
Saturation-based Algebraic Reasoning for Description Logic ALCHQ

Jelena Vlasenko

A Thesis

In the Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy (Computer Science) at

Concordia University

Montréal, Québec, Canada

April 2024

c� Jelena Vlasenko, 2024

CONCORDIA UNIVERSITY

SCHOOL OF GRADUATE STUDIES

This is to certify that the thesis prepared

By: Jelena Vlasenko

Entitled: Saturation-based Algebraic Reasoning for Description Logic ALCHQ

and submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy (Computer Science)

complies with the regulations of the University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining committee:

Chair
Dr. Rabin Raut

External Examiner
Dr. Weichang Du

Examiner
Dr. Ferhat Khendek

Examiner
Dr. Leila Kosseim

Examiner
Dr. Juergen Rilling

Supervisor
Dr. Volker Haarslev

Approved by

Dr. Leila Kosseim,
Graduate Program Director

April 2, 2024

Dr. Mourad Debbabi, Dean,
Gina Cody School of Engineering and Computer Science

iii

ABSTRACT

Saturation-based Algebraic Reasoning for Description Logic ALCHQ

Jelena Vlasenko

Concordia University, 2024

In this work we present a novel calculus for the description logic ALCHQ imple-

mented in a reasoner named Avalanche. ALCHQ permits intersection, disjunc-

tion, and negation of concepts. It also allows existential and universal restrictions,

role hierarchy, and qualified number restrictions that are of particular interest to us.

Avalanche incorporates a number of widely applied and well known optimization

techniques such as saturation, resolution, and linear optimization. We apply satu-

ration to create a compressed version of a saturation graph. As a result, the overall

size of the constructed model can be kept reasonably small. We employ resolution

techniques in order to reason on disjunctions that are part of our calculus. Finally

and most importantly, we leverage linear optimization to handle qualified num-

ber restrictions. We transform qualified number restrictions into linear programs

and then apply the Branch-and-Price algorithm to solve them in the most efficient

way. This novel approach gives us a clear advantage over the other reasoners that

implement a more traditional procedure to deal with qualified number restrictions

as there are ontologies containing entailments caused by the presence of qualified

number restrictions that can be classified only by Avalanche.

iv

Acknowledgements

It took me a decade to finish my PhD journey. It was a big part of my life and now

I cannot believe I am at the finish line. Despite the fact that it is time to move on I

will certainly miss my academic life. If somebody asked if I would do it again my

answer would be yes but I would have done it better. Unfortunately it is a part of

a learning process and now I know how to do it better. I did not know it when I

started this work.

I learnt a lot, I grew a lot, I met many wonderful people. First and foremost I

would like to express my sincere gratitude to my supervisor Prof. Volker Haarslev.

I was lucky to be supervised by him. Without his support this thesis would never be

finished. Under his supervision I learnt things that I never hoped to master. For that

I will be forever grateful as knowledge is one of the most wonderful gifts someone

can offer.

I would like to thank my examiners for reading this thesis. I understand that

probably it is not the most entertaining reading.

I would also like to mention my colleagues who helped me to become a better

software developer which in turn helped me to implement the Avalanche reasoner.

I wish I had this knowledge before I started working on the implementation.

Finally, I would like to thank my family for their patience and understanding.

Without my husband’s support I would never be able to go that far. As well as my

two daughters and the third one who should arrive shortly after the final presenta-

tion, I hope this work will inspire them to do great things in life and believe that a

woman can achieve anything she wants if she is ready to work hard. This work is

dedicated to them.

v

Contents

List of Figures x

List of Tables xii

List of Abbreviations xiii

List of Symbols xiv

1 Introduction 1

1.1 Introduction to the Semantic Web . 1

1.2 Relationship between Ontologies and Description Logics 5

2 Presentation of Description Logic ALCHQ Formal Semantics 7

2.1 Presentation of Description Logic ALCHQ Formal Semantics 7

2.2 An Example of DL ALCHQ Application 10

3 Related Works 12

3.1 Reasoning in Description Logics . 12

3.2 Optimization Techniques . 22

4 Motivation and Research Objectives 28

4.1 Motivation . 28

vi

4.2 Research Objectives . 33

5 Description Logic Reasoner Avalanche 35

5.1 Saturation-based reasoner Avalanche 35

5.2 Saturation Graph . 37

5.2.1 Saturation Nodes . 37

5.2.2 Static Node . 38

5.2.3 Identified Node . 39

5.2.4 Auxiliary node . 39

5.2.5 Anonymous Node . 40

5.2.6 Clone Node . 41

5.2.7 Subsumption Clone . 42

5.2.8 Disjointness Clone . 42

5.2.9 Unfold Node . 43

5.2.10 Connecting Edge . 43

5.3 Normalization Process . 43

5.3.1 Normal Form . 43

5.3.2 Left-hand Side Normalization Rules 45

5.3.3 Right-hand Side Normalization Rules 46

5.3.4 Example of Normalization Rules Application 48

5.4 Calculus Presentation . 50

5.4.1 Notation . 50

5.4.2 Avalanche Saturation-based Rules 52

5.4.3 Implementation Details . 62

5.5 Reasoning with Qualified Number Restrictions 63

vii

6 Avalanche Implementation Details 66

6.1 Overview of Avalanche . 66

6.2 Communication between Avalanche and QMediator 68

7 Linear Programming Engine QMediator 71

7.1 Interaction with Avalanche . 71

7.2 Input Presentation . 72

7.3 Branch and Price Approach . 73

7.3.1 Column Generation . 73

7.3.2 Generation and Interpretation of Constraints 76

7.3.3 Branch-and-Bound . 80

7.3.4 Clash Set Detection . 81

7.4 Examples and Result Interpretation . 82

7.4.1 Simple Example . 82

7.4.2 Branch and Bound Example . 87

8 Proofs 98

8.1 Termination . 98

8.2 Soundness . 101

8.3 Completeness . 111

9 Complexity Analysis 117

10 Performance Evaluation 119

10.1 Canadian Parliament Benchmarks . 120

10.1.1 Performance Evaluation for ALCQ Ontologies 121

10.1.2 Performance Evaluation for ELQ Ontologies 123

10.2 Satisfiable and Unsatisfiable ALCHQ Benchmarks 125

viii

10.2.1 Performance Evaluation for Satisfiable ALCHQ Ontologies . 125

10.2.2 Performance Evaluation for Unsatisfiable ALCHQ Ontologies 127

10.3 Performance Benchmarks . 127

10.3.1 Performance Evaluation for Satisfiable Performance Benchmarks128

10.3.2 Performance Evaluation for Unsatisfiable Performance Ontolo-

gies . 131

11 Conclusions and Future Work 133

11.1 Conclusions . 133

11.2 Future Work . 135

Bibliography 144

A Publications 145

B Example 146

B.1 Example of Rule Applications . 146

C Evaluation 152

C.1 Performance Evaluation of ALCQ Ontologies 152

C.2 Performance Evaluation of ELQ Ontologies 153

C.3 Performance Evaluation of Satisfiable SHQ Ontologies 154

C.4 Performance Evaluation of Unsatisfiable SHQ Ontologies 158

C.5 Performance Evaluation of Satisfiable P Ontologies 160

C.6 Performance Evaluation of Unsatisfiable P Ontologies 165

ix

List of Figures

1.1 Semantic Web Stack [48] . 2

5.1 Clash Detection . 64

10.1 ALCQ benchmark runtimes in seconds 123

10.2 ELQ benchmark runtimes in seconds 124

10.3 Sat-ALCHQ benchmark runtimes in seconds 126

10.4 Unsat-ALCHQ benchmark runtimes in seconds 128

10.5 P-Sat benchmark runtimes in seconds 131

10.6 P-Unsat benchmark runtimes in seconds 132

B.1 Initialization . 148

B.2 Application of the Rule Rv . 148

B.3 Creation of a Cloned Node . 149

B.4 Creation of an Anonymous Node . 150

B.5 Propagation of Subsumers to the Anonymous Node 151

x

List of Tables

2.1 DL ALCHQ Syntax and Semantics 8

6.1 Input parameters for QMediator . 69

6.2 Input parameters for QMediator . 69

8.1 Summary of the Saturation-based Rules (f = any subsumer except

for a negated one, t = any subsumer, r = role, q = qualified number

restriction, n = cardinality) . 103

8.2 Summary of the Possible Subsumers Rules (is_new = does not exist in

the label) . 106

8.3 Summary of the Disjunction Rules (res = the result of the resolution,

resolvent = function that resolves disjunctions) 109

10.1 Total CPU time and speedup factor for ALCQ benchmarks 122

10.2 Total CPU time and speedup factor for ELQ benchmarks 124

10.3 Total CPU time and speedup factor for Sat-ALCHQ benchmarks . . 126

10.4 Total CPU time and speedup factor for Unsat-ALCHQ benchmarks . 127

10.5 Total CPU time and speedup factor for Sat-ALCHQ benchmarks . . 131

10.6 Total CPU time and speedup factor for Unsat-ALCHQ benchmarks . 132

C.1 Benchmarks using ALCQ Ontologies 152

C.2 Benchmarks using ELQ Ontologies 153

xi

C.3 Benchmarks for ALCHQ-SAT Ontologies 157

C.4 Benchmarks for SHQ-UNSAT Ontologies 160

C.5 Benchmarks for Performance Ontologies 165

C.6 Benchmarks for Unsatisfiable Performance Ontologies 169

xii

List of Abbreviations

ALCHQ Attributive Language with Complex Concept Negation, Role Hierarchy,

and Qualified Cardinality Restrictions

BnB Branch and Bound

BnP Branch and Price

CNF Conjunctive Normal Form

DL Description Logic

DNF Disjunctive Normal Form

GCIs General Concept Inclusions

ILP Integer Linear Programming

ITR Initial Transformation Rules

KR Knowledge Representation

LP Linear Programming

NF Normal Form

NNF Negation Normal Form

OWL Web Ontology Language

PP Pricing Problem

QCR Qualified Cardinality Restriction

RMP Reduced Master Problem

xiii

List of Symbols

L(v) a node label that contains subsumers of the node

L(vA) a node label that contains subsumers of the node with the repre-

sentative concept A

f a named concept, a qualified number restriction, or a disjunction

¬̇f a negated concept in Negation Normal Form

t a named concept, a qualified number restriction, a disjunction, or

a negated concept

hr, q, ni a tuple returned by the ILP module that we also call QMediator

where r is a role, q is a qualification and n is a cardinality

q a qualified number restriction

s(v) a function that extracts a cardinality, a role, and a role filler from

a qualified number restriction that is a subsumer of the node v

V graph nodes

#vq a cardinality of a node v

in f easible infeasible inequalities

./ n R.A either  nR.A or � nR.A

is_new a function that verifies that a qualified number restriction exists

in a node label

add_to a function that adds a qualified number restriction to a label of

possible/non-possible subsumers of a given node

xiv

LP(vB) a label of possible subsumers of a node with the representative

concept B

L¬
P(vB) a label of non-possible subsumers of a node with the representa-

tive concept B

j a function that adds a new concept to preconditions of a tuple

Q a qualified number restriction

clone(v, B) a clone node that tests if node v is subsumed by B

CQ
T qualified number restrictions and their negations in the TBox T

P possible subsumers

1

Chapter 1

Introduction

In this chapter we will present one the most common applications of description

logics - the Semantic Web. We will give an overview of this technology and describe

how this work could contribute to its development.

1.1 Introduction to the Semantic Web

In today’s world, the Internet has become an indispensable tool of our everyday

life despite the fact that it only became available to the general public in the 1990s.

Even though people are capable of using the Web to carry out numerous tasks like

paying bills or searching for information, the natural limitations of the interaction

between a human and a computer combined with the extreme diversity of the data

available on the Web present numerous challenges. Routine tasks such as finding

the cheapest possible plane ticket to a given destination or the most relevant article

on a given topic tend to be time-consuming and tedious for Internet users. Ideally,

a potential computer program that has access to the same information that is avail-

able to a human Internet user should be able to accomplish such tasks much more

efficiently. Such computer programs already exist and are known as "Intelligent

2 Chapter 1. Introduction

Agents". Unfortunately, these programs can not at present reliably accomplish very

complex tasks. The reason for this is that most web pages today are designed to be

read and comprehended by people and not by machines. This makes it extremely

difficult for the intelligent agents to interpret the data available on the Internet. In

order to overcome these obstacles, the concept of Semantic Web was introduced by

Tim Berners-Lee, the inventor of the World Wide Web and director of the World

Wide Web Consortium (W3C). Tim Berners-Lee proposed an idea of improving the

existing network of hyperlinked human-readable web pages by augmenting them

with machine-readable metadata. The metadata would serve to describe the content

of these web pages and the ways they relate to each other. This enhancement would

allow automated agents to access the Web more intelligently and perform certain

tasks on behalf of humans. The realization of the Semantic Web would help the

progress of the current Web by allowing human Internet users to access and share

information more efficiently. Description logic was selected as the centrepiece of the

implementation of the Semantic Web.

FIGURE 1.1: Semantic Web Stack [48]

1.1. Introduction to the Semantic Web 3

A representation of the high-level architecture of the Semantic Web, as it was

originally envisioned by Tim Berners-Lee, is presented in Figure 1.1. The Semantic

Web Stack represents a hierarchy of languages and technologies that make up the

various layers of the Semantic Web. It is the responsibility of each layer to provide

services that are to be used by the layer above it. Note that some of these layers are

crosscutting: a good example is the Cryptography layer depicted below, which is

used by almost all other depicted layers. The technologies in the stack are divided

into three broad groups based on the services they provide.

The first group consists of hypertext web technologies and serves as a foundation

to the Semantic Web:

IRI Internationalized Resource Identifier (IRI) provides unique identifiers to the Se-

mantic Web resources.

Unicode Unicode allows to process documents written in different languages.

XML Extensible Markup Language (XML) creates documents with structured data.

The second group consists of semantic web technologies which have been stan-

dardized by W3C and provides means to implement the Semantic Web applications:

RDF The Resource Description Framework (RDF) provides a framework for repre-

senting information about resources.

RDFS The basic vocabulary for RDF is provided by RDF Schema (RDFS). RDFS

allows to create hierarchies of classes and object properties.

OWL The Web Ontology Language (OWL) is an extension of RDFS that adds more

semantic features to RDF statements, e.g. cardinality restrictions, disjunction,

intersection etc. OWL is based on description logics and allows us to reason

about information available through the Semantic Web.

4 Chapter 1. Introduction

SPARQL SPARQL is a query language that is used to retrieve RDF-based data from

the Semantic Web.

RIF/SWRL The Semantic Web Rule Language (SWRL)/Rule Interchange Format

(RIF/SWRL) allows to implement rules. Rules allow to express an IF-THEN

construct. Thus, if the conditions specified in the IF part hold then the condi-

tions specified in the THEN part should hold as well.

Whereas the technologies in the first and second groups are already well known,

the third group consists of technologies that have not yet been standardized or im-

plemented:

Cryptography Cryptography should guarantee that the Semantic Web data are com-

ing from a trusted source. This would assure that the derived statements ob-

tained by applying logic are trustworthy.

Unifying Logic Formal logic should be applied to derive new statements.

Proof Proofs should be provided to ensure that the derived statements are correct.

Trust Trust should be developed to ensure that the derived statements obtained

with use of the logic are trustworthy.

User Interface and Applications User Interfaces and Applications should enable

human Internet users to employ the Semantic Web technology for their daily

activities.

1.2. Relationship between Ontologies and Description Logics 5

1.2 Relationship between Ontologies and Description

Logics

The notion of ontology is fundamental in the fields of the Semantic Web, Artificial

Intelligence, Systems Engineering, and many others. In the context of Computer

Science, an ontology is a formal representation of knowledge as a set of concepts

defined within a given domain, as well as the relationships that exist between these

concepts. An ontology serves to describe a domain and to allow reasoning about

the entities of that domain by application of Description Logic rules. Ontologies are

often referred to as "knowledge bases". Further in the document these terms will be

used interchangeably.

In the Semantic Web the main means of specifying ontologies is OWL: a knowl-

edge representation language that is based on a description logic (DL). Description

logics are a family of formal languages based on First Order Logic that are widely

used in the area of Artificial Intelligence. The main benefit that DL brings to the

Semantic Web is the reasoning power by means of specialized algorithms called

"reasoners". Reasoners are deductive inference engines that perform logical infer-

ence over ontologies expressed as DL knowledge bases. As a result they can infer

implicit knowledge from the information that is explicitly stated in the knowledge

base.

There is a number of reasoners both free and paid that are currently available for

usage but unfortunately all of them display a dramatic performance degradation as

processed ontologies grow larger or the DL becomes more expressive. The lack of

means of efficiently reasoning about ontologies could possibly be one of the main

reasons why they have not seen wider adoption. The goal of this work is to rem-

edy this by developing a reasoning algorithm that is more efficient than the ones

6 Chapter 1. Introduction

currently in existence. We achieved this by building a novel reasoner for the de-

scription logic ALCHQ. ALCHQ is a subset of a more powerful description logic

named SROIQ that is the basis of the OWL 2 ontology language.

7

Chapter 2

Presentation of Description Logic

ALCHQ Formal Semantics

In this chapter we will provide a detailed presentation of the formal semantics of

the description logic ALCHQ and demonstrate its application by means of a simple

example.

2.1 Presentation of Description Logic ALCHQ Formal

Semantics

Description logics are formal languages that are used to represent knowledge. They

are usually classified by their set of supported logical operators. These logical op-

erators define the expressivity of the description logic in question. The more oper-

ators are allowed, the more expressive is the resulting description logic. However,

increased expressivity entails an increase of reasoning complexity. Therefore a rea-

soning algorithm designed for a more expressive a description logic will be more

complex and will often suffer from slowdown in performance.

8 Chapter 2. Presentation of Description Logic ALCHQ Formal Semantics

Name DL Interpretation
Concepts
concept A AI ✓ DI , A is concept

name
negation ¬C DI \ CI

conjunction C u D CI \ DI

disjunction C t D CI [DI

existential restriction 9R.C {x|8y : (x, y) 2 RI ! y 2
CI}

universal restriction 8R.C {x|8y : (x, y) 2 RI ! y 2
CI}

at-least restriction � n R.C {x|# RI(x, C) � n}
at-most restriction  n R.C {x|# RI(x, C)  n}
Axioms
concept subsumption C v D CI ✓ DI

concept equivalence C ⌘ D CI ⌘ DI

Roles
role definition R 2 NR RI ✓ DI ⇥ DI

role hierarchy R v S RI ✓ SI

TABLE 2.1: DL ALCHQ Syntax and Semantics

In this work, we focus on the description logic ALCHQ. ALCHQ stands for

Attributive Language with Complex concept negation, role Hierarchy, and Qualified

cardinality restrictions. Its expressivity is summarized in Table 2.1. ALCHQ per-

mits intersection, disjunction, and negation of concepts. It also makes use of qual-

ified number restrictions (in this work we will use the terms qualified number re-

strictions and qualified cardinality restrictions interchangeably), existential and uni-

versal restrictions, and role hierarchy.

A description logic consists of concepts that can form axioms by combining al-

lowed logical operators. An axiom is a logical statement that employs concepts and

roles.

Let us assume that A is an atomic concept (i.e., it cannot be further unfolded)

and R is a role. Then in the context of the DL ALCHQ complex concept expressions

2.1. Presentation of Description Logic ALCHQ Formal Semantics 9

C, D can be recursively defined as follows:

C, D = A|>|?|¬D|C u D|C t D|9R.C|8R.C| � nR.C|  nR.C

Using the definition above we can construct axioms by applying binary logical

operators for subsumption denoted by v and equivalence denoted by ⌘.

Expressions in ALCHQ and in other DLs are divided into three groups: TBox,

ABox, and RBox.

TBox or terminological box contains general concept inclusion axioms (GCIs) in

the form of C v D or C ⌘ D. For example, F v E can be interpreted as all the

individuals who speak French must also speak English.

ABox or assertional box contains individuals and their relationship to classes

and roles. A concept assertion is a statement of the form a : C where a is an indi-

vidual and C is a concept. For example, john : E means that there is an individ-

ual john who speaks English. Further, a role assertion is a statement of the form

(a, b) : R where a, b are individuals and R is a role. For example, (john, jane) : knows

means that an individual john is related to an individual jane via the role knows, i.e.

john knows jane.

Finally, RBox or role box contains role properties and role hierarchies. In this

work we focus only on role hierarchies. For example, if hasFriend v knows then it

means that the role hasFriend is a subrole of the role knows: john hasFriend jane. The

latter will state that john hasFriend jane and also knows jane.

Formally, expressions in TBox, ABox, and RBox describe sets of individuals that

belong to explicitly stated concept descriptions. Concept descriptions are defined

with the help of a set of concept constructors, such as conjunction, negation etc. The

available constructors determine the expressive power of the DL in question. In

this work we consider concept descriptions built from the constructors presented

in the Table 2.1. We use the standard Tarsky-style semantics that define concept

10 Chapter 2. Presentation of Description Logic ALCHQ Formal Semantics

descriptions in terms of an interpretation I = (DI ,.I). The domain DI of I is a non-

empty set DI and the interpretation function maps each concept name A to a subset

AI ✓ DI and each role R to a binary relation RI ✓ DI ⇥ DI , and every individual

name a to an element aI 2 DI .

2.2 An Example of DL ALCHQ Application

DL ALCHQ is an expressive description logic that allows us to form various state-

ments about an arbitrary domain. For example, we can describe some of the prop-

erties of a multilingual city like Montreal.

Let us assume that we have two sets people living in Montreal:

• Anglophones denoted by a concept A

• Francophones denoted by a concept F

Then, we will introduce two additional concepts that will denote two languages

widely used in the city in question:

• French language: French

• English language: English

We will make them both subclasses of a concept Language:

• French is a language: French v Language

• English is a language: English v Language

Finally, we will introduce a role speaks and a role understands. Now with the help

of our new vocabulary we can express the following information:

• Anglophones belong to a class Person: A v P

2.2. An Example of DL ALCHQ Application 11

• Francophones belong to a class Person as well: F v P

• A person is a francophone or an anglophone: P v F t A

• There is no one who can speak French: > v 0 speaks.French

• There is at least one person who speaks French: > v� 1 speaks.French

• A bilingual is a person who can speak both English and French: B v P and

speaks.(English u French) v B

• There are at least 5 people who can speak English and at most 30 who can

speak French: > v� 5 speaks.English and  30 speaks.French

• Someone who can speak English can also understand English: 9 speaks.English v

9 understands.English

This is just a small example that does not even use all of the features of the DL

ALCHQ. However, it gives an idea of how the DL in question can be used in real

life.

12

Chapter 3

Related Works

We introduced the Semantic Web and its potentials in Chapter 1. Then we discussed

the description logic ALCHQ and presented its formal semantics in Chapter 2. In

this chapter we will cover some of the studies conducted in the area of description

logic specialized on Reasoner Optimization. These are the works that inspired and

underpinned this study.

3.1 Reasoning in Description Logics

Description logics are a family of knowledge representation languages that pro-

vide formal semantics and reasoning power to the Web Ontology Language (OWL),

which is in turn part of the Semantic Web architecture as it is depicted in Figure

1.1. Typically, reasoning is realized by implementing powerful tableau-based algo-

rithms, known as semantic reasoners, that are able to process DL knowledge bases

and to infer previously unknown knowledge from them. The main task of a DL

reasoner is to classify its input ontology. The classification is a process of comput-

ing all subsumptions in a given ontology (i.e. a taxonomy). This task can be very

time-consuming. The more expressive is the DL of the ontology in question, the

3.1. Reasoning in Description Logics 13

more time is generally needed to classify it. Consistency checking is another typical

reasoning task. Its goal is to discover if an ontology can have at least one model.

Other common reasoning tasks include testing concept satisfiability, subsumption

checking between concepts, and checking if an individual could be an instance of a

specific concept.

The main and the most expressive DL that is currently recognized by OWL is

SROIQ. SROIQ is composed of different language constructs that have partially

been presented in Chapter 2. One challenge that it presents is that reasoning on very

expressive knowledge bases tends to be computationally expensive.

In order to improve reasoner performance the language can be made less com-

plex by leaving out certain logical constructs. Hence, striking the right balance be-

tween the expressivity of an ontology language and performance of reasoning algo-

rithms remains an open question. This issue has been widely studied by different

researchers and various optimization techniques have been proposed in order to

speed up reasoning algorithms. These techniques will be discussed further in this

chapter. In this section we will discuss some of the general studies conducted in the

area of description logic reasoning.

Tableau-based algorithms are the most commonly applied reasoning algorithms

to date according to [29]. In [29] the authors give a comprehensive overview of the

tableau algorithms. They say that as the tableau-based algorithms do not have a for-

mal definition they are identified by their distinctive features. A tableau-based algo-

rithm constructs a completion tree or a graph in the presence of nominals or inverse

roles that represents an abstraction of a model for the knowledge base in question.

To construct the tree the algorithm creates an initial node and then expands it by ap-

plying completion rules to the axioms in the knowledge base. The completion rules

describe the preconditions that must be satisfied in order to apply a corresponding

14 Chapter 3. Related Works

rule and the side effects of the rule application. In many cases, the completion rules

only operate on a node and its direct neighbours but occasionally they also affect

the nodes that are arbitrarily far apart or they transform global information that is

applicable to all the nodes. As multiple rules may be applicable to a given node

at the same time it is essential to design and implement a suitable rule application

strategy. An inconsistency in the completion tree is detected with the help of clash

triggers. A typical example of a clash is presence of a concept and its complement

in a node, i.e. C,¬C. It indicates that the current tree cannot be transformed into a

model. In the case when disjunctions are present in the knowledge base other paths

should be explored. This should be done until either a clash-free completion tree

can be constructed or until all possible paths have been explored and no clash-free

completion tree can be found. Thus, if a knowledge base has at least one model then

its completion tree should be clash-free. Otherwise, the knowledge base does not

have a model.

In [8] the authors present an extensive literature review on the studies conducted

in the area of tableau-based reasoning algorithms since the year 1990. In this para-

graph we will talk about some of them. The authors of [8] first introduce the stan-

dard tableau algorithm for a basic description logic language ALC and then they

present possible extensions to the algorithm that allow to integrate more expres-

sive description logics. These extensions include the following language constructs:

number restrictions, terminological axioms, and role constructors. For the ALC lan-

guage the tableau algorithm contains only four basic consistency preserving com-

pletion rules: the t-rule, the u�rule, the 9-rule, and the 8-rule. Then in order to

handle number restrictions the algorithm was first extended by unqualified number

restrictions N to represent at-most and at-least number restrictions -  n R.> and

� n R.>, or simply  n R and � n R respectively. The qualifying concept is the top

3.1. Reasoning in Description Logics 15

concept which is denoted in DL by the symbol>. > is the concept that is satisfied at

each node of the completion tree. In the ALCN logic it is not possible to impose any

restriction on the class of the role fillers of the number restrictions above. According

to the semantic of N , the role fillers can belong to any class in the domain. ALCQ

is an extension of ALCN that allows to impose a restriction on the class of the role

fillers -  n R.C and � n R.C. Thus, while in ALCN it would only be possible to

formulate a restriction such as "a mother has at least 4 children", ALCQ enables us

to express a restriction such as "a mother has at least 4 children that are female".

Using formal DL syntax , the former would be denoted as motheru � 4 hasChild.>

(i.e. motheru � 4 hasChild) while the latter would be motheru � 4 hasChild.Female.

However, this extension brings additional complexity to the algorithm. To check

that the qualified number restrictions are satisfiable, the standard tableau algorithm

first creates a number of role fillers to satisfy at-least number restrictions and then

tries to merge the role fillers if any one of the at-most number restrictions has been

violated. If it is impossible to satisfy all at-most restrictions, then the knowledge

base becomes unsatisfiable. Thus, in ALCN , the satisfiability algorithm requires an

additional clash rule to verify that the number restrictions can be satisfied. In ALCQ

the algorithm proceeds in a similar manner but it also adds qualifying classes to the

role fillers. The algorithm also introduces an additional choose-rule that selects role

fillers. Then another extension to the ALC language introduces features or func-

tional roles. Functional roles allow having only one role filler per individual, e.g.,

(a, b) : hasBirthMother. With functional roles we can express that a person can have

only one birthmother and several persons can have the same birthmother. The re-

sulting language would be ALCF . Another extension that adds expressivity to the

ALC is the introduction of role hierarchies R v S, inverse roles R�, and transitive

roles R+. The role hierarchy allows to express that the individuals that belong to the

16 Chapter 3. Related Works

role R would also belong to a role S if R is a subrole of S, i.e, R v S. For example,

(a, b) : knows and knows v likes, then (a, b) : likes. If (a, b) : likes and likedBy is

an inverse role of likes, then (b, a) : likedBy. Finally, transitive roles allow to build

chains of linked individuals. For example, if (a, b) : likes and (b, c) : likes, and likes

is a transitive role, then as a result (a, c) : likes as well.

In [36] the authors focus on the the small DL language EL that offers conjunc-

tions and existential restrictions. However, this fairly inexpressive language exhibits

some very interesting computational properties. Namely, it is polynomial time de-

cidable, i.e. tractable. By decidability we understand that it is sound, complete, and

terminating. In addition, due to the inexpressiveness of EL it is relatively easy to

implement an efficient classification procedure for this language. For example, in

contrast to Tableau-based algorithms [8] that we will discuss later, in EL it is not

needed to construct a counter model to test if one concept is subsumed by another

one. In a Tableau-based algorithm to test if A v B we need to add a concept that is

subsumed by A u ¬B and to check if the subsumption holds. If it results in a clash

then the algorithm concludes that it has discovered a new subsumption. Thus, we

need to test all possible pairs of concepts in a given ontology if we want to compute

its taxonomy. This is not the case in EL as all we need to do is to unfold axioms.

For example, having that A v B we know that B is a subsumer of A. We would

never test whether A is subsumed by C if was not directly stated in of the axioms in

the ontology. Moreover, computing subsumptions in EL can be done in "one pass"

which clearly has positive effects on performance and simplicity of the implemented

algorithm. Reasoning algorithms for the DL EL are often referred to as saturation

algorithms due to their nature of saturating knowledge. The authors of [36] present

ELK - a reasoner that can efficiently process EL knowledge bases. They claim that

at the time of the publication ELK was the most competitive existing reasoner for

3.1. Reasoning in Description Logics 17

EL knowledge bases. The goal of ELK is to provide scalability of the reasoning al-

gorithm, as opposed to expressivity of the input language. The authors introduced

a number of optimization techniques in order to make their reasoner perform well

and efficiently process ontologies that contain hundreds of thousands axioms. These

techniques are mostly architecture-dependent and are specifically tailored for ELK.

In this work, we aim to implement a reasoning algorithm for a DL richer than EL,

namely ALCHQ. However, our approach differs from [36] since we do not follow

their reasoner implementation strategy.

Expressivity of a description logic might negatively affect the time needed by a

semantic reasoner to process a knowledge base expressed in that description logic

language. Thus, it is important to know which are the language constructs that cre-

ate the most significant computational overhead by adding them to a smaller DL

fragment. In [25] the authors explore how adding role conjunctions to different de-

scription logics affects complexity of standard reasoning tasks. Role conjunction can

be expressed in a DL syntax as 9(R u S).A, where A is a concept and R and S are

roles, and interpreted as {x|8y : (x, y) 2 RI ^ 8y : (x, y) 2 SI ! y 2 AI}, where

x and y are variables. The authors find that adding role conjunctions to the descrip-

tion logics SHI and SHOIF causes a significant increase in the computational

complexity from ExpTime-complete to 2ExpTime-complete and from NExpTime-

complete to N2ExpTime-hard respectively. Moreover, they also argue that this in-

crease is caused by the presence of inverse roles.

Another interesting observation is presented in [2]. The authors identify a set of

expressive means that can be added to EL without sacrificing tractability. These DL

constructs are the bottom concept, nominals, a restricted form of concrete domains,

a restricted form of role-value maps. Presence of the bottom concept allows us to

express disjointness of concepts, i.e. A u B v ? would mean that A is disjoint to

18 Chapter 3. Related Works

B. Then, they show that all other additions of other typical DL constructors to EL

with General Concept Inclusions (GCIs) make subsumption intractable, and in most

cases even ExpTime-complete. Thus, it has been proven that adding qualified cardi-

nality restrictions Q makes ELQ non-tractable and adding inverse roles I makes it

PSpace-hard. In [4] the authors continue searching for balance between expressivity

and tractability and prove that it is possible to extend EL with range restrictions

and reflexive roles and still remain tractable.

