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Abstract 

A Deep Few-Shot Network for Protein Family Classification 

 

Saeedeh Jamali 

 

  

Protein sequence analysis is arguably a challenging modern bioinformatics problem covering various 

applications such as disease research, precision medicine, and therapeutics [1]. Given the emergence of 

sequencing technologies and the resulting large-scale databases, protein family classification is an open 

problem in bioinformatics [2]. Recent advances in computer science have opened new gates to researchers 

in various scientific domains [3]. Bioinformatics, as an intermediary research field, takes advantage of these 

advancements from conventional machine learning methods to large language models, and biostatistics [4]. 

Utilized machine learning techniques for protein family classification, are dependent on domain experts to 

generate features which could be time-consuming and challenging [5] [6]. Deep learning algorithms have 

shown promising results in proteomics; however, their application is limited to the availability of massive 

data sets for training. Since the required data comes from experiments, it can be highly complex or 

incomplete. As an alternative, few-shot models can learn and generalize from a few observations. To address 

the mentioned limitations, in this research, we designed and implemented a deep few-shot network for 

protein family classification1 [7] and our result showed outperformance to state-of-the-art baseline models. 

To the best of our knowledge, this is the first deep network tailored for primary sequence family classification 

that can highly perform with a very limited number of observations. 

 

1 The short paper of this research work was accepted and presented at the 36th Canadian Conference 2023 on Artificial  

    Intelligence (CanAI - 2023) 
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Chapter 1: Introduction  

  

1.1 Introduction  

  

Proteins are represented through four distinct structural forms (Fig 1). The protein primary 

sequence is the most cost-effective and accessible form of protein. This primary structure is 

obtained by direct sequencing of the protein, resulting in a sequence of amino acids. Each amino 

acid in this sequence is represented by a specific character, making it a straightforward and 

commonly available format for protein analysis in a protein sequence. There are predominantly 

twenty standard amino acids that frequently occur. Occasionally, this sequence also includes a few 

rare amino acids. Each of these amino acids, whether common or obscure, is represented by a 

unique character notation. Advanced high-throughput technologies like next-generation 

sequencing [4] [8] have significantly accelerated the pace of omics-based research, which includes 

the study of genes, proteins, and other biomolecules. This acceleration has deepened our 

understanding of the biological mechanisms associated with specific diseases and has enhanced 

the speed and efficacy of patient-specific responses to these conditions.   

  

  

Fig 1. Four protein structures [9]  
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The novel approach to biomarker research, biological indicators that can predict disease risk, 

diagnose conditions, or forecast treatment outcomes with high precision, grounded in data-driven 

methods, results in methods of personalized medicine [10] [11] [4]. Improving the techniques for 

processing and analyzing underlying data remains a key motivation for bioinformaticians and 

machine/deep learning specialists. Investigating and exploring omic data, without human 

intervention, is an ongoing challenge. In standard machine learning applications, feature 

engineering is often employed within the data analytic pipeline to address this issue. Recently, 

experts in machine learning have started utilizing advanced algorithms from the subfield of deep 

learning (DL) that do not necessitate the extensive feature engineering typically required in 

traditional machine learning approaches [4]. This is illustrated in Fig 2, showcasing the growing 

recent interest in utilizing DL models in omics-based research.   

  

Fig 2 Approximation of the number of published articles based on the 

search for deep learning models within the omics research field [4].  

  

This transition primarily stems from the superior capability of DL in developing predictive models 

and identifying complex patterns within extensive datasets [12] which requires minimal feature 
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engineering, offering a unique advantage to analyze omics data at its most fundamental level, 

bypassing the need for handcrafted features.   

A major issue with employing advanced machine learning techniques, like deep learning models, 

is their dependence on extensive collections of labelled data for effective generalization. Acquiring 

such large datasets remains both costly and time-consuming. Moreover, the lack of labelled data 

can result in poor performance of machine learning algorithms. Similar challenges also exist in 

other domains, including computer vision (CV) and natural language processing (NLP) [4]. Thus, 

a motivation behind this research is the adaptation of deep learning methods for the analysis of 

proteomics data, aiming to be effective irrespective of the quantity of available labelled data. 

Modern deep learning approaches need to be adept at handling both extensive and limited datasets, 

as they play a crucial role in uncovering new insights and broadening our understanding of 

diseases. These techniques are instrumental in enhancing diagnostics and formulating customized 

treatment plans [4].  

Before the advent of machine learning, earlier methods focused on programming computers with 

a specific set of rules for each modelling task. Dealing with the intricate nature of omic data made 

these early methods both time-consuming and laborious. As the availability of data increased, these 

traditional approaches soon became impractical for researchers. The need for continual 

adjustments and modifications to the programs, in response to the escalating complexity of the 

data, rendered them inefficient. Ultimately, machine learning emerged as a more effective solution 

to these challenges, surpassing the limitations of rule-based systems. With their capacity to learn 

from experience, machine learning algorithms could use all available data, offering a more 

dynamic and adaptable approach to data analysis [4] [11]. Machine learning algorithms have the 

capability to process vast amounts of data and identify patterns that might be overlooked by 
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manually crafted rules. Now, machine learning is pivotal in uncovering new patterns and 

addressing emerging hypotheses in the context of these intricate biological systems. Contemporary 

machine learning methods, particularly deep learning, have revolutionized the field of 

computational biology. The adoption of deep learning algorithms has expedited research by 

enabling the automatic detection and analysis of patterns in large datasets, eliminating the need for 

manual intervention. Similar to other information processing areas, deep learning is becoming 

increasingly prominent and effective in the field of bioinformatics. This includes their use in 

predicting important protein properties directly from protein sequence data. The effectiveness of 

deep learning solutions lies in their capability to extract intricate, task-specific features from basic 

input data. Most of the deep learning methods used for protein analysis have been adapted from 

the field of natural language processing (NLP). The analysis of a protein's primary structure can 

be viewed as similar to the tasks currently being performed in the field of NLP, which focuses on 

learning the linguistic structure of sentences [4].   

Recent advancements in NLP have highlighted the effectiveness of pre-training. In this method, a 

model is first trained on a large body of unlabeled text, and then fine-tuned with labelled data for 

a specific task. Pre-training enables the model to learn the statistical patterns of language, such as 

the meanings of terms and possible grammatical relationships. Fine-tuning, on the other hand, 

optimizes the network for a particular function, like discerning the emotional sentiment of a 

sentence. Training language models on large-scale unlabeled datasets generally demand significant 

computational resources. Yet, the resulting encodings from such training are versatile enough to 

be applicable across a broad spectrum of subsequent tasks [13] [14] [15].  

Pre-training has now become a standard in NLP, leading to the emergence of networks such as  
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ELMo [16], BERT [17] [4]. These models have achieved state-of-the-art results in language 

modelling. Typically, they start by using a sub-word algorithm to re-encode the original text. This 

process enables the system to deconstruct infrequently used words in the vocabulary into more 

common sub-words. For instance, the word 'cars' could be divided into the word piece tokens 'car' 

and 's'. By fragmenting the rare words in a corpus, the modelling process is simplified. The network 

can then utilize these sub word representations to depict words, rather than relying on the original 

character sequences of the words.   

In recent years, the application of pre-trained techniques from the field of NLP has significantly 

influenced protein bioinformatics. These techniques are trained on extensive databases of protein 

sequences to extract meaningful characteristics [13] [18] [19].  

