
A Comparison of IoT Communication Libraries: APIs and
Performances

Jianbin Lai

A Thesis

in

The Department

of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Computer Science (Computer Science) at

Concordia University

Montréal, Québec, Canada

April 2024

© Jianbin Lai, 2024

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Jianbin Lai

Entitled: A Comparison of IoT Communication Libraries: APIs and

Performances

and submitted in partial fulfillment of the requirements for the degree of

Master of Computer Science (Computer Science)

complies with the regulations of this University and meets the accepted standards with respect to

originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Tse-Hsun (Peter) Chen

Examiner
Dr. Essam Mansour

Examiner
Dr. Tse-Hsun (Peter) Chen

Supervisor
Dr. Yann-Gaël Guéhéneuc

Co-supervisor
Dr. Sandra Céspedes

Approved by
Dr. Hovhannes Harutyunyan, GPD
Department of Computer Science and Software Engineering

2024
Dr. Mourad Debbabi, Dean
Faculty of Engineering and Computer Science

Abstract

A Comparison of IoT Communication Libraries: APIs and Performances

Jianbin Lai

The Internet of Things (IoT) and the number of deployed IoT devices are growing exponentially

nowadays. These devices play pivotal roles in diverse domains, e.g., smart homes. Given their

constrained processing and memory capacities, IoT devices communicate with one another through

specialized protocols.

The two main IoT communication protocols are the Constrained Application Protocol (CoAP)

and Message Queuing Telemetry Transport (MQTT). By March 1, 2023, there were 35 public li-

braries of CoAP and 40 of MQTT. These libraries have different characteristics, including levels of

completeness and runtime performances.

Because of diverse requirements in different domains, the same protocol/library does not ap-

ply to any applications. Consequently, developers must select a library (e.g., Californium,

java-coap, Paho MQTT, or HiveMQ MQTT Client) but they do not have access to com-

prehensive and clear comparisons of the API and performance of these protocols and their imple-

mentations, impeding their ability to make informed choices.

In this thesis, we implement multiple IoT scenarios using the CoAP and MQTT protocols and

several of their implementation libraries. We conduct a comprehensive comparative analysis based

on API and performance metrics, including static metrics, packet sizes, and runtime performance.

We thus provide developers with evidence to choose between CoAP and MQTT protocols and

their libraries. In future work, we will expand this work to include other IoT protocols and libraries,

more scenarios and metrics.

iii

Acknowledgments

This research work is funded by the Natural Science and Engineering Research Council (NSERC)

and Concordia University. My sincere thank you to all academic personnel who made this research

possible.

I want to give a special thank you to my supervisors, Professor Yann-Gaël Guéhéneuc, Sandra

Céspedes, Maxime Lamothe, Weiyi Shang for the guidance, support, and advice they have provided

throughout my time as a student.

A warm thank you to those who helped with the surveys and interviews that validate this re-

search.I would also like to thank my colleagues in the Ptidej lab for their friendship, guidance, and

weekly discussion that sparkled new ideas and questions.

iv

Contents

List of Figures vii

List of Tables viii

1 Introduction 1

2 Background 3

2.1 CoAP . 5

2.2 MQTT . 7

2.3 Comparison and Discussions of CoAP and MQTT 9

3 Related Work 11

3.1 Comparisons of APIs . 11

3.2 About CoAP and MQTT . 12

3.3 Comparisons of CoAP and MQTT . 13

4 Approach 16

4.1 Survey and select different libraries of the protocols 16

4.2 Set up an IoT infrastructure . 17

4.3 Collect, devise, and implement scenarios using the chosen libraries 17

4.4 Collect static metrics on the implemented senders and receivers 17

4.5 Analyse packet sizes theoretically and practically 18

4.6 Collect runtime performances when running the scenarios 18

v

4.7 Compare the collected measures and recommend a protocol/library 19

5 Implementation, Application, and Result 22

5.1 Survey and select different libraries of the protocols 22

5.2 Set up an IoT infrastructure . 25

5.3 Collect, devise, and implement scenarios using the chosen libraries 26

5.3.1 Collect Libraries Characteristics . 26

5.3.2 Devise Scenarios . 29

5.3.3 Implement Scenarios . 29

5.4 Collect Static Metrics on the Senders and Receivers 33

5.5 Analyse Packet Sizes Theoretically and Practically 36

5.6 Collect Runtime Performance Metrics . 43

5.7 Compare the collected measures and recommend a protocol/library 51

6 Discussions 53

6.1 Discussions . 53

6.2 Threats to Validity . 54

6.3 Future Work . 55

7 Conclusion 56

Bibliography 57

vi

List of Figures

Figure 2.1 Diagram for seven-layer model taken from [1] 4

Figure 2.2 Diagram for CoAP Communication . 6

Figure 2.3 Diagram for CoAP Communication (NON) 6

Figure 2.4 Diagram for CoAP Communication (CON) 7

Figure 2.5 Class diagram for MQTT Communication 8

Figure 2.6 Class diagram for MQTT Communication with QoS0 8

Figure 2.7 Class diagram for MQTT Communication with QoS1 9

Figure 2.8 Class diagram for MQTT Communication with QoS2 9

Figure 4.1 Diagram for CoAP Communication . 20

Figure 4.2 Diagram for MQTT Communication . 21

Figure 5.1 Combination between Server/pub and client/sub in non-secure and secure

bar chart . 35

Figure 5.2 The beginning part of the log for Californium Communication in wireshark 44

Figure 5.3 The end part of the log for Californium Communication in wireshark . . 45

Figure 5.4 Goodput comparison of CoAP and MQTT 48

Figure 5.5 Throughput comparison of CoAP and MQTT 49

Figure 5.6 Overhead comparison of CoAP and MQTT 49

Figure 5.7 Comparison about different overhead in non-continuous traffic 50

Figure 5.8 Communication packet in non-continuous traffic 50

vii

List of Tables

Table 2.1 Comparison among CoAP, MQTT and MQTT-SN 10

Table 5.1 Java language libraries of CoAP . 23

Table 5.2 Java language libraries of MQTT . 24

Table 5.3 Java language libraries of CoAP . 25

Table 5.4 Java language libraries of MQTT . 25

Table 5.5 Characteristics of the libraries (‘Servers’ refers to servers and brokers. ‘Clients’

refers to clients, publishers, and subscribers. A question mark means that the im-

plementation might exist, but we could not find a simple way to implement it). . . . 27

Table 5.6 Security Solutions in Comparison. 28

Table 5.7 Scenarios in comparison. 29

Table 5.8 LOC, CBO, and CC metrics in non-secure and secure scenarios 34

Table 5.9 LCOM in non-secure and secure scenarios 36

Table 5.10 Comparison of practical packet size metrics in bytes between Californium and

java-coap . 39

Table 5.11 Comparison of practical packet size metrics in bytes between HiveMQ MQTT

Client and Paho MQTT . 40

Table 5.12 Partial of theoretical and adjusted practical packet size metrics in bytes of CoAP 41

Table 5.13 Partial of theoretical and adjusted practical packet size metrics in bytes of

MQTT . 42

Table 5.14 Comparison of adjusted practical packet size metrics in bytes between CoAP

and MQTT in connection part . 43

viii

Table 5.15 Comparison about runtime metrics in CoAP 51

Table 5.16 Comparison about runtime metrics in MQTT 51

ix

Chapter 1

Introduction

In 2023, Statista estimated that 15.14 billion Internet of Things (IoT) devices existed worldwide,

to become 29.4 billion in 2030 [2]. These IoT devices find applications across many domains,

performing a range of critical tasks such as patient monitoring, forest fire control, and search and

rescue missions. As they have become prevalent in our daily lives, there is a growing demand for

developers to create and implement software systems for these IoT devices. These IoT applications

run on devices or cloud servers communicating via different protocols. The two prominent protocols

for IoT communication are the Constrained Application Protocol (CoAP) [3] and Message Queuing

Telemetry Transport (MQTT) [4], which are designed for IoT devices with limited capabilities [5],

such as limited battery and processing resources.

CoAP and MQTT are two standards, RFC7252 [3] and ISO/IEC 209221, that have been im-

plemented by different organisations in different programming languages, both as closed and open

source. For example, the Eclipse Foundation2 provides Californium and Paho MQTT open-

source libraries in Java of CoAP and MQTT, respectively. The IBM Watson IoT Platform Message

Gateway3 provides an implementation of MQTT.

By Mar. 1st, 2023, there were 35 reported libraries of CoAP4 and 40 of MQTT5, with different
1https://www.iso.org/standard/69466.html
2https://newsroom.eclipse.org/news/announcements/eclipse-iot-working-group-c

elebrates-its-10th-anniversary
3https://www.ibm.com/docs/en/wip-mg/5.0.0.1
4https://en.wikipedia.org/wiki/Constrained_Application_Protocol#Implementatio

ns, as of March 1st, 2023
5https://en.wikipedia.org/wiki/Comparison_of_MQTT_implementations, as of March 1st,

1

https://www.iso.org/standard/69466.html
https://newsroom.eclipse.org/news/announcements/eclipse-iot-working-group-celebrates-its-10th-anniversary
https://newsroom.eclipse.org/news/announcements/eclipse-iot-working-group-celebrates-its-10th-anniversary
https://www.ibm.com/docs/en/wip-mg/5.0.0.1
https://en.wikipedia.org/wiki/Constrained_Application_Protocol#Implementations
https://en.wikipedia.org/wiki/Constrained_Application_Protocol#Implementations
https://en.wikipedia.org/wiki/Comparison_of_MQTT_implementations

characteristics, like levels of completeness and runtime performances. For example, some libraries

are open-source/commercial libraries, while some are designed with/without security solutions. As

a result, developers need to select the appropriate protocol and the library (e.g., Californium6,

java-coap7, Paho MQTT8, or HiveMQ MQTT Client9). To the best of our knowledge, they

do not have clear and thorough comparisons of the API and performance of protocols and their

libraries to facilitate decision-making. Although some previous works compare both protocols’

performance under certain network conditions [5, 6, 7], to the best of our knowledge, no previous

work compared several libraries of the two protocols in terms of their APIs and static metrics, packet

size metrics and runtime metrics.

In this thesis, we evaluate the protocols and libraries by devising different scenarios. To be

specific, we only consider open-source libraries in Java to ease replicability. We set up an experi-

mental infrastructure using Raspberry Pis, which helps us collect both static code metrics and count

packet size of libraries and runtime metrics when running in different scenarios. Please note that

our implementations utilize MQTT Version 5.0 [8], representing an upgraded version of MQTT.

Based on our experiment, the results show that HiveMQ MQTT Client has the best perfor-

mance on static metrics among the four libraries. Besides, java-coap uses the least packet size by

our program demonstrations and shows the best performance on speed. Moreover, CoAP is faster

than MQTT. Conclusively, we draw comprehensive conclusions and recommend the adoption of

HiveMQ MQTT Client due to its advantageous features in terms of simplified coding, testing,

maintenance, and network configuration.

The remainder of this thesis is organised as follows: Chapter 2 provides background informa-

tion. Chapter 3 summarises related work. Chapter 4 describes our approach. Chapter 5 presents our

implementation and results. Chapter 6 discusses our results and threats to their validity. Chapter 7

concludes with future work.

2023
6https://github.com/eclipse-californium/californium
7https://github.com/PelionIoT/java-coap
8https://github.com/eclipse/paho.mqtt.java
9https://github.com/hivemq/hivemq-mqtt-client

2

https://github.com/eclipse-californium/californium
https://github.com/PelionIoT/java-coap
https://github.com/eclipse/paho.mqtt.java
https://github.com/hivemq/hivemq-mqtt-client

Chapter 2

Background

In an IoT system, the IoT devices serve as pivotal endpoints. Notably, the broker (MQTT) we

used in this experiment also plays a role as the endpoint. Furthermore, the communication within

this network is facilitated through various IoT protocols, encompassing options such as Advanced

Message Queuing Protocol (AMQP), Bluetooth, Bluetooth Low Energy, CoAP, MQTT, Zigbee, etc.

The Open Systems Interconnection model (OSI model) divides any communication channel into

seven layers: physical, data link, network, transport, session, presentation layer, and application [9].

The different protocols are designed and can be classified into specific layers. In our experiment,

we search IoT protocols which are based on the application layer, the top layer of the seven-layer

model, so the protocols are closest to the developers. It does not require developers to have a lot

of knowledge about the other six layers, so it is relatively easy for developers to learn and start

programming. As Figure 2.1 is shown, when two endpoints exchange data with a protocol at the

application layer, data would be passed down to the lower layer at the sender side, and the receiver

side will get the data and be passed up layer by layer to the higher layer till the application layer. It

also means that protocols at the application layer could be based on different protocols at the lower

layer, such as the transport layer.