The authors of [54] exploit the fact that saturation-based reasoners perform bet-

ter on the OWL EL ontologies than tableau-based reasoners. The authors state that

a saturation-based reasoner is able to very efficiently process the SNOMED ontol-

ogy [53] that is written in the EL description logic and that it would not be possible

to achieve this level of efficiency with a standard tableau-based reasoner. However,

it is not possible to apply saturation-based rules alone to ontologies implemented

in a more expressive description logic, for example to the ontologies that conform

to the description logic SHIQ. Thus, based on this observation, the authors pro-

pose to combine tableau- and saturation-based rules to build a reasoner that would

achieve a better performance than existing tableau-based reasoners. The proposed

reasoning algorithm generates data structures that could be later used as input for

an extended tableau algorithm that supports more expressive DLs. Similar to the

tableau completion rules, the saturation rules generate nodes that are labelled with

sets of concepts. One concept serves as the representative concept of that node

and the rest are the subsumers of that representative concept. Thus, it is possible

to directly transfer results from the constructed saturation graph to a completion

graph as the saturated labels can be used to initialize the labels of new nodes of

the completion graph. The authors implement their approach in a reasoner named

Konclude [56]. According to the results presented at the OWL Reasoner Evaluation

3.1. Reasoning in Description Logics 19

2014 (ORE2014), at the moment of publication Konclude showed significantly bet-

ter performance than other well-known reasoners such as Hermit [49] and Fact++

[59]. The main advantage of the saturation technique is that no new nodes will be

created unless they are needed. Whenever a new edge requires an individual of a

specific class to be created, the algorithm links the edge to the node that contains

this concept as a subsumer. Thus, application of the saturation technique allows to

create significantly smaller models. Moreover, higher level reasoning tasks such as

classification often exploit information that can be extracted from the constructed

completion graphs [24]. A saturated graph can be used for this purpose as well. For

example, if a node with a representative concept A is neither clashed nor critical (i.e.

possibly incomplete and requires tableau rules to be applied to it), then the concept

A is satisfiable and the label of that node contains the subsumers of A. In particular,

if no node is critical (which is the case for many EL ontologies) then only a transitive

reduction is necessary to classify the ontology in question. Thus making it possible

to automatically get a one-pass classification for simple ontologies.

In [40] the authors present a novel reasoning calculus for the description logic

SHIQ. They aim to solve two of the main problems that exist in the traditional

tableau-based algorithms - or-branching and and-branching. The or-branching is

caused by the presence of disjunctions in knowledge bases. Clearly, it is possible to

avoid disjunctions but in this case the knowledge bases will not be very expressive

even though there exist knowledge bases that are described in such a way. For

example, the standard description logic language that disallows disjunctions is EL

that we have already discussed.

Disjunctions cause nondeterminism, making the reasoning process complicated.

The problem is that there is no known technique for selecting the correct disjunct as

20 Chapter 3. Related Works

the first choice when building a completion tree. For example, when we have a log-

ical expression such as A t B t C t D t ..., we need to choose only one concept and

ignore the rest. However, we have no way of knowing choosing which concept will

result in a logical clash and which will not. Therefore, the standard tableau-based

algorithm usually picks any of the disjuncts and tries to build a completion tree.

Then, if a logical clash is discovered as a result of the selection, the algorithm has to

roll back and pick one of the remaining alternatives. The algorithm will continue its

execution in this manner until no more rules can be applied. Consequently, we can

assert that the knowledge base is satisfiable if the right disjunct has been found. In

the worst case the algorithm might have to try all the disjuncts. Clearly, this proce-

dure adds an undesirable computational overhead because there is no limit on the

number of disjuncts in an expression.

In [42] the authors extend their previous work [40] by presenting a reasoning

calculus for the description logic SHOIQ+. In particular, the authors add a rule to

handle nominals O. This approach leverages the hypertableau [12] and hyperreso-

lution [45] calculuses in an attempt to reduce nondeterminism. In order to ensure

termination, a specialized blocking condition is introduced - the "anywhere" pair-

wise blocking. The authors claim that this blocking condition decreases size of the

constructed model. They also present an improved nominal introduction rule that

ensures termination in the presence of nominals, inverse roles, and number restric-

tions - a combination of DL constructs that has been proven notoriously difficult

to handle. The implementation shows significant performance improvements over

other existing reasoners on several well-known ontologies.

According to [40, 41, 42] in order to apply hypertableau to a SHIQ knowledge

base, it needs to be preprocessed and transformed into DL clauses. A DL clause is

3.1. Reasoning in Description Logics 21

a universally quantified implication that contains DL concepts and roles as predi-

cates. The main inference rule for DL clauses is hyperresolution. Hyperresolution

resembles lazy unfolding: an atom from the right-hand side of a DL clause is de-

rived only if all atoms from the left-hand side have already been derived. Left- and

right-hand sides of the DL clause are separated by an implication sign. On Horn

clauses this calculus is deterministic, thus, it eliminates all the or-branching. The

algorithm can be viewed as a hybrid of resolution and tableau. It is also related to

the hypertableau and hyperresolution calculuses.

Hyperresolution is able to resolve many first-order logic fragments. However,

SHIQ allows us to express cyclic GCIs in the form of C v 9R.C thus making

hyperresolution generate infinite paths of successors. Therefore, to ensure termi-

nation the authors use the pairwise blocking technique from [33] to detect cyclic

computations. To limit and-branching, the authors extend the blocking condition

from [33] to anywhere pairwise blocking: an individual can be blocked by an indi-

vidual that is not necessarily its ancestor. This significantly reduces the size of the

constructed models. [50] is a more recent work dedicated to exploring potentials

of hypertableau, however, in this work the authors explore only SHI . In [10] the

previously mentioned work has been further extended to SHIQ and later in [9] to

SRIQ, however, the way the authors deal with Q is different from the approach

that will be proposed in this work.

In [51], the authors further discuss consequence-based reasoning. They postulate

that this reasoning procedure can only be applied to ontologies expressed using

Horn logic. The before-mentioned work describes a consequence-based procedure

for the description logic ALCH. The authors claim that this approach performs well

on non-Horn ontologies.

In [11], the authors present a consequence-based calculus for description logic

22 Chapter 3. Related Works

ALCHIQ+ - a very expressive logic that also allows qualified number restrictions

which is our topic of interest. As a proof of concept they implemented the calculus

in a reasoner called Sequoia. The reasoner shows very promising results but it does

not implement Integer Linear Programming to efficiently deal with qualified num-

ber restrictions. In [58], the authors further extend Sequoia by adding support for

nominals thus being able to classify ontologies expressed in SROIQ.

To summarize, the tableau algorithm is the most prominent reasoning algorithm

that is widely used to determine satisfiability of knowledge bases and to imple-

ment reasoners. However, there are other techniques that can be used for the same

purpose. One of them is based on automata theory [5]. The algorithm is based

on a technique that translates a concept into an automaton that accepts all models

for that concept. However, it appears that the tableau based algorithms are more

suitable for reasoner implementation and optimization than automata-based algo-

rithms, therefore the automaton-based reasoners have not found a wide adoption

[5].

3.2 Optimization Techniques

In the previous section we discussed the most prominent reasoning algorithms in

existence today. A reasoner represents an implementation of a calculus - a set of

rules for a specific description logic. However, implementing the rules in a naive

way will most likely result in poor performance. Most modern reasoners implement

various optimization techniques. Many of the latter are implementation-dependent

but some of them could be considered as guidelines for semantic reasoner imple-

mentation [60]. In this section we will look at some of the existing optimization

techniques.

3.2. Optimization Techniques 23

The tableau-based algorithms provide reasoning services to knowledge bases

expressed as one of the possible subsets of the description logic SROIQ. Despite

the fact that there are other algorithms that could provide similar functionality, the

tableau-based algorithms found wide recognition due to their simplicity of imple-

mentation [5]. However, these algorithms do not perform well on complex knowl-

edge bases if appropriate optimization techniques have not been implemented. For

instance, it is a known fact that there are two main sources of computational over-

head - nondeterminism caused by presence of disjunctions in knowledge bases and

construction of very large models caused by existential restrictions.

Many optimization techniques have emerged in order to address the above men-

tioned problems. Saturation is a technique that originally comes from the EL de-

scription logic language. It can be integrated in semantic reasoners for more ex-

pressive knowledge bases in order to addresses the problem of constructing large

models. There are other optimization techniques that aim at mitigating the effects

of applications of disjunctive clauses, however, no groundbreaking technique has

been proposed yet.

Apart from the computational overhead caused by disjunctions and existential

restrictions, there are also other DL constructs that can negatively affect reasoner

performance. Modern reasoners are not able to effectively handle large numbers

of qualified cardinality restrictions. This problem was explored in [20], [19], and

[22]. The authors propose to translate qualified number restrictions into systems of

linear inequalities and then solve these systems using a specialized Integer Linear

Programming module. The proposed approach shows very promising results and

it will be explained in detail in the following chapter as it serves as motivation for

this work.

As it has already been mentioned earlier, a tableau-based algorithm builds a

24 Chapter 3. Related Works

completion tree by applying predefined completion rules. Then, the completion

tree can be transformed into a model if it is satisfiable (i.e. it is clash-free). Despite

the fact that the order of application of the completion rules does not affect the sat-

isfiability/unsatisfiability of the completion tree, an imprudent application of the

rules may result in building an infinite tree. In order to ensure that the algorithm

could handle this situation and eventually terminate, an appropriate blocking tech-

nique should be implemented. The main idea of blocking [31] is to terminate the

algorithm when the completion tree does not acquire new information by applying

the completion rules. Most importantly, blocking should also ensure that the model

reconstructed from the completion tree is sound and complete. Blocking too early

will prevent the algorithm from inferring all possible information from a knowledge

base.

There is a number of well-known and widely applied blocking techniques [8, 23,

40]. One of these techniques is known as subset blocking. This is an approach that

allows an algorithm to block and thus prevent an existential restriction rule from

creating infinitely many role successors, while at the same time ensuring that the re-

sulting model is sound and complete. An individual x may be safely blocked by its

direct role successor an individual y in an ABox A if {C |C(x) 2 A} ✓ {C0 |C0(y) 2

A}. The main underlying idea of the subset blocking technique is that the blocked

individual can use the role successors of y instead of generating new successors.

However, if the conditions of the subset blocking are to be violated by further appli-

cation of the completion rules, the block can be safely broken and the node can be

expanded. Subset blocking has been extended with anywhere blocking [13]. Still, in

the presence of inverse roles this strategy cannot be applied. Instead, the pairwise

blocking [33] should be chosen. The main idea of pairwise blocking is to look at

pairs of nodes. A natural extension of this strategy is known as anywhere pairwise

3.2. Optimization Techniques 25

blocking when the witness of the blocked node is not required to be its direct succes-

sor [40]. In [23], the authors introduce a new blocking mechanism that is called core

blocking. This algorithm employs a very strict blocking condition that can suspend a

model from being constructed much earlier than other existing blocking techniques.

However, as the authors have mentioned, this is technique is very "aggressive" and

if it is used alone then the completion tree might not be complete and therefore it

might not be possible to transform it into a model. In order to ensure the validity

of each block the algorithm incorporates an additional checking mechanism. When

necessary the algorithm can release the block and continue expanding the comple-

tion tree. Thus, the checking mechanism ensures that the complete model will even-

tually be constructed. However, this blocking condition works only on knowledge

bases expressed as Horn clauses.

There are also optimization techniques that address indeterminism in the tableau

algorithm. One of these techniques is known as lazy unfolding. Since the main

source of indeterminism are general inclusion axioms (GCIs) of the form of C v D,

it is possible to avoid transforming such axioms into ¬C tD and unfold them lazily

instead. By lazy unfolding it is simply meant that the axioms of this form will be

applied only to those nodes that contain C in their label. Thus these nodes will also

obtain D as their subsumer. A technique that facilitates lazy unfolding [6, 7, 39]

is absorption. By applying absorption it becomes possible to rewrite GCIs of the

knowledge base as B v C with B an atomic concept and C any concept expression.

Then, during the reasoning process the algorithm derives C only if the node already

contains B in its label. Absorption has been further extended to binary absorption,

which rewrites a GCI to B1 u B2 v C, and to role absorption that rewrites a GCI to

9R.> v C [55]. However, the axiom 9R.A v A cannot be absorbed directly. To be

absorbed, the axiom has to be rewritten as A v 8R�.A. It is important to mention

26 Chapter 3. Related Works

that there is no clear technique to identify which combination of transformation and

absorption techniques will yield the best results. Therefore, implemented absorp-

tion algorithms are guided primarily by heuristics.

In [57], the authors discuss the problem of a very high worst-case complexity

that is present in modern reasoning systems such as FaCT++ [59], HermiT [49], or

Pellet [52] that implement the tableau algorithm. The reason for that is the number

of modelling constructs supported by the expressive DL SROIQ. Therefore, it has

been longstanding challenge in the DL community to propose novel optimization

techniques to improve the performance of the tableau based reasoner. A very ef-

fective and widely implemented optimization technique is caching. The standard

implementation of caching is satisfiability caching [17]. The main purpose of it is to

cache the satisfiability status for a set of concepts. This information is stored in a so

called cache and can be easily accessed during the reasoning process. If the set of

concepts stored in the cache appears again in a completion tree then instead of ap-

plying tableau rules it is possible to obtain the necessary information from the cache.

However, with increasing expressivity of the used DL naively caching might become

unsound, for instance, due to the possible interaction of inverse roles with universal

restrictions. The authors of [57] propose to improve the existing caching technique

so that it would be possible to process the expressive DL SROIQ. They develop the

unsatisfiability caching method that is based on sophisticated dependency manage-

ment that further enables better informed tableau backtracking and more efficient

pruning. In the proposed extension the algorithm stores and maintains information

about the sets of concepts that are known to be unsatisfiable. Based on that any

superset of the cashed unsatisfiable concept sets would also be unsatisfiable. Thus,

when expanding the completion tree, one encounters a node label that contains a

superset of an unsatisfiable cache entry, then it is safe to stop expanding the branch

3.2. Optimization Techniques 27

of the completion tree. This novel technique is integrated in the reasoning system

Konclude. The results prove that the proposed approach improves the overall per-

formance of the reasoner.

The unsatisfiability caching is closely associated with the dependency tracking

optimization technique. Dependency directed backtracking is a technique that can

effectively prune irrelevant alternatives of non-deterministic branching decisions

caused by the presence of the disjunctive clauses in knowledge bases. If branching

points are not involved in clashes it will not be necessary to compute other alterna-

tives of these branching points because the other alternatives cannot eliminate the

cause of the clash. To identify involved non-deterministic branching points, all facts

in a completion graph are labelled with information about the branching points they

depend on. Thus, the united information of all clashed facts can be used to identify

involved branching points. A typical realization of dependency directed backtrack-

ing is backjumping [60, 1], where the dependent branching points are collected in

the dependency sets for all facts. The dependency tracking stores all necessary in-

formation to exactly trace back the cause of the clash in a node making it possible

to identify all involved non-deterministic branching points for the dependency di-

rected backtracking and also to identify small unsatisfiable sets of concepts that can

be used to create new entries in the unsatisfiability cache.

To conclude, in this section we have covered some of the existing optimization

techniques that are commonly used in modern reasoner implementations. In this

work we focus on leveraging Integer Linear Programming in order to address per-

formance issues that arise from having entailments caused by presence of qualified

cardinality restrictions in ontologies. We will discuss this approach in detail in the

next chapter.

28

Chapter 4

Motivation and Research Objectives

4.1 Motivation

Before stating our research objectives we would like to present the potential bene-

fits of applying linear optimization to description logic reasoners. We will use an

example from [22] to demonstrate that even a simple problem expressed in number

restrictions can significantly increase the complexity of the reasoning process.

The authors of [22] model a simple situation of a university student who has

to take courses in different departments. For each completed course the student

receives credits. Restrictions are imposed on the number of credits that the student

is allowed to get for the courses taken from each department.

This problem is modelled as follows:

4.1. Motivation 29

8hasCredit.(Science t Engineering t Business) (4.1)

� 140 hasCredit (4.2)

� 120 hasCredit.(Science t Engineering) (4.3)

 32 hasCredit.(Science t Business) (4.4)

 91 hasCredit.Engineering (4.5)

It can be interpreted in a natural language as follows:

(1) Students must take courses only from Science, Engineering, or Business de-

partments.

(2) Students must earn at least 140 credits to complete the study program.

(3) Students must earn at least 120 credits from the department of Science or from

the department of Engineering.

(4) Students must earn at most 32 credits from the department of Science or from

the department of Business.

(5) Students must earn at most 91 credits from the department of Engineering.

This simple problem is satisfiable. However, the way the standard tableau-

based algorithm would solve it is rather inefficient. Most tableau-based algorithms

[8, 30, 32] will test the satisfiability of a concept that is subsumed by the number

restrictions by first satisfying all the at-least restrictions and then verifying whether

none of the at-most restrictions has been violated. If one of the at-most restrictions

has been violated, the algorithm will try to reduce the number of the created role

fillers to satisfy the at-most restrictions.

30 Chapter 4. Motivation and Research Objectives

In this case the algorithm will first create 260 hasCredit role successors so that 120

role successors will be instances of SciencetEngineering and 140 role successors will

be the instances of >. Then the nondeterministic choose-rule will assign to each of

these 260 instances Science t Business or ¬(Science t Business) and Engineering or

¬Engineering. In case an at-most restriction is violated, for example, if a student has

more than 91 hasCredit role successors of Engineering, the nondeterministic merge-

rule will try to reduce the number of these instances by merging pairs of non-disjoint

instances until the upper bound specified by this at-most restriction is satisfied. The

more there are interacting number restrictions and the higher are the numbers the

more this approach becomes inefficient.

The authors of [22] propose a different way to solve this problem. Their ap-

proach is inspired by the methods for reasoning about sets described in [43]. In-

stead of creating role successors to satisfy the at-least number restrictions and then

merging them to satisfy the at-most number restrictions they reduce the problem to a

standard linear programming optimization problem. This approach requires certain

preprocessing steps. The authors un-qualify the number restrictions by introducing

a new role for each qualified hasCredit role. This transformation is necessary because

the authors do not deal directly with qualified number restrictions. Instead they use

universal restrictions to express them. Each newly introduced role must be a subrole

of the original role resulting in the following new role hierarchy:

hasCredit1 v hasCredit

hasCredit2 v hasCredit

hasCredit3 v hasCredit

4.1. Motivation 31

Then the transformed qualified number restrictions would look as follows:

8hasCredit.(Science t Engineering t Business) (4.6)

� 140 hasCredit.> (4.7)

� 120 hasCredit1 u 8hasCredit1.(Science t Engineering) (4.8)

 32 hasCredit2 u 8hasCredit2.(Science t Business)

u 8(hasCredit \ hasCredit2).¬(Science t Business)
(4.9)

 91 hasCredit3 u 8hasCredit3Engineering

u 8(hasCredit \ hasCredit3).¬Engineering
(4.10)

(4.8) is semantically equivalent to its qualified version � 120 hasCredit.(Science t

Engineering) because the role fillers of hasCredit1 in its un-qualified version

must be Science t Engineering due to the presence of the universal restriction

[37].

(4.9) is semantically equivalent to  32 hasCredit.(Science t Business) because in

the un-qualified version the authors state that only hasCredit2 role fillers can

be Science t Business [37].

Then new variables have to be introduced to represent the newly created roles.

Let us assume that S stands for Science, B stands for Business, and E stands for

Engineering. Thus,

hC1 represents hasCredit1 role fillers

hC2 represents hasCredit2 role fillers

32 Chapter 4. Motivation and Research Objectives

hC3 represents hasCredit3 role fillers

hC1hC2 represents hasCredit1 and hasCredit2 role fillers

hC1hC3 represents hasCredit1 and hasCredit3 role fillers

hC2hC3 represents hasCredit2 and hasCredit3 role fillers

hC1hC2hC3 represents hasCredit1, hasCredit2, and hasCredit3 role fillers

Finally, the corresponding linear programming problem can be defined:

minimize

hC1 + hC2 + hC3 + hC1hC2 + hC1hC3 + hC2hC3 + hC1hC2hC3

subject to:

hC1 + hC2 + hC3 + hC1hC2 + hC1hC3 + hC2hC3 + hC1hC2hC3 � 140

hC1 + hC1hC2 + hC1hC3 + hC1hC2hC3 � 120

hC2 + hC1hC2 + hC2hC3 + hC1hC2hC3  32

hC3 + hC1hC3 + hC2hC3 + hC1hC2hC3  91

4.2. Research Objectives 33

and

hC1 � 0

hC2 � 0

hC3 � 0

hC1hC2 � 0

hC1hC3 � 0

hC2hC3 � 0

hC1hC2hC3 � 0

This system of linear inequalities will be passed to the linear program solver that

will attempt to compute a non-negative integer solution. If there is no integer so-

lution then a numeric clash will be produced. Otherwise the solver will provide

us with the values of the variables, i.e., the number of role fillers. This approach is

notably simpler and provides a better performance than the choose-rule of the stan-

dard tableau algorithm. However, it also has its limitations. Namely the number

of generated variables might potentially be too large and as a result it might cause

reasoners to run out of memory. This is one of the problems that we plan to address

in our research.

4.2 Research Objectives

A significant amount of research has been done in Description Logic over the past

two decades, however, we believe there is always room for pushing the boundaries

of the state of the art in the field. We evaluated several potential ways to contribute

34 Chapter 4. Motivation and Research Objectives

to this area and we decided to follow the path of [22] and [19] and focus on seman-

tic reasoner optimization by means of efficiently classifying ontologies that contain

large numbers of qualified number restrictions. We will limit this work to the de-

scription logic ALCHQ.

Therefore our research objectives are the following:

• to design a novel calculus for the description logic ALCHQ

• to apply the Branch and Price algorithm in order to efficiently reason on on-

tologies with entailments caused by qualified number restrictions

• to avoid backtracking that is used in Tableau-based reasoners and process dis-

junctions directly by means of resolution techniques

• to avoid creation of very large models as it is done in Tableau-based reasoners

by using the saturation-based approach

• to implement a reasoner that will serve as proof of concept for the proposed

calculus

35

Chapter 5

Description Logic Reasoner Avalanche

In this chapter we will present the Description Logic reasoner Avalanche. First we

will give an overview of our work. After that we talk about the saturation graph

that we use to store information discovered during the reasoning process. Then we

introduce the normalization process that is a mandatory step that has to be taken to

make an ontology compatible with our rules. Consequently, we will present the cal-

culus and explain how our rules work. Finally, we will demonstrate how Avalanche

reduces qualified number restrictions to linear programming problems and solves

them with the help of the IBM CPLEX software package.

5.1 Saturation-based reasoner Avalanche

When we started working on Avalanche we set as one of our goals to design a novel

calculus for the description logic ALCHQ that would employ the saturation-based

approach. The reason why we chose to go this way is because of the potential ad-

vantages that come with it. We carefully studied related works in the area of DL to

see what are the main challenges that we could address in our research. As it has

been mentioned earlier in [42], when dealing with completion rules there are two

36 Chapter 5. Description Logic Reasoner Avalanche

main sources of complexity - indeterminism caused by the presence of disjunctive

clauses and creation of extremely large models caused by the presence of existential

restrictions. The advantage of a saturation-based approach is that the size of the

model produced by the algorithm is notably smaller than the size of the model that

would be produced by a standard tableau algorithm that implements the comple-

tion rules. That is why developing a saturation-based calculus and implementing it

in a reasoner appeared to be an interesting idea for our research.

Saturation was initially applied to reason on the description logic EL+. One of

the main features of saturation is that it allows to minimize the number of nodes

in the completion graph by reusing existing nodes whenever it is possible. This

approach is used in the implementation of the reasoner Konclude [56]. However,

the authors of Konclude acknowledge the fact that the reasoner still has to rely on

the original tableau rules to deal with the DL SROIQ and uses absorption only to

optimize certain parts of the reasoning procedure.

We decided to start with expanding the existing calculus for the DL EL by adding

more rules to cover the DL ALCHQ fragment. Most of our rules unfold axioms

extracting explicitly stated subsumers and storing them in node labels of the con-

structed graph. The rest of the rules accumulate information or saturate labels until

new subsumers can be inferred. Further, there is another fundamental difference be-

tween the approach described in [56] and the one presented in our work: Konclude

does not make use of linear programming to reason on qualified number restrictions

as opposed us which we consider the major strength of our work.

5.2. Saturation Graph 37

5.2 Saturation Graph

In this section we will present the saturation graph that is constructed by Avalanche

during the reasoning process.

The saturation graph G when saturated represents a fully classified ontology

where each node contains all its subsumers in its label. In the following subsections

we will discuss different types of nodes in the graph and the purpose they serve.

5.2.1 Saturation Nodes

Each node in the saturation graph is uniquely identified by its representative con-

cept. The representative concept can be a non-negated atomic concept extracted

from an input ontology, an auxiliary concept created during the normalization pro-

cess, an anonymous concept, or a concept that we generate to identify unfold and

clone nodes. Each node has a label that contains its entailed subsumers. Some nodes

also have labels with possible subsumers that are used when reasoning with quali-

fied number restrictions. Each node will be discussed in detail further in this section.

When we start constructing the saturation graph we first create the node with the

representative concept >. > is a special concept that subsumes every other concept

in the ontology. It can be considered as a root node of our graph. Another special

concept is?. We do not have a dedicated node for this concept but we use it to mark

nodes as unsatisfiable by adding ? to the subsumers label.

We never delete nodes but the nodes marked as unsatisfiable are excluded from

the reasoning process. This is needed to avoid creating duplicate nodes. If we

know that a node has already been proven to be unsatisfiable then we will reuse

this knowledge during the reasoning process.

38 Chapter 5. Description Logic Reasoner Avalanche

A node can have incoming and outgoing edges except for cloned nodes and

unfold nodes that can have only outgoing edges. The edges are directed. They

originate in the source node and end in the target node.

It is important to mention that Avalanche implements all the rules that will be

presented later in this chapter but in some cases implementation differs from its the-

oretical representation. In the calculus we present two types of nodes - static nodes

and anonymous nodes. In the implementation we also introduced auxiliary nodes,

unfold nodes, and two types of cloned nodes - a clone to test for positive subsumption

between two concepts and a clone to test for negative subsumption or disjointness

between two concepts. This distinction is needed to facilitate implementation of the

calculus and introduce certain optimizations.

5.2.2 Static Node

Static node is a super class of the identified node and of the auxiliary node. In the

calculus we have no distinction between identified and auxiliary nodes but we have

this distinction in the implementation. In the implementation it is more convenient

to have two nodes as sometimes for the purpose of optimization we do not need to

apply certain rules to the auxiliary nodes. For example, we do not need to know

whether A v aux1. The concept aux1 was not defined in the original ontology as

it was introduced during the normalization process. Thus, testing whether there is

subsumption between the two concepts would not add any valuable information

that we could benefit from but it would increase the total reasoning time needed to

classify an intology.

5.2. Saturation Graph 39

5.2.3 Identified Node

Both in the calculus and in the implementation identified nodes represent named

concepts defined in the input ontology.

For example, if we ask Avalanche to classify a small ontology that does not need

to be normalized and that contains the following axioms:

A v B

A v� 1 R.C

C u D v F

Avalanche will build a graph with five nodes with the following representative

concepts: A, B, C, F, and >. As a classification result the label of the node with the

representative concept A will contain its subsumers: B and � 1 R.C.

5.2.4 Auxiliary node

Auxiliary nodes possess the same properties as the identified nodes. They are repre-

sented by internal concepts that have been generated for an input ontology during

the normalization phase. Avalanche is designed to work only with atomic concepts

and axioms that conform to the DL ALCHQ. Ontologies that contain language con-

structs outside ALCHQ will be rejected by the reasoner. The axioms that are com-

posed of allowed language constructs but that contain non-atomic concepts must be

normalized. Only after that saturation and completion rules can be applied.

In order to design the normalization rules we followed the approach presented

in the technical report [3] for the DL EL and extended it further for ALCHQ. The

normalization rules will be presented further in this chapter.

40 Chapter 5. Description Logic Reasoner Avalanche

We will demonstrate on an example how Avalanche normalizes axioms and in-

troduces auxiliary concepts. Let us assume that in the input ontology we encounter

the following axiom:

9R.C u D v E

This is a valid ALCHQ axiom but it has to be normalized because the range of

values of R is not expressed as an atomic concept. The result of the normalization

process will look as follows:

C u D v aux1

9R.aux1 v E

As a result we introduced a new auxiliary concept aux1.

5.2.5 Anonymous Node

Anonymous nodes are represented in the calculus and in the implementation. We

need these nodes to create role successors and to discover unsatisfiability (or satisfi-

ability) of concepts due to the presence of qualified number restrictions among their

subsumers.

For example, let us take a node with the representative concept A that has sub-

sumers� 5R.C, 2R.D,� 4R.E. This example is trivially satisfiable at the moment.

However, we do not know whether it will remain satisfiable. If we later discover

that C v D then the concept A will become unsatisfiable. This is the reason why we

need anonymous nodes.

5.2. Saturation Graph 41

Presence of an at least one at-least qualified number restriction in a set of node

subsumers triggers construction of an edge to another node. If there are only at-least

qualified number restrictions then we do not need to create anonymous nodes. In

such a case we will connect the subsumer node with the nodes that are represented

by the cardinalities of the qualified number restrictions. Furthermore, if we only

have at-most qualified number restrictions we also do not need to create anonymous

nodes. In fact in such a case nothing needs to be done. However, if we have both

at-most and at-least qualified number restrictions we will need to call the ILP module

that we also call QMediator in order to create a role successor. The role successor

most likely will be an anonymous node. However, it is possible for the role successor

to be an identified or an auxiliary node.

Going back to the example above, Avalanche will construct a new anonymous

node and then once a new subsumption has been discovered the anonymous node

will become unsatisfiable. As a result the node with the representative concept A

will also become unsatisfiable.

5.2.6 Clone Node

If we want to test for subsumption or disjointness between two concepts we need

to create a respective clone node. Such a node will carry relevant information from

both the subsumee and the subsumer nodes. This information includes the qualified

number restrictions of the subsumee node and the matching possible subsumers

of the subsumer node. These nodes allow us to discover subsumptions caused by

the presence qualified number restrictions in the ontology. If such a clone becomes

unsatisfiable we know that there is a subsumption between two concepts.

We distinguish two types of clone nodes - a positive clone node or a subsumption

clone and a negative clone node or a disjointness clone. If a positive clone fails the

42 Chapter 5. Description Logic Reasoner Avalanche

subsumee concept will be subsumed by the subsumer concept and if a negative

clone fails then the subsumee will be subsumed by the negation of the subsumer

concept.

In general, we always compare pairs of concepts. In the worst case we would

have to test all pairs of nodes in the ontology for subsumption and disjointness. We

introduced a number of optimizations in order to avoid creating redundant nodes

and also to avoid triggering unnecessary rule applications. These optimizations will

be discussed later in detail. The general idea is to create only those clones that have

higher chances of resulting in a subsumption or disjointness because not every clone

is guaranteed to result in a subsumption.

5.2.7 Subsumption Clone

We create a subsumption clone to test for subsumption between two concepts. If the

subsumption clone fails then we can conclude that the corresponding subsumption

holds. As a result a new subsumer will be added to the subsumee node.

5.2.8 Disjointness Clone

We create a disjointness clone to test for disjointness between two concepts. If the

disjointness clone fails then we can conclude that the two concepts are disjoint. As

a result Avalanche will add a new negated subsumer to the subsumee node.

5.3. Normalization Process 43

5.2.9 Unfold Node

Unfold or disjunction nodes had to be introduced to facilitate reasoning with dis-

junctions that unfold to qualified cardinality restrictions. They will be later dis-

cussed in the context of the corresponding rules. Briefly, sometimes we cannot im-

mediately know if two concepts that are present in different disjunctions are disjoint

due to being subsumed by qualified number restrictions. Then the unfold nodes

will be created that will accumulate information until possibly the disjointness can

be discovered.

5.2.10 Connecting Edge

An edge represents a connection between two nodes. All edges in the graph are

directed. For example, if a node with the representative concept A is subsumed by

9R.C then Avalanche will create an edge between the node A and the node with the

representative concept C. The node A will be the source node and the node C will

be the target node. Further, the edges also connect source nodes to target nodes as a

result of a call to the ILP module.

5.3 Normalization Process

5.3.1 Normal Form

Avalanche is able to classify ALCHQ ontologies of any size. However, in order to

apply the saturation-based rules input ontologies have to be transformed into the

normal form presented below. Here and further by the letters A and B we denote

44 Chapter 5. Description Logic Reasoner Avalanche

atomic concepts, by the letters C, D... we denote atomic concepts and qualified num-

ber restrictions, and by any letter with a hat on top we denote complex concepts.

NF1 A v B

NF2 A1 u A2 v B

NF3 A v./ n R.B1

NF4 ./ n R.A v B

NF5 A v B1 t B2

NF6 > v B1 t ...t Bn, where 2  n  3

NF7 > v ./ nR.B

NF8 A1 u ...u An v ?, where 2  n  3

Before we can begin the normalization process we need to verify the input on-

tology and transform some axioms in order to prepare it for the normalization. We

start with verifying that the ontology does not contain language constructs that are

outside of the ALCHQ domain. If there is at least one axiom that is outside of

ALCHQ the entire process will be stopped and an error message will be generated.

If the ontology passes the verification step then we will continue with the transfor-

mations.

First, the input ontology must be converted into Negation Normal Form (NNF).