A notable example built upon the principles of the BERT model is the work by Elnaggar et al. [20], 

who utilized over 2.1 billion sequences of proteins to train, a set of transformer models originally 

developed for NLP. These models enable the conversion of protein sequences into vector formats, 

this transformer can then be effectively utilized for a range of applications, such as classifying 

protein families [21] [19]. The use of these pre-trained transformer models offers numerous 

benefits. They eliminate the need for creating manual, error-prone features to represent protein 

sequences, leading to a more streamlined and efficient approach to protein sequence analysis and 

related developments [19].  

Given the limitations in the field of omics research regarding the application of deep learning 

models, a highly accurate protein family classification task is an open problem. Understanding the 

unknown properties and functions of proteins, based on measurable features, is crucial for 

advancing disease research, precision medicine, and therapeutics. For instance, in the task of 



6  

  

protein sequence classification, we often encounter families with insufficient examples. As 

previously discussed, most deep/machine learning models, such as common convolutional neural 

networks (CNN), are applicable for classification tasks only when a large-scale dataset is available 

[4] [12]. Metric-based meta-learning models, such as Siamese networks, offer an innovative 

approach to generalizing from limited examples. These models use a distinctive structure to assess 

the similarity between inputs [22], minimizing the need for extensive retraining. Siamese networks 

are noted for their scalability, allowing for the inclusion of additional categories [22] [23].   

1.1.1 Contribution  

  

To address the mentioned limitations, in this research, we designed and implemented a novel deep 

few-shot learning network for protein family classification. While Siamese networks have been 

explored in various contexts, including object tracking [24] and COVID-19 detection from X-ray 

images [22], Protein-Protein Interaction [19], to the best of our knowledge, this is the first work 

that employs transfer learning and presents a few-shot deep Siamese network model for protein 

family classification task. The goal of our deep few-shot learning architecture is to classify unseen 

primary protein sequences that can be highly performed with a very limited number of 

observations.   

The effectiveness of our architecture will be tested with three different baseline architectures 

including Support Vector Machines, Convolutional Neural Networks, Gated Recurrent Unit.  

1.2 Literature Review and the Outline of Thesis  

  

In this chapter, we review the relevant literature, organized into three main sections. First, we 

examine the conventional models used for protein family classification. This is followed by a 



7  

  

discussion on the advantages and limitations of machine learning methods, particularly in the 

context of protein family classification. In the subsequent section, we review what deep learning 

methods offer as alternatives to conventional machine learning approaches for this field of science.  

We conclude the chapter with a literature review of works and techniques, such as the few-shot 

learning strategies that provide the necessary background for our novel architecture proposal.   

Protein plays crucial roles in various functions within an organism, ranging from growth to cellular 

maintenance. Differentiating between known and unknown proteins and assigning them to their 

appropriate protein families can yield deeper insights into their specific functionalities and 

behaviours. Protein family classification models consider the inherent nature of proteins, which are 

one-dimensional sequences composed of 20 unique amino acids, referred to as the primary protein 

sequence. When a new protein is discovered, researchers strive to categorize its primary sequence 

into a particular family. This classification assesses the probability that the novel protein shares 

similarities, in terms of properties, functions, and general behaviour, with previously identified 

protein families [2]. Such understanding is vital for medical and biology research areas like disease 

identification, comparative genomics, and the development of medications and drug designs [4] 

[25] [26]. Traditionally, methods like X-Ray crystallography and nuclear magnetic resonance have 

been employed by experts in laboratories to discern protein structures and functions. However, with 

the advent of large-scale genome projects and technological advancements, there has been an 

exponential increase in the number of novel protein sequences. As a result, conducting biological 

experiments to characterize these protein sequences has become costly, time-intensive, and 

laborious [27] [23].  Thanks to advancements in computer science and digital technologies, both 

traditional and modern machine learning techniques have significantly transformed computational 
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biology and data-driven methods in bioinformatics [4]. In this section, we will discuss this progress 

and its implications.   

The remainder of this thesis is organized as follows: Chapter 1 continues with a review of relevant 

research work. Chapter 2 discusses data methodologies and the components of our proposed 

architecture. In Chapter 3, we discuss the results and conclusions, along with directions for future 

research.  

1.3 Conventional Models for Protein family classification  

  

1.3.1 K-mer  

  

The K-mer approach offers a technique for embedding bioinformatics sequences, but it's shallow 

to a neural network that can't be trained beyond a single convolutional layer. This approach was 

established by Karlin and Burge in 1995 [28]. K-mer methods work based on the frequency of 

words and are one alignment-free method applied as the most used model in sequence comparison 

and many other bioinformatics problems [5].  The method initiates by generating a comprehensive 

dictionary of all potential sub-sequences that are k units long (known as a K-mer), and then each 

k-length sub-sequence is moved across against the given sequence. Concurrently, a quantitative 

vector is constructed wherein each element precisely represents the occurrences of its 

corresponding K-mer within the sequence.   

Although it forms the foundation for numerous bioinformatics methods, such as ESPRIT by Sun 

et al. (2009) and SLAD by Zheng et al. (2018) for sequence binning, as well as the RDP classifier 

by Wang et al. (2007) and Kraken by Wood and Salzberg (2014) for sequence annotation 

generating features from words of varying lengths typically demands more complex data 

frameworks, making it substantially more computationally intensive [18]. Moreover, a crucial 
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aspect to understand about the K-mer approach is that its filters, which correspond to the adjustable 

weights within the network, are pre-defined and manual rather than learned which can be 

problematic [5].  

  

1.4 Machine Learning  

  

The advent of Big Data has been instrumental in the evolution of Machine Learning (ML), a 

subfield of Artificial Intelligence (AI). Machine learning focuses on creating and refining 

mathematical algorithms that are capable of enhancing their performance autonomously through 

experience and task modelling. This subfield has significantly transformed the methodologies 

employed by biologists in modelling and analysis.  

 Machine learning is a subfield of computer science that employs a series of statistical and 

mathematical rules and assumptions to enable machines (such as computers), to learn from data 

and make decisions or predictions based on that data [4]. A machine learning model can essentially 

be viewed as a function that approximates mathematical relationships. It is designed to learn the 

connection between input data (x) and output data (y), especially in cases where the precise 

relationship is not initially clear. For instance, in the field of bioinformatics, a machine-learning 

model might analyze numerous instances of peptide sequences (inputs) along with their 

corresponding retention times (outputs). By doing so, the model is trained to predict the retention 

times for other peptides that have not yet been measured. The key advantage of machine learning 

lies in its ability to leverage existing data to learn a relationship between various features of the 

data. Once a model is developed, it can predict future outputs based solely on input data, thereby 

reducing the need and expense of additional measurements [29]. The choice of machine learning 

algorithm largely depends on the nature of the input data (i.e., features) and the type of output (i.e., 
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discrete, or continuous labels). Transforming the input data through data processing feature 

engineering, which involves applying a series of mathematical functions, is a crucial step in this 

process. The machine learning model efficiency is related to the quality of its input data, as this 

data is essential for optimizing the model's parameters. Additionally, the method by which the input 

data is processed and transformed via feature engineering can significantly influence the overall 

performance of the model [4].  

1.4.1 General Workflow of a Machine Learning Model   

  

Now we discuss the general workflow when developing a machine learning model. After a machine 

learning model is developed, it enters a process called training. This involves using a set of 

mathematical functions to optimize the model's parameters. Throughout this iterative process, the 

parameters are repeatedly estimated and evaluated on how accurately the model's predictions align 

with the expected output. Then a predefined loss function (Equation 1) measures the errors of these 

predictions, and adjustments are made to the parameters to minimize this loss function.   