3

Figure 2.1: Diagram for seven-layer model taken from [1]

Diverse institutions may allocate different protocols to distinct layers of the OSI model, we aim

to identify and prioritize protocols consistently designated as application layer protocols. Then We

made sets of the IoT protocols mentioned in [10], [11] and [12], and then we made an intersection of

the sets. At the intersection, three protocols, AMQP, CoAP, and MQTT, are concurrently classified

at the application layer.

However, previous works [5, 13] showed that while AMQP offers more aspects of security, it

consumes more power than CoAP and MQTT, and it is not as lightweight as CoAP and MQTT,

so AMQP cannot be used for battery-powered IoT devices. Previous works [7] also studied HTTP

(they did not consider HTTPs) and reported that HTTP requires a large bandwidth because of the

sizes of its messages and, therefore, more processing power and memory than CoAP and MQTT.

Thus, we exclude AMQP and HTTP in this study and we focus on CoAP and MQTT.

For the sake of simplicity, we use the same terms of ‘sender’ and ‘receiver’ to show and empha-

size the direction of the valuable data flow, even though in our experiment, for example, the client

(receiver) can send the ACK packet to the server (sender), we still name the client as the receiver,

and the server as senders. Specifically, when considering CoAP, the term ‘sender’ means the server,

and the ‘receiver’ means the client. Besides, when considering MQTT, the term ‘sender’ means

the publisher when the publisher sends a message to the broker, or it means the broker when the

4

broker sends a message to a subscriber. Conversely, the term ‘receiver’ means the broker when the

publisher sends a message to the broker, or the subscriber when the broker sends a message to the

subscriber. Though the client/broker/publisher can send the packet (ACK, PUBACK packet, etc.)

to the server/publisher/broker, in this or analogous context, we will explicitly delineate their roles

(server, client, publisher, broker, subscriber) instead of the sender or receiver.

2.1 CoAP

CoAP is mainly based on User Datagram Protocol (UDP) and designed for constrained devices

and constrained networks [3]. UDP is generally considered a transport layer protocol, which is lower

than the application layer. UDP offers the communication a minimum protocol mechanism when

the program sends messages[14]. That explains the reason that CoAP based on UDP is friendly to

constrained devices.

CoAP primarily supports one-to-one communication between a server and a client. It facilitates

a request-response messaging pattern, enabling the client to initiate a request to the server, followed

by the server responding to the client. Besides, it also provides developers with a feature based

on an observer design pattern [15] so that the client does not need to send a GET request to the

server to get the state of the server each time, which is similar to the publish-subscribe messaging

pattern that works in MQTT. As shown in Figure 2.2, the client sends a GET request to the server for

registration. After registration, it gets notifications from the server without sending a GET request at

some intervals of time. CoAP is a RESTful protocol that supports GET, PUT, POST, and DELETE

methods. CoAP provides two different levels of reliability. In terms of endpoint, a CoAP endpoint

is the source or destination of messages [3]. The reliability modes of communication are:

• Non-confirmable Message (NON): Endpoint can send a Non-confirmable packet with the

message to the destination without requiring the destination to send back an Acknowledgment

(ACK) packet after the destination receives the message.

• Confirmable Message (CON): Endpoint can send a Confirmable packet with the message to

the destination, after the destination receives the message correctly, the destination sends back

an Acknowledgment (ACK) packet.

5

More detail about the observer design pattern of CoAP implementation is shown in Figure 2.3

and Figure 2.4. The former figure shows the process when a client observes a non-confirmable type

resource, and the latter figure shows the process when a client observes a confirmable type resource.

Server Client

Get

Notification

Notification

Notification

Figure 2.2: Diagram for CoAP Communication

Server Client

CON, Get

ACK, content:hello1

NON, content:hello2

NON, content:hello3

Figure 2.3: Diagram for CoAP Communication (NON)

6

Server Client

CON, Get

ACK, content:hello1

CON, content:hello2

CON, content:hello3

ACK

ACK

Figure 2.4: Diagram for CoAP Communication (CON)

2.2 MQTT

MQTT runs on top of TCP [8], but the MQTT-SN protocol [16] provides MQTT based on UDP.

Transmission Control Protocol(TCP) is a transport layer protocol, the same as UDP. MQTT follows

a publish-subscribe messaging pattern [8]. There are three actors in the communication: publisher,

broker, and subscriber. The publisher publishes the topic with related content to the broker, and the

subscriber can connect with the broker and subscribe to the topic.

Figure 2.5 shows how MQTT works. There are three publishers, one broker and three sub-

scribers. Subscriber1 and Subscriber2 both subscribe to TopicA, and Subscriber3 subscribes to

TopicB, but no subscriber sends a SUBSCRIBE packet to the broker to subscribe to TopicC. There-

fore no subscriber will receive updates for TopicC.

MQTT provides three levels of Quality of Service (QoS) :

• QoS0: When a publisher sends a message about a topic to the broker or the broker forwards

that message to a receiver that does not acknowledge the server, the sender would not store the

7

topic and do retransmission. Figure 2.6 shows the case of the communication from publisher

to broker with QoS0.

• QoS1: The receiver would acknowledge the server with a PUBACK packet, and the topic

would not be deleted until the sender receives the acknowledgement. The same message

might be sent at least one time because if the sender does not receive the PUBACK packet,

the sender will resend the message to the receiver. Figure 2.7 shows the case of the commu-

nication from publisher to broker with QoS1.

• QoS2: This ensures that the receiver only receives the message exactly once. The receiver

sends back the PUBREC packet after receiving the message from the sender, then the sender

sends the PUBREL packet to the receiver, and after that, the receiver sends the PUBCOMP

packet to the sender so that this process can guarantee that the receiver gets each message one

and only one time from the sender. Figure 2.8 shows the case of the communication from

publisher to broker with QoS2.

Publisher1

Publisher2

Publisher3

Subscriber1

Subscriber2

Subscriber3

Broker

TopicA

TopicB

TopicC

TopicA

TopicA

TopicB

Figure 2.5: Class diagram for MQTT Communication

Publisher Broker
PUBLISH

Figure 2.6: Class diagram for MQTT Communication with QoS0

8

Publisher Broker

PUBLISH

PUBACK

Figure 2.7: Class diagram for MQTT Communication with QoS1

Publisher Broker

PUBLISH

PUBREC

PUBREL

PUBCOMP

Figure 2.8: Class diagram for MQTT Communication with QoS2

2.3 Comparison and Discussions of CoAP and MQTT

After introducing CoAP and MQTT, the comparison of characteristics between them is shown

in Table 2.1. It is necessary to understand their characteristics before doing the tests because we

must choose the same or similar characteristics to do the test, as follows:

• ‘Underlying Protocol’: According to the specification from [3] and [17], CoAP could be used

over UDP or TCP. Even though MQTT relies on TCP [8]. Besides, MQTT-SN runs on UDP.

• ‘Security’: In our thesis, we chose to apply security solutions to our experiment, and we found

several security solutions. In the security layer, Datagram Transport Layer Security (DTLS)

provides security over UDP communication, and Transport Layer Security (TLS) offers se-

curity over TCP. In addition, there is another security option, Object Security for Constrained

RESTful Environments (OSCORE), which protects CoAP at the application layer [18].

• ‘Messaging exchanging mode’: Table 2.1 shows a comparison of them. The messaging

exchange model in CoAP could be asynchronous and synchronous. However, MQTT and

9

MQTT-SN are asynchronous because their publish-subscribe communication model contains

the broker to receive the topic from publishers and to notify subscribers.

CoAP MQTT MQTT-SN

Underlying Protocol UDP, TCP TCP UDP

Reliability NON, CON QoS0, QoS1, QoS2 QOS-1, QoS0, QoS1
QoS2, QoS

Security DTLS (UDP), OSCORE, TLS (TCP) TLS DTLS

Messaging exchange Mode Asynchronous, Synchronous Asynchronous Asynchronous

Messaging pattern Request-response pattern Publish-subscribe pattern Publish-subscribe pattern
Observer pattern

Table 2.1: Comparison among CoAP, MQTT and MQTT-SN

10

Chapter 3

Related Work

Several prior studies have addressed individual comparisons among APIs, CoAP, MQTT, and

even the specific contrast between CoAP and MQTT. However, there is a dearth of existing research

that comprehensively compares multiple libraries of various protocols (CoAP and MQTT) within

the context of IoT with the API focus.

3.1 Comparisons of APIs

Brito et al. proposed an approach to compare two versions of the same API, called APIDiff [19].

With APIDiff, they assessed the stability of a given API across its different versions to notify API

users of possible breaking and non-breaking changes. Different from [19], we do not use APIDiff

to compare different versions of the same API. Instead, we assess the APIs in the four libraries’

implementations of CoAP and MQTT with static metrics and runtime metrics and the consequence

to the packet size during the transmission.

Jang et al. extracted dynamic birthmarks to detect software similarity [20]. Birthmarks are de-

rived based on the frequency of API calls. Developers can use birthmarks by source code and binary

files to statistically analyze the similarity between programs, but they chose the dynamic birthmarks

scheme because it can include both programs’ static and dynamic data. Besides, the scheme can

provide more information data than the static birthmark scheme by using more techniques, such

as logging API calls. The results in [20] demonstrate that their proposed scheme can facilitate the

11

assessment of similarity when evaluating various FTP and SSH client programs. In this thesis, we

do not use birthmarks because we do not combine source code and binary files to compare APIs.

However, we focus on comparing the code at the source code level, excluding binary files.

3.2 About CoAP and MQTT

Raza et al. stated that CoAP is the standard proposed by the Internet Engineering Task Force

(IETF) at the application layer of IoT communication [21]. Secure CoAP needs DTLS to protect

the data that is sent. However, DTLS is designed with the assumption of being deployed on devices

of comparable power. To decrease the consumption of power, the authors present an integration of

DTLS and CoAP, which is called Lithe, which uses the DTLS compression solution. They evaluated

their implementation on the Contiki operating system and showed improvements in packet size,

energy consumption, processing time, and network-wide response times. In our thesis, we do not

use the DTLS compression solution because we compared the cases with DTLS with other cases

with TLS, so we keep the simple implementation without the compression solution.

Kovatsch et al. mentioned that it is expected that more IoT devices will be used [22]. As for

application technology, the requirement of supporting the increasing number of devices becomes

important. IoT devices would send data of their state and exchange control orders often. Cloud

services need to be scalable so that they can support future requirements about a large number of

connecting IoT devices. In [22], the authors present an architecture with three stages: network

stage, protocol stage, and business logic stage. This architecture is aimed at constrained devices.

They implemented the architecture and evaluated this architecture by increasing the concurrency of

clients. To be specific, they stressed the server for a specific time and then cooled down the machine

to continue the next step to test. They found that throughput in their Californium CoAP framework

is higher than high-performance HTTP Web servers. In our thesis, although we do not present a

system architecture of CoAP and evaluate it, we are inspired by this work to put the throughput

metrics in our experiment to evaluate the CoAP and MQTT runtime performance.

Yassein et al. mentioned that there is a large portion of IoT applications protocols using TCP

or UDP to communicate [23]. Those different IoT communication protocols have different features

12

corresponding to different requirements. The work discussed the MQTT architecture, message

format, QoS, etc. The authors considered that the scope of MQTT is designed to be applied in

restricted memory and limited energy-consuming devices. From this work, we are inspired to use

QoS in our scenarios. Moreover, we also compare the MQTT implementations at the coding level.

Atmoko et al. stated that IoT offers the possibility to receive sensor data from IoT devices [24].

In the smart city and medical domains, high-quality data is required for monitoring the devices in

real-time conditions. They use MQTT as the target IoT protocol in the experiment. In this experi-

ment, they used the DHT11 temperature and humidity sensor as a publisher to gain the information

and to publish the status information to the PC Server acting as a broker, and then an Android Smart-

phone as a subscriber receives the message from the broker. On the subscriber side, they added a

feature to save data in a MySQL database. The authors compared the HTTP and MQTT protocols

and concluded that the speed of exchanging data in MQTT performs better than HTTP. In our thesis,

we are inspired by the experiment, but without temperature, humidity sensor and database because

we did not want the time to collect the data in the sensors or other participants to affect the exper-

iment. We try to limit the factors as little as possible in our experiment. Besides we applied extra

static metrics to our experiment.

3.3 Comparisons of CoAP and MQTT

Based on previous works, Al Enany et al. [5] collected secondary studies that compared MQTT

and other protocols at the application layer. The comparative studies between MQTT and CoAP

in three sets of different criteria: (1)latency and bandwidth with different sizes of messages, (2)de-

lays and network traffic, (3)the privacy of users and the delays when sending notifications, they

concluded that MQTT is highly reliable despite its large message size. Besides, MQTT has higher

performance and less delay than CoAP, even in high-traffic networks, but MQTT consumes more

power than CoAP. Furthermore, analysis between MQTT and AMQP was conducted across two

scenarios: evaluating performance in the presence of unstable wireless networks and assessing per-

formance under varying delay ratios. The paper concluded that MQTT consumes less power and

incurs fewer delays than AMQP, but AMQP is better at security and is good in conditions where

13

there are high losses and high delays. In our thesis, we were inspired by one of the previous works

mentioned in the paper about packet size. In addition, we made static metrics about the packet size

of the implementations of CoAP and MQTT, while the previous work did not.

