
Quantum Magneto-Straintronics Transport in Graphene:
A Realistic Model

Lorena Reis de Lima

A Thesis

in

The Department

of

Physics

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Science (Physics) at

Concordia University

Montréal, Québec, Canada

April 2024

© Lorena Reis de Lima, 2024

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Lorena Reis de Lima

Entitled: Quantum Magneto-Straintronics Transport in Graphene: A Realistic

Model

and submitted in partial fulfillment of the requirements for the degree of

Master of Science (Physics)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr.

Examiner 1
Dr. Pablo Bianucci

Examiner 2
Dr. Saurabh Maiti

Supervisor
Dr. Alexandre Champagne

Approved by
Dr. Valter Zazubovits, Chair
Department of Physics

Approved by
Dr. Pascale Sicotte, Dean
Faculty of Engineering and Computer Science

Abstract

Quantum Magneto-Straintronics Transport in Graphene: A Realistic Model

Lorena Reis de Lima

The main objective of this research project is to develop an applied theoretical model to de-

scribe the quantum transport of a suspended monolayer graphene transistor under the presence of

a magnetic field and unaxial strain. In the literature, we find several theoretical models for study-

ing monolayer and multilayer graphene under several conditions and considering different physical

properties such as spin. Although those proposed models predict interesting physical phenomena,

such as magnetic confinement of particles, they are unrealistic and often incomplete in terms of ex-

perimental design. Here, we present a sophisticated model using a more applied approach, enabling

future realistic experiments and the extraction of important experimental data regarding physical

phenomena such as quantum magneto transport in strained graphene junctions, bridging theory and

experiment. In order to do so, we develop a set of mathematica codes to calculate conductivity for

monolayer graphene, considering both magnetic field – which contributes to the Hamiltonian as a

vector potential- and the uniaxial mechanical strain (x direction) – which contributes with strain

induced potentials. Two main new device geometries are introduced in this thesis: a transistor with

a magnetic field applied to its channel and another with both magnetic field and unaxial mechani-

cal strain. We report that those devices are candidates for quantum electronic components, which

should be of much interest for applications. They have a high on-off ratio and their conductivity is

easily suppressed by the presence of a magnetic field and mechanical strain.

iii

Acknowledgments

Being a scientist is my childhood dream. My first real life contact with a scientist was when I

was 3 years old, in the Heart Hospital’s Children Center, in Sao Paulo, Brazil. I was born with a

congenital heart disease named scimitar syndrome, discovered and first treated by a female scientist

from the Johns Hopkins Children Center, Catherine Neil. I of course didn’t know about her at the

time, but I got to know a cardiologist researcher that had the same name as me, Lorena. She was

one of the many responsible for saving my life. She was also one of the first inspirations I had to

become a scientist - or as my high school philosophy teacher would say, a ”philosopher of nature”.

Thus, to her I give the first acknowledgment of this thesis.

I also couldn’t make it until here without the strong support of my family: My aunts Delcia and

Maria do Socorro, who raised me and are the mothers life brought to me; my brother Artur, who

colored my difficult undergraduate years with his happiness, love and kindness; my grandmother

Maria, who taught me strength and persistence - although I haven’t been very good learner of those

lessons in the last few months.

My sincere thanks go also to the friends I made in the past years, that gave me support, love,

advices and held my hand during the ups and downs of my mental health. Thank you to my friend

Margaret, my favorite astrophysicist and gringa. Thank you to my friends from my undergraduate

years: Ludmila, Felipe, Pedro, Joao Augusto, Joao Valeriano (Vava), Deborah, Vitor, Mariana,

Amanda, Ranier and Tabata. Thank you to my friends that I met in Montreal: Leticia, Murilo,

Rodrigo, Renata and Felipe Alves. Last but not least, thank you to my friends from UFPa: Amanda

Cristina, Gustavo, Clara and Joaquim.

iv

This thesis would never be finished without the constant support, patience, guidance and sci-

ence and life advices from Alex Champagne. Alex is a extremely kind supervisor and an amazing

scientist. Thank you for doing your best to keep me inspired and to go with me through all my dark

and unproductive times. Thank you for giving me the opportunity of coming to Montreal and to do

my master. I also take the opportunity to give a warmthul and sincere thank you to my colleagues

from Alex’s research group: Linxiang Huang, Israel, Amin and Wyatt (that graduated some years

ago). I also would like to thank the Department of Physics from Concordia University, specially ms.

Marie-Anne, prof. Pablo Bianucci, prof. Saurabh Maiti, prof. Re Mansbach, prof. Patrick Doane,

mr. Wentworth Brookes and ms. Nata Zazubovits.

I also would like to thank some professors from University of Brasilia that are very important

to me. Much-missed prof. Cinthia Schwantes, prof. Ivan Ferreira and prof. Qu Fanyao. I wish your

time in earth had been longer and breaks my heart all of you are gone and I couldn’t say goodbye.

Thank you for the unconditional support and inspiration. My sincere thanks to prof. Arsen Melikyan

and prof. Luis de Miranda, who both inspired my love for mathematics.

Last but not less important, I would like to thank my family from Montreal. First, my cat

Lorenzo. He was literally the first friend I had in this city. Although he is extremely clueless, he

is the most lovely and adorable creature that always welcomes me home and gives me reason to

wake up everyday (literally, since he screams for food at 6 am). Thank you to my boyfriend Nathan,

for his love, kindness, for being understanding and encouraging. Thank you to his cat Moo, who I

adopted with much love. Not so much of a thank you to his spider, who tried to kill my cat (actually,

Lorenzo tried to eat her).

The last but not least thank goes to myself. I used to be a curious, rebel and optmistic child/teenager.

I feel like I let this fearless and dreamer version of me go and I need to get her back. I am only

here because of that and I feel like self-doubt and impostor syndrome have spoiled my ability to

recognize that. Thank you, Lorena, and wherever you are, I hope you come back soon, because we

have a PhD to finish.

v

Contents

List of Figures ix

1 Magneto-Transport In Strained Graphene: Why An Applied Model Is Needed? 1

1.1 Motivation to Bridge Theoretical and Experimental Quantum Straintronics 1

1.2 Physics Background To Calculate Ballistic Conductivity in Graphene 3

1.2.1 A Brief Introduction to Graphene . 3

1.2.2 From Pure Theory to Applied Theory: How to Simulate Graphene Transistors? 4

1.3 Experimental Parameters for Modeling Quantum Magneto-Straintronics Transport

in Graphene . 8

1.3.1 Device Parameters . 8

1.3.2 Instrumentation Parameters . 10

1.3.3 Thesis Structure . 12

2 Modelling Ballistic Magneto-Transport Experiments 13

2.1 Applied Theory for Quantum-Magneto Graphene Transistors 13

2.1.1 Deriving the Hamiltonian for Graphene in a Magnetic Field 13

2.1.2 Deriving the Transmission Equation . 15

2.1.3 The Code . 19

2.1.4 Quick Guide on How to Use the Code . 21

2.2 Simulation Results and Predictions . 21

2.2.1 Suppression of Conductance due to a Magnetic Field 22

vi

3 Modelling Strained Magneto-Transport in Ballistic Graphene Experiments 24

3.1 Strained Monolayer Graphene Transistor . 24

3.2 Hamiltonian for Strained Monolayer Graphene in the Presence of a Magnetic Field

and Strain . 26

3.2.1 Adding the Contribution of Strain Potentials to the Magnetic Hamiltonian . 26

3.2.2 The Code . 28

3.3 Results . 30

3.3.1 Conductivity Suppression Under Fixed Magnetic Field and Varying Strain . 30

3.3.2 Linear Change in Conductivity Under Constant Strain and Varying Mag-

netic Field . 31

3.3.3 On-off Ratio . 32

4 Outlook and Conclusions 35

4.1 Main Results, Next Steps and Expected Impact 35

Appendix A Mathematica Codes 37

A.1 Codes Used In Chapter 2 - Transmission Plots . 38

A.1.1 Codes to Test Eigenfunctions Solutions 38

A.1.2 Code to Get the Transmission Amplitude Expression 48

A.1.3 Code to Get the Transmission Polar Plots 51

A.2 Codes Used in Chapter 2 To Calculate the Conductivity With Magnetic Field Only 56

A.2.1 Parameters Mathematica Notebook . 56

A.2.2 Code to Export the Transmission Probability 59

A.2.3 Code to Calculate Conductivity . 65

A.3 Codes Used in Chapter 3 To Calculate the Conductivity With Magnetic Field and

Strain . 68

A.3.1 Parameters for Constant B and Varying Strain 68

A.3.2 Parameters for Constant Strain and Varying B 70

A.3.3 Code to Export the Transmission Probability 72

A.3.4 Code to Calculate Conductivity for Constant B and Varying Strain 76

vii

A.3.5 Code to Calculate Conductivity for Constant Strain and Varying B 80

Bibliography 84

viii

List of Figures

Figure 1.1 Previous work by a former member of our group, on the quantum-straintronics

transport in graphene [1]. Figure 1.1(a) shows a top-view perspective of the graphene

device design used to study the effects of strain on the quantum transport in graphene.

Figure 1.1(b) highlights the geometrical aspects of the experiment, showing how

mechanical strain is added to the suspended channel. 2

Figure 1.2 Some of the important theoretical aspects of graphene: (a) Shows its crystal

structure, (b) from left to right: honeycomb lattice with emphasis on the Bravais lat-

tice, shown in dashed (the lattice made of solid lines is the actual crystal structure).

We can also visualize the cells with real space lattice vectors a⃗1, a⃗2 and nearest

neighbors distances δ⃗1, δ⃗2 and δ⃗3.(c) Shows its energy bandgap obtained via tight-

binding calculations. (d) Shows part of its lattice in the reciprocal space, focusing

on its Brillouin zone. 3

Figure 1.3 Flowchart to depict the structure of the code developed to calculate transport

properties for monolayer graphene transistors. The dashed box indicates where to

add loops for quantities such as strain and magnetic field. 11

ix

Figure 2.1 Cartoon depicting the device developed by merging [2] theory and our ap-

plied model. (a) Shows a representation of how the graphene transistor would look

like. (b) Highlights the physical parameters used to describe the model. Ψin(x) is

the incident electronic wavefunction that comes from the source. The other wave-

functions are the eigenfunctions of the graphene Hamiltonian in each region of the

device. The gold leads were drawn transparent to emphasize that the electrons are

injected into the channel from graphene contacts from the gold directly. 14

Figure 2.2 Comparison between transmission probability graphs obtained by [2] (graphs

in the left) and by our code (graphs in the right). We use the same colors as the orig-

inal author for better visualization. The transmission probabilities are calculated in

angles inside the interval
[
−π

2
,
π

2

]
. 19

Figure 2.3 Flowchart of the code used to calculate the transport properties of a graphene

transistor under a constant magnetic field. 20

Figure 2.4 Graph showing conductance for different values of decreasing magnetic field

in order to show that at low values of B, the model converges to a model with no

strain and no magnetic field, predicted in [3]. The simulation results for the case

with no B field is possible thanks to the work of Linxiang Huang and Andrew

McRae. 21

Figure 2.5 Conductivity signatures for a transistor whose channel is subjected to a uni-

form perpendicular magnetic field. Each curve corresponds to different fixed values

for the magnetic field. The gate voltage ranges from -20 V to 20 V. 23

Figure 3.1 Cartoon deptcing how strain affects the Dirac cones [1]. 25

x

Figure 3.2 Cartoon depicting the device developed with our applied model, combining

unaxial mechanical strain and magnetic field in the channel. (a) Shows a represen-

tation of how the graphene transistor would look like. (b) Highlights the physical

parameters used to describe the model. Ψin(x) is the incident electronic wavefunc-

tion that comes from the source. The other wavefunctions are the eigenfunctions of

the graphene Hamiltonian in each region of the device. The gold leads were drawn

transparent to emphasize that the electrons are injected from the graphene contacts,

not from the gold. 26

Figure 3.3 Flowchart of the code used to calculate G in a graphene transistor subjected

to a perpendicular magnetic field on its channel and to an unaxial strain. 28

Figure 3.4 Suppression of conductivity due to strain at a constant magnetic field B = 1

T. A small quantity of strain (from 0% to 1.25%) was enough to reduce the conduc-

tivity to zero. 30

Figure 3.5 G - VG at various values of B, with strain ϵ = 1%. 31

Figure 3.6 Log(G) curves for different values of strain at B = 1T. 32

Figure 3.7 Log(σ)− ϵ for a quantum-magneto-strained graphene transistor under fixed

values of magnetic field and vate voltage. 33

Figure 3.8 On-off ratio for a quantum-magneto-strained graphene transistor under fixed

values of magnetic field and vate voltage. 33

xi

Chapter 1

Magneto-Transport In Strained

Graphene: Why An Applied Model Is

Needed?

1.1 Motivation to Bridge Theoretical and Experimental Quantum Strain-

tronics

Straintronics in 2D materials - especially in graphene - is an exciting field to explore for many

reasons, such as: tailoring energy and quantum transmission of electrons [4], induction of strong

gauge fields generating pseudomagnetic quantum Hall effects and Landau Levels [5, 6, 7]; valley-

polarized quantum transport [8]. In the literature, one may find a rich variety of experiments and

theoretical models regarding strained graphene [9, 10]. However, when it comes to applied models

that add magnetic fields [11] in strained graphene devices, we still need theories that take into

account realistic physical aspects in order to bridge theory and experiment. In this project, we

aim to develop a realistic applied model for an experimental device that includes both strain [1]

and magnetic field [2, 12, 13]. We focus on developing an applied model that enables us to start

exploring quantum-magneto-strained monolayer graphene transistors. We aim to introduce a theory

that is able to show that is possible to build those type of devices and also that this technology will

1

enable us to manufacture, in the future, better graphene transistors [14, 15, 16, 17]. For example, we

want to show that this new class of transistors has a better on-off ratio, that the magnetic field and

the strain combined makes it easier to control its conductivity, that the presence of the magnetic field

will make it possible to build high quality graphene transistors with less mechanical strain applied,

when compared with other strained transistors in the literature [1].

In one of our group’s recent work [1] we explored Graphene Quantum Strain Transistors (GQST)

by proposing a realistic experimental platform for uniaxial strain in ballistic graphene. The device

consisted in a suspended GQST, where unaxial mechanical strain could be applied in the graphene

crystal acting as the channel of the transistor. This work compiles some of the most recent efforts

to control quantum transport in graphene by means of a mechanical strain. It also gives us space to

think about what possible effects could be observed if we took into account not only the presence

of a strain induced gauge potentials [18], but also the contribuition of a real external magnetic field

applied to the sample. How easy would it be to control both quantum and magnetic transport prop-

erties? Could we observe exciting effects such as Landal Levels (LL) and the Quantum Hall Effect

(QHE)?Which additions to the theory would be necessary? Those are the questions that guided and

inspired the development of the present thesis.

Figure 1.1: Previous work by a former member of our group, on the quantum-straintronics transport
in graphene [1]. Figure 1.1(a) shows a top-view perspective of the graphene device design used
to study the effects of strain on the quantum transport in graphene. Figure 1.1(b) highlights the
geometrical aspects of the experiment, showing how mechanical strain is added to the suspended
channel.

2

Figure 1.2: Some of the important theoretical aspects of graphene: (a) Shows its crystal structure,
(b) from left to right: honeycomb lattice with emphasis on the Bravais lattice, shown in dashed
(the lattice made of solid lines is the actual crystal structure). We can also visualize the cells with
real space lattice vectors a⃗1, a⃗2 and nearest neighbors distances δ⃗1, δ⃗2 and δ⃗3.(c) Shows its energy
bandgap obtained via tightbinding calculations. (d) Shows part of its lattice in the reciprocal space,
focusing on its Brillouin zone.

1.2 Physics Background To Calculate Ballistic Conductivity in Graphene

1.2.1 A Brief Introduction to Graphene

Graphene is a bidimensional material made of carbon atoms. Its crystal structure has the form

of a honeycomb. Its lattice has a spacing of
√
3a, were a is the spacing between neighboring atoms.

Its basis contains two atoms per unit cell, labelled as A and B, generating two sub-lattices, as shown

in figure 1.2.(a).

Graphene electronic transport can be modelled by a Dirac Equation, where the Fermi velocity

plays the role of the limit velocity of charge carriers. Using a tight-binding approach, one may find

3

its energy dispersion is:

E(k) = ±|γ|

√
3 + 2

[
cos

(
3akx

2
√
3
− aky

2

)
+ cos

(
3akx

2
√
3
+

aky
2

)
+ cos (aky)

]
. (1.2.1)

A graphic visualization of 1.2.1 is given in Figure 1.2.(a).

In terms of the Dirac equation, the graphene Hamiltonian can be written as:

Ĥ = −ivF h̄σ⃗ · ∇⃗ . (1.2.2)

VF corresponds to the Fermi velocity of the charge carriers, h̄ is the Planck constant and σ⃗ is the

Dirac matrix operator.

When developing an applied theory to describe graphene transistors, Equation 1.2.2 will be

the key equation for our calculations. We will modify this Hamiltonian for the problems we want

to solve (for example, strained graphene), by adding the apropriate potentials which contain the

information of strain, magnetic field, etc [15].

In the following Chapters, we will discuss in details how these modifications take place.

1.2.2 From Pure Theory to Applied Theory: How to Simulate Graphene Transis-

tors?

In order to go from pure theory to a device in the real world, we have to be able to modify the

graphene Dirac Equation following the correct steps and adding the correct experimental parameters

to the Equation. The steps done in the present work can be divided as: writing down the correct

Hamiltonian with the correct added potentials; identifying the correct boundary conditions for the

case we are working on; solving the eigenvalue problem to get the eigenfunctions for each region

of the device (source, channel and drain); with the eigenfunctions, solve the boundary condition

problem to get an Equation for the transmission amplitude; getting the transmission probability by

taking the modulus square of the transmission amplitude; summing the transmission probability of

all the transmission modes to get the total conductance or conductivity.

In order to clarify our methods, below we give a detailed example on how to follow these steps.

4

We give the example of an unstrained graphene device, a known problem solved by Tworzydlo et

al. [3].