  

ℒ(θ) =  
1

𝑁
∑ ℓ(𝑦𝑖

𝑁
𝑖=1 , 𝑓𝜃(𝑥𝑖))                                                                 (1) 

In Equation 1, ℒ(𝜃) represents the loss function dependent on the parameters θ, N is the number 

of examples, ℓ is a loss measure (e.g., squared error for regression or cross-entropy for  

classification), 𝑦𝑖 are the true values, and 𝑓𝜃(𝑥𝑖) are the model's predictions.  

This process continues until no further reduction in loss is possible, signifying that the model's 

performance has peaked. The model's predictions are then validated using a separate holdout 

dataset, confirming the model's effective training. This typically involves training the model on a 



11  

  

designated dataset (the training dataset) and then assessing its performance on entirely separate 

datasets (known as test and validation datasets).  

When a machine learning model shows high accuracy on the training dataset but underperforms on 

the validation or testing sets, this is indicative of overfitting the training data [4]. This situation may 

occur when a model's parameters are overly trained, losing their generalizability for the overall task, 

or when the model is excessively complex (with too many trainable parameters) [4].   

1.4.2 Support Vector Machines (SVM)  

  

Support Vector Machines (SVM) is a common machine learning model that can be utilized for 

analyzing bioinformatics data. SVM utilizes one or more hyperplanes in a multi-dimensional space 

for predictions. The design of each hyperplane aims to maximize its distance from any individual 

data point during the training process. SVM relies on a kernel function that elevates the original 

data to a higher-dimensional space. Then, the model learns the hyperplane's shape by adjusting 

weights. The resulting hyperplane, when translated back to the original data space, provides a 

nonlinear decision boundary [4].  

Lee et al. [13] used SVM for the protein family classification task, resulting in an 87.9% F1 

performance metric evaluation. In another work by Yuvaraj et al. [30], the SVM model was utilized 

for tumour classification using gene expression data. Additionally, SVMs have been prominently 

utilized in various domains of omic research, particularly in identifying biomarkers. Moreover, 

these models have played a significant role in predicting protein thermostability and localization 

[4]. Shen et al. [6] developed a notable SVM-based method for protein sequence analysis. In their 

study, they categorized the 20 amino acids into seven groups based on the dipoles and volumes of 

their side chains. Shen et al.'s approach, aimed at predicting human protein-protein interactions 
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(PPIs) achieved a high prediction accuracy of 83.9 percent. Building on this, Guo et al. [31] 

introduced a technique that combines to extract interaction data from discontinuous amino acid 

segments in the sequences. Their method further enhanced the prediction accuracy, reaching 86.55 

percent, when predicting PPIs in the Saccharomyces cerevisiae species.  

With SVMs, users need to select a particular optimization or regularization parameter, which 

influences the geometry of the hyperplane. Besides, discovering the most optimal kernel function 

can be a time-consuming process [4] [32].  

1.5 Deep Learning Models for Protein Family Classification  

  

Deep learning techniques are now available for virtually every stage of proteomics research, which 

enhances capabilities in feature selection, identifying peptides, and protein structure inference [29]. 

In the past few years, there has been a rapid increase in research focused on applying deep learning 

to the field of omics. Despite deep learning offering innovative ways to analyze omics data, the 

methods employed in computational biology generally lag behind the more advanced techniques 

found in fields like computer vision and natural language processing [4].  

1.5.1 General Workflow of a Neural Network Model   

  

Essentially, a basic artificial neural network is composed of three layers: an input layer, one hidden 

layer, and a final output layer (Fig 2). Expanding upon this structure, deep neural networks (DNNs) 

feature multiple hidden layers positioned between the input and output layers. Equation (2) is a 

vector of input variables for a neural network (NN), its included p elements and the network will 

build a nonlinear function 𝑓(𝑋) (Equation 3), that is prediction of the response Y for this vector. 

In neural network terminology, the features 𝑋1 to 𝑋𝑝 represent the units in the input layer. Fig 3 

shows a basic feed-forward or forward-pass neural network designed for modelling a quantitative 
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response. The arrows signify that every input from the input layer feeds into each of the units in 

the hidden layer.  

  

Fig 3: A neural network designed with one hidden layer functions by calculating activations 𝐴𝑘 = ℎ𝑘(𝑋). These 

activations are nonlinear transformations of the inputs   𝑋1, 𝑋2, …, 𝑋𝑝 here 𝑝 = 4, created through linear combinations.  

Notably, these 𝐴𝑘 activations are internal to the network and not directly observable. These ℎ𝑘(. ) functions to define 

these transformations that are not predetermined but rather learned during the network's training process. The final 

output of the network is generated by a linear model in the output layer, which takes these activations 𝐴𝑘 as its inputs 

to form the overall output function 𝑓(𝑋) [33].  

  

                                                             𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑝)                                                         (2)  

                                                         

                                                  𝑓(𝑋) =  𝛽0  +  ∑ 𝛽𝑘
𝐾
𝑘=1 𝐴𝑘                                      (3) 

 

                                               𝐴𝑘 = ℎ𝑘(𝑋) = 𝑔(𝑧) = 𝑔(𝑤𝑘0  + ∑ 𝛽𝑘
𝑝
𝑗=1 𝑤𝑘𝑗𝑋𝑗 )                     (4)  

 

The function 𝑓(𝑋) is constructed through a two-step process. Initially, the K activations 𝐴𝑘 , 

Equation (3), where k ranges from 1 to K, are determined in the hidden layer. These activations are 

the results of applying functions to the input features 𝑋1, 𝑋2, …, 𝑋𝑝 utilizing a predetermined 
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nonlinear activation function 𝑔(𝑧). Each 𝐴𝑘 (Equation 4) can be viewed as a unique transformation 

ℎ𝑘(𝑋) of the inputs. To complete this process, all the parameters 𝛽0, …, 𝛽𝐾 and 𝑤𝑘0, …, 𝑤𝐾𝑝 must 

be estimated from the data. This estimation is typically done in the early stages of training of the 

neural network.   

In earlier neural network models, the sigmoid activation function was commonly used (Equation 

5). This is the same as that used in logistic regression, transforming a linear function into 

probabilities ranging between zero and one.   

𝑔(𝑧) =
1

1+𝑒−𝑧    (5) 

However, in modern neural networks, the ReLU (Rectified Linear Unit) is also used as an 

activation function (Equation 6).  

                                                       𝑔(𝑧) = max(0, 𝑧)               (6)  

Similar to their more basic counterparts, DNNs are trained through a process of continuous 

adjustment of the model's internal parameters to minimize the overall error in predictions  

(Equation 7) [33].  

             𝑅(𝜃) =
1

2
∑ (𝑦𝑖 − 𝑓𝜃(𝑥𝑖))

2𝑛
𝑖=1              (7) 

                                                       

The principal technique used for this purpose is back-propagation, initially put forward by Werbos 

et al. [34] The gradient of the function 𝑅(𝜃), when assessed at a current value 𝜃 = 𝜃𝑚, is 

represented by the vector composed of its partial derivatives at that specific point (Equation 8).  

 

 𝛻𝑅(𝜃𝑚) =
𝜕𝑅(𝜃)

𝜕𝜃
| θ=θm

                               (8)  
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Since the function, 𝑅(𝜃) is defined as a sum, (Equation 9), where it is the sum of 𝑅𝑖(𝜃) over 𝑛 

observations, its gradient is also the sum over these 𝑛 observations. Therefore, we will focus on 

examining one of these terms (Equation 10).  