Second, existential restrictions must be transformed into their corresponding at-least

qualified number restrictions. Third, universal restrictions must be transformed into

1./ denotes � or 

5.3. Normalization Process 45

their corresponding at-most qualified number restrictions. Fourth, equivalence ax-

ioms must be transformed into pairs of subsumption axioms. Fifth, OWL declara-

tions compatible with ALCHQ must be transformed into equivalent axioms: dis-

jointness of concepts, and domain and range declarations. Finally, exactly number

restrictions will be transformed into their equivalent qualified number restrictions.

The exactly number restrictions that appear on the right-hand side of axioms will be

transformed into pairs of at-least and at-most cardinality restrictions. For example,

B v= n R.Ĉ will be transformed into {B v� n R.Ĉ, B v n R.Ĉ}. The exactly car-

dinality restrictions that appear on the left-hand side of axioms will be transformed

into pairs of at-least and at-most cardinality restrictions. For example, = n R.Ĉ v B̂

will be transformed into � n R.Ĉu  n R.Ĉ v B̂.

5.3.2 Left-hand Side Normalization Rules

At this stage we normalize only the left-hand sides of axioms. This process will

terminate when no axiom can be transformed by any of the left-hand side normal-

ization rules. During this process we introduce new auxiliary concepts.

The rules are described below and should be applied in the order they are pre-

sented :

NR1lhs � n R.Ĉ v D̂ will be transformed to {Ĉ v aux1,� n R.aux1 v D̂}

According to our normal form the qualification of a cardinality restriction

should be an atomic concept. For example, � 1R.(C u D) v E will be trans-

formed to C u D v aux1,� 1 R.aux1 v E.

NR2lhs  n R.Ĉ v D̂ will be transformed to {Ĉ v aux1, n R.aux1 v D̂}

This rule applies the same strategy as rule NR1lhs.

46 Chapter 5. Description Logic Reasoner Avalanche

NR3lhs ¬A v Ĉ will be transformed to {> v A t Ĉ}

Negated concepts are not part of the normal form and should be normalized.

NR4lhs A u ¬B v Ĉ will be transformed to {A v B t Ĉ}

This rule moves a negated concept from the left-hand side of an axiom to its

right-hand side.

NR5lhs ¬A u ¬B v Ĉ will be transformed to {> v A t B t Ĉ}

The rule creates a global axiom. As a result every concept in the ontology will

be subsumed by the new disjunction {A t B t C}.

NR6lhs � nR.(¬A) v Ĉ will be transformed to {� nR.aux1 v Ĉ,> v A t aux1}

Negated concepts that are role fillers of cardinality restrictions should also be

normalized to conform to the normal form.

NR7lhs  nR.(¬A) v Ĉ will be transformed to { nR.aux1 v Ĉ, A u aux1 v ?}

As a result of this transformation we introduce a new axiom that encodes that

aux1 is disjoint to A.

NR8lhs Â t B̂ v Ĉ will be transformed to {Â v Ĉ, B̂ v Ĉ}

Disjunctions on the left-hand side of axioms should be normalized.

NR9lhs Ĉ u D̂ v Ê will be transformed to {Ĉ u aux1, D̂ v aux2, aux1 u aux2 v Ê}

A conjunction on the left-hand side of an axiom should be normalized.

5.3.3 Right-hand Side Normalization Rules

At this stage we normalize only the right-hand sides of axioms as the left-hand sides

have already been normalized by the left-hand side normalization rules. This pro-

cess will terminate when no axiom can be transformed by any of the right-hand side

rule application. Auxiliary concepts will also be introduced during this process.

5.3. Normalization Process 47

The rules are described below and should be applied in the order they are pre-

sented :

NR1rhs Ĉ v D̂ will be transformed to {Ĉ v aux1, aux1 v D̂}

The right-hand side of any axiom should always be either an atomic concept

or a disjunction or a cardinality restriction with an atomic concept as its qual-

ification. For example, C v 1 R.(C u D) will be transformed into C v aux1

and aux1 v 1 R.(C u D). The latter axiom will be eventually normalized by

a corresponding rule.

NR2rhs B v� n R.Ĉ will be transformed to {B v� n R.aux1, aux1 v Ĉ}

The role filler of a restriction should always be an atomic concept.

For example, A v� 1R.(C u D) will be transformed to aux1 v C u D, and

A v� 1 R.aux1.

NR3rhs B v n R.Ĉ will be transformed to {B v n R.aux1, Ĉ v aux1}

This rule is applies the same strategy as the rule NR2rhs.

NR4rhs B v C u D will be transformed to {B v C, B v D}

Conjunctions are not allowed on the right-hand side of an axiom.

NR5rhs B v ¬A will be transformed to {A u B v ?}

This is an alternative way to encode disjointness of concepts that conforms to

our normal form.

NR6rhs A v B t ¬C will be transformed to {A u C v B}

Negated concepts are not allowed by our normal form.

NR7rhs A v ¬B t ¬C will be transformed to {A u B u C v ?}

The result of this transformation is a new conjunction of disjoint concepts.

48 Chapter 5. Description Logic Reasoner Avalanche

NR8rhs A v� nR.(¬B) will be transformed to {A v� nR.aux1, B u aux1 v ?}

Rule fillers of number restrictions cannot be negated concepts.

NR9rhs A v nR.(¬B) will be transformed to {A v nR.aux1,> v B t aux1}

Rule fillers of number restrictions cannot be negated concepts.

NR10rhs A v B t Ĉ will be transformed to {A v B t aux1, aux1 v Ĉ}

Only disjunctions of atomic concepts are allowed on the right-hand side of

axioms.

NR11rhs ./ n R.A v ? will be transformed to {> v ¬̇ ./ n R.A}

This rule transforms axioms where a cardinality restriction is subsumed by ?.

NR12rhs ./ n R.A v ¬Ĉ will be transformed to {Ĉ v ¬̇ ./ n R.A}

Negation is not allowed by our normal form.

5.3.4 Example of Normalization Rules Application

We created a small ontology to demonstrate how some of the normalization rules

work.

F v G1 u G2 u G3 u G4 u G5

E v� 3R.(H u F)

E v 9R.A t 9R.B t 9R.C t 9R.D

G1t G2t G3t G4t G5 v H

A u B u C v F

During the preprocessing step E v 9R.A t 9R.B t 9R.C t 9R.D will be trans-

formed into E v� 1R.At � 1R.Bt � 1R.Ct � 1R.D.

5.3. Normalization Process 49

After that the algorithm will start with the normalization of the left-hand sides

of the axioms: G1t G2t G3t G4t G5 v H will be transformed into G1 v H, G2 v

H, G3 v H, G4 v H, G5 v H by the rule NR8lhs.

Then, A u B u C v F will be transformed into A u aux1 v F, B u C v aux1 by

applying the rule NR9lhs.

After that the algorithm will proceed with the normalization of the right-hand

sides of the axioms. F v G1 uG2 uG3 uG4 uG5 will be normalized into F v G1, F v

G2, F v G3, F v G4, F v G5 by the NR4rhs rule.

Then E v 3R.(Hu F) will be normalized into E v� 3R.aux2, aux2 v H, aux2 v

F by the NR3rhs rule.

Finally, E v 9R.A t 9R.B t 9R.C t 9R.D will be normalized into E v aux3 t

aux4 t aux5 t aux6, aux3 v� 1R.D, aux4 v� 1R.C, aux5 v� 1R.B, aux6 v� 1R.A

by the rule NR10rhs.

The resulting normalized ontology will look as follows:

F v G1

F v G2

F v G3

F v G4

F v G5

G1 v H

G2 v H

G3 v H

G4 v H

G5 v H

A u aux1 v F

B u C v aux1

aux2 v H

aux2 v F

aux3 v� 1R.D

aux4 v� 1R.C

aux5 v� 1R.B

aux6 v� 1R.A

50 Chapter 5. Description Logic Reasoner Avalanche

E v� 3R.aux2 E v aux3 t aux4 t aux5 t aux6

5.4 Calculus Presentation

In this section we will present the saturation-based calculus for the description logic

ALCHQ. The calculus consists of saturation and completion rules. The process of

the application of these rules is called reasoning. This process is divided into two

phases. First, during the unfolding phase we accumulate information by processing

ontology axioms and extract information that is explicitly stated in the ontology. In

this phase we apply each unfolding rule to each node in the graph only once. In

the second phase that we call the saturation phase we apply the saturation-based

rules until no new information can be added to the saturation graph. The result of

this phase is a saturated graph where each node represents a concept of the input

ontology containing all its entailed subsumers. It is important to mention that the

second phase is divided into subphases as we try to minimize the application of the

expensive rules.

5.4.1 Notation

Before presenting the semantics of the rules it is worth explaining our notation since

some the symbols were introduced specifically for our calculus.

a) By A, B will denote atomic concepts and by C, D any concepts.

b) By f we denote any subsumer that is allowed by ALCHQ, except negated

concepts, that is either a named concept, a qualified number restriction or a

disjunction.

5.4. Calculus Presentation 51

c) By L(v) we denote a label of a node. By L(vA) we denote a label of a node with

the representative concept A. The node label represents an intersection of all

the subsumers Fni=1 Ci of the representative concept of the node. Further, Q(v)

is a sub-label of L(v) that contains only qualified number restrictions of L(v).

d) By ¬̇f we denote that the negated concept that we are about to add as a new

subsumer must be in the negation normal form (NNF). This means that we

have negated the concept before adding it as a new subsumer.

e) By t we denote any concept including a negated one.

f) By hr, q, ni we denote a tuple returned by the ILP module, where r is a role, q

is a qualification and n is a cardinality.

g) By q we denote an inequality.

h) By s(v) a function that extracts a cardinality, a role, and a role filler from an

inequality that is a subsumer of the node v.

i) By V we denote all nodes in a graph.

j) By #vq we denote a cardinality of a node v.

k) By in f easible we mean that inequalities are infeasible and cannot be solved.

l) By ./ n R.A we denote either  nR.A or � nR.A.

m) By is_new we denote a boolean function that checks whether an inequality

exists in a label.

n) By add_to we denote a function that adds an inequality to the label of possible

subsumers of a given node.

52 Chapter 5. Description Logic Reasoner Avalanche

o) By LP(vB) we denote the label of possible subsumers of a node with the repre-

sentative concept B.

p) By L¬
P(vB) we denote the label of non-possible subsumers of a node with the

representative concept B.

q) By j we denote a function that adds a new element to an existing set of pre-

conditions.

r) By Q we denote qualified number restrictions.

s) By clone(v, B) we denote a clone node that is used to test whether node v is

subsumed by B.

t) By CQ
T we denote a set of all qualified number restrictions and their negation

that are present in the TBox.

u) By P we denote possible subsumers.

5.4.2 Avalanche Saturation-based Rules

We present the rules below. Their application strategies will be explained in the

following subsection.

Rv if A v f 2 T , f /2 L(vA) then add f to L(vA)

This rule adds the direct subsumers of a concept to a node.

For example, if we have an axiom A v B or A v 1 R.B, or A v� 1 R.B,

then we need to find a node with the representative concept A and if the cor-

responding subsumer is not yet present in the label of node A we will add it.

Here, the subsumer is the right-hand side of the axiom and the subsumee is

the left-hand side of the axiom.

5.4. Calculus Presentation 53

Rv6= if A 2 L(v), A u B v ?,¬B /2 L(v) then add ¬B to L(v)

This rule adds disjoint concepts of a given concept to a node.

For example, if we have an axiom Au B v ? then all nodes that are subsumed

by A will be also subsumed by ¬B.

Rv⇤ if A 2 L(v), t 2 L(vA), t /2 L(v) then add t to L(v)

This rule propagates subsumers. For each non-negated subsumer of a node,

we look for the node where the representative concept is the non-negated sub-

sumer. Then, we take all subsumers of the node and add them to the first

node.

For example, if a node with the representative concept A is subsumed by B,

then we will look for the node with the representative concept B. We will col-

lect all its subsumers and add them to the subsumers of the node with repre-

sentative concept A. For instance, the node B is subsumed by � 1 R.C among

other subsumers and as a result of application of this rule the node A will also

be subsumed by � 1 R.C.

RP./ if ./ n R.A v B 2 T , is_new(¬̇(./ n R.A), LP(vB)) then add_to(¬̇(./ n R.A), LP(vB))

In order to discover subsumption between concepts, we have introduced possi-

ble subsumers. Possible subsumers will be collected for each concept and stored

in its node in a dedicated label. We collect all axioms where the left-hand side

is a qualified number restriction and the right-hand side is an atomic concept.

Then we add the negation of the qualified number restriction as a possible

subsumer to the node with the representative concept equal to the right-hand

side of the axiom.

54 Chapter 5. Description Logic Reasoner Avalanche

For example, if we have an axiom � 1 R.C v D, we locate the node with the

representative concept D and add a possible subsumer  0 R.C to its label (as

 0 R.C ⌘ ¬� 1 R.C).

A possible subsumer is stored as a tuple that consists of a precondition and a

set of possible subsumers. In this case, the tuple will look as follows: < >,

0 R.C >.

If we have more axioms that contain a qualified number restriction on the

left-hand side and D on the right-hand side, we will perform a subsump-

tion test in oder to avoid adding tuples that are subsumed by existing tuples.

For example, if the node with the representative concept D already contains

a possible subsumer tuple < >, 0 R.E > and we want to add a new tuple

< >, { 0 R.C >, 0 R.E} > then the subsumption test will reject this tuple

because both preconditions and possible subsumers of the existing tuple are

subsumed by the new tuple.

There are other optimizations that we apply when adding new tuples. If a new

tuple contains a concept in its preconditions that is also present as a negated

concept in the label of the node then this tuple will be discarded. Tuples that

contain the representative concept of the node will also not be added.

RP./Dynamic
if Ai u Aj v B 2 T , B 2 L(v)then add_to(P, LP(vB))

This rule dynamically computes possible subsumers for a node and it has a

number of prerequisites that must be satisfied before it can be executed:

• Both concepts Ai and Aj are auxiliary concepts

• At least one of them is subsumed by a qualified number restriction

• There are at least two axioms that satisfy all of the conditions above

• The axioms in question are subsumed by the same atomic concept

5.4. Calculus Presentation 55

The example below demonstrates how this rule works.

We have the following three axioms and at least one conjunct in each conjunc-

tion is subsumed by a qualified number restriction:

aux1 u aux2 v x

aux3 u aux4 v x

aux5 u aux6 v x

These axioms will be immediately transformed into possible subsumers and

added to the corresponding label of the node with the representative concept

x. The tuples generated by this rule will not be merged with any of the existing

tuples.

The algorithm will take all conjuncts and create a cartesian product from them.

Then each set from the resulting cartesian product will represent a new possi-

ble subsumer tuple that will need to be transformed. Each element of each set

will either be unfolded into a qualified cardinality restriction and added to the

possible subsumers set of the tuple or added to the set of preconditions of the

tuple.

Rv¬ if f v A 2 T ,¬A 2 L(v), ¬̇f /2 L(v) then add ¬̇f to L(v)

For each negated subsumer of each node, this rule first finds all axioms where

the negated subsumer is the non-negated right-hand side. Then, it adds the

negated left-hand side as a subsumer to the node in question.

For example, a node with the representative concept A is subsumed by a con-

cept ¬B. There are two axioms in the ontology where B is the subsumer: C v B

and � 1 R.D v B. As a result, the rule will add to the node with the represen-

tative concept A two negated subsumers:  0 R.D and ¬C.

56 Chapter 5. Description Logic Reasoner Avalanche

Rvu if A1 u A2 v B 2 T , {A1, A2} ✓ L(v), B /2 L(v) then add B to L(v)

This rule retrieves all the axioms that correspond to the template: A u B v C.

Then, if there is a node subsumed by both A and B, then the rule will add a

new subsumer C to this node.

Rv¬
u if Ai u Aj v B 2 T , {¬B, Ai} ✓ L(v),¬Aj /2 L(v) then add ¬Aj to L(v)

The rule retrieves all the axioms that correspond to the template: A u B v C.

Then, if there is a node subsumed by ¬C and one of the conjuncts, for instance

A, then the rule will add a new subsumer this this node: the negation of the

second conjunct, in this case ¬B.

R f il if hr, q, ni 2 s(v),¬9 vq 2 V : q ✓ L(vq), #vq � n then create vq 2 VA with

L(vq) q and #vq n

This rule creates new edges between nodes. We create a new edge if we have

at least one at-least qualified number restriction among the subsumers of a

given node. We submit all the qualified number restrictions to the ILP module

that we also call QMediator and based on its response we either create a new

anonymous node, or reuse an existing anonymous or identified node. If the

edge already exists then it will be reused.

For example, if a node contains only at-least qualified number restrictions we

will create edges connecting this node with other nodes that are identified by

the qualifications of the qualified number restrictions in question. Thus, if a

node with the representative concept A is subsumed by � 1 R.C and � 1S.D

we create an edge between the node A and the nodes with the representative

concepts C and D. Then, if a node with representative concept A contains

� 1 R.C,� 5 R.E, 4 S.F and  1S.D we will submit it along with some addi-

tional information to the ILP module. If these inequalities are feasible then the

ILP module will return one or more triples consisting of a name of an edge,

5.4. Calculus Presentation 57

a set of concepts, and a cardinality. For each triple we will create an edge

with a corresponding name directed to the destination node. If the set of con-

cepts contains only one element G then we will construct an edge connecting

the source node to the target node with representative concept G. If the set

contains more than one element, we will create an anonymous node that will

represent the intersection of the members of the set. If the anonymous node

already exists we will reuse it by connecting it to the source node.

R? if ? /2 L(v) ^ (infeasible(L(v)) _ {A,¬A} ✓ L(v)) then add ? to L(v)

This rule marks a node as unsatisfiable by adding? to its subsumers. No rules

should be applied to the unsatisfiable node.

For example, assume a node contains a concept and its negation such as A

and ¬A for example. This node is therefore unsatisfiable and ? will be added

to the its subsumers. If a node contains inequalities that are infeasible, for

example � 1 R.C and  0 R.C then the node is also unsatisfiable and ? will be

added to its subsumers.

RP if B 2 L(vA), LP(vA) 6⇢⇠ LP(vB) then add_to(LP(vA), LP(vB))

This rule propagates possible subsumers to the subsumer nodes.

For example, if a concept A is subsumed by a concept B then we will add all

possible subsumers of the concept A to the node with representative concept

B.

RPu if Ai u Aj v B 2 T , j(Ai, LP(vAj)) 6⇢⇠ LP(vB) then

add_to(j(Ai, LP(vAj)), LP(vB))

This rule handles propagation of possible subsumers due to the presence of

axioms that contain binary subsumptions on the left-hand side.

58 Chapter 5. Description Logic Reasoner Avalanche

For example, consider the axiom A u B v C. In this case, we take all tuples

in the possible subsumers of A, add the concept B to the precondition of each

tuple, and then add these tuples to the possible subsumers of the node with

representative concept C. If possible, we merge the tuples with the existing

possible subsumer tuples in C. After that, we perform the same procedure

for the node B. We we take all tuples in the possible subsumers of B, add

the concept A to the precondition of each, and then add these tuples to the

possible subsumers of the node with representative concept C.

Rv¬
t if B v Fn

i=1 Ai 2 T

if
Sn

i=1{¬Ai} ✓ L(vA),¬B /2 L(vA)

then add ¬B to L(vA)

elsif ¬Aj 2 L(vA), j 2 1..n, Q v B 2 T , Q 2 CQ
T

then create a fresh node X with L(X) = {X, ¬̇Q} and

add X tFn
i=1 Ai to L(vA)

This rule contrapositively adds new subsumers from the axioms that contain

disjunctions on the right-hand side. If there is such an axiom where the left-

hand side is an atomic concept and the right-hand side is a disjunction and if

the node in question is subsumed by all the negated disjuncts from the disjunc-

tion then the rule will add the negation of the left-hand side to the subsumers

of the node. However, if the node does not contain all the negated disjuncts

the rule will create a special unfold node and subsequently add the disjunction

to that node.

For example, if there is an axiom B v C t D and if there is a node A that

contains ¬C and ¬D then the rule will add ¬B to the subsumers of the node

A.

5.4. Calculus Presentation 59

Further, if the node A contains ¬C but does not contain ¬D then the rule will

check if there is an axiom with a qualified number restriction on the left-hand

side and B on the right-hand side. Assuming that we have the following ax-

iom: � 1R.C v B the rule will create a new node X and add  0R.C to its

subsumees. After that the rule will add B v C to the subsumers of the node A.

Rv\t if
Fn

i=1 Ai 2 L(v),
Tn

i=1 L(Ai) * L(v)

then add
Tn

i=1 L(Ai) to L(v)

If a node is subsumed by a disjunction but not subsumed by any of its disjuncts

then this rule will add common subsumers of the disjuncts to the node.

For example, A v B t C, B v D, C v D. The rule will add D to the node A.

Rt if
Sm

j=1{
Fnj

i=1 Aji} ✓ L(v)

res resolvent(
Sm

j=1{
Fnj

i=1 Aji}, L(v))

if res 6= ∆

then add res to L(v)

This rule resolves disjunctions in a node. It will collect all its disjunction sub-

sumers that do not contain subsumers of the node. Then it will try to collect

all those axioms where the disjunct is the right-hand side and a qualified num-

ber restriction is the left-hand side. Then, the rule will call the ILP module to

solve inequalities and if the inequalities cannot be solved the corresponding

disjuncts can be resolved. If there are no clashing inequalities at the moment

the rule will create a dedicated unfold node. If this node later becomes unsat-

isfiable it will be possible to resolve the associated disjunctions.

60 Chapter 5. Description Logic Reasoner Avalanche

We introduced some optimizations to this rule that allow us to improve the

overall performance of the system. First, from each disjunction we remove

disjuncts that are present as negated subsumers of the node. Then we add a

new subsumer to node that is either a derived unit or a new smaller disjunc-

tion. Second, we try resolve two disjunctions by means of removing disjoint

concepts from them with the goal to derive a unit or a new smaller disjunction.

Finally, when resolving disjunctions with the help of CPLEX we do it in two

steps: first, we attempt to resolve pairs of disjunction subsumers and then we

resolve all disjunction subsumers of the node.

RvP if {B,¬B} \ L(vA) = ∆ then

let x 2 {B,¬B}

if v0 2 clone(vA, x) then

if ? 2 L(v0)

then add x to L(vA) else

if Q(vA, x) * L(v0)

then add_to(Q(vA, x), L(v0))

if Q(vA) * L(v0)

then add_to(Q(vA), L(v0))

elsif Q(vA, x) 6= ∆ then

create v0 2 VC, clone(vA, x) {v0}

L(v0) {>} [Q(vA, x) [Q(vA)

This rule tests for subsumption or disjointness between two concepts.

If we want to test whether a node with representative concept A is subsumed

by a concept B we will need to create a dedicated clone node. Another clone

node will need to be crated if we want to tests whether A is subsumed by ¬B.

5.4. Calculus Presentation 61

If this clone eventually becomes unsatisfiable then we can conclude that the

subsumption or disjointness under test holds.

As a part of the test we first check that the node A has not already been sub-

sumed by B or ¬B to avoid unnecessary operations. If the condition has been

satisfied we can proceed with the construction of the clone node. We first

collect qualified number restrictions that are subsumers of the node with the

representative concept A. Then we add them to the subsumers of the newly

created clone. After that we add to the subsumers of the clone node inequali-

ties from all possible subsumer tuples of the node with representative concept

B. Finally, if the clone becomes unsatisfiable due to a clash in the inequalities

then we will add B to the subsumers of the node A. This can happen imme-

diately or later during the reasoning process. Unfortunately not every clones

results in subsumption.

R./? if A v./ nR.C 2 T , ./ mR.D 2 L(v), in f easible(Q(v) [{./ nR.C}),¬A /2

L(v)

then L(v)! L(v) [{¬A}

The rule adds new subsumers based on a clash in inequalities. For each node

subsumed by inequalities we can test whether it is subsumed by a concept ¬A

if we have an axiom of a form A v./ nR.C and if there is a clash in inequalities

in the node and ./ nR.C.

R./¬ if A v./ nR.C 2 T , ¬̇(./ nR.C) 2 L(v),¬A /2 L(v)

then L(v)! L(v) [{¬A}

If we have an axiom of the form A v./ nR.C and there is a node subsumed by

¬̇(./ nR.C) then this node should also be subsumed by ¬A.

62 Chapter 5. Description Logic Reasoner Avalanche

R./v if ./ nR.A v B 2 T , in f easible(Q(v) [{¬̇(./ nR.A)}, B /2 L(v)

then L(v)! L(v) [{B}

This is another rule that adds new subsumers based on a clash in inequalities.

For each node subsumed by inequalities we can test whether it is subsumed

by a concept B if we have an axiom of a form ./ nR.A v B and if there is a

clash in inequalities in the node and ¬̇ ./ nR.A.

5.4.3 Implementation Details

When we started implementing Avalanche our first priority was to implement the

basic functionality of the system. Initially we implemented the rules presented

above in such a way that they all were be applied until no new information could

be added to the graph. One of the first optimization strategies that we came up with

was to separate the rule application process into two main phases: the unfolding

and the saturation phases.

During the unfolding phase each of the following rules Rv, Rv6=, Rv⇤ , RP./ , and

RP./Dynamic
is applied exactly once. The goal of this phase is to extract as much in-

formation as possible from the ontology. The rest of the rules are applied in the

saturation phase that is itself divided into two sub-phases. We first apply rules Rv⇤ ,

RP./Dynamic
- Rv\t until no new information can be added to the graph. Then we apply

Rt and RvP . After that we repeat the first step. The reason is that we try to delay

clone generation as much as possible hoping to discover subsumptions or disjoint-

ness between concepts with other rules. Clones make our saturation graph larger

and require calls to the ILP module QMediator to solve inequalities. The same holds

for theRvP rule that creates unfold nodes that are also resolved with QMediator. In

general we try to avoid unnecessary QMediator calls because each time the module

5.5. Reasoning with Qualified Number Restrictions 63

is called it needs to create a new model. Some models could be very complex and

incur a significant computational overhead.

Another strategy that we came up with was to apply rules on demand. A node

calls necessary rules based on its subsumers. For example, if a rule requires a new

negated subsumer to be added to the subsumers of a node then this rule should only

be executed if a new negated subsumer has been added to the node.

Further, we have introduced several types of nodes, such as anonymous and

auxiliary nodes for example. Some of our rules are designed to skip these nodes

during the reasoning process and therefore avoid unnecessary calculations that can-

not give us new knowledge. For example, RvP will not create clones to test if two

anonymous concepts or two clones subsume each other because this information

will not add any value to the resulting graph.

Finally, we have always acknowledged that the ILP module QMediator despite

being a great solution to deal with qualified number restrictions still creates com-

putational overhead. That is why we came up with several heuristics that do not

require calls to the external module. For example, we can detect obvious clashes

between qualified number restrictions such as  0R.C and � 1R.C.

5.5 Reasoning with Qualified Number Restrictions

Avalanche is a complex rule-based system that implements a saturation-based rea-

soning algorithm. An early version of this algorithm is presented in [61]. The al-

gorithm manages the application of rules on an input ontology by traversing the

saturation graph. The ILP module QMediator is called when a rule needs to expand

the underlying graph or when a clash has been detected in a node due to the pres-

ence of qualified number restrictions. With the help of the module we can reduce

64 Chapter 5. Description Logic Reasoner Avalanche

FIGURE 5.1: Clash Detection

the problem of deciding satisfiability of qualified number restrictions to the feasibil-

ity of inequalities. This gives us a clear advantage over the other existing systems

when working with qualified number restrictions that result in subsumptions. The

are several ready to use tools to efficiently solve systems of inequalities. One of them

is IBM CPLEX that we have chosen for our implementation.

To avoid circular dependencies between the two systems QMediator cannot call

or access any data from Avalanche. In order to communicate with the ILPModule

Avalanche has to call the graph expansion rule, R f il, on every node that is subsumed

by qualified number restrictions. The rule in turn will call QMediator and pass the

corresponding information: the qualified number restrictions, the subsumers of the

qualifications and their unsatisfiable concept conjunctions. After that the QMediator

will transform this information into a linear program and it will call CPLEX to solve

it or in other words to find a model. The result of this call will be returned to the

rule. Thus, the rule will have all the necessary information to expand the graph or to

make the node unsatisfiable by adding ? (bottom) to its subsumers. As a result, the

5.5. Reasoning with Qualified Number Restrictions 65

expansion rule may create additional nodes in the graph - the anonymous nodes.

An anonymous node represents a situation when a role filler is not a single concept

(e.g., A) but rather an intersection of concepts (A u B).

In Figure 5.1 we show how the call to QMediator is integrated into the clash

detection process for some of the nodes. If a node becomes unsatisfiable, then the

cause of the unsatisfiability has to be identified. If there is a logical clash (e.g., A and

¬A are present in the node) then the corresponding ancestors of the node will be

made unsatisfiable. However, if the clash is due to the presence of qualified number

restrictions then QMediator should be called and it should be asked to recompute a

more constrained model. If a new model was computed, the rules can continue to be

applied. If there is no model and the node is an identified node, then the correspond-

ing ancestors of the node should be made unsatisfiable. If the node is an anonymous

node this information will be recorded to avoid having the QMediator to recompute

the same model. Otherwise the node in question must be a positive/negative cloned

node. In this case it can be concluded that the subsumption/disjointness holds and

the node will be marked as unsatisfiable.

66

Chapter 6

Avalanche Implementation Details

In this chapter we will present the design and implementation of Avalanche. We

will start by presenting the underlying data structure - the saturation graph. We

will then proceed with the description of the normalization and saturation-based

rules. Following that we will discuss some of the optimization strategies that we

have integrated into our system and talk about some of the implementation details.

We will also explain how Avalanche communicates with the ILP module QMediator

and how it interprets the information produced by the latter. The design and imple-

mentation of QMediator will be discussed in the following chapter. The overall goal

of this chapter is to bridge the theoretical and the practical aspects of this work.

6.1 Overview of Avalanche

When we started this project and defined the scope of our research we decided to

design calculus for the DL ALCHQ and implement it in a reasoner as a proof of

concept. One of our research goals was to translate qualified number restrictions

into linear programs and solve them as such. This step was planned to be delegated

to an already existing external linear optimization module. As it often happens the

6.1. Overview of Avalanche 67

initial estimate proved to be overly optimistic. During the implementation of the

reasoner we realized that the existing linear optimization module could not support

growing needs of our evolving system. We had no choice but to take a detour from

our original research plan and to implement our own linear optimization module

that we named QMediator. The sole purpose of QMediator is to translate the in-

formation received from Avalanche into linear programs that will be solved by the

IBM CPLEX linear solver. It acts as a go-between, hence the name. We chose to keep

these two systems separate because Avalanche can function independently from

QMediator as long as it does not need to solve difficult inequalities. For example,

EL ontologies do not require QMediator. Even for more expressive ontologies we

implemented a number of simple optimizations that can reason with qualified car-

dinality restrictions without calling the specialized module. However, these cases

are rather rare. If we want to classify a real-world ALCHQ ontology we need to

have a fully functioning Avalanche.

QMediator is a specialized system that focuses on efficiently solving inequalities

received from Avalanche. Additionally, Avalanche has to precompute other impor-

tant information that needs to be represented in QMediator, e.g. subsumption and

disjointness of role fillers. The task of QMediator is to translate this information into

a linear program and solve it by applying the Branch-and-Price method that had to

be implemented from scratch. After having found the solution (or the absence of

thereof), QMediator has to generate the return information that can be processed by

Avalanche. Additionally, it could compute clash sources, in case the submitted sys-

tem of inequalities has no solution. This information will be returned to Avalanche

thus allowing it to continue its reasoning process. The interaction between the two

systems was designed in such a way that QMediator can easily be replaced with any

other potentially more efficient system or even be used by any other reasoner that

68 Chapter 6. Avalanche Implementation Details

needs to solve inequalities by applying the Branch-and-Price method.

6.2 Communication between Avalanche and QMedia-

tor

In this section we will present the API of QMediator and explain how it communi-

cates with Avalanche.

At some point of its execution Avalanche encounters inequalities that cannot be

solved with its local optimizations. In such a situation it will call QMediator passing

the following parameters:

Parameter Type Description

inequalities HashSet Inequalities that have to be solved

subsumersOfRoleFillers HashMap Mapping of role fillers of inequalities to

their subsumers

disjointsOfRoleFillers HashMap Mapping of role fillers of inequalities to

their disjoint concepts

binarySubsumptions HashMap Mapping of binary conjunctions to their

subsumers

disjointGroup HashSet Groups of concepts that are unsatisfiable

when appear together

roleHierarchy HashMap Mapping of roles to their subsumer roles

roleHierarchyReversed HashMap Mapping of roles to their subsumee roles

isNodeTMP Boolean True if the node that called QMediator is

DisjunctionNode, false otherwise

6.2. Communication between Avalanche and QMediator 69

weight Integer An integer value that will be used by QMe-

diator to assign initial coefficients when

constructing the Reduced Master Problem

applyBnP Boolean True if QMediator has to compute an in-

teger solution if the initial solution is non-

integer, false otherwise

TABLE 6.1: Input parameters for QMediator

Avalanche passes inequalities and additional information about roles and role

fillers in the inequalities. It sets two boolean flags that allow to skip the expensive

computation of clashing inequalities. applyBnP is set to false when we do not want

to compute clash sources even if no solution has been found. In the next chapter

we will explain in detail how QMediator uses these parameters to construct linear

programs. QMediator reads this information, translates it into a linear program,

solves it, and responds as described in the table 6.2.

