
Consequence-based Algebraic Reasoning for SHOQ

Nikoo Zolfaghar Karahroodi

A Thesis

In the Department of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of

Doctor of Philosophy (Computer Science)

at Concordia University

Montréal, Quebec, Canada

January 2024

© Nikoo Z. Karahroodi, 2024

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Nikoo Zolfaghar Karahroodi

Entitled: Consequence-based Algebraic Reasoning for SHOQ

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of the University and meets the accepted standards with

respect to originality and quality.

Signed by the final examining committee:

Chair
Dr. Adel Hanna

External Examiner
Dr. Grant Weddell

Examiner
Dr. Wahab Hamou-Lhadj

Examiner
Dr. Gregory Butler

Examiner
Dr. Leila Kosseim

Supervisor
Dr. Volker Haarslev

Approved by

Dr. Leila Kosseim, Graduate Program Director

April 3, 2024

Dr. Mourad Debbabi, Dean of Engineering and Computer Science

iii

ABSTRACT

Consequence-based Algebraic Reasoning for SHOQ

Nikoo Z. Karahroodi, Ph.D.

Concordia University, 2024

Qualified Cardinality Restrictions (QCRs) and nominals are the two constructors in

OWL 2 DL to apply numerical restrictions on domain concepts and relations. Utilizing

these constructors in designing real-world ontologies is unavoidable in many domains,

particularly in modelling structures with complex objects. Most existing DL reasoners

employ arithmetically uninformed processes to reason about these numeric restrictions

by exploring all possible cases.

Meanwhile, Consequence-Based (CB) reasoning algorithms have proven to have a

phenomenal performance in practice. However, they have yet to be extended for the ex-

pressive DL SHOQ - a DL that supports named individuals and cardinality restrictions. This

research presents a novel consequence-based algorithm to classify SHOQ while handling

the arithmetic interaction between QCRs and Nominals using atomic decomposition and

integer linear programming. The proposed calculus can classify the whole ontology in

one round. We have implemented our calculus in a prototype reasoner called CARON.

Empirical evaluation of our implementation demonstrates that CARON outperforms

existing reasoners in handling numerical restrictions. At the same time, it offers a compet-

itive performance compared to other state-of-the-art systems. Our results also show that

CARON nicely complements existing reasoners for handling numerical restrictions since

it provides an arithmetically informed process for handling these constructors. Accord-

ingly, the calculus and implementation presented in this thesis are critical to improving

practical reasoning with expressive DLs, including numerical restrictions.

iv

Acknowledgements

My most profound appreciation goes to Professor Volker Haarslev, whose unwaver-

ing support and guidance have been the bedrock of my journey. From dissecting the

intricacies of description logic in countless hours of discussions to offering sage advice as

a life mentor, his belief in me has been a constant source of strength. When I was hes-

itant to tackle the implementation of integer linear programming on my own, Professor

Haarslev’s insightful feedback steered me in the right direction and instilled in me the

confidence to navigate future complexities. His faith in my potential not only propelled

me through tough situations but also paved the way for building a career based on ontolo-

gies. I am forever grateful for his mentorship, which has shaped my academic pursuits

and taught me invaluable life lessons.

I sincerely appreciate our graduate program director, Professor Leila Kosseim, as her

belief in me pulled me back from the brink of abandoning my lifelong dream. Her vote of

confidence rekindled a fire within me, which got me through that final gruelling step.

I owe a deep debt of gratitude to my manager, Sarah Deyoung, for her encourage-

ment, support, and understanding in pursuing this personal endeavour. Beyond words

of encouragement, she provided me with the flexibility and resources I needed to succeed.

Thanks to her, I was able to balance my responsibilities and make this dream a reality.

My biggest thanks go to my family for their boundless love, support, and encour-

agement. My husband Khalegh, my pillar of strength, deserves immense gratitude for

his unconditional love and unyielding support. Whether it was managing life events to

give me the time and space to focus on my studies or simply holding my hand through

challenging moments, his unwavering presence was my safe harbour. This work is also

dedicated to my son Hossein, whose infectious laughter and innocent curiosity provided

v

a constant source of joy and motivation throughout my studies. Witnessing him blossom

from a baby to a young man during this time has been one of life’s greatest blessings, and

dedicating this achievement to him fills me with immense pride.

vi

Contents

List of Figures . xii

List of Tables . xiv

List of Examples . xv

Abbreviations . xvi

Glossary . xvii

List of Symbols . xix

1 Introduction 1

1.1 Problem Statement . 2

1.2 Motivation . 4

1.3 Challenges . 7

1.4 Research Objectives . 8

1.5 Outline . 10

I Foundation 13

2 Background 14

2.1 Description Logics . 15

vii

2.1.1 Basics of Description Logic . 15

2.1.2 Syntax and Semantics . 17

2.2 The DL Family . 20

2.2.1 Concept Constructors . 20

Nominals . 21

Qualified Cardinality Restriction . 22

2.2.2 Role Constructors . 22

Role Hierarchies . 23

Transitive Roles . 24

Inverse Roles . 24

2.2.3 Light-Weight DL . 24

The Horn Fragment of DL . 26

2.2.4 More Expressive DLs . 26

2.3 DL Inference Services . 26

2.3.1 TBox Reasoning . 27

2.3.2 ABox Reasoning . 27

2.4 DL Reasoning . 28

2.4.1 Tableau-based Algorithms . 28

2.4.2 Consequence-based Algorithms . 32

2.5 Reasoning Complexity . 34

2.6 Conclusion . 36

3 Literature Review 37

3.1 Extending Tableau-based Algorithms . 38

viii

3.2 Optimizing Tableau-based Algorithms . 39

3.2.1 Absorption . 39

Nominal Absorption . 40

3.2.2 Boolean Constraint Propagation . 44

3.2.3 Dependency Directed Backtracking 44

3.2.4 Caching . 45

3.2.5 Signature Calculus . 46

3.2.6 Algebraic Method . 47

3.3 Extending Consequence-based Algorithms 48

3.3.1 CB Reasoning for Horn ontologies . 48

3.3.2 CB Reasoning Beyond Horn Ontologies 49

3.3.3 CB Reasoning with Nominals . 50

3.3.4 Framework for CB Reasoning . 51

3.3.5 Extending CB Reasoning to SRIQ and SROIQ 52

3.4 Summary and Conclusion . 55

II Calculus and Applications 57

4 Preliminaries 58

4.1 Normalization . 59

4.1.1 Structural Transformation . 59

4.1.2 Transform a SHOQ ontology to an ALCHOQ ontology 61

4.2 First-Order Logic . 63

4.3 Description Logics Clauses . 64

ix

4.4 Used Notations . 67

5 Consequence-based Reasoning in SHOQ 70

5.1 Definition of the Calculus . 71

5.2 Inference Rules . 78

5.2.1 Subs Rule . 81

5.2.2 Join Rule and Fct Rule . 82

5.2.3 Elim Rule . 83

5.2.4 Glob Rule . 84

5.2.5 Sigma Rule . 85

5.2.6 Strict Rule . 87

5.2.7 Bottom Rule . 88

5.2.8 Reach Rule . 89

5.2.9 Nom Rule . 90

5.3 Soundness and Completeness . 91

5.4 Examples . 92

5.5 Summary and Conclusion . 98

6 Arithmetic Module 100

6.1 Arithmetic Label as Input . 101

6.2 Atomic Decomposition . 101

6.3 Deriving the Inequalities . 104

6.4 Returning Solution or Conflict Sets . 110

6.4.1 Solving the MP via Branch-and-Bound 111

x

Column Generation . 112

6.4.2 Finding the Conflict Sets . 120

6.5 Summary and Conclusion . 125

7 Key Properties of the Calculus 126

7.1 Proof of Soundness . 126

7.2 Proof of Completeness . 131

7.2.1 Pre-interpretations and pre-models 132

7.2.2 Construction of literal interpretations 135

7.2.3 Properties of the CB inference rules 140

7.2.4 Constructing a pre-model . 142

7.3 Time Complexity . 151

III Implementation and Evaluation 153

8 Implementation 154

8.1 Overall Architecture . 155

8.2 Completion Graph Manager . 157

8.3 Arithmetic Module Implementation . 159

9 Evaluation 161

9.1 Methodology . 161

9.2 Experiment Results . 164

10 Conclusions and Future Work 171

xi

10.1 Conclusion . 171

10.1.1 Theoretical Contributions . 171

10.1.2 Practical Contributions . 173

10.2 Future Work . 174

Bibliography . 176

xii

List of Figures

2.1 A Sample DL Knowledge Base . 18

2.2 Completion Rules for ALC Tableau Algorithm 30

2.3 Tableau Expansion During a Satisfiability Test 32

2.4 Inference Rules for EL CB Algorithm . 34

2.5 EL CB Algorithm for Goal Goncept Grandparent 35

3.1 High Non-determinism Problem of SRIQ algorithm 54

5.1 Sigma Rule Example Application . 86

5.2 Reach Rule Example Application . 90

5.3 Algorithm Execution for Example 5.4 . 94

5.4 Algorithm Execution for Example 5.5 . 96

5.5 Algorithm Execution for Example 5.6 . 98

6.1 Atomic Decomposition Example . 102

6.2 The grow and shrink Methods . 122

6.3 The MARCO algorithm . 123

7.1 Pre-model of Example 5.6 . 151

xiii

8.1 Architecture of CARON . 156

9.1 Processing Times for 155 Ontologies in Test Repository 165

9.2 Processing Times for 886 Ontologies in HARD Repository 166

9.3 Processing Times for 38 Ontologies CP Repository 168

9.4 Processing Times for 762 Ontologies in Oxford Repository 169

xiv

List of Tables

2.1 Syntax and Semantics of DL ALC. 20

2.2 Syntax and Semantics of DL Constructors. 23

2.3 Worst-case Complexity of Some DL Inference Services 35

4.1 Translating SHOQ Syntax to DL-clauses and Semantics 65

5.1 Inference Rules for Reasoning in ALCHOQ 80

5.2 Clauses in Ontology O1, Example 5.4 . 93

5.3 Clauses in Ontology O2, Example 5.5 . 95

5.4 Clauses in Ontology O3, Example 5.6 . 97

9.1 Total Processing Time for 886 Ontologies in HARD Repository 167

xv

List of Examples

3.1 Example (Nominals for Enumerations) . 40

4.1 Example (Motivating Example) . 58

4.2 Example (Ontology Normalization) . 66

5.1 Example (Sigma Rule Application) . 85

5.2 Example (Strict Rule Application) . 87

5.3 Example (Reach Rule Application) . 89

5.4 Example (Reasoning Process O1) . 92

5.5 Example (Reasoning Process O2) . 95

5.6 Example (Reasoning Process O3) . 96

6.1 Example (Transform CQs to Inequalities) . 105

6.2 Example (Integer Linear Formalization) . 108

6.3 Example (Modelling Disjunction of CQs) . 108

6.4 Example (Column Generation) . 116

7.1 Example (Pre-model Construction) . 149

xvi

List of Abbreviations

ARM ARithmetic Module

BCP Boolean Constraint Propagation

CB Consequence Based

CG Column Generation

CQ Counting Quantifier

DL Description Logic

DLP Description Logic Programming

FOL First Order Logic

GCI General Concept Inclusion

ILP Integer Linear Programming

KR Knowledge Representation

NNF Negation Normal Form

OBDA Ontology Based Data Access

OWL Web Ontology Language

QCR Qualified Cardinality Restriction

RIA Role Inclusion Axiom

xvii

Glossary

arithmetic solution An arithmetic solution x(v) is a set of tuples hr, sri produced by

ARM corresponding to A(v). The partition r is a set of unary A(x) and binary pred-

icates R(x, y) and sp 2 N, sp � 1 is the cardinality of the partition. 77, 85

arithmetic label arithmetic label is the ordered union of local and global arithmetic labels.

74, 85, 100, 101, 106

completion graph A Digraph constructed by our CB algorithm. 72, 73

conflict set A Conflict Set set (CS) is returned by ARM if an arithmetic label A(v) is un-

satisfiable. A CS is a subset A(v) constraints, including disjunct CQs of the form
W

Q 2 Q(v) and clauses of the form K ! M 2 C(v) that their integration causes

unsatisfiability. 77, 88, 100, 111

decomposition set An ordered set of all predicates occurring in a node’s arithmetic label

A ⇤ (v). 101, 103, 105

DL-literal A DL-atom or a DL-quantifier. 65

DL-atom A unary predicate C 2 SU or a constant o 2 SC . 65

DL-quantifier Either an at-least (9�ny), an at-most (9my) or a universal quantifier (8y). 64

xviii

global arithmetic label A global-arithmetic-label is a tuple A = (Q, C), where Q is the set

of all CQs over unary predicates and C is a set of normal clauses. 76

local arithmetic label A local arithmetic label A(v) is defined for each node v 2 V as a

tuple A(v) = (Q(v), C(v)), where Q(v) is a set of disjunction of CQs and C(v) is a

set of normal clauses. 75

node atom A node atom is a unary predicate C 2 SU [SO. 72

node quantifier A node quantifier is either a CQ of the form 9./nyj(y), a universal quan-

tifier of the form 8yj(y) or an exact quantifier of the form 9=1xj(x), where j(y) =

R(x, y) ^ C(y), j(x) = O(x) and ./ 2 {�,}. 72

node predicate A node predicate has the form C(x), C(o) or R(x, y). 72

node term A node term is either x, y or o . 72

normal DL-clause A DL clause that contains only DL-atoms in the body and DL-literals

in the head. 65

partition Mutually disjoint atomic components generated by the atomic decomposition

technique. 102, 104, 105

query clause A DL-clause in which all the literal are atoms. 65

simple role A role that is not transitive and does not have transitive sub-roles.. 69

strengthening A clause K0 ! M0 is a strengthening of a clause K ! M if K0 ✓ K and

M0 ✓ M. xix, 65, 72

xix

List of Symbols

K ! M 2⇤ CL The set of clauses CL contains at least one strengthening of K ! M

br The number of positive elements in each partition element, which is used

as its weight in the MP

8x9�ny j(x, y) Counting Quantifiers in First-Order Logic

A(v) Arithmetic label of the node v

A(v) Local arithmetic label of the node v

A Global arithmetic label

CS(v) Conflict Set, the smallest infeasible subset of arithmetic label

DS(v) The decomposition set defined for node v

G Completion Graph

L(v) A function that assigns a finite set of node clauses to each node v.

W The set of all ground atoms that occur in G or L .

xx

p A function to map every nominal o occurring in the ontology to a fresh

unary predicate p(o) = O(x)

r(x, y) A partition element of the form r(x, y) =
Vk
`=1 l`(y), where each l`(y)

is either e`(x, y) or its negation

s Substitution which binds a term to a variable

sr The cardinality of the partition r

core(v) A function that assigns a unary predicate to each node v.

v First Order Logic sentence

x(v) The arithmetic solution return by ARM corresponding to the arithmetic

label A(v), a set of tuples hr, sri.

z z ✓ SU \ r is a set of unary predicates which are represented by the node

v.

A, B, C Unary predicates

K Conjunction of literals

L Literal which is a quantifier or an atom

M Disjunction of Literals

NC Set of atomic concepts

nc The number of feasible partition elements

NI Set of named individual

xxi

NL Set of all literals in the ontology O

no The number of all Nominals exist in the ontology

nq The total number of CQs occurring in Q(v)

NR Set of atomic roles

o A constant or nominal

R, S Binary predicates

SL Set of all literals over the signature S = (SP , SC)

SO The set of all fresh unary predicates regarding nominals defined as SO =

{p(o) | o 2 SC}

SB Set of binary predicate symbols (atomic roles) defined in the signature S

(occurring in ontology O)

SC Set of constant symbols (all nominal) defined in the signature S (occur-

ring in ontology O)

SP Set of predicate symbols defined in the signature S

SU Set of unary predicate symbols (atomic concepts) defined in the signa-

ture S (occurring in ontology O)

1

Chapter 1

Introduction

Description logics (DLs) are a family of formal representation languages used to represent

the terminological knowledge of an application domain in a structured way. They are

considered one of the primary foundations of the Semantic Web and the Web Ontology Lan-

guage (OWL). They also serve as the basis for developing ontology reasoning algorithms. The

elements of a domain are described by atomic concepts (unary predicates), atomic roles

(binary predicates), and the concept and role constructors provided by the particular DL.

For example, the concept of a bank having a branch whose employees are full-time can be

defined using conjunction (u), universal (8) and existential (9) restrictions over the roles

hasBranch and hasEmployee as follows: Banku 9hasBranch.(8hasEmployee.Full-Time).

Statements in DLs are divided into two groups, namely TBox statements and ABox

statements. The TBox contains terminological knowledge, while the ABox lists all as-

sertional knowledge about instances (i.e., individuals). An ontology consists of an ABox

and a TBox. Once an ontology is represented, DL reasoning services can infer implicit

knowledge from explicitly expressed one. The computation of these inferences is called

reasoning. The basic inference service provided by DLs is named concept satisfiability. It

Chapter 1. Introduction 2

checks whether a concept description denotes the empty set.

The concepts involved in modern ontologies typically are organized in a hierarchi-

cal structure called taxonomy, which reflects subsumption relations between concepts. In

a medical ontology, for example, the concept Chickenpox would be subsumed by the con-

cept Disease. To use reasoning services, an ontology engineer must provide definitions of

concepts and their general properties rather than explicitly stating all relations between

the concepts. An appropriate reasoning algorithm would compute the subsumption re-

lations between concepts based on explicitly represented knowledge. An important DL

reasoning service is ontology classification, which aims to compute the taxonomy.

1.1 Problem Statement

A description logic must be decidable (enable accurate reasoning) and expressive enough to

be practical for representing knowledge of a particular domain. A DL must be equipped

with applicable reasoning algorithms. Having a DL with such requirements is challenging

because a higher expressivity of a DL often coincides with a higher time complexity for

reasoning services.

Various DLs have been investigated to meet the needs of application domains with

different levels of expressive power. The ALC DL is usually considered as the basic DL

and SROIQ is one of the most expressive DL languages which extends ALC with transi-

tive Roles (R), Role Compositions (R), Nominals (O), inverse Roles (I) and Qualified Number

Restrictions (Q).

The study of efficient DLs continued in two directions, either restricting the expressiv-

ity to preserve a low reasoning time complexity or developing new practical reasoning

Chapter 1. Introduction 3

procedures for expressive DLs [31, 26]. We follow the second approach in our research by

introducing an efficient reasoning algorithm for an expressive DL named SHOQ, which

is a subset of OWL 2 and covers nominals and Qualified Number Restrictions (QCRs).

Tableau-based algorithms were proposed for the description logic ALC (attributive

concept description language with complements) [7, 50] and later extended for more ex-

pressive DLs. Most modern ontology reasoners, such as FaCT++1 [65], HermiT2 [41],

Pellet3 [60], and RacerPro4 [25], implement optimized tableau-based algorithms, or its vari-

ations.

The main idea of tableau-based algorithms for classification is to systematically con-

struct a representation for a model of the input ontology plus the negation of each sub-

sumption candidate. If all the representations considered by the procedure contain an

obvious contradiction (clash), it is concluded that the subsumption candidate holds. Usu-

ally, some heuristics and optimization techniques are used for selecting subsumption can-

didates. Otherwise, all subsumption relations between concepts should be checked for

classifying the ontology.

There is another type of reasoning algorithm, called Consequence-Based (CB) algorithms,

which in contrast to tableau-based algorithms, rather than building counter-models, di-

rectly derive logical consequences of axioms in the ontology using inference rules. The in-

ference rules should be designed to derive all implied subsumptions while deriving only

a limited number of consequences, not to overload the system with irrelevant clauses.

CB algorithms were first introduced for the DL EL [4], which is a tractable and simple

1http://owl.man.ac.uk/factplusplus/
2http://www.hermit-reasoner.com/
3http://pellet.owldl.org/
4https://www.ifis.uni-luebeck.de/index.php?id=385

Chapter 1. Introduction 4

DL that supports conjunction C u D and existential restriction as the only concept con-

structors. However, some of the largest currently available ontologies, such as SNOMED

CT [52] (a medical ontology including more than 300,000 concepts), are covered mainly

by EL.

CB classification algorithms are not limited to EL but can be extended to more ex-

pressive DLs. The extended algorithms are proven to be worst-case optimal and show

’pay-as-you-go’ behaviour [8, 54, 57]. However, until now, no CB algorithm could handle

number restrictions and nominals efficiently employing linear programming and algebraic

algorithms.

1.2 Motivation

The hierarchical structure of modern ontologies helps people effectively understand sub-

sumption relations between concepts in an ontology. Using modern ontology languages

such as OWL-DL, the ontology designer needs only to state basic definitions of concepts

and their general and unique properties instead of explicitly stating each of the subsump-

tion relations between the concepts. The taxonomy of the ontology can then be computed

by running a suitable reasoning algorithm on the presented knowledge.

Reasoning services, including concept satisfiability and ontology classification, play

an essential role during the life cycle of an ontology. Concept satisfiability is crucial dur-

ing the designing phase of an ontology for detecting inconsistencies and other modelling

errors, which typically happen due to unintended or missing subsumption relationships.

Ontology classification is required for answering domain questions [45] in the application

phase of an ontology.

Chapter 1. Introduction 5

Some features of CB algorithms cause them to have a better practical performance than

conventional tableau-based algorithms. As their name suggests, CB algorithms derive the

consequences of an ontology, so they never check subsumptions that are not entailed. Typ-

ically, the number of entailed subsumptions is much smaller than the number of potential

subsumptions between ontology concepts.

Furthermore, these algorithms classify the whole ontology in one round; they find all

entailed subsumptions by following the consequences of axioms. They prevent redun-

dancy caused by checking each subsumption separately, so they reduce the total number

of operations required for the whole ontology classification. Finally, CB algorithms are

shown to be relatively easily parallelizable. The CB algorithms proposed so far are not

well equipped to efficiently reason about the expressive description logic SHOQ, which

allows the interaction of nominals and QCRs as they follow an arithmetically uninformed

reasoning process.

Cardinality restrictions are a part of OWL-DL that can be used for imposing arithmetic

restrictions via the notation: FootballTeam v � 11hasPlayers. This statement says that

each football team has at least 11 players. Using large values in cardinality restrictions

is very natural in many domains. For example, in medical fields, the human anatomy

distinguishes hundreds of different kinds of bones as part of the human skeleton [20].

QCRs are a generalization of cardinality restrictions that allows specifying to which

class the role successors (i.e., individuals related via a particular role) belong. For example,

the statement

GradStudent v � 130hasCredit.Science (1.1)

Chapter 1. Introduction 6

states that every graduate student must have at least 130 science credits. Cardinality re-

strictions are the only constructors that allow imposing a cardinality restriction on the

number of role successors. Most existing DL reasoners cannot classify ontologies contain-

ing a large number of QCRs or if large values are used in QCRs.

Nominals is another part of OWL-DL, also known as named individuals. They capture

the notion of uniqueness and identity in knowledge representation. Nominals are inter-

preted as atomic concepts with exactly one element. In general, they can be used to ex-

press enumerations of the form: SolarSystemPlanets ⌘ {Mercury, Venus, Earth, Mars, Jupiter,

Saturn, Uranus, Neptune}. Furthermore, the nominals allow individuals to be referenced

within concept descriptions. For example, Ph.D. students studying at Concordia can be

defined as: PhDStudent u 9 studyAt.Concordia where Concordia is a nominal. Nominals

are naturally used in real-world knowledge bases, and some ontologies such as the Wine

Ontology5, which was originally designed for exploring DL constructors.

Without nominals, referring to individuals within concept descriptions is not possible

because there is always a clear separation between data related to concepts and roles,

which are represented as Terminological Axioms in a TBox (Terminological Box) and data

about individuals which are defined as Membership Assertions in an ABox (Assertional

Box). Since there is always a trade-off between the expressivity of the language and the

complexity of reasoning, DLs would enjoy additional expressive power of nominals for the

price of higher computational complexity.

However, in practice, nominals are hardly used in OWL ontologies. Ontology de-

signers avoid using nominals, even Galen6 models maleSex as an atomic concept, which

seems unintuitive since there is only one male sex. One reason for this apparent lack of
5https://www.w3.org/TR/owl-guide/wine.rdf
6http://www.co-ode.org/galen/

Chapter 1. Introduction 7

nominals in current ontologies is the minimal tool support for nominals. Implementing

algorithms that can handle the interaction of nominals and QCRs efficiently turned out to

be challenging. These challenges will be discussed briefly in the next Section.

1.3 Challenges

QCRs are highly non-deterministic constructors; the level of non-determinism goes even

higher if they contain large values. Current DL reasoners try to satisfy imposed numerical

constraints by exhausting all possibilities. But searching for a model in such an arithmeti-

cally uninformed or blind way is usually highly inefficient. Therefore, using arithmetic

methods can improve the average case performance of reasoning about QCRs. In this re-

search, we propose a CB algorithm that benefits from Integer Linear Programming to handle

the numerical features of the language properly.

On the other hand, the syntax of nominals allows referring to ABox individuals in the

Tbox, so the TBox and ABox are no longer separated. Having them separated is usually

more desirable because it will enable the development of different reasoning processes

for ABoxes and TBoxes. The semantics of nominals cause even more challenges because

each nominal is interpreted either as one individual or as a concept with the cardinality of

exactly one. So, nominals impose global and implicit numerical restrictions, which have

to be appropriately handled. For example, if the concept description johnu Student is not

empty, then one can conclude that john is a student.

The interaction of nominals and QCRs violates the tree model property, such that the

search space to find the model is no longer in the form of a tree. By losing this property,

the optimization techniques that rely on this property are no longer applicable. Besides,

Chapter 1. Introduction 8

in a DL that supports the interaction of nominals and QCRs, there are two sources of

numerical restrictions that impact each other and must be considered together. QCRs

impose explicit numerical restrictions by setting a lower (upper) bound on the number of

role successor. All these restrictions are local because they only affect the related elements

via a particular role. Nominals impose implicit numerical restrictions by naming and also

counting the number of individuals. Numerical restrictions imposed by nominals are

global since they affect all elements of the interpretation domain.

For example, the concept Season ⌘ {Spring, Summer, Fall, Winter} where all season names

are nominals, means that the instances of the Season concept can be only one of the four

enumerated ones. Nominals are the only constructors that can limit the number of in-

stances of a particular concept. Furthermore, they may interact with QCRs to restrict the

number of successors of a specific role.

1.4 Research Objectives

This research aims to devise a practical and efficient reasoning algorithm for classifying

expressive ontologies containing the interaction of nominals and QCRs while having a

competitive performance compared to existing reasoners. Our reasoning algorithm ex-

tends CB algorithms combined with an algebraic reasoning technique. The main objec-

tives of the research can be summarized as follows:

• Extending Consequence-based Reasoners: CB reasoners were mostly used for rea-

soning the EL or Horn family of DLs, which do not support non-deterministic con-

structors. They have only recently been extended to more expressive DLs. This

Chapter 1. Introduction 9

research aims to design a CB algorithm for an expressive DL that can efficiently han-

dle the interaction of complex numerical restrictions imposed by the combination of

QCRs and Nominals. CB reasoners derive all entailed subsumptions by applying

inference rules without requiring backtracking.

• Supporting an expressive DL: The work presented in this thesis focuses on pro-

viding reasoning support for SHOQ which supports nominals (O) and number

restrictions (N or Q). These two constructors both impose numerical constraints

that may interact with each other.

• Arithmetic Reasoning: QCRs and nominals are two constructors for imposing nu-

merical restrictions. So, our reasoning approach must benefit an arithmetic encoding

for mapping these restrictions into a set of inequalities, the feasibility of which can

be determined using standard Integer Linear Programming algorithms.

• Minimum Unsatisfiable Subsets An unsatisfiable set of numerical constraints could

be resolved to derive many consequences. However, finding the minimum core set

that causes the unsatisfiability, requires checking the satisfiability of all its subsets.

We employ the MARCO algorithm to discover all unsatisfiable minimum subsets

without checking the satisfiability of all subsets. The MARCO algorithm defines a

search map, which is explored by defining a corresponding Integer Linear Problem.

• Prove Correctness The reasoning procedure must ensure soundness and complete-

ness. A correct classification procedure must be sound and complete. A procedure is

sound if every derived subsumption is implied by the input ontology O, and it is

complete if every subsumption implied by O can be obtained by the procedure.

Chapter 1. Introduction 10

• Termination and Efficiency A practical decision procedure should terminate in a

reasonable time to be useful. So, a DL reasoner must be equipped with a set of opti-

mization techniques to ensure efficiency without breaking correctness or termination.

• Implementation and Evaluation We must implement our reasoning procedure to

evaluate its performance in practice. We will compare the response time of the im-

plemented CB procedure with existing reasoners to examine its efficiency.

1.5 Outline

The thesis is divided into three main parts. Part I provides the necessary background

knowledge, while Part II presents the new contributions of my research. Finally, Part III

illustrates the practical implications of the research and discusses future directions for this

research. The thesis is structured to allow readers to easily follow the main points of my

research.

Part I : Foundation

Chapter 2 (Background) introduces DLs, their inference services, and reasoning

algorithms. This chapter can be skipped by readers who are already familiar with

DLs and their reasoning algorithms.

Chapter 3 (Related Work) provides a comprehensive survey of state-of-the-art DL

reasoners. We highlight the strengths of existing reasoners and identify areas for

improvement. Our new arithmetic reasoning algorithm addresses some of the lim-

itations of existing algorithms.

Chapter 1. Introduction 11

Part II : Calculus and Applications

Chapter 4 (Preliminaries) provides the preliminary notions needed to formally de-

fine our algorithm. It reviews first-order and description logic, their conversion

rules, and the notations used throughout the thesis. Finally, it reviews the ontology

normalization process to obtain standard ontologies for the algorithm.

Chapter 5 (CB Reasoning in SHOQ) treats arithmetic module (ARM) as a black box

and formally defines the proposed CB algorithm. The CB algorithm relies on ARM

to reason about the numerical restrictions imposed by QCRs and Nominals. This

chapter defines the graph-based framework constructed during the reasoning pro-

cess and introduces the CB inference rules. It also includes numerous examples to

clarify the newly introduced notions.

Chapter 6 (Arithmetic Module) formally defines ARM as a standalone unit that

uses linear programming to find a solution that satisfies the numerical restrictions.

This chapter also formalizes the expected input and output of the module, which

the calculus will use to interact with ARM. This chapter starts with introducing

the notion of atomic decomposition to encode QCRs, nominals, and their affiliated

axioms as inequalities. It then discusses solving the derived integer linear problem

using the column generation technique. Finally, it introduces an efficient algorithm

for finding the minimum unsatisfiable subsets when the derived inequality system

is infeasible.

Chapter 7 (Key Properties) formally proves the soundness and completeness of

the proposed CB algorithm. Soundness is proved for each of the inference rules,

following the soundness of the hyperresolution rule. For completeness, we show

Chapter 1. Introduction 12

that a counter-model can be built for every subsumption that does not appear in

the complete completion graph. This chapter also analyzes the worst-case time

complexity of the CB calculus by introducing an upper bound on the number of

steps required to complete the algorithm.

Part III : Evaluation and Conclusion

Chapter 8 (Implementation) discusses the high-level design of the implemented

reasoning prototype called CARON (Consequence-based Algebraic Reasoning for

O (nominals) and N (number restrictions)). This chapter overviews the architec-

ture and main features of CARON. Also, it describes the underlying defined data

structure and finally discusses the inference rules and Arithmetic Module (ARM)

implementation.

Chapter 9 (Evaluation) presents the practical result of applying the reasoning algo-

rithm on test ontologies and illustrates its performance in comparison with existing

reasoners. It finally analyzes the obtained result to better understand the strengths

and weaknesses of the proposed approach and future works.

Chapter 10 (Conclusion) summarizes this research, highlights the achievements

and proposes the next steps and future works.

13

Part I

Foundation

14

Chapter 2

Background

This chapter provides an overview of the essential definitions of description logic and the

background knowledge required for the remainder of this thesis. It is included to make

this thesis self-contained, but readers who are already familiar with this topic may skip

this chapter.

It begins with a formal introduction to description logics in Section 2.1.1 and continues

by presenting their syntax and semantics in Section 2.1.2. Section 2.2 investigates DL con-

structors and introduces description logics with different levels of expressivity. Inference

services provided by DLs are discussed in Section 2.3, and Section 2.4 introduces the two

main types of reasoning algorithms in description logics: Tableau-based and Consequence-

based reasoning algorithms. Finally, the complexity of DL reasoning and the need for a

highly optimized and efficient reasoning algorithm is discussed in Section 2.5.

Chapter 2. Background 15

2.1 Description Logics

In this section, we briefly review the basics of description logic and recapitulate the syntax

and semantics of the DL SROIQ and its relevant fragments to this thesis. Furthermore,

we describe the DL reasoning problems and highlight the ones our calculus aims to solve.

2.1.1 Basics of Description Logic

Description Logics (DLs) [5] is a family of knowledge representation languages with for-

mal syntax and semantics, which are used for representing and reasoning about the ele-

ments of an application domain. DLs were first used in knowledge representation systems

to provide formal and logic-based semantics for frames [39] and semantic networks [48].

Description Logics are well-known for their logic-based semantics and inference capabili-

ties. They equip a knowledge representation system with facilities to establish knowledge

bases and reason about their content.

DLs are used to model the relationships between entities in an intended domain. There

are three types of entities in DLs: concepts, roles, and individuals. Concepts denote sets of

individuals, roles denote binary relations between individuals, and individual names in-

dicate single individuals in the domain. They can be considered unary predicates, binary

predicates, and constants in first-order logic. A DL ontology consists of a set of statements

called axioms and is known to be true in the particular domain described by the ontology.

The axioms of an ontology are separated into two categories, the TBox and the ABox. The

TBox introduces the terminology and the vocabulary of the domain including terminolog-

ical axioms which describe general knowledge about concepts and roles, while the ABox

contains assertions about named domain elements in terms of TBox vocabulary, such as

Chapter 2. Background 16

membership of an individual in a concept or a relationship between two individuals via a

role.

