssofzadeh and colleagues took additional steps by exploring the impact of self-

feedback across all neuronal subpopulations, not just pyramidal neurons (Youssofzadeh et al., 

2015). Their research, particularly focused on event-related potentials, illustrated that self-

feedback mechanisms are crucial for generating more robust and consistent neuronal rhythms. 

Their research also served to unify earlier key developments from many groups, e.g., such as those 

of Moran and colleagues (Moran et al., 2007). Moran and colleagues have sought to account for 

self-connectivity that are not excitatory and introduced a self-loop among inhibitory interneurons 

to generate oscillatory activity in the gamma (40–70 Hz) electrophysiological band. 

More generally, since the seminal work of Jansen and Rit, the topic of self-feedback connectivity 

has received increased attention in an attempt to enrich many dynamics that the Jansen–Rit model 

is unable to plausibly generate (Youssofzadeh et al., 2015). Indeed, from a modelling perspective, 

adding self-feedback connectivity generalizes to adding subpopulations (see Section 1.3.6). 

Additionally, self-feedback connectivity is intrinsic to neural field models (see Section 1.3.7) and 

it can also coincides with the intrinsic parameters of a network model of neural masses (see Section 

1.3.8). 

In closing this section, it is noteworthy that Garnier and colleagues (Garnier et al., 2016) integrated 

the neuronal mass model expressed in Equation (1.22) as a neuronal compartment within a neuron-

astrocyte mass model, the intricacies of which will be discussed in a forthcoming manuscript-

chapter of this thesis. 

1.3.6 Notable neural mass models 
In this section, I aim to highlight several models that have enhanced the realism of early neuronal 

mass models by introducing additional populations with varied kinetics, refining postsynaptic 

potential shapes through complex exponential combinations, or incorporating dendritic 

compartmentalization, among other advancements. 

The Jansen–Rit model is known for its capability to generate alpha band rhythms with narrow-

band spectra. However, it struggles to replicate higher frequency phenomena within plausible 

parameter ranges due to its temporal kernels acting as low-pass filters. Addressing this limitation, 

particularly in the context of epilepsy, Wendling and colleagues (Wendling et al., 2005) introduced 
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a fourth neuronal subpopulation of slow inhibitory interneurons. This addition enabled the model 

to replicate the high-gamma activity observed in EEGs of epileptic patients (see also 

comprehensive mathematical analysis in (Touboul et al., 2011)). From another angle, David and 

Friston (David & Friston, 2003) proposed a model that represents a cortical area with multiple 

parallel subpopulations, each exhibiting distinct kinetics (both excitatory and inhibitory). They 

achieved this by decomposing the postsynaptic potential impulse responses into probabilistic sums 

of multiple terms, each representing a different subpopulation kinetics. This model successfully 

reproduced oscillatory rhythms across broad-band and multi-band spectra. Another notable model 

by Liley and colleagues (Liley et al., 2002, 2010) emphasizes conductance-based synapses and the 

significance of synaptic reversal potentials. It describes cortical activity through the mean soma 

membrane potentials of excitatory and inhibitory subpopulations, interconnected with an all-to-all 

connectivity topology including self-feedback. The mesoscopic synaptic model accounts for 

shunting currents and realistic post-synaptic conductance changes, allowing the model to support 

a rich repertoire of dynamical states and particularly model the human EEG alpha rhythm. 

Despite these advancements, neural mass models remain phenomenological, grounded in 

neurobiological principles but unable to fully capture the vast array of responses observed in real 

neuronal tissue (Byrne et al., 2020; Coombes, 2023; Coombes & Byrne, 2016). Indeed, most 

models rely on an assumed, rather than derived, wave-to-pulse function, typically sigmoidal, with 

parameters that align with empirical data but are not directly informed by it. Addressing these 

limitations, a new generation of neural mass models has been proposed. These next-generation 

models offer a precise mesoscopic description of underlying microscopic spiking neurodynamics, 

making them suitable for future large-scale human brain simulations (Byrne et al., 2020; Coombes, 

2023; Coombes & Byrne, 2016). A key feature of these next-generation models is their detailed 

account of neural population synchrony evolution. 

For a more detailed understanding of neural mass modeling, the following references are highly 

recommended: “Neuroimaging, Neural Population Models for” (Bojak & Breakspear, 2015), 

“Dynamic models of large-scale brain activity” (Breakspear, 2017), “Neural Field Models: A 

mathematical overview and unifying framework” (Cook et al., 2022), “Next generation neural 

population models” (Coombes, 2023), “Population models” and “Firing rate tissue models” 

chapters from (Coombes & Wedgwood, 2023), “Wilson–Cowan Equations for Neocortical 

Dynamics” (Cowan et al., 2016), “The dynamic brain: From spiking neurons to neural masses and 

cortical fields” (Deco et al., 2008), “The Wilson–Cowan model, 36 years later” (Destexhe & 

Sejnowski, 2009), “A constructive mean-field analysis of multi-population neural networks with 

random synaptic weights and stochastic inputs” (Faugeras et al., 2009), “Whole-Brain Modelling: 

Past, Present, and Future” (Griffiths et al., 2022), “Neural Field Model, Continuum” (Hutt, 2015), 

“Neural Population Model” (Liley, 2015), “Co-operative Populations of Neurons: Mean Field 

Models of Mesoscopic Brain Activity” (Liley et al., 2012), “Sleep, Neural Population Models of” 

(Phillips, 2015), “Neural masses and fields: modeling the dynamics of brain activity” (Pinotsis et 

al., 2014), and “Gap Junctions, Neural Population Models and” (Steyn-Ross et al., 2015). It is 

important to note that neural mass and field models have an intertwined development history, with 

many key researchers contributing to both areas. As a result, literature reviews in this field often 

cover both neural mass and field models, reflecting their shared evolutionary trajectory and the 

cross-pollination of ideas between these modeling approaches. 

In concluding this section, it is pertinent to revisit our previous deliberations on the connectome 

delineated in Section 1.1.4. There, we clarified the profound impact of various non-neuronal 
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components on neuronal excitability, necessitating their incorporation into models and theoretical 

frameworks of brain functionality. Astrocytes, in particular, have been spotlighted for their 

synaptic mutual engagements with cortical neurons, thereby probing and modulating neuronal 

firing patterns. The advancements on this topic (with a focus on computational modelling) have 

been extensively reviewed, notably by (De Pittà & Berry, 2019). Nevertheless, the integration of 

these insights with neural mass or field models, as we discussed here, has been limited, with each 

area progressing somewhat independently. Moreover, models that acknowledge glial contributions 

predominantly address neural activity at scales not readily applicable to macroscale functional 

analyses in humans, e.g., refer to “A Neuron–Glial Perspective for Computational Neuroscience” 

(De Pittà & Berry, 2019), “Computational Models of Astrocytes and Astrocyte–Neuron 

Interactions: Characterization, Reproducibility, and Future Perspectives” (Manninen et al., 2019), 

“Modeling Neuron–Glia Interactions with the Brian 2 Simulator” (Stimberg et al., 2019), or 

“Computational Models of Pathophysiological Glial Activation in CNS Disorders” (Volman & 

Bazhenov, 2019); albeit with a few noteworthy exceptions, such as the works of Blanchard or 

Garnier and colleagues (Blanchard et al., 2016; Garnier et al., 2016) within the context of 

mesoscale brain dynamics. Specifically, Blanchard and colleagues (Blanchard et al., 2016) 

enhanced our mesoscale comprehension of non-neuronal factors in brain activity by melding 

descriptions of neuronal dynamics from a neural mass model perspective with regional cerebral 

blood flow dynamics through a neuro-glial–vascular coupling framework. This model accentuates 

astrocytes’ pivotal role in neurotransmitter recycling, such as glutamate and GABA, and their 

regulatory effects on neighboring vessels. Empirical data from rodents underpinned their 

biologically constrained simulations, which notably illustrated that non-linearities in the 

relationships between neuronal activity and cerebral blood flow were primarily due to astrocytic 

activity. This finding underscores the indispensable role of astrocytes in the interpretation of 

regional brain activity data. Building on this, Garnier and colleagues (Garnier et al., 2016) further 

explored the complex interactions between neurons and astrocytes at the mesoscopic scale. They 

focused on the theoretical effects of compromised astrocytic reuptake of glutamate and GABA on 

neural dynamics, introducing a model that integrates a bilaterally coupled neuron-astrocyte system. 

This model aims to elucidate the nuanced interplay between populations of astrocytes and neurons 

mediated by neurochemistry and its impact on neural functionality. Unlike the Blanchard model, 

this neuron-astrocyte mass model considers how dynamical changes in extracellular 

neurotransmitter concentrations influence neuronal excitability. The subsequent chapter of this 

thesis will provide an in-depth examination of this model, shedding light on the integral role of 

astrocytes in modulating neural activity within a broader network framework. 

1.3.7 Neural field models 
Neural field models represent an evolution of neural mass models by incorporating spatial 

dynamics through the utilization of partial differential equations, which articulate the spatial 

distribution of neural activity. For the purposes of this discussion, and to maintain clarity, I will 

not delve into neural field models with the same depth as was applied to neural mass models. 

Rather, I will illustrate how neural field modeling can be viewed as a broad generalization that 

encompasses a wide array of models, including those neural mass models previously discussed. 

An in-depth exploration of this subject is presented by Cook and colleagues (Cook et al., 2022). 

In their publication (Cook et al., 2022), they contend that while explicit derivations are seldom 

provided, many neural field models found within existing literature can be restructured to align 

with a set of standard equations, such as Equation (1.23). This reconfiguration unveils a shared 

foundational structure across models, which primarily diverge in their selection of spatiotemporal 
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kernels, the definitions of neuronal populations and connectivity patterns, and the foundational 

assumptions each model is built upon. This unified mathematical framework, which also coincides 

with the one proposed by (Sanz-Leon et al., 2015; Spiegler & Jirsa, 2013), facilitates a more 

straightforward comparison among different neural field models, allowing for clear identification 

and discussion of the core assumptions each model is predicated on. Hence, a generalized 

formulation for contemporary neural field models (describing the evolution of membrane 

potential) is articulated as: 

where 𝑥  designates position, 𝑡  is time, ▲  and ■  are two neuronal subpopulations, and all other 

quantities are as in Table 1.1. 

Table 1.1. Table of quantities used in general neural field models. Adapted from: (Cook et al., 2022). Publisher’s 

permission: https://creativecommons.org/licenses/by/4.0. 

Compared to the preceding section, the only novelty here is the spatial convolution in the 

expression of the pulse density of action potentials 𝜙▲,■. This can be concretely highlighted by 

deriving the Jansen–Rit model. 

To obtain the Jansen–Rit model, with three subpopulations Pyr, InIn, and ExIn, we assume: 

• reciprocal non-null interactions only between Pyr  and InIn  or between Pyr  and ExIn , 

denoting by 𝐶Pyr→InIn , 𝐶InIn→Pyr , 𝐶Pyr→ExIn , and 𝐶ExIn→Pyr  the corresponding 

connectivity constants, as in Section 1.3.5; 

 𝑢▲(𝑥, 𝑡) =∑ 𝜈▲,■𝑉▲,■(𝑥, 𝑡)
■

 

𝑉▲,■(𝑥, 𝑡) = ∫ 𝜓▲,■(𝑡 − 𝑇) (𝜙▲,■(𝑥, 𝑇) + 𝑞▲,■(𝑥, 𝑇))  d𝑇
𝑡

−∞

 

𝜙▲,■(𝑥, 𝑡) = ∫𝜔▲,■(𝑥 − 𝑋)𝑓■(𝑢■(𝑋, 𝑡)) d𝑋
Ω

 

(1.23) 

Quantity Physical interpretation 

𝑢▲(𝑥, 𝑡) Mean membrane potential of subpopulation ▲ at the position 𝑥 and time 𝑡 

𝜔▲,■(𝑥) Spatial kernel of connections from subpopulation ■  to subpopulation ▲  at the 

position 𝑥 

𝜙▲,■(𝑥, 𝑡) Pulse density of action potentials from subpopulation ■ to subpopulation ▲ at the 

position 𝑥 and time 𝑡 

𝑓▲ Wave-to-pulse transfer function for subpopulation ▲ 

𝑉▲,■(𝑥, 𝑡) Mean post-synaptic potential at subpopulation ▲  from subpopulation ■  at the 

position 𝑥 and time 𝑡 

𝜈▲,■ Magnitude and polarity of post-synaptic potentials at subpopulation ▲  from 

subpopulation ■ 

𝜓▲,■(𝑡) Membrane temporal kernel of transmissions from subpopulation ■  to 

subpopulation ▲ 

𝑞▲,■(𝑥, 𝑡) External input from subpopulation ■  to subpopulation ▲  at the position 𝑥  and 

time 𝑡 

Ω Spatial neural medium (often subset of ℝ or ℝ2) 

https://creativecommons.org/licenses/by/4.0


48 

 

• subpopulation activities with no spatial dependance, i.e., 𝜔▲,■(𝑥) = 𝐶
■→▲𝛿(𝑥) , where 

𝐶■→▲ are the connectivity constants defined just above; 

• the same sigmoidal firing rate function 𝑆 , as defined in Equation (1.2), for all 

subpopulations 𝑓Pyr = 𝑓InIn = 𝑓ExIn = 𝑆; 

• α-functions temporal kernels, as defined in Equation (1.7), that are only specific to the type 

of synapse (i.e., excitatory or inhibitory) of the afferent subpopulations, i.e., such that 

𝜓InIn,Pyr(𝑡) = 𝜓ExIn,Pyr(𝑡) = 𝜓Pyr,ExIn(𝑡) = ℎEx(𝑡) and 𝜓Pyr,InIn(𝑡) = ℎIn(𝑡); 

• scaling factors of post-synaptic potentials with unit magnitudes and polarities determined 

by the type of synapse of the afferent subpopulations, i.e., such that 𝜈InIn,Pyr = 𝜈ExIn,Pyr =

𝜈Pyr,ExIn = 1 and 𝜈Pyr,InIn = −1; 

• a single external input from ExIn to Pyr, 𝑞Pyr,ExIn (more rigorously, the input acting on 

Pyr should be conceptualized as coming from an external excitatory population, but here 

this is equivalent to coming from ExIn). 

With the above assumptions (and directly substituting 𝑢▲ and 𝜙▲,■ by their expressions in 𝑉▲,■), 

we get: 

which, as intended, simplifies to the same Jansen–Rit equations obtained earlier in Equation (1.19) 

after defining 𝑉Pyr = 𝑉Pyr,ExIn − 𝑉Pyr,InIn , 𝑉InIn = 𝑉InIn,Pyr , 𝑉ExIn = 𝑉ExIn,Pyr , and 𝑞Pyr,ExIn =

𝑞Ex. 

It is noteworthy that in the formulation presented in Equation (1.23), the wave-to-pulse transfer 

function was implemented under the spatial integral in order to describe the evolution of membrane 

potentials, characterizing it as a voltage-based model (Cook et al., 2022; Hutt, 2015; Liley et al., 

2012). However, an alternative formulation involves describing the evolution of firing rates, where 

spatial interactions are incorporated into the arguments of the transfer function, typifying it as a 

rate-based or activity-based model (Cowan et al., 2016; Hutt, 2015; Liley et al., 2012; Wilson & 

Cowan, 1973). This distinction becomes apparent when deriving a spatially continuous version of 

the Wilson–Cowan model which we exposed in Section 1.3.2. The neural field adaptation of this 

model, employing temporally coarse-grained spatiotemporal variables 𝐹Ex  and 𝐹In , can be 

concisely expressed through these equations: 

 𝑉Pyr,InIn(𝑡) = (𝐶
InIn→Pyr𝑆(𝑉InIn,Pyr) ∗ ℎIn)(𝑡) 

𝑉Pyr,ExIn(𝑡) = ((𝐶
ExIn→Pyr𝑆(𝑉ExIn,Pyr) + 𝑞Pyr,ExIn) ∗ ℎEx) (𝑡) 

𝑉InIn,Pyr(𝑡) = (𝐶
Pyr→InIn𝑆(𝑉Pyr,ExIn − 𝑉Pyr,InIn) ∗ ℎEx)(𝑡) 

𝑉ExIn,Pyr(𝑡) = (𝐶
Pyr→ExIn𝑆(𝑉Pyr,ExIn − 𝑉Pyr,InIn) ∗ ℎEx)(𝑡) 

(1.24) 

 
(1 + 𝜏Ex

𝜕

𝜕𝑡
) 𝐹Ex(𝑥, 𝑡) = (1 − 𝑟Ex𝐹Ex(𝑥, 𝑡))𝑆Ex(𝑉Ex(𝑥, 𝑡) + 𝑞Ex(𝑥, 𝑡)) 

(1 + 𝜏In
𝜕

𝜕𝑡
)𝐹In(𝑥, 𝑡) = (1 − 𝑟In𝐹In(𝑥, 𝑡))𝑆In(𝑉In(𝑥, 𝑡) + 𝑞In(𝑥, 𝑡)) 

𝑉Ex(𝑥, 𝑡) = ∫𝜔
Ex→Ex(𝑥 − 𝑋)𝐹Ex(𝑋, 𝑡) d𝑋

Ω

−∫𝜔In→Ex(𝑥 − 𝑋)𝐹In(𝑋, 𝑡) d𝑋
Ω

 

𝑉In(𝑥, 𝑡) = ∫𝜔
Ex→In(𝑥 − 𝑋)𝐹Ex(𝑋, 𝑡) d𝑋

Ω

−∫𝜔In→In(𝑥 − 𝑋)𝐹In(𝑋, 𝑡) d𝑋
Ω

 

(1.25) 
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where, 𝐹•(𝑥, 𝑡) are the proportion of neurons firing at the position 𝑥 and instant 𝑡, 𝜏• are membrane 

time constants, 𝑟• are refractory periods (in practice, they are set to zero), 𝑆• are wave-to-pulse 

transfer functions, 𝑞•(𝑥, 𝑡)  are afferent excitation or inhibition at the position 𝑥  and instant 𝑡 , 
𝜔▲→■ are spatial connectivity kernels such that the spatial convolutions (𝜔▲→■ ∗ 𝐹▲)(𝑥, 𝑡) over 

the domain Ω represent the effective drive experienced by subpopulation ■ from subpopulation 

▲  at the position 𝑥  and instant 𝑡 . Usually, transfer functions are sigmoidal, e.g., 𝑆•(𝑣) =
(1 + tanh(𝑣 2⁄ )) 2⁄  , while connectivity functions are exponential or Gaussians to represent a 

distance-dependent decay in cortical connectivity, e.g., 𝜔▲→■(𝑑) = 𝑤▲→■e−|𝑑| 𝜎
▲→■⁄   where 

𝑤▲→■ represents the mean synaptic weight and 𝜎▲→■ represents the width of the distribution. 

When the spatial kernel is taken as a function of distance alone between spatial locations, like in 

this example, we call it homogeneous, otherwise heterogeneous. It is also not uncommon to 

introduce an axonal delay term, e.g., rewriting the first term of 𝑉Ex(𝑥, 𝑡)  as ∫ 𝜔Ex→Ex(𝑥 −
Ω

𝑋)𝐹Ex(𝑋, 𝑡 − |𝑥 − 𝑋| 𝑐Ex→Ex⁄ ) d𝑋  (and similarly for other terms) where 𝑐Ex→Ex  is a velocity of 

propagation of action potentials between excitatory neurons. Further discussions on this model and 

variants can be found in (Cook et al., 2022; Coombes & Wedgwood, 2023; Cowan et al., 2016; 

Kilpatrick, 2015; Wilson & Cowan, 1973). 

1.3.8 Large-scale network models 
Large-scale network models, synonymous with whole-brain network models in our discourse, 

integrate neural mass or field models within a coupling framework adhering to structural 

constraints such as synaptic connections or gap junctions, incorporating time delays for neural 

signal propagation across different brain regions, and accounting for the inherent variability in 

brain activity through stochastic noise (Breakspear, 2017; Cabral et al., 2014; Deco et al., 2008; 

Deco & Jirsa, 2012; Griffiths et al., 2022; Sanz-Leon et al., 2015). 

 
Figure 1.26. Schematic of the whole-brain modelling approach. Caption and figure from: (Griffiths et al., 2022). 

Permission obtained. ― ‘Local’ neural dynamics are described by the activity of (1) millions of point-process spiking 

neuron (differential) equations, aggregated by connectivity into regions; OR (2) hundreds/thousands of point-process 

neural mass/mean field/neural field (differential and/or integral) neural population equations—variously termed; OR 
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(3) hundreds/thousands of point-process linear algebraic neural population equations (normally grouped into a single 

matrix-valued equation). Typically, all nodes in the network are described with the same local neural dynamics model 

and same parameters. Neural populations are coupled together based on a structural connectome, which is defined 

principally by noninvasive neuroimaging data, including T1-weighted MRI, diffusion-weighted MR tractography, and 

others. Simulated neural activity is compared against empirical measurements such as fMRI/EEG/MEG time series 

or covariance structure using brute-force or parameter optimization approaches. When coupled together in the regime 

achieving good fits with empirical data, the collective behaviour of the system produces quasi-periodic activity whose 

static/dynamic functional connectivity patterns are similar to those observed for empirical data. Theoretical analysis 

of these models provides insight into principles and physiological details of large-scale brain organization, and can be 

used for in silico perturbation studies. 

The mathematical foundation for modeling whole-brain networks is encapsulated in a canonical 

differential equation, as illustrated in Figure 1.26 and first introduced by (Sanz-Leon et al., 2015; 

Spiegler & Jirsa, 2013). This equation, represented at time 𝑡, is given by: 

To demystify this formula, let us consider a network composed of 𝑙  nodes, where each node 

symbolizes a neural mass model. Although mass models may differ across nodes, each node 𝑗 is 

characterized by a vector 𝚿𝑗, which encapsulates the neural activity state of that node, including 

all state variables of the node’s neural mass model. The differential operator 𝑷𝑗 maps the current 

state 𝚿𝑗(𝑡) into the next. 

Within this formulation, a neural mass model at any given node consists of 𝑚 neural masses, with 

𝑚  potentially differing from one node to another. For simplicity and enhanced readability, we 

avoid overly detailed indexing by not explicitly denoting each node’s index with, for instance, 𝑚𝑗. 

Each neural mass within a node is defined by 𝑛 distinct state variables, where 𝑛 also varies across 

neural masses. The interconnection of these state variables is governed by a specific state operator 

matrix, while a larger matrix 𝚲𝑗 integrates the state operators for all 𝑚 neural masses at node 𝑗. 

Additionally, the function 𝒁 , which can embody both linear and non-linear (e.g., a sigmoidal) 

transformations, alongside the vector 𝚬𝑗 which introduces external inputs to node 𝑗, modulate the 

system’s dynamics. 

With these notations established, we define the 𝑙 -dimensional vectors: 𝑷 as (𝑷1, 𝑷2, … , 𝑷𝑙), 𝚿 as 
(𝚿1, 𝚿2, … ,𝚿𝑙), and 𝚬 as (𝚬1, 𝚬2, … , 𝚬𝑙). The matrix 𝚲 consolidates the state operator matrices 𝚲𝑗 

from each node 𝑗. 

The model in Equation (1.26) further differentiates scales of interactions within the brain network 

using the dummy index 𝜈 . At each scale 𝜈 , various matrices and functions facilitate modeling 

different types of neural interactions: 

• The matrix 𝑽𝜈 outlines the topology of neural connections, while the matrix 𝑼𝜈 assigns 

weights to these connections. 

• The transformation function 𝚪𝜈, similar to 𝒁, dictates how neural activity is processed and 

represented. 

• 𝑲𝜈  denotes a matrix of distances between neural elements, and 𝑪𝜈  represents their 

conduction speeds. The form of 𝑪𝜈 can vary from scalar to vector to matrix depending on 

the required granularity. 

 

𝑷(d d𝑡⁄ )𝚿(𝑡) = −𝚲(𝚿(𝑡)) + 𝒁(𝚬(𝑡) +∑𝑼𝜈 ∘ 𝑽𝜈𝚪𝜈(𝚿(𝑡 − 𝑲𝜈 ∘ 𝑪𝜈
−1))

2

𝜈=0

) (1.26) 
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The operation ∘ denotes an element-wise multiplication, also known as the Hadamard or Schur 

product. 

The functions 𝒁 and 𝚪𝜈 are adjusted to reflect different types of neural models that are used to 

simulate brain activity (like in Section 1.3.7). For instance, voltage-based models like the Jansen–

Rit model typically emerge when 𝒁 is linear and 𝚪𝜈 is non-linear, whereas activity-based models 

such as the Wilson–Cowan model are more common when 𝒁 is non-linear and 𝚪𝜈 is linear. 

Each scale 𝜈 addresses a specific layer of interaction, from internal neural mass connections to 

long-range nodal interactions: 

• At the scale 𝜈 = 0 , the model captures internal interactions between neural masses at 

individual nodes, utilizing intrinsic connections defined by 𝑽0 and weighted by 𝑼0. Here, 

𝑲0 and 𝑪0 are not typically applicable. 

• For 𝜈 = 1, the focus shifts to short-range or local interactions between nodes, typically 

within the vicinity defined by axonal space constants. At this level, 𝑽1 delineates the local 

(or lateral) connection topology, and 𝑼1  applies biologically plausible weights to these 

connections. 𝑲1 and 𝑪1 are generally not relevant for these local interactions. 

• At the 𝜈 = 2 scale, the model extends to long-range interactions between nodes, beyond 

the limits set by axonal space constants. These long-range connections, often mediated by 

white matter fibers, are characterized by 𝑽2 for the topology and 𝑼2 for the connectivity 

weights, with 𝑲2  and 𝑪2  introducing explicit delays to account for the longer distances 

involved. 

In prevalent whole-brain network models found in the literature, the focus is primarily on the 

interactions at scales 𝜈 = 0 and 𝜈 = 2. Taking the Wilson–Cowan neural mass model as a typical 

example, which is often used to represent each node within a whole-brain network of 𝑙 nodes, we 

recall its formulation (as outlined in Section 1.3.2, on page 32). The model, assuming no refractory 

periods, is described by the following set of differential equations for each node: 

Here, 𝜑1,1 and 𝜑2,1 represent the activities of excitatory and inhibitory neurons, respectively; 𝜀1 

and 𝜀2  are external inputs; 𝑎1,1 , 𝑎1,2 , 𝑎2,1 , and 𝑎2,2  are connectivity constants; and 𝑆  denotes a 

sigmoidal function. 

At scale 𝜈 = 0, the model incorporates two neural masses: one representing excitatory neurons 

and the other inhibitory neurons, each described by a single state variable (i.e., 𝑛1 = 1 and 𝑛2 =
1). The notation 𝜑𝑚,𝑖 in the equations signifies the 𝑖-th state variable of the 𝑚-th neural mass. 

Therefore, for each node 𝑗 , 𝚿𝑗  is represented as 𝚿𝑗 = [
𝜑1,1
𝜑2,1

] , and the differential operator 𝑷𝑗  is 

expressed as 𝑷𝑗(d d𝑡⁄ ) = [
d d𝑡⁄

d d𝑡⁄
]. The state operator matrix 𝚲𝑗 is simply 𝚲𝑗 = [

1
1
]. This model is 

an activity-based model where interactions are mediated through the sigmoidal function 𝑆. The 

vector of external inputs is 𝚬𝑗 = [
𝜀1
𝜀2
] , with intrinsic connectivity matrices at node 𝑗  given by 

 d

d𝑡
𝜑1,1 = −𝜑1,1 + 𝑆(𝑎1,1𝜑1,1 − 𝑎1,2𝜑2,1 + 𝜀1) 

d

d𝑡
𝜑2,1 = −𝜑2,1 + 𝑆(𝑎2,1𝜑1,1 − 𝑎2,2𝜑2,1 + 𝜀2) 

(1.27) 



52 

 

𝑽0,𝑗 = [
1 1
1 1

]  and 𝑼0,𝑗 = [
𝑎1,1 −𝑎1,2
𝑎2,1 −𝑎2,2

] . These matrices are elements of larger block diagonal 

matrices 𝑽0 and 𝑼0, each of order 2𝑙. 

At scale 𝜈 = 2, the model expands to encompass large-scale networks by specifically coupling the 

excitatory populations across nodes. In this configuration, even-indexed rows and columns of 𝑽2 

and 𝑼2 are set to zero, allowing for non-zero values in the remaining elements to facilitate the 

coupling of excitatory neural masses across the network’s nodes. Additionally, temporal delays are 

incorporated through 𝑲2 and 𝑪2. 

Thus, the general formulation of this model is given by: 

However, in the literature, a more specific expression is often employed for practical applications: 

In this equation, the superscript 𝑗 denotes a network node, while the subscripts 𝑒 and 𝑖 distinguish 

between the excitatory and inhibitory neuronal populations, respectively. The matrix Ω represents 

structural connectivity derived from white-matter fiber tracking, and Τ  accounts for the time 

delays associated with signal propagation though the tracks. Typically, the connectivity constants 

𝑎1,1, 𝑎1,2, 𝑎2,1, and 𝑎2,2 are assumed to be uniform across the network. 

In summary, the equation presented in Equation (1.26) is a comprehensive framework meant to 

encompass the wide array of connectome-based neural mass models, which are formulated through 

either ordinary or stochastic integrodifferential equations, as discussed by (Griffiths et al., 2022; 

Sanz-Leon et al., 2015; Spiegler & Jirsa, 2013). Despite its inclusive design, it is important to note 

that due to the equation’s versatility and broad scope, actual implementations in the literature often 

adopt adapted or simplified versions of this formula. A discussion of neural field models (extending 

the Section 1.3.7) is also provided in (Sanz-Leon et al., 2015; Spiegler & Jirsa, 2013). Moving 

forward, rather than expanding further on this topic, the ensuing sections of this thesis will focus 

on the construction and exploration of a specific whole-brain neuron-glial network model. 

Section 1.4, beginning on page 53, will explore how these whole-brain network models leverage 

structural and functional real data to decode the intricate dynamics of brain networks. This 

endeavor, which builds upon the foundational concepts introduced and exemplified in Figure 1.26, 

aims to enhance our understanding of the brain’s intricate workings through advanced 

computational modeling techniques. 

  

 𝚿̇(𝑡) = −𝚿(𝑡) + 𝑆(𝚬(𝑡) + 𝑼0 ∘ 𝑽0𝚿(𝑡) + 𝑼2 ∘ 𝑽2𝚿(𝑡 − 𝑲2 ∘ 𝑪2
−1)) (1.28) 

 𝜑̇𝑒
𝑗(𝑡) = −𝜑𝑒

𝑗(𝑡)

+ 𝑆(𝑎1,1𝜑𝑒
𝑗(𝑡) − 𝑎1,2𝜑𝑖

𝑗(𝑡) + 𝜀𝑒
𝑗(𝑡) +∑Ω𝑗,𝑘

𝑙

𝑘=1

𝜑𝑒
𝑘(𝑡 − Τ𝑗,𝑘)) 

𝜑̇𝑖
𝑗(𝑡) = −𝜑𝑖

𝑗(𝑡) + 𝑆 (𝑎2,1𝜑𝑒
𝑗(𝑡) − 𝑎2,2𝜑𝑖

𝑗(𝑡) + 𝜀𝑖
𝑗(𝑡)) 

(1.29) 
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1.4 Multimodal neuroimaging data acquisition and analysis ― providing 
non-invasive empirical whole-brain data complementing biophysical neural 
models 

Non-invasive neuroimaging techniques—including diffusion magnetic resonance imaging (MRI), 

blood-oxygen-level-dependent (BOLD) functional MRI (fMRI), and electroencephalography 

(EEG) or magnetoencephalography (MEG)—are preferentially used to constrain human whole-

brain biophysical models structurally and functionally (Figure 1.26). And as we have seen earlier, 

such whole-brain models can produce outputs comparable to neuroimaging data (often after 

accounting for a forward model), as shown also in Figure 1.27. This chapter specifically addresses 

diffusion MRI, EEG, and MEG, due to their direct relevance to this thesis (but see also Figure 1.28 

for complements). 

 
Figure 1.27. Technical and conceptual framework for empirical testing of neural mass models and neural field models. 

Caption and figure from: (Breakspear, 2017). Permission obtained. ― (a) Models of large-scale dynamics are derived 

from detailed neurophysiology through abstraction. A combination of mathematical analysis and numerical 

simulations can then be employed to understand the emergent dynamics supported by these models. This step can be 

constrained by ensuring that neurophysiological parameters are constrained to lie within realistic values. A forward 

model (biomagnetic or hemodynamic; the latter is illustrated) is then required to predict empirical data from these 

models (Aquino et al., 2012). Bottom right panel adapted from (Aquino et al., 2012) under a Creative Commons CC 

BY 4.0 license. (b) Empirical experiments using brain imaging technology yield empirical data across a range of 

spatial and temporal apertures. High-quality fMRI and EEG can be acquired simultaneously to test model predictions. 

Going from neural models to empirical data corresponds to model prediction. Using variational schemes and 

appropriate penalties for model complexity, the mismatch between prediction and observation can be used for model 

inversion and comparison. 
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Figure 1.28. Neuroimaging recording techniques. Caption and figure from: (Gross, 2019). Permission obtained. ― 

(A) Measuring brain activity: this schematic figure illustrates the recording of brain activity with fMRI, fNIRS, MEG, 

and EEG. Current flow (black arrow) is associated with magnetic fields (red lines) that can be recorded with MEG. 

SQUID sensors (red coil) operate in liquid helium and need a thermal insulation that leads to a physical separation 

from the scalp. OPM sensors (red rectangle) operate at near room temperature and in close proximity to the scalp. 

EEG electrodes (green) are attached to the scalp and record potential differences to a reference electrode. fMRI and 

fNIRS are sensitive to changes in blood oxygenation that are caused by neural activity. (B) MEG and other recording 

techniques. MEG is compared to EEG, fMRI, and fNIRS. The bar graph shows for each aspect a comparative ranking 

of all four methods. High bars indicate high performance. Temporal resolution: MEG and EEG have the same higher 

resolution compared to fMRI and fNIRS. Spatial resolution: fMRI has the highest spatial resolution followed by MEG 

where spatial resolution is less affected by models of head conductivity compared to EEG. Coverage: modern MEG 

and EEG system have sensors covering most of the scalp (and for EEG sometimes the face) but typically have reduced 

coverage of prefrontal areas and cerebellum, while fMRI does not have this limitation. fNIRS has limited coverage. 

Signal: MEG/EEG signals are more directly related to neuronal activity compared to fNIRS and fMRI. MEG signals 

are less distorted by changes in tissue conductivities compared to EEG. Silence: MEG, EEG, and fNIRS are silent 

recording techniques in contrast to fMRI where gradient coils produce noise during data acquisition. Mobility: mobile 

systems exist for EEG and fNIRS but not for fMRI. New MEG-OPM sensors can be integrated in more mobile MEG 

systems. Affordability: fMRI systems are most expensive, followed by MEG and more affordable EEG and fNIRS 

systems. This graph is not the result of a quantitative, precise assessment. 
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1.4.1 Diffusion MRI 
Diffusion MRI data are probably the most important ones for the human whole-brain biophysical 

modelling (Bezgin et al., 2017; Breakspear, 2017; Deco et al., 2009; Melozzi et al., 2017; Messé 

et al., 2014; Sanz-Leon et al., 2015; Shen et al., 2019). All whole-brain models rely on data 

obtained thanks to diffusion MRI to define (using tractography methods) a biophysically plausible 

structural layer for interconnecting neuronal populations (through white matter tracts). This 

importance is evident, as I exposed in the previous chapter, because the resulting structural network 

can singularly explain a significant portion of the variance in empirical multimodal functional 

networks (J. Y. Hansen et al., 2022; Z.-Q. Liu et al., 2023). This explanatory power is largely due 

to multimodal connectivity overlap in unimodal cortices and the dominant activity spectral power 

in these same regions (J. Y. Hansen et al., 2022; Z.-Q. Liu et al., 2023). Furthermore, the neuronal 

structural layer is a fundamentally important parameter in whole-brain models as it not only 

constrains their primary spatial and temporal interactions but can typically, if not always, be 

informed by empirical data (Bezgin et al., 2017; Breakspear, 2017). It also aligns model outputs 

conveniently with a connectomics scale of empirical data (Bezgin et al., 2017; Breakspear, 2017). 

The aim of this condensed subsection is to present the fundamental principles of diffusion MRI, 

focusing on brain white matter tractography, which represents its most advanced application to 

date. This understanding is crucial for comprehending the methodological choices I will make in 

subsequent manuscript-based chapters regarding neuronal structural layer tractography-based 

reconstructions. I first formally characterize the phenomenon of molecular diffusion and I specify 

the conceptual root of diffusion MRI. I then explain how diffusion measurements are made with 

MRI, and I briefly introduce three diffusion MRI techniques: the scalar diffusion-weighted 

imaging, the diffusion tensor imaging, and the diffusion spectrum imaging. Acquiring and then 

properly interpreting diffusion images require much care and so for each diffusion technique, I 

also summarize its underlying assumptions and hypotheses, and its main advantages and 

drawbacks. I conclude with brain white matter tractography, where I emphasize how detailed 

human brain anatomical connectomes can be portrayed in vivo and non-invasively through data 

obtained from brain diffusion imaging. 

Molecular diffusion. In a homogeneous medium, molecular diffusion is best described on a 

statistical basis with the notion of displacement distribution in a three-dimensional (3D) space. 

This distribution (e.g., see Figure 1.29) is commonly depicted as an isotropic centered Gaussian 

with a single defining parameter: its variance 𝜎2 [m2]  expressed as 𝜎2 = 2𝐷Δ  (Le Bihan & 

Johansen-Berg, 2012). Here 𝐷 [m2/s]  represents the diffusion coefficient, a property 

characterizing the medium’s viscosity, while Δ [s] is the diffusion time. The diffusion coefficient 

varies depending on factors such as the mass of the molecules, temperature, and the viscosity of 

the medium (Le Bihan & Johansen-Berg, 2012). For instance, the self-diffusion coefficient of 

water at 37 °C is approximately equal to 3 × 10−3 mm2/s (Le Bihan & Johansen-Berg, 2012). 

On the contrary, in a heterogeneous medium, especially in highly heterogeneous environments 

such as biological tissues, molecular diffusion departs from a Gaussian distribution (e.g., see 

Figure 1.29) and becomes inherently anisotropic (Le Bihan & Johansen-Berg, 2012). Furthermore, 

the diffusion coefficient in such environments tends to be lower (though exceptions exist) 

compared to that in freely diffusible solvents. For instance, within tissues comprising membranes 

or macromolecules, water molecules follow intricate paths, involving bouncing, crossing, 

contouring, and interactions with the tissues’ constituents (Le Bihan & Johansen-Berg, 2012). As 
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a result, the diffusion driven displacement is diminished in comparison to that in a freely diffusible 

solvent, and the anisotropy emerges from the spatial organization of the tissue’s constituents. 

 
Figure 1.29. Molecular displacement distribution. Figure adapted from: (Le Bihan & Iima, 2015). Publisher’s 

permission: http://creativecommons.org/licenses/by/4.0/. ― Water molecule displacement distribution in a 

homogeneous and heterogeneous medium (see text for explanation). 

Conceptual root of diffusion MRI. As a consequence of the previously mentioned phenomenon, 

in biological tissues such as the brain, the intrinsic viscosity of the tissue becomes apparent over a 

short diffusion time for water molecules (Le Bihan & Iima, 2015). However, over a longer 

diffusion time, the influence of obstacles becomes more pronounced, as the likelihood of 

interactions between water molecules increases (Le Bihan & Iima, 2015). In the context of MRI, 

the timescale typically ranging from tens to hundreds of milliseconds (for echo time) is what we 

consider as long (Le Bihan & Iima, 2015). This fundamental concept underlies diffusion MRI: 

even though the resulting images offer millimetric resolution (e.g., see Figure 1.30), they enable 

the exploration of tissue structure at the microscopic level (Le Bihan & Iima, 2015). 

To date, diffusion MRI remains the most reliable non-invasive technique, providing direct, in vivo 

insight into the voxel-averaged microscopic tissues (Le Bihan & Iima, 2015). 

At this point of our discussion, it is pertinent to note that, in the context of diffusion imaging, the 

primary focus often lies not in acquiring a detailed diffusion profile (Figure 1.31), but rather in 

identifying the direction of maximum diffusion because this directional parameter is believed to 

align with the orientation of axonal or other fibrillar structures within the brain tissue (Hagmann 

et al., 2006). Understanding the predominant direction of diffusion is key for mapping the brain’s 

white matter tracts and reconstruct its structural connectivity. 

 
Figure 1.30. Conceptual root of diffusion MRI. Figure adapted from: (Le Bihan, 2014). Publisher’s permission: 

http://creativecommons.org/licenses/by/4.0/. ― With diffusion MRI, tissue structure is truly explored at the 

microscopic level. 

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Figure 1.31. Diffusion represented by a six-dimensional image. Caption and figure from: (Hagmann et al., 2006). 

Permission obtained. ― Left part of diagram shows that standard imaging methods provide one value (gray level) for 

every 3D position 𝐩. That value or gray level may code for the linear x-ray attenuation coefficient at CT or for the 

relative signal intensity at MR imaging. Right part of diagram shows that in diffusion imaging every 3D position 𝐩 

(voxel) is associated not with a gray level but with a 3D image that encodes the molecular displacement distribution 

in that voxel. The value measured at the coordinates 𝐩, 𝐫— 𝑓(𝐩, 𝐫)—indicates the proportion of molecules in the voxel 

that have moved the given distance 𝐫. 

The link between diffusion and the signal intensity measured by MRI. In any MRI sequence, 

during the echo time, a tissue is exposed many times over to different gradient magnetic fields, 

such as those used for slice selection or frequency encoding (e.g., see Figure 1.32). Ergo, water 

molecules moving along the direction of a gradient experience a greater phase shift than the 

relatively stationary ones (bearing in mind that water molecules are never completely stationary 

but rather relative to the spatiotemporal resolution of MRI), and this leads to a greater signal loss 

(e.g., see Figure 1.33). Therefore, in any MRI image, the signal intensity at each voxel is already 

modulated by the presence of diffusion (Le Bihan & Iima, 2015). 

Nevertheless, any MRI pulse sequence can be deliberately made sensitive to diffusion by adding 

a pair of gradient pulses with equal strength on both sides of a 180° radiofrequency pulse (e.g., see 

Figure 1.32). By applying a gradient and then exactly reversing it, only the water molecules 

flowing along the direction of the gradient magnetic field accumulate phase, while the others end 

up with no net phase shift (Le Bihan et al., 2006). In essence, the two gradients serve to label space 

for a specific time interval along a single direction and encode any displacement of water 

molecules along that direction (Le Bihan et al., 2006). The field strength of the gradient pulses, 

𝐺 [T/m] , and the diffusion time interval (between the gradients), Δ [s] , are both adjustable 

parameters (Le Bihan et al., 1986). They are sometimes expressed in terms of the 𝑏-value where 

𝑏 [s/m2]  is proportional to 𝐺2Δ  (Le Bihan et al., 1986). The 𝑏 -value indicates the degree of 

exposure to a diffusion gradient. 

In summary, three fundamental factors determine the extent of MRI signal intensity change due to 

diffusion: the observation time and the gradient strength (summarized by the 𝑏-value), and the 

diffusion coefficient. For instance, faster diffusion, stronger gradient pulses, or longer observation 

times result in more pronounced signal intensity attenuation. It is noteworthy that increasing the 

strength of a gradient pulse can be achieved either by raising its magnitude or its duration. 

However, practical limitations often restrict the magnitude, so in practice, the duration is extended 

(Le Bihan et al., 2006). 
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Figure 1.32. Diffusion MRI sequence. Caption and figure from: (Le Bihan et al., 2006). Permission obtained. ― Spin-

echo sequence sensitized to diffusion using a gradient pulse pair (Gdiff). Spin phase-shift varies according to location 

along Gdiff. Static spins are rephased by the 180° radiofrequency (RF) pulse and the second gradient pulse, while 

diffusing spins remain out of phase (Gsel = slice selection, Gread = readout, Gph-enc = phase encoding). 

 
Figure 1.33. Diffusion-weighted image. Caption and figure adapted from: (Le Bihan & Iima, 2015). Publisher’s 

permission: http://creativecommons.org/licenses/by/4.0/. ― In the presence of a magnetic field gradient, the MRI 

resonant frequency will vary along the direction of the gradient. As a result, the phase of the radio waves emitted by 

the magnetized hydrogen nuclei of water molecules contained in a voxel (box representing the image elementary 

volume) will vary (red arrows) compared to otherwise static nuclei (blue arrow), depending on their displacement 

behavior. For the diffusion-driven random displacements, the average phase shift is zero but exhibits a distribution 

that is wider for water nuclei experiencing large displacements (fast diffusion, as in CSF, top) than for those 

experiencing small displacements (slow diffusion, as in white matter brain tissue, bottom). Considering the very large 

number of water molecules present in each image voxel, each with its own random displacement history, this phase 

distribution results in an attenuation of the MRI signal amplitude due to phase interference, and the MRI signal (red 

curve) decays faster than in the absence of diffusion (blue curve). This attenuation is larger in voxels where water 

movement is fast, and hence where diffusion is high, and vice versa. The MRI images obtained at a given time (yellow 

triangle) are then “diffusion weighted”: regions of slow diffusion appear in “white” and those with fast diffusion in 

“black”. Quantitative maps of the apparent diffusion coefficient can be calculated based on this differential signal 

attenuation. 

http://creativecommons.org/licenses/by/4.0/
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Scalar diffusion-weighted imaging. The simplest among diffusion techniques is the result of 

applying a diffusion sequence, much like the one discussed earlier, but limited to a single direction 

(Hagmann et al., 2006). This produces an image known as a diffusion-weighted image (e.g., see 

Figure 1.32), with the degree of diffusion weighting controlled by the 𝑏-value. In these images, a 

conventional MRI grayscale is typically used, where brighter colors indicate slow diffusion (low 

signal intensity attenuation), and darker colors represent fast diffusion (high attenuation). 

While this unidirectional measurement offers the shortest acquisition time among all techniques, 

it comes with limitations (Hagmann et al., 2006). Indeed, diffusion is inherently a 3D process, and 

as previously mentioned, the movement of water molecules in tissues can vary in different 

directions. Additionally, for a proper interpretation of such images, the two MRI relaxation times, 

T1 and especially T2, are of practical importance (Le Bihan & Johansen-Berg, 2012). Eliminating 

T1 effects is straightforward with a long repetition time. However, diffusion-weighted images are 

inherently T2-weighted, and mitigating T2 effects is more challenging due to the inclusion of 

gradient pulses. This complexity arises from several factors (Le Bihan & Johansen-Berg, 2012). 

Firstly, a long echo time is needed to accommodate both sufficient diffusion times and diffusion 

encoding. Secondly, tissues with very low diffusion require large 𝑏-values, and thirdly, achieving 

these large 𝑏-values involves increasing gradient pulse durations. Consequently, in this scenario, 

diffusion measurements become less well-defined because water diffusion displacement becomes 

large. In practice, diffusion-weighted images are always assessed alongside a 𝑏0 image, which is 

acquired without diffusion weighting (𝑏 = 0) and servers as the reference image. The reference 

image aids in identifying T2 artifacts, such as the T2 shine-through effect. 

Thus, due to relaxation effects, diffusion weighted images contain tissue properties other than the 

diffusion itself. To overcome the presence of tissue properties in diffusion-weighted images, 

quantitative diffusion images are often preferred (Le Bihan & Johansen-Berg, 2012). These 

quantitative images can be derived by assuming a model of a 3D isotropic Gaussian distribution. 

In this model, each voxel’s signal intensity is calculated using the equation: ADC =
−ln(DWI/𝑏0) 𝑏⁄  , where DWI  is the intensity from a diffusion weighted image obtained for a 

specific 𝑏-value and direction, and 𝑏0 is the reference image (e.g., see Figure 1.34). In this context, 

the diffusion coefficient (i.e., the 𝐷 defined previously when discussing Molecular diffusion) is 

estimated as ADC  and termed the apparent diffusion coefficient (e.g., see Figure 1.34). This 

parametrization serves as a statistical bridge between millimetric (acquisition) and microscopic 

(diffusion phenomenon) scales. This technique requires only two acquisitions. However, ADC 

images are influenced by the diffusion encoding direction and the assumption of isotropy, limiting 

their ability to address questions related to anisotropy, such as those arising in brain connectomics. 

Unlike the previous images, brighter colors in ADC images indicate fast diffusion, while darker 

colors signify slow diffusion (e.g., see Figure 1.34). 

In clinical practice, ADC images are often employed to assess acute brain ischemia, which was 

historically their first clinical application, as well as certain types of cancer (Le Bihan & Johansen-

Berg, 2012). 

In 2006, technical requirements for ADC imaging, considering the acquisition of 30 axial sections 

each with a 3 mm thickness, were outlined by Hagmann and colleagues (Hagmann et al., 2006). 

These requirements (encompassing hardware capabilities and acquisition time) included optional 

3.0 T and high gradient strength capabilities; support for more than 3 gradient directions with a 𝑏-

value ≤ 1000 s/mm2 (as the average of three orthogonal directions helps mitigate the dependence 

on the direction of diffusion encoding and provides a more accurate approximation of the diffusion 
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coefficient); an acquisition time of 2–4 minutes; utilisation of simple summations for 

postprocessing; and display on monitor of gray-scale sections. 

 
Figure 1.34. Diffusion-weighted and diffusion-calculated images. Caption and figure from: (Le Bihan & Johansen-

Berg, 2012). Permission obtained. ― Diffusion-weighted and diffusion-calculated ( ADC ) images. The set of 

diffusion-weighted images is obtained using different 𝑏-values, by changing the intensity of the diffusion gradient 

pulses (gold trapezoids) in the MRI sequence. In diffusion-weighted images, the overall signal intensity in each voxel 

decreases with the 𝑏-value. Tissues with high diffusion (such as ventricles) get darker more rapidly when the 𝑏-value 

is increased and become black. Tissues with low diffusion remain with a higher signal. As diffusion-weighted images 

also contain T1 and T2 contrast, one may want to calculate pure diffusion (or ADC) images. To do so, the variation of 

the signal intensity, 𝐴𝑥,𝑦,𝑧 , of each voxel (red boxes) with the 𝑏 -value is fitted using the equation ADC𝑥,𝑦,𝑧 =

ln(𝐴𝑥,𝑦,𝑧(𝑏0) 𝐴𝑥,𝑦,𝑧(𝑏)⁄ ) (𝑏 − 𝑏0)⁄   to estimate the ADC  for each voxel (green box). In the resulting image, the 

contrast is inverted: bright corresponds to fast diffusion and dark to low diffusion. 

Diffusion tensor imaging. DTI for short, this technique overcomes the aforementioned limitations 

by employing a model based on anisotropic Gaussians, providing six degrees of freedom for each 

voxel (Hagmann et al., 2006). To fit this model, a minimum of six diffusion-weighted images, in 

addition to the reference image (𝑏0 ), are required. The outcome is a square matrix with three 

dimensions, referred to as the diffusion tensor. This tensor fully characterizes diffusion in all three 

spatial directions within a 3D space. Often, an ellipsoid is used to represent the diffusion tensor 

(e.g., see Figure 1.35). From the tensor, several scalar values can be derived to construct other 

diffusion images (Hagmann et al., 2006): 

• the mean diffusion, formally defined as the matrix trace of the diffusion tensor, which 

provides a measure akin to an ADC image obtained from three orthogonal directions;  

• the principal direction of diffusion, formally defined as the eigenvector corresponding to 

the largest eigenvalue (in absolute value);  
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• the fractional anisotropy, formally defined as FA = √3 2⁄ √∑ (𝜆𝑖 − 𝜆̅)
2

𝑖 (∑ 𝜆𝑖
2

𝑖 )⁄ , where 

the (𝜆𝑖)𝑖 are the eigenvalues of the diffusion tensor and 𝜆̅ is the mean eigenvalue. 

This technique offers the advantage of a short acquisition time. However, similar to the previous 

model, it relies on certain underlying assumptions that may not always hold, particularly in brain 

connectomics studies. In cases where a region contains crossing fiber populations resulting in two 

maxima within the measured tensor, the principal direction may be biased and inaccurate. 

Nevertheless, the diffusion tensor model is well-suited for voxels where fiber populations align 

predominantly along a single direction. 

In 2006, technical requirements for DTI, considering the acquisition of 30 axial sections each with 

a 3 mm thickness, were outlined by Hagmann and colleagues (Hagmann et al., 2006). These 

requirements (encompassing hardware capabilities and acquisition time) included optional 3.0 T 

and high gradient strength capabilities; support for more than 6 gradient directions with a 𝑏-value 

≤ 1000 s/mm2; an acquisition time of 3–6 minutes; utilisation of simple matrix operations for 

postprocessing; and display on monitor of gray-scale sections for derived scalars (e.g., trace, 

fractional anisotropy), and color-coded sections for diffusion direction, ellipsoid reconstruction of 

orientation distribution function, and tractography. 

 
Figure 1.35. Diffusion anisotropy and diffusion tensor imaging. Caption and figure adapted from: (Le Bihan & 

Johansen-Berg, 2012). Permission obtained. ― In the presence of anisotropic diffusion the ADC, as in white matter, 

depends on the measurement direction. From left to right: Measurement direction was vertical (yellow arrow). Vertical 

tracts (such as pyramidal tract) have high ADC, while horizontal tracts (as in corpus callosum) are dark. This results 

from the fact that diffusion is reduced perpendicularly to the white matter fibers due the presence of plasma membranes 

and myelin. With DTI it becomes possible to characterize diffusion in all 3 dimensions and to determine the direction 

of fastest diffusion. For each image voxel an ellipsoid can be produced the nature of which is related to key DTI 

parameters: overall ellipsoid volume and mean diffusivity, the shape (oblong) to the degree of fractional anisotropy 

and the orientation to the fiber main direction. 

Diffusion spectrum imaging. This technique is primarily employed in the field of brain 

connectomics (Hagmann et al., 2006). It relies on acquiring a series of diffusion-weighted images 

with varying directions and strengths of the diffusion gradient, to sample a diffusion probability 

density function at each brain voxel. This data acquisition process is termed q-space filling. In q-

space, each voxel in the brain corresponds to a point in a 3D space, where the MRI signal intensity 

is associated with a specific direction and strength of the diffusion gradient (Hagmann et al., 2006). 

Unlike other techniques, diffusion spectrum imaging does not require the assumption of a Gaussian 

distribution (in fact, no specific hypothesis about diffusion is made), which enables the accurate 

resolution of fiber crossings, a challenge in diffusion imaging (Hagmann et al., 2006). However, 

the ability to resolve the diffusion probability density correctly is contingent upon the q-space 

resolution. Additionally, compared to other methods, this technique demands a significantly longer 
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acquisition time due to the larger number of images required. To address this time limitation 

(especially in clinical settings), alternative methods have been proposed. One such approach is q-

ball imaging (e.g., see Figure 1.36) or high angular resolution diffusion weighted imaging, which 

combines the advantages of both diffusion tensor and diffusion spectrum imaging techniques 

(Hagmann et al., 2006). 

In 2006, technical requirements for diffusion spectrum imaging, considering the acquisition of 30 

axial sections each with a 3 mm thickness, were outlined by Hagmann and colleagues (Hagmann 

et al., 2006). These requirements (encompassing hardware capabilities and acquisition time) 

included very desirable 3.0 T and high gradient strength capabilities; support for more than 200 

gradient directions with a 𝑏 -value > 8000 s/mm2 ; an acquisition time of 15–60 minutes; 

utilisation of complex operations (filtered Fourier transform and radial projection with multiple 

parameters) for postprocessing; and display on monitor of mean diffusion, fractional anisotropy, 

probability density function, orientation distribution function, tractography. 

In this thesis, I specifically used multi-shell (i.e., multiple 𝑏 -values) high angular resolution 

diffusion-weighted imaging data obtained from the Human Connectome Project. This imaging 

technique involves acquiring diffusion data using a significantly higher 𝑏 -value (i.e., > 1000 

s/mm2) and number of diffusion directions (e.g., > 40 directions) compared to DTI. For example, 

the Human Connectome Project data employed in this thesis were collected at a high spatial 

resolution of 1.25 mm isotropic using a 2D spin echo echo-planar imaging sequence and included 

18 𝑏0 -images and 90 diffusion-weighted images per 𝑏 -shell, covering three different 𝑏 -values 

(1000, 2000, and 3000 s/mm2) totalling about 1 hour of acquisition time. I provide more details on 

this in the manuscript-based chapters. 

 
Figure 1.36. Q-space and q-ball imaging. Caption and figure from: (Hagmann et al., 2006). Permission obtained. ― 

Diagram shows that in q-ball imaging, points on a shell with a constant 𝑏-value are acquired in q-space. At least 60 

images are necessary to reconstruct an orientation distribution function that is realistic. 
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Brain tractography. In preceding sections, I delineated the collection methods for diffusion MRI 

images and the techniques for deducing the diffusion direction at any given point within the image. 

The fundamental principle underpinning brain tractography is as follows: within white matter, 

water molecules exhibit preferential diffusion; specifically, they diffuse more rapidly along the 

fiber direction and more slowly perpendicular to it (Hagmann et al., 2006; Le Bihan & Johansen-

Berg, 2012). Consequently, starting from a seed voxel, tractography is able to reconstruct a fiber 

by sequentially linking adjacent voxels according to the principal diffusion direction (e.g., see 

Figure 1.37). It is critical to emphasize the term fiber here; fibers, as reconstructed by tractography, 

are representations of axonal bundles rather than individual axons. The latter have a diameter on 

the order of micrometers, which far exceeds the resolving power of contemporary human MRI 

technology (Hagmann et al., 2006; Le Bihan & Johansen-Berg, 2012). Furthermore, from a 

physical standpoint, the reconstructed fibers merely approximate the actual axonal architecture, as 

they are fundamentally representations of diffusion velocity (Hagmann et al., 2006; Le Bihan & 

Johansen-Berg, 2012). 

Tractography methodologies are broadly classified based on three aspects (Hagmann et al., 2006): 

the diffusion model employed which pertains to the mathematical model used to interpret the 

diffusion data (e.g., diffusion tensor or diffusion spectrum), the tracking algorithm used which 

describes the method by which fiber pathways are inferred from the diffusion data (deterministic, 

which utilizes the most probable direction of diffusion to trace fiber pathways voxel-by-voxel, or 

probabilistic, which samples a distribution of fiber orientations), and the approach to constructing 

the trajectory of fiber tracts (local, which iteratively builds the fiber using a seed-based technique, 

or global, which utilises the entire diffusion dataset simultaneously to reconstruct all fibers in a 

holistic manner). For instance, Figure 1.38 compares two fiber tractographies based on the 

diffusion model employed. 

The potential applications of brain tractography are vast (Le Bihan & Iima, 2015). For instance, 

structural brain connectivity alters with the progression of development, aging, or 

neurodegenerative diseases, and significantly influences functional connectivity. However, the 

challenges are equally substantial (Maier-Hein et al., 2017; Schilling, Daducci, et al., 2019; 

Schilling et al., 2020; Schilling, Nath, et al., 2019; C. Yeh et al., 2021). For example, a definitive 

ground truth is absent for validating tractography on human subjects, beyond a rudimentary 

understanding of brain wiring, including the major white-matter pathways. Often, ground truths 

are established ex vivo, via dissections on human donors or animal models. Chemical tracing offers 

another avenue for establishing a standard, despite its acquisition and labeling challenges (Delettre 

et al., 2019; Grisot et al., 2021). It can clarify ambiguities inherent in diffusion imaging. 

Nonetheless, numerous tractography methods fall short, primarily due to insufficient resolution 

(Le Bihan & Iima, 2015). Consequently, different tissue microstructures can yield identical 

diffusion profiles, rendering the problem unresolved, an inherent complexity of the methodology 

(Le Bihan & Iima, 2015; Ocampo-Pineda et al., 2021). 

To go a step further, and in anticipation of the General Discussion of this thesis, it is pertinent to 

mention that, in the context of tractography, the premise that diffusion MRI signals are more 

sensitive to the coherent organization of axonal bundles than other white-matter structures such as 

glial cells, is being increasingly challenged. For instance, Garcia-Hernandez and colleagues 

presented a diffusion-weighted MRI method capable of imaging changes in glia morphology, 

particularly microglia and astrocytes, in vivo (Garcia-Hernandez et al., 2022). This method is 

sensitive to changes in glia morphology and proliferation, providing a quantitative account of 

neuroinflammation without necessitating neuronal loss or demyelinating injury. This approach 
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demonstrates the significant influence of glial cells on diffusion MRI signals, highlighting the need 

to account for such factors in the interpretation of imaging data. In subsequent chapters, I will 

delve into specific limitations of tractography, particularly concerning neuron-glial interactions 

and other nuanced aspects. These discussions will provide a more comprehensive understanding 

of the intricate landscape of brain tractography. 

 
Figure 1.37. Fiber tracking. Caption and figure adapted from: (Le Bihan & Johansen-Berg, 2012). Permission 

obtained. ― Complementary to Figure 1.35. Left to right: After the ellipsoids have been obtained for all voxels of the 

image (here for the cortico-spinal tract out of the motor cortex in red) an algorithm is used to determine whether 

adjacent voxels are likely to be connected (here with the FACT algorithm from (Mori et al., 1999)). Connected voxels 

within putative tracts are then displayed using pseudo-colors. It should be noticed that such color tracks are purely the 

results of a software and do not represent genuine anatomical structures. 

 
Figure 1.38. Diffusion tensor and spectrum imaging. Caption and figure from: (Hagmann et al., 2006). Permission 

obtained. ― Comparison of fiber tractography based on diffusion tensor imaging (DTI) versus fiber tractography 
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based on diffusion spectrum imaging (DSI) in two healthy volunteers. [See acquisition details in (Hagmann et al., 

2006)]. Because diffusion spectrum imaging provides higher angular resolution, fiber crossings are better resolved 

and fibers from different tracts are more clearly separated. The most visible differences between the two axial views 

(bottom row) are the greater predominance of red, which represents decussating callosal fibers that connect both the 

parietal and the temporal lobes, and the more uniform distribution of callosal fibers that project into the frontal lobe, 

on the diffusion spectrum image. These differences reflect typical errors of diffusion tensor imaging tractography in 

areas where fibers cross. 

Structural connectome reconstruction. The preceding section elucidated the utility of 

tractography as a visualization tool that extracts pathways of maximal diffusion coherence from 

orientation distribution function maps, mirroring the anatomical pathways of axonal trajectories. 

Tractography finds application in diverse analyses, ranging from the examination of individual 

tracts to comprehensive assessments of whole-brain structural connectivity, the latter being of 

particular interest in this thesis. It was previously highlighted that all dynamic models of large-

scale network activity depend on diffusion MRI-derived data to construct a structurally plausible 

connectivity layer that interlinks neuronal populations via white matter pathways. 

In the realm of connectomics, the typical methodology for reconstructing an individual’s structural 

connectome based on diffusion MRI data is depicted in Figure 1.39. Conceptually, the formulation 

of a structural connectome from an individual’s diffusion-weighted images appears 

straightforward but necessitates numerous practical considerations (C. Yeh et al., 2021). These 

considerations include: (a) the selection of imaging sequences and parameters; (b) the 

preprocessing of diffusion-weighted images and correction of artifacts; (c) the choice of fiber 

orientation estimation methods; (d) the selection of streamline tractography techniques; (e) criteria 

for streamline selection; (f) the quantitative reconstruction of tractograms; (g) the adoption of a 

brain parcellation scheme; (h) the assignment of streamlines to network nodes; (i) post-processing 

of the connectome; and, when relevant, (j) the application of graph theoretical analyses. 

In the context of this thesis, it is assumed that access to cutting-edge diffusion data and processing 

pipelines is available, allowing for an emphasis on critical elements starting from step (c). 

Specifically, in this section I aim to elucidate the two principal sources of bias in tractography 

during tractogram generation: the biases related to streamline termination and streamline 

quantification (C. Yeh et al., 2021). This discussion is pertinent as the thesis utilizes tractography-

based connectome reconstruction pipelines applied to the high-resolution datasets from the Human 

Connectome Project, aiming to establish constraints for comprehensive biophysical models of the 

brain. The methodologies adopted here are designed to mitigate the biases associated with 

streamline termination and quantification inherent in tractography techniques. 

• In the domain of diffusion MRI tractography, the initiation and propagation of streamlines 

through the cerebral white matter rely on the localized diffusion characteristics of water 

molecules, as deduced from MRI data (C. Yeh et al., 2021). These streamlines serve as 

virtual proxies, approximating the trajectories of axonal fibers within the brain. 

Nevertheless, determining the precise initiation and cessation points of these streamlines 

poses significant challenges, giving rise to what is termed streamline termination bias, as 

depicted in Figure 1.40. A promising approach to counter this bias is to integrate 

supplementary anatomical data, typically derived from high-resolution structural MRI, to 

inform the propagation and termination of streamlines. For instance, streamlines may be 

restricted to end at the interface between grey and white matter or within designated cortical 

areas (St-Onge et al., 2018, 2021). 