𝑅(θ) = ∑ 𝑅𝑖(θ)

𝑛

𝑖=1

=
1

2
∑(𝑦𝑖 − 𝑓θ(𝑥𝑖))

2
𝑛

𝑖=1

     (9) 

𝑅𝑖(θ) =
1

2
(𝑦𝑖 − β0 − ∑ β𝑘𝑔 (𝑤𝑘0 + ∑ 𝑤𝑘𝑗

𝑃

𝑗=1

𝑥𝑖𝑗)

𝐾

𝑘=1

)

2

       (10) 

                    𝑧𝑖𝑘 = 𝑤𝑘0 + ∑ 𝑤𝑘𝑗

𝑃

𝑗=1

𝑥𝑖𝑗                   (11) 

∂𝑅𝑖(θ)

∂β𝑘
=

∂𝑅𝑖(θ)

∂𝑓(𝑥𝑖)
⋅

∂𝑓(𝑥𝑖)

∂β𝑘
= −(𝑦𝑖 − 𝑓(𝑥𝑖)) ⋅ g(zik)       (12) 

∂𝑅𝑖(θ)

∂𝑢𝑘𝑗
=

∂𝑅𝑖(θ)

∂𝑓(𝑥𝑖)
⋅

∂𝑓(𝑥𝑖)

∂𝑔(𝑧𝑖𝑘)
⋅

∂𝑔(𝑧𝑖𝑘)

∂𝑧𝑖𝑘
⋅

∂𝑧𝑖𝑘

∂𝑢𝑘𝑗
= −(𝑦𝑖 − 𝑓(𝑥𝑖)) ⋅ β𝑘 ⋅ 𝑔′(𝑧𝑖𝑘) ⋅ 𝑥𝑖𝑗    (13) 

   

We use Equation 11 to simplify the expressions. First, we take the derivative with respect to 

(Equation 12) and with respect to (Equation 13). Both formulas of Equation 12 and Equation 13 

incorporate the residual term 𝑦𝑖 − 𝑓𝜃(𝑥𝑖). Equation 12 demonstrates how a portion of this residual 

is allocated among the hidden units, which is proportional to the function 𝑔′(𝒛𝒌). Following this, 

Equation 13 illustrates a comparable allocation process where the residual's portion is distributed 

to the input 𝑗 mediated by hidden unit 𝑘. This differentiation process effectively apportions parts 

of the residual to each parameter, a mechanism facilitated by the chain rule. This method is 

commonly referred to as backpropagation, a fundamental concept in the domain of neural 

networks. This technique was pivotal in the development of neural networks containing several 

layers.  
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It operates by relaying an error signal backward through the network's layers. During this 

backpropagation, the model's parameters are systematically adjusted to minimize the overall error 

throughout each layer of the network [31]. During the forward pass, each layer's output is 

calculated, and the activation signals are carried onward across the network with every training 

iteration. To measure the error between what the network predicts and what is expected (the labels), 

a loss function is employed. During training, the error signals are backpropagated through the 

network via the chain rule, which computes the gradients to all the weights in each layer [32]. This 

process is completed several times during training until the error between the network's prediction 

and the expected output reaches an acceptable minimum level. An optimization algorithm based 

on a form of stochastic gradient descent (SGD) [33] is typically used to update the weight 

parameters in the network. Often, such adjustments involve a type of mini-batch gradient descent 

where an optimizer based on SGD gradually fine-tunes the model's parameters. This fine-tuning is 

accomplished by stochastic approximation. In recent times, a range of sophisticated learning 

optimization algorithms has emerged, advancing the training efficacy of neural networks, notable 

examples include Adagrad [34] and Adam [35].   

When creating a deep learning model, it's crucial to employ regularization techniques to avoid 

overfitting the training data. One common regularization strategy is to apply weight decay during 

the training process [36]. This method imposes a penalty on the loss function if the weights in the 

network are too large. Additionally, dropout [37] is a widely used regularization technique, which 

involves randomly omitting a number of hidden units in each applicable layer throughout the 

training, to enhance the model's ability to generalize to new data (Fig 4).  
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Fig 4: A network utilizing dropout technique, both the input and hidden layers have certain nodes marked 

in grey.  These grey nodes are randomly chosen and are excluded during a specific training iteration [33].  

The idea is to randomly remove a percentage (φ) of the neurons in a layer during the training phase. 

The remaining active neurons compensate for those that are inactive by adjusting their weights, 

which are scaled up by a factor of 1/ (1 − φ). This process ensures that neurons do not become 

overly dependent on specific patterns, promoting a form of regularization. Practically, dropout is 

executed by setting the activations of the deactivated neurons to zero, while the overall structure 

of the network remains unchanged. This technique helps in preventing overfitting and enhances 

the generalization capability of the model [33].  

Batch normalization [38] stands out as another significant regularization technique. It standardizes 

the input features for each activation in a mini-batch by adjusting and scaling based on the batch's 

mean and variance.  

The upcoming sections will delve into how deep learning is applied to the fields of proteomics, 

expanding an in-depth exploration of the most common models for protein family classification.  
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1.5.2 Convolutional Neural Network (CNN)  

  

Deep learning models have been applied for complex problems such as Natural Language 

Processing (NLP) with state-of-the-art performance [35] [36]. This progress in solving NLP 

problems makes it possible to apply neural network architecture to bioinformatics problems [6]  

[37] [36] [38] [39]. Among all deep learning models, one-dimensional Convolutional Neural 

Network, (1D)-CNN is one of the most common models, which reached remarkable results for 

sequence classification problems [6]. CNN, which was first introduced by LeCun and team [40], 

stands as one of the most common deep learning architectures. This versatile framework has been 

effectively employed in various research fields, notably achieving impressive results in computer 

vision and language-related tasks. A standard CNN consists of successive layers of convolution 

and pooling that work to refine the input data. Each layer is crafted to improve the input by 

extracting and transforming essential features from a prespecified segment (called window) of the 

data. Each convolutional layer analyzes the complete input, whether it is in the form of one-hot or 

embedding encodings, by focusing on smaller segments (such as windows) and applying specific 

filters, including kernel weight and bias [4]. The outcome from this layer is a weighted sum of 

these filtered features, yielding a condensed representation of each window. Often, a convolutional 

layer is paired with a subsequent pooling layer that further summarizes the input. The purpose of 

the pooling layer is to preserve the most important features identified by the convolutional layer 

while discarding any extraneous ones, thereby helping to avoid overfitting. The two prevalent types 

of pooling include max-pooling, which picks out the feature with maximum values within a defined 

window of the input, and mean-pooling, which computes the mean value of the features within the 

same section [4]. Using a fully connected CNN model in which every input is connected to every 
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output by a learnable weight incorporating max pooling. Lee et al. achieved an F1 score of 89.7% 

in protein family classification with the UniProt dataset [13].    

A CNN-based deep learning framework is versatile enough to address diverse applications. These 

models excel in detecting patterns that are invariant to spatial transformations directly from raw 

data, e.g., images or text, thus reducing the need for pre-processing and feature engineering. 

However, their effectiveness is limited when it comes to capturing long-range dependencies within 

sequences. Success with CNNs often hinges on access to extensive datasets that enable the model 

to train effectively and generalize findings. The following section will delve into two other 

prevalent deep learning approaches used for protein family classification [4].  

1.5.3 Bidirectional Long Short-Term Memory  

  

Within the field of deep learning, Recurrent Neural Networks (RNNs) and their improved versions,  

Long Short-Term Memory (LSTM) Hochreiter and Schmid Huber, 1997 [41] and Bidirectional 

LSTM networks, are models that are well-suited to sequence data [4]  [29] [42]. In this section, we 

will discuss these models and review the results of related work in protein family classification. 

