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Abstract
Three Essays on the Economics of Information

Samuel F. Pichette, Ph.D.
Concordia University, 2024

This thesis consists of three essays on the Economics of Information, focusing on strategic in-
formation acquisition and on the design of disclosure rules.

In Chapter 2, a decision-maker relies on the information reported by a panel of experts to take
an action. These experts may observe relevant information and have preferences over the decision-
maker’s actions. Each expert possesses three qualities: (i) the probability that he acquires infor-
mation, (ii) the probability that this information is inaccurate in favor of his agenda, and (iii) the
level of this error. Conscious of these qualities, the decision-maker forms her optimal panel to
make the most informed decision. We show that it is generally better for the decision-maker to
have experts with identical agendas if these experts cannot misreport their information, even if it
is inaccurate.

In Chapter 3, we consider a variation of the model presented in Chapter 2 in which experts’
information is always accurate. Moreover, each expert can now incur a cost to increase his proba-
bility of obtaining information. The objective of the decision-maker is to form a panel to make the
most informed decision, while experts have their own preferences. We show that there exist levels
of cost of effort such that experts in a homogeneous panel will choose to exert no effort, while
experts in a diverse panel will exert some. In addition, we find that for a sufficiently high return on
effort, a diverse panel is optimal.

In Chapter 4, one agent – the sender – benefits from two other agents – the receivers – taking
some actions. Each receiver possesses private information referred to as his type, and can disclose
it truthfully or not. The sender has a private type which she does not observe at first but can
condition a communication device, observed by every agent, on its different realizations and on
the reported types. In turn, this provides the receivers with action recommendations. We show that
depending on the alignment of the preferences, the optimal rule ranges from fully revealing the
sender’s type to no revelation at all, and that most of the times only partial information is revealed.
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time.

Moreover, I would like to thank all of my classmates, professors, faculty and staff members
that I had the privilege to meet during this program, and who have made this endeavor a pleasant
one. In the same spirit, I am appreciative for all the support and encouragement that I received
from all of my friends.

This thesis would not have been possible without the unwavering support from my family.
Most crucially, I am deeply indebted to my parents, Louise and Denis, and my brother, Jacob, for
their help and for always believing in me. Special thoughts for my mother who is sadly no longer
with us, for your precious time and advice. You have shown me what perseverance and confidence
really mean. Special thanks also to my cat, Leia Catwalker, who was there for me when I was,
sometimes unknowingly, in need of a change of mind or a smile.

Finally, there is simply no words to describe how grateful I am for the support from my soul-
mate, Karolan, who left this world unjustifiably too soon. Let alone this thesis, I would not have
even contemplated pursuing graduate studies without you. You were my rock, present in every up
and down of this journey until the very end.

iv



Dedication

In memory of Karolan Jeffrey.
I will forever cherish the time that I had with you. Always.

“All we have to decide is what to do with the time that is given to us.”

— J.R.R. Tolkien, The Fellowship of the Ring

v



Contribution of Authors

Chapter 2 is not co-authored.

Chapter 3 is a joint work with my supervisor, Dr. Dipjyoti Majumdar.

Chapter 4 is not co-authored.

vi



Contents

List of Figures ix

List of Tables x

1 Introduction 1
1.1 Optimal Panel Composition of Biased Experts . . . . . . . . . . . . . . . . . . . . 1
1.2 Strategic Acquisition of Costly Information from Opinionated Experts . . . . . . . 2
1.3 Information Design with Multiple Privately-Informed Receivers . . . . . . . . . . 3

2 Optimal Panel Composition of Biased Experts 4
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Equilibrium Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3.1 General Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Panel of One Expert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.3 Homogeneous Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.4 Diverse Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Optimal Panel Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Comparative Statics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.2 Example: Public Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Strategic Acquisition of Costly Information from Opinionated Experts 49
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3 Equilibrium Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.1 Homogeneous Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.3.2 Diverse Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.4 Optimality of the Diverse Panel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.5.1 Modifications to the Judge’s Loss Function . . . . . . . . . . . . . . . . . 65
3.5.2 Continuous Levels of Effort . . . . . . . . . . . . . . . . . . . . . . . . . 66

vii



3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Information Design with Multiple Privately-Informed Receivers 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1 Related Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2.1 Sender’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3 Examples: Applications in Binary Environments . . . . . . . . . . . . . . . . . . 83

4.3.1 No Private Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.2 Payoff-Relevant Private Information . . . . . . . . . . . . . . . . . . . . . 84

4.4 Main Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

viii



List of Figures

2.1 Function g(ϵ) given α = 0.5 and δ ∈ {0.1, 0.2, 0.4} . . . . . . . . . . . . . . . . . 22
2.2 Function g(ϵ) given α ∈ {0.5, 0.9} and δ = 0.3 . . . . . . . . . . . . . . . . . . . 23
2.3 Function g(α) given ϵ ∈ {0.3, 0.45, 0.6} and δ = 0.3 . . . . . . . . . . . . . . . . 24
2.4 Function g(α) given ϵ = 0.3 and δ ∈ {0.3, 0.45, 0.6} . . . . . . . . . . . . . . . . 25
2.5 Function g(α) given ϵ = δ = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.6 Function g(ϵ) given α = 0.5 and δ ∈ {0.2, 0.5, 0.8} . . . . . . . . . . . . . . . . . 47
2.7 Function g(ϵ) given α = 0.5 and δ ∈ {0.2, 0.5, 0.8} . . . . . . . . . . . . . . . . . 48

3.1 The required difference between αH and αL for an optimal diverse panel . . . . . . 64

4.1 Optimal values for q and y in Case 1 . . . . . . . . . . . . . . . . . . . . . . . . . 103
4.2 Optimal values for q and y in Case 2 . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.3 Optimal values for r and x in Case 3 . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.4 Optimal values for x and y in Case 4 . . . . . . . . . . . . . . . . . . . . . . . . . 106
4.5 Optimal values for r and x in Case 7 if c ≤ 2d . . . . . . . . . . . . . . . . . . . . 111
4.6 Optimal values for r, r̂ and x in Case 7 if c ≥ 2d . . . . . . . . . . . . . . . . . . 112
4.7 Optimal values for r and x in Case 8 . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.8 Optimal values for q and y in Case 8 in the non-symmetric setting . . . . . . . . . 115
4.9 Optimal values for r and x in Case 9 if c = 2d . . . . . . . . . . . . . . . . . . . . 116
4.10 Optimal values for r and x in Case 9 if c < 2d . . . . . . . . . . . . . . . . . . . . 117
4.11 Optimal values for q and y in Case 9 in the non-symmetric setting . . . . . . . . . 118

ix



List of Tables

4.1 Receivers’ payoffs – Without private information . . . . . . . . . . . . . . . . . . 83
4.2 Optimal disclosure rule for the binary case with no type . . . . . . . . . . . . . . . 84
4.3 Receivers’ payoffs – Generic case . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4 Sender’s payoffs – Generic case . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5 Conditional probability distributions over the types . . . . . . . . . . . . . . . . . 86
4.6 Optimal information structure for the case with uniform priors over types . . . . . 86
4.7 Communication rule layout – Symmetric w.r.t. types . . . . . . . . . . . . . . . . 87
4.8 Communication rule layout – Non-symmetric w.r.t. types . . . . . . . . . . . . . . 108

x



Chapter 1

Introduction

1.1 Optimal Panel Composition of Biased Experts

In the first essay (Chapter 2), we solve for the optimal panel composition of experts for a

decision-maker. In our model, the decision-maker relies on the information reported by experts to

choose an action. Her goal is to make the most informed decision. Each expert has his own agenda

– an action by the decision-maker that he prefers the most. With some probability, an expert can

be informed. That is, he observes a signal about the state of the world. However, this signal

may be biased towards their own agenda, but the expert is unaware of this possibility. One can

interpret this as an expert experiencing a selection bias when gathering information for his report.

Once an expert observes this signal, he then decides whether to reveal it or to conceal it to the

decision-maker. He cannot misreport it. Moreover, an uninformed expert must admit ignorance.

The decision-maker, having received these reports (if any), then takes an action.

We first characterize the best responses for the experts. We use the Perfect Bayesian Equilib-

rium (PBE) solution concept to show that for sufficiently high levels and probabilities of error, a

diverse panel – composed of experts with opposing agendas – can be preferable to a homogeneous

panel – composed of experts with the same opinion. This result may be viewed as bridging the gap
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between two strains of the literature, in which one argues that competing interests yield higher lev-

els of information while the other is promoting the benefits of similar agendas in providing accrued

validation.

1.2 Strategic Acquisition of Costly Information from

Opinionated Experts

In the second essay (Chapter 3), we show that in a setting where experts are accurate – as

opposed to Chapter 2 – but instead can incur a cost to increase their probability of being informed

– i.e. getting a signal about the state of the world –, then it is possible for the diverse panel to

be optimal. This depends on how effective it is for an expert to convert effort into an increased

informativeness probability, and how costly this process is. Indeed, we find that if the cost of

effort is sufficiently high, and that exerting effort translates into an adequately high probability of

being informed, then experts in a diverse panel will agree on incurring it. However, under such

conditions, we find a free-riding issue present in the homogeneous panel composition, resulting in

no expert putting in more work. Consequently, the diverse panel may be more appealing for the

decision-maker.

This result also makes use of the PBE concept. Moreover, we characterize it for different

setups. We first begin by considering the decision-maker to be risk-averse and effort to be binary.

Then, we generalize our results for a risk-neutral decision-maker. We conclude by validating our

results in the case of continuous levels of effort, where we find that the diverse panel can still be

optimal under conditions similar to the binary scenario.
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1.3 Information Design with Multiple Privately-Informed

Receivers

In the third essay (Chapter 4), we consider an environment with three agents: one who is

uninformed (sender), and two who are privately informed (receivers). The sender can design a

disclosure mechanism that will reveal information about an unknown state of the world to each

receiver individually. Both the sender and the receivers know nothing more than the distribution of

this state prior to the reports from the disclosure mechanism. Each receiver has, however, payoff-

relevant private information – referred to as his type – and must report it, truthfully or not, to the

sender. The sender designs her disclosure mechanism in advance, before getting reports from each

receiver. She can condition the information revealed – as private messages to each receiver – on the

possible realizations of the state and these aforementioned reports. After observing their messages

from the mechanism, the receivers chooses their actions. They cannot at any moment communicate

their information to other receivers. Moreover, while the receivers’ payoffs depend on the state,

their types, and their collective profile of actions, the sender’s payoff only depend on the receivers’

actions and the state of the world.

In a binary environment, we characterize the optimal disclosure rule using the Incentive-

Compatible Bayes Correlated Equilibrium (ICBCE) concept. The solution illustrates that depend-

ing on the payoff structures, the information revealed varies from no disclosure at all – after getting

his message, a receiver knows no more information than his prior about the state – to full disclosure

– when a receiver knows what the true state is with certainty. We also show that in most cases,

under our settings, receivers get partial information about the state.
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Chapter 2

Optimal Panel Composition of Biased

Experts

2.1 Introduction

The present chapter considers aspects of strategic information transmission when experts com-

pete for influence. Consider a situation where a decision-maker relies on advice from experts. In

the classical version of the model, the decision-maker does not have information about the state

of the world, but the experts do. Experts however, are interested in the decision and might behave

strategically by withholding relevant information. In order to mitigate this issue, decision-makers

often form panels of experts with competing interests. The idea is that competition among ex-

perts incentivizes them to share more information. There are numerous real life examples where

decision-makers solicit information from a panel of experts. One such example consists of a judge

who might invite testimony from both the defendant and the plaintiff. Another is depicted by tele-

vision debates in a presidential primary where voters can listen to the policy positions of various

candidates.

Starting with the seminal paper by Milgrom and Roberts (1986), there has been an extensive
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study on the issue of eliciting private information with competing experts (see for example Shin

(1994), Shin (1998), Kamenica and Gentzkow (2011), Gul and Pesendorfer (2012)). Most of the

existing literature, however, does not necessarily address the issue of conflict among experts and

the quality of decision making. In an important series of papers, Bhattacharya and Mukherjee

(2013) and Bhattacharya et al. (2018) tried to bridge this gap. In particular, Bhattacharya and

Mukherjee (2013) demonstrate that it is always optimal for the decision-maker to opt for a panel

of experts with extreme agendas/preferences, and that choosing similar such agendas is better – i.e.

forming a homogeneous panel – than opposing ones – i.e. forming a diverse panel. In a subsequent

paper, Bhattacharya et al. (2018) establish that when correlation between experts’ types is low, a

homogeneous panel is again optimal.

In the present chapter, we take the analysis further. We consider an environment where a

decision-maker cannot commit to his actions, and where there is uncertainty over whether or not

an expert possesses relevant information. Our objective is to explore the following key question:

“Given that experts have extreme agendas, when is it optimal for a decision-maker to opt for a

panel with diverse policy preferences instead of homogeneous ones?” In most of the literature, an

expert either learns the state or he does not. Conditional on an expert learning the state, there is

no ambiguity in the expert’s learning. We depart from this regime by allowing experts to make

mistakes in learning the state. More importantly, errors that the experts make are “biased” towards

their respective agendas. When experts have the possibility of making such “agenda-specific er-

rors”, we find that the answer to the question of optimal design of a panel is nuanced. Indeed, our

results suggest that for a given probability and “level of error”, a diverse panel is better, the higher

the quality of the experts – i.e. the probability that each experts observes a signal about the state.

Moreover, for a given quality of experts, and for a given level of error, a higher probability of error

– beyond a certain threshold – makes a diverse panel optimal for the decision-maker.

We follow closely the model introduced in Bhattacharya and Mukherjee (2013) and consider

a persuasion game having the following features. A decision-maker wants to take an action in the

unit interval [0, 1]. From the decision-maker’s point of view, her optimal decision is to match the
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state of the world θ ∈ [0, 1]. Her objective is to minimize the loss which is an increasing function of

the distance between the state and the action. We restrict our attention to the absolute loss function

for the decision-maker – also referred to as the judge. The judge bases her action on verifiable

reports from two experts. The experts have state-independent and monotonic preferences over the

decision-maker’s action. More importantly, an expert’s preference is identified by his “agenda ”

– his most preferred action – defined as xi ∈ [0, 1]. We restrict our attention to extreme experts

with either xi = 0 or xi = 1. Each experts i ∈ {1, 2} is privately informed of a signal si ∈ [0, 1]

regarding the state θ with a probability α ∈ [0, 1] – representing an expert’s quality. Conditional on

an expert i being informed, the signal can take two possible values: For an expert with agenda at 0

– i.e. for xi = 0 –, with a probability (1− ϵ), si = θ, and with probability ϵ > 0, si = θ− δ, where

ϵ and δ are relatively small numbers. This is a departure from the literature, which focused mainly

on situations where informed experts learned the true state with certainty. The interpretation is

that an informed expert with agenda xi = 0 will, with a high probability, correctly observe the

state. However, with a small probability ϵ, the expert makes an error and observes a signal that is

removed by a distance δ from the state towards his agenda. We call ϵ the “agenda-specific error

probability”, and δ the “agenda-specific level of error”. Likewise, for an informed expert whose

agenda is at 1 – i.e. xi = 1 –, with probability ϵ, the signal is si = θ + δ. We assume that the

information is “hard” in the sense that the experts cannot misreport. In our context, even the error is

verifiable. The interpretation is that an expert collects information to formulate their report. While

this information may be inaccurate, the expert must disclose it truthfully – i.e. without altering

it. An uninformed expert must admit ignorance, while an informed expert i must either report

the signal si he observes or pretend to be uninformed. The decision-maker takes the action that

maximizes her expected payoff, given the posterior belief about the state based on the reports by

the experts.

In this framework our question is as follows: If the decision-maker could choose the experts (at

the beginning of the game) based on their agendas, when is a diverse panel – composed of experts

with agendas 0 and 1 – better than a homogeneous panel – composed of experts with identical

6



agendas?

As is common in the literature, we focus on the Perfect Bayesian Equilibrium (PBE) of the

persuasion game. However, there are a number of issues here. Unlike Bhattacharya and Mukherjee

(2013), it is no longer immediate that when an expert reveals his signal si, the judge takes the action

that matches si. Indeed, we show that when the error probability ϵ is small (ϵ < 1
2 ), the decision-

maker’s best response is to match the signal si for a homogeneous panel (most of the time). For

a diverse panel, the issues are more subtle. We are able to show that the best response for the

decision-maker is to either match the signal si or if both experts report different signals, choose

the average of the two signals when ϵ is small. Given these results, it turns out that the equilibrium

of this game is characterized by the decision-maker’s default action y∗, taken when all experts fail

to report a signal. Consequently, an expert reports a signal si if doing so is more favorable to him

than y∗. As in Bhattacharya and Mukherjee (2013), an informed (possibly with error) expert’s

disclosure strategy is given by a revelation set – i.e. the set of states where he would report his

signal truthfully to the decision-maker. As such, for an expert with agenda 0, his revelation set is

Θ∗
0 = [0, y∗ + δ]. For an expert with agenda 1, it is Θ∗

1 = [y∗ − δ, 1]. Thus, each expert’s revelation

set is a set of favorable states close to his ideal action, and the judge’s default action y∗ is a best

response to such disclosure strategies. Therefore, the joint revelation sets in a homogeneous panel

covers the sets of states smaller (larger) that y∗ if xi = 0 (xi = 1) for all i, while they cover

the entire state space in a diverse panel. This is similar to the characterization in Bhattacharya

and Mukherjee (2013) and Bhattacharya et al. (2018). The only difference is that the revelation

sets are adjusted by the error level δ. This characterization leads to a tradeoff between diverse

and homogeneous panels. Indeed, compared to a diverse panel, with a homogeneous panel the

decision-maker learns the state with a higher probability if the state lies in a larger subset of the

state space, while higher states – that is states outside the subset [0, y∗ + δ] – are never reported. In

a diverse panel, each state is reported by exactly one of the two experts (most of the time).

In our main result, we show that for given values of ϵ and δ, there exists a threshold level of
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the expert quality α∗ such that for α > α∗, the diverse panel becomes better for the decision-

maker. Likewise, for a given value of experts’ quality α, and a given level of error δ, there exists

a threshold level of error probability ϵ∗ < 1
2 such that, for ϵ ∈ (ϵ∗, 1

2), the diverse panel is optimal

for the decision-maker. The intuition behind the first result is the following: as the quality of

the experts increases, in the presence of a small amount of agenda-specific error (in both level

and probability of error), the benefits from a homogeneous panel are offset by the benefits from the

entire state space being covered by the diverse panel. Given the error level and the error probability,

the value of having both experts reporting over the same set remains unchanged, but the value of

reporting over different sets of states goes up. A similar intuition works for the second result.

Our findings can be seen as an attempt to verify the robustness of the results in Bhattacharya and

Mukherjee (2013). In addition, a significant body of the literature has compared the efficacy of a

diverse panel with a setting where only one expert is responsible for gathering and revealing all

information. For example, Shin (1998) compares a panel of two experts with opposing interests to

one unbiased expert and demonstrates that a diverse panel reveals more information. Dewatripont

and Tirole (1999) make a similar point. On the other hand, Bhattacharya and Mukherjee (2013),

and Bhattacharya et al. (2018) show the optimality of the extreme homogeneous panel for a general

class of problems. Our result can also be seen as an attempt to bridge the gap between these two

strands of the literature.

2.1.1 Related Literature

As mentioned previously, our work is an extension of Bhattacharya and Mukherjee (2013).

Indeed, they consider a model with a judge and a panel of two experts. Each of these experts

has an ideal action that he would like the judge to take. The judge’s goal is to pick an action as

close as possible to the state. With no bias, the experts will reveal the state of the world to the

judge if they are informed and if doing so improves their payoff upon the default action – i.e. if

the state lies within their revelation sets. Bhattacharya and Mukherjee (2013) shows that a panel

of extreme experts – homogeneous or diverse – is always optimal. Moreover, if the judge has a
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quadratic loss function, then the homogeneous panel of extreme experts is preferred by the judge,

regardless of the probability of the experts being informed. Bhattacharya et al. (2018) refers to an

expert being informed or not as his type. As opposed to Bhattacharya and Mukherjee (2013) and

our work, they allow for correlation between types – i.e. for a panel of two experts, if one expert

is informed there is a higher probability that the other one is as well. Informed experts observe the

state, but are biased in their reporting depending on their ideal action. They show that with high

correlation between types, the diverse panel is a better choice for the judge than the homogeneous

panel. Moreover, if types are independent, then the homogeneous panel is generally the optimal

choice.

Also related to this chapter, Milgrom (1981), Grossman (1981) and Milgrom and Roberts

(1986) show that a skeptical decision-maker can elicit all information from a diverse panel of

experts, assuming these latter are always informed – i.e. every expert observes the state with cer-

tainty –, an assumption that differs from our work1. As noted in, for example, Dye (1985), Jung

and Kwon (1988), Okuno-Fujiwara et al. (1990), Shavell (1994) and Shin (1994), if there is some

positive probability that an expert does not observe the state, then an informed expert may select a

non-disclosure strategy when revealing his information makes him worse off. Shin (1998) shows

that a panel of two experts with opposing interests reveals more information than a panel of one un-

biased expert. Similarly, Dewatripont and Tirole (1999) show the benefits of advocates (opposing

experts) in policy-making, arguing that in many situations it leads to higher levels of information

collection by the decision-maker over a single unbiased expert. Kartik et al. (2017) demonstrate

that when information acquisition is costly and endogenous for the experts – we however assume it

to be costless and exogenous –, then the experts’ effort level decisions are strategic substitute and

increasing the number of experts may decrease these efforts. The literature on disclosure games is

also relevant to our work, and one can look at Wolinsky (2002) for such example. Next, Gentzkow

and Kamenica (2017) show that competition weakly increases information revelation if the infor-

mation environment is Blackwell-connected, and that it otherwise might not be the case. Finally,

1See section 2.5 for further details on how this relates to our results.
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Li and Norman (2021) argue that when having experts disclose their respective signal sequentially,

adding an expert moving first weakly increases information transmission in equilibrium, and that

having experts speak only once except for the first one does not change the equilibrium outcome.

Moreover, having experts move sequentially makes for a weakly less informative equilibrium as

opposed to the simultaneous counterpart.

The rest of the chapter is organized as follows: in Section 2.2 we introduce the model; in Sec-

tion 2.3 we characterize the equilibrium generally and for the different panel compositions; we

present in Section 2.4 our main results on the optimal panel composition, along with some com-

parative statics. In Section 2.5, we discuss the implications of decision-maker having a quadratic

loss function. In addition, we briefly discuss the implications of uniform error, as against the error

being bias specific. Section 2.6 concludes. The proofs of the main propositions are relegated to the

appendix.

2.2 Model

We consider a model of a judge selecting a panel of experts as in Bhattacharya and Mukherjee

(2013). There are two experts i ∈ {1, 2} who may each observe a signal si ∈ Θ about the

state of the world θ ∈ Θ = [0, 1], and one judge who has no information about θ beside the

common prior. The judge must choose an action y ∈ Θ based on the reports from the two experts

mi(si) ∈ Θ ∪ {∅}. There are two qualities of expert: either an expert is informed (ti = 1 with

probability αi), in which case he observes a signal si ∈ Θ, or uninformed (ti = 0 with probability

1−αi), in which case he does not observe such signal (si = ∅). For now, we assume α0 = α1 = α.