In this thesis, a novel strategy aimed at mitigating streamline termination bias employs 

particle filtering tractography, facilitating the generation of a surface-based tractogram for 
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each subject (St-Onge et al., 2018, 2021). This approach imposes geometrical constraints 

on the streamlines’ reconstruction, grounded in a model of surface flow trajectory along 

the grey-white matter boundary. Consequently, this technique enables the reconstruction of 

tractograms with enhanced cortical representation, ensuring that all streamlines intersect 

the cortical surface of the brain. The efficacy of this method is illustrated in Figure 1.40. 

• Streamline quantification bias in diffusion MRI tractography highlights the challenges in 

accurately depicting the true density or number of white matter fibers between brain 

regions (C. Yeh et al., 2021). This bias arises from the discrepancy between the real 

biological fiber pathways in the brain and their virtual representation by streamlines in 

tractography (C. Yeh et al., 2021). The core of this issue lies in the methodologies 

tractography algorithms employ to estimate streamline numbers, which serve as proxies 

for connectivity strength within structural networks (C. Yeh et al., 2021). One critical 

aspect of this bias is the inaccurate representation of fiber density. Direct measurement of 

axonal fiber density within a voxel or across brain regions is not feasible with diffusion 

MRI. Consequently, tractography algorithms resort to using streamline counts as estimates 

for fiber density, which may not align with the actual fiber density. Another dimension of 

this bias is the effect of pathway length on streamline density. The quantification of 

streamlines for extended connections might be inaccurately high or low, depending on the 

initiation and propagation methods used by the tractography algorithms. This discrepancy 

can distort the perceived strength of longer connections in the network, making them 

appear disproportionately influential or insignificant. 

The implications of quantification bias extend to the graph-theoretical analysis of structural 

connectomes or the simulations of large-scale network dynamics and related studies, which 

depend on the connectivity inferred from tractography. Misinterpretation of network 

connectivity can lead to incorrect assumptions about the significance or functionality of 

specific neural pathways (C. Yeh et al., 2021). 

To counteract streamline quantification bias, researchers have developed various advanced 

techniques designed to align connectivity measures more closely with the true biological 

architecture (C. Yeh et al., 2021). Among these techniques are seeding strategies that fine-

tune the initiation points and methods for streamline generation, sophisticated weighting 

approaches that assign streamline weights based on additional information or constraints 

to more accurately reflect biological realities, and post-processing corrections that apply 

adjustments to the tractogram to rectify known biases in streamline counts. These efforts 

are directed towards ensuring that tractography-derived models of neural connectivity offer 

a more faithful representation of the brain’s structural network. 

In the scope of this thesis, an advanced tractogram filtering technique (Daducci et al., 2015; 

Ocampo-Pineda et al., 2021; Schiavi et al., 2020) was utilized to refine tractograms by 

incorporating microstructural and anatomical constraints and attributing a quantitative 

weight to individual streamlines. The technique enhances tractogram fidelity by 

reconciling the observed diffusion MRI signals with a linear forward model that simulates 

tissue microstructure, incorporating anatomical priors that posit axonal organization within 

distinct bundles (e.g., see Figure 1.41). This process involves adjusting a global penalty 

coefficient, or regularization constant, to favor solutions that minimally yet accurately 

represent the observed diffusion signals with a select number of fiber bundles. This 

regularization approach is noteworthy for its ability to yield biologically plausible 

tractograms that vary in sparsity, aligning closely with known anatomical structures. 
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The resulting tractograms are then used to construct structural connectomes (e.g. see Figure 

1.42). As I detail in the manuscript-chapters, for these constructions, a quantitative weight 

is assigned to each connection between brain regions, or parcels, based on the weights 

attributed to the streamlines. This methodology ensures that the resulting connectomes are 

not merely qualitative but quantitative, with each connection weight offering a 

microstructurally and anatomically informed measure of connectivity strength. This 

approach represents a significant advancement in deriving connectomes that are both 

biologically grounded and quantitatively accurate, facilitating a deeper understanding of 

the brain’s complex network architecture. 

 
Figure 1.39. An example processing workflow for generating an individual’s structural connectome using diffusion 

MRI data. Caption and figure from: (C. Yeh et al., 2021). Publisher’s permission: 

http://creativecommons.org/licenses/by/4.0/. ― Left column: Each box denotes the raw, interim, or final products of 

this pipeline. Right column: Each box describes the class of data processing involved in this pipeline. Within each 

procedure, there are many relevant options and parameters that have to be considered, where each choice can 

potentially affect the final output network metrics and the inference drawn from this technique. This shows the 

http://creativecommons.org/licenses/by/4.0/
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complexity of data processing in tractography-based structural connectomics research. The green box indicates the 

processing steps that are specifically discussed in the article (C. Yeh et al., 2021). 

 
Figure 1.40. Surface-enhanced tractography. Caption and figure from: (St-Onge et al., 2018). Permission obtained. ― 

Visualization of the Human Connectome Project subject tractography, seeded from the same initial vertices colored 

by their local orientation (left-right - red, anterior-posterior - green, inferior-superior - blue): a) probabilistic local 

tractography, b) surface flow used as streamline initial and terminal trajectory for c) surface-enhanced tractography + 

probabilistic local tractography. The red surface in b) and c) indicate the less-convoluted mesh generated from the 

surface flow shown in Figure 2 of (St-Onge et al., 2018). 

 
Figure 1.41. Convex optimization modeling for microstructure informed tractography (COMMIT). Caption and figure 

from: https://github.com/daducci/COMMIT. Publisher’s permission: 

https://github.com/daducci/COMMIT/blob/ef88008ae2eae60b6a48ccd8ef7aad1dbfc0acf9/LICENSE. ― Starting 

from an input set of candidate fiber-tracts estimated using standard fiber-tracking techniques, COMMIT, models the 

diffusion MRI signal in each voxel of the image as a linear combination of the restricted and hindered contributions 

generated in every location of the brain by these candidate tracts. Then, COMMIT seeks for the effective contribution 

of each of them such that they globally fit the measured signal at best. These weights can be efficiently estimated by 

solving a convenient linear system. 

https://github.com/daducci/COMMIT
https://github.com/daducci/COMMIT/blob/ef88008ae2eae60b6a48ccd8ef7aad1dbfc0acf9/LICENSE
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Figure 1.42. Structural connectome and fiber bundle. Figure from: (Theaud et al., 2020). Publisher’s permission: 

http://creativecommons.org/licenses/by-nc-nd/4.0/. ― For a given subject, a structural connectivity matrix can be 

generated from the whole-brain tractogram, with constraints applied based on a predefined parcellation atlas (A). 

Additionally, it is possible to isolate specific fiber bundles, such as the corpus callosum, by applying targeted filtering 

to the tractogram using designated regions of interest (B). 

Summary and outlook. In the preceding sections, I delineated the foundational concepts of 

diffusion MRI, surveyed various diffusion imaging methodologies, and elucidated how diffusion 

data can be leveraged to delineate the architecture of cerebral white-matter pathways. It is 

imperative to recognize that diffusion imaging stands as a non-invasive, innocuous, and 

quantitative modality that facilitates the in vivo examination of water molecule diffusion in 

biological tissues. With technological advancements and the introduction of high-field MRI 

scanners, research in this domain is poised for significant expansion, promising enhanced insights 

into the intricate anatomical and functional processes of the human brain at microstructural levels. 

Nevertheless, accurate interpretation of diffusion data, to infer the microstructure of biological 

tissues reliably, necessitates a comprehensive understanding of both the capabilities of the utilized 

imaging equipment and the biophysical principles of the subject matter. In this thesis, I harness 

cutting-edge tractography-based connectome reconstruction methodologies applied to the high-

resolution datasets from the Human Connectome Project, to impose constraints on whole-brain 

biophysical models. Specifically, I utilize pipelines designed to mitigate the biases associated with 

streamline termination and quantification inherent in tractography techniques. These 

methodologies will be expounded upon in the subsequent manuscript-centered chapters. 

  

http://creativecommons.org/licenses/by-nc-nd/4.0/
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1.4.2 Electroencephalography and magnetoencephalography 
Non-invasive electrophysiological techniques, such as electroencephalography (EEG) and 

magnetoencephalography (MEG), are central to the discussions in this thesis. This section aims to 

provide foundational knowledge on these technologies, similar to the purpose of the diffusion MRI 

section (1.4.1), offering critical insights necessary for understanding the subsequent chapters. 

EEG and MEG are among the most crucial methodologies in whole-brain computational models 

due to their ability to capture a non-invasive glimpse of neural dynamics with unmatched temporal 

resolution (Griffiths et al., 2022). Their integration with connectomics substantially enhances our 

understanding of the brain’s functional architecture. Furthermore, these modalities form the 

cornerstone of neural modeling, despite being influenced predominantly by neuron-centric 

perspectives. 

I have specifically labeled this section as “Electroencephalography and magnetoencephalography” 

although EEG will not be utilized in the subsequent chapters. I did so because it is straightforward 

to provide a combined description of both modalities while delving into the specifics of MEG. 

Additionally, I intentionally adopt a neuron-centric perspective initially, but I will conclude with a 

more comprehensive view that includes neurons, glia, and vascular components (Buzsáki et al., 

2012; Robertson, 2018). 

Generators of EEG and MEG signals. In our preceding discussions, we established that to model 

the cerebral activity subserving behaviour and cognition, the mesoscales and macroscales of the 

brain become the building blocks. At these scales, cerebral activity arises from synchronized 

neuronal populations, typically located across various cortical areas and coupled through axonal 

projections (Buzsáki et al., 2012; F. Lopes da Silva, 2013; Wadman & Lopes da Silva, 2017). It is 

hypothesized that it is these spatially organized neuronal groups, when activated in unison, which 

generate detectable electrical and magnetic fields. These detectable fields can be recorded using 

electrodes in direct contact with or at a close distance from the scalp, enabling the non-invasive 

recording of specific cerebral activities through methods like EEG and MEG (Buzsáki et al., 2012; 

F. Lopes da Silva, 2013; Wadman & Lopes da Silva, 2017). 

 
Figure 1.43. Networks of cortical neural cell assemblies are the main generators of EEG and MEG signals. Caption 

and figure from: (Baillet et al., 2001). Reprinted with permission from © 2001 IEEE. ― Left: Excitatory postsynaptic 

potentials (EPSPs) are generated at the apical dendritic tree of a cortical pyramidal cell and trigger the generation of 

a current that flows through the volume conductor from the non-excited membrane of the soma and basal dendrites to 

the apical dendritic tree sustaining the EPSPs. Some of the current takes the shortest route between the source and the 

sink by travelling within the dendritic trunk (primary current in blue), while conservation of electric charges imposes 

that the current loop be closed with extracellular currents flowing even through the most distant part of the volume 
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conductor (secondary currents in red). Center: Large cortical pyramidal nerve cells are organized in macro-assemblies 

with their dendrites normally oriented to the local cortical surface. this spatial arrangement and the simultaneous 

activation of a large population of these cells contribute to the spatio-temporal superposition of the elemental activity 

of every cell, resulting in a current flow that generates detectable EEG and MEG signals. Right: Functional networks 

made of these cortical cell assemblies and distributed at possibly multiple brain locations are thus the putative main 

generators of MEG and EEG signals. 

Figure 1.43 presents an idealized neuronal structure, focusing on pyramidal neurons, the 

predominant neuron type in the neocortex. These neurons are instrumental in producing the signals 

measured by EEG and MEG. Their dendritic trees are aligned parallel to each other while standing 

perpendicular to the cortical surface. This arrangement leads to additive longitudinal current flow 

and cancellative transverse components, thereby creating a laminar current flow along these 

neurons’ main axes. Consequently, the combined postsynaptic activity of these concurrently active 

pyramidal neurons generates detectable electrical and magnetic fields, even at a considerable 

distance from the neuronal sources (Buzsáki et al., 2012; F. Lopes da Silva, 2013; Wadman & 

Lopes da Silva, 2017). 

In essence, recording electrical and magnetic fields becomes feasible from the coordinated activity 

of a sufficiently large, spatially organized population of neurons; and this is the principle behind 

non-invasive techniques like EEG and MEG. EEG involves capturing the brain’s electrical 

potentials via scalp electrodes, while MEG records the magnetic fields elicited by neuronal activity 

using induction coils placed around the head (see Figure 1.46). Both methods are rooted in the 

same fundamental process: the generation of ionic currents by excited neurons (Buzsáki et al., 

2012; F. Lopes da Silva, 2013; Wadman & Lopes da Silva, 2017). Moreover, these non-invasive 

methods share key characteristics with invasive recordings like intracranial EEG and 

electrocorticograms as shown in Figure 1.44. Finally, both modalities boast the capability to 

monitor neuronal activity with temporal precision on the sub-millisecond scale. 

The brain’s natural folds significantly influence the sensitivity and orientation of its neuronal 

current sources, as depicted in Figure 1.43’s center image. Signals originating in the gyri (the 

brain’s convoluted ridges) typically have a quasi-radial orientation relative to the head’s surface. 

In contrast, signals from the sulci (the brain’s shallow grooves) exhibit a quasi-tangential 

orientation (Buzsáki et al., 2012; F. Lopes da Silva, 2013; Wadman & Lopes da Silva, 2017). MEG 

primarily detects these quasi-tangential dipoles, signifying activity in the sulci, while EEG is 

capable of detecting both radial and tangential dipoles, thus capturing activities in both gyri and 

sulci. Given that magnetic fields are less distorted and diffused than electrical fields by the brain’s 

volume conductors (tissues with varying conductivities), MEG offers enhanced spatial precision 

in comparison to EEG (Baillet, 2017; Buzsáki et al., 2012; F. Lopes da Silva, 2013; Wadman & 

Lopes da Silva, 2017). Nonetheless, the topographies of EEG and MEG signals are nearly 

orthogonal to each other, suggesting their complementary nature, as shown in Figure 1.45. 

Simultaneous recordings from both modalities increase the likelihood of capturing comprehensive 

aspects of brain signal topographies, thus enhancing the accuracy and effectiveness of source 

reconstruction that we discuss next (Aydin et al., 2015; Chowdhury et al., 2015; Gross, 2019; Puce 

& Hämäläinen, 2017). 
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Figure 1.44. Extracellular traces using different recording methods are fundamentally similar. Caption and figure from: 

(Buzsáki et al., 2012). Permission obtained. ― a | Simultaneous recordings from three depth electrodes (two selected 

sites each) in the left amygdala and hippocampus (measuring the local field potential (LFP)); a 3 × 8 subdural grid 

electrode array placed over the lateral left temporal cortex (measuring the electrocorticogram (ECoG); two four-

contact strips placed under the inferior temporal surface (measuring the ECoG); an eight-contact strip placed over the 

left orbitofrontal surface (measuring the ECoG); and scalp electroencephalography (EEG) over both hemispheres 

(selected sites are the Fz and O2) in a patient with drug-resistant epilepsy. The amplitude signals are larger and the 

higher-frequency patterns have greater resolution at the intracerebral (LFP) and ECoG sites compared to scalp EEG. 
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b | A 6 s epoch of slow waves recorded by scalp EEG (Cz, red), and LFP (blue) recorded by depth electrodes placed 

in the deep layers of the supplementary motor area (SM) and entorhinal cortex (EC), hippocampus (HC) and amygdala 

(Am). Also shown are multiple-unit activity (green) and spikes of isolated neurons (black ticks). c | Simultaneously 

recorded magnetoencephalogram (MEG; black) and anterior hippocampus depth EEG (red) from a patient with drug-

resistant epilepsy. Note the similar theta oscillations recorded by the depth electrode and the trace calculated by the 

MEG, without any phase delay. d | Simultaneously recorded LFP traces from the superficial (‘surface’) and deep 

(‘depth’) layers of the motor cortex in an anaesthetized cat and an intracellular trace from a layer 5 pyramidal neuron. 

Note the alternation of hyperpolarization and depolarization (slow oscillation) of the layer 5 neuron and the 

corresponding changes in the LFP. The positive waves in the deep layer (close to the recorded neuron) are also known 

as delta waves. iEEG, intracranial EEG. Part a courtesy of G. Worrell, Mayo Clinic, Minneapolis, Minnesota, USA, 

and S. Makeig, University of California at San Diego, USA. Part b is reproduced, with permission, from (Nir et al., 

2011) © (2011) Cell Press. Part c courtesy of S. S. Dalal, University of Konstanz, Germany, and J.-P. Lachaux and L. 

Garnero, Université de Paris, France. Part d is reproduced, with permission, from (Contreras & Steriade, 1995) © 

(1995) Society for Neuroscience. 

 
Figure 1.45. EEG and MEG topographies. Caption and figure from: (Aydin et al., 2014). Publisher’s permission: 

http://creativecommons.org/licenses/by/4.0/. ― The waveform and topography of an example epileptic spike. FT9 

spike: 71 channel EEG (left column) and 129 channel MEG (right column) butterfly plots (upper row, time-point −13 

ms marked with a black line) and corresponding topographies from left view at time-point −13 ms plotted on individual 

brain and skin (bottom row). 

In EEG and MEG, we are interested in pinpointing (localizing, reconstructing) the current sources 

(generators) within the brain that gave rise to the sensor recordings. This mathematical problem is 

called the electromagnetic inverse problem (see Figure 1.46). Solving this problem requires 

initially to resolve the forward problem (based on Maxwell’s equations, often using quasi-static 

approximations), which estimates the EEG and MEG data generated by known current sources in 

the brain (see Figure 1.46). 

http://creativecommons.org/licenses/by/4.0/
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Figure 1.46. Physiological basis of EEG and MEG, and the biophysical modeling of the forward and inverse problems. 

Caption and figure from: (B. He et al., 2018). Permission obtained. ― The electrical activity of the brain arises from 

the ions (charges) that enter and exit the selective membrane of neurons. EEG/MEG signals manifested on the scalp 

represent the underlying activation of synchronous neuronal ensembles, which encode brain function or dysfunction. 

Current dipoles can be used to model neuronal currents. Maxwell’s equations can be solved to obtain the electric 

potential (EEG) and the magnetic field (MEG)—the so-called forward problem. Various numerical techniques, such 

as the boundary element method (BEM) and the finite element method (FEM), can be used to model the head volume 

conductor linking neuronal current dipoles to EEG/MEG. The current density distribution of brain activity can be 

estimated from scalp EEG/MEG by means of signal processing algorithms—the so-called inverse problem. The lead-

field matrix is denoted by 𝓚 , the current density distribution as 𝓳 , and 𝓷  is the additive noise in the recording 

EEG/MEG system. 

Forward model. The forward model in EEG and MEG is a construct that indicates how neural 

activity within the brain translates to measurable signals at the sensors (B. He et al., 2018). Solving 

the forward problem in EEG and MEG requires precise knowledge of the measurement geometry, 

which involves the spatial relationship between the head and the sensors (Gross, 2019). This is 

accurately modeled using a three-dimensional representation of the head, incorporating detailed 

anatomical structures and the precise locations of sensors as set up during the recording session 

(Gross, 2019; He et al., 2018). The head model typically reflects various tissue types (e.g., scalp, 

skull, and brain tissues) derived from imaging data such as MRI, and their electrical conductivities 

derived, e.g., from electrical impedance tomography (Mansouri et al., 2021; Wadman & Lopes da 

Silva, 2017). With this head model and the known sensor positions, Maxwell’s equations, which 

govern the behavior of electric and magnetic fields, can be applied (Gross, 2019; He et al., 2018). 

These equations allow for the computation of the electric and magnetic fields at each sensor 

location, resulting from a hypothetical current dipole placed at a specific location within the head 

model and oriented in a defined direction. In this context, the source model refers to all the 

probable spatial locations of the current dipoles within the brain (Gross, 2019; He et al., 2018). 

Ultimately, the forward model provides a lead field or gain matrix, which operates as a projector 

mapping neuronal activity from the source space (within the brain) to the sensor space (where 

measurements are taken). 
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For personalized analysis, subject-specific T1-weighted MRI is preferred for head modeling; 

otherwise, a standard anatomical template may suffice. Common head modeling methods in EEG 

and MEG include (B. He et al., 2018): 

• Single sphere method. Simplifies head geometry as a homogenous sphere with uniform 

electromagnetic properties. 

• Overlapping spheres method. Improves upon the single sphere model by fitting localized 

spheres to sensors, providing a better approximation of head geometry relative to sensors. 

• Boundary element method. Uses segmented concentric surfaces from MRI for a more 

accurate head geometry and tissue boundary representation, assuming isotropic 

conductivity. 

• Finite element method. Advances modeling further by accommodating anisotropic 

conductivity, allowing detailed modeling of tissue properties and geometries. 

Each modeling approach balances computational complexity and realism, chosen based on study-

specific needs and limitations (B. He et al., 2018). For instance, research shows that MEG’s 

forward problem solution is less affected by the conductivity values of surrounding brain tissues 

(brain, skull, skin) than EEG’s (Baillet, 2017; B. He et al., 2018). For example, the overlapping 

spheres method can be sufficient for MEG where a three-compartment boundary element method 

is necessary for EEG. This difference stems from MEG’s focus on magnetic fields generated by 

neuronal currents, which are minimally influenced by tissue conductivities compared to EEG’s 

electric fields. Magnetic fields traverse biological tissues with little distortion, whereas electric 

fields are significantly altered by tissue conductivities, especially by the skull’s high resistance. 

Therefore, MEG offers a clearer representation of neuronal activity, enhancing spatial accuracy 

and simplifying forward modeling. Nonetheless, MEG’s accuracy still depends on factors like 

neuronal current orientation and sensor placement, crucial for precise source localization and MEG 

data interpretation. 

Inverse model. The EEG and MEG inverse problem is concerned with estimating neuronal sources 

within the brain from sensor-space data (B. He et al., 2018). It can be solved by minimizing the 

difference between the measured signals and those generated by source estimates through the head 

volume conductor model. Some illustrations are shown in Figure 1.47. Discussing in detail the 

many different techniques would add significant lengths to this thesis, so instead, I will describe 

only those that directly relate to the subsequent manuscript-chapters. 

Mathematically, all inverse problems are founded on the same fundamental principle, encapsulated 

in the equation: 

where 𝑀 ∈ ℝ𝑁C×𝑁T denotes the EEG or MEG data from 𝑁C channels over 𝑁T time samples, 𝐽 ∈

ℝ(3𝑁D)×𝑁T  is the unknown current density distribution encompassing 𝑁D  dipolar sources with 

unconstrained orientations, the orientation-free lead-field matrix is denoted by 𝐺 ∈ ℝ𝑁C×(3𝑁D) , 
and 𝐸 ∈ ℝ𝑁C×𝑁T  is the additive noise in the recording system. The lead field matrix 𝐺  is 

determined by the forward problem, as discussed previously, taking into account the chosen head 

model and the placement of electrodes, while inverse methods aim to provide an estimate of 𝐽, 
denoted as 𝐽. 

 𝑀 = 𝐺𝐽 + 𝐸 (1.30) 
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Before describing some inverse methods, it is important to understand that the task of solving the 

inverse problem is inherently challenging due to its ill-posed nature, where multiple intracerebral 

source configurations can produce identical sensor signal distributions, whether as electrical 

potentials or magnetic fields. Said otherwise, there is an inherent non-uniqueness of the problem 

(B. He et al., 2018). The complexity is further heightened by the discrepancy between the limited 

number of measurements (typically a few hundred channels, 𝑁C) and the vast number of potential 

sources (several thousand dipolar sources, 𝑁D), i.e., there are practical limitations (B. He et al., 

2018). There are other limitations which I will address later below. 

To address the two issues listed above, certain a priori assumptions about cortical current 

distributions are made (B. He et al., 2018). Commonly, it is assumed that brain activity generators 

can be modeled as distributed current dipoles across the cortical surface at a sufficient resolution 

allowing to represent sulci and gyri (this is called a distributed source model, typically 

encompassing from 4,000 to 164,000 sources per hemisphere; 

https://www.fieldtriptoolbox.org/tutorial/sourcemodel/). Furthermore, these dipoles are often 

constrained orientation-wise, aligning perpendicularly to the cortical surface, reflecting the 

orientation of pools of pyramidal neurons (though this can be relaxed). This incorporation of such 

anatomical constraints helps regularize the inverse problem. Consequently, solving this problem 

involves an underdetermined linear system where the aim is to deduce the current density of 

several thousand dipoles (𝑁D) using data from merely a few hundred sensors (𝑁C). 

When anatomical priors are incorporated by constraining current dipole orientations to be 

perpendicular to the cortical surface at each vertex location, an oriented lead-field matrix 𝐺fixed =
𝐺Θ ∈ ℝ𝑁C×𝑁𝐷 is used in Equation (1.30), instead of 𝐺. Here, the matrix Θ contains unit vectors 

representing the direction of current for each dipole. Therefore, the remaining of the discussion 

below maintains 𝐺, without loss of generality. 

In addition to anatomical constraints imposed by the source model, various regularization 

strategies based on different assumptions are specified, each leading to a different source 

localization method (B. He et al., 2018). Depending on the physiological plausibility of the 

regularization introduced, the distributed source estimates bear different characteristics and 

affinity to neuronal activity on a mesoscopic scale. 

Minimum norm solution family. The minimum norm (MN) approach is a foundational solution 

to the inverse problem, particularly for distributed source models (M. S. Hämäläinen & Ilmoniemi, 

1994; B. He et al., 2018). It formulates the inverse problem as a least-squares optimization task 

and utilizes the 𝑙2-norm for regularization, thereby addressing the underdetermined nature of the 

problem by selecting the least energetic source configuration that matches the observed data (B. 

He et al., 2018). 

Although the MN approach is based on solid mathematical principles, offering a practical solution 

by favoring the simplest source distribution that explains the data, its physiological interpretability 

remains challenging (B. He et al., 2018). The premise that the most energy-efficient configuration 

reflects the true neuronal sources may not fully capture the complexities of brain activity, as 

neuronal sources may not adhere to minimal energy use. Furthermore, the MN approach inherently 

exhibits a predisposition towards superficial sources (Lin et al., 2006), a consequence of the lead-

field matrix’s construction, which inherently incorporates the electromagnetic field’s decay from 

a dipole with the cube of the distance (M. Hämäläinen et al., 1993; Sarvas, 1987). This 

https://www.fieldtriptoolbox.org/tutorial/sourcemodel/
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characteristic may inadvertently overlook deeper neuronal activities that could be of significant 

physiological relevance. 

Notwithstanding these considerations, the MN approach remains a popular choice for EEG and 

MEG source imaging, attributed to its simplicity, computational efficiency, and solid mathematical 

underpinnings (B. He et al., 2018). It proves particularly useful for general localization of brain 

activity where the precise delineation between deep and superficial sources is not critical. 

However, interpreting MN-derived results necessitates a cautious approach, taking into account 

the inherent biases and assumptions of the method. It is advisable that MN findings be corroborated 

with additional neuroimaging or physiological data to validate the proposed source distributions 

(B. He et al., 2018). 

The mathematical formulation of the MN solution is expressed as: 

In this equation, ⊤  denotes matrix transpose, +  signifies the Moore–Penrose inverse, 𝑅  and 𝐶 

represent the source covariance and data noise-covariance matrices, respectively, and 𝜆2  is the 

Tikhonov regularization parameter. The simplest MN solution treats 𝑅 as a scalar matrix. 

The regularization parameter 𝜆2  plays a critical role in balancing spatial smoothness and 

sensitivity to noise (P. C. Hansen, 1992). An increased 𝜆 augments the regularization term’s impact 

on the solution, steering it towards spatial smoothness. This bias towards minimizing the current 

norm results in smoother estimated current distributions across the brain, attenuating high-

frequency variations that could be attributed to noise. While this smoothness can mitigate noise 

effects, it risks underrepresenting the true amplitude of neuronal currents, potentially masking 

underlying neural activities. Conversely, a reduced 𝜆  prioritizes data fidelity, enhancing the 

solution’s adherence to observed data fluctuations. This heightened data conformity may yield a 

more precise depiction of localized neuronal sources, reflecting variations in measured signals 

more faithfully. However, this advantage is tempered by a heightened susceptibility to 

measurement noise and the risk of ill-conditioning, which may inadvertently amplify noise 

alongside genuine neuronal signals. Selecting an optimal 𝜆  is thus a delicate balance between 

achieving a solution that is smooth enough to be robust against noise, yet detailed enough to 

accurately reflect the underlying neuronal activity. Various methods, such as the L-curve criterion 

or generalized cross-validation, are often employed to determine an appropriate value for 𝜆 that 

optimizes this trade-off (P. C. Hansen, 1992). 

To ensure the noise covariance matrix retains essential statistical properties such as positive 

definiteness and good conditioning, it is often regularized. A common approach is to modify the 

matrix’s spectrum, typically by truncating its smallest eigenvalues or setting them to a minimum 

threshold. This regularization helps stabilize the solutions to the inverse problem by reducing the 

impact of noise and numerical instabilities (for reference refer to 

https://mne.tools/stable/documentation/implementation.html). 

Data whitening is frequently applied in practice, utilizing a whitening matrix 𝑊 = 𝐶−1 2⁄ . This 

leads to an adjusted formulation of the MN solution: 

 𝐽MN = 𝑅𝐺
⊤(𝐺𝑅𝐺⊤ + 𝜆2𝐶)+𝑀 (1.31) 

 𝐽MN = 𝑅𝐺̃
⊤(𝐺̃𝑅𝐺̃⊤ + 𝜆2𝐼)

+
𝑀̃ (1.32) 

https://mne.tools/stable/documentation/implementation.html
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Here, 𝑀̃ = 𝑊𝑀 is the whitened data, and 𝐺̃ = 𝑊𝐺 is the spatially whitened lead-field matrix. The 

whitening process aims to transform the data such that its covariance is the identity matrix, thereby 

normalizing the influence of noise across different sensors. 

A depth-weighting prior is introduced through the source covariance matrix 𝑅 to equitably account 

for sources at varying depths. This adjustment is particularly crucial for ensuring that deeper 

sources, which may be underrepresented in sensor data due to the attenuation of signals as they 

propagate through the head, receive adequate representation in the source reconstruction process. 

Depth weighting is typically implemented by scaling the diagonal elements of 𝑅 corresponding to 

each source location 𝑖 by a factor proportional to (𝑔𝑥,𝑖
⊤𝑔𝑥,𝑖 + 𝑔𝑦,𝑖

⊤𝑔𝑦,𝑖 + 𝑔𝑧,𝑖
⊤𝑔𝑧,𝑖)

−𝛾
, where 𝑔𝑥,𝑖, 

𝑔𝑦,𝑖 , and 𝑔𝑧,𝑖  are the three columns of 𝐺  at the source location 𝑖 , and 𝛾  is a depth weighting 

exponent. Often the factor has an imposed upper limit to prevent excessive weighting. For more 

details, refer to (Lin et al., 2006) and https://mne.tools/stable/documentation/implementation.html. 

Whitening the data also facilitates a data-driven approach for determining the regularization 

hyperparameter 𝜆. As discussed by (Lin et al., 2006), 𝜆2 can be set based on the trace of the 
whitened gain matrix and the signal-to-noise ratio (SNR) of the whitened data: 𝜆2 =
tr(𝐺̃𝑅𝐺̃⊤) (𝑁𝐶 × SNR

2)⁄ . Here, 𝑁C represents the number of channels, and SNR is the signal-

to-noise ratio of the whitened data. A higher SNR implies that the data is less noisy, allowing for 

a smaller 𝜆  that prioritizes data fidelity. Conversely, a lower SNR indicates noisier data, 

necessitating a larger 𝜆 to enhance the smoothness and stability of the solution. The factor given 

by the trace of the gain matrix reflects the overall sensitivity of the sensor array to neuronal sources 

across the brain, ensuring that 𝜆 scales with the properties of the measurement system. 

Employing these strategies, this thesis adopts a depth-weighted MN estimate approach, which will 

be further explored in Chapter 4 starting on page 169. Some other solutions of the MN family are 

presented in Figure 1.47. 

Maximum entropy solution family. The principle of maximum entropy, popularized by E. T. 

Jaynes (E. Jaynes, 1968), is a cornerstone of information theory used to assign the most unbiased 

probability distribution to quantities underpinned by incomplete information, typically in the form 

of expected values. Unlike Bayesian or Laplacian inference, which updates probabilities based on 

new evidence, the maximum entropy approach focuses on maximizing the entropy of a distribution 

to reflect the state of maximal ignorance consistent with the given constraints (Cheeseman, 2004; 

Djafari, 1994; E. T. Jaynes, 1988; Mohammad-Djafari, 2015). Despite this distinction, the 

maximum entropy principle often employs the language of priors and posteriors, leading to a 

common misconception about its relation to Bayesian–Laplacian inference. In practice, the 

maximum entropy principle can be utilized to define subjective prior distributions within 

Bayesian–Laplacian frameworks, further illustrating the complementarities between these 

methodologies. The nuanced interplay and distinctions between maximum entropy and Bayesian–

Laplacian inferences are explored in (Caticha, 2008; Caticha & Giffin, 2006; Cheeseman, 2004; 

Gamboa & Gassiat, 1997; Giffin & Caticha, 2007; J. He & Kolovos, 2018; E. T. Jaynes, 1988; 

Mohammad-Djafari, 2006, 2015; Toda, 2011; Waldrip & Niven, 2017). 

Consider a random variable 𝑋, with an unknown probability density function 𝜌𝑋, and suppose our 

knowledge is limited to a set of expected values: 

https://mne.tools/stable/documentation/implementation.html
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where {𝜙𝑘}𝑘 represents a known set of functions. Given that an infinite array of distributions could 

satisfy these constraints, the principle of maximum entropy advocates for selecting the distribution 

that maximizes entropy, thus embodying the least number of additional assumptions. 

To formalize as in (M. Djafari, 1994; Mohammad-Djafari, 2015), we define the set of feasible 

solutions as: 

Here, 𝜙0 is defined as a constant function equal to 1 to ensure the normalization of 𝜌𝑋, making 

𝑚0 = 1. The maximum (Shannon) entropy principle then poses an optimization problem: 

Addressing this problem, we introduce Lagrange multipliers 𝜆0  for normalization and 𝜆 =
(𝜆1, … , 𝜆𝐾) ∈ ℝ

𝐾×1 for other constraints, leading to the Lagrangian ℒ: 

Provided it exists, the optimization problem’s unique solution corresponds to a saddle point of ℒ, 

verifying: 

This yields a maximum entropy solution 𝜌ME
𝑋  in an exponential form: 

where the partition function 𝑍 ensures normalization and is related to the Lagrange multipliers as: 

 
𝑚𝑘 = E{𝜙𝑘(𝑋)} = ∫𝜌

𝑋(𝑥)𝜙𝑘(𝑥) d𝑥 , 𝑘 ∈ ⟦1, 𝐾⟧ (1.33) 

 
𝒫𝑋 = {𝜌

𝑋: ∫𝜌𝑋𝜙𝑘 = 𝑚𝑘, 𝑘 ∈ ⟦0, 𝐾⟧} (1.34) 

 
𝜌ME
𝑋 = argmax

𝜌𝑋∈𝒫𝑋

{H[𝜌𝑋] ≔ −∫𝜌𝑋 ln(𝜌𝑋)} (1.35) 

 

ℒ(𝜌𝑋 , 𝜆0, 𝜆) = H[𝜌
𝑋] − (𝜆0 − 1) (∫𝜌

𝑋 − 1) −∑𝜆𝑘 (∫𝜌
𝑋𝜙𝑘 −𝑚𝑘)

𝐾

𝑘=1

 (1.36) 

 𝜕

𝜕𝜌𝑋
ℒ(𝜌𝑋 , 𝜆0, 𝜆) = − ln(𝜌

𝑋) − 𝜆0 −∑𝜆𝑘𝜙𝑘

𝐾

𝑘=1

= 0 

𝜕

𝜕𝜆0
ℒ(𝜌𝑋 , 𝜆0, 𝜆) = ∫𝜌

𝑋 − 1 = 0 

𝜕

𝜕𝜆
ℒ(𝜌𝑋 , 𝜆0, 𝜆) = ∑(∫𝜌𝑋𝜙𝑘 −𝑚𝑘)

𝐾

𝑘=1

= 0 

(1.37) 

 

𝜌ME
𝑋 (𝑥) =

1

𝑍(𝜆sol)
exp(−∑𝜆𝑘

sol𝜙𝑘(𝑥)

𝐾

𝑘=1

) (1.38) 

 

𝑍(𝜆) = exp(𝜆0) = ∫exp(−∑𝜆𝑘𝜙𝑘(𝑥)

𝐾

𝑘=1

)  d𝑥 (1.39) 
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With 𝑍  thus defined, the optimal Lagrange multipliers 𝜆sol  are determined to satisfy the 

constraints, derived from the logarithm of the partition function: 

Consequently, we need to solve a system of 𝐾  nonlinear equations with as many unknowns 
{𝜆𝑘}1≤𝑘≤𝐾  as data {𝑚𝑘}1≤𝑘≤𝐾 , which is summarized as the unconstrained dual optimization 

problem: 

where ⊤ denotes matrix transpose. Solving this problem usually requires a numerical method such 

as Newton–Raphson’s, as discussed in (M. Djafari, 1994). 

The maximum entropy is finally computed as: 

Transitioning to maximum relative entropy (MrE), we replace H[𝜌𝑋]  with the relative entropy 

(i.e., the negative of the Kullback–Leibler divergence, in the present context) D[𝜌𝑋: 𝜌0
𝑋] ≔

−∫𝜌𝑋 ln (
𝜌𝑋

𝜌0
𝑋) in the primal optimization from Equation (1.35), incorporating a known reference 

distribution 𝜌0
𝑋. This extension yields: 

highlighting how prior information ( 𝜌0
𝑋 ) can be seamlessly integrated into the entropy 

maximization framework. 

When employing a uniform reference law 𝜌0
𝑋, the principles of maximum entropy and maximum 

relative entropy align. This convergence underscores the adaptability of Jaynes’ original maximum 

entropy formulation to incorporate prior distributions, akin to the reference distribution in 

maximum relative entropy. While the term “relative” in “maximum relative entropy” highlights 

the inclusion of a reference or prior distribution, common usage, especially outside statistical 

circles, often simplifies this to “maximum entropy”. Conceptually, through the maximum relative 

entropy principle, we update our knowledge of an unknown probability distribution based on new 

information, typically in the form of expected values, against an assumed reference distribution 

(Banavar & Maritan, 2007; Caticha & Giffin, 2006; Giffin & Caticha, 2007; Mohammad-Djafari, 

2006, 2015; Muñoz-Cobo et al., 2017; Thurner et al., 2017; Toda, 2011). 

It is noteworthy that the maximum relative entropy solution bears a deep connection with the 

solution of the maximum likelihood approach (see (Mohammad-Djafari, 2015) for a detailed 

 
−
𝜕

𝜕𝜆𝑘
ln(𝑍(𝜆1, … , 𝜆𝐾)) = ∫𝜌

𝑋𝜙𝑘 = 𝑚𝑘, 𝑘 ∈ ⟦1, 𝐾⟧ (1.40) 

 𝜆sol = argmin
𝜆

{ln(𝑍(𝜆)) + 𝜆⊤𝑚} , 𝑚 = (𝑚1, … ,𝑚𝐾) ∈ ℝ
𝐾×1

 (1.41) 

 

Hmax = ∫𝜌ME
𝑋 (ln (𝑍(𝜆sol)) +∑𝜆𝑘

sol𝜙𝑘

𝐾

𝑘=1

) = ln (𝑍(𝜆sol)) + 𝜆sol
⊤
𝑚 (1.42) 

 

𝜌MrE
𝑋 (𝑥) =

1

𝑍(𝜆sol)
𝜌0
𝑋(𝑥) exp(−∑𝜆𝑘

sol𝜙𝑘(𝑥)

𝐾

𝑘=1

) 

𝑍(𝜆sol) = ∫𝜌0
𝑋(𝑥) exp(−∑𝜆𝑘

sol𝜙𝑘(𝑥)

𝐾

𝑘=1

)  d𝑥 

(1.43) 
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discussion). Moreover, by revisiting and potentially reframing the axioms underpinning the 

principle of maximum relative entropy, one can achieve a harmonization with Bayesian–Laplacian 

inference principles. This alignment allows for meaningful comparisons between distributions 

derived from maximum relative entropy and Bayesian–Laplacian methods, further enriching the 

dialogue between these inferential frameworks (for an in-depth exploration, see (Caticha, 2008; 

Caticha & Giffin, 2006; Cheeseman, 2004; Gamboa & Gassiat, 1997; Giffin & Caticha, 2007; 

Toda, 2011)). Finally, pertaining to the maximum entropy principle and its extensions, the 

following references offer a broad spectrum of perspectives on the concept of entropy per se, 

beyond Shannon’s: (Jizba & Korbel, 2019; Koutsoyiannis & Sargentis, 2021; Thurner et al., 2017, 

2018). 

The preceding derivations focused on scalar variables. However, the extension of the scalar 

variable to the finite-dimensional vectorial case is straightforward. For a notable example, consider 

a non-degenerate multivariate normal distribution for an 𝑛-diemsional vector 𝑋 ∼ 𝒩(𝜇, 𝑅) with 

mean vector 𝜇 and covariance matrix 𝑅, the (differential) entropy is then captured by the Equation 

(1.44). Furthermore, relative to a reference distribution 𝒩(𝜇0, 𝑅0) where 𝑅0 is non-singular, the 

relative entropy is articulated as Equation (1.45). 

Here |⋅| denotes the matrix determinant, 𝑒 represents Euler’s number, and tr(⋅) is the matrix trace 

operator. Another extension of the scalar variable to the finite-dimensional vectorial case will be 

detailed in Chapter 4 starting on page 169, but see also (M. Djafari, 1994; Mohammad-Djafari, 

2015). 

In the preceding derivations, we assumed Lebesgue’s standard measure as the reference, a useful 

simplification in maximum entropy problems. However, for a more generalized approach 

applicable to any measurable space, we may consider a reference measure Ρ0 . The solution Ρ , 

defined on the same space, is presumed absolutely continuous with respect to Ρ0 (Ρ ≪ Ρ0), and our 

objective is to maximize: 

Here, 
dΡ

dΡ0
  denotes the Radon–Nikodym derivative of the measure Ρ  with respect to Ρ0  and can 

serve as a density function. This generalized construct enables us to express the optimization 

problem in a familiar form, even when the reference measure Ρ0  differs from the Lebesgue 

measure. For a random variable 𝑋  with the measure Ρ  as its distribution, its density 𝜌𝑋 =
dΡ

dΡ0
 

facilitates the maximization of −∫𝜌𝑋 ln(𝜌𝑋) dΡ0  , seamlessly integrating into the earlier 

maximum entropy and maximum relative entropy derivations. Moreover, this approach allows for 

the incorporation of prior information, represented by a prior density 𝜌0
𝑋 , into the reference 

measure Ρ0 . Adopting a reference measure Ρ0  beyond the Lebesgue measure permits a broader 

application of maximum entropy principles to accommodate a variety of spaces and measures 

(Djafari, 1994; Gamboa, 1989; Gamboa & Gassiat, 1997). 

 1

2
ln(|2𝜋𝑒𝑅|) =

1

2
(𝑛 ln(2𝜋) + 𝑛 + ln(|𝑅|)) (1.44) 

 
−
1

2
(tr(𝑅0

−1𝑅) + (𝜇0 − 𝜇)
⊤𝑅0

−1(𝜇0 − 𝜇) − 𝑛 + ln (
|𝑅0|

|𝑅|
)) (1.45) 

 
−∫

dΡ

dΡ0
ln (

dΡ

dΡ0
)dΡ0 = −∫ ln (

dΡ

dΡ0
) dΡ (1.46) 
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In this thesis, we employ the maximum (relative) entropy on the mean (MEM) approach (Djafari, 

1994; Gamboa, 1989; Gamboa & Gassiat, 1997), a nuanced application of the broader maximum 

(relative) entropy framework that emphasizes constraints related to the distribution’s mean (first-

order moment): 

This method has proven effective in addressing a wide array of inverse problems, as highlighted 

by many works across different fields (Amblard et al., 1999, 2004; Cai et al., 2022; Clarke, 1989; 

Clarke & Janday, 1989; M. Djafari, 1994; Mohammad-Djafari, 2015; Muñoz-Cobo et al., 2017; 

Rioux et al., 2020; Vaisbourd et al., 2022). 

Formally, in solving the bioelectromagnetic inverse problem as earlier posited in Equation (1.30), 

we aim to determine the distribution 𝜌MEM of current sources 𝐽 given EEG and MEG data 𝑀, a 

lead field matrix 𝐺, and a reference distribution 𝜌0: 

which retains the exponential form: 

The optimal distribution’s mean, 𝐽MEM, is subsequently determined: 

In contrast to previous derivations that assumed noise-free observations, we must now enhance the 

Lagrangian, originally formulated in Equation (1.36), by introducing an additional term (usually 

quadratic) to account for observation noise (Djafari, 1994). This adjustment leads to an additional 

term in the dual optimization problem in Equation (1.41), and allows to acknowledge the presence 

of independent, identically distributed, additive, normally centered noise with a known non-

singular covariance matrix, just like the minimum norm approach. By incorporating the noise 

characteristics directly into the optimization process, the model’s ability to handle the inherent 

uncertainties in EEG and MEG data is enhanced, leading to more robust and reliable solutions. 

Chapter 4 starting on page 169, will present a concrete example illustrating how this adjusted 

MEM approach is applied to solve a bioelectromagnetic inverse problem, as proposed by (Amblard 

et al., 2004), highlighting the practical integration of noise considerations into the entropy 

maximization framework and showcasing the method’s applicability to real-world scenarios. 

Additionally, when focusing on EEG and MEG inverse problems, a pivotal aspect of these MEM 

applications is the careful selection of the reference law, as suggested by (Amblard et al., 2004), 

which has seen active developments (Afnan et al., 2023; Amblard et al., 2004; Aydin et al., 2020; 

 
𝑚𝑘 = E{𝜙𝑘(𝑋)} = ∫𝑥𝜌

𝑋(𝑥) d𝑥 , 𝑘 ∈ ⟦1, 𝐾⟧ (1.47) 

 
𝜌MEM = argmax

𝜌∈𝒫
{𝐷[𝜌: 𝜌0] = −∫𝜌(𝑗) ln (

𝜌(𝑗)

𝜌0(𝑗)
)  d𝑗} 

𝒫 = {𝜌: 𝐺 ∫ 𝑗𝜌(𝑗) d𝑗 = 𝑀} 

(1.48) 

 
𝜌MEM(𝑗) =

1

𝑍(𝜆sol)
𝜌0(𝑗) exp (−𝜆

sol⊤𝐺𝑗) 

𝑍(𝜆sol) = ∫𝜌0(𝑗) exp (−𝜆
sol⊤𝐺𝑗)  d𝑗 

(1.49) 

 
𝐽MEM = ∫ 𝑗𝜌MEM(𝑗) d𝑗 (1.50) 
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Chowdhury et al., 2013, 2016; Deslauriers-Gauthier et al., 2020; Lina et al., 2014; Zerouali et al., 

2013). This thesis will adopt the specific MEM extension proposed by (Afnan et al., 2023; Lina et 

al., 2014), which will be detailed in Chapter 4 starting on page 169. 

A recurring theme in MEM extensions for EEG and MEG distributed source reconstructions is the 

assumption that EEG and MEG source model dipoles can be grouped according to a cortical 

parcellation (e.g., data-driven or based on template atlases), leading to a simplified model where 

each parcel is either active or inactive, represented by Gaussian distributions. This assumption, 

endorsed by works such as (Afnan et al., 2023; Amblard et al., 2004; Aydin et al., 2020; 

Chowdhury et al., 2013, 2016; Lina et al., 2014; Zerouali et al., 2013), facilitates a structured 

approach to the inverse problem, allowing for a more tractable analysis within the MEM 

framework. 

In this framework, we delineate 𝑁𝑃  cortical parcels, each parcel 𝑘  characterized by a time-

dependent latent state 𝑆𝑘  (that can be either active or inactive) from a state vector 𝑆 =

(𝑆1, … , 𝑆𝑁𝑃) , with joint density 𝜌𝑆  (which reflects the collective states across all parcels). 

Assuming the current sources 𝐽𝑘 within the 𝑘-th parcel depend solely on its state 𝑆𝑘 the joint prior 

density is summarized as: 

This formulation allows for a modular approach to modeling brain activity, where the complexity 

of interdependencies is managed through the independent consideration of each parcel’s state. 

Incorporating this joint prior into the MEM framework has yielded successes in reconstructing 

both normal and pathological brain activities under various conditions, from resting states to 

specific task engagements. These applications, as demonstrated in studies by (Afnan et al., 2023; 

Amblard et al., 2004; Aydin et al., 2020; Chowdhury et al., 2013, 2016; Lina et al., 2014; Zerouali 

et al., 2013), highlight the MEM approach’s versatility and effectiveness in EEG and MEG source 

imaging. 

However, the independence hypothesis may oversimplify the inherently networked nature of brain 

activity. Extensions to MEM, such as those proposed by (Deslauriers-Gauthier et al., 2020), 

introduce anatomical priors based on diffusion MRI to better reflect the brain’s connectivity: 

Here, 𝐶 = (𝐶1, … , 𝐶𝑁𝐶)  represents the diffusion MRI connectome, capturing 𝑁𝐶  white-matter 

connections between cortical parcels with density 𝜑(𝐶), and 𝜌𝑆(𝑆𝑘|𝐶𝛾(𝑘)) models the likelihood 

of the 𝑘-th parcel’s state given the connectivity reaching it. This approach aims to incorporate the 

complex interdependencies observed in brain networks, promising a more nuanced understanding 

 

𝜌0(𝐽, 𝑆) = 𝜌
𝑆(𝑆)∏𝜌0(𝐽𝑘|𝑆𝑘)

𝑁𝑃

𝑘=1

 (1.51) 

 

𝜌0(𝐽, 𝑆, 𝐶) = 𝜑(𝐶)𝜌
𝑆(𝑆|𝐶)∏𝜌0(𝐽𝑘|𝑆𝑘)

𝑁𝑃

𝑘=1

= 𝜑(𝐶)∏𝜌𝑆(𝑆𝑘|𝐶𝛾(𝑘))𝜌0(𝐽𝑘|𝑆𝑘)

𝑁𝑃

𝑘=1

 

(1.52) 



84 

 

of brain dynamics, as evidenced in preliminary applications like the localization of network 

dynamics in sensory-motor tasks (Deslauriers-Gauthier et al., 2019, 2020). 

Chapter 4, starting on page 169, will further explore the MEM approach, providing a deeper dive 

into their theoretical foundations, practical applications, and implications for our understanding of 

brain function. 

 
Figure 1.47. Electrophysiological source imaging at a glance. Caption and figure from: (B. He et al., 2018). Permission 

obtained. ― Different classes and families of source imaging algorithms are depicted. In the center, an underlying 

brain activity with two separate sources and the corresponding time course of the activity are simulated; the forward 

problem is solved, and the scalp potential distribution is calculated (simulated EEG). The solution of the dipole 

localization method for the given example is depicted on the top left. The rest of the figure shows the major families 

of inverse algorithms, and bulleted lists show some of the well-known algorithms in each family as examples (the lists 

are by no means exhaustive). For each case, the algorithm used to solve and produce the result is shown in bold red 

font under the result. The mathematical formulation for the algorithm is provided for each solution. The lead-field 

matrix (a transformation from the current dipole distribution to the scalp potential) is denoted by 𝓚, the scalp potential 

as 𝜱, the current density distribution as 𝓳, and the dipole moment as 𝓭𝓳 (the lead-field entries corresponding to 𝓭𝓳 

are denoted by 𝓚𝓳). The inverse imaging operator (for the MN family) is denoted by 𝓣, and 𝝀 and 𝜶 are regularization 

parameters. In the beamforming family, the data covariance is denoted by 𝓡𝜱 and the spatial filter weights by 𝔀𝓻. 

For the IRES algorithm, 𝓥 is the discrete gradient operator, 𝚺 is the estimated noise covariance, and 𝓔 is the estimated 

noise power. Abbreviations: DICS, dynamic imaging of coherent sources; dSPM, dynamic statistical parametric 

mapping; ECD, equivalent current dipoles; EEG, electroencephalography; ESI, electrophysiological source imaging; 

FINE, first-principle vector; FOCUSS, focal undetermined system solution; IRES, iteratively reweighting edge 

sparsity; LCMV, linearly constrained minimum variance; LORETA, low-resolution electromagnetic tomography; MN, 
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minimum norm; MUSIC, multiple classification algorithm; SBL, sparse Bayesian learning; sLORETA, standardized 

LORETA; VB-SSI, variation-based sparse source imaging; VBB, vector-based beamformer; WMN, weighted MN. 

Connectivity. The preceding section highlighted how source estimation with EEG and MEG 

facilitates the dynamic mapping of neural activity with millisecond accuracy. Advancing beyond 

this, we can further explore the parallels with diffusion MRI. Just as structural networks are 

deduced from diffusion MRI data, EEG and MEG source-space data enable the reconstruction of 

functional neural networks. This advanced approach is exemplified in Figure 1.48, illustrating how 

these techniques extend our understanding of the brain’s functional architecture. This process 

involves employing statistical measures such as bi-variate phase-amplitude coupling in different 

frequency bands and bi-variate directed coherence applied to the source time series (Bastos & 

Schoffelen, 2016; B. He et al., 2018; Sadaghiani et al., 2022). 

The high temporal resolution of EEG and MEG is pivotal for dissecting network patterns and 

understanding the rapid evolution of neural interactions. This attribute is crucial in gaining insights 

into the timing and sequence of neural events, which are fundamental to cognitive processes and 

behaviors. The detailed temporal resolution is exceptionally valuable in research pertaining to 

cognitive functions, neural communication, and brain disorders (B. He et al., 2018). 

The integration of non-invasive electrophysiology with connectomics provides a comprehensive 

view of the brain’s functional mechanisms, thereby enriching our understanding of cognitive 

functions and related pathologies. In a subsequent chapter (A neuron-glial perspective of MEG 

connectomics ― establishing a biologically plausible computational framework to guide and 

evaluate empirical methodologies, starting on page 169), an in-depth exploration of 

electrophysiological connectomics will be offered. 
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Figure 1.48. The concept of the electrophysiological connectome (eConnectome). Caption and figure from: (B. He et 

al., 2018). Permission obtained. ― Electrophysiological source imaging (ESI) can image not only brain activity but 

also the functional connectivity of the brain. The eConnectome approach estimates brain network dynamics from 

noninvasive surface techniques, such as electroencephalography (EEG) and magnetoencephalography (MEG). The 

location of the activity (nodes), the time course of the activity at such nodes, and the dynamic connectivity among 

these nodes (links) can be estimated from EEG/MEG to reveal the underlying brain networks. ESI is a key element in 

realizing this goal. The eConnectome is effective and accurate in imaging brain network dynamics in the source 

domain. Arrows (colored arrows on the cortical surface) represent the direction of information flow and directional 

functional connectivity or causality. The inversion operator is denoted by 𝓚† , and the estimated current density 

distribution is denoted by 𝓳̂. 
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1.5 Multilayer brain networks 

Within the scope of this thesis, there has been a comprehensive utilization of the multilayer 

network theory to elucidate the characteristics of brain networks. 

 
Figure 1.49. Networks on multiple spatial and temporal scales. Caption and figure adapted from: (Bassett & Sporns, 

2017). Permission obtained ― Network neuroscience encompasses the study of very different networks encountered 

across many spatial and temporal scales. Additionally, network neuroscience does not stop at the brain, but instead 

asks how these patterns of interconnectivity in the central nervous system drive and interact with patterns of behavior. 

Finally, network neuroscience asks how all of these levels of inquiry help us to understand the interactions between 

social beings that give rise to ecologies, economies and cultures. 

The multilayer network theory transcends the limitations of the standard network theory by 

affording the capability to concurrently model and analyze graphs that exhibit a diverse array of 

natures and attributes (Boccaletti et al., 2014; De Domenico, 2017; Kivela et al., 2014). In fact, 

multilayer network modelling conceptualizes the very notion of network-of-networks or a 

collection of interconnected networks (Bassett & Sporns, 2017; Betzel & Bassett, 2017; Boccaletti 

et al., 2014; De Domenico, 2017; Kivela et al., 2014) which has been suggested to be the best 

integrative representation of the brain’s intrinsic spatiotemporal facets (e.g., see Figure 1.49) as 

well as the brain’s interactions with the rest of the body and the surrounding environment (e.g., see 

Figure 1.49 and Figure 1.50). 
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Figure 1.50. Multiscale and multiplex model of a social system, from the molecular to the population layers. Figure 

from: (De Domenico, 2020). Publisher’s permission: 

https://github.com/manlius/muxViz/blob/69c1752539bb757df8222917999a8c299a6821a4/gui-

old/theory/illustrations/LICENSE.md (CC BY-SA 4.0). ― See text for explanation. 

Mathematically, multilayer networks are represented by adjacency tensors (i.e., a higher-order 

mathematical construct of the classical adjacency matrix for standard networks). Formally, given 

a multilayer network with 𝑁 nodes and 𝐿 layers, each component of its adjacency tensor 𝑀𝑗,𝛽
𝑖,𝛼 ∈ ℝ 

encodes the connectivity between unit 𝑖  in layer 𝛼  and unit 𝑗  in layer 𝛽  where 𝑖, 𝑗 ∈ ⟦1, 𝑁⟧  and 

𝛼, 𝛽 ∈ ⟦1, 𝐿⟧ (Boccaletti et al., 2014; De Domenico, 2017; Kivela et al., 2014). As illustrated in 

Figure 1.9, in the investigation of brain networks, 𝑀 can encode anatomical information (such as 

fiber densities) or functional information (such as correlations), or both. 

For a concrete example, Figure 1.51.a draws on its left side a 4-node–3-layer weighted-directed 

multilayer network and on its right side the corresponding intra-layer connectivity matrices. In 

practice, the associated 4-rank tensor is flattened (without loss of information) into a rank-2 tensor 

https://github.com/manlius/muxViz/blob/69c1752539bb757df8222917999a8c299a6821a4/gui-old/theory/illustrations/LICENSE.md
https://github.com/manlius/muxViz/blob/69c1752539bb757df8222917999a8c299a6821a4/gui-old/theory/illustrations/LICENSE.md
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(i.e., the supra-adjacency matrix), as drawn in Figure 1.51.b, that possesses a block structure where 

diagonal and extra-diagonal blocks encode, respectively, intra-layer and inter-layer connectivity. 

For another example, Figure 1.50, shown earlier, draws a more complex multilayer network that 

encompasses multiple interdependent scales from genes and biomolecules whose structural and 

functional relationships shape and are shaped by cellular interactions, to the information shared 

between body organs and tissues whose processes, while bidirectionally coupled to cellular 

networks, drive and depends on social behavior and interactions. 

 
Figure 1.51. Multilayer network representation. Figure from: (De Domenico, 2020). Publisher’s permission: 

https://github.com/manlius/muxViz/blob/69c1752539bb757df8222917999a8c299a6821a4/gui-

old/theory/illustrations/LICENSE.md (CC BY-SA 4.0). ― See text for explanation. 

In the investigation of brain networks, the prevailing topologies that are commonly used for study 

include the multiplex and interconnected multiplex models (De Domenico, 2017). The multiplex 

model involves the consideration of multiple layers, each representing a distinct facet or modality 

of neural connectivity, while the interconnected multiplex model further extends this analysis by 

exploring the intricate interplay and interconnectedness between these individual layers (De 

Domenico, 2017). Besides, and importantly, both models operate under the assumption that a given 

node (e.g., classically a given brain region) exists across all layers, manifesting distinct 

connectivity patterns contingent upon the specific information encoded within each layer (De 

Domenico, 2017). Thus, using the notation introduced earlier (De Domenico, 2017), the multiplex 

topology satisfies for any 𝑖, 𝑗 ∈ ⟦1, 𝑁⟧  and 𝛼, 𝛽 ∈ ⟦1, 𝐿⟧  such that 𝛼 ≠ 𝛽 , 𝑀𝑗,𝛽
𝑖,𝛼 = 0  (i.e., no 

interconnections between layers); whereas the interconnected multiplex topology satisfies 

simultaneously 𝑀𝑗,𝛽
𝑖,𝛼 = 0 for any 𝑖 ≠ 𝑗 and 𝛼 ≠ 𝛽, and 𝑀𝑖,𝛽

𝑖,𝛼 ≠ 0 for 𝛼 ≠ 𝛽 (i.e., interconnections 

between layers only consist of those among node replicas). For example, Figure 1.51 showed an 

interconnected multiplex topology (often simply called multiplex due to the fact that when 

interconnectivity is lacking, the examination of the multilayer adjacency tensor coincides with the 

standard graph theoretical analysis applied to each layer in isolation, thereby making the non-

interconnected multiplex model unvaluable in practical settings, i.e., it is only a useful 

https://github.com/manlius/muxViz/blob/69c1752539bb757df8222917999a8c299a6821a4/gui-old/theory/illustrations/LICENSE.md
https://github.com/manlius/muxViz/blob/69c1752539bb757df8222917999a8c299a6821a4/gui-old/theory/illustrations/LICENSE.md


90 

 

mathematical model to show that multilayer network theory completely generalizes standard 

network theory; (De Domenico, 2017)). 

It is worth mentioning that, although multiplex topologies are prevalent, there are notable 

neuroscientific applications that have successfully employed more complex topologies (e.g., see 

(Brookes et al., 2016) and Figure 1.52 for an investigation of pan-spectral electrophysiological 

connectomics, or see (Virkar et al., 2016) and Figure 1.53 for an investigation of glial network 

metabolic support of neuronal network learning activity). Additionally, it is noteworthy that many 

standard graph theoretical measures (e.g., see (Rubinov & Sporns, 2010)) have been extended to 

the multilayer realm (e.g., centrality indices, assortativity coefficients, network motifs; e.g., see 

(Boccaletti et al., 2014; De Domenico, 2017; Kivela et al., 2014)). 

 
Figure 1.52. Multilayer functional network analysis of MEG data. Caption and figure from: (Brookes et al., 2016). 

Publisher’s permission: http://creativecommons.org/licenses/by/4.0/. ― Schematic diagram of the connectivity data 

analysis pipeline including construction of a multi-layer network. Note that, in the actual analysis, the gamma band 

was split into two, separating low gamma (30 Hz–50 Hz) and high gamma (50–100 Hz). However in order to simplify 

the Figure, this is not shown. 

 
Figure 1.53. Multilayer glial-neuronal network. Caption and figure from: (Virkar et al., 2016). Reprinted with 

permission from © 2016 American Physical Society. ― Glial-neuronal interactions: (a) Cartoon based on existing 

experiments, illustrating how glia serve to distribute metabolic resources from the bloodstream to neural synapses. 

http://creativecommons.org/licenses/by/4.0/
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Red arrows indicate paths of metabolite transport. (b) A simplified directed graph representation of our two-layer 

network model. Black arrows indicate neural synaptic interactions. Arrow thickness indicates synaptic strength which 

evolves according to STDP. Red arrows which terminate on black arrows represent the resource supply to the 

corresponding synapse. 

Throughout the manuscript-chapters of this thesis, the interconnected multiplex model is always 

adopted to study structural and functional connectivity. Although this may appear as a simplistic 

model (because it assumes that each node is consistently present across layers and only adapt its 

connectivity profile in response to the information encapsulated within each layer), I provide 

evidence that they nonetheless enable a nuanced and expansive exploration of the complex 

architecture and functionality inherent in brain networks, in particular I prove that such simplistic 

models greatly contribute to a deeper understanding of the multi-faceted nature of neuron-glial 

network interactions. As a matter of fact, I fully exploit the simplicity of the interconnected 

multiplex model in conjunction with bifurcation theory to derive new easy-to-grasp formalisms of 

brain large-scale network dynamics before further endorsing the use of more complex multilayer 

network topologies to overcome the limitations of the multiplex. 
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Chapter 2 Neuron-astrocyte mass network model ― 
foundations for whole-brain modelling 

2.1 Thesis storyline 

Central to this thesis is a dynamic model that elucidates the complex interactions within neuron-

astrocyte networks. The model is tailored to the spatiotemporal dimensions pertinent to human 

neuroimaging data for functional studies. It represents a whole-brain and strikes a balance between 

biological fidelity and computational feasibility by incorporating principles from neural mass 

network modelling and compartmental modelling. 

The primary aim of this introductory chapter is to articulate the fundamental biophysical principles 

governing the bidirectional interactions between astrocytes and neurons in the whole-brain 

network model. It will methodically outline a mathematical procedure for parameterizing the 

network model, employing techniques from simulation, bifurcation theory, and compartmental 

modelling. 

This chapter is pivotal as it establishes a rigorously parameterized network model, laying the 

groundwork for subsequent investigations into the astrocytic network’s influence on whole-brain 

activity and the emergence of functional connectivity patterns. For the purposes of clarity and 

focus, this chapter will specifically address the parameterization criteria that most directly support 

the objectives of the following chapters. It will also highlight opportunities for generalizing these 

criteria to accommodate a broader range of applications. 