Stefanec and Kusek [13] studied that IoT devices have been widely deployed, and people have

taken energy consumption into great consideration. In the work, they measured the energy consump-

tion of HTTP, HTTP2, CoAP, MQTT, and AMQP protocols. They used two multi-meters, one for a

voltmeter and the other to measure the voltage. Besides, they recorded the data from multi-meters

and timestamps. The cases included the combination of protocol, packet size and different QoS.

During the process, they also noted the data they needed and calculated the power usage. After that,

they obtained the power consumption by multiplying the power usage with the used time. They

concluded that when comparing the protocols in forms of power consumption, CoAP is the best,

followed by MQTT, and the worst is AMQP. In our thesis, we did not compare the consumption

between CoAP and MQTT, but this paper helped us filter the target protocols in our experiment.

Based on previous work, Naik [7] stated that understanding the advantages and disadvantages

of IoT protocols is important when applying the protocols to projects. They introduced AMQP,

CoAP, HTTP and MQTT, and compared different characteristics between them, such as architecture,

header size, message size, standards, etc. They presented the analysis of the four protocols and

concluded that CoAP has the lowest message size and overhead. HTTP uses the most power and

resources, and it has the largest bandwidth and delay. MQTT provides the best performance of QoS

with the lowest interoperability because the publish-subscribe pattern in MQTT could not cover all

the scenarios. The support for security and provisioning in AMQP is highest among the protocols.

Though the standardization of HTTP is higher, its usage is less frequent when developers apply it in

IoT industry scenarios among the four protocols. In our thesis, we are inspired to take the different

levels of reliability (NON, CON, QoS0, QoS1) into the scenarios of our comparison.

Thangavel et al. stated that CoAP and MQTT are suitable for resource-constrained devices in

Wireless Sensor Networks (WSNs) that include sensor nodes and gateways [25]. The process of the

dataflow is that the sensor nodes collect the data and send the data to a gateway, then the gateway

sends the data to the server(CoAP)/broker(MQTT), and finally, the data is sent to clients(CoAP)/-

subscribers(MQTT). They use the Wide Area Network EMulator (WANEM) to emulate a lossy

14

network. In their experiment, they developed a common middleware offering CoAP and MQTT

a programming interface that offers API calls to publish messages and to check if the process is

successful and the message is accepted. The experiment assessed the performance metrics of delay

and total data transferred in each message. They showed the experimental results in a scenario

where low packet losses result in MQTT having a lower latency than CoAP. On the contrary, given

high packet losses in the network, MQTT shows a higher latency than CoAP. When the message size

is small, and the loss rate is low (equal to or less than 25%), the average bytes generated per second

of CoAP is lower than MQTT. In their experiment, they used their middleware with common API

features which could support different protocols, but in our thesis, we chose to simulate the simple

and the classical architecture as illustrated in Figure 2.2 and Figure 2.5.

Hedi et al. stated that, in constrained conditions, efficient communication between IoT devices

is important [26]. They experimented with the communication of CoAP and MQTT, including the

connection and sending messages parts. Besides, they compared the characteristics of CoAP and

MQTT. They reported that the CoAP protocol supports one-to-one communication. For example,

one client sends a request to one specified server, and the server directly responds to the client. In

addition, CoAP also supports one-to-many or many-to-many multi-cast requirements. while in the

communication of MQTT, messages are transferred in a many-to-many way because the commu-

nication requires a broker to transmit the message between many publishers and many subscribers.

They suggested using CoAP when real-time performance and latency are not required and using

MQTT when the case requires a lot of update messages. In our thesis, we did not consider the

latency metric, but we were inspired to conduct our experiment by not only observing the sending

data but also considering the connection.

15

Chapter 4

Approach

We now describe our approach to compare different libraries’ implementations of CoAP and

MQTT. We divide our approach into four steps described as follows:

(1) Survey and select different libraries of the protocols.

(2) Collect, devise, and implement scenarios using the chosen libraries.

(3) Set up an IoT infrastructure and run the scenarios.

(4) Collect static metrics on the implemented senders and receivers (Static Metrics).

(5) Analyse packet sizes theoretically and practically (Packets Metrics).

(6) Collect runtime performances when running the scenarios (Runtime Metrics).

(7) Compare the collected measurements and recommend a protocol/library.

4.1 Survey and select different libraries of the protocols: The first step of our approach consists

of identifying existing libraries of the two chosen protocols, CoAP and MQTT, and selecting a

set of libraries implementing these protocols. We followed these steps:

(1) Identify and search the libraries of the protocols.

(2) Filter out libraries not implemented in Java language.

(3) Filter out libraries not supporting receivers and senders.

16

(4) Filter out non-open-source libraries.

We selected four libraries: Californium and java-coap for CoAP, and HiveMQ MQTT

Client and Paho MQTT for MQTT.

4.2 Set up an IoT infrastructure: To obtain the data necessary for our analyses (that follows), we

need an infrastructure to run the programs on the scenarios and collect the data.

4.3 Collect, devise, and implement scenarios using the chosen libraries: Once we have selected

the IoT infrastructure, we need programs to exercise the scenarios and collect the data. We

implement these scenarios using the libraries.

4.4 Collect static metrics on the implemented senders and receivers: We use usual static code

metrics to measure and compare the implementations in the different scenarios we devised in

Section 5.3 of the four chosen libraries. The metrics are well-known and representative of code

characteristics. We choose the following metrics for our experiment as previous work used in

measuring and comparing the modularity related to Design Pattern (DP) [27] and to compare

different versions of software [28]. We use SciTools Understand to collect static metrics on the

code implementing our scenarios.

• Coupling Between Object (CBO): the authors in [29] mentioned that CBO measures the

number of classes coupled with the target class. In our experiment, some of our demos on

the sender or receiver sides might include more than one class, so we will sum the CBO

of the classes. If this metric is lower, it means that it has good reusability, maintainability

and changeability10.

• Cyclomatic complexity(CC): McCabe in [30] proposed a measure called cyclomatic com-

plexity, which refers to the complexity of the program. When the value is high, it means

that it is more complex and harder to understand, test, and maintain. API ID ‘CYLCO-

MATIC’ is Cyclomatic complexity in Understand software from Sci Tools, as known as
10https://learn.microsoft.com/en-us/visualstudio/code-quality/code-metrics-cla

ss-coupling?view=vs-2022, as of March 1st, 2023

17

https://learn.microsoft.com/en-us/visualstudio/code-quality/code-metrics-class-coupling?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/code-quality/code-metrics-class-coupling?view=vs-2022

McCabe Cyclomatic. If this metric is lower, it means that the program is less complex, so

developers can easily test and troubleshoot 11.

• Lack of Cohesion between methods (LCOM): Chidamber and Kemerer in [29] mentioned

that the Lack of Cohesion in Methods (LCOM) value is affected by the number of disjoint

pairs. If the LCOM value is lower, it means a high level of cohesion between the methods

in a class. API ID ‘Percent Lack Of Cohesion’ is Lack of Cohesion in Methods(LCOM)

in Understand software from Sci Tools.

• Lines of Code (LOC): This metric refers to lines of code in a computer program that is

written in a programming language. It includes package import lines, but it excludes blank

lines and comment lines. In our experiment, some of our demos on the sender or receiver

sides might include more than one file, therefore we will sum the LOC of the files. If the

LOC number is too large, it may imply code defects and cost of maintenance.

4.5 Analyse packet sizes theoretically and practically: We also consider the size of packets in

bytes transmitted during the communication, because different protocols and different libraries

may have different sizes, which would impact the performance. Our research includes both a

theoretical analysis and a practical experiment, and we also consider adjusted practical packet

size for the two protocols, CoAP and MQTT.

4.6 Collect runtime performances when running the scenarios: We also use usual running per-

formance metrics to measure and compare the implementations in the different scenarios we

devised in Section 5.3 of the four chosen libraries. We choose goodput, throughput, and over-

head and measure them when running the scenarios.

(a) Before computing goodput and throughput, we must measure ∆Time. We record the time

when the receiver connects to the sender as Time1 and record the time Time2 when the

receiver receives the last message in NON/QoS0 scenario, or when the receiver sends the

ACK packet of the last received message (excluding the transfer time of this ACK from

receiver to the sender) in QoS1/CON scenario.
11https://learn.microsoft.com/en-us/visualstudio/code-quality/code-metrics-cyc

lomatic-complexity?view=vs-2022, as of March 1st, 2023

18

https://learn.microsoft.com/en-us/visualstudio/code-quality/code-metrics-cyclomatic-complexity?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/code-quality/code-metrics-cyclomatic-complexity?view=vs-2022

∆Time = Time2− Time1 (1)

(b) After getting the ∆Time, we can use it as the denominator in Equation 2 and Equation 3

to get the goodput and throughput. In [32] and [33], goodput and throughput are:

Goodput = TotalData_bytes/∆Time (2)

Throughput = (TotalBytesReceived)/∆Time (3)

(c) In this step, we calculate the overhead metric. Note that this overhead measurement is not

the overhead in each message packet. Instead, the overhead in this step means all the bytes

minus the total valuable data in communication between sender and receiver.

Overhead = (ConnectBytes+ InteractMessageBytes)−Data (4)

The example of CoAP with CON scenario process is shown in Figure 4.1. The example of

MQTT with QoS1 scenario process is shown in Figure 4.2. The formula to calculate the

throughput and overhead is shown as follows. Specifically, in the example of MQTT, p5 and p7

are not considered because p5 data does not reach the subscriber in Equation 8.

CoAPCONThroughput = (p2 + p3)/∆Time (5)

MQTTQoS1Throughput = (p10 + p14)/∆Time (6)

CoAPCONOverhead = (p1 + p2 + p3 + p4)−Data (7)

MQTTQoS1Overhead = (p1 + p2 + p3 + p4 + p6 + p8 + p9 + ...+ p16)−Data (8)

19

4.7 Compare the collected measures and recommend a protocol/library: Finally, the last step

of our approach is to compare protocols and libraries based on the collected measures. We will

discuss the protocols and their libraries and make recommendations.

:Client:Server

CON(p3)

ACK(p4)

Get(p1)

ACK(p2,with content)

Figure 4.1: Diagram for CoAP Communication

20

:Subscriber:Broker:Publisher

CONNECT(p1)

CONNECT(p3)

CONNACK(p4)

CONNACK(p2)

SUBSCRIBE(p6)

SUBACK(p8)

PUBLISH(p9)

PUBACK(p7)

PUBLISH(p5)

PUBACK(p11)
PUBLISH(p10)

PUBACK(p12)

PUBLISH(p13)

PUBACK(p15)
PUBLISH(p14)

PUBACK(p16)

Figure 4.2: Diagram for MQTT Communication

21

Chapter 5

Implementation, Application, and Result

5.1 Survey and select different libraries of the protocols

In this phase, we provide an account of the subsequent steps that detail the examination and

filtration processes for selecting libraries in our experiment:

(1) Use Wikipedia to select the implementations of protocols. We found that Wikipedia is a

reliable source of information regarding IoT protocols such as CoAP and MQTT. We peruse

the Wikipedia pages about CoAP and MQTT implementations. Each of these two pages4,5

contains a table showing a list of the libraries implementing each protocol. By March 1, 2023,

there were 35 libraries of CoAP in the table and 40 libraries of MQTT.

(2) Filter Java language repository. We choose to consider only libraries written in the Java

programming language for several reasons because Java is an object-oriented programming

language so it is possible to compute well-known software metrics. Besides, it is a platform-

independent language that provides execution flexibility. Therefore, applications can be de-

ployed in versatile environments. Table 5.1 and Table 5.2 shows the result of this step. In

these tables, the column ‘Latest update date’ is about the latest commit date because the li-

braries update frequently as up-to-date as possible. However, sometimes the latest commit

date cannot be traced due to some reasons, such as it is commercial. In this case, this column

shows the least released date or the data shown in Wikipedia.

22

(3) Search the libraries supported for both server and client for CoAP libraries and search MQTT

libraries supported for both publisher and subscriber instead of broker. Generally, the message

would be sent between the server and the client or the publisher and the subscriber. Conse-

quently, CoAP libraries limited to client-side support are deemed insufficient for this study.

Instead, the CoAP libraries offering comprehensive support for both server and client func-

tionalities are selected for observation and analysis. Similarly, concerning MQTT libraries,

due to the broker’s role as an intermediary entity, the MQTT libraries related to the broker

have been excluded.

(4) Search open-source libraries. Generally, developers tend to use open-source libraries because

the source code in open-source libraries is publicly available, which provides some assurance

that developers can report issues that could be fixed by the original developers and could

maintain the code even if its original developers abandon it. As for the open-source libraries

platform, GitHub is one of the most famous platforms. As of January 2023, there are over 372

million repositories in GitHub12. Therefore, open-source libraries in GitHub are considered

in this study. We did not choose jcoap because it was from Google Code, which was a

platform to allow people to collaborate on open-source projects and closed in 201613.