For example, an ontology that is modelling the domain of people and their family rela-

tionships might use the concept Man referring to all the persons that are male, roles such as

hasChild to represent a (binary) relationship between parents and their children and named

individuals such as John and Sara to denote the people named John and Sara in the do-

main. The ontology might include TBox axioms such as Father ⌘ Man u 9 hasChild.Person

to state that fathers are those individuals who are men and have at least one child who is

a person and ABox axioms such as John:Man and (John, Sara) : hasChild to assert that John

is a man and John has a child named Sara respectively.

An important feature of DLs is their capability of inferring implicit knowledge from

explicitly expressed knowledge. The computation of inferences is called reasoning. De-

signing reasoning algorithms with high performance has been one of the main concerns

of DL research. The expressive power of the DL must be restricted as much as possible in

accordance with the intended application to have a low reasoning complexity. This is one

of the reasons for having DLs with different levels of expressivity. The expressivity of a

DL language is determined by the constructors it supports.

ALC is usually considered the basic DL with which other varieties are usually com-

pared. ALC supports negation, conjunction, disjunction, value restriction, and existential re-

striction constructors for defining complex concept descriptions. The formal syntax, se-

mantics, and inference services of ALC are introduced throughout the rest of this section.

The following section introduces DLs with a higher expressivity, such as the DL SHOQ

which extends ALC with transitive Roles (R), Role Hierarchy (H), Nominals (O), and Quali-

fied Number Restrictions (Q) and is the main focus of our research.

Chapter 2. Background 17

2.1.2 Syntax and Semantics

The formal syntax and semantics of DLs are introduced in this section. DLs are defined

w.r.t. three non-empty and pair-wise disjoint sets of atomic concepts NC, atomic roles NR,

and named individuals NI . Complex concepts and roles are defined recursively using the

syntax rules in Table 2.1 and 2.2. Unless otherwise explicitly stated, the letters A, B denote

atomic concepts (concept names), C, D, E denote concepts, R, S denote roles, and a, b, c

denote individuals. The concepts > and ? are abbreviations for (C t ¬C) and (C u ¬C),

respectively.

The semantics of concept descriptions can be defined in terms of standard Tarski-style

semantics based on an interpretation I = (DI , ·I), where DI is a non-empty set of in-

dividuals called the domain of interpretation and ·I is an interpretation function. The

interpretation function ·I maps each atomic concept A 2 NC to a subset of DI , and each

role R 2 NR to a subset of DI ⇥ DI . Table 2.1 shows the extension of this assignment to

ALC constructors.

Definition 2.1 (Satisfiability). A concept description C is said to be satisfiable by an inter-

pretation I iff CI 6= ∆, i.e., there exists an individual x 2 DI as an instance of C such that

x 2 CI .

Definition 2.2 (Subsumption). A concept description D subsumes a concept description C

(written as C v D) iff CI ✓ DI for all interpretations I , i.e., the first concept description

is always interpreted as a subset of the second one.

Chapter 2. Background 18

DLs which support full negation, subsumption, and satisfiability can be converted to

one another. A concept description C is subsumed by D, C v D, iff Cu¬D is unsatisfiable,

and a concept description C is satisfiable iff C 6v ?.

Definition 2.3 (Concept Inclusion Axiom). A concept inclusion axiom is either a concept

subsumption (C v D) or a concept equivalence (C ⌘ D) where C, D are concept descriptions

and C ⌘ D is an abbreviation for {C v D, D v C}. A concept inclusion axiom is referred

to as a General Concept Inclusion (GCI) axiom if C is not a concept name or C is top (>).

Definition 2.4 (TBox T). A TBox T is a finite set of concept inclusion axioms (an example

TBox is shown in Figure 2.1). A TBox T is satisfiable by an interpretation I iff I satisfies

all the axioms in T ; in this case, I is called a model of the given TBox T and the TBox is

said to be consistent.

A TBox T is called acyclic if it does not contain multiple definitions like A ⌘ C, A ⌘ D

for distinct concept description C, D and direct or indirect cyclic definitions such as T =

{A ⌘ 9R.B, B ⌘ C, C ⌘ 8S.A}. In contrast, a general TBox may contain concept axioms

of any type, with no restriction. Acyclic TBoxes can be unfolded or expanded by eliminating

TBox Axioms
Woman ⌘ Personu Female
Parent ⌘ Personu 9 hasChild.Person
Mother ⌘ Parentu Female
ABox Assertions
Sara: Woman
(Sara, John): hasChild

FIGURE 2.1: A Sample DL Knowledge Base Consisting of a TBox and an ABox

Chapter 2. Background 19

all defined names from the right-hand side of all axioms. In this way, a reasoning problem

w.r.t an acyclic TBox can always be reduced to a reasoning problem w.r.t the empty TBox [5].

Definition 2.5 (ABox A). An Abox A is a finite set of assertions of the form a : C, (a, b) : R,

where C is a concept description, R is a role and a, b are individuals. A model I satisfies

a : C if aI 2 CI and it satisfies (a, b) : R if (aI , bI) 2 RI . An ABox A is said to be satisfiable

w.r.t a TBox T if there exists a model I of T that satisfies all assertions in A.

Concept satisfiability and subsumption testing can be reduced to ABox consistency

problems. A concept C is satisfiable iff the ABox {a : C} is satisfiable for some a 2 NI and

C v D holds iff the ABox {a : C u ¬D} is unsatisfiable.

If the unique name assumption is imposed on an ABox A, different individual names

consistently denote different elements in the domain. It requires the mapping between

individual names and elements of DI to be injective, so aI 6= bI is true for all pairs of

individuals. But this assumption is usually relaxed because it is too strict. In this case, the

inequalities between individuals should be asserted explicitly in the ABox whenever they

hold, as a 6⇡ b.

I is a model of an ontology O (written I |= O) if I satisfies all axioms in O. An

ontology is consistent if it has at least one model; otherwise, it is inconsistent. An axiom a

is said to be a consequence of an ontology O, or an ontology O entails an axiom a (written

O |= a) if every model of O satisfies the axiom a.

Chapter 2. Background 20

TABLE 2.1: Syntax and Semantics of DL ALC.

Syntax Semantics

named ind. a aI 2 DI

atomic role R RI ✓ DI ⇥ DI

atomic concept A AI ✓ DI

top > DI

bottom ? ∆

negation ¬C DI \ CI

conjunction C u D CI \ DI

disjunction C t D CI [DI

existential res. 9R.C {x 2 DI | 9y 2 DI : hx, yi 2 RI ^ y 2 CI}

universal res. 8R.C {x 2 DI | 8y 2 DI : hx, yi 2 RI) y 2 CI}

2.2 The DL Family

DLs with various levels of expressivity have been introduced to meet the requirements of

certain application domains. The expressivity of different DLs is typically specified by the

type of constructors they allow. For example, the basic description logic ALC only allows

the >,?,u,t,¬, 9, 8 constructors and concept inclusion axioms. A DL constructor is ei-

ther a concept constructor or a role constructor. Different concepts and role constructors

are introduced in the two following subsections.

2.2.1 Concept Constructors

As their name suggests, concept constructors operate on concepts to inductively build

complex descriptions from atomic concepts.

Chapter 2. Background 21

Nominals

Nominals are known as named individuals. They can be used for naming ABox individu-

als so that they can be present within concept descriptions in the TBox. Without nominals,

the TBox axioms and the ABox assertions are separated, and there is no way to limit the

maximum number of instances of a concept.

Nominals are also considered concepts with exactly one instance that will be inter-

preted as singleton sets. Nominals enable DLs with the notion of uniqueness and identity.

There exist many concepts in the real world that need to be modelled using nominals such

as “Concordia University”, “Earth” or “Canada”. The interpretation of a nominal o 2 No

by a function ·I is presented in Table 2.2, where No indicates the set of nominals. Nominals

can entail concept cardinalities; for example, the concept Continent, which is defined as fol-

lows, has exactly 6 instances where the continent names are nominal. They are assumed

to be pairwise disjoint:

Continent ⌘ Asia t Africa t America t Antarctica t Europe t Australia

In the presence of nominals, an ABox can be considered as syntactic sugar, as ABox

assertions can be expressed as TBox axioms. For example, assuming that sara is an indi-

vidual and an instance of the concept Student. The membership assertion sara: Student can

be presented using the TBox axiom sara v Student where sara is nominal. Also, assum-

ing that sara and computer are two individuals, the role assertion (sara, computer): Studies

can be translated to the axiom sara v 9Studies.computer, where sara and computer are two

nominals.

Chapter 2. Background 22

Qualified Cardinality Restriction

Qualified Cardinality Restrictions (QCRs) can be used for specifying a lower (at-least re-

striction) or upper (at-most restriction) bound on the number of R-successors belonging to

a certain concept, where R 2 NR. For example the axiom ConcordiaGradCourse v � 15

hasStudent.ConcordiaStudent specifies that at least 15 ConcordiaStudents must be en-

rolled in a ConcordiaGradCourse for the course to be offered. On the semantics side, QCRs

are extended by the interpretation function ·I as shown in Table 2.2.

Definition 2.6 (R-successor). A domain element y 2 DI is said to be an R-successor if

there exists a domain element x 2 DI such that x and y are related through the role R,

hx, yi 2 RI . The set of all R-successors for a given role R is defined as Succ(R) = {y 2

DI | 9x 2 DI : hx, yi 2 RI}.

Definition 2.7 (Qualifying Concept). A qualifying concept A is a concept name that occurs

in a QCR of the form  R.A or � R.A to impose a minimum or maximum on the number

of R-successors for a role R 2 NR that are instances of A.

2.2.2 Role Constructors

Role constructors are used for defining complex roles based on atomic ones. Role con-

structors that will be discussed through our research are role hierarchies, transitive roles,

and inverse roles.

Chapter 2. Background 23

TABLE 2.2: Syntax and Semantics of DL Constructors.

Name Syntax Semantics

Role Constructors:

Transitive Role trans(R) if hx, yi 2 RI ^ hy, zi 2 RI then hx, zi 2 RI

Role Subsumption R v S RI ✓ SI

Inverse Role R� {hx, yi | hy, xi 2 RI}

Concept Constructors:

At-least Restriction � nR.C {x 2 DI | ||{y | hx, yi 2 RI}|| � n ^ y 2 CI}

At-most Restriction  nR.C {x 2 DI | ||{y | hx, yi 2 RI}||  n ^ y 2 CI}

Nominal o ||oI || = 1

Role Hierarchies

Role hierarchies define subrole and superrole relationships between the roles used in the

TBox. A role hierarchy consists of a set of Role Inclusion Axioms (RIA) of the form R v S

where R, S 2 NR and it indicates that if haI , bIi 2 RI then haI , bIi 2 SI . For example,

the axiom isBrotherOf v isSiblingOf indicates that if there is an individual a 2 NI who is a

brother of b 2 NI , then a is also a sibling of b. If the relationship R v⇤ S holds between

two roles, S is said to be a super role of R, and R is called a sub role of S where v⇤ is the

transitive reflexive closure of v.

Chapter 2. Background 24

Transitive Roles

Transitivity is a role characteristic that is used to define transitive relations between con-

cepts. Assuming that a role R is declared to be transitive, Trans(R), if haI , bIi 2 RI and

hbI , cIi : R then haI , cIi : RI . For example, if the role isFriendOf is defined as a transitive

role and if John is a friend of Mary and Mary is a friend of George, then John is also a friend

of George.

Definition 2.8 (Simple Role). A role R is a simple role if it is not transitive and has no

transitive sub-role.

Inverse Roles

Inverse roles are used to present converse relations between individuals and are indicated

by the (�) operator. For example hasChild ⌘ hasParent� express that hasChild is the con-

verse relation of hasParent. Their semantics are preserved by extending the interpretation

function ·I as shown in Table 2.2.

2.2.3 Light-Weight DL

Subsumption checking is ExpTime-complete for most of DLs extended from ALC and even

higher for more expressive DLs such as SHOIQ or SROIQ. Light-weight DLs have

been obtained by restricting expressivity in order to acquire a better reasoning complexity.

There are three main categories of light-weight DLs: EL [3, 4], DL-Lite [2, 12], and DLP

[23], which respectively correspond to language fragments OWL EL, OWL QL, and OWL

RL of the Web Ontology Language.

Chapter 2. Background 25

EL is a simple tractable fragment of ALC which only allows top, conjunctions, and

existential restrictions [3]. EL++ is an extension of EL that allows bottom, nominals, a

restricted form of concrete domains, and complex role inclusions [4]. Despite allowing

arbitrary role compositions, subsumption checking in EL++ can still be solved in poly-

nomial time [4]. The EL family has mostly been used for modeling large but lightweight

ontologies, which mainly consist of terminological axioms, such as SNOMED CT [51].

DL-Lite is a family of DLs which is commonly used in combination with traditional

relational databases containing large volumes of data to increase the expressivity of a

query language used for data retrieval. In this approach, known as Ontology Based Data

Access (OBDA), an ontology defines a view on top of already existing data sources and

provides a vocabulary for user queries [46]. An OBDA system rewrites such queries to

standard query languages such as SQL using ontological information [12].

DLP is short for Description Logic Programs and can be considered as a kind of rule

language contained in DLs. Because DLPs comprise various DLs that allow syntactically

restricted axioms which could also be read as rules in first-order Horn logic without func-

tion symbols [23].

Definition 2.9 (Positive and Negative Polarities). The polarity of concept occurrence in

concept descriptions and axioms are recursively defined as follows: A concept C occurs

positively (negatively) if it occurs positively (negatively) in C u D, C t D, 9R.C, 8R.C,

� nR.C and D v C or if it occurs negatively (positively) in ¬C,  nR.C and C v D. Note

that a concept may occur both positively and negatively in an axiom or ontology.

Chapter 2. Background 26

The Horn Fragment of DL

The Horn DL is a fragment of DL that does not allow non-deterministic constructors. An

ontology is Horn if:

• no disjunction (C t D) or at-most restriction ( mR.C) with m > 1 occurs positively

in its axioms.

• no negation (¬C), universal restriction (8R.C), at-least restriction (� nR.C) with

n > 1 or at-most restriction ( mR.C) occurs negatively in its axioms.

2.2.4 More Expressive DLs

The extension of ALC with transitive roles is traditionally indicated by the letter S . Addi-

tional letters in the name of a particular DL hint for the constructors it allows (Table 2.2).

For example I stands for inverse roles, Q for qualified cardinality restrictions, O for nominals

and H for role hierarchies. So the DL SHI extends S with role hierarchies and inverse

roles. The letter R is commonly used for a combination of complex role inclusions. This

naming policy explains the name of SROIQ, which is one of the most expressive DLs

and also the DL underlying OWL 2 [40].

2.3 DL Inference Services

The most important feature of DLs is their knowledge extraction capability which allows

them to infer implicit knowledge from explicitly represented one using inference services.

Chapter 2. Background 27

Inference services are categorized into two groups: TBox reasoning and ABox Reasoning.

This section briefly discusses standard DL reasoning services.

2.3.1 TBox Reasoning

TBox inference services are defined for concept descriptions. These services include:

1. Satisfiability Checking determines if a concept is satisfiable.

2. Subsumption Checking infers whether there is a subsumption relation between two

concepts (determines if one of them is subsumed by the other one).

3. Classification results in a taxonomy where all the concepts occurring in the ontology

are organized in a subsumption hierarchy from the most general to the most specific.

2.3.2 ABox Reasoning

ABox inference services consider all axioms of an ontology (TBox axioms and ABox asser-

tions) in their reasoning process. The ABox inference services include:

1. Ontology Consistency checks whether an ontology O is consistent. To have a con-

sistent ontology, there must exist a model that satisfies A and T .

2. Instance Checking determines whether an ABox individual a is an instance of a

concept C w.r.t. T and A.

In the presence of nominals, any concept satisfiability or ABox consistency problem can

be mapped to a TBox consistency problem. A concept C is satisfiable w.r.t a TBox T if a

Chapter 2. Background 28

new nominal o 2 No exists such that o v C is consistent w.r.t. the TBox T . For checking

the consistency of an ABox A every assertion of the form (a : C) 2 A is rewritten to the

TBox axiom a v C and every assertion of the form (a, b) : R 2 A is rewritten to the TBox

axiom a v 9R.b.

2.4 DL Reasoning

Different reasoning algorithms were proposed for providing DL inference services such

as structural subsumption (the early 90s), tableau-based (1991), automata-based (2003), se-

mantic binary tree (2005) and resolution-based (2006) [18]. Among these, tableau-based and

resolution-based algorithms are the most widely used, but each suffers from some draw-

backs. Consequence-based algorithms try to overcome these drawbacks by combing these

two. This section first discusses tableau-based algorithms and their drawbacks and then

introduces CB algorithms, which are the main focus of this research.

2.4.1 Tableau-based Algorithms

Tableau-based algorithms were first designed for the DL ALC in 1991 [50] and extended

later for more expressive DLs discussed in Chapter 3. In general, tableau-based algo-

rithms follow a goal-directed procedure. They induce that a concept C is satisfiable if an

interpretation I exists such that CI 6= ∆. In this section, we briefly discuss the idea of

tableau-based algorithms, which was originally proposed for ALC. Some tableau-based

algorithms for more expressive DLs are reviewed in Chapter 3.

Chapter 2. Background 29

Tableau-based algorithms assume that all concept descriptions are in Negation Normal

Form (NNF) for the sake of simplicity. The NNF(C) is obtained by moving all negation

symbols down into the descriptions until they only occur in front of concept names. The

NNF function works based on De Morgan’s rules, conversion rules of existential and uni-

versal restrictions1 and the rules for quantifiers2.

Tableau-based algorithms use a completion graph for presenting an abstraction of a

model. A completion graph is a directed graph G shown as a tuple (V, E,L, 6 .=) where

V is a set of nodes representing individuals in the domain, and E is a set of edges rep-

resenting relations between individuals. Each node x 2 V has a label L(x), which is a

set of concepts, such that the individuals represented by x are instances of concepts in

L(x). Every edge between nodes x and y, hx, yi 2 E is labeled with L(x, y), which is a

set of role names satisfying the relations between two nodes. The symmetric binary re-

lation 6 .= keeps track of the inequalities that hold between pairs of nodes. Given an edge

hx, yi connecting x to y, the individual x is called predecessor of y and y is the successor of x

and the transitively closed set of successors (predecessors) is called descendants (ancestors)

respectively.

In order to construct a model for checking the satisfiability of a concept C, most tableau-

based algorithms initialize the completion graph G by creating a node x0 and adding con-

cept C to L(x). The algorithm proceeds by applying the completion rules from Figure 2.2

to the initial graph.

The algorithm terminates if either a clash is detected or no more rules are applicable;

in this case, the derived completion graph is called complete. For example, a node x is said

to contain a clash when L(x) contains C and ¬C at the same time.
1The NNF of ¬(8R.C) (¬(9R.C)) is defined as 9R.¬C (8R.¬C).
2The NNF of ¬(� nR.C) (¬( nR.C)) is defined as  (n� 1)R.C (� (n + 1)R.C).

Chapter 2. Background 30

u-Rule if (C u D) 2 L(x) and {C, D} 6✓ L(x)
then set L(x) = L(x) [{C, D}

t-Rule if (C t D) 2 L(x) and {C, D} \ L(x) = ∆
then set L(x) = L(x) [{X} with X 2 {C, D}

8-Rule if 8R.C 2 L(x) and there is a node y with R 2 L(x, y) and C /2 L(y)
then set L(y) = L(y) [{C}

9-Rule if 9R.C 2 L(x) and there is not a node y with R 2 L(x, y), C 2 L(y)
then create node y and set L(y) = {C}, L(x, y) = {R}

TBox-Rule CT /2 L(x) then set L(x) = L(x) [CT

FIGURE 2.2: Completion Rules for ALC Tableau Algorithm

The t-Rule is non-deterministic, which means that applying this rule would produce

more than one branch to follow. Tableau-based algorithms need to introduce more non-

deterministic rules to support DLs with higher expressivity. For example, a concept C

is considered unsatisfiable if all the branches come to a contradiction known as a clash.

However, if at least one expansion leads to a complete clash-free completion graph, then

the concept C is satisfiable.

The ALC tableau algorithm requires a blocking technique to ensure termination. Since

the completion rules may only be applied on nodes that are not blocked, the algorithm

terminates after finitely many steps of applying completion rules. This algorithm is also

proven to be sound and complete [50].

Definition 2.10 (Blocked node). A node x is directly blocked by a node y if y is as an ancestor

of x such that L(x) ✓ L(y). A node x is called a blocked node if it is blocked directly or if

one of its ancestors is blocked.

Chapter 2. Background 31

Tableau-based algorithms can also reason about the satisfiability of an ABox, TBox, or

the whole ontology by reducing it to a concept satisfiability problem. Assuming that the

ABox is empty, to check the satisfiability of the TBox T the tableau algorithm converts

all subsumption relations in the form C v D 2 T to their equivalent NNF(¬C t D) than

all the concept axioms in T can be reduced to a single axiom > v CT where CT is the

conjunction of NNF(¬C t D) for all C v D 2 T . Since > implies CT and as indicated

by TBox-Rule in Figure 2.2, the concept CT should be added to every created node of the

completion graph G.

To check the satisfiability of an ABox A w.r.t. the TBox T , the completion graph should

be initialized based on ABox assertions. A node x is created in completion graph G cor-

responding to each ABox individual, and all concepts C for which x : C 2 A are added

to L(x) and an edge is created between each pair of related nodes, labelled with L(x, y)

which contains all role names R that (x, y) : R 2 A.

Figure 2.3 shows the step-by-step expansion of the completion graph (obtained by

applying completion rules) for checking the satisfiability of the concept 9 hasChild.Farmer

u 8 hasChild.Doctor. This concept describes a set of people with a child who is a farmer

while all their children are doctors. Although it may initially seem unsatisfiable, one can

easily verify that this concept is satisfiable. Because there is no assumption that a doctor

can not be a farmer, as Figure 2.3b shows, a possible model for this concept is a person

with a child who is a doctor and a farmer.

Chapter 2. Background 32

x0L(x0) = {9hasChild.Doctor u
8hasChild.Farmer}

x0
L(x0) = L(x0)[

{9 hasChild.Farmer,
8 hasChild.Doctor}

y0L(y0) = {Farmer}

y0L(y0) = {Farmer, Doctor}

Step1: u-Rule

Step2: 9-RulehasChild

Step3: 8-Rule

(A) Steps of applying the expansion rules

x

y L(y) = {Farmer, Doctor}

L(hx, yi) = {hasChild}

(B) Final completion graph

FIGURE 2.3: Tableau Expansion During a Satisfiability Test

2.4.2 Consequence-based Algorithms

Consequence-based a.k.a saturation-based algorithms are closely related to the completion-

based procedures proposed for EL++ ontologies in [4]. In contrast to tableau-based algo-

rithms that enumerate pairs of concept names and build counter-models for subsumption

relations, the CB algorithm derives logical consequences of axioms in the ontology using

inference rules.

The main advantage of this method is computing subsumption relations “all at once”

in a goal-directed way, eliminating the costly enumerations. In other words, these algo-

rithms classify the whole ontology by simultaneously calculating all implied subsumption

relations while guaranteeing that only a limited number of axioms is derived. In this sec-

tion, we present the general approach of CB algorithms for EL. Their extended versions

for more expressive DLs are reviewed in Chapter 3.

Most CB algorithms require a normalization step before applying their subsumption

Chapter 2. Background 33

derivation procedure [4, 34, 56]. An ontology O is normalized if each GCI in O is in normal

form. The ontology O can be transformed to a normalized ontology O0 in linear time

such that O0 is a conservative extension of O. Several such transformations have been

proposed; we discuss our normalization procedure in Section 4.1. The transformation

used in the [4] for EL++ ensures that all GCIs have one of the following forms:

A v B A v 9R.B

A1 u A2 v B 9R.A v B

The original CB algorithm does not need any particular framework [4, 35]. This al-

gorithm uses a set S for storing axioms, which is closed under the rules in Figure 2.4.

Applying the inference rules would add new axioms to the set S.

Intuitively these algorithms compute all implied subsumption relations between a goal

concept G and all concepts occurring in O by adding the initial axiom G v G to S and

applying the inference rules in Figure 2.4 until no more rules apply. In the end, for each

concept B occurring in O having O |= G v B implies G v B 2 S. It is important to

note that the axioms in O are not used as premises of the inference rules in Figure 2.4, but

rather as side conditions. This means that the ontology axioms are not applied arbitrarily,

but only in specific cases where they are relevant.

Figure 2.5b shows the steps of applying the inference rules (Figure 2.4) to check if the

query q = Grandparent v Parent is entailed from the ontology O shown in Figure 2.5a.

One can easily verify that the query q is a consequence of the ontology O.

As can be seen in Figure 2.5, in order to classify an ontology, it is sufficient to repeat

Chapter 2. Background 34

Rv-Rule if C v D 2 S and D v E 2 O and C v E /2 S
then add C v E to S

R�u -Rule if C v C1 2 S and C v C2 2 S and C1 u C2 v D 2 O and C v D /2 S
then add C v D to S

R�9 -Rule if C v 9R.D 2 S and D v D /2 S
then add D v D to S

R+
?-Rule if C v 9R.D 2 S and D v ? 2 S and C v ? /2 S

then add C v ? to S

R>-Rule if C v C 2 S and C v > /2 S
then add C v > to S

R+
9 -Rule if C v 9R.D 2 S and D v D1 2 S, 9R.D1 v E 2 O and C v E /2 S

then add C v E to S

FIGURE 2.4: Inference Rules for EL CB Algorithm [4, 35]

a similar reasoning process for all atomic concepts A occurring in the ontology O as goal

concepts, i.e., to compute all conclusions of the inference rules in Figure 2.4 from the initial

axioms A v A, where A is an atomic concept.

2.5 Reasoning Complexity

Considering the complexity of a DL is a way of studying the difficulty of reasoning about

it. A distinction should be made between the computational complexity of an inference

service and the complexity of reasoning techniques proposed for providing an inference

service.

The computational complexity of a DL can be determined based on analyzing the size

of a completion model in the worst case and the time of constructing such a model. Obvi-

ously, in DLs enjoying more expressive power, reasoning requires a higher computational

Chapter 2. Background 35

Ontology O
Grandparent v 9 hasChild.Parent (1)
Parent v Person (2)
9hasChild.Person v Parent (3)

(A) The ontology O consists of the above axioms
initial axiom: Grandparent v Grandparent (4)
Rv[1, 4] : Grandparent v 9hasChild.Parent (5)
R�9 [5] : Parent v Parent (6)
Rv[6, 2] Parent v Person (7)
R+
9 [3, 5, 7] Grandparent v Parent (8)

(B) Steps of applying the inference rules

FIGURE 2.5: EL CB Algorithm for Goal Goncept Grandparent

complexity. For example, the use of general concept inclusions (GCIs) in TBoxes results

in an ExpTime-complete satisfiability problem in most DLs extending ALC. Table 2.3

illustrates the complexity of DLs with different expressive power.

TABLE 2.3: Worst-case Complexity of Some DL Inference Services

DL Languages Concept Satisfiability
(Empty TBox)

Ontology Consistency
(General TBox)

EL++ P-complete P-complete

ALC,ALCQ,ALCOQ PSpace-complete ExpTime-complete

SHQ,SHOQ ExpTime-complete ExpTime-complete

SHOIQ NExpTime-complete NExpTime-complete

SROIQ N2ExpTime-complete N2ExpTime-complete

Initially, the high worst-case complexity may seem a rational reason for limiting the

practical applicability of expensive constructors such as nominals. However, empirical ex-

periences reveal that the average-case complexity is acceptable for real knowledge bases

Chapter 2. Background 36

because reasoning algorithms are usually equipped with optimization techniques and

benefit from a set of intelligent heuristics. Therefore, a worst-case complexity analysis

may serve as a theoretical estimation to prove the termination of a reasoning algorithm,

but the claim that a proposed algorithm is practical must always be supported by empiri-

cal evaluations.

2.6 Conclusion

This chapter provided a formal description of DL languages by introducing their syn-

tax and semantics. We also discussed members of the DL family with different levels

of expressivity, which should be selected based on the requirement of a particular appli-

cation domain. The original idea of tableau-based and consequence-based algorithms was

introduced in this chapter. The following chapter investigates reasoning in more expres-

sive DLs. It is worth mentioning that naive implementations of these algorithms are not

practical because of their high level of non-determinism. A practical reasoning algorithm

needs to be equipped with optimization techniques and heuristics.

37

Chapter 3

Literature Review

The previous chapter introduced two main types of DL reasoning algorithms: Tableau-

based and consequence-based. This chapter reviews related research for adapting these

algorithms to more expressive DLs, primarily focusing on those which support QCRs,

nominals and their interaction.

While handling QCRs (mainly if containing big numbers) in an effective way is still an

ongoing research area, supporting their interaction with nominals introduces even more

challenges (Section 1.3). There are not many practical algorithms for reasoning in the

presence of nominals and QCRs when big numbers are used in QCRs, or there are many

nominals.

Through the rest of this chapter, we first review the idea of tableau procedures for more

expressive DLs. Afterward, we introduce different varieties of optimization techniques

employed to improve reasoning performance. Ultimately, we investigate CB algorithms

proposed for reasoning in more expressive DLs alongside a brief analysis of their strengths

and weaknesses.

Chapter 3. Literature Review 38

3.1 Extending Tableau-based Algorithms

To deal with more expressive DLs, tableau-based algorithms need to be extended to pre-

serve the semantics of the supported constructors [31].

• The data structure might need some changes to reflect the semantics of additional

constructors. For example, in the presence of nominals, a distinction needs to be

made between regular nodes and nominal nodes, which contain a nominal in their

label. Nominal nodes can be arbitrarily interconnected and form complex graphs,

while regular nodes can only be found on tree-like graphs rooted at nominal nodes.

The completion graph is initialized with one node for every nominal in the ontology.

So the graph would be a forest of tree-like structures rooted at nominal nodes.

• More extension rules should be introduced to support new constructors. In Stan-

dard tableau-based algorithms, the �-Rule creates n individuals as R-successors for

satisfying each at-least restriction of the form � nR.C 2 L(x). These individuals are

asserted to be mutually distinct, so they can not be merged later.

Then the choose-Rule assigns D or ¬D to each of the created individuals according

to every at-most restriction of the form  mS.D 2 L(x). Any at-most restriction

in L(x) may be violated if node x has K successors in D such that K > m. In this

case, the -Rule is applied to satisfy the violated at-most restriction by checking all

possible ways of pairwise merging the K successors of x.

Another rule should be defined to ensure that the semantics of nominals is never

violated by merging any nodes containing the same nominal in their labels.

Chapter 3. Literature Review 39

• There may be different types of clashes that should be detected, which may be due

to number restrictions or nominals. For example, a node x must satisfy an at-most

restriction of the form  nR and already has m distinct R-successors with m > n, or

two distinct nodes with the same nominal in their label.

• Expressive DLs require more sophisticated blocking strategies to ensure termination.

For example, in the presence of nominals, none of the nodes between a blocking

node and the blocked one can be a nominal node because repeating the cycle violates

the semantics of nominals.

3.2 Optimizing Tableau-based Algorithms

A naive implementation of tableau-based algorithms is not practical [31, 30], so adopting

a set of optimization techniques is crucial to be efficient for practical applications. This

section reviews some of the optimization techniques that most modern DL reasoners use.

We mainly focus on those designed to deal with nominals and QCRs. We also provide an

informal analysis of their practical performance.

3.2.1 Absorption

General Concept Inclusion (GCI) axioms are hard for reasoning because they are highly

non-deterministic. Therefore it is always desirable to eliminate or at least minimize GCIs.

Absorption is a rewriting technique proposed for reducing the number of GCIs in a TBox

by converting them to axioms of the form A v C where A is a concept name and C a

concept expression, using the following conversion [29]:

Chapter 3. Literature Review 40

C u D v E! C v ¬D t E (3.1)

Standard tableau reasoning converts every GCI of the form C v D to > v ¬C t D

and adds it to every node created in the completion graph. But using Absorption reduces

the effect of GCIs and ensures they apply to a smaller range of nodes. But generally, it is

not always possible to absorb all the GCIs in a TBox. Absorption can significantly improve

reasoners’ performance if applied appropriately. There might be more than one way to

absorb a GCI, and finding the best way of absorbing a GCI is subject to many research

activities [61, 32].

Nominal Absorption

In the presence of nominals, the standard absorption technique discussed previously is no

longer applicable. Two absorption techniques have been introduced in [58] for absorbing

GCIs with nominals. These techniques are categorized based on the roles of nominals in

GCIs, either as enumerations or role fillers. Their goal is to eliminate the negative effect of

disjunction at the expense of adding more assertions to the ABox.

• Nominals as Enumeration axiom (3.2) in the following example uses nominals for

enumerating all instances of the concept HairColor:

Chapter 3. Literature Review 41

Example 3.1 (Nominals for Enumerations). Assume that a TBox T includes the fol-

lowing axioms:

HairColor ⌘ {black, brown, red, blonde, grey} (3.2)

HairColor v PhisicalFeature (3.3)

Applying regular absorption to these axioms is inefficient since it introduces many

disjunctions, and every disjunction adds a backtracking point in the search space of

a tableau-based algorithm.

An absorption technique, called “One-of Absorption", proposed in [58] tries to re-

write this type of GCIs using nominals characteristics and the following equivalence:

C ⌘ {a1, a2, ..., an} ,

8
><

>:

C v {a1, a2, ..., an}

a1 : C, ..., an : C
(3.4)

Chapter 3. Literature Review 42

For example, using the “One-of Absorption" technique, axiom (3.2) can be repre-

sented by the TBox axiom (3.5) and the ABox assertions (3.6) to (3.10).

HairColor v {black, brown, red, blonde, grey} (3.5)

black : HairColor (3.6)

brown : HairColor (3.7)

red : HairColor (3.8)

blonde : HairColor (3.9)

grey : HairColor (3.10)

This technique is not applicable to reasoning algorithms that do not support ABox

reasoning.

• Nominals as Role fillers The following axiom shows an example where nominals

appear as role fillers.

RedHead ⌘ Person u  1 hasHairu 9 hasHair.red (3.11)

Axiom (3.11) is equivalent to the following two axioms:

RedHead v Person u  1 hasHairu 9 hasHair.red (3.12)

Person u  1 hasHairu 9 hasHair.red v RedHead (3.13)

Chapter 3. Literature Review 43

We can absorb axiom (3.13) into the definition of Person as follows:

Person v RedHead t 8 hasHair.¬ red t � 2 hasHair (3.14)

This concept should be considered for each node containing Person in its label.