In the following sections, temporal derivatives are indicated by overdots. Additionally, Table 2.2 

and Table 2.3 provide a comprehensive overview of the symbols used to represent each variable 

and parameter introduced. 

2.2 Network model 

 
Figure 2.1. Network of bilaterally coupled neuron-astrocyte mass models. A biophysical model of whole-brain activity 

is introduced where large-scale astrocytic and neuronal networks couple their dynamics through glutamatergic and 
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GABAergic transmission systems, and where neural dynamics are constrained by a two-layered structural network 

interconnecting either astrocytic or neuronal populations. 

In the proposed network model depicted in Figure 2.1, each node represents a mesoscopic brain 

region through a neuron-astrocyte mass model. This mass model characterises the coarse-grained 

temporal dynamics among four distinct, yet coupled, homogeneous subpopulations of neural cells: 

glutamatergic pyramidal neurons (Pyr ), excitatory interneurons (ExIn ), GABAergic inhibitory 

interneurons (InIn), and astrocytes (Ast). It extends the foundational work of (Garnier et al., 2016), 

by offering a nuanced portrayal of the interplay between neuronal and astrocytic subpopulations 

through glutamatergic and GABAergic neurotransmission pathways. Notably, this enhanced mass 

model incorporates the effects of glutamatergic gliotransmission as well as stochastic fluctuations 

arising from both distant regions and the immediate nodal environments. 

At the nodal level, the mass model, indexed by 𝑛, articulates two primary types of interactions 

among the subpopulations: neuron-neuron and neuron-astrocyte. 

On the one hand, neuron-neuron interactions are abstracted to the dendro-somatic transformation 

of subpopulation firing rates (𝐹Pyr , 𝐹ExIn , and 𝐹InIn ) into average membrane potentials (𝐸Pyr , 

𝐸ExIn∪Pyr, and 𝐸InIn), and vice versa; assuming that feedforward pyramidal neurons receive self-

feedback, as well as feedback from inhibitory and excitatory interneurons, and arbitrary excitatory 

inputs. These interactions are formalized in Equations (2.1) and (2.2). 

Membrane potential dynamics: 

Neuronal firing rates: 

Here S is a sigmoidal function defined as: 

S: (𝑥, 𝜈, 𝜃, 𝑟) ⟼ 𝜈 (1 + exp(𝑟(𝜃 − 𝑥)))⁄  

On the other hand, neuron-astrocyte interactions are modeled as concurrent synaptic releases and 

uptakes of neurotransmitters into and from the extracellular space (e ). The model specifically 

considers the two major neurotransmitters: glutamate (Glu) and GABA, for excitatory and 

inhibitory signaling, respectively, as detailed in Equations (2.3) and (2.4). Glutamate release (𝐽Glu) 

is modulated by the firing activity of pyramidal neurons (𝐹Pyr), while GABA release (𝐽GABA) is 

 𝐸̈Pyr[𝑛]
= 𝐴𝑎𝐹Pyr[𝑛]

− 2𝑎𝐸̇Pyr[𝑛]
− 𝑎2𝐸Pyr[𝑛]

 

𝐸̈ExIn∪Pyr[𝑛]
= 𝐴𝑎

(

 
 
 
𝐶ExIn→Pyr𝐹ExIn[𝑛] + 𝐶

Pyr→Pyr𝐹Pyr[𝑛]
+ 𝑞[𝑛] + 𝑄Pyr[𝑛]⏟  

neuroal
network
feedback)

 
 
 

− 2𝑎𝐸̇ExIn∪Pyr[𝑛]
− 𝑎2𝐸ExIn∪Pyr[𝑛]

 

𝐸̈InIn[𝑛] = 𝐵𝑏𝐶
InIn→Pyr𝐹InIn[𝑛] − 2𝑏𝐸̇InIn[𝑛] − 𝑏

2𝐸InIn[𝑛] 

(2.1) 

 𝐹Pyr[𝑛]
= S (𝐸ExIn∪Pyr[𝑛]

− 𝐸InIn[𝑛], 𝜈max, 𝑣Pyr[𝑛]
, 𝑟) 

𝐹ExIn[𝑛] = S (𝐶
Pyr→ExIn𝐸Pyr[𝑛]

, 𝜈max, 𝑣ExIn[𝑛], 𝑟) 

𝐹InIn[𝑛] = S (𝐶
Pyr→InIn𝐸Pyr[𝑛]

, 𝜈max, 𝑣InIn[𝑛], 𝑟) 

(2.2) 
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controlled by the activity of inhibitory interneurons (𝐹InIn). The uptake of extracellular glutamate 

(Glue) is primarily astrocytic, though neurons contribute to a lesser extent. In contrast, the uptake 

of extracellular GABA (GABAe) is primarily neuronal, with astrocytes playing a subsidiary role. 

Post-uptake, neurotransmitters are degraded within astrocytes, as captured by the state variables 

GluAst and GABAAst. 

Glutamate dynamics: 

GABA dynamics: 

Here H is a Michaelis–Menten function defined as: 

H: (𝑥, 𝑉, 𝐾) ⟼ 𝑉𝑥 (𝐾 + 𝑥)⁄  

Critically, the mass model establishes a relationship between extracellular neurotransmitter 

concentrations and neuronal firing rates through the excitability levels of targeted neuronal 

subpopulations, as formulated in Equation (2.5). This relationship manifests in two ways: an 

elevation in Glue generally leads to a bounded (potentially transient) decrease in the excitability 

thresholds of both pyramidal cells and inhibitory interneurons, and conversely, an elevation in 

GABAe typically results in a bounded (potentially transient) increase in the excitability threshold 

 

𝐽G̈lu[𝑛]
= 𝑊𝑤r

(

 
 

𝐹Pyr[𝑛]⏟  
neuronal firing

induced Glu release

+ 𝑄Glu
Ast

[𝑛]⏟  
astrocytic network
induced Glu release)

 
 
− (𝑤r + 𝑤d)𝐽Ġlu[𝑛]

− 𝑤r𝑤d𝐽Glu[𝑛] 

Glu̇ e[𝑛] = 𝐽Glu[𝑛] − S (Glue[𝑛], 𝑉Glu
e→Ast, 𝑣Glu

e→Ast,Pyr
, 𝑟Glu
e→Ast,Pyr

)⏟                          
astrocytic Glu uptake

− S(Glue[𝑛], 𝑉Glu
e→Pyr

, 𝑣Glu
e→Ast,Pyr

, 𝑟Glu
e→Ast,Pyr

)⏟                          
neuronal Glu uptake

 

Glu̇ Ast[𝑛] = S(Glue[𝑛], 𝑉Glu
e→Ast, 𝑣Glu

e→Ast,Pyr
, 𝑟Glu
e→Ast,Pyr

) − GluAst[𝑛] 𝜏Glu
Ast⁄⏟        

Glu degradation

 

(2.3) 

 

𝐽G̈ABA[𝑛] = 𝑍𝑧r

(

 
 

𝐹InIn[𝑛]⏟    
neuronal firing

induced GABA release

+ 𝑄GABA
Ast

[𝑛]⏟    
astrocytic network

induced GABA release)

 
 

− (𝑧r + 𝑧d)𝐽ĠABA[𝑛] − 𝑧r𝑧d𝐽GABA[𝑛] 

GABȦ e[𝑛]
= 𝐽GABA[𝑛] −H(GABAe[𝑛], 𝑉GABA

e→Ast, 𝐾GABA
e→Ast)⏟                  

astrocytic GABA uptake

− H(GABAe[𝑛], 𝑉GABA
e→InIn, 𝐾GABA

e→InIn)⏟                    
neuronal GABA uptake

 

GABȦ Ast[𝑛]
= H(GABAe[𝑛], 𝑉GABA

e→Ast, 𝐾GABA
e→Ast) − GABAAst[𝑛] 𝜏GABA

Ast⁄⏟            
GABA degradation

 

(2.4) 
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of pyramidal neurons. For simplicity, the model assumes that excitatory interneurons remain 

unaffected by changes in extracellular neurotransmitter levels. 

Neuronal excitability levels: 

Given the concurrent nature of all the nodal processes described so far, complex interactions 

emerge between neuronal excitatory and inhibitory firings, and neuron-astrocyte uptakes and 

releases of neurotransmitters, fostering a wide repertoire of dynamics across various (fast-slow) 

timescales. 

At the network level, each node is influenced by distal regions through a two-layered structural 

network, as illustrated in Figure 2.1. One of the layer interconnects neuronal populations across 

different regions, representing white matter tracts (denoted by the parameter matrix 𝛺Pyr), and the 

other interconnects astrocytic populations, reflecting gap junctional densities (denoted by the 

parameter matrix 𝛺Ast). For the purposes of this discussion, it is assumed that the matrices 𝛺Pyr 

and 𝛺Ast  are well-defined and accessible. Detailed methodologies for their estimation from 

empirical MRI data will be elaborated in the subsequent chapter. 

Consistent with established practices (Breakspear, 2017; Griffiths et al., 2022), neuronal 

interconnections across the network’s nodes are presumed to be excitatory, involving solely the 

pyramidal cell subpopulations. The corresponding network interaction terms for these connections 

are detailed in Equation (2.6) and appear in the state variable 𝐸̈ExIn∪Pyr in Equation (2.1). These 

terms are formulated as a linear combination of incoming firing rates (𝑄Pyr), with the weights 

encapsulated in 𝛺Pyr, and a global coupling parameter, 𝜔Pyr, modulates the relative impact of 𝛺Pyr 

on nodal dynamics. 

Neuronal network feedback: 

Due to the current lack of experimental astrocytic data for whole-brain modeling, it is necessary 

to develop a preliminary astrocytic network coupling model. This coupling model extrapolates 

from the structural concept of astrocytes being connected in a gap-junction-coupled syncytium, as 

well as the functional roles of glutamate neurotransmission in facilitating intercommunication 

between astrocytes and the impact of excitatory gliotransmission on neuronal pre-terminal 

receptors (Fields et al., 2015; Goldberg et al., 2010; Vasile et al., 2017). Structurally, the coupling 

model posits that astrocytic interconnections across network nodes adhere to a syncytial 

organization, where an astrocytic subpopulation within one region connects exclusively with other 

astrocytic subpopulations within adjacent regions along the cortical mantle. Functionally, it is 

assumed that astrocytic network’s modulation of nodal neuronal glutamate and GABA release rates 

(𝐽Glu  and 𝐽GABA ) can be represented by linear interaction terms (𝑄Glu
Ast  and 𝑄GABA

Ast  ) with weights 

 𝑣Pyr[𝑛]
= 𝑣0

Pyr
+ 𝑣GABA[𝑛] − 𝑣Glu[𝑛] 

𝑣ExIn[𝑛] = 𝑣0
ExIn 

𝑣InIn[𝑛] = 𝑣0
InIn − 𝜇Glu

InIn Pyr⁄
𝑣Glu[𝑛] 

𝑣Glu[𝑛] = S(Glue[𝑛], 𝑚Glu
Pyr
, 𝑣Glu
Pyr,InIn

, 𝑟Glu
Pyr,InIn

) 

𝑣GABA[𝑛] = S (GABAe[𝑛], 𝑚GABA
Pyr

, 𝑣GABA
Pyr

, 𝑟GABA
Pyr

) 

(2.5) 

 𝑄Pyr[𝑛]
= 𝜔Pyr∑ 𝛺Pyr[𝑛,𝑛̃]

𝐹Pyr[𝑛̃]𝑛̃
 (2.6) 
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distributed according to 𝛺Ast. These terms are detailed in Equation (2.7) and influence the state 

variables 𝐽Glu  in Equation (2.3) and 𝐽GABA  in Equation (2.4). Additionally, two global coupling 

parameters, 𝜔Glu and 𝜔GABA, determine the relative impact of 𝛺Ast on nodal dynamics. In essence, 

this postulated coupling model outlines a large-scale neuron-astrocyte network framework where 

regional glutamate dynamics prompt adjacent astrocytic populations to synchronize their 

activities. This synchronization is based on a topology determined by gap junctional densities, 

which is distinct from the neuronal population topology based on axonal densities (e.g., see Figure 

2.1). This coordinated astrocytic network activity ultimately influences whole-brain patterns of 

neuronal excitatory and inhibitory firing rates through gliotransmission. 

Astrocytic network feedback: 

Given the central role of astrocytic network feedback in our study, a deeper examination of its 

intricacies is warranted. Various studies have shed light on the activities within astrocytic networks 

(De Pittà, 2020; De Pittà et al., 2011; De Pittà & Berry, 2019; Fields et al., 2015; Goldberg et al., 

2010; Manninen et al., 2019; Vasile et al., 2017). For instance, (De Pittà et al., 2011) describe a 

process where a portion of glutamate synaptically released by a neuron into the extracellular space 

can bind to the glutamate receptors of an astrocyte. This binding may initiate a cascade of events, 

including the production of inositol 1,4,5-trisphosphate within the astrocyte. This compound can 

trigger calcium release from the endoplasmic reticulum within the same astrocyte and propagate 

through gap junctions to stimulate calcium release in adjacent astrocytes. Subsequently, the 

calcium releases may lead these astrocytes to secrete glutamate into the extracellular space, which 

can diffuse extrasynaptically and bind to pre-terminal neuronal receptors, potentially inducing 

neurotransmitter release independently of neuronal firing. 

Thus, in our network model, we propose that astrocytic network feedback (𝑄Glu
Ast  and 𝑄GABA

Ast  ) 

partially modulates the nodal releases of neuronal glutamate and GABA (𝐽Glu and 𝐽GABA) through 

excitatory gliotransmission initiated by nodal glutamate bindings. For simplicity, we assume that 

astrocytic glutamate binding and uptake share similar sigmoidal kinetics, allowing their sigmoidal 

parameters to be equated. This modelling choice implies that elevated glutamate levels can 

intensify astrocytic coupling and network feedback. To express how nodal neurotransmitter 

releases are modulated, we incorporate linear terms combining local (firing-induced) and distal 

(astrocytic network-induced) dynamics, with the latter structurally constrained by 𝛺Ast . These 

terms, outlined in Equation (2.7), impact the state variables 𝐽Glu and 𝐽GABA as seen in Equations 

(2.3) and (2.4). To differentiate the astrocytic network’s impact on glutamate release by pyramidal 

cells versus GABA release by inhibitory interneurons, we introduce two coupling parameters, 𝜔Glu 

and 𝜔GABA, which dictate the relative influence of 𝛺Ast on nodal dynamics. This overall approach 

simulates the diffusion-like influence of distal extracellular glutamate concentrations on local 

neurotransmitter releases. We further simplify, by assuming that astrocytic glutamate release into 

the extrasynaptic cleft, triggered by local glutamate binding, is generally negligible compared to 

the effects induced by neighboring astrocytes, thereby maintaining a zero diagonal in 𝛺Ast and 

omitting direct feedback mechanisms. Lastly, as the literature provides less evidence for astrocytic 

 𝑄Glu
Ast

[𝑛]
= 𝜔Glu∑ 𝛺Ast[𝑛,𝑛̃]S (Glue[𝑛̃], 𝑚Glu

Ast, 𝑣Glu
Ast, 𝑟Glu

Ast)
𝑛̃

 

𝑄GABA
Ast

[𝑛]
= 𝜔GABA∑ 𝛺Ast[𝑛,𝑛̃]S (Glue[𝑛̃], 𝑚Glu

Ast, 𝑣Glu
Ast, 𝑟Glu

Ast)
𝑛̃

 
(2.7) 
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network feedback mediated by GABA (Angulo et al., 2008; Manninen et al., 2019; Yoon & Lee, 

2014), we exclude the considerations of GABA-induced gliotransmission in our current model. 

To conclude this section, it is important to note that we have adopted the common practice of 

setting parameters (such 𝐴 , 𝑎 , etc.) uniformly across all network nodes (Breakspear, 2017; 

Griffiths et al., 2022). However, it is possible in a more detailed model for any given parameter to 

vary by region (i.e., to be indexed by 𝑛) and over time (e.g., like 𝑞). 

2.3 Constraining dynamical regimes 

As outlined in Section 2.1, the goal of this chapter is to set the stage for the next, which will 

investigate, through simulations, the contributions of astrocytic networks to whole-brain activity 

and the emergence of functional connectivity patterns. This investigation will entail a 

comprehensive examination of how variations in the global astrocytic network coupling 

parameters, 𝜔Glu  and 𝜔GABA , introduced earlier, affect the dynamical network system. These 

parameters are crucial for determining the extent to which astrocytic network activity influences 

glutamatergic and GABAergic neurotransmissions. 

Thus, our immediate objective is to establish a biologically plausible exploration plane for 
(𝜔Glu; 𝜔GABA). To this end, we must define a set of criteria ensuring that key model outputs, such 

as local field potential ( LFP = 𝐸ExIn∪Pyr − 𝐸InIn ), Glue , and GABAe , qualitatively reflect 

characteristics normally observed in empirical resting-state human data. 

Constraining local field potentials appears to be straightforward, given that the neuronal 

compartment of our network model is based on the Jansen–Rit model (Jansen & Rit, 1995), which 

is well-regarded for its ability to simulate biologically plausible neuronal activity. Numerous 

studies have provided parameter sets for Jansen–Rit-based models, allowing them to replicate 

essential features of electrophysiological recordings, particularly α-band oscillatory patterns 

observed during rest (David & Friston, 2003; Ferrat et al., 2018; Forrester et al., 2020; Garnier et 

al., 2015; Sotero et al., 2007; Tewarie et al., 2021; Touboul et al., 2011). 

In contrast, our understanding of the astrocytic and extracellular compartments of the network 

model is grounded in relatively more recent research (Blanchard et al., 2016; Garnier et al., 2016). 

The challenge here lies in the lack of methodologies or empirical data for fine-tuning these model 

aspects (De Pittà & Berry, 2019; Kastanenka et al., 2020). Nonetheless, bifurcation analysis at the 

nodal level offers a viable approach for setting nodal parameters within realistic bounds, even 

when factoring in network feedback terms (Garnier et al., 2016). 

Subsequent sections will demonstrate that by adopting a strategic set of criteria, we can navigate 

the network model’s capacity to produce various temporal behaviors, ensuring that (i) LFP 

dynamics mirror α-band characteristics found in electrophysiological recordings, including 

amplitude and phase network synchronizations, and (ii) neurotransmitter dynamics achieve a 

balance, resulting in quasi-stationary slow fluctuations of Glue and GABAe. 

We now detail our parameterization strategy and delve into the pivotal roles of 𝜔Glu and 𝜔GABA. 

It is important to remember that this approach involves pinpointing dynamic regimes of interest, 

defined by particular parameter and state variable ranges. The goal is to traverse this dynamic 

terrain by adjusting 𝜔Glu  and 𝜔GABA , thereby methodically exploring predefined sections of a 

bifurcation diagram to discern the combined effects of (𝜔Glu; 𝜔GABA). 



98 

 

2.3.1 Reduction of parameters 
Our parameterization approach significantly leverages the results of the bifurcation analyses of a 

neuron-astrocyte mass model conducted by (Garnier et al., 2016). We begin by selecting a widely 

accepted, physiologically plausible set of scalar parameters from existing literature (refer to Table 

2.3 and references such as (David & Friston, 2003; Ferrat et al., 2018; Forrester et al., 2020; 

Garnier et al., 2015; Sotero et al., 2007; Tewarie et al., 2021; Touboul et al., 2011)), which allows 

us to focus on the network coupling parameters 𝜔Pyr, 𝜔Glu, and 𝜔GABA, along with the following 

nodal parameters: 𝑞[∙] , 𝑣0
Pyr

 , 𝑣0
InIn , 𝑚Glu

Pyr
 , 𝑚GABA

Pyr
 , 𝑣Glu

Pyr
 , 𝑣GABA

Pyr
 , 𝑟Glu

Pyr
 , 𝑟GABA

Pyr
 , 𝑊 , and 𝑍 . All these 

parameters, except for 𝜔Glu, 𝜔GABA, and 𝑞[∙], are to be fixed at scalar values. 

Consistent with the model equations in Section 2.2 and common practices in the field (as noted by 

(Forrester et al., 2020; Sotero et al., 2007; Tewarie et al., 2021)), we apply a uniform setting across 

all nodal parameters, with the exception of 𝑞[∙], hence dropping all indices for simplicity unless 

specificity is required for clarity. Additionally, despite Table 2.3 indicating a null value for 

𝐶Pyr→Pyr, our analysis will explore positive 𝐶Pyr→Pyr values due to their intimate connection with 

𝜔Pyr and their utility in illustrating the spectrum between a network of uniformly coupled nodes 

and a scenario where one node operates independently from its network counterparts. Furthermore, 

while Table 2.3 suggests that 𝑞  is a stochastic variable, our discussion primarily focuses on 

deterministic bifurcation analysis. For more insights into stochastic scenarios, refer to works like 

(Ableidinger et al., 2017; Mendler et al., 2018). 

2.3.2 Simplification of parameter dependencies 
Our subsequent step involves characterising the bifurcation behavior of the nodal model’s neuronal 

compartment, in isolation from the network. This is achieved by lumping its modulatory elements 

(i.e., Glue and GABAe) into a minimal set of scalars, defined as follows: 

Here, compared to Equation (2.5), the sigmoidal function S is extended by positive parameters 

ΔGlu
𝑣  and ΔGABA

𝑣 , enabling 𝑣Glu and 𝑣GABA to take negative values for bifurcation analyses. 

Specifically, with 𝐸Pyr  falling within the interval ]0; 𝐴𝜈max 𝑎⁄ [  and setting 𝑣0 = 𝑣0
Pyr
− ΔGlu

𝑣 +

ΔGABA
𝑣 = 𝑣0

ExIn = 𝑣0
InIn − 𝜇Glu

InIn Pyr⁄
ΔGlu
𝑣 = 6 mV , singular points can be computed numerically 

using Equation (2.9), adhering to the methodologies elaborated in (Garnier et al., 2016). 

It is astute to note from Equation (2.9) that 𝑣GABA is essentially equivalent to 𝑞 up to a constant 

factor of 𝑎 𝐴⁄  . This observation allows for the complete understanding of the neuronal 

 𝑣Glu = S(Glue, 𝑚Glu
Pyr
, 𝑣Glu
Pyr,InIn

, 𝑟Glu
Pyr,InIn

) − ΔGlu
𝑣  

𝑣GABA = S(GABAe, 𝑚GABA
Pyr

, 𝑣GABA
Pyr

, 𝑟GABA
Pyr

) − ΔGABA
𝑣  

(2.8) 

 
𝑞 −

𝑎

𝐴
𝑣GABA −

𝑎

𝐴
(𝑣0 − 𝑣Glu −

1

𝑟
ln (

𝐴𝜈max
𝑎𝐸Pyr

− 1)

−
𝐴

𝑎
𝐶ExIn→PyrS(𝐶Pyr→ExIn𝐸Pyr, 𝜈max, 𝑣0, 𝑟) − 𝐶

Pyr→Pyr𝐸Pyr

+
𝐵

𝑏
𝐶InIn→PyrS (𝐶Pyr→InIn𝐸Pyr, 𝜈max, 𝑣0 − 𝜇Glu

InIn Pyr⁄
𝑣Glu, 𝑟))

= 0 

(2.9) 
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compartment’s dynamics within the nodal model by drawing a codimension-2 bifurcation diagram 

with 𝑣Glu  and 𝑝 = 𝑞 − 𝑣GABA 𝑎 𝐴⁄   as the two parameters. Importantly, it should be noted that 

negative values for 𝑝  are possible, which is of significant interest, even when 𝑞  and 𝑣GABA 

maintain positive values. 

It is noteworthy that these simplifications, while focusing the analysis on the effects of 

glutamatergic and GABAergic neurotransmissions on neuronal dynamics, are nonetheless 

insightful. As previously mentioned, the neuronal compartment, per se, has been the subject of 

extensive research, primarily within the neuronal frameworks of Jansen–Rit-based models. Our 

approach, therefore, leverages the extensive knowledge base surrounding the neuronal 

compartment, facilitating a deeper understanding of the network model. Moreover, these 

simplifications do not compromise the general applicability of our findings, given the earlier 

assumption that neurotransmitter dynamics exhibit mean quasi-stationary slow fluctuations. 

Further discussions in Sections 2.3.5 and 2.3.6 reveal that characterizing the neuronal 

compartment’s behavior via 𝑣Glu  and 𝑝  is instrumental in deciphering the network model’s 

dynamics. This is attributed to straightforward relationships between the network coupling 

parameters (𝜔Pyr , 𝜔Glu , and 𝜔GABA ) and the bifurcation parameters (𝑣Glu  and 𝑝 ). Specifically, 

increases in 𝜔Pyr  (and 𝜔GABA  respectively) are generally linked to increases (or decreases, 

respectively) in 𝑝, while increases in 𝜔Glu tend to raise 𝑣Glu. It is crucial to recognize, however, 

that these relationships are somewhat transient, especially in the context of slowly fluctuating Glue 
and GABAe, as 𝜔Glu can indirectly influence GABAergic neurotransmission via inhibitory firing 

rates, just as 𝜔GABA can indirectly impact glutamatergic transmission via excitatory firing rates. 

This intricate balance between excitatory and inhibitory activities across different timescales is 

further explored in Section 2.4. 

2.3.3 Identification of dynamical regimes of interest 

Figure 2.2 presents the bifurcation diagram obtained when 𝐶Pyr→Pyr = 0 , elucidating the 

parameterization for an individual node operating independently from the rest of the network. The 

analyses primarily utilized MatCont (Dhooge et al., 2008) version 7.3 available at 

https://gitlab.utwente.nl/m7686441/matcont and PyDSTool (Clewley, 2012) version 0.91.0 

accessible at https://github.com/robclewley/pydstool. The diagram allows us to ascertain that 

approximately setting 𝑣Glu within the range of [−0.5; 0.5] mV and 𝑝 within [170; 370] Hz ensures 

that, with suitable initial conditions, the simulated LFP dynamics will converge to a self-sustaining 

oscillatory regime. This regime is characterized by a peak frequency within the [8; 13] Hz range 

and moderate peak-to-peak amplitudes, aligning with our objectives. 

Importantly, the specified ranges for 𝑣Glu and 𝑝 confine the neuronal compartment of the nodal 

model, particularly when behaving independently from its network counterparts, to primarily 

exhibit stable limit cycles. These cycles are notably distant from saddle nodes and the regions 

prone to bi-stability and cusp catastrophes, where epileptic-like (instead of “normal” oscillatory) 

activities might emerge (refer to Section 2.4 or (Garnier et al., 2015) for more details). 

Furthermore, these ranges ensure that both glutamatergic pyramidal and GABAergic inhibitory 

neuron populations operate closer to the linear segments of their sigmoidal firing rate functions, 

which holds biophysical significance. Subsequent sections, starting from Section 2.3.4, provide 

further explanation for the narrow range chosen for 𝑣Glu. 

https://gitlab.utwente.nl/m7686441/matcont
https://github.com/robclewley/pydstool
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Interestingly, within the context of Figure 2.2, the Jansen–Rit model’s parameterization for 

simulating α-band rhythms aligns precisely with 𝑣Glu = 0 mV , despite (Jansen & Rit, 1995) 

specifying for 𝑝 a uniform distribution between 120 and 320 Hz. Moreover, the diagram illustrates 

how increases in 𝑣Glu (reflecting rises in Glue) and decreases in 𝑝 (indicative of increased GABAe) 
correlate with larger limit cycle peak-to-peak amplitudes and reduced frequencies. Additionally, 

we understand that introducing temporal dependence between 𝑣Glu  and 𝑝  (effectively between 

Glue and GABAe) yields a diverse range of dynamics, as further discussed in Section 2.4. 

A comprehensive codimension-2 bifurcation analysis was beyond this study’s scope. Therefore, 

Figure 2.2 omits extensive details such as limit cycle stabilities and bifurcation points of limit 

cycles, although these can be inferred to some extent (for more, see (Garnier et al., 2015, 2016)). 

 
Figure 2.2. Two-parameter bifurcation diagram. Drawn with 𝐶Pyr→Pyr = 0. In panel (a), Hs refers to supercritical Hopf 

points, Hu refers to subcritical Hopf points, SN refers to saddle-node points, and NS refers to neutral saddle points 

(i.e., points associated with two real eigenvalues summing to zero). Saddle-node branches meet at a cusp bifurcation 

point represented as a circular green dot; Hopf branches meet at a Bautin (generalized Hopf) bifurcation point 

represented as a triangular green dot; and saddle-node, Hopf, and neutral saddle branches connect at Bogdanov–Takens 



101 

 

bifurcation points represented as rectangular green dots. The rectangular black border highlights the dynamic regimes 

under consideration, where 𝑝 ∈ [170; 370] Hz and 𝑣Glu ∈ [−0.5; 0.5] mV. In panel (b), a three-dimensional view of 

the diagram in panel (a) is shown, maintaining the 𝑣Glu range. The green surface represents singular points (E), the 

black solid lines represent maximal and minimal 𝐸Pyr values along limit cycles (LC), and the other curves are the 

same as in panel (a). Limit cycle curves are represented only for 𝑣Glu ∈ {−0.25; 0; 0.25; 0.45} mV for clarity, and 

neutral saddle curves are not drawn because they do not have a dynamic meaning for general equilibria. In panel (c), 

the same limit cycles from panel (b) are displayed alongside their respective frequencies, and the black solid thin lines 

represent Hopf bifurcations. Panel (d) magnifies the area within the black rectangular outline from panel (a), focusing 

on 𝑝 values between 170 and 370 Hz, to provide a closer examination of the selected dynamic regimes. This panel 

counts also as a magnification of panel (b). 

2.3.4 Backward parameterization 

The definitions of 𝑚Glu
Pyr

, 𝑚GABA
Pyr

, 𝑣Glu
Pyr

, 𝑣GABA
Pyr

, 𝑟Glu
Pyr

, 𝑟GABA
Pyr

, ΔGlu
𝑣 , and ΔGABA

𝑣  is established at the 

outset by selecting physiologically realistic ranges for the excitability thresholds (i.e., 𝑣Pyr =

𝑣0
Pyr
− 𝑣Glu + 𝑣GABA  and 𝑣InIn = 𝑣0

InIn − 𝜇Glu
InIn Pyr⁄

𝑣Glu ; see Equation (2.5)) and by setting soft 

upper limits on extracellular neurotransmitter concentrations. We opted for the interval [3.5; 8.5] 

mV for both 𝑣Pyr and 𝑣InIn (for reference see (Ferrat et al., 2018)), and established approximate 

concentration ranges of [5; 15] µmol for Glue and [5; 35] µmol for GABAe. 

The specified range for 𝑣Pyr  and 𝑣InIn  facilitated straightforward constraints for 𝑚Glu
Pyr

 , 𝑚GABA
Pyr

 , 

ΔGlu
𝑣 , and ΔGABA

𝑣 , as elucidated by the following inequalities: 

Here, 𝑣Glu
inf   and 𝑣Glu

sup
  denote the infimum and supremum values of 𝑣Glu , respectively. These 

constraints complement earlier stipulations, such as 𝑣Glu ∈ [−0.5; 0.5] mV and (𝑞 − 370) 𝐴 𝑎⁄ ≤
𝑣GABA ≤ (𝑞 − 170) 𝐴 𝑎⁄ , ensuring that 𝑝 remains within the [170; 370] Hz range. 

The validity of the chosen intervals for Glue and GABAe is rationalized by analyzing the uptake 

functions depicted in Figure 2.3. For Glue, the range [5; 15] µmol primarily aligns with the linear 

portion of the glutamate uptake sigmoidal functions, where the nodal model most effectively 

equilibrates release and uptake rates. This linear regime also facilitates more accurate numerical 

quantification of Glue  variations, as the sigmoidal functions governing astrocytic network 

coupling (modeled after glutamate uptake functions) would otherwise approach their saturation 

points. Consequently, parameters such as 𝑚Glu
Pyr

 , 𝑣Glu
Pyr

 , 𝑟Glu
Pyr

 , and ΔGlu
𝑣   were fine-tuned under the 

premise that glutamate’s modulatory impact on neuronal excitability is most pronounced within 

the [5; 15] µmol range for Glue, with saturated effects beyond this interval. 

Similarly, the selected [5; 35] µmol range for GABAe represents the optimal zone for balancing 

release and uptake rates. Given that the GABAe  uptake functions are formulated as rational 

polynomials, higher upper bounds could technically be set. However, doing so would likely extend 

simulation durations unless initial conditions are precisely defined to expedite the equilibrium 

between neurotransmitter release and uptake. As such, parameters including 𝑚GABA
Pyr

 , 𝑣GABA
Pyr

 , 

𝑟GABA
Pyr

, and ΔGABA
𝑣  were calibrated to ensure that fluctuations of GABAe within the [5; 35] µmol 

range significantly influence neuronal excitability levels. 

 (𝑣0 − 8.5) 𝜇Glu
InIn Pyr⁄

⁄ ≤ 𝑣Glu ≤ (𝑣0 − 3.5) 𝜇Glu
InIn Pyr⁄

⁄  

3.5 + 𝑣Glu
sup

− 𝑣0 ≤ 𝑣GABA ≤ 8.5 + 𝑣Glu
inf − 𝑣0 

0 ≤ 𝑣Glu
sup

− 𝑣Glu
inf ≤ 5 

(2.10) 
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As discussed in Section 2.3.3, a broader range than [−0.5; 0.5] mV could have been chosen for 

𝑣Glu, as further explored in Section 2.4. From the previous inequalities, it is clear that expanding 

the interval for 𝑣Glu results in a corresponding narrowing of the range for 𝑣GABA. Moving forward 

to Section 2.3.5, it is important to note that many Jansen–Rit-based studies typically attribute 

network (or exogenous) fluctuations along the 𝑝-axis to the variable 𝑄Pyr as outlined in Equation 

(2.6), or alternatively, to the parameter 𝑞. However, in this work, we opted to keep 𝜔Pyr and 𝑞 

constant, focusing instead on the influences of glutamatergic and GABAergic neurotransmissions. 

This decision is based on the observation made in Section 2.3.2 that variations in 𝑣GABA  can 

account for network fluctuations along the 𝑝 -axis, as commonly seen in Jansen–Rit-based 

analyses. 

In a stochastic network context, to be further discussed in Sections 2.3.5 and 2.3.6, the sigmoidal 

functions for Glue  and GABAe  (specifically, the bounds for 𝑣Glu  and 𝑣GABA ) are fine-tuned in 

conjunction with an understanding of the network’s potential dynamic behaviors. This includes 

considering the probabilistic distribution of 𝑄Pyr  and 𝑞 . Such adjustments help minimize 

simulations that do not yield insightful results. For instance, certain regions in the (𝑣Glu; 𝑝) or 
(𝑣Glu; 𝑣GABA) parameter planes might exhibit relatively uniform dynamic characteristics, such as 

neighboring families of periodic orbits with very similar amplitudes and frequencies. 

Consequently, we deemed it more appropriate in our current framework to define the broadest 

feasible interval for 𝑣GABA , although further generalizations are discussed in Section 2.4. The 

sigmoidal functions for Glue and GABAe were thus specifically calibrated to accommodate 𝑣Glu 

within [−0.4; 0.4] mV and 𝑣GABA within [−2.1; 2.1] mV, as also depicted in Figure 2.3 and detailed 

in Table 2.3. 

To reiterate, our simulation strategy aims to traverse a predetermined section of a two-parameter 

bifurcation diagram, representing a dynamic landscape of interest, such as the area highlighted in 

Figure 2.2.a, using (𝜔Glu; 𝜔GABA) as indirect controls. Moving forward, we initially consider, but 

subsequently refine, an exploration space defined by Glue within [5; 15] µmol, GABAe within [5; 

35] µmol, and 𝑝 within [170; 370] Hz. This translates to 𝑣Glu ranging from −0.34 to 0.34 mV and 

𝑣GABA from −2.00 to 2.00 mV, which further correspond to 𝑣GABA 𝑎 𝐴⁄  within [−62; 62] Hz and 𝑞 

within [232; 308] Hz. 

It is crucial to note that these ranges serve as a guideline rather than rigid constraints, with the 

primary aim of minimizing computational burden. This approach helps streamline the simulation 

process by focusing on parameter sets likely to yield pertinent dynamics. 
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Figure 2.3. Parameterization of excitability feedback mechanisms. This figure specifies the parameters for the two 

sigmoidal functions that determine the impact of extracellular neurotransmitter concentration dynamics on neuronal 

excitability. The orange solid lines, corresponding to the left vertical axes, depict the uptake rate functions. For 

glutamate, this is represented by Glue ↦ S(Glue, 𝑉Glu
e→Ast + 𝑉Glu

e→Pyr
, 𝑣Glu
e→Ast,Pyr

, 𝑟Glu
e→Ast,Pyr

) as per Equation (2.3), and 

for GABA by GABAe ↦ H(GABAe, 𝑉GABA
e→Ast, 𝐾GABA

e→Ast) + H(GABAe, 𝑉GABA
e→InIn, 𝐾GABA

e→InIn) as per Equation (2.4). The dark 

green solid lines, linked to the right vertical axes, illustrate the modulatory functions. For glutamate, this is 

𝑣Glu: Glue ↦ S(Glue, 𝑚Glu
Pyr
, 𝑣Glu
Pyr,InIn

, 𝑟Glu
Pyr,InIn

) − ΔGlu
𝑣  , and for GABA, 𝑣GABA: GABAe ↦

S(GABAe, 𝑚GABA
Pyr

, 𝑣GABA
Pyr

, 𝑟GABA
Pyr

) − ΔGABA
𝑣  . The parameters are set as follows: 𝑚Glu

Pyr
= 0.8 mV , 𝑣Glu

Pyr
= 10 µmol , 

𝑟Glu
Pyr

= 0.5 µmol−1 , and ΔGlu
𝑣 = 0.4 mV  for glutamate; and 𝑚GABA

Pyr
= 4.2 mV , 𝑣GABA

Pyr
= 20 µmol , 𝑟GABA

Pyr
=

0.25 µmol−1, and ΔGlu
𝑣 = 2.1 mV for GABA. These parameters are also summarized in Table 2.3. The light green 

rectangular areas highlight the intended exploration spaces: Glue within [5; 15] µmol and GABAe within [5; 35] µmol. 

2.3.5 Forward parameterization 
The bifurcation diagram in Figure 2.2 was drawn under the assumption of fully independent 

identical nodes. Nonetheless, this diagram can be conveniently expanded by incorporating the 

effects of the parameter 𝐶Pyr→Pyr, enabling an exploration of certain form of network interactions 

between nodes, albeit within limited contexts. Specifically, in a setup where identical nodes are 

interconnected, referred to as a homogeneous network, 𝐶Pyr→Pyr can act as a substitute for 𝜔Pyr 

when the matrix 𝛺Pyr is right stochastic, because then 𝑄Pyr = 𝜔Pyr𝐹Pyr. Therefore, under such a 

homogeneous network context, a bifurcation analysis incorporating 𝐶Pyr→Pyr  provides a 

straightforward and systematic approach to determine 𝜔Pyr values by examining the dynamics of 

an individual node. This strategy avoids the complexities involved in performing detailed stability 

and bifurcation analyses on a complex (heterogeneous) and high-dimensional nonlinear network 

model, which remains a significant challenge in the field (for reference, see (Forrester et al., 

2020)). 

In practical applications, it is advisable to treat 𝜔Pyr  as a free parameter, though such 

considerations were outside the purview of this study. However, we aim to delve into the intricate 

interplay among 𝜔Pyr, 𝜔Glu, and 𝜔GABA in subsequent research endeavors. 

To establish values for 𝜔Pyr , our approach entailed a two-step process. Initially, bifurcation 

analyses of a single node (also conceptualized as a homogeneous network) were conducted using 

the parameter 𝐶Pyr→Pyr . This was succeeded by stochastic simulations of a heterogeneous 

network, aimed at enhancing our comprehension and fine-tuning of the parameter settings. 

Our bifurcation analysis aimed to identify suitable values for 𝑞 and 𝐶Pyr→Pyr to ensure that 𝑞 +
𝐶Pyr→Pyr𝐹Pyr − 𝑣GABA 𝑎 𝐴⁄  falls within the range [170; 370] Hz. This approach was chosen for its 
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convenience, especially since the bounds for 𝑣GABA 𝑎 𝐴⁄  were already established in Section 2.3.4, 

corresponding to GABAe within [5; 35] µmol. This led to a straightforward specification for 𝑞: 

370 + inf(𝑣GABA 𝑎 𝐴⁄ ) ≥ 𝑞 ≥ 170 + sup(𝑣GABA 𝑎 𝐴⁄ )  where inf  and sup  denote the infimum 

and supremum, respectively. For example, we selected 𝑞 = 240 Hz, which consequently provided 

a range of values for 𝐶Pyr→Pyr due to 0 < 𝐹Pyr < 𝜈max, though this range was too broad to be 

practical. 

Further insights were gained by examining how the bifurcation landscape, particularly the branch 

of supercritical Hopf bifurcations, shifts as 𝐶Pyr→Pyr varies, as shown in Figure 2.4 and Figure 2.5 

(and also discussed in (Garnier et al., 2015) with different parameters). A notable observation was 

that increasing 𝐶Pyr→Pyr maintained the presence of a supercritical Hopf bifurcation branch within 

the parameter plane defined by 𝑣Glu  within [−0.34; 0.34] mV and 𝑝  within [170; 370] Hz (or 

equivalently, 𝑣GABA  within [−2.00; 2.00] mV). This bifurcation branch effectively divides the 

parameter space into two regions: an expanding oscillatory region characterized by stable limit 

cycles and a contracting non-oscillatory region marked by stable equilibria. 

 
Figure 2.4. Branches of supercritical Hopf bifurcations. Hopf bifurcations within the (𝑣Glu; 𝑝) plane for 𝐶Pyr→Pyr ∈
{0; 2.5; 5; 7.5; 10; 12.5; 15}. 

Although these dynamic characteristics were initially considered for convenience, they proved to 

be more broadly applicable across a wider range of 𝑣Glu and 𝑝 (or 𝑣GABA) values, offering a robust 

framework for our analysis (as illustrated by comparing Figure 2.5.a to Figure 2.2.a, and then to 

Figure 2.4). Consequently, we could constrain the range of 𝐶Pyr→Pyr values to ensure the network 

model operates near the critical boundary between steady-state and oscillatory behaviors (Deco et 

al., 2017), or within a continuum of oscillatory regimes, as pursued in this study. 

More concretely, it is insightful to observe that for smaller 𝐶Pyr→Pyr values, the equilibrium plane 

for an isolated node, as depicted in Figure 2.2.d, closely approximates that of any node within a 

homogeneous network, as shown in Figure 2.5.d. This relationship is directly tied to the 𝑝-axis, as 

described in Equation (2.9), with our approximations focusing on equilibria rather than limit cycle 

mean amplitudes. This insight allows us to refine the upper bound for 𝐶Pyr→Pyr, directly from the 

bifurcation diagram of an isolated node. We determined 𝐹Pyr < 4.1 Hz  for 𝑣Glu  within [−0.34; 

0.34] mV and 𝑝  within [170; 370] Hz, leading to 𝐶Pyr→Pyr ≤
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(370 − 𝑞 + inf(𝑣GABA 𝑎 𝐴⁄ )) 4.1⁄ ≈ 16.7. Consequently, 𝜔Pyr was found to be viable within ]0; 

16.7]. 

To identify one suitable 𝜔Pyr value, we conducted simulations with the aim of finding a value that 

would facilitate the quantification of non-trivial functional connectivity patterns, particularly in 

stochastic and heterogeneous network conditions. This approach to defining 𝜔Pyr was critical for 

several reasons. Given our model’s design, it was unlikely for functional network architectures to 

arise solely from variations in astrocytic network couplings. This was partly because we aimed for 

a balance between neurotransmitter uptake and release rates, minimizing the impact of 

neurotransmission on changes in nodal neuronal excitability levels. Furthermore, we selected a 

dynamic landscape where changes in the average levels of neuronal membrane potentials were 

generally minimal (not shown here), and we applied a uniform parameterization setting across 

nodes. Consequently, within our network model comprising uniformly parameterized coupled 

neuron-astrocyte masses, the neuronal structural layer 𝛺Pyr emerged as the principal factor capable 

of engendering diverse attractors (primarily influencing the 𝑝 -axis), which could then lead to 

complex functional connectivity patterns beyond mere linear correlations and phase locking. 

Our objective was to ensure that motions on the bifurcation landscape would be predominantly 

driven by changes in astrocytic network couplings, while allowing the network model to express 

a range of functional states primarily influenced by neuron-neuron interconnections (i.e., 𝛺Pyr). 

Therefore, it was desirable to select an 𝜔Pyr value that would, a priori, enhance the detectability 

and variety of network functional connections across the entire 𝑣Glu spectrum. By specifying for 

𝑞 independently drawn samples from a normal distribution with a mean and standard deviation of 

240 ± 10 Hz for each region independently, we found through preliminary simulations that 𝜔Pyr =

7.5  was appropriate. This 𝜔Pyr  value is associated with the homogeneous network condition 

illustrated in Figure 2.5 with 𝐶Pyr→Pyr = 7.5 . The value was strong enough to ensure that 

amplitude and phase network synchronizations are both present and quantifiable. Additionally, it 

was small enough to prevent the nodes from behaving too uniformly or too independently, relative 

to their stochastic baseline neuronal firing rates. 

The preliminary simulations were conducted by interconnecting through the matrix 𝛺Pyr , the 

simplified neuronal compartments, as detailed in Section 2.3.2, with parameterization based on 

𝑣Glu and 𝑣GABA. In these simulations, each region was set to have the same (𝑣Glu; 𝑣GABA) values, 

with 𝑣GABA  fixed at 0 mV and 𝑣Glu  chosen from the set {−0.3; 0; 0.3} mV . Selecting 𝑣Glu  from 

this set offered a cost-effective insight into potential dynamics within the targeted landscape’s core 

and periphery. The only variation between regions in each simulation was their stochastic 

component 𝑞, which was drawn from the same normal distribution independently for each region. 

It is important to note that the simulations of the forthcoming chapter will employ the full neuron-

astrocyte network model, where Glue  and GABAe  are dynamic state variables rather than fixed 

parameters. 

Upon setting 𝜔Pyr = 7.5 through the preceding two-step process, we defined an initial state for 

the main simulations. This state is illustrated in Figure 2.5 as a circular black dot near a 

supercritical Hopf bifurcation locus, where the influence of astrocytic network activity on the 

baseline levels of Glue and GABAe, compared to neuronal activity, is minimal. Specifically, the 

initial conditions were set as 𝜔Glu
initial = 𝜔GABA

initial = 0.01 µmol−1 , 𝑣Glu
initial = −0.34 mV 
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(equivalently, Glue
initial ≈ 4.98 µmol ), and 𝑣GABA

initial = −1.95 mV  (equivalently, 

GABAe
initial ≈ 6.82 µmol ). The insignificance of astrocytic network activity contributions 

relative to neuronal activity at this initial state is underscored by the following inequalities: 

The establishment of an initial state also led to fixed values for 𝑊  and 𝑍 , determined through 

steady-state calculations under the assumption that neurotransmitter uptake and release rates are 

in equilibrium (see also (Blanchard et al., 2016)): 

These calculated 𝑊  and 𝑍  values are instrumental in sustaining the selected baseline 

concentrations at the initial state, factoring in the contributions from non-negligible astrocytic 

network activity. 

 𝜔Glu
initialS(Glue

initial, 𝑚Glu
Ast, 𝑣Glu

Ast, 𝑟Glu
Ast) ≔ 𝑄Glu

Astinitial ≪ 𝐹Pyr
initial 

𝜔GABA
initialS(Glue

initial,𝑚Glu
Ast, 𝑣Glu

Ast, 𝑟Glu
Ast) ≔ 𝑄GABA

Ast initial
≪ 𝐹InIn

initial 
(2.11) 

 
𝑊 = 𝑤d

S(Glue
initial, 𝑉Glu

e→Ast + 𝑉Glu
e→Pyr

, 𝑣Glu
e→Ast,Pyr

, 𝑟Glu
e→Ast,Pyr

)

𝐹Pyr
initial +𝑄Glu

Astinitial

≈ 4.9 µmol s⁄  

𝑍 = 𝑧d
H(GABAe

initial, 𝑉GABA
e→Ast, 𝐾GABA

e→Ast) + H(GABAe
initial, 𝑉GABA

e→InIn, 𝐾GABA
e→InIn)

𝐹InIn
initial + 𝑄GABA

Ast initial

≈ 50.6 µmol s⁄  

(2.12) 
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Figure 2.5. Two-parameter bifurcation diagram. Drawn with 𝐶Pyr→Pyr = 7.5 . This is similar to the one shown in 

Figure 2.2. The circular black dot in panels (a)–(d) represent the initial state selected for this study (as detailed in the 

accompanying text). 

2.3.6 Exploration parameter space 
We successfully narrowed down the parameterization of our model to the two global astrocytic 

network coupling parameters: 𝜔Glu and 𝜔GABA. To establish a biologically relevant exploration 

grid for (𝜔Glu; 𝜔GABA) , we sampled the domain given by (𝑣Glu; 𝑣GABA) ∈ [−0.30; 0.15] ×
[−2.00; 2.00] mV ×mV  using a 35×35 uniform grid. Through steady-state calculations, this 

gridding yielded (𝜔Glu; 𝜔GABA) ∈ [2.90; 6.47] × [0.14; 1.94] µmol
−1 × µmol−1. Thus, from the 

initial state, an increase in 𝜔Glu generally leads to a rise in Glue from its initial level to a maximum 

of 15 µmol, predominantly influencing the 𝑣Glu -axis. Similarly, an increase in 𝜔GABA  tends to 

elevate GABAe from its initial level to a maximum of 35 µmol, primarily affecting the 𝑝-axis or 

𝑣GABA-axis. 
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The resulting grid comprises 1225 unique(𝜔Glu; 𝜔GABA) pairs, which will be utilized in the next 

chapter. Figure 2.6.a illustrates the simulation parameter plane defined by these 1225 unique pairs. 

Figure 2.6.b displays the uniform grid on the parameter plane defined by (𝑣Glu; 𝑣GABA) with 35x35 

values, which was instrumental in deriving the (𝜔Glu; 𝜔GABA) pairs. 

Looking ahead to the discussions in the next chapter, it is important to note that the funnel-shaped 

parameter space depicted in Figure 2.6.a, defined by (𝜔Glu; 𝜔GABA) , highlights the highly 

nonlinear impact of 𝜔Glu on neuron-astrocyte interactions compared to 𝜔GABA. This is expected, 

considering that glutamate levels not only influence the excitability thresholds of both pyramidal 

cells and inhibitory interneurons but also drive astrocytic network feedback mechanisms. 

Additionally, despite the sparser sampling of lower 𝜔GABA values compared to higher ones, there 

was no significant advantage in conducting additional simulations with lower 𝜔GABA values for 

the purposes of this study. 

 
Figure 2.6. Simulation parameter planes. (a) Simulation parameter plane defined by (𝜔Glu; 𝜔GABA) . (b) The 

underlying parameter plane from which (a) was derived. The green triangular dot (on the bottom right corner) 

represents the initial state chosen for this study. To clarify, this initial state corresponds to 𝜔Glu
initial = 𝜔GABA

initial =
10−2 µmol−1, although it is not drawn in panel (a). 

2.3.7 Summary and generalization 
In summary, we established a biologically relevant exploration grid for (𝜔Glu; 𝜔GABA) to ensure 

that Glue covers the range [5; 15] µmol and GABAe spans [5; 35] µmol. The interplay between 

𝜔Glu and 𝜔GABA facilitates the network model’s exploration of diverse neuronal dynamical states. 

These states are characterized by stable periodic orbits with varying peak-to-peak amplitudes and 

α-band frequencies, along with distinctive excitatory and inhibitory activity patterns, contributing 

to a range of functional network architectures. 

It is important to note that the decisions regarding the LFP frequency band, the concentration limits 

for Glue and GABAe, and the initial state are all adaptable. For instance, the LFP frequency band 

could be modified by scaling parameters 𝐴, 𝑎, 𝐵, and 𝑏 (which define the neuronal postsynaptic 

potential impulse response functions), while maintaining the ratios 𝐴 𝑎⁄   and 𝐵 𝑏⁄  . Such 

adjustments leave singular points unaffected, as shown in Equation (2.9) and Figure 2.7, but they 

alter limit cycle frequencies through scaling. However, the biological realism of the resulting 

parameters may be questionable (for reference, see (Chehelcheraghi et al., 2016; David & Friston, 

2003)). Regarding the concentration ranges for Glue  and GABAe , these can also be varied, as 

partially demonstrated in Figure 2.3, by tweaking the parameters of the sigmoidal or Michaelis–
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Menten functions. Naturally, this would necessitate corresponding adjustments to the parameters 

of the uptake, release, and feedback functions to ensure consistency. 

 
Figure 2.7. Two-parameter bifurcation diagram for simulating β-band activity. This is analogous to the one shown in 

Figure 2.2 but with the following adjustment: 𝐴 = 6.5 mV , 𝑎 = 200 Hz , 𝐵 = 44 mV , and 𝑏 = 100 Hz . This 

adjustment involved doubling the values of 𝐴, 𝑎, 𝐵, and 𝑏 compared to those used in Figure 2.2. The purpose of this 

modification was to model β-band, rather than α-band, electrophysiological rhythms. For instance, in panel (c) the 

orbitally stable limit cycles that emerge from supercritical Hopf bifurcations exhibit frequencies around 21 Hz, 

indicative of β-band activity. 

2.4 Simulated time series 

2.4.1 Exotic scenarios 
In this section, we demonstrate through simulations the significant versatility that a 

gliotransmission mechanism can introduce to the classical dynamical landscape of the Jansen–Rit 

model. We focus on phase trajectories within a network model consisting of a single node that 

incorporates astrocytic network self-feedbacks, i.e., such that 𝛺Ast = (1). The simulations adhere 

to the parameter settings listed in Table 2.3, except where modifications are specified in Table 2.1. 
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It is important to recognize that various parameters within the neuronal compartment could be 

adjusted to reproduce the rhythms depicted in the subsequent simulations, even without 

incorporating an astrocytic compartment (refer to (Forrester et al., 2020; Garnier et al., 2015) for 

examples). Nonetheless, we contend that relying solely on neuronal compartment adjustments to 

achieve these dynamics could potentially compromise biological realism. Our approach, which 

integrates astrocytic influences through glutamatergic and GABAergic transmission systems, aims 

to maintain a closer alignment with neurobiological evidence and thus enhance the model’s 

biological plausibility. 

Table 2.1. Parameters used in this study to perform single node simulations. Parameters used to simulate phase 

trajectories within a network model consisting of a single node featuring astrocytic network self-feedbacks, i.e., such 

that 𝛺Ast = (1). This table exclusively lists parameters that deviate from those presented in Table 2.3, to highlight the 

adjustments made for this particular simulation setup. 

In Table 2.1, for simplicity and illustrative purposes, we set an extreme value for 𝑚GABA
Pyr

  (and 

𝑣0
Pyr

). As discussed in Section 2.3.2, the quantities S(GABAe, 𝑚GABA
Pyr

, 𝑣GABA
Pyr

, 𝑟GABA
Pyr

) and 𝑞 serve 

analogous roles when constructing bifurcation diagrams relative to 𝑝 , being essentially 

proportional. Thus, alternative pairs of 𝑚GABA
Pyr

 values and the mean of 𝑞 could be chosen to yield 

similar outcomes. 

As detailed in Section 2.3, the astrocytic compartment’s relative simplicity allows for the 

application of insights previously gained from the neuronal compartment. In this context, we 

consider scenarios in which the extracellular dynamics act as slowly changing subsystems that 

spontaneously drive the neuronal subsystem through various states (such as spiking, resting, and 

oscillatory; or rhythmic bursting, tonic spiking, total quiescence, and bursting oscillations). These 

dynamics do so while being largely unaffected by the fast-changing values within the neuronal 

subsystem. The term spontaneous is particularly significant, as it highlights that these dynamic 

transitions occur without any temporal changes in the parameters. 

Figure 2.8 presents a scenario with 𝜔Glu = 3.82 µmol
−1  and 𝜔GABA = 0.38 µmol

−1 . The 

bifurcation diagram in this figure aligns with that in Figure 2.2.b, and the classical Jansen–Rit 

model is represented at 𝑣Glu = 0 mV, corresponding to Glue = 10.0 µmol (refer to Figure 2.3 for 

comparison). In this setting, the neuronal populations primarily exhibit a normal oscillatory 

behavior, occasionally transitioning to a spiking regime for brief intervals. These transitions to 

spiking regimes represent dynamic fluctuations near a critical boundary between two distinct 

families of stable limit cycles. 

Name Value 

𝑣0
Pyr

 2.2 mV 

𝑊 7.8 µmol s⁄  

𝑍 59.0 µmol s⁄  

𝑚GABA
Pyr

 13.3 mV 

𝜔Pyr 0 

𝜔Glu See texts or figure captions 

𝜔GABA See texts or figure captions 
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Figure 2.9 illustrates a different scenario with 𝜔Glu = 3.81 µmol
−1 and 𝜔GABA = 0.49 µmol

−1. 

Unlike in Figure 2.8, the neuronal compartment does not predominantly stay in a normal 

oscillatory state but more frequently switches among normal oscillatory, spiking, and quiescent 

states. Notably, before shifting from normal oscillatory to spiking regimes, the neuronal 

populations momentarily enter quiescent phases, indicating that the neuronal compartment 

transitions to a lower manifold of stable singular points before encountering saddle-node on 

invariant cycle bifurcations. After entering spiking regimes, neuronal populations often revert to 

normal oscillatory states via fold bifurcations of limit cycles. 

These dynamics underscore the intricate interplay between neuronal excitatory and inhibitory 

firings and the astrocytic modulation of glutamate and GABA neurotransmission. Moreover, by 

selecting various parameter combinations (such as those defining release transfer functions and 

uptake rate functions), it is possible to influence the duration within specific dynamical regimes 

and the frequency and speed of transitions between them. 

 
Figure 2.8. Simulation of sporadic spontaneous spiking. This figure presents a scenario characterized by 𝜔Glu =
3.82 µmol−1 and 𝜔GABA = 0.38 µmol

−1. It includes time series plots for LFP, Glue, and GABAe over the interval [0; 

120] s. Additionally, the spectrogram for LFP is displayed for the same time interval, and the time series for 𝐸Pyr is 

illustrated for a specified period of interest. The bifurcation diagram corresponds to that shown in Figure 2.2.b. The 

three-dimensional grey rectangular region outlines the minimum and maximum values of the simulated phase 

trajectory (PT). 
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Figure 2.9. Simulation of spontaneous switches among normal oscillatory, spiking, and quiescent states. Similar to 

Figure 2.8, but in this scenario, 𝜔Glu = 3.81 µmol
−1 and 𝜔GABA = 0.49 µmol

−1 are used. 

Figure 2.8 and Figure 2.9 collectively demonstrate how neurotransmission, augmented by 

gliotransmission, introduces remarkable adaptability to the conventional dynamical landscape of 

the Jansen–Rit model. As discussed in Section 2.3, constraining 𝑣Glu  and 𝑝  (or 𝑣GABA ) within 

certain ranges and carefully choosing initial conditions are crucial for simulating normal 

oscillatory neuronal patterns. This modeling approach also opens new avenues for investigating 

physiological and pathological cortical activities, particularly epileptic patterns, from a neuron-

glial perspective, aligning with contemporary neuroscientific research efforts (for instance, see 

(Touboul et al., 2011; Volman & Bazhenov, 2019; Wendling & Chauvel, 2008)). 

2.4.2 Physiological scenario 
Figure 2.10 and Figure 2.11 display two simulations from a network model comprising 216 nodes, 

with the parameters set precisely as outlined in Table 2.3. The specifics of these simulations will 

be elaborated upon in the upcoming chapter. In line with the simulation framework discussed 

throughout Section 2.3, Figure 2.10 and Figure 2.11 demonstrate that the LFPs feature amplitude 

modulations at frequencies significantly lower than their primary peak frequencies, which are 

around 10.5 Hz. Furthermore, Glue and GABAe exhibit mean quasi-stationary slow fluctuations. 

These fluctuations are positively correlated, and mirror some aspects of the LFP envelopes (both 

upper and lower envelopes), indicating a complex interplay between neuronal and astrocytic 

activities within the network. 
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Figure 2.10. Physiological whole-brain network simulation bridging electrophysiology and neurotransmission. This 

figure illustrates a simulation with 𝜔Glu = 5.64 µmol
−1  and 𝜔GABA = 0.52 µmol

−1 , corresponding to whole-brain 

levels of 𝑣Glu and 𝑣GABA given by 𝑣Glu = −0.13 mV and 𝑣GABA = −0.49 mV. Panel (a) displays the neural activity 

within a specific region of the left precuneus cortex, while panel (b) focuses on a region within the left lateral occipital 

cortex (further details on the brain parcellation will be provided in the subsequent chapter). The time series are depicted 

for the interval between 50 and 70 seconds, with the black rectangular frame highlighting a zoomed-in view of the 

activity from 59 to 61 seconds. 

 
Figure 2.11. Physiological whole-brain network simulation bridging electrophysiology and neurotransmission. Similar 

to Figure 2.10, this figure represents a simulation with 𝜔Glu = 6.30 µmol
−1  and 𝜔GABA = 0.46 µmol

−1 , which 

corresponds to whole-brain levels of 𝑣Glu and 𝑣GABA given by 𝑣Glu = 0.04 mV and 𝑣GABA = 0.77 mV. 
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2.5 SI ― Tables 
Table 2.2. Variables and abbreviations. 

 

  

Name Description  

Pyr Population of pyramidal cells 

ExIn Population of excitatory interneurons 

InIn Population of inhibitory interneurons 

Ast Population of astrocytes 

Glu Glutamate 

GABA Gamma-aminobutyric acid 

𝐸Pyr Average excitatory postsynaptic potentials from Pyr to ExIn and InIn 

𝐸ExIn∪Pyr Average excitatory postsynaptic potentials from Pyr and ExIn to Pyr 

𝐸InIn Average inhibitory postsynaptic potentials from InIn to Pyr 

𝐽Glu Extracellular Glu release rate of Pyr 

Glue Extracellular Glu concentration 

GluAst Intracellular Glu concentration of Ast 

𝐽GABA Extracellular GABA release rate of InIn 

GABAe Extracellular GABA concentration 

GABAAst Intracellular GABA concentration of Ast 

𝐹Pyr Firing rate from Pyr 

𝐹ExIn Firing rate from ExIn 

𝐹InIn Firing rate from InIn 

𝑣Pyr Excitability threshold of Pyr 

𝑣ExIn Excitability threshold of ExIn 

𝑣InIn Excitability threshold of InIn 

𝑣Glu Excitability threshold offset induced by Glue on Pyr and InIn 

𝑣GABA Excitability threshold offset induced by GABAe on Pyr 

𝑄Pyr Neuronal network feedback on Pyr 

𝑄Glu
Ast Astrocytic network feedback inducing Glu release from Pyr 

𝑄GABA
Ast  Astrocytic network feedback inducing GABA release from InIn 
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Table 2.3. Parameters used in this study to perform the primary simulations. 𝒩: normal distribution; std: standard 

deviation; PSP: postsynaptic potentials; RTF: release transfer function. 