The Hamiltonian

The Hamiltonian describing an unstrained graphene device at low energies is given by the fol-

lowing Equation:

h̄vF
i

σx∂x + σy∂y 0

0 σx∂x − σy∂y

Ψ = EnΨ . (1.2.3)

This is the full Hamiltonian, meaning it takes in consideration the contribution of the wavefunctions

from the K and K’ Dirac points in graphene. However, the valley degeneracy allows us to rewrite

the Hamiltonian in terms of only one of the symmetry points - e.g., the K point [3]. Thus, Equation

1.2.3 is rewritten as:

h̄vF

 0 k̂ − iq̂n

k̂ + iq̂n 0

Ψ = ÊnΨ . (1.2.4)

Here, the index n stands for the quantization of the problem, i.e., it corresponds to the n−th modes,

as detailed by [3]. −i∂x was replaced by k̂ and −i∂y was replaced by q̂n.

Solving for Eigenfunctions

With Equation 1.2.4 in hands, we can now diagonalize the Hamiltonian to obtain the eigenfunc-

tions. First, we need obtain the eigenenergies, by using the known linear algebra diagonalization

method:

Det|(H − EnI)| = 0 , (1.2.5)

where H is given by 1.2.4, En is the set of eigenenergies and I is the identity matrix with the same

dimensions as our Hamiltonian. Performing the calculation, we obtain:

Ên = ±h̄

√
k̂2 + q̂2n . (1.2.6)

5

Using Equations 1.2.4 and 1.2.6, we solve in Mathematica for the plane wave solutions of the

Hamiltonian:

Ψqn,y,k,x = an

 1

± k + iqn√
k2 + q2n

 exp (iqny) exp (ikx) , (1.2.7)

Where q̂n and k̂ are, respectively, the y and x component of the linear momentum operator.

Solving the Boundary Problem: Transmission Probability and Conductance

Using the eigenfunctions obtained for the unstrained graphene Hamiltonian, we can now define

the boundary condition Equations to obtain the transmission amplitude. Basically, we are solving

a quantum barrier problem. We imagine the incident wavefunction coming from the left (in ex-

perimental terms, the charge carriers coming from the device’s source), at some energy En, in the

n− th mode. This incident wave is attempting to go through the channel and the drain. The regions

(source, channel, drain) are defined, respectively, as region I (x < 0), region II (0 < x < L) and

region III (x > L):
ΨI , for x < L

ΨII , for 0 < x < L

ΨIII , for x > L

, (1.2.8)

where:

ΨI = Ψqn,y,k,x + rnΨqn,y,−k,x , (1.2.9)

ΨII = αnΨqn,y,k̃,x
+ βnΨqn,y,−k̃,x , (1.2.10)

ΨIII = tnΨqn,y,k,x−L , (1.2.11)

The k and k̃ correspond, respectively, to the value of k̂ in the scattering state incident from the left

at energy E and the value of k̂ when it reaches the n− th mode. If this were the strained case, they

would represent k̂ for the unstrained and unstrained case, and q̃n = qn − Ay, were Ay is the strain

induced potential.

The parameters rn, tn, αn and βn correspond, respectively, to the reflection and transmission

6

coefficients and constants associated with the normalization of the wavefunction. L is the length of

the device, usually of the order of 102 nm.

Using the continuity of the wavefunction,

ΨI

∣∣∣∣
x=0

= ΨII

∣∣∣∣
x=o

, (1.2.12)

ΨII

∣∣∣∣
x=L

= ΨIII

∣∣∣∣
x=L

, (1.2.13)

and solving the two Equations above for tn, the transmission amplitude is found as:

kk̃

kk̃ cos (k̃L)− i(−q2n +
√
(k2 + q2n)(k̃

2 + q2n)) sin (k̃L)
. (1.2.14)

Using the fact that Tn = |tn|2, the transmission probability is given by:

k2k̃2

k2k̃2 cos (k̃L)
2
+ (−q2n +

√
(k2 + q2n)(k̃

2 + q2n))
2 sin (k̃L)

2
. (1.2.15)

After the transmission probability is found, one can get the conductance G, by summing over all of

the possible transmission modes:

G = g0

Nmax−1∑
n=0

Tn , (1.2.16)

where g0 =
4e2

h
. The conductivity is given by:

σ = G× L

W
. (1.2.17)

In Equation 1.2.16, Nmax corresponds to the maximum number of transmission modes, set by

contact doping. This quantity is given by:

Nmax =
|EF |
h̄vF

W

π
+

1

2
. (1.2.18)

The parameters EF and W correspond, respectively, to the Fermi energy and the width of the device.

7

1.3 Experimental Parameters for Modeling Quantum Magneto-Straintronics

Transport in Graphene

Our main goal is to be able to calculate the G (or also σ) in our simulated devices, given a

set of tunable parameters. For the case of a monolayer graphene transistor that is suspended and

strained, the tunnable parameters are gate voltage (VG) and mechanical strain (ϵmech). When the

magnetic field is added, the field is also one of the tunnable parameters. In this section, we describe

the parameters needed to build our theory.

1.3.1 Device Parameters

Length (L) and Width (W)

The dimensions of the graphene chip are very important parameters and sometimes can be

limited by the theory. Here, we refer to the length L as the x-dimension of the graphene channel

in our transistor. In real devices produced by our group, L is usually of the order of 90 nm. For

computational simulation, this real value can be used, but also replaced by some value of the order

of 100 nm, in order to reduce the running time of the code.

The width W refers to the width of the channel, in experiments it is usually around 640 nm, but

in simulations, it can be fixed at 1000 nm, in order to facilitate calculations.

Fermi level (µCH), Strains (ϵ, ϵ0) and Gate Capacitance (cG)

The Fermi level in the channel (µCH) is one of the most important parameters that enables us to

study the charge conductance of the device. This potential is usually adjusted by the value of gate

voltage. It also depends on the charge doping from impurities present in the device channel (nimp).

How much we can tune µCH will be dictated by the gate capacitance (cG), which affects the density

of charge carriers due to electrostatic gating (ntot). If there is no strain and nimp = 0, µCH , ntot

and cG are given, respectively, by:

µCH = h̄vF
√

πAbs[ntot] , (1.3.1)

8

ntot =
cG
e
(VG − VD) , (1.3.2)

cG =
ϵvacϵSiO2

dSiO2ϵvac + dvacϵSiO2

. (1.3.3)

ϵvac = 8.85× 10−12 F/m and ϵSiO2 = 3.9× 8.85× 10−12 F/m are respectively the permittivity of

vacuum and the permittivity of SiO2, while dvac = 200 nm and dSiO2 = 100 nm in experiments.

For simulation purposes, we usually assume the silicon oxide thickness is 0 (to maximize the energy

range) and that the thickness of the vacuum is around 50 nm. With those values, we get cG =

1.7× 10−4 Farad/m2.

The gate voltage range is usually between −15 V and 15 V. Later in this thesis you will see that

this range can slightly change due to some restrictions in the model, or because we needed to reduce

the code running time, and other details which will be later introduced.

In the Mathematica code, we use the contact doping to be of the order of 0.1 eV (or 0.087 eV).

However this value can vary. Our previous experiments show that µCH ≈ 55 meV [19].

When strain is applied to the device, the Equation for ntot will change. The strain will enter

the Hamiltonian as an scalar potential, originated both from the ϵmech applied to the sample and

ϵthermal, that is a built in strain due to thermal contraction. This latter one remains constant during

the experiments.

Usually, the total strain ϵtot ranges from 0% to 3%. As we will see later in this thesis, because

of the presence of the magnetic field, only a small amount of strain will be needed to control con-

ductivity. In experiments, ϵthermal ≈ 1.3%, however in our codes we usually consider it to be zero

since, at the moment, it is not within the scope of this work to deal with the thermal contributions.

Given those details, when considering strain, ntot becomes:

ntot =
cG
e
(VG − VD) + sign[gϵ]

gϵ(1− ν)(ϵ+ ϵ0)
2

π(h̄vF)2
, (1.3.4)

where ν is the Poisson ratio [20] and gϵ is the change in the work function per percent of strain [21].

9

1.3.2 Instrumentation Parameters

The Mechanical Strain (ϵmech)

The mechanical strain will depend on several experimental parameters, such as the dimensions

of the sample, the clamps put on the device, how much the sample is bent by the means of the push

screw. When the screw is pushed (z-direction), the sample will be stretched in the x-direction, i.e.,

the gold clamps will move apart by a certain dx (see Figure 1.1). This dx is given by:

∆x =
3ut

D2
∆z , (1.3.5)

where D = 8.18nm, u is the suspension length and t is the thickness of the SiO2 wafer. Also,

ϵmech =
∆x

L
. (1.3.6)

The Magnetic Field

The magnet used in Champagne’s laboratory are made of Helmoltz superconducting coils, en-

abling us to produce large fields. The sample is placed inside the cilyndrical bore (interior of the

magnet), and is subjected to a uniform magnetic field perpendicular to the sample (z-direction). The

magnet can produce a field up to 9 T.

In terms of calculations, the magnetic field enters the Hamiltonian as a vector potential. For our

simulations, due to theory limitations that will be explained later, we were limited to fields up to

2.03 T.

What Does the Code to Get the Conductivity Looks Like?

With all of these important paramaters and theoretical background, a code can finally be written.

The code language is chosen to be Mathematica. The code is actually divided in three Mathematica

notebooks: ”Parameters”, ”Transmission Equation” and ”Conductivity”. The Parameters notebook

is filled with all the relevant experimental parameters and physical constants. It also defines arrays to

store data for conductivity, Fermi energy, gate voltage and other parameters related to the potentials

10

added to the hamiltonian (for example, mechanical strain and magnetic field). The Transmission

Equation notebook solves the boundary condition problem to get the transmission amplitude, taking

its modulus square to get the mode transmission, and then exports the simplified version of the

equation to a mathematica file that is going to be read in the conductivity code. The Conductivity

code uses the parameters and the mode transmission to calculate the transmission over all modes

(conductance), the conductivity (Equation 1.2.17), Fermi energy, the strain, the magnetic field and

in some cases the Fano factor. A flowchart of the code is shown in Figure 1.3. Inside the for loops,

conductance
code

experimental
parameters

Transmission
 equation

start

import

define
Tn modes

increase
strain

increase
Vg

sum over
Tn modes

export
data stop

For
loop

Figure 1.3: Flowchart to depict the structure of the code developed to calculate transport properties
for monolayer graphene transistors. The dashed box indicates where to add loops for quantities such
as strain and magnetic field.

quantities such as the density of states, Fermi energy in the contacts, charge carriers density, vector

potentials along y-direction in each Dirac cone, amongst other quantities, are calculated, in order to

get the transmission in terms of these experimental parameters. This is essentially what makes the

simulation closer to real world experiments.

All the codes are available in this thesis, in the Appendix A. Mathematica files of the codes can

be provided by the authors upon reasonable request.

11

1.3.3 Thesis Structure

This thesis is organized in 4 Chapters. The first Chapter introduces graphene, the motivations

of the work, gives an outlook of the state of the art in terms of an applied theory to model ballistic

transport in graphene, discuss the main parameters (device and instrumentation) necessary to build

this theory and the step-by-step general guide to calculate conductivity.

In Chapter 2, we start from a theory to describe the magneto-transport of Dirac fermions in

graphene, and we expand that theory by adding experimental parameters to it, in order to calculate

conductance.

In Chapter 3, we combine the magneto-transport theory developed in Chapter 2 with the strain-

tunable transport theory developed previously by [1]: we add strain to the magneto-transport. This

chapter is dedicated to introduce an applied theory to describe the quantum-magneto-strain transport

in a graphene transistor.

In Chapter 4, we give an outlook of the impact of this thesis and give some ideas on how to

continue this project. We also highlight the main results obtained in this research.

In the Appendix A, we provide the Mathematica notebooks in PDF format. We added them in

order of utilization and we will refer to them in the apropriate chapters and sections.

12

Chapter 2

Modelling Ballistic Magneto-Transport

Experiments

In this Chapter, we add magnetic field to the graphene Hamiltonian, for a graphene transistor

with magnetic field in the channel of the device. We solve for the wavefunctions in each region

(source, channel, drain), solve the quantum barrier problem with the apropriate boundary conditions,

get the transmission expression and use it to calculate the conductance of the transistor. This is a

new contribution, since there was no previous work, to the best of our knowledge, which did this

kind of calculation for an applied device including the parameters introduced in Chapter 1.

We also verify that this magneto-transport calculation agrees with the previous transport results

when there is no magnetic field [3, 1, 22]. Finally, we show some simulation results for conductivity

and we discuss the data obtained.

2.1 Applied Theory for Quantum-Magneto Graphene Transistors

2.1.1 Deriving the Hamiltonian for Graphene in a Magnetic Field

In this problem, we have a monolayer graphene device, where the channel is submited to a

static ẑ magnetic field (see Figure 2.1), which is oriented perpendicular to the graphene plane [2].

However, B = 0 in the source and in the drain of the simulated device. We then have a quantum

magnetic barrier to solve, similar to the standard problems of quantum barriers we find in quantum

13

B

Si Chip

Channel lenght (L)-d d

W

(a) SiO2

Gold

(b)

VB

VG

Figure 2.1: Cartoon depicting the device developed by merging [2] theory and our applied model.
(a) Shows a representation of how the graphene transistor would look like. (b) Highlights the phys-
ical parameters used to describe the model. Ψin(x) is the incident electronic wavefunction that
comes from the source. The other wavefunctions are the eigenfunctions of the graphene Hamil-
tonian in each region of the device. The gold leads were drawn transparent to emphasize that the
electrons are injected into the channel from graphene contacts from the gold directly.

mechanics textbooks. A sketch of the experimental device is shown in Figure 2.1. For simplicity,

we do not take into account the electronic spin degree of freedom. We model the problem using the

Dirac equation formalism, as shown in the Equation 2.1.1:

σ⃗ · [p⃗+ e

c
A⃗(x, y)]Ψ(x, y) = EΨ(x, y) . (2.1.1)

The σ⃗ represents the Pauli Matrices – in this problem, we take into consideration only σx =0 1

1 0

 and σy =

0 −i

i 0

. The eigenvectors Ψ(x, y) are spinors, given by:

Ψ(x, y) =

Ψ+

Ψ−

 . (2.1.2)

14

Using the second Landau gauge, we write the vector potential as

A⃗(x, y) = A(x)ŷ , (2.1.3)

with the following relation between the magnetic field and the vector potential:

A(x) = Bxŷ . (2.1.4)

Given that the transverse momentum p⃗y is conserved and using the Pauli Matrices, we can rewrite

Equation 2.1.1 as the following set of coupled Equations:

[∂x ± py ±
e

c
A(x)]Ψ±(x) = iEΨ∓(x) . (2.1.5)

We can write this system of coupled Equations as a 1 dimensional Schrödinger decoupled Equation:

[
∂2
x − V±(x) + ϵ2

]
Ψ±(x) = 0 , (2.1.6)

where

V±(x) = ±e

c
∂xA(x) +

[
py +

e

c
A(x)

]2
. (2.1.7)

2.1.2 Deriving the Transmission Equation

To solve the previous equation, we consider that there is only magnetic field within the chanel

of the device, i.e.,

B⃗ =

B0ẑ, for − d ≤ x ≤ d

0, otherwise.
(2.1.8)

It is convenient then to write the magnetic field as a Heaviside step function:

B(x, y) = B0θ(d
2 − x2) . (2.1.9)

15

We can also write an expression for the vector potential for each region of the device: the source

(x < −d), the drain (x > d) and the channel (|x| ≤ d), as the following:

A(x) =
c

h̄l2B

−d, for x < −d (Region I)

x, for |x| ≤ d (Region II)

d, for x > d (Region III)

, (2.1.10)

where lB ≡
√

h̄

eB0
is the magnetic length.

The electronlike incident wavefunction that enters the device via source, up to the normalization

constant, has the following format:

Ψin(x) =

 1

px + i(py − d/l2B)

|p|

 exp ipxx , (2.1.11)

where |p| is a normalization that includes the normalization of the wavefunction and the normaliza-

tion of the p momentum vector. Notice that there is a shift in the momentum in the y direction. This

happens because of the Landau gauge we used.

Let ϕ and ϕ′ be, respectively, the incident angle and the scattering angle for the wavefunction.

Thus, it is natural to chose to rewrite our momenta in this new parametrization. Thus, we get:

px = ϵ cosϕ, py = ϵ sinϕ+
d

l2B
, (2.1.12)

p
′
x = ϵ cosϕ′, p′y = ϵ sinϕ′ − d

l2B
, (2.1.13)

where we found sinϕ′ using the fact that py = p′y, thus

sinϕ′ =
2d

ϵl2B
+ sinϕ . (2.1.14)

In Figure 2.1.b, we can visualize better the physical problem we are trying to solve.

16

Plugging condition for region I from 2.1.10 into 2.1.7 we obtain the following differential Equa-

tion: [
∂2
x − p2y + 2py

d

l2B
− d

l4B
+ ϵ2

]
Ψ±(x) = 0 . (2.1.15)

Proceeding in the same fashion for regions II and III, we obtain, respectively:

[
∂2
x ∓

1

l2B
− p2y − 2py

x

l2B
− x2

l4B
+ ϵ2

]
Ψ±(x) = 0 , (2.1.16)

[
∂2
x − p2y − 2py

d

l2B
− d2

l4B
+ ϵ2

]
Ψ±(x) = 0 . (2.1.17)

The scattering state Ψin(x) can be written for the source, channel and drain as the following:

ΨI , for x < −d

ΨII , for |x| ≤ d

ΨIII , for x > d

, (2.1.18)

where:

ΨI = Ψqn,y,k,x + rnΨqn,y,−k,x , (2.1.19)

ΨII = αnΨqn,y,k,x + βnΨqn,y,−k,x , (2.1.20)

ΨIII = tnΨqn,y,k,x1−x2 (2.1.21)

where:

ΨI(x) =

 1

exp (iϕ)

 exp (ipxx) + r

 1

− exp (−iϕ)

 exp (−ipxx) , (2.1.22)

ΨII(x) = Σ±c±

 D(ϵlB)2/2−1[±
√
2(x/lB) + pylB]

±i

√
2

ϵlB
D(ϵlB)2/2[±

√
2(x/lB) + pylB]

 (2.1.23)

17

and

ΨIII(x) = t
√

px/p′x

 1

exp (iϕ′)

 exp (ip′xx) , (2.1.24)

are the eigenfunctions of the Schroedinger Equations 2.1.15-2.1.17.