However, the “Has Value” absorption technique introduced in [58] is a more ef-

fective way of taking care of these cases. This technique takes advantage of nominal

semantics and the following equivalence:

9R.o v C , o v 8R�.C (3.15)

Based on “Has Value” absorption [58], the axiom (3.13) can be re-written by the ABox

assertion:

red : 8 hasHair�.(ReadHead t ¬ Person t � 2 hasHair) (3.16)

Although the resulting axiom still contains the same number of disjunctions, this

time, they are localized to the individuals related to red through the role hasHair.

The efficiency of this technique is very case specific because changing the effect of

disjunctions to a different set of individuals does not always result in reducing their

impact. In the previous example, this absorption technique is only efficient if the

number of individuals related to red through hasHair is considerably less than the

number of Person instances. This technique is only available for reasoners support-

ing inverse roles.

Chapter 3. Literature Review 44

3.2.2 Boolean Constraint Propagation

Boolean Constraint Propagation (BCP) is a simplification technique that examines disjunct

concept descriptions and simplifies them where possible. Therefore it reduces the number

of backtracking points in the search space and decreases the probability of expanding a

branch that will end up with a clash. The most common simplification is to expand a dis-

junction that has only one expansion possibility and detect a clash if there is a disjunction

in L(x) with no expansion possibilities [11]. For example, having the following literals in

the label of node x [5]:

{C t (D1 u D2), (¬D1 t ¬D2 t C),¬C} ✓ L(x) (3.17)

BCP deterministically expands the disjunction (C t (D1 u D2)), adding (D1 u D2) to

L(x), because of ¬C 2 L(x). The deterministic expansion of (D1 u D2) adds both D1 and

D2 to L(x) and allows BCP to identify (¬D1 t ¬D2 t C) as a clash, because D1, D2,¬C ✓

L(x).

This technique can be adapted to CB algorithms. It is applicable to a wide range of

description logic languages without causing much overhead. However, BCP is more ef-

ficient with randomly generated problems and does not work well with real-world prob-

lems [18].

3.2.3 Dependency Directed Backtracking

Dependency Directed Backtracking is an effective optimization technique used for pruning

irrelevant branches created by applying non-deterministic rules. The approach proposed

Chapter 3. Literature Review 45

in [62] benefits from a more informed dependency-directed backtracking strategy to im-

prove caching and back-jumping. The main idea is based on the fact that if a branching

point is not involved in the occurrence of a clash, exploring other alternatives to this

branching point would not eliminate the cause of the clash either. Labelling all the facts in

the graph with dependency information allows the algorithm to identify the most recent

non-deterministic branching points where an alternative choice might alleviate the cause

of the clash. Back-jumping is a general form of directed backtracking in which each fact

has a dependency set where all the branching points that it depends on are collected.

3.2.4 Caching

Caching is another well-known optimization technique used for improving the perfor-

mance of tableau-based reasoners [5]. There are two types of caching, satisfiability and

unsatisfiability caching. The former caches concept sets of node labels that are recognized

to be satisfiable. In contrast, unsatisfiability caching creates cache entries containing sets

of concepts known to be unsatisfiable.

In unsatisfiable caching, any superset of the cached set is also unsatisfiable. Therefore it

is always desirable to cache the smallest set of concepts which is still unsatisfiable. Many

of the concepts in the label of a node are not involved in a clash. A Precise caching tech-

nique allows the algorithm to extract the smallest subset of the concepts such that their

combination is known to be unsatisfiable. A less precise caching may lead to performance

degradation associated with dependency-directed backtracking. If the entire label of a

node is added to the cache instead of adding the subset which causes the clash, in future

cache retrievals, more dependency-directed backtracking may be required to check the

Chapter 3. Literature Review 46

satisfiability.

[62] investigates creating unsatisfiable cache entries during backtracking. Roughly

speaking, all the facts involved in a clash are back-traced to the node where the clash

occurs, whereby an unsatisfiable cache entry may be generated according to the collected

facts.

In the presence of nominals, the satisfiability status of a node can not be directly used

for producing cache entries because different nodes of the completion graph can refer to a

nominal; new concepts may be propagated to a previously cached node. The forest caching

technique [58, 59] may be utilized instead, saving the completion graph’s state after an

initial consistency check.

3.2.5 Signature Calculus

The Signature calculus proposed for ALCQH [24] tries to address the inefficiency of stan-

dard tableau algorithms caused by large values in QCRs. It uses a compact representation,

a signature (proxy individual), to denote a set of individuals.

The signature calculus creates one proxy individual for satisfying each at-least restric-

tion � nR.C. A proxy individual represents n identical individuals, which are R succes-

sors and share a common restriction C. A proxy individual x may be split into more than

one if the signature is extended for a subset of individuals presented by x. Two proxy in-

dividuals may be merged if an at-most restriction  mS.D is violated due to an excessive

number of potential S-successors.

Although the goal of this algorithm was to address the inefficiency of reasoning about

QCRs containing large numbers, the algorithm’s complexity still depends on N, where N

Chapter 3. Literature Review 47

is the sum of all the numbers occurring in QCRs. However, it has a major improvement

compared with standard tableau algorithms by producing a well-structured search space,

which allows pruning in the case of a clash occurrence.

3.2.6 Algebraic Method

Most DL reasoners proposed so far deal with number restrictions and their interaction

with nominals in a blind way. These algorithms try to find a solution that satisfies all

restrictions imposed by QCRs by exhausting all possible cases. So they are highly non-

deterministic and inefficient, especially in handling QCRs containing large numbers. None

of the optimization techniques discussed previously can address this problem efficiently.

The algorithm presented in [27] was the first to address the problem of having large

numbers in QCRs by combining tableau-based algorithms with algebraic reasoners. The

basic idea of [27] is to reduce a concept satisfiability problem to a feasibility testing prob-

lem that can be solved using arithmetic methods.

The successful implementation of algebraic reasoning in [20] shows that it can effec-

tively improve reasoning performance in DLs supporting QCRs. [19] extends this idea for

reasoning in SHOQ which supports QCRs and nominals.

The algorithm presented in this proposal benefits from the advantages of algebraic rea-

soning while avoiding the drawbacks of generating a large number of variables using the

column generation technique. The main difference is that our algorithm also incorporates

features of CB algorithms, as discussed in Chapter 2.

Chapter 3. Literature Review 48

3.3 Extending Consequence-based Algorithms

Consequence-based (CB) algorithms were proposed for reasoning in less expressive de-

scription logic (DLs). Reasoners developed based on these algorithms for the EL family of

DLs outperform even highly optimized tableau-based reasoners in handling large ontolo-

gies, such as SNOMED CT [34]. However, extending CB procedures to more expressive

DLs is accompanied by difficulties, which are briefly discussed in Section 1.3.

Supporting new constructors requires introducing new inference rules to preserve

their semantics. The inference rules must be capable of handling all restrictions imposed

by new constructors while considering their implicit interactions with current construc-

tors. We presented the basic idea of CB algorithms introduced for EL in Section 2.4.2. The

following subsections discuss and analyze the extensions proposed for handling more

expressive DLs.

3.3.1 CB Reasoning for Horn ontologies

After the successful development of CB reasoners for EL, extending these reasoners to

more expressive DLs became trending research. One of the first efforts was adopting this

reasoning technique to Horn ontologies [34, 44]. The algorithm proposed in [34] extends

the EL++ CB reasoner [4] to classify Horn-SHIQ ontologies. For this purpose, the pro-

cedure first applies normalization rules to obtain an ontology containing only axioms of

form A1 v A2, A v C+ and C� v A where C+ can only be of the form >, ?, A, ¬C,

C u D, 9R.C, 8R.C, � nS.C or  1S.B and C� can only be of the form >, ?, A, C u D,

C t D, 9R.C or � 1R.C.

Chapter 3. Literature Review 49

Then the procedure converts universal restrictions to inverse rules using the equiva-

lence C v 8R.D ⌘ 9R�.C v D and introduces four new inference rules for handling the

interaction of inverse roles, functional roles and universal restrictions. The procedure uses

the inference rules to produce axioms of the form M v C and M v 9R.N, where M and

N are conjunction of concepts, and C is an atomic concept. They are applied exhaustively

until no more rule is applicable. The resulting ontology O0 is called the saturation of O,

which is why CB reasoners are also known as saturation-based.

The number of produced axioms of the form H v C and H v 9R.K can be expo-

nential in the number of atomic concepts occurring in ontology O. The worst-case time

complexity of this algorithm is exponential in the size of the input ontology.

3.3.2 CB Reasoning Beyond Horn Ontologies

Consequence-based procedures discussed so far were only applicable to Horn DLs. The

main difficulty in extending these algorithms is dealing with non-determinism caused

by non-Horn axioms, which require reasoning by case. The algorithm proposed in [56]

addressed this problem by combining CB algorithms with ordered resolutions.

To handle axioms containing disjunctions, the ALCH CB algorithm [56] generalizes

the form of result axioms from H v C and H v 9R.K to H v M and H v N t 9R.K

where M, N are disjunctions of atomic concepts. The reasoning procedure consists of two

stages: A normalization stage during which a structural transformation is used to simplify

the axioms [54], and a saturation stage, which derives new axioms by applying inference

rules. The runtime of this algorithm is exponential in the size of the input ontology.

Chapter 3. Literature Review 50

To use this procedure in practical reasoning systems, a set of optimization techniques

are employed based on introducing a new notion, contexts. A context is a conjunction on

the left-hand side of derived axioms. Introducing new concepts in a goal-directed way by

maintaining a list of active contexts, using the same context to represent its super contexts,

and dividing the set of contexts into several partitions are the optimization techniques

used in [56] to improve practical results.

3.3.3 CB Reasoning with Nominals

After successfully developing a CB reasoning procedure for DL EL, continued research

strove to support additional features on top of EL preferably with preserving its polyno-

mial complexity. One of the most interesting features that EL++ adds to EL are nominals.

In general, one can use them to enumerate all possible instances of a concept. But since

disjunctions are not allowed in EL, the use of nominals becomes very restricted and is

limited to singleton concepts.

In practice, however, ontology designers avoid using nominals because of minimal

practical support for nominals in OWL. Amongst the currently available EL reasoners,

Snorocket provides no support for nominals [37], CEL only supports ABox assertions [6],

and the support for nominals in jCEL is incomplete [17].

Designing an efficient algorithm for handling nominals turns out to be challenging

because even in low expressive description logics such as EL, mere non-emptiness of

concepts may result in new entailments. In other words, solely knowing that a concept

has at least one instance can lead to a new subsumption between atomic concepts. Rea-

soning with nominals gets much more complicated in the presence of more expressive

Chapter 3. Literature Review 51

constructors, especially regarding the interaction of nominals and QCRs (Chapter 1.3).

The first consequences-based algorithm proposed for reasoning about nominals is in

the EL family of DLs [35]. The idea is to deal with nominals by tracking the non-emptiness

of a concept to others. For this purpose, the ELO reasoner introduces a new type of

axioms C D called reachability axioms. Also, they use conditional axioms G : C v D to

state that the subsumption C v D only holds if the concept G has at least one instance (is

not empty).

This sound, complete, and goal-oriented algorithm computes all subsumption rela-

tions between a goal concept G and all other atomic concepts occurring in the ontology O

in a single round. The worst-case time complexity of the algorithm is polynomial, and the

maximum number of derived axioms is quadratic in the size of the ontology.

3.3.4 Framework for CB Reasoning

The first general framework for CB algorithms was introduced in [57] for reasoning in

ALCI and SHI which support inverse roles in addition to the ALC constructors.

We believe that the proposed structure has the potential to improve the practical per-

formance of CB algorithms. We have adopted this idea in our research, but we have

extended it to the much more expressive description logic SHOQ, which supports the in-

teraction of nominals and QCRs. We have also applied advanced optimization techniques

to make our reasoning system efficient in practice, as discussed in Chapter 5.

The proposed framework is a decomposition D of an ontology O and queries Q (i.e.,

axioms of a particular form). Roughly speaking, D is a graph-like structure that represents

the models of O in relevance with the queries in Q. Each vertex of D represents a set of

Chapter 3. Literature Review 52

concepts always held in that vertex, and each edge of D identifies a relation between such

concepts.

The presented algorithm in [57] takes a normalized ALCI ontology O (i.e., only atomic

concepts are allowed on the left-hand side of axioms) and a set of queries Q and computes

the status of O |= K v M for each query K v M 2 Q in exponential time.

3.3.5 Extending CB Reasoning to SRIQ and SROIQ

Despite the excellent practical performance of CB reasoners, they had never been extended

for expressive DLs containing QCRs. The first effort for developing CB algorithms to deal

with numerical restrictions implied by QCRs has been proposed in [10] for reasoning in

the DL SRIQ.

The SRIQ consequence-based reasoning algorithm extends the framework introduced

in [57] to handle QCRs. Since counting quantifiers require equality reasoning, the SRIQ

reasoner [10] encodes ontology axioms into DL clauses, which allow equality reasoning.

The proposed calculus [10] must be capable of capturing constraint (3.18) and its con-

sequences, while standard DL axioms cannot explicitly refer to specific successors and

predecessors.

So [10] uses DL clauses over terms x, fi(x), and y, where the variable x represents the

ground term, fi(x) represents the fi-successor of x, and y represents the predecessor of

x. Thus, the predecessor and the successors of x can be identified by name. Number

restrictions can be compiled into DL clauses by applying the following translations based

on the correspondence between DLs and first-order logic.

Chapter 3. Literature Review 53

B v � n R.C

8
>><

>>:

B(x)! R(x, fi(x)) for 1  i  n
B(x)! C(fi(x)) for 1  i  n
B(x)! fi(x) 6⇡ f j(x) for 1  i < j  n

(3.18)

B v  n R.C
(

R(z1, x) ^ C(x)! RC(z1, x) for fresh RC

B(x) ^V
1in+1 RC(x, zi)!

W
1i<jn+1 zi ⇡ zj

(3.19)

In 2018, Cucala et al. extended CB algorithms to the description logic ALCHOIQ [16],

following the work of Bate et al. [8]. Their algorithm represents all derived consequences

in contexts as context clauses in many-sorted equational logic rather than DL-style axioms.

Context clauses are defined analogously to [8], with the main difference being that they

allow context literals to mention named individuals. Additionally, the algorithm defines a

distinguished root context where most inferences involving such literals take place. This

root context represents the non-tree-like part of the model and exchanges information

with other contexts using some newly devised inference rules.

Compiling away number restrictions by enumerating all equalities is not applicable for

ontologies with a large number of QCRs nor QCRs containing large values. For classifying

an ontology which contains p at-least restrictions of the form � ni Ri.Ci and q at-most

restrictions of the form  mi Si.Di the algorithms would transform them to 3N clauses

where N = Sp
i=1ni, each clause introduces a new variable fi(x). For satisfying every

violated at-most restriction  m S.D, the algorithm would create N �m clauses that each

consist of
⇣N

2
⌘
= equality disjunctions. The algorithm’s runtime highly depends on the

number of QCRs and the values of numbers in at-most and at-least restrictions. It is worth

Chapter 3. Literature Review 54

GraduateStudent v � 2 hasCourse.GraduateCourse (3.20)
GraduateStudent v � 2 hasCourse.ComputerCourse (3.21)
GraduateStudent v � 2 hasCourse.MathCourse (3.22)
GraduateStudent v  5 hasCourse (3.23)

(A) Original ontology O

GraduateStudent(x)! hasCourse(x, fi(x)) for 1  i  2 (3.24)
GraduateStudent(x)! GraduateCourse(fi(x)) for 1  i  2 (3.25)
GraduateStudent(x)! fi(x) 6⇡ f j(x) for 1  i < j  2 (3.26)
GraduateStudent(x)! hasCourse(x, fi(x)) for 3  i  4 (3.27)
GraduateStudent(x)! ComputerCourse(fi(x)) for 3  i  4 (3.28)
GraduateStudent(x)! fi(x) 6⇡ f j(x) for 3  i < j  4 (3.29)
GraduateStudent(x)! hasCourse(x, fi(x)) for 5  i  6 (3.30)
GraduateStudent(x)! MathCourse(fi(x)) for 5  i  6 (3.31)
GraduateStudent(x)! fi(x) 6⇡ f j(x) for 5  i < j  6 (3.32)

GraduateStudent(x) ^
^

1i6
hasCourse(x, fi(x)) !

_

1i<j6
fi(x) ⇡ f j(x) (3.33)

(B) The ontology O0 produced by SRIQ algorithm during preprocessing step

FIGURE 3.1: High Non-determinism Problem of SRIQ algorithm

Chapter 3. Literature Review 55

mentioning that this procedure is not a worst case, but it is a regular case that is very likely

to happen.

For example, considering a minimal ontology O shown in Figure 3.1a, this SRIQ

algorithm would translate it to ontology O0 in Figure 3.1b. Clause (3.27) includes fifteen

disjunct equalities, which impose a high volume of non-determinism.

We try to overcome this problem by handling QCRs directly (without expanding them)

using Integer Linear Programming techniques and, more specifically, row and column gener-

ation optimizations. The other main difference is that our proposed reasoner aims at han-

dling the interaction of nominals and QCRs. These two constructors are used for imposing

different types of numerical restrictions. Since their consequences may highly affect each

other, these constraints need to be satisfied altogether. Also, nominals are global in the

whole ontology, so the numerical restrictions may not be handled locally anymore. Our

algorithm was the first CB calculus for reasoning about SHOQ [33].

3.4 Summary and Conclusion

In this chapter, we have introduced the state-of-the-art techniques for reasoning about the

interaction of nominals and QCRs. One can categorize DL reasoners into two categories:

Tableau-based and consequence-based.

Although tableau-based reasoners can reason in the presence of expressive DL con-

structors, they are not practically applicable unless they are highly optimized. We have

classified and discussed possible optimization techniques to improve tableau-based algo-

rithms. However, there are still some inherent deficiencies that cannot be eliminated by

applying optimization techniques, such as the need to build a counter-model for testing

Chapter 3. Literature Review 56

subsumption relations between each pair of concepts occurring in the ontology. Many of

these optimization techniques are also applicable to CB algorithms.

CB reasoners were proposed to address the weakness of tableau-based reasoners by

introducing a new methodology. Initially, they were developed for lightweight DLs such

as EL, but they have since been extended to more expressive DLs. This chapter traces

their evolution process all the way to SROIQ. It can be seen that the proposed approach

for reasoning about QCRs is not efficient in practice for QCRs containing large values or

ontologies with a large number of QCRs. In the next chapter, we present our proposed

algorithm, which was the first extension of CB algorithms to SHOQ that allows the inter-

action of nominals and QCRs. It also employs linear programming to handle numerical

restrictions imposed by these expressive constructors.

57

Part II

Calculus and Applications

58

Chapter 4

Preliminaries

This chapter begins with a motivating example that will be used throughout the thesis

to illustrate the notions and functionality of the proposed algorithm. Next, we describe

the normalization process, which is a prerequisite for the reasoning process. Finally, we

review some well-known definitions and review the notations that will be used in the

remainder of the thesis.

Example 4.1 (Motivating Example). The partial information about graduate students in a

computer science department (CS) is presented as:

(i) CS has at most 45 students

(ii) It has at least 30 students who are not course-based

(iii) It has at least 20 students in Lab-A who are independent, supervised, or PhD

students

(iv) It has at most 2 PhD students in Lab-A

(v) Every independent student is course based

Chapter 4. Preliminaries 59

(vi) CS has at least 3 supervised students in Lab-A

(vii) CS has at most 2 supervised students in Lab-A

It can be concluded that (i)-(v) are satisfiable and entail (vi). This holds because (vii)

is the negation of (vi) and (i)-(v) and (vii) are unsatisfiable. We need to find a satisfying

solution or the minimum set of constraints causing the unsatisfiability, which later can be

used in the reasoning process.

4.1 Normalization

In this section, we show how to transform an arbitrary SHOQ ontology O into a normal-

ized ALCHOQ ontology O0 such that O0 entails the same subsumption relations as O

over atomic concepts occurring in O. The derived ontology O0 is proved to be a conser-

vative extension of O [55].

The normalization method consists of two main phases: first, normalizing an arbitrary

SHOQ ontology O by applying a structural transformation [34] and producing a normal-

ized SHOQ ontology O0. Second, eliminating transitivity axioms from O0 and producing

a normalized ALCHOQ ontology O00 . We describe the two normalization steps below.

4.1.1 Structural Transformation

Recall from Chapter 2 (Definition 2.9) that a concept C occurs positively (negatively) in C,

if it occurs positively (negatively) in C u D, C t D, 9R.C, 8R.C, � nR.C and D v C or if it

occurs negatively (positively) in ¬C,  nR.C and C v D.

Chapter 4. Preliminaries 60

Let O be a SHOQ ontology. The transformation introduces a fresh atomic concept

AC (does not exist in O) for each concept description C occurring in O. The structural

transformation of a concept C is denoted by st(C) and is defined as follows:

st (A) = A st (C u D) = AC u AD

st (>) = > st (C t D) = AC t AD

st (?) = ? st (9R.C) = 9R.AC

st (¬C) = ¬AC st (8R.C) = 8R.AC

st (o) = o st ( nR.C) =  nR.AC

st (� nR.C) = � nR.AC

The result of applying the structural transformation to O is a new ontology O0 which

contains all role inclusion and role transitivity axioms in O in addition to the following

axioms:

• st(C) v AC for every concept C occurring negatively in O

• AC v st(C) for every concept C occurring positively in O

• AC v AD for every concept inclusion C v D 2 O .

Note that O0 is not still fully normalized, because its concept inclusion axioms are

of the form st(C) v AC, AC v st(C), and AC v AD, which may include axioms like

ACuD v AC u AD that are not normal clauses. We rewrite such axioms into normal clauses

Chapter 4. Preliminaries 61

using the following equivalences:

ACuD v AC u AD) ACuD v AC and ACuD v AC (4.1)

AC t AD v ACtD) AC v ACtD and AD v ACtD (4.2)

A¬C v ¬AC) A¬C u AC v ? (4.3)

¬AC v A¬C) > v A¬C t AC (4.4)

9R.AC v A9R.C) > v A9R.C t 8R.A¬C and AC u A¬C v ? (4.5)

8R.AC v A8R.C) > v A8R.C t 9R.A¬C and AC u A¬C v ? (4.6)

� nR.AC v A�nR.C) > v A�nR.C t  (n� 1) R.AC (4.7)

 nR.AC v AnR.C) > v AnR.C t � (n + 1) R.AC (4.8)

Proposition 4.1. Let O0 be a normalized SHOQ ontology obtained by applying the struc-

tural transformation on O. Then for every query q 2 Q, we have O |= q iff O0 |= q.

Moreover, the size of O0 is linear in the size of O and O0 can be computed from O in

polynomial time.

4.1.2 Transform a SHOQ ontology to an ALCHOQ ontology

To transform a normalized SHOQ ontology into a normalized ALCHOQ, we need to

eliminate all role transitivity axioms. Let AR,C and BR,C denote fresh atomic concepts

unique for role R and concept C, where C is an atomic concept occurring in O. The elim-

ination process contains two steps: step 1 restricts the occurrence of universal restrictions

to clauses of the form A v 8R.C and step 2 uses the well-known “box pushing” technique

Chapter 4. Preliminaries 62

to encode transitivity axioms [57]. We explain these steps by introducing two ontologies

obtained by transferring O as follows.

• Ontology O1 is obtained from O by replacing each literal 8R.C 2 M with AR,C in

each clause K v M 2 O. The normalization process also adds the axiom AR,C v

8R.C to ontology O1 concerning each literal 8R.C.

• Ontology O2 is obtained from O1 by adding the following clauses relating to each

clause A v 8R.C 2 O1 and each role S such that S v⇤ R and Trans(S) 2 O.

Intuitively, we have used BS,C to propagate C to all elements which are reachable

from A elements through a S-chain.

A v 8S.BS,C BS,C v 8S.BS,C BS,C v C

In this section, we showed that by applying the structural transformation and eliminat-

ing transitivity, one could transfer every SHOQ ontology O into a normalized ALCHOQ

ontology O0 in polynomial time. Such that O0 is a conservative extension of O, i.e., entails

the same subsumption relations between atomic concepts occurring in O.

Through the rest of this thesis, our algorithm accepts a normalized ALCHOQ ontol-

ogy O and a finite set of queries Q and computes the status of O |= q for each query q 2 Q.

Note that the algorithm handles existential restrictions of the form 9 T.A by converting

them to their equivalent at-least restrictions of the form � 1 T.A.

Chapter 4. Preliminaries 63

4.2 First-Order Logic

We use the two-variable fragment of first-order logic (without equality) that admits Count-

ing Quantifiers (CQs) rather than just universal and existential. First-Order Logic (FOL) is

able to express facts about the number of objects that have a certain property using equal-

ity [22]. However, a more succinct formalization is using CQs, which have the forms 9�n

or 9n, with n 2 N. The formula 8x9�ny j(x, y) expresses that there are at least n map-

pings for variable y in the domain such that the formula j(x, y) is satisfied [53].

A signature S is a pair of finite sets (SP , SC) where SP is a set of predicate symbols and SC

is a set of constant symbols. The set of predicate symbols SP includes two disjoint subsets,

unary predicates SU and binary predicates SB. A term is a constant or variable; an atom is

a constant or a unary predicate; and a literal L is a quantifier or an atom, and SL is the set

of all literals.

A clause is a formula of the form 8x(K ! M), where the body K is a conjunction of

atoms, the head M is a disjunction of literals and the variable x is occurring in the clause.

The universal quantifier 8x is usually omitted, but the quantifiers over the variable y

are always expressed explicitly. Conjunctions and disjunctions are identified as possibly

empty sets which are used in standard set operations. The empty conjunction (disjunc-

tion) is abbreviated as > (?).

A substitution s binds a term to each variable, which can be expressed as {x 7! t1, y 7!

t2}. The result of applying a substitution to clause K ! M or unary predicate C is written

as (K ! M)s and Cs, respectively. The substitution s = {x 7! t} may be represented as

st. A unary predicate is ground if it has no variable.

An interpretation I is a pair (DI , ·I), where DI is a non-empty set of elements called

Chapter 4. Preliminaries 64

the domain, and ·I is an interpretation function that maps every C 2 SU to a subset of

DI , every R 2 SB to a subset of DI ⇥ DI and each o 2 SC to oI 2 DI . The interpretation

I is extended to complex constructs as shown in Table 4.1, where #RI(a, C) denotes the

cardinality of {a | (a, b) 2 RI ^ y 2 CI}. Each FOL sentence j is interpreted as a truth-

value jI . An interpretation I satisfies a sentence j (written as I |= j) if jI = true.

4.3 Description Logics Clauses

DL expressions can be transformed into DL-clauses in polynomial time while preserving

satisfiability and entailment, as indicated in Table 4.1. DL clauses are a subset of FOL

clauses that we use for expressing DL axioms and are defined formally in the following.

Our signature uses only two variables, the central variable x and a neighbour variable y,

which might represent n 2 N individuals in the domain. The set SU contains all atomic

concepts in O and SB is the set of atomic roles occurring in O, corresponding to the set of

unary and binary predicates in FOL, respectively. The set of constant symbols SC contains

all nominals occurring in the ontology.

A DL-term is a constant or variable that has the form x, y or o; and a DL-predicate has

the form C(x), C(o), C(y) or R(x, y). A DL-quantifier is either an at-least (9�ny), an at-most

(9my) or a universal quantifier (8y). Based on the above semantics, the negation normal

form of CQs is ¬9�n j ⌘ 9n�1j and ¬9n j ⌘ 9�n+1j. Existential-quantifiers 9y are a

particular form of at-least quantifiers where n = 1 and the exact quantifier 9=ny abbreviates

{9�ny, 9ny}. An element y 2 DI is called an R-successor, if an element x 2 DI exists such

that (x, y) 2 RI , where R 2 SB;

Chapter 4. Preliminaries 65

TABLE 4.1: Translating SHOQ Syntax to DL-clauses and Semantics

⇤j(x, y) = (R(x, y) ^ C(y))

DL Syntax DL-Clause Semantics
Concepts
C1 u C2 C1(x) ^ C2(x) CI

1 \ CI
2

C1 t C2 C1(x) _ C2(x) CI
1 [CI

2

9R.C 9y j(x, y) {a | 9b : (a, b) 2 RI ^ b 2 CI}
8R.C 8y j(x, y) {a | 8b : (a, b) 2 RI) b 2 CI}
� n R.C 9�ny j(x, y) {a | #RI (a, C) � n}
 n R.C 9ny j(x, y) {a | #RI (a, C)  n}
o 9=1 x O(x) #{oI} = 1
Axioms
C1 v C2 C1(x)! C2(x) CI

1 ✓ CI
2

R1 v R2 R1(x, y)! R2(x, y) RI
1 ✓ RI

2

{o} v C > ! C(o) oI 2 CI

A DL-atom is a unary predicate C 2 SU or a constant o 2 SC . A DL-literal is a DL-

atom or a DL-quantifier. A normal DL-clause contains only DL-atoms in the body and

DL-literals in the head. An ontology is a finite set of DL-clauses. A DL-clause is called

atomic if it contains only atoms, and a query clause is an atomic clause. A clause K0 ! M0

is a strengthening of a clause K ! M if K0 ✓ K and M0 ✓ M. We use K ! M 2⇤ CL to

show that a set of clauses CL contains at least one strengthening of K ! M.

Normal DL-clauses are of the form
Vn

i=1 Li v
Wm

j=1 Lj where each Li is either C(x) or

O(x) and each Lj is C(x), O(x), 9y j(x, y), 8y j(x, y), 9�ny j(x, y) or 9ny j(x, y), where

j(x, y) = (R(x, y) ^ C(y)), C(x) is an atomic concept, O(x) is a nominal and R(x, y) is

an atomic role. A SHOQ ontology can be converted to a normalized ontology, which

contains only Normal DL-clauses using the structural transformation discussed in Section

4.1.1. A normalized SHOQ ontology can be rewritten to a normal ALCHOQ ontology

Chapter 4. Preliminaries 66

by encoding role transitivity axioms [55]. Afterward, we translate normalized axioms

to DL-clauses as shown in Table 4.1. In description logic, nominals are defined as atomic

concepts with exactly one instance that will be interpreted as singleton sets. Following this

definition, we introduce a function p to map every nominal o occurring in the ontology

to a fresh unary predicate p(o) = O(x), and we add > ! 9=1x O(x) to the ontology,

for each unary predicate O(x). We denote the set of all these fresh unary predicates as

SO = {p(o) | o 2 So} of size no.

Example 4.2 (Ontology Normalization). This example shows the normalization of the for-

malized version of Example 4.1:

(i) cs v 45 h.s 8x cs(x)! 945 y (h(x, y) ^ s(y))

(ii) cs v � 30 h.(s u ¬c) 8x cs(x)! 9�30 y (h(x, y) ^ s(y)

^ ¬c(y))

(iii) cs v � 20 h.(s u a u (i t u t p)) 8x cs(x)! 9�20 y (h(x, y) ^ s(y)

^ a(y) ^ (i(y) _ u(y) _ p(y)))

(iv) cs v  2 h.(p u a) 8x cs(x)! 92 y (h(x, y) ^ p(y)

^ a(y))

(v) i v c 8x i(x)! c(x)

The set of CQs (Q) includes the statements (i)� (iv), and the set of related clauses (C)

only contains statement (v). Following the normalization process discussed above, we

Chapter 4. Preliminaries 67

introduce new predicates, p1, p2, p3, p4, corresponding to the CQs in Q, so that CQs are

over atoms only. After this step, we have:

Q = {945 y p1(x, y), 9�30 y p2(x, y), 9�20 y p3(x, y), 92 x p4(x)}

C = {8x, y h(x, y) ^ s(y)! p1(x, y), 8x p(x) ^ a(x)! p4(x),

8x i(x)! c(x), 8x, y p2(x, y)! h(x, y) ^ s(y) ^ ¬c(y),

8x, y p3(x, y)! h(x, y) ^ s(y) ^ a(y) ^ (i(y) _ u(y) _ p(y))}

Applying the structural transformation to the last two clauses in C results in (8x, y is omit-

ted for the sake of brevity): p2(x, y) ! h(x, y), p2(x, y) ! s(y), p2(x, y) ^ c(y) ! ?,

p3(x, y)! h(x, y), p3(x, y)! s(y), p3(x, y)! a(y), p3(x, y)! i(y) _ u(y) _ p(y).

4.4 Used Notations

Description Logics ALCHOQ and SHOQ are defined w.r.t. non-empty and disjoint sets

of atomic concepts NC, atomic roles NR and named-individuals (a.k.a nominals) NI . A DL-literal

is a concept of the form A(x) or a DL-quantifier of the form 9ny j(x, y), 9�ny j(x, y),

8y j(x, y) or a nominal of the form O(x), where A(x) is an atomic concept (unary predi-

cate), R(x, y) is an atomic role (binary predicate), O(x) is nominal and j(x, y) = R(x, y) ^

A(y). Then, NL shows the set of all literals. Unless otherwise stated, individual letters of

the alphabet (possibly with sub- and/or superscripts) denote distinct notions as specified

below:

Chapter 4. Preliminaries 68

• letters A(x), B(x) denote atomic concepts,

• letters C(x), D(x), E(x) denote concepts,

• letter L denotes a literal,

• letters R(x, y), S(x, y) denote atomic roles,

• letter O(x) denotes nominals,

• letter o denotes constants associated with nominals,

• letter K denotes the conjunction of literals, and

• letter M denotes a disjunction of literals.

Since disjunction and conjunction of literals are unordered and without repetition, we

treat conjunction and disjunction of literals as the sets of literals, so we may use them in

standard set operations. The conjunction and disjunction of literals may be empty, which

are abbreviated to > and ?, respectively.

Recall from Chapter 2 that an axiom is either an expression of the form C1(x) ! C2(x)

(general concept inclusion), R1(x, y) ! R2(x, y) (role inclusion), or Trans(R) (role transitivity

axiom). A SHOQ ontology O is a set of axioms.

A clause is a general concept inclusion of the form
Vm

i=1 Li !
Wn

i=m+1 Li where 0  m 

n and each Li is a literal. A clause is normal if each Li with 1  i  m is an atomic concept,

and a clause is a query if each Li is an atomic concept. In a clause of the form K ! M,

the conjunction K is called the antecedent, and the disjunction M is called the consequence.