Name Description Value 

𝐴 Tuning parameter of excitatory PSP maximal amplitude 3.25 mV 

𝐵 Tuning parameter of inhibitory PSP maximal amplitude 22 mV 

𝑎 Reciprocal of time constant of excitatory PSP 100 s−1 

𝑏 Reciprocal of time constant of inhibitory PSP 50 s−1 

𝜈max Maximal neuronal firing rate 5 Hz 

𝑣0
Pyr

 Baseline excitability threshold of Pyr 4.3 mV 

𝑣0
ExIn Baseline excitability threshold of ExIn 6 mV 

𝑣0
InIn Baseline excitability threshold of InIn 6.2 mV 

𝑟 Neuronal excitability rate 0.56 mV−1 

𝑞 Baseline neuronal firing rate 𝒩(
mean = 240 Hz
std = 10 Hz

) 

𝐶Pyr→ExIn Nodal synaptic connection strength from Pyr to ExIn 135 

𝐶ExIn→Pyr Nodal synaptic connection strength from ExIn to Pyr 108 

𝐶Pyr→InIn Nodal synaptic connection strength from Pyr to InIn 33.75 

𝐶InIn→Pyr Nodal synaptic connection strength from InIn to Pyr 33.75 

𝐶Pyr→Pyr Nodal synaptic connection strength from Pyr to Pyr 0 

𝑊 Tuning parameter of Glu RTF gain 4.9 µmol s⁄  

𝑤r Reciprocal of rise time constant of Glu RTF 90 s−1 

𝑤d Reciprocal of decay time constant of Glu RTF 33 s−1 

𝑉Glu
e→Ast Maximal astrocytic Glu uptake rate 4.5 µmol s⁄  

𝑉Glu
e→Pyr

 Maximal neuronal Glu uptake rate 0.5 µmol s⁄  

𝑣Glu
e→Ast,Pyr

 Threshold parameter of Glu uptake rate sigmoid 9 µmol 

𝑟Glu
e→Ast,Pyr

 Rate parameter of Glu uptake rate sigmoid 0.5 µmol−1 

𝜏Glu
Ast Time constant of astrocytic Glu degradation 1/9 s 

𝑍 Tuning parameter of GABA RTF gain 50.6 µmol s⁄  

𝑧r Reciprocal of rise time constant of GABA RTF 90 s−1 

𝑧d Reciprocal of decay time constant of GABA RTF 33 s−1 

𝑉GABA
e→Ast Maximal astrocytic GABA uptake rate 2 µmol s⁄  

𝑉GABA
e→InIn Maximal neuronal GABA uptake rate 5 µmol s⁄  

𝐾GABA
e→Ast Michaelis–Menten concentration parameter for astrocytic 

GABA uptake rate 
8 µmol 

𝐾GABA
e→InIn Michaelis–Menten concentration parameter for neuronal 

GABA uptake rate 
24 µmol 

𝜏GABA
Ast  Time constant of astrocytic GABA degradation 1/9 s 
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Name Description Value 

𝑚Glu
Pyr

 Maximal excitability threshold induced by Glue on Pyr 0.8 mV 

𝑣Glu
Pyr,InIn

 Threshold parameter of nodal Glue feedback sigmoid 10 µmol 

𝑟Glu
Pyr,InIn

 Rate parameter of nodal Glue feedback sigmoid 0.5 µmol−1 

𝜇Glu
InIn Pyr⁄

 Maximal excitability threshold induced by Glue  on InIn 

divided by 𝑚Glu
Pyr

 

0.5 

𝑚GABA
Pyr

 Maximal excitability threshold induced by GABAe on Pyr 4.2 mV 

𝑣GABA
Pyr

 Threshold parameter of nodal GABAe feedback sigmoid 20 µmol 

𝑟GABA
Pyr

 Rate parameter of nodal GABAe feedback sigmoid 0.25 µmol−1 

𝜔Pyr Gain of neuronal network feedback 7.5 

𝜔Glu Diffusion coefficient for Glu-induced astrocytic network 

feedback on Glu release rates 

[2.90; 6.47] µmol−1 

𝜔GABA Diffusion coefficient for Glu-induced astrocytic network 

feedback on GABA release rates 

[0.14; 1.94] µmol−1 

𝑚Glu
Ast Maximal amplitude of Glu-induced astrocytic network 

feedback sigmoid 
4.5 µmol s⁄  

𝑣Glu
Ast Threshold parameter of Glu-induced astrocytic network 

feedback sigmoid 
9 µmol 

𝑟Glu
Ast Rate parameter of Glu-induced astrocytic network 

feedback sigmoid 
0.5 µmol−1 

𝛺Pyr Network connectivity weights between Pyr [0; 1] 

𝛺Ast Network connectivity weights between Ast [0; 1] 
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Chapter 3 Dialogue mechanisms between astrocytic and 
neuronal networks ― a whole brain modelling approach 

3.1 Thesis storyline 

This chapter builds on the rigorously parameterized network model established in the preceding 

chapter, exploring the impact of astrocytic networks on whole-brain activity and the emerging of 

functional connectivity patterns. 

3.2 Abstract 

Astrocytes, a major type of glia, possess assorted structural and functional properties making them 

inseparable from their neighbouring neurons. However, most published computational models of 

whole-brain activity, if not all, remain focused on neurons while ignoring astrocytes. We herewith 

introduce a biophysical model built upon neural mass network and compartmental modelling 

techniques, where large-scale astrocytic and neuronal networks couple their activity through 

glutamatergic and GABAergic transmission systems. We formulate a network scheme where 

neural dynamics are constrained by a two-layered structural network interconnecting either 

astrocytic or neuronal populations, and we ask how astrocytic networks contribute to whole-brain 

activity and emerging functional connectivity patterns. By developing a simulation approach based 

on bifurcation and multilayer network theories, we demonstrate that astrocytic and neuronal 

networks engage in a dialogue over fast and slow fluctuations or over phase-based and amplitude-

based network connectivity. Our study is a step forward for more thoroughly investigating the role 

of glia alongside neurons in health or disease conditions. 

3.3 Introduction 

Astrocytes are intimately associated with neurons (De Pittà, 2020; De Pittà & Berry, 2019). To 

begin, astrocytes of the tripartite synapse model (Figure 3.1.a) sense synaptically released 

neurotransmitters (e.g., glutamate and gamma-aminobutyric acid (GABA)) by various 

mechanisms (e.g., membrane receptors and transporters) and signal back to presynaptic and 

postsynaptic terminals by gliotransmission (e.g., of glutamate and GABA) (De Pittà, 2020; De 

Pittà & Berry, 2019). Moreover, astrocytes delimit nonoverlapping domains (Figure 3.1.a), each 

domain covering 0.3–2 million synapses potentially associated with multiple neurons (De Pittà, 

2020; Vasile et al., 2017). Finally, astrocytes form gap-junction-coupled syncytia (Figure 3.1.a) 

supporting intercellular communication through propagating calcium waves (Goldberg et al., 

2010; Kastanenka et al., 2020). Together, these three examples highlight that astrocytes are 

equipped with diverse structural and functional properties allowing them to modulate neuronal 

circuits actively, strategically, and profoundly (De Pittà, 2020; De Pittà & Berry, 2019; Fields et 

al., 2015; Kastanenka et al., 2020), and they suggest that astrocytes and their neighbouring neurons 

form one functional unit rather than separate functional entities (De Pittà, 2020; De Pittà & Berry, 

2019). Yet, despite them being potential signalling hubs in the neuropil, astrocytes have received 

limited attention in neurobiology compared to neurons (De Pittà, 2020; De Pittà & Berry, 2019; 

Fields et al., 2015; Kastanenka et al., 2020). Indeed, the bulk of empirical and theoretical 

neuroscientific studies have for long claimed they can explain many computational cerebral 

processes by examining neurons exclusively (De Pittà & Berry, 2019). To mitigate this (mostly) 

historical bias, a neuron-glial perspective has lately been proposed, prompting neuroscientists to 

revise current knowledge from a deeper mindset inclusive of glial cells (De Pittà & Berry, 2019) 

(see also (Marder, 2012) for a complementary perspective). The neuron-glial perspective aims at 
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describing the mutual dependence between neuronal and glial processes, which consists of the 

interplay between multiple signals elicited by neurons and glia at different spatiotemporal brain 

scales ranging from molecular to large-scale systems and from milliseconds to years (De Pittà, 

2020; Fields et al., 2015). Understandably, the perspective posits the brain to be best characterized 

within a framework where not only neurons and glia can have a mutual dialogue, but also the 

structure and function of neuronal circuits can be flexibly intertwined with that of glia. In practice, 

because neuron-glial interactions are inherently nonlinear and multiscale, computational 

modelling approaches are essential to comprehend them (De Pittà & Berry, 2019; Kastanenka et 

al., 2020). Be that as it may, the latest reviews highlight a definite lack of computational 

frameworks elaborating on the neuron-glial perspective remaining to date (De Pittà & Berry, 2019; 

Kastanenka et al., 2020), especially at the whole-brain scale, and this is where this paper 

contributes. 

We introduce a biophysical model of neuron-astrocyte large-scale network activity achieving a 

compromise between biological realism and mathematical tractability by building upon neural 

mass network and compartmental modelling techniques (Breakspear, 2017). In our network model, 

each node (i.e., brain region) has a temporal activity explained by a neuron-astrocyte mass model 

(Garnier et al., 2016) emulating regional activity elicited from neuronal and astrocytic populations 

mutually coupled through glutamatergic and GABAergic transmission systems, plus influences 

from stochastic fluctuations and distal regions. The distal influences are dictated by two types of 

network links, i.e., a two-layered structural network (Figure 3.1.b): one layer interconnecting 

neuronal populations from different regions and depicting white-matter tracts, and the other layer 

interconnecting astrocytic populations from different regions and depicting gap junctional 

densities. We formulate a simple large-scale network scheme whereby regional glutamate 

dynamics encourage adjacent astrocytic populations to couple their activity through a topology 

(based on gap junctional density) independent from that of neuronal populations (based on axonal 

density) which in turn leads to modulating whole-brain patterns of neuronal population firing rates 

via gliotransmission. We employ our model to theoretically investigate astrocytic network 

contributions to whole-brain activity and emerging functional connectivity patterns, through 

simulations, and bifurcation and multilayer network analyses (Figure 3.1.c–e). 

3.4 Model 

This section concisely lays out the fundamental principles of the mutual coupling between 

astrocytic and neuronal networks underlying our whole-brain model (see also the preceding 

chapter, Chapter 2 on page 92; the Chapter 2 mathematically details step-by-step how our network 

model can be analyzed and parameterized using techniques of simulation, bifurcation theory, and 

compartmental modelling; it graphically illustrates and discusses interesting dynamics that our 

network model supports). 

3.4.1 Neuron-astrocyte mass model 
The neuron-astrocyte mass model extended the work of (Garnier et al., 2016). It described the 

coarse-grained temporal activity of four coupled homogeneous populations of neural cells, namely 

glutamatergic pyramidal neurons (Pyr ), excitatory interneurons (ExIn ), GABAergic inhibitory 

interneurons ( InIn ), and astrocytes (Ast ). Two high-level interactions between the different 

populations were expressed. On the one hand, neuron-neuron interactions which were abstracted 

to the dendro-somatic transformation of population firing rates (𝐹Pyr, 𝐹ExIn, and 𝐹InIn) into average 

membrane potentials (𝐸Pyr, 𝐸ExIn∪Pyr, and 𝐸InIn) and vice-versa (Equations (2.1) and (2.2)). On 
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the other hand, neuron-astrocyte interactions which were abstracted to the concurrent synaptic 

releases and uptakes of neurotransmitters from and to an extracellular space (e). The two major 

excitatory and inhibitory neurotransmitters, namely glutamate (Glu) and GABA, respectively, 

were considered (Equations (2.3) and (2.4)). Glutamate release (𝐽Glu) was driven by pyramidal 

neurons firing-rate activity (𝐹Pyr ) while GABA release ( 𝐽GABA ) was driven by inhibitory 

interneurons activity (𝐹InIn). Extracellular glutamate (Glue) uptakes were predominantly astrocytic 

while neurons had small but non-negligible contributions, while extracellular GABA (GABAe ) 
uptakes were predominantly neuronal while astrocytes played a secondary role. Besides, following 

uptakes, neurotransmitters were degraded within astrocytes (expressed in GluAst and GABAAst in 

Equations (2.3) and (2.4)). Of importance, and at the heart of this model, a dependency between 

extracellular neurotransmitter concentrations and neuronal firing rates was formulated based on 

the excitability level of the targeted neuronal populations (Equation (2.5)). This dependency was 

expressed in two ways in the model: on the one hand, an increase in Glue mainly resulting in the 

bounded (possibly transient) decrease of the excitability thresholds for both pyramidal cells and 

inhibitory interneurons, and conversely; on the other hand, an increase in GABAe mainly resulting 

in the bounded (possibly transient) increase of the excitability threshold for pyramidal neurons, 

and conversely. Altogether, since all processes could happen concurrently, complex competitions 

took place between neuronal excitatory and inhibitory firings, and neuron-astrocyte uptakes and 

releases of neurotransmitters. These competitions in turn yielded a rich dynamic repertoire with 

different timescales at play. 

3.4.2 Network extension for the neuronal compartment 
Following common practices (Breakspear, 2017), we assumed excitatory neuronal 

interconnections between pyramidal cell populations exclusively (Equation (2.6)), and we used 

empirical diffusion magnetic resonance imaging (MRI) data to reconstruct white-matter tracts (see 

also “Defining structural layers” in Methods) and define the neuronal structural constraints (i.e., 

parameter matrix 𝛺Pyr). The network interaction terms were specified as a linear combination of 

incoming firing rates (𝑄Pyr) where weights were coded in 𝛺Pyr, and a global coupling parameter 

𝜔Pyr controlled the relative contributions of 𝛺Pyr to nodal dynamics. 

3.4.3 Network extension for the astrocytic compartment 
Because experimental data for whole-brain modelling are lacking to date, we formulated a 

preliminary astrocytic network coupling model (see also the last paragraphs of Section 2.2 in 

Chapter 2). Concerning the astrocytic structural constraints (i.e., parameter matrix 𝛺Ast ), we 

extrapolated the notion of a gap-junction-coupled syncytial organization for astrocytes (Fields et 

al., 2015; Goldberg et al., 2010; Vasile et al., 2017). We did so by modelling 𝛺Ast as a lattice-like 

network encoding physical proximity, where an astrocytic population within a region only 

connected to other astrocytic populations within the regions of its first neighbourhood along the 

cortical mantle, with weights given by geodesic distance reciprocals between region mass centers. 

Concerning astrocytic network feedback, we extrapolated the notions of glutamate 

neurotransmission mediating intercommunication flows between astrocytes, and excitatory 

gliotransmission acting on pre-terminal neuronal receptors. We did so by specifying linear 

interaction terms expressing astrocytic network modulations of nodal neuronal glutamate (𝑄Glu
Ast) 

and GABA (𝑄GABA
Ast ) release rates where weights were distributed according to 𝛺Ast (Equations 

(2.3), (2.4), and (2.7)), and where two global coupling parameters 𝜔Glu and 𝜔GABA controlled the 

relative contributions of 𝛺Ast to nodal dynamics. 



120 

 

3.5 Results 

3.5.1 Analyses overview 
We were interested in quantifying astrocytic network contributions to neuron-astrocyte network 

activity and emerging functional connectivity patterns. Accordingly, we systematically varied two 

global parameters controlling the strength of relative contributions of astrocytic network activity 

to modulate glutamatergic (𝜔Glu ) and GABAergic (𝜔GABA ) neurotransmissions (Figure 3.1.c). 

When defining an exploration grid for (𝜔Glu; 𝜔GABA) , we adopted a criterion set so that 

empirically concrete model outputs such as LFP = 𝐸ExIn∪Pyr − 𝐸InIn , Glue , and GABAe , would 

exhibit some key features (mostly qualitative) of real-world “normative” resting-state human data 

(see also “Constraining dynamical regimes” in Methods). Namely, we specified constraints so that 

LFP dynamics would depict waxing-and-waning oscillations with peak frequencies between eight 

and 13 hertz (i.e., a so-called electrophysiological α-band) while underlying amplitude and phase 

network synchronizations, and so that Glue and GABAe would depict mean-quasi-stationary slow 

fluctuations. Ultimately, we defined 1225 unique pairs (𝜔Glu; 𝜔GABA) and repeated ten times for 

each pair a network simulation of 120 seconds duration based on 216 nodes (see also “Simulation 

scheme” in Methods). We analyzed both neuron-astrocyte network activity and connectivity and 

developed a bifurcation-based computational approach to interpret results (Figure 3.1.d–e). To 

analyze activity (see also “Neuron-astrocyte network activity analysis” in Methods), we derived 

whole-brain quantities and spatial patterns of regional temporal standard deviations. To analyze 

connectivity (see also “Neuron-astrocyte functional network connectivity analysis” in Methods), 

we reconstructed a four-layered interconnected multiplex functional network from each simulated 

whole-brain activity (using the identity matrix as inter-layers and) such that each intra-layer 

encoded: α-band-limited phase-locking values (i.e., a similarity measure between instantaneous 

phases) or amplitude envelope Pearson-correlations of LFP dynamics (LFP-PLV or LFP-AEC), or 

Person-correlations of Glue or GABAe dynamics (Glue-C or GABAe-C). 

3.5.2 Neuron-astrocyte network activity analysis 
Figure 3.2.a maps whole-brain Glue or GABAe levels against (𝜔Glu; 𝜔GABA), showing that 𝜔Glu 

increases (independently of 𝜔GABA) were associated with Glue and GABAe increases while 𝜔GABA 

increases (independently of 𝜔Glu) were associated with Glue decreases and GABAe increases (see 

also Section 3.13.1 which further explains the links between the simulation parameters (𝜔Glu and 

𝜔GABA ) and the empirically concrete state-variables (Glue  and GABAe )). Of importance, these 

mappings revealed that each simulation defined by (𝜔Glu; 𝜔GABA)  could unambiguously be 

identified by (Glue; GABAe), facilitating direct mappings of LFP features against (Glue; GABAe) 
and thereby providing a pragmatical discourse of the relationships between membrane potential 

and neurotransmitter dynamics. Figure 3.2.b shows that LFP  peak–peak amplitude and peak 

frequency variation patterns were mostly monotonic along either the Glue-axis or GABAe-axis, 

with maximum (or minimum) peak–peak amplitude and minimum (or maximum) peak frequency 

when Glue  and GABAe  were both maximum (or minimum), while exhibiting local extrema at 

intermediate Glue and GABAe levels. A bifurcation analysis, as illustrated in Figure 3.2.c, revealed 

that the network model was approaching spiking regimes at high Glue and GABAe values (thereby 

explaining the increasing peak–peak amplitude and decreasing peak frequency trends), while the 

local extrema distributions were explained by contours of limit cycle peak–peak amplitudes as 

well as a drastic change in network homogeneity due to stochastic motions (see also Sections 3.13.2 

and 3.13.3; Section 3.13.2 further clarifies the links between features of membrane potential 

dynamics and bifurcation diagram; Section 3.13.3 further describes the links between 
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neurotransmission and amplitude modulations of bioelectrical neuronal activity). Ultimately, 

Figure 3.2 highlights dependencies between features of network activity and bifurcation diagram, 

and such dependencies were additionally captured by a clustering analysis of the simulation 

parameter plane based on a Gaussian mixture model with predictors given by regional temporal 

standard deviations (std) of LFP, Glue, and GABAe. Figure 3.3.a shows four clusters (essentially 

spatially contiguous) primarily delineated by contours of limit cycle 𝐸InIn peak–peak amplitudes, 

and Figure 3.4 illustrates the corresponding cluster means. For example, Figure 3.4 shows that (i) 

within all clusters, LFP -std patterns were different from Glue -std or GABAe -std patterns, while 

Glue -std and GABAe -std patterns were nearly identical, and whole-brain LFP -std values were 

higher than Glue-std or GABAe-std values; (ii) within cluster #1, LFP-std values were minimum 

within precuneus regions and distributed roughly uniformly elsewhere, while Glue -std and 

GABAe-std values were maximum within occipital lobe regions and distributed roughly uniformly 

elsewhere; (iii) across clusters #2–4, precuneus and superior parietal cortices were consistently 

distinguished from the rest of the brain, and notably from lateral occipital, middle frontal, or 

temporal cortices. In sum, Figure 3.3.a and Figure 3.4 demonstrate that the simulated whole-brain 

dynamics were spatiotemporally shaped diversely across the activity types (i.e., LFP , Glue , or 

GABAe ) and simulation parameter plane (see also Sections 3.13.4 and 3.13.5; Section 3.13.4 

provides complementary results of the clustering analysis; Section 3.13.5 exposes the biophysics 

of spatial patterns of temporal standard deviations). 

3.5.3 Neuron-astrocyte network connectivity analysis 
Figure 3.5 maps four global topological properties of multilayer functional networks (i.e., 

clustering coefficient, path length, edge overlap, and code length) against (Glue; GABAe), showing 

local extrema and otherwise monotonic trends consistent with contours of limit cycle 𝐸Pyr peak–

peak amplitudes (see also Section 3.14.1 for complementary global topological multilayer network 

properties). The dependencies between features of network connectivity and bifurcation diagram 

were further captured by a clustering analysis of the simulation parameter plane based on a 

Gaussian mixture model with predictors given by the global topological measures of clustering 

coefficient, path length, edge overlap, and code length. Figure 3.3.b shows four clusters (quasi-

identical to the clusters of Figure 3.3.a, although delineated by contours of limit cycle 𝐸Pyr peak–

peak amplitudes) where cluster #2 mostly captured local extrema (see also Section 3.14.2 for 

complementary results of the clustering analysis), and Figure 3.6 illustrates one multilayer network 

in each cluster. For example, Figure 3.6 shows that (i) within all clusters, PLV-based layers featured 

connectivity patterns less pronounced than in correlation-based layers and vice-versa, such as 

short-range or frontal-cingulate-parietal-insula connections instead of long-range or parietal-

occipital-temporal connections; (ii) within all clusters, Glue -C and GABAe -C layers generally 

portrayed highly similar connection densities, slightly differing from LFP-AEC layers and greatly 

differing from LFP -PLV layers; (iii) across all clusters, connection densities, centralities, and 

communities differed. In sum, Figure 3.3.b and Figure 3.6 demonstrate that the simulated whole-

brain dynamics supported diverse network topologies across the connectivity types (i.e., LFP-PLV, 

LFP-AEC, Glue-C, or GABAe-C) and simulation parameter plane (see also Section 3.14.3 which 

further elucidates the links between phase-based and amplitude-based network connectivity 

patterns). To additionally highlight (connectivity) layer distinctiveness, a structural reducibility 

analysis was performed across all simulations, providing for each simulation an optimal multilayer 

network where the layers providing redundant topological information were merged. Such analysis 

resulted in no merging for about half of the simulations (48.1%) while for the remaining 
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simulations: all correlation-based layers were merged (31.7%), some (but not all) correlation-based 

layers were merged (17.5%), or PLV-based plus some (but not all) correlation-based layers were 

merged (2.7%). Importantly, investigating the set of reduced networks provided similar 

conclusions to the set of full networks (see also Sections 3.14.2 and 3.14.4 for complementary 

results of the structural reducibility analysis). 

3.6 Discussion 

Neuron-glial research over the past three decades has been revolutionary (De Pittà & Berry, 2019), 

to say the least. Collectively, it suggests that glia (e.g., microglia, oligodendrocytes, astrocytes) 

possess assorted structural and functional properties making them inseparable from their 

neighbouring neurons (De Pittà & Berry, 2019), and to go a step further, glia are pivotal modulators 

of brain physiology and pathology (Kugler et al., 2021), even superseding neurons as a health or 

disease focus in multiple scenarios (Liddelow & Sofroniew, 2019; Volman & Bazhenov, 2019). 

Nevertheless, despite extensive investigations, neuron-glial research has yet to flourish as the 

question of what the role of glia in health or disease conditions is, alongside neurons, still lingers 

today (Barres, 2008; De Pittà & Berry, 2019). Hereunto, many authors have communicated the 

dire need for computational frameworks to be able to address such a fundamental decades-old 

question (De Pittà & Berry, 2019; Kastanenka et al., 2020). 

In this paper, we introduced a dynamical model of whole-brain activity where neuronal and 

astrocytic networks engage in a bidirectional dialogue, and we simulated a network scheme of 

gliotransmission. We determined that astrocytic networks, via gliotransmission, could not only 

induce diverse spatially structured neuronal dynamical states (characterized on LFP) coinciding 

with distinct spatially structured profiles of excitatory and inhibitory activities (probed by Glue 
and GABAe ), but also induce various multilayer functional network topologies (reconstructed 

using PLV and Pearson-correlations) shaped by complex interactions between fast and slow 

dynamics. All in all, we determined that astrocytic networks biologically enrich the simulation and 

interpretation of whole-brain activity and connectivity patterns. 

Regarding our investigation of whole-brain activity (see also Section 3.13 for an in-depth 

discussion), analyzing the links between Glue, GABAe, and LFP patterns suggested that balanced 

excitatory and inhibitory neurotransmitter dynamics (being ruled by a competition between 

neuron-astrocyte uptake and release processes) were likely modulatory components of membrane 

potential dynamics (e.g., being reflected in their amplitude envelope fluctuations). Such findings 

deserve to be highlighted because it has long been appraised that multiple transmitters and 

modulators act in concert, synaptically and extra-synaptically, to shape the properties of neural 

circuits, with the ability to massively alter their output (Del Guerra et al., 2018; Diao et al., 2017; 

Kringelbach et al., 2020; Marder, 2012; Pacholko et al., 2020; Pierce et al., 2021; Shine, 2019; 

Shine et al., 2019). Thus, besides extending excitation-inhibition balance frameworks (Sohal & 

Rubenstein, 2019), our network modelling approach of neuron-glial interactions provides a novel 

computational way to investigate the biochemical basis of whole-brain dynamics at the 

neuroimaging data scale (Del Guerra et al., 2018; Diao et al., 2017; Kringelbach et al., 2020; 

Marder, 2012; Pacholko et al., 2020; Pierce et al., 2021; Shine, 2019; Shine et al., 2019). For 

example, our methodology could allow exploring the neuron-glial regulatory mechanisms of 

glutamatergic and GABAergic transmission systems underpinning the neuroimaged coupling 

between electrophysiological and hemodynamic rhythms (Betina Ip et al., 2017; Brookes et al., 

2011; Logothetis et al., 2001). 
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As to our investigation of whole-brain connectivity (see also Section 3.14 for an in-depth 

discussion), analyzing the links between phase-based and amplitude-based network connectivity 

patterns suggested that they were sensitive to distinct and complementary spatiotemporal 

phenomena. Such findings call attention to frameworks able to comprehensively account for 

multiple connectivity channels, such as multilayer network modelling (De Domenico, 2017; 

Hallett et al., 2020; Tewarie et al., 2016, 2019), to appropriately characterize dynamical network 

systems. On this topic, it is noteworthy that although we employed multilayer network modelling 

mainly as an illustrative framework in this paper, our paper could easily be extended for a more 

rigorous characterization of complex brain networks as well as for a deeper understanding of 

emerging functional connectivity patterns (see also the last two paragraphs of Section 3.14.3 for a 

complementary discussion on multilayer functional network analyses). For example, our 

modelling approach permits us to motivate, formalize, and investigate the notion of coupled 

multilayer functional networks under multilayer structural network constraints (since our network 

model assumed that a two-layered structural network dictated whole-brain dynamics). 

Along these lines, it is worth highlighting how the relative simplicity of our whole-brain model 

allowed us to employ bifurcation analyses to characterize dynamic features of network activity 

and connectivity that are driven by stochastic motions (see also (Forrester et al., 2020)). As we 

have shown, using bifurcation analysis better shapes our biophysical understanding of the interplay 

between compartments, dynamics, structural constraints, and emerging functional connectivity 

patterns. On that note, it was interesting to see the potential of clustering procedures to be 

particularly sensitive to bifurcation phenomena (see also Section 3.13.4 and 3.14.2), thereby 

providing a novel way to understand dynamical behaviours without necessarily employing 

stochastic bifurcation theory per se. 

More generally, our emphasis is that glial cells must be an integral piece of biophysical models of 

whole-brain activity because of their intimate and active partnerships with neurons (De Pittà & 

Berry, 2019; Kastanenka et al., 2020). In such a neuron-glial perspective, our paper could be seen 

as a step forward to potentially elucidating decades-old unresolved (neuron-glial) questions 

through computational means whereby real-world experiments and computational modelling 

complement and guide each other (De Pittà & Berry, 2019; Kastanenka et al., 2020). For example, 

reliable experimental evidence that neuron-glial assemblies may be regarded as dynamic discrete 

brain systems governed by function-specific regimes, or a definitive experimental connection 

between glial signalling and higher brain functions, are both still missing and must be established 

(De Pittà & Berry, 2019; Kastanenka et al., 2020). In this case, it is useful to adopt a type of a 

(whole-brain) modelling approach (complementing empirical experiments) where the detailed 

neurophysiology of individual cells is not captured, but instead, collective neural activity is 

described in precise mathematical laws across different layers of abstractions from fully 

phenomenological to fully exact according to physics first principles (Breakspear, 2017). The 

underlying hypothesis of such modelling is that movement, cognition, and perception arise from 

the collective activity of neural cells within cortical circuits and across large-scale brain systems 

(Breakspear, 2017). 

In practice, because we adopted a compartmental modelling approach, many existing neuronal 

models (e.g., see (Breakspear, 2017)), especially those based on population firing rates (e.g., see 

(Chehelcheraghi et al., 2016; Coombes & Byrne, 2016; Liley, 2015), could be upgraded with an 

astrocytic compartment without losing previously acquired knowledge. As a proof of concept, we 

designed our methodology by first showing that there were broad biophysical principles which, 
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when adopted, would allow qualitatively reproducing many features of real-world data (see also 

Chapter 2). Overall, this is an interesting modelling approach because it allows us to capture 

different facets of whole-brain activity conveniently and cohesively (since different neuronal 

(Breakspear, 2017; Chehelcheraghi et al., 2016; Coombes & Byrne, 2016; Griffiths et al., 2022; 

Liley, 2015) or glial (De Pittà, 2020; De Pittà & Berry, 2019; Manninen et al., 2019) compartments 

often intrinsically feature distinct and complementary biophysical processes). However, in such a 

compartmental modelling scheme, although different compartments could be swapped at will to 

capture precise phenomena or achieve a desired realism level, the bidirectional coupling between 

neuronal and astrocytic populations would always require a careful formulation. Besides, it is 

noteworthy that in studies mainly targeting neuroimaging data, it remains unclear how versatile or 

realistic models must be and what data are needed or sufficient to constrain these models 

(Breakspear, 2017; Hallett et al., 2020). 

Indeed, the extent to which models of large-scale network dynamics are amenable to validation 

based on neuroimaging data primarily and critically depends on the state of empirical data analyses 

which is yet to flourish (Breakspear, 2017; Hallett et al., 2020). For example, because empirical 

methods allowing the simultaneous recordings of whole-brain or population neuronal and glial 

activity are lacking (Kastanenka et al., 2020), we must lean towards datasets (possibly unimodal) 

indirectly reflecting neuron-glial activity such as blood-oxygen-level-dependent functional MRI 

or non-invasive electrophysiological data (Breakspear, 2017). However, there are generic 

methodological challenges in making such empirical data comparable with model outputs because 

they require the specification of forward or inverse models (Breakspear, 2017; Palva et al., 2018; 

Sadaghiani et al., 2022; Sotero & Trujillo-Barreto, 2008; Valdes-Sosa et al., 2009). Besides, in our 

neuron-glial context, such mapping schemes to empirically constrain model outputs remain 

ambiguous until further research is carried out to reinterpret the acquired datasets using a 

perspective inclusive of glial cells (Figley & Stroman, 2011; Lu et al., 2019; Magistretti & 

Allaman, 2015). Within a glial context, it is also important to note the technical and analytical 

shortage in astrocytic population imaging (Kastanenka et al., 2020). Nevertheless, calcium 

dynamics being considered the primary candidate substrate for astrocytic-based computations in 

the brain (Kastanenka et al., 2020), it could potentially be used to partially constrain model outputs. 

In this regard, many proposed theoretical models (Manninen et al., 2019) could help either derive 

a phenomenological link or extend our model at the population level to include an explicit 

biophysical description of astrocytic calcium dynamics. Leaving aside the discussion of model 

outputs, the way astrocytic populations may structurally interconnect and the spatial heterogeneity 

of neuron-astrocyte populations across the whole brain remain to be (empirically) established as 

well (see also Section 3.12.4 for a complementary discussion on the structural layers of dynamical 

models of whole-brain activity). In this respect, moleculo-cellular atlases such as the BigBrain 

(Amunts et al., 2013) or Allen Human Brain Atlas (Arnatkevic̆iūtė et al., 2019) could be 

systematically exploited together with PET or MRI data (Figley & Stroman, 2011; Lu et al., 2019; 

Magistretti & Allaman, 2015), or invasive electrophysiological data (Frauscher, Von Ellenrieder, 

et al., 2018). 

3.7 Conclusion 

We extended a previously published neuron-astrocyte mass model (Garnier et al., 2016) by 

proposing biophysical ways in which astrocytic network dynamics could modulate neuronal 

network dynamics and vice-versa, and we illustrated that integrating astrocytes within a 

computational model of whole-brain dynamics biologically enriches whole-brain activity and 
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connectivity patterns. Our proposed framework expands widely. For example, our modelling 

perspective has the potential of generating novel hypotheses of glial contributions to observed 

neuroimaging signals in the aging or diseased brain, when decoupling between neuron-glial 

compartments occurs. We assume that during aging, large-scale brain networks exhibit signs of 

disrupted neuron-glial processes that render the aging brain vulnerable to many neurodegenerative 

disorders (Ahmed et al., 2016; Hallett et al., 2020; Mattson & Arumugam, 2018). Hence, we could 

envision different biologically inspired scenarios of impaired neuron-glial network interactions 

and assess the degree to which glial signalling may render ambiguous the detections and 

interpretations of neuronal activity and processes. For another example, our modelling perspective 

could be key in better re-examining structure-function-metabolism couplings (Giaume et al., 2010; 

Magistretti & Allaman, 2015; Scimemi, 2019; Suárez et al., 2020) where we put forth a neuron-

glia-vascular network perspective which entails adding vascular compartments (Blanchard et al., 

2016) and a third structural layer to represent vascular pathways (M. Bernier et al., 2018). We 

assume that observed functional activity and connectivity patterns are the results of neural 

signalling that not only dynamically evolves on a relatively fixed multilayer (i.e., multi-cellular) 

structural network topology, but is also spatiotemporally shaped by a metabolic landscape. We 

envision that our perspective would help to explain the seemingly unresolvable imperfect matching 

between structural and functional connectivity (Suárez et al., 2020), as well as to reconcile many 

undertaken studies over the past decades which have mostly focused on neuronal (white-matter) 

pathways or vascular pathways in isolation (Schmahmann et al., 2008; Sweeney et al., 2018). 

3.8 Methods 

3.8.1 Constraining dynamical regimes 
When defining an exploration grid for (𝜔Glu; 𝜔GABA) , we adopted a set of criteria so that 

empirically concrete model outputs such as local field potential (LFP = 𝐸ExIn∪Pyr − 𝐸InIn), Glue, 

and GABAe  would exhibit some key features (mostly qualitative) of real-world “normative” 

resting-state human data. Briefly, the criteria ensured that (i) LFP dynamics would resemble α-

band electrophysiological recordings (i.e., [8; 13] Hz) (Sadaghiani et al., 2022) underlying 

amplitude and phase network synchronizations, while (ii), neurotransmitter uptake and release 

rates would balance each other in a way that Glue and GABAe dynamics could be portrayed as 

mean-quasi-stationary slow fluctuations. In more detail, our parametrization strategy critically 

exploited two ingredients: on the one hand, consensual physiologically plausible parameter sets 

from the literature (see also Table 2.3 in Chapter 2), and on the other hand, a former bifurcation 

analyses of the neuron-astrocyte mass model (Garnier et al., 2016) (see also Sections 2.3.1 and 

2.3.2 in Chapter 2). These ingredients allowed us to (i) identify concentration intervals for Glue 
(i.e., [5; 15] µmol) and GABAe (i.e., [5; 35] µmol) where the neuronal compartment would be 

particularly sensitive to their modulatory impacts (see also Sections 2.3.3 and 2.3.4 in Chapter 2); 

(ii) restrict the neuronal compartment to solely explore self-sustaining stable oscillatory regimes 

with fundamental frequencies within [8; 13] Hz and with moderate peak–peak amplitudes (see also 

Sections 2.3.3 and 2.3.5 in Chapter 2); (iii) specify an initial stable dynamical state (i.e., a stable 

initial state in the vicinity of a branch of supercritical Hopf bifurcation points) where the network 

model would exhibit baseline noise-modulated oscillatory activity (see also Section 2.3.5 in 

Chapter 2); (iv) determine a value for 𝜔Pyr (i.e., 𝜔Pyr = 7.5) that would guarantee the occurrence 

of amplitude and phase network synchronizations (see also Section 2.3.5 in Chapter 2); and (v) 

define pairs of values for (𝜔Glu; 𝜔GABA)  (i.e., 𝜔Glu ∈ [2.90; 6.47] µmol
−1  and 𝜔GABA ∈

[0.14; 1.94] µmol−1 ) so that variations in Glue and GABAe would remain in their pre-specified 
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bounds (see also Section 2.3.6 in Chapter 2 as well as Section 3.10). Altogether, these constraints 

are what allowed the network model to visit, with respect to (𝜔Glu; 𝜔GABA), a variety of neuronal 

dynamical states characterized by stable limit cycles with different peak–peak amplitudes and 

frequencies, as well as distinct profiles of excitatory and inhibitory activities, and a variety of 

functional network architectures. It is noteworthy that these choices regarding the LFP frequency 

band, the concentration bounds for Glue  and GABAe , and the initial state, were all easily 

generalizable but at the expense of the physiological plausibility of the neuronal compartment 

parameters (see also Section 2.3.7 in Chapter 2). 

3.8.2 Defining structural layers 
Empirical magnetic resonance imaging (MRI) data were used to define the two structural 

connectivity matrices of our model, i.e., 𝛺Pyr  interconnecting neuronal populations and 𝛺Ast 

interconnecting astrocytic populations. For both matrices, the (anatomical) Lausanne-2018 

surface-based atlas (Tourbier et al., 2022) scale three with 216 cortical parcels was used to 

constrain the connectivity estimates (see also Section 3.11). 

To define 𝛺Pyr (see also Section 3.12.1), we run a state-of-the-art tractography-based connectome 

reconstruction pipeline on the minimally preprocessed diffusion and structural MRI data of ten 

subjects of the Human Connectome Project Young Adult dataset (Glasser et al., 2013; Van Essen 

et al., 2013). The pipeline was designed to address specifically the streamline-termination and 

streamline-quantification biases of tractography (C. H. Yeh et al., 2021) by building upon (i) 

Tractoflow (Theaud et al., 2020), which is an efficient diffusion MRI processing pipeline, (ii) 

Surface-Enhanced Tractography (St-Onge et al., 2018), which is a surface-based tractography 

strategy recently proposed to address streamline termination biases, and (iii), a variant of convex 

optimization modelling for microstructure informed tractography, i.e., COMMIT-2 (Schiavi et al., 

2020), which is a quantitative tractogram-filtering and streamline-weighting procedure based on 

microstructural and anatomical constraints. The pipeline was run on each subject separately, 

providing quantitative connectomes whereby a weight depicted an anatomo-microstructural-

reflecting measure of connectivity strength. 𝛺Pyr was computed as the mean of the connectomes 

taken across subjects (see also Section 3.12.3). 

To define 𝛺Ast (see also Section 3.12.2), we used a high-resolution tessellation of the mid-surface 

(i.e., the mid-point between the white and pial surfaces) of the ICBM-2009c-asymmetric template 

(Fonov et al., 2011), reconstructed thanks to FreeSurfer (Fischl, 2012). A weight between any two 

adjacent parcels was calculated as the inverse of the geodesic distance between parcel mass 

centers. Thus, 𝛺Ast described a lattice-like network depicting the geometrical embedding of the 

brain, where a node connected only to its first neighbourhood along the cortical mantle, and where 

an edge coded physical proximity (see also Section 3.12.3). We acknowledge that using geodesic 

distances amounts to a coarse approximation of the paths of astrocytic interactions (through gap 

junctional densities). However, it provides us with a global neuron-astrocyte structure (informed 

by the geometry of the brain) underlying dynamics that can be heuristically understood with the 

analyses of the nodal model. 

Before the simulations, 𝛺Pyr and 𝛺Ast had their diagonal set to zero and they were normalized 

such that coefficients sum to one on each row (i.e., they each were made right stochastic). Doing 

so ensured that any network node would receive network inputs with commensurate magnitudes. 
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3.8.3 Simulation scheme 
The simulation parameter plane defined by (𝜔Glu; 𝜔GABA) was sampled non-uniformly to account 

for the non-linear dependence between glutamate and GABA dynamics so that whole-brain Glue 
and GABAe levels would remain within [5; 15] µmol and [5; 35] µmol, respectively. In total, 1225 

unique pairs (𝜔Glu; 𝜔GABA) were specified, and they conveniently allowed the uniform sampling 

of a grid defined by whole-brain (Glue; GABAe) or (𝑣Glu; 𝑣GABA) levels (see also Section 3.10). 

The equations governing the time evolution of our network model formed a system of coupled 

stochastic differential equations. This system was numerically integrated using an in-house 

MATLAB (version R2022a (MATLAB, 2022)) implementation of a stochastic Heun’s integration 

scheme. 

Simulations of 120 seconds were performed ten times for each pair (𝜔Glu; 𝜔GABA) , thereby 

providing ten simulation batches, and each time, the initial states together with the neuronal 

stochastic inputs (i.e., 𝑞[∙] ) were different. To minimize biases due to transients, the following 

procedure was adopted. First, before any of the ten simulation batches, a single (i.e., calibrated) 

simulation of 370 seconds was run for each pair (𝜔Glu; 𝜔GABA). Then, each calibrated simulation 

was visually checked to ensure that steady states were reached in the last ten seconds. Finally, for 

each pair (𝜔Glu; 𝜔GABA), the last ten seconds of the corresponding calibrated simulation were used 

to define (random) initial states for all subsequent ten simulation batches. In the end, 10×1225 

simulations in total, of two minutes each, were retained for analyses (see also Section 3.10). 

3.8.4 Neuron-astrocyte network activity analysis 
For each pair (𝜔Glu; 𝜔GABA) in any of the ten simulation batches, whole-brain values were derived 

as follows. (i) A whole-brain value of LFP  peak–peak amplitude was defined as the mean of 

regional values, while (ii) a whole-brain value of LFP peak frequency was determined from the 

mean of regional Welch’s power spectral density estimates, and (iii) a whole-brain value of Glue 
or GABAe (as well as 𝑣Glu or 𝑣GABA) was computed as the mean of regional temporal means. These 

whole-brain quantities were analyzed specifically because they naturally portrayed our hypothesis 

that our network model could visit, with respect to (𝜔Glu; 𝜔GABA), a variety of neuronal dynamical 

states characterized by stable limit cycles with different peak–peak amplitudes and frequencies, as 

well as distinct profiles of excitatory and inhibitory activities (see also Section 2.4 in Chapter 2). 

Graphing any of the whole-brain values against (𝜔Glu; 𝜔GABA)  or (Glue; GABAe)  was done by 

first performing a scattered two-dimensional natural neighbour interpolation based on Delaunay 

triangulations (MATLAB’s scatteredInterpolant function) for each simulation batch, and then 

taking the mean of the interpolated graphs across simulation batches. Since whole-brain values of 
(Glue; GABAe) were largely unchanged across simulation batches, the mean of interpolated graphs 

was found to be quasi-identical to the individual graphs. 

Hard clustering analyses were performed with a Gaussian mixture model (MATLAB’s fitgmdist 

function). Data variables consisted of the regional temporal standard deviations of LFP, Glue and 

GABAe  dynamics (i.e., 216×3 predictors) while data observations consisted of the different 

simulations (i.e., 10×1225 observations). Spatial profiles of temporal standard deviations were 

scaled between zero and one independently for LFP, Glue and GABAe, and independently for each 

simulation (see also Section 3.13.4). The Gaussian mixture model was used to explicitly account 

for the natural spatial covariance in the data across simulations and the ensuing heterogeneity in 

cluster shapes and sizes. Accordingly, when fitting the model, we specified a full covariance 
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structure shared amongst all Gaussian components and performed independent fits for four, five, 

or six components (see also Section 3.13.4). To fit the different models (i.e., one model for each a 

priori number of components) and ensure cluster stability, we employed a heuristic based on k-

means clustering to initialize ten independent instances of an expectation-maximization algorithm 

and we took the model with the largest loglikelihood across the ten replicates. In the end, we chose 

the (stable) fitted model between four, five, or six components that best balances low values of 

Akaike information criteria with simplicity. 

Graphing the estimated clusters against (Glue; GABAe) was done as follows. We first graphed the 

posterior probabilities of each Gaussian mixture component for each simulation batch, and then 

took the mean of interpolated (probability) graphs across simulation batches, before assigning the 

observations to (hard) clusters based on the highest posterior probabilities. We verified that the 

mean interpolated graph was similar to each individual graph. 

3.8.5 Neuron-astrocyte functional network connectivity analysis 
To analyze connectivity, the multilayer network modelling approach was adopted as it specifically 

deals with systems whose functional units couple through distinct interaction channel types. For 

each pair (𝜔Glu; 𝜔GABA)  in any of the ten simulation batches, a four-layered interconnected 

multiplex functional network was reconstructed. With the interconnected multiplex network 

topology, the same brain region is replicated along the different layers where it exhibits (different) 

layer-dependent connectivity patterns. The identity was chosen to define inter-layer connectivity 

for the sake of simplicity, and each intra-layer encoded: α-band-limited phase-locking values 

(Palva et al., 2018) (PLV) of LFP  dynamics (LFP -PLV), α-band-limited amplitude envelope 

Pearson-correlations (Palva et al., 2018) (AEC) of LFP dynamics (LFP-AEC), Person-correlations 

of Glue  dynamics (Glue -C), or Pearson-correlations of GABAe  dynamics (GABAe -C). PLV is 

formally defined as the temporal mean of the differences in instantaneous phases and ranges 0–1: 

it equals one when phase differences are constant over time, and zero when phase differences are 

uniformly distributed. Instantaneous phases and amplitude envelopes of LFP  dynamics were 

obtained using a Hilbert transform. Amplitude envelopes of LFP dynamics together with Glue and 

GABAe dynamics were low-pass-filtered with a 0.5 Hz cut-off frequency. All Pearson-correlations 

were analyzed in absolute values for convenience, and we determined that replacing Pearson-

correlations with Spearman-correlations provided similar results and conclusions. Our choices of 

connectivity indices (i.e., the bivariate statistical association measures encoding each intra-layer 

connectivity) echoed typical real-world data analyses (Palva et al., 2018; Sadaghiani et al., 2022), 

and they were motivated by the fact that our network model was parameterized such that LFP 

dynamics would underlie amplitude and phase network synchronizations (see also Section 2.3.5 

in Chapter 2), while Glue and GABAe would evolve on time scales different from LFP, and the 

fluctuations of LFP amplitude envelope would be mostly explained by the slow fluctuations of 

Glue and GABAe (see also Sections 3.13.2–3.13.5). 

For the sake of concise visualizations, given a pair (𝜔Glu; 𝜔GABA) , a representative mean 

multilayer network across the ten simulation batches was derived, where the mean was used for 

the PLV layer, and the back-transformed correlation of the mean of Fisher’s z-transformed 

coefficients was used for the correlation layers (Corey et al., 1998). However, analyses were 

systematically done on both the raw (i.e., 10×1225 networks) and mean (i.e., 1225 networks) 

multilayer networks (e.g., see Section 3.14.2). Before any multilayer network analysis, each 
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functional layer was individually thresholded based on its density by retaining 25 percent of the 

strongest weights. 

To gain insight into the emerging functional connectivity patterns, different (nodal, global, and 

mesoscale) topological properties of the (weighted) reconstructed multilayer functional networks 

were quantified. The nodal centrality of each multilayer network was characterized by estimating 

its eigenvector versatility (De Domenico et al., 2015) (i.e., a generalization of eigenvector 

centrality), while the global segregation, integration, and edge redundancy levels of each 

multilayer network was characterized by estimating its global clustering coefficient, path length, 

and edge overlap, respectively (De Domenico et al., 2014; De Domenico, Nicosia, et al., 2015). 

The mesoscale architecture of each multilayer network was characterized by detecting its 

multilayer communities using map-equation (De Domenico et al., 2015). In short, the map-

equation takes advantage of the duality in information theory between finding regularities in data 

(i.e., finding groups of nodes) and compressing the data (i.e., minimizing the description length of 

a random walker’s movements within and between layers) (De Domenico et al., 2015); proposing 

that, with respect to the walker dynamics on the multilayer network, multilayer communities are 

groups of nodes where flows within and between layers remain optimally trapped for a relatively 

long time (De Domenico et al., 2015). 

Hard clustering analyses were performed with a Gaussian mixture model almost exactly as 

described earlier for network activity analysis except that the data variables consisted of clustering 

coefficient, path length, edge overlap, and code length (i.e., four predictors; z-scored 

independently) and a full covariance structure unshared amongst all Gaussian components was 

specified (see also Section 3.14.2). 

Structural reducibility analysis (i.e., the optimal aggregation of some network layers according to 

their similarity relative to their complete aggregation, as described in (De Domenico, Nicosia, et 

al., 2015)) was performed on each multilayer network using the quantum Jensen-Shannon 

divergence to quantify similarities and the (arithmetic) mean to aggregate layers, and the 

topological properties of the resulting reduced networks were quantified exactly as for the full 

networks (see also Sections 3.14.2 and 3.14.4). Such analysis was done to account for the 

redundant, irrelevant, or uninformative network interactions that are inherent to our multilayer 

functional network reconstruction scheme (De Domenico, Nicosia, et al., 2015). 

Graphing global topological properties or clusters against (Glue; GABAe)  was done exactly as 

described earlier for network activity analysis. 

3.8.6 Illustrations 
Throughout this paper, we used the Scientific colour maps package (Crameri et al., 2020) to 

prevent visual distortion of the data and exclusion of readers with colour-vision deficiencies. Brain 

maps and outlines were all based on the ICBM-2009c-asymmetric template (Fonov et al., 2011). 
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3.9 Figures 

 
Figure 3.1. Analysis overview. (a) Astrocytes contact and ensheath synapses and blood vessels, they also provide a 

tiled arrangement of brain space where each tile is a mini-circuit, and they form a gap-junction-coupled syncytium 

supporting cell-cell (i.e., network) communication. Different types of other glia (i.e., not just astrocytes) interact with 

neurons and the surrounding blood vessels (altogether forming a neuron-glia-vascular unit). For example, 

oligodendrocytes wrap myelin around axons to speed up neuronal transmission, and microglia keep the brain under 

surveillance for damage or infection. (b) We introduce a biophysical model of whole-brain activity where large-scale 

astrocytic and neuronal networks couple their activity through glutamatergic and GABAergic transmission systems, 

and where neural dynamics are constrained by a two-layered structural network interconnecting either astrocytic or 

neuronal populations. (c) As a simulation strategy, we systematically varied two global parameters controlling the 

strength of relative contributions of astrocytic network activity to modulate glutamatergic (𝜔Glu) and GABAergic 

(𝜔GABA ) neurotransmissions; 1225 unique pairs (𝜔Glu; 𝜔GABA)  were defined based on physiologically plausible 

criteria, and the stochastic simulations, each of 120 seconds duration and based on 216 nodes, were repeated ten times 

for each pair (𝜔Glu; 𝜔GABA). (d) To analyze activity, we derived whole-brain quantities and spatial patterns of regional 

temporal standard deviations (std). Bifurcation analyses provided key biophysical insights into our findings. (e) To 

analyze connectivity, we reconstructed four-layered interconnected multiplex functional networks such that each layer 

encoded: α-band-limited phase-locking values or amplitude envelope Pearson-correlations of LFP  dynamics, or 

Person-correlations of Glue  or GABAe  dynamics. Our multilayer network analyses included quantifying clustering 

coefficient, path length, edge overlap, eigenvector versatility, community organization, and structural reducibility. 
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Figure 3.2. Global analysis of whole-brain neuron-astrocyte activity. (a) Links between simulation parameters and 

empirically concrete state-variables. The heatmaps show changes in whole-brain levels of Glue (top tile) or GABAe 
(bottom tile) as functions of 𝜔Glu  (y-axis) and 𝜔GABA  (x-axis). (b) Links between membrane potential and 

neurotransmitter dynamics. The heatmaps show whole-brain levels of LFP peak–peak amplitudes (top tile) or peak 

frequencies (bottom tile) as functions of whole-brain levels of Glue  (y-axis) and GABAe  (x-axis). The black solid 

curves represent contours of limit cycle LFP peak–peak amplitudes obtained through bifurcation analyses (see the 

panel (c)), and each contour passes through one of the following (Glue; GABAe) coordinates in (μmol) × (μmol): (8; 

15), (9; 15), (10; 15), (11; 15), or (11; 20). (c) Two-parameter bifurcation landscape of limit cycles drawn with LFP as 

state-variable, and 𝑣Glu  and 𝑣GABA  as bifurcation parameters (see also Section 3.13.2). The surface delimits the 

extrema of limit cycle amplitudes, and the colour bars indicate limit cycle frequencies. A portion of the surface is not 

coloured (i.e., is left semi-transparent), indicating frequencies lower than eight hertz, and the black solid curves 

represent contours of limit cycle peak–peak amplitudes. The same contours are graphed on a plane (𝑣Glu; 𝑣GABA) 
under the surface, and each thickest black solid curve represents a locus of supercritical Hopf bifurcation points (i.e., 

a contour associated with the height equal to zero). As detailed in Methods, 𝑣Glu and 𝑣GABA are increasing monotonic 

(sigmoidal) functions of Glue and GABAe, respectively. The green rectangular outline under the surface shows the 

domain correspondence between (𝑣Glu; 𝑣GABA)  and (Glue; GABAe)  as drawn in (b), which further delineates the 

exploration grid that was defined for simulations (see also Section 3.10). 

 
Figure 3.3. Clustering analysis of whole-brain neuron-astrocyte activity and connectivity. Clustering analysis results 

of (a) spatial patterns of temporal standard deviations of neuron-astrocyte network activity, and (b) global topological 

properties of reconstructed multilayer functional networks. In (a) and (b), each colour (i.e., cluster) represents a 

partition of the plane (Glue; GABAe) which can be related (back) to the parameter plane (𝜔Glu; 𝜔GABA) using a one-

to-one mapping. The black solid curves in (a) represent contours of limit cycle 𝐸InIn peak–peak amplitudes (see also 

Section 3.13.4), and each contour passes through one of the following (Glue; GABAe)  coordinates in (μmol) ×
(μmol): (8; 16), (8.8; 16.0), (10; 16), or (9.75; 25.00). The black solid curves in (b) represent contours of limit cycle 

𝐸Pyr  peak–peak amplitudes (see also Section 3.14.2), and each contour passes through one of the following 

(Glue; GABAe) coordinates in (μmol) × (μmol): (8.5; 14.0), (8.50; 18.25), or (9.5; 21.0). 



132 

 

 
Figure 3.4. Means of Gaussian mixture model. Cluster means (as fitted by a Gaussian mixture model with four 

components) of LFP, Glue, and GABAe normalized spatial patterns of temporal standard deviations (std). This figure 

complements Figure 3.3.a. For clarity and simplicity, only left hemispheric patterns are displayed, noting that they are 

quasi-identical to right hemispheric ones (see Section 3.13.4 for full views). 

 
Figure 3.5. Global topological properties of reconstructed multilayer functional networks. Panel (a): clustering 

coefficient (an index of network segregation where higher values connote more segregated networks); panel (b): path 

length (an index of network integration where higher values connote more integrated networks); panel (c): edge 

overlap (an index of edge redundancy where higher values connote more similar weight patterns across layers); and 
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panel (d): code length (a quality index of community detection where lower values connote networks with more 

optimal data compression of a random walker’s movements on them). The black solid curves in each graph represent 

the same contours of limit cycle 𝐸Pyr peak–peak amplitudes shown in Figure 3.3.b. Complementary global topological 

properties are provided in Section 3.14.1. 

 
Figure 3.6. Mean multilayer functional networks for four simulations. Layers are indicated on the rows, and each 

simulation (and its cluster) can be identified on the columns by its whole-brain (Glue, GABAe) levels. A colour bar, on 

the top of each column (i.e., for each simulation), codes for detected multilayer communities. Nodes are coloured 

according to their community assignment. Within-community edges are colored according to their community colour 

while between-community edges are black. Communities across layers are most of the time but not always identical. 

Nodes are sized according to their eigenvector versatility for three ranges: ]0; 1 3⁄ ] (small), ]1 3⁄ ; 2 3⁄ ] (medium), 

and ]2 3⁄ ; 1] (large). For the sake of clarity, only ten percent of the edges with the strongest weights in each layer are 

displayed, and edge weights are not coded (see Section 3.14.3 for full views of adjacency matrices). Additionally, only 

three brain views are displayed: lateral left, lateral right, and dorsal. The letters L and R below each brain indicate 

where the posterior left and right are located, respectively. 
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3.10 SI ― Constraining dynamical regimes 

Figure 3.7.a shows the simulation parameter plane as defined by 1225 unique pairs (𝜔Glu; 𝜔GABA). 
Figure 3.7.b shows the uniform grid of the parameter plane defined by (𝑣Glu; 𝑣GABA) with 35×35 

values used for to derive the pairs (𝜔Glu; 𝜔GABA). Figure 3.8.a shows, in the plane (𝑣Glu; 𝑣GABA), 
whole-brain and regional mean states corresponding to the last ten seconds of calibrated 

simulations, while Figure 3.8.b shows, in the plane (𝑣Glu; 𝑣GABA), whole-brain and regional mean 

states as calculated from ten simulation batches. As a reminder, a single (i.e., calibrated) simulation 

of 370 seconds was run for each pair (𝜔Glu; 𝜔GABA) before performing any of the ten simulation 

batches on which were based the analyses exposed in the Main Text. Then, each calibrated 

simulation was visually checked to ensure that steady states were reached in the last ten seconds. 

Finally, for each pair (𝜔Glu; 𝜔GABA) , the last ten seconds of the corresponding calibrated 

simulation were used to define (random) initial states for all subsequent ten simulation batches. 

The fact that the simulated network states in Figure 3.8.a or Figure 3.8.b are close to the calculated 

target states shown in Figure 3.7.b, except for high 𝑣Glu  and 𝑣GABA  values, highlights that the 

network model was appropriately well-constrained. Because the simulations of the ten batches 

were 120 seconds long, less variance between regional states were expected when comparing 

Figure 3.8.b to Figure 3.8.a. 

Together, Figure 3.7 and Figure 3.8 also illustrate the global non-linear dependence between 

glutamate and GABA dynamics. In fact, the funnel-shaped parameter space defined by 
(𝜔Glu; 𝜔GABA) in Figure 3.7.a is evidence of the highly non-linear impacts of 𝜔Glu on neuron-

astrocyte activity compared to 𝜔GABA. This is understandable, given that not only do excitability 

thresholds of both pyramidal cells and inhibitory interneurons depend on glutamate levels, but 

astrocytic network feedbacks are also driven by glutamate levels. 

It is also worth mentioning that although the area of low 𝜔GABA values was sampled more sparsely 

compared to the area of high 𝜔GABA values, there was no benefit in this study in attempting to 

perform more simulations including low 𝜔GABA values. An illustration of this fact is provided in 

Figure 3.8.b–c, showing for each simulation how the regional states spread around the whole-brain 

state (i.e., the orange circular dots spread around the green triangular dot). Such regional 

variabilities confirm the heterogeneity of the corresponding simulated networks which is induced 

by the structural layers and the stochastic components 𝑞[∙] (Figure 3.8.d better illustrates network 

heterogeneity for one simulation). In particular, the simulations corresponding to the lowest 𝜔GABA 

values (i.e., mapping to the area of low 𝑣Glu  values and low 𝑣GABA  values) depict the lowest 

regional variabilities (the dynamics of which being mostly dominated by stochastic noise). 

Furthermore, from Figure 3.8.a–c (together with Figure 2.5), we can observe that a line equidistant 

from the Hopf bifurcation locus is a good approximation of where interesting dynamical network 

states seem to start arising, i.e., where regional and whole-brain values start differing 

characteristically (akin to a network-level bifurcation phenomenon). As we further elaborate later 

in the next chapter, such drastic change in regional variability across the simulation parameter 

plane is explained by the interactions between the structural layers, the heterogeneously specified 

stochastic components 𝑞[∙] , and the bifurcation diagram of limit cycles of the neuronal 

compartments, and its properties is such that the dynamical behaviour of an isolated node or a 

homogeneously parametrized network cannot trivially or fully explain them. 
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It is worth keeping in mind that although the mean states represented in Figure 3.8.a–c based on 

whole-brain values can map to the pairs (𝜔Glu; 𝜔GABA) in a bijective way, there are in fact overlaps 

between states induced by the variance of the stochastic components 𝑞[∙] (as a reminder, std(𝑞) =

10 Hz). Besides, we understand from Figure 3.8.b and Figure 3.8.c that some interpolation artifacts 

can arise, especially nearby the area where simulations can have drastically different states. We 

also understand that it is unnecessary to simulate for 𝑣Glu  values higher than 0.15 (i.e., at a 

topologically large distance from the Hopf bifurcation locus) in our case because the resulting 

network dynamics and states become highly redundant with respect to the rest of the parameter 

plane. 

Finally, given one simulation as illustrated in Figure 3.8.d, it is interesting to note the positive 

correlations across regions between 𝑣Glu , 𝑣GABA , and 𝑄Pyr  and the negative correlation across 

regions between 𝑣Glu  and 𝑝 + 𝑄Pyr . These results, which conform to our simulation design 

exposed in Section 2.3.5 in Chapter 2, indicate that regions with higher mean Glue levels also have 

higher mean GABAe and 𝑄Pyr levels and vice-versa, while GABAe fluctuations almost exclusively 

dictate mean levels of total neuronal inputs (i.e., 𝑝 + 𝑄Pyr = 𝑞 − 𝑣GABA 𝑎 𝐴⁄ + 𝑄Pyr) through a 

monotonic decreasing mapping. 

 
Figure 3.7. Simulation parameter planes. (a) Simulation parameter plane as defined by (𝜔Glu; 𝜔GABA). (b) Parameter 

plane used to derive (a). The green triangular dot (on the bottom right corner) represents the initial state, which, as a 

reminder, was associated with 𝜔Glu
initial = 𝜔GABA

initial = 10−2 µmol−1 (not drawn in (a)). 
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Figure 3.8. Simulated mean states. (a) Simulated mean states at the whole-brain and regional levels in the plane 
(𝑣Glu; 𝑣GABA) as estimated from the calibrated simulations. The green dots represent whole-brain values (hence, there 

are 1225 green dots) while the orange dots represent regional values (hence, there are 216 orange dots for each green 

dot). (b) Same as (a) but simulated mean states at the whole-brain and regional levels were calculated from the ten 

simulation batches rather than the calibrated simulations. The rectangular black outline is represented in (c). (d) 

Simulated mean states at the regional level corresponding to the simulation outlined in (c). Details about the 

parcellation are provided in the next chapter. 
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3.11 SI ― Parcellation 

Figure 3.9 shows the parcellation we used, i.e., the (anatomical) Lausanne-2018 surface-based 

atlas (Tourbier et al., 2022) scale three (version 3.0.3; 

https://github.com/connectomicslab/connectomemapper3) with 216 cortical parcels. For 

convenience, parcels were uniquely assigned (irrespective of their hemispheric membership) to a 

lobe amongst frontal, cingulate, parietal, occipital, temporal, and insula. Table 3.1 is the tabular 

equivalent of Figure 3.9 and it shows how we ordered the parcels. 

In the subsequent figures, parcels will be identified using the colour bar shown in Figure 3.9 with 

the following convention: when displayed horizontally (i.e., as in Figure 3.9), left hemispheric 

parcels will be on the left side while right hemispheric parcels will be on the right side; when 

displayed vertically, left hemispheric parcels will be on the top side while right hemispheric parcels 

will be on the bottom side. 

 
Figure 3.9. Lausanne-2018 atlas scale three. Each lobe can uniquely be identified using the colour bar (from dark red 

to yellow) and the numbers in parentheses indicate how many parcels are in each lobe for each hemisphere. 

Table 3.1. Lausanne-2018 atlas scale three. Left hemispheric parcels are prefixed by “lh” and right hemispheric parcels 

are prefixed by “rh”. Number ranges in brackets indicate that the corresponding parcels were ascendingly ordered. 

