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Abstract

Transaction Graph Analysis for Bitcoin Address Classification: Traditional Supervised
Machine Learning and Deep Learning Methods

Seyedarash Saeidimanesh

In this thesis, we consider the problem of Bitcoin address classification and clustering, common

in the domains of law enforcement and regulatory compliance. We build a machine learning-based

classification framework which is able to attribute a Bitcoin address to one of the predefined classes

or to a specific company. We consider five distinct classes for coarse-grained classification: crypto-

currency exchanges, online marketplaces, mining pools, fundraising/charity platforms, and gam-

bling; and 180 companies for fine-grained classification. Classes and the companies were selected

so that they represent a broad spectrum of entities and activities within the Bitcoin ecosystem.

This thesis has three main contributions. First, due to the lack of publicly available datasets

suitable for testing machine-learning classification algorithms, we create our own labeled dataset

consisting of 3M Bitcoin addresses (from 2016-2022), with each Bitcoin address assigned a ready-

to-use vector of carefully crafted features. Second, using this dataset, we conduct a comparative

analysis of different machine-learning techniques and features for classification. Finally, we develop

two types of classifiers: based on the Boosted tree algorithm and the neural network-based classifier.

Both are able to attribute a Bitcoin address to one of the predefined classes/companies.

Our binary classification model achieves an F1 score of 76% using the Boosted tree algorithm,

while our deep learning model achieves a 90% F1 score for multi-class classification with an ac-

curacy of 92% and 28% higher than related work correspondingly. We achieve 67% accuracy for

linking Bitcoin addresses to one of the 180 companies with our deep-learning model.
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Introduction

Bitcoin transaction clustering has gained significant attention due to its anti-money laundering

(AML) and economic purposes. Clustering Bitcoin transactions into distinct classes aids in tracking

stolen Bitcoins. Classification of Bitcoin transactions is essential for understanding its economic

impact and identifying potential risks associated with its use. By categorizing transactions into

different classes, researchers can discern patterns and behaviors, enabling them to develop more

effective anti-money laundering measures.

Bitcoin’s pseudonymous nature raises concerns about its potential for illicit activities, including

money laundering and terrorist financing. Classification of Bitcoin transactions facilitates the iden-

tification and tracking of suspicious or high-risk transactions. By applying AML algorithms and

techniques, regulatory authorities and financial institutions can detect and prevent illicit activities,

ensuring compliance with AML regulations. Classification assists in identifying fraudulent activi-

ties within the Bitcoin ecosystem. By analyzing transaction patterns and characteristics, machine

learning algorithms can detect anomalies and flag potentially fraudulent transactions. This aids in

preventing scams, Ponzi schemes, and other fraudulent schemes that exploit Bitcoin transactions.

Most Bitcoin clustering studies relied on common-input ownership and change address heuris-

tics for clustering. Previous studies provided numerical results in terms of the number of clusters

or the number of addresses within a class. Previous studies focused on licit and illicit Bitcoin ad-

dress clustering. However, we developed a new method to classify Bitcoin addresses into binary

and multi-class categories and linked the Bitcoin addresses to their real-world owners. We achieved

good statistical results in the classification evaluation metrics.

Several limitations were identified in the previous studies, in addition, most of these studies
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relied on closed-source datasets, such as the elliptic dataset. Previous studies often focused on old

Bitcoin transactions, which can not reflect recent Bitcoin network behavior. One important gap in

the previous studies was that they focused only on clustering techniques for small groups of Bitcoin

addresses. These clustering methods were typically unsupervised and lacked the ability to provide

meaningful statistical information about the Bitcoin addresses clustering.

However, our research classifies Bitcoin addresses into binary and multi-class categories and

links Bitcoin addresses to their real-world owners. Our research provides better statistical and eval-

uation metric results than the previous works. In this study, five distinct classes are considered

for classification: Crypto-currency exchanges, Online marketplaces, Mining pools, and Fundrais-

ing/charity platforms. These classes represent various types of entities and activities associated

with Bitcoin addresses and transactions, allowing for a comprehensive understanding of the Bitcoin

ecosystem. Our research involves feature engineering to identify important features with high co-

efficients, leading to significant advancements in both binary and multi-class classification. This

method enables the precise identification of Bitcoin addresses associated with various categories,

including Finance, Service, Gambling, Miscellaneous, and Pools. In addition, we have successfully

linked Bitcoin addresses to their real-world owners through deep-learning techniques.

The proposed approach has three main contributions, first, we created our dataset. To create

our dataset we collected a large number of recent bitcoin addresses and extracted different prop-

erties for them, and we labeled these addresses into different classes by using available data from

various sources such as wallet explorer[1] and bitcoinwhoswho[2]. In particular, this dataset in-

cludes a collection of recent Bitcoin addresses, totaling 3M entries. This large dataset is created to

address the shortcomings of conventional datasets, which were often considered closed sources or

outdated. Second, we conducted a comparative analysis of different machine-learning techniques

on our dataset to determine the most suitable one for the task, and also we did feature engineering to

identify important features with high coefficients. Third we classified Bitcoin addresses into binary

and multi-class categories and linked Bitcoin addresses to their real-world owners.

These methodological strategies, when combined, form the foundation of our research, which

provides a framework for our findings and insights into Bitcoin address clustering and classifica-

tion. Through this comprehensive approach, we aim to classify Bitcoin addresses into binary and

2



multiclass categories and link Bitcoin addresses to their real-world owners.