In Equation 2.1.23, Dν are parabolic cylinder functions [23], a type of special functions that

arise in solutions of some type of differential Equations.

By solving the Boundary Condition problem, i.e., the system of Equations

ΨI(qn, y, k,−d) = ΨII(qn, y, k,−d) (2.1.25)

and

ΨII(qn, y, k, d) = ΨIII(qn, y, k, d) , (2.1.26)

we get the transmission amplitude:

t =
2iϵlB

√
2p′x/px cos (ϕ)

exp [I(px + p′x)d]D
(u+2 v

−
2 + v+2 u

−
2) . (2.1.27)

The Operator D is given by

D = (ϵlB)
2 exp [I(ϕ

′ − ϕ)](u+2 v
−
2 − v+2 u

−
2)− 2(v+1 v

−
2 − v+2 v

−
1)

+ I
√
2ϵlB[exp (Iϕ

′)(v+1 u
−
2 + u+2 v

−
1) + exp (−Iϕ)(u+1 v

−
2 − v+2 u

−
1)] , (2.1.28)

where

u±1 = D(ϵlB)2/2−1[±
√
2(−d/lB) + pylB] , (2.1.29)

v±1 = D(ϵlB)2/2[±
√
2(−d/lB) + pylB] , (2.1.30)

u±2 = D(ϵlB)2/2−1[±
√
2(d/lB) + pylB] , (2.1.31)

v±2 = D(ϵlB)2/2[±
√
2(d/lB) + pylB] . (2.1.32)

We obtain the transmission probability by taking the modulus squared of the transmission amplitude.

18

De Martino, 2007 L. R. De Lima,
L. Huang, A. R. Champagne, et al.De Martino, 2007 L. R. De Lima,

L. Huang, A. R. Champagne, et al.

Figure 2.2: Comparison between transmission probability graphs obtained by [2] (graphs in the
left) and by our code (graphs in the right). We use the same colors as the original author for better

visualization. The transmission probabilities are calculated in angles inside the interval
[
−π

2
,
π

2

]
.

Because the scattering angle ϕ′ can only be calculated with Equation 2.1.14, this implies that for

certain incident angles, there will be no transmission. All incident angles will lead to reflected states

if

kF lB ≤ d/lB . (2.1.33)

In Figure 2.2, we reproduce some of the possible transmission probabilites given this condition,

from reference [2].

2.1.3 The Code

The code for calculating the magneto-transport properties of the simulated device introduced

here is very similar to the code introduced in Chapter 1. However, instead of doing a for loop over

the strain, here the loop is done for the magnetic field. For now, we focus on simulations for constant

values of the magnetic field; this will be generalized later.

After importing the parameters and the transmission expression, the code starts by defining the

number of transmission modes, set by the contact doping. We also define lB , the ratio d/lB and the

vector potential along the y-direction, as defined in Equation 2.1.10.

The next step is to increase gate voltage. Inside this loop, we calculate the carrier density

from gate and scalar potential, the total carrier density, the Fermi level in the channel and e/lB =

19

√
πAbs[ntot]lB . Those are all quantities that depend on the gate voltage and, as explained in Chap-

ter 1, are co-dependant with each other.

Inside the same loop, we create an array to save the values of gate voltage, channel and Fermi

level potentials. With the values inside this array, we can then create another for loop to sum over

all transmission modes, with the quantization for y-component of momentum as:

qn =
π

W

(
Nq −

1

2

)
+Ay , (2.1.34)

where Ay is the vector potential along the y-direction, given by Ay = − e

h̄

L

2
B and Nq is the number

of allowed transmission modes, calculated in the code. The scattering angle ϕ is now calculated as:

ϕ = ArcSin

(
qn

kFcontact

)
, (2.1.35)

where kF contact = µCH/h̄vF .

After summing over the transmission modes, we get the conductance, then we calculate the

conductivity and create a data file with the values of G and EF for each value of VG for a fixed

value of B. A schematics of the code is shown in Figure 2.3.

conductance
code

experimental
parameters

Transmission
 equation

start

import

define
Tn modes

increase
B field

increase
Vg

sum over
Tn modes

export
data stop

For
loop

Figure 2.3: Flowchart of the code used to calculate the transport properties of a graphene transistor
under a constant magnetic field.

20

2.1.4 Quick Guide on How to Use the Code

The Mathematica notebooks can be found at the Appendix A. To run the code, please first run

”DeMartino export Tn expression.nb”. This will generate a .mx file with the analytic expres-

sion for the transmission equation (way too big and complicated to be written in the thesis). After

that, run ”Gr V ars Params 21 09 2023.nb”. This will load all the physical constants and exper-

imental parameters necessary to run the transport code.

Finally, run ”Conductivity DeMartino B V G ac.nb”. This will generate a data file with the

data mentioned in the above paragraph. You can plot the data or analyze it using the software of

your preference; we used Igor Pro 7.

2.2 Simulation Results and Predictions

First we needed to show that our code converges to reproduce the results present in the literature

[3] in the limit when B approaches to zero. This result is shown in the graph bellow.

Figure 2.4: Graph showing conductance for different values of decreasing magnetic field in order to
show that at low values of B, the model converges to a model with no strain and no magnetic field,
predicted in [3]. The simulation results for the case with no B field is possible thanks to the work
of Linxiang Huang and Andrew McRae.

As shown in Figure 2.4, when the value of the magnetic field is very close to zero (B = 0.11

T), the conductivity (red curve) converges to the case shown in the literature (black curve). For

computational reasons, we cannot set the value of the magnetic field exactly to zero, but it is enough

21

to see that there is a convergence pattern.

The reader may notice that we only plot values up to B = 2.03 T. This because the condition

kF lB ≤ d/lB imposes severe restrictions on the parameters we can use for our devices. For L =

100 nm, lB = 32 nm, kF = 108m−1, we can only have a maximum value of B = 0.6 T. This is a

low value of field if one is interested in effects like the quantum Hall or Landau levels. Thus, this is

out of the scope of this thesis, i.e., we did not expect to see the quantum Hall effects after analysing

the consequences that this condition imposes to our theory.

To overcome this problem and at least try to have a higher value for the magnetic field, we

changed some parameters. We set L = 80 nm, W = 1000 nm, u = 2000 nm (suspension length).

We chosen a value of landau Level filling fraction ν = 18, so that we could hope that with those

dimensions for the device and that filling fraction would help us to find a higher value of magnetic

field allowed by our theory. Since

ν =
nc

nf
=

density of charge carriers per unit area

density of quanta of magnetic flux per unit area
, (2.2.1)

where, for zero strain

nc =
cBG

e
(VG − VD) , (2.2.2)

and

nf =
BS

h

e
S

, (2.2.3)

where S is the area of the device. Using those Equations, VG−VD = 5V, and the known parameters

introduced in Chapter 1, we get B = 2.03 T.

2.2.1 Suppression of Conductance due to a Magnetic Field

Many properties can dictate how effective a transistor is, but one of the most important aspects

is related to the function of the component itself. Transistors’s main function is the amplification of

the voltage signal. This also enables the device to work as a switch. In order to be a high quality

transistor, one must manufacture devices that good on/off ratios [24]. It is shown in literature [25, 26,

8] that many carbon based devices, such as nanoribbons, that can be used as efficient conductivity

22

switches. Adding temperature to the picture also affects suppression; however, exploring the thermal

conductivity suppression is out of the scope of this work.

Some signature of suppression in the conductivity of our magnetic graphene transistor is already

visible in Figure 2.4. The conductivity already drops by one order of magnitude, when the magnetic

field is applied.

Figure 2.5: Conductivity signatures for a transistor whose channel is subjected to a uniform perpen-
dicular magnetic field. Each curve corresponds to different fixed values for the magnetic field. The
gate voltage ranges from -20 V to 20 V.

Another example of decrease in the conductivity is shown in Figure 2.5. There is also a sup-

pression of the opening of the transmission modes in the extremity of each curve. This opening of

modes occur because the quantum levels allowed are rapidly occupied by the electrons, causing the

remaining electrons to abruptly jump to another level, thus showing this ladder-like pattern in the

conductivity curves.

23

Chapter 3

Modelling Strained Magneto-Transport

in Ballistic Graphene Experiments

In this Chapter, we begin by introducing the model developed in [1], for the case where the

transistor is submitted to a unaxial mechanical strain and no magnetic field.

In the sequence, we introduce a new model, where we modify the Hamiltonian for monolayer

graphene in the presence of a magnetic field (Equation 2.1.6) by adding a term in the potential, that

takes into account the contribution of the mechanical strain. We show a step-by-step derivation of

the transmission equation, which is later used to calculate the conductance in the device. We study

the effects of strain and magnetic field variations on the conductance. We show that the transistors

simulated with this applied theory reach an on-off ratio of the order of 104 at a constant voltage of

10 V, even for moderate ϵ and B.

3.1 Strained Monolayer Graphene Transistor

In Chapter 2, we introduced the model to study transport in a graphene transistor under a mag-

netic field. In this section, we will first introduce a model for graphene with no magnetic field, but

subjected to an unaxial mechanical strain, developed in [1]. Figure 1.1 shows a schematics of the

24

device. The Hamiltonian that describes this device is given by:

H = h̄vF [I + (1− β)ϵ] · σ · (k̃ −Ai) + ∆µG +∆µϵ . (3.1.1)

k̃ is the wave vector in the strained channel, σ is the set of Pauli matrices in x and y, Ai is the

strain vector potentials along the y-direction in the dirac cones (where i = 1,2,3). ∆µG and ∆µϵ

are respectively the gate potential and the strain scalar potential. A full detailed derivation of the

transmission Equation is available in [1]. The main objective of revisiting this model is show what

the Hamiltonian with strain looks like and what are some of the effects of adding the strain [21].

The first interesting result is how the Dirac cones are affected by the scalar potential ∆µϵ in the

Hamiltonian.

Figure 3.1: Cartoon deptcing how strain affects the Dirac cones [1].

In Figure 3.1.(a), we show the Dirac cone and Fermi circle in the unstrained case; 3.1.(b) shows

the strained case. Note that the presence of the potential due to strain shifts the Fermi circle from the

Dirac cones. The Fermi wave vector in the source/drain contacts now also depends on both contact

doping and on the strain-induced potential.

The strain-induced vector potentials (Ai) also play a very important role. Due to the applied

mechanical strain, there is a shift in the conductivity curves. The bigger the strain, the more sup-

pressed the conductivity will be. This opens a discussion as to whether or not we will be able to

25

enhance this suppression when adding a magnetic field, thus creating even better transistors.

3.2 Hamiltonian for Strained Monolayer Graphene in the Presence of

a Magnetic Field and Strain

3.2.1 Adding the Contribution of Strain Potentials to the Magnetic Hamiltonian

We modify the Hamiltonian in Equation 2.1.6 to add mechanical strain. A cartoon of the ideal-

ized device is shown in Figure 3.2.

B

Si Chip

Channel lenght (L)-d d

W

(a) SiO2

Gold

(b)

VB

VG

unaxial
strain

Figure 3.2: Cartoon depicting the device developed with our applied model, combining unaxial me-
chanical strain and magnetic field in the channel. (a) Shows a representation of how the graphene
transistor would look like. (b) Highlights the physical parameters used to describe the model.
Ψin(x) is the incident electronic wavefunction that comes from the source. The other wavefunc-
tions are the eigenfunctions of the graphene Hamiltonian in each region of the device. The gold
leads were drawn transparent to emphasize that the electrons are injected from the graphene con-
tacts, not from the gold.

In Equation 2.1.6, we will add the potential in Equation 2.1.7, where A(x) will now also include

the mechanical strain vector in the y direction Ai, thus our new differential Equation will look like

[
∂2
x ∓

(
1

l2B

)
− p2y − 2py

(
x

l2B
+

e

c
A0

)
−
(
x2

l4B
− 2xA0

l2B
+A2

0

)
+ ϵ2

]
Ψ± = 0 , (3.2.1)

26

where

A(x) =
xc

el2B
−A0 , (3.2.2)

and

A0 =
h̄

e
Ai . (3.2.3)

Equation 3.2.1 may be very complicated to solve, so we have to figure out a way to make this

Equation more elegant in terms of solution. We can do that by introducing a new variable – x0 – in

Equation 3.2.2,

x0 = A0
el2B
c

. (3.2.4)

Thus, we can rewrite Equation 3.2.2 as:

A(x) =
(x− x0)c

el2B
. (3.2.5)

Since Ai,y is different in each valley, so x0 will be. Because of the valley symmetry, we only

need to define three values for Ai,y, those being defined in the following Equation:

A1,y(θ) =
4π(ϵ+ ϵ0)

3
√
3a

ν sin(θ) +
β(ϵ+ ϵ0)(1 + ν)

2a
sin(3θ) , (3.2.6)

A2,y(θ) =
2π(ϵ+ ϵ0)

3a

(
− 1√

3
ν sin(θ) + ν cos(θ)

)
+

β(ϵ+ ϵ0)(1 + ν)

2a
sin(3θ) , (3.2.7)

A3,y(θ) =
2π(ϵ+ ϵ0)

3a

(
− 1√

3
ν sin(θ)− ν cos(θ)

)
+

β(ϵ+ ϵ0)(1 + ν)

2a
sin(3θ) . (3.2.8)

In Equations 3.2.6, 3.2.7 and 3.2.8, ν = 0.165, β = 2.5, a = 1.42× 10−10 m and θ = 15× π

6
are,

respectively, the Poisson ratio in graphene, the electron-phonon coupling, the lattice constant and

the crystal angle with respect to the x-axis.

Finally, setting x2 = x− x0 we rewrite our decoupled set of differential Equations as

[
∂2
x ∓

1

l2B
− p2y − 2py

x2
l2B

− x22
l4B

+ ϵ2
]
Ψ± = 0 . (3.2.9)

In the operators defined by the parabolic cylinder functions, the only change will be a shift in the

27

conductance
code

experimental
parameters

Transmission
 equation

start

import

define
Tn modes

increase
B field

increase
Vg

sum over
Tn modes

export
data stop

For
loop

increase
strain+

Figure 3.3: Flowchart of the code used to calculate G in a graphene transistor subjected to a perpen-
dicular magnetic field on its channel and to an unaxial strain.

d of each Equation. For u1 and v1 (Equations 2.1.29 and 2.1.30),
−d

lB
→ (−d− x0)

lB
. For u2 and

v2 (Equations 2.1.31 and 2.1.32),
d

lB
→ (d− x0)

lB
. Also, since we are using SI units, c → h̄ in

Equation 3.2.9. To simplify those shifts in the calculations, we call the shift on u1 and v1 dl1 and

the ones in u2 and v2 as dl2 in our code. Thus, in our calculations, the only change will be rewritting

Equations 2.1.28 and 2.1.27 taking these changes into account.

3.2.2 The Code

Adding strain to the picture not only increases the level of complexity of the mathematical

equations, but also increase the computational time to run the code. In order to keep the running

times compatible with the time available, we had to make some adaptations. First, we broke the

problem in two codes: one code to simulate the transport properties of the transistor when the value

of the strain is fixed, but the value of the magnetic field changes and another code to simulate the

case where the magnetic field is fixed, and the strain is varying. We also kept the number of steps

for magnetic field and strain to 50 points. The magnetic field maximum value is set up to 2.03 T,

the limit value for our simulated device’s parameters.

Figure 3.3 shows a schematics of the code. The codes initially do the same as the previous

28

ones: start by importing both the parameters notebook and the transmission expression file. The

differences in the other steps of the code are explained bellow.

When varying the strain at a fixed B, the number of transmission modes set by contact doping

is defined. Then, we write a for loop to increase the magnetic field. Inside this loop, we first define

the B increments, lB , the minimum value of strain (imported from the parameters notebook) and the

magnetic vector potentials along y direction. Different from the case where we only had magnetic

field, now we must add the change in each Ai,y (only three of them are considered, because of

the symmetry of the valleys), because of the mechanical induced strain. Because the potential will

depend in the value of the vector potential induced by the strain, as established in Equation 3.2.5, x

will need to be calculated in each valley with the correspondent changes in Ai,y.

After defining those parameters in the code, we write – still inside the strain loop – another for

loop, but this time to increase the gate voltage. Inside of it, the quantities that directly depend on

VG (carrier density from gate and scalar potential, total carrier density, Fermi level in the channel,

e/lB =
√

πAbs[ntot]lB are calculated. The arrays defined in the paramaters notebook for current

strain, gate and channel Fermi level are then used to store the values calculated in the loop.

Following that, we define an array to store Tn. Inside it, we write another for loop, this time to

sum over all the transmission modes. In each valley, one mode is calculated. The incident angle ϕ is

also calculated for each valley, since they depend on the qn associated to the vector strain potential

for each case. Finally, the average transmission for all six Dirac cones is calculated. However, we

only keep the positive Tn values – those are the values that will matter in experiments. With that,

the conductance is calculated.

After that, the procedure is similar to the previous codes. The code generate a data file with the

values for gate voltage, conductivity, magnetic field, strain and Fermi Energy. The code can also be

found the Appendix A, in the end of this thesis.

For the case where we vary the magnetic field at a fixed value of strain, the only difference

will be that instead of a for loop for strain, we will write a loop for the magnetic field. The other

programming steps remain virtually the same.