Conditional on being informed, each expert decides if he reports the signal that he has observed

(mi(si) = si), or not (mi(si) = ∅). However, lying is never an option; an informed expert can

only report either si or ∅, and an uninformed expert must always report ∅. In addition, the signal

observed by an expert may be biased. A signal is said to be unbiased if si = θ, and biased if

s ̸= θ. The probability that a signal is biased is ϵ. The judge wants her action y to be as close to θ
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as possible. As such, the utility function of the judge is represented as

uJ(y, θ) = −|y − θ|

Each expert i has an ideal action xi ∈ Θ, and as such his utility function is defined as

ui(y, xi) = −|y − xi|

We focus on extreme experts who have their ideal action as xi ∈ {0, 1}. As mentioned, conditional

on being informed an expert i can observe a biased or unbiased signal. That is, conditional on

expert i being informed and xi = 0:

si(θ) =

⎧⎪⎪⎨⎪⎪⎩
θ with probability 1 − ϵ

max(0, θ − δ) with probability ϵ

Conditional on expert i being informed and xi = 1:

si(θ) =

⎧⎪⎪⎨⎪⎪⎩
θ with probability 1 − ϵ

min(θ + δ, 1) with probability ϵ

In the above signal representations, δ refers to the level of the bias. Upon observing his infor-

mation about the state, an expert’s pure strategy is mi(si) = {si,∅} if informed, or mi = ∅ if

uninformed. We denote by m = (m1,m2) the profile of reports submitted to the judge.

The judge’s strategy y(m) can be formulated as two distinct parts: (i) the best response

y(s1, s2) upon receiving m and mi ̸= ∅ for at least one expert; and (ii) a default action y∗ if

m1 = m2 = ∅. We assume that the state θ follows a uniform distribution on the interval [0, 1],

and that this distribution (denoted F ) is common knowledge. We also assume that the judge knows

about the bias of an expert given his ideal action (± δ), but cannot tell if a report mi(si) ̸= ∅
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represents the true state of the world.

We use the Perfect Bayesian Equilibrium (PBE) solution concept. We denote µ(θ|m) the pos-

terior belief of the judge about the state upon observing the report profile m from the experts. A

strategy profile ⟨m∗, y(m∗)⟩ and belief µ∗ is a PBE2 of the considered game if:

(i) Experts send their reports simultaneously. For all i ∈ I and θ ∈ Θ, if an expert i is informed,

then he reports his signal mi(si) = si if and only if:

E[ui(y(si,m−i(s−i)), xi)] ≥ E[ui(y(∅,m−i(s−i)), xi)]

(ii) For all report profiles m, the judge’s action maximizes her expected utility:

y(m) = arg max
y∈Θ

Eµ∗ [uJ(y, θ)]

(iii) µ∗(θ|m) is obtained using Bayes’ rule from the strategy of the experts m∗ and the common

priors. Moreover, any action off-the-equilibrium path that reveals θ must lead to degenerate

beliefs on θ for the judge.

In addition, in our model, due to the possibility of error on the part of the experts, it may

be the case that an off-the-equilibrium path action profile reveals a signal s that differs from

θ by an amount δ. We need to careful specify the off-the-equilibrium path beliefs in such

cases:

• Suppose that the off-the-equilibrium path action that reveals s is taken by the expert

with agenda 0. Then the judge’s belief is the following: µ(θ = s + δ|s) = ϵ and

µ(θ = s|s) = 1 − ϵ.

• On the other hand, if the off-the-equilibrium path action that reveals s is taken by the

expert with agenda 1, then the judge’s belief is the following: µ(θ = s− δ|s) = ϵ and

2See Bhattacharya and Mukherjee (2013) for a discussion on the adaptation of the PBE formulation to the current
problem.
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µ(θ = s|s) = 1 − ϵ.

2.3 Equilibrium Characterization

In this section, we present the equilibrium characterization first generally, then for the different

panel compositions. These include the panels of one expert, of two identical experts, and of two

opposed experts. For each we present the best-response function for the judge and the optimal

default action.

2.3.1 General Characterization

As opposed to the previous models presented in Bhattacharya and Mukherjee (2013) and in

Bhattacharya et al. (2018), we must also establish what is the judge’s best course of action upon

receivingm ̸= (∅,∅) ≡ ˜︁m. Then we must derive the optimal default action y∗ whenm = (∅,∅).

Definition 1 An equilibrium for this game is characterized by the judge’s best-response function

y(m) defined as

y(m) =

⎧⎪⎪⎨⎪⎪⎩
y(˜︁m) if m = ˜︁m
y∗ if m = (∅,∅)

where

y(˜︁m) = arg max
y∈Θ

Eµ|˜︁m[uJ(y, θ)]

is the best response of the judge given the new information provided by at least one of the experts

and the posterior belief µ(θ|˜︁m) ≡ µ|˜︁m, and where

y∗ = arg max
y∈Θ

Eµ0 [uJ(y, θ)]

is the optimal default action from observing m = (∅,∅) inducing the posterior beliefs µ0.

It might not be in the judge’s best interest to blindly choose y(˜︁m) = s′ ∈ ˜︁m if she gets an

13



informative report. As shown in the specific cases below, depending on the report and the bias

of the expert presenting the information, the judge may be able to deduce an expert’s type given

his report. Moreover, in the case of the diverse panel, it is possible that the two experts submit

different information as shown in the relevant section below. If, however, the judge does not get

any informative signal, then depending on the panel composition it is either the case that all experts

are uninformed and/or prefer the null report.

Following the above characterization, y∗ serves in the definition of the upper (lower) bound of

the revelation set for the expert with ideal action at 0 (1). First consider an unbiased expert at 0

and a fixed y∗ (the case of the expert at 1 is analogous). If s = θ ≤ y∗ then the expert prefers

to reveal this information to the judge than concealing it. The reverse holds if θ > y∗. As such,

following the notation in Bhattacharya and Mukherjee (2013), the revelation set of this expert is

Θ∗
0 = [0, y∗]. Now if this expert were to instead be biased, then s = max(0, θ−δ). The expert does

not know that his signal is biased. As such, ˜︁Θ∗
0 = [0, y∗ + δ]. We next proceed with characterizing

the equilibrium for specific panel compositions of pertinence for this chapter.

2.3.2 Panel of One Expert

We first look at a panel consisting of only one expert at x = 0. The case of the expert at x = 1

is analogous and as such omitted. We consider the judge’s best response upon observing a signal

s ̸= {∅}. With probability ϵ, the expert is bias, and these priors are common. The judge has an

absolute-value loss function – i.e. uJ(y − θ) = −|y − θ|. The expert in this case, if informed, will

observe s = θ if he is unbiased, or s = max(0, θ − δ) if he is biased.

Proposition 1 Consider a panel consisting of one expert with ideal action x = 0. The judge’s

absolute payoff function is uJ(y, θ) = −|y − θ|. Then the judge’s best-response function upon
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observing a signal s from the expert is given as

y∗(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ
2 if s = 0

s if s ∈ (0, 1 − δ] and ϵ < 1
2

s+ δ if s ∈ (0, 1 − δ] and ϵ > 1
2

s if s ∈ (1 − δ, 1]

(1)

All proofs are relegated to the appendix. Essentially, Proposition 1 says that if the judge ob-

serves a signal s = 0, then she knows almost certainly that the expert is biased. Indeed, either s

originates from an unbiased expert – the probability of the single event θ = s = 0 over a contin-

uous (uniform) distribution is zero – or a biased expert – where θ ∈ [0, δ] leads to s = 0. For the

latter, the true state of the world θ can be any value in [0, δ], and y∗(s = 0) = δ
2 maximizes the

judges expected payoff in that case. If the judge instead gets s ∈ (1− δ, 1], she knows for sure that

the expert is unbiased as only an unbiased expert can give such report (the maximum signal from

the biased expert being 1 − δ if θ = 1). As such, y∗(s) = s in this case. Finally, if s ∈ (0, 1 − δ],

then the judge cannot deduce if the expert is biased or not. Indeed, upon observing such signal s,

the true state can either be θ = s with probability 1 − ϵ or θ = s + δ with probability ϵ. Having

observed s, the judge’s interim payoff is maximized by choosing y∗(s) = s if ϵ < 1
2 since it is

more likely that the expert is unbiased. Otherwise y∗(s) = s + δ if ϵ > 1
2 . For the purpose of

this chapter, we look at experts that are more likely to be accurate. As such, from now on we will

assume that ϵ < 1
2 . One could interpret this assumption as imposing a (weak) minimum on the

reliability of the experts. Finally, if the judge does not get any report from the expert (s = ∅), then

she chooses the default action y∗ defined below.

Given the best response function y∗(s) and ϵ < 1
2 , the judge must decide on an optimal default

action y∗. This plays a crucial role in determining the revelation set of the expert – i.e. the set for

which it is more beneficial for the expert to reveal the signal s instead of concealing it.

Proposition 2 If ϵ < 1
2 and the panel consists of one expert at x′ = 0, then the judge’s optimal
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default action solves the maximization problem

max
y∗

EUJ(y∗)

and is given by

y∗ = 1 − αϵδ

2 − α
(2)

This solution is unique. Moreover, y∗ is decreasing in the bias of the expert (ϵ and δ) and increasing

in his informativeness (α).

The proof of Proposition 2 is relegated to the Appendix. Observe that y∗ is lower than if there

were no bias introduced in this model. Indeed, in such case this corresponds to y∗ = 1
2−α

3. As

such, the upper bound of the revelation set for this expert decreases in ϵ and δ. In other words, the

judge will rely less on the report of a more biased extreme expert at zero by reducing her default

action y∗.

2.3.3 Homogeneous Panel

Next we derive the judge’s best response y∗ when the panel is composed of two identical

experts whose ideal action is xi = 0 for all i ∈ {1, 2}. The case of both of them at 1 is analogous.

Here, the two experts are essentially identical. As such, the judge’s best response upon observing

˜︁m is the same as in section 2.3.2. Keeping the assumption that ϵ < 1/2, this leads to the following

proposition.

Proposition 3 Consider a panel consisting of two experts with the same ideal action x1 = x2 = x′.

The judge’s absolute payoff function is uJ(y, θ) = −|y − θ|. Then the judge’s best-response

function upon observing a report profile ˜︁m ̸= (∅,∅) is given as

3See Bhattacharya and Mukherjee (2013).
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(i) for x′ = 0:

y∗(˜︁m) =

⎧⎪⎪⎨⎪⎪⎩
δ
2 if s = 0

s if s ∈ (0, 1]
(3)

where

s =

⎧⎪⎪⎨⎪⎪⎩
max{s1, s2} if (s1, s2) ̸= (∅,∅)

sk if sk ̸= ∅ and s−k = ∅, k ∈ {1, 2}

(ii) for x′ = 1:

y∗(˜︁m) =

⎧⎪⎪⎨⎪⎪⎩
s if s ∈ [0, 1)

1 − δ
2 if s = 1

(4)

where

s =

⎧⎪⎪⎨⎪⎪⎩
min{s1, s2} if (s1, s2) ̸= (∅,∅)

sk if sk ̸= ∅ and s−k = ∅, k ∈ {1, 2}

In the first case of Proposition 3, we state that if the signal profile consists of two informative

reports, then only the highest of the two is relevant. Indeed, because the judge is aware of the

possible bias the experts may have towards their ideal action, upon receiving two reports she knows

that the highest one corresponds to the true state – and is submitted by an unbiased expert. A similar

assessment can be made for the other case. Consequently, the proof is similar to Proposition 1 and

is therefore omitted.

Using this best response function, we now derive the ex ante expected utility for the judge

EUJ and use it to find the optimal default action y∗. This, along with the aforementioned y(˜︁m),

completes the best-response function of the judge. We only present the case of the homogeneous

panel at 0 as the case of x1 = x2 = 1 is analogous.

Proposition 4 If ϵ < 1
2 and the panel is homogeneous at x′ = 0, then the judge’s optimal default
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action solves the maximization problem

max
y∗

EUJ(y∗)

and is given by

y∗ = 1 − δ((αϵ)2 + 2αϵ(1 − α))
1 + (1 − α)2 (5)

This solution is unique. Moreover, y∗ is decreasing in the bias of the expert (ϵ and δ) and increasing

in his informativeness (α).

Proposition 4 shows that higher bias lowers the default action. One can see that the terms within

parenthesis on the numerator is strictly positive and multiplied by −δ which is strictly negative by

definition. It presents a similar intuition to Proposition 2 regarding the reliance of the judge on the

experts depending on their bias. The proof is relegated to the Appendix.

2.3.4 Diverse Panel

We now consider a panel of two different extreme experts: one whose ideal action is x1 = 0

and the other x2 = 1. We first compute the judge’s best response when she observes at least

one signal. Recall that for the expert at 0 his biased signal is s1 = max{0, θ − δ}, and for the

expert at 1 it is s2 = min{θ + δ, 1}. Before proceeding with the characterization of the judge’s

best-response function, observe that for the diverse panel it will never be the case that the experts

with submit identical reports (excluding when θ = y∗ and both experts are informed and unbiased

or when both are uninformed). Indeed, for this panel design, either (i) Θ∗
0 ∩ Θ∗

1 = {y∗}, (ii)

Θ∗
0b ∩ Θ∗

1 = [y∗, y∗ + δ], (iii) Θ∗
0 ∩ Θ∗

1b = [y∗ − δ, y∗] or (iv) Θ∗
0b ∩ Θ∗

1b = [y∗ − δ, y∗ + δ], where

we index by b the revelation set of a biased expert. Because of the truthful report requirement, if

both experts are informed and at least one expert is biased then s1 ̸= s2. If both are informed and

unbiased, then only if θ = y∗ can both submit s1 = s2 = θ. If only one expert is informed, then

the signals obviously differ. If both are uninformed, then s1 = s2 = ∅. Proposition 5 details the

judge’s best-response function.
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Proposition 5 Consider a panel consisting of two experts with opposing ideal actions x1 = 0 and

x2 = 1. The judge’s absolute payoff function is uJ(y, θ) = −|y−θ|. Then the judge’s best-response

function upon observing a report profile ˜︁m ̸= (∅,∅) is given as

y(s1, s2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ
2 if s1 = 0 and s2 = ∅

s1 if s1 ∈ (0, 1] and s2 = ∅

s2 if s2 ∈ [0, 1) and s1 = ∅

1 − δ
2 if s2 = 1 and s1 = ∅

s1+s2
2 if s2 − s1 = 2δ or s2 − s1 = δ

(6)

If the judge receives only one informative report, then she acts as if the panel only consisted of

the expert who had submitted it. The main novel part of Proposition 5 comes from the last case of

y(s1, s2). When the two experts submit different reports, the judge can either deduce the true state

if s2−s1 = 2δ by choosing y(s1, s2) = s1+s2
2 = θ, or decide on a middle action if s2−s1 = δ. Note

that for this latter case, due to the symmetric nature of our parametrization, the judge can in fact

decide on any y(s1, s2) ∈ [s1, s2]. For simplification and without loss of generality, we decided on

the midpoint strategy. This option is also intuitively more meaningful, stating that whenever the

judge gets two different reports she chooses the compromise between the two. We next compute

the optimal default action y∗ for the judge when the panel is diverse.

Proposition 6 If ϵ < 1
2 and the panel is diverse with x1 = 0 and x2 = 1, then the judge’s optimal

default action solves the maximization problem

max
y∗

EUJ(y∗)

and is given by

y∗ = 1
2

(7)

With α1 = α2 = α, δ1 = δ2 = δ, and ϵ1 = ϵ2 = ϵ, this solution is invariant to the parameters.
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For the purpose of this chapter, it is most useful to focus on the symmetric case and is without

loss of generality. Indeed, our objective is to evaluate the robustness of the optimality of the

homogeneous panel composition. If we were to consider any combination of δ1 > δ2 and ϵ1 > ϵ2,

then one expert would be more biased than the other4. As such, a homogeneous panel experts with

the lowest bias would be preferred by the judge5. Now due to this symmetric nature of the problem,

this is the same result as if there were no bias. These assumptions are without loss of generality

and only serves to simplify the calculations. In the following section, we establish the conditions

for the diverse panel to be chosen by the judge over the homogeneous one.

2.4 Optimal Panel Composition

In this section, we explore the different panel compositions – diverse and homogeneous –

and the parametric conditions that makes one the better choice from the judge’s perspective. In

particular, we show the requirements on α, δ, and ϵ for the diverse panel to be optimal.

Let yD and yH be the optimal default actions for the diverse and homogeneous panels respec-

tively. Similarly, let EUD(yD) and EUH(yH) be the corresponding expected utility functions for

the judge given the default action yk, k ∈ {D,H}.

We define the function

g(ϵ;α, δ) = EUD(yD) − EUH(yH) (8)

The diverse panel is preferred if g(ϵ;α, δ) > 0. By definition, the function g is continuous and

differentiable everywhere on the interval ϵ ∈ [0, 1].

Theorem 1 We claim the following:

(i) g(ϵ;α, δ) is strictly convex in ϵ for any α, δ ∈ (0, 1);
4See Bhattacharya and Mukherjee (2013) for an explanation on why assuming α1 = α2 = α is without loss of

generality.
5The asymmetrical case only increases the revelation set of the expert who has the highest likelihood of revealing

the true state. This effectively works in favour of the homogeneous panel which is not helpful for the purpose of this
essay.
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(ii) g(0;α, δ) < 0 for any α, δ ∈ (0, 1);

(iii) g
(︁1

2 ;α, δ
)︁
> 0 for some α, δ ∈ (0, 1);

(iv) there exists values of α and δ such that (iii) holds, and given (i) and (ii), there exists ϵ∗ < 1
2

such that g(ϵ∗;α, δ) = 0. Moreover, g(·) is increasing around ϵ∗. As such, for ϵ̄ ∈ (ϵ∗, 1
2) it

must be that g(ϵ̄) > 0.

Theorem 1 establishes that if conditions (i), (ii), and (iii) are satisfied for some α, δ ∈ (0, 1),

then if ϵ is above the threshold ϵ∗ the diverse panel yields a higher ex ante expected utility than the

homogeneous panel. However, as shown in Figure 2.1 below, this requires a relatively high level

of bias (δ).

2.4.1 Comparative Statics

Fix the level of informativeness (e.g. α = 1
2 ). First, observe in Figure 2.1 that for low levels

of bias δ the homogeneous panel is always preferred. This is shown by the red curve. Second, the

blue curve illustrates that slightly increasing δ does not make the diverse panel optimal. Indeed,

the function g(·) crosses the horizontal axis at a point ϵ∗ ≈ 0.7599 > 1
2 which contradicts the

assumption that ϵ < 1
2 . Third, we can find values of α and δ that does allow for a feasible solution

in our context. Indeed, the green curve in Figure 2.1 crosses the horizontal axis at ϵ∗ ≈ 0.3713

and, as such, for any ϵ > ϵ∗ the diverse panel is preferred.

It is also worth pointing out that all three lines share the same origin (g(0;α, δ) = −0.025).

One can see from the definition of g that δ that if ϵ = 0, then the level of bias is immaterial to this

problem. Also, setting ϵ = 0 makes our model identical to Bhattacharya and Mukherjee (2013).

Regarding the parameter α, it does play a role in determining the curvature of g as depicted in

Figure 2.2. While both the purple and the orange lines are convex, they do not share the same

origin anymore. Moreover, the latter is decreasing for small values of ϵ. Notice that this also

illustrates the role of informativeness in determining the panel composition. For a fixed level of

bias (e.g. δ = 0.3), if α = 0.5 the diverse panel is never optimal given our restriction on admissible
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Figure 2.1: Function g(ϵ) given α = 0.5 and δ ∈ {0.1, 0.2, 0.4}

values of ϵ (ϵ∗ ≈ 0.5205). However, increasing it to α = 0.9 allows for a panel of experts with

opposing agendas to be the better choice if ϵ > ϵ∗ ≈ 0.4319.

Diving deeper into the role of α, we rewrite g as a function of α and fix the values for ϵ and δ.

Figure 2.3 fixes δ and consider different values for ϵ, while 2.4 does the opposite using the same

values. Both of them depict a similar story: there is a non-monotonic relationship between g and

α. Indeed, lower levels of α work in favor of the homogeneous panel. However, depending on

the bias (in terms of level δ or probability ϵ), there is a point α∗ above which larger values of α

makes the diverse panel relatively better. For higher bias, α∗ ≤ 0 and as such the diverse panel

is always optimal. At the opposite, for lower bias this value is such that the homogeneous panel

is the better option for any α ∈ [0, 1]. At the middle ground of these two scenarios, there is a
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Figure 2.2: Function g(ϵ) given α ∈ {0.5, 0.9} and δ = 0.3

˜︁α > α∗ that marks the cutoff at g(α|ϵ′, δ′) = 0. Therefore, for α > ˜︁α, the diverse panel is the

preferred panel by the decision-maker. This shows the non-monotonicity of the returns from the

informativeness α of the experts, which is not specific to our model. Indeed, Figure 2.5 shows that

in the absence of bias – returning to the model presented in Bhattacharya and Mukherjee (2013)

– we still observe this relationship. This also shows the indifference points between the two panel

compositions at α ∈ {0, 1}. Adding bias essentially moves one of the extreme points towards the

center, depending on the agenda profile of the homogeneous panel. In the current case, we have

focused on x = (0, 0) which changes the position of the right point. By doing so, we allow for

values of α < 1 that makes the diverse panel optimal. Intuitively, very informed experts makes the

homogeneous panel less profitable for the judge. Recall from Proposition 4 that for any positive
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bias, the default action for the homogeneous panel is strictly less than 1 even if α = 1. Therefore,

it is always the case that Θ∗
00 ⊂ Θ = [0, 1]. This is not the case for the diverse panel, for which

at α = 1 the revelation set covers the entire set of states Θ. This illustrates the arbitrage between

a lower occurrence of more reliable information – from the homogeneous panel, at α = 1 the

probability of receiving a biased report is ϵ2 over the revelation set Θ∗
00 = [0, y∗h], with y∗h < 1 –

and a higher occurrence of poorer information – from the diverse panel, at α = 1 the probability

of receiving a biased report is ϵ over the revelation set Θ∗
00 = [0, 1] = Θ. Next we summarize our

main results with the help of an example. We show how the inclusion of bias affects the choice of

experts in the composition of a panel.

0.0 0.2 0.4 0.6 0.8 1.0
α

−0.02

0.00

0.02

0.04

0.06
g(α; ϵ = 0.3, δ = 0.3)
g(α; ϵ = 0.45, δ = 0.3)
g(α; ϵ = 0.6, δ = 0.3)

Figure 2.3: Function g(α) given ϵ ∈ {0.3, 0.45, 0.6} and δ = 0.3
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α
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0.00

0.02

0.04

0.06
g(α; ϵ = 0.3, δ = 0.3)
g(α; ϵ = 0.3, δ = 0.45)
g(α; ϵ = 0.3, δ = 0.6)

Figure 2.4: Function g(α) given ϵ = 0.3 and δ ∈ {0.3, 0.45, 0.6}

2.4.2 Example: Public Policy

In this section, we illustrate our results through a simple example. We depict the situation

in which a government decides on the composition of a panel of experts to provide information.

The inputs from these experts are then used by the government to decide on an appropriate public

policy.

Concretely, a government wants to establish the share of the firms in the country’s total pol-

lution. By doing so, the government is looking for an appropriate level of taxation to finance

environmental countermeasures. As such, it asks for available experts from both the industry – to

represent the firms – and from environmental groups. From this pool of experts, the government
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0.0 0.2 0.4 0.6 0.8 1.0
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g(α; ϵ = 0, δ = 0)

Figure 2.5: Function g(α) given ϵ = δ = 0

then forms a panel to provide the most information about the actual share of responsibility of the

firms. Naturally, because a higher share will result in higher penalties, the firms would like the

government to agree on a null level of responsibility. At the opposite, environmental groups would

rather have the authority decides on a share of 100%.