Parcel Lobe 

lh.lateralorbitofrontal.[1–4] frontal 

lh.parsorbitalis.1 frontal 

lh.frontalpole.1 frontal 

lh.medialorbitofrontal.[1–3] frontal 

lh.parstriangularis.[1–2] frontal 

lh.parsopercularis.[1–2] frontal 

lh.rostralmiddlefrontal.[1–6] frontal 

lh.superiorfrontal.[1–8] frontal 

lh.caudalmiddlefrontal.[1–3] frontal 

lh.precentral.[1–6] frontal 

lh.paracentral.[1–3] frontal 

lh.rostralanteriorcingulate.1 cingulate 

lh.caudalanteriorcingulate.1 cingulate 

lh.posteriorcingulate.[1–2] cingulate 

https://github.com/connectomicslab/connectomemapper3
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Parcel Lobe 

lh.isthmuscingulate.1 cingulate 

lh.postcentral.[1–5] parietal 

lh.supramarginal.[1–4] parietal 

lh.superiorparietal.[1–7] parietal 

lh.inferiorparietal.[1–6] parietal 

lh.precuneus.[1–5] parietal 

lh.cuneus.[1–2] occipital 

lh.pericalcarine.[1–2] occipital 

lh.lateraloccipital.[1–5] occipital 

lh.lingual.[1–3] occipital 

lh.fusiform.[1–4] temporal 

lh.parahippocampal.1 temporal 

lh.entorhinal.1 temporal 

lh.temporalpole.1 temporal 

lh.inferiortemporal.[1–4] temporal 

lh.middletemporal.[1–4] temporal 

lh.bankssts.1 temporal 

lh.superiortemporal.[1–5] temporal 

lh.transversetemporal.1 temporal 

lh.insula.[1–3] insula 

rh.lateralorbitofrontal.[1–4] frontal 

rh.parsorbitalis.1 frontal 

rh.frontalpole.1 frontal 

rh.medialorbitofrontal.[1–3] frontal 

rh.parstriangularis.[1–2] frontal 

rh.parsopercularis.[1–2] frontal 

rh.rostralmiddlefrontal.[1–6] frontal 

rh.superiorfrontal.[1–8] frontal 

rh.caudalmiddlefrontal.[1–3] frontal 

rh.precentral.[1–6] frontal 

rh.paracentral.[1–3] frontal 

rh.rostralanteriorcingulate.1 cingulate 

rh.caudalanteriorcingulate.1 cingulate 

rh.posteriorcingulate.[1–2] cingulate 

rh.isthmuscingulate.1 cingulate 

rh.postcentral.[1–5] parietal 
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Parcel Lobe 

rh.supramarginal.[1–4] parietal 

rh.superiorparietal.[1–7] parietal 

rh.inferiorparietal.[1–6] parietal 

rh.precuneus.[1–5] parietal 

rh.cuneus.[1–2] occipital 

rh.pericalcarine.[1–2] occipital 

rh.lateraloccipital.[1–5] occipital 

rh.lingual.[1–3] occipital 

rh.fusiform.[1–4] temporal 

rh.parahippocampal.1 temporal 

rh.entorhinal.1 temporal 

rh.temporalpole.1 temporal 

rh.inferiortemporal.[1–4] temporal 

rh.middletemporal.[1–4] temporal 

rh.bankssts.1 temporal 

rh.superiortemporal.[1–5] temporal 

rh.transversetemporal.1 temporal 

rh.insula.[1–3] insula 
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3.12 SI ― Structural layers 

3.12.1 Neuronal connectome reconstruction pipeline 
Diffusion and structural 3 T MRI data were obtained from the Human Connectome Project (Van 

Essen et al., 2013) for the following ten subjects: 101107, 105923, 108323, 111514, 116726, 

140117, 146129, 156334, 158136, and 257845. Full acquisition protocol details are provided in 

(Van Essen et al., 2013). Briefly, diffusion data were acquired at a high spatial resolution of 1.25 

mm isotropic thanks to a 2D spin-echo echo-planar imaging sequence. Diffusion-sensitization was 

applied with three b-values (1000, 2000 and 3000 s/mm2) along 90 directions per b-shell, and 18 

images with b = 0 s/mm2 were acquired. T1-weighted images were obtained at 0.7 mm isotropic 

thanks to a 3D magnetization-prepared rapid gradient-echo sequence. We used the minimally 

processed (Glasser et al., 2013) diffusion-weighted images (DWI) where susceptibility-induced 

distortions, eddy currents, and subject motion were all corrected simultaneously using a non-

parametric framework based on Gaussian processes. The structural data used were also the ones 

available in the minimally processed dataset (Glasser et al., 2013) including (but not limited to) 

FreeSurfer derivatives and T1-weighted images sampled at the same resolution as the diffusion 

data. 

To obtain volumetric-based Lausanne-2018 parcellations (Tourbier et al., 2022) for each subject 

(see also Section 3.11), the FreeSurfer (Fischl, 2012) (version 6.0.0; 

https://github.com/freesurfer/freesurfer) fsaverage template was used as an intermediate to 

perform surface-to-surface (mri_surf2surf) then surface-to-volume (mri_aparc2aseg) mappings. 

Our tractography-based connectome reconstruction pipeline was designed to specifically address 

the streamline termination and quantification biases of tractography (e.g., see (C. H. Yeh et al., 

2021)). Its main steps included the following. 

(i) First, we run Tractoflow (Theaud et al., 2020) (version 2.2.1; 

https://github.com/scilus/tractoflow) — a robust and efficient fully automatic diffusion MRI 

tractography pipeline — to estimate, for each subject, a set of brain maps including but not limited 

to fractional anisotropy, fibre orientation distribution function, and segmented T1 tissues. These 

maps were obtained by configuring Tractoflow with a minimum required number of steps listed 

hereafter and using default pipeline parameters (unless otherwise specified). The selected steps 

included: DWI brain extraction, DWI denoising, DWI N4 bias correction, DTI metrics based on 

the b-shells 0 and 1000 s/mm2, fODF metrics based on the b-shells 1000, 2000, and 3000 s/mm2 

and with a fibre response function fixed manually in mm2/s at (15; 4; 4) × 10−4, T1 brain extraction, 

T1 N4 bias correction, and T1 tissue segmentation for particle-filtered tractography. 

(ii) Then, we fed the obtained Tractoflow maps to SET (St-Onge et al., 2018) (version 1.0; 

https://set-documentation.readthedocs.io/en/latest/) — a strategy recently proposed to address 

streamline termination biases based on particle filtering tractography — to yield a surface-based 

tractogram for each subject. SET operates by imposing geometrical flow constraints on 

reconstructed streamlines based on a model of surface flow trajectory for the white-grey matter 

boundary surface of the brain. By doing so, it can reconstruct tractograms benefiting from an 

improved cortical coverage where all streamlines intersect the white surface of the brain. The 

pipeline profile freesurfer_basic (i.e., FreeSurfer surfaces with brainstem and subcortical 

structures together) was chosen to constrain surface-based operations, warping from T1 to 

diffusion space was deactivated, and all other default optional pipeline parameters were retained. 

For the most essential parameters, one million streamlines were randomly seeded at a surface flow 

https://github.com/freesurfer/freesurfer
https://github.com/scilus/tractoflow
https://set-documentation.readthedocs.io/en/latest/
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of 100 iterations. Streamlines were probabilistically tracked, and they were excluded from the 

tractogram if their length was not within the 10–300 mm range. 

(iii) Next, using the scilpy Python library (version 1.3.0; https://github.com/scilus/scilpy/), we 

decomposed the obtained tractograms on a parcel-to-parcel basis using the scale three of the 

Lausanne-2018 parcellation atlas (Tourbier et al., 2022) (scil_decompose_connectivity.py). The 

decomposition included a set of cleaning and filtering criteria based on streamline length, 

curvature, and winding angle (scil_remove_invalid_streamlines.py; 

scil_detect_streamlines_loops.py). 

(iv) Thereafter, we run COMMIT-2 (Schiavi et al., 2020) (scil_run_commit.py) — a tractogram 

filtering procedure — to further filter the decomposed tractograms based on microstructural and 

anatomical constraints while assigning a quantitative weight to each streamline. COMMIT-2 

attempts to recover the tractogram that best explains the observed diffusion MRI signal by 

formulating a linear forward model of tissue microstructure that embeds, through an optimization 

penalty, the anatomical prior that axons are organized in bundles. By tuning a global penalty 

coefficient (regularization constant), a solution is promoted where a minimum number of bundles 

explains the observed signal. This global penalization procedure is of interest as it provides a 

principled way to obtain biologically plausible tractograms with different levels of sparsity. In this 

paper, a single penalty coefficient (i.e., 0.005) was specified for all subjects to target a connectome 

with a density of about 25 percent on average across subjects. As a forward microstructural model, 

we specified a stick to account for the anisotropic contributions of the streamlines, and a ball to 

consider potential CSF contaminations with default diffusivities (scil_run_commit.py --ball_stick). 

(v) Regarding the derivation of connectomes (scil_compute_connectivity.py), they were obtained 

for each subject by defining a connectome weight between any given two parcels as the sum of 

the COMMIT-2 weights assigned to each streamline connecting the two parcels. It is worth noting 

that the obtained connectomes are quantitative whereby a weight depicts an anatomo-

microstructural-reflecting measure of connectivity strength. 

(vi) Finally, we computed 𝛺Pyr as the mean of the connectomes taken across subjects, and weights 

lower than or equal to 10−6  were considered null while no other threshold was applied to not 

further discard weak links which were assumed to be of biological significance. Before 

simulations, a normalization was applied such that coefficients sum to one on each row. See also 

Figure 3.10 and Figure 3.12.a. 

3.12.2 Astrocytic connectome reconstruction pipeline 
We used FreeSurfer (Fischl, 2012) (version 6.0.0; https://github.com/freesurfer/freesurfer) to 

reconstruct cortical surfaces (recon-all -all) for the ICBM-2009c-asymmetric template (Fonov et 

al., 2011) based on both T1-weighted and T2-weighted images. Afterwards, we derived a mid-

surface, by outwardly expanding native white surfaces (i.e., consisting of about 160,000 vertices 

in each hemisphere) at a depth of 50 percent of cortical thickness (mris_expand -thickness). 

Meanwhile, we also mapped the scale three of the Lausanne-2018 atlas (Tourbier et al., 2022) on 

the ICBM-2009c-asymmetric template brain (see also Section 3.11), by performing surface-to-

surface (mri_surf2surf) mappings using the FreeSurfer fsaverage template as an intermediate. We 

then used the mid-surface to compute coefficients of 𝛺Ast. Coefficients in 𝛺Ast between any two 

adjacent parcels were calculated as the shortest path distances weighted by Euclidean lengths. 

https://github.com/scilus/scilpy/
https://github.com/freesurfer/freesurfer
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Before simulations, a normalization was applied such that coefficients sum to one on each row. 

See also Figure 3.11 and Figure 3.12.b. 

3.12.3 Analyses 
Figure 3.10 shows the quantitative structural connectome we used to define the matrix 𝛺Pyr 

(interconnecting neuronal populations). As elaborated earlier in Section 3.12.1, the connectome 

was derived as the mean of the connectomes taken across subjects Besides, whereas each subject’s 

connectome was biologically filtered to target a density of about 25 percent, the mean connectome 

did not undergo filtering thereby explaining its higher density, of about 70 percent. As such, it 

remains unclear what the effects of averaging quantitative connectomes may be, as we did in this 

paper. Future studies could aim at developing an appropriate statistical model to derive group-level 

connectomes, which is currently lacking to the best of our knowledge. It is worth observing here 

that frontal-cingulate-insula regions or parietal-occipital-temporal regions strongly interconnect 

within and between hemispheres (i.e., qualitatively speaking, they belong to two different 

communities). 

Figure 3.11, shows the connectivity matrix we used to define the matrix 𝛺Ast  (interconnecting 

astrocytic populations). It is a lattice-like network depicting the geometrical embedding of the 

brain, where a node connects only to its first neighbourhood along the cortical mantle, and where 

an edge codes physical proximity. 

In our network model, because we left it to the structural layers (i.e., 𝛺Pyr and 𝛺Ast) to dictate all 

spatial patterns, it can be useful to analyze some of their basic topological properties. Figure 3.12 

illustrates the community organization, participation coefficient, and degree of the two structural 

layers 𝛺Pyr  and 𝛺Ast . The structural layers were analyzed before being normalized, using the 

default routines of BCT (2019-03-03 release; https://www.nitrc.org/projects/bct/). A spectral 

optimization algorithm (modularity_und.m) was used to perform community detections and the 

participation coefficients (participation_coef.m) were determined from the resulting communities. 

Figure 3.12.a, for 𝛺Pyr , confirms that frontal-cingulate-insula and parietal-occipital-temporal 

regions form two elemental communities. Although expected, it is interesting to note that 

precuneus regions are highly connected to the rest of the brain (i.e., high participation coefficient 

and high degree), as opposed to occipital regions (i.e., low participation coefficient and distribution 

of low degrees). Additionally, Figure 3.12.b, for 𝛺Ast, confirms that the lobar domains of the brain 

can explain well (but not fully) the geometry of its cortical surface. Indeed, the detected 

communities in 𝛺Ast mostly delineated the lobes displayed in Figure 3.9. It is interesting to note 

that the communities detected in 𝛺Pyr  are, for the most part, present in 𝛺Ast , albeit split into 

smaller ones. A thorough graph-theoretical analysis of these structural layers was falling out of the 

scope of this paper and so we decided to not report here further details. Nevertheless, it is important 

to consider that what we are showing in Figure 3.12, especially for 𝛺Ast, critically depends on 

many factors (e.g., parcellation, communities) and as such we may not be able to meticulously 

conclude without further analyses. 

https://www.nitrc.org/projects/bct/
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Figure 3.10. Neuronal structural layer. Quantitative structural connectome we used in this paper to define the matrix 

𝛺Pyr. As a reminder, 𝛺Pyr is the right-stochastic variant of this connectome. A thresholded version of the connectome 

(retaining 25 percent of its highest weights) is displayed on the lower diagonal portion to better visualize where the 

strongest connections are and to interpret functional connectomes later more easily. However, note that the 

connectome is symmetric by construction. The parcellation and regions are shown following the conventions specified 

in Section 3.11. 
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Figure 3.11. Astrocytic structural layer. Connectome we used in this paper to derive the matrix 𝛺Ast. As a reminder, 

𝛺Ast  is the right-stochastic variant of this connectome. The parcellation and regions are shown following the 

conventions specified in Section 3.11. 

 
Figure 3.12. Basic topological properties for the structural layers. Panel (a): 𝛺Pyr ; and panel (b): 𝛺Ast . Comm.: 

community structures; PC: participation coefficient. 
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3.12.4 Remarks 
One crucial but oftentimes overlooked bias of dynamical models of whole-brain activity (of 

neuroimaging data) resides in the definition of a biophysically plausible structural layer for 

interconnecting neuronal populations (through white-matter tracts). The (neuronal) structural layer 

is a fundamentally important parameter of such models as it constrains their main spatial and 

temporal interactions, it is most of the time (if not always) informed by empirical data, and it 

seldom places the model outputs at a convenient (connectomic) scale of empirical data (Bezgin et 

al., 2017; Breakspear, 2017; Deco et al., 2009; Griffiths et al., 2022; Melozzi et al., 2017; Sanz-

Leon et al., 2015; Shen et al., 2019). Diffusion MRI is preferentially used to define (neuronal) 

structural layers in the context of neuroimaging data (Breakspear, 2017). Yet all diffusion-MRI-

based tractograms suffer from at least streamline termination and quantification biases which 

thereby decrease their biological plausibility (those are two biases that we partially addressed in 

this paper using state-of-art reconstruction pipelines) (C. H. Yeh et al., 2021). In addition, such 

tractograms are notoriously undirected whereas long-range projections between neuronal 

populations are established to be directed (Bezgin et al., 2017; Shen et al., 2019). To address this 

latter bias, some promising approaches (Bezgin et al., 2017; Shen et al., 2019) have been proposed 

where axonal tract-tracing datasets are used to infer directionality and we plan to integrate those 

in future studies. Regarding the use of tracing datasets (which mostly target primates such as 

macaques), it is worth noting that it further allows to potentially correct for the fact that 

connections between homologous brain regions are most of the time incorrectly reconstructed (due 

to the problem of crossing-fibres that diffusion MRI cannot fully resolve). This is of interest 

because homotopic connections have been shown to be critical determinants of the biological 

plausibility of structural connectomes (Messé et al., 2014) since they significantly increase the 

contribution of anatomy to the coupling between structural and functional connectivity. 

Differently from the prevailing dynamical models of whole-brain activity where only interaction 

pathways between neuronal populations are specified (Breakspear, 2017), our network model 

additionally assumes a structural layer for interconnecting astrocytic populations. To the best of 

our knowledge, astrocytic connectivity at the population level remains hardly addressed in the 

literature (De Pittà, 2020; De Pittà & Berry, 2019; Fields et al., 2015; Kastanenka et al., 2020), 

which prompted us, in this paper, to construct a phenomenological model of gap junctional 

densities dictating couplings between astrocytic populations. Nevertheless, it is also worth 

considering how vascular networks could serve as additional (and viable) pathways for defining 

astrocytic interaction paths (and their couplings with neurons) at the resolution of neuroimaging 

data (De Pittà, 2020; De Pittà & Berry, 2019; Fields et al., 2015; Hösli et al., 2022; Kugler et al., 

2021; Macvicar & Newman, 2015; Magistretti & Allaman, 2015; Nedergaard et al., 2003). It is 

also worth mentioning that there exist other pathways of glial interactions (De Pittà, 2020; De Pittà 

& Berry, 2019; Fields et al., 2015). For example, oligodendrocytes can communicate over axons 

while microglia (and all glia) can establish diffusion-based communications (e.g., over the 

extracellular matrix) (De Pittà, 2020; De Pittà & Berry, 2019; Fields et al., 2015). 

Another crucial but also more generic bias in neuroimaging studies resides in the choice of a 

parcellation scheme (e.g., see (Arslan et al., 2018; Messé, 2020)). For example, here we used a 

surface-based anatomical atlas with 216 regions to define network nodes, but it is unclear how 

other atlases (e.g., functional, multimodal, volumetric, of different spatial resolutions) may 

influence our analyses.  
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3.13 SI ― Neuron-astrocyte network activity analysis 

3.13.1 Links between simulation parameters and empirically concrete state-
variables 

In Figure 3.2.a of the Main Text, whole-brain levels of Glue and GABAe were mapped into the 

plane defined by 𝜔Glu and 𝜔GABA. Values of Glue were found to span the interval [6.1; 11.4] µmol 

while GABAe varied in [11.5; 27.4] µmol. We observed that increases in 𝜔Glu were associated with 

increases in both Glue  and GABAe  (independently of 𝜔GABA ) while increases in 𝜔GABA  were 

associated with decreases in Glue and increases in GABAe (independently of 𝜔Glu). The increases 

in Glue  as a function of either 𝜔Glu  or 𝜔GABA  remained particularly small everywhere except 

within a relatively tiny area characterized by high 𝜔Glu values and low 𝜔GABA values. In addition, 

the decreases in Glue  as a function 𝜔GABA  (with 𝜔Glu  fixed) were particularly small with a 

maximum absolute difference equal to 0.7 µmol. 

In our simulations, both the release and uptake dynamics of neurotransmitters were constrained to 

be slow. In addition, ensuing changes in Glue  and GABAe  were constrained to be small and to 

happen at the same timescale. As a result, increases in 𝜔Glu were all associated with increases in 

both Glue  and GABAe  independently of 𝜔GABA  whereas increases in 𝜔GABA  were all associated 

with decreases in Glue  and increases in GABAe  independently of 𝜔Glu . Those are natural 

(elementary) and expected mappings as described throughout Sections 2.3.5 and 2.3.6 in Chapter 

2 as well as Section 3.10. 

Indeed, starting from an initial (stable) network state, any increment in 𝜔Glu  amounts to 

(transiently and directly) increasing whole-brain levels of glutamate release rates (i.e., 𝐽Glu) which 

in turn amounts to progressively increasing whole-brain levels of Glue. Subsequently, astrocytic 

network feedbacks over both glutamate and GABA release rates (i.e., 𝑄Glu
Ast and 𝑄GABA

Ast ) increase 

while excitability thresholds for both populations of pyramidal cells and inhibitory interneurons 

(i.e., 𝑣Pyr and 𝑣InIn) decrease. In the end, concurrent increases are induced in 𝐽Glu (and thereby 

Glue ) as well as 𝐽GABA  (and thereby GABAe ). This temporal chain of actions, which can 

symbolically be summarized as [{𝜔Glu ↑} ⟹ {𝐽Glu ⇈} ⟹ {Glue ⇈} ⟹ {𝑄Glu
Ast ↑; 𝑄GABA

Ast ↑; 𝑣Pyr ↓

; 𝑣InIn ↓} ⟹ {𝐽Glu ↑; 𝐽GABA ↑} ⟹ {Glue ↑; GABAe ↑} ⟹ {… }], continues until uptake rates adjust 

(upward) to release rates so that ultimately, increases in 𝜔Glu induce increases in both Glue and 

GABAe . It is worth noting the possibility of induced decreases in Glue  following increases in 

GABAe (and possibly due to the presence of stochastic fluctuations as well) along this temporal 

action chain. What guarantees that such a scenario does not occur (or at least would not be 

noticeable) in our simulations is the fact that all GABA-induced changes (i.e., decreases) in the 

firing rates of pyramidal cells are too small to provoke a significant decrease in glutamate release 

rates with respect to glutamate uptake rates. Said otherwise, changes in GABAe are too small and 

slow so much so that most of the transient increases in Glue following an increment in 𝜔Glu would 

remain present later at equilibrium (i.e., would remain in excess). Concerning the case of an 

increment in 𝜔GABA, a similar logic applies where [{𝜔GABA ↑} ⟹ {𝐽GABA ⇈} ⟹ {GABAe ⇈} ⟹

{𝑣Pyr ↑} ⟹ {𝐽Glu ↓} ⟹ {Glue ↓} ⟹ {𝑄Glu
Ast ↓;𝑄GABA

Ast ↓; 𝑣Pyr ↑; 𝑣InIn ↑} ⟹ {Glue ↓; 𝐽GABA ↓} ⟹

{… }] so that ultimately, increases in 𝜔GABA induces increases in GABAe and decreases in Glue. We 

note, similarly to the earlier case of Glue, that most transient increases in GABAe following an 

increment in 𝜔GABA  do not dissipate as the network model converges to an equilibrium (even 
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though GABAe undergoes decrease periods along the temporal action chain) because all changes 

in neuronal firing rates are small. 

3.13.2 Links between features of membrane potential dynamics and bifurcation 
diagram 

Figure 3.13.a is the same as Figure 3.2.b of the Main Text where we highlighted that LFP peak–

peak amplitudes and peak frequencies local extrema were nearly all distributed along contours of 

limit cycle peak–peak amplitudes. Figure 3.13.b better illustrates the distribution of some extrema 

by focusing on a restricted portion of the heatmaps. The results for LFP peak frequencies are clear, 

while the results for LFP peak–peak amplitudes show an abrupt transition between low and high 

values indicating that the corresponding surface gradient flows have drastically different 

magnitudes above, at, and below the second and third contour curves. We verified that the local 

extrema were in fact due to stochastic motions. Figure 3.13.c further better illustrates the 

distribution of some (but not all) extrema by graphing the sign of the scalar products between 

surface gradients and the vectors drawn in black. The vectors drawn in black capture a hypothetical 

overall direction flow and in this way, some local extrema are captured where the signs of the 

scalar products change from positive to negative and vice-versa. It is important to note that LFP 

peak frequency patterns are not fully explained by contours of limit cycle LFP  peak–peak 

amplitudes because limit cycle amplitudes and frequencies are not correlated and LFP dynamics 

are non-linearly related to the other dynamics of the network model. 

Figure 3.14.a is the same as Figure 3.2.c of the Main Text where we drew a bifurcation landscape 

of limit cycles with LFP as state variable, and 𝑣Glu and 𝑣GABA as bifurcation parameters. Figure 

3.14.b–d show bifurcation landscapes with 𝐸Pyr, 𝐸ExIn∪Pyr, and 𝐸InIn as state variables. 

Our in-depth analyses revealed that the patterns observed in Figure 3.13 were (mainly but not 

exclusively) explained by the ways the stochastic motions specified in our network model were 

acting on the nodal neuronal compartments through the neuronal structural constraints 𝛺Pyr, and 

more specifically they were explained by an index of global heterogeneity level amongst network 

nodes. Figure 3.15.a–b summarizes our analysis of global network heterogeneity levels as a 

function of whole-brain levels of Glue  and GABAe . Our analysis was based on the role of the 

parameter 𝐺 which, as we described in Section 2.3.5 in Chapter 2, is a substitute for the parameter 

𝜔Pyr  when we consider a network composed of a single node or fully identical nodes. As a 

reminder, in our model, the parameter 𝐺 can conveniently be used to understand the behaviour of 

a heterogeneous network by considering that the two scenarios of disconnected nodes (i.e., 𝐺 = 0) 

and coupled fully identical nodes (i.e., 𝐺 = 𝜔Pyr) represent two extremes of a continuum within 

which lie (statistically speaking) most (but not all) other heterogeneous network states. Our 

hypothesis is based on the following. Unless fully identical (i.e., unless specified with the same 

parameters and initial states), and as long as 𝜔Pyr  values are not too high, nodes would never 

exhibit the same state (or, within a probabilistic scheme where the baseline neuronal firing rates 

𝑞[∙] are independent stochastic processes, nodes would almost surely never exhibit the same state). 

Said otherwise, given any node 𝑛 within a heterogeneous network, a proportion of the information 

in its input neuronal network feedback 𝑄Pyr[𝑛]
 can explain and be explained by its pyramidal firing 

rate 𝐹Pyr[𝑛]
 , while the residual proportion could conveniently (i.e., in some specific statistical 

scenarios) be considered as an independent input (or an independent source of stochastic 

fluctuations) alongside 𝑞[𝑛]. For example, within a statistical linear modelling scheme, a value for 
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𝐺[𝑛] could be estimated, a posteriori, to reflect the proportion (i.e., between 0 and 1, but then scaled 

by 𝜔Pyr) of information shared between 𝑄Pyr[𝑛]
 and 𝐹Pyr[𝑛]

. In this case, the behaviour of the node 

𝑛 could be entirely understood (or reconstructed) by drawing a codimension-2 diagram as we did 

throughout Chapter 2 but with such an a posteriori value for 𝐺[𝑛] to account for stochastic network 

interactions. Besides, such a value of 𝐺[𝑛] would always (or almost surely always in the stochastic 

case) satisfy 𝐺[𝑛] ≤ 𝜔Pyr. Hence, as stated earlier, the two scenarios of disconnected nodes (i.e., 

𝐺 = 0) and coupled fully identical nodes (i.e., 𝐺 = 𝜔Pyr) represent two extremes of a continuum 

within which lie most (but not all) other network states, and a global statistical estimate of 𝐺 (e.g., 

obtained using a multilevel regression model, or obtained by calculating a descriptive statistic on 

𝐺[∙] values) could provide an index of global network heterogeneity levels. 

Figure 3.15.a–b shows the results of a robust linear regression scheme (MATLAB’s default routine 

robustfit) specified with 𝑞 + 𝑄Pyr as responses and 𝐹Pyr as predictors, i.e., specified for any node 

𝑛  by 𝑞[𝑛] + 𝑄Pyr[𝑛]
= slope[𝑛]𝐹Pyr[𝑛]

+ intercept[𝑛] + residual . Figure 3.15.a shows whole-

brain levels (i.e., mean taken across regions) of the estimated slopes (i.e., a posteriori 𝐺 values) as 

a function of whole-brain levels of Glue and GABAe, and Figure 3.15.b shows whole-brain values 

(i.e., mean taken across regions) of the estimated intercepts (i.e., a posteriori 𝑞  values). We 

observed that the slopes were lower than 𝜔Pyr = 7.5, as well as an abrupt transition from a uniform 

area where the slopes were relatively close to 𝜔Pyr at low Glue and GABAe values to an area where 

the slopes started to rapidly decrease until reaching a minimum at high Glue and GABAe values. 

We also observed that the intercepts were higher than 240 Hz (i.e., higher than mean(𝑞)  as 

specified in Table 2.3) while exhibiting variation patterns consistent with the slopes. In addition, 

such transition and variation patterns for the slopes and intercepts were explained by contours of 

limit cycle peak–peak amplitudes. We verified that such phenomena did not occur when stochastic 

fluctuations were homogeneously specified (e.g., the same 𝑞 for all nodes), and when 𝜔Glu and 

𝜔GABA were from different value ranges. Instead, we found that such phenomena were occurring 

specifically due to the specified standard deviation for 𝑞 (as a reminder, we specified std(𝑞) =
10 Hz in Table 2.3), and due to the characteristics of the two-parameter bifurcation landscape of 

limit cycles. We also verified that performing a simulation with a single node (see Section 2.3.2 in 

Chapter 2 for equations) where 𝐺, 𝑞, Glue and GABAe are specified exactly as in Figure 3.15.a–b, 

provided heatmaps quasi-identical to those in Figure 3.13.a (i.e., they allowed to reproduce whole-

brain network states). Together, these results confirm that there are dynamical behaviours that 

occur (akin to bifurcations) in a heterogeneous network scenario which do not occur either in a 

non-stochastic or in a stochastic but homogeneous network scenario. These results also highlight 

a novel way to understand dynamical behaviours without necessarily employing stochastic 

bifurcation theory per se. Lastly, these results provide a solid basis for analyzing more complex 

network scenarios where whole-brain states no longer adequately summarize network states. 

As a final note, because we were particularly interested in LFP amplitude-modulation patterns in 

this paper, it can be useful to link LFP envelope fluctuation patterns and the stochastic motions 

along the bifurcation landscape that we described so far. Figure 3.15.c–d shows that the variation 

patterns of LFP envelope mean amplitude levels and LFP envelope peak–peak amplitude levels 

are consistent with the variation patterns described earlier in Figure 3.15.a–b when analyzing 

global network heterogeneity levels, notably sharing the same critical frontier where network 
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properties change drastically. We further discuss the links between neurotransmission and 

amplitude modulations of bioelectrical neuronal activity in Section 3.13.3. 

 
Figure 3.13. Linking electrophysiology and neurotransmission. (a)–(b) Whole-brain levels of LFP  peak–peak 

amplitudes (top tile) or peak frequencies (bottom tile) as functions of whole-brain levels of Glue (y-axis) and GABAe 
(x-axis). (c) Sign of scalar products between surface gradients (obtained from (a)) and the vectors drawn in black. (a)–

(c) The five black solid curves in each graph represent contours of limit cycle LFP  peak–peak amplitudes. Each 

contour passes through one of the following (Glue; GABAe) coordinates in (μmol) × (μmol): (8; 15), (9; 15), (10; 

15), (11; 15), or (11; 20). 
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Figure 3.14. Two-parameter bifurcation landscapes of limit cycles. Drawn with (a) LFP, (b) 𝐸Pyr, (c) 𝐸ExIn∪Pyr, and 

(d) 𝐸InIn as state variables, and 𝑣Glu and 𝑣GABA as bifurcation parameters. The surfaces delimit the extrema of limit 

cycle amplitudes, and the colour bars indicate limit cycle frequencies. A portion of each surface is not coloured (i.e., 

is left semi-transparent), indicating frequencies lower than eight hertz, and the black solid curves represent contours 

of limit cycle peak–peak amplitudes. The same contours are graphed on a plane (𝑣Glu; 𝑣GABA) under the surface, and 

each thickest black solid curve represents a locus of supercritical Hopf bifurcation points (i.e., a contour associated 

with the height equal to zero). As detailed in Section 2.3.4 in Chapter 2, 𝑣Glu and 𝑣GABA are increasing monotonic 

(sigmoidal) functions of Glue  and GABAe  respectively. The green rectangular outline under the surface shows the 

domain correspondence between (𝑣Glu; 𝑣GABA) and (Glue; GABAe) as drawn, e.g., in Figure 3.13 or Figure 3.2.b of 

the Main Text, and each contour (except for the Hopf locus) passes through one of the following (Glue; GABAe) 
coordinates in (μmol) × (μmol): (8; 15), (9; 15), (10; 15), (11; 15), or (11; 20). 
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Figure 3.15. Linking amplitude modulations of bioelectrical activity and neurotransmission. (a) Whole-brain levels of 

a posteriori 𝐺 estimates as functions of whole-brain levels of Glue (y-axis) and GABAe (x-axis). All t-statistics testing 

the null hypothesis that 𝐺 is zero against the alternative that it is different from zero were ranging 14.5–98.8, and all 

𝐺  values were considered statistically significant. (b) Same as (a) but for a posteriori 𝑞  estimates. All t-statistics 

testing the null hypothesis that 𝑞 is zero against the alternative that it is different from zero were ranging 451–1234, 

and all 𝑞 values were considered statistically significant. (c)–(d) Whole-brain levels of LFP envelope mean amplitudes 

(c) or peak–peak amplitudes (d) as functions of whole-brain levels of Glue (y-axis) and GABAe (x-axis). In (a)–(d) the 

black solid curves represent contours of limit cycle 𝐸InIn peak–peak amplitudes. The contours are the same as in Figure 

3.3.a of the Main Text to facilitate juxtapositions with clustering analysis results of network activity patterns. Each 

contour passes through one of the following (Glue; GABAe) coordinates in (μmol) × (μmol): (8; 16), (8.8; 16.0), or 

(10; 16). 

3.13.3 Links between neurotransmission and amplitude modulations of 
bioelectrical neuronal activity 

As elaborated earlier in Section 3.13.2 (or throughout Sections 2.3.5 and 2.3.6 in Chapter 2 as well 

Section 3.10), in our network model, a natural link between LFP envelope fluctuations and Glue 
and GABAe  fluctuations was provided by the facts that Glue  and GABAe  fluctuations remained 

almost perfectly correlated across all simulations while GABAe  fluctuations almost exclusively 

dictated the motions along the limit cycles of the neuronal compartment across all simulations. 

Figure 3.16 summarizes whole-brain spatial Pearson-correlation patterns between LFP envelope 

and Glue  and GABAe  fluctuations where whole-brain values were calculated as the median of 

regional values for each simulation independently. Consistent with the results described in Section 

3.13.2, we determined overall that the correlations between LFP envelope and either Glue (i.e., 

Figure 3.16.a) or GABAe (i.e., Figure 3.16.b) fluctuations were particularly strong along the critical 

frontier where network heterogeneity levels drastically change and increasingly weaker for 

increasing astrocytic network coupling strengths, and likewise for the correlations between Glue 
and GABAe fluctuations (i.e., Figure 3.16.c). It is worth noting the fact that we obtained the same 

results using Spearman-correlations, and all linear correlation values between LFP  envelope 

fluctuations and either Glue  or GABAe  fluctuations were low to medium. Such results were 

expected because, as elaborated throughout Sections 3.13.1 and 3.13.2, dynamic links between 
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neurotransmission and amplitude modulations of bioelectrical neuronal activity are inherently non-

linear. 

 
Figure 3.16. Correlational associations between amplitude modulations of bioelectrical activity and 

neurotransmission. Whole-brain Pearson-correlations between LFP envelope and Glue fluctuations (a), between LFP 

envelope and GABAe  fluctuations (b), and between Glue  and GABAe  fluctuations (c) as functions of whole-brain 

levels of Glue (y-axis) and GABAe (x-axis). Darker colours always map to stronger absolute correlation values. The 

black solid curves in each graph represent contours of limit cycle 𝐸InIn peak–peak amplitudes. The contours are the 

same as in Figure 3.3.a of the Main Text to facilitate juxtapositions with clustering analysis results of network activity 

patterns. Each contour passes through one of the following (Glue; GABAe) coordinates in (μmol) × (μmol): (8; 16), 

or (8.8; 16.0). 

3.13.4 Clustering analysis of spatial patterns of temporal standard deviations 
Figure 3.17 shows the input data used for clustering analysis, i.e., spatial patterns of LFP, Glue, 
and GABAe normalized temporal standard deviations (std). 

Figure 3.18 is the same as Figure 3.4 of the Main Text where we illustrated cluster means as fitted 

by a Gaussian mixture model with four components. We can observe that the cluster means are 

consistent with the input data shown in Figure 3.17. For example, when focusing on LFP -std, 

Figure 3.17 shows that some regions of the parietal lobe had very low standard deviation values 

for the simulations of clusters #2–4, and we easily recognize in Figure 3.18 that those were regions 

of the precuneus cortices (see also Section 3.11). 

Figure 3.19 shows the correlation matrix as fitted by a Gaussian mixture model with four 

components. We can observe high similarities between the four correlation sub-matrices involving 

Glue-std and GABAe-std, confirming the overall high similarity between Glue and GABAe network 

activity patterns across all simulations. We can also observe the skeleton of the neuronal structural 

connectome (see Figure 3.9) in all correlation sub-matrices, confirming that, overall, simulated 

temporal network dynamics were consistently spatially shaped across all simulations. It is worth 

noting the anti-correlation patterns, especially between LFP-std and either Glue-std or GABAe-std, 

distinguishing frontal-cingulate lobes from parietal-occipital-temporal-insula lobes (as we 

elaborate later in Section 3.13.5, anti-correlation patterns were due to the (anti-correlated) 

relationship between GABAe and total neuronal input fluctuations). 

Figure 3.20.a is the same as Figure 3.3.a of the Main Text where we showed clusters using a 

Gaussian mixture model with four components. Figure 3.20.b–c shows clusters using a Gaussian 

mixture model with five (b) and six (c) components. It is noteworthy that clusters #2–3 in (a) 

remained consistent across the other two models, whereas cluster #1 in (a) became heterogeneous 

across the other two models, and cluster #4 in (a) eventually split into two clusters in (c). Besides, 

all clusters, for all models, were mostly spatially contiguous, and though we do not illustrate the 

results, we found that contours of limit cycle LFP, 𝐸Pyr, and 𝐸ExIn∪Pyr peak–peak amplitudes were 
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delineating less well the cluster frontiers than contours of limit cycle 𝐸InIn peak–peak amplitudes 

(suggesting that GABAergic inhibitory interneurons strongly shape activity patterns (Coronel-

Oliveros et al., 2021)). 

Together, these results are consistent with the network heterogeneity profile that we analyzed in 

Section 3.13.2 where we determined that within cluster #1 nodes behaved homogeneously (hence 

the rather noisy and lack of clear spatial structures) while at the frontiers between clusters #1–2 

and then beyond, nodes behaved heterogeneously. 

 
Figure 3.17. Input data for clustering analysis based on Gaussian mixture models. Spatial patterns of LFP, Glue, and 

GABAe normalized temporal standard deviations (std). Each column represents one brain region (there are 216 unique 

brain regions, hence 216×3 columns in total) while each row represents one simulation (there are 10×1225 rows in 

total). The parcellation and regions are shown following the conventions specified in Section 3.11. Here we ordered 

the rows (i.e., the simulations) according to their cluster assignments by a Gaussian mixture model with four 

components (i.e., the results shown in Figure 3.3.a of Main Text). Hence, each row (i.e., each simulation) belongs to 

one unique cluster that can be identified using the colour map (from light blue on the bottom, representing cluster #1, 

to dark blue on the top, representing cluster #4) on the right side of the figure. 
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Figure 3.18. Means of Gaussian mixture model. Cluster means (as fitted by a Gaussian mixture model with four 

components) of LFP, Glue, and GABAe normalized temporal standard deviations (std). 
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Figure 3.19. Correlation matrices of Gaussian mixture model. Correlation matrix (as fitted by a Gaussian mixture 

model with four components) of LFP, Glue, and GABAe temporal standard deviations. Diagonal values are not shown 

and appear in white (i.e., the background colour). As a reminder, a full covariance structure (with dimension 216×3) 

shared amongst all four Gaussian components was specified when fitting the model. The parcellation and regions are 

shown following the conventions specified in Section 3.11. 

 

Figure 3.20. Clustering analysis results of spatial patterns of temporal standard deviations of neuron-astrocyte network 

activity. This analysis extends the Main Text using a Gaussian mixture model with four (a), five (b), and six (c) 

components. The black solid curves in each graph represent contours of limit cycle 𝐸InIn peak–peak amplitudes. Each 

contour passes through one of the following (Glue; GABAe) coordinates in (μmol) × (μmol): (8; 16), (8.8; 16.0), (10; 

16), or (9.75; 25.00). 
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3.13.5 Biophysical description of spatial patterns of temporal standard 
deviations 

Our network model was parameterized such that neuronal dynamics would mostly consist of stable 

limit cycles. Accordingly, given any simulation, the neuronal inputs at each node (which consisted 

of temporally structured driving network feedback with additive white noise) allowed them to visit 

different stable states by (smoothly) jumping over limit cycles with different peak–peak 

amplitudes, and very similar mean amplitudes and frequencies. In this way, patterns of LFP-std 

became mostly explained by LFP  amplitude modulations. For example, we showed earlier in 

Figure 3.15.c–d, that LFP amplitude modulations were an emergent property of the stochastic and 

nonlinear dynamics of our network model, and their variation patterns across the simulation plane 

were largely explained by contours of limit cycle peak–peak amplitudes. Importantly, while the 

limit cycles yielded the fastest oscillations of our network model, the oscillation frequencies of the 

amplitude modulations were expressed on timescales that were orders of magnitude slower (e.g., 

see also Figure 2.10 and Figure 2.11 in Section 2.4.2 of Chapter 2). Consequently, the regions 

experiencing stronger amplitude modulations had the least sum of deviations from their means and 

hence the lowest LFP -std, and conversely. This phenomenon is clear by observing, e.g., the 

patterns of precuneus and lateral occipital cortices within clusters #1–4, from Figure 3.17 and 

Figure 3.18. Because regions of the precuneus cortices were the most strongly structurally 

connected (e.g., see Figure 3.12.a), they were the regions with the highest Glue and GABAe levels 

(e.g., see Figure 3.8 in Section 3.10), thereby encountering limit cycles with the highest peak–peak 

amplitudes, and in the end experiencing the strongest amplitude modulations while exhibiting the 

lowest LFP-std. The converse was true for regions of the lateral occipital cortices, encountering 

limit cycles with the lowest peak–peak amplitudes, thereby experiencing the weakest amplitude 

modulations while exhibiting the highest LFP-std (e.g., see also Figure 2.10 and Figure 2.11 in 

Section 2.4.2 of Chapter 2). Hence, we understand that the ability of a brain region to experience 

LFP  amplitude modulations depends on both its bifurcation landscape properties and its 

topological network attributes with respect to the structural layers of our model. This is an interplay 

between temporal dynamics and structural network constraints. Resultingly, we understand how 

patterns of LFP-std reflected spatially shaped temporal neuronal dynamics. 

Additionally, by simulation design, motions on the bifurcation landscape of any region were 

mostly (but not entirely) explained by their Glue and GABAe activity, thereby providing a natural 

link between Glue-std and GABAe-std and LFP-std patterns. As illustrated in Figure 3.17, Figure 

3.18, and Figure 3.19, there were global anti-correlations between profiles of Glue-std or GABAe-
std and LFP-std across all simulations. This was so because, overall, Glue and GABAe fluctuations 

remained almost perfectly correlated across all simulations while increases in the standard 

deviations of GABAe fluctuations were associated with increases in the standard deviations of total 

neuronal input fluctuations (e.g., as described in Section 2.3.2 in Chapter 2 and Section 3.10) which 

in turn were associated with increases in LFP amplitude modulations and therefore decreases in 

the standard deviations of LFP fluctuations (e.g., see also Section 3.13.2 together with Section 

3.13.3). However, whereas these anti-correlation patterns were largely reflected within clusters 

#1–2, they were less so within clusters #3–4 (see Figure 3.17 and Figure 3.18). We determined that 

such dichotomy was due to how temporal standard deviations were spatially shaped across the 

simulation parameter plane (see Figure 3.17). Indeed, within clusters #1–2 compared to clusters 

#3–4, the neuronal dynamics were governed by limit cycles exhibiting the most differences in their 

patterns of peak–peak amplitudes (e.g., see Figure 3.14), while the astrocytic structural constraints 

contributed the least to shaping temporal dynamics because 𝜔Glu or 𝜔GABA values were the lowest 
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(e.g., see Figure 3.7 in Section 3.10). Additionally, as elaborated in Section 3.13.2, within cluster 

#1, network nodes mostly behaved homogeneously, while within clusters #3–4 nodes mostly 

behaved heterogeneously, and within cluster #2 nodes behaviours were mixed (akin to a 

bifurcation). Accordingly, we determined that the interplays between neuronal dynamics and 

structural constraints dictated different patterns of Glue-std and GABAe-std between clusters #1–2 

and clusters #3–4. More specifically, within clusters #3–4, they were overall fewer contrasts 

between regional values and stronger homogeneity between neighbouring regions thereby diluting 

the anti-correlation patterns that we mentioned earlier. This was due to the stronger astrocytic 

structural constraints within clusters #3–4, enforcing coherent glutamatergic and GABAergic 

release rates between neighbouring regions. For example, regions of the precuneus cortices were 

found to exhibit the highest standard deviations within clusters #1–2 but one of the lowest standard 

deviations within clusters #3–4 (i.e., a trend opposite to LFP-std), while regions of the occipital 

cortices were found to exhibit the lowest standard deviations within all clusters except #1 where it 

was rather the regions of the frontal lobe (i.e., again, a trend opposite to LFP-std). 

Altogether, we understand how the astrocytic network regulation of glutamatergic and GABAergic 

neurotransmission induced diverse whole-brain spatial patterns of temporal standard deviations. 
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3.14 SI ― Neuron-astrocyte functional network connectivity analysis 

As a reminder, our network model was parameterized such that LFP  dynamics would underlie 

amplitude and phase network synchronizations (see also (Liuzzi et al., 2019; Tewarie et al., 2021)) 

while Glue and GABAe would underlie linear network co-variations. In addition, Glue and GABAe 
would evolve on time scales different from LFP, while the fluctuations of LFP amplitude envelope 

would be mostly explained by the slow fluctuations of Glue and GABAe. 

To account for the ensuing multivariate (neuron-astrocyte) network connectivity patterns and to 

cope with the subsequent high amount of underlying complexity, we adopted the mathematical 

framework of multilayer network analysis and we explored how local, mesoscale, and global 

network features would vary with respect to the parameter plane defined by (𝜔Glu; 𝜔GABA) and 

equivalently (Glue; GABAe) whole-brain levels. 

Overall, we found evidence that our network model could exhibit, with respect to (𝜔Glu; 𝜔GABA), 
a variety of functional network architectures (as characterized by clustering coefficient, path 

length, edge overlap, structural reducibility indices, entropies, community measures, and eigen-

centralities) that further relates to bifurcation features. The following sections provide 

supplementary information for the Main Text. 

3.14.1 Global topological multilayer network properties 
Figure 3.21 is like Figure 3.5 of the Main Text where we highlighted that the variation patterns of 

four global topological properties of reconstructed multilayer functional networks (i.e., clustering 

coefficient, path length, edge overlap, and code length) were explained by contours of limit cycle 

𝐸Pyr  peak–peak amplitudes. Figure 3.21 shows three complementary properties, namely, Von 

Neuman entropy (De Domenico, Nicosia, et al., 2015) (an extension of the Shannon information 

entropy to a graph), code length savings (Neuman et al., 2022) (an index of how much data 

compression is obtained from a network when it is optimally organized in modules compared to 

when it is organized in a single module), and modularity (Clauset et al., 2004) (defined as the 

fraction of within-community edges minus the fraction expected by chance). As in the Main Text, 

we observed that all three measures depicted local extrema and otherwise monotonic trends 

consistent with contours of limit cycle 𝐸Pyr peak–peak amplitudes. 

 
Figure 3.21. Global topological properties of reconstructed multilayer functional networks. Panel (a): Von Neuman 

entropy; panel (b): code length savings; and panel (c): modularity. The properties are graphed as functions of whole-

brain levels of Glue (y-axis) and GABAe (x-axis). The black solid curves in each graph represent contours of limit 

cycle 𝐸Pyr  peak–peak amplitudes. The contours are the same as in Figure 3.3.b of the Main Text to facilitate 

juxtapositions with clustering analysis results of network connectivity measures. Each contour passes through one of 

the following (Glue; GABAe) coordinates in (μmol) × (μmol): (8.5; 14.0), (8.50; 18.25), or (9.5; 21.0). 
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3.14.2 Clustering analysis of global topological multilayer network properties 
Figure 3.22.a is the same as Figure 3.3.b of the Main Text where we showed clusters using a 

Gaussian mixture model with four components. Figure 3.22 shows the effects of increasing the 

number of Gaussian components (four, five, or six), as well as the effects of analyzing all 

multilayer networks across all ten simulation batches (i.e., 10×1225 networks) versus analyzing 

either structurally reduced multilayer networks (i.e., also 10×1225 networks) or multilayer 

networks averaged across simulation batches (i.e., 1225 networks). Overall, we observed that the 

Gaussian mixture models were consistent with each other although the cluster frontiers for reduced 

networks were best explained by contours of limit cycle 𝐸InIn peak–peak amplitudes rather than 

contours of limit cycle 𝐸Pyr peak–peak amplitudes. Though we do not illustrate the results, we 

found, upon closer inspection, that a combination between contours of limit cycle 𝐸Pyr and 𝐸InIn 

peak–peak amplitudes were better at outlining cluster frontiers for all Gaussian mixture models. 

This is consistent with the fact that we expect neither excitatory nor inhibitory dynamics to solely 

explain all connectivity patterns across the simulation parameter plane, rather a combination of the 

different neuronal dynamics (due to excitation-inhibition balance) shapes such patterns. By 

including the investigations of reduced multilayer networks, we confirmed that our results and 

interpretations were not biased by redundant topological information (e.g., between Glue-C and 

GABAe-C layers), incidentally highlighting the fact that reducibility operations did not throw away 

the informative topological information of the different multilayer networks across simulations. It 

was also interesting to observe that analyzing multilayer networks averaged across simulation 

batches instead of all the networks provided qualitatively comparable results and conclusions, 

suggesting that the stochastic components of our network model were appropriately specified. 

Finally, consistent with the analyses of network activity described throughout Section 3.13, it is 

noteworthy that all Gaussian mixture models identified the critical frontier where network 

heterogeneity levels drastically change. 
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Figure 3.22. Clustering analysis results of global topological properties of multilayer functional networks. This 

analysis focuses on clustering coefficient, path length, edge overlap, and code length, using a Gaussian mixture model 

with four (first column), five (second column), or six components (third column). The tiles of the first column, i.e., 

(a), (d), and (g), are for four components. The tiles of the second column, i.e., (b), (e), and (h), are for five components. 

The tiles of the third column, i.e., (c), (f), and (i), are for six components. The tiles of the first row, i.e., (a)–(c) were 

obtained by analyzing all multilayer networks across all ten simulation batches (i.e., 10×1225 networks). The tiles of 

the second row, i.e., (d)–(f) were obtained after performing structural reducibility analysis of multilayer functional 

networks (i.e., also 10×1225 networks). The tiles of the third row, i.e., (g)–(i) were obtained by analyzing multilayer 

networks averaged across simulation batches (i.e., 1225 networks). The black solid curves in (a)–(c) and (g)–(i) 

represent contours of limit cycle 𝐸Pyr peak–peak amplitudes. The black solid curves in (d)–(f) represent contours of 

limit cycle 𝐸InIn peak–peak amplitudes. Each contour was visually selected to coincide with cluster frontiers. 

3.14.3 Links between phase-based and amplitude-based network connectivity 
patterns 

Figure 3.23 is like Figure 3.6 of the Main Text where we represented mean multilayer networks 

for four simulations by combining three different pieces of information: adjacency matrices, 

eigenvector versatilities, and communities. 

From the adjacency matrices, consistent with our discourse in the Main Text, we observed varying 

topologies across layers and simulations. Overall, Glue -C and GABAe -C layers were found to 

always display high spatial similarity although their respective edge weight distributions slightly 

differed (e.g., weights of Glue-C layers were on average slightly higher than for GABAe-C layers, 

owing to higher 𝜔Glu values). In addition, Glue-C and GABAe-C layers also displayed high spatial 
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similarity with LFP-AEC layers, although in general, weights distributions for LFP-AEC layers 

were the most skewed with the lowest first moment of all three layers. Interestingly, LFP-PLV 

layers depicted topologies bearing the least similarity to all three correlation layers across 

simulations. This suggests complementary functional links between amplitude and phase network 

synchrony. Besides, it is worth noting that LFP -PLV layers had generally the most consistent 

connectivity patterns across simulations where we could always identify the skeleton of the 

structural layers (i.e., consisting of highly densely connected regions within the frontal-cingulate 

lobes across hemispheres together with highly densely connected regions within the other lobes 

within hemispheres) whereas all other three correlation layers would display highly similar 

connectivity patterns to LFP-PLV layers only within a restricted region of the parameter plane 

(e.g., where edge overlap are high, i.e., mostly at the frontier between cluster #2 and cluster #3, as 

identified in Figure 3.22.a). This is due to phase synchrony being intrinsic to network models of 

spatial coupling. 

From the detected multilayer communities, we determined that functional modules consisted of 

mostly frontal-cingulate-parietal-insula regions versus parietal-occipital-temporal regions, and 

they were highly intra-hemispheric. This is understandable because, as we illustrated in Section 

3.12.3, the two groups of regions formed manifest structural mesoscale domains, and the astrocytic 

structural constraints strongly enforced intra-hemispheric functional couplings by design. 

Interestingly, communities within the LFP-PLV layers slightly differed from all other correlation 

layers, while the communities within the correlation layers highly coincided. This, again, further 

illustrated the fact that functional connectivity metrics based on amplitude or phase capture 

different topologies. We also illustrated the community profile of the aggregate functional network 

to highlight how an enriched representation of functional connectivity across multiple layers can 

be more valuable than an aggregated representation. Though we are not illustrating the results, by 

carefully analyzing adjacency matrices and community profiles, we determined that inter-

hemispheric modules emerged whenever inter-hemispheric frontal connections were fewer in 

density (further coinciding with portions of parameter plane where integration and segregation 

levels peaked, i.e., mostly within cluster #2 as identified in Figure 3.22.a). This means that reduced 

inter-hemispheric connections within frontal mesoscale domains seemed to coincide with the 

ability of the functional networks to diversify their ties across hemispheres and to further coincide 

with portions of the parameter plane where nodal dynamics would drastically (qualitatively) 

change. 

Finally, from the mapping of eigenvector versatilities, we determined consistent patterns with 

respect to the community profiles. We observed how the centralities could most of the time 

distinguish between the two hemispheres as well as between frontal-cingulate-parietal-insula 

regions versus parietal-occipital-temporal regions. Upon closer inspections (not illustrated), we 

determined that across simulations, the least central nodes changed their locations from parietal to 

occipital to temporal lobes while the highly central nodes were consistently located within the 

frontal lobe. We noted how the consistency of highly central frontal regions mirrored our previous 

observations (when analyzing communities) of high connection densities within the frontal lobe. 

Altogether, the results of Figure 3.23 provided evidence that our network model could exhibit, 

with respect to (𝜔Glu; 𝜔GABA), a variety of functional network architectures. 

It is worth emphasizing that topologies captured by PLV complemented topologies captured by 

correlations. These complementarities are further related to how the structural layers (mostly the 
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neuronal one) induced different basins of attractions on a bifurcation plane that consisted of limit 

cycles with different peak–peak amplitudes and frequencies. The phenomena are similar to what 

we extensively discussed already in Section 3.13.5. The main idea is that because regions in 

frontal-cingulate-parietal-insula and parietal-occipital-temporal lobes belong to two basic 

communities that manifestly differ, two basic attractors are formed in a bifurcation plane. The basic 

attractors differ such that one of them is more sensitive to changes in limit cycle peak–peak 

amplitudes due to stochastic motions. In this way, the phase and amplitude relationships within the 

two communities of regions become two measures to distinguish between the communities. For 

example, for the simulation of cluster #1 illustrated in Figure 3.23, regions of the parietal-occipital-

temporal left-lobes and occipital right-lobe were found to be associated with the highest Glue and 

GABAe  levels (i.e., where limit cycle peak–peak amplitudes get increasingly larger) thereby 

exhibiting consistent amplitude relationships between each other but inconsistent phase 

relationships, whereas regions of the remaining lobes were found to be associated with the lowest 

Glue and GABAe levels thereby exhibiting consistent phase relationships between each other but 

inconsistent amplitude relationships. It is worth noting that although in our simulations the 

neuronal structural layer dictated most of the main functional connectivity patterns, the astrocytic 

structural layer provided varying levels of uniformity for intra-hemispheric and short-range 

connectivity (not illustrated). 

In this paper, for the sake of simplicity, we provided illustrations in Figure 3.6 of the Main Text (or 

in Figure 3.23 of this Section) for one mean multilayer network within each cluster, instead of 

illustrating all the multilayer networks across the ten simulation batches for each cluster. However, 

one mean multilayer network cannot by itself always capture the features of the different networks 

from which it was built. Hence, in such analyses, it is essential to examine the variability across 

networks, which in our simulations are particularly influential due to bifurcation phenomena (e.g., 

see Figure 3.24 and Figure 3.25). 

Figure 3.24 shows the effects of consensus analysis on eigenvector versatilities. Consensus 

analyses consisted of averaging eigenvector versatilities across simulation batches. Although there 

is generally no direct correspondence between analyzing one mean multilayer network versus 

performing consensus analysis on multiple multilayer networks, we can still appreciate that our 

main conclusions based on how frontal-cingulate-parietal-insula regions are consistently 

distinguished from parietal-occipital-temporal regions hold. 

Figure 3.25 shows the effects of consensus analysis on communities. Consensus analyses (i.e., 

consensus clustering) were done using the default routines of BCT (2019-03-03 release; 

https://www.nitrc.org/projects/bct/). The idea of consensus analysis (consensus_und.m) is to seek 

a consensus partition of a probabilistic agreement matrix. Here, the agreement matrix was 

thresholded at a level of 0.5 to remove weak elements and the resulting matrix was then partitioned 

100 times using the Louvain algorithm. The final Louvain-based clustering produced a set of 

partitions from which a new agreement is built which we are showing here as consensus 

communities. Consistent with the previous analysis of eigenvector versatilities, although there is 

generally no direct correspondence between analyzing one mean multilayer network versus 

performing consensus analysis on multiple multilayer networks, we can still appreciate that our 

main conclusions based on how frontal-cingulate-parietal-insula regions are consistently 

distinguished from parietal-occipital-temporal regions hold. 

https://www.nitrc.org/projects/bct/
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We did not proceed further into investigating the effects of averaging networks because a rigorous 

network analysis was falling out of the scope of this paper. 

It is important to keep in mind that other connectivity indices could be used (e.g., coherence or 

mutual information) and potentially capture different topologies from the ones captured by linear 

correlations and phase locking values (depending of course on the activity of specific functional 

agents, e.g., neurons, astrocytes, or their interface through glutamatergic and GABAergic 

transmissions). Additionally, a full multilayer network reconstruction could be used and potentially 

reveal the cohesions that exist between functional relationships of different natures. In this paper, 

we adopted the intuitive case of multiplex networks due to the lack of established procedures to 

generally define inter-layer connectivity or relate to each other the different connectivity indices 

used for network reconstructions (e.g., see (Brookes et al., 2016; De Domenico, 2017; Palva et al., 

2018; Sadaghiani et al., 2022; Tewarie et al., 2016), there are diverse connectivity measures 

relating instantaneous phase-phase, or amplitude-amplitude, or phase-amplitude, but their joint 

analysis requires a dedicated paper). In addition, it is also important to remember that there are 

still considerable theoretical challenges to tackle for the study of multilayer functional networks, 

especially when analyzing real-world data, such as the definition of appropriate null models to 

avoid mapping spurious connectivity patterns or the quantification of topological descriptors under 

uncertainty and stochastic conditions (De Domenico, 2017; Raimondo & De Domenico, 2021). In 

this paper, because a rigorous network analysis was falling out of our scope, we did not attempt to 

quantify the statistical significance of either our topological descriptors or our functional 

connectivity scores. 

As a final note and related to the illustrations provided in Section 2.4.1 of Chapter 2, the 

frameworks of time-resolved and dynamic functional connectivity analysis (e.g., see (Heitmann & 

Breakspear, 2018; Preti et al., 2017)) are best suited to characterize our network model given the 

non-stationary nature of Glue and GABAe over short time windows. Besides, with slight variations 

in parameter constraints, our network model no longer satisfies the trivial mappings between 
(𝜔Glu; 𝜔GABA)  and (Glue; GABAe)  as elaborated in Section 3.13.1. In this case, transitions 

between states may occur across different temporal scales and a static analysis would be 

misleading. In a real-world setting, transitions between states, as provided in our model through 

neurotransmission and gliotransmission, could be linked to various phenomena such as tasks, 

physical activity, circadian rhythmicity, sleep, etc. Those are considerations that we will include 

in our future studies. 
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Figure 3.23. Mean multilayer functional networks for four simulations. Each simulation can be identified by its whole-brain (Glue; GABAe) levels. Three distinct 

pieces of information are represented: adjacency matrices (the matrices on the top), eigenvector versatilities (the brain maps in the middle), and communities (the 

heatmaps and brain maps on the bottom). For each simulation, there are four adjacency matrices, each corresponding to one functional layer (i.e., LFP-PLV, LFP-

AEC, Glue-C, or GABAe-C) as indicated on the legend schematic on the top left. A thresholded version of each functional layer (retaining 25 percent of their highest 

weights) is displayed on the lower diagonal portions (i.e., exactly as analyzed in this paper). Note that for the sake of conciseness, we are not showing here the full 

multilayer networks, which would be of dimension 4×216. Instead, we are showing only the intra-layers (i.e., the diagonal blocks of the rank-2 tensor representation 

of the multilayer networks), each being of dimension 216. However, we reiterate that all inter-layers were in fact identity matrices (i.e., the state nodes of a single 

physical node build a clique). For each simulation, there are two community profiles: one for the multilayer functional network and one for the aggregate network, 

as indicated on the legend schematic on the bottom left. For each community profile, the number and colour of communities are indicated by colour bars. For both 

the adjacency matrices and community profiles, the parcellation and regions are shown following the conventions specified in Section 3.11. 
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Figure 3.24. Effects of connectome-averaging on eigenvector versatilities for four simulations. Each simulation can be identified by its whole-brain (Glue; GABAe) 
levels. The first row is the same as in Figure 3.23 which was obtained by estimating eigenvector versatilities on mean multilayer networks. The second row was 

obtained by performing consensus analysis on the multilayer eigenvector versatilities obtained across simulation batches. 

 
Figure 3.25. Effects of connectome-averaging on community detections for four simulations. Each simulation can be identified by its whole-brain (Glue; GABAe) 
levels. For each simulation, there are two community profiles: one for the multilayer functional network and one for the aggregate network, as indicated on the 
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legend schematic on the left. For each community profile, the number and colour of communities are indicated by colour bars. The parcellation and regions are 

shown following the conventions specified in Section 3.11. The first row is the same as in Figure 3.23 which was obtained by performing multilayer community 

detections on mean multilayer networks. The second row was obtained by performing consensus clustering on the multilayer communities obtained across 

simulation batches. 
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3.14.4 Structural reducibility analysis of multilayer functional networks 
One important observation was the fact that Glue and GABAe connectivity (or activity) patterns 

were highly similar across simulations (e.g., see Figure 3.16.c). The analysis of the structural 

reducibility of a multilayer network (De Domenico, Nicosia, et al., 2015) allows us to find layers 

that provide redundant topological information, suggesting how to merge some layers with other 

ones, to obtain an optimal multilayer network. 

Figure 3.26.a shows reducibility scores (i.e., indexing the distinguishability level of a network 

from its aggregate counterpart) graphed against whole-brain levels of Glue  and GABAe . We 

observed that local maxima coincided with cluster #2 determined in Figure 3.22.a. Figure 3.26.b 

shows (average) optimal number of layers after reducibility operations graphed against whole-

brain levels of Glue  and GABAe , and it illustrates our discourse in the Main Text, where we 

summarized the results of structural reducibility by reporting the number of layers merged across 

simulations. For example, we understand from Figure 3.26.b that no layers were merged (i.e., they 

did not have redundant topological information) for a relatively large number of simulations (i.e., 

the optimal number of layers is about four), while three layers out of four (in fact all correlation 

layers) were merged (i.e., they had redundant topological information) for the simulations where 

the network model behaved homogeneously (i.e., below the first contour, as elaborated in Section 

3.13.2). We also understand from Figure 3.26.a–b that the simulations of cluster #2 compared to 

the other clusters underlay networks that were both maximally distinguishable from their aggregate 

counterparts and without redundant topological information (i.e., there was virtually no merging 

between layers). This is consistent with the fact that we expected critical dynamical network 

behaviours within cluster #2 (as elaborated throughout Sections 3.13.2, 3.14.2, and 3.14.3). 

Figure 3.27 shows that all our conclusions obtained from performing the analysis of the full 

networks remained mostly unchanged after reducibility operations (i.e., reducibility operations 

preserved essential topological features). We can observe that the global topological properties of 

reduced networks are highly similar to those of the full networks (as shown in Figure 3.5 of the 

Main Text), and therefore consistent with the clustering results that we interpreted in the Main Text 

and in Section 3.14.2. For example, within cluster #1, the networks were found to depict medium 

segregation levels, lowest integration levels, medium edge redundancy levels, and medium 

community detection quality levels. Within cluster #2, the networks were found to depict 

maximum segregation and integration levels, medium-to-high edge redundancy levels, and highest 

community detection quality levels. Far from cluster #2, the networks were found to depict 

decreasing segregation, integration, and edge redundancy levels, as well as decreasing community 

detection quality levels. The decreases were larger the further away from cluster #2. 

Altogether, Figure 3.26 and Figure 3.27 suggest that functional networks exhibit optimal properties 

when the network model operates at a critical dynamical border (here determined by limit cycle 

peak–peak amplitudes as elaborated throughout Section 3.13.2). 
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Figure 3.26. Structural reducibility analysis of multilayer functional networks. The relative entropy in (a) indexes the 

distinguishability level of an optimally reduced multilayer network from its aggregate counterpart where higher values 

connote networks whose layers provide less redundant topological information. The optimal number of layers after 

reducibility operations in (b) were obtained by averaging across simulation batches. The black solid curves in each 

graph represent contours of limit cycle 𝐸Pyr peak–peak amplitudes. The contours are the same as in Figure 3.3.b of 

the Main Text to facilitate juxtapositions with clustering analysis results of network connectivity measures. Each 

contour passes through one of the following (Glue; GABAe)  coordinates in (μmol) × (μmol) : (8.5; 14.0), (8.50; 

18.25), or (9.5; 21.0). 