29

3.3 Results

3.3.1 Conductivity Suppression Under Fixed Magnetic Field and Varying Strain

We already know that strain can suppress the conductivity [1]. Is the behavior maintained when

we add magnetic field to the picture? We found out that this is the case. We also observe that

due to the combination of mechanical strain and magnetic field, this suppression occurs at a faster

pace. This shows us that transport properties can be fine tuned and controlled in graphene transistors

under the strained-magneto-transport regime we present. This result is shown in Figure 3.4. In this

simulation, a constant magnetic field of 1 T is applied to the channel of a graphene transistor. A

mechanical strain is then applied, and it increases from 0% to 1.25 %, in a gate voltage range

between 5 V and 15 V. The device dimensions are L = 80 nm and W = 100 nm.

 !

 "

 #

$

%

!

"

!"
#$
%&
'
(

 ! " #$%

)*+)!*(

&'('#)

''&'('#*+)

'&'('#*"+)

'&'(' *"+)

Figure 3.4: Suppression of conductivity due to strain at a constant magnetic field B = 1 T. A small
quantity of strain (from 0% to 1.25%) was enough to reduce the conductivity to zero.

Note that, when ϵ = 1.25 %, the conductivity in Figure 3.4 already drops to almost zero. This

shows that this transistor, designed to work under a magnetic field and unaxial mechanical strain, is

a candidate for a high on/off ratio transistor.

30

3.3.2 Linear Change in Conductivity Under Constant Strain and Varying Magnetic

Field

Keeping the same dimensions for the device, the gate voltage range and the contact doping the

same as mentioned in the previous section, we now fix the strain to 1% and vary the values of the

magnetic field up to B = 1.20 T. The result of the simulation is shown in Figure 3.5.

 !"

#!$

#!"

%!$

%!"

!"
#$
%&
'
(

%&%#%"'(

)*+)!*(

),)-)./$0)1

),)-)0/2)1
),)-)0/3)1
),)-)0/$)1

Figure 3.5: G - VG at various values of B, with strain ϵ = 1%.

Note that the conductivity signature is mostly linear, with no signs of opening of modes. It

seems that, under the presence of a magnetic field, the conductivity becomes directly dependent of

the mechanical strain applied.

31

 !
"#

 !
"$

 !
"%

 !
"

 !
!

 !

!"
#$
%&
'
(

 # % !&'

)*+)!*(

),)-)./.0

),)-)1/.0
),)-)1/20
),)-)1/30

),)-)1/40

),)-)1/50

Figure 3.6: Log(G) curves for different values of strain at B = 1T.

3.3.3 On-off Ratio

The on-off ratio of a transistor is a very important indicator of the qualitity of a transistor. This

value represents the ratio between the current in the on state and the current in the off state. The

higher the on-off ratio, the better is the device performance, meaning that there is a low current

leakage [27] [28] [29]. To achieve a R/R0 ≥ 104, the transistor with only strain described in [1]

needed ϵ = 2.6%, both at θ = 15 × π

6
and µcontact = 0.087 eV. The device we propose in this

Chapter (i.e., combining both mechanical strain and magnetic field in the channel) reaches the same

value of on-off ratio around ϵ = 1.8%, roughly half of the strain necessary for the strained device.

Figures 3.6, 3.7 and 3.8, show, respectively, the different orders of magnitude of the conductivity

values for different values of strain, the log scale version and the on-off ratio of R/R0 = 104 at

VG = ±15 V. This was obtained by defining Von = 15 V and Voff = 5 V. Then, we pick the

32

 !
"#

 !
"$

 !
"

 !
!

 !

!"
#$
%&
'
(

 %& %' %!!%(!%$

)*+,-./)!0(

)1)2)3)4

56)2)37)5

Figure 3.7: Log(σ) − ϵ for a quantum-magneto-strained graphene transistor under fixed values of
magnetic field and vate voltage.

 !
"#

 !
"$

 !
"%

 !
"

 !
!

 !

 !
%

!
"
##
$%
&'
()

 &' &# &!!&(!&%

$*'+&(!$,-.

$/$0$1$2

34$)!$0$15$3

34$)##$0$5$3

Figure 3.8: On-off ratio for a quantum-magneto-strained graphene transistor under fixed values of
magnetic field and vate voltage.

33

values of conductivity for Von and Voff for each curve and calculate
GVon

GVoff

. With those values, we

produced Figure 3.8.

34

Chapter 4

Outlook and Conclusions

4.1 Main Results, Next Steps and Expected Impact

In this thesis, we introduced an applied theory to study and model the magneto-quantum-strain

transport in monolayer graphene transistors. We expanded and enhanced the theory developed in

[2], by adding a magnetic field in the channel of the graphene device. By adding the experimental

parameters to the picture , considering a suspended sample and by calculating experimental quanti-

ties such as the conductance and the conductivity, we enabled this work to be used to model future

experiments. We also showed that in the limit where B approaches zero, we return to the previous

theory developed by our group, where the Hamiltonian contains only strain.

In addition, we showed that the conductivity in these devices can be fine tuned when magnetic

field and strain are combined. Our theory only contains magnetic field and mechanical strain in

the chanel of the graphene device, however, it should be straight forward to add magnetic field in

the contacts, as shown in [12]. In order to do so, it is easier to consider the problem as a multi-

barrier quantum well. Thus, we would find new solutions for the Hamiltonian shown in Equation

2.1.6 in the contacts (source and drain). Solving this problem will require a method called the

transfer matrix method, which makes it easier to find the transmission equation. After finding the

transmission equation, the steps to calculate conductivity remains roughly the same (i.e., summing

over all the possible modes).

35

Other interesting scenarios can also be predicted by using our method, given the proper adap-

tations. For example, one may want to reproduce our work, but this time using a bilayer graphene

suspended sample, or even a twisted bilayer graphene. The graphene itself could be replaced by

another two-dimensional material (thus replacing the Hamiltonian). Although the Hamiltonian will

of course be changed, the transfer method matrix works for either cases, and the structure of our

code, given the apropriate adaptations (for example, changing the physical parameters to the other

material parameters), will still work. By using the WKB method, one could also explore other

regimes of magnetic field in the transistor.

The possibilities are numerous, and there is always room for improvement, but still we expect

this work to help both experimentalists and theoreticians to have a more realistic applied theory to

make predictions and understand the results collected in the laboratory.

36

Appendix A

Mathematica Codes

In this short Appendix, we introduce the code files designed to run the simulations described in

this thesis. We divided the codes between appendix sections, so the reader can follow the codes in

order of appearence in the text.

In the first Section, we introduced the codes used in Chapter 2 to test if Equations 2.1.22, 2.1.23

and 2.1.24 were solutions to Equation 2.1.6, given the potential in Equation 2.1.10. The three first

Mathematica codes perform this task. The fourth code in this first Section is used to derive the

transmission amplitude expression given in Equation 2.1.27, by solving the boundary condition

problem established in Equations 2.1.25 and 2.1.26. The last code in this Section is used to plot the

transmission polar graphs, given in Figure 2.2.

In the second Section of this Appendix, we introduce the codes used to calculate the conductivity

in a graphene transistor under a magnetic field, as presented in Chapter 2. The first code of the

second section is the Parameters Notebook, where we define all the constants necessary to run our

simulation. The second code is the Transmission Notebook and it is responsible for generating

the transmission expression and exporting to an external file. After running those two codes, we

then run the third code, which contains all the equations necessary to calculate the conductivity in

graphene. This third code generates a data file that can be read with Igor Pro, and thus be used to

plot graphs or to do data analysis.

In the third Section of this Appendix, we introduce the codes used to run the simulations in

Chapter 3. The first two codes of this Section contain the Parameters Notebook used to define all

37

the physical constants and parameters used to simulate a graphene transistor under magnetic field

and strain. The third code exports the transmission expression. The fourth and the fifth codes are

used to simulate a graphene transistor for two different cases: when the magnetic field is at a fixed

value and when the strain is at a fixed value.

To run the codes, please always follow this order: 1) Parameters Notebook, 2) Export Transmis-

sion Expression, 3) Conductivity Code.

A.1 Codes Used In Chapter 2 - Transmission Plots

A.1.1 Codes to Test Eigenfunctions Solutions

Testing solution in Region I:

38

(*Test:
região
Region

unidade imaginária
I*)

(*
região
Region

unidade imaginária
I, A(x)=0*)

remove
Remove["Global`*"]

In[]:= d[x_] =
derivada
D[#, {x, 2}] &; (*dx^2 = dx*dx but has to be applied on the function*)

vecA = x * (c / (e * lb^2));

ν = (((eps * lb)^2) / 2);

z =
raiz quadrada
Sqrt[2] * ((x / lb) + (py * lb));

In[]:= (*Define wavefunction expression for region
unidade imaginária
I in matrix form

(i tested to see if our operator works in that form and yes,

it matches the calculations i did by hand as well)*)

(*Wavefunctions Ψ+=Ψp, Ψ-=Ψm*)

ΨI = {{
ex⋯
Exp[

unidade imagin⋯
I * px * x]}, {

ex⋯
Exp[

unidad⋯
I * ϕ] *

ex⋯
Exp[

unidade imaginária
I * px * x]}} +

{{r *
exp⋯
Exp[-

unidade imaginária
I * px * x]}, {-1 * r *

exp⋯
Exp[-

unidad⋯
I * ϕ] *

exp⋯
Exp[-

unidade imaginária
I * px * x]}};

Equation 3expanded form : (∂x)2 ∓
e
c
∂x A(x) - py2 -

2 e
c
py A(x) -

e2

c2
A(x)2 + ϵ2 ψ± = 0

Equation 3original form : (∂x)2 ±
e
c
∂x A(x) + py +

e
c
A(x)2 + ϵ2ψ± = 0

** ** ** ** ** ** Equation 3with A(x) =

0 : (∂x)2 - py2 + ϵ2 ψ± = 0 ---- > test bellow is testing this line ** ** ** ** ** ** **

Equation 3with A(x) = -d (Region I, ΨI) :

** AlexNotes **
(1) there isa sign error above in , Equation 3with A(x) = 0 should actually be :

(∂x)2 - py2 + ϵ2 ψ± = 0

(2) there is an error in thewavefunction. Note ! thatψ± is only defined ! for Region II,

(the + -mean left and rightmoving, but in region oneweonly have a rightmovingwavefunction !)

Also fromEquation (9) ψI = Exp[I*px*x]* {1, Exp[I*ϕ]} + r*Exp[-I*px*x]*{1, -Exp[-I*ϕ]}

(3)Please use this info and try to check : (∂x)2 - py
2 + ϵ2ψI = 0

(*test each part of equation 3 with A=

0 separately to see if it matches handwritten calculations*)

d[x][ΨI, x]

Out[]= - px x px2, - px x+ ϕ px2

py2 * ΨI

Out[]= px x py2, px x+ ϕ py2

eps2 * ΨI

Out[]= px x eps2, px x+ ϕ eps2

In[]:= d[x][ΨI, x] - py2 * ΨI + eps2 * ΨI //
simplifica complet⋯
FullSimplify //

forma de matriz
MatrixForm

Out[]//MatrixForm=

-- px x -eps2 + px2 + py2 2 px x + r

-- (px x+ϕ) -eps2 + px2 + py2 2 (px x+ϕ) - r

In[]:= (*use the parametrization for px and py that De Martino gives*)

px = eps *
cosseno
Cos[ϕ]

(*py=eps*
seno
Sin[ϕ]+dlb2*)

py = eps *
seno
Sin[ϕ]

Out[]= eps Cos[ϕ]

Out[]= eps Sin[ϕ]

In[]:= d[x][ΨI, x] - py2 * ΨI + eps2 * ΨI //
simplifica complet⋯
FullSimplify //

forma de matriz
MatrixForm

Out[]//MatrixForm=

0
0

(*
região
Region

unidade imaginária
I, A(x) = - d*)

Equation 3with A(x) = -d :

(∂x)2 - py2 + 2 py
d
lB2
- d2

lB4
+ ϵ2 ψ± = 0

In[]:=

remove
Remove["Global`*"]

In[]:= d[x_] =
derivada
D[#, {x, 2}] &; (*dx^2 = dx*dx but has to be applied on the function*)

In[]:= (*Wavefunction in region
unidade imaginária
I *)

ΨI = {{
ex⋯
Exp[

unidade imagin⋯
I * px * x]}, {

ex⋯
Exp[

unidad⋯
I * ϕ] *

ex⋯
Exp[

unidade imaginária
I * px * x]}} +

{{r *
exp⋯
Exp[-

unidade imaginária
I * px * x]}, {-1 * r *

exp⋯
Exp[-

unidad⋯
I * ϕ] *

exp⋯
Exp[-

unidade imaginária
I * px * x]}};

(*calculate equation*)

2 hpsi_Epsi_DeMartino_region_I_02_01_2023.nb

In[]:= d[x][ΨI, x] - py2 * ΨI + 2 * py *
d

lb2
* ΨI -

d2

lb4
* ΨI + eps2 * ΨI //

simplifica complet⋯
FullSimplify //

forma de matriz
MatrixForm

Out[]//MatrixForm=

-
- px x lb4 -eps2+px2+d-lb2 py2 2 px x+r

lb4

-
- (px x+ϕ) lb4 -eps2+px2+d-lb2 py2 2 (px x+ϕ)-r

lb4

In[]:= (*use the parametrization for px and py that De Martino gives*)

px = eps *
cosseno
Cos[ϕ]

py = eps *
seno
Sin[ϕ] + d lb2

Out[]= eps Cos[ϕ]

Out[]=
d

lb2
+ eps Sin[ϕ]

In[]:= (*calculate equations again*)

d[x][ΨI, x] - py2 * ΨI + 2 * py *
d

lb2
* ΨI -

d2

lb4
* ΨI + eps2 * ΨI //

simplifica complet⋯
FullSimplify //

forma de matriz
MatrixForm

Out[]//MatrixForm=

0
0

hpsi_Epsi_DeMartino_region_I_02_01_2023.nb 3

Testing solution in Region II:

42

Equation 3 in De Martino paper, with A(x) = xc
elB2 :

∂x2∓ 1
lB2 - py

2 - 2py x

lB2 - x2

lB4 + ϵ
2 Ψ± = 0

In[]:=

remove
Remove["Global`*"]

Remove: There are no symbols matching "Global`*".

In[]:= (*define hamiltonian in equation (3).
unidade imaginária
I don't put

the energy2 here because it enters later in the
resolve equação diferencial
DSolve*)

(*Define "H+"*)

H1[f_] =
derivada total
Dt[f, {x, 2}] -

1

lb2
* f - py2 * f -

2 * py * x

lb2
* f -

x2

lb4
* f

Out[]= -
f

lb2
- f py2 -

2 f py x

lb2
-
f x2

lb4
+ Dt[f, {x, 2}]

In[]:= (*write
resolve equação diferencial
DSolve to solve the equation*)

(*get Ψ+*)

DiracEq =
resolve equação diferencial
DSolve[H1[Ψ+[x]] -(ϵ[μ] * ϵ[μ]) * Ψ+[x], Ψ+[x], x]

Out[]= Ψ+[x] 2 ParabolicCylinderD-
1

2
lb2 ϵ[μ]2, 2 lb py +

2 x

lb
 +

1 ParabolicCylinderD
1

2
-2 + lb2 ϵ[μ]2, 2 lb py +

2 x

lb

(*write Ψ+ in matrix form*)

In[]:= (*Define "H-"*)

H2[f_] =
derivada total
Dt[f, {x, 2}] +

1

lb2
* f - py2 * f -

2 * py * x

lb2
* f -

x2

lb4
* f

Out[]=
f

lb2
- f py2 -

2 f py x

lb2
-
f x2

lb4
+ Dt[f, {x, 2}]

In[]:= (*get Ψ-*)

DiracEq =
resolve equação diferencial
DSolve[H2[Ψ-[x]] -(ϵ[ν] * ϵ[ν]) * Ψ-[x], Ψ-[x], x]

Out[]= Ψ-[x] 1 ParabolicCylinderD
1

2
lb2 ϵ[ν]2, 2 lb py +

2 x

lb
 +

2 ParabolicCylinderD
1

2
-2 - lb2 ϵ[ν]2, 2 lb py +

2 x

lb

Testing solution in Region III:

44

(*
região
Region III, A(x)=0*)

In[]:=

remove
Remove["Global`*"]

In[]:= d[x_] =
derivada
D[#, {x, 2}] &; (*dx^2 = dx*dx but has to be applied on the function*)

(*vecA=x*(c/(e*lb^2)); GENERAL FORM OF POTENTIAL VECTOR*)

(*ν= (((eps*lb)^2)/2); FOR PARABOLIC CYLINDER IN REGION II*)

(*z=
raiz quadrada
Sqrt[2]*((x/lb)+(py*lb)); FOR PARABOLIC CYLINDER IN REGION II *)

In[]:= (*Define wavefunction expression for region III in matrix form *)

ΨIII = t *
raiz quadrada
Sqrt

px

px1
 {{1}, {

ex⋯
Exp[

unidade im⋯
I * ϕ1]}} *

ex⋯
Exp[

unidade imaginária
I * px1 * x];

Equation 3 expanded form : (∂x)2 ∓
e
c
∂x A(x) - py2 - 2 e

c
py A(x) -

e2

c2 A(x)
2 + ϵ2 ψ± = 0

Equation 3 original form : (∂x)2 ±
e
c
∂x A(x) + py +

e
c
A(x)2 + ϵ2ψ± = 0

** ** ** ** ** ** Equation 3 with A(x) =

0 : (∂x)2 - py2 + ϵ2 ψ± = 0 ---- > test bellow is testing this line ** ** ** ** ** **

(*test each part of equation 3 with A=

0 separately to see if it matches handwritten calculations*)

In[]:= d[x][ΨIII, x]

Out[]= - px1 x px

px1
px12 t, - px1 x+ ϕ1 px

px1
px12 t

In[]:= py2 * ΨIII

Out[]= px1 x
px

px1
py2 t, px1 x+ ϕ1

px

px1
py2 t

In[]:= eps2 * ΨIII

Out[]= px1 x eps2
px

px1
t, px1 x+ ϕ1 eps2

px

px1
t

In[]:= d[x][ΨIII, x] - py2 * ΨIII + eps2 * ΨIII //
simplifica complet⋯
FullSimplify //

forma de matriz
MatrixForm

Out[]//MatrixForm=

- px1 x
px

px1
-eps2 + px12 + py2 t

- (px1 x+ϕ1)
px

px1
-eps2 + px12 + py2 t

In[]:= (*use the parametrization for px and py that De Martino gives, but when x = -d*)

px = eps *
cosseno
Cos[ϕ];

(*py=eps*
seno
Sin[ϕ]+dlb2*)

py = eps *
seno
Sin[ϕ];

px1 = eps *
cosseno
Cos[ϕ1];

py1 = eps *
seno
Sin[ϕ1];

However, equation 8 in De Martino establishes a relation between the momenta py and py’, thus
giving us a relation between sin(ϕ) and sin(ϕ '):

sin(ϕ ') = sin(ϕ) + 2d
ϵlB2 ,

and since we are assuming A(x)= d = 0, then
sin(ϕ’)=sin(ϕ).
Putting this in the equation we have, the final result is as expected (see code line bellow).