Name Programming Language Client/Server License Latest update date

Californium Java Client + Server EPL+EDL Feb 14, 2023

CoAP Shell Java Client Apache License 2.0 Jun 1, 2021

java-coap Java Client + Server Apache License 2.0 Jan 12, 2022

jcoap Java Client + Server Apache License 2.0 June 12, 2012

nCoap Java Client + Server BSD Mar 20, 2018

Sensinode Java Device Library Java SE Client + Server Commercial Unkown

Sensinode NanoService Platform Java SE Client + Server Commercial Unkown

Table 5.1: Java language libraries of CoAP

12https://en.wikipedia.org/wiki/GitHub
13https://opensource.googleblog.com/2015/03/farewell-to-google-code.html

23

https://en.wikipedia.org/wiki/GitHub
https://opensource.googleblog.com/2015/03/farewell-to-google-code.html

Name Programming Language Type License Latest update date

PubSub+

C, C#/.Net, Java,

JavaScript (NodeJs),

Python, Go

Broker
Commercial license,

free version
Jan 14, 2021

Paho MQTT
C, C++, C#, Go, Java,

JavaScript, Python, Rust
Client

Eclipse Public License 1.0,

Eclipse Distribution

License 1.0 (BSD)

Aug 6, 2022

Thingstream
C, C++, Java,

JavaScript, Python, Go

Client,

Broker

Commercial licence

version 2.0
Mar 14, 2019

HiveMQ MQTT Client Java Client Apache License version 2.0 Feb 15, 2023

HiveMQ Community Edition Java Broker Apache License 2.0 Mar 1, 2023

HiveMQ Java Broker Commercial license Feb 7, 2023

JoramMQ Java Broker Commercial June 7, 2022

moquette Java Broker Apache License version 2.0 Feb 26, 2023

OpenRemote MQTT Broker Java Broker AGPLv3 Feb 27, 2023

OpenHAB MQTT binding Java Client Eclipse Public License Apr 21 2020

Table 5.2: Java language libraries of MQTT

CoAP libraries’ results are shown in Table 5.3. This table shows that the library of java-coap

is more active than nCoap, so nCoap is not considered. Finally, Californium and java-coap

libraries are selected as experiment subjects for CoAP library.

MQTT libraries’ results are shown in Table 5.4, and the table shows that OpenHAB binding

is one of the add-ons of OpenHAB, which includes Bluetooth Binding, Zigbee binding, ZWave

Binding, etc. Therefore it is not considered. Finally, we selected Paho MQTT and HiveMQ

MQTT Client libraries as experiment subjects for MQTT. Consequently, we obtain four libraries:

Californium, java-coap, HiveMQ MQTT Client and Paho MQTT.

24

Name Programming Language Client/Server License Latest update date Latest released date

Californium Java Client + Server EPL+EDL Feb 14, 2023 Feb 8, 2023

java-coap Java Client + Server Apache License 2.0 Jan 12, 2022 Mar 28,2018

nCoap Java Client + Server BSD Mar 20, 2018 Oct 12,2014

Table 5.3: Java language libraries of CoAP

Name Programming Language Type License Latest update date

Paho MQTT
C, C++, C#, Go, Java,

JavaScript, Python, Rust
Client

Eclipse Public License 1.0,

Eclipse Distribution

License 1.0 (BSD)

Aug 6, 2022

HiveMQ MQTT Client Java Client Apache License version 2.0 Feb 15, 2023

OpenHAB MQTT binding Java Client Eclipse Public License Apr 21 2020

Table 5.4: Java language libraries of MQTT

5.2 Set up an IoT infrastructure

After choosing the protocols and libraries, there should be an environment to run the experiment.

We deployed an infrastructure composed of three Raspberry Pi 4B, two with 8 GB of RAM and one

with 4GB. Our implementations are available online for further studies and applicability14,15. In

terms of CoAP, we used two Raspberry Pis with 8GB RAM for the server and the client respectively.

In terms of MQTT, we use Eclipse Mosquitto in a Docker in the Raspberry Pi with 4GB RAM. To

be specific, the two Raspberry Pis with 8 GB of RAM are installed with Wireshark to capture packet

flows. When collecting the runtime metrics, the router is not allowed to connect to the Internet to

avoid the other network flow irrelevant to this experiment.

Those devices are set in the same local area network in this experiment. In CoAP, we assigned a

static IP address for the server in my router configuration web page so that the client does not need

to change the destination IP address in the program to access the server when the server’s IP address
14https://github.com/KeithLaiKB/java_learn_coap_comparison
15https://github.com/KeithLaiKB/java_learn_mqtt_comparison

25

https://github.com/KeithLaiKB/java_learn_coap_comparison
https://github.com/KeithLaiKB/java_learn_mqtt_comparison

changes. Similarly, in MQTT, we assigned a static IP address to the broker for the publisher and

subscriber to access.

When the devices are set in different network areas, the server in CoAP and the broker in MQTT

are recommended to be with the public static IP address. For example, a CoAP server needs some

network configuration like port forwarding settings in the router or applying an IoT SIM card with

a public static IP to connect to the network, which is time-consuming to configure and test the

connectivity. However, it is easier to configure the broker than the CoAP server to set a public

static IP address, such as renting a server from a cloud computing platform anytime (Google Cloud,

Amazon Web Service, Ali Cloud, etc.) and then doing the configurations immediately, which is a

time-saving process and easy for developers to configure. If the devices are configured in different

network areas, it is not fair to compare metrics in Step 4.6, because we want to set them in the

same network condition and do the comparison, this is the reason that we choose to configure the

experiment in the same local area network.

5.3 Collect, devise, and implement scenarios using the chosen libraries

After choosing the two protocols and the libraries, we need to identify and select scenarios

illustrating them by exercising the APIs of their libraries, and then we implement the scenarios.

5.3.1 Collect Libraries Characteristics

Table 5.5 summarises the main characteristics of the four libraries. From the table, it shows

that libraries have different characteristics, and in fact, the four libraries do not implement the pro-

tocols equally. Therefore, we need to choose some similar characteristics to make the comparison

relatively equal. There are explanations of some details as follows:

• Regarding OSCORE in the ‘Authentication’ aspect, OSCORE provides Californium with

authentication features. In terms of MQTT, the two libraries of MQTT already provide API

for the publisher and subscriber to connect to the broker with usernames and passwords. We

tried to compare the four libraries relatively equally in the ‘Authentication’ aspect, however,

OSCORE includes the security solution, which means that it could not be compared with

26

the cases that HiveMQ MQTT Client without security solution and Paho MQTT without

security solution. In addition, we tried to compare the four libraries relatively equally in the

‘Transport-layer Security’ aspect, OSCORE is at the application layer, which could not be

compared with the cases that HiveMQ MQTT Client and Paho MQTT with Transport

Layer security solutions. As a result, we decided not to include the case of Californium

with OSCORE in our experiment.

• Regarding SSLContext in the ‘Transport-layer Security’ aspect, it is a public class in a package

called javax.net.ssl allows developers to create a specified instance which stands for secure

socket protocol implementation16. Developers could initialise the instance with the sources of

authentication keys (KeyManager), the sources of peer authentication trust decisions (Trust-

Manager), the source of randomness for the generator (SecureRandom). Then, developers

could use SSLContext to help start security communication between endpoints. Compared to

configuring the security communication connection at the terminal, SSLContext makes this

process easier. For example, it can help start a security conversation with TLS. In terms of

use of SSLContext, in the code shown in Code 5.1, at the Paho MQTT publisher side, the

publisher specifies version 1.3 of the Transport Layer Security protocol with specified Trust-

Manager and java.security.SecureRandom instance but without KeyManager.

CoAP MQTT
Californium java-coap HiveMQ PahoMQTT

Authentication Server (CoAP) / Broker (MQTT) OSCORE N/A N/A N/A
Client (CoAP) / Pub (MQTT) / Sub (MQTT) OSCORE N/A usernames/passwords

Transport-layer
Security

DTLS directly YES NO ? ?
DTLS with SSLContext NO NO ? ?
TLS directly ? NO NO NO
TLS with SSLContext ? YES YES YES

Table 5.5: Characteristics of the libraries (‘Servers’ refers to servers and brokers. ‘Clients’ refers
to clients, publishers, and subscribers. A question mark means that the implementation might exist,
but we could not find a simple way to implement it).

16https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/S
SLContext.html

27

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLContext.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/net/ssl/SSLContext.html

1 SSLContext context = SSLContext.getInstance("TLSv1.3");

2 context.init(null, tmf.getTrustManagers(), new java.security.SecureRandom());

Code 5.1: Part of SSLContext configuration code lines

After outlining the characteristics, we delved into their intricacies to ensure a more equitable

basis for comparison. To compare the four libraries well, it is imperative to maintain control over

the variable. There are some variables we considered:

• In terms of communication type, as introduced in Chapter 2, MQTT uses publish-subscribe

messaging pattern. CoAP is not the same protocol as MQTT, so we employed the feature

of observing the resource to keep a similar messaging pattern foundation before making the

comparison between CoAP and MQTT.

• In terms of the ‘Transport-layer Security’ aspect, to be specific, JDK 8u261 includes an

implementation of TLSv1.317. To manipulate the experiment’s parameters, the default set-

ting of the HiveMQ MQTT Client, which is TLSv1.3. Consequently, in this comparison,

Paho MQTT utilizes TLSv1.3 to maintain control over the variable. For java-coap, it

does not support DTLS directly and DTLS with SSLContext, but supports TLS with SSLCon-

text. Therefore java-coap with secure scenario uses TLSv1.3 with SSLContext. As for

Californium, using an SSLContext for a DTLSConnector is not supported, but developers

can use DTLS directly solution, which supports DTLSv1.2 by default. These solutions are

shown in Table 5.6.

Repository Solution
Californium DTLS v1.2 directly
java-coap TLS v1.3 with SSLContext
PAHO MQTT TLS v1.3 with SSLContext
HiveMQ MQTT Client TLS v1.3 with SSLContext

Table 5.6: Security Solutions in Comparison.

17https://www.oracle.com/java/technologies/javase/8u261-relnotes.html

28

https://www.oracle.com/java/technologies/javase/8u261-relnotes.html

5.3.2 Devise Scenarios

After summarizing the details of the four libraries, we went to devise scenarios. These libraries

can be used in a wide variety of scenarios, but we want to make them into groups to compare. The

scenarios are shown in Table 5.7, and the explanation is shown as follows:

• NON vs QoS0, with/out security. The reliability of NON is similar to the QoS0 scenario be-

cause the receiver receives the message without sending back an ACK packet or a PUBACK

packet in return. For example, on a non-secure scenario basis, we applied the NON to the

reliability of CoAP communication and applied QoS0 to the reliability of MQTT communi-

cation. Besides, we also put this comparison on a secure scenario basis.

• CON vs QoS1, with/out security. The reliability of CON is similar to the QoS1 scenario

because after the receiver receives the message, the receiver is required to send back an ACK

packet or a PUBACK packet in return. For example, on a non-secure scenario basis, we

applied the CON to the reliability of CoAP communication and applied QoS1 to the reliability

of MQTT communication. Besides, we also put this comparison on a secure scenario basis.

CoAP MQTT

No Security NON QoS0
CON QoS1

Security

Californium DTLS v1.2 directly NON QoS0java-coap TLS v1.3 with SSLContext
PAHO MQTT TLS v1.3 with SSLContext CON QoS1iveMQ MQTT Client TLS v1.3 with SSLContext

Table 5.7: Scenarios in comparison.

5.3.3 Implement Scenarios

After devising the scenarios, we implemented them. In terms of secure scenario, the security

solution of the four libraries requires configuration in lots of details, we followed the repositories

instructions on GitHub of Californium6, java-coap7, Paho MQTT8 and HiveMQ MQTT

Client9. Among the scenarios, distinct libraries exhibit different implementations. However,

certain action parts are commonly shared across these implementations. We will delineate these

parts in the following sections:

29

In CoAP, we added a resource to the server so that the client can observe this resource. In our

experiment, we need to set the NON or CON scenario, and developers can set the reliability of this

resource with the API called setObserverType(Type type) in the constructor in Californium and

setConNotifications(boolean conNotifications) in java-coap as shown in Code 5.2.

1 this.setObserveType(Type.NON); // Californium

2 this.setConNotifications(false); // java-coap

Code 5.2: Set observing resource to send NON to the client

After implementing the resource in CoAP, the developer needs to add the resource to the server.

For example, Code 5.3 shows we created an object of a class called Cf_ObserverResource here

extends CoapResource which is a Java class in Californium, and then the developer can use

this class to customize the resource like reliability and message format. We used the object of

CoapServer which is the class of Californium, and added the resource to the server as shown in

Code 5.4. Besides, 5683 is the port of the server side.