 
Figure 3.27. Global topological properties of reduced multilayer functional networks. The properties are graphed as 

functions of whole-brain levels of Glue (y-axis) and GABAe (x-axis): (a) clustering coefficient (an index of network 

segregation where higher values connote more segregated networks), (b) path length (an index of network integration 

where higher values connote more integrated networks), (c) edge overlap (an index of edge redundancy where higher 

values connote more similar weight patterns across layers), and (d) code length (a quality index of community 

detection where lower values connote networks with more optimal data compression of a random walker’s movements 

on them). The black solid curves in each graph represent contours of limit cycle 𝐸Pyr peak–peak amplitudes. The 

contours are the same as in Figure 3.3.b of the Main Text to facilitate juxtapositions with clustering analysis results of 

network connectivity measures. Each contour passes through one of the following (Glue; GABAe)  coordinates in 

(μmol) × (μmol): (8.5; 14.0), (8.50; 18.25), or (9.5; 21.0). 
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Chapter 4 A neuron-glial perspective of MEG connectomics ― 
establishing a biologically plausible computational framework 
to guide and evaluate empirical methodologies 

4.1 Thesis storyline 

This chapter marks the first of two segments dedicated to neuroimaging applications, building 

upon the previously introduced biophysical model that elucidates whole-brain neuron-astrocyte 

network dynamics. Here, the coupling of neuronal and astrocytic networks through glutamatergic 

and GABAergic transmission systems is pivotal. Our objective is to shed light on the role of 

astrocytic networks in the non-invasive electrophysiological reconstruction of resting-state 

functional networks, thereby proposing a biologically plausible computational framework aimed 

at enhancing and evaluating empirical approaches within whole-brain electrophysiological 

connectomics. 

To appreciate the emphasis on electrophysiological connectomics, it is pertinent to revisit a key 

discovery from the previous chapter. A crucial insight from our earlier work highlighted the 

interplay between glutamatergic and GABAergic neurotransmissions, and the dynamics of 

neuronal membrane potentials within the alpha frequency band (8–13 Hz). We posited that the 

nuanced balance of excitatory and inhibitory neurotransmitter dynamics, governed by the intricate 

interplay of neuron-astrocyte uptake and release mechanisms, plays a modulatory role in neuronal 

membrane potential dynamics. Notably, our in-depth analysis of whole-brain network activity and 

functional connectivity revealed that neurotransmitter dynamics could statistically explain 

fluctuations in the amplitude envelope of neuronal membrane potential dynamics. 

Building on this pivotal discovery and leveraging insights from empirical multimodal 

neuroimaging research, we felt compelled to confront our model’s predictions to empirical 

electrophysiological findings. Moreover, we sought to explore the intricate relationships between 

these findings and other functional neuroimaging approaches, most notably BOLD fMRI. This 

inclination towards electrophysiology is driven by its more immediate applicability in our network 

model, unlike neurotransmitter dynamics which remain elusive at the whole-brain scale in humans. 

A well-recognized example of the interconnection between different neuroimaging modalities is 

the established correlational links between electrophysiological activities and hemodynamic 

changes, a topic frequently cited in the field. 

Over the last decade, a significant observation has been the concordance of network patterns found 

in the band-limited amplitude envelopes of MEG rhythms, particularly within the alpha and beta 

(13–30 Hz) bands, with those identified in BOLD fMRI rhythms (Brookes et al., 2011; Hipp et al., 

2012; Sadaghiani et al., 2022). This discovery was groundbreaking, establishing a multimodal 

bridge between non-invasive electrophysiological connectomics and the established domain of 

fMRI connectomics, and underscoring the relevance of whole-brain MEG analyses in 

understanding functional connectivity patterns (Sadaghiani et al., 2022). 

In parallel, within a distinct yet lesser-known research community, numerous studies have argued 

that fMRI signals, which include but are not limited to the BOLD signal, cannot solely be 

interpreted through neuronal activity (Figley & Stroman, 2011; Lu et al., 2019; Magistretti & 

Allaman, 2015; Schaeffer & Iadecola, 2021). These findings suggest the necessity for a more 
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encompassing theory that integrates glial signaling to accurately describe the mechanisms behind 

fMRI signal generation. 

Collectively, these insights motivated our previous work to propose that our neuron-astrocyte 

whole-brain modeling approach could pioneer the exploration of neuron-glial regulatory 

mechanisms governing glutamatergic and GABAergic transmissions. We argue these mechanisms 

are crucial for the empirically observed associations between MEG and BOLD signals. We 

emphasized the existence of a biochemical foundation, carefully orchestrated by neuron-astrocyte 

networks, for these empirical correlational relationships. We posited that a neuron-glial perspective 

is essential for unraveling the intricate mechanisms at play. 

Thus, it is anticipated that our whole-brain model will generate outputs that, to some extent, mirror 

empirical electrophysiological data like MEG or EEG, provided that current electrophysiological 

forward and inverse models are suitable. These models typically involve defining an 

electromagnetic lead field model to transform the aggregated membrane potentials of neuronal 

populations, represented as intracellular current dipoles (i.e., sources), into observable data at the 

electrode level; or its dual, i.e., formulating a source reconstruction model to estimate neuronal 

sources from the observed electrode-level data; or both (Sadaghiani et al., 2022). 

For the purpose of this chapter, we will primarily address the topic of fitting MEG data, leaving 

the integration of BOLD fMRI data for later discussion, to simplify our focus on electrophysiology. 

To this end, we assume that neuronal and astrocytic activities are sufficiently coupled to make 

current electrophysiological forward models viable. This assumption, which implicitly frames 

astrocytes as passive components within prevailing head tissue conductivity models, is contentious 

due to astrocytes’ dynamic impact on neuronal field potentials at the brain mesoscales and 

macroscales (De Pittà & Berry, 2019; Kastanenka et al., 2020; Verkhratsky & Nedergaard, 2018). 

Nevertheless, this simplification is a necessary compromise for the model’s practical use and 

partial validation, considering the absence of techniques to simultaneously record neuronal and 

glial activity across the whole brain (De Pittà & Berry, 2019; Kastanenka et al., 2020). Moreover, 

this stance acknowledges the complexity of brain tissue modeling and the active research dedicated 

to developing more sophisticated models that incorporate a richer array of tissue characteristics 

(Antonakakis et al., 2019; Coquelet et al., 2020; McCann et al., 2019; Morales et al., 2018; 

Stenroos & Nummenmaa, 2016; Unal et al., 2021; Vorwerk et al., 2014). 

Our methodology in the previous chapter already adopted this assumption, expressing it 

mathematically as a dynamic balance where neurotransmitter uptake and release rates equilibrate, 

portraying glutamatergic and GABAergic dynamics as mean quasi-stationary slow fluctuations. 

Under this framework, one might anticipate a straightforward mapping between our model’s 

outputs and empirical electrophysiological data, given the previous successes of Jansen–Rit-based 

whole-brain models in approximating empirical observations (Griffiths et al., 2022). Our model’s 

neuronal compartment is mathematically equivalent to these models once the criterion of 

stationary neurotransmitter dynamics is applied. 

However, the reality of source-level analysis in non-invasive electrophysiological data, 

particularly in the domain of resting-state studies, is fraught with inherent challenges (B. He et al., 

2018; Palva et al., 2018; Sadaghiani et al., 2022). These complexities render the mapping between 

model outputs and empirical data less clear-cut, even when employing neuronal-only or 

phenomenological whole-brain models. The task is especially daunting when attempting to match 
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model outputs with empirical data based on the fit of functional network connectivity patterns (B. 

He et al., 2018; Palva et al., 2018; Sadaghiani et al., 2022). 

For instance, the accuracy of source-level functional network reconstruction techniques in 

capturing true functional network patterns remains uncertain, even within the basic spectral range 

of 1–100 Hz, despite the potential for frequencies up to 1000 Hz (B. He et al., 2018; Palva et al., 

2018; Sadaghiani et al., 2022). The primary hurdles in assessing these reconstruction techniques 

include the spatial resolution limitations and signal leakage common to non-invasive 

electrophysiological measurements, along with the inevitable methodological decisions required 

in the activity and connectivity reconstruction processes (B. He et al., 2018; Palva et al., 2018; 

Sadaghiani et al., 2022). These issues highlight the lack of standardized analytical approaches in 

electrophysiological connectomics research (Meunier et al., 2020; van Diessen et al., 2015). 

However, we propose that a significant part of the challenge also lies in developing a robust 

simulation framework that allows for a comprehensive evaluation of these source-level functional 

network reconstruction methods. Despite some efforts, existing frameworks have been limited in 

their conceptual depth. Addressing this gap is a key aim of our work. 

As we will outline, the task of evaluating source-level functional network reconstruction methods 

is both a recent area of scientific investigation and an exciting opportunity to highlight the neuron-

glial modelling perspective. It is important to note that these evaluations, while related, are distinct 

from the assessments of whole-brain computational models’ capacity to replicate empirical 

functional connectivity patterns; a field that constitutes its own area of research, which we will 

also briefly discuss. 

4.2 Abstract 

This physiologically constrained simulation study evaluates the performance of traditional MEG 

source-level functional network reconstructions across multiple spatial resolutions, using both a 

linear (weighted minimum norm, MN) inverse operator, and a non-linear (wavelet-based 

maximum entropy on the mean, MEM) one able to accommodate biological priors. Focusing on 

the intricate neuron-astrocyte interactions within whole-brain resting-state dynamics, our 

computational neural mass network model integrates astrocytic structural and functional 

constraints to provide a more biophysically plausible framework for network analysis. Utilizing 

the MEG setup from the Human Connectome Project for nine subjects, we explore the consistency 

and precision of MEG network reconstructions in simultaneously capturing phase and amplitude 

coupling patterns, summarized in a multilayer network model, across four spatial resolutions 

informed by the Schaefer-Yeo atlases. Our comprehensive analysis, encompassing macro-scale 

and micro-scale multilayer network properties, reveals that MN reconstructions slightly 

outperform MEM, especially at finer dipolar resolutions. However, the effectiveness of these 

reconstructions is heavily dependent on the use of appropriate priors for inverse operator 

parameters, challenging standard practices in the field. We observe that the accuracy of network 

reconstructions is influenced by various factors, including resolution, connectivity measures 

corrected or not for zero-lag synchronization, and the underlying network dynamics. A notable 

finding is the critical role of biological priors, such as the brain’s geometrical structure, in 

enhancing the fidelity of reconstructions at micro-scales. This underscores the importance of 

selecting inverse operators based on their ability to integrate such priors rather than solely on their 

comparative performance. Additionally, our study suggests that optimal connectome densities can 

significantly improve reconstruction accuracy, pointing towards methodological advancements for 
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high-resolution electrophysiological data analysis. This research advocates for a nuanced approach 

to electrophysiological network reconstruction, emphasizing the integration of neuron-glial 

perspectives and the consideration of brain geometry. By addressing current methodological 

limitations and opportunities, our findings contribute to advancing network reconstruction 

techniques and deepening our understanding of brain dynamics. 

4.3 Introduction 

Astrocytes, a major type of glial cells, are organized into networks primarily connected by gap 

junctions that facilitate intercellular communication. Their anatomical positioning in relation to 

neurons is strategically optimized to enhance functional interactions, such as those mediated by 

glutamatergic and GABAergic transmission systems (De Pittà, 2020; De Pittà & Berry, 2019; 

Fields et al., 2015; Kastanenka et al., 2020; Poskanzer & Yuste, 2011, 2016; Vasile et al., 2017; 

Verkhratsky & Nedergaard, 2018). Despite evidence indicating that astrocytic networks can 

decode and modulate neuronal network activities, as well as respond independently of neuronal 

activity changes, astrocytes often remain underrepresented in discussions surrounding 

electrophysiological studies, particularly in non-invasive human studies using techniques like EEG 

or MEG (De Pittà, 2020; De Pittà & Berry, 2019; Fields et al., 2015; Kastanenka et al., 2020; 

Poskanzer & Yuste, 2011, 2016; Robertson, 2018; Vasile et al., 2017; Verkhratsky & Nedergaard, 

2018). 

Foundational texts like “Niedermeyer’s Electroencephalography” acknowledge the diverse 

cellular contributions to brain electrophysiology, glial cells included (Amzica & Lopes da Silva, 

2017). Yet, the bulk of EEG and MEG research remains focused on neuronal activities, often 

relegating the role of non-neuronal cells to brief mentions (Baillet, 2017; Biasiucci et al., 2019; 

Gross, 2019; F. Lopes da Silva, 2013, 2022; Okada, 2020; Wadman & Lopes da Silva, 2017; 

Wendling & Lopes da Silva, 2017). This neuron-centric view persists despite acknowledgments 

that EEG and MEG signals encapsulate contributions from neurons, glia, and even blood vessels 

(Buzsáki, 2009; Buzsáki et al., 2012; F. Lopes da Silva, 2022; Okada, 2020; Robertson, 2018; 

Wadman & Lopes da Silva, 2017; Wendling & Lopes da Silva, 2017). The emphasis on neuronal 

dynamics is partly due to these techniques’ sensitivity to electrical activities of neurons and is 

exacerbated by current technological limitations, which hinder simultaneous monitoring of both 

neuronal and glial activities across the entire brain (De Pittà, 2020; De Pittà & Berry, 2019; Fields 

et al., 2015; Kastanenka et al., 2020; Poskanzer & Yuste, 2011, 2016; Vasile et al., 2017). 

However, glial cells gain prominence in research concerning neurological disorders and in 

investigations at the cellular and assembly levels, where their contributions to neural circuit 

functionalities and dysfunctions are more thoroughly examined (Amhaoul et al., 2014; Brazhe et 

al., 2023; Devinsky et al., 2013; Obenaus, 2013; Purnell et al., 2023; Vezzani et al., 2022; Volman 

& Bazhenov, 2019). This discrepancy underscores the need for advancing research methodologies 

to capture the comprehensive roles of both neuronal and glial populations in brain 

electrophysiology, promoting a more holistic understanding of neural network operations. 

This chapter explores the mapping of whole-brain functional connectivity through non-invasive 

electrophysiological imaging, a field also known as connectomics (Sadaghiani et al., 2022). It aims 

to broaden the traditional neuronal-centric view by incorporating neuron-astrocyte network 

dynamics into the analysis of electrophysiological data (De Pittà & Berry, 2019; Kastanenka et al., 

2020; Robertson, 2018). Unlike the direct graphical mapping achievable with BOLD fMRI, whole-

brain imaging in non-invasive human electrophysiology relies on inverse modeling, or 
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reconstruction, of data from EEG or MEG (Baillet, 2017; B. He et al., 2018). This thesis chapter 

specifically harnesses MEG to propose and examine novel hypotheses regarding the potential 

interplay between astrocytic networks and neuronal circuits, and how this interaction influences 

the resting-state functional networks reconstructed from MEG data. 

Our objective is to critically evaluate the fidelity of existing MEG source-level functional network 

reconstruction techniques in capturing the intricate and biologically plausible dynamics of our 

computational model of whole-brain resting-state networks, with a particular focus on neuron-

astrocyte interactions manifested through amplitude and phase synchronizations. The typical 

reconstruction process adopts a sequential method, starting with solving the inherently ill-posed 

inverse problem to obtain time-series data, followed by constructing functional networks from 

these time-series. 

Our aim is to establish a biologically plausible computational framework that can rigorously test 

and refine empirical electrophysiological connectomics approaches. This initiative is part of a 

broader research agenda aimed at integrating our biophysical whole-brain model with real-world 

data, employing optimized electrophysiological connectomics techniques, even if this integration 

remains partial at this stage. We also explore how adopting a neuron-astrocyte perspective 

augments the modeling process by factoring in the brain’s geometrical structure. This 

consideration allows us to account for fundamental structural constraints that extend beyond 

neuronal fiber connectivity (Pang et al., 2023). Furthermore, we utilize multilayer network 

modeling to coherently integrate different types of functional interactions (De Domenico, 2017), 

particularly those characterized by amplitude and phase coupling measures, and apply dynamic 

systems theory to elucidate the various modes of dynamic interactions between astrocytic and 

neuronal networks within our model. The ensuing sections will detail how these methodological 

advancements significantly improve our understanding of source-level functional network 

reconstruction within a simulated environment, underpinned by our computational model of 

neuron-astrocyte network interactions. 

Our methodology unfolds in two primary stages: the simulation of α-band MEG activity and the 

subsequent evaluation of network reconstructions. 

Simulation of α-band MEG activity ― We initiate our study by simulating α-band MEG activity 

across 248 electrodes, employing a distributed source model that spans the entire cortical surface. 

This is done at five different resolutions, involving 100, 200, 300, 400, and 8,000 dipoles, 

respectively. The simulation aims to reflect complex amplitude and phase interactions within 

neural networks. These interactions are influenced by three core principles governing network 

community organization: (i) we use the Yeo-7 BOLD fMRI resting-state network atlas (Schaefer 

et al., 2018; Yeo et al., 2011), to encourage functional integration within distinct neural 

communities; (ii) we incorporate neuronal constraints derived from diffusion-MRI data to enhance 

functional integration between different neural communities; and (iii) we apply astrocytic 

constraints that are informed by the brain’s cortical folding patterns, which introduces 

deformations in functional integration within communities to ensure alignment with the brain’s 

geometric structure. 

Evaluation of network reconstructions ― The second stage involves a systematic evaluation of the 

reconstructed networks. We aim to meticulously compare these reconstructed networks with the 

original (ground-truth) source-level functional networks. This comparison takes into account the 

effects of different inverse operators and connectivity measures used in the reconstruction process: 

(i) for inverse modelling, we employ two distinct MEG inverse operators, including a linear 
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operator, the weighted minimum norm (wMN) (M. S. Hämäläinen & Ilmoniemi, 1994; B. He et 

al., 2018), and a non-linear operator, the wavelet-based maximum entropy on the mean (wMEM) 

(Afnan et al., 2023; Lina et al., 2014); and (ii) for quantifying connectivity, we apply four 

connectivity measures (Palva et al., 2018), comprising, for phase coupling, the phase locking value 

(PLV) and the weighted phase lag index (wPLI), and for amplitude coupling, the amplitude 

envelope correlation (AEC) and orthogonalized amplitude envelope correlation (oAEC). 

By structuring our methodology in this manner, we aim to provide a flexible framework for 

simulating and evaluating the dynamics of neural networks, with a particular emphasis on the 

integration of neuron-astrocyte interactions and the geometric constraints of the brain’s structure. 

Evaluating source-level functional network reconstruction schemes is a dynamic area of research. 

A compelling illustration of this is provided by two studies published in 2023 by (Vallarino et al., 

2023) and (Allouch et al., 2023), which collectively advance our understanding of the complexities 

involved in reconstructing functional brain networks in non-invasive electrophysiology, pointing 

to the critical role of methodological choices and the potential for optimization beyond standard 

software capabilities. 

Study by Vallarino and colleagues ― (Vallarino et al., 2023) expanded upon the work of (A. S. 

Hincapié et al., 2016), employing a more nuanced simulation framework. This study meticulously 

examined the wMN Tikhonov regularization parameter to enhance the reconstruction of functional 

connectivity patterns. The analysis focused on the cross-power spectrum, imaginary part of 

coherence, corrected imaginary part of PLV, and wPLI. The research utilized a single-subject MEG 

setup with 102 sensors and a multivariate autoregressive model to simulate neuronal activity. Their 

strategy featured a distributed source model with 6940 dipoles to simulate spectral coherence 

patterns between two regions of interest, under various conditions including changes in regional 

spatial extents, locations, and coherence levels, as well as different signal-to-noise ratios at both 

source and sensor levels. The study relied on seed-based connectivity mappings to reconstruct 

functional patterns. A key finding was that the optimal parameters for reconstructing activity and 

connectivity differ significantly, with the optimal values for each being orders of magnitude apart. 

Upon reviewing their work, we also noted a discrepancy between their optimal reconstruction 

parameters and the default settings recommended by widely used electrophysiological software 

like Brainstorm (Tadel et al., 2011), FieldTrip (Oostenveld et al., 2011), and MNE-Python 

(Gramfort et al., 2013). This gap underscores the need for external optimization schemes, beyond 

the built-in functionalities of these tools, for improved connectivity reconstruction. 

Study by Allouch and colleagues ― The study conducted by (Allouch et al., 2023) builds upon 

previous research by (Hassan et al., 2014), examining the influence of EEG channel density, 

inverse solutions, and functional connectivity measures on the accuracy of network 

reconstructions. The authors explored the effects of varying EEG channel densities (19, 32, 64, 

128, 256), employing three inverse solutions (wMN, exact low-resolution brain electromagnetic 

tomography, and linearly constrained minimum variance beamforming), and assessing four 

functional connectivity measures (PLV, PLI, AEC, and oAEC). Utilizing a neural mass network 

model constrained by empirical diffusion MRI-derived connectomes, the researchers simulated 

whole-brain neuronal dynamics. Their distributed source model comprised 66 dipoles, focusing 

on amplitude and phase couplings within the default mode network (with six dipoles) or the dorsal 

attention network (with six dipoles), separately. The findings suggest that higher EEG channel 

densities generally improve connectivity reconstruction fidelity, particularly beyond 64 channels. 

However, variations in analytical choices, such as the selection of inverse solutions or connectivity 

measures, introduced significant variability in connectivity reconstructions. The study did not 
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recommend specific analytical approaches outside particular contexts, and it relied on the default 

settings of popular electrophysiological software for connectivity reconstructions. 

Considering these recent studies, it becomes evident that the field of source-level functional 

network reconstruction is fraught with unresolved challenges, as highlighted by the authors 

themselves. These challenges persist both in simulation techniques and in the reconstruction 

methodologies. While these studies offer valuable insights for methodologists (most notably, the 

potential of reconstruction schemes to capture meaningful connectivity patterns despite inherent 

biases), they represent divergent approaches within non-invasive electrophysiological 

connectomics. This divergence often leads to confusion among experimental researchers. 

Moreover, the continuous introduction of new inverse operators and connectivity metrics, each 

purporting significant advancements over predecessors, exacerbates the lack of standardization in 

the field. This situation frequently results in inconsistent findings across studies, underscoring the 

pressing need for consensus and uniformity in methodological approaches. 

However, certain trends are becoming increasingly prominent. 

Simulation trends. ― Employing biophysical whole-brain models emerges as a particularly 

effective approach for evaluating empirical reconstruction techniques (Breakspear, 2017; Griffiths 

et al., 2022; Næss et al., 2021). These models encapsulate our biological understanding of the brain 

comprehensively, being both informed by empirical data and capable of scaling in complexity 

(Breakspear, 2017; Griffiths et al., 2022). Their utility has grown to the extent that they are now a 

cornerstone in neuroimaging research, often employed alongside real-world experiments 

(Breakspear, 2017; Griffiths et al., 2022). Furthermore, the last two decades have seen the 

development of numerous software packages and tutorials aimed at both methodologists and 

experimental researchers (Sanzleon et al., 2013). These resources have democratized access to 

whole-brain biophysical models, which, despite their mathematical complexity (e.g., non-

linearities, large number of variables and parameters and their interdependencies, …), remain 

practical for research applications. This includes models that are more mathematically 

sophisticated than the one utilized in our study, yet still tractable. 

Reconstruction trends. ― (i) The wMN inverse operator continues to serve as a standard 

benchmark for evaluating other operators, a trend that persists despite its longstanding presence in 

the field, as evidenced by recent studies like (Vallarino et al., 2023) focusing on wMN. (ii) In 

resting-state studies, distributed source models are the preferred choice for dissecting the 

spatiotemporal dynamics of electrophysiological data. These models typically define a large 

number of sources, ranging from 4,000 to 164,000 per hemisphere (for a reference, see 

https://www.fieldtriptoolbox.org/tutorial/sourcemodel/), to ensure comprehensive coverage of the 

brain volume or cortical surface. This approach, while contributing to the inverse problem’s 

complexity, remains a tractable and widely accepted practice (B. He et al., 2018). (iii) Graph 

theoretical methods are increasingly recognized as effective for exploring resting-state network 

dynamics. This approach circumvents potential neuroanatomical misinterpretations and leverages 

a robust theoretical foundation capable of accommodating various spatiotemporal scales with 

minimal assumptions (Bassett & Sporns, 2017; Palva et al., 2018). Functional interactions are 

commonly analyzed between regions defined by anatomical or functional parcellations, with 

resolutions typically ranging from one hundred to several hundred regions (Palva et al., 2018; 

Sadaghiani et al., 2022). This balance reflects the spatial resolution constraints of standard EEG 

or MEG setups and the requirements for resolving the brain’s large-scale resting-state networks. 

(iv) Phase and amplitude coupling measures are widely adopted for quantifying functional 

https://www.fieldtriptoolbox.org/tutorial/sourcemodel/
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interactions within the brain (Palva et al., 2018; Sadaghiani et al., 2022). It is crucial to understand 

that these interactions are often interdependent, necessitating a combined analysis to fully capture 

their dynamics, despite the fact that examining them individually can still yield meaningful 

biological insights (Palva et al., 2018). To address the complexity of these interactions, multilayer 

network modeling has been introduced as an effective framework (Brookes et al., 2016; De 

Domenico, 2017; Vaiana & Muldoon, 2020). This approach transcends the mere aggregation of 

different connectivity graphs, such as one layer for PLV and another for AEC, by explicitly 

modeling the interactions between these layers. This enables the exploration of cross-frequency, 

cross-measure, and cross-modality functional interactions, offering significant insights into the 

intricate nature of electrophysiological connectomics. (v) The presence of instantaneous field 

spread and volume conduction introduces spurious correlations, complicating the accurate 

estimation of phase and amplitude couplings. These artifacts present themselves in two forms: 

zero-lag correlations, which can be mitigated by measures like the wPLI or oAEC, and ghost 

interactions, which are false positive connections in the vicinity of true interactions but for which 

no definitive solution exists yet. Consequently, a comprehensive approach that incorporates 

multiple connectivity measures, both sensitive and insensitive to zero-phase-lag interactions, is 

advocated (Palva et al., 2018). This strategy allows for a more reliable interpretation of 

connectivity patterns, acknowledging the limitations and strengths of each measure. This approach 

represents a significant advancement from previous practices in non-invasive electrophysiology, 

which overly relied on specific measures to avoid false positives, without recognizing the inherent 

complexity of phase and amplitude interactions in brain connectivity. 

In this chapter, we embrace the current trends in the field and extend the research summarized 

earlier (along with additional studies discussed later) by simulating biologically plausible 

functional patterns of neuron-astrocyte interactions across the whole brain. We place a special 

emphasis on the influence of the brain’s geometric structure and fiber connectivity, recognizing 

their critical roles in shaping the electrophysiological dynamics that govern complex phase and 

amplitude network interactions. A detailed introduction to the significance of the brain’s 

geometrical embedding in our model is provided in the Methods section as we describe our 

simulation approach. 

4.4 Methods 

4.4.1 Neuron-astrocyte mass network model 
Our biophysical whole-brain model has been delineated in previous chapters. In summary, the 

model conceptualizes each node within the network as a mesoscopic cortical region, encapsulated 

by a mass model comprising four densely interconnected neural subpopulations: glutamatergic 

pyramidal neurons, GABAergic inhibitory interneurons, excitatory interneurons, and astrocytes. 

In this model, glutamatergic pyramidal neurons are positioned at the forefront, integrating 

feedback from both excitatory and GABAergic inhibitory interneurons via synaptic firing. It is 

posited that the aggregate of excitatory and inhibitory postsynaptic potentials at these pyramidal 

cells constitutes the principal source of electrophysiological signal that can be recorded at the 

macroscale by MEG. Moreover, the model posits a dynamic interplay where pyramidal and 

inhibitory neurons are subject to modulation by astrocytic feedback via glutamatergic 

gliotransmission. This interaction stimulates neurotransmitter release into the extracellular milieu, 

influencing the excitability of both pyramidal and inhibitory neurons. Notably, while extracellular 

glutamate modulates the excitability of both neuron types, GABA specifically affects pyramidal 

neurons. The neurotransmitter dynamics, including uptake mechanisms by pyramidal neurons, 
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inhibitory neurons, and astrocytes, are meticulously accounted for, ensuring neurochemical 

equilibrium. On a broader scale, the model encapsulates macroscopic network connectivity, with 

pyramidal neuron interconnections across regions depicted via white-matter tracts, and astrocytic 

connectivity modeled through gap junction densities, indicative of a syncytial organizational 

pattern. The governing equations of the model can be found in Section 2.2 in Chapter 2. 

4.4.2 Structural layers 
In this study, empirical MRI data were employed to derive the interconnection matrices for 

neuronal and astrocytic networks, building upon the approach outlined in the preceding chapter. 

This time, connectivity estimates for both matrices were constrained by Schaefer-7 functional 

atlases (Schaefer et al., 2018), incorporating 100, 200, 300, and 400 cortical regions. These regions 

are intrinsically organized into 7 functional networks as identified by (Yeo et al., 2011), enabling 

a detailed exploration of the impact of spatial resolution on network connectivity. 

The neuronal interconnection matrix, representing synaptic connectivity among pyramidal 

neurons, was derived from a state-of-the-art tractography-based connectome reconstruction 

pipeline (Schiavi et al., 2020; St-Onge et al., 2018; Theaud et al., 2020) applied to diffusion and 

structural MRI data from nine subjects in the Human Connectome Project Young Adult dataset 

(Glasser et al., 2013; Van Essen et al., 2013). This matrix reflects an anatomical and microstructural 

measure of neuronal connectivity strength. 

The astrocytic interconnection matrix was constructed to reflect the brain’s cortical surface 

geometry, based on a high-resolution tessellation of the cortical mid-surface derived from the same 

dataset. 

To manage computational demands and reduce sources of variabilities in our statistical analyses, 

we computed single representative matrices for both pyramidal neurons and astrocytes by 

averaging across the subject cohort, as done in the preceding chapter. These matrices underwent 

normalization to ensure their right-stochastic properties. The network model parameters were 

carefully selected to produce simulations that remain consistent across different parcellation sizes, 

with further elaboration on these adjustments provided in subsequent sections. 

4.4.3 Constraining dynamical regimes 
In this study, the model’s outputs were constrained using a biologically plausible parameterization, 

as detailed in preceding chapters (e.g., Section 3.8.1 in Chapter 3). This parameterization was 

derived from a combination of bifurcation analysis of limit cycles and a consensus of 

physiologically realistic parameter sets sourced from existing literature. Such an approach enables 

our network model to generate α-band local field potential (LFP) dynamics that underpin both 

amplitude and phase network synchronizations, alongside depicting quasi-stationary slow 

fluctuations in extracellular glutamate and GABA neurotransmitter dynamics. 

Crucially, this parameterization allows the model to produce consistent outputs across different 

parcellation sizes, primarily because it is anchored in the bifurcation analysis of a homogeneous 

network model. To accommodate the variability inherent in biological systems, we allowed three 

parameters to remain adjustable: two parameters governing astrocytic network coupling and one 

parameter defining the variance of the normally distributed neuronal firing rates. 

We explored 27 unique sets of astrocytic network coupling parameters. These sets were 

categorized into two separate oscillatory regimes, corresponding to two distinct families of 
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periodic orbits. Specifically, one family was represented by 16 unique parameter combinations, 

while the other comprised 11. These dynamic regimes were selected to position the network model 

at critical dynamical junctures, fostering the emergence of functional networks characterized by 

optimal properties such as clustering coefficient, path length, and community organization. 

Detailed visual representations of these dynamical regimes and their implications for network 

functionality are provided in Section 4.8.1, which is in the Supplementary Information 

accompanying this chapter. 

In this study, we introduce a novel approach by treating the variance of neuronal firing rates as a 

variable parameter, diverging from the methodology presented in the previous chapter. We 

established two distinct global variance levels to modulate the multivariate normally distributed 

baseline neuronal firing rates. These variance levels act as multiplicative constants applied to a 

spatially constraining covariance matrix, which is structured as a block diagonal matrix with unity 

blocks corresponding to each Yeo-7 community. This configuration serves as a functional spatial 

prior, offering an innovative alternative to direct manipulations of structural layers or the 

specification of heterogeneous nodal priors. 

The utility of this functional prior is best understood by imagining a hypothetical scenario where 

the network model lacks structural constraints: the prescribed covariance matrix would then 

compel the model to generate functional networks with perfect intra-community correlations and 

complete inter-community orthogonality. However, given the model’s incorporation of structural 

constraints though a two-layered network, this covariance matrix merely promotes intra-

community functional integration to a certain extent, allowing the model the flexibility to either 

distort these patterns or foster inter-community integration. 

To explore two distinct modes of network dynamics, we set the global variance levels such that in 

one scenario (with the standard deviation level set to 10 Hz), the baseline neuronal firing rates are 

marginally lower than the levels induced by neuronal network feedback (guided by the diffusion-

MRI-based connectome). This setup inherently biases the model towards stronger inter-

community functional integration. Conversely, in the second scenario (with the standard deviation 

level set to 20 Hz), the baseline firing rates exceed the feedback-induced levels, promoting 

enhanced intra-community integration. Consequently, the ratio between the variance of neuronal 

network feedback and the baseline firing rates acts as a global index to gauge the balance between 

functional integration and segregation. Further elaboration on this aspect and its implications is 

provided in Section 4.8.2 in the Supplementary Information. 

To summarize, in this study, we constructed a total of 54 unique network configurations, divided 

into two distinct sets based on their functional integration patterns. The first set, comprising 27 

network simulations, predominantly exhibits complex patterns of inter-community functional 

integration. Conversely, the second set, also consisting of 27 simulations, is characterized by 

intricate patterns of intra-community functional integration. 

For both sets of simulations, the astrocytic structural layer, derived from empirical data on cortical 

folding, plays a pivotal role in modulating the intra-community functional integration patterns. 

This modulation occurs in a geometrically consistent manner across all 27 pairs of astrocytic 

network coupling parameters. Notably, the set of networks emphasizing inter-community 

functional integration is more significantly influenced by these geometrical constraints due to its 

inherent reliance on long-range neuronal projections. 
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Detailed visual representations and further elaboration on the network configurations and their 

resultant functional integration patterns are provided in Sections 4.8.1 and 4.8.2 in the 

Supplementary Information section of this chapter. 

4.4.4 Simulation scheme 
In the preceding section, we delineated a total of 54 distinct network configurations. For each 

spatial resolution across the Schaefer atlases encompassing 100, 200, 300, and 400 cortical regions, 

we conducted simulations of 54 reference network dynamics, also termed ground-truth networks, 

resulting in a cumulative total of 216 reference simulations across all resolutions. 

Each simulation spanned a duration of 5 minutes, a timeframe selected to align with conventional 

durations in empirical studies and to provide an adequate number of data points for the reliable 

estimation and statistical evaluation of connectivity metrics such as AEC and oAEC. The data from 

these simulations were sampled at an effective frequency of 256 Hz, a rate deemed appropriate for 

analyses based on MEG data. 

4.4.5 MEG source space and forward projection 
In this study, we utilized MEG data from nine subjects selected from the Human Connectome 

Project dataset, as detailed in Section 4.4.2. The MEG recordings were conducted using a whole-

head MAGNES 3600 system (4D Neuroimaging, San Diego, California), situated in a 

magnetically shielded room at the Saint Louis University medical campus. The system comprised 

248 magnetometers. Spatial digitization, encompassing anatomical landmarks, head localization 

coils, and a head shape scan with approximately 2400 points, was performed using a Polhemus 

FASTRAK-III system. Further information on sensor placement and the co-registration process 

between MEG and MRI structural scans, are referred in (Larson-Prior et al., 2013; Van Essen et 

al., 2013). Briefly, during the MEG scans, participants were positioned supine in the scanner, with 

the crown of their head gently touching the back of the MEG dewar. The co-registration process 

involved a 3-point reference system (nasion and left and right peri-auricular points) and five MEG 

position-sensor coils. Co-registrations were executed using an unmasked T1-weighted anatomical 

image with 1 mm resolution, which was not released to comply with anonymity requirements. 

For each participant, a native cortical sheet-based source model was generated, comprising 

approximately 4,000 vertices per hemisphere to facilitate distributed source reconstructions. These 

source models were derived by downsampling from a more detailed cortical sheet containing 

32,000 vertices per hemisphere, an output from the structural processing pipeline of the Human 

Connectome Project (Glasser et al., 2013; Van Essen et al., 2013). The source spaces were 

established by morphing surfaces from a standard template space to each subject’s T1-weighted 

anatomical space. This approach ensures that dipole positions are aligned across subjects in 

surface-space, permitting direct averaging across subjects when necessary. The cortical sheets 

represent tessellations of the mid-surfaces, defined as the midpoint between the white and pial 

surfaces. 

Lead field matrices for each subject were created with 8,000 dipoles using a single-shell boundary 

element model (BEM) that incorporates the inner skull layer (representing the brain) with 2,432 

vertices and the aforementioned cortical surface with 8,000 vertices (Gramfort et al., 2010; Kybic 

et al., 2005; Tadel et al., 2011). Dipole orientations were constrained to be perpendicular to the 

cortical surface at each vertex location. 
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Additional lead field matrices with 400, 300, 200, or 100 dipoles were generated by restricting 

source estimations to lead field vectors from the 8,000-dipole model that correspond to the 

centroids of predefined regions of interest. Specifically, from the 8,000-vertex source model, 

reduced models with 400, 300, 200, or 100 vertices were constructed by identifying centroid 

vertices within each region defined by the Schaefer atlases. Utilizing these reduced source models 

within the BEM framework, lead field matrices with 400, 300, 200, or 100 dipoles were then 

established for each subject, facilitating analyses at various spatial resolutions. 

MEG data for each subject was directly simulated using the lead field matrices corresponding to 

400, 300, 200, or 100 dipoles, reflecting the linear projection of reference networks at these 

resolutions. Consequently, for each resolution and subject, 54 simulated networks were generated. 

For simulations constrained by the Schaefer-100 and Schaefer-200 atlases, MEG data within the 

8,000-dipole source space were also derived by assigning identical time-series to all dipoles within 

each region defined by the Schaefer-100 or Schaefer-200 atlas, respectively. Given the potential 

for signal cancellation due to opposing dipole orientations within the same region, a two-step 

process was employed to mitigate this effect. First, the predominant dipole orientation within each 

region was identified. Subsequently, time-series for dipoles oriented in opposition to this dominant 

direction were sign-flipped to minimize cancellation. The choice of 100 and 200 regions of interest 

aligns with common practices in current literature (Palva et al., 2018; Sadaghiani et al., 2022). 

No sensor-level noise was introduced to the simulated MEG data. Ultimately, MEG datasets were 

generated through forward modeling for nine subjects across six resolutions (RES-100, RES-200, 

RES-300, RES-400, RES-8K-100, and RES-8K-200), resulting in a total of 9×6×54 five-minute 

MEG simulations for subsequent reconstruction analysis. 

4.4.6 MEG functional network reconstructions 
Overview. In this study, we extensively utilized the wMN operator for all simulations (i.e., 27×2 

simulations per resolution for each of the 9 subjects, across 6 resolutions) due to its computational 

efficiency. This efficiency is attributed to the wMN’s linear kernel, which is constructed from a 

limited number of matrix multiplications, unlike the wMEM operator. The wMEM operator, as 

detailed subsequently, necessitates a nonlinear programming solver and a data-driven cortical 

parcellation, which significantly increases computational demands. 

The notation 27×2, rather than 54, is used deliberately to underscore the separate statistical 

analyses conducted for the two distinct sets of simulations. To reiterate, each set comprises 27 

simulations; one set is predominantly influenced by brain geometry, showcasing primarily inter-

community functional integration patterns (referred to as the between-integration batch), while the 

other set exhibits mainly intra-community functional integration patterns, with minimal geometric 

constraints (referred to as the within-integration batch). 

Weighted minimum norm. The minimum norm approach (Lin et al., 2006) aims to solve a least-

squares optimization problem using MEG data 𝑀 and an orientation-free lead field matrix 𝐺. The 

MEG data 𝑀  consists of 𝑁C  channels over 𝑁T  time samples, while the lead field matrix 𝐺 

encompasses 𝑁D dipolar sources with unconstrained orientations. The objective is to determine a 

unique source configuration 𝐽MN ∈ ℝ
(3𝑁D)×𝑁T  that minimizes the energy among all possible 

configurations fitting the MEG data equally. Formally, the solution is given by: 

 𝐽MN = 𝐺
⊤(𝐺𝐺⊤ + 𝜆2𝐼)+𝑀 (4.1) 
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where 𝐼 is the identity matrix, ⊤ denotes matrix transpose, + indicates the Moore–Penrose inverse, 

and 𝜆2 is the Tikhonov regularization parameter. The choice of 𝜆 balances spatial smoothness and 

sensitivity to noise, with larger values resulting in smoother but weaker current amplitudes, and 

smaller values leading to data fidelity but increased sensitivity to noise. This minimum norm 

solution assumes spatial whitening of the data and the gain matrix, which is reflected in the identity 

matrix scaled by 𝜆2  in Equation (4.1). Additionally, anatomical priors are often incorporated, 

constraining current dipole orientations to be perpendicular to the cortical surface at each vertex 

location. This leads to using the gain matrix 𝐺fixed = 𝐺Θ ∈ ℝ
𝑁C×𝑁D in Equation (4.1), where Θ 

contains unit vectors representing the direction of current for each dipole. Consequently, 𝐽MN has 

𝑁D rows. 

In the minimum norm solution, superficial sources tend to produce stronger fields with less energy 

due to their proximity to the sensors. To counteract this bias, the introduction of a depth-weighting 

prior, represented by the matrix, 𝐴, adjusts the contribution of each lead field vector based on the 

depth of the corresponding source. This ensures that deeper sources, which may be less prominent 

in the sensor data, are appropriately accounted for in the reconstruction process. The depth-

weighted minimum norm solution is formulated as follows: 

In this equation, the diagonal matrix 𝐴 scales each lead field vector 𝑖 with a factor proportional to 

(𝑔𝑥,𝑖
⊤𝑔𝑥,𝑖 + 𝑔𝑦,𝑖

⊤𝑔𝑦,𝑖 + 𝑔𝑧,𝑖
⊤𝑔𝑧,𝑖)

−𝛾
, where 𝑔𝑥,𝑖, 𝑔𝑦,𝑖, and 𝑔𝑧,𝑖 are the three columns of the non-

oriented lead field matrix 𝐺 at the source location 𝑖, and 𝛾 is a depth weighting exponent (chosen 

as 0.8 in this study). An upper bound on depth weighting is typically specified, set to 10 in this 

case. For more details, refer to (Lin et al., 2006). 

In the work of (Vallarino et al., 2023), a theoretical procedure is proposed to choose 𝜆 for optimal 

connectivity reconstructions when ground-truth is known. They demonstrated that the best 𝜆 

values for connectivity reconstructions differed significantly from the traditional approach of 𝜆2 =
tr(𝐺𝐺⊤) (𝑁𝐶 × SNR

2)⁄  , where SNR  is the amplitude signal-to-noise ratio of the whitened data 

(typically set to 3), and tr denotes the matrix trace operator (Lin et al., 2006). For simplicity, we 

present results only for 𝜆  values that best reconstruct activity, determined by minimizing the 

Frobenius norm of the difference between the ground-truth and wMN solutions. While this choice 

may not be optimal, it significantly outperforms the default setting with SNR = 3, as demonstrated 

in the Supplementary Information, and it serves the purposes of our discussion and analysis. 

Wavelet-based maximum entropy on the mean. Consider a continuous random variable 𝑋, for 

which the only available data are {𝑚0 = 1,𝑚1, … ,𝑚𝑁} . Furthermore, suppose that the data 

represent the expectations of some known functions {𝜙0(𝑋) = 1, 𝜙1(𝑋),… , 𝜙𝑁(𝑋)}. Given a prior 

probability density 𝜌0 , if we aim to determine, a posteriori, a probability density 𝜌  that best 

represents the data and the prior knowledge, then the maximum (relative) entropy approach (M. 

Djafari, 1994; Gamboa, 1989) suggests choosing 𝜌 maximizing the relative entropy: 

subject to: 

The solution to this problem has an exponential form: 

 𝐽wMN = 𝐴𝐺
⊤(𝐺𝐴𝐺⊤ + 𝜆2𝐼)+𝑀 (4.2) 

 
−∫𝜌(𝑥) ln (

𝜌(𝑥)

𝜌0(𝑥)
)  d𝑥 (4.3) 

 
∫𝜙𝑘(𝑥)𝜌(𝑥) d𝑥 = 𝑚𝑘, 𝑘 ∈ ⟦0; 𝑁⟧ (4.4) 
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where 𝑍 is the partition function, and the Lagrange multipliers {𝜆1, … , 𝜆𝑁} are obtained by solving 

the non-linear system of equations: 

Denoting by 𝜆  the vector (𝜆1, … , 𝜆𝑁) ∈ ℝ
𝑁×1 , in practice, the following unconstrained dual 

optimization problem is solved: 

The constant 𝜆0 = ln 𝑍  ensures that 𝜌  integrates to 1 over its support, while 𝜆̂  control the 

compromise between the data fit and the relative entropy. Depending on the presumed form for 𝜌0 

(e.g., multivariate normal distribution) and the constrains (e.g., constrains expressed on first-order 

or second-order moments), 𝜌  can yield simple forms (M. Djafari, 1994; Gamboa, 1989). 

Additionally, this overall approach becomes the maximum entropy on the mean when the 

constraints pertain to the mean (first-order moment) of the distribution (M. Djafari, 1994; Gamboa, 

1989). 

In this study, the maximum entropy on the mean approach is employed to solve the inverse problem 

as proposed in (Amblard et al., 2004). We aim to approximate the probability density 𝜌 that is 

closest to a given prior density 𝜌0, for current sources 𝑗 at specific time instants or intervals. This 

approximation, where 𝜌̃ ≠ 𝜌0, is based on the relative entropy criteria, as outlined in Equation 

(4.3), while ensuring consistency with the corresponding MEG data 𝑚, given the lead field matrix, 

𝐺: 

To facilitate this, we introduce the log-partition function 𝐹𝜌0 defined by: 

Assuming that the noise in the measurement follows a centered normal distribution with 

covariance 𝐶, the optimal density 𝜌̃ is derived as: 

Consequently, the MEM current source estimation 𝑗MEM is determined by: 

In the wavelet-based MEM approach (Afnan et al., 2023; Lina et al., 2014), discrete wavelet 

transforms on the MEG data are first performed, the MEM framework is then applied within the 

 

𝜌(𝑥) =
1

𝑍(𝜆1, … , 𝜆𝑁)
𝜌0(𝑥) exp(−∑𝜆𝑘𝜙𝑘(𝑥)

𝑁

𝑘=1

) 

𝑍(𝜆1, … , 𝜆𝑁) = exp(𝜆0) = ∫exp (−∑𝜆𝑘𝜙𝑘(𝑥)

𝑁

𝑘=1

)𝜌0(𝑥) d𝑥 

(4.5) 

 
−
𝜕 ln(𝑍(𝜆1, … , 𝜆𝑁))

𝜕𝜆𝑘
= 𝑚𝑘, 𝑘 ∈ ⟦1;𝑁⟧ (4.6) 

 𝜆̂ = argmin
𝜆

{ln(𝑍(𝜆)) + 𝜆⊤𝑚} , 𝑚 = (𝑚1, … ,𝑚𝑁) ∈ ℝ
𝑁×1

 (4.7) 

 𝐺𝑗MEM = 𝑚 

𝑗MEM = ∫𝑗𝜌̃(𝑗) d𝑗 
(4.8) 

 
𝐹𝜌0(𝐺

⊤𝜆) = ln(𝑍(𝜆)) = ln (∫exp(𝜆⊤𝐺𝑗) 𝜌0(𝑗) d𝑗) (4.9) 

 
𝜌̃(𝑗) =

1

𝑍(𝜆̃)
𝜌0(𝑗) exp(𝜆̃

⊤𝐺𝑗) 

𝜆̃ = argmin
𝜆

{𝐹𝜌0(𝐺
⊤𝜆) − (𝜆⊤𝑚 −

1

2
𝜆⊤𝐶𝜆)} 

(4.10) 

 
𝑗MEM =

d

d𝑥
𝐹𝜌0(𝑥)|

𝑥=𝐺⊤𝜆̃
 (4.11) 
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wavelet domain. This process effectively introduces temporal sparsity and facilitates the 

reconstruction of oscillatory patterns inherent in the data. 

The prior density, 𝜌0, is defined based on a fixed cortical parcellation, grouping dipoles according 

to spatially independent parcels informed by MEG data and the lead field matrix, as detailed in 

(Afnan et al., 2023; Lina et al., 2014). For 𝑃 parcels, each 𝑘-th parcel is associated with a time-

dependent (or in the wavelet domain, a time-scale dependent) latent state 𝑆𝑘, from a state vector 

𝑆 = (𝑆1, … , 𝑆𝑃)  with density 𝜋(𝑆) , indicating either active 𝑆𝑘 = 1  or inactive 𝑆𝑘 = 0  states. 

Assuming the current sources 𝑗𝑘 within the 𝑘-th parcel depend solely on its state 𝑆𝑘 (Lina et al., 

2014), the joint prior density is expressed as: 

It is crucial to acknowledge that this model’s assumption of activity independence across parcels 

is inconsistent with the interconnected nature of resting-state network dynamics, which typically 

involve dependencies across network nodes. However, the prior formulation in Equation (4.12) 

does not preclude the possibility of functional couplings between activities across different brain 

regions. Although such coupling configurations are not emphasized in the bulk of the distribution, 

they can still be accommodated within the model’s framework given appropriate parameterization 

(explained below), allowing this MEM model to produce insightful results. For advanced 

discussions on enhancing the MEM framework to more explicitly model connectivity, refer to the 

work by (Deslauriers-Gauthier et al., 2019, 2020), which explores significant extensions of the 

MEM approach in the context of network activity and connectivity. 

To describe the current sources or their wavelet coefficients within each parcel, normal 

distributions, 𝒩(mean, covariance), are adopted with different mean and covariance parameters 

for active and inactive states (Afnan et al., 2023; Lina et al., 2014): 

where 𝐼𝑁𝑘 is the identity matrix with size 𝑁𝑘, the number of dipoles in the 𝑘-th parcel. This yields 

the following log-partition function for the 𝑘-th parcel: 

where 𝛼𝑘 denotes the probability of the 𝑘-th parcel being active. 

Given the optimal solution 𝜆̃ from Equation (4.10), the current sources, 𝑗𝑘, for the 𝑘-th parcel is 

derived as: 

with the updated probability 𝛼𝑘̃ adjusted for the energy difference Δ𝐹𝑘. Here, 𝐺𝑘 represents the 

lead field submatrix corresponding to the dipoles of the 𝑘-th parcel. In our simulations, all network 

nodes maintain a meaningful temporal activity, and there are no periods of background activity. 

This design premise enables us to set all activation probabilities, {𝛼𝑘}𝑘, to 1, reflecting an active 

state for every parcel throughout the simulation. 

 

𝜌0(𝑗, 𝑆) = 𝜋(𝑆)∏𝜌0(𝑗𝑘|𝑆𝑘)

𝑃

𝑘=1

 (4.12) 

 𝒩(0, 𝜎0𝐼𝑁𝑘) when 𝑆𝑘 = 0 

𝒩(𝜇𝑘, Σ𝑘) when 𝑆𝑘 = 1 
(4.13) 

 
𝐹𝜌𝑘(𝑥) = ln ((1 − 𝛼𝑘) exp (

𝜎0
2
𝑥⊤𝑥) + 𝛼𝑘 exp (𝑥

⊤𝜇𝑘 +
1

2
𝑥⊤𝛴𝑘𝑥)) (4.14) 

 𝑗𝑘 = (1 − 𝛼𝑘̃)𝜎0𝐺𝑘
⊤𝜆̃ + 𝛼𝑘̃𝜇𝑘 + 𝛼𝑘̃Σ𝑘𝐺𝑘

⊤𝜆̃ 

𝛼𝑘̃ =
𝛼𝑘

(1 − 𝛼𝑘) exp(−Δ𝐹𝑘) + 𝛼𝑘
 

Δ𝐹𝑘 = 𝜆̃
⊤𝐺𝑘𝜇𝑘 +

1

2
𝜆̃⊤𝐺𝑘(Σ𝑘 − 𝜎0𝐼𝑁𝑘)𝐺𝑘

⊤𝜆̃ 

(4.15) 
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It is important to note that the spatial covariance matrices {Σ𝑘}𝑘 are designed to model functional 

couplings within parcels but do not extend to inter-parcel or global brain region interactions (Lina 

et al., 2014). These matrices are constructed based on cortical geometry, utilizing the graph 

Laplacian (𝐴) derived from the cortical surface mesh adjacency matrix, as defined by: 

Here 𝜎1 = 0.05  locally adjusts the variance within each parcel, 𝛾 = 0.5  controls the extent of 

spatial smoothing, and Γ𝑘 is the truncated version of Γ, retaining only the columns corresponding 

to the dipoles in the 𝑘-th parcel. As detailed in Supplementary Information, the critical parameter 

for achieving meaningful connectivity reconstructions in this MEM model is the set of parcel 

means {𝜇𝑘}𝑘. Incorrect settings for {𝜇𝑘}𝑘 can lead to the model’s inability to reconstruct functional 

networks, regardless of other parameter configurations. This limitation highlights the role of {𝜇𝑘}𝑘 

in guiding the solution towards configurations that reflect functional couplings between temporal 

activities across different brain regions. 

Following (Lina et al., 2014), we initially consider {𝜇𝑘}𝑘 as minimum norm estimates. However, 

we diverge from their approach by optimally adjusting the underlying Tikhonov parameters to 

match those determined for the wMN solution, as discussed earlier. Without this optimization, the 

MEM model fails to produce insightful outcomes, as demonstrated in the Supplementary 

Information, for the same reasons highlighted by (Vallarino et al., 2023) for the wMN model. This 

adjustment also ensures depth-weighting is considered in the MEM solution, enhancing its 

interpretability. 

It is also important to recognize that the data-driven cortical parcellation scheme employed by 

(Afnan et al., 2023; Lina et al., 2014) does not inherently account for functional connectivity 

patterns, leading to potential discrepancies with the simulated brain activity parcellation. This 

discrepancy becomes critical when data-driven parcels are overly large, imposing local spatial 

smoothing and functional couplings that misalign with the simulated patterns. To counter this bias 

while preserving the current MEM implementations, we adjust the parcellation procedure to yield 

the smallest possible parcel sizes, opting for a neighborhood order of one during the region-

growing steps, as opposed to the default value of four. An alternative strategy involves directly 

using a predefined parcellation atlas (e.g., the one employed during simulations) as a more 

meaningful and accessible prior. However, even in this case, caution is advised to prevent the 

MEM model from favoring solutions that imply independent activities across parcels, which can 

be mitigated by appropriately setting {𝜇𝑘}𝑘. An important observation in our study is that the MEM 

solution can perfectly align with wMN solution when each dipole is its own parcel. This 

convergence underscores the critical role that parcel size and configuration play in determining the 

efficacy of our modeling approach. 

For the wavelet analysis, we employed a discrete wavelet transform using Daubechies wavelets 

with four vanishing moments. Our approach did not incorporate wavelet denoising, resulting in a 

null shrinkage coefficient. We focused exclusively on the time-frequency boxes corresponding to 

the α-band frequencies (8–13 Hz), in line with our simulation constraints. It is worth noting that 

exploring other time-frequency boxes from different scales did not alter the functional connectivity 

estimations, due to the specific design of our simulations. 

The noise covariance matrix was set to an identity matrix, effectively treated as a scalar matrix 

through a scaling factor that maintains the original data units. This scaling was achieved by 

 Σ𝑘 = 𝜎1𝜇𝑘
2Γ𝑘

⊤Γ𝑘 

Γ = ∑
(−𝛾)𝑛

𝑛!

𝐿

𝑛=0

𝐴𝑛 
(4.16) 
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inputting a white noise data segment with comparable overall mean and variance to the data of 

interest into the MEM implementation interface. This approach yields results equivalent compared 

to the shuffling procedure described in (Afnan et al., 2023), but offers a significant advantage in 

computational efficiency. However, it is important to note that this step is not critical for our 

analysis, given that all brain regions are considered to be in an active state throughout the 

simulations. 

 

Multilayer functional network modelling. In our study, we constructed two types of multiplex 

functional connectomes from both reference and reconstructed (via wMN or wMEM) network 

time-series. These connectomes were distinguished based on the bi-variate connectivity measures 

used to define the intra-layer connections: one connectome utilized phase locking value (PLV) and 

amplitude envelope correlation (AEC), which are standard connectivity measures sensitive to 

zero-lag couplings. The other employed the weighted phase lag index (wPLI) and orthogonalized 

amplitude envelope correlation (oAEC) as corrected connectivity measures insensitive to zero-lag 

couplings. An identity matrix defined the inter-layer connections in both types of connectomes. 

The approach to analyzing reconstructed dipolar time-series in our study varies depending on the 

resolution. For resolutions RES-100, RES-200, RES-300, and RES-400, each region of interest 

(ROI) corresponds to a single dipole, allowing the reconstructed time-series to be directly analyzed 

without the need for further dimension reduction. However, for higher resolutions such as RES-

8K-100 and RES-8K-200, the scenario becomes more complex due to the presence of 8000 

dipoles. To align these dipoles with the Schaefer-100 or Schaefer-200 atlas, a process of 

aggregation is necessary to reduce the dimensionality of the reconstructed time-series to match the 

intended atlas resolution. Two primary aggregation operators were employed in this study to 

consolidate the dipolar time-series into ROI-conforming time-series: average operator and 

principal component analysis (PCA) operator. The average operator computes the mean of the 

dipolar time-series within each ROI. To counteract potential signal cancellation effects that might 

occur due to dipole orientation within an ROI, a sign-flip correction was applied before averaging. 

The time-series aggregated through this method were exclusively utilized for estimating oAEC. 

The first principal component from a PCA performed on the dipolar time-series within each ROI 

served as the aggregated time-series. The time-series derived through PCA were utilized for PLV, 

wPLI, and AEC analyses. The choice of using the average operator for oAEC and the PCA operator 

for PLV, wPLI, and AEC was informed by extensive preliminary analyses. These analyses 

evaluated the efficacy and suitability of each aggregation method for the respective connectivity 

measures, ensuring the most accurate and representative outcomes. Although the detailed findings 

from these preliminary studies are beyond the scope of this chapter, they were instrumental in 

guiding the methodological decisions made in our network modeling process. For readers 

interested in the theoretical underpinnings and empirical validation of these aggregation methods, 

we recommend consulting the work of (Brkić et al., 2023), which provides comprehensive insights 

into the subject. 

For any two nodes within a network, denoted as ▲ and ■, we consider their respective time-series, 

𝑦▲ and 𝑦■. To analyze the α-band (8–13 Hz) dynamics, we first apply a band-pass filter to obtain 

the α-band limited versions of these time-series, denoted as 𝑦▲,𝛼  and 𝑦■,𝛼 . This filtering is 

performed using MATLAB’s bandpass function. Subsequently, we apply a Hilbert transform 

(using MATLAB’s hilbert function) to the filtered signals to extract their instantaneous amplitudes 

𝑚 and phases 𝜙 at any given time 𝑡. The transformed signal for node ▲ in the α-band at time 𝑡 is 

represented as 𝑌▲,𝛼(𝑡) = 𝑚▲,𝛼(𝑡) exp (𝑗𝜙▲,𝛼(𝑡)), and similarly for node ■. Here, 𝑗 denotes the 
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imaginary unit. The cross-spectrum between nodes ▲  and ■  at any time 𝑡  is estimated by 

𝑃▲,■(𝑡) = 𝑌▲,𝛼(𝑡)𝑌̅■,𝛼(𝑡), where the overbar indicates the complex conjugate. We define E as the 

expectation operator. 

The PLV (Palva et al., 2018), a measure of the consistency of phase differences between the two 

nodes over time, is calculated as PLV▲,■ = |E{𝑃▲,■ |𝑃▲,■|⁄ }|. The PLV value ranges from 0 to 1, 

indicating perfect phase synchronization when equal to 1 and complete desynchronization when 

equal to 0. 

The wPLI quantifies the asymmetry in the distribution of phase differences between the signals 

from nodes ▲  and ■ . It is defined as wPLI ▲,■ = |E{Im(𝑃▲,■)}| E{|Im(𝑃▲,■)|}⁄  , where Im 

denotes the imaginary part operator (Palva et al., 2018). The wPLI is insensitive to zero-lag 

coupling, requiring a non-zero phase-delay between signals to be non-zero. Its values range from 

0, indicating an equal balance of leading and lagging relationships, to 1, denoting consistent lead 

or lag behavior (Vinck et al., 2011). 

The AEC between nodes ▲ and ■ is calculated as the absolute value of the Pearson-correlation 

between their respective signal envelopes, 𝑚▲,𝛼 and 𝑚■,𝛼 (Palva et al., 2018). Prior to correlation, 

the envelopes are processed by applying a 2-second non-overlapping moving average filter, 

followed by a logarithmic transformation (Colclough et al., 2015). We found that substituting the 

moving average filter with a 0.5-Hz-cutoff low-pass filter yields similar results, as does using 

Spearman-correlations in place of Pearson-correlations. Absolute values were used for 

convenience. 

For the oAEC calculation, we first orthogonalize the full set of band-passed time-series (𝑦∙,𝛼)∙ 

across all nodes using singular value decomposition, resulting in a set of orthogonalized time-

series (𝑦̃∙,𝛼)∙ (Colclough et al., 2015). The oAEC between nodes ▲ and ■ is then determined by 

applying the AEC pipeline to the orthogonalized time-series 𝑦̃▲  and 𝑦̃■ , including the Hilbert 

transform, moving average filtering, and log transformation. It is crucial to note that the oAEC 

may not always be meaningful, especially when the ensemble of time-series (𝑦∙,𝛼)∙ is not full rank, 

such as when the number of dipoles exceeds the number of sensors for wMN timeseries. 

4.4.7 STATIStical investigations 
Overview. Our approach to multivariate statistical analysis aimed to methodically assess the 

congruence and divergence among various reconstructed networks in relation to their reference 

counterparts. This evaluation was facilitated by employing STATIS (a French acronym: 

structuration des tableaux à trois indices de la statistique), which extends PCA to accommodate 

multi-table datasets. This methodology enabled us to conduct a comprehensive joint analysis 

across multiple datasets, including one reference network dataset and additional datasets for each 

of the nine subjects’ networks reconstructed using both the wMN and, where applicable, the 

wMEM inverse operators. 

Specifically, our analysis encompassed either 10 (1 reference + 9 wMN reconstructions) or 19 (1 

reference + 9 wMN reconstructions + 9 wMEM reconstructions) data tables, allowing for a 

thorough examination of the variations attributable to individual subjects and, when pertinent, the 

differences engendered by the choice of inverse operator. These statistical investigations were 

meticulously conducted for each spatial resolution (RES-100, RES-200, RES-300, RES-400, RES-

8K-100, and RES-8K-200) and were further delineated based on the type of multilayer functional 

networks examined: those constructed using standard connectivity measures sensitive to zero-lag 
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coupling (PLV and AEC) and those utilizing corrected measures insensitive to zero-lag coupling 

(wPLI and oAEC). 

Additionally, our analysis spanned two distinct network scales frequently referenced in 

neuroscientific research, macro and micro scales, allowing for a nuanced exploration of network 

dynamics at different levels of granularity. By separating the investigations based on resolution, 

connectivity measure type, and network scale, we aimed to provide a detailed and stratified 

understanding of the underlying network structures and their properties. 

STATIS. The STATIS (structuration des tableaux à trois indices de la statistique) method extends 

PCA to effectively handle multi-table datasets, facilitating the analysis of complex multivariate 

data. In STATIS, each data table is composed of rows representing observations and columns 

representing variables. It is essential that all tables share the same set of observations, although the 

nature of the variables and their numbers may differ from one table to another. The STATIS 

approach unfolds in two primary steps. Initially, STATIS examines the interrelationships among 

the data tables, focusing on their similarity structure. This step is crucial for understanding how 

each table relates to the others within the dataset. Subsequently, STATIS leverages the identified 

similarity structure to determine an optimal set of weights. These weights are then applied to 

combine the individual tables into a unified representation, known as the compromise or 

consensus. The objective is to ensure that this combined representation is as reflective of the entire 

dataset as possible. Following the establishment of the compromise, PCA is applied to this 

synthesized dataset to derive factor scores, which represent the positions of observations within 

the compromise space. These positions can be visualized in a map-like format, where the proximity 

between points corresponds to the similarity between observations. Moreover, the observations 

from individual data tables can be integrated into this compromise space as supplementary 

elements, allowing for a comprehensive visualization that includes both the consensus and the 

unique contributions of each table. The contribution of each variable to the principal components 

is quantified through loadings, indicating the variable’s importance for a given component. These 

loadings can be utilized to construct maps reflecting the relationships among variables or to 

produce biplots that simultaneously display both factor scores and loadings. Additionally, the 

process of computing weights for the compromise also allows for the representation of the data-

tables themselves as points within a multidimensional space, offering another perspective on their 

interrelations. For detailed insights into the application and interpretation of STATIS, re(Abdi et 

al., 2012; Abdi & Valentin, 2007)l., 2012; Abdi & Valentin, 2007). 

For the purposes of this analysis, the notation ⊤ denotes matrix transpose, tr signifies the matrix 

trace operator, 𝐼 represents the identity matrix, and 𝟏 is a vector of ones. 