RNNs have gained prominence for their ability to process sequential data. RNNs, originally 

developed by Williams and others [43], have been utilized across multiple domains like natural 

language processing and computer vision. Unlike CNNs, RNNs consist of a memory component 

in their structure, enabling the past pattern in the sequence. Like other Deep Neural Networks 

(DNNs), an RNN includes multiple hidden layers. These layers serve as the network's memory, 

holding onto data about past sequences, which is continually updated and applied with each new 

step in the sequence. Each layer's function is to process and modify the incoming data concerning 

the preceding sequence element. Throughout its training phase, the output at each layer is 
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influenced by the immediate input and previous state on the network [4]. RNNs have garnered 

impressive results in tasks like language modelling, machine translation, and speech recognition 

due to their ability to precisely assess sequence log-likelihoods and their differentiability 

concerning these log-likelihoods, but initially, training RNNs posed challenges because of the 

vanishing gradient issue [44]. However, the development of LSTM networks and gated recurrent 

unit (GRU) architectures has overcome these obstacles, paving the way for the success of RNNs 

in various applications. Nevertheless, advances like long short-term memory, LSTM, and gated 

recurrent unit, GRU [4] designs have resolved these issues [4] [45]. These adaptations of the RNN 

architecture have made them more resistant to issues like the exploding gradient when training. In 

an LSTM network, the hidden layers consist of memory blocks that house one or more LSTM units 

[46]. The use of a bidirectional structure as an advance of LSTM enables the network to process 

and capture information in both forward and reverse directions within protein sequences. Hanson 

et al applied a bidirectional LSTM recurrent neural network to solve the problem of protein 

disorder prediction [46]. In another work, Zolg et al [47]. made significant progress in predicting 

the intensity of peptide fragments by training a bidirectional LSTM on fragmentation spectra from 

proteome Tools. However, this approach was confined to peptides that were no longer than 20 

amino acids [47].  

1.5.4 Gated Recurrent Unit Network  

  

Gated Recurrent Unit (GRU) networks enhance the traditional recurrent neural network, RNN [48] 

architecture by addressing their shortcomings in maintaining information across varied time spans 

and mitigating the vanishing gradient problem that arises with long sequences. GRUs incorporate 

two specific mechanisms known as the update gate and the reset gate. With each new input, the 
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model calculates fresh memory content. The reset gate's role in this process is to regulate the extent 

to which the previous hidden state contributes to this calculation before applying the nonlinear 

activation function. Subsequently, the update gate determines the degree to which the new hidden 

state should combine the new memory content with the previous hidden state. This dual-gating 

system enables the GRU to effectively manage both short-term and long-term dependencies within 

the data [13]. In a study by Guiyang et al., a BiGRU model was implemented to predict 

phosphorylation sites during SARS-CoV-2 infection. The model regarded amino acids in protein 

sequences as analogous to words in natural language, aiming to extract the characteristics present 

within the sequences of proteins. The BiGRU-based model achieved accuracies of 83.9% and 

83.37% for identifying phosphorylated S/T and Y sites, respectively. Lee et al. [13] applied a GRU 

model for a protein family classification problem with F1 as a metric performance equal to 94.8%.   

1.6 Few Shot Learning strategies  

  

One common issue in medical research is the imbalance of data and the overall insufficiency of it. 

This becomes particularly problematic in classification problems where, although there may be 

ample examples for one class, there is a shortage of appropriately labelled examples for other 

classes. In deep learning, access to a vast amount of data is essential for enhancing model 

performance. However, acquiring such extensive datasets is often not feasible due to practical 

limitations. For instance, the process of labelling data can be both costly and time-consuming [22] 

[49].  Recently, Few Shot Learning (FSL), a type of meta-learning, has been introduced [50]. This 

approach seeks to learn from just a few examples. Few-shot learning strategies are predominantly 

utilized in the field of computer vision. The model that is used with a few-shot learning strategy 

can discern patterns in the available data. As implied by its name, few-shot learning involves using 
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a small set of observations for each class, contrary to the standard practice of deep learning datasets 

that is accurate based on inputting large datasets into a learning model [13], [32].  A prime example 

of FSL can be seen in character generation tasks [51], where computer programs are tasked with 

parsing and generating new handwritten characters from a limited set of examples. To accomplish 

this, the method involves decomposing the characters into smaller, transferable elements, which 

the second step is aggregating to form new characters [51]. Another classic FSL application arises 

in situations where obtaining examples with supervised information is challenging or impossible 

due to privacy, safety, or ethical concerns. Drug discovery is an illustrative case: it aims to explore 

the properties of new molecules for potential drug identification. However, due to issues like 

potential toxicity, low efficacy, or poor solubility, these new molecules often lack extensive real-

world biological data on clinical candidates. Therefore, learning efficiently from small examples 

becomes crucial in such research areas [52].  

Current FSL challenges are predominantly focused on supervised learning. Specifically, few-shot 

classification involves training classifiers with only a limited number of labelled examples per 

class. This approach has applications in various areas, such as image classification [53], sentiment 

classification for short text [53], and object recognition [24]. Typically, the method employs the N-

way-K-shot classification strategy [54] where the training dataset comprises KN examples, 

distributed across N classes with K examples each. Transfer learning approaches are frequently 

utilized in FSL [55] [56], allowing the transfer of previously acquired knowledge from a source 

task to a few-shot task. In this process, transfer learning [57] insights from a source domain or task,  

for which training data is large and rich, to a target domain or task that faces a shortage of training 

data [57]. In FSL, when each class is represented by only one example with supervised information, 

FSL is termed one-shot learning. Conversely, if the classes lack any examples with supervised 
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information for the target, FSL is called zero-shot learning (ZSL). Since ZSL's target class doesn’t 

have examples with supervised information, it relies on examples containing data from different 

modalities, such as attributes to facilitate the transfer of some level of supervised knowledge, 

enabling the learning process [57].  

Few-shot learning represents a relatively new area of study within NLP, which has seen a growing 

interest recently. Unlike the field of computer vision, where standardized benchmarks for few-shot 

learning are well-established, the NLP domain still lacks such universally accepted benchmarks 

and various studies in this area often showcase their performance results on large-scale datasets 

[50].  

1.7 Transfer learning   

  

One common application of transfer learning [50] involves initially training a model on a specific 

task within one domain, and then adapting it to another task or domain. This approach leverages 

the extensive data available from the initial task or domain to create models capable of generating 

well in a target task or domain, which might have limited data availability. For example, a classifier 

might be developed from a model that has already learned to extract data representation such as 

features or from a model trained in a different but related domain [50]. The effectiveness of pre-

training (transfer learning) is evident in computer vision [4], where fine-tuning, pre-trained deep 

neural networks for specific purposes has become standard practice within this field [4]. One 

example is once, the network is trained to map images into a feature space and then compares or 

matches these images using metrics like Euclidean or cosine distance. Siamese networks are a 

prime example of this approach. The initial application of deep metric learning in computer vision 

involved a Siamese network [58], tailored for signature verification. This network was designed to 
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learn a feature set that assessed the similarity between two signature inputs. Due to the significant 

similarities between techniques in NLP and computational biology, methods from one field are 

often applicable to the other [4]. BERT, Bidirectional Encoder Representations from Transformers 

[17], is known as a standard transformer developed for natural language processing. The 

architecture of BERT centers around a multi-layered bidirectional Transformer encoder. Its novel 

approach involves masked language modelling over its pre-training, where certain words or tokens 

in the input are randomly obscured. The model then learns to predict these hidden tokens, a process 

fundamental to its training. The entirety of BERT's structure depends on a self-attention 

mechanism, also known as intra-attention, Fig 5 [59]. This mechanism (Equation 15) connects 

different parts of a single sequence to form a comprehensive representation [17].   