1 Cf_ObserverResource myobResc1 = new Cf_ObserverResource("Resource1");

Code 5.3: Create resource to server (Californium)

1 CoapServer server = new CoapServer(configuration,5683);

2 server.add(myobResc1);

Code 5.4: Add resource to server configuration (Californium)

In CoAP, the client can observe the resource with APIs called observe(CoapHandler handler) in

Californium and observe(ObservationListener observationListener) in java-coap. In terms

of the parameters of CoapHandler and ObservationListener, they help get the content from the

server and count the number of received messages. Code 5.5 shows the process when the client

observes the resource of the server in Californium.

30

1 CoapHandler myObserveHandler = new CoapHandler() {

2 @Override

3 public void onLoad(CoapResponse response) {

4 System.out.println(response.getResponseText());

5 numberOfMessages = numberOfMessages + 1;

6 }

7 @Override

8 public void onError() {

9 }

10 };

11 client.observe(myObserveHandler);

Code 5.5: Client observes resource (Californium)

In MQTT, we used Eclipse Mosquitto to be the broker. When applying the authentication fea-

tures, we need to set a username and password pair in Mosquitto, and then the publisher or the

subscriber can access this broker with the pair. Code 5.6 shows the process of authentication in

Paho MQTT.

1 connOpts.setUserName("IamUser");

2 connOpts.setPassword("123456".getBytes());

Code 5.6: Auntentication configuration (Paho MQTT)

In MQTT, before starting to exchange data, the publisher and subscriber should connect to the

broker. In our experiment, we set that the publisher or the subscriber has to wait until a success-

ful connection is established before proceeding to the next step. In HiveMQ MQTT Client, the

publisher or subscriber uses the API called connect(@NotNull Mqtt5Connect connect) to connect

the broker. In this API, the ‘connect’ includes connection configurations such as authentication. Be-

sides, the annotation @NotNull in this API means that this parameter should not be null. In Paho

MQTT, the publisher or subscriber uses the API called connect(MqttConnectionOptions options) to

connect the broker. However, in Paho MQTT, this API will let the connection not timeout, while

in HiveMQ MQTT Client is different, so we implemented a ‘while’ loop. This loop mimics the

intended action, ensuring that the publisher or subscriber patiently awaits the successful establish-

ment of the connection before proceeding to the next step. Code 5.7 shows those implementations

31

of HiveMQ MQTT Client and Paho MQTT.

1 // HiveMQ MQTT Client

2 client1.connect(connectMessage);

3 while(client1.getState().isConnected()==false) {

4 //do nothing, just wait for connected

5 }

6

7 // Paho MQTT

8 client1.connect(connOpts);

Code 5.7: Connection configuration (HiveMQ MQTT Client and Paho MQTT)

After connecting to the broker, the developer needs to set the topic of the message and the QoS of

the communication on the publisher side and then send the message. Code 5.8 and Code 5.9 shows

the implementations of HiveMQ MQTT Client. In these codes, ‘MqttQos.AT_MOST_ONCE’

here means QoS0 and ‘statusUpdate’ is the content that changes each time. Our data length is fixed

at 10 bytes.

1 c1 = publishBuilder1.topic("Resource1"); // topic setting

2 c1.qos(MqttQos.AT_MOST_ONCE); // qos setting

Code 5.8: Set topic and communication reliability (HiveMQ MQTT Client)

1 c1.payload(("Hi!" + String.format("%07d", statusUpdate)).getBytes()); // payload

2 c1.send(); // publish

Code 5.9: Construct content and send the message (HiveMQ MQTT Client)

In MQTT, the subscriber needs a method to get and output the message and then subscribe to

the topic to get the message with specific QoS. Code 5.10 and Code 5.11 shows the implemen-

tations of Paho MQTT. In these codes, ‘Resource1’ and ‘0’ mean the topic name and QoS level

separately. Furthermore, The messageArrived(String topic, MqttMessage message) is overridden in

a class MyMqttCallback that implements MqttCallback which is an interface in Paho MQTT.

32

1 client1.subscribe("Resource1",0);

Code 5.10: Subscribe the topic (Paho MQTT)

1 @Override

2 public void messageArrived(String topic, MqttMessage message) throws Exception {

3 System.out.println(new String(message.getPayload()));

4 numberOfMessages = numberOfMessages +1;

5 }

Code 5.11: Obtain and ouput the message (Paho MQTT)

5.4 Collect Static Metrics on the Senders and Receivers

For static metrics, we collect values of CBO, CC, LCOM and LOC by following steps:

(1) Start the Understand software.

(2) Click the ‘File’ tab, and new a project.

(3) Select the directory of the project.

(4) Export the metrics into a CSV file. In the options window, select the option about ‘Count-

LineCode’, ‘CountClassCouple’, ‘Cyclomatic’ and ‘PercentLackOfCohesion’.

(5) Repeat the step above about the sender and receiver in each case.

From the tool, we can get the results into tables. To be specific, Table 5.8 shows that those

metrics cover all the classes in our codes. However, in Table 5.9, LCOM is counted in each class

because the result is a percentage format, which means that the results cannot be added together.

According to the description of the metrics mentioned in Step 4.4, the Table 5.8 shows the results

about LOC, CBO and CC. To be specific, in CoAP, compared to java-coap, the three metrics

(LOC, CBO, and CC) of Californium are better both in non-secure and secure scenarios, even

taking advantage of server and client separately. Besides, the result of these metrics in ‘Total’ of

MQTT, the metrics in HiveMQ MQTT Client are better both in non-secure and secure scenarios

33

in the combination of publisher and subscriber, except the CBO metric in the secure scenario of

HiveMQ MQTT Client and Paho MQTT, where they are equal.

In total, based on the previous result of LOC, CBO, and CC, we chose Californium from

our CoAP group to compare with HiveMQ MQTT Client from our MQTT group in the com-

bination between Server/Pub and Client/Sub scenario, Figure 5.1 shows that from those metrics,

HiveMQ MQTT Client performs better in non-secure and secure scenarios because LOC in

HiveMQ MQTT Client shows much less in the non-secure scenario and CC in that show less

in both non-secure and secure scenarios, but CBO in that is just slightly larger.

Specifically, the results show that in Server/Pub Side both in non-secure and secure scenarios,

HiveMQ MQTT Client is better than Californium in all three metrics of LOC, CBO, and

CC. Furthermore, In the Client/Sub Side, both in non-secure and secure scenarios, Californium

emerges as the superior choice.

In addition, the results in Table 5.8a and Table 5.8b show that the secure scenario increases the

LOC and CBO because the secure scenario needs security classes and more code lines to configure

the security settings. At the same time, in most of the results in these tables, the CC in the secure

scenario is slightly more than in the non-secure scenario, which is expected because, generally, a

secure scenario needs more configuration.

Library Metric Sever Client Total

Californium
LOC 92 33 125
CBO 17 10 27
CC 16 6 22

java-coap
LOC 102 60 162
CBO 20 19 39
CC 18 10 28

HiveMQ
MQTT
Client

LOC 40 46 86
CBO 13 15 28
CC 4 7 11

Paho
MQTT

LOC 35 70 105
CBO 9 23 32
CC 4 12 16

(a) Non-secure Scenario

Library Metric Sever Client Total

Californium
LOC 135 68 203
CBO 33 24 57
CC 19 8 27

java-coap
LOC 282 122 404
CBO 62 34 96
CC 42 14 56

HiveMQ
MQTT
Client

LOC 107 113 220
CBO 31 31 62
CC 8 11 19

Paho
MQTT

LOC 99 134 233
CBO 24 38 62
CC 8 16 24

(b) Secure Scenario

Table 5.8: LOC, CBO, and CC metrics in non-secure and secure scenarios

34

Figure 5.1: Combination between Server/pub and client/sub in non-secure and secure bar chart

Before discussing the result of Table 5.9, there is some explanation of the token in this table.

To be specific, ‘Launcher’ in Table 5.9 is mainly to create and start the Server/Pub or Client/Sub.

The ‘Resource’ is used in CoAP to deal with the message, and ‘UpdateTask’ is a timer to send

messages periodically and to avoid the condition that when there are two resources required to run

together, the second resource does not keep sending messages until the first resource is finished if

there are not two threads. However, those two MQTT libraries do not need that. More details with

explanations in those four libraries are as follows:

• In Californium, Launcher is related to the class TestMain_JavaCoap_Obs_Server on the

server side, and the Resource is related to the class Cf_ObserverResource, but Launcher on

the client side is related to the class TestMain_Cf_Obs_Client.

• In java-coap, Launcher is related to the class TestMain_JavaCoap_Obs_Server, and the

Resource is related to the class JavaCoap_ObserverResource, but Launcher on the client

side is related to the class TestMain_JavaCoap_Obs_Client. In secure scenario, ExtraTrans-

portCfg is a class called SingleConnectionSocketServerTransport from java-coap library,

which is an existing class used to test the security case 18.
18https://github.com/PelionIoT/java-coap/blob/master/coap-core/src/test/java/co

m/mbed/coap/transport/javassl/SingleConnectionSocketServerTransport.java

35

https://github.com/PelionIoT/java-coap/blob/master/coap-core/src/test/java/com/mbed/coap/transport/javassl/SingleConnectionSocketServerTransport.java
https://github.com/PelionIoT/java-coap/blob/master/coap-core/src/test/java/com/mbed/coap/transport/javassl/SingleConnectionSocketServerTransport.java

• In HiveMQ MQTT Client, Launcher is related to the class TestMain_Hivemqmqttclient-

_Publisher on the publisher side, but Launcher on the subscriber side is related to the class

TestMain_Hivemqmqttclient_Subscriber.

• In Paho MQTT, Launcher is related to the class TestMain_Pahomqtt_Publisher on the pub-

lisher side, but Launcher on the subscriber side is related to the class TestMain_Pahomqtt_

Subscriber. On the subscriber side, the MsgCallback is related to the class MyMqttCallback,

and in this class, one of the settings is to print out the value with the specified format.

In this Table, we can get the result that in CoAP, the LCOM in Californium is equal

tojava-coapwhen they are comparing the Launcher, Resource and UpdateTask, HiveMQ MQTT

Client is equal to Paho MQTT when they are comparing the Launcher in both non-secure and

secure scenarios. However, the LCOM metric is not compared between CoAP and MQTT in our

experiment because some important features are divided into different classes.

Library Side Class LCOM

Californium Server
Launcher 0
Resource 35
UpdateTask 50

Client Launcher 50

java-coap Server
Launcher 0
Resource 35
UpdateTask 50

Client Launcher 50
HiveMQ
MQTT Client

Server Launcher 0
Client Launcher 66

Paho MQTT
Server Launcher 0

Client Launcher 66
MsgCallBack 0

(a) Non-secure Scenario

Library Side Class LCOM

Californium Server
Launcher 0
Resource 35
UpdateTask 50

Client Launcher 50

java-coap
Server

Launcher 0
Resource 35
UpdateTask 50
ExtraTransportCfg 62

Client Launcher 50
HiveMQ
MQTT Client

Server Launcher 0
Client Launcher 66

Paho MQTT
Server Launcher 0

Client Launcher 66
MsgCallBack 0

(b) Secure Scenario

Table 5.9: LCOM in non-secure and secure scenarios

5.5 Analyse Packet Sizes Theoretically and Practically

Firstly, we got the theoretical packet size from the specifications. Secondly, the practical metric

is derived from our practical test from the four libraries. Thirdly, we adjusted the data according to

the theoretical packet size. The steps of this analysis are shown as follows:

36

(1) Get the theoretical packet size from the specifications. In this step, we computed the theo-

retical packet size from the specification in Shelby, Zach and Hartke, Klaus and Bormann,

Carsten [3] and in OASIS Message Queuing Telemetry Transport (MQTT) TC [8]. From

those specifications, the packet size is about the non-secure scenarios.

(2) Summarised the packet size from the four libraries, Californium, java-coap, HiveMQ

MQTT Client and Paho MQTT. The result is based on successful communication without

error. For example, in java-coap, the client sends a GET request to the server without

the resource name when observing a resource, the server will send back an ACK packet with

a response code called 4.04 whose description is ‘NOT FOUND’, in this case, we do not

consider this into our metric.

(3) Adjust the practical packet size according to the theoretical packet size to get the adjusted

practical packet size. The result refers to the practical data but is adjusted according to theo-

retical data and systematically and logically.

After collecting the data on the packet size, we get the result in tables. Before introducing the

result in tables, there are some tokens in this table to be introduced firstly:

• As for the connection part in CoAP, there are two types of packets: one is a CON packet

about a GET request from the client to the server, which we call it GET_CON packet, and the

other one is the ACK packet from the server to the client. MQTT has four types: CONNECT

packet, CONNACK packet, SUBSCRIBE packet and SUBACK packet.