Using the model presented previously, the government acts as the judge while the firms and

environmental groups as the experts. We also proceed by referring to the latter as singular experts

from each position. One can think of this as having a unique representative expert for each opinion

who aggregates all the recommendations formulated by its members into a single (average) report.

Each side can contain misinformed members that tends to submit reports closer to their preferences.

This is described as their agenda-specific bias.
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Formally, let the environmental groups (E) and the firms (F) have their ideal actions defined as

xE = 1 and xF = 0. For i ∈ E,F , the payoff functions of the experts are identical:

ui(xi, y) = −|x− y|

Similarly, the government’s (G) payoff function is

uG(y, θ) = −|y − θ|

Let us first consider the case where there is no agenda-specific bias. That is ϵ = 0 or δ = 0 (or

both). We also assume that αE = αF = α = 0.8. The default action for the homogeneous panel

composition is given as

y∗h = 1 − 1
1 + (1 − α)2 = 1 − 25

26
≈ 0.038

Because of the symmetry between the precision levels α of the experts, the default action for the

diverse panel is

y∗d = 1
2

Using these results, we can establish the optimality of the homogeneous panel. Indeed, we find

that

EUJ(x = (0, 0)) ≈ −0.019 > −0.05 = EUJ(x = (0, 1))

As in Bhattacharya and Mukherjee (2013), we obtain that the homogeneous panel is optimal6. This

is to be expected in the absence of bias. Let us now change this and consider the probability and

level of bias to be δ = ϵ = 0.4. Again, we assume that both experts share these traits. Since

this preserves the symmetry, the optimal default action for the diverse panel is left unchanged.

6See Proposition 6 in Bhattacharya and Mukherjee (2013).
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Regarding the homogeneous panel, we obtain that

y∗h = 1 − 1 − δ((αϵ)2 + 2αϵ(1 − α))
1 + (1 − α)2 ≈ 0.127

Immediately observe that the government, aware of the possibility of getting biased reports, adjusts

its default decision accordingly. Under such conditions, the diverse panel is now optimal:

EUJ(x = (0, 0)) ≈ −0.119 < −0.103 = EUJ(x = (0, 1))

In the next section, we further explain the results obtained in this section, and discuss some limita-

tions of our model. We also explore another type of bias, and describe how our work relates to the

literature.

2.5 Discussion

By now, we have established that there exists a cutoff ϵ∗ above which the judge will prefer

to form a panel of experts with opposed agendas. Moreover, that cutoff decreases in δ and α.

Essentially, a larger expected bias results in a lower cutoff ϵ∗. In turn, a lower cutoff means that the

judge is more likely to prefer a diverse panel composition. This nuance complements the intuition

presented in Bhattacharya and Mukherjee (2013): one can think of the homogeneous panel as a

singular expert who is more informed. When deciding on the panel composition, the judge balances

the benefits from being more likely to get a report but on a shorter range of states (homogeneous

panel), versus having a lower probability but on the entire set of states (diverse panel). Without

bias, the homogeneous panel is unambiguously preferred for all values of α7. However, as α

approaches 1, the difference between the two shrinks to the point were, at α = 1, the judge is

indifferent between the two compositions. With bias, it depends on ϵ∗ as explained before, which

in turn depends on α and δ. Now the aforementioned trade-off has an extra layer: For the judge, are

7See Bhattacharya and Mukherjee (2013)
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the benefits of an higher probability of getting a report worth the loss from a smaller revelation set,

when this report in itself is less valuable by being possibly biased? Indeed, conditional on experts

being informed, the probability of getting a biased report from a homogeneous panel is 2ϵ − ϵ2,

which is greater than ϵ for the diverse panel. Theorem 1 shows that there is a value for ϵ above

which the judge prefers the less probable but more reliable report from the diverse panel.

For ease of presentation, we have focused on absolute utility functions for both the judge and

the experts. Our results qualitatively hold – to some extent – if we were to consider a quadratic

function instead (e.g. uJ(y, θ) = −(y − θ)2 for the judge, and ui(y, xi) = −(y − xi)2 for the

experts). Starting with the experts, recall that they play a rather passive role in our model. Indeed,

they simply observe a signal and only reveal it if it lies in their respective revelation set. Therefore,

this new utility form bears no significance for our results on their side. However, such a change

would affect the judge’s best response function. One can follow the same procedure as in Proposi-

tion 1 to see that if s = 0 or s ∈ (1−δ, 1], the best response remains unchanged. For s ∈ (0, 1−δ],

it is now y(s) = s+ ϵδ. Proposition 7 formalizes the judge’s best response function.

Proposition 7 Consider a panel consisting of one expert with ideal actions x = 0. The judge’s

quadratic payoff function is uJ(y, θ) = −(y − θ)2. Then the judge’s best-response function upon

observing a report ˜︁m ̸= ∅ is given as

y(s) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

δ
2 if s = 0

s+ ϵδ if s ∈ (0, 1 − δ]

s if s ∈ (1 − δ, 1]

This proof, along with the following counterparts for the other panel compositions, are omitted

as they follow closely their respective propositions from our original model. Essentially for this

panel, the first and last cases are identical. For s ∈ (0, 1 − δ), optimizing the interim payoff with

the quadratic function gives the above result. Similarly, Proposition 8 presents the best response

for the homogeneous panel.
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Proposition 8 Consider a panel consisting of two experts with the same ideal action x1 = x2 = 0.

The judge’s quadratic payoff function is uJ(y, θ) = −(y − θ)2. Then the judge’s best-response

function upon observing a report profile ˜︁m ̸= (∅,∅) is given as

y∗(˜︁m) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

δ
2 if s = 0

s if s ∈ (0, 1 − δ]

m1 = m2 = θ if s ∈ (1 − δ, 1]

(9)

where

s =

⎧⎪⎪⎨⎪⎪⎩
max{s1, s2} if (s1, s2) ̸= (∅,∅)

sk + ϵδ if sk ̸= {∅} and s−k = ∅, k ∈ {1, 2}

Proposition 9 below covers the diverse panel scenario.

Proposition 9 Consider a panel consisting of two experts with opposing ideal actions x1 = 0

and x2 = 1. The judge’s quadradic payoff function is uJ(y, θ) = −(y − θ)2. Then the judge’s

best-response function upon observing a report profile ˜︁m ̸= (∅,∅) is given as

y(s1, s2) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ
2 if s1 = 0 and s2 = ∅

s1 + ϵδ if s1 ∈ (0, 1 − δ] and s2 = ∅

s1 if s1 ∈ (1 − δ, 1] and s2 = ∅

s2 − ϵδ if s2 ∈ [δ, 1) and s1 = ∅

s2 if s2 ∈ [0, δ) and s1 = ∅

1 − δ
2 if s2 = 1 and s1 = ∅

s1+s2
2 if s2 − s1 = 2δ or s2 − s1 = δ

(10)

With these best responses, it can be shown that there exists values of ϵ that makes the diverse

panel the better option for the judge.
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Theorem 2 If the judge has a quadratic utility function, then for some values of α ∈ (0, 1) and

δ ∈ (0, 1) there exists values of ϵ∗ ∈ (ϵ, ϵ) for which the diverse panel is preferred by the judge.

Again, we omit the formal proof as it follows the steps of Theorem 1. Notice that here there is

a range of values for ϵ∗. This is due to the quadratic utility function having a nonlinear relationship

with the parameters of our model. Appendix B provides details about the intuition behind Theorem

2. Therefore, instead of having a clear cutoff ϵ∗ as in our results using the absolute payoff function,

we get, in some of the cases that allow it, an interval for ϵ where the diverse panel is optimal.

Further details about the specific characterization of the equilibrium are beyond the scope of this

essay.

Next, we look at a modification of our definition of bias. So far, we have assumed that an in-

formed expert would be prone to unconsciously select information sources that were more aligned

with his ideal action, thus resulting in a bias directed towards it. Now, let us simply assume that

an informed expert may make a mistake in his interpretation of the information, thus effectively

removing the direction of the bias. More precisely, instead of observing a possibly biased signal

s = θ ± δ ∈ [0, 1] with probability ϵ, an informed expert observes with certainty a signal that is

uniformly distributed around θ. That is, s ∼ U [θ−min{δ, θ, 1−θ}, θ+min{δ, θ, 1−θ}]. Including

min{δ, θ, 1 − θ} serves three purposes: (i) it takes care of the corner issues, (ii) as E[θ|s] = θ the

best-response function of the judge is y(s) = s for all s ∈ Θ, and (iii) it makes for an intuitive

interpretation for extreme states. Indeed, the closer θ is to one extreme of the interval, the smaller

is the range of the uniform distribution. As such, the different information sources should agree

more about it. Moreover, on average an expert is not expected to make a mistake. For example,

with 99% of the 3000 scientific peer-reviewed articles agreeing that contemporary climate change

originates from human activity8, it is extremely likely that different experts will have the same in-

formation – and as such, in terms of our model, observe very similar signals about the state. Using

the same (symmetrical) settings, we find that the results are similar to those in Bhattacharya and

Mukherjee (2013). In fact, the judge’s strategy – which can be resumed in this context by y∗ – is

8See Lynas et al. (2021).
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identical, but because of the possibility of an interpretation mistake by the expert(s) EUJ(y∗) is

reduced.

If we remove the bias in our model, experts can only decide whether or not they disclose the

state if they observe it. This reverts our model back to Bhattacharya and Mukherjee (2013) and, as

such, we obtain the same result that the homogeneous panel is optimal. Now in this context, take

α = 1. Then the homogeneous panel with yH = 1 is equivalent for the judge to the diverse panel

with yD = 1
2 . In addition to α = 1, let us allow experts to report intervals containing θ. This is

a specific model in the spirit of what is presented more generally in Milgrom and Roberts (1986).

Then, consistent with their Corollary 2, we get that the diverse panel is optimal. To see this, fix y∗

and consider a homogeneous panel at 0 along with a diverse panel with one expert at 0 and another

at 1. The homogeneous panel will disclose IH = [0, θ] if θ ≤ y∗ and IH0 = [0, 1] otherwise. The

diverse panel, however, will have the signal intervals of the experts – I0 and I1 for experts at 0 and

1 respectively – be such that I0 ∩ I1 = {y∗} for all θ ∈ Θ. Indeed, notice that for the expert at 0 –

the case of the expert at 1 is analogous –, the lower bound of I0 is his ideal action x1 = 0. As such,

he only has to decide on the upper bound θ. Take θ > y∗. If θ = θ we have the aforementioned

result. If θ > θ then I0 ∩ I1 = [θ, θ] and the judge will choose an action in that interval. Since the

lower bound minimizes the expert’s absolute loss, the strategy θ > θ is dominated by θ = θ.

One limitation of our model is that the bias is exogenous. Indeed, popular beliefs suggest that

individuals with more extreme opinions may be more likely to be biased towards it. For example,

suppose that ϵ(x) (or δ(x)) is an increasing function of |1
2 − x|. While this is beyond the scope

of this chapter, intuitively this makes the choice of extreme experts less likely for the judge as

there is now a cost possibly outweighing the benefits from choosing such panel. Also not covered

in this essay is the scenario of costly information acquisition for the experts. Indeed, we have

assumed here that observing the state is costless for an informed expert. If, for example, experts

were required to exert some effort that affects their probability of being informed α, then it may be

the case that for some cost function (depending on effort) the diverse panel is optimal. Briefly, an

expert in a homogeneous (extreme) panel benefits from the other expert’s effort, therefore allowing
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him to reduce his own. The other expert reacts similarly. This is not an issue in a diverse (extreme)

panel because there is no such interaction between the experts. In fact, the expert at x = 0 suffer

a greater loss if he does not observe the state while the other expert does and it is optimal for him

to reveal it. Assuming that α is increasing in effort, this leads to αD > αH ; the probability that an

expert is informed in a diverse panel is greater than in a homogeneous panel. Then we get that the

judge, for some cost function depending on effort, might prefer the diverse panel. The details of

such results are left for future research.

2.6 Conclusion

Common intuition suggests that a decision-maker should ask different parties with diverging

opinions about information relevant to decide on a policy. By creating competition among the

experts consulted in this persuasion game, numerous research in the literature (e.g. Milgrom and

Roberts (1986)) have shown that a diverse panel of experts with strongly opposed interests will lead

to fully informed decisions. However, this is assuming that experts always possess the relevant

information. Bhattacharya and Mukherjee (2013) show that if with some probability they are

uninformed, then a homogeneous panel of extreme experts is instead optimal. In this chapter,

we extend this latter article by including a degree of bias from the experts. Focusing on small

directional error (i.e. error towards their own agenda), we provide a sufficient condition where the

diverse panel is optimal for the decision-maker.

Changing the judge’s absolute payoff function to a quadratic one affects the details of our

results, but the spirit of our conclusion stays unchanged. There, in some instances the diverse

panel may be the better choice. Next, we also looked at a generic bias that is not directed towards

one’s agenda. We show that it essentially only lowers the decision-maker’s expected utility, but

does not alter the result in Bhattacharya and Mukherjee (2013) regarding the optimality of the

homogeneous panel. Finally, a significant limitation of our model is that for an informed expert

– an expert who does get to observe the state –, it is costless or effortless for him to acquire the
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information. This nullifies any moral-hazard concerns that could otherwise be relevant to this

problem.
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Appendix A

Proof of Proposition 1

Let a(s) denote the action chosen by the judge upon observing s.

If s = 0, then either the judge received an unbiased signal and s = θ, or a biased signal and

θ ∈ [0, δ]. Then the judge’s expected payoff is

EUJ
s=0 = ϵ

∫︂ δ

0
−|a(0) − θ|dF (θ)

= ϵ

∫︂ a

0
−(a− θ)dF (θ) + ϵ

∫︂ δ

a

−(θ − a)dF (θ)

= −ϵ
2

(2a2 − 2aδ + δ2)

∂EUJ
s=0

∂a
= 0 =⇒ a = δ

2

This is optimal since ∂2EUJ
s=0

∂a2 = −2ϵ < 0. Therefore, a(0) = δ
2 .

If s ∈ (1 − δ, 1], the judge knows that the expert is unbiased. Therefore, a(s) = s for such signal.

If s ∈ (0, 1 − δ], then the judge’s interim payoff once she has observed s is

EUJ
s = −ϵ|a(s) − (θ − δ)| − (1 − ϵ)|a(s) − θ|

= −ϵ|a(s) − (s+ δ)| − (1 − ϵ)|a(s) − s|

Suppose that a(s) = s+ d, and d ∈ R. Then

EUJ
s = −ϵ|(s+ d) − (s+ δ)| − (1 − ϵ)|(s+ d) − s|

= −ϵ|d− δ| − (1 − ϵ)|d|
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Now we want to maximize the interim payoff EUJ
s . As such,

max
d
EUJ

s = max
d

−ϵ|d− δ| − (1 − ϵ)|d|

= max
d

{︃
max

d∈(−∞,0]
−ϵ|d− δ| − (1 − ϵ)|d|, max

d∈[0,+∞)
−ϵ|d− δ| − (1 − ϵ)|d|

}︃

This procedure is without loss of generality. Indeed, consider a fixed level of ϵ. Then EUJ
s (d) ∈

(−∞,+∞). For some d = d′ such that d′ corresponds to arg maxdEU
J
s , then either d′ ∈ (−∞, 0]

or d′ ∈ [0,+∞) or d′ = 0. As such, if for example maxdEU
J
s = ˜︃EU at d′ ∈ (−∞, 0], then it

must be that

max
d

{︃
max

d∈(−∞,0]
−ϵ|d− δ| − (1 − ϵ)|d|, max

d∈[0,+∞)
−ϵ|d− δ| − (1 − ϵ)|d|

}︃
= ˜︃EU

at that same d′. A similar argument can be made for the other cases.

For d ∈ (−∞, 0], observe that EUJ
s is decreasing in d. Therefore, d = 0 maximizes EUJ

s and the

interim payoff is −ϵδ.

For d ∈ [0,+∞), the maximum depends on ϵ:

• If ϵ > 1
2 , then d = δ and EUJ

s (d) = −(1 − ϵ)δ

• If ϵ < 1
2 , then d = 0 and EUJ

s (d) = −ϵδ

• If ϵ = 1
2 , then d ∈ [0, δ] and EUJ

s (d) = − δ
2
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As such, the judge’s best response y∗(s) given a signal s is

y∗(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ
2 if s = 0

s if s ∈ (0, 1 − δ] and ϵ < 1
2

s+ δ if s ∈ (0, 1 − δ] and ϵ > 1
2

s if s ∈ (1 − δ, 1]

■

Proof of Proposition 2

The judge’s ex ante expected utility can be written as

EUJ = (1 − α)
∫︂ 1

0
−|y∗ − θ|dF + α

{︃
ϵ

∫︂ 1

y∗+δ

−|y∗ − θ|dF + (1 − ϵ)
∫︂ 1

y∗
−|y∗ − θ|dF

}︃
+ α

{︃
ϵ

∫︂ δ

0
−
⃓⃓⃓⃓
δ

2
− θ

⃓⃓⃓⃓
dF + ϵ

∫︂ y∗+δ

δ

−|y∗(s) − θ|dF + (1 − ϵ)
∫︂ y∗

0
−|y∗(s) − θ|dF

}︃
= (1 − α)

{︃∫︂ y∗

0
−(y∗ − θ)dF +

∫︂ 1

y∗
−(θ − y∗)dF

}︃
+ αϵ

{︃∫︂ δ
2

0
−
(︃
δ

2
− θ

)︃
dF +

∫︂ δ

δ
2

−
(︃
θ − δ

2

)︃
dF +

∫︂ y∗+δ

δ

−(δ)dF +
∫︂ 1

y∗+δ

−(θ − y∗)dF
}︃

+ α(1 − ϵ)
{︃∫︂ y∗

0
−(s− θ)dF +

∫︂ 1

y∗
−(θ − y∗)dF

}︃
= (1 − α)

{︃∫︂ y∗

0
−(y∗ − θ)dF +

∫︂ 1

y∗
−(θ − y∗)dF

}︃
+ αϵ

{︃∫︂ δ
2

0
−
(︃
δ

2
− θ

)︃
dF +

∫︂ δ

δ
2

−
(︃
θ − δ

2

)︃
dF +

∫︂ y∗+δ

δ

−(δ)dF +
∫︂ 1

y∗+δ

−(θ − y∗)dF
}︃

+ α(1 − ϵ)
{︃∫︂ y∗

0
−(θ − θ)dF +

∫︂ 1

y∗
−(θ − y∗)dF

}︃
= 1 − α

2
{︁
−y∗2 − (1 − y∗)2}︁ + αϵ

2

{︃
δ2

2
− (1 − y∗)2

}︃
− αϵδy∗ − α(1 − ϵ)

2
{︁
−(1 − y∗)2}︁
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The above is continuously differentiable in y∗. As such, the first-order condition implies that

∂EUJ

∂y∗
= (1 − α)(−2y∗ + 1) + αϵ(1 − y∗) − αϵδ + α(1 − ϵ)(1 − y∗) = 0

=⇒ y∗ = 1 − αϵδ

2 − α

Second-order condition shows that EUJ is strictly concave:

∂2EUJ

∂y∗2 = α− 2 < 0

and therefore y∗ = 1−αϵδ
2−α

is the unique solution that maximizes EUJ .

■
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Proof of Proposition 4

The expected utility of the judge is given by

EUJ = (1 − α)2
∫︂ 1

0
−|y∗ − θ|dF

+ α2

{︄
ϵ2
[︃∫︂ δ

0
−
⃓⃓⃓⃓
δ

2
− θ

⃓⃓⃓⃓
dF +

∫︂ y∗+δ

δ

−|s− θ|dF +
∫︂ 1

y∗+δ

−|y∗ − θ|dF
]︃

+ 2ϵ(1 − ϵ)
[︃∫︂ y∗

0
−|s− θ|dF +

∫︂ y∗+δ

y∗
−|(s+ δ) − θ|dF +

∫︂ 1

y∗+δ

−|y − θ|dF
]︃

+ (1 − ϵ)2
[︃∫︂ y∗

0
−|s− θ|dF +

∫︂ 1

y∗
−|y∗ − θ|dF

]︃}︄

+ 2α(1 − α)

{︄
ϵ

[︃∫︂ δ

0
−
⃓⃓⃓⃓
δ

2
− θ

⃓⃓⃓⃓
dF +

∫︂ y∗+δ

δ

−|s− θ|dF +
∫︂ 1

y∗+δ

−|y − θ|dF
]︃

+ (1 − ϵ)
[︃∫︂ y∗

0
−|s− θ|dF +

∫︂ 1

y∗
−|y − θ|dF

]︃}︄

= −(1 − α)2

2
[︁
y∗2 + (1 − y∗)2]︁

+ α2

{︄
ϵ2
[︃
−δ2

4
− δy∗ − 1

2
((1 − y∗)2 − δ2)

]︃
+ 2ϵ(1 − ϵ)

[︃
−δ2 − 1

2
((1 − y∗)2 − δ2)

]︃
− (1 − ϵ)2

2
(1 − y∗)2

}︄

+ 2α(1 − α)

{︄
ϵ

[︃
−δ2

4
− δy∗ − 1

2
((1 − y∗)2 − δ2)

]︃
+ (1 − ϵ)

[︃
−1
2

(1 − y∗)2
]︃}︄
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First order condition to find y∗:

∂EUJ

∂y∗
= 0

=⇒ − (1 − α)2(2y∗ − 1) − δ((αϵ)2 + 2αϵ(1 − α))y∗ + (2αϵ− (αϵ)2)(1 − y∗)

+ (α2(1 − ϵ)2 + 2α(1 − α)(1 − ϵ))(1 − y∗) = 0

=⇒ y∗ = 1 − δ((αϵ)2 + 2αϵ(1 − α))
1 + (1 − α)2 (11)

■

Proof of Proposition 5

First consider the case where both are biased. The judge will receive two reports, s1 and s2. The

difference between these reports is s2 − s1 = 2δ. Thus, the judge is able to deduce that both are

biased, and that the true state lies exactly at the midpoint of their reports, s1+s2
2 = θ. Hence the

midpoint is the best response.

Second, if only one of the experts is biased, then the judge will not be able to identify which

one is making a mistake. This is because regardless of which expert is biased, the difference in

their reports will be δ. The judge knows that one of the experts is biased, and the other is not. The

probability that expert 1 (at x1 = 0) is biased and that expert 2 (at x2 = 1) is not is ϵ(1 − ϵ). Then

the true state is θ = s1 + δ = s2. Similarly, the probability that expert 1 is unbiased and expert 2

is biased is ϵ(1 − ϵ). For this the true state is θ = s2 − δ = s1.