In[]:= d[x][ΨIII, x] - py2 * ΨIII + eps2 * ΨIII /.
seno
Sin[ϕ]

seno
Sin[ϕ1] //

simplifica complet⋯
FullSimplify //

forma de matriz
MatrixForm

Out[]//MatrixForm=

0
0

(*
região
Region III, A(x)=-d*)

Equation 3 with A(x) = -d :

(∂x)2 - py2 + 2 py
d
lB2 -

d2

lB4 + ϵ
2 ψ± = 0

In[]:=

remove
Remove["Global`*"]

In[]:= d[x_] =
derivada
D[#, {x, 2}] &; (*dx^2 = dx*dx but has to be applied on the function*)

In[]:= (*Wavefunction in region III *)

ΨIII = t *
raiz quadrada
Sqrt

px

px1
 {{1}, {

ex⋯
Exp[

unidade im⋯
I * ϕ1]}} *

ex⋯
Exp[

unidade imaginária
I * px1 * x];

(*calculate equation*)

2 hpsi_Epsi_DeMartino_region_III_07_01_2023.nb

In[]:= d[x][ΨIII, x] - py2 * ΨIII + 2 * py *
d

lb2
* ΨIII -

d2

lb4
* ΨIII + eps2 * ΨIII //

simplifica completamente
FullSimplify //

forma de matriz
MatrixForm

Out[]//MatrixForm=

-
 px1 x px

px1
lb4 -eps2+px12+d-lb2 py2 t

lb4

-
 (px1 x+ϕ1)

px

px1
lb4 -eps2+px12+d-lb2 py2 t

lb4

(*use the parametrization for px and py that De Martino gives*)

px = eps *
cosseno
Cos[ϕ]

py = eps *
seno
Sin[ϕ] + d lb2

px1 = eps *
cosseno
Cos[ϕ1]

py1 = eps *
seno
Sin[ϕ1] + d lb2

Out[]= eps Cos[ϕ]

Out[]=
d

lb2
+ eps Sin[ϕ]

Out[]= eps Cos[ϕ]

Out[]=
d

lb2
+ eps Sin[ϕ1]

In[]:= (*calculate equations again*)

d[x][ΨIII, x] - py2 * ΨIII + 2 * py *
d

lb2
* ΨIII -

d2

lb4
* ΨIII + eps2 * ΨIII //

simplifica completamente
FullSimplify //

forma de matriz
MatrixForm

Out[]//MatrixForm=

0
0

hpsi_Epsi_DeMartino_region_III_07_01_2023.nb 3

A.1.2 Code to Get the Transmission Amplitude Expression

48

In[]:=

apaga tudo
ClearAll["Global`*"]

ν = (((ϵ * lb)^2) / 2);

(*z=
raiz quadrada
Sqrt[2]*(py*lb); *)

z =

raiz quadrada
Sqrt[2] * ((x / lb) + (qn * lb));

z1 =

raiz quadrada
Sqrt[2] * (-(x / lb) - (qn * lb));

(* Scattering state incident from the left in the n-th mode *)

ΦL[qn_, y_, k_, x_] = {1}, EI*ϕ EI*k*x + rn * {1}, -E-I*ϕ E-I*k*x;

Φ[qn_, y_, k_, x_] = αn * {{

função D parabólica cilíndrica
ParabolicCylinderD[ν - 1, z]},

{((

u⋯
I *

raiz quadrada
Sqrt[2]) / (ϵ * lb)) *

função D parabólica cilíndrica
ParabolicCylinderD[ν, z]}} +

βn * {{

função D parabólica cilíndrica
ParabolicCylinderD[ν - 1, z1]},

{-((

u⋯
I *

raiz quadrada
Sqrt[2]) / (ϵ * lb)) *

função D parabólica cilíndrica
ParabolicCylinderD[ν, z1]}};

ΦR[qn_, y_, k_, x_] = tn *

raiz quadrada
Sqrt

k

px1
 * {{1}, {

ex⋯
Exp[

unidade im⋯

I * ϕ1]}} *

ex⋯
Exp[

unidade imaginária
I * px1 * x];

(*

resolve
Solve equations from the continuity of Ψ for tn *)

(*ΦL[qn,y,k1,-d] Φ[qn2,y,k2,-d]*)

Eq1 =

simplifica completamente
FullSimplify[ΦL[qn, y, k, -d] Φ[qn, y, k, -d]];

Eq2 =

simplifica completamente
FullSimplify[Φ[qn, y, k, d] ΦR[qn, y, k, d]];

tt =

resolve
Solve[Eq1 && Eq2, {rn, tn, αn, βn}]〚1〛〚2〛〚2〛;

tt =

simplifica completamente
FullSimplify

tt /.
função D parabólica cilíndrica
ParabolicCylinderD

lb2 ϵ2

2
, -

2 d + lb2 qn

lb
 v2m /.

função D parabólica cilíndrica
ParabolicCylinderD

-1 +
lb2 ϵ2

2
, 2

d

lb
+ lb qn u2p /.

função D parabólica cilíndrica
ParabolicCylinderD

lb2 ϵ2

2
, 2

d

lb
+ lb qn v2p /.

função D parabólica cilíndrica
ParabolicCylinderD-1 +

lb2 ϵ2

2
, -

2 d + lb2 qn

lb
 u2m /.

função D parabólica cilíndrica
ParabolicCylinderD

lb2 ϵ2

2
, 2

d

lb
- lb qn v1m /.

função D parabólica cilíndrica
ParabolicCylinderD

lb2 ϵ2

2
, 2 -

d

lb
+ lb qn v1p /.

função D parabólica cilíndrica
ParabolicCylinderD-1 +

lb2 ϵ2

2
, 2

d

lb
- lb qn u1m /.

função D parabólica cilíndrica
ParabolicCylinderD-1 +

lb2 ϵ2

2
, 2 -

d

lb
+ lb qn u1p /.

(-

cosseno
Cos[ϕ1] +

seno
Sin[ϕ1])

exp⋯
Exp[-

unidade imaginária
I * ϕ1]

simplifica completamente
FullSimplify 2

- d (k+px1)
* 1 +

2 ϕ
 * 2 * *

- ϕ
* lb * (u2p v2m + u2m v2p) * ϵ 2;

simplifica completamente
FullSimplify

k

px1
2

 ϕ
* (v1p v2m - v1m v2p) * 2 * *

- ϕ
+ 2 * 2 * *

- ϕ
*

 (ϕ+ϕ1)
* lb *

(u2p v1m + u2m v1p) * ϵ + 2 * *
- ϕ

* 2 * lb * (u1p v2m + u1m v2p) * ϵ +

lb2 * (u1p u2m - u1m u2p) * ϵ
2
(- *

cosseno
Cos[ϕ1] +

seno
Sin[ϕ1]) * 2 * *

- ϕ
 2;

Out[]= 2
- d (k+px1)

1 +
2 ϕ

 lb (u2p v2m + u2m v2p) ϵ

k

px1
2

 ϕ
(v1p v2m - v1m v2p) + 2

 (ϕ+ϕ1) lb (u2p v1m + u2m v1p) ϵ +

2 lb (u1p v2m + u1m v2p) ϵ + lb2 (u1p u2m - u1m u2p) ϵ
2
(- Cos[ϕ1] + Sin[ϕ1])

2 BC_transmission_clean.nb

A.1.3 Code to Get the Transmission Polar Plots

51

apaga tudo
ClearAll["Global`*"]

(*momenta parameters*)

ϕ1[ϕ_, el_, dl_] :=
arco seno
ArcSin[2 * (dl) * (1 / (el)) +

seno
Sin[ϕ]]

(*py[ϕ_]:=ϵ*
seno
Sin[ϕ]+(d/(lb)^2)*)

px[ϕ_] :=
cosseno
Cos[ϕ]

px1[ϕ_, el_, dl_] :=
co⋯
Cos[

arco seno
ArcSin[2 * (dl) * (1 / (el)) +

seno
Sin[ϕ]]]

(*Operators u*)

u1p[ϕ_, el_, dl_] :=

função D parabólica cilíndrica
ParabolicCylinderD[(((el)^2) / 2) - 1,

raiz quadrada
Sqrt[2] * ((-dl) + el *

seno
Sin[ϕ] + dl)]

u1m[ϕ_, el_, dl_] :=

função D parabólica cilíndrica
ParabolicCylinderD[(((el)^2) / 2) - 1, -1 *

raiz quadrada
Sqrt[2] * ((-dl) + el *

seno
Sin[ϕ] + dl)]

u2p[ϕ_, el_, dl_] :=

função D parabólica cilíndrica
ParabolicCylinderD[(((el)^2) / 2) - 1,

raiz quadrada
Sqrt[2] * ((dl) + el *

seno
Sin[ϕ] + dl)]

u2m[ϕ_, el_, dl_] :=

função D parabólica cilíndrica
ParabolicCylinderD[(((el)^2) / 2) - 1, -1 *

raiz quadrada
Sqrt[2] * ((dl) + el *

seno
Sin[ϕ] + dl)]

(*Operators v*)

v1p[ϕ_, el_, dl_] :=

função D parabólica cilíndrica
ParabolicCylinderD[((el)^2) / 2,

raiz quadrada
Sqrt[2] * ((-dl) + el *

seno
Sin[ϕ] + dl)]

v1m[ϕ_, el_, dl_] :=

função D parabólica cilíndrica
ParabolicCylinderD[((el)^2) / 2, -1 *

raiz quadrada
Sqrt[2] * ((-dl) + el *

seno
Sin[ϕ] + dl)]

v2p[ϕ_, el_, dl_] :=
função D parabólica cilíndrica
ParabolicCylinderD[((el)^2) / 2,

raiz quadrada
Sqrt[2] * ((dl) + el *

seno
Sin[ϕ] + dl)]

v2m[ϕ_, el_, dl_] :=

função D parabólica cilíndrica
ParabolicCylinderD[((el)^2) / 2, -1 *

raiz quadrada
Sqrt[2] * ((dl) + el *

seno
Sin[ϕ] + dl)]

(*T[ϕ_]:=(8*((3.7)^4)*
cosseno
Cos[ϕ1[ϕ]]*

cosseno
Cos[ϕ]*((u2p[ϕ]*v2m[ϕ]+v2p[ϕ]*u2m[ϕ])^2))*)

(*

derivada
D operator*)

Dop[ϕ_, el_, dl_] := ((el)^2) *

ex⋯
Exp[

unidade imaginária
I * (ϕ1[ϕ, el, dl] - ϕ)] *

(u1p[ϕ, el, dl] * u2m[ϕ, el, dl] - u2p[ϕ, el, dl] * u1m[ϕ, el, dl]) -

2 * (v1p[ϕ, el, dl] * v2m[ϕ, el, dl] - v2p[ϕ, el, dl] * v1m[ϕ, el, dl]) +

u⋯
I *

raiz quadrada
Sqrt[2] * el * (

ex⋯
Exp[

unidade imaginária
I * ϕ1[ϕ, el, dl]] *

(v1p[ϕ, el, dl] * u2m[ϕ, el, dl] + u2p[ϕ, el, dl] * v1m[ϕ, el, dl]) +

exp⋯
Exp[-

unidade imaginária
I * ϕ] * (u1p[ϕ, el, dl] * v2m[ϕ, el, dl] + v2p[ϕ, el, dl] * u1m[ϕ, el, dl]))

(*transmission amplitude*)

t[ϕ_, el_, dl_] :=

(2 *

unidade imaginária
I * el * (u2p[ϕ, el, dl] * v2m[ϕ, el, dl] + v2p[ϕ, el, dl] * u2m[ϕ, el, dl])) /

unidade imaginária

(

ex⋯
Exp[

unidade imaginária
I * (px[ϕ] + px1[ϕ, el, dl]) * el * dl] * Dop[ϕ, el, dl])

In[]:= (*transmission equation*)

T[ϕ_, el_, dl_] := 2 * px1[ϕ, el, dl] *

cosseno
Cos[ϕ] * t[ϕ, el, dl] * (t[ϕ, el, dl])

In[]:=

gráfico polar
PolarPlot[{T[ϕ, 3.7, 0.5], T[ϕ, 3.7, 3.67], T[ϕ, 3.7, 3], T[ϕ, 3.7, 1.5]},

{ϕ, -

númer⋯
Pi / 2,

número pi
Pi / 2},

estilo do gráfico
PlotStyle {

preto
Black,

azul
Blue,

verde
Green,

vermelho
Red}]

Out[]=

0.2 0.4 0.6 0.8 1.0

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

2 transmission_demartino_plots_complete.nb

In[]:=

gráfico polar
PolarPlot[{T[ϕ, 1.6, 1.5], T[ϕ, 2.5, 1.5], T[ϕ, 5, 1.5]},

{ϕ, -

númer⋯
Pi / 2,

número pi
Pi / 2},

estilo do gráfico
PlotStyle {

preto
Black,

ve⋯
Red,

verde
Green}]

Out[]=

0.2 0.4 0.6 0.8 1.0

-0.8

-0.6

-0.4

-0.2

0.2

transmission_demartino_plots_complete.nb 3

In[]:=

gráfico polar
PolarPlot[{T[ϕ, 3.7, 3.69], T[ϕ, 3.7, 2.0], T[ϕ, 3.7, 0.1]},

{ϕ, -

númer⋯
Pi / 2,

número pi
Pi / 2},

estilo do gráfico
PlotStyle {

preto
Black,

azul
Blue}]

Out[]= 0.2 0.4 0.6 0.8 1.0

-0.5

0.5

4 transmission_demartino_plots_complete.nb

A.2 Codes Used in Chapter 2 To Calculate the Conductivity With

Magnetic Field Only

A.2.1 Parameters Mathematica Notebook

Gr V ars Params 21 09 2023.pdf

56

In[]:= (************ Variables and Parameters for Calculating Conductivity of Graphene ************)

(* Constants *)

kB = 1.4×10^(−23); (* Boltzman constant (J/K) *)

e = 1.6*10^−19; (* Elementary charge (C) *)

h = 6.63* 10^(−34); (* Planck's constant (J.s) *)

ℏ = 1.05*10^(−34); (* Planck's constant/2π (J.s) *)

hbar = ℏ;

ϵair = 8.85*10^(−12); (* Permittivity of Vacuum (F/m) *)

ϵsio2 = 3.9*8.85*10^(−12); (* Permittivity of SiO2 (F/m) *)

a = 1.42*^−10; (* Lattice constant (m) *)

t0 = 2.7*e; (* Nearest-neighbor hopping energy (J) *)

vF = 1.0*10^6;(* Fermi velocity (m/s) *)

β = 2.5; (* Electron-phonon coupling *)

ν = 0.165;(* Poisson ratio in graphene *)

(* Variables & Parameters *)

μCont = 0.087*e;(* Contact doping (J) *)

L = 80.0*10^(−9); (* Channel length (m) *)

W = 1000.0*10^(−9); (* Channel width (m) *)

θ = 0*π/6; (* Crystal angle with respect to the x axis *)

dair = 50.0*10^(−9); (* Thicknes of vacuum (m) *)

dsio2 = 0*100.0*10^(−9); (* Thicknes of SiO2 (m) *)

cBG = (ϵair *ϵsio2)/((dsio2*ϵair) + (dair*ϵsio2)) ; (* Gate capacitance (F/m^2) *)

nimp = 0.0*10.0^15; (*1/m2 Density of Impurities IF nimp=0, gaussmooth must =0, if nimp≠= Gaussmooth must =1*)

temp = 0*1.5;(* Temperature of the sample (K) *)

ntmp = π/6*((kB*temp)/(hbar*vF))^2; (* Thermal carrier density *)

Rc = 0.0; (* Contact Resistance (Ohm) *)

gε = 3.0*e; (* Change in workfunction per % strain (choi2010) *)

ε0 = 0.0/100.0; (* Built-in strain *)

minε = 0.0/100.0; (* Minimum applied mechanical train *)

maxε = 0.0/100.0; (* Maximum applied mechanical train *)

Nεstep = 1; (* Strain steps *)

εStep = (maxε − minε)/Nεstep; (* Size of strain steps *)

minB = 1; (* Minimum applied mechanical train *)

maxB = 2;(*2.05*) (* Maximum applied mechanical train *)

NBstep = 1; (* Strain steps *)

BStep = (maxB − minB)/NBstep; (* Size of strain steps *)

Vdirac = 0.0; (* Dirac point position (V) *)

VgateMin = 5.0; (* Minimum gate (V) *)

VgateMax = 15.0; (* Maximum gate (V) *)

Nstep = 10; (* Number of gate steps (V) *)

VgateStep = (VgateMax − VgateMin)/Nstep; (* Gate step size *)

Gausssmooth = 0; (* Boolean, smooth over discontinuity at Dirac point caused buy nimp *)

(* Arrays *)

(* Conductivity *)

arranjo

Array[GG, (Nstep + 1)*(NBstep + 1) − 1];

arranjo

Array[GG1, (Nstep + 1)*(Nεstep + 1) − 1];

arranjo

Array[GG2, (Nstep + 1)*(Nεstep + 1) − 1];

arranjo

Array[GG3, (Nstep + 1)*(Nεstep + 1) − 1];

arranjo

Array[GG1p, (Nstep + 1)*(Nεstep + 1) − 1];

arranjo

Array[GG2p, (Nstep + 1)*(Nεstep + 1) − 1];

arranjo

Array[GG3p, (Nstep + 1)*(Nεstep + 1) − 1];