Parameter type Description
solved Boolean True if there is a solution, false otherwise
edgeInformation HashSet Information about edges that Avalanche

needs to continue its work
infeasibleSet HashSet Sets of conflicting inequalities that if re-

moved will make the linear program fea-
sible

TABLE 6.2: Input parameters for QMediator

The response information, in case a solution is present, will be represented as an

object of the type EdgeInformation, which contains information about edges that

have to be built in the completion graph. It will contain a name of an edge, role

fillers, and a cardinality, e.g. {{ r }, { A, B }, 4}. Otherwise it will be empty. If there is

70 Chapter 6. Avalanche Implementation Details

no solution but we want to know what the clash sources are, QMediator will return

a set of sets of clashing inequalities.

71

Chapter 7

Linear Programming Engine

QMediator

In this chapter we will present QMediator, the linear programming engine of Avalanche.

We have already referred several times to QMediator when presenting Avalanche

and its rules. Now we will explain in detail how this particular subsystem works.

7.1 Interaction with Avalanche

QMediator is a system that accepts input from Avalanche, processes it, and then

translates it to a linear program. The linear program itself will be solved by another

external system, IBM CPLEX. Thus, QMediator can be a considered as a bridge or a

mediator between Avalanche and CPLEX.

QMediator is called by several saturation rules in Avalanche to create and solve

systems of linear inequalities that are represented in Avalanche as qualified cardi-

nality restrictions. As a result, QMediator either returns a solution or identifies on

72 Chapter 7. Linear Programming Engine QMediator

demand the inequalities that make the input system of linear inequalities in ques-

tion infeasible. We call these inequalities the clash set or the source of clash. The

logic for handling those is in the rules themselves.

Before we started working on QMediator we had already known that a naively

implemented system would not scale. That is why we implemented a powerful

and quite complicated optimization technique called Branch-and-Price that has some

control over CPLEX and its approach to search of the solution process. Nevertheless

even with this optimization each CPLEX call can potentially become extremely time-

consuming. The computation of a clash set is a particularly expensive operation.

For this reason we had to limit the overall interaction of Avalanche with QMediator

and to compute the clash set on only demand. In most cases when inequalities are

infeasible we do not need to know the clash set as it is sufficient to be aware of the

fact that the given inequalities are infeasible.

7.2 Input Presentation

The input inequalities that are passed to QMediator can either be an at-least or an at-

most qualified cardinality restrictions. Each inequality is composed of the following

four parts:

• a sign that indicates if it is an at-least or an at-most inequality

• a cardinality that indicates a lower or an upper bound

• a role that is also called a property

• a role filler that is also called a qualification

For example,  3 R.C is an at-most inequality with a cardinality equal to 3, a role

R, and a role filler C.

7.3. Branch and Price Approach 73

QMediator also internally works with equalities that are be preceded by the

equals sign. For example, = 3 R.C.

In addition to the inequalities QMediator accepts as input certain information

about their roles and role fillers. This includes information about subsumers, dis-

joint concepts, binary subsumption axioms, role hierarchy, sets of concepts that are

infeasible together, type of a node that has called QMediator (e.g. static, anony-

mous etc.), and a coefficient. All this information will be used later to create the

linear program.

7.3 Branch and Price Approach

QMediator leverages the Branch-and-Price optimization method that includes De-

layed Column Generation and Branch-and-Bound algorithms. Column Generation is

the algorithm that drives the solution process. Keep in mind that if Column Gen-

eration is unable to find an integer solution, this is not a guarantee that it does not

exist. In such cases, Branch-and-Price would be invoked and by means of branch-

ing and pruning it would either determine what the integer solution is or prove that

such a solution does not exist.

7.3.1 Column Generation

The main idea and a great advantage of Column Generation is that the underlying

algorithm creates a very limited number of internal variables that are used to solve

system of linear inequalities. The algorithm will create only those variables that will

lead to a solution. This can be achieved by splitting the original linear program

into two new programs: Reduced Master Problem known as RMP and Pricing Problem

74 Chapter 7. Linear Programming Engine QMediator

known as PP. Thus Column Generation is just a series of RMP-PP calls. The result

of each call adds new information to the next linear program.

This approach significantly reduces the time needed to solve a system of lin-

ear inequalities and thus makes it possible to solve very large linear programs in a

reasonable amount of time. In this section we will give an overview of the linear

program construction. In the following sections we will present some examples that

will help to understand the entire process.

In order to start executing the Column Generation algorithm we first need to

preprocess the input inequalities. During the normalization phase we have trans-

formed qualified equality constraints into at-least and at-most constraints to facilitate

the application of other rules but in the context of QMediator we prefer to represent

them again as equality constraints. For example, � 3 R.C and  3 R.C would be

transformed to = 3 R.C.

Then we will need to extract the at-least and at-most role fillers and store them in

their corresponding data structures. Role fillers from equals constraints will appear

in both data structures. We will also need to keep track of the roles of the equalities

and inequalities. If the submitted inequalities contain at least two different roles we

will have to compute a role hierarchy that will later be represented in PP.

After that we will need to check if the concept > is present in the set of the

previously extracted role fillers. This concept will be represented in PP as well.

Finally, we will do some other minor processing steps and then we will be ready

to proceed with the construction of the first RMP and the first PP.

The RMP is a minimization problem. Therefore, the value of each objective func-

tion at each iteration will be decreasing but we do not expect it to become equal to

0. In order to implement the first RMP we will need to create artificial variables. We

call them h variables. These variables are created only once and later are used by

7.3. Branch and Price Approach 75

every subsequent RMP model. An artificial variable is created for each submitted

qualified cardinality restriction. For example,  3 R.C would be represented by h1.

The first objective function of the first RMP will be composed entirely of artificial

variables. These variables are multiplied by a coefficient that has been precomputed

from the original set of qualified cardinality restrictions. In order to compute the

coefficient we take the sum of all at-least and equals cardinalities and multiply it by

10. When we reach the last PP we expect that current RMP does not contain any ar-

tificial variables, i.e. the values of all artificial variables should be equal to 0. If there

is at least one non-zero artificial variable it means that the linear program cannot be

solved. We assign a very large coefficient to the artificial variables as at each itera-

tion we will be finding better variables with smaller coefficients that will eventually

remove all of the artificial variables from the solution.

As a result, the RMP returns a partition variable x and a coefficient that will be

used to create the next PP. All PPs will share the same role variables r, role hierarchy

rh variables and b variables. Therefore we create them upfront and then pass them

as parameters. Similarly to h variables, r variables represent inequalities but in the

context of PP. b variables represent role fillers of inequalities.

Subsequently PP adds a new variable to the next RMP. The new variable is cre-

ated from non-zero r and b variables. When PP cannot create a new variable we

assume that the execution of the linear optimization has come to an end.

The value of the objective function of PP will be first equal to a very small nega-

tive value and with each iteration this value will be increasing until it reaches 0. At

this point we know that this is the final PP and we can check if the problem has a

solution.

We distinguish two cases in QMediator. One case is applicable to all types of

nodes and the other is only applicable to unsatisfiable unfold nodes. In the latter

76 Chapter 7. Linear Programming Engine QMediator

case it is necessary to compute a clash set. We need to introduce some modifications

to Column Generation to accommodate small differences in the processing of un-

satisfiable unfold nodes. When we create artificial variables for all other nodes we

exclude at-most 0 qualified cardinality restrictions. However, we must include these

inequalities when we create artificial variables for unsatisfiable unfold nodes. After

that we will proceed as usual with the generation of r and b variables. Then we will

proceed with the creation of PP constraints.

7.3.2 Generation and Interpretation of Constraints

Before presenting examples it is worth explaining how the different constraints are

created and what they represent.

If inequities that have to be solved by QMediator come from an unsatisfiable

disjunction node we have to create constraints for at-most inequalities and exactly

0 equalities. The constraints will be composed of r and b variables. The format of

these constraints is the following:

r� b = 0 (7.1)

which means that if a given r variable has been enabled then its corresponding b

variable must also b enabled.

The r and b variables here must both refer to the same role filler.

Then we add role hierarchy constraints. We create additional role hierarchy vari-

ables - the rh variables. We first need to match r variables with rh variables and b

variables. Next we need to map r variables to rh variables. After that if we are not

dealing with an unsatisfiable unfold node we encode at-most the 0 inequalities and

the exactly 0 equalities by means of r variables and b variables. Subsequently we

7.3. Branch and Price Approach 77

add constraints that map rh variables to other rh variables. The formats of these

constraints are the following:

rh� r + b  1 (7.2)

This type of constraint represents a mapping from a role of an inequality to its

super role and a corresponding role filler. It means that if we enable a given rh

variable we must also enable its corresponding r variable

r� rh  0 (7.3)

This type of constraint represents a mapping from a role of a qualified number

restriction to its super role. The constraint stipulates that if we enable the r variable

then we also must enable a corresponding rh variable

rh� b  0 (7.4)

This type of constraint represents a mapping of a role hierarchy variable to a

corresponding b variable. The constraint stipulates that if we enable the rh variable

then we also should enable its corresponding b variable

rh1 � rh2  0 (7.5)

This type of constraint represents a mapping of a role hierarchy variable to another

role hierarchy variable. The constraint stipulates that if a subrole variable is enabled

then its super role variable must also be enabled

78 Chapter 7. Linear Programming Engine QMediator

Next if a node is not an unsatisfiable unfold node we define disjointness of con-

cepts by means of b variables. The format of this constraint is the following:

b1 + b2  1 (7.6)

Here b1 and b2 represent disjoint concepts. The constraint stipulates that that only

one of these variables can be enabled.

For all other nodes in the presence of role hierarchy we propagate universal re-

strictions down to their subsumees. The format of the first constraint is the follow-

ing:

r� b  0 (7.7)

The constraint stipulates that if a role variable is switched on then its correspond-

ing role filler b variable must also be switched on. If there is no role hierarchy we

still need to represent universal restrictions. If we are not processing an unsatisfi-

able tmp node we map r variables with r variables of at-most 0 qualified cardinality

restrictions if they share the same role. The format of the second constraint is the

following:

r1 � r2  0 (7.8)

The constraint stipulates that if it is not an unsatisfiable unfold node we match

b variables with r variables of at-most 0 inequalities. The format of this constraint is

the following:

r� b  0 (7.9)

7.3. Branch and Price Approach 79

If it is an unfold node and role hierarchy is present we will match b variables to

r variables. The format of this constraint is the following:

b� r = 0 (7.10)

If it is an unfold node but there is no role hierarchy then we will also have to

match b and r variables. The format of this constraint is the following:

r� b = 0 (7.11)

Further, we match r variables of at-least or exactly cardinality restrictions with

corresponding b variables. The format of this constraint is the following:

r� b  1 (7.12)

where role filler of the inequality linked to a r variable will correspond to a b vari-

able.

We represent subsumptions for all of the nodes by means of b variables. The

format of this constraint is the following:

b1 � b2  0 (7.13)

where b1 is a subsumee and b2 is a subsumer The constraint stipulates that if the

variable that represents a given subsumee is enabled then the variable that repre-

sents the subsumer must be enabled as well.

80 Chapter 7. Linear Programming Engine QMediator

We also represent binary subsumptions. The format of this constraint is the fol-

lowing:

b1 + b2 � b3  1 (7.14)

where b1 and b2 are subsumees and b3 is a subsumer

Finally, we represent the presence of Thing. The format of this constraint is the

following:

b1 � bThing  0 (7.15)

which means that if switch on b1 then we also must switch on bThing. In such a way

we ensure that the concept Thing subsumes every other concept.

7.3.3 Branch-and-Bound

When the Column generation algorithm terminates it is possible that a solution ex-

ists but it is non-integer, i.e. at least one variable has a non-integer value. In such a

situation we have to call the Branch and Bound algorithm that will attempt to assign

new values to the existing variables by creating additional partition variables. The

main idea remains the same - we execute another series of RMP-PP calls. However,

we need to modify the RMP and the PP programs accordingly. The PP will have

only minor modifications. We will create additional branch variables that will be

added to the objective function and we will create new constraints that will match

the new branch variables with existing b variables. In RMP we will add new branch-

ing variables to the existing constraints and we also create new constraints that will

assign values to the branch variables. The algorithm itself is very simple. Every non-

integer partition variable can have one of two possible values: these are obtained by

rounding the existing non-integer value up or down to the nearest integer. Then we

will need to check which of the values could lead us to an integer solution. There

7.3. Branch and Price Approach 81

is the same termination condition - when the value of the objective function of PP

is equal to 0 we know that the algorithm has finished its execution and no other

variables can be created.

7.3.4 Clash Set Detection

In cases when a non-integer variable is still present even after applying the Branch

and Bound algorithm we assume that there is no integer solution to the problem.

In our case this means that the given inequalities are infeasible. In this case, if re-

quested, we will invoke the dedicated algorithm to compute the clash set, i.e. the

inequalities that clash together but if removed from the original set of inequalities

the remaining inequalities will become feasible. For example,  2 R.C and � 1 R.C

always constitute a clash set regardless of the other inequalities.

In this example, if required to compute the clash set, CPLEX would return only

one of the inequalities 2 R.C or� 1 R.C as removing any one of them would make

the linear program feasible. This does not exactly match our needs: while it does re-

turn the inequalities that render the input model unsolvable, CPLEX does not tell us

which of the remaining inequalities do they clash with. Therefore, in order to obtain

this additional information, it was necessary to implement our own algorithm for

computing clash sets on top of the existing CPLEX functionality. This algorithm is

very simple to implement but it is very computationally expensive and that is why

we were careful not to execute it unless absolutely necessary. The algorithm is based

on removing and reinstating inequalities in the original input and executing another

series of RMP-PP calls. The output is the minimum clash set of the original set of

inequalities. A detailed description of the algorithm is presented below.

Let’s assume that we have the following three infeasible constraints:

{max, min1, min2}

82 Chapter 7. Linear Programming Engine QMediator

We temporarily remove max from the set and test {min1, min2}. If it is feasible we

know that max constitutes the clash set. Therefore we reinstate max.

Then we remove min1 and test {max, min2}. It is infeasible. min1 will be deleted

because it does not change anything.

Next we remove min2 and test {max}. If it’s feasible we reinstate min2. The result

{max, min2} is therefore deemed to be a minimum clash set.

7.4 Examples and Result Interpretation

In this section we present two examples of previously described concepts. First, we

will illustrate how we create RMP and PP linear programs. We would also demon-

strate how we create and add new variables to the corresponding constraints. Sec-

ondly, we will show how the Branch-and-Bound algorithm works when the initial

solution contains a non-integer partition variable.

7.4.1 Simple Example

Let us examine a simple system of inequalities that only requires two iterations of

RMP - PP calls to resolve. We assume that the fil-rule passes the following inequali-

ties when calling QMediator:

� 20 R.Thing

 10 R.A0

 10 R.B

 10 R.A

7.4. Examples and Result Interpretation 83

In order to solve these we first need to create artificial variables:

Artificial variable h2 for  10 R.B

Artificial variable h0 for � 20 R.Thing

Artificial variable h3 for  10 R.A

Artificial variable h1 for  10 R.A0

Then our first RMP model will look as follows:

minimize 200.0 ⇤ h2 + 200.0 ⇤ h0 + 200.0 ⇤ h3 + 200.0 ⇤ h1

subject to:

1.0 ⇤ h2  10

1.0 ⇤ h0 � 20

1.0 ⇤ h3  10

1.0 ⇤ h1  10

The linear program will be solved by CPLEX. As a result we determine the value

of the objective function to be equal to 4000. Keep in mind that the actual value is of

little interest to us: we just need to know that there exists an integer solution to the

linear program.

Finally, as a part of the RMP result we also extract dual values of artificial vari-

ables and use them as coefficients in the next PP.

The current artificial variables have the following dual values:

Artificial variable h2, dual value = 0

Artificial variable h0, dual value = 200

Artificial variable h3, dual value = 0

Artificial variable h1, dual value= 0

84 Chapter 7. Linear Programming Engine QMediator

Now we have enough information to build our first PP model.

These are the b variables that will be used by all future PP models:

b variable b3, role filler = B

b variable b2, role filler = A

b variable b0, role filler = A’

b variable b1, role filler = Thing

Below are the r variables that will also be used by all future PP models:

r variable r0, inequality= 10 R.B, current coefficient = 0

r variable r1, inequality=� 20 R.Thing, current coefficient = 200

r variable r3, inequality= 10 R.A0, current coefficient = 0

r variable r2, inequality= 10 R.A, current coefficient = 0

The dual values computed by the previous RMP will be used as coefficients for

r variables. They will be updated after each RMP execution.

Now we can build our first PP model:

minimize 1 ⇤ b3 + 1.0 ⇤ b2 + 1.0 ⇤ b0 + 1.0 ⇤ b1� 0.0 ⇤ r0� 200.0 ⇤ r1� 0.0 ⇤ r3� 0.0 ⇤ r2

subject to:

1 ⇤ b3 � 1 ⇤ r0 = 0

�1 ⇤ b1 + 1 ⇤ r1  0

1 ⇤ b0 � 1 ⇤ r3 = 0

1 ⇤ b2 � 1 ⇤ r2 = 0

1 ⇤ b0 � 1 ⇤ b1  0

1 ⇤ b2 � 1 ⇤ b1  0

1 ⇤ b3 � 1 ⇤ b1  0

7.4. Examples and Result Interpretation 85

There is only one non-zero r variable: r1. There is also only one non-zero b vari-

able: b1. Next, we will create a new partition variable xThing with a coefficient 1.

The coefficient is the size of the set of non-zero b variables. The value of the objec-

tive function is -199. We then proceed with another RMP - PP iteration, because the

value of the objective function is not yet 0.

We will reuse the existing artificial variables and we will add a new partition

variable to the corresponding constraints. The new RMP model will look as fol-

lows:

minimize 1 ⇤ xThing + 200 ⇤ h2 + 200 ⇤ h0 + 200 ⇤ h3 + 200 ⇤ h1

subject to:

1 ⇤ h2  10

1 ⇤ xThing + 1.0 ⇤ h0 � 20

1 ⇤ h3  10

1 ⇤ h1  10

The value of the objective function of the RMP is equal to 20. There are no non-

zero artificial variables. Dual values of the artificial variables are the following:

Artificial variable h2, dual value equal to 0

Artificial variable h0, dual value equal to 1

Artificial variable h3, dual value equal to 0

Artificial variable h1, dual value equal to 0

Now we can proceed with the creation of a new PP model. The variables r and b

will be reused. The coefficients of r variables will be updated based on the result of

the last RMP model.

PP model:

86 Chapter 7. Linear Programming Engine QMediator

minimize 1 ⇤ b3 + 1 ⇤ b2 + 1 ⇤ b0 + 1 ⇤ b1 � 0 ⇤ r0 � 1 ⇤ r1 � 0 ⇤ r3 � 0 ⇤ r2

subject to:

1 ⇤ b3 � 1 ⇤ r0 = 0

�1 ⇤ b1 + 1 ⇤ r1  0

1 ⇤ b0 � 1 ⇤ r3 = 0

1 ⇤ b2 � 1 ⇤ r2 = 0

1 ⇤ b0 � 1 ⇤ b1  0

1 ⇤ b2 � 1 ⇤ b1  0

1 ⇤ b3 � 1 ⇤ b1  0

The value of the objective function is equal to 0. Therefore there would be no

further RMP-PP iterations. Since the last RMP model did not contain any non-zero

artificial variables we know that CPLEX has successfully terminated and therefore

a solution exists for the input system of inequalities. Furthermore, all partition vari-

ables have integer values. This indicates that not only a solution exists for the origi-

nal system, but it is also an integer solution. This solution would be as follows:

Edges: {R}, Fillers: {¬A0}, Cardinality: 0

Edges: {R}, Fillers: {Thing}, Cardinality: 10

Edges: {R}, Fillers: {¬A,¬B,¬A0}, Cardinality: 10

Edges: {R}, Fillers: {¬B,¬A0}, Cardinality: 0

The solution determines the role successors that we must create. Fillers represent

the representative concepts and cardinality is the number of successors. We anno-

tate edges with the cardinalities and will use non-literal fillers to build anonymous

nodes. In case there is only one filler we will not need to build an anonymous node

as we can use one of the identified nodes.

7.4. Examples and Result Interpretation 87

7.4.2 Branch and Bound Example

This example will illustrate how we apply the Branch and Bound algorithm. We first

try to solve the submitted inequalities in the usual way by starting a series of RMP-

PP iterations. The final RMP result will contain partition variables with non-integer

values. We will show what we do in a such a situation.

QMediator receives as an input the following inequalities:

 3 R.Thing

� 3 R.Thing

 1 R.A

� 1 R.A

 1 R.B

 1 R.C

 1 R.D

 1 R.F

We will create our first RMP model with the following artificial variables that

will be later used by all subsequent RMP models:

Artificial variable h5 for the inequality  1 R.F

Artificial variable h2 for the inequality  1 R.B

Artificial variable h1 for the inequality = 1 R.A

Artificial variable h0 for the inequality = 3 R.Thing

Artificial variable h4 for the inequality  1 R.D

Artificial variable h3 for the inequality  1 R.C

The RMP model will look as follows:

minimize 80.0 ⇤ h5 + 80.0 ⇤ h2 + 80.0 ⇤ h1 + 80.0 ⇤ h0 + 80.0 ⇤ h4 + 80.0 ⇤ h3

subject to:

1 ⇤ h5 � 1

88 Chapter 7. Linear Programming Engine QMediator

1 ⇤ h2 � 1

1 ⇤ h1 = 1

1 ⇤ h0 = 3

1 ⇤ h4 � 1

1 ⇤ h3 � 1

RMP objective value: 640

RMP returns the following dual values as a result:

Artificial variable h5, dual value = 80

Artificial variable h2, dual value = 80

Artificial variable h1, dual value = 80

Artificial variable h0, dual value = 80

Artificial variable h4, dual value = 80

Artificial variable h3, dual value = 80

Now we can proceed with the construction of the PP model. We first create b

variables:

b variable b3, role filler is F

b variable b4, role filler is D

b variable b5, role filler is C

b variable b0, role filler is B

b variable b1, role filler is A

b variable b2, role filler is Thing

Then we create r variables with updated coefficients:

r variable r2, inequality is = 1 R.A, current coefficient = 80

r variable r1, inequality is  1 R.B, current coefficient = 80

r variable r5, inequality is � 1 R.C, coefficient = 80

r variable r4, inequality is  1 R.D, current coefficient = 80

7.4. Examples and Result Interpretation 89

r variable r0, inequality is  1 R.F, current coefficient = 80

r variable r3, inequality is = 3 R.Thing, current coefficient = 80

The PP model will look as follows:

minimize 1.0 ⇤ b3 + 1.0 ⇤ b4 + 1.0 ⇤ b5 + 1.0 ⇤ b0 + 1.0 ⇤ b1 + 1.0 ⇤ b2� 80.0 ⇤ r2� 80.0 ⇤

r1 � 80.0 ⇤ r5 � 80.0 ⇤ r4 � 80.0 ⇤ r0 � 80.0 ⇤ r3

subject to:

1 ⇤ b1 � 1 ⇤ r2 = 0

�1 ⇤ b1 + 1 ⇤ r2  0

�1 ⇤ b0 + 1 ⇤ r1  0

�1 ⇤ b5 + 1 ⇤ r5  0

�1 ⇤ b4 + 1 ⇤ r4  0

�1 ⇤ b3 + 1 ⇤ r0  0

1 ⇤ b2 � 1 ⇤ r3 = 0

�1 ⇤ b2 + 1 ⇤ r3  0

1 ⇤ b4 + 1 ⇤ b0  1

1 ⇤ b0 � 1 ⇤ b2  0

1 ⇤ b1 � 1 ⇤ b2  0

1 ⇤ b3 � 1 ⇤ b2  0

1 ⇤ b4 � 1 ⇤ b2  0

1 ⇤ b5 � 1 ⇤ b2  0

The value of the objective function of the PP is -395.

non-zero r variables:

r variable r2

r variable r5

r variable r4

r variable r0

90 Chapter 7. Linear Programming Engine QMediator

r variable r3

non-zero b variables:

b variable b3

b variableb4

b variable b5

b variableb1

b variable b2

With the information above we can create a new partition variable xFDCAThing.

Its coefficient will be equal to 5 which is the number of non-zero b variables. Next

we will need to add the new partition variable to the subsequent RMP. Artificial

variables will be reused from the original RMP. The new partition variable will be

added to the RMP constraints where artificial variables represent the constraints that

constitute the partition variable.

The RMP model will look as follows:

minimize: 5 ⇤ xFDCAThing + 80 ⇤ h5 + 80 ⇤ h2 + 80 ⇤ h1 + 80 ⇤ h0 + 80 ⇤ h4 + 80 ⇤ h3

subject to:

1 ⇤ xFDCAThing + 1 ⇤ h5 � 1

1 ⇤ h2 � 1

1 ⇤ xFDCAThing + 1 ⇤ h1 = 1

1 ⇤ xFDCAThing + 1 ⇤ h0 = 3

1 ⇤ xFDCAThing + 1 ⇤ h4 � 1

1 ⇤ xFDCAThing + 1 ⇤ h3 � 1

This system of inequalities will eventually be solved and the new objective value

will be 245. New coefficients will be assigned to the artificial variables that will be

used in the next PP.

New dual values of the artificial variables:

7.4. Examples and Result Interpretation 91

Artificial variable h5, dual value = 80

Artificial variable h2, dual value = 80

Artificial variable h1, dual value = -315

Artificial variable h0, dual value = 80

Artificial variable h4, dual value = 80

Artificial variable h3, dual value = 80

After that we can create our next PP model. The r and b variables are the same

as before but their coefficients have changed.

minimize 1 ⇤ b3 + 1 ⇤ b4 + 1 ⇤ b5 + 1 ⇤ b0 + 1 ⇤ b1 + 1 ⇤ b2 + 315 ⇤ r2 � 80 ⇤ r1 � 80 ⇤

r5 � 80 ⇤ r4 � 80 ⇤ r0 � 80 ⇤ r3

subject to:

the constraints of the PP are identical to the constraints in the previous PP model.

The value of the objective function is equal to -316.

non-zero r variables

r variable r5

r variable r4

r variable r0

r variable r3

non-zero b variables

b variable b3

b variable b4

b variable b5

b variable b2

As a result we will create another partition variable xFDCThing with its coefficient

equal to 4. Next we will add the newly created variable to a new RMP model:

minimize 4 ⇤ xFDCThing + 5 ⇤ xFDCAThing + 80 ⇤ h5 + 80 ⇤ h2 + 80 ⇤ h1 + 80 ⇤ h0 + 80 ⇤

92 Chapter 7. Linear Programming Engine QMediator

h4 + 80 ⇤ h3

subject to:

1 ⇤ xFDCThing + 1 ⇤ xFDCAThing + 1 ⇤ h5 � 1

1 ⇤ h2 � 1

1 ⇤ xFDCAThing + 1 ⇤ h1 = 1

1 ⇤ xFDCThing + 1 ⇤ xFDCAThing + 1 ⇤ h0 = 3

1 ⇤ xFDCThing + 1 ⇤ xFDCAThing + 1 ⇤ h4 � 1

1 ⇤ xFDCThing + 1 ⇤ xFDCAThing + 1 ⇤ h3 � 1

The value of the objective function is 93. The dual values of the artificial variables

are:

h5, dual value = 0

h2, dual value = 80

h1, dual value = 1

h0, dual value = 4

h4, dual value = 0

h3, dual value = 0

We will skip the next iterations and will show what happens when we reach the

PP with the objective value equal to 0. We first show the RMP model that precedes

the PP model in question. We will add a new partition variable xCThing. Its coeffi-

cient will be 2. The RMP model will be as follows:

minimize 2 ⇤ xAThing + 2 ⇤ xDThing + 2 ⇤ xBThing + 2 ⇤ xCThing + 4 ⇤ xFDCThing + 5 ⇤

xFDCAThing + 2 ⇤ xFThing + 80 ⇤ h5 + 80 ⇤ h2 + 80 ⇤ h1 + 80 ⇤ h0 + 80 ⇤ h4 + 80 ⇤ h3

subject to:

1 ⇤ xFDCThing + 1 ⇤ xFDCAThing + 1 ⇤ xFThing + 1 ⇤ h5 � 1

1 ⇤ xBThing + 1 ⇤ h2 � 1

1 ⇤ xAThing + 1 ⇤ xFDCAThing + 1 ⇤ h1 = 1

7.4. Examples and Result Interpretation 93

1 ⇤ xAThing + 1 ⇤ xDThing + 1 ⇤ xBThing + 1 ⇤ xCThing + 1 ⇤ xFDCThing + 1 ⇤ xFDCAThing +

1 ⇤ xFThing + 1 ⇤ h0 = 3

1 ⇤ xDThing + 1 ⇤ xFDCThing + 1 ⇤ xFDCAThing + 1 ⇤ h4 � 1

1 ⇤ xCThing + 1 ⇤ xFDCThing + 1 ⇤ xFDCAThing + 1 ⇤ h3 � 1

The objective value of this RMP model is 8.

Dual values of artificial variables are:

h5, dual value = 1

h2, dual value = 1

h1, dual value = 1

h0, dual value = 1

h4, dual value = 1

h3, dual value = 1

non-zero partition variables are:

Partition variable xAThing, value = 0.33333333333333337

Partition variable xDThing, value = 0.33333333333333337

Partition variable xBThing, value = 1

Partition variable xCThing, value = 0.33333333333333337

Partition variable xFDCAThing, value = 0.6666666666666666

Partition variable xFThing, value = 0.33333333333333337

All h variables have value 0 but there are many non-integer partition variables.

Since the objective value of the previous PP model that we had skipped was not

equal to 0 yet we have to continue and create another PP model:

minimize 1 ⇤ b3 + 1 ⇤ b4 + 1 ⇤ b5 + 1 ⇤ b0 + 1 ⇤ b1 + 1 ⇤ b2 � 1 ⇤ r2 � 1 ⇤ r1 � 1 ⇤ r5 �

1 ⇤ r4 � 1 ⇤ r0 � 1 ⇤ r3

subject to:

1 ⇤ b1 � 1 ⇤ r2 = 0

94 Chapter 7. Linear Programming Engine QMediator

�1 ⇤ b1 + 1 ⇤ r2  0

�1 ⇤ b0 + 1 ⇤ r1  0

�1 ⇤ b5 + 1 ⇤ r5  0

�1 ⇤ b4 + 1 ⇤ r4  0

�1 ⇤ b3 + 1 ⇤ r0  0

1 ⇤ b2 � 1 ⇤ r3 = 0

�1 ⇤ b2 + 1 ⇤ r3  0

1 ⇤ b4 + 1 ⇤ b0  1

1 ⇤ b0 � 1 ⇤ b2  0

1 ⇤ b1 � 1 ⇤ b2  0

1 ⇤ b3 � 1 ⇤ b2  0

1 ⇤ b4 � 1 ⇤ b2  0

1 ⇤ b5 � 1 ⇤ b2  0

1 ⇤ b1 � 1 ⇤ r2 = 0

The objective value of this PP is equal to 0 which means that CPLEX has ter-

minated and we have a solution. However, the previous RMP model contained

non-integer partition variables. This means that we have to invoke the Branch and

Bound algorithm in order to assign new values to the existing partition variables or

possibly create additional partition variables.

We pick one variable from the set of all non-integer partition variables and we

assign it two possible values. Let us assume that xAThing was picked, its value being

0.33333333333333337. We can have two possible values: xAThing  1 or xAThing � 1.

We try the latter first.

The RMP model with a newly created branch variable will look as follows:

minimize 2 ⇤ xAThing + 2 ⇤ xDThing + 2 ⇤ xBThing + 2 ⇤ xCThing + 4 ⇤ xFDCThing + 5 ⇤

xFDCAThing + 2 ⇤ xFThing + 80 ⇤ h5 + 80 ⇤ h2 + 80 ⇤ h1 + 80 ⇤ h0 + 80 ⇤ h4 + 80 ⇤ h3

7.4. Examples and Result Interpretation 95

subject to:

1 ⇤ xFDCThing + 1 ⇤ xFDCAThing + 1 ⇤ xFThing + 1 ⇤ h5 � 1

1 ⇤ xBThing + 1 ⇤ h2 � 1

1 ⇤ xAThing + 1 ⇤ xFDCAThing + 1 ⇤ h1 = 1

1 ⇤ xAThing + 1 ⇤ xDThing + 1 ⇤ xBThing + 1 ⇤ xCThing + 1 ⇤ xFDCThing + 1 ⇤ xFDCAThing +

1 ⇤ xFThing + 1 ⇤ h0 = 3

1 ⇤ xDThing + 1 ⇤ xFDCThing + 1 ⇤ xFDCAThing + 1 ⇤ h4 � 1

1 ⇤ xCThing + 1 ⇤ xFDCThing + 1 ⇤ xFDCAThing + 1 ⇤ h3 � 1

1 ⇤ xAThing � 1

The last inequality assigns one of two possible values to the branch variable.