Consider a collection of 𝐾  tables, where each table 𝑌𝑘  consists of 𝐼  rows (observations) and 𝐽𝑘 

columns (variables), and 𝑘 ∈ ⟦1, 𝐾⟧. Initially, each raw data matrix 𝑌𝑘 undergoes preprocessing 

(e.g., centering and normalization) to yield the matrices 𝑋𝑘 upon which the analysis is based. Each 

preprocessed matrix 𝑋𝑘 is then transformed into a cross-product matrix 𝑆𝑘 = 𝑋𝑘𝑋𝑘
⊤ ∈ ℝ𝐼×𝐼. 

To explore the similarity structure across the 𝐾  tables, a between-table cosine matrix 𝐶 =
(𝑐𝑖,𝑗)1≤𝑖≤𝐾,1≤𝑗≤𝐾, representing inner products, is constructed as follows: 

The eigen-decomposition of the cosine matrix 𝐶 unveils the inter-table similarity structure: 

 
𝑐𝑖,𝑗 =

tr(𝑆𝑖
⊤𝑆𝑗)

√tr(𝑆𝑖
⊤𝑆𝑖) × tr(𝑆𝑗

⊤𝑆𝑗)

 
(4.17) 
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Here, 𝑈 is the eigenvector matrix and Θ is the diagonal matrix of eigenvalues, sorted in descending 

order. This decomposition, akin to a non-centered PCA, elucidates the similarity among the tables. 

The weights for constructing the compromise matrix are derived from the eigen-decomposition of 

𝐶 . Given that 𝐶  is positive semidefinite with all-positive elements, the first eigenvector 𝑢1 ’s 

elements will share the same sign (positive by convention). The first eigenvector essentially 

encapsulates the communality among the tables, suggesting its use in weighting the tables to 

emphasize those that best represent the group and de-emphasize outlier tables. 

The weights 𝜶 = (𝛼𝑘)𝑘  are normalized elements of 𝑢1 , ensuring their sum equals one:  
𝜶 = 𝑢1 (𝑢1

⊤𝟏)⁄ ∈ ℝ𝐾×1. Utilizing these weights, the compromise matrix 𝑆+ is formulated as: 

This compromise matrix 𝑆+ serves as a unified representation that encapsulates the commonalities 

across the diverse data tables, providing a foundation for subsequent multivariate analyses. This 

compromise matrix, being a probabilistic sum of the cross-product matrices, retains the property 

of being positive semi-definite. Consequently, its eigen-decomposition is analogous to performing 

a PCA: 

From this decomposition, we calculate the loadings (𝑄) using the formula 𝑄 = 𝑋⊤𝑉Λ−1 2⁄ , where 

𝑋 is the concatenation of all preprocessed data tables {𝑋𝑘}𝑘 along their columns. The factor scores 

(𝐹) are derived as 𝐹 = 𝑉Λ1 2⁄ , which can also be expressed as 𝐹 = 𝑆+𝑉Λ
−1 2⁄ , illustrating that 𝑃 =

𝑉Λ−1 2⁄ acts as a projection operator. 

The loadings for the variables from the 𝑘-th table are obtained by: 

Correspondingly, the partial factor scores for table 𝑘 are calculated using: 

In our analysis (see below, macro-scale and micro-scale analyses), we will present various 

graphical representations including plots of the inner product matrices and their PCA, maps 

depicting variable loadings, as well as visualizations of both the compromise and the partial factor 

scores. These visual tools will facilitate the interpretation of the multivariate relationships within 

and across the datasets, highlighting the underlying structure captured by the STATIS approach. 

It is noteworthy to acknowledge the versatility of the STATIS framework and its various 

extensions, which cater to a broad spectrum of statistical modeling scenarios beyond the analysis 

of data tables based on the same set of observations. These extensions enrich the applicability of 

STATIS across different research contexts, enabling tailored analyses that align with specific 

research needs. Notable extensions include: dual-STATIS (tailored for analyzing data tables that 

share the same set of variables), X-STATIS or triadic partial analysis (designed for the 

simultaneous analysis of data tables that share both variables and observations), DISTATIS or 

COVSTATIS (aimed at analyzing covariance or distance matrices that are based on the same 

observations), STATICO or COSTATIS (focused on the analysis of paired data tables), (K+1)-

STATIS or STATIS-4 or CANOSTATIS (geared towards integrating external data tables into the 

analysis), INTER-STATIS or CLUSTATIS (specialized in grouping data tables). These extensions, 

as referenced in (Abdi et al., 2012; González-Narváez et al., 2021), demonstrate the adaptability 

of STATIS to various analytical challenges, making it a powerful tool in the arsenal of multivariate 

 𝐶 = 𝑈Θ𝑈⊤ with 𝑈𝑈⊤ = 𝐼 (4.18) 

 

𝑆+ =∑𝛼𝑘𝑆𝑘

𝐾

𝑘=1

 (4.19) 

 𝑆+ = 𝑉Λ𝑉
⊤ with 𝑉𝑉⊤ = 𝐼 (4.20) 

 𝑄𝑘 = 𝑋𝑘
⊤𝑃 (4.21) 

 𝐹𝑘 = 𝑋𝑘𝑄𝑘 = 𝑆𝑘𝑃 (4.22) 
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analysis. Each extension serves a unique purpose, from enhancing the depth of analysis within a 

single dataset to enabling the integration and comparison of multiple datasets, thereby broadening 

the horizons of statistical investigation. 

Macro-scale analysis. In this analysis, we aim to assess the efficacy of various network 

reconstruction methods in preserving essential global properties of multilayer networks. This 

assessment helps to gauge the fidelity of reconstructed networks in reflecting the overall structure 

and dynamics of the reference networks. The analysis encompasses several key macro-scale 

properties of multilayer networks, including (De Domenico et al., 2014; De Domenico, 

Lancichinetti, et al., 2015; De Domenico, Nicosia, et al., 2015): global clustering coefficient (a 

measure of the degree to which nodes in the network tend to cluster together), global path length 

(the average shortest path length between all pairs of nodes in the network, providing insight into 

the network’s overall connectivity), global edge overlap (the extent of edge conservation across 

different layers of the multilayer network), functional clustering ratio (the proportion of 

interactions within each functional communities, relative to between them; this is a multilayer 

network extension of the measure developed by (Marrelec et al., 2008) and applied in (Boly et al., 

2012), by assuming that the graph Laplacian of the multilayer networks are covariance matrices 

of a degenerate multivariate normal distribution), modularity (the degree to which the network can 

be divided into distinct communities or modules with dense intra-module connections and sparse 

inter-module connections; (Clauset et al., 2004)). For each resolution considered, the statistical 

analysis is structured around data tables comprising 27 rows and 5 columns. The 27 rows 

correspond to the simulated networks within a specific batch, representing the observational units 

in our analysis. The 5 columns are dedicated to the macro-scale network properties listed above, 

serving as the variables under investigation. Depending on the scope of the reconstruction methods 

evaluated, the analysis involves either 10 (1 reference network + 9 reconstructed networks for 

wMN) or 19 (1 reference network + 9 wMN + 9 wMEM reconstructed networks) data tables for 

each resolution. This arrangement allows for a comprehensive comparison across different 

reconstruction approaches and their impact on the global properties of multilayer networks. 

Micro-scale analysis. In contrast to the macro-scale analysis, our micro-scale analysis delves into 

the extent to which network reconstruction methods successfully retain properties at the nodal 

level within multilayer networks. This finer-scale examination is pivotal for understanding the 

local effects of reconstruction accuracy on individual nodes and their immediate connections. The 

micro-scale analysis encompasses several critical nodal properties of multilayer networks, notably 

(De Domenico et al., 2014; De Domenico, Lancichinetti, et al., 2015; De Domenico, Nicosia, et 

al., 2015): multi-strength (a multilayer network extension of strength), eigenvector versatility (a 

multilayer network extension of eigenvector centrality), and closeness versatility (a multilayer 

network extension of closeness centrality). For each network resolution under study, the statistical 

analysis employs data tables structured with 27×(size of resolution) rows and 3 columns. The rows 

represent the network nodes across all simulated networks within a batch, thereby capturing 

observations at the nodal level. The columns are dedicated to the micro-scale properties outlined 

above. We found that performing a separate analysis for each simulation yields analogous 

conclusions. 

4.5 Results 

In the interest of brevity and clarity, this Results section presents the findings of our statistical 

analyses for select key network configurations. Detailed results for additional configurations are 
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available in the Supplementary Information. For simplicity, weighted minimum norm will 

henceforth be referred to as MN, and wavelet-based maximum entropy on the mean as MEM. 

4.5.1 Macro-scale analysis of MN reconstructions across all simulations and 
resolutions 

 
Figure 4.1. Cosine similarity analysis of MN networks at macro-scale. This figure presents box plots depicting the 

cosine similarities between reference networks and MN-reconstructed networks across 9 subjects, with each network 

retaining 100% of its graph weights. The colors represent different resolutions (RES). The x-axis categorizes the data 

into two simulation batches: B for the between-community integration batch and W for the within-community 

integration batch. Black horizontal lines above the x-axis delineate two analytic groups: the left side pertains to 

multilayer functional networks derived using standard connectivity measures, while the right side pertains to those 

derived using corrected connectivity measures. Each box plot in the figure represents a statistical summary of the 

cosine similarity scores for a specific simulation batch and resolution. The central line within each box denotes the 

median of the data, providing a measure of central tendency. The bottom and top edges of the box correspond to the 

first (0.25) and third (0.75) quantiles, respectively, with the distance between them defining the interquartile range 

(IQR), which measures data spread. Outliers, represented as individual points, are defined as observations that fall 

more than 1.5 times the IQR above the third quartile or below the first quartile. The whiskers extending from the box 

indicate the range of nonoutlier data, with the top whisker marking the maximum and the bottom whisker the minimum 

nonoutlier values. 

Figure 4.1 focuses on macro-scale network properties and presents the cosine similarity scores for 

MN-reconstructed networks, illustrating the impact of various factors: parcellation sizes (RES-

100, RES-200, RES-300, RES-400, RES-8K-100, and RES-8K-200, indicated by different colors), 

the treatment of zero-phase lag interactions (grouped on the x-axis as standard or corrected 

connectivity measures), the balance of functional integration and segregation (denoted by B for 

between-community integration and W for within-community integration batches on the x-axis), 

and inter-subject variability (represented by individual box plots). 

Key observations include: 

• High similarity scores, close to 1, for RES-100 and RES-200, suggesting nearly perfect 

MN reconstructions of macro-scale features. This high performance is attributed to these 
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configurations where the number of sensors (data) surpasses the number of dipoles 

(unknown), simplifying the inverse problem. 

• As parcellation granularity increases, similarity scores tend to decline, reflecting the 

inherent complexity and ill-posed nature of the inverse problem at finer resolutions, with 

the lowest scores observed for RES-8K-100 and RES-8K-200. 

• Reconstructions utilizing corrected connectivity measures generally outperform those 

using standard measures, likely due to better handling of signal mixing and volume 

conduction effects, which are especially pronounced in high-resolution settings such as 

RES-8K-100 and RES-8K-200. 

• A noticeable trend is the reduction in similarity scores from the between-integration batch 

(B) to the within-integration batch (W), suggesting a bias in reconstructions towards the 

brain’s geometrical structure, and indicating that long-range functional interactions 

misaligned with cortical geometry are more prone to distortion. 

In the Supplementary Information, Figure 4.15 illustrates the impact of varying connectome 

densities (100%, 75%, 50%, and 25%) on network reconstructions. Our analysis reveals a notable 

trend: as the percentage of the weakest graph weights excluded from the analysis increases (e.g., 

at connectome densities of 50% or 25%), reconstructions based on corrected connectivity measures 

exhibit decreased accuracy compared to those based on standard measures. This suggests that the 

strongest graph weights are less susceptible to zero-lag biases, which predominantly distort the 

weakest graph weights. In contrast, the strongest graph weights appear more vulnerable to non-

zero-lag biases, whereas the weakest weights are less affected. 

Figure 4.16, also in the Supplementary Information, extends this analysis to the impact of the 

choice of inverse operator on network reconstructions. The trends observed with MEM 

reconstructions mirror those seen with MN reconstructions, with the notable difference that cosine 

similarities for MN reconstructions consistently outperform those for MEM reconstructions. 

These findings underscore a critical aspect of network reconstruction: the challenge of accurately 

reconstructing networks increases with the number of dipoles relative to the number of channels. 

Given that MN reconstructions approach near-perfection when the number of channels exceeds 

the number of dipoles, further analysis at such resolutions may not yield additional insights. 

Therefore, our subsequent analysis will concentrate on the RES-8K-100 resolution, commonly 

employed in the literature and representative of the most challenging reconstruction scenarios. 

4.5.2 Macro-scale analysis of MN and MEM reconstructions at RES-8K-100 
In this section, we present a detailed analysis of our statistical findings for the RES-8K-100 

resolution, concentrating specifically on standard connectivity measures within the between-

integration simulation batch, and maintaining a connectome density of 100% (whereby all graph 

weights are included in the analyses). Comprehensive results for other conditions, connectivity 

measures, simulation batches, and connectome densities are systematically detailed in the 

Supplementary Information. 
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Figure 4.2. Comparative analysis of MN and MEM networks using the between-integration simulation batch with 

standard connectivity measures and full connectome density. On the left, the heat map displays the similarity matrix 

(excluding the diagonal) calculated via the STATIS method, highlighting inter-network comparisons. The right panel 

features a plot derived from the first two principal components of the similarity matrix, illustrating the spatial 

distribution of the reference network (represented by the pink dot), MN networks (blue dots), and MEM networks 

(green dots). The percentages of variance explained by each principal component are denoted along the respective 

axes. Line segments extend from the reference network to the centroid (fictive dot) of the MN and MEM network sets, 

with the shortest segment emphasized by increased thickness, indicating closer proximity to the reference network in 

the (full) principal component space. 

In Figure 4.2, the left panel presents the pairwise similarities among the reference, MN, and MEM 

networks, quantified by their inner product matrix. The first row (and column) highlights the 

similarities relative to the reference network, revealing that MEM reconstructions marginally 

surpass MN reconstructions on average, largely due to an outlier (subject-9). This panel also 

underscores that the relative similarity rankings among subjects are maintained across both inverse 

operators, with subject-5 exhibiting the highest resemblance and subject-9 the lowest to the 

reference network for both MN and MEM. 

The subsequent rows (and columns) delineate the intra-operator and inter-operator similarities, 

illustrating a high degree of consistency in reconstructions within individual subjects across both 

MN and MEM operators. The right panel, featuring a PCA of the inner product matrix, 

encapsulates these insights. Here, the second principal component distinctly separates the 

reference network from the reconstructions, indicating the challenges inherent in reconstruction 

accuracy. The clustering of reconstructed networks for both operators into a cohesive group reflects 

uniform reconstruction quality across subjects, with the dispersion within this cluster representing 

inter-subject variability. 

In the Supplementary Information, Figure 4.17 presents a comprehensive complementary analysis 

of network reconstructions across connectivity measures, connectome densities, and simulation 

batches. Our observations highlight several key points: 

• MN reconstructions consistently exhibit a slight advantage over MEM reconstructions, 

maintaining this trend across different connectivity measures, connectome densities, and 
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simulation batches. This advantage is coupled with reduced variability among subjects in 

the MN reconstructions. 

• The relative differences observed between subjects, both within and across inverse 

operator, vary significantly with connectivity measure, connectome density, and simulation 

batch. This suggests that subject-specific variability in reconstructed networks is not a 

trivial function of the lead field and vertex connectivity matrices, but it is also influenced 

by the specific functional interaction patterns present within each simulation. 

Our statistical framework enables an in-depth exploration beyond mere comparison. It allows for 

the precise identification of variables and observations that underpin the similarities and 

discrepancies between the reconstructed networks and the ground-truths. We delve into this 

detailed analysis in the following sections, aiming to uncover the underlying factors that drive 

these observed patterns in network reconstruction. 

 
Figure 4.3. Analyses of loadings and factor scores for MN and MEM networks using the between-integration 

simulation batch with standard connectivity measures and full connectome density, at the macro-scale. The circular 

graph (left) illustrates the variable loadings on the first two principal dimensions within the compromise space, 

displaying five network metrics: global clustering coefficient (CC), global edge overlap (EO), functional clustering 

ratio (FCR), global path length (PL), and modularity (Q), each distinguished by unique colors. The 19 dots per color 

represent the reference network (largest dot), and the 9 MN and 9 MEM reconstructed networks (smallest dots). The 

outer circle denotes a perfect correlation (radius = 1), while the inner dashed circle marks correlations of 0.5. Adjacent 

to this, the right side comprises four plots showcasing factor scores: the top-left graph presents the compromise of all 

data tables; the bottom-left focuses solely on the reference network; the top-right and bottom-right are dedicated to 

MEM and MN reconstructions, respectively. Each plot contains 27 data points, symbolized by circles and triangles to 

differentiate between the two distinct dynamical regimes they represent, based on their mapping onto two families of 

periodic orbits (16 circles and 11 triangles). 

The left panel of Figure 4.3 presents correlation loadings, which elucidate the variables 

significantly contributing to the observed similarities and differences between the reference and 

reconstructed networks. Notably, both MN and MEM reconstructions closely preserve CC, 

suggesting a faithful representation of local connectivity patterns. However, distortions are 

observed in other metrics, particularly those reflecting long-range interactions, such as PL and EO. 
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This aligns with the known tendency of inverse methods to be influenced by the brain’s 

geometrical constraints, favoring short-range connections. The first principal component 

effectively differentiates between community structure indices (FCR and Q) and long-range 

interaction indices (PL and EO), with the latter two often conflated in both MN and MEM 

reconstructions. 

The right-side plots of Figure 4.3 detail factor scores, shedding light on specific observations 

underpinning the previously discussed network characteristics. Both inverse methods (MN and 

MEM) consistently differentiate between the two simulated dynamical regimes across subjects, as 

evident in the separation along the second principal component. This differentiation underscores 

the reconstruction algorithms’ capability to capture distinct dynamical behaviors. Further analysis 

(by superimposing correlation loadings and factor scores) reveals that the first dynamical regime 

is predominantly characterized by community structure and short-range connectivity metrics (FCR 

and Q, and CC), while the second regime is defined by metrics indicative of long-range 

connectivity (PL and EO). This observation is in harmony with our simulation design intentions, 

emphasizing the distinct network properties fostered by each dynamical mode. 

In the extended analysis presented in Figure 4.18 (refer to Supplementary Information), we delve 

deeper into the nuances of network reconstructions, considering the impact of connectivity 

measures, connectome densities, and simulation batches on the preservation of graph metrics. A 

striking observation is the superior preservation of all graph metrics when corrected connectivity 

measures are employed, as opposed to standard connectivity measures. Specifically, CC is 

consistently well-preserved across all scenarios when standard connectivity measures are used, 

highlighting its robustness in the face of varying reconstruction approaches. However, the 

preservation of other graph metrics introduces subject-specific variability, indicating that factors 

such as long-range connectivity and network integration may be differentially affected by the 

reconstruction process. Furthermore, an inverse relationship is observed between connectome 

density and reconstruction quality; as connectome density decreases, the fidelity of the 

reconstructed networks to the reference models improves, suggesting that sparser connectomes 

may facilitate more accurate reconstructions under standard connectivity measures. 

While the detailed results are not presented here, it is important to note that the trends and patterns 

observed in the analyses for RES-8K-100 also hold true for the RES-8K-200 resolution. This 

consistency across resolutions reinforces the reliability of our findings. However, such 

consistencies do not necessarily imply the generalizability of the observed trends due to, e.g.: non-

trivial signal cancellation and dipole depth effects across different levels of network granularity, 

as well as the ratio between number of sensors (~250) and number of regions of interest (100–

400). 

Exemplar reconstructions for MN and MEM are provided in Figure 4.11, Figure 4.12, Figure 4.13, 

and Figure 4.14. 

4.5.3 Micro-scale analysis of MN reconstructions across all simulations and 
resolutions 

In this section and the next, we focus on the micro-scale and follow a structure similar to the 

previous macro-scale sections. 
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Figure 4.4. Cosine similarity analysis of MN networks at micro-scale. This figure presents box plots depicting the 

cosine similarities between reference networks and MN-reconstructed networks across 9 subjects, with each network 

retaining 100% of its graph weights. The colors represent different resolutions (RES). The x-axis categorizes the data 

into two simulation batches: B for the between-community integration batch and W for the within-community 

integration batch. Black horizontal lines above the x-axis delineate two analytic groups: the left side pertains to 

multilayer functional networks derived using standard connectivity measures, while the right side pertains to those 

derived using corrected connectivity measures. For each simulation batch, a joint STATIS analysis was conducted, 

pulling data from all simulations within the batch. 

Transitioning to a micro-scale perspective, we examine the finer details of network 

reconstructions, akin to our macro-scale analysis approach. Figure 4.4 delves into the micro-scale 

network properties, displaying cosine similarity scores for MN-reconstructed networks. This 

figure mirrors the macro-scale analysis structure presented in Figure 4.1 but shifts focus to the 

nuances of micro-scale network attributes. The figure elucidates the effect of various factors, 

including parcellation sizes, zero-phase lag interaction treatments, functional integration and 

segregation balances, and inter-subject variability. 

A consistent observation is the decline in similarity scores with increasing parcellation granularity, 

highlighting the escalating complexity and the ill-posed nature of the inverse problem at finer 

resolutions. The similarity decreases from between-integration to within-integration batches 

further support the hypothesis that reconstructions exhibit a bias towards the brain’s geometrical 

structure. 

Interestingly, the fidelity of wMN reconstructions in capturing micro-scale features for RES-100 

and RES-200, at a connectome density of 100%, falls short of perfection, contrasting with the 

relative success observed in macro-scale feature preservation. A pivotal finding from further 

investigations is the marked improvement in reconstruction quality when a minor percentage of 

graph weights is excluded from the analysis (e.g., maintaining a density of 75% by discarding the 

weakest 25% of graph weights). This indicates a reconstruction bias towards the weakest network 
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links and underscores the heightened challenge in preserving micro-scale network properties 

compared to macro-scale ones. 

The analysis also reveals that, aside from reduced variance, the choice between standard and 

corrected connectivity measures does not significantly influence the overall accuracy of the 

reconstructions. This insight underscores the complexity of micro-scale network reconstruction 

and the importance of considering both macro-scale and micro-scale analyses to comprehensively 

evaluate reconstruction fidelity. 

Figure 4.19 in the Supplementary Information explores the influence of varying connectome 

densities (100%, 75%, 50%, and 25%) on the quality of network reconstructions. Contrary to 

macro-scale analysis outcomes, we observe a notable peak in similarity scores at a 75% density. 

This finding was initially unexpected but aligns with graph theoretical research advocating for a 

percentile-based proportional thresholding approach (a method, which excludes both the strongest 

and weakest links rather than solely the weakest). 

Further analysis provided in Figure 4.20 investigates the performance of the MEM versus MN 

operator across different resolutions and connectivity measures. Interestingly, the MEM operator 

outperforms the MN operator at RES-300 and RES-400 resolutions when standard connectivity 

measures are employed. A deeper examination reveals that the spatial priors inherent in the MEM 

operator are instrumental in amplifying micro-scale features at these specific resolutions. The 

MEM’s data-driven parcels, defined with a neighborhood order of one, are congruent with the 

astrocytic structural constraints of our whole-brain model, enhancing the operator’s efficacy. In 

practical terms, this means that for any selected seed dipole within the brain model, the 

corresponding parcel generated by the MEM operator will include not only the seed dipole but 

also the dipoles in its immediate vicinity, effectively its first neighborhood. This parcellation 

strategy mirrors the astrocytic structural layer within our whole-brain model, where astrocytic 

networks are characterized by their nearest-neighbor connectivity patterns. By capturing this 

connectivity in the parcellation process, the MEM operator inherently incorporates a critical aspect 

of the brain’s structural organization into the reconstruction process. 

However, this alignment is not observed at higher resolutions, RES-8K-100 and RES-8K-200, 

where MEM’s data-driven parcels, being agnostic to functional connectivity, do not coincide with 

the underlying parcellations comprising 100 and 200 cortical regions, respectively. Consequently, 

the spatial kernel of the MEM operator cannot consistently leverage the structural constraints of 

the whole-brain model at these finer resolutions due also to the high density of dipoles within each 

parcel or region of interest. To understand this, consider that the local covariance matrices used by 

the MEM operator, which are pivotal for reconstructing the network’s micro-scale features, cannot 

be confined to merely include a seed dipole and its immediate neighbors (its first neighborhood). 

Instead, due to the sheer number of dipoles present within each parcel or region of interest at these 

resolutions, the local covariance matrices inevitably encompass a broader array of dipoles, 

extending beyond the immediate neighborhood. This expansion beyond the first neighborhood 

dilutes the MEM operator’s ability to leverage the specific structural constraints that mimic 

astrocytic networks, which are fundamentally characterized by their nearest-neighbor connectivity 

patterns. 

This observation underscores the potential for refining the MEM operator and the simulation 

framework, especially for scenarios involving high dipolar resolutions. The challenges 

encountered at these finer resolutions offer a valuable perspective on the limitations of current 
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reconstruction techniques and the complexities inherent in modeling the brain’s intricate network 

structures. 

4.5.4 Micro-scale analysis of MN and MEM reconstructions at RES-8K-100 

 
Figure 4.5. Comparative analysis of MN and MEM networks at micro-scale with full connectome density. On the left, 

a heat map visualizes the similarity matrix (diagonal excluded) derived from a joint STATIS analysis of all simulations 

within the between-integration batch, using standard connectivity measures. On the right, box plots provide a statistical 

summary of similarity scores for each inverse operator (MN and MEM) across subjects, based on individual STATIS 

analyses for each simulation within the batch. Black star dots overlaying the box plots correspond to similarity scores 

from the joint STATIS analysis, aligning with the values in the first row and column of the heat map, thereby offering 

a dual perspective on network similarity assessments. 

With the insights gained from Figure 4.5, it is evident that, at the RES-8K-100 resolution, MN 

reconstructions of micro-scale network properties exhibit a slight advantage over MEM 

reconstructions. Echoing findings from the macro-scale analysis, we observe that the relative 

similarity rankings among subjects remain consistent irrespective of the chosen inverse operator, 

underscoring a high degree of fidelity in reconstructions within individual subjects for both MN 

and MEM operators. Further substantiation of these findings is provided in Figure 4.21 in the 

Supplementary Information, which extends the analysis to encompass varying connectome 

densities, connectivity measures, and simulation batches. This comprehensive overview reinforces 

the observed trends, highlighting the robust performance of MN reconstructions across a spectrum 

of conditions. Figure 4.22, also available in the Supplementary Information, delves into the 

correlation loadings associated with micro-scale network properties, such as closeness versatility 

(CV), eigenvector versatility (EV), and multi-strength (S). This analysis reveals that corrected 

connectivity measures generally ensure better preservation of all examined micro-scale properties, 

albeit with notable variabilities observed under standard connectivity measures. Notably, the 

analysis distinguishes between CV, which primarily reflects short-range connectivity, and EV and 

S, which encapsulate the effects of long-range connectivity. This distinction is consistently 

maintained across the reconstructions, highlighting the nuanced differences in how various 

connectivity measures capture the intricate web of neural interactions at the micro-scale. 
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Exemplar reconstructions for MN and MEM are provided in Figure 4.11, Figure 4.12, Figure 4.13, 

and Figure 4.14. 

4.6 Discussion 

This study offers novel insights into the reconstruction of complex and biologically plausible 

whole-brain MEG functional networks, particularly concerning amplitude-based and phase-based 

functional connectivity. The findings have significant implications for empirical studies and 

methodological approaches in the field of resting-state EEG and MEG research. 

Rethinking zero-lag couplings. A prevalent recommendation in the methodology of functional 

connectivity research has been to avoid measures susceptible to volume conduction effects, 

equating this to the avoidance of zero-lag couplings analysis (Palva et al., 2018). This caution 

stems from the understanding that volume conduction, spatial leakage, or linear mixing can 

significantly confound connectivity measures, leading to artificially inflated consistency metrics 

within and across subjects or groups (Colclough et al., 2016). Contrary to these general 

recommendations, our simulation-based study demonstrates that true zero-lag couplings can 

indeed be reliably recovered despite the presence of volume conduction. More interestingly, our 

results suggest that under certain conditions, measures sensitive to zero-lag couplings may offer 

more reliability than those designed to negate such effects. For instance, the comparison between 

PLV and wPLI or AEC and oAEC revealed a nuanced dependency on network densities. 

Impact on network weight distribution ― Our findings specifically highlight a differential impact 

of zero-lag biases on the network’s weight distribution: stronger graph weights (top 50%) are less 

likely to be influenced by zero-lag biases, which instead tend to affect the weaker graph weights. 

Conversely, stronger graph weights appear more susceptible to non-zero-lag biases, while the 

weaker weights remain largely unaffected. This nuanced understanding challenges the prevailing 

notion of uniformly avoiding zero-lag sensitive measures and calls for a more sophisticated 

approach to selecting connectivity measures based on the specific network properties and research 

objectives. 

Reevaluation of methodologies and theoretical work ― The revelation that true zero-lag couplings 

can be discerned amidst volume conduction challenges opens new avenues for re-evaluating 

methodologies that have been sidelined in neuroscientific research (Palva et al., 2018). This 

discovery not only invites a reexamination of previously disregarded methods but also beckons a 

reevaluation of experimental and theoretical work on zero-lag synchronization of neural 

oscillations (Palva et al., 2018). Such a reassessment can be undertaken with a refined 

understanding of the limitations and potential biases inherent in reconstruction techniques, 

enriching our grasp of neural coherence mechanisms (Palva et al., 2018). 

Addressing spurious connections ― Our findings also resonate with research (Palva et al., 2018) 

that uncovers a prevalence of spurious connections due to field spread near actual interaction sites 

(the ghost interactions), despite the immunity of certain connectivity measures to linear mixing. 

This observation underscores the intricate challenge of distinguishing genuine neural interactions 

from artefactual correlations induced by methodological constraints (S. H. Wang et al., 2018). 

Notably, our explorations of the ground-truth networks, unmarred by linear mixing biases, 

illuminates the distinct yet complementary nature of PLV and wPLI. Contrary to a common 

misconception in the neuroscience community, these measures do not merely serve as alternatives 

to each other but rather unveil unique connectivity patterns. This insight emphasizes the need for 

a broader analytical perspective that transcends the conventional dichotomy of measure selection 

based on perceived strengths or vulnerabilities. 
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Advocating for a comprehensive approach ― The synthesis of our findings advocates for a 

comprehensive approach to analyzing functional connectivity, integrating multiple measures to 

encapsulate the multifaceted nature of neural interactions (De Domenico, 2017; Vaiana & 

Muldoon, 2020). This holistic strategy, encompassing both amplitude and phase coupling metrics, 

promises to provide a richer and more nuanced understanding of brain dynamics than the reliance 

on a select few measures predicated on their theoretical robustness (Palva et al., 2018). 

Revisiting phase-based connectivity measures. Phase-based connectivity measures, despite their 

potential for revealing precise temporal relationships between neural oscillations, have often been 

criticized for their noisier nature and the statistical challenges they present (Colclough et al., 2016). 

Contrary to these criticisms, our analysis illuminated that, with properly optimized inverse 

operators, phase network couplings exhibit remarkable consistency in their reconstructions. This 

aligns with findings from other scholars who have sought the most effective combinations of 

inverse operators and connectivity measures for electrophysiological network analysis (Hassan et 

al., 2014). It is important to acknowledge that our simulations were conducted in an idealized, 

noise-free environment and were underpinned by a parameterized whole-brain model inherently 

conducive to strong phase network couplings (as opposed, e.g., to a weakly coupled oscillator 

network model (Forrester et al., 2020)). This context may have inadvertently favored the 

reconstruction of phase-based interactions. Recognizing this limitation, we advocate for future 

investigations to adopt more nuanced simulation environments that rigorously test the robustness 

of phase coupling reconstructions, incorporating factors such as additive noise at the source or 

sensor levels, and dynamic models that permit greater variability in phase relationships (in our 

model this would involve a different parameterization). Such considerations would provide a more 

rigorous assessment of the fidelity with which phase couplings are reconstructed, especially under 

varying brain states and cognitive conditions. 

Interplay between amplitude and phase couplings. A growing body of literature suggests that the 

inherent signal mixing in EEG and MEG data can constrain the distinctiveness of neuronal phase 

and amplitude couplings, challenging the physiological interpretation of connectivity analyses 

(Brookes et al., 2014). Contrary to viewing this as a limitation, our study advocates for a paradigm 

shift from comparing to integrating connectivity measures. By embracing the principle of 

complementarity, we posit that amplitude and phase couplings offer unique yet interrelated insights 

into brain connectivity (De Domenico, 2017; Vaiana & Muldoon, 2020). Our simulations were 

intentionally designed to explore this hypothesis, illustrating how astrocytic activity influences the 

relationship between amplitude and phase couplings in neuronal networks. The findings suggest 

that electrophysiological reconstruction methods are adept at capturing the nuanced interplay 

between these connectivity measures, potentially unveiling the complex dynamics of neural 

communication. This approach aligns with the notion that the brain employs multiple concurrent 

communication channels among neural assemblies. Hence, different connectivity measures might 

be tapping into diverse facets of information transfer, each revealing distinct aspects of the 

underlying neural interactions. From a mathematical perspective, it is conceivable that these 

connectivity measures are not entirely independent but rather provide complementary estimations 

of the brain’s coupling mechanisms (Colclough et al., 2016; Palva et al., 2018; Sadaghiani et al., 

2022). 

Reevaluating inverse modeling in electrophysiology. The traditional approach to inverse 

modeling in non-invasive electrophysiology has often grappled with the challenge of signal 

leakage, which has historically led to a preference, in connectomics, for connectivity measures that 
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are robust against zero-lag couplings. This preference has given rise to a conventional 

methodology that depends heavily on the selection of an appropriate inverse operator. Numerous 

studies have been conducted to identify the most effective combinations of inverse operators and 

connectivity measures for accurately characterizing neural networks, particularly in resting-state 

contexts or in pathological conditions such as epilepsy (Allouch et al., 2022, 2023; Fraschini et al., 

2020; Hassan et al., 2014, 2017; A.-S. Hincapié et al., 2017; Mahjoory et al., 2017; Pellegrini et 

al., 2023; Tabbal et al., 2022; Yu, 2020). This chapter proposes a paradigm shift from the 

conventional comparative approach to one that prioritizes the selection of methods based on their 

capacity to incorporate biological priors (Deslauriers-Gauthier et al., 2019, 2020; Gonzalez-

Moreira, Paz-Linares, Areces-Gonzalez, Wang, & Valdes-Sosa, 2018; Gonzalez-Moreira, Paz-

Linares, Areces-Gonzalez, Wang, Bosch-Bayard, et al., 2018; Gonzalez-Moreira, Paz-Linares, 

Martinez-Montes, et al., 2018). This perspective is informed by our comparative analysis of the 

wMN estimate and the wMEM, where MEM’s inherent consideration of geometrical attributes led 

to more accurate recovery of nodal functional patterns in some conditions. This underscores the 

limited utility (from a modeling perspective) of comparing wMN, which does not account for 

geometrical information, with wMEM, which explicitly does. 

The role of model priors. Notably, the discussion extends to the evolution of inverse modeling 

techniques over the last decade, highlighting the introduction of models capable of integrating 

structural and functional network priors (Deslauriers-Gauthier et al., 2019, 2020; Gonzalez-

Moreira, Paz-Linares, Areces-Gonzalez, Wang, & Valdes-Sosa, 2018; Gonzalez-Moreira, Paz-

Linares, Areces-Gonzalez, Wang, Bosch-Bayard, et al., 2018; Gonzalez-Moreira, Paz-Linares, 

Martinez-Montes, et al., 2018; Sanchez-Bornot et al., 2024). This advancement enables a more 

simultaneous estimation of source activity and connectivity in EEG and MEG data, aligning 

closely with whole-brain simulation frameworks. These next-generation models can redefine 

signal leakage beyond mere zero-lag couplings, incorporating biological insights such as cortical 

geodesic distances, thereby offering a more refined and biologically consistent framework for 

understanding electrophysiological connectivity (Gonzalez-Moreira, Paz-Linares, Areces-

Gonzalez, Wang, Bosch-Bayard, et al., 2018). 

Implications for clinicians and experimental researchers. While the aforementioned perspectives 

largely cater to research teams with methodological expertise, the findings presented herein hold 

significant implications for clinicians and experimental researchers. Despite its longstanding 

presence in the field and its simplicity, the wMN operator has demonstrated its continued viability 

and convenience (B. He et al., 2018; Lin et al., 2006; Vallarino et al., 2023). Our analyses indicate 

that the wMN can yield results comparable to those derived from more sophisticated operators, 

yet with substantially lower computational demands. This revelation underscores the potential of 

the wMN to serve as a robust tool in clinical and experimental settings, where computational 

resources or methodological expertise might be limited. The efficacy of the wMN operator in 

handling complex network simulations, as evidenced in this study, positions it as a particularly 

valuable asset for non-methodologists engaged in electrophysiological research. Given the utility 

of the wMN demonstrated in this study, future research should endeavor to elucidate the operator’s 

strengths and limitations more comprehensively. Such studies could provide invaluable insights 

for experimental researchers and clinicians, facilitating more informed choices of analytical tools 

in electrophysiological studies. It is noteworthy that, to our knowledge, this study represents the 

first application of the wMN within a sophisticated network simulation framework, marking a 

significant contribution to the field and paving the way for further explorations of its potential. 
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Innovations in functional network analysis and future directions. This study introduces a 

pioneering approach to analyzing complex brain networks by integrating multilayer network 

modeling with STATIS (Abdi et al., 2012; De Domenico, 2017; González-Narváez et al., 2021; 

Vaiana & Muldoon, 2020). This combination addresses the critique of complexity in graph-based 

functional connectivity analysis, offering a nuanced method to explore the intricate web of neural 

interactions. Multilayer network theory enables a sophisticated examination of the brain’s 

complexity across different scales, modalities, and dimensions, enriching our understanding of 

structural and functional connectivity. Simultaneously, STATIS serves as a versatile analytical tool, 

adaptable to various statistical modeling scenarios, enhancing our ability to synthesize and 

interpret multi-faceted neuroimaging data. This methodological advancement is significant for its 

ability to make complex network analyses more accessible and comprehensible, potentially 

broadening the appeal and applicability of such analyses across neuroscience disciplines. By 

presenting these complex models in an intuitive and scientifically engaging manner, we aim to 

facilitate broader discussions and collaborations within the scientific community. Addressing 

another common critique of graph-based analyses, the challenge of quantifying statistical 

significance, our study prioritizes descriptive statistics for simplicity (Bassett & Sporns, 2017; 

Brookes et al., 2014; De Domenico, 2017; Mandke et al., 2018). However, recognizing the critical 

need for rigor in statistical evaluations, we advocate for future research to develop and standardize 

methods for assessing the statistical significance of network properties and comparisons. This is 

particularly pertinent given the active developments in network neuroscience and the current 

diversity in statistical approaches (Bassett & Sporns, 2017; Brookes et al., 2014; De Domenico, 

2017; Mandke et al., 2018; Sadaghiani et al., 2022). 

Revising the discussion on simulation approaches and literature. In our exploration of whole-

brain modeling for electrophysiological studies, we delved beyond traditional simulations that 

primarily focus on neuronal structural connectivity patterns. By incorporating a dynamic astrocytic 

compartment, we explicitly accounted for the influence of cortical geometry, a factor often 

underrepresented in simulation studies yet critical for understanding brain function (Pang et al., 

2023). 

Geometrical embedding and its implications ― The geometrical structure of the brain, particularly 

its lobar organization, plays a significant role in shaping similarities across multimodal structural 

and functional networks. Empirical studies have consistently shown that areas such as the visual 

and somatomotor cortices exhibit dense functional connections, aligning with structural diffusion 

MRI and functional BOLD MRI networks (Cioli et al., 2014; Mesmoudi et al., 2013; Shafiei et al., 

2022, 2023; Suárez et al., 2020). This convergence within unimodal cortices underscores the 

intertwined nature of structural, functional, and metabolic networks, pointing to a fundamental 

influence of brain geometry on neural dynamics. However, relying solely on structural diffusion 

MRI constraints in dynamical models can lead to an oversimplified understanding of brain 

function, as such models often overlook the intricate role of brain geometry (Griffiths et al., 2022; 

Pang et al., 2023; Roberts et al., 2016). Recent advancements in neural-field whole-brain 

computational models have begun to address this by integrating both geometrical and axonal fiber 

connectivity, suggesting that brain geometry may be a more critical determinant of dynamics than 

previously understood (Pang et al., 2023). 

Astrocytes as functional entities ― We propose that astrocytes, with their gap-junctional network 

organization, provide a biologically plausible framework for mapping the brain’s geometrical 

embedding. This perspective marks a significant shift from conventional models that depict brain 

sources as purely neuronal (Griffiths et al., 2022; Marder, 2012; Pacholko et al., 2020; Schroeder 
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et al., 2022; Shine et al., 2019). By considering both neurons and astrocytes, and acknowledging 

the dual constraints of axonal fiber and gap-junctional connectivity, our model offers a more 

comprehensive and biologically plausible approach to whole-brain modeling for 

electrophysiological studies (De Pittà & Berry, 2019). 

Methodological implications ― Our approach challenges previous notions of realism in whole-

brain models or electrophysiological simulation studies, which often hinge on empirical head 

models, sensor noise, and isolated or structurally constrained neural mass models. Thus, this 

present discussion underscores the need for a more holistic view of brain function that 

encompasses the complex interplay between neuronal and astrocytic networks, and the 

fundamental constraints imposed by brain geometry. Our findings not only contribute to the 

theoretical understanding of brain dynamics but also have practical implications for the design and 

interpretation of electrophysiological studies. 

Key limitations. Our study presents several avenues for enhancement to more closely align with 

physiological realities and improve the robustness of our findings. 

Incorporation of noise and background activity ― A more nuanced approach to modeling noise at 

both source and sensor levels could enhance the realism of our simulations for challenging MEG 

reconstructions. This includes specifying types of noise beyond white noise and accurately 

defining noise covariance matrices for inverse operators, tailored to the physiological 

characteristics of neural activity. 

Enrichment of temporal patterns ― By integrating electrophysiological insights, such as peak 

frequency distributions from brain atlases (Frauscher, von Ellenrieder, et al., 2018)), our 

simulations could better reflect the diverse spectral characteristics of electrophysiological rhythms 

(Griffiths et al., 2022). Additionally, incorporating regional heterogeneities, such as variations in 

synaptic densities or neurotransmitter receptor distributions based on multimodal brain maps 

(Shafiei et al., 2023), would add another layer of physiological detail to our model. 

Model parameter adjustments and extensions ― To accommodate a wider range of neural 

oscillations, updating the model’s neuronal compartments, possibly by extending the Jansen–Rit 

model to include broad-band and multi-band spectra (Griffiths et al., 2022), could provide a more 

comprehensive representation of brain dynamics. 

Quantification of bias factors in pattern reconstructions ― A deeper analysis of the reconstructed 

patterns, specifically quantifying the impact of signal leakage and source mixing on the results, 

would offer insights into the inherent biases of our methodology and potential corrective measures 

relevant for empirical settings (Hauk et al., 2022). 

By addressing these aspects, our study could significantly advance the fidelity and physiological 

relevance of MEG source-level functional network reconstructions, paving the way for more 

accurate interpretations of the brain electrophysiological activity and connectivity. 

4.7 Conclusion 

In this study, we delved into traditional MEG source-level functional network reconstruction, 

aiming to capture the complex interplay between neuron-astrocyte interactions in whole-brain 

resting-state dynamics. Guided by a computational model that reflects the biological realism of 

these interactions, we sought to provide a fresh perspective for assessing empirical 

electrophysiological connectomics methodologies. 

Our analysis foregrounded the neuron-astrocyte dynamic as a critical element in shaping the 

brain’s structural and functional architecture, moving beyond mere neuronal connectivity to 
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include the impact of brain geometry and the layered nature of functional interactions, particularly 

through amplitude and phase couplings. 

Utilizing sophisticated analytical tools such as multilayer network modeling and STATIS, we 

explored the nuanced interactions within the brain, evaluating the fidelity of traditional MEG 

reconstruction methods under diverse simulation scenarios. Our investigation spanned various 

network scales, dissecting functional integration patterns within and between communities and 

their potential representation in empirical electrophysiological connectomics. 

Through a critical review of existing literature and a reflective analysis of our study’s constraints, 

we aim to foster discussion within the neuroscience community. We call for a shift towards 

integrating neuron-glial perspectives in electrophysiological data analysis, challenging current 

interpretations of brain dynamics. 

As we conclude, our aspiration is to ignite renewed interest and expand the investigative lens in 

the study of electrophysiological data’s spatiotemporal organization. By advocating for a neuron-

astrocyte network approach, we encourage the scientific community to embark on this journey 

with us, leading to deeper understanding and more comprehensive views of the brain’s functional 

networks. 
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4.8 Supplementary Information 

4.8.1 Selected dynamic regimes 

 
Figure 4.6. Original parameter plane with 1225 configurations. This figure shows the initial parameter plane obtained from Chapter 3 (for instance, refer to Section 

3.10 on page 134), using three equivalent coordinate systems of steady-state calculations. Panel (a) uses (𝜔Glu; 𝜔GABA), panel (b) uses (𝑣Glu; 𝑣GABA), and panel (c) 

uses (Glue; GABAe). 

 
Figure 4.7. New parameter plane with 27 configurations. In this chapter only, 27 out of the 1225 configurations shown in Figure 4.6 were used. These (16+11) 

configurations map to two distinct contours of limit cycles drawn as black solid curves. 
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Figure 4.8. Global topological properties of multilayer functional networks. The two contours discussed in Figure 4.7 reflect two dynamical modes, where simulated 

networks exhibit a broad range of attributes that are particularly relevant to this work. This four-panel figure is the same one as in Chapter 3, except for the two 

contours of limit cycles. Panel (a): clustering coefficient (an index of network segregation where higher values connote more segregated networks); panel (b): path 

length (an index of network integration where higher values connote more integrated networks); panel (c): edge overlap (an index of edge redundancy where higher 

values connote more similar weight patterns across layers); and panel (d): code length (a quality index of community detection where lower values connote networks 

with more optimal data compression of a random walker’s movements on them). 
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4.8.2 Simulated functional connectomes 

 
Figure 4.9. Schaefer-400 atlas. Each color indicates a Yeo-7 network. Numbers in brackets indicate how many parcels are in each network across the two 

hemispheres. 
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Figure 4.10. Scaling of simulations across spatial resolutions and simulation batches. The figure provides a comparative view of simulations across four spatial 

resolutions: RES-100, RES-200, RES-300, and RES-400, delineated by columns. The first row displays the parcellation atlases, with each color representing a 

distinct Yeo-7 subnetwork, consistent with the color scheme in Figure 4.9. The second row showcases a simulation from the between-integration batch for each 

resolution, all sharing identical parameters except for their structural layers. Here, the matrices exhibit α-band phase locking values, with the upper diagonal 

representing full density and the lower diagonal showing 25% density, revealing consistent connectivity patterns across all resolutions. The regions within these 

matrices are organized by subnetworks, with left-hemispheric regions preceding right-hemispheric ones in alphabetical order within each subnetwork, when reading 

from top to bottom. The third row presents simulations from the within-integration batch at each resolution, differing only in structural layers. The parameters for 

all eight simulations are the same, only differing in structural layers (the spatial resolutions), or in the variances of the stochastic components of the model (the 

batches). A comparative analysis between the batches highlights distinct connectivity trends: within the within-integration batch, stronger connections are 
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predominantly intra-subnetwork and hemispheric. Conversely, the between-integration batch exhibits more pronounced functional interconnections across different 

subnetworks, showcasing the role of the variance in network dynamics attributed to the stochastic component of the model, as well as the ability of the neuronal 

structural layer to induce between subnetwork functional integration patterns. In the between-integration batch, the intra-subnetwork connectivity patterns are even 

more hemispheric than in the within-integration batch, reflecting the influence of the astrocytic structural layer’s geometrical constraints. 

4.8.3 Reconstructed functional connectomes 

 
Figure 4.11. Network reconstructions of PLV. This figure juxtaposes MN and MEM reconstructions against the ground truth for two distinct resolutions: RES-8K-

100 (displayed in the first row) and RES-400 (shown in the second row), using MEG data reconstructed from the same subject. The matrices illustrate connectivity 

patterns by depicting the α-band phase locking values. Below each reconstructed connectome, two similarity scores are provided: the first score quantifies the 
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similarity between thresholded graphs at 25% density, and the second score evaluates the similarity between unthresholded graphs, both in comparison to the 

ground truth. These simulations, belonging to the between-integration batch, differ only in their structural layers, underscoring the impact of resolution on the 

fidelity of network reconstructions. 

 
Figure 4.12. Network reconstructions of AEC. This is the same as Figure 4.11, but featuring α-band amplitude envelope correlations (instead of phase-locking 

values). 
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Figure 4.13. Network reconstructions of PLV. Compared to Figure 4.11, this figure features simulations belonging to the within-integration batch. 
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Figure 4.14. Network reconstructions of AEC. This is the same as Figure 4.13, but featuring α-band amplitude envelope correlations (instead of phase-locking 

values). 
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4.8.4 Macro-scale analyses 

 
Figure 4.15. Cosine similarity analysis of MN networks at macro-scale. This figure extends the analysis presented in Figure 4.1 by examining the impact of varying 

connectome densities (100%, 75%, 50%, and 25%) on the cosine similarity scores of MN-reconstructed networks. For clarity, results for RES-100 and RES-200 

are omitted, as reconstructions at these resolutions, where the number of sensors surpasses the number of dipoles, tend to approach near-perfect accuracy with 

decreasing connectome density. 
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Figure 4.16. Cosine similarity analysis of MEM networks at macro-scale. This figure builds upon the analysis in Figure 4.15 by exploring the effects of employing 

the MEM inverse operator on network reconstruction accuracy. The analysis compares cosine similarity scores across varying connectome densities, illustrating 

the performance of MEM in capturing the underlying network structures in comparison to the MN approach detailed previously. 
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Figure 4.17. Principal component analysis of MN and MEM network reconstructions. This figure builds upon the analysis in Figure 4.2, providing a more nuanced 

comparison between MN and MEM networks across various dimensions: connectivity measures (standard vs. corrected), simulation batches (between-community 

vs. within-community integration), and connectome densities (100%, 75%, 50%, and 25%). 
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Figure 4.18. Comparative analyses of loadings across MN and MEM network reconstructions. This figure extends the insights from Figure 4.3, by factoring in the 

effects of connectivity measures (standard vs. corrected), simulation batches (between-community vs. within-community integration), and connectome densities 

(100%, 75%, 50%, and 25%). 
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4.8.5 Micro-scale analyses 

 
Figure 4.19. Cosine similarity analysis of MN networks at micro-scale. This figure extends the analysis presented in Figure 4.4 by examining the impact of varying 

connectome densities (100%, 75%, 50%, and 25%) on the cosine similarity scores of MN-reconstructed networks. For each simulation batch, a joint STATIS 

analysis was conducted, pulling data from all simulations within the batch. 
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Figure 4.20. Cosine similarity analysis of MEM networks at micro-scale. This figure builds upon the analysis in Figure 4.19 by exploring the effects of employing 

the MEM inverse operator on network reconstruction accuracy. The analysis compares cosine similarity scores across varying connectome densities, illustrating 

the performance of MEM in capturing the underlying network structures in comparison to the MN approach detailed previously. For each simulation batch, a joint 

STATIS analysis was conducted, pulling data from all simulations within the batch. 
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Figure 4.21. Comparative analyses of loadings across MN and MEM network reconstructions. This figure extends the insights from Figure 4.5, by factoring in the 

effects of connectivity measures (standard vs. corrected), simulation batches (between-community vs. within-community integration), and connectome densities 

(100%, 75%, 50%, and 25%). 
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Figure 4.22. Comparative analyses of loadings across MN and MEM network reconstructions. This figure illustrates the effects of connectivity measures (standard 

vs. corrected), simulation batches (between-community vs. within-community integration), and connectome densities (100%, 75%, 50%, and 25%). For each 

simulation batch, a joint STATIS analysis was conducted, pulling data from all simulations within the batch. Three network metrics were considered: closeness 

versatility (CV), eigenvector versatility (EV), and multi-strength (S). 
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Chapter 5 Exploring mechanisms of network dysfunction, 
resistance, and adaptation in Alzheimer disease ― a research 
proposal for empirical insight 

5.1 Thesis storyline 

This chapter represents a departure from the preceding three, serving as a prospective segment of 

the thesis. It lays the groundwork for an extensive modeling framework designed to tackle critical 

aspects of Alzheimer disease pathology. 

Specifically, in this segment of my thesis, I aspire to unveil a sophisticated modeling framework 

that encapsulates two pivotal aspects of Alzheimer disease pathology: the synaptic dysfunction 

and the ensuing neuronal death precipitated by the buildup of extracellular glutamate, alongside 

the alterations in the brain’s white-matter structural integrity. 

This endeavor draws inspiration from a series of whole-brain modeling studies (Arbabyazd et al., 

2021; de Haan et al., 2017; Demirtaş et al., 2017; Frässle et al., 2018; Hallett et al., 2020; 

Stefanovski et al., 2019, 2021; van Nifterick et al., 2021; Yalcinkaya et al., 2023; Zimmermann et 

al., 2018) that have laid the groundwork by exploring these hallmarks, often leveraging the wealth 

of data from neuronal white-matter fiber connectomes. These studies have adeptly adjusted the 

excitation-to-inhibition balance within neuronal models, aiming to mirror the hyperactivity 

induced by glutamate through modifications in neuronal dynamical behavior. Despite their 

invaluable contributions, these models stop short of delving into the underlying causes of the shifts 

in excitation-to-inhibition balance, primarily due to their design limitations, such as the absence 

of variables representing neurotransmitter dynamics or a neural compartment capable of 

modulating neurotransmission. 

In a bid to build upon and innovate beyond these studies, and others such as (Iturria-Medina et al., 

2017), my proposal encompasses a comprehensive research agenda that stretches beyond the 

confines of this doctoral thesis. 

5.2 Preliminary investigations 

This preliminary section is dedicated to visually demonstrating the complexities of the proposed 

research agenda through an initial simulation approach that extends the work presented in the 

preceding chapters. The objective here is to simulate Alzheimer disease (AD) pathology, focusing 

on glutamate excitotoxicity, to explore the potential role of astrocytic networks in the progression 

of the disease. This preliminary examination sets the stage for a detailed exposition of my research 

proposal, which commences on page 230. 

While the detailed scientific underpinnings and rationales behind the forthcoming simulations will 

be thoroughly addressed starting on page 230, this preliminary section emphasizes the intuitive 

understanding of my research through visual means. Readers are encouraged to engage with these 

visuals as an entry point into the complex phenomena that I aim at investigating, with the assurance 

that a comprehensive scientific discussion awaits in the subsequent sections, providing a seamless 

bridge between visual intuition and scientific rationale. 

At this juncture of the thesis, it is crucial to underscore that real data have been utilized only for 

constructing the structural layers of the whole-brain model, and not for constraining its other 
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parameters. As delineated in Chapter 2, and reiterated in Chapter 3 and Chapter 4, our model’s 

parameters were derived from a combination of physiologically plausible scalar values sourced 

from the existing literature (as outlined in Table 2.3) and extensive bifurcation analyses. 

Consequently, the biologically relevant interpretations presented in the upcoming sections should 

be regarded as a foundation for hypothesis generation. In this context, the computational model is 

employed as a tool for conceptual exploration, rather than as a faithful replica of biological reality. 

The model is specifically tuned to simulate phenomena that may not directly mirror biological 

reality but provide valuable insights into potential mechanisms and behaviors. The research 

proposal, detailed starting from page 230, will advance this discourse by illustrating how the 

insights garnered from the computational model can be further enriched and validated through 

empirical biological research, thereby bridging the gap between theoretical modeling and real-

world biological phenomena. 

5.2.1 Regional simulations 
In a preliminary simulation scheme (in Figure 5.1, Figure 5.2, Figure 5.3, Figure 5.4, and Figure 

5.5), we explore the effects of diminished astrocytic glutamate uptake rates and a concurrent 

decrease in neuronal synaptic density within an isolated brain region. Here, we first focus on 

intrinsic regional changes before considering the complexities of network interactions. 

Additionally, for these preliminary analyses, we employ the following criterion for virtual neuronal 

death: defined by a prolonged period of minimal activity. This criterion, while unconventional, 

offers a unique perspective on neuronal viability and glutamate dynamics in the absence of a hard 

threshold for neuronal death. 

Over a span of 120 seconds, we simulate a progressive decrease in astrocytic glutamate uptake 

from an initial rate of 4.5 µM/s, reducing it gradually until cessation, alongside a simultaneous 

reduction in global synaptic density from 135 to 125 (the other parameters are mostly like in Table 

2.3). The simulation’s key variables, the astrocytic self-coupling constants (𝜔Glu and 𝜔GABA), is 

adjusted to examine its influence on excitatory gliotransmission at glutamatergic (𝜔Glu ) and 

GABAergic (𝜔GABA) synapses. This manipulation provides insights into potential network effects 

once the region is reintegrated. 

Our preliminary simulations (Figure 5.1, Figure 5.2, Figure 5.3, Figure 5.4, and Figure 5.5) reveal 

distinct dynamical behaviors in neuronal populations under varying astrocytic coupling conditions. 

Initially, in Figure 5.1, we observe an abrupt transition from normal oscillatory activity to a 

quiescent state around 75 seconds, prompted by increasing extracellular glutamate levels. This 

transition, characterized by a cusp bifurcation, leaves neurons in a minimally active state, isolated 

from their previously accessible dynamic regimes. 
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Figure 5.1. Regional simulation experiment #1. This figure shows the membrane potential of pyramidal neurons LFP, 

extracellular glutamate concentration Glue , and extracellular GABA concentration GABAe . The astrocytic self-

coupling constants 𝜔Glu and 𝜔GABA are indicated in the figure title. 

With enhanced astrocytic coupling’s impact on GABAergic neurons, in Figure 5.2, we noted a 

shift that temporarily restored some neuronal dynamics through a saddle-node bifurcation, albeit 

followed by inevitable neuronal death due to unmitigated glutamate accumulation. 

 
Figure 5.2. Regional simulation experiment #2. Same as Figure 5.1 for different values of 𝜔Glu and 𝜔GABA, increasing 

astrocytic feedback on GABAergic neurons. 

Intriguingly, in Figure 5.3, certain astrocytic coupling settings could hypothetically sustain the 

neuronal population in a continuous spiking mode, suggesting a potential mechanism for 

excitotoxicity, if not for a predefined glutamate threshold that would indicate neuronal death. 
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Figure 5.3. Regional simulation experiment #3. Same as Figure 5.1 for different values of 𝜔Glu  and 𝜔GABA , 

highlighting how astrocytic feedback sustain neurons in a spiking regime. 

These varied dynamics, from transient recoveries to sustained excitatory states, underscore the 

pivotal role of astrocytic coupling in neuronal network behavior under stress. Figure 5.4 further 

demonstrates how astrocytic coupling levels modulate these transitions, offering potential insights 

into neuroprotective strategies. 

 
Figure 5.4. Regional simulation experiment #4. Same as Figure 5.1 for different values of 𝜔Glu  and 𝜔GABA , 

highlighting how astrocytic feedback accelerates neuronal losses. 

Moreover, we explored a scenario where neurons stabilize in a periodic attractor post-crisis, 

highlighting the complex interplay between astrocytic influences and neuronal resistance, as 

depicted in Figure 5.5. 
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Figure 5.5. Regional simulation experiment #5. Same as Figure 5.1 for different values of 𝜔Glu  and 𝜔GABA , 

highlighting how astrocytic feedback halts neuronal losses. 

These simulation scenarios, underpinned by bifurcation analysis as detailed in an earlier chapter 

(Chapter 2, from page 92), provide a foundational understanding of the nonlinear dynamics at play 

in neurodegenerative conditions like AD, pointing towards astrocytic coupling as a key modulator 

of neuronal fate under pathological conditions. 

It is important to reiterate that for these preliminary simulations, we made a deliberate choice not 

to impose a limit on glutamate levels. This approach allows us to explore the full range of neuronal 

dynamics under conditions of unchecked excitatory neurotransmitter accumulation, providing a 

baseline understanding of how escalating glutamate levels impact neuronal activity and network 

stability. However, recognizing the critical role of glutamate-induced excitotoxicity in 

neurodegenerative conditions such as AD, our next simulations will adopt a more biologically 

meaningful framework. We will introduce a threshold for neuronal death (which will be modelled 

as null membrane potentials), triggered by prolonged glutamate exposure, irrespective of the 

current state of neuronal activity. This threshold will be carefully defined based on a combination 

of literature review and theoretical modeling, ensuring its relevance to pathological conditions (we 

partially addressed this topic already in the Chapter 2, on page 92). Incorporating this threshold 

will significantly enhance the realism and applicability of our simulations, allowing us to more 

accurately model the processes leading to neuronal death and network degradation in 

neurodegenerative diseases. By comparing the outcomes of simulations with and without the 

constraints of a predefined glutamate threshold, we aim to gain deeper insights into the 

mechanisms of neurodegeneration and the potential for intervention strategies that target glutamate 

dynamics. 

5.2.2 Whole-brain simulations 
In exploring a network comprising 216 nodes (in Figure 5.6, Figure 5.7, Figure 5.8, Figure 5.9, 

Figure 5.10, and Figure 5.11), we next focused on abnormal nodes within the entorhinal and 

parahippocampal cortices of both hemispheres, regions critical to memory and navigation and 

often implicated in the early stages of AD. These four network nodes were subjected to 
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perturbations mirroring those described previously in (Figure 5.1, Figure 5.2, Figure 5.3, Figure 

5.4, and Figure 5.5), involving gradual changes in glutamate dynamics. 

Our simulations in Figure 5.6 reveal that despite the perturbations, the affected nodes managed to 

sustain oscillatory behavior compared to the preceding simulations where the nodes were not in a 

network. This is a testament to the intricate feedback mechanisms within the network, particularly 

the astrocytic modulation of extracellular GABA. This finding suggests a potential neuroprotective 

role of astrocytic networks in maintaining neural function under stress. However, this stability was 

contingent upon the neighboring nodes’ capacity to buffer the excess glutamate, as evidenced by 

transient spiking patterns observed in these nodes. 

 
Figure 5.6. Network simulation experiment #1. Same as Figure 5.1 for now within a network of 216 nodes. The 

perturbed nodes are on the left panels (there are four perturbed nodes). The non-perturbed nodes are on the right 

panels. 

Subsequent simulations in Figure 5.7 showed an expansion of this buffering behavior to more 

neighboring nodes, highlighting the network’s distributed response to localized perturbations. 

Despite normal local glutamate levels, these nodes exhibited spiking activity, underscoring the 

complexity of network interactions and the non-local effects of neural perturbations. 
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Figure 5.7. Network simulation experiment #1. Same as Figure 5.6 for different values of 𝜔Glu and 𝜔GABA. 

In Figure 5.8 and Figure 5.9, we extend our analysis (of Figure 5.6 and Figure 5.7, respectively) 

to include the critical factor of neuronal death, implemented when glutamate exposure surpasses a 

defined threshold (e.g., 50 µM, which is about three times larger than the physiologically 

motivated value of 15µM proposed in Table 2.3). This addition reveals that post-neuronal death, 

the spiking behavior in neighboring nodes persists due to the continued presence of extracellular 

glutamate, underscoring the network’s challenge (lack of ability) in clearing neurotransmitter 

surpluses even after cell loss. 
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Figure 5.8. Network simulation experiment #2. Complements Figure 5.6 by implementing neuronal death. 

 
Figure 5.9. Network simulation experiment #2. Complements Figure 5.7 by implementing neuronal death. 
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Assuming a neurotransmitter clearance mechanism post-mortem in Figure 5.10 and Figure 5.11, 

such as volume transmission, we observe a nuanced change in the network’s dynamics. 

Neighboring nodes exhibit a slight reduction in extracellular glutamate and GABA levels, albeit 

not returning to baseline. This modest decrease reflects the diminished astrocytic feedback 

following the loss of adjacent neurons, highlighting the intricate interplay between neuronal and 

astrocytic networks in maintaining neural homeostasis. 

 
Figure 5.10. Network simulation experiment #3. Complements Figure 5.6 by implementing neuronal death and 

neurotransmitter clearance. 
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Figure 5.11. Network simulation experiment #3. Complements Figure 5.7 by implementing neuronal death and 

neurotransmitter clearance. 

This scenario opens avenues for exploring the resistance and vulnerability of the network’s 

remaining nodes and the emergent properties of the new network architecture post-neuronal death. 

By closely examining these dynamics, we gain insights into the network’s adaptive capacities and 

the potential for recovery or further degradation under continued pathological conditions. 