Let β be the judge’s belief that expert 1 is the one that is biased. Let a(s1, s2) be the action

chosen by the judge. Then the interim expected utility of the judge is given by

EUJ(a(s1, s2)|s1, s2) = −β|a(s1, s2) − θ(s2)| − (1 − β)|a(s1, s2) − θ(s1)|

where θ(si) stands for θ = si. The above can be reformulated as below by substituting the values
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of θ(si):

EUJ(a(s1, s2)|s1, s2) = −β|a(s1, s2) − s2| − (1 − β)|a(s1, s2) − s1|

Here the first term corresponds to the case where expert 1 is biased while expert 2 is not, and the

second term is the reverse scenario. One can follow a similar procedure as in section 2.3.2 to find

the optimal value of d when considering the optimal action a∗(s1, s2). Consequently, we get that

a∗(s1, s2) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
s1 if β < 1

2

s2 if β > 1
2

s̃ ∈ [s1, s2] if β = 1
2

In the current settings, using Bayes’ rule we get that

β = P(expert 1 is biased | only one expert is biased) = ϵ(1 − ϵ)
2ϵ(1 − ϵ)

= 1
2

Therefore, upon receiving the reports (s1, s2) such that s2 − s1 = δ, the judge has no reason

to believe that one expert is more likely to be biased than the other. As such, she is indifferent

between any action s̃ ∈ [s1, s2]. For consistency with the case where s2 − s1 = 2δ, we will assume

that in this case as well the judge will choose the midpoint, that is a(s1, s2) = s1+s2
2 . Combining

everything gives the judge’s best response function.

■

41



Proof of Proposition 6

The expected utility of the judge is given by

EUJ = (1 − α)2
∫︂ 1

0
−|y∗ − θ|dF

+ α(1 − α)

{︄
ϵ

[︃∫︂ δ

0
−
⃓⃓⃓⃓
δ

2
− θ

⃓⃓⃓⃓
dF +

∫︂ y∗+δ

δ

−|s1 − θ|dF +
∫︂
y∗+δ

−|y∗ − θ|dF
]︃

+ (1 − ϵ)
[︃∫︂ y∗

0
−|s1 − θ|dF +

∫︂ 1

y∗
−|y∗ − θ|dF

]︃}︄

+ α(1 − α)

{︄
ϵ

[︃∫︂ y∗−δ

0
−|y∗ − θ|dF +

∫︂ 1−δ

y∗−δ

−|s2 − θ|dF +
∫︂ 1

1−δ

−
⃓⃓⃓⃓
1 − δ

2
− θ

⃓⃓⃓⃓
dF

]︃

+ (1 − ϵ)
[︃∫︂ y∗

0
−|y∗ − θ|dF +

∫︂ 1

y∗
−|s2 − θ|dF

]︃}︄

+ α2

{︄
ϵ2
[︃ ∫︂ δ

0
−
⃓⃓⃓⃓
δ

2
− θ

⃓⃓⃓⃓
dF +

∫︂ y∗−δ

δ

−|s1 − θ|dF +
∫︂ y∗+δ

y∗−δ

−
⃓⃓⃓⃓
s1 + s2

2
− θ

⃓⃓⃓⃓
dF

+
∫︂ 1−δ

y∗+δ

−|s2 − θ|dF +
∫︂ 1

1−δ

−
⃓⃓⃓⃓
1 − δ

2
− θ

⃓⃓⃓⃓
dF

]︃
+ ϵ(1 − ϵ)

[︃ ∫︂ δ

0
−
⃓⃓⃓⃓
δ

2
− θ

⃓⃓⃓⃓
dF +

∫︂ y∗−δ

δ

−|s1 − θ|dF +
∫︂ y∗+δ

y∗−δ

−
⃓⃓⃓⃓
s1 + s2

2
− θ

⃓⃓⃓⃓
dF

+
∫︂ 1−δ

y∗+δ

−|s2 − θ|dF +
∫︂ 1

1−δ

−|s2 − θ|dF
]︃

+ ϵ(1 − ϵ)
[︃ ∫︂ δ

0
−|s1 − θ|dF +

∫︂ y∗−δ

δ

−|s1 − θ|dF +
∫︂ y∗+δ

y∗−δ

−
⃓⃓⃓⃓
s1 + s2

2
− θ

⃓⃓⃓⃓
dF

+
∫︂ 1−δ

y∗+δ

−|s2 − θ|dF +
∫︂ 1

1−δ

−
⃓⃓⃓⃓
1 − δ

2
− θ

⃓⃓⃓⃓
dF

]︃
+ (1 − ϵ)2

[︃ ∫︂ y∗

0
−|s1 − θ|dF +

∫︂ 1

y∗
−|s2 − θ|dF

]︃}︄
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= (1 − α)2
∫︂ 1

0
−|y∗ − θ|dF

+ α(1 − α)

{︄
ϵ

[︃∫︂ δ

0
−
⃓⃓⃓⃓
δ

2
− θ

⃓⃓⃓⃓
dF +

∫︂ y∗+δ

δ

−|θ − δ − θ|dF +
∫︂
y∗+δ

−|y∗ − θ|dF
]︃

+ (1 − ϵ)
[︃∫︂ y∗

0
−|θ − θ|dF +

∫︂ 1

y∗
−|y∗ − θ|dF

]︃}︄

+ α(1 − α)

{︄
ϵ

[︃∫︂ y∗−δ

0
−|y∗ − θ|dF +

∫︂ 1−δ

y∗−δ

−|θ + δ − θ|dF +
∫︂ 1

1−δ

−
⃓⃓⃓⃓
1 − δ

2
− θ

⃓⃓⃓⃓
dF

]︃

+ (1 − ϵ)
[︃∫︂ y∗

0
−|y∗ − θ|dF +

∫︂ 1

y∗
−|θ − θ|dF

]︃}︄

+ α2

{︄
ϵ2
[︃ ∫︂ δ

0
−
⃓⃓⃓⃓
δ

2
− θ

⃓⃓⃓⃓
dF +

∫︂ y∗−δ

δ

−|θ − δ − θ|dF +
∫︂ y∗+δ

y∗−δ

−
⃓⃓⃓⃓
(θ − δ) + (θ + δ)

2
− θ

⃓⃓⃓⃓
dF

+
∫︂ 1−δ

y∗+δ

−|θ + δ − θ|dF +
∫︂ 1

1−δ

−
⃓⃓⃓⃓
1 − δ

2
− θ

⃓⃓⃓⃓
dF

]︃
+ ϵ(1 − ϵ)

[︃ ∫︂ δ

0
−
⃓⃓⃓⃓
δ

2
− θ

⃓⃓⃓⃓
dF +

∫︂ y∗−δ

δ

−|θ − δ − θ|dF +
∫︂ y∗+δ

y∗−δ

−
⃓⃓⃓⃓
(θ − δ) + θ

2
− θ

⃓⃓⃓⃓
dF

+
∫︂ 1−δ

y∗+δ

−|θ − θ|dF +
∫︂ 1

1−δ

−|θ − θ|dF
]︃

+ ϵ(1 − ϵ)
[︃ ∫︂ δ

0
−|θ − θ|dF +

∫︂ y∗−δ

δ

−|θ − θ|dF +
∫︂ y∗+δ

y∗−δ

−
⃓⃓⃓⃓
θ + (θ + δ)

2
− θ

⃓⃓⃓⃓
dF

+
∫︂ 1−δ

y∗+δ

−|θ + δ − θ|dF +
∫︂ 1

1−δ

−
⃓⃓⃓⃓
1 − δ

2
− θ

⃓⃓⃓⃓
dF

]︃
+ (1 − ϵ)2

[︃ ∫︂ y∗

0
−|θ − θ|dF +

∫︂ 1

y∗
−|θ − θ|dF

]︃}︄
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= (1 − α)2

2
(−y∗2 − (1 − y∗)2)

+ α(1 − α)
{︃
ϵ

[︃
−δ2

4
− δy∗ − 1

2
((1 − y∗)2 − δ2)

]︃
− (1 − ϵ)

2
(1 − y∗)2

}︃
+ α(1 − α)

{︃
ϵ

[︃
1
2

(δ2 − y∗2) − δ(1 − y∗) + δ2

4

]︃
− (1 − ϵ)

2
y∗2

}︃
+ α2

{︃
ϵ2 [−δ(y − 2δ) − δ(1 − y∗ − 2δ)] + ϵ(1 − ϵ)

[︁
−δ(y∗ − δ) − δ2 − δ(1 − y∗ − δ)

]︁}︃

= 3(αδϵ)2 + αδ2ϵ

2
− αδϵ− (1 − α)y∗2 + (1 − α)y∗ − (1 − α)

2

First order condition to find y∗:

∂EUJ

∂y∗
= 0

=⇒ − 2(1 − α)y∗ = −(1 − α)

=⇒ y∗ = 1
2

(12)

■

Proof of Theorem 1

Below are the functions EUD(yD) and EUH(yH).

EUD(yD) = αϵδ

2
(6αϵδ + δ − 2) − (1 − α)

4

Let P = (αϵ)2 + 2αϵ(1 − α) and Q = 1 + (1 − α)2.

EUH(yH) = −[(Q− 1 + δP )2 + (1 − α)2(1 − δP )2]
2Q2 − δP (1 − δP )

Q
+ αϵδ2

2

[︃
5αϵ
2

− 3α + 1
]︃
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With these we now proceed with the proof. For simplification and ease of reading, we write

g(ϵ;α, δ) as g(ϵ).

(i) The function g(ϵ) is continuously differentiable on the interval [0, 1]. As such,

∂2g(ϵ)
∂ϵ2 = α2δ(−12α2δϵ2 + 24α2δϵ− α2δ − 24αδϵ+ 2αδ − 6δ + 4)

2(1 + (1 − α)2)
> 0

=⇒ − 12α2δϵ2 + 24α2δϵ− α2δ − 24αδϵ+ 2αδ + 6δ + 4 > 0

=⇒ 4 + 2αδ + 24α2δϵ+ 6δ > 24αδϵ+ α2δ + 12α2δϵ2

which holds for any α, δ ∈ [0, 1] and ϵ ≤ 1
2 .

(ii) Observe that P (ϵ = 0) = 0. Then,

g(0) = −α2(1 − α)
4[1 + (1 − α)2]

< 0

which is strictly smaller than 0 for all α ∈ (0, 1).

(iii) Substituting ϵ = 1
2 into the function g, we get that

g
(︁1

2

)︁
= α2(29α2δ2 − 52αδ2 − 16αδ + 8α + 60δ2 + 8δ − 8)

32(1 + (1 − α)2)

Solving for δ, we get that g
(︁1

2

)︁
> 0 if

δ >
−4(1 − 2α) +

√
−232α3 + 712α2 − 960α + 496

29α2 − 52α + 60

which is strictly positive for all α ∈ (0, 1).

(iv) Given (i), (ii) and (iii), we conclude that one of the two following cases must hold:

(a) g
(︁1

2

)︁
≤ 0;
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(b) g
(︁1

2

)︁
> 0;

For (a), given some values of α and δ, g
(︁1

2

)︁
≤ 0 for all ϵ ∈ (0, 1

2). Therefore we conclude

that in this case the homogeneous panel is preferred (with indifference at g
(︁1

2

)︁
= 0). For

(b), (i), (ii) and (iii) implies that g(·) must intercept the horizontal axis only once on the

interval ϵ ∈
[︁
0, 1

2

]︁
. Let ϵ∗ be that value of ϵ such that g(ϵ∗) = 0. Thus, by continuity,

for ϵ̄ ∈ [0, ϵ∗), then g(ϵ̄) < 0 and we conclude that the homogeneous panel is preferred by

the judge. However, if ϵ̄ ∈
(︁
ϵ∗, 1

2

)︁
, then g(ϵ̄) > 0 and the diverse panel is the better choice.

At ϵ̄ = ϵ∗, the judge is indifferent between the two panel compositions (since g(ϵ̄ = ϵ∗) = 0).

■
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Appendix B

We proceed to show details about our results in Theorem 2. The judge’s payoff function is now

quadratic. To illustrate the more complex interactions between g(·) and the parameters α, δ and ϵ,

Figure 2.6 depicts how g(ϵ;α, δ) reacts to different values of δ, while keeping α fixed. Figure 2.7

sets α as the variable for g(·), and considers again different values of δ9. Interestingly, as shown in

Figures 2.6, the function g(ϵ) is no longer convex.

0.0 0.2 0.4 0.6 0.8 1.0
ϵ

−0.02

0.00

0.02

0.04

0.06
g(ϵ;α = 0.5, δ = 0.2)
g(ϵ;α = 0.5, δ = 0.5)
g(ϵ;α = 0.5, δ = 0.8)

Figure 2.6: Function g(ϵ) given α = 0.5 and δ ∈ {0.2, 0.5, 0.8}

Importantly, Figures 2.6 and 2.7 demonstrate that depending on the parametric conditions,

there may exists values of ϵ for which g(·) is positive. As such, for those values the diverse panel

will lead to an higher expected utility for the judge than the homogeneous panel. Observe that as

mentioned in Theorem 2, we now have a range of values for ϵ that makes the diverse panel the

preferred composition for the judge. Intuitively, under the quadratic loss function the judge now

adjusts her action according to the expected bias in the report. As such, for low bias the loss from
9Considering different levels of ϵ instead does not affect the graph drastically.
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0.0 0.2 0.4 0.6 0.8 1.0
ϵ

−0.02

0.00

0.02

0.04

0.06
g(α; δ = 0.2, ϵ = 0.1)
g(α; δ = 0.5, ϵ = 0.1)
g(α; δ = 0.8, ϵ = 0.1)

Figure 2.7: Function g(ϵ) given α = 0.5 and δ ∈ {0.2, 0.5, 0.8}

this adjustment – detrimental if the report is in fact the true state – is minimal and justified for

risk aversion purposes. The homogeneous panel composition is then optimal. However, as the

bias increases, this is no longer justifiable as the loss from deviating from the true state increases

exponentially. At this point, the diverse panel is preferred as the deviation from the report to

prevent the possible bias is too costly. Indeed, this refers to the aforementioned arbitrage between

the lower occurrence of obtain more reliable information from the homogeneous panel, and the

opposite from the diverse panel. As ϵ increases, the revelation set of the homogeneous panel

shrinks and therefore becomes less attractive for the judge.
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Chapter 3

Strategic Acquisition of Costly Information

from Opinionated Experts

3.1 Introduction

Decision-makers often rely on experts to obtain information. Common intuition suggests that

the decision-maker would benefit by consulting multiple experts, especially if these experts have

opposing interests. This view is behind the design of panels of experts in many decision-making

situations. For examples, a judge listens to experts from both the plaintiffs and the defendants, or

a government, seeking to implement a new environmental policy, collects opinions from both the

proponents and the opponents of environmental protection.

Starting with the seminal paper by Milgrom and Roberts (1986), the literature on persuasion has

demonstrated that in many situations, the decision-maker benefits by considering a panel of experts

with opposing interests (see also for example, Shin (1994), Shin (1998), Kamenica and Gentzkow

(2011), Gul and Pesendorfer (2012)). On the other hand, in two important papers, Bhattacharya

and Mukherjee (2013) and Bhattacharya et al. (2018) have shown that there may arise situations

where it is optimal for the decision-maker to opt for like-minded experts with extreme agendas
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rather than experts whose preferences are opposed. Much of the literature has however focused on

revelation of costless information1. There are, however, many scenarios where it is reasonable to

assume that experts can acquire information at a cost. To illustrate this, consider a government-

level environmental agency listening to different advocacy groups. Each of these groups – referred

to as experts – can decide on how much evidence to gather, how much time to spend in assessing

it, etc. All these processes are costly, and affect the quality of the information that an expert may

possess.

The objective of the present chapter is to assess the impact of costly information acquisition

in a multiple expert disclosure game. In particular, we ask the following questions: (i) “In a

model where experts have extreme agendas, when is it the case that experts will invest in acquiring

information?”, and (ii) “Should a panel consist of experts with similar or opposed opinions?”

We find that the answers to the above questions are nuanced. We compare a panel that is

composed of experts with opposed preferences – referred to as a diverse panel as in Chapter 2 –,

with one where the experts have identical preferences – a homogeneous panel. The investment to

acquire information is costly and affects the “quality” of the experts. That is, the probability for

an expert to acquire relevant information. In this setting, we uncover situations where experts who

are diametrically opposed undertake costly investment to improve their quality, while those who

share a similar agenda do not. Moreover, we identify cases for which a diverse panel is better for

the decision-maker than a homogeneous one.

As in Chapter 2, we follow closely the model introduced in Bhattacharya and Mukherjee

(2013). A decision-maker has to choose an action in the interval [0, 1]. From the decision-maker’s

point of view, her optimal action is to match the state of the world θ ∈ [0, 1]. Throughout this essay,

we assume that θ is uniformly distributed. The objective of the decision-maker is to minimize the

loss which is an increasing function of the distance between the state of the world and the action

she takes. In our baseline model, the focus is on the quadratic loss function for the judge. The

1Some notable exceptions are Kartik et al. (2017), and Dewatripont and Tirole (1999). We discuss the related
literature in details below.
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decision-maker bases her action on verifiable reports from two experts. The experts have state-

independent and monotonic preferences over the decision-maker’s action. More importantly, an

expert’s preference is identified by his “agenda ” – i.e. his most preferred action. We restrict our

attention to the case where the most preferred action for the experts are either 0 or 1. We qualify

experts with such preferences to be extreme. Each expert i ∈ {1, 2} is privately informed of the

state with a probability αi. As in the previous chapter, we interpret αi as the quality of expert i.

So far the model is exactly the same as in Bhattacharya and Mukherjee (2013). However, unlike

previous papers, in our present setup, quality is not exogenous. For each expert i, the quality pa-

rameter αi can take two possible values αi ∈ {αL, αH} with 0 < αL < αH < 1. With an effort

at a cost c > 0, an expert can choose quality level αH . The cost for the low level of quality αL is

normalized to zero.

We focus on the Perfect Bayesian Equilibrium (PBE) of the resulting game. As in Bhattacharya

and Mukherjee (2013), the equilibrium is characterized by the decision-maker’s “default action” –

the action that the decision-maker would choose in the event where no information is revealed by

the experts. An uninformed expert – who did not observe any relevant information about the state

– must admit ignorance. On the other hand, an informed expert – who did observe the state – with

agenda 0 reveals states that are smaller than the default action. Likewise, an informed expert with

agenda 1 will only report states that are higher than that.

We compare the diverse panel with a left-homogeneous panel – where both experts have agenda

0. We show that there exists cut off levels c and c that depend on αL and αH such that, whenever

c ∈ [c, c̄], experts in a homogeneous panel choose the lower level of quality αL while both experts

in a diverse panel choose the higher and more costly level of quality αH . Moreover, there exists a

cutoff level α∗ such that, if αH > α∗, then it is optimal for the decision-maker to choose a diverse

panel.

It is immediate that the results depend critically on the risk attitudes of the decision-maker,

the preferences of the experts, as well as the distribution of the state. In our baseline model, the

preference of the decision-maker is characterized by quadratic loss function, while the preferences
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of the experts are characterized by absolute loss function. In addition, the state θ is uniformly

distributed. So far we have been able to extend our result to cases where the decision-maker’s

preference is characterized by absolute loss function. However, what happens when we change

the distribution of the state and /or the preferences of experts, remain open questions. We hope to

pursue these questions in future research.

3.1.1 Related Literature

Our work is an extension of Bhattacharya and Mukherjee (2013) in which they consider a

model with a judge and a panel of two experts. Each of these experts have an ideal action that

he would like the judge to take. The judge’s goal is to pick an action as close as possible to the

state. The experts reveal the state of the world to the judge if they are informed and if doing

so improves their payoff upon the default action – i.e. if the state lies within their revelation

set. Bhattacharya and Mukherjee (2013) show that a panel of extreme experts – homogeneous

or diverse – is always optimal. Moreover, if the judge has a quadratic loss function, then the

homogeneous panel of extreme experts is preferred by the judge, regardless of the probability of

the experts being informed. Bhattacharya et al. (2018) refer to an expert being informed or not

as their type. As opposed to Bhattacharya and Mukherjee (2013) and our work, they allow for

correlation between types – i.e. for a panel of two experts, if one expert is informed there is a

higher probability of the other one is as well. Informed experts observe the state, but are biased

in their reporting depending on their ideal actions. They show that with high correlation between

types, the diverse panel is a better choice for the judge than the homogeneous panel. Moreover, if

types are independent, then the homogeneous panel is generally the optimal choice.

The early works on persuasion games (See for example Milgrom (1981), Grossman (1981) and

Milgrom and Roberts (1986)) show that when messages are verifiable, a skeptical decision-maker

can elicit all information from a diverse panel of experts. However, the underlying assumption in

those models is that every expert observes the state with certainty – an assumption that is absent

in our model. In fact, the vehicle for costly information acquisition in our model is the choice of
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higher quality to observe the state (at a cost). As noted in, for example, Okuno-Fujiwara et al.

(1990), Shavell (1994) and Shin (1994), if there is some positive probability that an expert does

not observe the state, then an informed expert can conceal information by selective non-disclosure.

Shin (1998) shows that a panel of two experts with opposing interests reveals more information

than a panel of one unbiased expert. Similarly, Dewatripont and Tirole (1999) show the benefits of

advocates (opposing experts) in policy-making, arguing that in many situations it leads to higher

levels of information collection by the decision-maker over a single unbiased expert. Related to

our work, Kartik et al. (2017) demonstrate that when information acquisition is costly and endoge-

nous for the experts, then the experts’ effort level decisions are strategic substitutes and increasing

the number of experts may decrease these efforts. However, they focus on a discrete environment

– with discrete states of the world and discrete signal realizations for the experts – in which the

experts have preferences that are linear in the decision-maker’s beliefs. Moreover, effort linearly

increases the probability that an expert observes a signal about the state. Recently, in a general

model, Gentzkow and Kamenica (2017) show that competition weakly increases information rev-

elation if the information environment is Blackwell-connected, and that it otherwise may not be

the case. Finally, Li and Norman (2021) argue that when having experts disclose their respec-

tive signal sequentially, adding an expert moving first weakly increases information transmission

in equilibrium, and that having experts speak only once except for the first one does not change

the equilibrium outcome. Moreover, having experts move sequentially makes for a weakly less

informative equilibrium as opposed to the scenario where experts move simultaneously. All these

papers are related to our work, and we have extensively made use of the previous results.

The rest of the chapter is organized as follows: in Section 3.2 we define the model; in Section

3.3 we characterize the equilibrium generally and for the different panel compositions; we present

in Section 3.4 our main results on the optimality of a panel composed of opposed experts; in

Section 3.5 we address the robustness of our results to changes in our model; we wrap up this

essay with some closing thoughts in Section 3.6.
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3.2 Model

We consider a model in which a decision-maker – referred to as the judge – must decide on

the composition of a panel of experts, similar to Bhattacharya and Mukherjee (2013). There are

two experts and an unknown state of the world θ ∈ Θ = [0, 1]. Moreover, we assume that θ is

uniformly distributed (and denote the distribution as F ). Each expert i ∈ I = {1, 2} may observe θ

with probability αi ∈ (0, 1). We refer to this as the quality of an expert: an informed expert is one

who observed the state, while an uninformed expert did not. The judge must decide on an action

y ∈ Θ based on the report(s) from the experts. An informed expert may choose to report the state

(mi = θ) or not (mi = ∅), whereas an uninformed expert must admit ignorance (mi = ∅). That

is, misreporting θ is not permitted in our model. The goal of the judge is to select an action closest

to the true state θ. To that end, we represent her utility function as

uJ(y, θ) = −(y − θ)2

Each expert possesses an ideal action – also referred to as his agenda. We focus on extreme experts

whose agenda xi ∈ {0, 1}. Consequently, they want the judge to take an action closest to their

preference:

ui(xi, y) = −|xi − y|

For ease of presentation, we refer to the loss functions vJ(y, θ) = −uJ(y, θ) and vi(xi, y) =

−ui(xi, y). We assume the experts to be risk-neutral. A panel of two experts can be homogeneous

if the profile of agendas – defined as x = (x1, x2) – is x = (0, 0) or x = (1, 1), or it can be diverse

if x = (0, 1).