An ontology O is normalized if each GCI in O is a normal clause. A clause K0 ! M0 is a

strengthening of a clause K ! M if K0 ✓ K and M0 ⇢ M. We use K ! M 2⇤ C to show

that a set of clauses C contains at least one strengthening of K ! M.

Due to the presence of nominals, ABox assertions can be transformed to TBox axioms;

a concept assertion a : C can be written as a v C where a is a nominal and a role assertion

Chapter 4. Preliminaries 69

R(a, b), can be written as a v 9R.b where a and b are two nominals. So we only consider

terminological reasoning in this research.

In DL SHOQ, the interaction of transitive roles with number restrictions would cause

undecidability. To avoid this interaction, SHOQ allows number restrictions only with

simple roles, which are neither transitive nor have transitive sub-roles.

70

Chapter 5

Consequence-based Reasoning in SHOQ

In order to improve the performance of reasoning, one can reduce language expressivity

to make reasoning easier. For example, the Horn family of DLs is obtained by removing

disjunctions, which eliminates all disjunctions (a.k.a or-branching effect). However, rea-

soning with Horn-ALCI is still ExpTime-hard due to the interaction between existential

and universal quantifiers (a.k.a and-branching effect). By further removing universal re-

strictions and inverse roles, one can obtain the EL family of DL for which polynomial

time reasoning is ensured. However, there are many application domains that require ex-

pressive constructors, such as disjunctions, QCRs, and nominals. Thus, designing efficient

reasoners for less expressive DLs is not always helpful.

An alternative is to explore new reasoning techniques and optimize reasoning pro-

cesses. Although CB reasoners have proved to be very efficient in practice [4, 35], they

are not optimized to deal with more expressive DLs such as SHOQ. The CB reasoners

which consider reasoning about QCRs [10, 16] do not efficiently handle QCRs containing

large values or ontologies with a relatively large number of QCRs (See Figure 3.1). We

believe that our CB algorithm would significantly improve the performance of reasoning

Chapter 5. Consequence-based Reasoning in SHOQ 71

in expressive DLs such as SHOQ because it handles the numeric restrictions imposed by

nominal and QCRs via a more arithmetically informed approach employing Integer Linear

Programming (ILP).

In this chapter, we present our CB algorithm for efficiently handling the interaction of

nominals and qualified cardinality restrictions. The algorithm receives a normalized SHOQ

ontology O and a finite set of queries Q as input and determines whether O |= A(x) !

B(x) holds for each query A(x) ! B(x) 2 Q. Since the goal of this algorithm is to classify

the ontology, A(x) and B(x) are atomic concepts from O. Section 5.1 formally defines the

algorithm, introducing all necessary concepts. Section 5.2 captures the inference rules that

govern the algorithm’s logic and functionality, which constitute the core of the reasoning

process. Section 5.3 reviews the notions of soundness and completeness for the proposed

algorithm. Section 5.4 clarifies the algorithm’s intuition by applying the reasoning process

to sample ontologies.

5.1 Definition of the Calculus

Throughout this section, all theorems and definitions are implicitly related to a fixed, arbi-

trary ontology O. Recall that in Section 4, we introduced SU , SB and SC respectively to be

the sets of atomic concepts, introduce nominal concepts, atomic roles, and nominals in O.

Moreover, we introduced SO as the set of all fresh unary predicates regarding nominals

and SL as the set of all literals over the signature S = (SP , SC), where SP includes two

disjoint subsets, unary predicates SU and binary predicates SB.

Following other CB calculi [10, 15, 16, 33], our calculus represents consequences in

nodes as node clauses in first-order logic. The main difference is that instead of encoding

Chapter 5. Consequence-based Reasoning in SHOQ 72

away number restrictions using the equality predicate, we model them directly by CQs

of FOL. Besides, our calculus allows mentioning named individuals only in unary pred-

icates. We use a two-variable fragment of FOL, which allows only variables x and y to

occur in node clauses, each carrying a special meaning. Intuitively, each node represents

a set of similar elements in a model of the ontology; when variable x corresponds to such

an element, the variable y corresponds to its successor if it exists. Representing QCRs by

FOL counting quantifiers allows the calculus to handle QCRs directly by deriving their

corresponding inequalities and applying linear programming algorithms, which will sig-

nificantly speed up the reasoning process.

Definition 5.1. Assume we have C 2 SU [SO, R 2 SB and o 2 SC . A node term is either

x, y or o. A node predicate has the form C(x), C(o), C(y) or R(x, y). A node quantifier is either

a CQ of the form 9./nyj(y), a universal quantifier of the form 8yj(y) or an exact quantifier

of the form 9=1xj(x), where j(y) = R(x, y) ^ C(y), j(x) = O(x) and ./ 2 {�,}. A

node atom is a unary predicate C 2 SU [SO.

In accordance with previous works, we use a notion of redundancy elimination to

ensure termination and reduce the number of clauses derived by the algorithm [16].

Definition 5.2. A set of clauses CL contains a clause K ! M up to redundancy, denoted

as K ! M 2⇤ CL, if there is a clause K0 ! M0 2 CL such that the clause K0 ! M0 is a

strengthening of the clause K ! M.

Our CB algorithm constructs a weighted digraph, named Completion graph, whose ver-

tices are called nodes. Each node describes a set of elements in a model of the ontology. A

Chapter 5. Consequence-based Reasoning in SHOQ 73

node literal is a node atom or a node quantifier. A node clause contains only node atoms in

the body and node literals in the head. Each node v is labelled with a set of clauses L(v)

and is associated with a unary predicate core(v) that holds for every term in the model de-

scribed by v. It means that the unary predicate core(v) is implicitly included in the body

of all clauses in L(v), so each clause K ! M 2 L(v) is interpreted as core(v) ^ K ! M.

Definition 5.3. A node clause K ! M is called known if either K ⌘ >, M ⌘ ? or if K

contains only ground predicates; otherwise, it is called a possible clause.

The node labels L(v) are used to decide query entailment: for each query K ! M and

each node v, such that core(v) 2 K and K ! L 2⇤ L(v) holds for each literal L 2 K, if

K ! M 2 L(v) then we have O |= K ! M.

The weighted edges between nodes represent role successor relations between the corre-

sponding elements. If an edge hu, vi exists between two nodes, then u (v) is a predecessor

(successor) of v (u). Each edge hu, vi is labelled with a tuple (R, n, z), where R is the bi-

nary predicate holding between the two nodes, n 2 N is the cardinality of the edge and z

is a set of unary predicates that hold in node v.

Definition 5.4. A Completion graph for O is a tuple G = (V , E , core,L) where V is a finite set

of nodes and E ✓ V ⇥ V is a finite set of edges; function core(v) assigns a unary predicate

C(x) 2 SU [SO to each node v 2 V ; and function L(v) assigns a finite set of node clauses

to each node v. Every clause K ! M 2 L(v) is interpreted as core(v) ^ K ! M. The

function L(hu, vi) assigns a tuple (R, n, z) to each edge hu, vi 2 E , where R(x, y) 2 SB

is a binary predicate, n 2 N is the cardinality of the edge and z ✓ SU is a set of unary

predicates which hold in the node v.

Chapter 5. Consequence-based Reasoning in SHOQ 74

We also need to introduce an arithmetic label A(v) for each node, which is a tuple con-

sisting of the CQs occurring in L(v) and the related clauses of the qualifying concepts.

The arithmetic label is the input of the Arithmetic Module (ARM). This chapter uses ARM

as a black box ILP solver. ARM accepts a set of restrictions as input and returns a solution

if the set is feasible. Otherwise, it will return the conflict sets (CS) of the input restrictions,

which caused infeasibility.

Let Q = 9./ny j(x, y), where j has the form R(x, y) ^ C(y); and ./ 2 {,�}. We

define set of counting quantifiers occurring in L(v) locally for a node v 2 V as:

Ql(v) = {
k_

t=1
Qt | K ! M _

k_

t=1
Qt 2 L(v)} (5.1)

Assuming that Q(v) contains m disjunctions of the form
Wk

t=1 Qt, there are nq = Âm
d=1 kd

CQs occurring in Q(v). We also need to define a closure set clos(v) for each node v 2 V

as Definition 5.5.

Chapter 5. Consequence-based Reasoning in SHOQ 75

Definition 5.5. Assume that K ! M is an atomic clause, u, v 2 V and hv, ui 2 E , we

define the closure set clos(v) as the smallest set of unary and binary predicates such that:

9./n y R(x, y) ^ C(y) 2 Ql(v))
R(x, y) 2 clos(v)

C(y) 2 clos(v)
(5.2)

K ! M 2 O

K ✓ clos(v)
) M ✓ clos(v) (5.3)

K ! M 2 L(u)

core(u) [K ✓ clos(v)
) M ✓ clos(v) (5.4)

R1(x, y)! R2(x, y) 2 O

R1(x, y) 2 clos(v)
) R2(x, y) 2 clos(v) (5.5)

Definition 5.6. Let K ! M be an atomic clause and u, v 2 V , where there is an edge

hu, vi 2 E . A local arithmetic label Al(v) is defined for each node v 2 V as a tuple Al(v) =

(Ql(v), Cl(v)), where Ql(v) is a set of disjunction of CQs as defined in (5.1) and Cl(v) is a

set containing the following clauses:

– K ! M 2 O such that K ✓ clos(v).

– core(u) ^ K ! M such that K ! M 2 L(u) and core(u) [K ✓ clos(v).

Since nominals and role hierarchies are non-local, we define a global arithmetic label Ag

to deal with the non-local restrictions they impose. As its name suggests, the satisfiability

Chapter 5. Consequence-based Reasoning in SHOQ 76

of the global arithmetic label should be ensured globally, so it has to be considered in the

context of every node.

Definition 5.7. A global arithmetic label is a tuple Ag = (Qg, Cg), where Qg is the set of all

CQs over unary predicates of size no, defined as:

{(9=1x O(x))sy | > ! 9=1x O(x) 2 O} (5.6)

Cg contains the following sets of clauses:

– Nominal Clause: The set of clauses of the form core(u) ! M where K ! M is an

atomic clause in L(u) and core(u) 2 SO.

– Role Subsumptions: The set of subsumptions of the form R1(x, y) ! R2(x, y) 2 O,

where R1(x, y) is a binary predicate.

Accordingly, the arithmetic label A(v) is defined for every node v 2 V as A(v) =

(Q(v), C(v)) with Q(v) = Ql(v) [Qg and C(v) = Cl(v) [Cg. The arithmetic label A(v)

is the input of ARM to determine its satisfiability and return a solution of the conflict sets.

This chapter works with ARM as a black box, the details of which are discussed in Chapter

6.

ARM generates an inequality system based on the arithmetic label and determines its

satisfiability. If the arithmetic label is satisfiable, ARM returns a solution that satisfies all

the constraints in A(v). The returned arithmetic solution assigns a non-negative integer

Chapter 5. Consequence-based Reasoning in SHOQ 77

n to the role successors and their qualifications (atomic concepts that the role successors

belong).

Definition 5.8 (Arithmetic Solution). An Arithmetic solution x(v) is a set of tuples hr, sri

produced by ARM corresponding to A(v). The partition r is a set of unary A(x) and binary

predicates R(x, y) and sr 2 N, sr � 1 is the cardinality of the partition.

For example if s{R,C} = 1, this means that the interpretation of partition {R, C} must

have only one element. If the arithmetic label is unsatisfiable, then ARM returns the small-

est set of clauses that makes it unsatisfiable called Conflict Set (CS) (Definition 5.9). Note

that a conflict set is not unique, and an unsatisfiable arithmetic label might have mul-

tiple conflict sets. For example, let Q(v) = {9�2 y j(y), 9�3 y j(y), 91 y j(y)}, where

j(y) = R(x, y) ^ C(y) . There are two conflict sets for this arithmetic label as CS1 =

{9�3 y j(y), 91 y j(y)} and CS2 = {9�2 y j(y), 91 y j(y)}.

Definition 5.9 (Conflict Sets). A Conflict set (CS) is returned by ARM if an arithmetic label

A(v) is unsatisfiable. A CS is a subset of A(v) constraints that their integration causes

unsatisfiability. A conflict set might include disjunct CQs of the form
W

Q 2 Q(v) and

clauses of the form K ! M 2 C(v).

Proposition 5.1. The satisfiability problem for a node’s arithmetic label A(v) is NEXP-

TIME-complete [47].

We say that a completion graph is sound w.r.t. O if all the clauses derived by the

calculus are logical consequences of O.

Chapter 5. Consequence-based Reasoning in SHOQ 78

Definition 5.10. A completion graph G is sound for O if the following conditions are both

satisfied:

(i) for each node v 2 V and each clause K ! M 2 L(v) we have:

O |= core (v) ^ K ! M

(ii) for each edge (R, n, z) 2 L(hu, vi) and hu, vi 2 E , let A(x), B(x) and C(x) be unary

predicates such that A(x) = core(u), B(x) = core(v) and C(x) 2 z, we have :

O |= A(x) ^ 9�ny (R(x, y) ^V
C(y))!

9�ny (R(x, y) ^ B(y) ^V
C(y))

(5.7)

Definition 5.11. A literal ordering� is a strict partial order (i.e., an irreflexive and transitive

binary relation) on the set of all literals SL. A literal L 2 SL is �min if there is no literal

L0 2 SL such that L0 � L; moreover, a set of literals N is �min if all the literals in N are

�min. A literal L 2 SL is �max with respect to a set of literals N, written as L 6� N if there

is no L0 2 SL such that L � L0.

5.2 Inference Rules

Table 5.1 shows the inference rules of our CB algorithm. As in other CB calculi, a rule

is triggered only if the corresponding nodes do not contain the derived clauses up to

Chapter 5. Consequence-based Reasoning in SHOQ 79

redundancy. There is no ordering for applying these rules, and the applicable rules may

be applied nondeterministically.

The inference process starts with an initialization step according to the target query.

Such that, for every query q = A(x) ! C(x) 2 Q, we introduce a node vA where

core(vA) = A(x), and add clause > ! A(x) to L(vA). Moreover, we create one node

vo to represent each nominal O(x) occurring in O. The process continues by applying

the applicable rules from Table 5.1. The arithmetic labels are updated synchronously, and

whenever there is a change in an arithmetic label, ARM re-evaluates its satisfiability and

updates the solution or returns the conflict sets. The Sigma and Strict rules are applicable

if an arithmetic solution is returned, while the Bottom rule is applicable whenever a con-

flict set is found. The algorithm proceeds until no further rules can be applied. A query

q = A(x)! C(x) is entailed if, after the termination of the algorithm,> ! C(x) has been

derived in L(vA). The rest of this section discusses the functionality of each inference rule

and exemplifies some of their practical applications. The next section walks through the

step-by-step application of the reasoning algorithm on sample ontologies.

The Subs rule performs resolution between ontology and node clauses. The Join and

Fct rules resolve ground atoms in the label of unary predicate and nominal nodes, re-

spectively. The Glob rule is used to reflect the information of nominal nodes in any other

nodes, not just a neighbouring one; this is due to the fact that reasoning in the presence of

nominals is intrinsically non-local.

The rest of our rules are particularly designed for arithmetic handling of SHOQ DL.

Rule Sigma extends the completion graph according to the ARM solution for the arithmetic

label. Rule Strict verifies if a nominal and concept have to accompany one another at

all times. Rule Bottom is applicable if the arithmetic label is unsatisfiable and resolves

Chapter 5. Consequence-based Reasoning in SHOQ 80

TABLE 5.1: Inference Rules for Reasoning in ALCHOQ
Su

bs
If

Vn
i=1 Ai(x)! M 2 O

Ki ! Mi _ Ai(x) 2 L(v), with Ai ⌃ Mi for 1 6 i 6 n,
then add

Vn
i=1 Ki !

Wn
i=1 Mi _M to L(v)

Jo
in If K ! M _ C(o) 2 L(v), with C(o) ⌃ M and C(o) ^ K0 ! M0 2 L(v)

then add K ^ K0 ! M _M0

Fc
t If K ! M _ C(o) 2 L(vo), where core(vo) = O(x)

then add K ! M _ C(x) to L(vo)

El
im If K ! M 2 L(v), and K ! M 2⇤ L(v) \ K ! M

then remove K ! M from L(v)

G
lo

b

If
Vn

i=1 Ai(x) ^ K ! M 2 L(vo), where core(vo) = O(x),
then if K0 ! M0 _O(x) 2 L(v), with O(x) ⌃ M0,

and Ki ! Mi _ Ai(x) 2 L(v), with Ai(x) ⌃ Mi for 1 6 i 6 n,
add

Vn
i=1 Ki ^ K0 ^ Kso !

Wn
i=1 Mi _M _M0 to L(v)

otherwise, add
Vn

i=1 Ai(o) ^ Kso ! Mso to L(v).

Si
gm

a

If hr, ni 2 x(u) such that R 2 r, z = {C(x) | C(x) 2 r \ SU}
and no edge hu, vi 2 E exists such that L(hu, vi) = (R, n, z)

then let B(x) = select (r), if no node v 2 V which core(v) = B(x),
then create v and let core(v) = B(x), and L(v) = {> ! B(x)};
if hu, vi not exist, create hu, vi, set the label L(hu, vi) to (R, n, z)
and C(x)! C(x) to L(v) for each C(x) 2 z\B(x),

St
ric

t If hr, ni 2 x(u) such that for O(x) 2 r and D(x) 2 r

and CS(A(v) [{O(x) ^ D(x)! ?}) = {O(x) ^ D(x)! ?}
then add > ! D(o) to L(v).

B
ot

to
m

If Qi 2 CS(v) for 0 6 i 6 m, where Qi is a disjunction of CQs,
and Ki ! Mi _Qi 2 L(v), and Kj ! Mj 2 L(vo) for 0 6 j 6 n
and O(x)! Mj 2 CS(v), where Mj contains only unary atoms,

then add
Vm

i=0 Ki ^
Vn

j=0 Kjso !
Wm

i=0 Mi to L(v).

R
ea

ch

If
Vn

i=1 Ai ^
Vm

i=1 Bi ! M 2 L(v), core(v) = A0
where each Bi is ground, and each Ai is non-ground,
and M contains only ground unary atoms,
and hu, vi 2 E , with (R, m, z) 2 L(hu, vi), where Ai 2 z

and Ki ! Mi _ 9./ni y (R(x, y) ^ Ai(y)) 2 L(u) for 0 6 i 6 n
then add

Vn
i=0 Ki ^

Vm
i=0 Bi !

Wm
i=0 Mi _M to L(u)

N
om

If K ! M _O(x) 2 L(v) with O(x) ⌃ M,
and K0 ! M0 _ C(x) 2 L(v) with with C(x) ⌃ M0,

then add K0 ^ K ! M0 _M _ C(o) to L(v)
and C(x)! C(x) to L(vo)

Chapter 5. Consequence-based Reasoning in SHOQ 81

the node clauses based on the conflict set of the arithmetic label. Rule Reach propagates

information from a node to its predecessor, and rule Nom adds possible clauses to the label

of nominal nodes in order to explore the consequences of a nominal being an instance of

an atomic concept or two nominals being merged together.

5.2.1 Subs Rule

This rule is a more complete version of the subsumption rule in traditional CB algorithms.

This rule is designed for unfolding and resolving purposes.

In the general form, this rule is used for combining a set of axioms as follows:

A1(x) ^ A2(x) ^ A3(x)! M 2 O

K1 ! M1 _ A1(x) 2 L(v)

K2 ! M2 _ A2(x) 2 L(v)

K3 ! M3 _ A3 2 L(v)

9
>>>>>>>=

>>>>>>>;

) K1 ^ K2 ^ K3 ! M1 _M2 _M3 _M

Accordingly, QCRs are explicitly expressed on the right-hand side of axioms so that

they can be treated appropriately and their potential consequences can be verified by

ARM. Additionally, new subsumptions will be extracted based on the transitive prop-

erty of subsumption. For example, if A(x) ! B(x) and B(x) ! C(x), then applying this

rule can conclude that A(x)! C(x).

The Subs rule can be applied to resolve disjoint literals in the clause’s right-hand side,

as shown in the following example:

Chapter 5. Consequence-based Reasoning in SHOQ 82

B(x)! C(x) 2 L(v)

B(x)! D(x) _ F(x) 2 L(v)

F(x) ^ C(x)! ? 2 O

9
>>>>=

>>>>;

) B(x)! D(x) 2 L(v)

The Subs rule can also extend a concept on the right-hand side of a clause, to ensure that

all QCRs on the right-hand side of axioms are unfolded. The following example shows

how this rule can be used for unfolding.

A(x)! B(x) _ C(x) 2 L(v)

C(x)! D(x) _ F(x) 2 O

9
>=

>;
) A(x)! B(x) _ D(x) _ F(x) 2 L(v)

This rule is also applicable to resolve a disjunction’s literals with a common super-

concept, as shown in the following example.

C(x)! A(x) _ B(x) 2 L(v)

A(x)! D(x) 2 O

B(x)! D(x) 2 O

9
>>>>=

>>>>;

) C(x)! D(x) 2 L(v)

The formal definition of this rule is presented in Table 5.1.

5.2.2 Join Rule and Fct Rule

The Join and Fct rules resolve ground atoms in the label of regular and nominal nodes,

respectively.

The ground atoms C(o) are interpreted as O(x) ! C(x) accordingly, a clause A(x) ^

C(o) ! B(x) is a conditional subsumption clause which states that if o : C then A(x) !

Chapter 5. Consequence-based Reasoning in SHOQ 83

B(x). If the condition appears on different sides of node clauses, then the Join rule can be

used to resolve the ground atom and infer an unconditional (a.k.a general) axiom.

The Join rule is designed to resolve ground atoms from different sides of the node

clauses as follows:

K ! M _ C(o) 2 L(v)

C(o) ^ K0 ! M0 2 O 2 L(v)

9
>=

>;
) K ^ K0 ! M _M0 2 L(v)

Accordingly, new general subsumptions could be inferred within the label of a node by

resolving the ground atoms. For example, based on the clauses A(x)! C(o) and C(o)!

B(x), the join rule derives A(x)! B(x). Similarly, A(o)! ? and B(x)! C(x) _ A(o) is

resolved to B(x)! C(x).

The Fct rule is only applicable in nominal nodes to implement the fact that nominal are

singleton concepts. In a nominal node, vo with core(vo) = O(x) every clause K ! M 2

L(vo) is interpreted as O(x) ^ K ! M so we have x = o in the context of vo. The Fct rule

is required to derive nominal subsumption axioms such as O(x) ! C(x) as shown in the

following example:

> ! C(o) 2 L(vo)) > ! C(x) 2 L(vo)

5.2.3 Elim Rule

The Elim rule removes the clauses from the node’s label for which there is a stronger clause

in the label to eliminate redundancy and update the arithmetic label. For example, if

L(vA) contains both node clauses B(x) ! C(x) and B(x) ! C(x) _ 9 y (R(x, y) ^ A(x))

Chapter 5. Consequence-based Reasoning in SHOQ 84

then the Elim rule will eliminate the latter as the former is stronger and having both is re-

dundant. As a result, the CQ 9 y (R(x, y)^ A(x)) will also be removed from the arithmetic

label A(vA).

5.2.4 Glob Rule

The Glob rule reflects the information of nominal nodes in any other nodes in the comple-

tion graph, not just a neighbouring one. The Glob rule applies the logic of reasoning in the

presence of nominal, which is intrinsically non-local (global).

The Glob is also founded on the fact that all the clauses in the label of a nominal node

are interpreted in the context of the core nominal. Therefore, the clause A(x) ! C(x) 2

L(vo) reflects as A(o) ! C(o) in the label of any other node. This inference is translated

as if A(x) ! C(x) and O(x) ! A(x) then O(x) ! C(x), which is applied by the second

branch of Glob rule.

The first branch applies the same notion to the nodes where O(x) is already entailed

and could directly participate in the resolution. For example Glob rule drives K1 ^ K2 ^

K0 ^ C(o)! D(x) _M1 _M2 _M0 2 L(v) based on the following clauses:

A1(x) ^ A2(x) ^ C(x)! D(x) 2 L(vo)

K0 ! M0 _O(x) 2 L(v)

K1 ! M1 _ A1 2 L(v)

K2 ! M2 _ A2 2 L(v)

9
>>>>>>>=

>>>>>>>;

Chapter 5. Consequence-based Reasoning in SHOQ 85

5.2.5 Sigma Rule

The Sigma rule is applied on the arithmetic solution returned by ARM corresponding to the

arithmetic label. Sigma rule reflects the solution in the completion graph. An arithmetic

solution x(v) is a set of tuples hr, sri, where partition r is a set of unary A(x) and binary

predicates R(x, y) and sr 2 N, sr � 1 is the cardinality of the partition (Definition 5.8).

Definition 5.12. The select function chooses one unary predicate from the partition r as its

representative. The select function chooses the �Max concept w.r.t. the set of unary predi-

cates z ✓ r. The method select is called a function because it returns a unique representa-

tive for all partitions containing the same set of concepts. In other words, if there are two

partitions rho1 and rho2 containing the same unary predicates, then select(r1) ⌘ select(r2).

The Sigma rule uses the select function to choose a unary predicate as the representative of

a partition.

If there exists no node v in the graph such that core(v) ⌘ select(r), then Sigma rule

creates a new node; otherwise, it adds the rest of unary predicates C(x) 2 z\select(r) to

the label of v as possibilities. The Sigma rule also adds the clause C(x) ! C(x) to L(v),

to consider the consequences of having C(x) for all domain elements corresponding to a

node v. The formal definition of this rule is presented in Table 5.1. The following example

demonstrates a sample application of the Sigma rule.

Example 5.1 (Sigma Rule Application). Assume that ARM returns the solution x(vA) =

{h{B(x), C(x), R(x, y)}, 2i, h{C(x), D(x), R(x, y)}, 2i} based on the arithmetic label A(vA).

So the Sigma rule is applicable to the completion graph G, which has only one node vA.

Chapter 5. Consequence-based Reasoning in SHOQ 86

The select function chooses the unary predicate B(x) as a representative for the first parti-

tion. So the rule creates a new node vB, with core(vB) = B(x) and adds the initialization

clause > ! B(x) to its label L(vB). Also creates the edge hvA, vBi and adds (R, 2, {B, C})

to LhvA, vBi. Furthermore, it adds the clause C(x) ! C(x) to L(vB) to check the conse-

quences of holding B(x) and C(x) together.

Another node vC with core(vC) = C(x) is created corresponding to the second par-

tition. Moreover, the rule adds the clauses > ! C(x) and D(x) ! D(x) to L(vC) and

generates (R, 2, {C, D}) in LhvA, vCi. Figure 5.1 shows the completion graph after apply-

ing the Sigma rule.

vA

> ! A(x)
.
.
.

vB

> ! B(x)
C(x)! C(x)

vC

> ! C(x)
D(x)! D(x)

(R, 2, {B, C}) (R, 2, {C, D})

FIGURE 5.1: Sigma Rule Example Application

Intuitively, this rule helps the algorithm to determine which concepts may hold to-

gether and need to be considered in one node. Considering a concept A(x) in the node

vB, which is presented by the clause A(x) ! A(x), implies that there might be at least

one individual a in our model, which is a : A and a : B. Therefore if two concepts exist in

one partition based on an arithmetic solution returned by ARM, our algorithm checks the

conjunction of these two concepts and discovers any potential conflicts.

Chapter 5. Consequence-based Reasoning in SHOQ 87

5.2.6 Strict Rule

As we know, the cardinality of each nominal is exactly one, so their inclusion in the same

partition could derive more consequences. For example, considering the axiom A !

9R(x, y)^ B(y)^O(y), mere satisfiability of A(x) derives O(x)! B(x). However, having

a concept B(x) and a nominal O(x) in the same partition is not sufficient to conclude the

subsumption O(x) ! B(x). There might exist other solutions for the arithmetic label in

which the nominal O(x) and the concept B(x) are not present in the same partition. The

example 5.2 specifically illustrates this scenario.

Example 5.2 (Strict Rule Application). Let O(x) be a nominal and A(x), B(x) and C(x) be

atomic concepts. The ontology O contains the following axioms:

A(x)! 9 y R(x, y) ^O(x) (5.8)

A(x)! 9 y R(x, y) ^ B(y) (5.9)

A(x)! 9 y R(x, y) ^ C(y) (5.10)

A(x)! 92 y R(x, y) ^ (B(x) _ C(x) _O(x)) (5.11)

CB R

O R

x1(vA)

OC R

B R

x2(vA)

OB R

C R

x3(vA)

Chapter 5. Consequence-based Reasoning in SHOQ 88

There are three possible models for satisfying these restrictions shown as x1(vA), x2(vA)

and x3(vA). Only in one solution does the nominal O(x) exist in a partition with either

concept A(x) or B(x). Therefore, the Strict rule is not applicable to this example.

In this case, the subsumption O(x) ! B(x) is a possibility that is handled using the

Sigma rule. Consequently, we need to determine if the concept A(x) and the nominal

O(x) are required to belong to the same partition within all possible arithmetic solutions.

Instead of finding and investigating all possible solutions, we check if a solution could

exist in which the concept B(x) and the nominal O(x) do not occur in the same parti-

tion. Accordingly, we check whether, assuming that O(x) and B(x) are disjoint, causes a

strict unsatisfiability. If so, then the subsumption O(x) ! B(x) is concluded by the Strict

rule. An unsatisfiability is strict if it is caused only by known information and there is no

possible clause in the conflict set.

This rule is also responsible for situations where two nominals must appear in a par-

tition for all possible solutions. If that is the case, these two nominals would be equal to

each other, and reflexive subsumption in their labels would reflect this fact.

5.2.7 Bottom Rule

Intuitively, the Bottom rule propagates obtained information from a successor to its pre-

decessor. If ARM determines that the arithmetic label is unsatisfiable, then there’s no

solution that satisfies all the constraints imposed by nominals and QCRs. In this case,

ARM returns the conflict sets as the unsatisfiability root.

There might be multiple conflict sets of the same size for an arithmetic label. The

consequences of resolving each conflict set have to be derived in the construction graph.

Chapter 5. Consequence-based Reasoning in SHOQ 89

Accordingly, the Bottom rule is applicable to each conflict set CS . For example, assume

Ql(v) = 9�3 y j(y), 9�3 y j(y) and 91 y j(y), where j(y) = R(x, y) ^ C(y). Obviously,

the conjunction of these QCRs causes a conflict, so the arithmetic label is not feasible. One

can recognize two sets of conflict sets (two different sets with the same number of literals)

involved in the clash, CS1 = {9�2 y j(y), 91 y j(y)} and CS2 = {9�3 y j(y), 91 y j(y)}.

The Bottom rule only impacts the possible clauses in a conflict set, such that if all the

conflict sets are known, then there is an unsatisfiability in the ontology. For example let

Q(vB) = {9�2 y R(x, y) ^ C(y), 91 y R(x, y) ^ D(y)} and C(vB) = {C(x) ! D(x)}. This

arithmetic label is evidently unsatisfiable, with the conflict set CS = {{9�2 y R(x, y) ^

C(y), 91 y R(x, y), C(x) ! D(x)}. Since all the clauses in the conflict set are known in-

formation, the Bottom rule will resolve these clauses by adding > ! ? 2 L(vB). This

clause shows that the node vB and consequently the concept B(x) are unsatisfiable.

5.2.8 Reach Rule

A mentioned before, in the presence of nominals, mere satisfiability (non-emptiness) of

concepts can lead to new entailments, e.g., asserting that a particular concept has at least

one instance may lead to a new subsumption between atomic concepts.

Reach rule implements the non-emptiness tracking adapted from [35] by propagating

clauses containing ground atoms from a node to its predecessors. This rule follows the

successor relation by resolving the underlying CQs.

Example 5.3 (Reach Rule Application). Assume a completion graph G as shown in Fig-

ure 5.2. Having > ! C(o) 2 L(vB) interprets as iff B(x) is satisfiable (BI 6= ∆) then

O(x)! C(x). Meanwhile, non-emptiness of A(x) and A(x)! 9 y R(x, y) ^ B(y) implies

Chapter 5. Consequence-based Reasoning in SHOQ 90

non-emptiness of B(x), in other words B(x) is reachable from A(x). Accordingly non-

emptiness of A(x) also entails O(x) ! C(x). Such that the Reach rules add > ! C(o) 2

L(vA).

vA

> ! 9 y R(x, y) ^ B(y)

> ! C(o)

vB

> ! C(o)

(R, 1, {B})

FIGURE 5.2: Reach Rule Example Application

The original form of this rule is generalized to handle more complex cases where the

condition clause in the successor’s label (> ! C(o) in Figure 5.2) has ground/non-ground

atoms in its head (e.g. D(x) ^ F(o)! C(o)).

5.2.9 Nom Rule

Having a node clause of the form K ! M ^O(x) 2 L(v) could infer the possibility of

x = o in the context of node v. The Nom rule reflects this possible equality within other

unary predicates which exist in node clauses of L(v). The following example represents a

simple application of this rule:

> ! C(x) 2 L(vA)

> ! O(x) 2 L(vA)

9
>=

>;
) > ! C(o) 2 L(vA)

The clauses in L(vA) are interpreted in regard to A(x), such that having A(x)! C(x)

and A(x) ! O(x) entail A(x) ! C(o), which is interpreted as iff A(x) is satisfiable

(AI 6= ∆) then O(x)! C(x).

Chapter 5. Consequence-based Reasoning in SHOQ 91

Rule Nom also adds possible clauses to the label of nominal nodes in order to explore

the consequences of a nominal being an instance of an atomic concept or two nominals be-

ing merged together. In the above example, the Nom rule also adds C(x)! C(x) 2 L(vo),

which allows tracing the consequences of the possible subsumption O(x) ! C(x). This

possibility is added to the arithmetic label of the relayed nodes as discussed in Definition

5.7 to discover any potential conflicts and derived entailments.

5.3 Soundness and Completeness

Our arithmetic CB algorithm is sound and complete based on the following theorems, which

are formally proved in Chapter 7. Let G be a sound completion graph w.r.t. O. The

completion graph obtained by applying the inference rules from Table 5.1 to G is sound

for O.