(* Gate voltage, mechanical strain, fermi energy *)

arranjo

Array[VVg, (Nstep + 1)*(NBstep + 1) − 1];

arranjo

Array[BB, (Nstep + 1)*(NBstep + 1) − 1];

arranjo

Array[μμ, (Nstep + 1)*(NBstep + 1) − 1];

arranjo

Array[εε, (Nstep + 1)*(Nεstep + 1) − 1];

2 Gr_Vars_Params_21_09_2023.nb

A.2.2 Code to Export the Transmission Probability

DeMartino export Tn expression.pdf

59

(* Present

goal: to calculate the transmission for
valor numérico
N-th mode of the transverse momentum,

starting from the t[ϕ_,el_,dl_]

*)

In[]:=

apaga tudo
ClearAll["Global`*"]

(*momenta parameters*)

ϕ1[ϕ_, el_, dl_] :=
arco seno
ArcSin[2 * (dl) * (1 / (el)) +

seno
Sin[ϕ]]

(*py[ϕ_]:=ϵ*
seno
Sin[ϕ]+(d/(lb)^2)*)

px[ϕ_] :=
cosseno
Cos[ϕ]

px1[ϕ_, el_, dl_] :=
co⋯
Cos[

arco seno
ArcSin[2 * (dl) * (1 / (el)) +

seno
Sin[ϕ]]]

(*Operators u*)

u1p[ϕ_, el_, dl_] :=

função D parabólica cilíndrica
ParabolicCylinderD[(((el)^2) / 2) - 1,

raiz quadrada
Sqrt[2] * ((-dl) + el *

seno
Sin[ϕ] + dl)]

u1m[ϕ_, el_, dl_] :=

função D parabólica cilíndrica
ParabolicCylinderD[(((el)^2) / 2) - 1, -1 *

raiz quadrada
Sqrt[2] * ((-dl) + el *

seno
Sin[ϕ] + dl)]

u2p[ϕ_, el_, dl_] :=

função D parabólica cilíndrica
ParabolicCylinderD[(((el)^2) / 2) - 1,

raiz quadrada
Sqrt[2] * ((dl) + el *

seno
Sin[ϕ] + dl)]

u2m[ϕ_, el_, dl_] :=

função D parabólica cilíndrica
ParabolicCylinderD[(((el)^2) / 2) - 1, -1 *

raiz quadrada
Sqrt[2] * ((dl) + el *

seno
Sin[ϕ] + dl)]

(*Operators v*)

v1p[ϕ_, el_, dl_] :=

função D parabólica cilíndrica
ParabolicCylinderD[((el)^2) / 2,

raiz quadrada
Sqrt[2] * ((-dl) + el *

seno
Sin[ϕ] + dl)]

v1m[ϕ_, el_, dl_] :=

função D parabólica cilíndrica
ParabolicCylinderD[((el)^2) / 2, -1 *

raiz quadrada
Sqrt[2] * ((-dl) + el *

seno
Sin[ϕ] + dl)]

v2p[ϕ_, el_, dl_] :=
função D parabólica cilíndrica
ParabolicCylinderD[((el)^2) / 2,

raiz quadrada
Sqrt[2] * ((dl) + el *

seno
Sin[ϕ] + dl)]

v2m[ϕ_, el_, dl_] :=

função D parabólica cilíndrica
ParabolicCylinderD[((el)^2) / 2, -1 *

raiz quadrada
Sqrt[2] * ((dl) + el *

seno
Sin[ϕ] + dl)]

(*T[ϕ_]:=(8*((3.7)^4)*
cosseno
Cos[ϕ1[ϕ]]*

cosseno
Cos[ϕ]*((u2p[ϕ]*v2m[ϕ]+v2p[ϕ]*u2m[ϕ])^2))*)

(*

derivada
D operator*)

Dop[ϕ_, el_, dl_] := ((el)^2) *

ex⋯
Exp[

unidade imaginária
I * (ϕ1[ϕ, el, dl] - ϕ)] *

(u1p[ϕ, el, dl] * u2m[ϕ, el, dl] - u2p[ϕ, el, dl] * u1m[ϕ, el, dl]) -

2 * (v1p[ϕ, el, dl] * v2m[ϕ, el, dl] - v2p[ϕ, el, dl] * v1m[ϕ, el, dl]) +

u⋯
I *

raiz quadrada
Sqrt[2] * el * (

ex⋯
Exp[

unidade imaginária
I * ϕ1[ϕ, el, dl]] *

(v1p[ϕ, el, dl] * u2m[ϕ, el, dl] + u2p[ϕ, el, dl] * v1m[ϕ, el, dl]) +

exp⋯
Exp[-

unidade imaginária
I * ϕ] * (u1p[ϕ, el, dl] * v2m[ϕ, el, dl] + v2p[ϕ, el, dl] * u1m[ϕ, el, dl]))

(*transmission amplitude*)

t[ϕ_, el_, dl_] :=

(2 *

unidade imaginária
I * el * (u2p[ϕ, el, dl] * v2m[ϕ, el, dl] + v2p[ϕ, el, dl] * u2m[ϕ, el, dl])) /

(

ex⋯
Exp[

unidade imaginária
I * (px[ϕ] + px1[ϕ, el, dl]) * el * dl] * Dop[ϕ, el, dl])

(*

raiz quadrada
Sqrt[2*px1[ϕ,el,dl]/px[ϕ]]*

cosseno
Cos[ϕ]*)

(*(2*
unida⋯
I*3.7*

raiz quadrada
Sqrt[2*px1[

número pi
Pi/2,3.7,0.5]/px[

número⋯
Pi/2]]*

co⋯
Cos[

número pi
Pi/2]*

(u2p[
número pi
Pi/2,3.7,0.5]*v2m[

número pi
Pi/2,3.7,0.5]+v2p[

número pi
Pi/2,3.7,0.5]*u2m[

número pi
Pi/2,3.7,0.5]))

(

ex⋯
Exp[

unida⋯
I*(px[

número pi
Pi/2]+px1[

número pi
Pi/2,3.7,0.5])*3.7*0.5]*Dop[

número pi
Pi/2,3.7,0.5])

raiz quadrada
Sqrt[2*px1[

número pi
Pi/2,3.7,0.5]/px[

número pi
Pi/2]]*)

(*px1[
número pi
Pi/2,3.7,0.5]

px[
número pi
Pi/2]*)

(*transmission equation*)

T[ϕ_, el_, dl_] := 2 * px1[ϕ, el, dl] *

cosseno
Cos[ϕ] * t[ϕ, el, dl] * (t[ϕ, el, dl])

(*

apaga
Clear all stored variables, but not functions *)

apaga
Clear @@

seleci⋯
Select[

nomes de símbolos
Names["Global`*"],

converte em expre⋯
ToExpression[#,

forma padrão
StandardForm,

função
Function[sym,

valores próprios
OwnValues[sym] =!= {},

impede o cálculo de qualquer argumento
HoldAll]] &]

(* Boudary condition in graphene for smooth edges (Tworzydolo) *)

q[N_, W_] := π / W *

fun⋯
Sign[

valo⋯
N] * (

val⋯
Abs[

valor numérico
N] + 1 / 2)

(*Tn[μCont_,μCH_,Nq_,L_,W_,Ay_]:=Tϕ[μCont/(ℏ*vF),μCH/(ℏ*vF),q[Nq,W],L,Ay];*)

(*

exporta
Export general graphene transmission expression *)

define diretório
SetDirectory[

diretório do notebook
NotebookDirectory[]];

exporta
Export["Tphi_expr_V0.0.mx", T[ϕ, el, dl]]

Out[]= Tphi_expr_V0.0.mx

2 DeMartino_export_Tn_expression.nb

In[]:=

gráfico polar
PolarPlot[{T[ϕ, 3.7, 0.5], T[ϕ, 3.7, 3.67], T[ϕ, 3.7, 3], T[ϕ, 3.7, 1.5]},

{ϕ, -

númer⋯
Pi / 2,

número pi
Pi / 2},

estilo do gráfico
PlotStyle {

preto
Black,

azul
Blue,

verde
Green,

vermelho
Red}]

Out[]=

0.2 0.4 0.6 0.8 1.0

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

DeMartino_export_Tn_expression.nb 3

In[]:=

gráfico polar
PolarPlot[{T[ϕ, 1.6, 1.5], T[ϕ, 2.5, 1.5], T[ϕ, 5, 1.5]},

{ϕ, -

númer⋯
Pi / 2,

número pi
Pi / 2},

estilo do gráfico
PlotStyle {

preto
Black,

ve⋯
Red,

verde
Green}]

Out[]=

0.2 0.4 0.6 0.8 1.0

-0.8

-0.6

-0.4

-0.2

0.2

4 DeMartino_export_Tn_expression.nb

In[]:=

gráfico polar
PolarPlot[{T[ϕ, 3.7, 3.69], T[ϕ, 3.7, 2.0], T[ϕ, 3.7, 0.1]},

{ϕ, -

númer⋯
Pi / 2,

número pi
Pi / 2},

estilo do gráfico
PlotStyle {

preto
Black,

azul
Blue}]

Out[]= 0.2 0.4 0.6 0.8 1.0

-0.5

0.5

DeMartino_export_Tn_expression.nb 5

A.2.3 Code to Calculate Conductivity

Conductivity DeMartino B V G ac.pdf

65

(********** Conductivity in Graphene under a constant magnetic field **********)

apaga tudo

ClearAll["Global`*"] (* Clear all values and definitions *)

define diretório

SetDirectory[
diretório do notebook

NotebookDirectory[]]; (* Set the current working directory *)

T[ϕ_, el_, dl_] =

importa

Import["Tphi_expr_V0.0.mx"]; (* Import the transmission probability expression *)

importa notebook

NotebookImport["Gr_Vars_Params_21_09_2023.nb", "Input" "Expression"]; (* Import constants/variables/parameters *)

Nmax[EF_] :=
parte inteira

IntegerPart
Abs[EF]

ℏ*vF
*

W

π

; (* Number of transmission modes, set by contact doping *)

NBstep = 0; (*for now we are not doing a B loop*)

kFcontact = μCont/(ℏ*vF);

ε = 0;

B = minB; (*need to set magnetic field here, not in parameter file*)

(*B= minB + BBStep*BStep; *)(* Incremental mechanical strain *)

lb =

raiz quadrada

Sqrt[hbar/(e*B)] ;

dl = (L/2)/lb; (*need to calculate here for each B value, el is calculated later because it changes with Vgate*)

Ay[L_] := - (e/(hbar))*(L/2)*B; (* Vector potentials along y direction *)

(*Print[Ay[L]]; *)

(* For loop to increase gate voltage *)

para cada

ForStep = 0, Step ≤ (Nstep), Step += 1,

Vgate = VgateMin + Step*VgateStep; (* Incremental gate voltage *)

(* Carrier density from gate and scalar potential *)

nc =

cBG

e
*(Vgate - Vdirac) +

função de sinal

Sign[gε]*
(gε*(1 - ν) *(ε + ε0))2

π (hbar*vF)2
;

(* Total carrier density *)

ntot = nc^2 + 4*
nimp

2
^2 + (ntmp)^2 ;

(* Fermi level in the channel *)

μCH = hbar*vF*
se

If[nc ≠ 0.0,
função de sinal

Sign[nc], 1]* π*Abs[ntot] ;

el = π*Abs[ntot] *lb; (*need to calculate here for each B and Vg value*)

(* Populate array with current strain, gate, and channel fermi level *)

VVg[Step + (NBstep)*(Nstep + 1)] = Vgate;

BB[Step + (NBstep)*(Nstep + 1)] = B;

μμ[Step + (NBstep)*(Nstep + 1)] = μCH ;

(* Array for storing the average Tn *)

Nmodes = Nmax[μCont];

(* Print[π/W*(Nmodes+1/2)]; *)

arranjo

Array[TnA, 2*(Nmodes + 1), -Nmodes];

(* Initialize arrays *)

GG[Step + NBstep*(Nstep + 1)] = 0;

(*For loop to sum over all transmission modes*)

para cada

ForNq = -Nmodes, Nq ≤ (Nmodes + 1), Nq += 1,

qn = π/W*(Nq - 1/2) + Ay[L];

ϕ =

arco seno

ArcSin[qn/kFcontact] ;

arco seno

TnA[Nq] =

parte real

Re[T[ϕ, el, dl]];

(* Sum over transmission modes to get conductance *)

GG[Step + (NBstep)*(Nstep + 1)] +=

4*e^2

h
* TnA[Nq]*

4*e^2

Pi*h
^(-1);

;

;

(*Build table of data: Gate voltage, conductivity, mechanical strain, Fermi energy in the channel*)

TB1 =

tabela

Table[{VVg[n],
parte real

Re[GG[n]]*L/W, BB[n], μμ[n]/e}, {n, 0, (Nstep + 1)*(NBstep + 1) - 1, 1}];

TB2 =

adiciona no início

Prepend[TB1, {"Vg", "Sig", "B", "EF"}]; (* Add headers to columns *)

exporta

Export["G_DeMartino_14112023_B1_10Vg_points.dat" , TB2, "Table"]

Out[]= G_DeMartino_14112023_B1_10Vg_points.dat

2 Conductivity_DeMartino_B_VG_ac.nb

A.3 Codes Used in Chapter 3 To Calculate the Conductivity With

Magnetic Field and Strain

This Section contains the codes used to calculate G in graphene with magnetic field and strain.

We calculate for two cases: with constant values of B and varying the values of ϵ and with constant

values of strain and varying the values of B. As mentioned before, to improve computation time,

we did not write a code to do both loops at the same time.

A.3.1 Parameters for Constant B and Varying Strain

68

(************ Variables and Parameters for Calculating Conductivity of Graphene with B fixed************)

(* Constants *)

kB = 1.4×10^(−23); (* Boltzman constant (J/K) *)

e = 1.6*10^−19; (* Elementary charge (C) *)

h = 6.63* 10^(−34); (* Planck's constant (J.s) *)

ℏ = 1.05*10^(−34); (* Planck's constant/2π (J.s) *)

hbar = ℏ;

ϵair = 8.85*10^(−12); (* Permittivity of Vacuum (F/m) *)

ϵsio2 = 3.9*8.85*10^(−12); (* Permittivity of SiO2 (F/m) *)

a = 1.42*^−10; (* Lattice constant (m) *)

t0 = 2.7*e; (* Nearest-neighbor hopping energy (J) *)

vF = 1.0*10^6;(* Fermi velocity (m/s) *)

β = 2.5; (* Electron-phonon coupling *)

ν = 0.165;(* Poisson ratio in graphene *)

(* Variables & Parameters *)

μCont = 0.087*e;(* Contact doping (J) *)

L = 80.0*10^(−9); (* Channel length (m) *)

W = 1000.0*10^(−9); (* Channel width (m) *)

θ = 15.0*π/6; (* Crystal angle with respect to the x axis *)

dair = 50.0*10^(−9); (* Thicknes of vacuum (m) *)

dsio2 = 0*100.0*10^(−9); (* Thicknes of SiO2 (m) *)

cBG = (ϵair *ϵsio2)/((dsio2*ϵair) + (dair*ϵsio2)) ; (* Gate capacitance (F/m^2) *)

nimp = 0.0*10.0^15; (*1/m2 Density of Impurities IF nimp=0, gaussmooth must =0, if nimp≠= Gaussmooth must =1*)

temp = 0*1.5;(* Temperature of the sample (K) *)

ntmp = π/6*((kB*temp)/(hbar*vF))^2; (* Thermal carrier density *)

Rc = 0.0; (* Contact Resistance (Ohm) *)

gε = 3.0*e; (* Change in workfunction per % strain (choi2010) *)

ε0 = 0.0/100.0; (* Built-in strain *)

minε = 1.9/100.0; (* Minimum applied mechanical train *)

maxε = 1.99/100.0; (* Maximum applied mechanical train *)

Nεstep = 1; (* Strain steps *)

εStep = (maxε − minε)/Nεstep; (* Size of strain steps *)

minB = 1.0; (* Minimum applied B *)

maxB = 2.03;(*2.05*) (* Maximum applied B *)

NBstep = 1; (* Strain steps *)

BStep = (maxB − minB)/NBstep; (* Size of B steps *)

Vdirac = 0.0; (* Dirac point position (V) *)

VgateMin = 5.0; (* Minimum gate (V) *)

VgateMax = 15.0; (* Maximum gate (V) *)

Nstep = 10; (* Number of gate steps (V) *)

VgateStep = (VgateMax − VgateMin)/Nstep; (* Gate step size *)

Gausssmooth = 0; (* Boolean, smooth over discontinuity at Dirac point caused buy nimp *)

(* Arrays *)

(* Conductivity *)

arranjo

Array[GG, (Nstep + 1)*(Nεstep + 1) − 1];

(* Gate voltage, mechanical strain, fermi energy *)

arranjo

Array[VVg, (Nstep + 1)*(Nεstep + 1) − 1];

arranjo

Array[BB, (Nstep + 1)*(Nεstep + 1) − 1];

arranjo

Array[μμ, (Nstep + 1)*(Nεstep + 1) − 1];

arranjo

Array[εε, (Nstep + 1)*(Nεstep + 1) − 1];

A.3.2 Parameters for Constant Strain and Varying B

70

(************ Variables and Parameters for Calculating Conductivity of Graphene with strain fixed************)

(* Constants *)

kB = 1.4×10^(−23); (* Boltzman constant (J/K) *)

e = 1.6*10^−19; (* Elementary charge (C) *)

h = 6.63* 10^(−34); (* Planck's constant (J.s) *)

ℏ = 1.05*10^(−34); (* Planck's constant/2π (J.s) *)

hbar = ℏ;

ϵair = 8.85*10^(−12); (* Permittivity of Vacuum (F/m) *)

ϵsio2 = 3.9*8.85*10^(−12); (* Permittivity of SiO2 (F/m) *)

a = 1.42*^−10; (* Lattice constant (m) *)

t0 = 2.7*e; (* Nearest-neighbor hopping energy (J) *)

vF = 1.0*10^6;(* Fermi velocity (m/s) *)