An expert i may influence his probability of being informed by privately exerting some level

of effort denoted ei. That is, αi(ei) is increasing in ei. The judge does not observe these effort

levels. The experts privately know their own effort level, but not that of other experts. On the
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other hand, all experts know the panel composition. Moreover, we assume the same function α

for both experts. To this effort is associated a cost c(ei), also increasing in ei and common to the

experts. We assume two levels of effort – i.e. ei ∈ {0, e} and e > 0 – such that α(0) = αL,

α(e) = αH > αL, c(0) = 0 and c(e) = c > 0. Moreover, αL and αH lie strictly between 0 and 1.

We denote by m = (m1,m2) the profile of messages submitted by the two experts. As we will

establish, the judge’s strategy for a given panel composition and for a given profile of qualities for

the two experts simplifies to the choice of a default action y∗. This default action for the judge

corresponds to her response to a non-informative report profile m0 = (∅,∅). Indeed, if one of the

experts submits mi ̸= ∅, then the judge learns the true state and chooses y(m) = mi = θ – and

gets her maximum payoff uJ(y(m), θ) = 0.

We use the Perfect Bayesian Equilibrium (PBE) solution concept. We denote µ(θ|m) the pos-

terior belief of the judge about the state upon observing the report profile m from the experts. We

use −i to refer to the expert other than expert i. A strategy profile ⟨m∗, y(m∗)⟩ and belief µ∗ is a

PBE2 of the considered game if:

(i) Every expert chooses their level of effort simultaneously. For all i ∈ I , an expert i’s level of

effort ei minimizes their expected loss given the levels chosen by the other experts:

ei(e−i) = arg min
ei∈R+

E[vi(y(m), xi)]

(ii) For all i ∈ I , and for all θ ∈ Θ, if an expert i is informed then they report their signalmi = θ

if and only if:

E[vi(y(θ,m−i)), xi)] ≤ E[vi(y(∅,m−i)), xi)]

(iii) For all report profile m, the judge’s action minimizes their expected loss:

y(m) = arg min
y∈Θ

Eµ∗ [vJ(y, θ)]
2See Bhattacharya and Mukherjee (2013) for a discussion on the adaptation of the PBE formulation to the current

problem.
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(iv) µ∗(θ|m) is obtained using Bayes’ rule from the strategy of the experts m∗ and the common

priors. Moreover, any action off-the-equilibrium path that reveals θ must lead to degenerate

beliefs on θ for the judge.

An informed expert i’s strategy is characterized by his “revelation set” Θ∗
i that is the set of states

over which he reports truthfully. Point (ii) leads to the characterization of expert i’s revelation set.

Given the single-peaked preferences for the experts, the revelation sets turn out to be intervals.

Indeed, an expert with xi = 0 will prefer to reveal the state to the judge if θ ≤ y∗ (recall that y∗

is the default action for the judge) and choose to remain silent otherwise. Similarly, an expert with

xi = 1 will reveal θ if θ ≥ y∗. We provide further details about the equilibrium in the next section.

3.3 Equilibrium Characterization

In this section, we adapt the model presented in Bhattacharya and Mukherjee (2013) to account

for effort levels exerted by the experts. We closely follow their presentation as it can easily be

extended to our model.

Given an agenda profile x = (x1, x2) and xi ∈ [0, 1] for all i ∈ {1, 2}, observe that if one of the

experts reveals the state – i.e. mi = θ for one expert i ∈ {1, 2} –, then the judge optimally chooses

it as her action – i.e. y(m) = mi = θ – as it minimizes her ex post loss. In contrast, if the report

profile m = (m1,m2) = (∅,∅), then she chooses the default action y(m) = y∗. As such, given

an agenda profile x for the panel, the judge’s strategy is completely characterized by the default

action, as noted also in Bhattacharya and Mukherjee (2013) and in Bhattacharya et al. (2018).

Indeed, fix the quality for each expert i, αi ∈ {αL, αH}. Note that given a profile of qualities

(α1, α2), the best response for the judge, as well as the optimal actions by the experts, are given as

in Bhattacharya and Mukherjee (2013)3. We restate their results for completion.

Result 1 (Bhattacharya and Mukherjee (2013), Proposition 1) There always exists a PBE of this

3See Proposition 1 in Bhattacharya and Mukherjee (2013)
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game. Moreover, in any PBE of this game an informed expert’s strategy is:

m∗
i (θ) =

⎧⎪⎪⎨⎪⎪⎩
θ if θ ∈ Θ∗

i = {θ ∈ Θ | ∥θ − xi∥ ≤ ∥y∗ − xi∥}

∅ otherwise

and the judge’s strategy is:

y(m) =

⎧⎪⎪⎨⎪⎪⎩
θ if mi(θ) = θ for some i

y∗ otherwise

where

y∗ = arg max
y′∈Θ

∫︂
uJ(y′; θ)dF (θ|m = ∅)

and y∗ is the unique solution to the above maximization problem.

As for the experts, an informed expert i’s report mi is only relevant if m−i = ∅. Then, his

decision will decide what will be the action of the judge between y(m) = θ or y(m) = y∗. As

noted in the previous section, this leads to the definitions of the revelation sets Θ∗
i given an expert

i’s agenda xi. Formally, if xi = 0 then Θ∗
i (xi, y∗) = [0, y∗]. On the other hand, if xi = 1 then

Θ∗
i (xi, y∗) = [y∗, 1]. Given an agenda profile x = (x1, x2), we can define a panel’s revelation

set Θ∗
x1,x2 as the set of states for which at least one expert reveals θ. Therefore, for the left-

homogeneous panel – for which x = (0, 0) – the revelation set corresponds to Θ∗
0,0(y∗) = [0, y∗].

Similarly, for the right-homogeneous panel – for which x = (1, 1) – it is Θ∗
1,1(y∗) = [y∗, 1].

For a diverse panel – for which x = (0, 1) – this set is Θ∗
0,1(y∗) = [0, 1]. These also illustrates

the intuitive trade-off between a diverse panel composition (x1 ̸= x2) and a homogeneous one

(x1 = x2). Indeed, as pointed out in Bhattacharya and Mukherjee (2013), the question as to which

panel is the better choice for the judge boils down to either (i) getting to observe the true state

across the whole set of states but with a lower probability (diverse panel), or (ii) getting a higher

probability of observing θ but on a smaller interval (homogeneous panel). It turns out that in their
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original model, the homogeneous composition is optimal4. Throughout this essay, we denote by h

a (left) homogeneous panel and by d a diverse panel.

Our contribution to this model is the inclusion of costly effort on the experts’ side. Now, since

experts privately decide on how much effort they want to exert, the choice of panel by the judge

may influence these levels of effort. To that end, we define below the optimal default actions y∗h and

y∗d for the homogeneous panel with x = (0, 0) and the diverse panel with x = (0, 1) respectively5.

Given a panel with agenda profile x = (0, 0), the judge’s ex ante expected loss given the expected

effort profile ê = (ê1, ê2) is given by

ELJ
h(y∗h) = (1 − α(ê1))(1 − α(ê2))

∫︂ y∗h

0
vJ(y∗h, θ)dF (θ) +

∫︂ 1

y∗h

vJ(y∗h, θ)dF (θ) (1)

and y∗h corresponds to the optimal default action yh solving

y∗h = arg min
yh∈[0,1]

ELJ
h(yh) (2)

Indeed, an expert i with xi = 0 will report θ if he observes θ ∈ [0, y∗h]. At the opposite, such expert

will never reveal a θ ∈ [y∗h, 1]. Observe that the judge’s expected loss comes from the situations

where she does not get any report. As such, the first term in (1) corresponds to the state lying in

the interval where it would be revealed if it were observed by the experts, but both experts are not

informed. The second term depicts the scenario in which the state would never be revealed.

Similarly, given a panel with agenda profile x = (0, 1), the judge’s ex ante expected loss given

the expected effort profile ê = (ê1, ê2) is given by

ELJ
d (y∗d) = (1 − α(ê1))

∫︂ y∗d

0
vJ(y∗d, θ)dF (θ) + (1 − α(ê2))

∫︂ 1

y∗d

vJ(y∗d, θ)dF (θ) (3)

4See Proposition 6 in Bhattacharya and Mukherjee (2013).
5The case for the homogeneous panel with x = (1, 1) is analogous.
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and y∗d corresponds to the optimal default action yd solving

y∗d = arg min
yd∈[0,1]

ELJ
d (yd) (4)

The first term corresponds to θ belonging to the revelation set of the uninformed expert at 0, while

the second term shows the case where it belongs to the revelation set of the uninformed expert at

1. Because we are changing only αi from the model presented in Bhattacharya and Mukherjee

(2013), we obtain the same functional forms for y∗d and y∗h. Indeed, the difference here is that α is

a function of effort6.

In the following subsections, we cover the different panel compositions individually. Using

the specifications of our model, we derive the optimal default action for each case. We conclude

this section by comparing the homogeneous and diverse panels, and identify the conditions for the

latter being the better choice for the judge.

3.3.1 Homogeneous Panel

We begin by characterizing the equilibrium for the homogeneous panel, focusing on the agenda

profile x = (0, 0). The complementary case of x = (1, 1) is analogous and therefore omitted.

Throughout this section, we will refer to αH and αL for α(ei > 0) and α(ei = 0) respectively to

simplify the presentation. Recall that we assumed α(ei) to be the same function for all experts.

Also, since experts are identical but for their agendas in the diverse panel, it is without loss of

generality to declare that the experts effectively decide between ei = 0 or ei = e′ > 0. That is,

they share the same set of choices for their levels of effort.

We now proceed with writing down the expected loss of expert i in the context of our model,

6See Proposition 6 in Bhattacharya and Mukherjee (2013).
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using αi and αj , i ̸= j, to define each expert’s probability of being informed:

ELE
i = (αi + αj − αiαj)

∫︂ y∗h

0
θdF (θ)

+ (1 − αi)(1 − αj)
∫︂ y∗h

0
y∗hdF (θ) +

∫︂ 1

y∗h

y∗hdF (θ) + c(ei)

= (αi + αj − αiαj)
y∗h

2

2
+ (1 − αi)(1 − αj)y∗h

2 + (1 − y∗h)y∗h
2 + c(ei) (5)

Observe that the probability that at least one expert observes the state is αiαj +αi(1−αj)+αj(1−

αi) = αi + αj − αiαj . Then, with one of them reporting it to the judge if θ ∈ [0, y∗h], both experts

get a loss of |x− θ| = θ. Otherwise, they get |x− y∗h| = y∗h.

We know that if both experts in the homogeneous panel choose αH , then this panel will always

be preferred by the judge7. As such, we are interested in uncovering the conditions under which

both experts will exert ei = ej = 0. This can also be described as a free-riding issue where in a

panel with aligned agenda, no expert has an incentive to exert any effort and all of them rely on

others to exert some.

Proposition 1 In a homogeneous panel with x = (0, 0), an expert will always prefer to exert no

effort if the following condition is satisfied:

1
2

(1 − αL)(αH − αL)y∗h
2 ≤ c (6)

Moreover, this expert will do so regardless of the level of effort exerted by the other expert.

Proposition 1 shows that for a sufficiently high cost of effort, every expert in a homogeneous

panel will exert no effort independently of what the other expert chooses to do. This impacts the

judge’s choice of panel since some of the benefit from selecting a homogeneous panel – namely,

the relatively higher probability of observing the state on a smaller interval Θ∗
0,0 ⊂ [0, 1] – will be

diminished. The proof is relegated to the Appendix.

7See Proposition 6 in Bhattacharya and Mukherjee (2013).
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Corollary 1 If both experts in an homogeneous panel with x = (0, 0) exert the same low level of

effort αL, then the optimal default action for the judge is

y∗h = 1
2 − αL

(7)

The proof of Corollary 1 is a straightforward application of the results in Proposition 6 from

Bhattacharya and Mukherjee (2013) and is relegated to the Appendix. Next, we proceed with a

similar analysis for the diverse panel.

3.3.2 Diverse Panel

We now characterize the equilibrium for the diverse panel consisting of the agenda profile

x = (0, 1). The expected loss of expert i with xi = 0 is provided below:

ELE
i = αi

∫︂ y∗d

0
θdF (θ) + (1 − αi)

∫︂ y∗d

0
y∗ddF (θ)

+ αj

∫︂ 1

y∗d

θdF (θ) + (1 − αj)
∫︂ 1

y∗d

y∗ddF (θ) + c(ei)

= αi
y∗d

2

2
+ (1 − αi)y∗d

2 + αj
(1 − y∗d

2)
2

+ (1 − αj)(1 − y∗d)y∗d + c(ei) (8)

Each expert would prefer if the other does not exert any effort, as it only increases their expected

loss by some constant. Indeed, from the perspective of expert i, one can see that increasing αj

would increase ELE
i .

Now, we want to show that for some cost c, it is beneficial for both experts to exert the highest

level of effort. Since the two share the same loss function, if one has an incentive to pick αH , so

does the other expert.

Proposition 2 In a diverse panel with x = (0, 1), both expert will prefer to exert some effort if the
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following condition is satisfied:

1
2

(αH − αL)y∗d
2 ≥ c (9)

Proposition 2 states that if the cost of effort is sufficiently low, both experts will prefer to select

a high level of effort. Intuitively, if one expert chooses to exert some effort and the other does not,

then the judge will adjust her default action accordingly. This will result in a larger revelation set

for the former expert. The proof is relegated to the Appendix.

Corollary 2 If both experts in a diverse panel with x = (0, 1) choose the same high level of effort,

then the optimal default action for the judge is

y∗d = 1
2

(10)

The proof of Corollary 2 is also relegated to the Appendix. With propositions 1 and 2, we have

a range of admissible values for c corresponding to

1
2

(1 − αL)(αH − αL)y∗h
2 ≤ c ≤ 1

2
(αH − αL)y∗d

2 (11)

Proposition 3 With an absolute loss function for the experts, there always exists a value of c ∈

[c, c], with c and c corresponding to the L.H.S. and R.H.S. of (11) respectively, since c < c for all

αL such that 0 < αL < αH < 1.

If c lies within the range prescribed in (11), then we see the homogeneous panel preferring to

exert no effort – with e = 0 leading to α(0) = αL – and the diverse panel choosing the higher level

of effort – with e > 0 leading to α(e) = αH . The proof is relegated to the Appendix. With these

two different levels of effort, we now demonstrate when the diverse panel composition is optimal

for the judge.
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3.4 Optimality of the Diverse Panel

We look at the conditions on the precision levels of the diverse and homogeneous panels, αd and

αh respectively, that make the judge opt for the the former composition. Clearly, the judge perfers

the diverse panel composition if it provides her with a lower expected loss than the homogeneous

panel, given the levels of effort of the experts.

Proposition 4 Given the effort profiles ed = (ed1, ed2) and eh = (eh1 , eh2) leading to the quality

profiles αh = (αL, αL) and αd = (αH , αH) for the diverse and homogeneous panels respectively,

the judge prefers the diverse panel composition to the homogeneous one, that is

ELd
J(y∗d, ed) ≤ ELh

J(y∗h, eh) (12)

if the precision levels of each panel, αd = αH and αh = αL, satisfy

αH ≥ 1 − 4
(︃

1 − 1
2 − αL

)︃2

(13)

and c satisfies (11).

The proof of this proposition is relegated to the Appendix. What Proposition 4 establishes is

the following. Let αH > αL and let c satisfy condition (11). Then for the diverse panel to be better

for the judge than a homogeneous one, the difference between αH and αL has to be sufficiently

high. Indeed, as a function of αL, one can plot the cutoff level α∗ such that for αH > α∗, the

diverse panel is optimal for the judge. This we demonstrate below in the following corollary.

Corollary 3 With a quadratic loss function for the judge and an absolute loss function for the

experts, there always exists a value of c ∈ R+ that satisfies (11). Moreover, the judge prefers the

diverse panel composition to the homogeneous one if the precision levels of each panel, αd = αH

and αh = αL, satisfy (13) and c satisfies (11).
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Observe that (13) is strictly increasing in αL for αL ∈ [0, 1) and that it always lie above the 45◦

line. Let g(αL) to be the difference between the LHS of (13) and αL as defined below:

g(αL) = 1 − 4
(︃

1 − 1
2 − αL

)︃2

− αL (14)

Notice that g is increasing in αL on the interval α ∈ [0, α∗
L], until it reaches its maximum at

α∗
L = 3 −

√
5 ≈ 0.764. Thereafter it is strictly decreasing on α ∈ [α∗

L, 1]. Intuitively, if experts

have a default quality αL = α∗
L, then for them to exert a positive level of effort it must yield the

highest increase in precision αH ≥ 1
2(3

√
5 − 5) ≈ 0.854. Then, as αL ≥ α∗

L gets closer to 1, this

difference decreases until αL = αH = 1 where the choice of panel composition has no significance

– the judge will always get a report from the experts. See Figure 3.1 for a graphical representation

of g.

0 0.5 3 −
√

5 1
αL

0

g(3 −
√

5)

0.1

g
(α

L
)

(α∗
L, g(α∗

L))

Figure 3.1: The required difference between αH and αL for an optimal diverse panel
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Proposition 4 essentially depicts the following situation: if the return on effort is sufficiently

large and at an appropriate cost such that this investment is beneficial when experts are in competi-

tion, then experts on a diverse panel will choose the higher level of effort. However, when experts

share the same agenda, the inherent lack of competition generate a free-riding issue resulting in

none of the experts exerting any effort. As such, the diverse panel can appear ex ante more infor-

mative to the judge, therefore making it the better choice. In the next section, we discuss some

extensions and limits of our model.

3.5 Discussion

In this section, we discuss the robustness of our results to modifications of the judge’s loss

function assumed in our model. We also discuss the case of continuous effort levels.

3.5.1 Modifications to the Judge’s Loss Function

We have shown that if conditions (11) and (13) are satisfied, then the diverse panel composition

is optimal for the judge. These results critically depend on the risk attitudes of the judge, the

preferences of the experts, as well as the distribution of the state. Below we provide a partial

answer to these questions by considering the judge’s preference to be captured by absolute loss

function instead of the quadratic one. Observe that this change makes her risk neutral in such

scenario. Suppose that the judge’s preference is captured by the following function:

vJi (y, θ) = −uJ(y, θ) = |y − θ|

Then, by repeating the steps in Proposition 4 for (13), we obtain that the diverse panel is preferred

if

αH ≥ 1 − 8
(︃

1 − 1
2 − αL

)︃2

(15)
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Note that condition (11) remains the same since the preferences of the experts are unchanged.

Clearly, this new condition (15) is less stringent than its original counterpart (13). For example, in

this case for any αL ≤ 0.7, whenever αH > αL and c satisfies (11), the judge would find a diverse

panel better than a homogeneous one. In other words, the constraint on αH given by (15) binds

over a smaller region. This is not surprising given that Bhattacharya et al. (2018) reaches similar

conclusions with regards to the judge’s attitude towards risk.

3.5.2 Continuous Levels of Effort

Let us now consider the case where effort is continuous such that ei ∈ [0, 1] for all i ∈ I . Let

α(ei) and c(ei) be twice continuously differentiable functions on that same interval, common to all

experts. Moreover, let us assume α to be concave and c to be convex in the effort levels. Finally,

we assume the loss functions for both the judge and the experts to be described by quadratic loss

functions. This is a departure from our baseline model in that there we have assumed that the

experts’ preferences are characterized by absolute loss function. This departure allows us to deal

with differentiability issues in a tractable manner. The rest of our original model is kept intact.

Observe that this does not change meaningfully the formulations for the expected utilities – one

only has to consider α as a function of e here. Define ehi as the level of effort exerted by an expert

i in a homogeneous panel.

Proposition 5 In a homogeneous panel with x = (0, 0), the optimal level of effort by expert i, ehi ,

is obtained by solving

2
3

(1 − α(ehj ))α′(ehi )y∗h
3 = c′(ehi ) (16)

Proposition 5 is the direct counterpart of Proposition 1, and its proof is therefore omitted.

Equation (16) is obtained by deriving the first-order condition with respect to ehi from (5). The

LHS of (16) represents the marginal benefit of effort for expert i, while the RHS gives its marginal

cost. Therefore, if the former is smaller than the latter, then ehi
∗ = 0. Moreover, notice that expert
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i’s level of effort depends on the action of expert j.

Corollary 4 Fix ehj = e ∈ [0, 1]. If for ehi = 0 we have

2
3

(1 − α(ehj ))α′(0)y∗h
3 ≤ c′(0) (17)

then ehi
∗ = 0 for all i ∈ I .

The proof of Corollary 4 is also omitted. From the concavity of α and the convexity of c, if at

ehi = 0 we have that (17) holds then increasing ehi will still have (17) satisfied. Similarly, let ed be

the level of effort in a diverse panel.

Proposition 6 In a diverse panel with x = (0, 1), the optimal level of effort by expert i, edi is

obtained by solving

2
3
α′(edi )y∗d

3 = c′(edi ) (18)

Again, the proof of Proposition 6 is straightforward and is therefore omitted. As opposed to

the homogeneous panel, observe that expert i’s effort is independent of edj .

Corollary 5 Suppose that the following holds:

2
3
α′(0)y∗d

3 > c′(0) (19)

Then for a diverse panel with x = (0, 1), for each expert i there exists an optimal level of effort

edi = ed
∗
> 0 for all i ∈ I , where ed∗ is given by (18).

Corollary 6 Suppose that the following holds:

2
3

(1 − α(0))α′(0)y∗h
3 < c′(0) < 2

3
α′(0)y∗d

3
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Let αH = α(ed∗) and αL = α(0) where ed∗ is given by (18). Then experts in a left-homogeneous

panel will choose αL while experts in a diverse panel will choose αH . Moreover, if

αH ≥ 1 − 4
(︃

1 − 1
2 − αL

)︃2

then it is optimal for the judge to choose a diverse panel.

3.6 Conclusion

We consider an environment in which a decision-maker relies on information provided by ex-

perts to take an action. These experts may not always possess information, and have preferences

regarding the action taken. Similar works on such models, notably Bhattacharya and Mukherjee

(2013), show that a homogeneous panel of identical, extreme experts – whose opinions lie at one

extremity of the interval of possible actions – is optimal for the decision maker. This is contrary

to common intuition suggesting that competition among the agendas of the experts leads to more

information being revealed – a claim also supported by Milgrom (1981). We show that if experts

can exert effort – which comes at a cost – to increase their probability of observing relevant in-

formation, then it is possible to find levels of productivity and cost of effort such that a diverse,

extreme panel is optimal – with experts having opinions at both extremities of the interval of ac-

tions. Under such conditions, the homogeneous panel exhibits a free-riding issue, where none of

the experts will exert effort. All the while, experts in the diverse panel will choose a positive level

of effort that if sufficiently large, may make such panel the preferred option for the decision-maker.

We show the robustness of these results in environments where the decision-maker is risk-neutral

or risk-averse and effort is binary. We also cover the case of continuous effort with both the judge

and the experts being risk-averse, and obtain similar conclusions.

68



Appendix

Proof of Proposition 1

To show this, we proceed by deriving the best response of an expert iwhile fixing the level of effort

of expert j. For ease of presentation, we will define i = 1 and j = 2.

Case 1: α2 = αL

We start by assuming that expert 2 does not exert any effort. Then, if expert 1 chooses α1 = αH ,

he gets

ELE
1 = (αH + αL − αHαL)y

∗
h

2

2
+ (1 − αH)(1 − αL)y∗h

2 + (1 − y∗h)y∗h
2 + c (20)

where c(ei > 0) = c > 0. If he instead chooses αL, he gets

ELE
1 = (2αL − α2

L)y
∗
h

2

2
+ (1 − αL)2y∗h

2 + (1 − y∗h)y∗h
2 (21)

Now, we say that we observe free-riding if (20) ≤ (21). That is

(20) ≤ (21) =⇒ 1
2

(1 − αL)(αH − αL)y∗h
2 ≤ c (22)

If condition (22) is satisfied, then α1 = αL is a best response for expert 1 if α2 = αL.