RMP will terminate with its objective value equal to 8. The dual values of the

artificial variables are the following:

Artificial variable h5, dual value = 1

Artificial variable h2, dual value = 1

Artificial variable h1, dual value = 0

Artificial variable h0, dual value = 1

Artificial variable h4, dual value = 1

Artificial variable h3, dual value = 1

The dual value of the branch variable xAThing is 1.

non-zero partition variables are:

xAThing, value = 1

xBThing, value = 1

xFDCThing, value = 1

The dual value of of the branch variable is 1.

Now we construct a new PP model. The PP model will include the new branch

variable that we had created earlier. It will be added to the objective function and to

96 Chapter 7. Linear Programming Engine QMediator

the constraints.

minimize 1.0 ⇤ b3 + 1.0 ⇤ b4 + 1.0 ⇤ b5 + 1.0 ⇤ b0 + 1.0 ⇤ b1 + 1.0 ⇤ b2 +�0.0 ⇤ r2� 1.0 ⇤

r1 � 1.0 ⇤ r5 � 1.0 ⇤ r4 � 1.0 ⇤ r0 � 1.0 ⇤ r3 � 1.0 ⇤ branch1

subject to:

�1.0 ⇤ b2 + 1.0 ⇤ branch1  0

�1.0 ⇤ b1 + 1.0 ⇤ branch1  0

1.0 ⇤ b1 + 1.0 ⇤ b2 � 1.0 ⇤ branch1  1

1.0 ⇤ b1 � 1.0 ⇤ r2 = 0.0

�1.0 ⇤ b1 + 1.0 ⇤ r2  0

�1.0 ⇤ b0 + 1.0 ⇤ r1  0

�1.0 ⇤ b5 + 1.0 ⇤ r5  0

�1.0 ⇤ b4 + 1.0 ⇤ r4  0

�1.0 ⇤ b3 + 1.0 ⇤ r0  0

1.0 ⇤ b2 � 1.0 ⇤ r3 = 0

�1.0 ⇤ b2 + 1.0 ⇤ r3  0

1.0 ⇤ b4 + 1.0 ⇤ b0  1

1.0 ⇤ b0 � 1.0 ⇤ b2  0

1.0 ⇤ b1 � 1.0 ⇤ b2  0

1.0 ⇤ b3 � 1.0 ⇤ b2  0

1.0 ⇤ b4 � 1.0 ⇤ b2  0

1.0 ⇤ b5 � 1.0 ⇤ b2  0

This PP model will have an objective value equal to 0. Given the fact that the

previous RMP model did not contain non-integer partition variables we conclude

that we have successfully found a solution to the submitted inequalities. Now we

can construct and return the result to the fil-rule that will be able to construct node

successors:

7.4. Examples and Result Interpretation 97

We will have three successors:

First successor:

Edges: {R}

Fillers: {F, D, C, ¬A}

Cardinality: 1

Second successor:

Edges: {R}

Fillers: {A}

Cardinality: 1

Third successor:

Edges: {R}

Fillers: {B, ¬A}

Cardinality: 1

98

Chapter 8

Proofs

In this chapter we will present proofs of Soundness, Completeness, and Termination

of the proposed algorithm that we presented in Chapter 5 .

8.1 Termination

Theorem (Termination) The proposed algorithm terminates when applied to an

ALCHQ ontology.

Algorithm 1 Reasoner Avalanche
1: Input: Ontology,
2: Normalization rules, Saturation rules, and Completion rules
3: Output: Saturated graph
4: G CreateGraph(Ontology)
5: ONorm NormalizeOntology(Ontology)
6: G InitializeGraph(G, Ontology)
7: G Un f oldOntology(ONorm, G)
8: while G is not saturated do
9: while there are saturation rules to apply do

10: G ApplySaturationRules(SaturationRules, ONorm, G)
11: end while
12: G ApplySubsumptionRules(SubsumptionRules, ONorm, G)
13: G ApplyDisjunctionRules(DisjunctionRules, ONorm, G)
14: end while

8.1. Termination 99

Proof

The algorithm 1 constructs a directed graph. The graph is composed of unique

interconnected nodes. Each edge between two nodes is also unique. In line 4 the

algorithm starts with creation of the graph. During this step the algorithm calls the

CreateGraph function to create the node Top or Thing. Then in line 5 the algorithm

normalizes an input ontology by calling the NormalizeOntology function. The nor-

malization process is described in 5.3. In the following step in line 6 InitializeGraph

initializes the graph by creating nodes for all atomic concepts. At this step we make

every node a subsumee of Top. In line 7 UnfoldOntology populates the graph with

simple knowledge that can be sourced directly from the axioms. The rules that are

applied at this step are listed in 5.4.3 and presented in 5.4.2. Then in line 10 the al-

gorithm starts the reasoning process and its main procedure AppplySaturatoinRules -

application of the saturation rules. These rules are also listed in 5.4.3 and presented

in 5.4.2. Line 12 and line 13 are the supporting procedures ApplySubsumptionRules

and ApplyDisjunctionRules - application of the subsumption rules and application of

the disjunction rules respectively. These rules will be applied repeatedly until the

graph is saturated (line 8). The saturation rules will be applied as long as they detect

a change in the state of the graph (line 9). The graph is considered saturated when

no changes have been detected.

The rules do not remove nodes from the graph, nor do they remove concepts

from node or edge labels. A rule can modify the graph as follows: (i) create a new

node and connect it to its source node with an edge, (ii) connect existing two nodes

with an edge, (iii) add new concepts to node labels or roles to edge labels . If a rule

modifies the graph it will set a corresponding boolean variable graphModified to

true. Thus the algorithm will know that the graph has not been saturated yet and

it needs to do another iteration of rule applications. The algorithm will stop once

100 Chapter 8. Proofs

this variable will be equal to false. Further, a rule will not be applied to a node if

its consequence is already in a label of the node thus ensuring termination of the

algorithm.

The algorithm works in two stages - first it unfolds the graph, i.e. the unfolding

phase, and then it applies the saturation, subsumption, and disjunction rules, i.e.

the reasoning phase. During the unfolding phase the rules are applied only once

to each axiom in the ontology. During the reasoning phase each node maintains a

queue of rules to be applied to this node. The queue doesn’t allow duplicates. Once

all the nodes executed all their pending rules from the queue the subsumption rules

following by the disjunction rules will be applied to all matching nodes. If there was

any change to the graph then the rule queue will be checked again.

There are three rules that can create new nodes: R f il that is one of the saturation-

based rules, the RvP that is one of the rules that computes subsumptions, and Rt

that is one of the rules that deals with disjunctions. The R f il rule either connects

a node to an already existing node or creates a new node. The rule will be exe-

cuted when a new qualified number restriction has been added to a node. The rule

will not be executed on the same qualified number restriction more than once. Fur-

thermore, the rule can only create a finite number of nodes because the number of

qualified number restrictions is bounded by the inequalities in the ontology. The

rule RvP either immediately detects a subsumption between two concepts or cre-

ates a new clone node that will accumulate information that might possibly lead to

a subsumption later. The rule will create only one clone node to test for subsump-

tion between the concepts. In the worst case we will need to create a clone node for

each pair of concepts. The rule Rt creates new unfold nodes. This rule will called

when a new disjunction has been added to the node. Thus it will not resolve the

8.2. Soundness 101

same problem more than once. All three of the rules mentioned above are imple-

mented using CPLEX. CPLEX will always return either a solution or the absence

of thereof. Further, since the rules are designed to reuse existing nodes we do not

need to implement blocking - the technique used in reasoner development in order

to avoid construction of infinite models [42].

Thus the design of the rules and their execution process ensure that the algorithm

terminates.

8.2 Soundness

In Table 8.1, Table 8.2, and Table 8.3 we summarize the inference rules in order to

facilitate the reading of the proofs presented below. Each rule is composed of two

parts - the if part or preconditions that must be satisfied for the rule to be applicable

and the then part or the consequence of the rule application. More details on the

rules can be found in Section 5.4.2. Furthermore, the symbols that are used in the

rules are defined in Section 5.4.2 and summarized in Appendix 1.

Corollary 8.2.1 (Infeasibility) Infeasibility of qualified number restrictions is tested us-

ing the IBM CPLEX software package. Qualified number restrictions in a node label are

translated into a linear problem that is delegated to CPLEX. If the problem can be solved

CPLEX will find a solution. CPLEX implements the SIMPLEX algorithm that has been

proven to be sound, complete, and terminating [15]. More details on CPLEX and construc-

tion of linear programs from qualified number restrictions can be found in Chapter 7.

Definition 8.2.1 (Subsumption) Subsumption between two concepts A and B (A v B)

is represented by the presence of the concept B in the label L(vA).

102 Chapter 8. Proofs

Definition 8.2.2 (Concept Satisfiability) A concept A is satisfiable if the label of a node

with the representative concept A is not subsumed by Bottom: ? 62 L(vA).

Definition 8.2.3 (Label) By L(v) we denote the label (L(v))I and by Q(v) we denote the

label (Q(v))I . A label contains an intersection of all its elements: L(v) = \f2L(v)f
I . As

a part of the initialization process for each node a corresponding label L(v) has been created

that contains the concept > as well as the representative concept of an identified node v. See

Section 5.4.1 Definition c) for more details.

Definition 8.2.4 (Label Satisfiability) A node label L(v) is satisfiable if it is not sub-

sumed by bottom (L(v) 6= ∆). Each rule application extends L(v) thus creating L’(v).

According to Section 5.4.1 Definition c) if L’(v) is satisfiable then L(v) is also satisfiable

since L(v) ✓ L0(v).

Definition 8.2.5 (Graph Satisfiability) A graph G is satisfiable if L(v>) 6= ∆. Each

rule application modifies a node in the graph G thus producing a new graph G’. If G’ is

satisfiable then G is also satisfiable since G is a subset of G0. As a result all entailed sub-

sumptions will be computed. For instance, a label L(vA) will contain all subsumers of A.

Definition 8.2.6 (TBox Satisfiability) TBox is satisfiable if it satisfies all axioms. Satis-

fiability check of TBox is performed in order to verify whether > v ?.

Definition 8.2.7 (Graph Completeness) A graph G is complete if no rule can be applied.

Definition 8.2.8 (Model) If a graph G is complete and satisfiable then a model can be

derived from G.

8.2. Soundness 103

Theorem 8.2.1 (Soundness) Let T be a satisfiable TBox and G a satisfiable graph for T .

Let G0 be the graph after applying one of the rules. Then G0 is also a satisfiable graph for T .

Proof

In the following we verify that each rule conclusion is indeed an entailment.

For the sake of simplicity when presenting proofs we assume that the rule is

applicable.

Rule Precondition Consequence
Rv if A v f 2 T , f /2 L(vA) then add f to L(vA)
Rv6= if A 2 L(v), A u B v ?,¬B /2 L(v) then add ¬B to L(v)
Rv⇤ if A 2 L(v), t 2 L(vA), t /2 L(v) then add t to L(v)

R./?
if A v./ nR.C 2 T , ./ mR.D 2 L(v),
in f easible(Q(v) [{./ nR.C}),¬A /2 L(v) then L(v)! L(v) [{¬A}

R./¬ if A v./ nR.C 2 T , ¬̇(./ nR.C) 2 L(v),¬A /2 L(v) then L(v)! L(v) [{¬A}

R./v
if ./ nR.A v B 2 T ,
in f easible(Q(v) [{¬̇(./ nR.A)}, B /2 L(v) then L(v)! L(v) [{B}

Rv¬ if f v A 2 T , ¬A 2 L(v), ¬̇f /2 L(v) then add ¬̇f to L(v)
Rvu if A1 u A2 v B 2 T , {A1, A2} ✓ L(v), B /2 L(v) then add B to L(v)
Rv¬

u if Ai u Aj v B 2 T , {¬B, Ai} ✓ L(v), ¬Aj /2 L(v) then add ¬Aj to L(v)
R? if ? /2 L(v) ^ (infeasible(L(v)) _ {A,¬A} ✓ L(v)) then add ? to (v)
R f il if hr, q, ni 2 s(v), ¬9 vq 2 V : q ✓ L(vq), #vq � n then create vq 2 VA with L(vq) q and #vq n

TABLE 8.1: Summary of the Saturation-based Rules (f = any subsumer
except for a negated one, t = any subsumer, r = role, q = qualified num-

ber restriction, n = cardinality)

Rv: if Rv is applicable to the axiom A v f 2 T , then f can be added to L(vA)

and fI ✓ L(vA). According to our definition of a node label (see Section 5.4.1

Definition c)), we add a new subsumer to the intersection of all the subsumers

in the label, thus restricting the label and creating a new superset L0(v). If the

L0(v) is satisfiable then its subset L(v) is also satisfiable.

Rv6=: if Rv6= is applicable to the axiom A u B v ? 2 T and A 2 L(vA) then we

can safely add ¬B to L(vA). This statement holds because the input axiom

entails that A and B are disjoint concepts. Since the above axiom is equivalent

to A v ¬B, it holds that ¬BI ✓ L(vA).

104 Chapter 8. Proofs

Rv⇤ : if Rv⇤ is applicable to the node v, AI ✓ L(v) and tI ✓ L(vA) then tI ✓

L(v). This statement holds due to the Transitive property of subsumption that

preserves satisfiability of T and allows us to derive transitive subsumers.

RP
./?

: if RP
./?

is applicable to the axiom A v./ nR.C 2 T , ./ mR.D 2 L(v) and

in f easible(Q(v)[{./ nR.C}) then ¬AI ✓ L(v). This statement holds because

the axiom A v./ nR.C is equivalent to > v ¬At ./ nR.C making this axiom

applicable to every label. If ./ nR.C clashes with any inequalities contained in

the label Q(v) then a new subsumer can be derived: ¬AI ✓ L(v). The reason

is that if one of the disjuncts clashes with elements of the label, then the other

disjunct must be selected.

R./¬ : if R./¬ is applicable to the axiom A v./ nR.C 2 T , ¬̇(./ nR.C) 2 L(v) then

¬AI ✓ L(v). This statement holds due to the contrapositive reading of the

above axiom. The rule is a special case of the rule RP
./?

that facilitates the

implementation. However, unlike RP
./?

, R./¬ does not rely on CPLEX, rather

it searches the node label for qualified number restrictions and their negations.

R./v : if R./v is applicable to the axiom ./ nR.A v B and infeasible(Q(v) [{¬̇(./

nR.A)}) then B must be added to L(v). This statement holds because the

above axiom can be transformed into a general axiom > v ¬̇(./ nR.A) t B,

making it applicable to every node. Since ¬̇(./ nR.A) causes a clash in L(v), it

follows that B is entailed.

Rv¬ : if Rv¬ is applicable to the axiom f v ¬A 2 T and A ✓ L(v) then ¬fI ✓ L(v).

This statement holds due to the contrapositive reading of the input axiom:

f v ¬A is equivalent to A v ¬f.

Rvu : if Rvu is applicable to the axiom Ai u Aj v B 2 T and L(vAi) [L(vAj) ✓

L(v) then BI ✓ L(v). This statement holds because a label represents an

8.2. Soundness 105

intersection of all its elements. This allows us to derive new subsumptions

based on the presence of binary subsumption axioms.

Rv¬
u : if Rv¬

u is applicable to the axiom Ai u Aj v B 2 T and {¬B, Ai} ✓ L(vA)

then ¬Aj can be added to L(vA) and ¬AI
j ✓ L(vA). This statement holds

because the above axiom is equivalent to > v ¬Ai t ¬Ai t B. If ¬B 2 L(vA)

and Ai 2 L(vA) then since a disjunction represents a choice, the subsumptions

{¬B, Ai} ✓ L(vA) will result in a clash in node vA. Therefore the only viable

choice is ¬Aj 2 L(vA).

R?: if A,¬A ✓ L(v) or in f easible(Q(v)) then L(v) ✓ ∆. Thus a node can become

unsatisfiable if it is subsumed by a concept and its complement or due to a

clash in qualified number restrictions.

R f il: if CPLEX returns a solution < r, q, n >2 s(v) then the rule R f il is applicable

to the node v. A new successor will be created that will connect the node v to

a new node vq via the edge r if it has not been created already. The edge will

store the cardinality of the successor vq. We rely on CPLEX to identify vq and

determine what edge should connect v to vq. This is possible because CPLEX

is sound, complete, and terminating [15]. This rule always creates a successor.

RP./ : if RP./ is applicable to the axiom ./ nR.C v B then a possible subsumer can be

created for the node vB. The possible subsumer is needed in order to index in-

formation that will be used by the rule RvP to discover subsumptions between

concepts.

The rule RP./ transforms axioms into global axioms and encodes them as tu-

ples that consist of a set of preconditions and a set of inequalities. The de-

fault element in the set of preconditions is >. The axiom above is equiva-

lent to > v ¬̇(./ nR.C) t B. It will be encoded as a possible subsumer as

106 Chapter 8. Proofs

Rule Precondition Consequence
RP./ if ./ n R.A v B 2 T , is_new(¬̇(./ n R.A) ,LP(vB)) then add_to(¬̇(./ n R.A), LP(vB))
RP⇤ if B 2 L(vA), LP(vA) 6⇢⇠ LP(vB) then add_to(LP(vA), LP(vB))
RPu if Ai u Aj v B 2 T , j(Ai, LP(vAj)) 6⇢⇠ LP(vB) then add_to(j(Ai, LP(vAj)), LP(vB))
RP./Dyn

if Ai u Aj v B 2 T , B 2 L(v) then add_to(P, LP(vB))

RvP if {B,¬B} \ L(vA) = ∆

then let x 2 {B,¬B}
if v0 2 clone(vA, x) then

if ? 2 L(v0)
then add x to L(vA) else

if Q(vA, x) * L(v0)
then add_to(Q(vA, x), L(v0))
if Q(vA) * L(v0)
then add_to(Q(vA), L(v0))

elsif Q(vA, x) 6= ∆ then
create v0 2 VC, clone(vA, x) {v0}
L(v0) {>} [Q(vA, x) [Q(vA)

TABLE 8.2: Summary of the Possible Subsumers Rules (is_new = does
not exist in the label)

< >, {¬̇(./ nR.C)} > and added to the dedicated label Lp(vB) of the node B.

A special function add_to has been introduced to manage addition of possible

subsumers.

RP⇤ : if B 2 L(vA) and LP(vA) 6✓ LP(vB) then possible subsumers in the label

LP(vA) should be added to the label LP(vB). The rule propagates possible

subsumers up the subsumption hierarchy. This statement holds due to the

transitive property of subsumption: if ./ R.C v A and A v B then it implies

that ./ R.C v B. Therefore possible subsumers that were created for vA should

be also be created for or propagated to vB.

RPu : if the rule RPu is applicable to the axiom Ai u Aj v B then LP(vAi) and LP(vAj)

can be added to the label LP of the node vB. This rule complements the rules

RP./ and RP by covering subsumptions caused by the presence of the binary

subsumption axioms.

8.2. Soundness 107

The rule RPu ensures that in order for a node v to be subsumed by B via pos-

sible subsumers propagated from Ai, the node v has to be already subsumed

by Aj. The function j constructs possible subsumers to reflect this situation:

Ai will be added to the preconditions of the possible subsumers of the node

vAj and Aj to the preconditions of the possible subsumers of the node vAi . The

newly constructed possible subsumers will then be added to LP(vB).

RP./Dyn
: if the rule RP./Dyn

is applicable to the axiom Ai u Aj v B then a possible sub-

sumer can be created for the node vB. This rule is an extension of the rule RPu

that also extracts information from binary subsumption axioms. The differ-

ence between the two rules is that RPu processes one axiom at a time, while

RP./Dyn
considers a group of axioms that result from the normalization process.

More on that can be found in Section 5.4

For example, we have the following axioms where the conjuncts are auxiliary

concepts generated during the normalization process:

aux1 u aux2 v A

aux3 u aux4 v A

Each auxiliary concept in the axioms above is a subsumer of a qualified cardi-

nality restriction:

q1 v aux1

q2 v aux2

q3 v aux3

q4 v aux4

To represent different possible combinations of possible subsumers we create

tuples from a cartesian product of {{aux1, aux2}, {aux3, aux4}}:

< T, {q1, q3} >

108 Chapter 8. Proofs

< T, {q1, q4} >

< T, {q2, q3} >

< T, {q2, q4} >

These tuples will be added to LP(vB).

Next, let us slightly modify the example above by making only one conjunct

to be an auxiliary concept:

X1 u aux1 v A

X2 u aux2 v A

Provided that the conjuncts aux1 and aux2 are still subsumers of qualified

number restrictions:

q1 v aux1

q2 v aux2

This will then result in the following possible subsumer tuple:

< T, X1, X2, {q1, q2} >.

Those concepts that were not unfolded to qualified number restrictions be-

came part of the preconditions.

RvP : if the rule RvP is applicable to L(vA) and a concept B then we have to test

whether A is subsumed by B or is disjoint to B.

Scenario A v B: When we test for subsumption we take possible subsumers

of LP(vB) and Q(A). If there is a clash in {LP(vB) [Q(A)} then we can con-

clude that A v B. If the subsumption cannot be concluded immediately then

a dedicated clone node will be constructed that will hold this information until

8.2. Soundness 109

more information will be accumulated that can possibly lead to a subsump-

tion.

We test for subsumption between two concepts by transforming subsumption

axioms into global axioms as it was described in the rule RP./ . For example,

take the pair of axioms: A v� 3R.C and � 2R.C v B. We would like to

test whether A v B. We transform the second axiom into a global axiom:

> v 1R.C t B. Then we need to test whether  1R.C clashes with � 3R.C.

The inequalities do indeed clash, which allows us to conclude that A v B.

Scenario A 6v B: Disjointness is a result of a clash between Q(vA) and Q(vB).

If the inequalities in these labels clash then we can conclude that A u B v ?

or ¬AI ✓ L(vB) and ¬BI ✓ L(vA). If we cannot immediately conclude dis-

jointness due to the absence of a clash in qualified number restrictions, then

we will create a dedicated clone node that will continue to accumulate infor-

mation until disjointness can be concluded or until the reasoning process stops

because the graph is saturated.

Rule Precondition Consequence

Rv¬
t if B v Fn

i=1 Ai 2 T

if
Sn

i=1{¬Ai} ✓ L(vA),¬B /2 L(vA)
then add ¬B to L(vA)
elsif {¬Aj,

Fn
i=1 Ai} ✓ L(v), j 2 1..n, Q v B 2 T , Q 2 CQ

T ,
no auxiliary node vU exists with L(vU) = {U, ¬̇Q}

then create vU 2 VX, L(vU) = {U, ¬̇Q} with U fresh in T , and
add U tFn

i=1.i 6=j Ai to L(v)
Rv\t if

Fn
i=1 Ai 2 L(v),

Tn
i=1 L(Ai) * L(v) then add

Tn
i=1 L(Ai) to L(v)

Rt if
Sm

j=1{
Fnj

i=1 Aji} ✓ L(v)
res resolvent(

Sm
j=1{

Fnj
i=1 Aji}, L(v))

if res 6= ∆
then add res to L(v)

TABLE 8.3: Summary of the Disjunction Rules (res = the result of the
resolution, resolvent = function that resolves disjunctions)

Rv¬
t : if B v Fn

i=1 Ai 2 T is applicable to v(A) then there are two possible scenarios:

110 Chapter 8. Proofs

Scenario 1: if
Sn

i=1{¬Ai} ✓ L(vA) then (¬B)I ✓ L(vA). This statement

holds due to the contrapositive reading of the above axiom. If a node label is

subsumed by all the elements of the disjunction in Negated Normal Form then

we can conclude that L(v) also must be subsumed by the negated antecedent

of the axiom.

Scenario 2:

else if {¬Aj,
Fn

i=1 Ai} ✓ L(v), j 2 1..n, Q v B 2 T , Q 2 CQ
T , no auxiliary node

vU exists with L(vU) = {U, ¬̇Q} then create vU 2 VX, L(vU) = {U, ¬̇Q} with

U fresh in T , and add U tFn
i=1.i 6=j Ai to L(v)

If a node label is not subsumed by all the elements of the disjunction in Negated

Normal Form then a dedicated node should be created that will hold informa-

tion until a subsumption can be derived. The node serves a similar purpose as

the clone node presented in the rule RvP . This statement holds because Sce-

nario 2 works like Scenario 1 but when the information needed to derive the

antecedent is not present in L(v) when the rule is applied.

Rv\t : given that Rv\t is applicable to the axiom
Fn

i=1 Ai 2 L(v) then add
Tn

i=1 L(Ai) to L(v).

This statement holds because this rule adds to L(v) a non-empty intersection

of the subsumers of the all the disjuncts of
Fn

i=1 Ai.

For example, A v C t D 2 T , if B 2 L(vC) and B 2 L(vD) then BI ✓ L(vA).

Rt: if
Sm

j=1{
Fnj

i=1 Aji} ✓ L(v) then resolvent(
Sm

j=1{
Fnj

i=1 Aji}) with L(v). If res 6= ∆

then add it to L(v). resolvent is the function that we use to resolve disjunctions

with negated subsumers in node labels. For each disjunction in L(v) we will

remove from it all the disjuncts that clash with other concepts in L(v). This

way we end up with a smaller disjunction or even just a concept that will

8.3. Completeness 111

be added as new subsumer to L(v). This statement holds because the rule

implements the Resolution rule [38].

For example, if C t D 2 L(v) and ¬C 2 L(v) then if we apply the rule Rt to

L(v) then DI ✓ L(v) where D is the res, as C u ¬C v ?.

8.3 Completeness

Theorem 8.3.1 (Completeness) Let T be a satisfiable TBox and G a complete, satisfiable

graph for T . Then all entailments of T are represented in G.

Proof Let us assume that we have a complete graph G and there is an entailed

subsumption A v t that is not present in the graph, i.e. t 62 L(vA). Below we will

prove by contradiction that it cannot happen because all the rules will be triggered

and derive every subsumption that is entailed by the axioms in the TBox T .

According to our normal form presented in Section 5.3 t must occur in at least

one axiom of T on its left-hand side or right-hand side and it can be one of the

following four instances: an atomic concept, a negated atomic concept, a disjunction

or a qualified number restriction. We will prove for each instance of t that our rules

are complete.

Missing subsumption: t is an atomic concept

Let us assume that t is an atomic concept and t 62 L(vA). This cannot happen

because one of the following rules will discover the missing subsumption:

Rv: let us assume that there is an axiom A v t. Then the rule Rv will fire and add

t to L(vA) thus contradicting the statement that t 62 L(vA).

112 Chapter 8. Proofs

Rv⇤ : let us assume that there are node labels A1 and A2 such that A1 2 L(vA2) and

t 2 L(vA1). Then the rule Rv⇤ will fire and add the transitive subsumer t to

L(vA2).

Rvu : let us assume that there is an axioms A1 u A2 v t and both A1 and A2 can be

found in L(vA). Then the rule Rvu will fire and add t to L(vA).

RvP : let us assume that there are L(vA) and L(vt) and it is entailed by the TBox T

that A is subsumed by t due to the presence of number restrictions in L(vA)

and axioms of the form of q v t where q is a qualified number restriction.

Then the rules RP./ , RPu , or RPuDynamic
will fire and create the necessary possible

subsumers and as a result the rule RvP will add t to L(vA). The subsumption

will be discovered because the rule RvP will create a special node cloneAvt

that will contain all number restrictions from L(vA) as well as all possible sub-

sumers generated for vt. The ILP module will be subsequently called and

since the subsumption is entailed the module will detect that the inequalities

in the clone node are infeasible. As a result t will be added to L(vA).

Consider the following three examples that demonstrate the interaction be-

tween the rules RP./ , RPu , RPuDynamic
and the rule RvP . These rules are crucial

for completeness of the calculus as they permit us to stay complete without

the need of backtracking.

Example 1. This example demonstrates how the rules RP./ and RvP are applied

to discover subsumptions between concepts. Let us assume that � 3R.C 2

L(vA) and that there is the axiom � 2R.C v B in the TBox T . It is entailed

by T that A is subsumed by B. If B 62 L(vA) then the rules RP./ and RvP will

derive it. The rule RP./ will create a possible subsumer for B that will be r

< >, 1R.C >. Then the rule RvP will create a clone node cloneAvB. The

8.3. Completeness 113

clone node will contain two number restrictions: � 3R.C and  1R.C. The ILP

module will be called and it will detect that these inequalities are infeasible.

As a result B will be added to L(vA).

Example 2. This example demonstrates how the rules RPu and RvP are applied

to discover subsumptions between concepts. Let us assume that there are the

axioms B1 u B2 v B and � 2R.C v B1 in the TBox T . Further, B2 2 L(vA) and

� 3R.C 2 L(vA). It is entailed by T that A is subsumed by B. In order to derive

it the rules will work as follows. The rule RP./ will add the possible subsumer

< >, 1R.C > to LP(B1). Then the rule RPu will add a possible subsumer

< {>, B2}, 1R.C > to B to represent the binary subsumption axiom. Finally,

the rule RP will create a clone node cloneAvB that will contain  1R.C and

� 3R.C. The ILP module will be called on the clone node and it will detect

that its inequalities are infeasible and add B to L(vA).

Example 3. This example demonstrates how the rules RPuDynamic
and and RvP

are applied to discover subsumptions between concepts. Let us assume that

there are the axioms aux1 u aux2 v B1, aux3 u aux4 v B2. Furthermore, �

3R.C 2 L(vA), � 1R.C 2 aux1, � 1R.C 2 aux3. It is entailed by the TBox

T that B 2 L(vA). This inference will be derived as follows: first, the rule

RP./ will create possible subsumers for the applicable concepts. Then the rule

RPuDynamic
will create possible subsumers for B1 and B2. This rule compared to

RPu considers more than one binary subsumption axiom. Finally, the rule RP

will create a clone node cloneAvB. The ILP module will be called and it will

detect a clash in the number restrictions in the clone node. As a result B will

be added to L(vA).

Rv\t : let us assume that there is L(vA) and CtD in L(vA) with every disjunct being

subsumed by B, i.e. B 2 L(vC) and B 2 L(vD). Then the rule Rv\t will fire and

114 Chapter 8. Proofs

add t to L(vA).

Rt: let us assume that there is L(vA) so that t t B 2 L(vA) and ¬B 2 L(vA). Then

the rule Rt will fire and add t to L(vA).

R?: let us assume that there is L(vA) so that L(vA) contains either a concept and

its complement or clashing cardinality restrictions then the rule R?. Then the

rule R? will fire and add ? to the label L(vA).

R f il: let us assume that there is L(vA) so that L(vA) contains at least two number

restrictions where one is an at-least number restriction and another one is an

at-most number restriction. If the rule R f il cannot immediately detect clash

between the inequalities it will create an anonymous node that will store these

inequalites. If eventually this node becomes unsatisfiable due to infeasibility

of the inequalities then the rule R f il will detect it and mark vA and the anony-

mous node as unsatisfiable by adding ? to their subsumers. The infeasibility

will be determined by leveraging the ILP module. Furthermore, the system

will also learn that the given combination of number restrictions is infeasible

and if there is another node that triggers the rule R f il with the same number

restrictions it will also become unsatisfiable by referring to the unsatisfiable

anonymous node.

Missing subsumption: ¬t is a negation of an atomic concept t

Let us assume that ¬t is a negated atomic concept and ¬t 62 L(vA). This cannot

happen because one of the following rules will discover the missing subsumption:

Rv: if the rule Rv has been applied to the axiom A v ¬t then the rule will add ¬t

to L(vA) thus contradicting the statement that ¬t 62 L(vA).

8.3. Completeness 115

Rv¬ : if the rule Rv¬ has been applied to the axiom Au t v ? then the rule will add

¬t to L(vA).

RvP : if the rule RvP has been applied to L(vA) and L(vt) provided that q1 2 L(vA)

and q2 2 L(vt) where q1 and q2 are clashing cardinality restrictions then the

rule will add ¬t to L(vA).

Rv⇤ : if the rule Rv⇤ has been applied to L(vA1) and L(vA2) provided that A1 2

L(vA2) and ¬t 2 L(vA1) then the rule will add the transitive subsumer ¬t to

L(vA2).

Rv\t : if the rule Rv\t has been applied to L(vA) provided that C t D 2 L(vA), ¬t 2

L(vC) and ¬t 2 L(vD) then the rule will add ¬t to L(vA).

Rv¬
t : if the rule Rv¬

t has been applied to the axiom A u t v B provided that A 2

L(vA) and ¬B 2 L(vA) then the rule will add ¬t to L(vA).

R./? : if the rule R./? has been applied the axiom t v q where q is a cardinality

restriction and q clashes with cardinality restrictions in L(vA) then the rule

will add ¬t to L(vA).