• ‘With Content’: The condition ‘With content’ in Table 5.10 and in Table 5.12 means that this

packet must contain the content, at least one byte. Those libraries of CoAP have the attribute

of the payload marker, but the two of MQTT do not. In CoAP, if there is a payload, there will

be a payload (y) position, followed by a payload marker using one byte. This is the reason

why y is specified in the cell in Table Table 5.10, but it is unnecessary to highlight the y in

Table 5.11. Besides, in terms of GET_CON packets, it means CON packet, but it is used to

send the GET request from the client to the server.

37

• ‘Content-Format’: it shows the representation format of the message. In java-coap,

the server can send the ACK back to the client without setting Content-Format. However,

in Californium, the API called respond(String payload) inside automatically sets the

‘Content-Format’. Even though the API itself implicitly include the Content-Format, we still

use the API called respond(ResponseCode code, String payload, int contentFormat) to ex-

plicitly specify the Content-Format. Therefore, java-coap sets ‘Content-Format’ in ACK

packet from the server to the client so that it could also be well compared by Californium

in Step 4.4 and Step 4.6. However, this step shows the bytes used in java-coap with or

without setting ‘Content-Format’, providing insights into the potential packet size.

• ‘GET_CON’: In java-coap library, GET_CON packet has to include the resource name

for the client to access the server, but in Californium, it does not have to. Besides,

the ‘Content-Format’ in ACK packet from the server to the client could be set manually

in java-coap library, and it would affect the size of the packet, but in Californium, the

content format is set by default in the libraries.

• ‘1st Msg’ and ‘2nd Msg’: In the CoAP observer pattern, the ACK packet could be the first

message from the sender to the receiver, and the NON or CON packet would be the second

message from the sender to the receiver, but MQTT uses the PUBLISH packet to send the

first message and the rest. This is why there is a condition about the first message and second

message about the PUBLISH packet in Table 5.10. In those two libraries in MQTT, the

packet size of the first message is sometimes different from the second message, like the

second message might lack a topic name or own a subscription identifier.

From the result in Table 5.10, the practical metric shows that in CoAP, packet size in java-coap

is smaller than Californium because in our demonstration program, java-coap uses a token

with two bytes, but Californium uses eight bytes by default. In our observer pattern demon-

stration program, GET_CON, ACK (server sends the ACK packets for replying to the GET request

sent from the client), NON and CON packets are all with tokens. In this case, the total bytes used

by packets in Californium would be much more than in java-coap.

From the result in Table 5.11, the practical metric shows that in MQTT, packet size in Paho

38

MQTT is smaller than HiveMQ MQTT Client. On the subscriber side, HiveMQ MQTT Client

would use the Subscription Identifier attribute when receiving the PUBLISH packet with QoS0/QoS1

from the broker or sending the SUBSCRIBE packet to the broker, but Paho MQTT does not.

From the result in Table 5.14, the adjusted practical packet size metric shows that the total pack-

ets’ size of the connection part in MQTT is larger than in CoAP. Besides, the metric in Table 5.12

and Table 5.13 shows that in the observer pattern, through the whole network, the size of total

packets used in the part of sending and receiving valuable messages (including ACK/PUBACK,

excluding the connection part) in CoAP is less than in MQTT (no-security, because security will

encrypt the data) because there are two processes in MQTT, messages from publisher to broker and

message from broker to subscriber in this experiment.

Library Californium java-coap

CON
Content is "" 15 +m 10 +m

With content 16 + y +m 11 + y +m

GET_CON
Without resource name 13 +m NONE (Because it must contain resource name)

With resource name 14 + rsn+m 8 + rsn+m

NON
Content is "" 15 +m 10 +m

With content 16 + y +m 11 + y +m

ACK

Content is "" (observe) 15 +m
no Content-Format: 7 +m

set Content-Format: 9 +m

With content (observe) 16 + y +m
no Content-Format: 8 + y +m

set Content-Format: 10 + y +m

Client to server 4 + z (default 4) 4 + z (default 4)

Explanation

y ∈ [1, i) means payload

i means the number of bytes, the length is limited by the protocol

rsn ∈ [1, 255] means the resource name

m means the number of bytes of other unnecessary attributes and unnecessary value

z is undefined number, starting at 0

Table 5.10: Comparison of practical packet size metrics in bytes between Californium and java-coap

39

Library Paho MQTT HiveMQ MQTT Client

CONNECT 19 +msgl + p1 +m Same

CONNACK 3 +msgl + p1 +m Same

PUBLISH_QoS0

Pub
1st Msg 6 +msgl + p1 + tpn+m Same

2nd Msg 6 +msgl + p1 +m Same

Sub
1st Msg 3 +msgl + p1 + tpn+m 3 +msgl + p1 + tpn+m+ (1 + sbid)

2nd Msg 3 +msgl + p1 + tpn+m 3 +msgl + p1 + tpn+m+ (1 + sbid)

PUBLISH_QoS1

Pub
1st Msg 8 +msgl + p1 + tpn+m Same

2nd Msg 8 +msgl + p1 +m Same

Sub
1st Msg 5 +msgl + p1 + tpn+m 5 +msgl + p1 + tpn+m+ (1 + sbid)

2nd Msg 5 +msgl + p1 + tpn+m 5 +msgl + p1 + tpn+m+ (1 + sbid)

PUBACK 3 +msgl + p2 +m Same

SUBSCRIBE 6 +msgl + p1 + tpn+m 6 +msgl + p1 + tpn+m+ (1 + sbid)

SUBACK 4 +msgl + p1 +m Same

Explanation

msgl ∈ [1, 4] means message length

p1 ∈ [1, 4], p2 ∈ [0, 4], p1 and p2 both mean property length

tpn ∈ [1, a) means the topic name

sbid ∈ [1, 4] means the value of Subscription Identifier

a means the maximum length of topic(topic name) is limited by the protocol

m means the number of bytes of other unnecessary attributes and unnecessary value

Table 5.11: Comparison of practical packet size metrics in bytes between HiveMQ MQTT Client
and Paho MQTT

40

Theoretical Adjusted practical

CON Content is ""

4 + e

+(1 + (opn1 ∗ op1 + opn2 ∗ op2 + opn3 ∗ op3)) ∗ opgn

+y

7 + e+m

NON Content is ""

4 + e

+(1 + (opn1 ∗ op1 + opn2 ∗ op2 + opn3 ∗ op3)) ∗ opgn

+y

7 + e+m

ACK

Content is ""

(observe)
4 + e

+(1 + (opn1 ∗ op1 + opn2 ∗ op2 + opn3 ∗ op3)) ∗ opgn

+y

7 + e+m

Client to server 4 + e+ z

Explanation

e ∈ [0, 8] means token

opn1 ∈ [0, 1] means the number of OptionDelta (Extended)

op1 ∈ [0, 2] means OptionDelta (Extended)

opn2 ∈ [0, 1] means the number of OptionLength (Extended)

op2 ∈ [0, 2] means OptionLength (Extended)

opn3 ∈ [0, 1] means the number of OptionValue

op3 ∈ [0, a) means OptionValue

a means the maximum length of OptionValue is limited by the protocol

opgn means the number of group of the Option, it is undefined number limited by the protocol, starting at 0.

y ∈ [0, i) means payload

i means maximum length is limited by the protocol

m means the number of bytes of other unnecessary attributes and unnecessary value

z is undefined number, starting at 0

Table 5.12: Partial of theoretical and adjusted practical packet size metrics in bytes of CoAP

41

Theoretical Adjusted practical

PUBLISH_QoS0

3 +msgl + tpn+ p1

+n1 ∗ (1 + 4) + n2 ∗ (1 + 2) + n3 ∗ (1 + 1)

+n4 ∗ (upgn ∗ (1 + (2 + k1) + (2 + k2)))

+n5 ∗ (1 + (2 + k1)) + n6 ∗ (1 + sbid)

+y

4 +msgl + p1 +m

PUBLISH_QoS1

5 +msgl + tpn+ p1

+n1 ∗ (1 + 4) + n2 ∗ (1 + 2) + n3 ∗ (1 + 1)

+n4 ∗ (upgn ∗ (1 + (2 + k1) + (2 + k2)))

+n5 ∗ (1 + (2 + k1)) + n6 ∗ (1 + sbid)

+y

4 +msgl + p1 +m

PUBACK

1 +msgl + 2

+n7 ∗ 1 + p2

+n8 ∗ (1 + (2 + k1))

+n4 ∗ (upgn ∗ (1 + (2 + k1) + (2 + k2)))

3 +msgl + p1 +m

Explanation

k1 ∈ [0, 65535], k2 ∈ [0, 65535], k1 and k2 means the content of the specific attribute

y ∈ [0, i) means payload

i means maximum length is limited by the protocol

upgn means the number of group of the User Properties, it is limited by the protocol

msgl ∈ [1, 4] means message length

p1 ∈ [1, 4], p2 ∈ [0, 4], p1 and p2 both mean property length

tpn ∈ [0, a) means the topic name

sbid ∈ [1, 4] means the value of Subscription Identifier

n1 ∈ [0, 1] means Message Expiry Interval

n2 ∈ [0, 1] means Topic Alias

n3 ∈ [0, 1] means Payload Format Indicator

n4 ∈ [0, 1] and n5 ∈ [0, 3] both mean different groups of attributes with same bytes

n6 ∈ [0, 1] means Subscription Identifier

n7 ∈ [0, 1], means reason code

n8 ∈ [0, 1], means reason string

a means the maximum length of topic(topic name) is limited by the protocol

m means the number of bytes of other unnecessary attributes and unnecessary value

Table 5.13: Partial of theoretical and adjusted practical packet size metrics in bytes of MQTT

In Table 5.14, in MQTT, the packet size of the SUBSCRIBE packet assumes that the topic name

is one byte. Besides, the publisher and subscriber here does not use the Anonymous, which means

that the username and password are required. Besides, the client identifier(ClientID) is required

when they connect to the broker.

42

Library CoAP MQTT

Item Value Item Value

Server/Publisher NONE NONE
Send CONNECT 19 +msgl + p1 +m

Receive CONNACK 3 +msgl + p1 +m

Client/Subscriber Get(observed) 7 + e+m

Send CONNECT 19 +msgl + p1 +m

Receive CONNACK 3 +msgl + p1 +m

Send SUBSCRIBE 7 +msgl + p1 +m

Receive SUBACK 4 +msgl + p1 +m

Explanation

e ∈ [0, 8] means token in CoAP

msgl ∈ [1, 4] means message length in MQTT

p1 means property length

m means the number of other unnecessary message

In this table, assume that the resource name of CoAP and topic name of MQTT use one byte

Table 5.14: Comparison of adjusted practical packet size metrics in bytes between CoAP and MQTT
in connection part

5.6 Collect Runtime Performance Metrics

We ran our program demonstrations in our IoT infrastructure and used the Wireshark software

to capture the log about the packet sending and receiving. There are the steps as follows:

(1) Start the Wireshark to record the packets. If the test is related to MQTT, the broker should be

started before because the publisher and subscriber need to connect to an available broker.

(2) Start the sender to send 200 messages. Each data contains only 10 bytes, such as ‘Hi!0000001’.

(3) Start the receiver to send 100 messages. It is expected that the receiver will receive Data with

1,000 bytes in total because some messages could not be received. For example, we opened

the broker, then we opened the publisher, and then we started the subscriber. In this scenario,

the subscriber is the last one to start. During the period that the subscriber connected to the

broker, the publisher has already sent the messages to the broker, however, the subscriber does

not subscribe to the topics, which means that the subscribers could not receive the messages

sent by the subscriber before. In this case, the number of received messages might be less

than 200, so we set the target number received by the subscriber to 100.

(4) After the communication is finished, stop the Wireshark.

43

(5) Repeat the experiment 10 rounds for each case. We opened the Wireshark log and recorded

the Time1 and Time2, which have been described in Step 4.5.

(6) Count the overhead. We opened the Wireshark log and recorded the size of the packets and

sum together, which has been described in Step 4.5.

For example, Figure 5.2 and Figure 5.3 show parts of the log on Californium client-side

captured by Wireshark. In Figure 5.2, the fourth packet captured by the tool is a GET request sent

by the client, and we set the time of this packet as Time1 in Equation 1, and in this figure, the

fifth packet shows that this is the first CoAP protocol packet received by the receiver with data

‘Hi!0000009’. In Figure 5.3, the No.220 packet captured by the tool is an ACK request sent by the

client, and we set the time of this packet as Time2 in Equation 1, and in this figure, the No.219

packet shows that this is the one-hundredth data received by the receiver with data ‘Hi!0000108’.

In log files by Wireshark, we can get the packet size of each packet, which can be used to calculate

the metrics by the formulas mentioned in Step 4.6.

Figure 5.2: The beginning part of the log for Californium Communication in wireshark

44

Figure 5.3: The end part of the log for Californium Communication in wireshark

After collecting the time and packet size used for each packet from the log, we got the results.

Before discussing the result shown in Figure 5.4, Figure 5.5, and Figure 5.6 show the comparison

of the four scenarios (16 cases) about goodput, throughput, and overhead, respectively, some details

need to be introduced:

• ‘negligible’: We used this adjective to express that object A is slightly better than B in group

one, but B is slightly better than A in group two.