Case 2: α2 = αH

Next we assume that expert 2 does exert a positive level of effort. Then, if expert 1 chooses

α1 = αH , he gets

ELE
1 = (2αH − α2

H)y
∗
h

2

2
+ (1 − αH)2y∗h

2 + (1 − y∗h)y∗h
2 + c (23)
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where c(ei > 0) = c > 0. If he instead chooses αL, he gets

ELE
1 = (αL + αH − αLαH)y

∗
h

2

2
+ (1 − αL)(1 − αH)y∗h

2 + (1 − y∗h)y∗h
2 (24)

Now, we say that we observe free-riding if (24) ≤ (23). That is

(24) ≤ (23) =⇒ 1
2

(1 − αH)(αH − αL)y∗h
2 ≤ c (25)

If condition (25) is satisfied, then α1 = αL is a best response for expert 1 if α2 = αH . Observe that

since αL < αH , (22) =⇒ (25) as (22) is stricter.

■

Proof of Corollary 1

With αi = αj = αL, (1) can be written as

(1 − αL)2y∗h
3

3
+ (1 − y∗h)3

3
(26)

Deriving w.r.t. y∗h and solving the FOC, we get

ELJ
h(y∗h) = (1 − αL)2y∗h

2 − (1 − y∗h)2 = 0

=⇒ y∗h = 1
2 − αL

■
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Proof of Proposition 2

Keeping the same notation as in the proof of Proposition 1, observe that fixing α2 results in its

associated terms to be treated as constants. So we have that

ELE
1 (α1 = αH , α2) ≥ ELE

1 (α1 = αL, α2)

=⇒ − (αH − αL)y
∗
d

2

2
+ (αH − αL)y∗d

2 ≥ c

=⇒ (αH − αL)y
∗
d

2

2
≥ c (27)

■

Proof of Corollary 2

With αi = αj = αH , (3) can be written as

ELJ
d (y∗d) = (1 − αH)y∗d3

3
+ (1 − αH)(1 − y∗d)3

3
(28)

Deriving w.r.t. y∗h and solving the FOC, we get

(1 − αH)y∗h
2 − (1 − αH)(1 − y∗h)2 = 0

=⇒ y∗d = 1
2

■

Proof of Proposition 3

To demonstrate this, we show that

1
2

(1 − αL)(αH − αL)y∗h
2 ≤ 1

2
(αH − αL)y∗d

2 (29)
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Using the values of y∗h and y∗d in Corollaries (1) and (2), we have

1 − αL

(2 − αL)2 ≤ 1
4

=⇒ 4(1 − αL) ≤ (2 − αL)2

which holds for any value of αL ∈ R.

■

Proof of Proposition 4

From (12), we get

1
3
(︁
(1 − αd

1)y∗d
3 + (1 − αd

2)(1 − y∗d)3)︁ ≤ 1
3
(︁
(1 − αh

1)(1 − αh
2)y∗h

3 + (1 − y∗h)3)︁
Proposition 1 and Proposition 2 lead to αh

1 = αh
2 = αh = αL and αd

1 = αd
2 = αd = αH . Therefore,

substituting y∗d = 1
2 and y∗h = 1

2−αh , we have

1 − αd

4
≤ (1 − αh)2

(2 − αh)3 + (1 − αh)3

(2 − αh)3

=⇒ αd ≥ 1 − 4
(︃

1 − 1
2 − αh

)︃2

(30)

If c satisfies (11), then the above implies

=⇒ αH ≥ 1 − 4
(︃

1 − 1
2 − αL

)︃2

■
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Chapter 4

Information Design with Multiple

Privately-Informed Receivers

4.1 Introduction

We study the problem of one agent – the information designer – having to design a communi-

cation rule that will recommend some other agents – the receivers – to each take a specific action.

These agents have private information – referred to as their types – which they can report, truth-

fully or not, to the information designer. The latter also has her own private information – also

referred to as the state of the world. What makes this setup different than the standard cheap talk

problems is that the information designer must create this communication device prior to receiving

the reports and learning the state, and cannot alter in any way the resulting action recommendations

– this is described as committing to the device in both the information design and the persuasion

literature.

One practical example of such situation is that of a political or a company leader who wants

to convince as many agents as possible to vote in favor of a new project, while waiting for the

approval of an internal committee – i.e. the state of the world. It is equally likely that the committee
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approves it or not. Suppose that both the leader and the agents start with the same information. The

leader is asked to prepare their argument in advance and run it by the legal department – making

it impossible for the leader to alter her message to the agents. The leader prefers the project to be

implemented regardless of what the agents think of it, while each agent may approve it or not –

which corresponds to their type and is also assumed to be uniformly distributed. She then gathers

everyone’s opinion about the project, along with the internal committee’s approval and concerns,

and delivers the final voting recommendation to each agent individually.

In this example, the issue from the leader’s perspective is how to tailor the recommendation to

each agent and each type such that it maximizes the probability that the project is accepted. To

accomplish that, the leader has to design a message that will provide the agents with an incentive

to report their type truthfully and to follow the recommendation – this is referred to as the incentive

compatibility constraint in the literature. This is therefore closely related to the level of alignment

between the leader’s preferences and the agents’ ones. On the one hand, if these are perfectly

aligned – everybody prefers the project to be accepted in every realization of the agents’ individual

types and the state – then there is no reason for the leader to conceal any information. Therefore,

full revelation would be optimal here. On the other hand, if the preferences are completely mis-

aligned – the agents always prefer the project to be discarded – then there is nothing that the leader

can do to convince them otherwise and revealing information serves him no purpose. However,

between these two extreme cases lies the more interesting aspect of this problem. If preferences

are partially (mis)aligned – for example, some agents belong to the extreme cases mentioned pre-

viously while others may have preferences that differ depending on their own type and the internal

committee’s decision – then it may be the case that partial revelation – i.e. revealing information

without making obvious what are the state and other agents’ true types – improves the leader’s

expected utility. In this scenario, the latter could choose to fully disclose the level of approval

from the committee if it is positive – by an unequivocal action recommendation to vote in favour

–, and send a mixed signal – with some probability recommend to vote in favour and with some

other probability to vote against – if the committee’s verdict is neutral or negative. Again, the
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main issues here are that the communication rule – the conditional probability distributions over

the action profiles for each agent’s opinion and each possible report from the internal committee

– must be such that every agent has no incentive to lie about their opinion regarding the project,

while also preferring to obey the voting recommendation from the leader.

The main objective of this chapter is to characterize the solution of the information design

problem with multiple agents. We do so by considering a binary environment: one designer, two

receivers, two states of the world, with each receiver having two possible types and two possi-

ble actions. Both the state and the types are independently and uniformly distributed. Moreover,

we focus on private messages. This essay also aims to provide comparative statics regarding the

impact of the private information held by the different agents on the design of an incentive com-

patible communication rule. Regarding the information held by the receivers, assuming a uniform

distribution over their types corresponds to the highest amount of private information. Indeed,

such distribution makes it hardest for the designer to accurately predict the receivers’ types. At the

opposite end of this assumption, we have the case of a degenerate distribution which falls back to

the problem of information design without private information.

In our main result, we characterize the optimal communication rule under different payoff

functions for the sender and the receivers. We show that the level of alignment between their

preferences affects the level of information revealed. To that end, we regroup our solutions into

three categories: full revelation, no revelation, and partial revelation. Full revelation occurs when

every receiver, after observing their recommended action from the disclosure mechanism, knows

what the true state is with certainty. No revelation relates to the opposite situation where the

communication rule leaves every receiver’s prior belief unchanged – i.e. it does not lead to any

updating. In between these two cases lies the case of partial revelation. The primary objective of

this chapter is to present the conditions that lead the optimal disclosure rule to fall into one of these

three categories.
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4.1.1 Related Literature

There is an extensive literature on communication with multiple receivers, which includes Far-

rell and Gibbons (1989), Caillaud and Tirole (2007) and Goltsman and Pavlov (2011) to name

a few. Recent papers, such as Inostroza and Pavan (2023), Zeng (2023) and Ziegler (2023) for

example, discuss the problem of persuading multiple audiences. Candogan and Strack (2023) and

Guo (2019), among others, look at information design and persuasion models, respectively, with

privately-informed receivers.

Related to our work, Glazer and Rubinstein (2004) explore the case of a privately-informed

speaker (sender) that wishes to influence the actions of an uninformed listener (receiver). The

speaker does so by designing a mechanism that sends messages given her type with the objective

to maximize her expected utility, but achieves this by minimizing the probability of the listener

committing a mistake (choosing an undesired action). One aspect that contrast with the literature

is that the commitment to the disclosure mechanism comes from the listener instead of the speaker.

Commitment to the mechanism is crucial to distinguish the current problem with the cheap talk

literature, as it prevents the information designer from deferring to an alternative message once

she observes the state of the world – sometimes referred to as the sender’s type. Rayo and Segal

(2010) notably introduces commitment as they study the problem of a sender who is a priori un-

informed and must commit to a disclosure mechanism to influence the action of an uninformed

receiver. To do so, the sender must design a persuasion mechanism that conditions on the set of

states to generate some messages – denoted as signals – intended to the receiver. The goal of these

is to influence the receiver’s equilibrium choice of action in a favourable manner from the sender’s

perspective, by the mean of modifying their beliefs regarding the true state of the world. They char-

acterize the optimal disclosure rule – obtained by solving the linear program that maximizes the

sender’s expected utility – under the assumption that the receiver’s private reservation value was

drawn from a uniform distribution. Continuing on the subject of persuasion games, Kamenica and

Gentzkow (2011) use a “concavification” method to find the optimal signal structure when there is
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one sender and one uninformed receiver. This method requires the definition of the sender’s indi-

rect utility from the receiver’s posterior beliefs under the disclosure mechanism, and then defines

the optimal mechanism as the smallest concave closure over this indirect utility function. More

recently, Kolotilin (2018) tackles a similar problem but with a privately-informed receiver instead.

In his paper, both the state and the receiver’s private information – i.e. type – are continuous inter-

vals, and their utility is continuous and single-crossing with respect to the messages. The optimal

mechanism is found by the mean of a linear program maximizing the sender’s expected utility

subject to a feasibility constraint – that is, the rule creates beliefs that are consistent with the priors

– and an obedience constraint – with two actions considered here, optimality requires the agent

to be indifferent between the two of them. Using this approach, he considers the problem of a

grade-disclosure policy to which schools should adhere for employment statistics purposes. In a

similar setup, Kolotilin et al. (2017) characterize the optimal solution, but with the addition that

the receiver has to report their type – and possibly misreport it – to the sender who then takes it

into account when designing his disclosure rule. In their model, they describe the necessary and

sufficient conditions for an optimum and characterize the solution as an experiment – which does

not depend on the report. Moving closer to the mechanism design field, Bergemann and Morris

(2016) look at information structures and their relative sufficiency to compare them. More impor-

tant to the current project is the introduction of the Bayes Correlated Equilibrium (BCE) concept,

which relies on an obedience constraint to define the set of possible equilibria. This expansion

of the notion of correlated equilibrium in incomplete information games to account for incentive

constraints plays a crucial role in our analysis. Using this solution concept, Bergemann and Morris

(2017) examine multiple cases from the simple one sender and one receiver, to the more complex

one sender and multiple privately-informed receivers, and describe the sets of possible information

structures for each of them. Finally, Taneva (2019) solves the one sender and two (uninformed)

receivers problem by setting up the extensive form of the game. She also characterizes the optimal

solution under different payoff combinations, and discusses the impact of the payoff structures

on the solution. Our work follows closely her framework and aims at extending the results to
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privately-informed receivers.

The present chapter proceeds as follow: Section 4.2 covers the generic model of this essay;

Section 4.3 presents numerical examples and their solutions; Section 4.4 contains our main results

in a binary environment.

4.2 Model

There is one sender – denoted by 0 – and 2 receivers – denoted by i ∈ I = {1, 2}. Denote

the set of players as N = I ∪ {0}. Each receiver has a finite set of actions Ai = {a0
i , ..., a

k
i }.

Generic actions are represented by ai and a = {ai}i∈I refers to a generic action profile. We denote

by A the set of all action profiles. There is a finite set of states of the world Θ with θ denoting a

generic element of that set. The sender and the receivers share a common prior ϕ ∈ int(∆(θ)) that

is commonly known. Each receiver i has payoff relevant private information, summarized by his

type ti drawn from a finite set Ti. We denote by t = (t1, t2) a type profile and by T the set of all

type profiles. For each possible state of the world, the types of the receivers are drawn according

to the distribution π(t|θ). Therefore π : Θ → ∆(T ), which is also commonly known.

The sender (also referred to as the designer) has a utility function v : Θ×A→ R that depends

on the actions taken by the receivers and the realized state of the world. Notice that the payoff for

the sender does not depend directly on the types of the receivers. Her expected payoff, however,

does depend on them through the disclosure mechanism which influences the actions chosen by

the receivers for various realizations of their respective payoff relevant types.

The payoff of each receiver, on the other hand, depends on the realized state of the world, the

payoff relevant type profile, and the action profile chosen by all receivers. As such, the payoff of

each receiver i is a function: ui : Θ × T × A → R. Note that it depends only on i’s realized type

and not on the entire type profile. In that sense, this is a private values model.

As is standard in the literature (for example, see Gossner (2000)), it is possible to separate the

problem into two parts. The first is a “basic game” – denoted G – which consists of the set of
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players I , their respective action sets Ai and utility functions ui, along with a full support common

prior ψ over the states of the world Θ shared by all players. In other words, the basic game is

G =
(︁
(Ai, ui)Ii=1,Θ, ψ

)︁
. In addition to the basic game, as in Bergemann and Morris (2017), there

is an information structure S that consists of the set of type profiles T as the space of signals and,

for each possible realization of the state of the world θ, the conditional prior distribution over type

profiles – i.e. S = (T, {π( · | θ)}θ∈Θ). Together the basic game G and the information structure S

define a game of incomplete information (G,S).

We are interested in the problem of the sender who has the obligation to commit to provide

players with additional information, if any, in order to induce them to make specific choices.

Viewed as an extensive form game between the sender and the receivers, and following Bergemann

and Morris (2017), the timing of the game is as follows:

1. Sender picks and commits to a correlated communication device;

2. Nature reveals θ to Sender, and ti to Receiver i;

3. Each Receiver i sends a message about ti to the information designer;

4. Each Receiver observes an action recommendation privately according the communication

device/rule;

5. Each Receiver chooses an action ai based on his true type, and the recommendation;

6. Payoffs are realized.

At this point, there is no restriction on the messages transmitted between the two parties. How-

ever, following Bergemann and Morris (2016), we will employ a Revelation Principle argument

and restrict our attention to direct messages where the receivers only report types, and the sender

only submit action recommendations. Since we focus on finding the best equilibrium, in our set-

tings this restriction is without loss of generality1. However, in a general sense, this may not always

1See Proposition 2 in Taneva (2019)
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be the case2. Given this restriction to direct messages, the sender’s problem is to choose among

communication devices which we call decision rules.

Definition 1 A communication rule is a function f : Θ × T → M , where M = A is a finite set

of (direct) messages. That is, for every type profile t and for every state of the world θ, f(a|t, θ) is

the probability that the sender recommends the action profile a = (a1, a2), such that for all (t, θ),

∑︂
m∈M

f(a|t, θ) = 1.

Moreover,

0 ≤ f(x|t, θ) ≤ 1 ∀x ∈ A, ,∀t ∈ T, ∀θ ∈ Θ.

Definition 2 A communication rule f is direct if M = ∆(A), with m = (m1,m2) = (a1, a2) = a.

It then sends action recommendations conditional on t and θ.

Under these settings, every receiver i must report a type (any) and choose an action after ob-

serving the sender’s recommendation, which is communicated privately to them. Consequently,

any decision rule must provide the receivers with incentives to report their types truthfully in equi-

librium. In addition, the decision rule must provide each receiver i with incentives to follow his

private recommendation obediently under the assumption that every other receiver is obedient as

well. The notion of equilibrium we consider is the Bayesian Nash Equilibrium. More precisely,

following Bergemann and Morris (2017), we restrict our attention to decision rules that satisfy

the notion of incentive compatible Bayes’ Correlated Equilibrium. The idea behind this notion of

incentive compatibility originates in Myerson3. We explain it below.

Consider a receiver i of type ti. If every receiver reports his type honestly to the sender and

2In two seminal papers, Caroll (2016) and Mathevet et al. (2020) show that when there are multiple receivers, in
the presence of private information on the part of the receivers, the revelation principle may break down when looking
at worst equilibria

3See for example Myerson (1991)
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obeys the recommendations of the communication rule, then the expected utility of receiver i is

Ui(f |ti) =
∑︂
tj∈Tj

∑︂
a∈A

∑︂
θ∈Θ

ϕ(θ)π(ti, tj|θ)f
(︂

(ai, aj)|(ti, tj), θ
)︂
ui

(︂
(ai, aj), (ti, tj), θ

)︂
.

Suppose now that receiver i reports si ∈ Ti and for each action recommendation ai chooses an

action δi(ai), with δ : Ai → Ai. If all the other receivers are honest and obedient, then the

expected payoff of receiver i is

Ui(f, δi, si|ti) =
∑︂
θ∈Θ

∑︂
tj∈Tj

∑︂
a∈A

ϕ(θ)πi(ti, tj|θ)f(a|si, tj, θ)ui
(︂

(aj, δi(ai)), (ti, tj), θ
)︂

Definition 3 A decision rule f : T × Θ → ∆(A) is incentive compatible if for every i ∈ I , for

every ti, si ∈ Ti, and for every δi : Ai → Ai,

Ui(f |ti) ≥ Ui(f, δi, si|ti). (1)

Following Myerson (1982), Myerson (1991) and Bergemann and Morris (2017), we say that a

rule f is incentive compatible if it leads to an Incentive-Compatible Bayes Correlated Equilibrium

(ICBCE) of (G,S). The inequality (1) is referred to in Myerson (1991) as the generalized incentive

constraint. It ensures two conditions. First, that receiver i of type ti has incentives to report his

type truthfully. In addition, after observing and updating his beliefs on the information contained

in the action recommendation, he finds it optimal to obey the recommendation. Thus there are

two separate constraints embedded in (1): truth-telling and obedience. In addition, inequality

(1) also accounts for “double-deviation” – where a receiver may find it optimal to misreport and

following a recommendation, choose an action different from the recommended one. For purposes

of exposition, below we describe in details the concepts of truth telling and obedience. Let hi :

Ai → Ai be the identity map – i.e. for all ai ∈ Ai, hi(ai) = ai.

Definition 4 A decision rule f : T × Θ → ∆(A) satisfies truth-telling if for each i ∈ I , and for
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each ti ∈ Ti,

Ui(f |ti) ≥ Ui(f, hi, si|ti). (2)

Definition 5 A decision rule f : T × Θ → ∆(A) satisfies obedience if for each i ∈ I , for all

ti ∈ Ti, and for all δi : Ai → Ai,

Ui(f |ti) ≥ Ui(f, δi, ti|ti). (3)

4.2.1 Sender’s Problem

As mentioned previously, the sender must commit to a decision rule before she gets to observe

the state and before the receivers submit their reported types. Consequently, the sender’s ex-ante

expected utility is

Vi(f) =
∑︂
θ∈Θ

∑︂
t∈T

∑︂
a=(ai,aj)∈A

ψ(θ)π(t|θ)f(a|t, θ)v(ai, aj). (4)

The objective of the sender is the following:

maximizef Vi(f)

subject to (1). (5)

Given that the sets of actions, the sets of types and the set of states of the world are all finite,

and given that the incentive constraints are linear in the probabilities, for any (G,S), the set of

decision rules f that are ICBCE of (G,S) constitute a convex polytope. This result is standard, but

we include for completeness.

Proposition 1 For the game (G,S), the set of decision rules f that are ICBCE of (G,S) constitute

a convex polytope.

The proof of Proposition 1 is relegated to the Appendix. In the next section we consider some

examples to illustrate the problem of interest.
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4.3 Examples: Applications in Binary Environments

4.3.1 No Private Information

Let us first look at the same setup as in Taneva (2019). Again, there are one sender and two

receivers i ∈ {1, 2}, but the latter have no private information – i.e. no types are assigned to the

receivers. There are two states of the world {θ0, θ1} = Θ and the receivers can choose among

two possible actions {a0, a1} = A which are the same for the both of them (A1 = A2 = A). We

assume the states θ to be uniformly distributed, as in Taneva (2019).

We define the sender’s utility function v : A1 × A2 → R to be independent of the state of the

world. It ultimately only depend on the pair of actions (a1, a2) selected by the receivers. Formally,

the sender gets a payoff of 1 if the two receivers choose different actions, and 0 otherwise – as

illustrated below.

v(a1, a2) =

⎧⎪⎪⎨⎪⎪⎩
1 if a1 ̸= a2

0 otherwise
(6)

We define receiver i’s utility function ui : A1 × A2 × Θ → R such that it depends on the pair

of actions (a1, a2) and the state of the world θ. Table 4.1 depicts the payoffs of the two receivers.

For now, we set c = 2 and d = 1, and make the payoffs symmetric with respect to the state of the

world.

Receiver 2

R
ec

ei
ve

r1

θ = θ0 a0 a1

a0 (c, c) (d, 0)

a1 (0, d) (0, 0)

Receiver 2

R
ec

ei
ve

r1

θ = θ1 a0 a1

a0 (0, 0) (0, d)

a1 (d, 0) (c, c)

Table 4.1: Receivers’ payoffs – Without private information
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As mentioned previously, the communication device f : Θ → ∆(A × A) maps the state of

the world into a probability distribution over the combinations of actions taken by the receivers.

We represent the solution to the optimization problem f ∗ by the array shown in Table 4.2 below.

Each table corresponds to one state of the world (θ0 or θ1), and the rows (columns) represent the

action recommendations sent to Receiver 1 (Receiver 2). All-in-all, each table depicts a probability

distribution over the set of action combinations conditional on the state of the world.

θ = θ0

a0
2 a1

2

a0
1

1/5 2/5

a1
1

2/5 0

θ = θ1

a0
2 a1

2

a0
1 0 2/5

a1
1

2/5 1/5

Table 4.2: Optimal disclosure rule for the binary case with no type

Evidently, the results are identical to the those in Taneva (2019). The sender and the receivers

each get an ex ante expected utility of 0.8. Note that with no communication device f , the sender’s

expected utility would be 0.5 while the receivers would get 0.75.

4.3.2 Payoff-Relevant Private Information

Let us now look at an example of the main problem of this chapter. Here we examine the

case with two common types and two states of the world, both uniformly distributed and formally

defined as T = {t0, t1} and Θ = {θ0, θ1}. There are two actions available to the receivers, such

that A = {a0, a1}. Table 4.3 shows the payoff function for the two receivers, while Table 4.4

shows the sender’s payoffs. We assume c = 2, d = 1, l = 1 and m = n = 0.

As mentioned previously, we assume a uniform distribution over the set of types for both

receivers. Table 4.5 shows the joint probability distribution over types. Under these settings, the

optimal communication rule is as shown in Table 4.6.