Overall, these network-level observations, from Figure 5.6 to Figure 5.11, underscore the 

network’s remarkable ability to adapt and buffer against abnormal perturbations, up to a certain 

threshold. This resistance, however, is dependent on the network’s overall connectivity and the 

functionality of its astrocytic components. Understanding these dynamics offers insights into the 

potential mechanisms underlying the progression of neurodegenerative conditions and highlights 

the importance of considering network interactions in the study of brain pathologies. 

In forthcoming simulations, we plan to systematically introduce perturbations to subsequent nodes 

within the network alongside their structural white-matter fiber connections, aiming to simulate 

the progressive nature of AD as it extends (from entorhinal and parahippocampal cortices) to more 

regions of the neocortex in its later stages. This approach will involve carefully selecting nodes for 

perturbation based on their anatomical and functional relevance to AD’s known progression 

pathway, potentially guided by established models such as the Braak staging. These simulations 

will not only reflect the spatial and temporal degeneration patterns observed in AD but will also 

consider the brain network’s inherent compensatory mechanisms. By doing so, we aim to capture 

the complex interplay between disease progression, network degradation, and the brain’s adaptive 

responses. As the disease model encompasses broader neocortical involvement, we anticipate 

observing significant changes in network dynamics, potentially shedding light on the mechanisms 

underlying the clinical manifestations of AD’s advanced stages. This meticulous modeling effort 
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will integrate current neuropathological insights as well as empirically derived constraints, 

offering a detailed and realistic computational exploration of AD’s progression and its impact on 

neural networks. 

The upcoming sections provide a comprehensive narrative of my research program. 

5.3 Alzheimer disease 

Alzheimer disease (AD) is a grave neurodegenerative condition that, despite extensive research 

efforts, lacks effective treatments to halt or reverse its progression (“2023 Alzheimer’s Disease 

Facts and Figures,” 2023). Between 2002 and 2012, the global scientific community initiated more 

than four hundred clinical trials in search of a cure, yet a staggering 99.6% failed to meet their 

primary endpoints (Cummings et al., 2014). This high failure rate underscores the urgent need for 

novel therapeutic strategies and a deeper understanding of the disease’s multifaceted nature 

(Bredesen, 2014; Canter et al., 2016; Fonseca-Santos et al., 2015; Selkoe, 2011). As global life 

expectancy rises, the incidence of AD is projected to increase dramatically, further amplifying its 

social and economic burden. For instance, current estimates by (Dementia Statistics | Alzheimer’s 

Disease International (ADI), n.d.) suggest that every 3 seconds, someone develops dementia, with 

more than 55 million individuals affected worldwide in 2020, a number expected to nearly double 

every 20 years. The financial impact is equally staggering, with the global cost of dementia 

surpassing US$ 1.3 trillion, a figure set to double by 2030. 

The prevailing research paradigm, heavily focused on neuronal dysfunction, may need to broaden 

its scope to encompass other aspects of brain health, including the role of glial cells and vascular 

factors (Acosta et al., 2017; Allaman et al., 2010; Allen & Lyons, 2018; Iadecola, 2017; Kugler et 

al., 2021; Lago-Baldaia et al., 2020; Liddelow & Barres, 2017; Liddelow & Sofroniew, 2019; C.-

C. Liu et al., 2013; Nelson et al., 2016; Sarkar et al., 2022; Schaeffer & Iadecola, 2021; St-Pierre 

et al., 2022; Sweeney et al., 2018; Verkhratsky & Nedergaard, 2018; Volman & Bazhenov, 2019; 

Zlokovic, 2011). This shift could pave the way for more comprehensive and potentially successful 

therapeutic interventions. 

AD is defined by its complex neurodegenerative pathology, notably the accumulation of amyloid-

β (Aβ) plaques and neurofibrillary tangles composed of tau protein (Ahmed et al., 2016). 

Interestingly, a significant proportion of patients diagnosed with probable AD do not exhibit the 

classical levels of Aβ plaques and tau tangles typically associated with the disease (Mattson & 

Arumugam, 2018). Instead, these individuals may show substantial neuronal loss in regions like 

the hippocampus, with only a moderate presence of tau-positive neurons (Mattson & Arumugam, 

2018). Conversely, some elderly individuals display considerable Aβ plaque accumulation post-

mortem yet retain cognitive function, hinting at potential neuroprotective mechanisms against Aβ 

toxicity (Mattson & Arumugam, 2018). Emerging evidence suggests that factors such as 

neurotrophic factor signaling, particularly involving brain-derived neurotrophic factor, and 

adaptive cellular stress response pathways might underlie the resilience observed in certain aging 

brains (Mattson & Arumugam, 2018). These insights underscore the intricate interplay between 

aging, Aβ and tau pathologies, and the body’s adaptive responses, challenging the notion of a linear 

pathway to synaptic dysfunction and neuronal death in AD (Mattson & Arumugam, 2018). 

In AD, it is posited that Aβ propagates in a manner reminiscent of prions, marking distinct 

pathological stages (Ahmed et al., 2016). Initially, Aβ deposition is seen in the basal temporal and 

orbitofrontal neocortex, subsequently extending across the neocortex, and eventually impacting 
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the hippocampus, amygdala, diencephalon, and basal ganglia. In advanced stages, it even reaches 

the mesencephalon, lower brainstem, and cerebellar cortex (Ahmed et al., 2016). Neuroimaging 

studies, including resting-state fMRI, EEG, and MEG, reveal that these regional pathologies 

disrupt key brain networks (namely the salience, default mode, and executive control networks) 

leading to the characteristic cognitive impairments and behavioral anomalies of AD (Ahmed et al., 

2016). The disruption of neural synchrony, particularly within the default network and its medial 

temporal lobe regions, is closely associated with the episodic memory deficits that are emblematic 

of AD (Ahmed et al., 2016). Notably, there is often a mismatch between the extent of Aβ pathology 

and the degree of cognitive (network) dysfunction, suggesting that the spatial distribution of Aβ 

might not fully explain the clinical diversity observed in AD presentations (Ahmed et al., 2016). 

As for tau pathology, its progression in AD is similarly systematic, beginning with neuronal tau 

inclusions in the locus coeruleus and entorhinal regions, advancing through the hippocampal 

formation and select neocortical areas, and ultimately enveloping a vast expanse of the neocortex 

(Ahmed et al., 2016). This progression of tau pathology parallels the deepening cognitive decline, 

further elucidating the multifaceted nature of neurodegeneration in AD. 

In the landscape of AD research, the spotlight is increasingly on the role of glial cells (microglia, 

oligodendrocytes, and astrocytes) not just as bystanders but as active participants in the disease’s 

unfolding narrative (Acosta et al., 2017; Allaman et al., 2010; Kugler et al., 2021; Lago-Baldaia et 

al., 2020; Liddelow & Barres, 2017; Liddelow & Sofroniew, 2019; C.-C. Liu et al., 2013; Patro et 

al., 2022; Sarkar et al., 2022; St-Pierre et al., 2022). These cells, which are cornerstones of the 

brain’s immune defense, exhibit a dynamic range of actions that straddle the line between 

protecting the neural environment and contributing to its distress. They engage in the clearance 

and degradation of Aβ, with microglia and astrocytes at the forefront of this regulatory battle. 

Initially, astrocytes appear as guardians, sequestering and dismantling the Aβ. However, this 

protective mechanism has its costs: the relentless uptake of Aβ can divert astrocytes from their 

critical support functions, leading to a metabolic crisis for neurons and subsequent degeneration 

(Allaman et al., 2010). 

This duality in glial function, where they can oscillate between being neuroprotective allies and 

drivers of neurodegeneration, adds a layer of complexity to our understanding of AD. Moreover, 

the plot thickens with the involvement of astrocytes in the production of apolipoprotein E (ApoE), 

a molecule with deep ties to AD’s genetic risk landscape (C.-C. Liu et al., 2013). The presence of 

the ApoE4 variant, in particular, markedly elevates the risk of AD, underscoring a genetic 

vulnerability orchestrated by astrocytes. 

This intricate interplay between glial function, Aβ dynamics, and genetic factors like ApoE4 paints 

a multifaceted picture of AD pathogenesis, where glial cells play pivotal, albeit ambivalent, roles 

(Acosta et al., 2017; Allaman et al., 2010; Kugler et al., 2021; Lago-Baldaia et al., 2020; Liddelow 

& Barres, 2017; Liddelow & Sofroniew, 2019; C.-C. Liu et al., 2013; Patro et al., 2022; Sarkar et 

al., 2022; St-Pierre et al., 2022). 

Recent insights have illuminated the diverse and complex roles of glial cells in the progression of 

AD, with particular emphasis on the nuanced interactions between these cells and the broader 

neural environment (Acosta et al., 2017; Liddelow & Barres, 2017; Liddelow & Sofroniew, 2019; 

Sarkar et al., 2022; St-Pierre et al., 2022). In AD, the pathological accumulation of Aβ not only 

induces a reactive phenotype in astrocytes but also precipitates a cascade of functional disruptions. 

These include alterations in astrocytic morphology, calcium dynamics, potassium regulation, and 
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glutamate handling, as well as in the mechanisms governing Aβ clearance and neuronal energy 

support (Acosta et al., 2017; Sarkar et al., 2022). The resultant environment is marked by 

excitotoxicity due to impaired glutamate clearance, compromised synaptic functionality, energy 

shortages for neuronal activity, and misaligned neurovascular communication. 

In this intricate milieu, reactive astrocytes serve dual roles, initially as buffers against Aβ 

accumulation but potentially as contributors to the Aβ burden in later stages (Acosta et al., 2017; 

Sarkar et al., 2022). The interaction between Aβ and astrocytic receptors like metabotropic-

glutamate-receptor-5 and α7-nicotinic-acetylcholine-receptor amplifies calcium signaling 

disturbances within astrocytes, further entangling them in the disease’s pathology. This astrocytic 

dysfunction leads to an excess of synaptic glutamate, either by hindering its reuptake or by 

promoting its astrocyte-driven release, thus exacerbating neuronal and synaptic distress. 

Moreover, the astrocytic contribution to neuronal energy metabolism becomes compromised in 

AD (Acosta et al., 2017; Sarkar et al., 2022). Disruptions in glucose and lactate transport, alongside 

glutamine synthesis, undercut the energy supply essential for neuronal function and glutamate 

recycling. Additionally, the dysregulated calcium signaling in astrocytes extends its impact to the 

cerebrovasculature, where abnormal responses can arise. The downregulation of astrocytic 

potassium channels by Aβ further disrupts the delicate balance of extracellular potassium, 

contributing to the cerebrovascular anomalies observed in AD. 

Though less studied than astrocytes, oligodendrocytes also play a crucial role in the pathology of 

AD, impacting disease progression and offering potential therapeutic targets (Abd-Elrahman et al., 

2023; Butt et al., 2019; Ferrer, 2018; J. Rodríguez et al., 2016; Kahlson & Colodner, 2015; 

LoPresti, 2018; Maitre et al., 2023; Matute et al., 2006). These cells, vital for myelination and 

energy support to neurons, are affected in AD, leading to white matter atrophy, demyelination, and 

axonal loss. Damage to oligodendrocytes often results from abnormal tau protein deposits and Aβ 

peptides, contributing to cognitive dysfunction and dementia severity in AD patients. The protein 

aggregates not only damage oligodendrocytes directly but also increase their vulnerability to 

glutamate toxicity, exacerbating white matter damage (Abd-Elrahman et al., 2023; Butt et al., 

2019; Ferrer, 2018; J. Rodríguez et al., 2016; Kahlson & Colodner, 2015; LoPresti, 2018; Maitre 

et al., 2023; Matute et al., 2006). Abnormal calcium regulation (calcium dyshomeostasis) within 

oligodendrocytes further contributes to their dysfunction and death. This calcium dysregulation, 

along with glutamate and ATP excitotoxicity, can lead to oligodendrocyte apoptosis and myelin 

breakdown, highlighting the complex interplay between oligodendrocytes, neuronal signaling, and 

AD pathology. 

To summarize, the diverse responses of glial cells to the pathological features of AD underscore 

their complex involvement in the disease’s progression. The dynamic interplay between glial cells 

and AD’s hallmark pathologies, Aβ accumulation and tau protein aggregation, reveals a spectrum 

of glial functions that range from protective to detrimental. This nuanced understanding of glial 

cell behavior in the AD context highlights their potential as pivotal players in the disease’s 

mechanisms and opens up innovative avenues for therapeutic exploration. By targeting the 

regulatory functions of glial cells, there is a promising opportunity to influence the course of AD. 

Future research focused on elucidating the precise mechanisms of glial involvement in AD can 

pave the way for the development of glia-centric therapies, potentially offering new hope for 

modulating this complex neurodegenerative condition (Acosta et al., 2017; Allaman et al., 2010; 
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Kugler et al., 2021; Lago-Baldaia et al., 2020; Liddelow & Barres, 2017; Liddelow & Sofroniew, 

2019; C.-C. Liu et al., 2013; Patro et al., 2022; Sarkar et al., 2022; St-Pierre et al., 2022). 

5.4 Proposed main focus 

My research proposal is underpinned by the following foundational ideas: initiating with the 

baseline of a healthy older adult brain predisposed to neurodegenerative conditions, we aim to 

chart the trajectory towards AD. This will be achieved by concurrently modeling critical 

phenomena across the entire brain: synaptic loss, neural network disruptions, and neuronal death. 

Given our objective to align with the spatiotemporal resolutions of neuroimaging data, we translate 

these biological phenomena into observable neuroimaging correlates: diminished synaptic 

densities among neuron subpopulations, compromised functional connectivity within and across 

neural communities (e.g., resting-state networks), deteriorated white matter integrity, and the 

demise of axonal pathways. Through these translations, our discourse centers on the concept of 

neural communities, offering a tangible framework for our simulations. 

As an initial step, we postulate that these three phenomena (synaptic loss, neural network 

disruptions, and neuronal death), which sequentially manifest within a single brain region but 

might overlap across multiple regions, correlate (not strictly in a linear manner) with extended 

glutamate exposure. This hypothesis introduces a degree of contention, as it is widely recognized 

that these manifestations are also the culmination of a multifaceted cascade involving intracellular 

accumulations of Aβ and tau, oxidative stress, mitochondrial anomalies, and sustained 

neuroinflammation (Abd-Elrahman et al., 2023; Acosta et al., 2017; Allaman et al., 2010; Kugler 

et al., 2021; Lago-Baldaia et al., 2020; Liddelow & Barres, 2017; Liddelow & Sofroniew, 2019; 

C.-C. Liu et al., 2013; Matute et al., 2006; Patro et al., 2022; Sarkar et al., 2022; St-Pierre et al., 

2022). These processes can either independently or in conjunction instigate the degeneration and 

demise of neuronal networks. Despite the multifactorial nature of these processes, our modeling 

approach centers on glutamate due to its critical role as the primary excitatory neurotransmitter in 

the brain and its established association with AD (Abd-Elrahman et al., 2023; Acosta et al., 2017; 

Allaman et al., 2010; Kugler et al., 2021; Lago-Baldaia et al., 2020; Liddelow & Barres, 2017; 

Liddelow & Sofroniew, 2019; C.-C. Liu et al., 2013; Matute et al., 2006; Patro et al., 2022; Sarkar 

et al., 2022; St-Pierre et al., 2022). Focusing on glutamate aids in reducing the complexity of the 

phenomena that we aim to model without significantly compromising their relevance, given 

glutamate’s significance in the context of AD pathology. This simplified approach facilitates a 

more manageable exploration of the disease’s mechanisms, which will be further highlighted in 

the section “Beyond glutamate and GABA neurotransmission” of the Discussion starting on page 

241. 

Thus, in this research program, the discourse pivots to the concept of neural communities, a pivotal 

element that bridges the gap between the whole-brain neuron-astrocyte network modeling 

approach developed throughout this thesis and the neuroimaging data ubiquitously collected in 

both clinical and research settings. These neural communities not only resonate with the data 

derived from neuroimaging techniques but also align with cognitive and behavioral evaluations, 

providing a rich tapestry of insights into brain function and organization (Breakspear, 2017; Hallett 

et al., 2020). 

The primary objective delineated here is to construct a model that elucidates the adaptive 

mechanisms of multilayer network communities in the face of gradual changes, akin to those 

observed in the biological aging process. Complex dynamical systems, including the brain, often 
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exhibit emergent properties where groups of nodes, or neural communities, form interconnected 

layers, facilitating robust information exchange (Bassett & Bullmore, 2017; Bassett & Sporns, 

2017; Boccaletti et al., 2014; De Domenico, 2017; Fan et al., 2021; Ghavasieh & Domenico, 2021; 

Han et al., 2017). This multilayered modular organization, evident across various spatiotemporal 

scales, plays a crucial role in system resistance and adaptability. Yet, the dynamics of how these 

modular architectures evolve in response to slow and continuous perturbations (assuming that 

biological aging can be modelled as slow-continuous perturbations), and the underlying 

topological features that underpin the emergence and temporal reconfiguration of these functional 

modules, remain areas ripe for exploration. 

My research proposal endeavors to shed light on the emergent multilayer network communities 

within the brain, probing their relationship with the brain’s resistance to slow-scale perturbations 

(explained in Section 5.6), such as those that are characteristic of biological aging. Employing a 

physiologically constrained computational modeling approach, we aim to simulate the dynamic 

evolution of these network communities in response to defined perturbation paradigms. The 

simulations will build on the foundations laid in preceding chapters, which demonstrated our 

whole-brain neuron-astrocyte network model’s capacity to mimic a diverse array of network 

dynamics across multiple scales. While previous chapters have successfully replicated key aspects 

of empirical networks through principled parameterization, a critical next step involves directly 

comparing these model simulations to actual neuroimaging data, a process integral to this research 

program. Thus, this research program seeks to extend these simulations to more closely mirror 

real-world neuroimaging data. Moreover, this research program will explore the application of 

network control theory to systematically manipulate and understand the principles governing 

network dynamics within our model. 

By leveraging a modeling framework deeply intertwined with non-invasive neuroimaging 

modalities such as diffusion MRI, functional MRI, PET, EEG, and MEG, we enhance the potential 

for empirical validation of our theoretical constructs (Breakspear, 2017; Griffiths et al., 2022; 

Hallett et al., 2020), paving the way for groundbreaking insights into the adaptive capacities of 

neural networks in the face of aging and other perturbations. 

At the heart of this ambitious program is also the integration of a vascular component into the 

whole-brain neuron-astrocyte network model conceived in this thesis. However, to maintain 

continuity with the concepts and methodologies introduced in the previous chapters, I choose to 

postpone the discussion of incorporating a vascular dimension. We will delve into the complexities 

of integrating this vascular component in the Discussion chapter starting on page 239. This 

vascular addition is crucial, given the significant role that vascular dysfunction plays in the AD 

landscape, marking a critical area for exploration in our quest to understand and ultimately combat 

this multifaceted disease (Acosta et al., 2017; Allaman et al., 2010; Allen & Lyons, 2018; Iadecola, 

2017; Kugler et al., 2021; Lago-Baldaia et al., 2020; Liddelow & Barres, 2017; Liddelow & 

Sofroniew, 2019; C.-C. Liu et al., 2013; Nelson et al., 2016; Sarkar et al., 2022; Schaeffer & 

Iadecola, 2021; St-Pierre et al., 2022; Sweeney et al., 2018; Verkhratsky & Nedergaard, 2018; 

Volman & Bazhenov, 2019; Zlokovic, 2011). 

5.5 Proposed primary objectives 

In this research program, the exploration begins with the investigation of healthy aging brains, 

utilizing real-world behavioral and resting-state neuroimaging data from MEG and fMRI sources. 

The primary aim is to discern if age-dependent patterns in resting-state functional multilayer neural 
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communities manifest over the adult lifespan and to understand the relationship between these 

dynamic network reorganizations and cognitive performance shifts. The underlying hypothesis 

posits that the natural progression of healthy aging is marked by notable changes in the brain’s 

network architecture, characterized by enhanced community integration, diminished segregation, 

and an ensuing decline in cognitive faculties (Bagarinao et al., 2019; Stumme et al., 2020). 

Moving forward, the focus shifts to aligning our computational model with the empirical 

neuroimaging data patterns previously dissected. This second step involves examining if the 

optimized parameters of our whole-brain model accurately reflect the observed modular network 

patterns. We hypothesize (consistent with the literature review of the preceding sections) that these 

network changes are partially attributable to alterations in neuron-astrocyte interactions, a 

phenomenon our model aims to elucidate through its latent variables and parameters, once 

calibrated against empirical data. 

The third objective aims to delve into the dynamic responses of multilayer neural communities to 

biologically inspired, age-related perturbations through computational simulations. We propose 

specific hypotheses to guide this exploration (Bagarinao et al., 2019; Fan et al., 2021; Ghavasieh 

& Domenico, 2021; Gilarranz et al., 2017; Stumme et al., 2020). (i) The balance between 

integration and segregation in neural communities may influence their vulnerability and 

adaptability to perturbations. (ii) Multilayer communities’ ability to rewire in response to “injuries” 

decreases with increased global integration. (iii) Structural-functional multilayer hubs are pivotal 

in the network’s resistance to targeted perturbations, more so than hubs with only structural or 

functional prominence. (iv) Perturbation propagation is likely less extensive in networks with 

lattice topology, characterized by local interactions, compared to those with small-world topology, 

which facilitates efficient long-range information exchange. 

In the fourth objective, we extend our investigation to empirically validate the simulated multilayer 

community dynamics using real-world behavioral and neuroimaging data across various age 

groups. This validation process will involve the following. (i) Methodical comparison of simulated 

network trajectories with empirical data to identify patterns and discrepancies. (ii) Examination of 

statistical associations between model parameters and cognitive performance shifts, assessing the 

plausibility of perturbation schemes used in the simulations. 

Finally, we propose to expand our research to include clinic-based cohorts, ranging from 

cognitively unimpaired older adults to individuals with mild cognitive impairment and AD. This 

approach will allow us to do the following. (i) Simulate network trajectories that reflect the 

progression from healthy aging to mild cognitive impairment and AD, using perturbation schemes 

that mimic AD pathology. (ii) Identify network pathways that facilitate or prevent the transition to 

AD, offering potential insights into lifestyle interventions that could bolster cognitive resilience 

against neurodegenerative diseases. 

The rationale behind simulating a transition from healthy aging to AD, rather than modeling AD 

in isolation, is twofold and will be elaborated throughout my research proposal. Primarily, it aligns 

with the proactive stance of preventative health research (Mattson & Arumugam, 2018), positing 

that lifestyle interventions can beneficially influence brain network dynamics over time, thereby 

preserving cognitive functions and bolstering the brain’s resilience against vulnerabilities to AD 

(Arenaza-Urquijo & Vemuri, 2018). Should this modeling endeavor prove successful, it would 

pave the way for investigating how lifestyle factors, such as regular physical exercise, impact the 
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organization and properties of multilayer brain network communities, thereby contributing to the 

maintenance of functional and cognitive capacities throughout the adult lifespan. 

This overall approach aims not only to enhance our understanding of neural network dynamics in 

aging and AD but also to contribute to preventative health strategies by identifying modifiable 

factors that influence brain network resistance. 

5.6 Proposed overall methodology 

To achieve the defined objectives, we will harness data from two sources: the Cambridge Centre 

for Ageing and Neuroscience project (Shafto et al., 2014; Taylor et al., 2017) and the Lifespan 

Human Connectome Project Aging Study (Bookheimer et al., 2019). These datasets collectively 

offer a rich array of neural imaging data across a broad adult age spectrum, complemented by 

detailed lifestyle and cognitive performance metrics. 

The Cambridge Centre for Ageing and Neuroscience project (Shafto et al., 2014; Taylor et al., 

2017) serves as a foundational dataset for this research, encompassing a diverse cohort of 700 

participants aged 18 to 88. This dataset is notable for its extensive assessment of neural structure 

and function through various imaging techniques, including T1, T2, and diffusion MRI, alongside 

functional MRI and MEG. It also includes detailed evaluations of lifestyle factors and cognitive 

performance, offering a multidimensional view of aging’s impact on the brain. Complementing 

this, the Lifespan Human Connectome Project Aging Study (Bookheimer et al., 2019) provides 

additional depth with its inclusion of 725 subjects aged 36 to 100+, focusing on detailed structural 

and functional MRI data. This dataset’s unique offerings, such as high-resolution hippocampal 

imaging and arterial spin labeling, afford critical insights into the neurobiological substrates of 

aging. Coupled with extensive demographic and behavioral data, this dataset enriches our 

understanding of the aging process from a multifaceted perspective. 

Our analytical framework to resolve the first objective will primarily focus on resting-state MEG 

and fMRI data to discern age-related shifts in brain network communities. Advanced resting-state 

neuroimaging analysis techniques will be employed to extract functional connectivity patterns. 

Concurrently, diffusion MRI data will inform on the structural underpinnings of these functional 

networks, providing a more complete view of the brain’s multilayer community architecture. 

Behavioral data, encompassing a wide range of cognitive assessments, will be statistically 

associated with neural community attributes to uncover potential links between brain network 

dynamics and cognitive abilities. This analysis will leverage robust statistical methods, ensuring a 

thorough examination of the relationships between network properties, including integration-

segregation balance, and cognitive performance metrics (Abdi et al., 2012; González-Narváez et 

al., 2021). Clustering-like analyses will be pivotal in identifying group-level patterns of network 

communities across different age cohorts. We will explore various clustering-like methodologies 

to best capture the complex architecture of multilayer networks (De Domenico, 2017; Huang et 

al., 2021; Interdonato et al., 2017; Mucha et al., 2010; Tagarelli et al., 2017; Ting et al., 2021; H. 

Zhang et al., 2017). Moreover, the impact of demographic factors on these network patterns will 

be meticulously analyzed, considering variables such as gender and education, to elucidate the 

diversity of aging trajectories. 

Following the analysis of real-world neuroimaging data, we will proceed to personalize model fits 

for each subject using both structural and functional data (Arbabyazd et al., 2021; de Haan et al., 

2017; Demirtaş et al., 2017; Frässle et al., 2018; Hallett et al., 2020; Stefanovski et al., 2019, 2021; 
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van Nifterick et al., 2021; Yalcinkaya et al., 2023; Zimmermann et al., 2018). Initially, we’ll 

identify global network coupling coefficients as the model’s free parameters for each individual, a 

choice grounded in its demonstrated efficacy in existing literature. This process aims to construct 

a virtual brain for each participant, upon which we’ll explore statistical associations between 

model parameters and cognitive performance metrics. Building on these personalized models, we 

will generate hypotheses regarding the impact of aging on network modular organization. This will 

involve applying biologically inspired perturbations, informed by literature precedents, to simulate 

age-related changes within the brain networks of specific age cohorts. These perturbations might 

include gradually adjusting structural link weights or altering nodal parameters (e.g., pertaining to 

impaired glutamate neurotransmission) to induce dysregulated dynamics, reflective of aging 

processes. Simulated multilayer communities will then undergo a temporal analysis akin to our 

real-data approach, examining their evolution under the influence of strategic perturbations. A key 

part of this phase will involve comparing the simulated community dynamics with those observed 

in real-world data, adjusting perturbation schemes as necessary to enhance congruence. Upon 

achieving a satisfactory alignment between simulated and empirical data, we will delve into the 

potential associations between the parameters of our whole-brain model and cognitive 

performance changes. This step will not only validate the model’s accuracy but also shed light on 

the plausibility of the employed perturbation schemes in reflecting real-world aging processes. 

In exploring the effects of temporal perturbations on multilayer community organization, our focus 

will be on delineating how specific perturbations alter the activity patterns of key network nodes 

(particularly those with strong structural or functional connections to perturbation sites) and the 

integrity of associated network links. We will quantify the impact of these perturbations on network 

integration and segregation to gauge the balance between these two critical aspects of network 

organization. Additionally, the reassignment of nodes to different modules post-perturbation will 

be monitored using advanced community detection and dynamic network analysis techniques, 

providing insights into the network’s adaptive mechanisms. To comprehensively assess the 

ramifications of perturbations, we will map and quantify their spread within and across network 

modules. This will involve the development of a quantitative index to evaluate the robustness of 

the modular architecture and its sensitivity to various perturbation types. This index will be 

instrumental in comparing the effects of different perturbations, allowing us to rank them based on 

their impact on network functionality and structure. 

To address our final objective, we will leverage datasets from patients with AD, notably from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI; https://adni.loni.usc.edu/). While 

electrophysiological data are scarce in AD datasets, the ADNI provides a rich array of 

neuroimaging data, including functional MRI and PET scans for amyloid and tau, which are pivotal 

in AD research. Additionally, the BrainLat dataset (Prado et al., 2023), a unique compilation of 

data from a multicentric effort across five Latin American countries including both fMRI and EEG, 

will offer invaluable insights into the neuroimaging aspects of AD in diverse populations. 

Integrating this neuroimaging data with our whole-brain model, we aim to elucidate the network 

modular organization in AD-affected brains. Through simulations informed by this integrated 

model, we will generate causal hypotheses on the progression from healthy to AD-specific network 

organizations. These simulations will specifically focus on glutamate-mediated perturbations, 

mirroring the gradual onset of synaptic loss, network disruptions, and neuronal death characteristic 

of AD. By meticulously modeling these perturbations, we aim to uncover the mechanistic 

pathways through which healthy brain networks transition to states resembling those observed in 

https://adni.loni.usc.edu/
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AD. This methodological approach will not only enhance our understanding of AD pathology but 

also provide a computational framework for exploring potential interventions that could mitigate 

the progression of this debilitating disease. 
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Discussion 

This general discussion augments the analyses presented within the individual manuscript 

chapters, and synthesizes the strengths and limitations of my work, evaluating its academic impact 

and relevance. It assesses how my findings align with, differ from, or add to existing research, 

suggesting ways to integrate them into the broader field. This section also proposes directions for 

future research, building on the insights provided. 

Overall summary 

The foundational premise of this thesis was anchored in a mesoscopic neuron-astrocyte mass 

model (Garnier et al., 2016), designed to simulate the reciprocal dynamics between neuronal and 

astrocytic populations mediated by glutamatergic and GABAergic neurotransmission pathways. 

This initial model served as a mesoscopic representation of the complex interplay between 

neuronal and glial elements, setting the stage for a more expansive exploration of whole-brain 

functioning. 

In the course of this thesis, the mesoscopic model was transformed and extended into a whole-

brain mass network model. This evolution was achieved by implementing a sophisticated coupling 

scheme that facilitated interactions across distinct brain regions. Specifically, neuronal populations 

were interconnected via white matter tracts, emblematic of the brain’s structural connectivity, 

while astrocytic populations were linked through densities of gap junctions. This approach to 

astrocytic coupling drew inspiration from microscale investigations of the brain, particularly the 

structural notion of astrocytes forming a gap-junction-coupled syncytium. It also considered the 

pivotal role of glutamate neurotransmission in mediating astrocytic intercommunication and the 

consequential effects of excitatory gliotransmission on neuronal pre-terminal receptors. 

This expansion of the mesoscopic model into a whole-brain framework heralded a groundbreaking 

conceptualization of cerebral organization: envisioning the brain as a dynamic network-of-

networks orchestrated by a two-layered structural architecture. This innovative perspective 

emphasizes that neural dynamics are intricately shaped by the interplay between neuronal and 

astrocytic networks, each constituting a layer in the overarching structural network of the brain. 

The inaugural manuscript-chapter of this thesis meticulously dissected the mathematical 

underpinnings of the resulting whole-brain model. It elucidated the core biophysical principles that 

regulate the reciprocal interactions between astrocytes and neurons within this large-scale network. 

A detailed mathematical procedure for the model’s parameterization was outlined, leveraging an 

array of methodologies including simulation techniques, bifurcation theory, and compartmental 

modeling. This parameterization process was specifically tailored to meet specific criteria 

designed to enhance utility for subsequent chapters, ensuring the model’s outputs, notably the local 

field potential, and extracellular glutamate and GABA, accurately emulate characteristics typically 

observed in empirical resting-state human data. 

The criteria established for the model’s parameterization were designed to fulfill dual objectives. 

Firstly, they aimed to ensure that the dynamics of the local field potentials closely mirrored the 

characteristics of the α-band (8–13 Hz) as observed in electrophysiological studies. This included 

capturing the nuances of amplitude and phase network synchronizations that are indicative of 

coherent neural activity within this frequency band, a hallmark of resting-state brain network 

dynamics. Secondly, the criteria sought to achieve a harmonious balance in neurotransmitter 



240 

 

dynamics, characterized by quasi-stationary slow fluctuations of extracellular glutamate and 

GABA. This balance is crucial for maintaining the homeostasis of excitatory and inhibitory 

influences within the brain, ensuring that neural networks operate within optimal physiological 

parameters. Furthermore, this chapter illuminated potential avenues for broadening these criteria 

to extend the model’s applicability to a wider array of scientific inquiries. 

Advancing into the second manuscript-chapter, the thesis embraced the intricate nature of the 

whole-brain model, proposing a simulation approach that integrates multilayer network modeling 

with bifurcation theory. This strategy aimed to dissect the nuanced contributions of astrocytic 

networks to the modulation of whole-brain activity and the emergent patterns of functional 

connectivity. Through this approach, the thesis ventured into uncharted territories, exploring the 

profound impact of astrocytic network dynamics on the cerebral landscape, thereby shedding light 

on the pivotal role these glial networks play in orchestrating the symphony of brain activity and 

connectivity. The findings from this chapter were profound, illustrating the dynamic interplay 

between astrocytic and neuronal networks through both fast and slow fluctuations, as well as 

through phase-based and amplitude-based network connectivity. 

A significant revelation from the analysis of whole-brain activity was the posited hypothesis that 

glutamatergic and GABAergic neurotransmissions act as critical modulators of the amplitude 

envelope of neuronal membrane potential dynamics. This insight underscores the pivotal role of 

neurotransmission in influencing neuronal oscillations and their associated amplitude envelope 

fluctuations. In the realm of whole-brain connectivity, the examination of amplitude and phase 

couplings unveiled with remarkable biophysical detail that these modes of connectivity underscore 

distinct yet complementary spatiotemporal phenomena within the brain’s architecture. 

These pivotal findings not only captivate the neuroimaging community’s interest, particularly in 

the nexus between amplitude and phase neural synchrony, but they also set a foundational tone for 

subsequent investigations within the thesis. The chapter compellingly argues that the inclusion of 

glial cells in biophysical models substantially enriches the interpretation of whole-brain activity 

and connectivity patterns, whereas their exclusion could lead to ambiguous interpretations of 

cerebral processes. 

With the theoretical groundwork laid in the first and second chapters, the thesis then transitioned 

towards evaluating the practical applicability and realism of the whole-brain model from a neuron-

glial perspective. This evaluation necessitated consideration of the types of data required to both 

constrain and validate the model, particularly in the context of predicting the interplay between 

neurotransmission and neuronal amplitude modulation. 

Addressing these considerations, the third manuscript-chapter ventured into the domain of 

empirical electrophysiological connectomics. The intrinsic alignment between 

electrophysiological data and the state variables of our whole-brain model underscores the unique 

utility of such data for model validation and refinement. In light of this, the third chapter embarked 

on an exploration of empirical electrophysiological connectomics, seizing the opportunity to infuse 

neuron-glial perspectives into a domain traditionally dominated by neuronal-centric analyses. 

Acknowledging the methodological constraints inherent in the field of non-invasive 

electrophysiology, this chapter endeavored to establish a biologically informed simulation 

environment. This setting was designed to scrutinize and enhance existing electrophysiological 

connectomics methodologies, with the overarching aim of surmounting some of the field’s 
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prevalent limitations. The chapter was dedicated to pinpointing an optimal analytical framework 

that could later be applied to real-world data, facilitating a rigorous comparison between model 

predictions and empirical observations. 

One of the pivotal revelations of this chapter was the elucidation of conditions under which 

complex yet biologically plausible patterns of amplitude and phase couplings could be accurately 

detected using conventional empirical electrophysiological connectomics techniques. The analysis 

highlighted several critical factors influencing the reliability of these techniques, including the 

dimension of the functional networks (measured in terms of the number of nodes), the density of 

functional network connections, the underlying nature of network dynamics (such as the balance 

between functional integration and segregation), and the specific types of network properties under 

investigation (ranging from macro-scale to micro-scale phenomena). 

The following discussion sections enrich this overall summary. 

Beyond glutamate and GABA neurotransmission 

Our modeling approach relied on the explicit integration of excitatory and inhibitory 

neurotransmitter dynamics (through glutamate and GABA, respectively) to capture the intricate 

coupling between neurons and astrocytes. By focusing on these two neurotransmitters, we 

effectively employed a dimension reduction approach to navigate the complex landscape of 

neurochemicals in the brain (Brezina, 2010; Katz, 1999; Kondziella, 2017). Glutamate stands as 

the primary excitatory neurotransmitter within the human cortex, playing a pivotal role in 

processes such as memory formation, neuronal development, and synaptic plasticity. Its ubiquity 

and involvement in critical brain functions suggest that glutamate could serve as a biomarker for 

various cerebral processes (Crupi et al., 2019; Meldrum, 2000; Morris, 2013; Pankevich et al., 

2011; Petroff, 2002; Riedel, 2003; Robbins & Murphy, 2006). Conversely, GABA, as the principal 

inhibitory neurotransmitter, introduces a counterbalance to the excitatory actions of glutamate, 

contributing to the overall homeostasis of neural activity (Angulo et al., 2008; Olsen & Sieghart, 

2008; Petroff, 2002; Yoon & Lee, 2014). The metabolic pathway from glutamate to GABA 

underlines their intertwined roles, where glutamate is not only a neurotransmitter but also a 

precursor for GABA synthesis, highlighting the biochemical interdependence within the brain’s 

neurochemical framework. Despite the critical role of GABA in maintaining neural circuit stability 

and its involvement in processes such as anxiety regulation, sleep, and muscle tone, it has 

historically been overshadowed by the extensive research focus on glutamate (Angulo et al., 2008; 

Petroff, 2002; Yoon & Lee, 2014). However, recent studies are increasingly acknowledging the 

significance of GABA, especially as a gliotransmitter, striving to balance the research attention 

between these two pivotal transmitters (Angulo et al., 2008; Petroff, 2002; Yoon & Lee, 2014). 

Overall, neuroscientific research has dedicated substantial efforts to understanding the roles of 

glutamate and GABA, reflecting the broader endeavor to decipher the neurochemical 

underpinnings of human physiology in both health and disease (Angulo et al., 2008; Duman et al., 

2019; Guerriero et al., 2015; Katz, 1999; Kondziella, 2017; Mattson & Arumugam, 2018; 

Meldrum, 2000; Morris, 2013; Pankevich et al., 2011; Petroff, 2002; Riedel, 2003; Robbins & 

Murphy, 2006; Rowley et al., 2012; Yoon & Lee, 2014). The exploration of neurotransmitter 

dynamics extends beyond glutamate and GABA, encompassing a broad spectrum of molecules 

with diverse roles in the nervous system. Key neurotransmitters such as acetylcholine, serotonin, 

and dopamine exhibit dual functions, acting as both excitatory and inhibitory agents depending on 

the receptor types and neural contexts they engage with (Brezina, 2010; Katz, 1999; Kondziella, 
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2017; Marder, 2012). This duality underscores the complexity of neurochemical interactions and 

their implications for brain function and behavior. This pursuit is also not limited to 

neurotransmitters but also encompasses neuromodulators like neuropeptides and 

endocannabinoids, which fine-tune neural activity without directly inducing excitatory or 

inhibitory postsynaptic potentials (Bargmann, 2012; Brezina, 2010; Katz, 1999; Marder, 2012). 

These compounds modulate the strength and efficacy of synaptic transmission, influencing a wide 

range of brain functions and contributing to the dynamic regulation of neural networks. 

This discussion not only highlights the critical importance of glutamate and GABA in 

neurochemical research but also opens avenues for investigating how neuromodulators, such as 

neuropeptides and endocannabinoids, contribute to the nuanced orchestration of brain activity. As 

we delve deeper into the neurochemical landscape, it becomes evident that understanding the 

interplay between neurotransmitters, neuromodulators, and neural dynamics is pivotal for 

unraveling the complexities of neural function and dysfunction. 

Glial pertinence 

The neurochemical perspective has catalyzed the development of advanced dynamic whole-brain 

models and neuroscientific investigations that transcend traditional neuronal-centric views, 

aligning more closely with the scales used in neuroimaging studies. Notable contributions in this 

domain include the work of (J. Y. Hansen et al., 2022; Kringelbach et al., 2020; Lawn et al., 2023; 

Shine et al., 2019), see also the Background chapter for an extensive review, which collectively 

underscore the interconnection between neural network dynamics, neurochemical systems, and 

their implications on behavior and cognition. 

However, the contributions of glial cells in modulating the brain’s neurochemical milieu often 

remain underappreciated in these studies (J. Y. Hansen et al., 2022; Kringelbach et al., 2020; Lawn 

et al., 2023; Shine et al., 2019). Glial cells, with their extensive and dynamic roles in the central 

nervous system, are uniquely equipped and positioned to monitor, regulate, and profoundly 

influence the brain’s neurochemical milieu (De Pittà & Berry, 2019; Fields et al., 2015; Pacholko 

et al., 2020; Verkhratsky & Nedergaard, 2018). These cells, which include astrocytes, microglia, 

and oligodendrocytes, surpass neurons in their multifaceted functions. They are pivotal in 

maintaining neural homeostasis, orchestrating the delicate balance of neurotransmitters, and 

ensuring the structural and functional integrity of the blood-brain barrier (Kugler et al., 2021; 

Sweeney et al., 2018). Their involvement also extends to facilitating neuroplasticity and regulating 

synaptic function. Astrocytes, for instance, directly regulate synaptic transmission and 

neurotransmitter recycling, while microglia monitor and respond to changes in the neural 

environment, playing a key role in neuroinflammation and neuroprotection. Oligodendrocytes 

contribute to neuron function by insulating axons, thus facilitating rapid signal transmission. 

Collectively, glial cells contribute to the fine-tuning of neural circuits and large-scale networks, 

and they are integral to the brain’s adaptability and health, challenging the neuron-centric dogma 

that has long dominated neuroscience while opening new avenues for understanding and treating 

neurological disorders (Amhaoul et al., 2014; Barres, 2008; Brazhe et al., 2023; Devinsky et al., 

2013; Fields et al., 2015; Kugler et al., 2021; Liddelow & Barres, 2017; Liddelow & Sofroniew, 

2019; Mattson & Arumugam, 2018; Obenaus, 2013; Purnell et al., 2023; Vezzani et al., 2022; 

Volman & Bazhenov, 2019). 

The emerging recognition of glial cells as fundamental to brain function necessitates a more 

inclusive neuron-glial network modeling approach (De Pittà & Berry, 2019), as we proposed in 
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this thesis. This approach aims at offering a comprehensive framework for understanding the 

dynamic neurochemical landscape of the brain through intricate neuron-glial interactions. Further 

enriching this perspective, the consideration of neuro-glial–vascular interactions unveils the 

foundational elements of brain functionality (Brazhe et al., 2023; Fields et al., 2015; Giaume et 

al., 2010; Iadecola, 2017; Kugler et al., 2021; Schaeffer & Iadecola, 2021). The brain’s intricate 

architecture comprises billions of neurons and glial cells, all supported by an extensive vascular 

network. These trilateral interactions are essential for synaptic modulation, meeting the brain’s 

metabolic needs, and maintaining overall homeostasis. This holistic view of the neuro-glial–

vascular nexus highlights the complex, interdependent mechanisms underpinning brain activity 

and offers a broader canvas for neuroscientific exploration. 

Towards the neuro-glial–vascular network unit 

Understanding the intricate workings of the brain requires a comprehensive view that extends 

beyond neurons to include the essential contributions of glial cells and the vascular system (Brazhe 

et al., 2023; De Pittà & Berry, 2019; Fields et al., 2015; Giaume et al., 2010; Iadecola, 2017; Kugler 

et al., 2021; Schaeffer & Iadecola, 2021; Verkhratsky & Nedergaard, 2018). The concept of the 

neuro-glial-vascular network unit emphasizes the trilateral interactions among these components, 

providing a cohesive framework that has the potential to reconcile various independently 

conducted studies within the neuroscience field, as well as unify their respective research 

communities. In this unit, the vascular component, consisting of a complex network of blood 

vessels, ensures the delivery of glucose, oxygen, and other nutrients while removing waste 

products, a process that is critical for sustaining the energetic demands of both neuronal and glial 

activity. 

The interactions within the neuro-glial–vascular unit are pivotal for understanding brain function 

in health and disease. This unit underlies mechanisms such as neurovascular coupling, where 

changes in neural activity lead to corresponding changes in blood flow, a principle that forms the 

basis of functional neuroimaging techniques like fMRI (Figley & Stroman, 2011; Lu et al., 2019). 

Disruptions in the neuro-glial–vascular interactions are implicated in various neurological 

disorders, including stroke, Alzheimer disease, and multiple sclerosis, highlighting the importance 

of this unit in pathology (Amhaoul et al., 2014; Barres, 2008; Brazhe et al., 2023; Devinsky et al., 

2013; Iadecola, 2017; Kugler et al., 2021; Liddelow & Barres, 2017; Liddelow & Sofroniew, 2019; 

Mattson & Arumugam, 2018; Obenaus, 2013; Purnell et al., 2023; Schaeffer & Iadecola, 2021; 

Vezzani et al., 2022; Volman & Bazhenov, 2019). 

Recent advances in modeling efforts have aimed to capture the complexity of the neuro-glial–

vascular unit, especially at scales relevant to human neuroimaging. These models integrate data 

from molecular, cellular, and systems neuroscience to simulate the interactions within this unit, 

providing insights into the underlying mechanisms of brain function and the pathophysiology of 

brain disorders (Blanchard et al., 2016; Jolivet et al., 2015; Volman & Bazhenov, 2019). Such 

models hold promise for the development of new therapeutic strategies targeting the neuro-glial–

vascular unit (Allen & Lyons, 2018; Lago-Baldaia et al., 2020). 

It is worth highlighting, Iadecola’s review on the neurovascular unit (Iadecola, 2017), which has 

been instrumental in expanding our understanding of the interactions between neural activity and 

cerebral blood flow, emphasizing the multidimensional nature of these processes. This conceptual 

framework has paved the way for further research into the roles of astrocytes in neurovascular 

coupling and the maintenance of the blood-brain barrier. Likewise, De Pitta and Berry’s review 
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(De Pittà & Berry, 2019) uniquely enriches our comprehension of the intricate signaling 

mechanisms within the brain, particularly focusing on the astrocytic modulation of synaptic 

activity and plasticity. Their research delves into the biophysical and biochemical pathways 

through which astrocytes contribute to the fine-tuning of synaptic transmission, revealing the 

astrocytes’ pivotal role in modulating neuronal networks and their implications for cognitive 

functions. These two works are complemented by studies demonstrating the critical role of the 

vascular system in responding to neural metabolic demands, as highlighted in reviews by (Kugler 

et al., 2021; Sweeney et al., 2018; Zlokovic, 2011) on the blood-brain barrier and 

neurodegeneration. 

Thus, we may posit that the neuro-glial-vascular network unit offers a comprehensive framework 

for understanding the complex interactions that underpin brain function and disease. By integrating 

insights from diverse studies and leveraging advanced modeling techniques, this framework holds 

the potential to unify the field of neuroscience and pave the way for innovative treatments targeting 

the intricate web of neuronal, glial, and vascular interactions. 

Concretely speaking, in our whole-brain neuron-astrocyte model, which currently integrates two 

distinct structural layers representing neuronal and astrocytic networks, we are poised to 

incorporate a third, innovative layer dedicated to vascular pathways. This addition aims to enhance 

the model’s realism and functionality, drawing inspiration from existing vascular atlases like the 

one proposed by (M. Bernier et al., 2018). However, to align with our model’s scale and objectives, 

we anticipate adapting the atlas’s detailed micro-scale vascular information into more generalized 

meso-scale and macro-scale representations suitable for our modeling framework. To 

mathematically depict the cerebral vasculature as an independent entity within our model, we are 

considering the adoption of a multigraph approach. This type of graph architecture allows for 

multiple connections, or edges, between network nodes, thus more accurately reflecting the 

complex interconnectivity of the brain’s vascular system. For this aspect of the model, we can 

leverage the vascular graph modeling frameworks established by (Reichold et al., 2009), which 

detail the micro-scale dynamics of blood pressure, flow, and scalar transport processes, including 

oxygen transport, within the cerebral vasculature. To dynamically link the vascular layer with the 

neuron-astrocyte interactions in our model, we plan to draw upon the framework established by 

(Jolivet et al., 2015), who modelled activity-dependent metabolic coupling within the neuro-glial–

vascular mesoscopic unit, while carefully considering the multiple timescales at which this unit 

operates. We also plan to incorporate principles from (Blanchard et al., 2016), who introduced a 

neural mass model that couples neuron-astrocyte activity with cerebral blood flow. Similarly, the 

work of (Tesler et al., 2023) provides a valuable reference for integrating mean-field models that 

connect neuronal activity with the BOLD signal, incorporating the influence of astrocyte calcium 

dynamics. By intertwining these elements, our model will offer a holistic view of brain function, 

positing that the observed functional activity and connectivity patterns at macro-scales are 

emergent properties of neural signaling processes unfolding within a structurally intricate multi-

layer (multi-cellular) network topology. The inclusion of a vascular layer, represented as a 

multigraph, not only enriches the model’s complexity but also opens avenues for simulating whole-

brain neuro-glial–vascular dynamics. This approach, grounded in neural mass or field models and 

informed by empirical vascular network data, holds significant promise for advancing our 

understanding of the brain’s integrated function and its perturbations in various pathologies. 

Additionally, this modelling perspective has other implications as outlined in the next section. 
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Vascular networks as surrogates of astrocytic networks 

Our network model introduces a novel dimension to the conventional dynamic models of whole-

brain activity, which typically focus solely on the neuronal interactions (Breakspear, 2017; 

Griffiths et al., 2022). Unlike these traditional approaches, our model incorporates an additional 

structural layer specifically designed to represent the interconnected networks of astrocytic 

populations. This inclusion is predicated on the understanding that astrocytes, much like neurons, 

form extensive networks, albeit through a mechanism of gap junctions. 

Gap junctions are intricate cellular structures that facilitate direct cell-to-cell communication by 

allowing the passage of ions and small molecules (Lallouette et al., 2019; Stephan et al., 2021; 

Vasile et al., 2017). These junctions are composed of connexin proteins that assemble into channels 

with the capability to modulate their opening, thus regulating intercellular communication. The 

diversity in connexin types, such as connexin 30 and 43 (Cx30 and Cx43) found in astrocytes, 

dictates the functional characteristics of these gap junctions, including the specificity and 

efficiency of signal transmission between astrocytes. Although the understanding of connexin 

expression, particularly Cx43, has been primarily gleaned from studies on pathological brain 

tissues, such as those affected by epilepsy and tumors, this knowledge base underscores the pivotal 

role of gap junctional communication within glial networks (Lallouette et al., 2019; Stephan et al., 

2021; Vasile et al., 2017). 

The significance of astrocytic gap junctions has garnered attention from numerous research teams 

dedicated to unraveling the complexities of glial interconnectivity (Stephan et al., 2021). (Stephan 

et al., 2021) provided a comprehensive review of both classical and cutting-edge methodologies 

enabling the investigation of gap junctional coupling in acute tissue slices through 

electrophysiological and imaging techniques. Despite these advancements, the precise mapping of 

astrocytic network topology within the brain remains an elusive goal, as highlighted by the reviews 

of (Lallouette et al., 2019; Vasile et al., 2017). This challenge has motivated our research in this 

thesis to develop a phenomenological model that hypothesizes the densities of gap junctions as the 

underlying mechanism governing the interactions among astrocytic populations throughout the 

brain. 

In the endeavor to elucidate the complexities inherent within the brain’s neuro-glial–vascular 

matrix, the intricate vascular networks present a novel paradigm through which one might 

delineate astrocytic interaction pathways and their subsequent couplings with neuronal assemblies, 

particularly within the confines of neuroimaging data resolution (De Pittà, 2020; De Pittà & Berry, 

2019; Fields et al., 2015; Hösli et al., 2022; Kugler et al., 2021; Macvicar & Newman, 2015; 

Magistretti & Allaman, 2015; Nedergaard et al., 2003). This perspective is substantiated by the 

investigation conducted by (Hösli et al., 2022), wherein the utilization of in vivo two-photon 

imaging in conjunction with immunohistological analyses elucidated the extent of astrocytic 

association with cerebral vasculature within mice models. Their research elucidated that a 

preponderance of cortical astrocytes, 99.8%, to be precise, forge connections with at least one 

vascular entity. It was observed that protoplasmic astrocytes predominantly establish direct 

contacts with trios of blood vessels, with the density of these vessels, rather than the astrocytes’ 

dimensional attributes, dictating the quantity of vascular contacts. Regions devoid of direct 

astrocytic-vascular contacts were exclusively noted within the hippocampus, attributed to its 

relatively diminished vascular density. 
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This pivotal study intimates that knowledge of vascular architecture permits inference regarding 

the spatial positioning of cortical astrocytes. Considering astrocytes’ proclivity for organizing into 

gap-junction-coupled syncytia, it is proposed to utilize the vasculature’s network as a template to 

empirically define astrocytic structural interconnectivity within the cerebral gray matter for our 

whole-brain model. For this purpose, a vascular atlas akin to that proposed by (M. Bernier et al., 

2018) could be instrumental. As an initial foray, the weights within the resultant structural network 

might be constituted as binary or predicated upon geodesic distances between nodal points along 

the vascular arboretum, serving as proxies for signal propagation and its attendant attenuation. 

In a subsequent phase, when this astrocytic network is amalgamated with the vascular 

compartment previously discussed, the inter-astrocytic population couplings might be 

conceptualized as a phenomenological function contingent upon vascular densities or other salient 

features of the vascular anatomy. To further refine the structural network, recourse to high-

definition molecular-cellular brain atlases, such as BigBrain (Amunts et al., 2013) and the Allen 

Human Brain Atlas (Arnatkevic̆iūtė et al., 2019), could be invaluable. These atlases could offer 

profound insights into the heterogeneous distribution of astrocytic densities across the cerebral 

expanse, thereby augmenting the fidelity of our neuro-glial–vascular interaction model. 

Revisiting electrophysiology for model validation 

A pivotal insight derived from the Chapter 3 of this thesis elucidated the dynamic interplay 

between glutamatergic and GABAergic neurotransmissions and their influence on the oscillatory 

behavior of neuronal membrane potentials within the alpha frequency band (8–13 Hz). We 

proposed that the equilibrium between excitatory and inhibitory neurotransmitter activities, 

orchestrated by the complex interactions involving neuron-astrocyte uptake and release processes, 

exerts a modulatory effect on the dynamics of neuronal membrane potentials. A salient outcome 

of our comprehensive examination of whole-brain network activity and functional connectivity 

was the identification that neurotransmitter dynamics could statistically account for variations in 

the amplitude envelope of neuronal membrane potential oscillations. 

This discovery holds transformative potential within two interrelated research themes. The first 

theme explores the correlation between non-invasive electrophysiological measurements and 

BOLD fMRI data. Over the last decade, a significant observation has been the concordance of 

network configurations within the band-limited amplitude envelopes of MEG rhythms, 

particularly within the alpha and beta (8–30 Hz) bands, with those discerned in BOLD fMRI 

signals (Brookes et al., 2011; Hipp et al., 2012; Sadaghiani et al., 2022). This breakthrough 

established a multimodal bridge linking electrophysiological connectomics with the established 

domain of fMRI connectomics, underscoring the critical role of whole-brain MEG source-space 

analyses in elucidating patterns of functional connectivity (Sadaghiani et al., 2022). The second 

theme delves into the association between BOLD fMRI signals and glial activities, positing that 

glial cells, particularly astrocytes, rather than neurons, constitute the primary sources of fMRI 

signals (Figley & Stroman, 2011; Lu et al., 2019; Tesler et al., 2023; M. Wang et al., 2018). 

Integrating these themes, we hypothesize that the biochemical underpinnings of the observed 

congruence between MEG and BOLD fMRI signals are predominantly influenced by glutamate 

and GABA. Moreover, this biochemical foundation mirrors the sophisticated intercommunication 

between astrocytic networks and neuronal circuits, suggesting a deeper, more integrated level of 

brain function analysis. Thus, we embarked upon a rigorous endeavor to juxtapose the predictions 

of our model against empirical data derived from MEG and BOLD fMRI. This emphasis on the 
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nexus between MEG and BOLD fMRI was further motivated by the current absence of empirical 

methodologies capable of capturing temporally resolved neurotransmitter activity across the entire 

human brain (J. Y. Hansen et al., 2022; Lawn et al., 2023; Lea-Carnall et al., 2023). 

In the realm of whole-brain modeling, traditional methodologies for constraining model outputs 

have predominantly utilized BOLD fMRI and non-invasive electrophysiological data (Breakspear, 

2017; Griffiths et al., 2022). A predilection for BOLD fMRI over electrophysiological data has 

been evident, attributed to various factors elucidated below. Specifically, in the context of BOLD 

fMRI, a hemodynamic forward model, such as the balloon model proposed by (Buxton et al., 

1998), is implemented to transform model-derived neuronal activity into predicted BOLD fMRI 

signals. It is crucial to recognize, within the context of glial involvement, that such hemodynamic 

models often presuppose that dynamic changes in vasodilation, blood flow, and subsequent 

alterations in volume and deoxyhemoglobin content are exclusively driven by neuronal activity 

(see also integrative biophysical or analytical approaches (Sotero & Trujillo-Barreto, 2008; Valdes-

Sosa et al., 2009)). This assumption overlooks potential contributions from glial cells, 

notwithstanding emerging research that reevaluates fMRI data from a neuro-glial–vascular 

perspective (Blanchard et al., 2016; De Pittà & Berry, 2019; Figley & Stroman, 2011; Jolivet et 

al., 2015; Kastanenka et al., 2020; Lu et al., 2019; Tesler et al., 2023; M. Wang et al., 2018). 

Therefore, within the framework of our whole-brain neuron-astrocyte model, the utilization of 

traditional BOLD fMRI as a means to constrain model outputs is considered less than ideal. This 

is primarily because the conventional forward models employed do not explicitly incorporate the 

astrocytic component, thereby potentially omitting critical aspects of neuro-glial interactions. 

Consequently, given the more straightforward correspondence of the model’s state variables to 

electrophysiological data, we initially aimed to align our whole-brain model with such data. 

However, this endeavor was anticipated to be arduous, as the analysis of electrophysiological data 

is beset with numerous challenges (Baillet, 2017; B. He et al., 2018). For the purpose of this thesis, 

we focused on the task of fitting our model to functional connectivity patterns derived from 

electrophysiological data, acknowledging the lack of established methodologies for fitting the 

temporal dynamics of whole-brain network activity during resting-state conditions. 

Contrary to the more intuitive graphical representation afforded by BOLD fMRI, the analysis of 

non-invasive human electrophysiological data, such as EEG or MEG, necessitates the employment 

of inverse modeling techniques (Baillet, 2017; B. He et al., 2018). The traditional approach to 

connectomics analysis involves a sequential methodology that commences with the resolution of 

the inherently ill-posed inverse problem to generate time-series data, subsequently utilized to 

construct functional networks (Baillet, 2017; B. He et al., 2018). The efficacy and limitations of 

this two-step process remain partially obscured due to the myriad of approaches available for 

solving the inverse problem and for reconstructing functional networks. This obscurity is 

compounded by the fact that the simulation environments utilized for validation often lack the 

requisite biological realism (Allouch et al., 2022, 2023; Fraschini et al., 2020; Hassan et al., 2014, 

2017; A.-S. Hincapié et al., 2017; Mahjoory et al., 2017; Pellegrini et al., 2023; Tabbal et al., 2022; 

Yu, 2020). 

To address these challenges, we endeavored to critically assess and refine these methodologies 

through the integration of a biologically coherent computational framework, informed by our 

biophysical whole-brain neuron-astrocyte model. Our ultimate ambition was to identify and later 

employ the most efficacious reconstruction strategies for real data analysis, potentially facilitating 
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the integration of our biophysical model with empirical data, albeit in a preliminary fashion at this 

juncture. 

Our investigation revealed that traditional reconstruction methodologies are intrinsically 

constrained by their reliance on inverse models that do not always inherently incorporate critical 

biological priors pertinent to the data under investigation, such as fiber connectivity, cortical 

geometry, and cortical parcellation. Despite these limitations, we discovered that reconstruction 

methods could yield reliable outcomes, provided that the inverse models are suitably 

parameterized or adapted to include proxies or substitutes for the essential biological priors 

underpinning the data. 

In addressing the pivotal questions of whether we are now poised to undertake the task of partially 

fitting empirical MEG data, and the strategic approach and modeling assumptions that would 

underlie such an endeavor, we conclude that while further research is imperative, the 

simplifications adopted, in the Chapter 4, during our simulation and evaluation phases have 

positioned us more favorably to engage with the challenges of electrophysiological connectomics. 

Our proposed strategy hinges on the utilization of reconstruction models that incorporate structural 

connectivity priors derived from diffusion MRI and cortical geometry (Deslauriers-Gauthier et al., 

2019, 2020; Gonzalez-Moreira, Paz-Linares, Areces-Gonzalez, Wang, & Valdes-Sosa, 2018; 

Gonzalez-Moreira, Paz-Linares, Areces-Gonzalez, Wang, Bosch-Bayard, et al., 2018; Gonzalez-

Moreira, Paz-Linares, Martinez-Montes, et al., 2018), predicated on the hypothesis that these 

structural elements significantly influence neural network dynamics (Griffiths et al., 2022; Pang 

et al., 2023; Roberts et al., 2016). 
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Conclusion 

In drawing this doctoral thesis to a close, I endeavor to extend beyond a mere recapitulation of the 

original contributions underscored within the preceding overall summary and discussions. My aim 

is to underscore the paramount importance of integration, collaboration, and the ethos of perpetual 

learning as cornerstone principles in the pursuit of unraveling the complexities of one of the most 

sophisticated constructs known to humankind: the human brain. It is my fervent hope that this 

multidisciplinary work will serve as a catalyst, encouraging future researchers to intricately 

interlace their focused inquiries with the broader scientific mosaic of their respective laboratories, 

collaborative networks, disciplines, departments, and the global scientific community. 

The human brain, a masterpiece of biological complexity, represents an elaborate nexus comprised 

of billions of neurons, each intricately woven into a vast network and bolstered by the support of 

glial cells, all ensconced within an elaborate vascular system. Within this intricate network, glial 

cells emerge as pivotal actors, not merely fulfilling supportive roles but actively contributing to 

the brain’s functionality and its myriad capabilities. This paradigm shift, recognizing the integral 

contributions of glial cells alongside neurons, marks a significant advancement in our 

understanding of cerebral architecture and dynamics. 

Recent breakthroughs in neuroimaging technologies, the evolution of computational modeling, the 

maturation of network science, and enriched insights into the neuro-glial–vascular interplay have 

collectively illuminated the multifaceted mechanisms through which this remarkable organ 

orchestrates the spectrum of cognition, emotion, and behavior. Yet, the task of effectively 

leveraging this extensive body of knowledge presents a formidable challenge. It necessitates a 

multidisciplinary approach, drawing upon the collective expertise of neuroscientists, 

computational biologists, physicists, and engineers, among others, to forge a cohesive 

understanding of the brain’s operational principles. 

This thesis has placed a particular emphasis on computational modeling as a tool for simulating 

and understanding the brain’s intricate dynamics. These models, which integrate data from various 

sources, offer predictive insights and help guide experimental endeavors. Nonetheless, 

computational modeling faces challenges such as the need for precise data, the inherent complexity 

of brain dynamics, and the ethical considerations associated with simulating brain activity. 

Moreover, as a field in rapid evolution, neuroscience is characterized by ongoing controversies 

and debates, ranging from the roles of different brain components to the interpretation of cerebral 

data and the ethical implications of neuromodulation and brain-computer interfaces. This dynamic 

landscape necessitates a flexible and adaptive scientific approach, where neuroscientists are 

receptive to new data, willing to revise theories, and vigilant in maintaining ethical standards. 

Considering these aspects collectively allows for a more comprehensive evaluation of 

neuroscience’s broader impact. Insights from neuroscience have influenced and been influenced 

by a wide array of disciplines, leading to innovations in artificial intelligence, network theory, 

psychology, and medicine, among others. As neuroscientists delve deeper into the brain’s 

complexities, they are likely to uncover new functional principles, develop novel treatments for 

neurological disorders, and continue to engage in a fruitful exchange with diverse scientific fields. 

The anticipated contributions of the glial revolution to this interdisciplinary dialogue are 

particularly noteworthy. 
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In this era of exponential scientific growth, the essence of our endeavor lies not solely in the 

accumulation of data but in our ability to synthesize, integrate, and apply this knowledge towards 

unraveling the myriad mysteries of the brain. As we stand on the cusp of new scientific frontiers, 

the journey ahead calls for a collaborative spirit, an interdisciplinary mindset, and a commitment 

to innovation and discovery. It is through this collective endeavor that we can hope to demystify 

the complexities of the brain, paving the way for transformative breakthroughs that will enhance 

our understanding of this enigmatic organ and its profound impact on the human experience. 
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