  

  

Fig 5. Stack of Encoder, Multiheaded Attention Mechanism and Scaled Dot Produced Attention   

 

Attention(𝑄, 𝐾, 𝑉) = Softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉     (15)  
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In transformer models, q, k, and v represent queries, keys, and values, respectively. These are 

vectors that are derived from the input tokens, words from a sentence. The tokens are first 

converted into vectors x1, x2, …, xT, where T represents the total number of tokens in the input 

sequence. Each input vector xi is then transformed into three different vectors: a query vector 𝑞𝑖 a 

key vector 𝑘𝑖, and a value vector 𝑣𝑖. This transformation is performed using three different weight 

matrices that are learned during the training process of the transformer.  

Self-attention has been useful in enhancing performance across various tasks, such as reading 

comprehension, abstractive summarization, and generating sentence representations independent 

of the task. Through its attention mechanism, BERT effectively concentrates on diverse segments 

of the input sequence during predictions, thereby it learns the context and interrelations within the 

sequence. This capability enables BERT to deeply understand both context and relationships in 

text sequences. The embeddings for each token in the sequence are derived from the output of 

BERT's final layer [60].    

1.7.1 ProtBert  

  

Recently, transfer learning techniques from NLP have significantly influenced protein 

bioinformatics [19] [20] [61]. These approaches, trained on extensive protein sequence databases, 

effectively learn informative features of these sequences of proteins. For example, Elnaggar et al. 

[20] utilized about 2.1 billion protein sequences to pre-train ProtTrans, a collection of transformer 

models derived from NLP. These methods enable the transforming of protein sequences into vector 

forms, which can be effectively used in a variety of applications, such as protein family 

classification. The use of existing pre-trained transformer models offers several advantages. It 

eliminates the need for manually creating complex features to represent protein sequences, leading 
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to more streamlined development of new neural network models. This approach also tends to 

enhance the predictive accuracy of these models [19].  

 

  

1.8 Conclusion  

  

In this chapter, we have discussed the benefits and challenges of implementing deep learning in 

protein domain research. We highlighted the potential of machine learning to advance 

computational biology while acknowledging the limitations of basic machine learning models in 

this field. Further on, we discussed how deep learning surpasses the limitations of traditional 

methods. Despite these advancements, there remain significant challenges in applying deep 

learning effectively in this area. We examined previous instances where deep learning was applied 

to specific challenges in this field, noting their promising nature. However, we concluded by 

identifying critical issues that need resolution for computational biologists to utilize. A primary 

concern is a need for large, labelled datasets for training of deep learning models. Hence, the 

amount of accessible data is a major challenge for deep learning methods in protein research, 

especially for protein classification tasks. Deep learning models need more data compared to 

traditional machine learning models to achieve optimal task-specific performance. Shortage of 

sufficient data for the training step of a deep learning model often results in overfitting to the 

training set, which in turn compromises its ability to generalize effectively. While next-generation 

sequencing methods are producing vast volumes of unlabeled omic data, the scarcity of adequately 

labelled data remains an issue. Additionally, if the available labels are not evenly distributed among 

different classes, there's a risk that the model will be overfit to the more prevalent class, further 

complicating the training process. A related issue arises when there is an imbalance in the labels; 
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the model may tend to overfit the class that is more heavily represented. This skew in label 

distribution can lead to a bias in the model's performance, favouring the majority class [4]. Quality   

of data is another challenge. Proteomics data, primarily derived from experimental sources, can be 

complex, noisy, heterogeneous and often incomplete, with only a portion of observations having 

valid labels.  Besides these challenges, deep learning models require many parameters that need 

significant time and financial resources for optimization. The varied lengths of biological 

sequences often necessitate extensive padding, further slowing down the training process. 

Additionally, testing various model architectures to find the optimal one is both time-intensive and 

expensive, as each model's hyperparameters need to be precisely adjusted for the specific task [5].  

Continuously analyzing and examining all omic data, without human involvement, remains a 

persistent challenge. In traditional machine learning approaches, feature engineering is typically a 

common step in data processing to address this issue. However, in recent times, machine learning 

professionals have started using advanced algorithms from the deep learning (DL) subfield. These 

algorithms reduce the necessity for extensive feature engineering but still require the specialized 

domain knowledge of experts [5]. Consequently, classifying a new protein sequence still relies 

heavily on feature engineering, utilizing prior knowledge and the expertise of professionals for 

accurate annotation [13]. The most successful applications of DL in omic research to date have 

been through supervised learning. Before starting the explanation of our promising model, which 

aims to address the challenges existing in the application of deep learning for proteomics data, and 

specifically for protein family classification, it is important to mention that this chapter also 

reviews two strategies for deep learning models: few-shot learning and transformer learning. We 

discussed how these approaches mitigate the need for large-scale datasets and explored the use of 
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transfer learning for non-manual feature selection. In the next chapter, we will delve into how these 

techniques have been utilized to achieve high accuracy in our findings. These results will assist 

omic data researchers in their investigations to produce groundbreaking results, not just in protein 

family classification tasks but in broader research problems as well.  
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Chapter 2: Deep Few-Shot Network for Protein Family Classification   

  

2.1 Deep Few-Shot Network for Protein Family Classification   

  

This chapter outlines the methodology employed in the experiments. We discussed the DL 

algorithms promising results in proteomics; however, their application is limited to the availability 

of massive data sets for training. Since the required data comes from experiments, it can be highly 

complex or incomplete [62]. As an alternative to address the mentioned limitations, techniques 

adopted from computer vision such as meta-learning can be generalized from a few observations. 

To rank the similarity between inputs, these networks employ a unique ranking structure, not 

requiring extensive training. In this research, we implemented a few-shot deep Siamese neural 

network for protein family classification. Our advanced few-shot Siamese neural network 

integrates twin pre-trained transformer ProtBERT [20] models. Siamese networks, a type of metric-

based meta-learning model, excel in adapting to new tasks with a few examples as training data 

aka shot. This network consists of two identical sub-networks. These twin sub-networks with 

identical configurations, parameters, and weights and include an embedding extractor. The input 

of the network is a pair of samples, and each sub-network processes its input. Then their outputs 

are merged to evaluate the similarity between the inputs [63]. In our network, each pair of protein 

sequences is processed through ProtBERT to generate sequence embeddings. ProtBERT, offered 

by Elnaggar et al. (2021), has been pre-trained on an extensive dataset of 2.1 billion protein 

sequences [19]. It's built upon the principles of the BERT model. The embeddings produced by 

ProtBERT are passed through fully connected layers in our network, leading to the final  

classification results.   
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2.2 Data  

  

We use the UniProtKB/Swiss-Prot dataset [64]. First, we retrieved reviewed protein sequences 

resulting from human protein in 20,426 (as of October 2023) with various lengths. Despite other 

sequence classification networks, we do not filter out the records according to the length of 

sequences, making sure the model is insensitive to the length of the sequence.  

2.2.1 Data Preparation  

  

Our dataset consists of labelled protein primary sequences from the UniProt database [64]. A total 

of 20,426 protein sequences, distributed across 5098 different families. We selected sequences with 

family names that resulted in 14,431 sequences being selected for training, validation, and testing. 

The data was then allocated into training, validation, and test subsets, with respective distributions 

of 70%, 10%, and 20%. Throughout this division, care was taken to maintain a consistent ratio of 

different classes in each subset (Table 1).   

  

Total # of sequences.  