• ‘irregular’: We used this adjective to express that object A is better than B in group one, but

B is better than A in group two.

• Our experiment is based on non-continuous traffic shown in Figure 5.7. Under the assumption

that packets can be completed within a fixed time interval without being fragmented into

multiple sub-packets for separate transmission, according to Equation 3, the last message will

increase the ‘communication used time’ to an extent, but the packets make good use of this

time so that high throughput condition could happen.

• ‘Overhead’ metric in Figure 5.6 refers to all the bytes through the communication between the

sender and receiver, excluding the total valuable data such as ‘Hi!0000001’. It is important to

45

clarify that the term ’overhead’ in this figure is not the overhead portion in each packet.

In terms of goodput in CoAP, java-coap with CON with no security is the best (CON/NON

with no security, CON/NON with security). Among CON cases, goodput in java-coap is better

than Californium, but the difference is negligible among NON cases. In terms of throughput

in CoAP, among secure cases, java-coap is higher, but for non-secure cases, Californium is

higher. Because in secure cases, through the communication, java-coap uses more overhead in

each packet than Californium, but in non-secure cases, Californium uses more overhead in

each packet.

In terms of overhead in CoAP, in the secure scenario, Californium is smaller than java-coap.

In the non-secure scenario, java-coap is slightly smaller than Californium.

In terms of goodput in MQTT, Paho MQTTwith QoS0 with no security is the best (QoS0/QoS1

with no security, QoS0/QoS1 with security). But in other scenarios, HiveMQ MQTT Client is

better. In terms of throughput, HiveMQ MQTT Client is higher.

In terms of overhead in MQTT, in the secure scenario, HiveMQ MQTT Client is slightly

smaller than Paho MQTT. In the non-secure scenario, Paho MQTT is slightly smaller than HiveMQ

MQTT Client.

Based on our experiment, in goodput, CoAP is better than MQTT. In throughput, throughput in

MQTT is higher in the non-secure scenario. However, in most cases of the secure scenario, their

throughput is equivalent. In most cases, overhead in CoAP is smaller than in MQTT. As mentioned

above, CoAP is better than MQTT.

Comparing the NON/QoS0 to the CON/QoS1 scenario, in most cases of goodput, they are

equivalent. Except that the Paho MQTT with QoS0 in the non-secure case is visibly better than

with QoS1 in the non-secure case. Because in our program demonstrations, the experiment is about

non-continuous traffic, Figure 5.8 shows that sending back the ACK packet from client to server

would not spend a lot of time because the ACK packet size here is really small. In throughput

metric, in CoAP, the size of the NON-packet with data is similar to the size of CON with data, so

the throughput does not make too much difference, while in MQTT, the size of QoS1 packet with

data is larger than the size of QoS0 with data, so it makes throughput in QoS1 scenario is higher

46

than in QoS0 scenario according to Figure 5.8.

In the overhead metric, QoS0/NON cases are smaller. As a result, the QoS0/NON scenario is

better.

Comparing the non-secure scenario to the secure scenario, In goodput, non-secure cases show

better. In throughput, secure cases (Group2) are higher. Figure 5.7 shows that in the non-continuous

scenario, when the total size of each packet could be sent in a fixed period if the overhead in each

packet is more, the throughput could be higher. Because the size of the packet makes good use

of this period. In overhead, non-secure cases are smaller. Consequently, employing a security

solution and opting for a solution without security measures both have their distinct advantages.

The suitability of either approach for integration into developers’ projects is contingent upon the

specific requirements of the developers.

In detail, Table 5.15 and Table 5.16 show the comparison result of the goodput, throughput, and

overhead metrics in different reliability and security scenarios.

47

19.6 19.7 19.8 19.9 20.0 20.1 20.2 20.3 20.4
bytes/second

HiveMQ_QoS0_nonsec

PahoMQ_QoS0_nonsec

Cf_NON_nonsec

jc_NON_nonsec

HiveMQ_QoS1_nonsec

PahoMQ_QoS1_nonsec

Cf_CON_nonsec

jc_CON_nonsec

HiveMQ_QoS0_sec

PahoMQ_QoS0_sec

Cf_NON_sec

jc_NON_sec

HiveMQ_QoS1_sec

PahoMQ_QoS1_sec

Cf_CON_sec

jc_CON_sec
sc

en
ar

io
s

19.930112700

20.028072640

20.212450155

20.240348690

19.969461809

19.852629067

20.191024592

20.285208479

19.905428829

19.844945172

20.004875989

19.988622061

19.882031505

19.799035162

20.002235933

20.012720278

Figure 5.4: Goodput comparison of CoAP and MQTT

48

120 140 160 180 200 220 240 260
bytes/second

HiveMQ_QoS0_nonsec

PahoMQ_QoS0_nonsec

Cf_NON_nonsec

jc_NON_nonsec

HiveMQ_QoS1_nonsec

PahoMQ_QoS1_nonsec

Cf_CON_nonsec

jc_CON_nonsec

HiveMQ_QoS0_sec

PahoMQ_QoS0_sec

Cf_NON_sec

jc_NON_sec

HiveMQ_QoS1_sec

PahoMQ_QoS1_sec

Cf_CON_sec

jc_CON_sec

sc
en

ar
io

s

183.357036838

180.252653767

137.444661052

127.493956401

187.712941006

182.644187413

137.298967224

127.776528208

226.921888650

222.263385926

224.054611077

249.837787142

230.631565458

225.709000852

224.025042459

250.138990752

Group1

Group2

Figure 5.5: Throughput comparison of CoAP and MQTT

10000.000 20000.000 30000.000 40000.000 50000.000
bytes

HiveMQ_QoS0_nonsec

PahoMQ_QoS0_nonsec

Cf_NON_nonsec

jc_NON_nonsec

HiveMQ_QoS1_nonsec

PahoMQ_QoS1_nonsec

Cf_CON_nonsec

jc_CON_nonsec

HiveMQ_QoS0_sec

PahoMQ_QoS0_sec

Cf_NON_sec

jc_NON_sec

HiveMQ_QoS1_sec

PahoMQ_QoS1_sec

Cf_CON_sec

jc_CON_sec

sc
en

ar
io

s

17157.000

16955.000

5865.000

5359.000

31557.000

31355.000

10419.000

9913.000

30397.000

30783.000

11883.900

14354.000

50897.000

51283.000

20109.900

25039.400

Figure 5.6: Overhead comparison of CoAP and MQTT

49

data

overhead

time

communication used time

time time

time time time

other
operations

communication used time

Figure 5.7: Comparison about different overhead in non-continuous traffic

time time time

communication used time

transfer
message1

time time time

communication used time

send back
ACK1

operation

NON

CON transfer
message1

transfer
message2

transfer
message2

transfer
message3

transfer
message3

send back
ACK2

operation

send back
ACK3

operation

other
operations

Figure 5.8: Communication packet in non-continuous traffic

50

Goodput Throughput Overhead

Reliability
NON negligible irregular irregular

CON java-coap irregular irregular

Security
Non-sec java-coap Californium java-coap (slightly)

Sec negligible java-coap Califormium

Table 5.15: Comparison about runtime metrics in CoAP

Goodput Throughput Overhead

Reliability
QoS0 irregular HiveMQ MQTT Client negligible

QoS1 HiveMQ MQTT Client HiveMQ MQTT Client negligible

Security
Non-Sec irregular HiveMQ MQTT Client Paho MQTT (slightly)

Sec HiveMQ MQTT Client HiveMQ MQTT Client HiveMQ MQTT Client (slightly)

Table 5.16: Comparison about runtime metrics in MQTT

5.7 Compare the collected measures and recommend a protocol/library

Based on the analysis of static metrics of the ‘Total’ in Table 5.8 from Section 5.4, our findings

lead to the conclusion as follows:

• In terms of CoAP, Californium is recommended. Because it outperforms java-coap

with less LOC, CC, and CBO, so Californium program uses fewer code lines and has

good reusability, maintainability and changeability.

• In terms of MQTT, HiveMQ MQTT Client is recommended. Because it outperforms

Paho MQTT, with less LOC and CC, which means that HiveMQ MQTT Client program

is easier to code, reuse and maintain.

• Overall, HiveMQ MQTT Client performs the best among the four libraries. Because com-

paring LOC metric in Californium of CoAP, that in HiveMQ MQTT Client of MQTT

shows much less in the non-secure scenario. Furthermore, in both non-secure and secure

scenarios, CC in HiveMQ MQTT Client is less, even though CBO is just slightly larger.

Based on the analysis of packet size metrics in Section 5.5, in the non-secure scenario, our

findings lead to the conclusion as follows:

51

• The two libraries of MQTT would use larger packed size through the whole network than

the two of CoAP because MQTT has two processes (publisher to broker, and broker to sub-

scriber), and the accumulated packet size from both processes is larger than that of CoAP.

• From the tables in Section 5.5, java-coap is the best choice among the four libraries using

the least packet size, followed by Californium.

• As a result, we recommended using Californium, even though java-coap uses only

two tokens to match a response with a request by default and less than eight tokens used

by default in Californium. Because Californium is an active library in GitHub, it

is possible that it would be easily configured for setting tokens in the future version so that

Californium might use the least packet size in the future version. The difference would

then be negligible when they have the same token length.

Based on the analysis of runtime metrics in Section 5.6, our findings lead to the conclusion that

CoAP is faster than MQTT, and it shows better in the overhead metric. Among the four libraries in

this experiment, in most scenarios, java-coap is the fastest, followed by Californium.

In all, based on our experiment, in pursuit of fast communication, we highly recommend using

Californium. While in pursuit of the advantage at the coding level refers to the static metrics,

we highly recommend using HiveMQ MQTT Client.

52

Chapter 6

Discussions

6.1 Discussions

From the experiment, the comparison between NON/QoS0 and CON/QoS1 scenarios does not

manifest any significant advantages at goodput based on the non-continuous traffic. In the majority

of IoT applications in daily life, people usually access IoT devices in non-continuous traffic. For in-

stance, in residential settings, occupants typically manage IoT devices by issuing specific commands

as needed or receiving scheduled notifications, as opposed to exerting continuous control over the

devices. When developers apply similar user requirements, they can choose the CON/QoS1 scenario

to improve reliability. However, if the IoT devices are deployed in a place where a lot of devices are

communicating over the same network, it would lead to network congestion because our experiment

result shows that the overhead metric in CON/QoS1 scenario is greater than in CON/QoS0 scenario:

extra packets of ACK or PUBACK transmitted through the network.

In addition, our programs in the non-secure scenario run faster than the secure scenario because

creating the connection securely will take time, and the secure cases need more overhead in each

packet. However, the decision to employ a secure mode depends on the specific user requirements.

Generally, IoT devices are set in different area networks. For example, the mobile phone re-

ceives the temperature from a smart thermometer at home and uses the WiFi in school. In this case,

the smart thermometer applying CoAP is not easy to configure as mentioned in Section 5.2, but if

applying MQTT protocols, developers can rent a could server to be the broker anytime, which is

53

convenient for developers. We highly recommend developers to use HiveMQ MQTT Client.

In the results from Section 5.4, we use static code metrics, CBO, CC, LCOM, and LOC, to

compare the implementations. We are well aware that these metrics alone do not allow an absolute

judgment on these implementations. Indeed, we would need software quality models, which would

use these metrics, to provide a coherent evaluation. However, using these metrics allows a quantified

comparison between implementations and is a first step towards using quality models in future work.

We did not use a benchmark to collect the dynamic metrics because we could not find such a

benchmark readily available. During this experiment process, we tried to make the experimentation

process continue with minimal interruptions and our workload lasted for 12 hours. All the data that

we collected is available as a benchmark for future work.

6.2 Threats to Validity

In this section, we discuss the threats to the validity. In our experiment, the code style will

affect LOC. Even though, in this experiment, we make our program demonstration code as simple

as possible with maintainable logic. Besides, achieving an extremely simple program with minimum

code lines is inevitably challenging.

In this experiment, we used Understand Software to collect the static metrics because it is a

famous and useful software. However, there is no guarantee that it has no bug, and at the same time,

the packet size is computed by hand, which might cause some bytes to be ignored to record to affect

the outcome, so it has an influence on validity,

In comparison between QoS0/NON scenario and QoS1/CON scenario, theoretically, QoS0/NON

case should be faster than QoS1/CON case However, the result does not show an obvious difference.

It might be affected by Raspberry Pi and the router’s temperature, which affects the validity.

In this thesis, there are two libraries from the CoAP protocol and two libraries from MQTT, it

could not make a very general conclusion to compare the CoAP and MQTT, which affects validity.

54

6.3 Future Work

Based on our work, to make future results more comprehensive, we suggest the following work.