β = 2.5; (* Electron-phonon coupling *)

ν = 0.165;(* Poisson ratio in graphene *)

(* Variables & Parameters *)

μCont = 0.087*e;(* Contact doping (J) *)

L = 80.0*10^(−9); (* Channel length (m) *)

W = 1000.0*10^(−9); (* Channel width (m) *)

θ = 15.0*π/6; (* Crystal angle with respect to the x axis *)

dair = 50.0*10^(−9); (* Thicknes of vacuum (m) *)

dsio2 = 0*100.0*10^(−9); (* Thicknes of SiO2 (m) *)

cBG = (ϵair *ϵsio2)/((dsio2*ϵair) + (dair*ϵsio2)) ; (* Gate capacitance (F/m^2) *)

nimp = 0.0*10.0^15; (*1/m2 Density of Impurities IF nimp=0, gaussmooth must =0, if nimp≠= Gaussmooth must =1*)

temp = 0*1.5;(* Temperature of the sample (K) *)

ntmp = π/6*((kB*temp)/(hbar*vF))^2; (* Thermal carrier density *)

Rc = 0.0; (* Contact Resistance (Ohm) *)

gε = 3.0*e; (* Change in workfunction per % strain (choi2010) *)

ε0 = 0.0/100.0; (* Built-in strain *)

minε = 1.0/100.0; (* Minimum applied mechanical train *)

maxε = 1.9/100.0; (* Maximum applied mechanical train *)

Nεstep = 1; (* Strain steps *)

εStep = (maxε − minε)/Nεstep; (* Size of strain steps *)

minB = 1.0; (* Minimum applied B *)

maxB = 2.03;(*2.05*) (* Maximum applied B *)

NBstep = 10; (* Strain steps *)

BStep = (maxB − minB)/NBstep; (* Size of B steps *)

Vdirac = 0.0; (* Dirac point position (V) *)

VgateMin = 5.0; (* Minimum gate (V) *)

VgateMax = 15.0; (* Maximum gate (V) *)

Nstep = 10; (* Number of gate steps (V) *)

VgateStep = (VgateMax − VgateMin)/Nstep; (* Gate step size *)

Gausssmooth = 0; (* Boolean, smooth over discontinuity at Dirac point caused buy nimp *)

(* Arrays *)

(* Conductivity *)

arranjo

Array[GG, (Nstep + 1)*(NBstep + 1) − 1];

(* Gate voltage, mechanical strain, fermi energy *)

arranjo

Array[VVg, (Nstep + 1)*(NBstep + 1) − 1];

arranjo

Array[BB, (Nstep + 1)*(NBstep + 1) − 1];

arranjo

Array[μμ, (Nstep + 1)*(NBstep + 1) − 1];

arranjo

Array[εε, (Nstep + 1)*(NBstep + 1) − 1];

A.3.3 Code to Export the Transmission Probability

72

(* Present goal: update the functions to include the effect of strain,

and get the new transmission amplitude expression. Then test it to see if it makes

physical sense. My current understanding is that phi, phi1, px, and px1,

which are only evaluated at the edges of the channϵl, do not change. *)

In[]:=

apaga tudo
ClearAll["Global`*"]

(*momenta parameters*)

ϕ1[ϕ_, ϵl_, dl_] :=
arco seno
ArcSin[2 * (dl) * (1 / (ϵl)) +

seno
Sin[ϕ]];

(*py[ϕ_]:=ϵ*
seno
Sin[ϕ]+(d/(lb)^2)*)

px[ϕ_] :=
cosseno
Cos[ϕ];

px1[ϕ_, ϵl_, dl_] :=
co⋯
Cos[

arco seno
ArcSin[2 * (dl) * (1 / (ϵl)) +

seno
Sin[ϕ]]];

(*The effect of strain is simply to change the value of dl in u1 and v1

from -d/l to (-d-xo)/l and in u2 and v2 from d/l to (d-xo)/l*)

(*Operators u*)

u1p[ϕ_, ϵl_, dl_] :=

função D parabólica cilíndrica
ParabolicCylinderD[(((ϵl)^2) / 2) - 1,

raiz quadrada
Sqrt[2] * ((-dl) + ϵl *

seno
Sin[ϕ] + dl)] ;

u1m[ϕ_, ϵl_, dl_] :=

função D parabólica cilíndrica
ParabolicCylinderD[(((ϵl)^2) / 2) - 1, -1 *

raiz quadrada
Sqrt[2] * ((-dl) + ϵl *

seno
Sin[ϕ] + dl)]

u2p[ϕ_, ϵl_, dl_] :=

função D parabólica cilíndrica
ParabolicCylinderD[(((ϵl)^2) / 2) - 1,

raiz quadrada
Sqrt[2] * ((dl) + ϵl *

seno
Sin[ϕ] + dl)]

u2m[ϕ_, ϵl_, dl_] :=

função D parabólica cilíndrica
ParabolicCylinderD[(((ϵl)^2) / 2) - 1, -1 *

raiz quadrada
Sqrt[2] * ((dl) + ϵl *

seno
Sin[ϕ] + dl)]

(*Operators v*)

v1p[ϕ_, ϵl_, dl_] :=

função D parabólica cilíndrica
ParabolicCylinderD[((ϵl)^2) / 2,

raiz quadrada
Sqrt[2] * ((-dl) + ϵl *

seno
Sin[ϕ] + dl)]

v1m[ϕ_, ϵl_, dl_] :=

função D parabólica cilíndrica
ParabolicCylinderD[((ϵl)^2) / 2, -1 *

raiz quadrada
Sqrt[2] * ((-dl) + ϵl *

seno
Sin[ϕ] + dl)]

v2p[ϕ_, ϵl_, dl_] :=
função D parabólica cilíndrica
ParabolicCylinderD[((ϵl)^2) / 2,

raiz quadrada
Sqrt[2] * ((dl) + ϵl *

seno
Sin[ϕ] + dl)]

v2m[ϕ_, ϵl_, dl_] :=

função D parabólica cilíndrica
ParabolicCylinderD[((ϵl)^2) / 2, -1 *

raiz quadrada
Sqrt[2] * ((dl) + ϵl *

seno
Sin[ϕ] + dl)]

(*

derivada
D operator without strain*)

Dop[ϕ_, ϵl_, dl_] := ((ϵl)^2) *

ex⋯
Exp[

unidade imaginária
I * (ϕ1[ϕ, ϵl, dl] - ϕ)] *

(u1p[ϕ, ϵl, dl] * u2m[ϕ, ϵl, dl] - u2p[ϕ, ϵl, dl] * u1m[ϕ, ϵl, dl]) -

2 * (v1p[ϕ, ϵl, dl] * v2m[ϕ, ϵl, dl] - v2p[ϕ, ϵl, dl] * v1m[ϕ, ϵl, dl]) +

u⋯
I *

raiz quadrada
Sqrt[2] * ϵl * (

ex⋯
Exp[

unidade imaginária
I * ϕ1[ϕ, ϵl, dl]] *

(v1p[ϕ, ϵl, dl] * u2m[ϕ, ϵl, dl] + u2p[ϕ, ϵl, dl] * v1m[ϕ, ϵl, dl]) +

exp⋯
Exp[-

unidade imaginária
I * ϕ] * (u1p[ϕ, ϵl, dl] * v2m[ϕ, ϵl, dl] + v2p[ϕ, ϵl, dl] * u1m[ϕ, ϵl, dl]))

(*transmission amplitude without strain*)

t[ϕ_, ϵl_, dl_] :=

(2 *

unidade imaginária
I * ϵl * (u2p[ϕ, ϵl, dl] * v2m[ϕ, ϵl, dl] + v2p[ϕ, ϵl, dl] * u2m[ϕ, ϵl, dl])) /

(

ex⋯
Exp[

unidade imaginária
I * (px[ϕ] + px1[ϕ, ϵl, dl]) * ϵl * dl] * Dop[ϕ, ϵl, dl])

(*transmission equation without strain*)

T[ϕ_, ϵl_, dl_] := 2 * px1[ϕ, ϵl, dl] *

cosseno
Cos[ϕ] * t[ϕ, ϵl, dl] * (t[ϕ, ϵl, dl])

(*

exporta
Export general graphene transmission expression *)

define diretório
SetDirectory[

diretório do notebook
NotebookDirectory[]];

exporta
Export["Tphi_expr_V0.0.mx", T[ϕ, ϵl, dl]]

"Tphi_expr_V0.0.mx"

Out[]= Tphi_expr_V0.0.mx

Out[]= Tphi_expr_V0.0.mx

2 DeMartino_strain_Tn_expression.nb

In[]:= (*

derivada
D operator with strain*)

Dops[ϕ_, ϵl_, dl_, dl1_, dl2_] := ((ϵl)^2) *

ex⋯
Exp[

unidade imaginária
I * (ϕ1[ϕ, ϵl, dl] - ϕ)] *

(u1p[ϕ, ϵl, dl1] * u2m[ϕ, ϵl, dl2] - u2p[ϕ, ϵl, dl2] * u1m[ϕ, ϵl, dl1]) -

2 * (v1p[ϕ, ϵl, dl1] * v2m[ϕ, ϵl, dl2] - v2p[ϕ, ϵl, dl2] * v1m[ϕ, ϵl, dl1]) +

u⋯
I *

raiz quadrada
Sqrt[2] * ϵl * (

ex⋯
Exp[

unidade imaginária
I * ϕ1[ϕ, ϵl, dl]] *

(v1p[ϕ, ϵl, dl1] * u2m[ϕ, ϵl, dl2] + u2p[ϕ, ϵl, dl2] * v1m[ϕ, ϵl, dl1]) +

exp⋯
Exp[-

unidade imaginária
I * ϕ] * (u1p[ϕ, ϵl, dl1] * v2m[ϕ, ϵl, dl2] + v2p[ϕ, ϵl, dl2] * u1m[ϕ, ϵl, dl1]))

(*transmission amplitude with strain*)

ts[ϕ_, ϵl_, dl_, dl1_, dl2_] :=

(2 *

unidade imaginária
I * ϵl * (u2p[ϕ, ϵl, dl2] * v2m[ϕ, ϵl, dl2] + v2p[ϕ, ϵl, dl2] * u2m[ϕ, ϵl, dl2])) /

(

ex⋯
Exp[

unidade imaginária
I * (px[ϕ] + px1[ϕ, ϵl, dl]) * ϵl * dl] * Dops[ϕ, ϵl, dl, dl1, dl2])

(*transmission equation with strain*)

Ts[ϕ_, ϵl_, dl_, dl1_, dl2_] :=

2 * px1[ϕ, ϵl, dl] *

cosseno
Cos[ϕ] * ts[ϕ, ϵl, dl, dl1, dl2] * (ts[ϕ, ϵl, dl, dl1, dl2])

define diretório
SetDirectory[

diretório do notebook
NotebookDirectory[]];

exporta
Export["Tsphi_expr_V0.mx", Ts[ϕ, ϵl, dl, dl1, dl2]];

DeMartino_strain_Tn_expression.nb 3

A.3.4 Code to Calculate Conductivity for Constant B and Varying Strain

76

(********** Conductivity in Graphene under Uniaxial Strain and Magnetic Field - Fixed B and Varying Strain **********)

apaga tudo

ClearAll["Global`*"] (* Clear all values and definitions *)

define diretório

SetDirectory[
diretório do notebook

NotebookDirectory[]]; (* Set the current working directory *)

Ts[ϕ_, ϵl_, dl_, dl1_, dl2_] =

importa

Import["Tsphi_expr_V0.mx"]; (* Import the transmission probability expression *)

importa notebook

NotebookImport["Params_strain_Vg_withB_Nov_2023.nb", "Input" "Expression"]; (* Import constants/variables/parameters *)

Nmax[EF_] :=
parte inteira

IntegerPart
Abs[EF]

ℏ*vF
*

W

π

+ 0.5; (* Number of transmission modes, set by contact doping *)

kFcontact = μCont/(ℏ*vF) ;

(* For loop to increase magnetic field *)

para cada

ForSStep = 0, SStep ≤ (Nεstep), SStep += 1,

B = minB; (* setting B field *)

lb =

raiz quadrada

Sqrt[hbar/(e*B)] ;

ε = minε + SStep*εStep;

(* Incremental mechanical strain *)

(* Magnetic Vector potentials along y direction *)

Ay[L_] := - (e/(hbar))*(L/2)*B;

(* Strain Vector potentials along y direction *)

Ay1[θ_] :=
4 π (ε + ε0)

3 3 a
ν

seno

Sin[θ] +

β (ε + ε0) (1 + ν)

2 a seno

Sin[3 *θ];

Ay2[θ_] :=
2 π (ε + ε0)

3 a
-

1

3
ν

seno

Sin[θ] + ν

cosseno

Cos[θ] +

β (ε + ε0) (1 + ν)

2 a seno

Sin[3 *θ];

Ay3[θ_] :=
2 π (ε + ε0)

3 a
-

1

3
ν

seno

Sin[θ] - ν

cosseno

Cos[θ] +

β (ε + ε0) (1 + ν)

2 a seno

Sin[3 *θ];

(*xo =A0elB
2c , and A0=(hbar/e)*A_strain , so this means that xo is different in all 3 valley, since A_strain is different in each valley

so define x1=(hbar/e)*elB
2c*Ay1, etc. *)

(*Now remember than DeMartino has different units than us,and in our units,

we replace their c by hbar.Such that in our code,A0elB
2c =A0elB

2hbar=A_strain*elB
2hbar*(hbar/e)=A_strain*lB

2*)

x1 = (lb)^2*Ay1[θ];

x2 = (lb)^2*Ay2[θ];

x3 = (lb)^2*Ay3[θ];

dl = (L/2)/lb; (*need to calculate here for each B value, el is calculated later because it changes with Vgate*)

(*because of strain dl is now different on left side = dll, so define dll1, dll2, dll3*)

dll1 = ((L/2) + x1)/lb;

dll2 = ((L/2) + x2)/lb;

dll3 = ((L/2) + x3)/lb;

(*because of strain dl is now different on right side = dlr, so define dlr1, dlr2, dlr3*)

dlr1 = ((L/2) - x1)/lb;

dlr2 = ((L/2) - x2)/lb;

dlr3 = ((L/2) - x3)/lb;

(* For loop to increase gate voltage *)

para cada

ForStep = 0, Step ≤ (Nstep), Step += 1,

Vgate = VgateMin + Step*VgateStep; (* Incremental gate voltage *)

(* Carrier density from gate and scalar potential *)

nc =

cBG

e
*(Vgate - Vdirac) +

função de sinal

Sign[gε]*
(gε*(1 - ν) *(ε + ε0))2

π (hbar*vF)2
;

(* Total carrier density *)

ntot = nc^2 + 4*
nimp

2
^2 + (ntmp)^2 ;

(* Fermi level in the channel *)

μCH = hbar*vF*
se

If[nc ≠ 0.0,
função de sinal

Sign[nc], 1]* π*Abs[ntot] ;

el = π*Abs[ntot] *lb; (*need to calculate here for each B and Vg value*)

(* Populate array with current strain, gate, and channel fermi level *)

VVg[Step + (SStep)*(Nstep + 1)] = Vgate;

BB[Step + (SStep)*(Nstep + 1)] = B;

μμ[Step + (SStep)*(Nstep + 1)] = μCH ;

εε[Step + (SStep)*(Nstep + 1)] = ε;

(* Array for storing the average Tn *)

Nmodes = Nmax[μCont];

arranjo

Array[TnA, 2*(Nmodes + 1), -Nmodes];

(* Initialize arrays *)

GG[Step + SStep*(Nstep + 1)] = 0;

(*For loop to sum over all transmission modes*)

para cada

ForNq = -Nmodes, Nq ≤ (Nmodes + 1), Nq += 1,

qn1n = π/W*(Nq - 1/2) + Ay[L] - Ay1[θ];

qn2n = π/W*(Nq - 1/2) + Ay[L] - Ay2[θ];

qn3n = π/W*(Nq - 1/2) + Ay[L] - Ay3[θ];

qn1p = π/W*(Nq - 1/2) + Ay[L] + Ay1[θ];

qn2p = π/W*(Nq - 1/2) + Ay[L] + Ay2[θ];

qn3p = π/W*(Nq - 1/2) + Ay[L] + Ay3[θ];

ϕ1n =

arco seno

ArcSin[qn1n/kFcontact] ;

ϕ2n =

arco seno

ArcSin[qn2n/kFcontact] ;

ϕ3n =

arco seno

ArcSin[qn3n/kFcontact] ;

ϕ1p =

arco seno

ArcSin[qn1p/kFcontact] ;

ϕ2p =

arco seno

ArcSin[qn2p/kFcontact] ;

ϕ3p =

arco seno

ArcSin[qn3p/kFcontact] ;

(* Average transmission for all 6 Dirac cones - modified to only keep positive values, and replace negative values by zeros,

basically using the fact that in experiment we have a bias voltage focing current in one direction only*)

TnA1 =

parte real

Re[Ts[ϕ1n, el, dl, dll1, dlr1]];

se

If[TnA1 ≥ 0, , TnA1 = 0.0];

TnA2 =

parte real

Re[Ts[ϕ2n, el, dl, dll2, dlr2]];

se

If[TnA2 ≥ 0, , TnA2 = 0.0];

TnA3 =

parte real

Re[Ts[ϕ3n, el, dl, dll3, dlr3]];

se

If[TnA3 ≥ 0, , TnA3 = 0.0];

TnA4 =

parte real

Re[Ts[ϕ1p, el, dl, dlr1, dll1]];

se

If[TnA4 ≥ 0, , TnA4 = 0.0];

2 G_strain_Vg_with_B_Nov2023.nb

se

TnA5 =

parte real

Re[Ts[ϕ2p, el, dl, dlr2, dll2]];

se

If[TnA5 ≥ 0, , TnA5 = 0.0];

TnA6 =

parte real

Re[Ts[ϕ3p, el, dl, dlr3, dll3]];

se

If[TnA6 ≥ 0, , TnA6 = 0.0];