In this case, the sender’s expected payoff is 0.714 while for both receivers it is 0.857. These
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θ = θ0

t1 = t2 = t0

a0
2 a1

2

a0
1 (c, c) (d, 0)
a1

1 (0, d) (0, 0)

t1 = t0, t2 = t1

a0
2 a1

2

a0
1 (c, 0) (d, d)
a1

1 (0, 0) (0, c)

t1 = t1, t2 = t0

a0
2 a1

2

a0
1 (0, c) (0, 0)
a1

1 (d, d) (c, 0)

t1 = t2 = t1

a0
2 a1

2

a0
1 (0, 0) (0, d)
a1

1 (d, 0) (c, c)

θ = θ1

t1 = t2 = t0

a0
2 a1

2

a0
1 (0, 0) (0, d)
a1

1 (d, 0) (c, c)

t1 = t0, t2 = t1

a0
2 a1

2

a0
1 (0, c) (0, 0)
a1

1 (d, d) (c, 0)

t1 = t1, t2 = t0

a0
2 a1

2

a0
1 (c, 0) (d, d)
a1

1 (0, 0) (0, c)

t1 = t2 = t1

a0
2 a1

2

a0
1 (c, c) (d, 0)
a1

1 (0, d) (0, 0)

Table 4.3: Receivers’ payoffs – Generic case

θ = θ0

a0
2 a1

2
a0

1 m l
a1

1 l n

θ = θ1

a0
2 a1

2
a0

1 n l
a1

1 l m

Table 4.4: Sender’s payoffs – Generic case

represent an improvement over the case without communication, with expected utilities of 0.5 and

0.75 respectively.

In the next section, we detail our main results. We show how different payoff structures, for

both sender and the two receivers, can affect the optimal communication rule.
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Receiver 2

R
ec

ei
ve

r1

θ = θ0 t02 t12

t01 1/4 1/4

t11 1/4 1/4

Receiver 2

R
ec

ei
ve

r1

θ = θ1 t02 t12

t01 1/4 1/4

t11 1/4 1/4

Table 4.5: Conditional probability distributions over the types

θ = θ0

t1 = t2 = t0

a0
2 a1

2

a0
1 0.572 0.214

a1
1 0.214 0

t1 = t0, t2 = t1

a0
2 a1

2

a0
1 0 0.357

a1
1 0.643 0

t1 = t1, t2 = t0

a0
2 a1

2

a0
1 0 0.643

a1
1 0.357 0

t1 = t2 = t1

a0
2 a1

2

a0
1 0 0.214

a1
1 0.214 0.572

θ = θ1

t1 = t2 = t0

a0
2 a1

2

a0
1 0 0.214

a1
1 0.214 0.572

t1 = t0, t2 = t1

a0
2 a1

2

a0
1 0 0.643

a1
1 0.357 0

t1 = t1, t2 = t0

a0
2 a1

2

a0
1 0 0.357

a1
1 0.643 0

t1 = t2 = t1

a0
2 a1

2

a0
1 0.572 0.214

a1
1 0.214 0

Table 4.6: Optimal information structure for the case with uniform priors over types

4.4 Main Result

We now discuss how the parameters of the problem – namely c, d, l,m, n – affect the optimal

communication rule. Throughout the different cases below, we keep the distributions over the
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states and types uniform, and use the same payoff functions as in our last example above. That is,

the receivers’ payoffs are as shown in Table 4.3, and the sender’s payoffs are as shown in Table

4.4.

The layout of the communication rule is depicted in Table 4.7. Variables r, q, p and w represent

the probability distribution over the set of action profiles for the two receivers when they report

the same type. On the other hand, x, y, z and v play the same role but when their reports are

different. As these two sets of variables represents probability distributions, it is required that

r+ q+ p+w = 1 and x+ y+ z+ v = 1. This layout is considered to be symmetric between type

profiles, as both (t0, t0) and (t1, t1) share the same variables. As shown in Theorem 1, the optimal

rule may not always be symmetric.

θ = θ0

t1 = t2 = t0

a0
2 a1

2

a0
1 r q

a1
1 p w

t1 = t0, t2 = t1

a0
2 a1

2

a0
1 x y

a1
1 z v

t1 = t1, t2 = t0

a0
2 a1

2

a0
1 x z

a1
1 y v

t1 = t2 = t1

a0
2 a1

2

a0
1 w p

a1
1 q r

θ = θ1

t1 = t2 = t0

a0
2 a1

2

a0
1 w p

a1
1 q r

t1 = t0, t2 = t1

a0
2 a1

2

a0
1 v z

a1
1 y x

t1 = t1, t2 = t0

a0
2 a1

2

a0
1 v y

a1
1 z x

t1 = t2 = t1

a0
2 a1

2

a0
1 r q

a1
1 p w

Table 4.7: Communication rule layout – Symmetric w.r.t. types
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Next, the sender’s expected utility is defined as

EV = π(t0, t0)[ψ(θ0) + ψ(θ1)][rm+ (q + p)l + wn]

+ π(t1, t1)[ψ(θ0) + ψ(θ1)][rn+ (q + p)l + wm]

+ π(t0, t1)[ψ(θ0) + ψ(θ1)][xm+ (y + z)l + vn]

+ π(t1, t0)[ψ(θ0) + ψ(θ1)][xm+ (y + z)l + vn]

We refer to the obedience, truth-telling and incentive compatibility equations as they are de-

tailed in the Appendix. Next, we formally define the condition for a communication rule to be

symmetric.

Definition 6 Let C be an array representing a communication rule, Ct,θ be the sub-array for the

type profile t ∈ T and state θ ∈ Θ, and Cα,β be the element at the α, β coordinate. Then C is

symmetric if, given a receiver i’s set of actions Ai, for every state θ ∈ Θ, type profile t ∈ T , and

receiver i ∈ I ,

Cα,β
t,θ = C

(|Ai|+1−α, |Aj |+1−β)
t,θ′

∀i, j ∈ I , |Ak| > 1, k ∈ I and |I| = 2.

Proposition 2 below describes the conditions under which a symmetric rule is optimal. Its proof

is relegated to the Appendix.

Proposition 2 Let V be sender’s payoff array such that Vtθ is the sub-array of type profile t ∈ T

and state θ ∈ Θ, and and V α,β be the element at the α, β coordinate. A symmetrical communication

rule is optimal for Sender if

(i) V α,β
θ = V

(|Ai|+1−α, |Aj |+1−β)
θ′

(ii) V (θ) = V ⊤(θ)

(iii) EV ((ai, aj)) = EV ((aj, ai)), ∀ak ∈ Ak, k ∈ I
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∀i, j ∈ I , |Ak| > 1, k ∈ I and |I| = 2.

We now present the main results of this chapter. For ease of presentation, we split it into two

parts: Proposition 3 encapsulates the fundamental findings of Theorem 1. Theorem 1 elaborates

on every optimal communication rule allowed by the different parametric conditions of our model.

Proposition 3 categorizes some of them into three types of information disclosure. We say that

a communication rule is fully revealing if every receiver i can correctly deduce the state from

his private recommendation. Next, we say that it induces no revelation if for each receiver i, the

recommendation does not lead to any updating of his private belief regarding the state of the world.

Lastly, we refer to partial revelation to describe situations that lie in between the aforementioned

extreme cases. Proposition 3 is based on Theorem 1. The proof of the latter is relegated to the

Appendix.

Proposition 3 Consider different values of l, m and n for the sender’s payoff, and c, d for the

receivers’ payoffs.

(i) The optimal communication device fully reveals the state if:

• m > l > n and c = 2d

• m > l > n, m+ n > 2l, m > l(c+d)−n(2d−c)
2c−d

, c < d < 2c

(ii) The optimal communication device reveals no information about the state if:

• l > m ≶ n and c < d

• l < m = n and c > d for r = 1
2

(iii) The optimal communication device partially reveals the state if, for example:

• l > m ≶ n and c > d (Symmetric w.r.t. types)

• m ≶ n > l, c > 2d (Non-symmetric w.r.t. types)

Theorem 1 For each of the following cases regarding the relationship between l, m and n and

between c and d, the optimal communication rule is given below.
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1. If l > m ≥ n or l > n ≥ m & c > d, then r = 1 − 2q, q = p = c+d
2(3c+d) , x = v = 0,

y = 3c−d
2(3c+d) , z = 1 − y

2. If l > m > n or l > n > m & c < d, then r = 0, q = p = 1
2 , x = v = 0, y = z = 1

2

3. If l < m = n & c > d, then r ∈ [1
2 , 1], p = q = 0, x = v = 1

2 , y = z = 0

4. If l < m = n & c < d, then r = 3d−c
2(c+3d) , q = p = 0, x = v = c+d

2(c+3d) , z = 0

5. If m > n > l or n > m > l & c > d, then

(a) for c ≤ 2d, r = 1, x = 2c−d
c+d

, y = z = 0

(b) for c > 2d, the communication rule is no more symmetric with respect to the type

profiles (t0, t0) and (t1, t1). In that case, we define r, q, p and r̂, q̂, p̂ associated with

these two type profiles respectively. At optimum, r = 1, r̂ = 2d
c

, x = 1

6. If m > n > l or n > m > l & c < d, then

(a) for d(c+d)
(c+3d)(d−c) ≥ m−n

m+n−2l , at optimum r = r̂ = 3d−c
2(c+3d) , q = q̂ = p = p̂ = 0, x = v =

c+d
2(c+3d) , z = 0

(b) otherwise, r = d−c
d

, r̂ = 0, q = q̂ = p = p̂ = 0, y = 1

7. If m > l > n & c > d, then

(a) for c = 2d, at optimum r = x = 1

(b) for c < 2d, at optimum r = 1, x = 2c−d
c+d

, y = z = 0

(c) for c ≤ 2d and 4(2c+d)(c+d)
13c2−d2 > m−n

l−n
, at optimum r = 1 − 2q, q = c+d

2(3c+d) , x = v = 0,

y = 3c−d
2(3c+d)

(d) for d(2 +
√

3) > c > 2d, at optimum r = 1, r̂ = d(2c−d)
c2 , q̂ = (c−d)2

2c2 , x = (c−d)(3c−d)
2c2 ,

z = 1 − x

(e) for c > 2d, at optimum r = x = 1, q = q̂ = 0, r̂ = 2d
c
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(f) for c > 2d and d(2d(c−d)2−2c(c−2d))
c(d(c−d)2−c(c−2d)) > 4(m−l)

m−n
, at optimum r = x = 1, r̂ = 2(c−2d)

(c−d)2 ,

q̂ = 2 − r̂c
d

8. If m > l > n & c < d, then

(a) for d < 2c, m+ n ≥ 2l and m > l(c+d)−n(2d−c)
2c−d

, at optimum r = 1 and y = 1

(b) for d < 2c, m + n ≤ 2l and m > l(c+d)−n(2d−c)
2c−d

, at optimum q = 1
2 and x = 3(d−c)

2(2d−c) ,

y = 1 − x

(c) for d ≥ 2c orm+n ≥ 2l andm < l(c+d)−n(2d−c)
2c−d

, at optimum r = p = q = 1
3 , x = d−c

2d−c

and y = 1 − x

(d) for m ≤ m∗
(b), or for m ≤ m∗

(c), at optimum r = (c−d)(y−1)
c+d

+ x, q = p = 0, x =

v = y(2d2−3cd−c2)+3cd−d2

2d(c+d) , y = 2d(2cd−c2−d2)
5cd2−cd−c3−3d3 , z = 0. These grant the sender a higher

expected utility compared to the above cases (b) and (c) respectively, where m∗
(b) and

m∗
(c) are thresholds for m for (b) and (c) presented in the Appendix.

Theorem 1 shows that the extent to which the state is revealed depends on the level of alignment

between the payoffs of the sender and the receivers. Observe that for the type t0, the payoff c is

associated with his preference for “matching the state” – that is, playing ak when θ = θk – when

the other do so as well, while d is obtained by this type when he is the only receiver matching it.

At the opposite, t1 gets c for not matching the state. Moreover, t0 receives c when both receivers

choose ak ̸= θk, and d for being the only one. As for the sender, she gets m when both receivers

are matching the state, n when none does so, and l when they play different actions. Regarding

the communication rule, r and w are associated with receivers selecting the same action when

they report identical types, and x and v when their reports are different. Similarly, q and p are the

probabilities of recommending a1 ̸= a2 when t1 = t2, and y and z when t1 ̸= t2. Refer to Tables

4.3, 4.4 and 4.7 for a complete presentation of these variables.

Now recall that both the type profiles and the states are assumed to be uniformly distributed.

As shown in Proposition 3, observe that full revelation occurs when the sender has a clear pref-

erence for a specific action profile, while receivers’ preferences are either symmetrically opposed
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between types (c = 2d in (i)) or moderately misaligned with the sender’s (c < d < 2c in (i)).

At the opposite, the optimal communication rule reveals no information when both parties prefer

miscoordination (c < d in (ii)). Observe also that it might be that while coordination is preferred

by every player (l < m = n and c > d as in (ii)), no revelation can be optimal (if r = 1
2 ) because

of the indifference of the sender between the two matching action profiles (a0, a0) and (a1, a1). In

most cases, however, partial revelation yields the highest expected utility for the sender. Indeed, in

the previous case with preferences towards coordination, if r = 1 then the state is perfectly revealed

if the reported types are identical, while no information is transmitted otherwise. This is also the

case if preferences are conflicting. Moreover, even under some degree of alignment, if receivers

strongly favor some action profiles (m ≷ n > l and c > 2d), this can lead to non-symmetric com-

munication rules with respect to type profiles where (t0, t0) and (t1, t1) do not exhibit a symmetric

distribution over the set of action profiles in a given state. Finally, notice that full and no revelation

are rarely optimal in our model. Because we have modelled the receivers’ preferences to be in

opposition with regards to their types, it is to be expected that cases of full revelation almost never

occur. Indeed, if we were to change both parties’ payoffs such that their preferences are (i) aligned

and (ii) differentiable between states, then full revelation would be optimal. Moreover, as stated

in Proposition 3, no revelation is preferred when preferences are aligned and ex ante indifference

between action profiles is optimal for every agent. For all other cases, the chosen communication

device reveals partial information about the state. We further distinguish between two types of

partial revelation: Symmetric and non-symmetric communication rules. Given a state θ, the for-

mer exhibits symmetrical distributions over action profiles between the types profiles (t0, t0) and

(t1, t1) while the latter does not. Because the two receivers are, in our settings, identical in terms

of preferences given a type tk and k ∈ {0, 1}, the rule will always be symmetrical between (t0, t1)

and (t1, t0). Indeed, it is easy to see that changing the positions of the receivers – i.e. making player

2 to be player 1 and vice-versa – does not affect our results. However, there are cases where it is

beneficial for the sender to submit different recommendations to the profiles (t0, t0) and (t1, t1).

For example, when the two sides have strong, opposite preferences towards specific action profiles.
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4.5 Conclusion

We have extended the information design problem in Taneva (2019) by incorporating private in-

formation held by the receivers. Using a revelation principle argument, we have focused on action

recommendations and have identified the communication rules that satisfy incentive compatibility4.

In a binary environment, our main results (Proposition 3 and Theorem 1) characterize the optimal

communication rule depending on the payoff structures of a designer and two privately-informed

receivers. We show that while in some cases full disclosure of the true state can be optimal, in

(most) other cases upon privately observing their recommendation, receivers cannot deduce per-

fectly the state of the world. Moreover, while the designer does not observe the receivers’ types but

only their reports, it is sometimes beneficial for her to construct a communication rule that is not

symmetrical across type profiles. That is, even if the payoff structures between two type profiles

are symmetric, tailoring the recommendation rule differently to each of them can result in a higher

expected payoff for the designer.

4See Bergemann and Morris (2017)
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Appendix A

Simplified Constraints

Obedience

Player 1

• (a0, t0) → (a1, t0)

π(t0, t0)ψ(θ0)(rc+ qd) + π(t0, t1)ψ(θ0)(xc+ yd)

≥ (π(t0, t0)ψ(θ1)(pc+ wd) + π(t0, t1)ψ(θ1)(zc+ vd))

• (a1, t0) → (a0, t0)

π(t0, t0)ψ(θ1)(rc+ qd) + π(t0, t1)ψ(θ1)(xc+ yd)

≥ (π(t0, t0)ψ(θ0)(pc+ wd) + π(t0, t1)ψ(θ0)(zc+ vd))

• (a0, t1) → (a1, t1)

π(t1, t1)ψ(θ1)(rc+ qd) + π(t1, t0)ψ(θ1)(vc+ yd)

≥ (π(t1, t1)ψ(θ0)(pc+ wd) + π(t1, t0)ψ(θ0)(zc+ xd))

• (a1, t1) → (a0, t1)

π(t1, t1)ψ(θ0)(rc+ qd) + π(t1, t0)ψ(θ0)(vc+ yd)

≥ (π(t1, t1)ψ(θ1)(pc+ wd) + π(t1, t0)ψ(θ1)(zc+ xd))
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Player 2

• (a0, t0) → (a1, t0)

π(t0, t0)ψ(θ0)(rc+ pd) + π(t1, t0)ψ(θ0)(xc+ yd)

≥ (π(t0, t0)ψ(θ1)(qc+ wd) + π(t1, t0)ψ(θ1)(zc+ vd))

• (a1, t0) → (a0, t0)

π(t0, t0)ψ(θ1)(rc+ pd) + π(t1, t0)ψ(θ1)(xc+ yd)

≥ (π(t0, t0)ψ(θ0)(qc+ wd) + π(t1, t0)ψ(θ0)(zc+ vd))

• (a0, t1) → (a1, t1)

π(t1, t1)ψ(θ1)(rc+ pd) + π(t0, t1)ψ(θ1)(vc+ yd)

≥ (π(t1, t1)ψ(θ0)(qc+ wd) + π(t0, t1)ψ(θ0)(zc+ xd))

• (a1, t1) → (a0, t1)

π(t1, t1)ψ(θ0)(rc+ pd) + π(t0, t1)ψ(θ0)(vc+ yd)

≥ (π(t1, t1)ψ(θ1)(qc+ wd) + π(t0, t1)ψ(θ1)(zc+ xd))
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Truth-telling

Player 1

• t0 → t1

π(t0, t0)(ψ(θ0)(rc+ qd) + ψ(θ1)(rc+ qd)) + π(t0, t1)(ψ(θ0)(xc+ yd) + ψ(θ1)(xc+ yd))

≥ (π(t0, t0)(ψ(θ0)(xc+ zd) + ψ(θ1)(xc+ zd)) + π(t0, t1)(ψ(θ0)(wc+ pd) + ψ(θ1)(wc+ pd)))

• t1 → t0

π(t1, t1)(ψ(θ0)(rc+ qd) + ψ(θ1)(rc+ qd)) + π(t1, t0)(ψ(θ0)(vc+ yd) + ψ(θ1)(vc+ yd))

≥ (π(t1, t1)(ψ(θ0)(vc+ zd) + ψ(θ1)(vc+ zd)) + π(t1, t0)(ψ(θ0)(wc+ pd) + ψ(θ1)(wc+ pd)))

Player 2

• t0 → t1

π(t0, t0)(ψ(θ0)(rc+ pd) + ψ(θ1)(rc+ pd)) + π(t1, t0)(ψ(θ0)(xc+ yd) + ψ(θ1)(xc+ yd))

≥ (π(t0, t0)(ψ(θ0)(xc+ zd) + ψ(θ1)(xc+ zd)) + π(t1, t0)(ψ(θ0)(wc+ qd) + ψ(θ1)(wc+ qd)))

• t1 → t0

π(t1, t1)(ψ(θ0)(rc+ pd) + ψ(θ1)(rc+ pd)) + π(t0, t1)(ψ(θ0)(vc+ yd) + ψ(θ1)(vc+ yd))

≥ (π(t1, t1)(ψ(θ0)(vc+ zd) + ψ(θ1)(vc+ zd)) + π(t0, t1)(ψ(θ0)(wc+ qd) + ψ(θ1)(wc+ qd)))
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Incentive compatibility

Example: Player 1

• δ(a0) = δ(a1) = a0 ; t0 → t1

π(t0, t0)(ψ(θ0)(rc+ qd) + ψ(θ1)(rc+ qd)) + π(t0, t1)(ψ(θ0)(xc+ yd) + ψ(θ1)(xc+ yd))

≥ (π(t0, t0)ψ(θ0)(xc+ zd+ yc+ vd) + π(t0, t1)ψ(θ0)(wc+ pd+ qc+ rd))

• δ(a0) = δ(a1) = a0 ; t1 → t0

π(t1, t1)(ψ(θ0)(rc+ qd) + ψ(θ1)(rc+ qd)) + π(t1, t0)(ψ(θ0)(vc+ yd) + ψ(θ1)(vc+ yd))

≥ (π(t1, t1)ψ(θ1)(vc+ zd+ yc+ xd) + π(t1, t0)ψ(θ1)(wc+ pd+ qc+ rd))

• δ(a0) = δ(a1) = a1 ; t0 → t1

π(t0, t0)(ψ(θ0)(rc+ qd) + ψ(θ1)(rc+ qd)) + π(t0, t1)(ψ(θ0)(xc+ yd) + ψ(θ1)(xc+ yd))

≥ (π(t0, t0)ψ(θ1)(xc+ zd+ yc+ vd) + π(t0, t1)ψ(θ1)(wc+ pd+ qc+ rd))

• δ(a0) = δ(a1) = a1 ; t1 → t0

π(t1, t1)(ψ(θ0)(rc+ qd) + ψ(θ1)(rc+ qd)) + π(t1, t0)(ψ(θ0)(vc+ yd) + ψ(θ1)(vc+ yd))

≥ (π(t1, t1)ψ(θ0)(vc+ zd+ yc+ xd) + π(t1, t0)ψ(θ0)(wc+ pd+ qc+ rd))
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• δ(a0) = a1 & δ(a1) = a0 ; t0 → t1

π(t0, t0)(ψ(θ0)(rc+ qd) + ψ(θ1)(rc+ qd)) + π(t0, t1)(ψ(θ0)(xc+ yd) + ψ(θ1)(xc+ yd))

≥ (π(t0, t0)(ψ(θ0)(yc+ vd) + ψ(θ1)(yc+ vd)) + π(t0, t1)(ψ(θ0)(qc+ rd) + ψ(θ1)(qc+ rd)))

• δ(a0) = a1 & δ(a1) = a0 ; t1 → t0

π(t1, t1)(ψ(θ0)(rc+ qd) + ψ(θ1)(rc+ qd)) + π(t1, t0)(ψ(θ0)(vc+ yd) + ψ(θ1)(vc+ yd))

≥ (π(t1, t1)(ψ(θ0)(yc+ xd) + ψ(θ1)(yc+ xd)) + π(t1, t0)(ψ(θ0)(qc+ rd) + ψ(θ1)(qc+ rd)))

Example: Player 2

• δ(a0) = δ(a1) = a0 ; t0 → t1

π(t0, t0)(ψ(θ0)(rc+ pd) + ψ(θ1)(rc+ pd)) + π(t1, t0)(ψ(θ0)(xc+ yd) + ψ(θ1)(xc+ yd))

≥ (π(t0, t0)ψ(θ0)(xc+ zd+ yc+ vd) + π(t1, t0)ψ(θ0)(wc+ qd+ pc+ rd))

• δ(a0) = δ(a1) = a0 ; t1 → t0

π(t1, t1)(ψ(θ0)(rc+ pd) + ψ(θ1)(rc+ pd)) + π(t0, t1)(ψ(θ0)(vc+ yd) + ψ(θ1)(vc+ yd))

≥ (π(t1, t1)ψ(θ1)(vc+ zd+ yc+ xd) + π(t0, t1)ψ(θ1)(wc+ qd+ pc+ rd))

• δ(a0) = δ(a1) = a1 ; t0 → t1

π(t0, t0)(ψ(θ0)(rc+ pd) + ψ(θ1)(rc+ pd)) + π(t1, t0)(ψ(θ0)(xc+ yd) + ψ(θ1)(xc+ yd))

≥ (π(t0, t0)ψ(θ1)(xc+ zd+ yc+ vd) + π(t1, t0)ψ(θ1)(wc+ qd+ pc+ rd))
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• δ(a0) = δ(a1) = a1 ; t1 → t0

π(t1, t1)(ψ(θ0)(rc+ pd) + ψ(θ1)(rc+ pd)) + π(t0, t1)(ψ(θ0)(vc+ yd) + ψ(θ1)(vc+ yd))

≥ (π(t1, t1)ψ(θ0)(vc+ zd+ yc+ xd) + π(t0, t1)ψ(θ0)(wc+ qd+ pc+ rd))

• δ(a0) = a1 & δ(a1) = a0 ; t0 → t1

π(t0, t0)(ψ(θ0)(rc+ pd) + ψ(θ1)(rc+ pd)) + π(t1, t0)(ψ(θ0)(xc+ yd) + ψ(θ1)(xc+ yd))

≥ (π(t0, t0)(ψ(θ0)(yc+ vd) + ψ(θ1)(yc+ vd)) + π(t1, t0)(ψ(θ0)(pc+ rd) + ψ(θ1)(pc+ rd)))

• δ(a0) = a1 & δ(a1) = a0 ; t1 → t0

π(t1, t1)(ψ(θ0)(rc+ pd) + ψ(θ1)(rc+ pd)) + π(t0, t1)(ψ(θ0)(vc+ yd) + ψ(θ1)(vc+ yd))

≥ (π(t1, t1)(ψ(θ0)(yc+ xd) + ψ(θ1)(yc+ xd)) + π(t0, t1)(ψ(θ0)(pc+ rd) + ψ(θ1)(pc+ rd)))
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Appendix B

Proofs

Proof of Proposition 1

Let f 1 and f 2 be feasible solutions yielding Vi(f 1) = Vi(f 2) = v∗ for the designer. Define

f̄ = αf 1 + (1 − α)f 2 with α ∈ (0, 1). The goal is to show that f̄ cannot be a solution if the set

of feasible solutions is convex. Suppose the contrary. By definition, f 1, f 2 and f̄ are all incentive

compatible. Now, regarding f̄ this means that

Ui(f̄ , hi|ti, ti) ≥ Ui(f, δi|ti, tî)

given the identity map hi : Ai → Ai, i’s true and reported types ti and si. The above must also

hold for

Ui(f̄ , hi|ti, ti) ≥ Ui(f 1, δi|ti, si)

=⇒ αUi(f 1, hi|ti, ti) + (1 − α)Ui(f 2, hi|ti, ti) ≥ Ui(f 1, δi|ti, si)

=⇒ Ui(f 2, hi|ti, ti) ≥ Ui(f 1, hi|ti, ti)

Then by definition the last inequality must hold with equality, proving the claim.