Firstly, one of our future works is to develop an approach that automates all the manual steps of our

approach, so that developers can easily obtain results on new libraries, different implementations,

and different scenarios. We also will consider other client-only (or server-only) libraries and other

libraries in other programming languages. We will also consider more metrics to evaluate the pro-

tocols and libraries, for example, we will introduce the idea of energy consumption in this work to

justify some of the findings. We will also use, extend, or build new quality models.

55

Chapter 7

Conclusion

In contemporary times, IoT is experiencing exponential growth, reflected in the increasing de-

ployment of IoT devices so it is important to find the appropriate protocol and its libraries to apply

to different scenarios.

We initially chose CoAP and MQTT as the target protocols. Then in Section 5.1, we surveyed

and selected different libraries of the protocols and finally chose Californium, java-coap,

Paho MQTT, HiveMQ MQTT Client as the target libraries. After setting up the IoT infras-

tructure according to Section 5.2, we collected and devised the scenario about the NON/QoS0,

CON/QoS1, security and no security in Section 5.3.

In Section 5.4, we collected static metrics (CBO, CC, LCOM and LOC) on the implemented

senders and receivers, and we concluded that HiveMQ MQTT Client demonstrates commend-

able reusability, maintainability, and changeability among these four repositories. In Section 5.5,

based on our experiment, CoAP use less packet size than MQTT, and Californium is recom-

mended. In Section 5.6, we collected runtime performances (goodput, throughput, overhead) when

running the scenarios, we concluded that java-coap is the fastest, and the overhead metric shows

that java-coap use the least bytes to communicate in the whole communication process.

Consequently, we recommend using HiveMQ MQTT Client, because programs with the li-

braries are easy to reuse and maintain, and it is easy to deploy, even though it is not the fastest.

56

Bibliography

[1] Kumar, Sumit and Dalal, Sumit and Dixit, Vivek. The OSI model: Overview on the seven

layers of computer networks. International Journal of Computer Science and Information

Technology Research, 2(3):461–466, 2014.

[2] Statista. Number of internet of things (IoT) connected devices worldwide from 2019 to 2030(in

billions), 2022. URL https://www.statista.com/statistics/1183457/io

t-connected-devices-worldwide/.

[3] Shelby, Zach and Hartke, Klaus and Bormann, Carsten. The constrained application protocol

(CoAP), 2014. URL https://datatracker.ietf.org/doc/html/rfc7252.

[4] MQTT.org. MQTT: The Standard for IoT Messaging, 2022. URL https://mqtt.org/.

[5] Al Enany, Marwa O. and Harb, Hany M. and Attiya, Gamal. A Comparative analysis of MQTT

and IoT application protocols. In 2021 International Conference on Electronic Engineering

(ICEEM), pages 1–6, New York, NY, USA, 2021. IEEE CS Press. doi: 10.1109/ICEEM520

22.2021.9480384.

[6] Laaroussi, Zakaria and Novo, Oscar. A Performance Analysis of the Security Communication

in CoAP and MQTT. In 2021 IEEE 18th Annual Consumer Communications & Networking

Conference (CCNC), pages 1–6, New York, 2021. IEEE CS Press. doi: 10.1109/CCNC4903

2.2021.9369565.

[7] Naik, Nitin. Choice of effective messaging protocols for IoT systems: MQTT, CoAP, AMQP

and HTTP. In 2017 IEEE International Systems Engineering Symposium (ISSE), pages 1–7,

New York, 2017. IEEE CS Press. doi: 10.1109/SysEng.2017.8088251.

57

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/
https://datatracker.ietf.org/doc/html/rfc7252
https://mqtt.org/

[8] OASIS Message Queuing Telemetry Transport (MQTT) TC. MQTT Version 5.0, 2019. URL

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

[9] International Organization for Standardization. ISO/IEC 7498-1: 1994 information

technology–open systems interconnection–basic reference model: The basic model. Inter-

national Standard ISOIEC, 74981:59, 1996.

[10] IBM. Connecting all the things in the Internet of Things. URL https://developer.ib

m.com/articles/iot-lp101-connectivity-network-protocols/.

[11] Microsoft. IoT technologies and protocols. URL https://azure.microsoft.com/

en-ca/solutions/iot/iot-technology-protocols/.

[12] CISCO. IoT and Security Standards and Best Practices. URL https://www.ciscopre

ss.com/articles/article.asp?p=2923211&seqNum=6.

[13] Stefanec, Tomislav and Kusek, Mario. Comparing energy consumption of application layer

protocols on IoT devices. In 2021 16th International Conference on Telecommunications

(ConTEL), pages 23–28, 2021. doi: 10.23919/ConTEL52528.2021.9495993.

[14] Jon Postel. Rfc0768: User datagram protocol, 1980.

[15] Klaus Hartke. Rfc 7641: Observing resources in the constrained application protocol (coap),

2015.

[16] Stanford-Clark, Andy and Truong, Hong Linh. Mqtt for sensor networks (mqtt-sn) protocol

specification. International business machines (IBM) Corporation version, 1(2):1–28, 2013.

[17] Bormann, Carsten and Lemay, Simon and Tschofenig, Hannes and Hartke, Klaus and Silvera-

jan, Bilhanan and Raymor, B. CoAP (Constrained Application Protocol) over TCP, TLS, and

WebSockets, 2018. URL https://datatracker.ietf.org/doc/html/rfc8323.

[18] Selander, Göran and Mattsson, John and Palombini, Francesca and Seitz, Ludwig. Object

security for constrained restful environments (oscore), 2019. URL https://datatracke

r.ietf.org/doc/html/rfc8613.

58

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://developer.ibm.com/articles/iot-lp101-connectivity-network-protocols/
https://developer.ibm.com/articles/iot-lp101-connectivity-network-protocols/
https://azure.microsoft.com/en-ca/solutions/iot/iot-technology-protocols/
https://azure.microsoft.com/en-ca/solutions/iot/iot-technology-protocols/
https://www.ciscopress.com/articles/article.asp?p=2923211&seqNum=6
https://www.ciscopress.com/articles/article.asp?p=2923211&seqNum=6
https://datatracker.ietf.org/doc/html/rfc8323
https://datatracker.ietf.org/doc/html/rfc8613
https://datatracker.ietf.org/doc/html/rfc8613

[19] Aline Brito, Laerte Xavier, Andre Hora, and Marco Tulio Valente. APIDiff: Detecting API

breaking changes. In 2018 IEEE 25th International Conference on Software Analysis, Evolu-

tion and Reengineering (SANER), pages 507–511, 2018. doi: 10.1109/SANER.2018.8330249.

[20] Jang, Minwoo and Kook, Joongjin and Ryu, Samin and Lee, Kahyun and Shin, Sung and Kim,

Ahreum and Park, Youngsu and Cho, Eig Hyun. An efficient similarity comparison based on

core API calls. In Proceedings of the 28th Annual ACM Symposium on Applied Computing,

pages 1634–1638, 2013.

[21] Raza, Shahid and Shafagh, Hossein and Hewage, Kasun and Hummen, René and Voigt,

Thiemo. Lithe: Lightweight Secure CoAP for the Internet of Things. IEEE Sensors Jour-

nal, 13(10):3711–3720, 2013. doi: 10.1109/JSEN.2013.2277656.

[22] Kovatsch, Matthias and Lanter, Martin and Shelby, Zach. Californium: Scalable cloud services

for the Internet of Things with CoAP. In 2014 International Conference on the Internet of

Things (IOT), pages 1–6, 2014. doi: 10.1109/IOT.2014.7030106.

[23] Yassein, Muneer Bani and Shatnawi, Mohammed Q. and Aljwarneh, Shadi and Al-Hatmi,

Razan. Internet of Things: Survey and open issues of MQTT protocol. In 2017 International

Conference on Engineering & MIS (ICEMIS), pages 1–6, 2017. doi: 10.1109/ICEMIS.2017.

8273112.

[24] Atmoko, Rachmad Andri and Riantini, Rona and Hasin, Muhammad Khoirul. IoT real time

data acquisition using MQTT protocol. Journal of Physics: Conference Series, abstract = The

Internet of Things (IoT) provides ease to monitor and to gain sensor data through the Internet

[1]. The need of high quality data is increasing to the extent that data monitoring and acqui-

sition system in real time is required, such as smart city or telediagnostic in medical areas

[2]. Therefore, an appropriate communication protocol is required to resolve these problems.

Lately, researchers have developed a lot of communication protocols for IoT, of which each

has advantages and disadvantages. This study proposes the utilization of MQTT as a com-

munication protocol, which is one of data communication protocols for IoT. This study used

59

temperature and humidity sensors because the physical parameters are often needed as pa-

rameters of environment condition [3]. Data acquisition was done in real-time and stored in

MySQL database. This study is also completed by interface web-based and mobile for online

monitoring. This result of this study is the enhancement of data quality and reliability using

MQTT protocol., 853(1):012003, may 2017. doi: 10.1088/1742-6596/853/1/012003. URL

https://dx.doi.org/10.1088/1742-6596/853/1/012003.

[25] Thangavel, Dinesh and Ma, Xiaoping and Valera, Alvin and Tan, Hwee-Xian and Tan, Colin

Keng-Yan. Performance evaluation of mqtt and coap via a common middleware. In 2014

IEEE Ninth International Conference on Intelligent Sensors, Sensor Networks and Information

Processing (ISSNIP), pages 1–6, 2014. doi: 10.1109/ISSNIP.2014.6827678.

[26] Hed̄i, Ivan and Špeh, I. and Šarabok, Antonio. IoT network protocols comparison for the

purpose of IoT constrained networks. In 2017 40th International Convention on Information

and Communication Technology, Electronics and Microelectronics (MIPRO), pages 501–505,

2017. doi: 10.23919/MIPRO.2017.7973477.

[27] Mawal Mohammed, Mahmoud Elish, and Abdallah Qusef. Empirical insight into the context

of design patterns: Modularity analysis. In 2016 7th International Conference on Computer

Science and Information Technology (CSIT), pages 1–6. IEEE, 2016.

[28] Dennis Kafura and Geereddy R. Reddy. The use of software complexity metrics in software

maintenance. IEEE Transactions on Software Engineering, SE-13(3):335–343, 1987. doi:

10.1109/TSE.1987.233164.

[29] Chidamber, Shyam R. and Kemerer, Chris F. A metrics suite for object oriented design. IEEE

Transactions on Software Engineering, 20(6):476–493, 1994. doi: 10.1109/32.295895.

[30] McCabe, Thomas J. A Complexity Measure. IEEE Transactions on Software Engineering,

SE-2(4):308–320, 1976. doi: 10.1109/TSE.1976.233837.

[31] Sci Tools. What metrics does understand have?, 2023. URL https://support.scitoo

ls.com/support/solutions/articles/70000582223-what-metrics-doe

s-understand-have-2.

60

https://dx.doi.org/10.1088/1742-6596/853/1/012003
https://support.scitools.com/support/solutions/articles/70000582223-what-metrics-does-understand-have-2
https://support.scitools.com/support/solutions/articles/70000582223-what-metrics-does-understand-have-2
https://support.scitools.com/support/solutions/articles/70000582223-what-metrics-does-understand-have-2

[32] Tanenbaum, Andrew S. and WETHERALL, DAVID J. Computer networks fifth edition, 2011.

[33] Peterson, Larry L. and Davie, Bruce S. 1 - foundation. In Peterson, Larry L. and Davie, Bruce

S., editor, Computer Networks (Fifth Edition), The Morgan Kaufmann Series in Networking,

pages 1–69. Morgan Kaufmann, Boston, fifth edition edition, 2012. ISBN 978-0-12-385059-

1. doi: https://doi.org/10.1016/B978-0-12-385059-1.00001-6. URL https://www.scie

ncedirect.com/science/article/pii/B9780123850591000016.

61

https://www.sciencedirect.com/science/article/pii/B9780123850591000016
https://www.sciencedirect.com/science/article/pii/B9780123850591000016

	List of Figures
	List of Tables
	Introduction
	Background
	CoAP
	MQTT
	Comparison and Discussions of CoAP and MQTT

	Related Work
	Comparisons of APIs
	About CoAP and MQTT
	Comparisons of CoAP and MQTT

	Approach
	Survey and select different libraries of the protocols
	Set up an IoT infrastructure
	Collect, devise, and implement scenarios using the chosen libraries
	Collect static metrics on the implemented senders and receivers
	Analyse packet sizes theoretically and practically
	Collect runtime performances when running the scenarios
	Compare the collected measures and recommend a protocol/library

	Implementation, Application, and Result
	Survey and select different libraries of the protocols
	Set up an IoT infrastructure
	Collect, devise, and implement scenarios using the chosen libraries
	Collect Libraries Characteristics
	Devise Scenarios
	Implement Scenarios

	Collect Static Metrics on the Senders and Receivers
	Analyse Packet Sizes Theoretically and Practically
	Collect Runtime Performance Metrics
	Compare the collected measures and recommend a protocol/library

	Discussions
	Discussions
	Threats to Validity
	Future Work

	Conclusion
	Bibliography