TnA[Nq] = (TnA1 + TnA2 + TnA3 + TnA4 + TnA5 + TnA6)/6;

(* Sum over transmission modes to get conductance *)

GG[Step + (SStep)*(Nstep + 1)] +=

4*e^2

h
* TnA[Nq]*

4*e^2

Pi*h
^(-1);

;

;

;

(*Build table of data: Gate voltage, conductivity, magnetic field, strain, Fermi energy in the channel*)

TB1 =

tabela

Table[{VVg[n],
parte real

Re[GG[n]]*L/W, BB[n], εε[n], μμ[n]/e}, {n, 0, (Nstep + 1)*(Nεstep + 1) - 1, 1}];

(* Add headers to columns *)

TB2 =

adiciona no início

Prepend[TB1, {"Vg", "Sig", "B", "Strain", "EF"}];

exporta

Export["test14022024_1Tfield_1p9to1p99strain.dat" , TB2, "Table"]

Out[]= test14022024_1Tfield_1p9to1p99strain.dat

G_strain_Vg_with_B_Nov2023.nb 3

A.3.5 Code to Calculate Conductivity for Constant Strain and Varying B

80

(********** Conductivity in Graphene under Uniaxial Strain and Magetic Field - Fixed Strain and Varying Magnetic Field **********)

apaga tudo

ClearAll["Global`*"] (* Clear all values and definitions *)

define diretório

SetDirectory[
diretório do notebook

NotebookDirectory[]]; (* Set the current working directory *)

Ts[ϕ_, ϵl_, dl_, dl1_, dl2_] =

importa

Import["Tsphi_expr_V0.mx"]; (* Import the transmission probability expression *)

importa notebook

NotebookImport["Params_B_Vg_with_strain_Nov_2023.nb", "Input" "Expression"]; (* Import constants/variables/parameters *)

Nmax[EF_] :=
parte inteira

IntegerPart[(
valor absoluto

Abs[EF]/(ℏ*vF))*(W/π) + 0.5]; (* Number of transmission modes, set by contact doping *)

kFcontact = μCont/(ℏ*vF) ;

(* For loop to increase magnetic field *)

para cada

ForBBstep = 0, BBstep ≤ (NBstep), BBstep += 1,

B = minB + BBstep*BStep; (* Incrementing B field *)

lb =

raiz quadrada

Sqrt[hbar/(e*B)] ;

ε = minε;

(* Magnetic Vector potentials along y direction *)

Ay[L_] := - (e/(hbar))*(L/2)*B;

(* Strain Vector potentials along y direction *)

Ay1[θ_] := (4 π (ε + ε0))3×
√
3 a ν

seno

Sin[θ] + ((β (ε + ε0) (1 + ν))/(2 a))
seno

Sin[3 *θ];

Ay2[θ_] := ((2 π (ε + ε0))/(3 a)) -1
√
3 ν

seno

Sin[θ] + ν

cosseno

Cos[θ] + ((β (ε + ε0) (1 + ν))/(2 a))
seno

Sin[3 *θ];

Ay3[θ_] := ((2 π (ε + ε0))/(3 a)) -1
√
3 ν

seno

Sin[θ] - ν

cosseno

Cos[θ] + ((β (ε + ε0) (1 + ν))/(2 a))
seno

Sin[3 *θ];

(*xo =A0elB
2c , and A0=(hbar/e)*A_strain , so this means that xo is different in all 3 valley, since A_strain is different in each valley

so define x1=(hbar/e)*elB
2c*Ay1, etc. *)

(*Now remember than DeMartino has different units than us,and in our units,

we replace their c by hbar.Such that in our code,A0elB
2c =A0elB

2hbar=A_strain*elB
2hbar*(hbar/e)=A_strain*lB

2*)

x1 = (lb)^2*Ay1[θ];

x2 = (lb)^2*Ay2[θ];

x3 = (lb)^2*Ay3[θ];

dl = (L/2)/lb; (*need to calculate here for each B value, el is calculated later because it changes with Vgate*)

(*because of strain dl is now different on left side = dll, so define dll1, dll2, dll3*)

dll1 = ((L/2) + x1)/lb;

dll2 = ((L/2) + x2)/lb;

dll3 = ((L/2) + x3)/lb;

(*because of strain dl is now different on right side = dlr, so define dlr1, dlr2, dlr3*)

dlr1 = ((L/2) - x1)/lb;

dlr2 = ((L/2) - x2)/lb;

dlr3 = ((L/2) - x3)/lb;

(* For loop to increase gate voltage *)

para cada

ForStep = 0, Step ≤ (Nstep), Step += 1,

Vgate = VgateMin + Step*VgateStep; (* Incremental gate voltage *)

(* Carrier density from gate and scalar potential *)

nc = (cBG/e)*(Vgate - Vdirac) +

função de sinal

Sign[gε]*(gε*(1 - ν) *(ε + ε0))2 π (hbar*vF)2;

(* Total carrier density *)

ntot =
√

(nc^2 + 4*((nimp/2)^2 + (ntmp)^2));

(* Fermi level in the channel *)

μCH = hbar*vF*
se

If[nc ≠ 0.0,
função de sinal

Sign[nc], 1]*
√

(π*

valor absoluto

Abs[ntot]);

el =
√

(π*

valor absoluto

Abs[ntot]) *lb; (*need to calculate here for each B and Vg value*)

(* Populate array with current strain, gate, and channel fermi level *)

VVg[Step + (BBstep)*(Nstep + 1)] = Vgate;

BB[Step + (BBstep)*(Nstep + 1)] = B;

μμ[Step + (BBstep)*(Nstep + 1)] = μCH ;

εε[Step + (BBstep)*(Nstep + 1)] = ε;

(* Array for storing the average Tn *)

Nmodes = Nmax[μCont];

arranjo

Array[TnA, 2*(Nmodes + 1), -Nmodes];

(* Initialize arrays *)

GG[Step + BBstep*(Nstep + 1)] = 0;

(*For loop to sum over all transmission modes*)

para cada

For[Nq = -Nmodes, Nq ≤ (Nmodes + 1), Nq += 1,

qn1n = π/W*(Nq - 1/2) + Ay[L] - Ay1[θ];

qn2n = π/W*(Nq - 1/2) + Ay[L] - Ay2[θ];

qn3n = π/W*(Nq - 1/2) + Ay[L] - Ay3[θ];

qn1p = π/W*(Nq - 1/2) + Ay[L] + Ay1[θ];

qn2p = π/W*(Nq - 1/2) + Ay[L] + Ay2[θ];

qn3p = π/W*(Nq - 1/2) + Ay[L] + Ay3[θ];

ϕ1n =

arco seno

ArcSin[qn1n/kFcontact] ;

ϕ2n =

arco seno

ArcSin[qn2n/kFcontact] ;

ϕ3n =

arco seno

ArcSin[qn3n/kFcontact] ;

ϕ1p =

arco seno

ArcSin[qn1p/kFcontact] ;

ϕ2p =

arco seno

ArcSin[qn2p/kFcontact] ;

ϕ3p =

arco seno

ArcSin[qn3p/kFcontact] ;

(* Average transmission for all 6 Dirac cones - modified to only keep positive values, and replace negative values by zeros,

basically using the fact that in experiment we have a bias voltage focing current in one direction only*)

TnA1 =

parte real

Re[Ts[ϕ1n, el, dl, dll1, dlr1]];

se

If[TnA1 ≥ 0, , TnA1 = 0.0];

TnA2 =

parte real

Re[Ts[ϕ2n, el, dl, dll2, dlr2]];

se

If[TnA2 ≥ 0, , TnA2 = 0.0];

TnA3 =

parte real

Re[Ts[ϕ3n, el, dl, dll3, dlr3]];

se

If[TnA3 ≥ 0, , TnA3 = 0.0];

TnA4 =

parte real

Re[Ts[ϕ1p, el, dl, dlr1, dll1]];

se

If[TnA4 ≥ 0, , TnA4 = 0.0];

TnA5 =

parte real

Re[Ts[ϕ2p, el, dl, dlr2, dll2]];

se

If[TnA5 ≥ 0, , TnA5 = 0.0];

TnA6 =

parte real

Re[Ts[ϕ3p, el, dl, dlr3, dll3]];

se

If[TnA6 ≥ 0, , TnA6 = 0.0];

TnA[Nq] = (TnA1 + TnA2 + TnA3 + TnA4 + TnA5 + TnA6)/6;

(* Sum over transmission modes to get conductance *)

GG[Step + (BBstep)*(Nstep + 1)] += ((4*e^2)/h)* TnA[Nq]*((4*e^2)/(
número pi

Pi*h))^(-1);

];

2 G_B_Vg_with_strain_Nov2023.nb

;

;

(*Build table of data: Gate voltage, conductivity, magnetic field, strain, Fermi energy in the channel*)

TB1 =

tabela

Table[{VVg[n],
parte real

Re[GG[n]]*L/W, BB[n], εε[n], μμ[n]/e}, {n, 0, (Nstep + 1)*(NBstep + 1) - 1, 1}];

(* Add headers to columns *)

TB2 =

adiciona no início

Prepend[TB1, {"Vg", "Sig", "B", "Strain", "EF"}];

exporta

Export["piru.dat" , TB2, "Table"]

Out[]= piru.dat

In[]:= "G_DeMartino_strain_24112023_B_Vg_s1.dat"

Out[]= G_DeMartino_strain_24112023_B_Vg_s1.dat

G_B_Vg_with_strain_Nov2023.nb 3

Bibliography

[1] A. C. McRae, G. Wei, and A. R. Champagne. Graphene quantum strain transistors. Phys. Rev.

Appl., 11(5):054019, 2019.

[2] A. De Martino, L. Dell’Anna, and R. Egger. Magnetic confinement of massless dirac fermions

in graphene. Phys. Rev. Lett., 98(6):066802, 2007.

[3] J. Tworzydło, B. Trauzettel, M. Titov, A. Rycerz, and C. W. J. Beenakker. Sub-poissonian shot

noise in graphene. Phys. Rev. Lett., 96(24):246802, 2006.

[4] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim. The electronic

properties of graphene. Rev. Mod. Phys., 81(1):109–162, 2009.

[5] F. Guinea, M. I. Katsnelson, and A. K. Geim. Energy gaps and a zero-field quantum hall effect

in graphene by strain engineering. Nature Phys., 6(1):30–33, 2010.

[6] A. Bhagat and K. Mullen. Pseudo-magnetic quantum hall effect in oscillating graphene. Solid

State Communications, 287:31–34, 2019.

[7] A. J. M. Giesbers, L. A. Ponomarenko, K. S. Novoselov, A. K. Geim, M. I. Katsnelson, J. C.

Maan, and U. Zeitler. Gap opening in the zeroth landau level of graphene. Phys. Rev. B.,

80(20):201403, 2009. PRB.

[8] Mikkel Settnes, Jose H. Garcia, and Stephan Roche. Valley-polarized quantum transport gen-

erated by gauge fields in graphene. 2D Mater., 4(3):031006, 2017.

84

[9] D. Grassano, M. D’Alessandro, O. Pulci, S. G. Sharapov, V. P. Gusynin, and A. A. Varlamov.

Work function, deformation potential, and collapse of landau levels in strained graphene and

silicene. Phys. Rev. B., 101(24):245115, 2020.

[10] Gerardo G. Naumis, Salvador Barraza-Lopez, Maurice Oliva-Leyva, and Humberto Terrones.

Electronic and optical properties of strained graphene and other strained 2d materials: a review.

Rep. Prog. Phys., 80(9):096501, 2017.

[11] Miloud Mekkaoui, Ahmed Jellal, and Hocine Bahlouli. Tunneling of electrons in graphene

via double triangular barrier in external fields. Solid State Commun., 358:114981, 2022.

[12] A. Zubarev and D. Dragoman. Ballistic charge carrier transmission through graphene multi-

barrier structures in uniform magnetic field. J. Phys. D: Appl. Phys., 47(42):425302, 2014.

[13] Kenneth S. Burch, David Mandrus, and Je-Geun Park. Magnetism in two-dimensional van der

waals materials. Nature, 563(7729):47–52, 2018.

[14] P. Nigge, A. C. Qu, É Lantagne-Hurtubise, E. Mårsell, S. Link, G. Tom, M. Zonno,

M. Michiardi, M. Schneider, S. Zhdanovich, G. Levy, U. Starke, C. Gutiérrez, D. Bonn,

S. A. Burke, M. Franz, and A. Damascelli. Room temperature strain-induced landau levels

in graphene on a wafer-scale platform. Sci. Adv., 5(11):eaaw5593, 2019.

[15] Arnab Pal, Shuo Zhang, Tanmay Chavan, Kunjesh Agashiwala, Chao-Hui Yeh, Wei Cao, and

Kaustav Banerjee. Quantum-engineered devices based on 2d materials for next-generation

information processing and storage. Adv. Mater., 35(27):2109894, 2023.

[16] Ya-Ning Ren, Qiang Cheng, Si-Yu Li, Chao Yan, Yi-Wen Liu, Ke Lv, Mo-Han Zhang, Qing-

Feng Sun, and Lin He. Spatial and magnetic confinement of massless dirac fermions. Phys.

Rev. B., 104(16):L161408, 2021.

[17] Fengcheng Wu and Sankar Das Sarma. Identification of superconducting pairing symme-

try in twisted bilayer graphene using in-plane magnetic field and strain. Phys. Rev. B.,

99(22):220507, 2019.

85

[18] M. M. Fogler, F. Guinea, and M. I. Katsnelson. Pseudomagnetic fields and ballistic transport

in a suspended graphene sheet. Phys. Rev. Lett., 101(22):226804, 2008.

[19] A. C. McRae, G. Wei, L. Huang, Serap Yiğen, Vahid Tayari, and A R Champagne. Mechanical

control of quantum transport in graphene. 2023.

[20] Feng Miao, Shi-Jun Liang, and Bin Cheng. Straintronics with van der waals materials. Npj

Quantum Mater., 6(1):59, 2021.

[21] Seon-Myeong Choi, Seung-Hoon Jhi, and Young-Woo Son. Effects of strain on electronic

properties of graphene. Phys. Rev. B., 81(8):081407, 2010.

[22] Peter Rickhaus, Romain Maurand, Ming-Hao Liu, Markus Weiss, Klaus Richter, and Christian

Schönenberger. Ballistic interferences in suspended graphene. Nat. Commun., 4(1):2342,

2013.

[23] I. Solomonovich Gradshteyn and Iosif Moiseevich Ryzhik. Table of integrals, series, and

products. Academic Press, 2014.

[24] Piranavan Kumaravadivel, Scott Mills, and Xu Du. Magnetic field suppression of andreev

conductance at superconductor–graphene interface. 2D Mater., 4(4):045011, 2017.

[25] Alexander V. Savin, Yuri S. Kivshar, and Bambi Hu. Suppression of thermal conductivity in

graphene nanoribbons with rough edges. Phys. Rev. B, 82:195422, 2010.

[26] Alex Zazunov, Arijit Kundu, Artur Hütten, and Reinhold Egger. Magnetic scattering of dirac

fermions in topological insulators and graphene. Phys. Rev. B., 82(15):155431, 2010.

[27] Si Wu, Matthew Killi, and Arun Paramekanti. Graphene under spatially varying exter-

nal potentials: Landau levels, magnetotransport, and topological modes. Phys. Rev. B.,

85(19):195404, 2012.

[28] Yingjie Zhang, Youngseok Kim, Matthew J. Gilbert, and Nadya Mason. Magnetotransport in

a strain superlattice of graphene. Appl. Phys. Lett., 115(14):143508, 2019.

86

[29] Fengnian Xia, Damon B Farmer, Yu-ming Lin, and Phaedon Avouris. Graphene field-effect

transistors with high on/off current ratio and large transport band gap at room temperature.

Nano letters, 10(2):715–718, 2010.

87

	List of Figures
	Magneto-Transport In Strained Graphene: Why An Applied Model Is Needed?
	Motivation to Bridge Theoretical and Experimental Quantum Straintronics
	Physics Background To Calculate Ballistic Conductivity in Graphene
	A Brief Introduction to Graphene
	From Pure Theory to Applied Theory: How to Simulate Graphene Transistors?

	Experimental Parameters for Modeling Quantum Magneto-Straintronics Transport in Graphene
	Device Parameters
	Instrumentation Parameters
	Thesis Structure

	Modelling Ballistic Magneto-Transport Experiments
	Applied Theory for Quantum-Magneto Graphene Transistors
	Deriving the Hamiltonian for Graphene in a Magnetic Field
	Deriving the Transmission Equation
	The Code
	Quick Guide on How to Use the Code

	Simulation Results and Predictions
	Suppression of Conductance due to a Magnetic Field

	Modelling Strained Magneto-Transport in Ballistic Graphene Experiments
	Strained Monolayer Graphene Transistor
	Hamiltonian for Strained Monolayer Graphene in the Presence of a Magnetic Field and Strain
	Adding the Contribution of Strain Potentials to the Magnetic Hamiltonian
	The Code

	Results
	Conductivity Suppression Under Fixed Magnetic Field and Varying Strain
	Linear Change in Conductivity Under Constant Strain and Varying Magnetic Field
	On-off Ratio

	Outlook and Conclusions
	Main Results, Next Steps and Expected Impact

	Appendix Mathematica Codes
	Codes Used In Chapter 2 - Transmission Plots
	Codes to Test Eigenfunctions Solutions
	Code to Get the Transmission Amplitude Expression
	Code to Get the Transmission Polar Plots

	Codes Used in Chapter 2 To Calculate the Conductivity With Magnetic Field Only
	Parameters Mathematica Notebook
	Code to Export the Transmission Probability
	Code to Calculate Conductivity

	Codes Used in Chapter 3 To Calculate the Conductivity With Magnetic Field and Strain
	Parameters for Constant B and Varying Strain
	Parameters for Constant Strain and Varying B
	Code to Export the Transmission Probability
	Code to Calculate Conductivity for Constant B and Varying Strain
	Code to Calculate Conductivity for Constant Strain and Varying B

	Bibliography