Missing subsumption: t is a disjunction

Let us assume that t is a disjunction and t 62 L(vA). This cannot happen because

one of the following rules will discover the missing subsumption:

Rv: if the rule Rv has been applied to the axiom A v t then the rule will add t to

the label L(vA) thus contradicting the statement that t 62 L(vA).

Rv⇤ : if the rule Rv⇤ has been applied to the labels A1 and A2 so that A1 2 L(vA2)

and t 2 L(vA1) then the rule will add t to the label L(vA2).

116 Chapter 8. Proofs

Rt: if the rule Rt has been applied to the label L(vA) that contains two disjunctions

that can be resolved into a smaller disjunction t then the rule will add t to the

label L(vA).

Missing subsumption: t is a cardinality restriction

Let us assume that t is a cardinality restriction and t 62 L(vA). This cannot happen

because one of the following rules will discover the missing subsumption:

Rv: if the rule Rv has been applied to the axiom A v t then the rule will add t to

L(vA) thus contradicting the statement that t 62 L(vA).

Rv⇤ : if the rule Rv⇤ has been applied to the labels L(vA) and L(vB) so that B 2 L(vA)

and t 2 L(vB) then the rule will add t to L(vA).

117

Chapter 9

Complexity Analysis

In this chapter we will discuss the complexity of the proposed calculus that has been

implemented in the reasoner Avalanche.

It has already been proven that the computational complexity of the description

logic ALCHQ for which we created our calculus is ExpTime-Complete [29].

The time complexity of the Simplex algorithm implemented in CPLEX is expo-

nential in the worst case scenario[34]. As it has been shown by Klee and Minty, the

Simplex algorithm may need to use an exponential number of pivot rules [34] in

order to find the solution of an integer linear program.

The time complexity of the proposed calculus, as implemented in Avalanche, is

double exponential in the worst case as the algorithm needs to apply rules to each

node that are stored in the node’s rules queue. Each rule execution adds more rules

to the queue. Some rules need to call CPLEX that is worst case exponential. Thus

the time complexity becomes double exponential in the worst case.

During the reasoning process the algorithm has to create a certain number of

internal nodes. Different types of nodes serve different purposes and are needed to

ensure the algorithm is sound and complete.

In order to test for subsumption between two named concepts the algorithm will

118 Chapter 9. Complexity Analysis

need to create clone nodes. In the worst case it will create at most n2
pos_clone positive

clone nodes and also at most n2
neg_clone negative clone nodes. As the positive and

negative clones are needed to test for subsumption and disjointness between con-

cepts in the worst case the algorithm will have to test all possible pairs of concepts.

Furthermore, in the worst case the algorithm will create one anonymous node

per at-least cardinality restriction in a node. Thus in the worst case we will have at

most nanonym anonymous nodes where nanonym is the number of at-least cardinality

restrictions in the ontology.

The algorithm will also create at most n2
un f old unfold nodes for each node that

contains at least two disjunctions in the attempt to resolve two disjunctions. In this

case nun f old is a number of disjunctions in a node.

Thus it implies that the worst-case complexity of the proposed calculus is double

exponential as it is defined below. However, by leveraging CPLEX we are able to

process ontologies with qualified number restrictions in the best-case polynomial

time [62].

22nrules + 2nnodes + n2
pos_clone + n2

neg_clone + nanonym + n2
un f old

119

Chapter 10

Performance Evaluation

In this chapter we will discuss performance evaluation of Avalanche compared to

other prominent description logic reasoners such as Fact++, Hermit, JFact, Kon-

clude, and Racer.

In the sections below we compare performance of the reasoners on six sets of

benchmarks and use graphs to visualize the results. Each of the six graphs repre-

sents the CPU time needed for each reasoner to classify the benchmark ontologies.

The y-axis represents the CPU time in seconds and the x-axis represents the bench-

mark ontologies. We use the logarithmic scale for the y-axis and set classification

timeout for each ontology at 1000 seconds.

When we started to implement our reasoner we needed test ontologies that

would contain interacting qualified number restrictions that would lead to sub-

sumptions in order to not only evaluate the reasoner’s runtime as well as to ensure

that it is sound, complete, and terminating. Unfortunately due to our specific needs

we could not find the exact ontologies that would meet our criteria. For this reason

we had to modify existing ontologies and to adapt them to our needs. In particular

we adapted benchmarks from [18]. We also designed some benchmarks ourselves.

Therefore the performance of Avalanche will be compared to the performance of

120 Chapter 10. Performance Evaluation

other reasoners on the benchmarks that were either designed or modified by us as

we compare them based on their ability to classify ontologies that focus on entail-

ments based on qualified number restrictions.

Briefly, the results indicate that Avalanche performs better than other reasoners

when classifying ontologies with interacting qualified number restriction that result

in entailments thus achieving the main goal of our research. When other reasoners

time out Avalanche is the only one that can classify all the ontologies. We believe

that we managed to accomplish this due to the adoption of the Branch-and-Price

algorithm.

The complete results that include exact runtimes that each reasoner needed to

classify benchmark ontologies can be found in Appendix C.

We used the following reasoner versions: Fact++ 1.6.3, Hermit 1.3.8.1099, JFact

1.2.2, Konclude 0.6.2-544, and Racer 3.0.

We ran the benchmarks on the HP DL580 Scientific Linux SMP server. The server

has four 15-core processors (Gen8 Intel Xeon E7-4890v2 2.8 GHz). Each proces-

sor has 256GB of shared RAM. The total RAM is 1TB. The cores support hyper-

threading.

10.1 Canadian Parliament Benchmarks

The Canadian Parliament benchmarks represent a real-life situation. They model

provinces, their residents, and factions. These benchmark ontologies contain defini-

tions of what it is to be a resident of a province and how many members can have

factions of different size. These ontologies were derived and adapted for our needs

from [18].

10.1. Canadian Parliament Benchmarks 121

Both ALCQ and ELQ benchmarks model the Canadian Parliament. ELQ is

equivalent to ALCQ but the syntax of ELQ is restricted. ALCQ allows qualified

restrictions, existential and universal restrictions, conjunctions, disjunctions, and

negations of concepts and expressions but ELQ allows only qualified restrictions,

conjunctions, and existential restrictions.

10.1.1 Performance Evaluation for ALCQ Ontologies

This is an extract from one of the Canadian Parliament benchmarks - the canadian-

parliament-ALCQ ontology. The ontology models all the provinces of Canada and

classifies them into tiny, small, medium, or big factions based on the number of

members. Below we will show how it is modelled for the province of Alberta:

First we define that Alberta (AB) is a Canadian province.

AB v CanadianProvince

The Alberta faction (ABfaction) should have 28 members that are residents of

Alberta (ABres).

8hasMember.ABresu � 21 hasMember.ABresu = 28 hasMember.ABres v

AB f action

A faction is of medium size if it has between 16 and 40 members.

8hasMember.CanResu � 16 hasMember.CanResu  40 hasMember.CanRes v

mediumProvinceFaction

Thus, it is entailed that the Alberta faction is a medium size faction.

122 Chapter 10. Performance Evaluation

The other Canadian Parliament benchmarks contain different variations of this

ontology that contain exactly qualified cardinality restrictions, existential cardinality

restrictions, and disjunctions.

Given that Canada has only 10 provinces these ontologies are rather small and

also appear to be not very computationally difficult. The ontology we used in the

example above contains only 35 axioms. However, not every reasoner can classify

these ontologies in an acceptable amount of time.

ALCQ benchmarks contain 8 ontologies. In the Table 10.1 we present for each

reasoner the total CPU time in seconds needed to classify all the benchmarks and

the speedup factor of Avalanche. The speedup factor of Avalanche compared to

another reasoner is defined by dividing the total runtime of the reasoner by the total

runtime of Avalanche. According to the speedup factor Avalanche is one order of

magnitude faster than any other reasoner except for Racer that is a highly optimized

system.

CPU time Speedup factor of Avalanche
Avalanche 539.94 1.0
Fact++ 7952.78 14.7
Hermit 8001.86 14.8
JFact 8406.36 15.5
Konclude 5947.59 11.0
Racer 84.19 0.1

TABLE 10.1: Total CPU time and speedup factor for ALCQ bench-
marks

As it can be observed in Figure 10.1, the performance of Avalanche is very stable.

Konclude starts rather well but quickly times out like Hermit, JFact, and Fact++.

Racer initially is very fast but eventually it plateaus.

10.1. Canadian Parliament Benchmarks 123

2 4 6 8

10�1

100

101

102

103

Ontology (# of ontologies = 8)

C
PU

tim
e

in
se

co
nd

s
Avalanche

Fact++

Hermit

JFact

Konclude

Racer

FIGURE 10.1: ALCQ benchmark runtimes in seconds

10.1.2 Performance Evaluation for ELQ Ontologies

The ELQ ontologies contain variations of the ALCQ ontologies expressed in ELQ

syntax. For example, universal restrictions have to be replaced with equivalent qual-

ified number restrictions. Negations and disjunctions should also be expressed by

means of qualified number restrictions. Below we model that all members of the

medium size faction should be Canadian residents or that there can be no more

than 0 non-Canadian residents.

� 16 hasMember.CanResu  0 hasMember.nonCanResu 

40 hasMember.CanRes v mediumProvinceFaction

Thus it could be expected that the ELQ benchmarks should not be more difficult

to classify than the ALCQ benchmarks but in reality the syntax changes negatively

affect performance of all the reasoners. These benchmarks contain 22 ontologies. In

124 Chapter 10. Performance Evaluation

the Table 10.2 we present for each reasoner the total CPU time in seconds needed to

classify all the benchmarks and the speedup factor. As Avalanche was designed to

deal with qualified number restrictions for these ontologies it is not only the fastest

reasoner but also the only reasoner that does not time out.

CPU time Speedup factor of Avalanche
Avalanche 1.402 1.0
Fact++ 22.005 15.6
Hermit 22.007 15.6
JFact 23.779 16.9
Konclude 20.989 14.9
Racer 6.024 4.2

TABLE 10.2: Total CPU time and speedup factor for ELQ benchmarks

As it can be seen in Figure 10.2 Hermit cannot classify any of the ELQ ontologies.

0 5 10 15 20

10�2

10�1

100

101

102

103

Ontology (# of ontologies = 22)

C
PU

tim
e

in
se

co
nd

s

Avalanche

Fact++

Hermit

JFact

Konclude

Racer

FIGURE 10.2: ELQ benchmark runtimes in seconds

10.2. Satisfiable and Unsatisfiable ALCHQ Benchmarks 125

10.2 Satisfiable and Unsatisfiable ALCHQ Benchmarks

These ontologies were derived and adapted for our needs from the benchmarks

used in [18]. In addition to these ontologies also contain role hierarchies (H).

Both satisfiable and unsatisfiable ALCHQ ontologies are small ontologies that

model different entailments due to interactions between qualified restrictions. The

example below is a typical benchmark ontology.

 9 r.¬(A)t  10 r.¬(B)u � 20 r.(A t B)u  10 r.Au  10 r.B v C

The other benchmark ontologies model different interactions between qualified

number restrictions, or contain bigger cardinalities, e.g. 1000 instead of 10, or con-

tain different combinations of negations and disjunctions. Still, most reasoners find

it hard to classify these ontologies. Avalanche is the only reasoner that does not time

out. We believe that these benchmarks show the true potential of applying Linear

Programming together with the Branch-and-Price algorithm to semantic reasoning

because this is the reason why Avalanche is superior to other reasoners for these

benchmarks.

10.2.1 Performance Evaluation for Satisfiable ALCHQ Ontologies

Satisfiable ALCHQ benchmark contains 147 ontologies. They are called satisfiable

because we are testing satisfiability of the concept Thing that should be satisfiable.

In the Table 10.3 we present for each reasoner the total CPU time in seconds

needed to classify all the benchmarks and the speedup factor. Avalanche is the

fastest reasoner and one order of magnitude faster than Hermit.

126 Chapter 10. Performance Evaluation

CPU time Speedup factor of Avalanche
Avalanche 5160.30 1.0
Fact++ 21240.69 4.1
Hermit 95003.48 18.4
JFact 25238.94 4.8
Konclude 27047.94 5.2
Racer 14854.21 2.8

TABLE 10.3: Total CPU time and speedup factor for Sat-ALCHQ
benchmarks

Figure 10.3 illustrates that Avalanche is the only reasoner that is capable of clas-

sifying all the benchmark ontologies. All the other tested reasoners time out.

0 50 100 150

10�2

10�1

100

101

102

103

Ontology (# of ontologies = 147)

C
PU

tim
e

in
se

co
nd

s

Avalanche

Fact++

Hermit

JFact

Konclude

Racer

FIGURE 10.3: Sat-ALCHQ benchmark runtimes in seconds

10.3. Performance Benchmarks 127

10.2.2 Performance Evaluation for Unsatisfiable ALCHQ Ontolo-

gies

Unsatisfiable ALCHQ benchmark contains 99 unsatisfiable ontologies. The differ-

ence between the satisfiable and the unsatisfiable benchmarks is that the concept

Thing should be unsatisfiable if all the entailments have been discovered. In the

Table 10.4 we present for each reasoner the total CPU time in seconds needed to

classify all the benchmarks and the speedup factor. Avalanche is the fastest reasoner

and two orders of magnitude faster than Hermit, one order of magnitude faster than

Konclude, JFact, and Fact++.

CPU time Speedup factor of Avalanche
Avalanche 1899.91 1.0
Fact++ 18770.67 9.8
Hermit 65292.20 34.3
JFact 21692.30 11.4
Konclude 21066.03 11.0
Racer 8046.46 4.2

TABLE 10.4: Total CPU time and speedup factor for Unsat-ALCHQ
benchmarks

The results presented in Figure 10.4 illustrate that Avalanche is the only reasoner

that can classify all the benchmark ontologies.

10.3 Performance Benchmarks

Performance benchmarks were developed by us to validate classification results

produced by Avalanche. These are small ontologies that test for subsumptions due

to different interactions between concepts. This test suite grew from a dozen to more

than 150 ontologies over the course of our work. Therefore we decided to include

them into this thesis as they also give interesting insights on performance of other

128 Chapter 10. Performance Evaluation

0 20 40 60 80 100

10�2

10�1

100

101

102

103

Ontology (# number of ontologies = 99)

C
PU

tim
e

in
se

co
nd

s

Avalanche

Fact++

Hermit

JFact

Konclude

Racer

FIGURE 10.4: Unsat-ALCHQ benchmark runtimes in seconds

reasoners as we did not expect that our simple examples could not be classified in

an acceptable amount of time by other reasoners.

Each ontology is designed to test for subsumption between two concepts. How-

ever, in order to discover the subsumption other subsumptions should be discov-

ered first. We have two benchmark sets - first set contains ontologies where Thing

is satisfiable and second set contains ontologies where Thing should become unsat-

isfiable if all entailments have been discovered.

10.3.1 Performance Evaluation for Satisfiable Performance Bench-

marks

Satisfiable Performance benchmark contains 179 ontologies. Below we will present

one of the typical benchmark ontologies to give a general idea of the benchmark

10.3. Performance Benchmarks 129

collection. In the example it is entailed that C v D.

A u B v E

C v� 1 R.Au � 1 R.Bu  1 R.Thing

� 1 R.F v D

� 1 R.F v D

As the example above does not have complicated entailments due to qualified

number restrictions all the reasoners are able to classify it without any issues. Below

we will present another benchmark ontology that does not appear to be very diffi-

cult but it can only be classified by Avalanche and Racer due to interacting qualified

number restrictions. As it can seen an ontology should not contain many axioms or

have big cardinality values in order to be too difficult to be classified within a reason-

able amount of time. The examples like this prove that the idea behind Avalanche

has a great potential for reasoner development.

AB u (� 1 s1.(XA u XB)) v A

¬A v notA

(� 1 s1.XA) u (� 1 s1.XB)

AB u (� 1 s1.(XA u XB)) v A

AB u (� 1 s1.Thing) v B

¬B v notB

(� 20 r.AB) u ( 10 r.A) u ( 10 r.B)

130 Chapter 10. Performance Evaluation

(� 1 s2.XA) u (� 1 s2.XB)

C u (� 1 s2.(XA u XB)) v X2

C u (� 2 s2.Thing) v X1

¬A v notA

¬B v notB

 9 r.notA

C u (� 2 s2.Thing) v X1

 10 r.notB

C u (� 1 s2.(XA u XB)) v X2

AB u (� 1 s1.(XA u XB)) v A

C u (� 1 s2.(XA u XB)) v X2

AB u (� 1 s1.(XA u XB)) v A

C u (� 1 s2.(XA u XB)) v X2

In the Table 10.5 we present for each reasoner the total CPU time in seconds

needed to classify all the benchmarks and the speedup factor. Avalanche is the sec-

ond fastest reasoner after Racer.

The results Figure 10.5 illustrate that only Avalanche and Racer can classify all

the ontologies and four other reasoners time out.

10.3. Performance Benchmarks 131

CPU time Speedup factor of Avalanche
Avalanche 4.703 1.0
Fact++ 12.376 2.6
Hermit 18.540 3.9
JFact 14.590 3.1
Konclude 13.923 2.9
Racer 729 0.16

TABLE 10.5: Total CPU time and speedup factor for Sat-ALCHQ
benchmarks

0 50 100 150

10�2

10�1

100

101

102

103

Ontology (# of ontologies = 179)

C
PU

tim
e

in
se

co
nd

s

Avalanche

Fact++

Hermit

JFact

Konclude

Racer

FIGURE 10.5: P-Sat benchmark runtimes in seconds

10.3.2 Performance Evaluation for Unsatisfiable Performance On-

tologies

Unsatisfiable Performance benchmark contains 155 ontologies. In the Table 10.6 we

present for each reasoner the total CPU time in seconds needed to classify all the

benchmarks and the speedup factor. Although Racer has a better CPU time than

Avalanche it cannot classify all the ontologies and times out for some of them.

132 Chapter 10. Performance Evaluation

CPU time Speedup factor of Avalanche
Avalanche 2.698 1.0
Fact++ 16.309 6.0
Hermit 22.159 8.2
JFact 17.607 6.5
Konclude 16.562 6.1
Racer 2.195 0.8

TABLE 10.6: Total CPU time and speedup factor for Unsat-ALCHQ
benchmarks

The results presented in Figure 10.6 illustrate that Avalanche is the only reasoner

that does not time out.

0 50 100 150

10�2

10�1

100

101

102

103

Ontology (# of ontologies = 155)

C
PU

tim
e

in
se

co
nd

s

Avalanche

Fact++

Hermit

JFact

Konclude

Racer

FIGURE 10.6: P-Unsat benchmark runtimes in seconds

133

Chapter 11

Conclusions and Future Work

11.1 Conclusions

In this thesis we have presented a novel calculus for the description logic ALCHQ.

The calculus has been implemented in a system called Avalanche that serves as a

proof of concept. Avalanche implements saturation-based rules and constructs a

graph that represents a classified ontology by applying these rules. The information

that is accumulated in the graph will never be removed. Once no more rules can be

applied we know that the graph is saturated and a fully classified taxonomy can be

derived from it as each graph node represents a named concept and contains all its

entailed subsumers.

We have designed Avalanche as a saturation-based reasoner by gradually ex-

tending the existing rules starting with description logic EL. Avalanche reads ax-

ioms and derives information from them. Being a saturation-based reasoner also

means that Avalanche can avoid creating excessive models as it is done in Tableau

based reasoners that need to construct models.

The main advantage of Avalanche compared to other reasoners is an ability to

134 Chapter 11. Conclusions and Future Work

classify ontologies that contain qualified number restrictions entailing subsump-

tions. The process of reasoning with number restrictions is delegated to a special

module that implements Integer Linear Programming and the column generation

algorithm Branch-and-Price algorithm. To the best of our knowledge, none of the

existing reasoners has leveraged Branch-and-Price (see Chapter 3). Both HARD [20]

and Racer have implemented only ILP without the column generation. Based on

our results it can be seen that Avalanche has a clear advantage over the existing rea-

soners when trying to solve problems that contain entailments based on interactions

of qualified number restrictions.

Another distinguishing characteristic of Avalanche is that during the reasoning

process it accumulates information and never needs to backtrack as Tableau rea-

soners do. In order to make it possible different types of internal nodes have been

introduced that serve different purposes. Anonymous nodes test unsatisfiability of

nodes due the presence of number restrictions as their subsumers. Clone nodes col-

lect information that might eventually result in a subsumption between concepts

also due to number restrictions. Once these nodes have accumulated enough infor-

mation to derive new subsumptions this information will be recorded in the graph.

Unlike Tableau based reasoners Avalanche does not construct models that might

eventually fail due to the presence of disjunctions in ontologies. It uses resolution

techniques to reason on disjunctions.

To summarize, we have addressed and solved our objectives by designing a cal-

culus for the description logic ALCHQ and implemented it in a saturation-based

reasoner Avalanche. The reasoner being saturation-based is able to create smaller

models and does not need to backtrack as it employs the resolution techniques to

handle disjunctions. Lastly, it implements the Branch-and-Price algorithm to reduce

qualified number restrictions to linear programs.

11.2. Future Work 135

11.2 Future Work

Clearly, we understand that our implementation has room for improvement, since

our focus so far has been on reasoning with large numbers of qualified number

restrictions and this goal has been achieved. However, since our work so far has

not been primarily concerned with general performance, we believe that we would

need to further optimize the implementation of Avalanche in order for it to be able

to successfully compete with other prominent reasoners on all kinds of ontologies.

Further, a major refactoring of Avalanche has to be planned in order to introduce

a new strategy for the application of the saturation-based rules to the input ontology.

This could potentially have a positive effect on the reasoner’s runtime. In order

to achieve this the reasoner’s performance has to be re-evaluated on case by case

basis so that it would be possible to come up with more efficient heuristics for rule

applications.

Our ultimate goal would be to extend our calculus by introducing I - the in-

verse roles and O � nominals that would require us to produce a calculus for the

description logic ALCHOIQ or SHOIQ.

Finally, Avalanche could also become a goal oriented reasoner instead of just

classifying ontologies. It could test satisfiability of a concept or focus on subsump-

tion between two concepts.

In conclusion, we believe that our work greatly contributed to the DL research

field and hopefully it will be of use.

136

Bibliography

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, ed-

itors. The Description Logic Handbook: Theory, Implementation, and Applications.,

second ed. Cambridge University Press, New York, NY, USA, 2007.

[2] Franz Baader, Sebastian Brand, and Carsten Lutz. Pushing the EL envelope.

In In Proc. of International Joint Conference on Artificial Intelligence (IJCAI2005),

pages 364–369. Morgan-Kaufmann Publishers, 2005.

[3] Franz Baader, Sebastian Brand, and Carsten Lutz. Pushing the EL envelope.

Technical report, Technische Universität Dresden, 2005.

[4] Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the EL Envelope

Further. In Kendall Clark and Peter F. Patel-Schneider, editors, In Proceedings

of the OWLED 2008 DC Workshop on OWL: Experiences and Directions, 2008.

[5] Franz Baader, Jan Hladik, Carsten Lutz, Frank Wolter, and Liverpool L Zf. From

tableaux to automata for description logics. Fundamenta Informaticae, 57, 2003.

[6] Franz Baader, Bernhard Hollunder, Bernhard Nebel, Hans-Jürgen Profitlich,

and Enrico Franconi. An Empirical Analysis of Optimization Techniques for

Terminological Representation Systems - or: Making KRIS get a move on, 1992.

BIBLIOGRAPHY 137

[7] Franz Baader and Ralf Küsters. Matching in Description Logics with Existential

Restrictions. In In Proc. of International Conference on Knowledge Representation

and Reasoning (KR2000), pages 261–272. Morgan Kaufmann Publishers, 2000.

[8] Franz Baader and Ulrike Sattler. An Overview of Tableau Algorithms for De-

scription Logics. Studia Logica, 69(1):5–40, 2001.

[9] A. Bate, B. Motik, B. Cuenca Grau, F. Simančík, and I. Horrocks. Extending

consequence-based reasoning to SRIQ. In Proceedings of KR, pages 187–196,

2016.

[10] Andrew Bate, Boris Motik, Bernardo Cuenca Grau, Frantisek Simancik, and Ian

Horrocks. Extending consequence-based reasoning to SHIQ. In Proceedings of

the 28th International Workshop on Description Logics, Athens, Greece, June 7-10,

2015.

[11] Andrew Bate, Boris Motik, Bernardo Cuenca Grau, David Tena Cucala, Fran-

tišek Simančík, and Ian Horrocks. Consequence-Based Reasoning for Descrip-

tion Logics with Disjunctions and Number Restrictions. J. of Artificial Intelli-

gence Research, 63:625-690, 2018.

[12] Peter Baumgartner, Ulrich Furbach, and Ilkka Niemelä. Hyper Tableaux. In

Proceedings of the European Workshop on Logics in Artificial Intelligence, JELIA ’96,

pages 1–17, London, UK, 1996. Springer-Verlag.

[13] Martin Buchheit, Francesco M. Donini, and Andrea Schaerf. Decidable reason-

ing in terminological knowledge representation systems. Journal of Artificial

Intelligence Research, 1:109–138, 1993.

[14] Canadian Parliament. https://en.wikipedia.org/wiki/House_of_Commons_

of_Canada.

https://en.wikipedia.org/wiki/House_of_Commons_of_Canada
https://en.wikipedia.org/wiki/House_of_Commons_of_Canada

138 BIBLIOGRAPHY

[15] Vaclav Chvatal. Linear Programming, Freeman, 1983.

[16] CPLEX Optimizer. http://www-01.ibm.com/software/commerce/

optimization/cplex-optimizer/. Accessed on: 2015.21.01.

[17] Donini, F.M., Massacci, F. EXPTIME tableaux for ALC. J. of Artificial Intelli-

gence 124(1), 87–138, 2000.

[18] Jocelyne Faddoul, Reasoning Algebraically with Description Logics. PhD the-

sis, Concordia University. 2011.

[19] Jocelyne Faddoul and Volker Haarslev. Algebraic tableau reasoning for the

description logic SHOQ, Journal of Applied Logic 8(4): 334-355 (2010), Special

Issue on Hybrid Logics

[20] Jocelyne Faddoul and Volker Haarslev Optimizing Algebraic Tableau Reason-

ing for SHOQ: First Experimental Results Proceedings of the 2010 International

Workshop on Description Logics (DL-2010), pp. 161-172 Waterloo, Canada,

May 4-7, 2010.

[21] FaCT++. http://owl.cs.manchester.ac.uk/tools/fact/.

[22] Nasim Farsiniamarj and Volker Haarslev. Practical Reasoning with Qualified

Number Restrictions: A Hybrid Abox Calculus for the Description Logic SHQ.

AI Commun., 23(2-3):205–240, April 2010.

[23] Birte Glimm, Ian Horrocks, and Boris Motik. Optimized Description Logic

Reasoning via Core Blocking. In Jurgen Giesl and Reiner Hahnle, editors, Au-

tomated Reasoning, volume 6173 of Lecture Notes in Computer Science, pages 457–

471. Springer Berlin Heidelberg, 2010.

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://owl.cs.manchester.ac.uk/tools/fact/

BIBLIOGRAPHY 139

[24] Birte Glimm, Ian Horrocks, Boris Motik, Rob Shearer, and Giorgos Stoilos. A

Novel Approach to Ontology Classification. Journal of Web Semantics, 14:84–101,

July 2012.

[25] Birte Glimm and Yevgeny Kazakov. Role Conjunctions in Expressive Descrip-

tion Logics. In Iliano Cervesato, Helmut Veith, and Andrei Voronkov, editors,

Logic for Programming, Artificial Intelligence, and Reasoning, volume 5330 of Lec-

ture Notes in Computer Science, pages 391–405. Springer Berlin Heidelberg, 2008.

[26] V. Haarslev, K. Hidde, R. Möller, and M. Wessel. The RacerPro knowledge

representation and reasoning system. Semantic Web, 3(3):267–277, 2012.

[27] V. Haarslev and R. Möller. RACER system description. In Proceedings of Inter-

national Joint Conference on Automated Reasoning, pages 701–705, 2001.

[28] HermiT. http://www.hermit-reasoner.com/download.html.

[29] Pascal Hitzler, Markus Krötzsch, Sebastian Rudolph. Foundations of Semantic

Web Technologies 2009 Chapman & Hall/CRC

[30] Bernhard Hollunder and Franz Baader. Qualifying Number Restrictions in

Concept Languages. Technical report, DFKI, 1991.

[31] Ian Horrocks and Ulrike Sattler. Optimised Reasoning for SHIQ. In Proc. of

the 15th Eur. Conf. on Artificial Intelligence (ECAI 2002), pages 277–281, July 2002.

[32] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for ex-

pressive description logics. In Proceedings of the 6th International Conference on

Logic Programming and Automated Reasoning, LPAR ’99, pages 161–180, London,

UK, 1999. Springer-Verlag.

http://www.hermit-reasoner.com/download.html

140 BIBLIOGRAPHY

[33] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Reasoning with Individuals

for the Description Logic SHIQ. In Proceedings of the 17th International Con-

ference on Automated Deduction, CADE-17, pages 482–496, London, UK, 2000.

Springer-Verlag.

[34] V. Klee and G.J. Minty. How Good is the Simplex Algorithm? In O. Shisha,

editor, Inequalities III, pp. 159-175. Academic Press, New York, NY, 1972.

[35] Konclude. http://www.derivo.de/en/produkte/konclude/.

[36] Yevgeny Kazakov, Markus Krötzsch, and František Simančík. The Incredible

ELK. J. Autom. Reason., 53(1):1–61, June 2014.

[37] Markus Krötzsch, František Simančík, Ian Horrocks. A Description Logic

Primer, Technical Report, arXiv.org, volume CoRR abs/1201.4089 January 2012

[38] George F. Luger. Artificial Intelligence: Structures and Strategies for Complex

Problem Solving, 2008. 0321545893, Addison-Wesley Publishing Company,

USA, 6th edition.

[39] Carsten Lutz. Complexity of Terminological Reasoning Revisited. In Lecture

Notes in Artificial Intelligence, pages 181–200. Springer-Verlag, 1999.

[40] Boris Motik, Rob Shearer, and Ian Horrocks. A Hypertableau Calculus for

SHIQ. In Diego Calvanese, Enriso Franconi, Volker Haarslev, Domenico

Lembo, Boris Motik, Sergio Tessaris, and Anny-Yasmin Turhan, editors, Proc.

of the 20th Int. Workshop on Description Logics (DL 2007), pages 419–426,

Brixen/Bressanone, Italy, June 8–10 2007. Bozen/Bolzano University Press.

http://www.derivo.de/en/produkte/konclude/

BIBLIOGRAPHY 141

[41] Boris Motik, Rob Shearer, and Ian Horrocks. Optimized reasoning in descrip-

tion logics using hypertableaux. In Frank Pfenning, editor, Automated Deduc-

tion - CADE21, volume 4603 of Lecture Notes in Computer Science, pages 67–83.

Springer Berlin Heidelberg, 2007.

[42] Boris Motik, Rob Shearer, and Ian Horrocks. Hypertableau Reasoning for De-

scription Logics. Journal of Artificial Intelligence Research, 36:165–228, 2009.

[43] Hans Jürgen Ohlbach and Jana Koehler. Modal Logics, Description Logics and

Arithmetic Reasoning. Artificial Intelligence, 109:1–31, 1999.

[44] Racer. https://www.ifis.uni-luebeck.de/index.php?id=385.

[45] A. Robinson. Automatic Deduction with Hyper-Resolution. Int. Journal of Com-

puter Mathematics, pages 227–234, 1965.

[46] Matthias Samwald. Genomic CDS: an example of a complex ontology for phar-

macogenetics and clinical decision support. In 2nd OWL Reasoner Evaluation

Workshop, pages 128–133. CEUR, 2013.

[47] Matthias Samwald. An update on genomic CDS, a complex ontology for phar-

macogenomics and clinical decision support. In 3rd OWL Reasoner Evaluation

Workshop, pages 58–63. CEUR, 2014.

[48] The Semantic Web Stack. http://en.wikipedia.org/wiki/Semantic_Web_

Stack. Accessed on: 2015.01.05.

[49] Rob Shearer, Boris Motik, and Ian Horrocks. HermiT: A Highly-Efficient OWL

Reasoner. In Proc. of the 5th Int. Workshop on OWL Experiences and Directions

(OWLED 2008), volume 432 of CEUR (http: // ceur-ws. org/), 2008.

https://www.ifis.uni-luebeck.de/index.php?id=385
http://en.wikipedia.org/wiki/Semantic_Web_Stack
http://en.wikipedia.org/wiki/Semantic_Web_Stack
http://ceur-ws.org/

142 BIBLIOGRAPHY

[50] F. Simančík, B. Motik, and I. Horrocks. Consequence-based and fixed-

parameter tractable reasoning in description logics. Artificial Intelligence,

209:29–77, 2014.