Theorem 5.1 (Soundness). Let G1 = (V , E , core,L) be a completions graph and let L1 be

the clause system defined for G1. Additionally, let G1 and L2 be the completion graph and

the clause system, respectively, obtained by applying an inference rule from Table 5.1 to

G1 and L1. If G1 and L1 are both sound for O, then both G2 and L2 are sound for O.

Theorem 5.2 (Completeness). Let G be a sound completion graph such that no inference

rule from Table 5.1 is applicable to it. Then > ! C(x) 2 L(vA) holds for each query

q = A(x)! C(x) and node vA 2 V with core(vA) = A(x) if O |= A(x)! C(x).

Chapter 5. Consequence-based Reasoning in SHOQ 92

5.4 Examples

This section illustrates the application of the proposed CB calculus with examples. Each

example applies our CB algorithm to a normalized ALCHOQ ontology O and a finite

set of queries Q to determine whether O |= q for each query q = K ! M 2 Q. Since

the goal of the algorithm is to obtain ontology classification, we only consider queries of

the form A(x) ! B(x) where A(x) and B(x) are unary predicates from O. The examples

demonstrate the complete reasoning process from the initialization to the query entail-

ments employing the applicable inference rules from Table 5.1. In the following examples,

each node is illustrated as a circle with its core inside the circle, and the clauses in L(v)

above/below the circle.

Example 5.4 (Reasoning Process O1). Let O1 be an ontology containing axioms (5.12) –

(5.22), and q = A(x) ! F(x). Figure 5.3 summarizes the inferences relevant to deriving

O1 |= q using our CB algorithm.

The completion graph is initialized by creating a node vA with core A(x) correspond-

ing to the query clause and one node vOi , 1  i  4 for each nominal occurring in

O1. The created nodes are initialized by clauses (5.27), (5.38), (5.40), (5.42) and (5.44)

and Subs rule adds clauses (5.28) – (5.31). Accordingly, A(vA) is updated as Ql(vA) =

{9�2 y (R(x, y) ^ B(y)), 9 y (R(x, y) ^ D(y)), 8 y (R(x, y) ^ C0(y)), 8 y (R(x, y) ^ F0(y))}

while Cl(vA) = {B(x) ! O2(x) _ O3(x), C(x) ^ C0(x) ! ?, F(x) ^ F0(x) ! ?} and

Qg = {9=1y(Oi) | 2  i  3}. The arithmetic module calculates a solution that satisfies

A(vA) as x(vA) = {(hR, B, O2, C0, F0i, 1), (hR, B, O3, C0, F0i, 1), (hR, Di, 1)}.

Chapter 5. Consequence-based Reasoning in SHOQ 93

TABLE 5.2: Clauses in Ontology O1, Example 5.4

A v � 2 R.B A(x)! 9�2 y (R(x, y) ^ B(y)) (5.12)
A v 9R.D A(x)! 9 y (R(x, y) ^ D(y)) (5.13)
D v 9R.o1 D(x)! 9 y R(x, y) ^O1(y) (5.14)
o4 v � 2 R.C O4(x)! 9�2 y (R(x, y) ^ C(y)) (5.15)
B v o2 t o3 B(x)! O2(x) _O3(x) (5.16)
C v o1 t o2 t o3 C(x)! O1(x) _O2(x) _O3(x) (5.17)
> v 8R.C0 t F > ! 8y (R(x, y) ^ C0(y)) _ F(x) (5.18)
> v 8R.F0 t F > ! 8y (R(x, y) ^ F0(y)) _ F(x) (5.19)
C u C0 v ? C(x) ^ C0(x)! ? (5.20)
F u F0 v ? F(x) ^ F0(x)! ? (5.21)
> ! 9=1 x Oi(x) 1  i  4 (5.22)

Applying the Sigma rule, create nodes vB and vD initialized with (5.36) and (5.23); and

connects vA with vB and vD through edges (5.51) and (5.53).

Preceding analogously in node x(vO4), the Bottom rule is applicable on the conflict

set CS(vo4) = {8 y (R(x, y) ^ C0(y))} which produces (5.46) and Elim rule removes > !

8 y (R(x, y)^C0(y))_ F(x) from L(vo4). The Sigma rule then creates a new node with core

C(x), adds clause (5.48) to L(vC) and connects vO4 and vC through an edge labeled with

(5.55) and (5.56). After derivation of (5.49) by Subs rule, the Nom rule becomes applica-

ble. Triple applications of this rule yields clause (5.50); and also clauses (5.39), (5.41) and

(5.43). Accordingly, O1(x) ! C(x), O2(x) ! C(x) and O3(x) ! C(x) are added to Cg

which makes the arithmetic label A(vD) infeasible so ARM returns CS(vD) = {O1(x) !

Chapter 5. Consequence-based Reasoning in SHOQ 94

D(x)

> ! D(x) (5.23)
> ! 9y (R(x, y) ^O1(y)) (5.24)

> ! 8y (R(x, y) ^ C0(y)) _ F(x) (5.25)
C(o1)! F(x) (5.26)

A(x)

> ! A(x) (5.27)
> ! 9�2 y (R(x, y) ^ B(y)) (5.28)
> ! 9 y (R(x, y) ^ D(y)) (5.29)

> ! 8y (R(x, y) ^ C0(y)) _ F(x) (5.30)

> ! 8y (R(x, y) ^ F0(y)) _ F(x) (5.31)
C(o1)! F(x) (5.32)
C(o2) ^ C(o3)! F(x) (5.33)
> ! C(o1) _ C(o2) _ C(o3) (5.34)
> ! F(x) (5.35)

B(x)

> ! B(x) (5.36)
> ! O2(x) _O3(x) (5.37)

O1(x)

> ! O1(x) (5.38)
C(x)! C(x) (5.39)

O2(x)

> ! O2(x) (5.40)
C(x)! C(x) (5.41)

O3(x)

> ! O3(x) (5.42)
C(x)! C(x) (5.43)

O4(x)

> ! O4(x) (5.44)
> ! 9�2 y (R(x, y) ^ C(y)) (5.45)
> ! F(x) (5.46)
> ! C(o1) _ C(o2) _ C(o3) (5.47)

C(x)

> ! C(x) (5.48)
> ! O1(x) _O2(x) _O3(x) (5.49)
> ! C(o1) _ C(o2) _ C(o3) (5.50)

(R, 1, {B, O2, C0, F0}) (5.51)

(R, 1, {B, O3, C0, F0}) (5.52)
(R, 1, {D, C0, F0}) (5.53)

(R
,1,{O

1 })
(5.54)

> ! (R, 1{C, O1}) (5.55)
> ! (R, 1{C, O2}) (5.56)

FIGURE 5.3: Algorithm Execution for Example 5.4

C(x), 8 y (R(x, y) ^ C0(y))} based on which the Bottom rule derives (5.26). Similarly, ap-

plying the Bottom rule to the CS(vA) derives (5.33).

On the other hand, clause (5.50) can be back-propagated by Reach rule to produce

clause (5.47) in vO4 . While Reach rule infers (5.32) by propagating (5.26). Consecutively,

Glob rule reflects this clause to deduce (5.34). Triple applications of Join rule results in

Chapter 5. Consequence-based Reasoning in SHOQ 95

TABLE 5.3: Clauses in Ontology O2, Example 5.5

A v 9R.o1 A(x)! 9 y (R(x, y) ^O1(y)) (5.57)
A v 9R.o2 A(x)! 9 y (R(x, y) ^O2(y)) (5.58)
A v 9R.o3 t D A(x)! 9 y (R(x, y) ^O3(y)) _ D(x) (5.59)
A v  1 S.> A! 91 y R(x, y) (5.60)
O1 v � 2S.B O1(x)! 9�2 y (R(x, y) ^ B(y)) (5.61)
B v o1 t o2 t o3 B(x)! O1(x) _O2(x) _O3(x) (5.62)
R v S R(x, y)! S(x, y) (5.63)
> ! 9=1 x Oi(x) 1  i  3 (5.64)

(5.35), which proves our query clause.

Example 5.5 (Reasoning Process O2). Let O2 be an ontology containing axioms (5.57) –

(5.64), and q = A(x) ! D(x). Our CB algorithm verifies whether O2 |= q. Figure 5.4

summarizes the inferences relevant to deriving the query q.

The completion graph is initialized by creating a node vA with core A(x) and one

node vOi , 1  i  3 for each nominal occurring in O2
1. The created nodes are initialized

with the clause (5.65) and (5.71). The Subs rule then adds clauses (5.66) – (5.69). ARM

calculates the arithmetic solution as x(vA) = {(hR, O1, O2, O3i, 1)}, based on which the

Sigma rule adds (5.72) and (5.73). Adding (5.74) by the Subs rule makes the arithmetic

label A(vo1) infeasible. ARM calculates CS(vo1) = {O1 ! O2, O1 ! O3}, which infers

(5.75) by applying the Bottom rule. The Fact rule resolves (5.75) to (5.76), which updates

1For simplicity only node O1 is illustrated in Figure 5.4 as it is required for deriving the query clause.

Chapter 5. Consequence-based Reasoning in SHOQ 96

A(x)

> ! A(x) (5.65)
> ! 9 y (R(x, y) ^O1(y)) (5.66)
> ! 9 y (R(x, y) ^O2(y)) (5.67)
> ! 9 y (R(x, y) ^O3(y)) _ D(x) (5.68)
> ! 91 y R(x, y) (5.69)
> ! D(x) (5.70)

O1(x)

> ! O1(x) (5.71)
O2(x)! O2(x) (5.72)
O3(x)! O3(x) (5.73)
> ! 9�2 y (R(x, y) ^ B(y)) (5.74)
O2(o1) ^O3(o1)! ? (5.75)
O2(x) ^O3(x)! ? (5.76)

> ! (R, 1, {O1, O2}) (5.77)
> ! (S, 1, {O1, O2}) (5.78)

FIGURE 5.4: Algorithm Execution for Example 5.5

the global arithmetic label and makes A(vA) infeasible. Bottom rule derives (5.70) based

on the conflict set as CS(vA) = {9 y (R(x, y) ^O3(y))} returned by ARM, which proves

the entailment of our query clause.

Example 5.6 (Reasoning Process O3). Let O3 be an ontology containing axioms (5.79) –

(5.87), and q = A(x) ! H(x). Our CB algorithm verifies whether O3 |= q. Figure 5.5

summarizes the relevant inferences for deriving the query q.

The completion graph is initialized by creating a node vA with core A(x) correspond-

ing to the query clause and a node vO for the nominal O occurring in O3. The created

nodes are initialized by clauses (5.88) and (5.99), respectively. Afterwards, clauses (5.89) –

(5.91) are obtained by applying Subs rule. Accordingly, the arithmetic label A(vA) is up-

dated as Ql(vA) = {9�2 y (S(x, y) ^ C(y)), 91 y (S(x, y) ^ D(y)), 9 y (R(x, y) ^ F(y))}

while Cg(vA) = {F(x)! O(x), F(x)! B(x)} and Qg = {9=1y O(y)}.

ARM then calculates the arithmetic solution as x(vA) = {(hS, C, i, 2), (hR, F, O, Bi, 1)}

to satisfy A(vA). Applying the Strict rule to x(vA) derives (5.92); while applying the Sigma

Chapter 5. Consequence-based Reasoning in SHOQ 97

TABLE 5.4: Clauses in Ontology O3, Example 5.6

A v � 2S.C t H A(x)! 9�2 y (S(x, y) ^ C(y)) _ H(x) (5.79)
A v  1 S.D t H A! 91 y (S(x, y) ^ D(y)) _ H(x) (5.80)
A v 9R.F A(x)! 9 y (R(x, y) ^ F(y)) (5.81)
C v 9S.o C(x)! 9 y (S(x, y) ^O(y)) (5.82)
C v 8R.B0 t D C(x)! 8 y (R(x, y) ^ B0(y)) _ D(x) (5.83)
F v o F(x)! O(x) (5.84)
F v B F(x)! B(x) (5.85)
B u B0 v ? B(x) ^ B0(x)! ? (5.86)

> ! 9=1 x O(x) (5.87)

rule, creates node vC initialized with (5.95); and connects vA with vC and vO through edges

(5.103) and (5.104) and also adds the (5.101) to L(vO). Consequently, Sub rule may be

applied in newly created nodes to derive clauses (5.96), (5.97), and (5.102).

The arithmetic label is updated as Q(vC) = {9 y (R(x, y) ^ O(y)), 8 y (R(x, y) ^

B0(y))} while C(vC) = {O(x) ! B(x)} and Q = {9=1y O(y)}. Accordingly, ARM deter-

mines that A(vC) is infeasible and calculates the conflict set as CS(vC) = {O(x)! B(x)},

so applying the Bottom rule to CS(vC) derives (5.98). Consequently, C(x) ! D(x) is

added to Cl(vC) as a possible clause, which makes A(vC) infeasible, with CS(vA) =

{C(x) ! D(x), 9�2 y (S(x, y) ^ C(y)), 91 y (S(x, y) ^ D(y))}. The Bottom rule is applied

to CS(vA) to obtain (5.93). Finally, the Fct rule resolves B(x) in (5.92) and (5.93) results in

(5.94), which proves that our query clause is entailed from O3.

Chapter 5. Consequence-based Reasoning in SHOQ 98

A(x)

> ! A(x) (5.88)
> ! 9�2 y (S(x, y) ^ C(y)) _ H(x) (5.89)
> ! 91 y (S(x, y) ^ D(y)) _ H(x) (5.90)
> ! 9 y (R(x, y) ^ F(y)) (5.91)
> ! B(o) (5.92)
B(o)! H(x) (5.93)
> ! H(x) (5.94)

C(x)

> ! C(x) (5.95)
> ! 9 y (S(x, y) ^O(y)) (5.96)

> ! 8y (R(x, y) ^ B0(y)) _ D(x) (5.97)
B(o)! D(x) (5.98)

O(x)

> ! O(x) (5.99)
B(x)! B(x) (5.100)
F(x)! F(x) (5.101)
F(x)! B(x) (5.102)

(R
,1

,{
F,

O
,B

})
(5

.1
03

)

(S, 2, {C}) (5.104)

(S, 1, {O})
(5.105)

FIGURE 5.5: Algorithm Execution for Example 5.6

5.5 Summary and Conclusion

This chapter presents an algebraic CB reasoning algorithm for SHOQ, which relies on

ARM (Arithmetic Module) for reasoning about the number restrictions imposed by nom-

inal and counting quantifiers. To the best of our knowledge, the proposed algorithm was

the first CB calculus for the expressive description logic SHOQ [33].

During the reasoning process, the algorithm creates a single node to represent all ele-

ments associated with each concept. Using a representative node for each concept reduces

the size of the generated framework and allows re-using elements. In contrast to tableau-

based reasoners, our calculus naturally handles cyclic descriptions without the need for

any blocking strategies to ensure termination.

Chapter 5. Consequence-based Reasoning in SHOQ 99

Unlike most reasoning algorithms for SHOQ, the algebraic CB method allows in-

formed reasoning about the numerical restrictions on domain elements. In this chapter,

we used ARM as a black box for finding an arithmetic solution that satisfies the constraints

imposed by CQs and nominal.

ARM maps numerical restrictions to inequalities and handles obtained inequality sys-

tems using integer linear programming methods. The consequence-based SHOQ reasoner is

based on the atomic decomposition technique, allowing the calculus to handle the vari-

ous interactions between nominals, role successors, and their qualifications, the details of

which are discussed in the next chapter.

The inference rules are designed to derive all consequences of presented axioms while

benefiting lazy unfolding to avoid overwhelming the framework with unnecessary axioms.

The inference rules are inspired by resolution to resolve complement literals.

So far, we have designed our calculus formally, and we tested it for a set of challeng-

ing examples. The proposed algorithm could successfully classify all designed ontolo-

gies. The next chapter covers the details of mapping numeric constraints to inequalities,

determining their satisfiability and returning a solution to satisfy them or the minimum

unsatisfiable sets of constraints.

100

Chapter 6

Arithmetic Module

Most DL reasoning techniques employ arithmetically uninformed methods for dealing

with QCRs. They try to find a model that satisfies a particular concept by exhausting all

possibilities. Searching for a model in such a blind way, especially if there are a large

number of QCRs or if they contain large values, causes a tremendous performance degra-

dation. The problem gets even worse when considering the interaction of QCRs with

nominals. In this research, we use Integer Linear Programming (ILP), which is a mathemat-

ical solution for this problem.

The idea is to convert related number restrictions to inequalities. Since all obtained

inequalities are linear, the problem is a Linear Programming problem, and since all the

variables are integers, it can be considered an ILP problem. So, it can be solved using

well-known ILP methods, namely branch-and-bound algorithm.

We implement the ILP method in a separate unit called ARithmetic Module (ARM),

which accepts an arithmetic label as input. If the derived inequalities from the arithmetic

label are feasible, ARM returns a solution that satisfies all these constraints. Otherwise, it

returns the minimum literal sets that cause a contradiction as conflict sets.

Chapter 6. Arithmetic Module 101

The functionality of ARM is comprised of three main steps. ARM first produces the re-

quired variables employing atomic decomposition technique (Section 6.2). Then, it encodes

the numerical restrictions into inequalities using generated variables (Section 6.3). Most

importantly, it checks the satisfiability of derived inequalities and either returns a solution

or the minimum unsatisfiable sets that cause the infeasibility (Section 6.4).

6.1 Arithmetic Label as Input

An arithmetic label contains two types of formulas. The first type is a disjunction of CQs

of the form
W 9./ny j(x, y), where j(x, y) is a Boolean combination of atoms or unary

predicates. The second type is a clause of the form 8x, y j(x, y) ! y(x, y). Both types

satisfy the restriction that if a formula contains a binary predicate R(x, y), then all included

unary predicates are imposed on the variable y. Every other binary predicate is imposed

on the ordered pair (x, y). Recall that an arithmetic label A = (Q, C) is a conjunction of

elements of Q and C, where Q is a set of disjunctions of CQs and C is a set of clauses,

while the goal is to determine the satisfiability of A.

6.2 Atomic Decomposition

Atomic decomposition was initially proposed in [42] for reasoning about sets. Later, it has

been adapted to concept languages such as DL for reasoning about role successors of CQs

[43]. This technique decomposes a finite set of elements, called decomposition set (DS),

Chapter 6. Arithmetic Module 102

into mutually disjoint atomic components, called the partitions. Since the cardinality func-

tion of disjoint sets is additive, we have |A [B| = |A|+ |B| for every two subsets (parti-

tions) A and B where | · | denotes the set cardinality. Accordingly, atomic decomposition

allows converting the CQ feasibility problem to an ILP problem. For example, assume the

following set of CQs:

8
>>>><

>>>>:

95 y hasPublication(x, y)

9�3 y hasJournalPaper(x, y)

9�2 y hasConferencePaper(x, y)

(6.1)

P

J C

PCPJ

JC

PJC

P = Publication, not Journal, not Conference
J = Jouranl, not Publication, not Conference
C = Conference, not Journal, not Publication
PJ = Publication, Journal, not Conference
PC = Publication, Conference, not Jouranl
JC = Jouranl, Conference, not Publication
PJC = Publication, Jouranl, Conference

FIGURE 6.1: Atomic Decomposition Example

Different partitions for translating these number restrictions to arithmetic inequalities

are defined in Figure 6.1. In this example, the atomic decomposition is applied to the role

successors of hasPublication, hasJouranlPaper, and hasConferencePaper, which are presented

using the overlapping sets: publication, journal, and conference papers. In Figure 6.1,

we illustrate all mutually disjoint subsets of DS = {Publication, Journal, Conference}

as different overlapping areas. For conciseness, we assume that if a partition does not

include a particular concept A, then it implicitly includes its negation ¬A.

Chapter 6. Arithmetic Module 103

Since the decomposed subsets are mutually disjoint, one can translate each number

restriction expression into its corresponding inequality as follows:

95 y hasPublication(x, y)) |P|+ |PJ|+ |PC|+ |PJC|  5

9�3 y hasJournalPaper(x, y)) |J|+ |PJ|+ |JC|+ |PJC| � 3

9�2 y hasConferencePaper(x, y)) |C|+ |PC|+ |JC|+ |PJC| � 2

Having a decomposition set DS of size n, atomic decomposition produces 2n disjoint

subsets based on the elements of DS . However, reflecting the concept relations such as

disjointness and subsumption into arithmetic equations may reduce the number of logi-

cally allowed atomic subsets. This is the task of the so-called infeasible-partition operator

to set the cardinality of some partitions to zero.

For example, the fact that a conference paper can not be a journal paper, Journal ^

Con f erence ! ?, means that having a partition that contains Journal and Con f erence is

not logically allowed. It can be encoded to arithmetic inequalities by setting |JC| and |PJC|

to zero. In addition, arithmetic encoding of the subsumption relation between Journal and

Publication stating that all "journals" are "publications" (Journal ! Publication), similarly

Con f erence and Publication (Con f erence ! Publication) makes |J| = 0 and |C| = 0,

because a Journal or Con f erence paper is also a Publication. At last, |P| = 0 assuming that

a Publication is either a Journal paper or Con f erence paper (P(x)! J(x) _ C(x)).

Definition 6.1 (Decomposition Set). A decomposition set DS(v) = {e`(x, y) | 1  `  k}

is an ordered set of all predicates occurring in A(v), of size k, where e` denotes a binary

R(x, y) or unary predicate C(y). Let ` = h(e) be a function which maps every predicate e`

Chapter 6. Arithmetic Module 104

to its index 1  `  k in DS(v).

Each partition r is a subset of DS and P is the set of disjoint partitions defined for

the decomposition set DS , P = {r | r ✓ DS}. Therefore, a partition r is a set of unary

and binary predicates. For example, p1 = {A, B, C, R} is a valid partition, where A, B

and C are unary predicates and R is a binary predicate. If there is no unary predicate in a

partition, then the top concept (>) will be added by default.

Each partition r is associated with a variable sp = | rI |, which is equal to the cardinal-

ity of rI . For instance, sAR refers to the cardinality of the partition p1 = {A, R}.

Definition 6.2 (Partitioning). There are 2k partitions of the form r(x, y) =
Vk
`=1 l`(x, y),

where each l`(x, y) is either e`(x, y) or its negation ¬e`(x, y) occurring in A(v). A partition

r(x, y) is called feasible if it is consistent with the clauses in C(v).

Assume I as an arbitrary model of O. Each partition is interpreted as rI ✓ D, where

rI =
Tk
`=1 lI

` and each lI
` is either eI` or its complement w.r.t. the domain D. When

a partition r does not include a predicate, then its complement is part of the partition

interpretation rI .

6.3 Deriving the Inequalities

An integer linear presentation of A(v) follows from encoding each partition as a {0, 1}-

vector r of size k, in which for 1  `  k the element r` = 1, if in the partition r(x, y)

the element l` is e`, and r` = 0 otherwise. We denote r[h(e)], the corresponding value of

Chapter 6. Arithmetic Module 105

the predicate e in the vector r as re. The number of positive elements bp in each r(x, y) is

calculated as bp = Âk
`=1 r`.

Only nc feasible partitions (nc  2k) are considered in constructing the ILP formulation.

We can obtain a propositional formula based on C(v) by considering every predicate p(x)

or p(x, y) as a propositional symbol p. Afterward, we can generate the set of all feasible

partitions by applying any SAT solver on the propositional formula obtained from C(v)

using similar techniques introduced by Finger and De Bona [21]. The following example

illustrates how to transform CQs in Example 4.2 into inequalities.

Example 6.1 (Transform CQs to Inequalities). The decomposition set DS = {p1, p2, p3, p4},

so the feasible partitions are {p1p2, p1p2p3, p1p2p3p4}, where the absence of a letter in-

dicates the implied presence of its negation, e.g. (p1p2)I = pI1 \ pI2 \ (¬p3)I \ (¬p4)I .

In atomic decomposition, the subsets are semantically mutually disjoint, so we can map

the above CQs to their corresponding inequalities as follows, where | · | designates set

cardinality:

|p1p2|+ |p1p2p3|+ |p1p2p3p4|  45 (6.2)

|p1p2|+ |p1p2p3|+ |p1p2p3p4| � 30 (6.3)

|p1p2p3|+ |p1p2p3p4| � 20 (6.4)

|p1p2p3p4|  2 (6.5)

Chapter 6. Arithmetic Module 106

Based on the formal definition of an arithmetic label, we can formulate A(v) as the

following integer linear problem, called Master Problem (MP):

Master Problem (MP):

Min
nc

Â
j=1

brj sj +
n

Â
i=1

gi (6.6)

S. T.
nc

Â
j=1

Aijsj + Bigi ./ bi, 1 6 i 6 nq (6.7)

nc

Â
j=1

Aijsj = 1, nq + 1 6 i 6 n (6.8)

Â
gi2ḡc

gi  (kc � 1), 1  c  m (6.9)

sj 2 N+, gi 2 {0, 1} (6.10)

In the Master Problem, A is a n⇥ nc binary matrix, where n = nq + no, each column

1 6 j 6 nc corresponds to a feasible partition rj, each row 1 6 i 6 nq corresponds to the

ith counting quantifier in Q(v) of the form 9./ini Ri(x, y) ^ Ci(y), where ./ 2 {,�} and

each row nq + 1 6 i 6 n corresponds to a counting quantifier in Q of the form 9=1y Oi0(y).

Elements of matrix A for 1 6 i 6 nq are defined in (6.11) and for nq + 1 6 i 6 n in (6.12) :

Chapter 6. Arithmetic Module 107

Aij =

8
>><

>>:

1 if rj[h(Ci)] = 1 and rj[h(Ri)] = 1

0 otherwise
1 6 i 6 nq (6.11)

Aij =

8
>><

>>:

1 if rj[h(Oi0)] = 1, where i0 = i� nq

0 otherwise
nq + 1 6 i 6 n (6.12)

Let b be an n⇥ 1 integer vector, such that bi = ni and s be a 1⇥ nc vector of integer

variables. The consequences of having two interacting predicates in the same partition

must be checked in CB algorithms. In this regard, a desired solution of MP is one with

fewer positive predicates in each partition. Accordingly, we use bp as the coefficients in

the objective function (6.6) to reflect the cost of each partition, i.e., a smaller number of

predicates in a partition means a lower cost.

To model the or-relation between disjunct CQs in each Qd, we introduce binary vari-

ables gi corresponding to every CQ. Thus, g is a n ⇥ 1 binary vector, where ḡc = {gi |

Âkc�1
q=1 +1 6 i 6 Âkc

q=1} corresponds to CQs in Qd. Accordingly, Bigi is added to constraint

(6.7) associated with each CQ, while assuming that M is a sufficiently big value, Bi = M

for every at-least CQ and Bi = �M for every at-most CQ to model that regardless of the

sj values, the ith constraint, 1 6 i 6 nq, is always stratified if gi = 1.

Also, the constraint (6.9) needs to be included in the formulation corresponding to

every disjunction of CQs to handle their or-relation, which works as follows for CQs in an

arbitrary Qd: Since we need at least one out of kd constraints to hold, there can be at most

kd � 1 constraints that do not hold. Therefore, constraint (6.9) ensures that at most kd � 1

Chapter 6. Arithmetic Module 108

of the gi variables take the value 1 so that the associated Bi values are turned on, thereby

eliminating the constraint. Alternative constraints are discussed in [13, Chapter 13].

Example 6.2 (Integer Linear Formalization). The integer linear presentation of the nor-

malized clauses in Example 4.2 is rendered as follows:

h
s
r
a
u
i
c

1 1 1
1 1 1
1 0 0
1 1 0
1 1 0
0 0 0
0 0 0

p1
p2
p3
p4

2

664

1 1 1
1 1 1
1 1 0
1 0 0

3

775

| {z }
A

.

2

4
1

19
10

3

5

| {z }
x


�
�


45
30
20
2

|{z}
b

Each row of A represents a predicate as indicated on the left, and each column is a

feasible partition. The last four rows are associated with the CQs in Q. Vector x specifies a

possible feasible solution that satisfies all the corresponding inequalities. Obviously, there

is a feasible solution for these inequalities, which means this problem is satisfiable.

The following example shows modelling a disjunction of CQs in ILP.

Example 6.3 (Modelling Disjunction of CQs). In Example 4.2, we add a disjunct CQ to (i)

as 915 y p2(x, y). Accordingly, we will have:

Chapter 6. Arithmetic Module 109

Q =

8
>>>>>>>>>><

>>>>>>>>>>:

(i) 945 y p1(x, y) _ 915 y p2(x, y)

(ii) 9�30 y p2(x, y)

(iii) 9�20 y p3(x, y)

(iv) 92 y p4(x, y)

The above constraints may be formulated as:

Min 2sp1 p2 + 3sp1 p2 p3 + 4sp1 p2 p3 p4 +
2

Â
i=1

gi (6.13)

S.T. sp1 p2 + sp1 p2 p3 + sp1 p2 p3 p4 + 100g1  45 (6.14)

sp1 p2 + sp1 p2 p3 + sp1 p2 p3 p4 + 100g2  15 (6.15)

sp1 p2 + sp1 p2 p3 + sp1 p2 p3 p4 � 30 (6.16)

sp1 p2 p3 + sp1 p2 p3 p4 � 20 (6.17)

sp1 p2 p3 p4  2 (6.18)

g1 + g2  1 (6.19)

sj 2 N+, gi 2 {0, 1} (6.20)

The inequalities corresponding to (i) are still satisfiable, with g1 = 1 or g2 = 1. Note

that to satisfy constraint (6.19), at least one of them has to be zero. Accordingly, one can

ensure that at least one of the CQs in the disjunction (i) holds. One can readily see that

g2 = 1 should be in the above ILP.

Chapter 6. Arithmetic Module 110

Lemma 6.1. The arithmetic label A(v) = (Q(v), C(v)) of node v 2 V is satisfiable if and

only of its corresponding MP is feasible.

Proof. We assume the mapping presented in the previous paragraphs is a one-to-one map-

ping between axioms and linear inequalities.

()) Assuming that A(v) is satisfiable, there exists a non-empty interpretation I . Due

to the fact that partitions are semantically disjoint, every a 2 DI is a member of at most

one partition interpretation. Let nj be the number of elements in pj; one can obtain a

feasible solution for MP by setting sj = nj, for 1  j  nc. Since the clauses in C(v) are

universal restrictions, for every a 2 DI , we have a 2 (C(v))I , thus only feasible partitions

would have non-zero values.

(() Assume that MP has a feasible solution s. One can construct an interpretation I

for A(v) by creating sj elements in each rIj 2 DI , where rj is a feasible partition satisfying

the clauses in C(v).

6.4 Returning Solution or Conflict Sets

After formulating the arithmetic label as an ILP problem in MP, the primary goal is de-

termining its satisfiability. To pursue this goal, one needs to discover whether there is a

solution to the inequality system.

However, enumerating all feasible partitions makes MP intractable because an expo-

nential number of columns need to be processed and possibly added to A for solving MP.

Chapter 6. Arithmetic Module 111

To address this problem, we solve ILP via a branch-and-bound algorithm, which relies on

Column Generation (CG). CG is an efficient, iterative algorithm for solving linear program

(LP) problems with a large number of variables.

6.4.1 Solving the MP via Branch-and-Bound

Algorithm 1 shows our branch-and-bound method at a high level. In step 2, CG is called.

If there exists no solution, CG returns false, and the corresponding conflict sets (CS) are

calculated by calling the MARCO algorithm 5. If there exists an integral solution, the

algorithm terminates and returns the integer solution (x), steps 3-6.

Algorithm 1 Branch-and-Bound (B&B Algorithm)
Input: An arithmetic label A = (Q, C)
Output: An integer solution for MP; or the conflict set

1: procedure BRANCH-AND-BOUND(Q, C)
2: solution = column-generation(Q, C)
3: if solution is infeasible then
4: return false, CS = ConflictSets(Q, C)
5: else if solution is integral then
6: return true, x = integer solution
7: else
8: var = branchVar(solution)
9: (Q1,Q2, Cnew) = bounded-problems(Q, C, var)

10: return B&B(Q1, Cnew) or B&B(Q2, Cnew)
11: end if
12: end procedure

Otherwise, there exists a solution with at least one non-integral variable. In step 8, a

heuristic is used to find a variable sj with a non-integral value zj on which the branching

is applied. The heuristic chooses sj such that its non-integral value zj is closer to either

Chapter 6. Arithmetic Module 112

bzjc or dzje. Afterwards in step 10, the algorithm is called recursively on the two gener-

ated sub-problems A1 = (Q1, Cnew) and A2 = (Q2, Cnew), where it is assumed that p⇤ is

a new unary predicate such that Q1 = Q [{9bzjcy p⇤(y)}, Q2 = Q [{9�dzjey p⇤(y)}

and Cnew = C [{{p⇤(y)! rj(x, y), rj(x, y)! p⇤(y)}, while rj(x, y) is the partition corre-

sponding to column j.

Column Generation

The column generation algorithm consists of two separate LP problems. The first LP prob-

lem is the restricted master problem (RMP) (defined in (6.21) – (6.24)), in which integrality

constraints on s and g are relaxed from N to R. The second LP is the pricing problem (PP)

(defined in (6.25) – (6.31), which generates the columns of A as needed to decrease RMP’s

objective value.

Restricted Master Problem (RMP)

OV = Min
nc

Â
j=1

brj sj +
n

Â
i=1

gi + M
n

Â
i=1

hi (6.21)

S. T.
nc

Â
j=1

Aijsj + Bigi + hi ./ bi, 1  i  n (6.22)

Â
gi2ḡd

gi  (kd � 1), 1  d  m (6.23)

sj, gi 2 R+, 0  gi  1 (6.24)

Chapter 6. Arithmetic Module 113

CG accepts an arithmetic label A = (Q, C) as input and returns the generated parti-

tions corresponding to the columns of A and the final values of s. Algorithm 2 presents a

high-level version of CG. In order to start CG, it is essential to find an initial feasible solution

with C-satisfying columns for the constraints in RMP.