  

  

20426  

  

Total # of sequences with Family Name  

  

  

14431  

  

Total # of Families  

  

  

5098  

  

  

Total # of families with at least > 25 examples (Shot)  

  

  

  

33  

                                                      

                                                    Table 1: Data distribution  
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We defined the problem of protein family classification as an N-way-K-shot classification [49]  

problem, where 'K' represents the count of training examples of protein sequences for each family, 

and 'N' denotes the total categories in our problem protein families or classes involved. The 

objective of N-shot learning is to accurately classify new data using these limited training samples. 

Modern deep learning methods need to efficiently utilize both large and small datasets. These 

techniques are pivotal in uncovering new understanding and expanding our comprehension of 

diseases, enhancing diagnostic accuracy, and crafting tailored treatment strategies [4].    

2.3 Methodology   

  

2.3.1 Architecture of Deep Few-Shot Network for Protein Family Classification  

  

We utilized a deep few-shot Siamese neural network architecture applying a transformer to learn, 

latent features of protein family classification based on the primary sequences of protein pairs (Fig 

6). These components will be explained in detail in the following sub-sections.  

  

Fig 6: The high-level architecture design of Deep Few-Shot Network for Protein Family Classification  
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2.3.1.1 ProtBERT  

  

In model architecture, we employed ProtBERT as the embedding extractor. ProtBERT [20], trained 

on roughly 2 billion protein sequences, employing a masked language modelling approach [17]. 

In the context of our research, ProtBERT interprets protein sequences as sentences, with amino 

acids functioning as the 'words' or fundamental elements. Specifically, we used the BFD variant of 

ProtBERT [19], which includes 30 layers, 16 attention heads, and 1,024 hidden layers. The model 

was trained over approximately 23.5 days using the Lamb optimizer [65] across 128 compute 

nodes, each equipped with 1,024 tensor processing units. Throughout its training, ProtBERT has 

learned to identify the biophysical properties of proteins as features, drawing on the billions of 

protein sequences it was exposed to during its training phase [19].  

2.3.1.2 Siamese neural network  

  

A deep Siamese neural network is utilized to analyze protein pairs. Our Siamese network contains 

two identical pre-trained ProtBERT models as embedding extractors, both sharing the same 

weights. The input consists of pairs of proteins, and the model learns the similarity between them 

over the training phase. Initially, we built an N-way K-shot few shot data sets and built the 

sequences of each protein pair. These sequences were then processed through our Siamese network 

model, as depicted in Figure 6. Within this framework, we utilized the twin pre-trained ProtBERT 

model to generate embeddings for each protein sequence. There are various methods to interpret 

the relationship between these sequence embeddings. While some researchers prefer to concatenate 

these embeddings, others focus on element-wise multiplication, commonly known as the  

Hadamard product. In our methodology, we utilized an integration layer that employs the  
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Hadamard product for combining the sequence embeddings. This technique has often been 

identified as particularly effective in representing the symmetric characteristics of the primary 

sequence of proteins [66] [19]. We utilized this deep Siamese model since protein data contains 

some classes or protein families with limited examples. Besides, the number of classes is very 

large. Previous works have shown the Siamese model's outperformance compared to other deep 

learning models, particularly for data where the number of classes is not known at the time of 

training, when the number of classes is very large, and when the number of examples per class is 

very small [67].  

2.3.1.4 Classification Head  

  

We integrated a classification head above the integration layer, consisting of fully connected layers. 

This classification head is structured in a bottleneck form, incorporating a mix of dropout and 

linear layers, and culminates in an output layer that employs a logistic function, sigmoid function 

(Equation 14). 

𝑆(𝑥) =
1

1+𝑒−𝑥     (14) 

  

The sigmoid function stands as a frequently utilized activation function in deep/machine learning. 

It is mathematically expressed as a function where the input x is a linear blend of weights and 

feature values from the preceding layer. As x becomes smaller, the sigmoid function's output nears 

0, whereas, with larger x values, it approaches 1. This function serves to map continuous real 

numbers into a bounded interval of (0,1). Such transformation ensures that the inputs to the 

subsequent layer are confined within a predictable range, thereby contributing to greater stability 



34  

  

in the network's weights. This setup enables the ranking of protein pairs, categorizing them as 

either the same family class, genuine or a different family class imposite. The bottleneck design is 

significant because it gradually reduces the number of neurons in each layer, enabling the network 

to concentrate on relative information while discarding what is redundant or irrelevant [19].  

Loss Function  

The goal of our designed Siamese-based Protein family classification network is to learn a model 

that can detect whether the paired proteins that are the input of the Siamese model are similar or 

not and detect the family classification of unknown proteins. The classifier is trained to distinguish 

between genuine instances; where protein sequences are paired from similar family classes, and 

imposite instances, where protein sequences are paired with different ones. Therefore, this task is 

often considered a binary classification problem [19].  

Binary cross entropy is a loss function used for binary classification tasks involving two classes. 

In the proposed model, the predicted labels are 0 and 1, like logistic regression. Therefore, using 

the cross-entropy loss function is optimal, as it measures the disparity between the predicted and 

actual labels. The formula for this function, where 'y' represents the label and 'p(y)' denotes the 

predicted probability, is as  

 follows:  

Cross Entropy Cost Function =  −
1

N
 ∑ 𝑦𝑖  𝑙𝑜𝑔(𝑝(𝑦𝑖))  +  (1 −  𝑦𝑖) 𝑙𝑜𝑔(1 −  𝑝(𝑦𝑖))N

i=1   (15)  

In binary cross-entropy, the task is to distinguish between two classes. In the provided equation,  

'p' refers to the predicted probability of the occurrence of a certain class, while 'y' indicates the 

actual output or label. This loss function effectively measures how well the model's probability 

predictions align with the actual labels.  
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2.4 Training and Validation  

  

For our N-way-K-shot classification [54] problem, where 'K' represents the count of training 

examples, and protein sequences for each family, and 'N' denotes the total categories in our problem 

protein families or classes involved, we trained the model using pairs of protein sequences derived 

from training examples. In these pairs, sequences in one half were from the same class, while in 

the other half, the paired sequences were from different protein family classes. The goal of Protein 

family classification is to learn a model capable of identifying the similarity between pairs of 

proteins and determining the family classification of proteins whose classification is unknown. 

This task is commonly viewed  as a binary classification problem [19] that utilized  a classifier to 

detect between genuine instances; where protein sequences pair with similar family classes, and 

imposite instances, where protein sequences pair with different ones.   

We chose protein families with at least 25 examples to accommodate various N-way, K-shot 

learning scenarios (n ∈ {5,10, 20,25}). For instance, in a 5-shot learning setup, we selected five 

samples from each family and then created pairs as described. By initially selecting families with 

more than 25 examples and we have 33 families or classes. There our experiment was a 33-way, 

K-shot learning scenarios (n ∈ {5,10, 20,25}).  

We ensured the presence of the same families across all 4 datasets, facilitating a consistent 

comparison of our architecture's performance. After splitting our dataset into a training set, we 

created 4 different data setups for n, with n ranging from {5,10,20,25}. For each setup, we randomly 

selected n sequences from each family within the training set. Within each new setup, these 

sequences were used to form pairs as previously described. Half of these pairs were 'Genuine  
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pairs', consisting of two sequences from the same family class. The other half were 'Imposite pairs', 

combining sequences from different family classes.  The same approach was used for the  

validation data set.  

2.5 Model Performance Metrics (Evaluation)   

  

For the performance evaluation of classifiers in a binary classification task, where outcomes are 

labelled either genuine or positive (p) or imposite negative (n), a range of standard performance 

metrics are employed.   