[51] František Simančík, Yevgeny Kazakov, and Ian Horrocks. Consequence-Based

Reasoning beyond Horn Ontologies. In Toby Walsh, editor, Proceedings of the

22nd International Joint Conference on Artificial Intelligence (IJCAI’11), pages 1093–

1098. AAAI Press/IJCAI, 2011.

[52] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and

Yarden Katz. Pellet: A Practical OWL-DL Reasoner. Journal of Web Semantics,

5(2):51–53, June 2007.

[53] SNOMED Clinical Terms (SNOMED CT). http://ihtsdo.org/snomed-ct/.

Accessed on: 22.06.2016.

[54] Andreas Steigmiller, Birte Glimm, and Thorsten Liebig. Coupling Tableau Al-

gorithms for Expressive Description Logics with Completion-Based Saturation

Procedures. In Stephane Demri, Deepak Kapur, and Christoph Weidenbach,

editors, Automated Reasoning, volume 8562 of Lecture Notes in Computer Science,

pages 449–463. Springer International Publishing, 2014.

[55] Andreas Steigmiller, Birte Glimm, and Thorsten Liebig. Optimised Absorp-

tion for Expressive Description Logics. In Riccardo Rosati Meghyn Bienvenu,

Magdalena Ortiz and Mantas Simkus, editors, Proceedings of the 27th Interna-

tional Workshop on Description Logics (DL 2014), volume 1193 of CEUR Workshop

Proceedings. CEUR-WS.org, 2014.

http://ihtsdo.org/snomed-ct/

BIBLIOGRAPHY 143

[56] Andreas Steigmiller, Thorsten Liebig, and Birte Glimm. Konclude: System De-

scription. Web Semantics: Science, Services and Agents on the World Wide Web,

Volume 27, Issue C, August 2014, pp 78-85.

[57] Andreas Steigmiller, Thorsten Liebig, and Birte Glimm. Extended Caching,

Backjumping and Merging for Expressive Description Logics. In Bernhard

Gramlich, Dale Miller, and Uli Sattler, editors, Automated Reasoning, volume

7364 of Lecture Notes in Computer Science, pages 514–529. Springer Berlin Hei-

delberg, 2012.

[58] David Tena Cucala, Bernardo Cuenca Grau, and Ian Horrocks. Sequoia: A

Consequence Based Reasoner for SROIQ. In Proceedings of the Description Logic

Workshop (DL 2019), volume 2373 of CEUR Workshop Proceedings. 2019.

[59] Dmitry Tsarkov and Ian Horrocks. FaCT++ Description Logic Reasoner: Sys-

tem Description. In Proceedings of the Third International Joint Conference on

Automated Reasoning, (IJCAR2006), pages 292–297, Berlin, Heidelberg, 2006.

Springer-Verlag.

[60] Dmitry Tsarkov, Ian Horrocks, and Peter F. Patel-Schneider. Optimizing Ter-

minological Reasoning for Expressive Description Logics. Journal of Automated

Reasoning, 39(3):277–316, 2007.

[61] Jelena Vlasenko, Maryam Daryalal, Volker Haarslev, and Brigitte Jaumard. A

Saturation-based Algebraic Reasoner for ELQ. In Proceedings of the 5th Workshop

on Practical Aspects of Automated Reasoning, pages 110-124, July 2016, Coimbra,

Portugal.

[62] Jelena Vlasenko, Volker Haarslev, Brigitte Jaumard. Pushing the Boundaries

of Reasoning About Qualified Cardinality Restrictions. In Proceedings of the

144 BIBLIOGRAPHY

11th International Symposium on Frontiers of Combining Systems (FroCoS 2017),

Brasilia, Brazil, LNAI 10483, pp. 95-112.

145

Appendix A

Publications

A Saturation-based Algebraic Reasoner for ELQ.

Jelena Vlasenko, Maryam Daryalal, Volker Haarslev, Brigitte Jaumard,

In Proceedings of the 5th Workshop on Practical Aspects of Automated Reasoning (PAAR

2016), Coimbra, Portugal, CEUR, pp. 110-124.

Pushing the Boundaries of Reasoning About Qualified Cardinality Restrictions.

Jelena Vlasenko, Volker Haarslev, Brigitte Jaumard,

In Proceedings of the 11th International Symposium on Frontiers of Combining Systems

(FroCoS 2017), Brasilia, Brazil, LNAI 10483, pp. 95-112.

146

Appendix B

Example

B.1 Example of Rule Applications

In this example we will demonstrate how some of the normalization and the satu-

ration rules work. In particular, we will show how and why anonymous and clone

nodes are created. We will also explain what happens when these nodes become

unsatisfiable.

Consider the following TBox T:

1. C v E

2. E v� 3 R.( 2 S.E)

3. � 2 R.( 2 S.C) v D

This TBox entails only one subsumption: E v D. Below we will show how the

saturation-based rules are applied in order to discover this subsumption. First, the

system will start with the application of the normalization rules. In this example the

second and the third axioms should be normalized. The first axiom is already in the

normal form. After the transformation the TBox T will look as follows:

1. C v E

B.1. Example of Rule Applications 147

2. E v� 3 R.aux2

3. aux2 v 2 S.E

4. � 2 R.aux1 v D

5.  2 S.C v aux1

The axiom E v� 3 R.( 2 S.E) will be transformed into E v� 3 R.aux2 and

aux2 v 2 S.E by the normalization rule NR2rhs. � 2 R.( 2 S.C) v D will be

transformed into � 2 R.aux1 v D and  2 S.C v aux1 by the normalization rule

NR3lhs.

As the algorithm builds a graph during the saturation-based phase it will start

with the creation of a node for every named concept in the TBox T. As a result, we

will have the following nodes:

• Node for the representative concept >. The algorithm always creates a node

for the concept > even if it is not explicitly mentioned in the TBox T since > is

a subsumer of every concept in an ontology.

• Node for the representative concept C.

• Node for the representative concept E.

• Node for the representative concept D.

• Node for the representative concept aux1.

• Node for the representative concept aux2.

Then the algorithm adds two initial subsumers to the newly created nodes: the

representative concept of the node that is the concept for which the node was created

and > (see Figure B.1).

148 Appendix B. Example

>

{>}

C

{>; C}

E

{>; E}

D

{>; D}

aux1

{>; aux1}

aux2

{>; aux2}

FIGURE B.1: Initialization

After that the saturation-based rules will be applied to the normalized TBox T.

First the unfolding rules that are a part of the saturation-based rules will be applied.

In this example only two unfolding rules are applicable. The first one is the rule Rv.

It will add E to the subsumers of the node with the representative concept C. The

rule will also add  2 S.E to the subsumers of the node aux2, and � 3 R.aux2 to the

subsumers of the node E (see Figure B.2).

>

{>}

C

{>; C; E}

E

{>; E;� 3 R.aux2}

D

{>; D}

aux1

{>; aux1}

aux2

{>; aux2; 2 S.E}

FIGURE B.2: Application of the Rule Rv

The second rule that will be applied is RP./ . It will add a possible subsumer

 1 R.aux1 to the node D.

At this point we will take a shortcut and demonstrate application only of those

rules that will lead us to the entailed subsumption. Please note that Avalanche will

not be able to make this guess and will apply all the rules until they stop adding

new information to the graph. The system will compute possible subsumers for all

B.1. Example of Rule Applications 149

the nodes and create clones to test subsumption and disjointness between all pairs

of named concepts.

Now we will proceed with the application of the rest of the saturation-based

rules. We apply RvP to create a clone node in order to test whether E v D. The new

node will contain the following subsumers: >,� 3 R.aux2, 1 R.aux1 (see Figure

B.3).

>

{>}

C

{>; C; E}

E

{>; E;� 3 R.aux2}

D

{>; D}

aux1

{>; aux1}

aux2

{>; aux2; 2 S.E}

cloneEvD

{>;� 3 R.aux2; 1 R.aux1}

FIGURE B.3: Creation of a Cloned Node

Then the R f il will be applied to the clone node cloneEvD. The ILP module will

be called and it will return two tuples: (< R >,< aux2 >,< 1 >) and (< R >,<

¬aux1, aux2 >,< 2 >). Based on the returned tuples the rule will create two edges.

First edge will connect the clone node cloneEvD with the existing node aux2. Second

edge will connect cloneEvD with the newly created anonymous node anonym. The

anonymous node will contain the following subsumers: >, ¬aux1, and aux2. We

need to create the anonymous node because of the concepts < ¬aux1, aux2 > that

were returned by the second tuple. This can be interpreted as follows: the role filler

for the role R is an intersection ¬aux1 u aux2. Since there is no node in our graph

with such a role filler we need create an anonymous node. This is demonstrated in

Figure B.4.

150 Appendix B. Example

>

{>}

C

{>; C; E}

E

{>; E;� 3 R.aux2}

D

{>; D}

aux1

{>; aux1}

aux2

{>; aux2; 2 S.E}

cloneEvD

{>;� 3 R.aux2; 1 R.aux1}

anonym

{>;¬aux1; aux2}

R R

FIGURE B.4: Creation of an Anonymous Node

Then the rule RP./ will propagate  2 S.E to the subsumers of the node anonym.

After that the rule Rv6= will fire and add � 3 S.C to the subsumers of anonym (see

Figure B.5). These two qualified cardinality restrictions are infeasible and as a result

the node will become unsatisfiable. ? will be added to the subsumers of the node.

As a result since the anonymous node is unsatisfiable we learn that aux2 and ¬aux1

are disjoint concepts. Finally the algorithm will propagate ? to the source of the

edge that is cloneEvD. It will try to construct another model. However, since there is

no other model the node cloneEvD will also become unsatisfiable. As a result D will

be added to the subsumers of E.

B.1. Example of Rule Applications 151

cloneEvD

{>;� 3 R.aux2; 1 R.aux1}

aux2{>; aux2; 2 S.E} anonym

{>;¬aux1; aux2; 2 S.E;� 3 S.C}

R R

FIGURE B.5: Propagation of Subsumers to the Anonymous Node

152

Appendix C

Evaluation

C.1 Performance Evaluation of ALCQ Ontologies

The ALCQ ontologies used for the following benchmarks model the Canadian Par-

liament thus representing a real-life situation. These ontologies contain a large num-

ber of qualified restrictions in addition to conjunctions, disjunctions, existential re-

strictions, and negations of concepts and expressions. We compared the perfor-

mance of Avalanche, Fact++, Hermit, JFact, Konclude, and Racer. The results are

presented in Table C.1.

Ontology Avalanche Fact++ Hermit JFact Konclude Racer
canadian-parliament-ALCQ 59.33 991.04 999.77 1058.1 2.8 0.17
canadian-parliament-ALCQ-full 74.55 995.64 1000.25 1044.59 985.21 29.07
canadian-parliament-ALCQ-full-inc 119.66 992.36 1002.33 1049.04 993.02 0.73
canadian-parliament-ALCQ-inc 90.57 995.84 1000.95 1052.4 993.17 0.71
canadian-parliament-factions-10 43.69 993.66 999.9 1052.64 2.89 0.18
canadian-parliament-full-factions-1 35.52 995.96 1000.05 1060.91 994.28 0.14
canadian-parliament-full-factions-10 73.33 993.95 1000.62 1051.18 990.73 29.45
canadian-parliament-full-factions-2 43.29 994.33 997.99 1037.5 985.49 23.74

TABLE C.1: Benchmarks using ALCQ Ontologies

C.2. Performance Evaluation of ELQ Ontologies 153

C.2 Performance Evaluation of ELQ Ontologies

The ELQ ontologies used also model the Canadian Parliament but they are less

expressive than ALCQ. These ontologies also contain a large number of qualified

restrictions as well as conjunctions and existential restrictions. We compared per-

formance of Avalanche, Fact++, Hermit, JFact, Konclude, and Racer. The results are

presented in Table C.2.

Ontology Avalanche Fact++ Hermit JFact Konclude Racer
canadian-parliament-ELQ 82.96 1.55 1000.16 2.77 0.03 0.51
canadian-parliament-ELQ-full 125.02 2.04 1000.95 3.09 0.05 999.11
canadian-parliament-ELQ-full-inc 189.64 989.09 1000.56 1076.91 990.29 0.91
canadian-parliament-ELQ-inc 297.74 999.47 1001.12 1069.38 994.11 1.03
canadian-parliament-factions-1 19.16 1.83 1001.49 2.06 0.04 0.19
canadian-parliament-factions-10 68.46 2.21 1000.23 2.44 0.05 0.49
canadian-parliament-factions-10-nr 75.92 1.97 1000.06 2.24 0.03 0.58
canadian-parliament-factions-2 20.82 1.27 1000.6 3.5 0.02 0.22
canadian-parliament-factions-2-nr 25.6 1.59 1000.98 2.65 0.02 0.22
canadian-parliament-factions-3 23.01 1.86 1000.48 2.69 0.02 0.26
canadian-parliament-factions-3-nr 25.59 1.75 1001.68 3.17 0.04 0.25
canadian-parliament-factions-4 32.96 2 1000.73 2.06 0.04 0.27
canadian-parliament-factions-4-nr 29.75 1.43 1001.91 2.6 0.03 0.27
canadian-parliament-factions-5 37.33 2.43 1000.2 2.11 0.03 0.3
canadian-parliament-factions-5-nr 42.23 1.93 1000.31 2.11 0.03 0.31
canadian-parliament-full-factions-1 21.48 1.34 1002.09 2.99 0.03 1.02
canadian-parliament-full-factions-10 76.31 1.61 1000.78 1.81 0.04 998.77
canadian-parliament-full-factions-10-nr 74.04 1.48 1000.06 2.48 0.03 998.86
canadian-parliament-full-factions-2 23.07 1.69 1000.89 2.23 0.03 24.97
canadian-parliament-full-factions-3 32.93 1.61 1000.96 2.65 0.02 998.35
canadian-parliament-full-factions-4 34.69 1.76 999.1 1.96 0.05 998.46
canadian-parliament-full-factions-5 42.82 2.44 998.26 2.11 0.04 998.4

TABLE C.2: Benchmarks using ELQ Ontologies

154 Appendix C. Evaluation

C.3 Performance Evaluation of Satisfiable SHQ Ontolo-

gies

Below we present the results of the performance evaluation on satisfiable SHQ on-

tologies. The difference between ALCQ and SHQ is the presence of H - role hier-

archies. The results are presented in Table C.3.

Ontology Avalanche Fact++ Hermit JFact Konclude Racer

C-SAT-exp-ALCQ-1 17.37 2.85 995.65 7.25 996.68 0.13

C-SAT-exp-ALCQ-2 22.12 999.41 1000.06 1076.87 996.71 0.15

C-SAT-exp-ALCQ-3 16.47 998.56 23.87 1073.43 995.52 0.38

C-SAT-exp-ALCQ-4 17.79 1000.78 1145.1 1019.96 1006.13 3.18

C-SAT-exp-ALCQ-5 17.92 1003.74 1236.11 994.57 1006.25 31.69

C-SAT-exp-ALCQ-6 20.02 1003.8 990.84 995.71 1007.36 335.65

C-SAT-exp-ELQ-1 29.78 1.39 5.7 2.99 0.04 0.12

C-SAT-exp-ELQ-2 23.72 1.38 12.01 2.43 0.03 0.12

C-SAT-exp-ELQ-3 21.85 1.86 1001.71 2.77 0.03 0.13

C-SAT-exp-ELQ-3-normalized 21.38 1.89 998.66 1.76 0.03 0.12

C-SAT-exp-ELQ-4 29.73 2.14 998.76 2.7 0.02 0.12

C-SAT-exp-ELQ-5 27.87 1.22 999.75 2.05 0.02 0.12

C-SAT-lin-ALCHQ-1 20.31 1.41 3.03 2.01 0.18 0.12

C-SAT-lin-ALCHQ-10 24.97 1002.19 997.15 1062.89 995.96 0.12

C-SAT-lin-ALCHQ-2 20.66 1.25 4.3 2.11 0.09 0.11

C-SAT-lin-ALCHQ-3 18.21 1.95 5.74 4.53 0.16 0.13

C-SAT-lin-ALCHQ-4 19.53 1.91 128.94 7.85 0.33 0.11

C-SAT-lin-ALCHQ-5 29.15 4.54 1029.56 17.86 1.56 0.15

C-SAT-lin-ALCHQ-6 26.06 29.47 1000.9 73.14 5.81 0.12

C-SAT-lin-ALCHQ-7 23.45 307.57 985.9 513.73 22.34 0.11

C-SAT-lin-ALCHQ-8 27.93 1001.41 990.27 1065.58 88.56 0.13

C-SAT-lin-ALCHQ-9 22.69 1003.15 994.86 1070.01 340.18 0.12

C-SAT-lin-ALCQ-1 17.76 2.22 5.06 2.14 0.04 0.12

C-SAT-lin-ALCQ-10 14.66 2.68 1008.74 10.9 995.29 0.12

C-SAT-lin-ALCQ-2 26.44 1.82 5.93 2.08 0.04 0.12

C-SAT-lin-ALCQ-3 23.4 1.76 8.17 2.63 0.25 0.12

C-SAT-lin-ALCQ-4 21.68 1.22 254.66 3.24 7.01 0.12

C-SAT-lin-ALCQ-5 20.75 1.56 1037.98 3.44 145.93 0.11

C-SAT-lin-ALCQ-6 20.47 2.47 996.31 3.89 586.75 0.12

C-SAT-lin-ALCQ-7 16.72 1.25 984.03 5.43 998.04 0.12

C-SAT-lin-ALCQ-8 17.13 1.95 992.52 7.21 998.82 0.14

C-SAT-lin-ALCQ-9 22.38 2.11 993.8 8.03 998.77 0.14

C.3. Performance Evaluation of Satisfiable SHQ Ontologies 155

Ontology Avalanche Fact++ Hermit JFact Konclude Racer

C-sat-unsat-30-sol-12 12.32 1.71 998.22 4.18 0.04 0.14

C-sat-unsat-30-sol-14 10.66 1.59 997.2 4.13 0.03 0.11

C-sat-unsat-30-sol-16 13.89 2.64 999.38 3.97 0.02 0.12

C-sat-unsat-30-sol-18 10.62 1.59 999.14 4.99 0.01 0.12

C-sat-unsat-30-sol-20 10.22 1.36 999.97 4.43 0.02 0.11

C-sat-unsat-30-sol-22 12.4 1.57 1000.27 4.37 0.02 0.11

C-sat-unsat-30-sol-24 13.71 1.88 1000.16 4.85 0.03 0.17

C-UnSAT-exp-ELQ-1 27.2 2.43 6.49 1.53 0.02 0.13

C-UnSAT-exp-ELQ-2 22.7 1.94 1043.01 1.62 0.04 0.12

C-UnSAT-exp-ELQ-3 22.3 1.84 1006.01 1.65 0.03 0.12

C-UnSAT-exp-ELQ-3-normalized 11.15 1.71 3.64 1.89 0.03 0.13

C-UnSAT-exp-ELQ-4 24.85 1.96 1000.12 2.36 0.03 0.12

C-UnSAT-exp-ELQ-5 26.57 1.19 1001.07 2.2 0.02 0.12

rest-ratio-1-0 14.73 1.15 3.9 2.73 0.01 0.13

rest-ratio-1-1 19.96 1.27 4.94 2.25 0.02 0.14

rest-ratio-1-10 27.72 1.72 3.11 1.91 0.02 0.14

rest-ratio-1-2 23.23 1.18 5.99 2.57 0.02 0.14

rest-ratio-1-3 26.47 1.99 5.31 2.42 0.01 0.14

rest-ratio-1-4 24.34 1.55 5.24 1.74 0.02 0.14

rest-ratio-1-5 33.28 1.4 4.59 1.81 0.02 0.16

rest-ratio-1-6 31.08 1.36 4.98 1.74 0.02 0.17

rest-ratio-1-7 21.87 2.1 5.12 2.36 0.02 0.18

rest-ratio-1-8 43.29 1.76 3.87 6.97 0.03 0.31

rest-ratio-1-9 32.95 2.02 4.05 2.87 0.03 0.15

restr-num-1-1-1 16.14 1.56 3.26 2.11 0.02 0.13

restr-num-1-1-2 12.32 1.07 2.92 2.28 0.02 0.13

restr-num-1-1-OR 13.17 2.38 2.68 1.82 0.02 0.12

restr-num-1-1-OR-atmost 11.73 2 3.7 1.52 0.02 0.12

restr-num-1-10-1 58.42 1.76 1000.48 4.95 0.02 295.62

restr-num-1-10-2 50.13 1.9 26.04 1.74 0.03 945.45

restr-num-1-10-3 44.38 2.86 13.4 2.38 0.02 998.16

restr-num-1-11 49.74 1.2 53.1 2.77 0.02 998.57

restr-num-1-12 60.99 1.83 51.68 2.44 0.02 997.45

restr-num-1-13 99.05 2.17 376.7 1.92 0.02 997.37

restr-num-1-14 100.26 1.42 978.65 2.56 0.04 997.18

restr-num-1-15 153.96 1.66 675.67 2.45 0.03 996.76

restr-num-1-16 138.11 3.15 979.41 3.14 0.03 997.85

restr-num-1-17 260.51 1.98 979.09 2.78 0.03 998.11

restr-num-1-18 245.14 1.6 1051.99 3.23 0.02 998.77

restr-num-1-19 418.7 1.91 1048.2 2.68 0.03 998.78

restr-num-1-2-1 14.08 2.24 3.46 1.57 0.01 0.11

restr-num-1-2-2 14.6 1.96 3.97 2.06 0.02 0.12

156 Appendix C. Evaluation

Ontology Avalanche Fact++ Hermit JFact Konclude Racer

restr-num-1-2-OR 15.05 1.52 3.09 1.66 0.04 0.12

restr-num-1-2-OR-atmost 16.77 1.91 3.7 2.66 0.02 0.12

restr-num-1-20 246.77 2.16 1036.96 2.87 0.03 999.1

restr-num-1-3-1 12.97 1.47 4.71 1.89 0.03 0.12

restr-num-1-3-2 16.36 1.72 5.31 1.87 0.02 0.12

restr-num-1-3-OR 19.19 1.56 2.83 2.06 0.03 0.12

restr-num-1-3-OR-atmost 20.15 1.35 978.53 1.57 0.04 0.11

restr-num-1-4-1 20.47 1.32 5.06 2.99 0.02 0.13

restr-num-1-4-2 20.36 1.86 4.97 2.48 0.04 0.12

restr-num-1-4-OR 22.52 1.29 2.23 1.48 0.03 0.13

restr-num-1-4-OR-atmost 27.04 1.53 980.51 3.2 0.03 0.13

restr-num-1-5-1 19.58 1.46 5.15 3.32 0.03 0.15

restr-num-1-5-2 27.68 1.67 4.28 2.62 0.01 0.17

restr-num-1-5-OR 39.15 1.73 3.6 1.75 0.02 0.13

restr-num-1-5-OR-atmost 36.18 2.04 977.43 2.72 0.03 0.13

restr-num-1-6-1 28.85 1.32 4.94 1.6 0.02 0.28

restr-num-1-6-2 23.97 1.88 5.09 1.85 0.03 0.16

restr-num-1-6-OR-atmost 40.98 1.93 998.7 1.85 0.03 0.12

restr-num-1-7 39.34 1.11 6.02 1.83 0.02 0.36

restr-num-1-8-1 34.83 1.46 8.06 2.2 0.02 0.78

restr-num-1-8-2 33.69 1.25 5.59 1.77 0.03 0.54

restr-num-1-9-1 34.66 1.45 19.21 1.9 0.03 1.42

restr-num-1-9-2 38.13 1.59 7.15 2.04 0.02 1.14

restr-num-10-1 11.18 2.07 1000.03 6.35 0.02 0.11

restr-num-10-2 13.51 1.92 1000.4 4.09 0.03 0.13

restr-num-10-3 19.9 1.57 1000.98 2.77 0.03 0.13

restr-num-10-4 23.7 1.43 1000 2.87 0.02 0.26

restr-num-10-5 23.49 1.69 1000.27 3.49 0.02 0.93

restr-num-10-6 25.98 1.96 1000.27 3.91 0.02 23.05

restr-num-10-7 47.88 2.53 999.85 3.47 0.03 28.98

restr-num-10-8 59.22 1.62 999.87 3.4 0.02 93.46

restr-num-10-9 59.14 2.37 999.81 3.76 0.03 93.14

restr-num-10-var-1 11.85 1.21 999.96 2.64 0.02 0.12

restr-num-10-var-10 78.07 1.92 1000.1 2.91 0.02 0.76

restr-num-10-var-2 14.65 2.27 999.98 1.97 0.03 0.12

restr-num-10-var-3 19.48 2.35 1000.14 1.68 0.02 0.15

restr-num-10-var-4 21.96 1.44 1000.3 2.49 0.03 0.22

restr-num-10-var-5 28.86 2.03 1001.11 2.47 0.02 0.22

restr-num-10-var-6 42.95 1.51 1000.3 3.03 0.04 0.36

restr-num-10-var-7 46.54 2 1000.82 2.93 0.01 0.4

restr-num-10-var-8 60.32 2.77 1000.44 2.87 0.02 0.56

restr-num-10-var-9 57.83 1.88 977.78 3.33 0.02 0.64

C.3. Performance Evaluation of Satisfiable SHQ Ontologies 157

Ontology Avalanche Fact++ Hermit JFact Konclude Racer

restr-num-5-1 11.89 2.15 1000.22 1.57 0.03 0.11

restr-num-5-10 51.66 1.22 980.18 3 0.03 26.51

restr-num-5-2 13.8 1.4 975.68 1.68 0.03 0.13

restr-num-5-3 13.54 2.54 976.86 2.87 0.03 0.13

restr-num-5-4 53.86 1.56 978.2 5.6 0.04 0.16

restr-num-5-5 26.31 2.31 982.68 1.76 0.04 0.3

restr-num-5-6 38.22 1.94 999.07 2.98 0.03 1.27

restr-num-5-7 39.6 2 990.15 2.37 0.02 4.19

restr-num-5-8 50.24 2.19 977.95 3.65 0.03 10.86

restr-num-5-9 51.13 1.53 979.62 2.96 0.02 11.35

restr-num-ELQ-1-10 15.21 1.78 134.29 1.98 0.03 0.13

sat-unsat-3-sol-12 14.06 1.79 377.7 1.85 0.02 0.11

sat-unsat-3-sol-14 11.71 1.75 1000.54 2.21 0.02 0.11

sat-unsat-3-sol-16 12.14 1.94 1001.21 2.33 0.01 0.11

sat-unsat-3-sol-18 13.57 1.92 1000.35 1.8 0.04 0.12

sat-unsat-3-sol-20 13.88 2.02 1000.12 5.16 0.02 0.12

sat-unsat-3-sol-22 12.72 1.14 1000.25 3.08 0.02 0.11

sat-unsat-3-sol-24 12.2 2.42 1000.42 3.22 0.02 0.11

sat-unsat-30-sol-12 13.96 1.84 1000.03 4.25 0.01 0.11

sat-unsat-30-sol-14 13.5 1.58 1000.74 5.34 0.02 0.12

sat-unsat-30-sol-16 11.86 1.36 1001.65 3.93 0.03 0.11

sat-unsat-30-sol-18 15.76 1.01 1000.03 4.11 0.02 0.11

sat-unsat-30-sol-20 12.65 1.91 1000.75 4.82 0.02 0.12

sat-unsat-30-sol-22 12.18 2.55 1000.55 4.22 0.02 0.12

sat-unsat-30-sol-24 13.03 1.31 1000.6 3.67 0.02 0.12

SHQ-CSAT-exp-1 21.39 15.33 1002.55 37.12 998.99 0.12

SHQ-CSAT-exp-2 20.72 998.7 1000.88 1075.49 999.41 0.15

SHQ-CSAT-exp-3 25.18 995.99 21.49 1077.43 1000.27 0.38

SHQ-CSAT-exp-4 20.95 996.77 1152.87 1076.19 1005.78 3.26

SHQ-CSAT-exp-5 23 58.81 1204.02 995.16 1006.95 32.98

SHQ-CSAT-exp-6 19.87 995.96 978.47 995.46 1007.62 378.18

TABLE C.3: Benchmarks for ALCHQ-SAT Ontologies

158 Appendix C. Evaluation

C.4 Performance Evaluation of Unsatisfiable SHQ On-

tologies

Below we present the results of the performance evaluation on unsatisfiable SHQ

ontologies. The difference between satisfiable and unsatisfiable SHQ ontologies is

that the concept Thing is unsatisfiable in unsatisfiable ontologies. The results are

presented in Table C.4.