Algorithm 2 Column-Generation(Q, C)
Input: An arithmetic label A = (Q, C)
Output: Generated partitions and a solution for RMP, if it is feasible; infeasible other-

wise
1: procedure COLUMN-GENERATION(Q, C)
2: Initialize A; b = ∆;P = ∆; RC = �1
3: while RC < 0 do
4: (OV, x, h) = RMP.solve(A, b)
5: w = RMP.duals(A, b)
6: (r, d, RC) = PP.solve(w, C)
7: if RC < 0 then
8: A = merge(A, d)
9: P = merge(P , r)

10: b = append(b, sum(r))
11: end if
12: end while
13: if h == 0 and OV < M then
14: return s,P
15: else
16: return infeasible
17: end if
18: end procedure

We resolve this issue by introducing an n ⇥ 1 vector h of artificial variables hi, each

associated with a constraint in (6.22). By assigning a sufficiently large cost M to each hi

in the objective function (6.21), since it is a minimization problem, one can ensure that if

there exists a feasible solution for the original MP, all these artificial variables would be

equal to zero. Otherwise, if some of these variables are still non-zero on the termination

Chapter 6. Arithmetic Module 114

of CG, it means that the original problem is infeasible.

In step 2, Algorithm 2 initializes A as an empty matrix; the artificial initial solution

is returned as h = b while all elements of s and g are equal to zero. Afterwards, in

each iteration (steps 4-10) RMP is solved for A and b. Consequently, the primal solution

s and the dual values w are calculated and w is used to parameterize the pricing problem

(PP). If CG terminates (steps 13-16), it means RC is no longer negative, RMP’s current

objective value (OV) cannot be decreased anymore, and the generated columns and their

final values of sj are returned. Otherwise, the generated column d is merged into A and b

is updated accordingly (steps 8-10).

Pricing Problem (PP)

RC = Min
k

Ầ
=1

r` �
n

Â
i=1

widi (6.25)

S. T.
n0

Â
s=1

rps 
m0

Â
t=1

rpt + (n0 � 1) (6.26)

di = rpi (6.27)

rC  r>, C(x) 2 D (6.28)

rR  rC (6.29)

r?  0, r> � 1 (6.30)

r`, di 2 {0, 1} (6.31)

Chapter 6. Arithmetic Module 115

The Pricing Problem (PP) generates a new column d with a negative Reduced Cost (RC)

(6.25) to be merged into matrix A in order to decrease RMP’s objective value (6.21). In

constraint (6.25) Âk
`=1 r` is the cost associated with d = [d1, ..., dn]T, in which r1, ..., rk

are binary values representing the partition corresponding to d, and w = [w1, ..., wn] is the

dual solution of RMP. Constraints (6.28) and (6.30) are added to PP if> 2 DS and? 2 DS ,

respectively, and constraint (6.27) is added for each CQ of the form 9./n pi that occurs in

Q.

Providing more information to ARM reduces the risk of returning a solution that will

fail later during the reasoning process. Presenting other information, such as subsumption

and disjointness to ARM, prevents generating infeasible partitions by CG. The variables

r` are used for modelling feasible partitions. Constraints are added to PP to prevent gen-

erating partitions r and columns d that would be infeasible w.r.t. C.

– Atomic clauses of the form 8x, y
Vn0

s=1 ps(x, y) ! Wm0
t=1 p0t(x, y) 2 C are added to PP

as the (6.26) inequality. These constraints model Boolean relations between predi-

cates, such that if all the binary variables rps associated with the predicates in the

clause’s body are equal to one, then at least one of the binary variables rpt associ-

ated with the predicates in the clause’s head has to be one; otherwise all rpt , for

1  t  m0 have to be zero. For example, the atomic clause A(x) ! B(x) 2 C

produces rA  rB.

– Role Subsumptions of the form R(x, y) ! S(x, y) are also added to PP encoded as

(6.26) inequality which produces rR  rS.

– Universal Restrictions of the form 8 y R(x, y) ^ C(y) are encoded as (6.29) con-

straint. The semantics of universal restriction implies that all R(x, y) successors are

Chapter 6. Arithmetic Module 116

instances of C(y). The generated inequality satisfies this semantic by implying that a

partition containing the binary predicate R should also contain the unary predicate

C.

Example 6.4 (Column Generation). This example describes the column generation process

for solving the constraints in Example 4.2. The process starts by producing the RMP based

on artificial variables hi and assigning an arbitrarily large value M = 1000 as their cost.

Accordingly, the RMP 1 would be defined as:

Min 1000
5

Â
i=1

hi (RMP1)

S. T. h1  45

h2 � 30

h3 � 20

h4  2

h5 � 3

Solution: OV = 5000, h = [0, 30, 20, 0, 3]T;

Dual values: w = [0, 1000, 1000, 0, 1000].

Dual values are used as coefficients of d variables in the objective function of the pric-

ing problem (reduced cost). The r variables show whether a particular member of the

decomposition set positively occurs in the newly added partition. These variables are in-

troduced to model the semantics of clauses in pricing problems to prevent the generation

of semantically infeasible partitions. The d variables are associated with the inequalities

Chapter 6. Arithmetic Module 117

and indicate the constraint to which the variable sr has to be added. The variable sr

corresponds to the newly generated partition r.

Through the rest of this example, all variables with a value equal to zero or a zero

coefficient are omitted for simplicity.

Min rp1 + rp2 + rp3 + rp4 + rp5 + rs (PP1)

+ ru + r? + rh + rc + rp + ra + ri

� 1000d2 � 1000d3 � 1000d5

S.T. di = rpi 1  i  4

r?  0

rs + rh  rp1

rp3  rh

rp + ra  rp4

rp2  rh

rp3  ra

ri  rc

rp2  rs

rp2 + rc  1

rp3  rs

rp3  rp + ri + ru

Solution: RC = �2992, d = [1, 1, 1, 0, 0], r = [1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1].

We solve the pricing problem by modelling it in CPLEX. We fix the order of ele-

ments in the decomposition so that the returned binary vector r could be interpreted as

rp1 = 1, ra = 1, rp2 = 1, rp3 = 1, ru = 1, rp5 = 1. As a result, we generate the partition

Chapter 6. Arithmetic Module 118

hp1(x, y), p5(x, y), a(x), p2(x, y), p3(x, y), s(x), u(x), h(x, y)i and add its associated variable

s1 to RMP based on the value of d variables. So RMP is updated as:

Min 1000
5

Â
i=1

hi + 8s1 (RMP2)

S.T. h1 + s1  45

h2 + s1 � 30

h3 + s1 � 20

h4  2

h5 + s1 � 3

Solution: OV = 240, h = [0, 0, 0, 0, 0]T, x = [30]; Dual Values w = [0, 8, 0, 0, 0].

In the objective function of (PP2), the only non-zero dual value is w2 = 8.

minimize Â
pr2D

rpr � 8d2 (PP2)

Solution: RC = �4.0, d = [1, 1, 0, 0, 0], r = [1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0].

Since only the value of d1 and d2 is 1, we add the variable s2 to the first two inequalities

of RMP2 whose cost is further reduced, from 240 in (RMP2) to 200 in (RMP3). This variable

is associated with the partition r = [p1(x, y), p2(x, y), s(x), h(x, y)].

Chapter 6. Arithmetic Module 119

Min 1000
5

Â
i=1

hi + 8s1 + 4s2 (RMP3)

S.T. h1 + s1 + s2  45

h2 + s1 + s2 � 30

h3 + s1 � 20

h4  2

h5 + s1 � 3

Solution: OV = 200, h = [0, 0, 0, 0, 0], x = [20, 10];

Dual values: w = [0, 4, 4, 0, 0]

In the objective function of (PP3) the only non-zero dual values are w2 = 4 and w3 = 4.

minimize Â
pr2D

rpr � 4d2� 4d3 (PP3)

Solution: RC = �1, d = [1.0, 1.0, 1.0, 0.0, 0.0],

r = [1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1].

Since the values of d1, d2 and d3 are 1 we add the variable s3 to the next version of

our RMP which corresponds to hp1(x, y), p1(x, y), h(x, y), s(y)i and reduces the objective

value from 200 to 183 in (RMP3).

Chapter 6. Arithmetic Module 120

Min 1000
5

Â
i=1

hi + 8s1 + 4s2 + 7s3 (RMP3)

S.T. h1 + s1 + s2 + s3  45

h2 + s1 + s2 + s3 � 30

h3 + s1 + s3 � 20

h4  2

h5 + s1 � 3

Solution: OV = 183, h = [0.0, 0.0, 0.0, 0.0, 0.0], x = [3, 10, 17];

Dual values w = [0.0, 4.0, 3.0, 0.0, 1.0].

minimize Â
pr2D

rpr � 3d3 � d5 (PP4)

Solution: RC = 4.44E� 16

All d variables are zero, and the value of the reduced cost is not negative anymore.

Therefore, no new variable can be added to further decrease the objective value of (RMP3).

6.4.2 Finding the Conflict Sets

When the inequality system associated with the arithmetic label is unsatisfiable, we need

to extract the Minimum Unsatisfiable Sets (Conflict Set). The axioms associated with this set

can then be resolved using the resolution rules. To enumerate all conflict sets, we deploy

an optimized algorithm that is based on the close relation between Maximal Satisfiable

Chapter 6. Arithmetic Module 121

Subsets (MSSes) and Minimal Unsatisfiable Subsets (MUSes) [38]. As their name suggests,

the known axioms always hold and will be fully resolved as part of the resolution process

if they are part of the conflict set. Accordingly, we only consider the constraints associated

with the possible axioms as part of the unsatisfiability analysis.

Assume that C = {C1, C2, ..., Cn} is the ordered set of constraints associated with pos-

sible axioms. A given constraint Ci places restrictions on assignments to a problem’s vari-

ables, and Ci is satisfied by any assignment that meets its restrictions. If there exists some

assignment to C’s variables that satisfies every constraint, C is said to be satisfiable; oth-

erwise, it is unsatisfiable.

The Maximal Satisfiable Subset (MSS) produces a satisfiable subset of C with the great-

est possible cardinality. Generalizing MaxSAT by considering maximality instead of max-

imum cardinality yields the concept of a Maximal Satisfiable Subset (MSS):

M ✓ C is an MSS() M is SAT and 8c 2 C \ M : M [{c} is UNSAT

An MSS is essentially a satisfiable subset of C that cannot be expanded without be-

coming unsatisfiable. While any solution to the MaxSAT problem is an MSS, some MSSes

may be smaller than that maximum size. The complement of an MSS is often more di-

rectly useful, and we call such a minimal set (whose removal from C makes it satisfiable

or “corrects” it) a Minimal Correction Set (MCS):

M ✓ C is an MCS() C \ M is SAT and 8c 2 M : (C \ M) [{c} is UNSAT

Again, the minimality is not in terms of cardinality, but rather it requires that no proper

Chapter 6. Arithmetic Module 122

Algorithm 3 grow(seed, C)
Input: Unsatisfiable constraint set C
Input: Satisfiable subset seed ⇢ C
Output: An MMS of C
1: for c 2 C \ seed do
2: if seed [{c} is satisfiable then
3: seed = seed [{c}
4: end if
5: end for
6: return seed

Algorithm 4 shrink(seed, C)
Input: Unsatisfiable constraint set C
Input: Unsatisfiable subset seed ✓ C
Output: An MMS of C
1: for c 2 C \ seed do
2: if seed [{c} is unsatisfiable then
3: seed = seed [{c}
4: end if
5: end for
6: return seed

FIGURE 6.2: The grow and shrink Methods for Finding a MSS or a MUS,
Respectively, of a Constraint Set

subset of M be capable of “correcting” the infeasibility. A related concept, which is re-

quired by our resolution algorithm, is the Minimal Unsatisfiable Subset (MUS):

M ✓ C is an MUS() M is UNSAT and 8c 2 M : M \ {c} is SAT

We consider MUSes in terms of minimizing an unsatisfiable constraint set down to a

“core” reason for its unsatisfiability.

The algorithms for finding MSSes and MUSes of a constraint set C are shown in Figure

6.2. To find an MSS (MUS), the grow (shrink) method starts from some satisfiable (unsat-

isfiable) subset seed ✓ C and iteratively attempts to add (remove) constraints, checking

each new set for satisfiability and keeping any changes that leave the set satisfiable (un-

satisfiable).

Note that the input seed can take simple default values if no particular subset is given.

The grow method can begin its construction with seed = ∆ (guaranteed to be satisfiable),

while shrink can start with seed = C (guaranteed UNSAT). Therefore, seed can be consid-

ered an optional parameter for both.

Chapter 6. Arithmetic Module 123

Algorithm 5 MARCO - (ConglictSets (Q, C))
Input: Unsatisfiable constraint set C = {C1, C2, C3, C, ..., Cn}
Output: MSSes and MUSes of C as they are discovered
1: Map BoolFormula(nvars = |C|) . Empty formula over |C| Boolean variables
2: while Map is satisfiable do
3: m getModel(Map)
4: seed {Ci 2 C : m[xi] = True} . Project the assignment m onto C
5: if seed is unsatisfiable then
6: MSS grow (seed, C)
7: yield MMS
8: Map Map ^ blockDown(MMS)
9: else

10: MUS shrink (seed, C)
11: yield MUS
12: Map ^ blockUp(MUS)
13: end if
14: end while
15: return seed

FIGURE 6.3: The MARCO algorithm for enumerating MSSes & MUSes of a
constraint set

In this research, we deploy the MARCO algorithm [38] for enumerating all MUSes of an

unsatisfiable constraint set C which efficiently explores the power set P(C) by exploiting

the idea that any power set can be analyzed and manipulated as a Boolean algebra.

The idea is that any function f : P(C) ! {0, 1} can be represented by a propositional

formula over |C| variables. This algorithm maintains the function f that tracks “unex-

plored” subsets C0 ✓ C such that f (C0) = 1 iff the satisfiability of C0 is unknown and it

remains to be checked. This function can be viewed as a “map” of P(C) showing which

“regions” have been explored and which have not. Overall, MARCO enumerates MUSes

by repeatedly selecting an unexplored subset C0 2 P(C) from the map, checking whether

C0 is satisfiable, minimizing or maximizing it into a MUS or an MSS, and marking a region

of the map as explored based on that result.

Chapter 6. Arithmetic Module 124

Figure 6.3 contains pseudo-code for the MARCO algorithm. The formula Map is cre-

ated to represent the “mapping” function described above, with a variable xi for every

constraint Ci in C. Since the formula is initially a tautology, it holds in every model, which

means that every subset of C is still unexplored. Given its semantics, any model of Map

can be projected onto C (lines 3 and 4) to identify a yet unexplored element of P(C) whose

satisfiability is currently unknown. If this subset, seed, is satisfiable, then it must be a sub-

set of some MSS, and it can be “grown” into an MSS. Likewise, if it is unsatisfiable, seed

must contain at least one MUS, and it can be “shrunk” to produce one. In either case, the

result is reported (via yield in the pseudocode, indicating that the result is returned, but

the algorithm may continue).

Each result provides information about some region of P(C) that is either satisfiable or

unsatisfiable, and so a clause is added to Map to represent that region as “explored.” For

an MSS M, all subsets of M are now known to be satisfiable, and so models corresponding

to any subset of M are eliminated by requiring that later models of Map include at least

one constraint not in M:

blockDown(M) ⌘
_

i : Ci 62M
xi

Similarly, all supersets of any MUS M are known to be unsatisfiable; supersets of M

are blocked by requiring models to exclude at least one of its constraints:

blockUp(M) ⌘
_

i : Ci2M
¬xi

Eventually, all MSSes and MUSes are enumerated, the satisfiability of every element

in P(C) is known, and MARCO terminates when Map has no further models.

Chapter 6. Arithmetic Module 125

6.5 Summary and Conclusion

The first step is to convert all constraints to inequalities using atomic decomposition. We

then discussed how to find a solution to the resulting ILP without generating an expo-

nential number of variables in advance. Column generation techniques add variables as

needed during the solution process. If no solutions are found by the end of the process,

then the inequality system is unsatisfiable. To capture the consequences of this unsatisfi-

ability, we need to find the minimal unsatisfiable subset that caused it. The next chapter

proves that the proposed algorithm is sound and complete, meaning that it finds all en-

tailed clauses and only entailed clauses.

126

Chapter 7

Key Properties of the Calculus

This section contains proofs for the main properties of the calculus presented in the pre-

vious chapters. Namely, in Section 7.1, we prove the soundness of the proposed calculus

and Section 7.2 proves the completeness of our calculus.

7.1 Proof of Soundness

This section proves the Theorem 5.1, assuming that both G1 and L1 are sound, we next

show that both G2 and L2 are sound as well. To this end, let I = hDI , ·Ii be an arbi-

trary model of O, and consider all possible inference rules that derive a clause in L2 or

modify G2.

(Subs Rule) Assume that the rule is applied as in Table 5.1; we will show that O |=

core(v) ^ Vn
i=1 Ki !

Wn
i=1 Mi _ M. To this end, consider an arbitrary element d 2 DI

such that d 2 (core(v) ^ Vn
i=1 Ki)I . Now L1 is sound for O so, for each 1 6 i 6 n, we

have O |= core(v) ^ Ki ! Mi _ Ai, which implies d 2 (Mi _ Ai)I . If d 2 MI
i for some

1 6 i 6 n, then clearly d 2 (
Wn

i=1 Mi)I . Otherwise, we have d 2 (
Vn

i=1 Ai)I , but then

Chapter 7. Key Properties of the Calculus 127

Vn
i=1 Ai ! M 2 O implies d 2 MI . In either case, we have d 2 (M ^ Vn

i=1 Mi)I . Since d

was chosen arbitrarily, I satisfies the rule’s conclusion, as required.

(Join Rule) Assume that the rule is applied as in Table 5.1; we will show that O |=

core(v) ^ K ^ K0 ! M _M0. To this end, consider an arbitrary element d 2 DI such that

d 2 (core(v)^K^K0)I . Now L1 is sound for O so, we have O |= core(v)^K ! M_C(o),

which implies d 2 (M _ C(o))I . If d 2 MI , then clearly d 2 (M _ M0)I , otherwise, we

have d 2 (C(o))I . But then, following our initial assumption, we have d 2 (C(o) ^ K0)I .

Once again, since L1 is sound for O, we have O |= core(v) ^ C(o) ^ K0 ! M0, which

implies that d 2 (M0)I . So we proved that d 2 (M ^ M0)I holds in either case. Since d

was chosen arbitrarily, I satisfies the rule’s conclusion, as required.

(Fct Rule) Assume that the rule is applied as in Table 5.1; we will show that O |=

O(x) ^ K ! M _ C(x). To this end, consider an arbitrary element d 2 DI such that

d 2 (O(x) ^ K)I . Now L1 is sound for O so, we have O |= O(x) ^ K ! M _ C(o),

which implies d 2 (M _ C(o))I . If d 2 MI , then clearly d 2 (M _ C(x))I . Otherwise, we

have d 2 (C(o))I , which implies that d 2 (O(x) ! C(x))I . Following our assumption

d 2 (O(x))I , so we have d 2 (C(x))I . Therefore, we proved that in either case, d 2

(M _ C(x))I . Since d was chosen arbitrarily, I satisfies the rule’s conclusion, as required.

(Glob Rule) This rule is divided into two branches depending on the preconditions:

Branch 1: Assume that the rule is applied as in Table 5.1; we will show that O |=

core(v) ^Vn
i=1 Ki ^ K0 ^ Kso !

Wn
i=1 Mi _M _M0. To this end, consider an arbitrary

element d 2 DI such that d 2 (core(v) ^ Vn
i=1 Ki ^ K0 ^ Kso)I . Now L1 is sound

for O so, for each 1 6 i 6 n, we have O |= core(v) ^ Ki ! Mi _ Ai, which implies

d 2 (Mi _ Ai)I . If d 2 MI
i for some 1 6 i 6 n, then clearly d 2 (

Wn
i=1 Mi)I .

Chapter 7. Key Properties of the Calculus 128

Otherwise, we have:

d 2 (
n̂

i=1
Ai)

I (7.1)

Meanwhile, L1 soundness for O entails O |= core(v) ^ K0 ! M0 _ O(x), which

implies d 2 (M0 _O(x))I . If d 2 (M0)I , then obviously d 2 (
Wn

i=1 Mi _M _M0)I ,

otherwise we have:

d 2 O(x)I , which implies d = o (7.2)

Then again, considering
Vn

i=1 Ai ^ K ! M 2 L(vo), L1 soundness leads to O |=

O(x) ^ Vn
i=1 Ai ^ K ! M. Moreover, (7.2) implies K ⌘ Kso; so based in the initial

assumption, we have d 2 KI ; which alongside (7.1), (7.2) results in d 2 MI . Accord-

ingly, we proved that in either case, d 2 (
Wn

i=1 Mi _M _M0)I . Since d was chosen

arbitrarily, I satisfies the rule’s conclusion, as required.

Branch 2: Assume that the rule is applied as in Table 5.1; we will show that O |=
Vn

i=1 Ai(o)^Kso ! Mso. To this end, consider an arbitrary element d 2 DI such that

d 2 (
Vn

i=1 Ai(o) ^ Kso ! Mso)I . Now L1 is sound for O so, we have O |= O(x) ^
Vn

i=1 Ai(x) ^ K ! M, which implies d 2 (O(x) ^ Vn
i=1 Ai(x) ^ K)I . Following the

nominals semantics, d 2 O(x)I implies that d = o, therefore we can readily conclude

that d 2 (Mso)I . Since d was chosen arbitrarily, I satisfies the rule’s conclusion, as

required.

(Sigma Rule) Assume the rule is applied as in Table 5.1. Each clause introduced by

the rule is of the form L ! L, so clearly, I |= core(v) ^ L ! L. We next show that the

new edge hu, vi 2 E , with (R, n, z) 2 L(hu, vi) introduced by the rule satisfies the (5.7)

clause in Definition 5.10. To simplify the notation, we denote core(u) and core(v) by unary

Chapter 7. Key Properties of the Calculus 129

predicates A(x) and B(x), respectively. The select function (Definition 5.12) chooses �max

unary predicate B(x) 2 rk. All the unary predicates in rk (directly/indirectly1) originate

from known clauses of the from > ! 9�ny(R(x, y) ^ B(y)) 2 L(u). Accordingly, we

have O |= core(u)! 9�ny(R(x, y) ^ B(y)) as L1 is sound for O. Meanwhile, every unary

predicate C(x) 2 z originates from clauses of the from K ! M ^ 9./ny(R(x, y) ^ C(y)) 2

L(u) or C(x) ! F(x) both of which are included in A(u) so they are satisfied by the

arithmetic solution x(v). But then, we have O |= A(x) ^ 9�ny(R(x, y) ^ V
C2z C(y)) !

9�ny(R(x, y) ^ B(y) ^V
C2z(y)) as required.

(Strict Rule) Assume that the rule is applied as in Table 5.1; we will show that O |=

core(v)! D(o). To this end, consider an arbitrary element d 2 DI such that d 2 (core(v))I .

Now L1 is sound for O so, d 2 A(v). Additionally, following Definition 5.9 O(x) ^

D(x) ! ? is unsatisfiable; so based on Nominals’ semantics, we conclude that d 2

(O(x) ! D(x))I . Since d was chosen arbitrarily, I satisfies the rule’s conclusion, as re-

quired.

(Bottom Rule) Assume that the rule is applied as in Table 5.1; we will show that O |=

core(v) ^ Vm
i=0 Ki ^

Vn
j=0 Kjso !

Wm
i=0 Mi. To this end, let d 2 DI be an arbitrary element

such that d 2 (core(v) ^ Vm
i=0 Ki ^

Vn
j=0 Kjso)I . Since L1 is sound for O, for each 0 6

j 6 n we also have O |= O(x) ^ Kj ! Mj which implies d 2 (
Vn

j=0 Mjso)I . Due to L1

soundness, for each 0 6 i 6 n, we have O |= core(v) ^ Ki ! Mi _ Qi, which implies

d 2 (Mi _ Qi)I . If d 2 MI
i for some 0 6 i 6 m, then clearly d 2 (

Wn
m=0 Mi)I . Otherwise,

we have d 2 (
Vm

i=0 Qi)I . But then Definition 5.9 implies that (
Vn

j=0 Mjso ^
Vm

i=0 Qi)I ⌘ ∆,

which is a conflict. Accordingly, d 2 (
Wn

i=0 Mi)I has to be correct. Since d was chosen

arbitrarily, I satisfies the rule’s conclusion, as required.
1Indirect entailment means that > ! 9�nyR(x, y) ^ F(y) 2 L(u) while there is a known clause F(x) !

C(x) 2 A(u)

Chapter 7. Key Properties of the Calculus 130

(Reach Rule) Assume that the rule is applied as in Table 5.1; we will show that O |=

core(u)^Vn
i=0 Ki ^

Vm
i=0 Bi !

Wm
i=0 Mi _M. To this end, consider an arbitrary element d 2

(core(u)^Vn
i=0 Ki ^

Vm
i=0 Bi)I . Now L1 is sound for O, so for each 1 6 i 6 n, we have O |=

core(u) ^ Ki ! Mi _ 9./ni y (R(x, y) ^ Ai(y)), which implies d 2 (Mi _ 9./ni y (R(x, y) ^

Ai(y)))I . If d 2 MI
i for some 0 6 i 6 n, then clearly d 2 (

Wn
i=0 Mi)I . Otherwise, we

have d 2 (
Vn

i=0 9./ni y (R(x, y) ^ Ai(y)))I . Hence, an element g 2 DI exists such that

hd, gi 2 RI and g 2 (
Vn

i=0 nAi)I . Additionally, since Bi are ground atoms for 1 6 i 6 n

then d 2 (
Vn

i=1 Bi)I implies g 2 (
Vn

i=1 Bi)I . Accordingly, as L1 is sound for O, then

O |= Vn
i=0 Ai ^

Vm
i=1 Bi ! M and as G1 is sound we have g 2 MI . Once again, since M

only contains ground atoms, then d 2 MI . Since d was chosen arbitrarily, I satisfies the

rule’s conclusion, as required.

(Nom Rule) Assume the rule is applied as in Table 5.1. The clauses introduced in

Nominal nodes are of the form C(x) ! C(x), so clearly, I |= core(vo) ^ C(x) ! C(x).

We will show that O |= core(v) ^ K0 ^ K ! M0 _ M _ C(o). To this end, consider an

arbitrary element d 2 DI such that d 2 (core(v) ^ K0 ^ K)I . Now L1 is sound for O so,

we have O |= core(v) ^ K ! M _ C(x), which implies d 2 (M _ C(x))I . If d 2 MI ,

then the rule’s conclusion is readily satisfied, so let d 2 (C(x))I . The L1 soundness for

O also implies that O |= core(v) ^ K0 ! M0 _ O(x), which entails d 2 (M0 _ O(x))I .

Once again, if d 2 (M0)I , then the rule’s conclusion is readily satisfied, so we assume

d 2 (O(x))I . Since, d 2 (O(x))I and d 2 (C(x))I , based on the nominal semantics we

have d 2 (O(x)! C(x))I . Since d was chosen arbitrarily, I satisfies the rule’s conclusion,

as required.

Chapter 7. Key Properties of the Calculus 131

7.2 Proof of Completeness

Through the rest of this section, we assume O to be normalized ALCHOQ ontology,

G = (V , E ,L) to be a completion graph and L to be a complete clause system for G such

that none of the inference rules from Table 5.1 applies to L. Furthermore, let L contain

the set of all literals occurring in O, G or L and let W contain all ground atoms that occur

in G or L. We prove Theorem 5.2 by adapting the standard theorem-proving techniques

from the first-order resolution and existing CB algorithms [49, 57, 16]. The idea is to prove

that if a query clause q = K ! M, which satisfies all the conditions (listed below), is not

derived in the completions graph G; then it is refuted in the ontology O. To this end, we

prove that the following contra-positive claim: O 6|= K ! M holds for each query K ! M

and each node v 2 V , where core(v) ⌘ K such that:

• For each atom A(x) 2 K and each atom A0(x) of the form B(x) such that A0(x) �

A(x), we have A0(x) 2 K.

• K ! L 2⇤ L(v) for each L 2 K, and

• K ! M /2⇤ L(v)

We prove the above claim by constructing a model I of O that refutes each random

query stratifying the above conditions. For simplicity, instead of directly constructing a

model, we first create a pre-model. Our pre-model is a directed graph structure in that

its vertices represent domain elements labelled with sets of literals, and its edges express

role-successor relations between them. In the following, we first introduce the notion of

a pre-model and explain how to convert it into a model in Section 7.2.1. Afterward, we

show how to construct a propositional interpretation in Section 7.2.2 and discuss how

Chapter 7. Key Properties of the Calculus 132

our inference rules allow us to use this construction in Section 7.2.3. Finally, we use these

propositional interpretations to build our pre-model of O based on a complete completion

graph G in Section 7.2.4.

7.2.1 Pre-interpretations and pre-models

This section introduces the notion of pre-interpretations and pre-models of an ontology.

We use these notions to present the subsequent proofs.

Definition 7.1. A set of literals J satisfies a clause K ! M, shown as J |= K ! M if K ✓ J

implies M \ J 6= ∆; otherwise J refutes K ! M, written as J 6|= K ! M.

Definition 7.2. A pre-interpretation is a labelled graph I = (V, E, J) where V is a non-

empty set of nodes and E ✓ V ⇥V is a set of edges. Every node a 2 V is labelled with a set

of literals J(a) ✓ SL, and each edge ha, bi 2 E is labelled with a set of roles J(ha, bi) ✓ SB.

The pre-interpretation I satisfies the following three conditions, where j(a, b) = (R(a, b)^

C(b)).

(I�) For each a 2 V and each literal 9�nb j(a, b), there are at least n edges ha, bi 2 E such

that R 2 J(ha, bi) and C 2 J(b).

(I) For each a 2 V and each literal 9nb j(a, b), there are at most n edges ha, bi 2 E such

that R 2 J(ha, bi) and C 2 J(b).

(Io) There is exactly one node a 2 V such that o 2 J(a).

Chapter 7. Key Properties of the Calculus 133

Pre-interpretation I = (V, E, J) satisfies a clause K ! M (written as I |= K ! M)

if J(a) |= K ! M holds for each node a 2 V; otherwise I refutes K ! M (written as

I 6|= K ! M). Moreover, I is called a pre-model of O if all (normal) clauses in O are

satisfied by I.

Given a pre-interpretation I = (V, E, J), we can construct an interpretation I = (DI , ·I),

where DI is the non-empty domain and ·I is the interpretation function. The construction

of I for all atomic concepts C 2 SU and all atomic role R 2 SB is performed by the follow-

ing equivalences:

DI := V (7.3)

CI := {a | C 2 J(x)} (7.4)

RI := {ha, bi | ha, bi 2 E and R 2 J(ha, bi)} (7.5)

Interpretation I satisfies the following property for each literal L 2 M and each node

a 2 V:

L 2 J(a) implies a 2 LI (7.6)

The property (7.6) holds for atomic concepts and nominals by the definition of CI and

the condition (Io). Moreover, this property holds for literals of the form 9�nb j(a, b) and

9nb j(a, b) due to the conditions (I�) and (I) respectively. However, the converse

of the property (7.6) holds only for atomic concepts and nominals. That is why all nor-

mal clauses in O must have only atomic concepts and nominals in their antecedents, and

Chapter 7. Key Properties of the Calculus 134

queries must have only atomic concepts and nominals in their consequences. Next, we

show that the obtained interpretation I is a model of ontology O.

Lemma 7.1. Assume that I is an interpretation obtained from pre-interpretation I using

equations (7.3) - (7.5). If a clause a is satisfied in I (written as I |= a), then it is satisfied in

I as well (I |= a). Moreover, if pre-interpretation I refutes a query q (written as I 6|= q)

then the interpretation I refutes it as well (I 6|= q).

Proof. Assume an arbitrary normal clause a of the form
Vm

i=1 Ci !
Wn

j=1 Lj that is satisfied

in I, where Ci(x) is an atomic concept or nominal. Also, let a 2 V be an arbitrary node such

that a 2 CI
i holds for each 1 6 i 6 m. Based on (7.4), we have Ci 2 J(a) for each 1 6 i 6 m.

But then, following our assumption, pre-interpretation I satisfies a, so Lj 2 J(a) holds for

some 1 6 j 6 n. Therefore, by (7.6), we have a 2 LI
j for some 1 6 i 6 n. Since we chose a

arbitrary, the interpretation I satisfies a.

For the second part, assume an arbitrary query q of the form
Vm

i=1 Li !
Wn

j=1 Cj(x)

that is refuted in I, where Cj is an atomic concept or nominals. Also, let a 2 V be in an

arbitrary node such that Li 2 J(a) for each 1 6 i 6 m, and Cj 62 J(a) for each 1 6 j 6 n.

But then, a 2 LI
i holds for each 1 6 i 6 m by (7.6), and we have a 62 CI

j for each 1 6 j 6 n

by (7.4); therefore, the interpretation I refutes q.

Corollary 7.1. If there exists a pre-model I of an ontology O that refutes a query q = K !

M, then O refutes the query as well, I 6|= q =) O 6|= q.

Chapter 7. Key Properties of the Calculus 135

7.2.2 Construction of literal interpretations

This section shows how we can use the sets of clauses L(v) to construct the sets J(a) of a

pre-model I = (V, E, J) that satisfies all clause in ontology O but refutes a query Kq ! Mq.

Since our construction is independent of the selected node v; we only consider a single set

of clauses Nt in the first part of this section. We apply the construction on each node vt 2 V

for 1 6 t 6 h based on the following ordering:

Let C1, C2, . . . , Ch be an arbitrary total ordering over SU [SO that extends � such that

Cl(x) ⌘ core(vl), for all 1 6 l, m 6 h we have that:

Cl � Cm implies l < m, and (7.7)

Cl � Cm implies vl � vm (7.8)

Cl 2 Kq implies Cl � Cm (7.9)

Cl 2 SU and Cm 2 SO implies Cl 6� Cm (7.10)

For the construction, we always select the next minimal node vt 2 V , 1 6 t 6 h, so we

only consider a single set of clauses Nt at any time. Throughout the appendix, allow � to

be a literal ordering, Nt to be a set of clauses over L [W and K ! M to be a query clause

over L [W such that:

Chapter 7. Key Properties of the Calculus 136

For each atom A(x) 2 Mq and each atom A0(x)

such that A0(x) � A(x), we have A0(x) 2 M.
(7.11)

K ! L 2⇤ Nt for each literal L 2 K, and (7.12)

K ! M 62⇤ Nt (7.13)

The following definition introduces a notion to determine whether set Nt contains

“sufficiently many” hyperresolution consequences w.r.t literal ordering �:

Definition 7.3. Set Nt is closed under hyperresolution with a clause
Vn

i=1 Li ! M0 (not

necessarily contained in Nt) if, for each set of n clauses Ki ! Mi Li 2 Nt, with 1 6 i 6 n

and Li ⌃ Mi, we have
Vn

i=1 Ki ! M0 _ Wn
i=1 Mi 2⇤ Nt.