The outcomes in binary classification are categorized into four types:   

• TP: True Positive, when a positive class is correctly predicted,   

• FP: False Positive, when a negative class is incorrectly predicted as positive,   

• TP: True Negative, when a negative class is correctly predicted,   

• FN: False Negative when a positive class is incorrectly predicted as negative.   

For instance, if a prediction outcome is positive (p) and the true value is also positive (p), it is 

classified as TP, but if the true value is negative (n), it falls under FP. Similarly, a prediction and 

true value both being negative (𝑛) is classified as TN, while a positive true value (𝑝) predicted as 

negative (𝑛) is an FN. Various metrics derived from these four outcomes, such as accuracy, 

precision, recall, and F1 score, provide a comprehensive evaluation of machine learning classifiers.  

  

2.5.1 Recall  

  

Recall is an important model evaluation performance metric in machine/deep learning that 

represents how well a model is at correctly identifying positive cases. Recall (Eq 16) is defined as 
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the ratio of True Positive (TP) predictions to the total number of actual positive examples [68]. In 

essence, a higher Recall value is desirable as it implies fewer positive instances being incorrectly 

predicted as negative, which is vital in applications, where failing to identify positive cases could 

lead to serious repercussions such as in cancer detection models Powers  

(2020).  

True Positive (TP) 

                                                Recall =                 (16) 
True Positive (TP) + False Negative (FN) 

2.5.2 Precision  

  

Precision is defined as the number of true positive predictions divided by the total number of 

positive predictions (which includes both true positives and false positives) (17). In simpler terms, 

it measures the accuracy of the positive predictions made by the classifier [68] In the context of 

predicting protein sequence family classes, a high precision value indicates that the classifier is 

effective at correctly identifying members of a given protein family, with fewer instances of 

incorrectly predicting a protein sequence as belonging to that family when it does not. This is 

particularly important in biological and medical research, where accurate classification of protein 

sequences can have significant implications for understanding biological processes and developing 

treatments.  

True Positive (TP) 

                                             Precision =                    (17)  

True Positive (TP) + False Positive (FP) 
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2.5.3 F1 Score 

The F1 score, often referred to as the F-score or F-measure, is determined by computing the 

weighted harmonic mean of precision and recall. This is exemplified in Equation (18), where the 

F1 score is represented as the harmonic mean of these two metrics. The F1 score can vary from 0 

to 1, indicating its range of possible values. 

2.5.4 Accuracy 

Accuracy is one metric for evaluating classification models. For binary classification, accuracy  

can also be calculated in terms of positives and negatives as follows:

2.6 Testing Strategy

We tested our architecture with an N-way one-shot learning testing strategy [22] [50]. In this task, 

within our separated testing data test, we created sets of protein sequence pairs, where each set 

consisted of one protein sequence paired with N different sequences. Within each set, there was 

one genuine and one imposite pair. To ensure a comprehensive and reliable evaluation, this process 

was repeated for all family classes. Moreover, to enhance the reliability of the results, the testing 

was done on 10 one-shot tasks, providing a robust and thorough assessment of the model's ability 

to recognize and differentiate between various protein families. 
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Chapter 3: Results and Discussion   

  

3.1 Results  

  

 Our results, as shown in Table (2) for training setup and Table (3) for validation setup, indicate 

that our proposed Deep Few-Shot Network for Protein Family Classification accurately detects 

protein family classifications. Based on evaluation performance metrics, our experimental results 

demonstrate a precision of 97.3% and an F1 score of 96.2% for only 25 shot (examples) for each 

class. Our findings show superior performance compared to baseline models for protein family 

classification, which typically utilize the entire dataset rather than a few shot, a small sample size 

for training models, as is the nature of this biological dataset (Fig 7). As seen in Table (4) test setup 

of our Deep few shot network can detect family class with a high F1 score 94.2%.   

  

Training setup  

Shot Size  

  

  

F1  

  

Precision  

  

Recall  

  

Training 

Loss  

  

5 Shot  

  

40.5%  

  

40.3%  

  

55.0%  

  

0.873  

  

10 Shot  

  

  

64.7%  

  

63.8%  

  

64.5%  

  

0.336  

  

20 Shot  

  

82.8%  

  

82.1%  

  

83.6%  

  

0.085  

  

25 Shot  

  

  

96.2%  

  

97.3%  

  

95.2%  

  

0.071  

  

Table 2: Training performance evaluation for n-shot (n-example) setup  

  



40  

  

Validation setup  

Shot Size  

  

  

F1  

  

Precision  

  

Recall  

  

Training 

Loss  

  

5 Shot  

  

38.5%  

  

38.2%  

  

39.8%  

  

1.08  

  

10 Shot  

  

  

63.2%  

  

60.9%  

  

61.6%  

  

0.434  

  

20 Shot  

  

79.6%  

  

79.2%  

  

80.1%  

  

0.181  

  

25 Shot  

  

  

93.9%  

  

94.2%  

  

93.6%  

  

0.079  

  

Table 3: Validation performance evaluation for n-shot (n-example) setup  

  

  

Test setup   

Shot Size  

  

  

F1   

  

Precision  

  

Recall  

  

Cross Entropy  

  

5 Shot  

  

36.1%  

  

42.1%  

  

31.1%  

  

0.876  

  

10 Shot  

  

  

59.6%  

  

60.1%  

  

59.2%  

  

0.395  

  

20 Shot  

  

80.9%  

  

79.5%  

  

82.7%  

  

0.198  

  

25 Shot  

  

  

94.2%  

  

95%  

  

93.5%  

  

0.11  

  

     Table 4: Testing setup performance evaluation for n-shot (n-example)   
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Fig 7: Training and validation accuracy for 33-way, 25-shot learning setting.  

  

  

           We compared our deep Few-Shot Network for Protein Family Classification with 3 baseline 

models. 1) CNN model, 2) SVM 3) BiGRU (Gated Recurrent Unit). We were primarily focused 

on analyzing the changes in performance of baseline models with different numbers of shot sizes, 

and whether the baseline models can perform well at those shot sizes. Our highly accurate offered 

model ability for detecting family classes only having a few examples can be seen in Fig 6. Besides, 

in the testing setup, shown in Table 4  our model resulted in 94.2% for the F1 metric with only 25 

shot in the testing setup while Lee et al.[13] GRU model showed 94.8% for test F1 metric using 

the entire UniProt dataset.   
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Fig 8: Performance of the Deep Few Shot model (ProtFewShot) and 
three baseline models, i.e., CNN, GRU, SVM for n-shot learning 

setting     

3.2 Conclusion and Future Work 

Although deep learning algorithms, which are mostly adopted from NLP, have shown breathtaking 

performance in Proteomics data analysis, they largely depend on large-scale labelled datasets, 

expert knowledge, and intervention for feature engineering. However, due to the nature of 

biological data, access to such large datasets is not possible because of the complexity and 

noisiness of the data. Specifically, in our research field data, there are family classes of proteins 

that have few examples available. Considering these limitations, we presented a deep few-shot 

learning architecture capable of detecting protein family classes with high accuracy, even when 
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only a few examples of each family are available. In our model, we used a pre-trained model, 

ProtBert, that was a novel transformer for protein sequences and a fully connected model for our 

classifier section and reached the high-accuracy performance. Although this pre-trained model 

increased the accuracy of the model they extracted a large number of parameters that can be 

officialized by solutions like distillation or sparse parameters that lead selection of a more 

optimized number of parameters.  

 For future work, we are working on the explainability of our deep learning architecture. It provides 

insights into how the classifier makes its predictions by highlighting the features that the model 

relies on. This explanatory framework aids in making the model more interpretable for end users.  
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