Ontology Avalanche Fact++ Hermit JFact Konclude Racer

Backtracking1-1 13.85 3.02 1.98 4.54 0.03 0.55

Backtracking1-10 10.69 2.96 22.57 4.04 0.04 0.4

Backtracking1-11 14.23 3.01 121.6 3.61 0.05 0.38

Backtracking1-12 12.02 3.23 261 4.58 0.07 0.66

Backtracking1-13 15.11 2.92 1000.15 6.25 0.03 0.58

Backtracking1-14 14.24 2.72 1001.43 6.22 0.04 0.7

Backtracking1-15 14.39 3.19 1000.46 3.11 0.04 0.8

Backtracking1-2 14.23 3.53 3.34 4.3 0.05 0.55

Backtracking1-3 11.15 4.94 3.64 7.9 0.27 0.44

Backtracking1-4 12.62 3.55 3.5 4.42 0.06 0.5

Backtracking1-5 14.1 2.23 3.12 5.34 0.06 0.28

Backtracking1-6 12.89 2.89 3.87 4.46 0.05 0.35

Backtracking1-7 12.87 3.91 3.02 4.48 0.13 0.38

Backtracking1-8 13.71 5.01 4.86 8.81 0.11 0.35

Backtracking1-9 11.77 2.61 5.95 4.95 0.05 0.52

Backtracking2-1 11.26 3 3.1 4.09 0.07 0.27

Backtracking2-10 13.39 2.17 1000.9 3.3 0.04 0.35

Backtracking2-2 15.56 3.47 2.68 5.7 0.04 0.46

Backtracking2-3 12.1 5.27 2.29 5.79 0.04 0.42

Backtracking2-4 11.28 5.9 3.1 3.22 0.04 0.46

Backtracking2-5 13.19 3.91 8.85 3.71 0.1 0.4

Backtracking2-6 11.48 4.07 137.86 2.99 0.06 0.58

Backtracking2-7 11.89 3.25 1000.93 3.82 0.09 0.51

Backtracking2-8 11.27 5.09 999.89 4.6 0.04 0.6

Backtracking2-9 13.38 5.75 999.63 2.92 0.05 0.55

Backtracking3 10.78 1.83 2.82 2.22 0.03 0.17

Backtracking3-1 10.11 2.79 2.54 2.74 0.05 0.51

Backtracking3-10 13.37 4.24 1000.48 3.88 0.05 0.68

Backtracking3-11 12.34 3.44 999.03 4.12 0.05 0.43

Backtracking3-12 11.12 3.6 998.73 2.83 0.23 0.44

C.4. Performance Evaluation of Unsatisfiable SHQ Ontologies 159

Ontology Avalanche Fact++ Hermit JFact Konclude Racer

Backtracking3-13 12.87 2.94 999.23 5.03 0.09 0.5

Backtracking3-14 13.1 4.65 999.51 4.04 0.08 0.52

Backtracking3-15 14.39 5.22 999.15 3.28 0.07 0.53

Backtracking3-16 16.51 4.36 1000.38 2.76 0.08 0.65

Backtracking3-17 14.24 2.83 998.19 2.53 0.11 1.06

Backtracking3-18 13.14 3.37 998.77 2.84 0.08 1.05

Backtracking3-19 14.64 5.4 995.86 3.4 0.08 1.69

Backtracking3-2 13.96 2.96 3.03 1.95 0.03 0.23

Backtracking3-20 15.49 3.01 995.75 2.44 0.1 0.86

Backtracking3-3 12.94 2.88 4.56 2.1 0.03 0.16

Backtracking3-4 13.58 2.6 100.51 1.78 0.02 0.31

Backtracking3-5 11.39 2.4 1001.32 2.06 0.05 0.22

Backtracking3-6 15.45 1.53 999.97 1.78 0.03 0.33

Backtracking3-7 15.32 2.02 999.99 2.34 0.03 0.34

Backtracking3-8 12.67 2.78 1001.68 2.13 0.05 0.37

Backtracking3-9 12.55 3.19 1000.5 2.19 0.06 0.4

C-sat-unsat-30-nosol-1 11.82 1.6 1000.12 3.2 0.04 0.3

C-sat-unsat-30-sol-1 13.24 11.15 1000.35 35.28 0.05 0.2

C-sat-unsat-30-sol-10 13.57 15.75 999.95 37.63 0.08 0.35

C-sat-unsat-30-sol-2 15.23 2.12 1000.75 1.88 0.03 0.19

C-sat-unsat-30-sol-4 11.57 2.47 1000.25 10.55 0.06 0.5

C-sat-unsat-30-sol-6 12.48 19.16 1000.19 32.71 0.04 0.26

C-sat-unsat-30-sol-8 12.99 3.37 1001.65 9.82 0.06 0.17

C-UnSAT-exp-ALCQ-1 16.22 1001.97 999.89 1077.87 997.25 0.28

C-UnSAT-exp-ALCQ-2 17.2 1000.1 1000.8 1083.88 998.88 24.54

C-UnSAT-exp-ALCQ-3 15.48 1001.66 21.23 1083.94 999.43 999.15

C-UnSAT-exp-ALCQ-4 14.22 1003.01 1197.52 1008.34 1008.57 999.35

C-UnSAT-exp-ALCQ-5 13.78 1003.17 1256.28 995.65 1008.03 999.27

C-UnSAT-exp-ALCQ-6 19.38 1004.31 984.11 996.26 1008.33 999.47

C-UnSAT-lin-ALCHQ-1 14.18 1.63 3.31 2.83 0.03 0.12

C-UnSAT-lin-ALCHQ-10 23.66 1003.7 999.51 1073.94 998.68 0.13

C-UnSAT-lin-ALCHQ-2 24.35 1.2 5.25 2.51 0.03 0.13

C-UnSAT-lin-ALCHQ-3 20.53 2.13 13.93 6.44 0.12 0.15

C-UnSAT-lin-ALCHQ-4 17.97 3.09 987.86 13.86 1.3 0.12

C-UnSAT-lin-ALCHQ-5 18.33 27.57 1015.55 65.57 18.02 0.12

C-UnSAT-lin-ALCHQ-6 18.66 543.78 1001.41 915.89 274.77 0.13

C-UnSAT-lin-ALCHQ-7 21.23 1002.68 989.29 1073.46 996.92 0.12

C-UnSAT-lin-ALCHQ-8 18.51 1002.02 990.31 1072.29 996.09 0.13

C-UnSAT-lin-ALCHQ-9 19.34 1000.65 996.65 1065.15 997.35 0.12

C-UnSAT-lin-ALCQ-1 14.12 1.53 3 1.81 0.04 0.13

C-UnSAT-lin-ALCQ-10 14.23 999.46 990.5 1082.35 997.52 0.14

C-UnSAT-lin-ALCQ-2 17.7 1.36 3.52 1.91 0.03 0.11

160 Appendix C. Evaluation

Ontology Avalanche Fact++ Hermit JFact Konclude Racer

C-UnSAT-lin-ALCQ-3 16.98 1.39 15.88 3.99 0.23 0.12

C-UnSAT-lin-ALCQ-4 17.49 1.19 988.51 7.82 2.84 0.12

C-UnSAT-lin-ALCQ-5 19.84 2.77 1025.58 14.15 45.14 0.11

C-UnSAT-lin-ALCQ-6 19.4 11.55 989.3 33.29 736.43 0.13

C-UnSAT-lin-ALCQ-7 12.64 94.68 1008.07 147.78 996.46 0.14

C-UnSAT-lin-ALCQ-8 18.55 797.69 991.93 1084.79 994.89 0.13

C-UnSAT-lin-ALCQ-9 15.37 1000.95 993.12 1067.61 996.58 0.11

sat-unsat-3 12.91 1.62 3.05 1.74 0.02 0.11

sat-unsat-3-sol-1 12.35 1.37 2.7 1.67 0.02 0.11

sat-unsat-3-sol-10 13.86 1.68 49.36 1.95 0.03 0.12

sat-unsat-3-sol-2 13.99 1.61 2.64 2.83 0.02 0.12

sat-unsat-3-sol-4 14.59 1.81 3.66 2.68 0.03 0.12

sat-unsat-3-sol-6 23.85 1.38 4.24 1.45 0.03 0.11

sat-unsat-3-sol-8 18.08 1.38 13.04 2.11 0.03 0.12

sat-unsat-30-nosol-ALCHQ-1 10.92 2.81 1000.33 2.52 0.03 0.12

sat-unsat-30-sol-1 11.29 10.25 1000.96 33.89 0.03 0.11

sat-unsat-30-sol-10 13.89 10.16 1000.27 32 0.05 0.12

sat-unsat-30-sol-2 10.84 1.36 1001.55 3.71 0.02 0.11

sat-unsat-30-sol-4 11.74 3.38 1000.66 12.72 0.04 0.11

sat-unsat-30-sol-6 13.44 19.22 1001.94 41.71 0.04 0.11

sat-unsat-30-sol-8 16.59 3.19 1000.55 10.9 0.04 0.11

SHQ-CUnSAT-exp-1 24.39 1002.13 998.71 1066.92 994.79 0.12

SHQ-CUnSAT-exp-2 34.41 998.67 1000.52 1065.94 998.55 13.43

SHQ-CUnSAT-exp-3 36.94 999.79 22.34 1080.24 999.35 999.49

SHQ-CUnSAT-exp-4 35.16 999.37 1060.38 1070.06 1005.13 999.52

SHQ-CUnSAT-exp-5 40.99 59.98 1158.56 993.13 1012.7 999.43

SHQ-CUnSAT-exp-6 39.01 996.51 977.84 995.54 1008.02 998.43

TABLE C.4: Benchmarks for SHQ-UNSAT Ontologies

C.5 Performance Evaluation of Satisfiable P Ontologies

Below we present the performance evaluation results on satisfiable P ontologies.

These ontologies were initially created to validate classification results produced by

Avalanche. This test suite grew from a dozen to more than 150 ontologies. Therefore

we decided to keep them as they also give interesting insights on performance of

other reasoners. The results are presented in Table C.5.

C.5. Performance Evaluation of Satisfiable P Ontologies 161

Ontology Avalanche Fact++ Hermit JFact Konclude Racer

p_1 11.69 2.11 2.29 2.01 0.02 0.11

p_10 12.08 2.63 2.56 3.05 0.03 0.12

p_10a 10.77 1.42 2.35 2.76 0.02 0.11

p_11 11.21 1.39 2.7 3.32 0.02 0.16

p_12 15.15 2.37 2.75 2.08 0.02 0.12

p_12a 11.99 1.94 2.94 1.94 0.02 0.12

p_12b 11.65 1.7 2.52 2.38 0.02 0.11

p_13 10.59 3.08 2.3 2.28 0.03 0.13

p_13a 13.07 1.32 3.14 1.89 0.02 0.11

p_14 10.42 1.23 3.97 3.51 0.02 0.14

p_14a 10.96 2.12 2.88 1.77 0.02 0.14

p_14b 11.75 1.35 4.19 2.84 0.02 0.14

p_15 14.82 1.48 2.36 2.11 0.02 0.13

p_15a 12.53 2.39 2.12 1.73 0.03 0.14

p_16 11.41 1.34 2.77 2.42 0.02 0.13

p_16a 13.97 2.12 2.69 3.82 0.02 0.13

p_17 10.86 1.25 3.5 1.74 0.03 0.14

p_18 12.97 2.11 3.99 2.82 0.03 0.11

p_19 16.14 1.96 3.07 2.18 0.03 0.12

p_2 12.88 1.24 2.93 2.03 0.01 0.11

p_20 15.17 1.7 2.49 1.6 0.02 0.19

p_21 43.27 3.15 2.23 1.93 0.02 0.12

p_22 47.57 2.02 2.74 1.64 0.02 0.13

p_22a 52.92 2.16 2.34 3.09 0.02 0.15

p_23 13.7 1.96 2.61 1.52 0.02 0.12

p_24 12.2 1.5 3.52 1.87 0.03 0.11

p_25 12.49 2.02 3.55 2.22 0.03 0.15

p_26 12.14 1.59 4.16 1.68 0.02 0.12

p_27 17.69 1.64 2.5 2.1 0.02 0.12

p_28 21.23 3.77 2.31 1.54 0.02 0.12

p_29 12.82 1.56 2.71 2.93 0.03 0.13

p_3 40.57 1.77 3.55 1.88 0.03 0.12

p_30 19.66 1.88 4.25 2.36 0.04 0.14

p_30a 16.66 1.73 3.02 3.32 0.04 0.14

p_30b 13.32 1.34 2.67 3.84 0.04 0.14

p_30c 14.8 1.29 3.17 2.76 0.03 0.14

p_30d 10.9 1.4 2.46 2.46 0.03 0.11

p_30small 17.52 1.33 3.96 3.08 0.04 0.13

p_31 10.6 1.16 2.76 2.41 0.02 0.11

p_32 21.18 2.11 277.98 2.06 0.03 0.15

p_32a 23.52 3.41 998.41 3.58 0.07 0.14

p_32b 14.94 1.72 16.04 1.78 0.03 0.13

162 Appendix C. Evaluation

Ontology Avalanche Fact++ Hermit JFact Konclude Racer

p_32cdf 15.57 2.11 94.12 2.04 0.02 0.14

p_33 9.78 1.65 2.37 2.08 0.02 0.11

p_34 12.74 2.78 3 1.67 0.02 0.11

p_35 11.4 2.65 4.26 2.12 0.03 0.11

p_35a 12.8 2.7 2.43 1.78 0.02 0.11

p_35b 12.89 2.43 2.8 3.23 0.03 0.12

p_36a 10.98 2.37 2.84 1.58 0.03 0.12

p_36b 11.83 1.75 2.48 1.89 0.02 0.12

p_36c 12.64 1.56 2.5 2.3 0.02 0.16

p_37a 12.84 2.18 2.99 2.47 0.01 0.12

p_37b 10.67 2.26 2.31 1.89 0.02 0.11

p_38a 10.24 2.36 4.6 2.35 0.03 0.12

p_38b 14.82 2.57 2.5 1.49 0.03 0.13

p_39a 12.34 1.46 3.06 2.75 0.02 0.12

p_39b 17.23 1.27 2.88 2.1 0.03 0.12

p_3a 17.53 2.74 4.11 1.61 0.02 0.12

p_3b 18.23 1.82 3.69 3.58 0.03 0.13

p_3c 28.78 2.41 3.11 2.4 0.03 0.14

p_3d 18.92 1.55 2.95 1.87 0.03 0.14

p_3e 27.63 1.67 3.06 2.46 0.02 0.13

p_4 73.89 1.32 3.23 3.84 0.02 0.13

p_40 31.22 2.12 3.69 3.13 0.04 0.12

p_41a 27.29 2.81 2.88 1.99 0.03 0.11

p_41b 30.44 2.94 2.54 2.42 0.02 0.11

p_42a 26.36 1.75 3.05 1.9 0.03 0.11

p_42b 31.34 1.33 2.53 2.8 0.02 0.12

p_43 32.76 1.71 2.44 2.18 0.02 0.11

p_44 43.1 1.2 3.27 1.44 0.02 0.12

p_45 38.2 1.72 3.13 1.66 0.02 0.12

p_46 40.55 2.53 3.17 3.13 0.02 0.12

p_47 38.64 1.38 2.53 2.24 0.04 0.17

p_47a 32.7 3.06 3.82 2.38 0.01 0.12

p_48 42.49 2.35 3.16 3.03 0.03 0.2

p_49 56.25 1.87 3.7 1.84 0.02 0.2

p_4a 67.03 1.74 3.12 1.78 0.03 0.26

p_5 51.69 2.2 17.04 2.67 0.05 0.79

p_5-nnf 44.23 1.48 17.38 3.4 0.05 1.41

p_5-norm 190.41 2.29 17.88 3.24 0.04 1

p_50 64.7 1.23 3.73 2.59 0.02 0.12

p_51 67.94 2.67 3.61 2 0.03 0.13

p_52 218.5 1000.65 997.08 1088.79 999.13 0.15

p_53a 251.41 999.28 996.58 1077.15 992.5 0.14

C.5. Performance Evaluation of Satisfiable P Ontologies 163

Ontology Avalanche Fact++ Hermit JFact Konclude Racer

p_53b 131.47 995.96 997.04 1073.61 993.71 0.15

p_53c 110.33 998.56 998.76 1077.35 993.74 0.14

p_53d 73.92 998.17 997.99 1080.3 991.61 0.14

p_53e 37.11 998.63 999.32 1101.75 990.94 0.13

p_53f 34.82 998.66 1003.21 1080 994.02 0.14

p_54 15.9 4.13 3.22 2.44 0.05 0.12

p_54a 20.82 2.15 3.24 2.53 0.04 0.13

p_54b 20.75 1.81 2.46 2.03 0.04 0.13

p_54c 14.53 1.08 2.87 1.82 0.06 0.12

p_54d 13.67 2.59 3.15 2.09 0.03 0.12

p_55 22.14 2.26 2.76 2.68 0.07 0.12

p_55a 12.23 1.94 2.35 1.65 0.04 0.11

p_56 18.72 999.42 1000.87 1086.36 989.87 1.19

p_56a 20.93 1005.36 1069.4 1087.33 986.96 80.84

p_56aa 20.26 12.88 874.31 37.63 1.73 0.31

p_56ab 20.46 4.94 7.18 12.31 0.18 0.18

p_56ab-norm 28.34 3.3 6.74 11.49 0.56 0.23

p_56ab-small 19.74 1.56 4.34 5.37 0.05 0.16

p_56ac 21.73 3.41 6.75 12.24 0.21 0.17

p_56ad 22.98 3.56 5.59 13.84 0.37 0.21

p_56ae 18.72 3.52 6.26 15.1 0.16 0.23

p_56af 21.11 4.41 6.4 15.04 0.33 0.17

p_56af-extended 24.5 4.72 5.96 13.98 1017.95 0.22

p_56ag 20.47 2.65 4.65 12.75 0.17 0.17

p_56ah 15.05 1.53 3.39 3.03 0.04 0.14

p_56ah-bug-1 13.59 1.84 3.46 1.9 0.03 0.12

p_56ah-bug-2 12.84 2.44 3.5 1.83 0.04 0.12

p_56ah-bug-mod-1 12.58 1.69 2.71 2.1 0.06 0.12

p_56ah-bug-mod-2 11.61 2.08 3.68 1.56 0.04 0.13

p_56ah-vh-1 14.43 2.14 3.88 2.64 0.06 0.14

p_56ah-vh-2 14.22 1.22 2.45 3.8 0.02 0.14

p_56ah-vh-small 12.4 2.54 3.27 2.64 0.05 0.13

p_56ai 12.78 1.77 3.02 2.27 0.05 0.12

p_56b 13.43 1.95 2.94 2.9 0.04 0.18

p_56c 20.63 1004.15 1026.9 1084.81 991.41 144.67

p_56d 21.73 1004.37 1035.97 1085.07 990.91 410.91

p_57a 12.65 20.98 1001.14 1077.53 990.29 0.7

p_57b 14.15 998.8 1004.14 1079.81 990.59 0.84

p_58a 12.77 2.01 997.75 10.23 0.04 0.94

p_58b 12.33 1.84 995.11 8.19 0.05 1.1

p_59a 13.03 3.52 17.74 2.5 0.03 0.55

p_59b 12.33 1.77 11.45 1.51 0.04 1.07

164 Appendix C. Evaluation

Ontology Avalanche Fact++ Hermit JFact Konclude Racer

p_5a 62.5 2.07 14.33 1.96 0.04 1.17

p_5b 60.2 1.8 18.91 2.94 0.08 0.73

p_5b-norm 63.94 1.97 14.84 2.24 0.03 1.69

p_5b-norm-test 72.52 1.82 17.7 1.76 0.04 1.26

p_5ba 64.5 2.36 16.47 2.72 0.04 1.3

p_5ba-norm 67.68 1.35 20.55 1.74 0.04 1.85

p_5ca 69.36 1.97 15.28 1.74 0.03 0.96

p_5cb 63.51 1.51 15.74 2.58 0.05 0.73

p_5d 49.29 1.4 16.81 2.42 0.03 0.7

p_6 15.13 2.26 9.99 2.25 0.04 1.06

p_60a 11.81 1.55 14.48 1.74 0.06 0.61

p_60b 12.82 3.21 14.79 2.07 0.05 0.39

p_61a 14.24 1.67 18.62 1.45 0.04 0.45

p_61b 14.56 1.62 24.36 1.71 0.03 0.48

p_62a 11.99 1.57 29.21 1.51 0.03 0.42

p_62b 12.15 2.47 22.26 1.68 0.06 0.34

p_62c 13.77 2.21 19.86 2.22 0.03 0.51

p_63 10.65 2.41 22.69 2 0.04 0.8

p_64 10.26 1.33 28.25 1.75 0.03 0.28

p_6a 14.65 2.03 34.28 2.29 0.04 0.34

p_6b 13.14 2.77 34.56 3.1 0.05 0.64

p_6c 12.36 2.74 20.13 2.26 0.04 0.78

p_6d 13.9 2.21 14.14 1.68 0.04 0.72

p_6e 11.75 2.18 13.8 1.61 0.05 1.23

p_6f 12.2 1.83 19.82 1.87 0.03 0.96

p_6g 13 2.83 19.34 1.55 0.05 1.15

p_6h 12.23 1.5 15.18 2.14 0.04 1.19

p_7 13.66 1.79 3.42 1.46 0.05 0.35

P_70a 13.52 1.93 7.34 1.6 0.04 1.21

p_70b 11.28 2.24 9.11 2.4 0.03 1.24

p_71a 11.54 1.83 14.5 1.73 0.03 1.03

P_71b 11.22 1.62 17.66 1.83 0.04 0.8

p_72 14.18 1.18 17.36 1.39 0.08 0.78

p_73a 11.38 1.59 11.03 2.39 0.03 0.82

p_73b 13.27 2.33 16.32 1.81 0.03 0.79

p_74 13.04 1.99 15.36 2.05 0.06 0.87

p_75a 28.94 1.65 7.44 2 0.03 0.79

p_75aa 22.49 1.93 17.77 2.13 0.04 0.6

p_75b 27.03 2.05 7.28 1.67 0.04 1.17

p_76a 11.61 1.25 5.74 1.83 0.04 0.8

p_76b 14.51 1.86 7.31 2.2 0.04 0.84

p_76c 10.19 1.62 5.05 2 0.03 0.66

C.6. Performance Evaluation of Unsatisfiable P Ontologies 165

Ontology Avalanche Fact++ Hermit JFact Konclude Racer

p_76d 11.8 1.77 4.2 1.75 0.04 0.93

p_77 12.42 1.33 5.33 1.69 0.04 28.13

p_78a 12.88 1.79 6.84 2.05 0.03 0.17

p_78b 14.12 1.72 7.45 1.66 0.03 0.34

p_78c 14.86 1.61 5.57 1.87 0.03 0.21

p_78d 12.33 2.53 4.6 1.66 0.04 0.25

p_78e 12.62 3.22 4.8 3.23 0.05 0.25

p_79 13.25 2.37 3.81 1.33 0.04 0.24

p_8 12.38 1.43 3.35 1.66 0.04 0.41

p_80 11.6 2.3 5.24 1.54 0.06 0.37

p_9 11.36 1.76 3.56 2.07 0.03 0.28

TABLE C.5: Benchmarks for Performance Ontologies

C.6 Performance Evaluation of Unsatisfiable P Ontolo-

gies

Below we present performance evaluation on unsatisfiable P ontologies. The differ-

ence between satisfiable and unsatisfiable P ontologies is that the concept Thing is

unsatisfiable in unsatisfiable ontologies. The results are presented in Table C.6.

Ontology Avalanche Fact++ Hermit JFact Konclude Racer

p_01 11.22 2.5 2.2 3.32 0.03 0.11

p_02 11.1 3.22 2.69 3.85 0.03 0.11

p_03 13.71 2.23 2.43 2.73 0.04 0.11

p_03a 12.32 4.35 2.85 2.87 0.04 0.12

p_03b 14.02 2.85 2.84 3.24 0.03 0.13

p_03c 16.43 1.46 3.5 3.81 0.03 0.12

p_03d 12.27 1.7 3.03 3.16 0.03 0.12

p_03e 17.31 1.38 3.07 3.2 0.03 0.12

p_04 13.33 2.48 2.64 3.36 0.03 0.11

p_04a 11.76 1.57 2.64 3.47 0.02 0.12

p_05 15.76 1.49 3.45 3.72 0.03 0.13

p_05-nnf 13.75 1.21 2.61 3.1 0.03 0.13

p_05-norm 21.18 2.4 3.15 4.05 0.05 0.15

p_05a 15.06 1.93 3.19 2.45 0.02 0.12

p_05b 15.86 1.42 2.69 2.72 0.03 0.12

166 Appendix C. Evaluation

Ontology Avalanche Fact++ Hermit JFact Konclude Racer

p_05b-norm 14.66 1.65 3.19 3.33 0.02 0.13

p_05b-norm-test 16.94 2.21 2.19 3.4 0.02 0.12

p_05ba 16.98 2.1 2.94 2.34 0.04 0.11

p_05ba-norm 17.25 1.29 2.89 2.2 0.02 0.12

p_05ca 16.54 2.05 2.54 3.11 0.04 0.13

p_05cb 14.2 1.81 3.04 3.26 0.02 0.13

p_05d 16.25 2.14 2.7 3.44 0.03 0.13

p_06 13.19 1.94 2.16 4.1 0.02 0.11

p_06a 18.29 1.27 3.49 2.6 0.03 0.13

p_06b 12.61 1.88 2.45 2.75 0.02 0.12

p_06c 11.04 1.95 3.36 2.22 0.04 0.16

p_06d 12.11 2.2 3.51 3.62 0.03 0.13

p_06e 11.16 1.45 2.5 3.38 0.04 0.13

p_06f 10.93 1.8 2.86 2.92 0.03 0.12

p_06g 14.98 1.6 3.76 3.13 0.03 0.13

p_06h 11.56 1.9 5.02 2.65 0.03 0.12

p_07 10.51 1.73 2.71 2.74 0.04 0.11

p_08 13.2 2.16 2.75 3.81 0.02 0.1

p_11 12.59 1.99 2.69 2.95 0.02 0.1

p_12 15.84 1.38 2.1 3.3 0.03 0.11

p_12a 12.91 1.29 2.74 3.55 0.03 0.11

p_12b 11.96 1.78 2.15 2.71 0.01 0.11

p_13 19.18 1.28 2.91 3.33 0.02 0.11

p_14 14.6 1.13 2.65 3.03 0.02 0.12

p_14b 20.24 1.77 2.32 3.52 0.02 0.13

p_15 10.99 1.4 2.93 3.83 0.02 0.11

p_15a 13.16 1.44 3.23 3.16 0.04 0.11

p_16 14.48 2.05 2.25 2.76 0.04 0.11

p_16a 12.73 1.93 3.35 2.92 0.02 0.11

p_17 11.59 1.58 3.18 2.79 0.03 0.11

p_18 12.96 1.06 3.95 2.91 0.03 0.11

p_19 11.53 1.86 2.43 4.16 0.03 0.12

p_20 14.5 1.43 2.05 2.72 0.02 0.15

p_21 12.79 2.6 2.57 3.91 0.03 0.12

p_22 17.19 1.97 3.17 2.4 0.02 0.12

p_22a 19.27 1.67 2.99 3.46 0.03 0.13

p_23 11.95 1.42 2.63 2.98 0.03 0.11

p_24 12.23 2.24 3.06 4.44 0.03 0.11

p_25 11.7 1.71 2.45 2.53 0.02 0.11

p_26 12.09 2.79 2.14 3.4 0.02 0.12

p_27 12.92 1.58 2.82 3.18 0.02 0.11

p_29 13.17 1.39 2.9 2.32 0.03 0.11

C.6. Performance Evaluation of Unsatisfiable P Ontologies 167

Ontology Avalanche Fact++ Hermit JFact Konclude Racer

p_30 13.01 1.96 3.5 3.15 0.02 0.13

p_30a 12.39 2.54 2.75 3.86 0.02 0.12

p_30b 13.55 2.58 2.48 3.58 0.03 0.14

p_30c 12.97 1.39 2.94 3.2 0.02 0.13

p_30d 12.45 1.6 2.58 3.32 0.03 0.11

p_30small 12.34 2.59 3.83 3.33 0.03 0.19

p_31 10.51 2.3 2.65 2.68 0.03 0.12

p_32 16.07 1.07 77.18 3.32 0.03 0.14

p_32a 25.08 3.14 1009.81 3.83 0.03 0.13

p_32b 14.04 2.14 10.99 3.18 0.06 0.13

p_32cdf 12.32 1.61 99.18 3.55 0.06 0.14

p_33 13.19 1.83 2.39 3.18 0.05 0.1

p_34 11.31 1.23 3.06 4.07 0.04 0.14

p_35 12.36 1.1 2.73 2.19 0.03 0.1

p_35a 11.81 2.01 2.64 2.17 0.05 0.11

p_35b 9.49 2.6 4.2 2.7 0.04 0.11

p_36a 16.32 1.18 2.89 2.31 0.04 0.1

p_36b 15.98 1.7 3.05 2.02 0.05 0.11

p_36c 17.38 1.29 2.29 1.69 0.04 0.11

p_37a 16.83 1.84 4.24 1.66 0.05 0.1

p_37b 16.34 2.06 2.91 2.13 0.04 0.1

p_38a 12.99 1.68 3.78 3.08 0.04 0.11

p_38b 15.82 2.56 4.49 2.12 0.04 0.11

p_39a 12.66 1.75 2.46 1.87 0.03 0.12

p_39b 11.21 1.75 2.82 2.86 0.17 0.11

p_40 11.94 1.94 3.49 2.41 0.29 0.12

p_41a 11.48 1.08 2.38 1.78 0.05 0.1

p_41b 10.67 1.81 3.21 2.51 0.06 0.1

p_42a 10.42 2.18 2.23 1.47 0.08 0.1

p_42b 10.13 2.15 3.21 1.65 0.05 0.1

p_43 12.15 2.59 3.44 1.91 0.03 0.09

p_44 12.2 1.59 3.22 1.37 0.2 0.1

p_45 12.4 1.58 2.97 1.59 0.03 0.12

p_46 12.66 1.8 4.17 2.15 0.03 0.1

p_47 9.78 1.64 2.49 2.81 0.05 0.1

p_47a 12.5 1.94 3.98 1.72 0.05 0.1

p_48 12.15 1.16 3.16 2.14 0.07 0.11

p_49 12.46 2.22 3.8 2.94 0.04 0.12

p_50 14.33 1.78 2.88 2.98 0.03 0.15

p_51 17.92 1.4 4.24 1.72 0.07 0.15

p_52 80.72 1001.47 997.11 1080.12 998.87 0.19

p_53a 158.96 1002.12 996.83 1069.08 999.51 0.11

168 Appendix C. Evaluation

Ontology Avalanche Fact++ Hermit JFact Konclude Racer

p_53b 149.68 1001.64 995.86 1072.41 999.39 0.25

p_53c 152.05 1001.15 997.85 1075.64 999.58 0.21

p_53d 30.12 1002.22 995.7 1077.39 999.58 0.39

p_53e 23.46 1001.24 1000.48 1078.44 999.48 0.46

p_53ea 25.45 1001.07 994.65 1087.03 999.5 0.7

p_53ea-small 28.24 1006.27 1016.16 1074.68 999.46 0.19

p_53eb 25.61 1001.46 994.26 1080.28 999.52 0.4

p_53ec 28.04 1001.47 995.44 1076.19 999.47 0.43

p_53f 24.75 1001 1000.95 1074.14 999.49 0.44

p_54 12.88 1.2 2.73 2.95 0.03 0.14

p_55 14.61 2.39 3.38 1.94 0.04 0.13

p_55a 12.13 2.52 2.65 1.8 0.03 0.11

p_56 28.28 1000.82 1002.31 1080.39 999.51 80.75

p_56a 13.3 1006.11 1063.6 1016.95 999.33 994.66

p_56aa 13.7 3.4 1005.45 16.88 0.27 0.26

p_56ab 15.26 2.46 4 5.27 0.05 0.12

p_56ac 15.23 2.03 4.88 4.03 0.05 0.13

p_56ad 14.59 2.86 4.01 6.14 0.08 0.12

p_56ae 15.63 2.01 4.11 4.7 0.05 0.12

p_56af 20.35 2.1 4.34 4.1 0.07 0.13

p_56af-extended 18.15 1.34 4.9 10.91 0.06 0.13

p_56ag 15.12 2.67 4.58 4.78 0.06 0.12

p_56ah 10.75 1.52 2.87 1.8 0.04 0.13

p_56ai 13.99 1.46 3.93 1.96 0.03 0.13

p_56c 14.52 1007.71 1013.21 1047.12 999.51 1.71

p_56d 15.67 1007.95 1045.26 1025.08 999.5 984.93

p_57a 14.93 24.5 1022.43 58.18 79.29 1.17

p_57b 14.77 1001.39 1000.11 1077.13 999.5 77.23

p_58a 13.05 1.6 997.95 8.4 0.05 2.16

p_58b 11 3.21 996.34 6.77 0.05 2.25

p_59a 10.39 1.58 18.76 1.73 0.03 1.77

p_59b 11.19 2.05 14.31 2.45 0.03 1.93

p_60a 13 1.6 14.48 1.87 0.02 1.56

p_60b 12.27 1.46 17.74 1.53 0.04 1.98

p_61a 13.05 1.52 15.38 2.71 0.03 2.16

p_61b 11.35 1.67 14.06 2.02 0.04 2.04

p_62a 12.2 1.48 13.37 2.14 0.04 1.93

p_62b 14.29 1.87 21.09 2.31 0.05 1.76

p_62c 13.6 1.47 13.74 2.12 0.03 1.43

p_63 13.33 2.84 13.82 2.55 0.04 1.22

p_64 11.35 1.52 15.31 1.81 0.02 1.36

p_70a 12.12 1.33 14.93 3.06 0.03 1.23

C.6. Performance Evaluation of Unsatisfiable P Ontologies 169

Ontology Avalanche Fact++ Hermit JFact Konclude Racer

p_70b 11.48 1.81 12.09 1.87 0.03 0.87

p_72 12.81 1.75 16.82 1.98 0.03 0.72

p_73a 11.29 1.55 22.97 1.42 0.04 0.94

p_73b 10.64 1.5 23.02 2.5 0.03 0.52

p_74 11.54 2.17 26.98 2.52 0.03 1.19

p_75a 14.52 1.67 20 2.22 0.04 0.88

p_75aa 13.66 1.65 20.41 1.71 0.03 0.98

p_75b 15 2.65 23.73 2.28 0.03 0.73

p_76 11.57 1.31 28.27 2.19 0.02 0.74

p_78a 12.97 1.99 35.53 2.21 0.03 0.89

p_78b 12.89 1.05 39.41 2.54 0.03 0.7

p_78c 10.78 1.29 17.25 2.31 0.03 1.36

p_78d 11.84 2.47 19.22 1.67 0.03 1.48

p_79 11.87 1.7 14.58 1.91 0.02 1.02

TABLE C.6: Benchmarks for Unsatisfiable Performance Ontologies

	List of Figures
	List of Tables
	List of Abbreviations
	List of Symbols
	Introduction
	Introduction to the Semantic Web
	Relationship between Ontologies and Description Logics

	Presentation of Description Logic ALCHQ Formal Semantics
	Presentation of Description Logic ALCHQ Formal Semantics
	An Example of DL ALCHQ Application

	Related Works
	Reasoning in Description Logics
	Optimization Techniques

	Motivation and Research Objectives
	Motivation
	Research Objectives

	Description Logic Reasoner Avalanche
	Saturation-based reasoner Avalanche
	Saturation Graph
	Saturation Nodes
	Static Node
	Identified Node
	Auxiliary node
	Anonymous Node
	Clone Node
	Subsumption Clone
	Disjointness Clone
	Unfold Node
	Connecting Edge

	Normalization Process
	Normal Form
	Left-hand Side Normalization Rules
	Right-hand Side Normalization Rules
	Example of Normalization Rules Application

	Calculus Presentation
	Notation
	Avalanche Saturation-based Rules
	Implementation Details

	Reasoning with Qualified Number Restrictions

	Avalanche Implementation Details
	Overview of Avalanche
	Communication between Avalanche and QMediator

	Linear Programming Engine QMediator
	Interaction with Avalanche
	Input Presentation
	Branch and Price Approach
	Column Generation
	Generation and Interpretation of Constraints
	Branch-and-Bound
	Clash Set Detection

	Examples and Result Interpretation
	Simple Example
	Branch and Bound Example

	Proofs
	Termination
	Soundness
	Completeness

	Complexity Analysis
	Performance Evaluation
	Canadian Parliament Benchmarks
	Performance Evaluation for ALCQ Ontologies
	Performance Evaluation for ELQ Ontologies

	Satisfiable and Unsatisfiable ALCHQ Benchmarks
	Performance Evaluation for Satisfiable ALCHQ Ontologies
	Performance Evaluation for Unsatisfiable ALCHQ Ontologies

	Performance Benchmarks
	Performance Evaluation for Satisfiable Performance Benchmarks
	Performance Evaluation for Unsatisfiable Performance Ontologies

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Publications
	Example
	Example of Rule Applications

	Evaluation
	Performance Evaluation of ALCQ Ontologies
	Performance Evaluation of ELQ Ontologies
	Performance Evaluation of Satisfiable SHQ Ontologies
	Performance Evaluation of Unsatisfiable SHQ Ontologies
	Performance Evaluation of Satisfiable P Ontologies
	Performance Evaluation of Unsatisfiable P Ontologies