Lemma 7.2. Allow a1 and a2 to be arbitrary clauses such that a1 is a strengthening of a2,

then if Nt is closed under hyperresolution with a1, it would be closed under hyperresolu-

tion with a2 as well.

Proof. Let a1 =
Vn

i=1 Li ! M01, then following the notion of strengthening a2 =
Vm

i=1 Li !

M02, where n  m and M01 ✓ M02. We need to prove that for each set of m clauses Ki !

Mi _ Li 2 Nt, with 1 6 i 6 m and Li ⌃ Mi, there exists a strengthening of clause a =

Vm
i=1 Ki ! M02 _

Wm
i=1 Mi in Nt. But then, as Nt is closed under hyperresolution with a1,

we have
Vn

i=1 Ki ! M01 _
Wn

i=1 Mi 2⇤ Nt which is a strengthening of a.

Chapter 7. Key Properties of the Calculus 137

Next, we show how to construct a set of literals J that refutes K ! M but satisfies

every clause a =
Vn

i=1 Li ! M0, such that Nt is closed under hyperresolution with a.

To this end, we essentially adopt the standard resolution theorem-proving technique [49]

followed by [57]. Let L1, L2, . . . , L` be an arbitrary total ordering of L that extends � such

that the elements of M precede all the remaining literals from L. Accordingly, for all i and

j we have:

Li � Li implies i < j, and (7.14)

i < j and Lj 2 M implies Lj 2 M (7.15)

Since M is �-min by (7.11) and L is finite, there is at least one such total ordering. For

each 0 < k  `, let Lk := {L1, ..., Lk}, J0 := ∆, then for each 0 < k  ` we inductively

define Jk as follows:

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

Jk�1 [{Lk} if a clause K0 ! M0 _ Lk 2 Nt

exists such that K0 ✓ K,

M0 \ Jk�1 = ∆, and

M0 ✓ Lk�1,

Jk�1 otherwise.

(7.16)

Assume J := J` \ a. Each set J that is obtained by such a construction is called a literal

interpretation of L w.r.t. Nt and � refuting K ! M. Each clause K0 ! M0 _ Lk 2 Nt that

Chapter 7. Key Properties of the Calculus 138

satisfies the first condition in (7.16) for some k is called a productive clause, which produces

Lk in J. Obviously, every literal in J has to be produced by at least one productive clause

in Nt.

We need to keep track of produced ground atoms to build a pre-model. To this end, let

g be defined as follows:

8
><

>:

J`{x 7! o} \ a if core(vt) = p(o) 2 SO

J` \ a otherwise.
(7.17)

Then we define gvt as the set of all ground atoms generated w.r.t. Nt = L(vt) for

constructing each J. We define the set of global ground atom as Gt = {gv1 [· · · [gvt} for

every 1 6 t 6 h.

Throughout the rest, we proceed as follows: in Lemma 7.3, we prove specific properties

of productive clauses in Nt; in Lemma 7.4 we show that J satisfies every clause K0 ! M0

for which a strengthening exist in Nt and that satisfies K0 ✓ K; in Lemma 7.5 we show

that J refutes K ! M; and finally in Lemma 7.6 we prove that if Nt is closed under �-

hyperresolution with clause a, then J |= a, which is the desired result.

Lemma 7.3. Each productive clause K0 ! M0 _ Lk 2 Nt satisfies K0 ✓ K, M0 \ J = ∆, and

Lk ⌃ M0.

Proof. Assume K0 ! M0 _ Lk 2 Nt is an arbitrary clause that produces literal Lk in J

for some integer k, so it is a productive clause and satisfies the first condition in (7.16).

Accordingly, we have K0 ✓ K, M0 \ Jk�1 = ∆, and M0 ✓ Lk�1. Following the inductive

definition of J we have Jk�1 = J \ Lk�1, so M0 \ J \ Lk�1 = ∆, which can be simplified as

Chapter 7. Key Properties of the Calculus 139

M0 \ J = ∆. Finally, due to 7.14, Lk ⌃ L holds for each L 2 Lk. Therefore, since M0 ✓ Lk�1,

we have Lk ⌃ M0.

Lemma 7.4. Each non-ground clause K0 ! M0 such that K0 ! M0 2⇤ Nt and K0 ✓ K

implies M0 \ J 6= ∆

Proof. Assume that K0 ! M0 is an arbitrary clause such that K0 ! M0 2⇤ Nt and K0 ✓ K.

So, Nt contains a strengthening clause K1 ! M1 of K0 ! M0, for which K1 ✓ K0 and

M1 ✓ M0 hold. If M1 = ∆, then clearly, the clause K1 ! ? is a strengthening of K ! M.

But it is in contradiction with the assumption (7.13) K ! M 62⇤ Nt, so M1 6= ∆. Therefore,

M1 ✓ M0 should contain at least one literal Lk, let k be the largest integer such that Lk 2

M0. So, K1 ! M1 has to be of the form K1 ! M2 _ Lk where M2 ✓ Lk�1. If M2 \ J 6= ∆,

then clearly, M0 \ J 6= ∆ and the lemma is proved. Likewise, if M2 \ J = ∆, then Lk 2 J

would be produced by clause K1 ! M2 _ Lk based on (7.16), which again implies that

M0 \ J 6= ∆, as required.

Lemma 7.5. J refutes K ! M, J 6|= K ! M, which means that K ✓ J and M \ J = ∆ .

Proof. To prove K ✓ J, assume to have an arbitrary literal L 2 K. Then, by (7.12) we have

K ! L 2⇤ Nt. So, a conjunction K0 ✓ K exists for which either K0 ! ? or K0 ! L 2 Nt.

The former is a strengthening of K ! M, so it contradicts the assumption K ! M 62⇤ Nt

from (7.13). Thus, K0 ! L 2 Nt should hold, which produces L 2 J by (7.16) for M0 = ∆.

Chapter 7. Key Properties of the Calculus 140

We prove M \ J = ∆ by showing that the contra-positive claim M \ J 6= ∆ causes a

contradiction. To this end, assume a literal Lk 2 M \ J exists. So, there exists a clause

K0 ! M0 _ Lk 2 Nt that produces Lk 2 J. Thus, it is a productive clause that satisfies the

first condition of (7.16) as M0 ✓ Lk�1 and K0 ✓ K. Additionally, since Lk 2 M, by (7.15) we

have Lk�1 ✓ M; thus M0 [{Lk} ✓ M, which implies that, K0 ! M0 _ Lk is a strengthening

of K ! M. But then, K0 ! M0 _ Lk 2 Nt contradicts the assumption K ! M 62⇤ Nt from

(7.13).

Lemma 7.6. For each clause a for which N is closed under �-hyperresolution with a, we

have J |= a.

Proof. Let a =
Vn

i=1 Li ! M0. Assume that there exist Li 2 J and a productive clause Ki !

Mi _ Li that produces Li 2 J for each 1 6 i 6 n. By Lemma 7.3, we have Ki ✓ K, Mi ^ J =

∆, and Li ⌃ Mi. Since Nt is closed under hyperresolution with a, a strengthening of clause

Vn
i=1 Ki ! M0 _ Wn

i=1 Mi exists in Nt. Furthermore, by Lemma 7.4 and considering that

(
Vn

i=1 Ki) ✓ K, we have (M0 _Wn
i=1 Mi) \ J 6= ∆. Finally, since Mi \ J = ∆ holds for each

1 6 i 6 n, we have M0 \ J 6= ∆. Consequently, as required, we proved that J |= a, as

required.

7.2.3 Properties of the CB inference rules

The following two auxiliary lemmas allow us to apply the construction discussed in (7.14)

– (7.16) to obtain J from the clause system L and the completion graph G = (V , E ,L).

Chapter 7. Key Properties of the Calculus 141

Lemma 7.7 shows that applying the above construction to L(v) produces a set of literals

that satisfies each clause in O. Likewise, Lemma 7.8 states a similar property about the

clauses that participate in the Bottom rule.

Lemma 7.7. For each v 2 V , set L(v) is closed under hyperresolution with each clause

a 2 O.

Proof. Lemma 7.7 follows trivially from Definition 7.3 and the fact that the Subs rule is no

more applicable to L(v).

Lemma 7.8. For arbitrary clauses ai = Ki ! Mi _ Qi 2 L(v) for 0 6 i 6 m and yj =

Kj ! Mj 2 L(vo) for 0 6 j 6 n, where Qi is a disjunction of CQs and Mj contains only

unary atoms, such that Qi 2 CS(v) and O(x) ! Mj 2 CS(v), set L(u) is closed under

hyperresolution with
Vn

i=0 Mjso ^
Vm

i=0 Qi ! ?.

Proof. Consider arbitrary clauses ai = Ki ! Mi _ Qi 2 L(v) for 0 6 i 6 m and yj =

Kj ! Mj 2 L(vo) for 0 6 j 6 n. By definition of clause strengthening, we have subsets

{K0i}m0
i=0 ✓ {Ki}m

i=0 and {M0i}m0
i=0 ✓ {Mi}m

i=0 such that Q0i 2 CS(v). Likewise, following

the clause strengthening, there exist {K0j}n0
j=0 ✓ {Kj}n

j=0 and {M0j}n0
j=0 ✓ {Mj}n

j=0 such that

O0(x) ! M0j 2 CS(v). Since the Bottom rule is not applicable to the clause system L; we

have
Vm0

i=0 K0i ^
Vn0

j=0 K0 jso !
Wm0

i=0 M0i in L(v). So L(v) is closed under hyperresolution

with clause
Vn0

i=0 M0jso ^
Vm0

i=0 Q0i ! ?. According to Lemma 7.2, L(u) is also close under

hyperresolution with
Vn

i=0 Mjso ^
Vm

i=0 Qi ! ? because the former is a strengthening of

the latter clause.

Chapter 7. Key Properties of the Calculus 142

Claim 7.1. Considering each node v 2 V and each clause K ! M, if K ! L 2⇤ L(v) for

each L 2 K and K ! M 62⇤ L(v), then K ✓ L.

Proof. We prove this lemma by showing that the contra-positive claim K 6✓ L can not

hold. So there is at least one literal L 2 K while L /2 L; thus L does not occur in L(v).

Accordingly, K ! L 2⇤ L(v) implies K ! ? 2 L(v) which contradicts the assumption

that K ! M 62⇤ L(v). Therefore, K ✓ L should hold.

7.2.4 Constructing a pre-model

Let G0 = ∆, we define a set of clauses for each node vt 2 V , where 1 6 t 6 h which will

be used for constructing the pre-model:

If core(vt) ⌘ O(x) 2 SO, we define a clause Kt ! Mt such that:

8
>>>>>>>>>><

>>>>>>>>>>:

Kt = Kq and Mt = Mq t = 1

Kt = O(x) [Gt�1{o 7! x} and

Mt = {C(x) 2 SU [SO} otherwise

such that C(x) � O(x) and C(o) 2 Gt�1

(7.18)

Chapter 7. Key Properties of the Calculus 143

If core(vt) ⌘ C(x) 2 SU :

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

define a clause Kt ! Mt t = 1

such that Kt = Kq and Mt = Mq

define a clause K#
t ! M#

t for each incoming

such that K#
t = z [Gt�1 edge # = hw, vti 2 E

M#
t = {DS(vt) \ z} [{O(x) 2 SO | O(x) � C(x)} (R, n, z) 2 L(#)

(7.19)

Theorem 5.2 holds trivially if there is no node v 2 V and no query Kq ! Mq such that

v 0 Kq ! Mq. Thus, we assume that there exists at least one node v 2 V and at least one

query Kq ! Mq that satisfies this condition.

Let’s define I = (V, E, J) as follows:

• Set V is the smallest set that contains a distinguished element b(vt) for each node

vt 2 V and each clause Kt ! Mt such that vt 0 Kt ! Mt and also n distinguished

elements b#
i (vt) for each node vt 2 V , each edge hu, vi 2 E , with (R, n, z) 2 L(hu, vi)

and each clause K#
t ! M#

t such that vt 0 K#
t ! M#

t .

• For each b(vt) 2 V, let J(b(vt)) be an arbitrary literal interpretation over L w.r.t.

L(vt) and G that refutes Kt ! Mt and for each b#
i (vt) 2 V, let J(b#

i (vt)) be an

arbitrary literal interpretation over L w.r.t. L(vt) and G that refutes K#
t ! M#

t .

• Set E is the smallest set that contains n edges hb(u), b#
i (vt), Ri for each element b(u) 2

V and each incoming edge # = hu, vti 2 E with (R, n, z) 2 L(#) such that vt 0 K#
t !

Chapter 7. Key Properties of the Calculus 144

M#
t , where k#

t and M#
t are specified below.

^
K#

t = z [Gt�1 (7.20)
_

M#
t = {DS(vt)� r} (7.21)

Lemma 7.9. If SO 6= ∆, there is at least one element in V.

Proof. The literal ordering among nominals indicates at least one nominal Om(x) 6� SO,

for which Mom ⌘ ?. Based on the construction introduced in 7.2.4, Kom ! Mom has to be

refuted. Otherwise, the ontology is inconsistent. Based on the definition of V there exists

an element b(vom) 2 V w.r.t. vom .

Claim 7.2. The set E is correctly defined – that is, for each element b(u) 2 V and for

each edge # = hw, vti 2 E with (R, n, z) 2 L(#), there are n elements b#
i (vt) such that

J(b#
i (vt) 6|= K#

t ! M#
t , where k#

t and M#
t are specified above.

Proof. Following the definition of V, we create n elements b#
i (vt) 2 V corresponding to

each incoming edge # of vt, unless
V

z [Gt�1 !
W{O(x) 2 SO | O(x) � C(x)} 2⇤

L(vt), which by Definition 5.6 should be included in A(vt), so it is satisfied by the solution

returned by ARM. If this set is empty, the claim is proven trivially, so let’s assume there is

a nominal in the set, so the nominal has to be part of the partition. Constraint (6.7) in MP

ensures that # : n = 1.

Chapter 7. Key Properties of the Calculus 145

Based on the ordering Definition 5.11, there is already an entity b(v) in the graph such

that O(x) 2 J(b(v)). Since the Reach rule and Nom rule are not applicable, z ✓ J(b(v)) and

J(b(v)) \ (DS(v) \ z) = ∆. So, we have proved that E is correctly defined.

Claim 7.3. For each nominal O(x) 2 SO, there is at least one g 2 V such that O(x) 2 J(g).

Proof. Following the initialization step, there is a node vo 2 G, for each nominal O(x) 2

SO, such that core(vo) = O(x). Based on the construction defined in 7.2.4:

• If we have vo 0 Kt ! Mt, then an entity bkt!Mt(vo) is created in V. Following

the initialization step, there is a productive clause > ! O(x) 2 L(vo). Therefore,

O(x) 2 J(bkt!Mt(vo)), as required.

• If vo ` Kt ! Mt, then there is a clause K0 ! M0 2 L(vo) such that M0 ✓ {C(x) 2

SU [SO | C(x) � O(x) and C(o) 2 Gt�1}.

According to Definition 5.11, one of the two following cases is possible:

– C(x) ⌘ Kq: Based on the construction discussed in Section 7.2.4, there always

exists an entity bKq!Mq(v) that refutes the query clause Kq ! Mq. Following

the Definition 5.11, vc where core(vc) = C(x) is the first node in the model

construction procedure, therefore C(o) 2 Gt�1 is produced by the Nom rule.

Accordingly, we have a productive clause K0 ! M0 _O(x) 2 L(vc), that will

add O(x) to J(bKq!Mq(v)), as required.

Chapter 7. Key Properties of the Calculus 146

– C(x) ⌘ O0(x) 2 SO: Following the assumption O0(x) � O(x) and O0(o) 2

Gt�1, an entity b(vo0). By the assumption, there exists a clause K0 ! O0(x) 2

L(vo), since the Glob rule is not applicable, we also have a productive clause

K ! O(x) 2 L(vo0), which produces O(x) 2 J(b(vo0)), as required.

Claim 7.4. For each O(x) 2 SO there is at most one g 2 V such that O(x) 2 J(g).

Proof. Assume there are two entities g1 and g2 such that O(x) 2 J(g1) and O(x) 2 J(g2).

Let K1 ! M1 _ O(x) 2 L(v1) and K2 ! M2 _ O(x) 2 L(v2) be arbitrary produc-

tive clauses generating O(x) in J(g1) and J(g2), respectively. By Lemma 7.3, we have

O(x) 6� M1 and O(x) 6� M2. To simplify the proofs annotation, let core(v1) = C1(x) and

core(v2) = C2(x), where {C1(x), C2(x)} 2 SU [SO. Without loss of generality, we assume

that C1(x) � C2(x).

The initialization step has produced > ! C1(x) 2 L(v1). Since Nom rule is not appli-

cable, we have K1 ! C1(o) _M1 which creates C1(o) 2 G. Also C1(x) ! C1(x) 2 L(vo).

On the other hand, the initialization step also has produced > ! C2(x) 2 L(v2). Since

Glob rule is not applicable, we have K2 ^ C1(o) ! C1(x) _ M2 2 L(v2). Following

Lemma 7.3 and (7.18), we have K2 ^ C1(o) ✓ Kt(v2). In addition, based on the order-

ing defined in (7.7) - (7.10) and Lemma 7.3 the node clause definition (7.18) implies that

Chapter 7. Key Properties of the Calculus 147

C1(x)_M2 ✓ Mt(v2). We proved that Kt ! Mt is not refuted in v2, so there can not be an

entity g2 corresponding to v2 in the graph, which contradicts our initial assumption.

Claim 7.5. Structure I satisfies conditions (I), (I�) and (Io) of pre-interpretation from

Definition 7.2.

Proof. (Property I�) Consider an arbitrary element b#(u) 2 V and an arbitrary literal

9�n y (R(x, y)^C(y)) 2 J(b#(u)); We next show that there are at least n edges hb#(u), gi, Ri

such that 1 6 i 6 n and C 2 J(gi). The Sigma rule does not apply to L(u) so there are

m edges # = hu, vji 2 E with (Rj, nj, z j) 2 L(#) that satisfy the following conditions for

1 6 j 6 m:

m

Â
j=1

nj > n, C(x) 2 z j and, (7.22)

L! L 2⇤ L(vj) for each L 2 z j (7.23)

Let K#
vj

and M#
vj

be as specified in (7.20) and (7.21). The following observation shows

that vj 0 K#
vj
! M#

vj
.

• Consider an arbitrary literal L 2 K#
vj

; we show that K#
vj
! L 2 L(uj). According to

(7.20), we have L 2 z. But then L ! L 2⇤ L(uj) holds by (7.23), which is stronger

than the required K#
vj
! L 2 L(uj).

Chapter 7. Key Properties of the Calculus 148

• Assume for contradiction that K#
vj
! M#

vj
2⇤ L(vj). According to (5.4) in Defini-

tion 6.1 and Definition 5.6, we have clause a = K#
vj
! M#

vj
2⇤ C(u). Following

Lemma 6.1, the found solution satisfies this clause, which clearly implies that a is

satisfied in J(be
i (vj)), however by the definition of V in Section 7.2.4 this clause is

refuted in J(be
i (vj)), which is a contradiction. Consequently we have K#

vj
! M#

vj
62⇤

L(vj) as required.

Proof. (Property I) For contradiction, assume there exist n+ 1 arbitrary edges hb(u), b#
i (vt), Ri 2

E as in the definition of E, where 1 6 i 6 n + 1 as well as an arbitrary literal  n R.C 2

J(b(u)) and C 2 J(b#
i (vt)).

Let K#
vj

and M#
vj

be as specified in (7.20) and (7.21). Following Lemma 7.5 we have

J(b#
i (vt)) 6|= K#

vj
! M#

vj
, so C 2 z holds. Based on the definition of E there should exist n0

edges #t = (hu, vti) with (R, nt, zt) 2 L(#t), 1 6 t 6 n where Ân0
t=1 nt > n + 1.

On the other hand, 9n y (R(x, y) ^ C(y)) 2 J(b(u)) has to be produced by a pro-

ductive clause K ! M _ 9n y (R(x, y) ^ C(y)) 2 L(u) based on the definition of the

arithmetic label, 9n y (R(x, y) ^ C(y)) 2 C(u) holds. So, the found solution satisfies the

9n y R(x, y)^C(y). Since the Sigma Rule does not apply to the graph, one edge is created

regarding each partition hr, ni 2 x(u) the sum of all outgoing edges should be less than

n, which mean that two of the edges in the model are the same.

Proof. (Property Io) This property is derived from Claim 7.3 and Claim 7.4.

Chapter 7. Key Properties of the Calculus 149

Claim 7.6. Pre-interpretation I is a pre-model of O.

Proof. Consider an arbitrary element bKq!Mq(v) 2 D and arbitrary normal clause a 2 O.

By Lemma 7.7 set L(v) is closed under hyperresolution with a, so J(bKq!Mq(v)) |= a by

Lemma 7.6. This holds for arbitrary bKq!Mq(v) 2 D, so we have I |= a. Finally, the latter

holds for arbitrary a 2 O, so I is a pre-model of O.

Claim 7.7. Pre-interpretation I refutes the query clause Kq ! Mq for which there exists a

node v 2 V such that v is complete for Kq ! Mq, Kq ! L 2⇤ L(v) for each L 2 K, and

Kq ! Mq 62⇤ L(v).

Proof. Let Kq ! Mq be an arbitrary query satisfying the preconditions of the claim. Ac-

cording to the ordering defined in (7.7) – (7.10) node v is the first node in the pre-model

construction, t = 0. Following the pre-model construction discussed in 7.2.4, the set of

global ground atoms for this node Gv = ∆.

Regardless of the node type, when t = 0, then vt 0 Kt ! Mt. So, an element b(vt) is

created, by Lemma 7.13 we have J(b(vt)) 0 Kq ! Mq. Therefore, as required, we proved

that I refutes Kq ! Mq.

This section ends with an example illustrating the construction of a pre-model based

on the complete completion graph in Example 5.6.

Chapter 7. Key Properties of the Calculus 150

Example 7.1 (Pre-model Construction). This example shows how to obtain the pre-model,

for Example 5.6 that refutes the query clause q = A(x)! C(x), following the construction

introduced in Section 7.2.4. The pre-model is constructed based on the result of applying

the reasoning algorithm on the completion graph illustrated in Figure 5.5. To prove the

contra-positive claim, we need to show that for any arbitrary query clause, Kq ! Mq, that

is not derived in the completion graph G, we can construct a pre-model of the ontology

that refutes the query clause. Since this query clause is chosen arbitrarily, this holds for

every clause not derived in the completion graph. As proven, the ontology refutes every

clause that is not derived in G. We conclude that all query clauses entailed by the ontology

are derived in the graph.

The construction is an iterative process based on the ordering introduced in Section

7.2.4. The query concept A(x) has the highest priority by (7.9). By (7.19), the query clause

A(x) ! C(x) is accepted as the nodes query K1 ! M1. Since vA 0 A(x) ! C(x), the

pre-model’s element set V, defined in 7.2.4, contains the entity b(vA). Based on the literal

interpretation definition (7.16), the label of this entity J(b(vA)) contains 9 y (R(x, y) ^

F(y) and H(x). While the set of global ground atoms G1 = {B(o), F(o)}. Note that Elim

rule removes the clauses (5.89) and (5.90) because of their strengthening (5.94). The update

in A(vA) triggers the ARM unit, and the completion graph would be updated based on

the new solution by removing hA, Ci.

The nominal O(x) is next in the ordering introduced in Section 7.2.4. The pre-model

Chapter 7. Key Properties of the Calculus 151

construction (7.18) introduces one clause O(x) ^ B(x) ^ F(x) ! ? corresponding to this

node. Since vO 0 O(x) ^ B(x) ^ F(x) ! ?, the element set, V contains the entity b(vO),

by 7.2.4. The literal interpretation (7.16) adds O(x), B(x) and F(x) to the label of this

entity J(b(vO)). Note that (7.19) does not introduce any clauses for node vC, so there are

no entities in V corresponding to this node because it has no incoming edges. By the

definition of E in 7.2.4, hb(vA), b(vO), Ri is the only edge in the pre-model.

b(vA)

J(b(vA)) = {9 y (R(x, y) ^ F(y), H(x)}

b(vO)

J(b(vO)) = {O(x), B(x), F(x)}

R

FIGURE 7.1: Pre-model of example 5.6
refutes the query clause q = A(x)! C(x)

7.3 Time Complexity

Due to the use of the atomic decomposition technique, our algorithm runs in worst-case

double exponential time. However, in DL reasoning, the emphasis is more on practi-

cal performance and scalability than worst-case theoretical complexity. Even worst-case

optimal reasoners for expressive DLs with an exponential time complexity might be im-

practical.

Proposition 7.1 (time complexity). The proposed consequenced-based algorithm has worst-

case double exponential complexity.

Chapter 7. Key Properties of the Calculus 152

Proof. The algorithm can generate } of different clauses in each node, using the symbols in

O, which is exponential to the size of O. Also, at most m clauses might participate in each

inference, which is linear in the size of O. Accordingly, if k is the number of nodes in the

graph, the number of inferences is bound by k⇥ }⇥m, which is exponential. However,

deriving each inference might rely on calling the Arithmetic Module, which is NExpTime-

Complete following Proposition 5.1 (detailed time complexity analysis [66]). Therefore, in

the worst case our algorithm runs in double exponential time.

153

Part III

Implementation and Evaluation

154

Chapter 8

Implementation

To validate the practicality of the proposed calculus described in Chapter 5 and Chap-

ter 6, we implemented it in a new reasoning system called CARON (Consequence-based

Algebraic Reasoning for O (nominals) and N (number restrictions)). CARON currently

targets the SHOQ subset of OWL 2 DL (i.e., it does not support datatypes) for which it

can decide concept satisfiability and concept subsumption and classify an ontology. The

system is written in Java1 and relies on OWL API2 and IBM ILOG CPLEX optimizer3 [14].

Through the rest of this chapter, in Section 8.1, we overview the architecture and main

features of CARON 1.0. In Section 8.2, we describe the Completion Graph data structure and

discuss the inference rules implementation details which enable CARON to reason with

nominals and cardinality restrictions. Finally, Section 8.3 presents the implementation

details of the Arithmetic Module using CPLEX.

1java.version: 17.0.9, java.system.library: JavaSE-1.8
2owl-api version: 5.1.6
3cplex studio version: V12.8.0

Chapter 8. Implementation 155

8.1 Overall Architecture

Figure 8.1 depicts the architecture of CARON, where the reasoning engine operates not

directly on OWL API representations but through a dedicated set of OWL API Bindings

that facilitate seamless translation back and forth.

The CARON Reasoning Engine lies at the heart of the system (Figure 8.1). CARON 1.0

accepts OWL 2 DL ontologies without datatypes and HasKey axioms as input. It functions

in a best-effort mode by default, ignoring unsupported axioms, but can be configured to

raise an exception and halt the reasoning process upon encountering them.

The Ontology Loader is the first stage, transforming OWL axioms into normalized DL-

clauses (defined in Section 4.3). This transformation involves two key steps: converting

axioms to Negation Normal Form (NNF) and applying a structural transformation variant

to generate a set of normalized DL-clauses. Like most DL reasoners, CARON leverages in-

dices to identify clauses relevant to inferences or simplification rules efficiently. Therefore,

the Ontology Indexing phase immediately follows the normalization routine, indexing the

generated DL-clauses.

Once an ontology O is loaded, transformed, and indexed, the Completion Graph Man-

ager creates and saturates a completion graph G to classify the ontology. Following Step

[S1] of Algorithm 6, the Completion Graph Manager initializes a node vC with core C(x) for

each named concept C 2 O. Furthermore, it defines a node ordering for each node, en-

suring that a direct comparison between named concepts (excluding auxiliary predicates)

is not possible. This constraint is paramount for achieving completeness. The node or-

der also mandates that ground atoms assume a position of greater precedence relative to

terms. In contrast, fresh concepts introduced during normalization have a lower priority

Chapter 8. Implementation 156

CARON OWL Model

Ontology
Loader

Completion
G. Manager

Arithmetic
Module

O
W

L
A

PI
B

in
di

ng
s

CARON Reasoning Engine

NNF

Struct.
Trans.

Indexing

Rule
Engine

Completion
Graph

Inequality
Generator

Solver

Conflict
Set

FIGURE 8.1: Architecture of CARON. Boxes represent key components, and
arrows indicate the flow of information.

compared to those found within the original input ontology. These strategically imple-

mented restrictions collectively contribute to the enhancement of the reasoner’s overall

performance.

Indexing is crucial to speed up the application of the Subs rule. CARON maintains

several indexes that can quickly identify the clauses that can participate in the inference

rule. During the ontology indexing phase, ontology O is indexed using index ind1, which

is a multi-map hash table that maps each atomic concept to a set of all DL-clauses of O

that contains that concept in their body. Note that the set of all DL-clauses of O whose

Chapter 8. Implementation 157

body is empty are also indexed using the >(OWLThing) concept as their key.

Finally, for each node v 2 V , we index the node’s label L(v) using a multi-map hash

table ind2 that maps every atomic concept to the set of all clauses in L(v) where that

atomic concept is the maximal atom in their head. Index ind1 contains the DL-clauses in

O and are thus immutable, while index ind2 is updated whenever L(v) is updated.

These indexes are used as follows. Assume we wish to apply the Subs rule to a head

atom A of a clause C. Then, ind1[A] returns the set of clauses whose bodies contain A. For

each clause K ! M and each atom A0 2 K, we query ind2[A0] to identify all the premises

that can participate in the inference. Moreover, the clauses in ind1[>] are added to each

node as soon as it is created.

8.2 Completion Graph Manager

The construction of the completion graph G commences with initializing nodes represent-

ing atomic concepts occurring in the bodies of the query set Q clauses. Additionally, a

node is generated for each nominal within the ontology. Notably, G distinguishes be-

tween two node types: nominal nodes and regular nodes. As their names imply, the core

of a nominal node is a nominal, and the core of a regular node is a regular atomic concept.

Upon creating a node v, we initialize an empty set L(v) to store derived clauses, an auxil-

iary empty queue U (v) for active clauses awaiting processing, and an arithmetic label set

A(v) for relevant ARM clauses. Additionally, an empty predecessor list P(v) is created

and updated through completion graph edges. This list facilitates the efficient application

of the Reach rule later.

Chapter 8. Implementation 158

Algorithm 6 Node v processing steps
UpdateLabels(CLs): If L(v) does not already contain strengthenings of the inference clauses CLs,
add them to L(v) and U (v). Also, update the arithmetic label A if the inference clauses are relevant
to ARM.

[S1] Apply the Initialization Step by adding the initialization clause to L(v) and U (v).

[S2] Apply the Subs rule with ontology clauses of the form > ! M; add all derived clauses to
L(v) and U (v). Also, add the relevant clauses to A(v).

[S3] While U (v) is not empty:

(a) Pick a clause C from U (v); let M be the set of maximal literals in C.

(b) Apply all Subs rule inferences involving a literal in M, ontology clauses, and clauses
in L(v). Assuming CLs is the set of all inference clauses, UpdateLabels(CLs).

(c) Apply all inferences with the Nom, Glob and Join rules involving a literal in M and
clauses in L(v); UpdateLabels(CLs) with the inference clauses.

(d) Erase C from U (v).

[S4] If the arithmetic label A(v) has been updated, call ARM.

(a) If the arithmetic label is feasible, apply the Sigma rule on the solution by propagating
the relevant information to the successor nodes and updating the edges (list P is up-
dated accordingly). Clauses are propagated through the connection between nodes, so
if a connection cannot be established with a node, this means that the node or the con-
necting edge has not been created yet, so the Completion Graph Manager initializes an
appropriate node/edge.

(b) If the returned solution contains any Nominals in a partition, apply the Strict rule and
add the inferences to the to L(v) and U (v) and update the arithmetic label accordingly.

(c) If the arithmetic label is infeasible, apply the Bottom rule on each returned conflict set.
Add the inference clauses to L(v) and U (v) and update the arithmetic label accord-
ingly.

[S5] For each new clause added to L(v), propagate any relevant inference(s) to the precedessor
nodes P using the Reach rule.

Chapter 8. Implementation 159

Following node creation, v undergoes the steps outlined in Algorithm 6. Notably,

the Fct rule, responsible for immediate simplifications after deriving a new clause C, is

exclusive to nominal nodes. Set L(v) utilizes a redundancy index to prevent redundancy.

This ensures that C is only added to L(v) (or U (v) and A(v)) if it is not subsumed by an

existing clause C0. Furthermore, any clauses in L(v) subsumed by C are removed upon

C’s addition, implementing the Elim rule. Since the derivation of new inferences within

each node is independent of the state of other nodes, this part of the algorithm is easily

parallelizable.

When U (v) = ∆ for all nodes v 2 V , the completion graph is fully constructed, and

no active nodes remain in the processing queue. Consequently, the algorithm terminates

and extracts the derived subsumption relations from the completion graph. For atomic

concepts C and D, the inference C v D is made if > ! D(x) 2 L(vC). CARON further

utilizes standard criteria within the graph to determine the consistency of the ontology

O. Specifically, O is inconsistent if > ! ? appears in the label of all nodes or is inferred

within the label of a nominal or the Thing node; otherwise, the ontology is consistent.

8.3 Arithmetic Module Implementation

In the proposed algorithm, ARM is critical in handling the numerical restrictions imposed

by QCRs and nominals. It starts by generating inequalities corresponding to the numer-

ical restrictions in the arithmetic label. Then, ARM verifies the feasibility of the resulting

integer linear problem by either finding a solution to satisfy all these constraints or pin-

pointing the smallest group of unsatisfiable constraints that causes infeasibility.

Chapter 8. Implementation 160

Integer Linear Programming (ILP) models are characterized by an objective function

that must be optimized while adhering to a system of linear constraints. Notably, ILP falls

within the broader domain of Linear Programming (LP), with the distinguishing feature of

imposing integrality constraints on all variables. Integer Programming (IP) problems can

be solved using the widely known Simplex method for LP, extended with the branch and

bound technique to solve the integer constraints. ARM uses IBM ILOG CPLEX optimizer

[14] API in Java to formalize and solve linear problems.