■

Proof of Proposition 2

Let EV and ˜︃EV be sender’s expected payoffs under the symmetric and non-symmetric communi-

cation rules C and ˜︁C respectively. By definition,

EV =
∑︂

a∈A, t∈T, θ∈Θ

ψ(θ)π(t|θ)C(a|t, θ)V (a, θ)
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C is optimal if EV ≥ ˜︃EV . Suppose that, on the contrary, C is not optimal given assumptions (i)

and (ii). This implies that

∑︂
a∈A, t∈T, θ∈Θ

ψ(θ)π(t|θ) ˜︁C(a|t, θ)V (a, θ) ≥
∑︂

a∈A, t∈T, θ∈Θ

ψ(θ)π(t|θ)C(a|t, θ)V (a, θ) (1)

Without loss of generality, suppose that ˜︁C is identical to C but for a specific type profile ˜︁t ∈ T , for

which two action profiles are getting different recommendation probabilities than under C. Then

this can only hold if V is not symmetric and therefore induces a contradiction.

■

Proof of Theorem 1

We will focus on the constraints that are binding.

Case 1: l > m = n & c > d

Given that m = n, the optimal rule is symmetric, thus p = q and v = x. This in turn implies that

w = 1 − 2q − r and z = 1 − 2x− y. The sender’s expected utility can therefore be written as

EV = 1
2

(x− q)(m+ n− 2l)

and thus the sender wants to maximize q and minimize x. From obedience,

r ≥ q(c− 3d) − x(3c− d)
c+ d

− y + 1

Because of the symmetry in the communication rule, every case of obedience resolves into the

above inequality. The same applies for truth-telling and incentive compatibility. Truth-telling is

given by

r ≥ c+ d− 2d(x+ y)
2c

− q
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As for incentive compatibility, the inequality becomes

r ≥ q + y − x

Non-negativity implies that

w ≥ 0 =⇒ 1 − 2q − r ≥ 0 (C1)

z ≥ 0 =⇒ 1 − 2x− y ≥ 0 (C2)

Consider x = 0 and (C1), then obedience implies that

y ≥ q

(︃
3c− d

c+ d

)︃

and incentive compatibility requires

y ≤ 1 − 3q

A graphical representation is given below in Figure 4.1. The black circle represents the optimal

values for q and y.

Case 2: l > m = n & c < d

Observe that only the incentive compatibility constraint changes to now be

r ≤ q + y − x

since c− d < 0 by definition. This effectively removes the upper bound on q in the previous case,

making (C1) bind. Moreover, obedience stays the same as in Case 1. A graphical representation is

given below in Figure 4.2.
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Figure 4.1: Optimal values for q and y in Case 1

Case 3: l < m = n & c > d

Here, while the actual form of sender’s expected utility does not change, the objective does. Indeed,

with l < m = n, sender now wants to maximize x instead. Consider q = y = 0, then the truth-

telling constraint is

r ≥ c+ d− 2xd
2c

Below is the graphical representation (Figure 4.3). Here, the optimal values of r lie on the high-

lighted line.
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Figure 4.2: Optimal values for q and y in Case 2

Case 4: l < m = n & c < d

As before, the incentive compatibility constraint

r ≤ q + y − x

imposes an upper bound on r, and therefore binds. Using this in the obedience constraint, along

with q = 0, we get

r ≥ 1
2
− 2xc
c+ d
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Figure 4.3: Optimal values for r and x in Case 3

From maximizing x, constraint (C2) binds, thus

r ≤ 1 − 3x

Figure 4.4 shows the feasible values for r and x, and the optimum.
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Figure 4.4: Optimal values for x and y in Case 4

Case 5: l > m > n & c > d

Here, observe that since l > m > n, the goal for the sender stays the same – that is, to maximize q

and minimize x. As such, sender’s expected utility is defined as

EV = 1
2
{x(m− n) + (y + z)(l − n) − q(m+ n− 2l)}

Therefore, the optimal rule is effectively the same as in Case 1.

Case 6: l > m > n & c < d

Similarly to Case 5, the results are the same as in Case 2.
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Case 5’ & Case 6’: l > n > m

Changing the ordering of m and n in sender’s preferences in these settings does not affect the

results. The intuition behind this is that variables other than q and x only play a parametric role in

the solution. They serve to meet the restrictions imposed by the constraints.

Case 7: m > n > l & c > d

From this section and onward, the environment allows, at times, for both symmetric and non-

symmetric solutions. At this point, let us rewrite the relevant constraint used throughout the re-

maining cases. There will now be two sets of constraints: one that keeps the symmetry between

the two types of the receivers, and another one that does not. For the former, the layout of the com-

munication rule does not change, and therefore – assuming that c > d for now – the constraints are

Obedience for type t0

r ≥ q(c− 3d) − 2yd+ z(c− d) + 2d
c+ d

− x (Ob – t0)

Obedience for type t1

r ≥ q(c− 3d) − y(c− d) + 2zc− c+ d

c+ d
+ x (Ob – t1)

Truth-telling for type t0 & t1

r ≥ 1
2
− q − d(y − z)

2c
(TT)

Incentive compatibility for type t0

r ≥ q − x(c+ d) − y(c− 2d) + zd− d

c− d
(IC – t0)
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Incentive compatibility for type t1

r ≥ q + x(c+ d) + y(2c− d) + zc− c

c− d
(IC – t1)

Observe that if c < d, then only the incentive compatibility constraints related to r being smaller

or equal to their respective right-hand sides bind. For the second scenario, in which the symmetry

between the two types is broken, then the layout of the communication rule becomes

θ = θ0

t1 = t2 = t0

a0
2 a1

2

a0
1 r q

a1
1 p w

t1 = t0, t2 = t1

a0
2 a1

2

a0
1 x y

a1
1 z v

t1 = t1, t2 = t0

a0
2 a1

2

a0
1 x z

a1
1 y v

t1 = t2 = t1

a0
2 a1

2

a0
1 ŵ p̂

a1
1 q̂ r̂

θ = θ1

t1 = t2 = t0

a0
2 a1

2

a0
1 w p

a1
1 q r

t1 = t0, t2 = t1

a0
2 a1

2

a0
1 v z

a1
1 y x

t1 = t1, t2 = t0

a0
2 a1

2

a0
1 v y

a1
1 z x

t1 = t2 = t1

a0
2 a1

2

a0
1 r̂ q̂

a1
1 p̂ ŵ

Table 4.8: Communication rule layout – Non-symmetric w.r.t. types

Under this new layout, we can rewrite the relevant constraints as
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Obedience for type t1

r̂ ≥ q(c− 3d) − y(c− d) + 2zc− c+ d

c+ d
+ x (Ob’ – t1)

Incentive compatibility for type t1

r̂c− rd ≥ qc− q̂d+ 2yc− yd+ x(c+ d) + zc− c (IC’ – t1)

Again, these are the constraint that will be required to solve the remaining cases. Regarding the

current case, sender’s objective function is

EV = 1
2
{x(m− n) − (y + z)(n− l) − q(m+ n− 2l)}

Thus, the priority is to maximize x, and to minimize q, y and z. With this in mind. let us begin by

considering q = y = z = 0. The incentive constraints for t1 is now

r ≥ x(c+ d) − c

c− d

Consider x = 1, this means that

r ≥ d

d− c

which is smaller than 1 if c ≥ 2d. Therefore, if d < c ≤ 2d, x ≤ 1, and therefore if r = 1 it must

be that

x ≤ 2c− d

c+ d

Observe that under these assumptions, sender’s expected utility is

EV = 1
2
x(m− n)

Let us now take a look at what happens if we drop the symmetry between types. Then, sender’s
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expected utility becomes (dropping the constant terms as before to ease reading)

EV = 1
4
{(r − r̂)(m− n) + 2q(l − n) + 2q̂(l −m)} + 1

2
{x(m− n) + (y + z)(l − n)}

Assuming q = q̂ = y = z = 0, we obtain

EV̂ = 1
4
{(r − r̂)(m− n)} + 1

2
{x(m− n)}

and EV̂ > EV if r > r̂. Thus, it might be beneficial for sender to go that road, as long as this

condition is met. From (IC ′ − t1), we get that

r̂ ≥ d(r + x)
c

It follows that this will hold with equality, since EV decreases in r̂. Also, r̂ = 2d
c

if r = x = 1,

and as such r̂ ≤ 1 if c ≥ 2d. This means that if c ≥ 2d, it is indeed beneficial for the sender to

drop the symmetry between types. This can be seen graphically in Figure 4.5 if c ≤ 2d,

On the other hand, if c ≥ 2d, the graph and optimal values are as shown in Figure 4.6.

Case 7’: n > m > l & c > d

Similar to Case 7.

Case 8: m > n > l & c < d

Let us first verify the type-symmetric communication rule. Observe that here, the receivers prefer

their actions to not be the same. Thus, as opposed to the previous case where type t0 preferred

matching actions, both types have their ideal outcomes as mismatching actions. One can compare

the obedience constraints of both types to realize that because of the uniform distributions of types

and states, and due to the symmetric payoffs, this requires x = v if r = r̂ and q = q̂. Under these
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Figure 4.5: Optimal values for r and x in Case 7 if c ≤ 2d

settings, sender’s expected utility falls back to

EV = 1
2

(x− q)(m+ n− 2l)

Let q = 0 and (C2) hold with equality, then obedience requires that

r ≥ −x(3c− d)
c+ d

− y − 1

and incentive compatibility imposes that

r ≤ y − x

111



Figure 4.6: Optimal values for r, r̂ and x in Case 7 if c ≥ 2d

which holds with equality as the goal is to maximize x and minimize q. Using the latter to solve

the obedience inequality, we get that

r ≥ 1
2
− 2xc
c+ d

Moreover, (C2) and incentive compatibility together require that

r ≤ 1 − 3x

Figure 4.7 shows these equations and the optimal values.
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Figure 4.7: Optimal values for r and x in Case 8

Next, let us now see if sender can benefit from allowing the communication rule to be non-

symmetric with respect to types. Let us again assume that q = q̂ = z = 0, and as for the

type-symmetric rule of this case v = x and z = 1 − 2x− y. Then obedience requires that

r̂ ≥ 1 − y + x(d− 3c)
c+ d

Observe that if d > 3c, then y > 0. Next, looking at incentive compatibility, we have

r ≤ r̂c− (x− y)(d− c)
d
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Since the goal for sender is to minimize r̂, (C2) binds such that y = 1−2x. Using this in obedience,

r̂ ≥ x(3d− c)
c+ d

This will hold with equality, such that the incentive constraint results in

r ≤ x(2c2 + 3cd− 3d2)
d(c+ d)

+ d− c

d

and as such, at best r = d−c
d

. Notice also that the above has a negative slope if d ≥ c
(︂

3+
√

33
6

)︂
.

Recall that

EV̂ = 1
4

(r − r̂)(m− n) + 1
2
x(m− n+ 2l)

and that if we had a type-symmetric communication rule,

EV = 1
2

(x− q)(m+ n− 2l)

Thus, we can affirm that going the non-symmetric route is beneficial for sender only if EV̂ > EV .

Using the maximum for r in the non-symmetric variation, and the optimal value of x = c+d
2(c+3d)

from its symmetric counterpart, we get that EV̂ > EV if

d(c+ d)
(c+ 3d)(d− c)

<
m− n

m+ n− 2l

Graphically, this is depicted in Figure 4.8.

Case 8’: n > m > l & c < d

Similar to Case 8.
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Figure 4.8: Optimal values for q and y in Case 8 in the non-symmetric setting

Case 9: m > l > n & c > d

Recall sender’s expected utility

EV = 1
2
{x(m− n) + (y + z)(l − n) − q(m+ n− 2l)}

Here, maximizing x is a priority over y and z, but q contributes positively to sender’s expected

payoff if m + n < 2l. As before, let us start with the type-symmetric rule, and let y = z = 0.

Then, the incentive constraint for t1 is given by

r ≥ q + x(c+ d) − c

c− d
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If m+ n > 2l, then q = 0 and the above becomes

r ≥ x(c+ d) − c

c− d

which is less or equal than 1 if c ≥ 2d. If, on the contrary, c < 2d, then for r = 1 the incentive

constraint requires that

x ≤ 2c− d

c+ d

Figures 4.9 and 4.10 show the optimal values of r and x if c = 2d and c < 2d. As we will cover

shortly, c ≥ 2d is a matter of the non type-symmetric rule.

Figure 4.9: Optimal values for r and x in Case 9 if c = 2d
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Figure 4.10: Optimal values for r and x in Case 9 if c < 2d

Before proceeding to the non-symmetric rule, observe that if x is small enough, it might be ben-

eficial for sender to have y, z > 0 and v = x = 0. Under these assumptions, we again have the

incentive constraint as

r ≥ q + y

For this part, let us assume that m+ n < 2l, such that EV increases in q. Using the above to solve

the obedience constraint, we have

q ≤ (1 − 2y)(c+ d)
4d

The non-negativity constraint thus implies that y ≤ 1
2 . Since the goal is to maximize q, (C1) binds
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and the incentive constraint reduces to

y ≤ 1 − 3q

Figure 4.11 depicts the values of q as a function of y.

Figure 4.11: Optimal values for q and y in Case 9 in the non-symmetric setting

Now, defining the optimal communication rule from these values benefits sender if it effectively

increases her expected utility ˜︃EV > EV , when c ≤ 2d. There are two possible instances of such

scenario:
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(a) ˜︃EV > EV : Improvement upon the symmetric case. This holds if

4(2c+ d)(c+ d)
13c2 − d2 >

m− n

l − n

(b) ˜︃EV > EV 3: Improvement upon Subcase 3 (covered ulteriorly). This requires that the

following inequality to be satisfied

2(11c3−7c2d−cd2 +2d3)(l−n)+2(3c+d)(c−d)2(m− l) > 2(13c3−13c2d+2d3)(m−n)

For the non type-symmetric rule, because of the increase in complexity, we will split it into differ-

ent subcases. Each of these subcases implies simplifying assumptions.

Subcase 1: r = x = 1, q = q̂ = 0

From the obedience constraint for t1,

r̂ ≥ 2d
c+ d

and from incentive compatibility,

r̂ ≥ 2d
c

The latter binds as it is the highest out of the two. This is an improvement from the type-symmetric

rule for the sender if the expected utility she gets in this case, EV 1, is higher than EV – the

expected utility from the type symmetric rule. Since r = x = 1, this is the case if r− r̂ > 0, which

is the case if c > 2d. Observe that if c < 2d, then the incentive constraints creates a contradiction.

Subcase 2: r = x = 1, q̂ > 0

From obedience for t1,

r̂ ≥ q̂(c− 3d) + 2d
c+ d
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and from incentive compatibility,

q̂ ≥ 2 − r̂c

d

Combining the two gives

r̂ ≥ 2(c− 2d)
(c− d)2

Now, we have to consider two possible scenarios: (a) EV 2 > EV 1 if c > 2d and (b) EV 2 > EV

if c ≤ 2d

(a) The requirement for this to be the case is

d(2d(c− d)2 − 2c(c− 2d))
c(d(c− d)2 − c(c− 2d))

>
4(m− l)
m− n

(b) The requirement for this part is that

c(c− 2d)
d(c− d)2 >

1
2

which has no solution for c < 2d. Thus, the type symmetric rule is better in this case.

Subcase 3: r = 1, x < 1, q̂ > 0

Let y = 1 − x− y − z = 0. Then, incentive compatibility for t1 gives

r̂ ≥ 1 − q̂ + x

c

Observe from the above inequality that sender wants to maximize x, and to minimize r̂ and as

such, the type-asymmetric equivalent of (C1) (1− 2q̂− r̂ ≥ 0) will hold with equality. This allows

us to simplify the above and get

q̂ ≤ c− d(1 + x)
2c− d
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We can do the same with obedience, such that

q̂ ≥ x(c− d)
3c− d

With these inequalities, we can then identify the optimal values of x, q̂ and r̂:

x = (c− d)(3c− d)
2c2 q̂ = (c− d)2

2c2

Now it must be that z = 1 − x ≥ 0, which requires that c < d(2 +
√

3). Finally, we can deduce

that

r̂ = 1 − 2q̂ = d(2c− d)
c2

As before, this can be beneficial to sender under the following scenarios:

(a) EV 3 > EV 1 if c > 2d. This holds if

m >
4c2l − 2cdn+ d2l

4c2 − 2cd+ d2

(b) EV 3 > EV if c ≤ 2d. This is true as long as the following condition is met

(4cd− c2 − d2)(l − n) − (c− d)2(m− l) > 2d2(2c− d)(m− n)
c+ d

Case 10: m > l > n & c < d

Let us again begin this case by looking at the type-symmetric communication rule. Observe that

here, r = x = 1 cannot be a solution. Indeed, from the incentive constraint of t1, this would mean

1 ≤ d

c− d

121



which does not hold for c < d. Suppose instead that x = 1, then the same constraint requires

r ≤ q + d

d− c

which from non-negativity imposes that

q ≥ d

d− c

which is greater than 1 and therefore generates a contradiction. Hence, it must be that x < 1. Let

us look at the incentive constraint.

(r − q)(c− d) ≥ xd+ y(c− d)

Therefore, depending on if m + n − 2l is positive or not, sender may want to minimize q. If it is

negative, then let q = 1
2 , its maximum value, and let z = 0 and (C2) bind. Then the above gives

x ≤ 3(d− c)
2(2d− c)

Then, sender’s expected utility is

EV = 1
2

(︃
(d− 2c)m+ 3(c− 2d)n+ l(5d− c)

2(2d− c)

)︃

Instead, if m+ n− 2l ≥ 0, then let q = 0 and r = 1 – for the goal is to maximize x – in the above

inequality, such that

c− d ≥ xd+ y(c− d)

This implies that x = 0 and y = 1, and EV = 1
2(l − n). If we relax the r = 1 assumption, then

from the same procedure we get that

x ≤ d− c

2d− c
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Then, sender’s expected payoff is

EV = 1
2

(︃
(d− 2c)m+ 4(c− 2d)n+ (7d− 2c)l

3(2d− c)

)︃

Notice that relaxing r = 1 always benefits sender if d ≥ 2c, and otherwise might depend on the

values of m, n and l. Below is the condition for it to be beneficial.

m <
l(c+ d) − n(2d− c)

2c− d

Now, sender could also opt for a symmetric rule such that v = x. Then, let q = 0 and z =

1 − 2x− y = 0 to match sender’s objective. The obedience constraint becomes

r ≥ y(c− d) − c+ d

c+ d
+ x

which will bind if x is to be maximized. Using this, the incentive compatibility for t1 reduces to

x ≤ y(2d2 − 3cd− c2) + 3cd− d2

2d(c+ d)

The above will hold with equality for the same reason mentioned before, and we can substitute x

into the obedience for t0 to get the value of y

y ≥ 2d(2cd− c2 − d2)
5cd2 − cd− c3 − 3d3

These last two inequalities hold with equality as required by the maximization problem, and rep-

resent the optimal values for x and y. These values of r, x and y yields a higher expected utility to

the sender compared to q = 1
2 , x = 3(d−c)

2(2d−c) and y = 1 − x if

m ≤ m∗
(b)

= (2l − n)(c4 + c2d+ 8cd3) − 3c3d(2l − 3n) − c2d2(2l + 11n) − cd2(4l − 5n) − d4(8l − 7n)
c3(c+ 3d) − c2d(13d− 1) + cd2(8d+ 1) − d4
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Moreover, they are also preferred to r = p = q = 1
3 , x = d−c

2d−c
and y = 1 − x if

m ≤ m∗
(c)

= c2l(c2 + d) − 2c3d(2l − 3n) + c2d2(3l − 16n) + cd3(3l + 10n) − 2cd2(l − n) − 2d4(l + n)
c3(c+ 2d) − c2d(13d− 1) + d3(13c− 4d)

For clarity, we categorize every case as follows:

• Cases 1, 5 and 5’ are regrouped in point 1

• Cases 2, 6 and 6’ are regrouped in point 2

• Case 3 corresponds to point 3

• Case 4 corresponds to point 4

• Case 7 and 7’ are regrouped in point 5 and its subcases

• Case 8 and 8’ are regrouped in point 6 and its subcases

• Case 9 corresponds to point 7, where

– (a) (b) and (c) are integrated in the body of Case 9

– (d) is represented by Subcase 3

– (e) is represented by Subcase 1

– (f) is represented by Subcase 2

• Case 10 corresponds to point 8

■
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