ARM receives A(v) as input, which contains a set of disjunct cardinality restrictions

Q(v) occurring in L(v) and a set of relevant clauses C(v). Completion Graph manager

updates Q(v), whenever a clause containing cardinality restrictions is added or removed

from L(v). Consequently, clos(v) and C are updated. If the ontology contains any nom-

inals, we also create a set of related nominals RO(v) for each regular node v 2 V , which

contains the set of nominals clos(v). On the other hand, every nominal node has a set

of related concepts RC(v) to which it is related. These sets are required for efficiently

updating the clauses in C(v) with nominal clauses (Definition 5.7).

Primarily, ARM starts with assigning a positive integer id number to each cardinal-

ity restriction in Q(v), which is used as their index. It proceeds with defining a Master

Problem and generating LE (less than equal) or GE (greater than or equal) CPLEX ranges

corresponding to at-least or at-most restrictions, respectively. Similarly, it assigns id num-

bers to members of the decomposition set, and ARM continues with defining the Pricing

Problem based on the clauses in C. It then calls the Branch-and-Bound method defined

in Algorithm 1. The B&B algorithm determines the feasibility of the arithmetic label and

returns a solution or the conflict sets, which are handled by Sigma rule and Bottom rule,

respectively.

161

Chapter 9

Evaluation

In this chapter, we discuss the methodology employed to evaluate the performance of

CARON on classification and consistency checking of real-world ontologies. We also eval-

uate CARON’s performance on interesting designed ontologies containing entailments

due to reasoning about QCRs and nominals. In these experiments, we utilize the same

methodology introduced by [62] and followed by [8] and [9]. Section 9.1 describes our

evaluation methodology, including the input repositories and the systems used. Sec-

tion 9.2 delves into the key findings of our experiment and offers a critical analysis, dis-

secting both the successes and shortcomings of the proposed reasoning algorithm, which

provides valuable insights for future research.

9.1 Methodology

We pursue three main objectives in the designed evaluation experiments:

O1 Show that the final implementation is sound and complete. The employed heuristics

and optimizations have not jeopardized these foundational requirements.

Chapter 9. Evaluation 162

O2 Evaluate the efficiency of the proposed ILP-based algebraic reasoning on handling

numerical restriction, namely QCRs, nominals and their interaction.

O3 Compare the efficiency of the proposed algorithm in handling real-world ontologies

with state-of-the-art DL reasoners.

To achieve these objectives, we have selected the following repositories for our exper-

iments:

• Challenging Test Ontologies Repository consists of 155 small ontologies containing

tricky entailments. These ontologies were designed and gathered to test the com-

pleteness and soundness of DL reasoners. We have adapted these ontologies to

match CARON’s supported expressively level, SHOQ.

• The HARD Ontology Repository consists of 886 ontologies with SHOQ expressiv-

ity. These ontologies are gathered and adapted to evaluate the performance of the

HARD reasoner [19]. Find a more detailed description of these ontologies in [18].

• The Canadian Parliament (CP) Ontologies contains 38 ontologies, which are variants

of Canadian Parliament ontology introduced in [18]. The expressiveness of these

ontologies ranges from ELQ to ALCOQ. Some of these ontologies are intentionally

designed to be inconsistent to verify the soundness and completeness of the reason-

ers and to evaluate the impact of ontology consistency on their processing time.

• The Oxford Ontology Repository consists of 799 ontologies. Sizes of the ontologies vary

from ⇠1KB to ⇠1GB, and their expressiveness ranges from lightweight languages

such as DL-Lite and EL to SROIQ(D) [63].

Chapter 9. Evaluation 163

We ended up with 762 ontologies in the Oxford Repository after preprocessing each

ontology by performing the following steps:

1. Syntax Verification. We verified that each ontology could be successfully loaded by

the OWL API 5.1.6 and eliminated all empty ontologies.

2. Decidability Check. We verified the use of complex object properties in QCRs to

ensure decidability. We ignored the complex object properties definitions to obtain

decidable ontologies. A total of 7 ontologies contained axioms violating these re-

strictions.

3. Datatypes Elimination. CARON does not currently support datatype reasoning;

thus, we eliminated datatypes and also ignored all HasKey axioms.

4. ABox Elimination. It is known that in the absence of TBox nominals, eliminating

the ABox from knowledge bases does not affect the result of classification or TBox

consistency. Accordingly, we removed all the ABox individuals that are not TBox

nominals.

We used version CARON 1.0 in our evaluation, which has been described in Chapter 8.

The state-of-the-art reasoners used in the evaluations are HermiT 1.3.8, Konclude v0.6.2,

FaCT++ 1.6.3 and JFact 1.2.2. We performed all the evaluations on an HP DL580 Scientific

Linux SMP server with four 15-core processors and a total of 1 TB RAM. Konclude sup-

ports parallel reasoning; however, since this feature is not yet available in CARON 1.0,

we compared all reasoners with their default configuration and used CPU time to register

timeouts.

Chapter 9. Evaluation 164

For each ontology and each reasoner, we created a fresh process which performs the

following steps:

(i) Load Ontology: Loads the ontology using OWL API

(ii) Instantiate Reasoner: Creates a new instance of the reasoner for the ontology

(iii) Consistency Check: Asks the reasoner to return the TBox consistency result

We set 1000 seconds (⇠16.5 minutes) of CPU runtime as the timeout threshold, checking

the ontology consistency (Step (iii) above); if the reasoning continued beyond the thresh-

old, the process was killed and recorded as timeout. We measured the wall-clock duration

(elapsed time) of the whole process as processing time (i.e. Steps (i) - (iii) above). The con-

sistency check results were compared to verify correctness. All systems and ontologies

used in the experiment are available online. We run the TBox consistency check for all rea-

soners; however, since CARON is a consequence-based reasoner, it is designed to derive

consistency by performing classification. Accordingly, it is not possible to completely dis-

able classification and only verify the consistency. To compare consistency check timing

with other reasoners, we have implemented some heuristics to withdraw the classification

process and return the consistency result as soon as a known consistency result is derived

(e.g. > ! ? in the label of a nominal node entails that the ontology is inconsistent).

9.2 Experiment Results

The processing times for each repository introduced in Section 9.1 are summarised in Fig-

ures 9.1 to 9.4, respectively. For each reasoner, we sorted the processing times in ascending

Chapter 9. Evaluation 165

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

101

102

103

104

105

106

W
al

l-c
lo

ck
pr

oc
es

si
ng

tim
e

(m
s)

.

Hermit
Konclude

Fact++
Jfact

CARON

FIGURE 9.1: Processing Times for 155 Ontologies in Test Repository

order; a value point (x, y) in a line plot represents that the x-th smallest processing time for

that reasoner was y milliseconds. Points where y ' 1000s represent timeouts. The ontolo-

gies in Test, Hard, and Canadian Parliament Repositories are manually labelled with TBox

consistency results. CARON correctly determined the consistency of all the ontologies in

these repositories.

Figure 9.1 shows that on the Test Repository benchmark, CARON is outperforming all

other reasoners by roughly an order of magnitude. CARON’s processing time is inde-

pendent of the number of QCRs and the value within at-most and at-least restrictions.

Although Konclude has the lowest processing time for simple ontologies, CARON is the

only reasoner capable of handling all the ontologies in the Test Repository. While all other

reasoners, including Konclude, end with a timeout for ⇠6% of ontologies. As a result,

CARON has sped up reasoning about Test Repository by a factor of 125, on average, com-

pared to other reasoners. The experiment shows that CARON’s performance has a direct

Chapter 9. Evaluation 166

100 200 300 400 500 600 700

101

102

103

104

105

106

W
al

l-c
lo

ck
pr

oc
es

si
ng

tim
e

(m
s)

.

Hermit
Konclude

Fact++
Jfact

CARON

FIGURE 9.2: Processing Times for 886 Ontologies in HARD Repository

relation with the number of axioms in the ontologies. We believe this is due to the in-

efficient application of the Subs rule, which highly impacts its runtime and degrades its

efficiency in handling larger ontologies.

The ontologies in HARD repository are mainly designed to illustrate a reasoner’s capa-

bilities in handling a large number of QCRs with large values. These are small ontologies

(⇠50 axioms on average) that contain interesting entailments involving the interaction

of QCRs and Nominals. Figure 9.2 summarizes the processing times of ontologies in

this benchmark. This diagram also supports the results from the previous experiment.

CARON is the most stable reasoner to derive entailments that concern number restric-

tions, with no timeouts for ontologies in this repository. There are 80 ontologies in this

repository where all other reasoners timeout while CARON successfully terminates in

less than 1s. Although Konclude has the lowest processing time for simpler ontologies

(low number of QCRs with small values), CARON is the most stable reasoner across all

Chapter 9. Evaluation 167

the ontologies in the repository. Accordingly, CARON is speeding up the reasoning pro-

cess for ontologies in HARD repository by several orders of magnitude (on average by a

factor of ⇠200). Table 9.1 summarizes the total processing times for HARD repository.

Reasoner processing time (s)

Konclude 118,539

CARON 785

Fact++ 113,006

Hermit 306,981

Jfact 98,313

TABLE 9.1: Total Processing Time for 886 Ontologies in HARD Repository

The Canadian Parliament repository represents the members of the Canadian parliament

based on their distribution over Canadian provinces [18]. Figure 9.3 compares the per-

formance of DL reasoners in testing the TBox consistency of variants of this ontology.

The diagram shows that CARON successfully verifies the consistency of all the variants.

CARON performance is a flat line independent of the number and value of QCRs, while

all other reasoners will start timing out by increasing the number/value in the QCRs. Fig-

ure 9.3 shows that increasing the number of nominals still has a high impact on CARON’s

performance due to generating an extensive number of clauses containing ground atoms

by Nom rule. Accordingly, further optimizations are required to make the application of

this rule restrictive.

Figure 9.4 shows that the performance of CARON is competitive with that of well-

established DL reasoners. Except for Konclude, CARON was the only reasoner capable of

Chapter 9. Evaluation 168

5 10 15 20 25 30 35 40

101

102

103

104

105

106

W
al

l-c
lo

ck
pr

oc
es

si
ng

tim
e

(m
s)

.

Hermit
Konclude

Fact++
Jfact

CARON

FIGURE 9.3: Processing Times for 38 Ontologies CP Repository

classifying ontology ID 667 in ⇠50s, which is one of the ontologies with the highest num-

ber of nominals. CARONs performance degrades by increasing the number of concepts

in the ontology. We believe this is caused by the large number of nodes in the completion

graph. Ontologies with large numbers of disjuncts in the axioms were also significant

sources of inefficiency, as the saturation process produced many clauses. This is a well-

known source of performance issues in CB algorithms [9].

In essence, CARON is designed to accelerate deriving entailments involving nominals

and QCRs. However, only 56 normalized ontologies in the Oxford Repository contain QCRs

with values greater than one, out of which only 41 also contain nominals. Besides, there

is no guarantee that there are any entailments that involve these number restrictions.

Chapter 9. Evaluation 169

100 200 300 400 500 600 700

101

102

103

104

105

106

W
al

l-c
lo

ck
pr

oc
es

si
ng

tim
e

(m
s)

.

Hermit
Konclude

Fact++
Jfact

CARON

FIGURE 9.4: Processing Times for 762 Ontologies in Oxford Repository

Although most existing real-world ontologies do not include a large number of num-

ber restrictions, using cardinality restrictions and nominals in designing real-world on-

tologies is an unavoidable requirement in many domains, particularly in modelling struc-

tures with complex objects. The most simple example of QCRs is a model of a hand:

A hand has five fingers, one of which is a thumb. There are numerous real-world do-

mains where using QCRs and nominals is the most natural way and is considered the

best practice by the OWL community, from modelling interstellar space to hockey tourna-

ment rules [1].

So far, expert ontologists have been avoiding the use of these numeric constraints as

most well-known DL reasoners fall short in handling these constructors, especially with

Chapter 9. Evaluation 170

high values in QCRs. Researchers have repeatedly reported that an arithmetically uni-

formed calculus cannot efficiently handle QCRs. This holds regardless of the underly-

ing reasoning technique: tableau-based DL reasoning [28], resolution-based DL reason-

ing [36], hyper tableau-based DL reasoning [41] and consequence-based reasoning [64].

As a workaround for this problem, some ontology designers compensate the use of QCRs

with concrete datatypes.

In summary, our implementation illustrates that CARON has a promising performance

while it is not as mature as other well-established reasoners. Our approach has proved to

be highly effective for handling QCRs and nominals. So, it can be a great complement

for other reasoners to avoid arithmetically uninformed processes of numerical restrictions

imposed by nominals and QCRs. There still appears to be lots of room for optimizing

indexing techniques employed in implementation and better handling large ontologies

with (hundreds of concepts). Note that although the size of an ontology greatly impacts

the reasoning complexity, CARON prototype was not intended to tackle such a complex-

ity.

171

Chapter 10

Conclusions and Future Work

This chapter summarizes the contributions accomplished in this research and proposes

several possible future lines of studies that have opened up as a result of this work.

10.1 Conclusion

In this research, we proposed a theoretically sound and complete reasoning algorithm and

demonstrated practical application by implementing it in the CARON prototype. This

section captures the contributions of this thesis from theoretical and practical perspectives.

10.1.1 Theoretical Contributions

• Extending Consequence-based Reasoners: We proposed the first CB reasoning al-

gorithm for an expressive DL that can efficiently handle the interaction of complex

numerical restrictions imposed by the combination of QCRs and Nominals in [33].

Like other CB reasoners, the proposed calculi can derive all entailed subsumptions

Chapter 10. Conclusions and Future Work 172

by applying inference rules without backtracking. Primarily, we addressed the chal-

lenge of reasoning with global restrictions imposed by Nominals in the context of

a consequence-based approach based on the derivation of local clauses. To allow

having ground atoms and individual names in node clauses, we had to switch to a

stronger logic than DL (a two-variable fragment of first-order logic). We introduced

the required inference rules to exchange information between nominal nodes and

the rest of the nodes in the graph that are not connected via edges.

• Supporting an expressive DL: The proposed calculi provides reasoning support for

SHOQ which supports nominals (O) and number restrictions (N or Q). These two

constructors both impose numerical constraints that may interact with each other.

In [33], we proposed the first CB algorithm for reasoning in expressive description

logic SHOQ.

• Arithmetic Reasoning: QCRs and nominals are two constructors for imposing nu-

merical restrictions. So, our reasoning approach highly benefits an arithmetic encod-

ing for mapping these restrictions into a set of inequalities, the feasibility of which

can be determined using standard Integer Linear Programming algorithms. We also

employed Column Generation (an ILP optimization technique) to resolve the ineffi-

ciency by producing an exponential number of partitions. We formalized the interac-

tion between the Arithmetic Module (ARM) and the Consequence-based inference

engine by introducing secondary (arithmetic) labels for each node to accumulate

numerical restrictions and their related knowledge. It also introduced suitable infer-

ence rules for reflecting the result of ARM in the completion graph.

Chapter 10. Conclusions and Future Work 173

• Minimum Unsatisfiable Subsets We can resolve an unsatisfiable set of numerical

constraints to derive many consequences. However, finding the minimum core un-

satisfiable set has proven challenging as it requires checking the satisfiability of all

its subsets. We employed an innovative algorithm to discover all unsatisfiable min-

imum subsets without enumerating them by introducing a search map explored by

solving its corresponding Integer Linear Problem.

• Prove Correctness The reasoning procedure must ensure soundness and complete-

ness. A correct classification procedure must be sound and complete. A procedure

is sound if every derived subsumption is implied by the input ontology O, and it

is complete if every subsumption implied by O can be obtained by the procedure.

We formally proved the soundness and completeness of the proposed algorithm in

Chapter 7.

10.1.2 Practical Contributions

• We developed CARON as a running prototype reasoner and evaluated its perfor-

mance compared to well-established DL reasoners. To our knowledge, CARON is

the first CB reasoner that employs arithmetically informed reasoning to handle the

interaction of nominals and QCRs.

• We have compared the performance of CARON on checking TBox constancy against

other well-established DL reasoners. Based on the empirical results, CARON offers

competitive performance. At the same time, the algebraic approach proposed in

this research can be considered a suitable complement for other reasoners to enable

arithmetically informed reasoning.

Chapter 10. Conclusions and Future Work 174

• The practical evaluations in Chapter 9 showed that in about 85% of the test cases,

CARON outperforms existing well-established reasoners in testing the consistency

of ontologies that contain interesting entailments involving QCRs and nominals and,

at the same time, speeding up the runtime by 2-3 orders of magnitude. The tests also

show that the current implementation allows ample room for further optimization to

improve reasoning with large ontologies containing large disjunctions in the head.

10.2 Future Work

Based on our research, we believe many open challenges can be addressed via future

studies in this field. This section briefly discusses different open areas for extending this

research.

• More Expressive DLs. An open future next step is to extend algebraic CB reasoning

to more expressive DL languages such as SROIQ, which is the logic foundation for

OWL 2 DL. The DL SROIQ also allows inverse role and role relations in addition

to the constructors supported by CARON. Handling the interaction of nominals,

QCRs, and inverse roles (I) would be the main challenge of such an extension.

• Datatypes. To completely cover OWL 2 DL, another outstanding task is to extend

our proposed calculus with datatypes. So far, there has been little progress in rea-

soning about expressive DLs with concrete domains. However, we believe that this

step is well aligned with the arithmetic technique proposed in this thesis. CARON

reasoner should also be updated to become equipped with datatype-handling capa-

bilities to support Datatypes.

Chapter 10. Conclusions and Future Work 175

• Optimisations for CARON. The empirical evaluations have illustrated that there is

still plenty of room for optimization; in particular, Nominals can also be a source

of problems for CARON due to the derivation of large numbers of ground clauses

in numerous nodes. A simple application of Nom rule imposes a high overhead by

producing many clauses with ground atoms in their head.

• Parallel Reasoning. The introduced completion graph data structure should make

it relatively straightforward to support parallel reasoning. While all local rule appli-

cations can be performed completely in parallel, one needs to set up standing points

to ensure proper data propagation throughout the completion graph.

• Optimized unsatisfiable set. MARCO is an efficient algorithm for finding all min-

imum unsatisfiable sets. However, our current implementation relies on basic grow

and shrink methods to find the core subsets, which are not particularly efficient, and

many improvements can be made on both. This can be accomplished by replacing

the grow and shrink algorithms with some of the state-of-the-art single minimum

unsatisfiable set extraction algorithms.

Based on our observations, we firmly believe that using an algebraic approach is an ab-

solute requirement to handle reasoning with numerical restrictions imposed by nominals

and QCRs in OWL 2 DL. Combining this technique with existing well-established rea-

soners will provide efficient and scalable reasoning with numerical restrictions, allowing

proper use of these constructors when naturally required within a domain.

176

Bibliography

[1] Allemang, D., Hendler, J., and Gandon, F. (2020). Semantic Web for the Working On-

tologist: Effective Modeling for Linked Data, RDFS, and OWL, volume 33. Association for

Computing Machinery, New York, NY, USA, 3 edition.

[2] Artale, A., Calvanese, D., Kontchakov, R., and Zakharyaschev, M. (2009). The DL-lite

family and relations. Journal of Artificial Intelligence Research, 36(1):1–69.

[3] Baader, F. (2003). Terminological cycles in a description logic with existential restric-

tions. In International Joint Conference on Artificial Intelligence, pages 325–330.

[4] Baader, F., Brandt, S., and Lutz, C. (2005). Pushing the EL envelope. In International

Joint Conference on Artificial Intelligence, pages 364–369.

[5] Baader, F., Calvanese, D., McGuinness, D. L., Nardi, D., and Patel-Schneider, P. F.,

editors (2003). The Description Logic Handbook. CUP.

[6] Baader, F., Lutz, C., and Suntisrivaraporn, B. (2006). CEL — A Polynomial-Time Reasoner

for Life Science Ontologies, pages 287–291. Springer Berlin Heidelberg.

[7] Baader, F. and Sattler, U. (2001). An overview of tableau algorithms for description

logics. Studia Logica, 69:5–40.

BIBLIOGRAPHY 177

[8] Bate, A., Motik, B., Cuenca Grau, B., Simančík, F., and Horrocks, I. (2015). Extending

Consequence-Based Reasoning to SHIQ. In Calvanese, D. and Konev, B., editors,

Description Logics Workshop, volume 1350. CEUR-WS.org.

[9] Bate, A., Motik, B., Grau, B. C., Cucala, D. T., Simancik, F., and Horrocks, I. (2018).

Consequence-based reasoning for description logics with disjunctions and number re-

strictions. Journal of Artificial Intelligence Research, 63:625–690.

[10] Bate, A., Motik, B., Grau, B. C., Simančík, F., and Horrocks, I. (2016). Extending

consequence-based reasoning to SRIQ. In Principals of Knowledge Representation and

Reasoning, pages 187–196.

[11] Borning, A. and Freeman-Benson, B. N. (1995). The OTI constraint solver: A con-

straint library for constructing interactive graphical user interfaces. In Montanari, U.

and Rossi, F., editors, Constraint Programming, volume 976 of Lecture Notes in Computer

Science, pages 624–628. Springer.

[12] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., and Rosati, R. (2007).

Tractable reasoning and efficient query answering in description logics: The DL-Lite

family. Journal of Automated Reasoning, 39(3):385–429.

[13] Chinneck, J. W. (2016). Practical Optimization: A Gentle Introduction, chapter 13. Car-

leton University.

[14] Cplex, I. I. (2009). V12. 1: User’s manual for cplex. International Business Machines

Corporation, 46(53):157.

[15] Cucala, D. T., Grau, B. C., and Horrocks, I. (2017). Consequence-based reasoning for

description logics with disjunction, inverse roles, and nominals. In Artale, A., Glimm,

BIBLIOGRAPHY 178

B., and Kontchakov, R., editors, Proceedings of the 30th International Workshop on Descrip-

tion Logics, Montpellier, France, July 18-21, 2017, volume 1879. CEUR-WS.org.

[16] Cucala, D. T., Grau, B. C., and Horrocks, I. (2018). Consequence-based reasoning for

description logics with disjunction, inverse roles, number restrictions, and nominals. In

International Joint Conference on Artificial Intelligence, pages 1970–1976.

[17] Ecke, A., Peñaloza, R., and Turhan, A.-Y. (2014). Completion-based generalization

inferences for the description logic ELOR with subjective probabilities. Journal of Ap-

proximate Reasoning, 55(9):1939–1970.

[18] Faddoul, J. (2011). Reasoning Algebraically with Description Logics. PhD thesis, Concor-

dia University.

[19] Faddoul, J. and Haarslev, V. (2010). Algebraic tableau reasoning for the description

logic SHOQ. Journal of Applied Logic, Special Issue on Hybrid Logics, 8(4):334–355.

[20] Farsiniamarj, N. and Haarslev, V. (2010). Practical reasoning with qualified number

restrictions: A hybrid ABox calculus for the description logic SHQ. AI Communications,

23(2-3):205–240.

[21] Finger, M. and De Bona, G. (2017). Algorithms for deciding counting quantifiers over

unary predicates. In Conference on Artificial Intelligence, pages 3878–3884, San Francisco,

California, USA.

[22] Graedel, E., Otto, M., and Rosen, E. (1997). Two-variable logic with counting is de-

cidable. In Logic in Computer Science, pages 306–317. IEEE Computer Society.

BIBLIOGRAPHY 179

[23] Grosof, B. N., Horrocks, I., Volz, R., and Decker, S. (2003). Description logic pro-

grams: Combining logic programs with description logic. In International World Wide

Web Conference, pages 48–57. ACM.

[24] Haarslev, V. and Möller, R. (2001). Optimizing reasoning in description logics with

qualified number restrictions. In Description Logics Workshop, pages 142–151.

[25] Haarslev, V. and Möller, R. (2001). Racer system description. In International Joint

Conference on Automated Deduction, pages 701–705. Springer.

[26] Haarslev, V., Möller, R., and Turhan, A.-Y. (2001a). Exploiting pseudo models for

TBox and ABox reasoning in expressive description logics. In International Joint Confer-

ence on Automated Deduction, pages 61–75. Springer-Verlag.

[27] Haarslev, V., Timmann, M., and Möller, R. (2001b). Combining tableaux and alge-

braic methods for reasoning with qualified number restrictions. In Description Logics

Workshop, pages 152–161.

[28] Horrocks, I. (2002a). Backtracking and qualified number restrictions: Some prelimi-

nary results. In Description Logics Workshop), volume 63 of CEUR, pages 99–106.

[29] Horrocks, I. (2002b). Reasoning with expressive description logics: Theory and prac-

tice. In International Conference on Automated Deduction, pages 1–15. Springer.

[30] Horrocks, I., Kutz, O., and Sattler, U. (2006). The even more irresistible SROIQ. In

Principals of Knowledge Representation and Reasoning, pages 57–67.

[31] Horrocks, I. and Sattler, U. (2007). A tableau decision procedure for SHOIQ. Journal

of Automated Reasoning, 39(3):249–279.

BIBLIOGRAPHY 180

[32] Hudek, A. K. and Weddell, G. E. (2006). Binary absorption in tableaux-based reason-

ing for description logics. In Description Logics Workshop.

[33] Karahroodi, N. Z. and Haarslev, V. (2017). A consequence-based algebraic calculus

for SHOQ. In Artale, A., Glimm, B., and Kontchakov, R., editors, International Workshop

on Description Logics, volume 1879, Montpellier, France.

[34] Kazakov, Y. (2009). Consequence-driven reasoning for Horn-SHIQ ontologies. In

Boutilier, C., editor, International Joint Conference on Artificial Intelligence, pages 2040–

2045.

[35] Kazakov, Y., Krötzsch, M., and Simančík, F. (2012). Practical reasoning with nominals

in the EL family of description logics. In Principals of Knowledge Representation and

Reasoning, pages 264–274.

[36] Kazakov, Y. and Motik, B. (2008). A resolution-based decision procedure for

SHOIQ. Journal of Automated Reasoning, 40(2):89–116.

[37] Lawley, M. J. and Bousquet, C. (2010). Fast classification in Protégé: Snorocket as

an OWL 2 EL reasoner. In The International Association for Ontology and its Applications,

volume 122, pages 45–49.

[38] Liffiton, M. H. and Malik, A. (2013). Enumerating infeasibility: Finding multiple

MUSes quickly. In Integration of AI and OR Techniques in Constraint Programming.

[39] Minsky, M. (1981). A framework for representing knowledge. In Haugeland, J., edi-

tor, Mind Design: Philosophy, Psychology, Artificial Intelligence, pages 95–128. MIT Press.

BIBLIOGRAPHY 181

[40] Motik, B., Patel-Schneider, P. F., and Grau, B. C. (2008). OWL 2 web ontology lan-

guage: Direct semantics.

[41] Motik, B., Shearer, R., and Horrocks, I. (2009). Hypertableau reasoning for description

logics. Journal of Artificial Intelligence Research, 36:165–228.

[42] Ohlbach, H. J. and Köhler, J. (1998). How to Augment a Formal System with a Boolean

Algebra Component, pages 57–75. Springer Netherlands.

[43] Ohlbach, H. J. and Köhler, J. (1999). Modal logics, description logics and arithmetic

reasoning. Journal of Artificial Intelligence, 109(1-2):1–31.

[44] Ortiz, M., Rudolph, S., and Simkus, M. (2010). Worst-case optimal reasoning for

the Horn-DL fragments of OWL 1 and 2. In Lin, F., Sattler, U., and Truszczynski, M.,

editors, Principals of Knowledge Representation and Reasoning, pages 269–279.

[45] Osumi-Sutherland, D., Reeve, S., Mungall, C. J., Neuhaus, F., Ruttenberg, A., Jefferis,

G. S. X. E., and Armstrong, J. D. (2012). A strategy for building neuroanatomy ontolo-

gies. Bioinformatics, 28(9):1262–1269.

[46] Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., and Rosati, R.

(2008). Linking Data to Ontologies, pages 133–173. Springer Berlin Heidelberg.

[47] Pratt-Hartmann, I. (2008). On the computational complexity of the numerically defi-

nite syllogistic and related logics. Bulletin of Symbolic Logic, 14(1):1–28.

[48] Quillian, M. R. (1967). Word concepts: A theory and simulation of some basic seman-

tic capabilities. Behavioral Science, 12:410–430.

BIBLIOGRAPHY 182

[49] Robinson, J. A. and Voronkov, A., editors (2001). Handbook of Automated Reasoning (in

2 volumes). Elsevier and MIT Press.

[50] Schmidt-Schauß, M. and Smolka, G. (1991). Attributive concept descriptions with

complements. Journal of Artificial Intelligence, 1(48):1–26.

[51] Schulz, S., Cornet, R., and Spackman, K. A. (2011). Consolidating SNOMED CT’s

ontological commitment. Applied Ontology, 6:1–11.

[52] Schulz, S., Suntisrivaraporn, B., and Baader, F. (2007). SNOMED CT’s problem list:

ontologists’ and logicians’ therapy suggestions. Studies in health technology and informat-

ics, 129(Pt 1):802—806.

[53] Schweikardt, N. (2005). Arithmetic, first-order logic, and counting quantifiers. ACM

Trans. Comput. Logic, 6(3):634–671.

[54] Simancik, F., Kazakov, Y., and Horrocks, I. (2011). Consequence-based reasoning

beyond Horn ontologies. Technical report, Oxford University.

[55] Simančík, F. (2013). Consequence-Based Reasoning for Ontology Classification. PhD the-

sis, University of Oxford.

[56] Simančík, F., Kazakov, Y., and Horrocks, I. (2011). Consequence-based reasoning

beyond Horn ontologies. In International Joint Conference on Artificial Intelligence, pages

1093–1098.

[57] Simančík, F., Motik, B., and Horrocks, I. (2014). Consequence-based and fixed-

parameter tractable reasoning in description logics. Artificial Intelligence, 209:29–77.

BIBLIOGRAPHY 183

[58] Sirin, E. (2006). Combining Description Logic Reasoning with AI Planning for Composition

of Web Services. PhD thesis, University of Maryland.

[59] Sirin, E., Grau, B. C., and Parsia, B. (2006). From wine to water: Optimizing de-

scription logic reasoning for nominals. In Doherty, P., Mylopoulos, J., and Welty, C. A.,

editors, Principals of Knowledge Representation and Reasoning, pages 90–99.

[60] Sirin, E., Parsia, B., Grau, B., Kalyanpur, A., and Katz, Y. (2007). Pellet: A practical

OWL-DL reasoner. Web Semantics, 5(2):51–53.

[61] Steigmiller, A., Glimm, B., and Liebig, T. (2014). Optimised absorption for expressive

description logics. In Description Logics Workshop, pages 324–335.

[62] Steigmiller, A., Liebig, T., and Glimm, B. (2012). Extended caching and backjumping

for expressive description logics. In Description Logics Workshop, pages 514–529.

[63] Tena Cucala, D. (2019). Consequence-based reasoning for the Description Logic SROIQ.

PhD thesis, University of Oxford.

[64] Tena Cucala, D., Cuenca Grau, B., and Horrocks, I. (2021). Pay-as-you-go

consequence-based reasoning for the description logic SROIQ. Journal of Artificial

Intelligence, 298:103518.

[65] Tsarkov, D. and Horrocks, I. (2006). FaCT++ description logic reasoner: System de-

scription. In International Joint Conference on Automated Deduction, pages 292–297.

[66] Vlasenko, J., Haarslev, V., and Jaumard, B. (2017). Pushing the boundaries of rea-

soning about qualified cardinality restrictions. In Frontiers of Combining Systems, pages

95–112, Brasília, Brazil.

	List of Figures
	List of Tables
	List of Examples
	Abbreviations
	Glossary
	List of Symbols
	Introduction
	Problem Statement
	Motivation
	Challenges
	Research Objectives
	Outline

	I Foundation
	Background
	Description Logics
	Basics of Description Logic
	Syntax and Semantics

	The DL Family
	Concept Constructors
	Nominals
	Qualified Cardinality Restriction

	Role Constructors
	Role Hierarchies
	Transitive Roles
	Inverse Roles

	Light-Weight DL
	The Horn Fragment of DL

	More Expressive DLs

	DL Inference Services
	TBox Reasoning
	ABox Reasoning

	DL Reasoning
	Tableau-based Algorithms
	Consequence-based Algorithms

	Reasoning Complexity
	Conclusion

	Literature Review
	Extending Tableau-based Algorithms
	Optimizing Tableau-based Algorithms
	Absorption
	Nominal Absorption

	Boolean Constraint Propagation
	Dependency Directed Backtracking
	Caching
	Signature Calculus
	Algebraic Method

	Extending Consequence-based Algorithms
	CB Reasoning for Horn ontologies
	CB Reasoning Beyond Horn Ontologies
	CB Reasoning with Nominals
	Framework for CB Reasoning
	Extending CB Reasoning to SRIQ and SROIQ

	Summary and Conclusion

	II Calculus and Applications
	Preliminaries
	Normalization
	Structural Transformation
	Transform a SHOQ ontology to an ALCHOQ ontology

	First-Order Logic
	Description Logics Clauses
	Used Notations

	Consequence-based Reasoning in SHOQ
	Definition of the Calculus
	Inference Rules
	Subs Rule
	Join Rule and Fct Rule
	Elim Rule
	Glob Rule
	Sigma Rule
	Strict Rule
	Bottom Rule
	Reach Rule
	Nom Rule

	Soundness and Completeness
	Examples
	Summary and Conclusion

	Arithmetic Module
	Arithmetic Label as Input
	Atomic Decomposition
	Deriving the Inequalities
	Returning Solution or Conflict Sets
	Solving the MP via Branch-and-Bound
	Column Generation

	Finding the Conflict Sets

	Summary and Conclusion

	Key Properties of the Calculus
	Proof of Soundness
	Proof of Completeness
	Pre-interpretations and pre-models
	Construction of literal interpretations
	Properties of the CB inference rules
	Constructing a pre-model

	Time Complexity

	III Implementation and Evaluation
	Implementation
	Overall Architecture
	Completion Graph Manager
	Arithmetic Module Implementation

	Evaluation
	Methodology
	Experiment Results

	Conclusions and Future Work
	Conclusion
	Theoretical Contributions
	Practical Contributions

	Future Work
	Bibliography