In summary, the proposed model has some features including a mixture of big data and machine

learning. It employs a two-step clustering approach based on common-input-ownership heuristics to

group data into distinct entities. The model creates a large dataset using memory-efficient methods

with recent data. It involves feature engineering to identify the important features with high coeffi-

cients that consider Bitcoin graph behavior. The model conducts a comparative analysis of different

machine-learning techniques on our dataset to determine the most suitable one for the task. Notably,

the proposed model supports supervised machine learning classification, encompassing all Bitcoin

addresses, rather than being limited to specific groups, such as licit and illicit purposes. The pro-

posed model includes both binary and multi-classification of Bitcoin addresses and also employs

deep learning techniques to link Bitcoin addresses to their real-world owners, the results achieved

by this model demonstrate better results in accuracy and other performance metrics compared to

prior research.

Application domains for Bitcoin address classification

The classification of Bitcoin transactions holds significant importance across various domains,

encompassing finance, law enforcement, and regulatory compliance. The following key reasons

underscore the significance of Bitcoin transaction classification.

Economic analysis, categorizing Bitcoin transactions provides valuable insights into fund flows

within the Bitcoin network. By classifying transactions based on their purpose or nature, economists

can analyze patterns, identify market behaviors, and gain a deeper understanding of Bitcoin’s overall

economic activity. This information aids in making informed investment decisions, tracking market

sentiment, and predicting market movements.

Anti-Money Laundering (AML), Bitcoin transaction classification is useful for Anti-Money

Laundering (AML) purposes. Bitcoin’s pseudonymous nature raises concerns about its potential

for illicit activities, including money laundering and terrorist financing. Classification of Bitcoin

transactions facilitates the identification and tracking of suspicious or high-risk transactions. By ap-

plying AML algorithms and techniques, regulatory authorities and financial institutions can detect

3



and prevent illicit activities, ensuring compliance with AML regulations.

Fraud detection, classification of Bitcoin transactions can help with fraud detection. Classifica-

tion assists in identifying fraudulent activities within the Bitcoin ecosystem. By analyzing transac-

tion patterns and characteristics, machine learning algorithms can detect anomalies and flag poten-

tially fraudulent transactions. This aids in preventing scams, Ponzi schemes, and other fraudulent

schemes that exploit Bitcoin transactions.

Customer profiling, and classifying Bitcoin transactions enables the creation of customer pro-

files and segmentation based on transaction behavior. This profiling helps understand the prefer-

ences, spending habits, and transaction patterns of different user groups. Financial institutions and

businesses can leverage this information to provide personalized services, targeted marketing, and

enhanced customer experiences.

Risk management, classifying Bitcoin transactions helps assess and manage risks associated

with Bitcoin-related activities. By categorizing transactions based on risk factors such as the source

of funds, transaction size, or destination, risk assessment models can be developed to evaluate the

level of risk associated with specific transactions or entities. This enables proactive risk management

and mitigation strategies.

Regulatory compliance, governments and regulatory bodies are increasingly focused on regu-

lating cryptocurrencies and ensuring compliance with existing financial regulations. Classifying

Bitcoin transactions facilitates compliance monitoring and reporting. By identifying transactions

falling under regulatory frameworks (e.g., cross-border transactions, large-value transactions), reg-

ulators can enforce compliance and detect potential instances of tax evasion or financial crimes.

Therefore, the classification of Bitcoin transactions plays an important role in enhancing the

understanding of this decentralized financial system, promoting transparency, and facilitating the

responsible and secure use of cryptocurrencies.

Outline

The thesis is structured as follows, in chapter 1 we discuss about background. This section

reviews and discusses how Bitcoin works and explains some of the Bitcoin graph behavior features.
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Chapter 2 is about the literature review. In this chapter, we present previous research and studies

related to Bitcoin clustering and transaction analysis. We also highlight the advancements and

limitations in this field. We present our proposed approach and methodology for the classification

of Bitcoin addresses in chapter 3. We employ binary, multi-class classification, and denomination

classification. In this chapter deep learning techniques and boosted tree classifiers are utilized. We

discuss the findings of our research and compare them with existing studies in the domain of Bitcoin

transaction classification. We also present the effectiveness of our approach and its contributions to

the Bitcoin address classification. Chapter 4 is about implementation, and presents some technical

details that we follow to design our dataset and model.
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Chapter 1

Background

1.1 Bitcoin

Bitcoin was introduced by an individual or group using the pseudonym Satoshi Nakamoto in

2009 [3] that operates on a blockchain. The blockchain provides Bitcoin’s public ledger. A pub-

lic ledger is, an ordered and timestamped record of transactions. It helps to prevent cheating by

preventing double spending and modification of previous transaction records. In the Bitcoin net-

work, every full node stores a blockchain which includes only the blocks that it has verified. When

multiple nodes have identical blocks in their blockchain, they are considered to be in consensus.

Consensus rules are the validation rules these nodes follow to maintain consensus [4]. The Bitcoin

consensus system forms an unalterable ledger where entries can only be added, it is the append-only

ledger. Miners, who validate transactions ensure that transactions are valid [5].

A group of new transactions is gathered in the transaction data section of a block. Each transac-

tion is duplicated and hashed, and the hashes are then paired, and the process repeats until a single

hash remains, it is called the Merkle root of a Merkle tree. The block’s header holds the Merkle

root. Each block includes the hash of the previous block’s header, creating a chain of blocks. This

ensures that altering a transaction requires modifying not just its block but also all the following

blocks. Transactions are linked and create a chain together, and Bitcoins move from transaction to

transaction. In each transaction, the satoshis that previously received from earlier transactions will

be spent. The input of one transaction is the output of a previous transaction. A single transaction

6



Figure 1.1: Blockchain Structure[6]

can have multiple outputs, this happens when sending to multiple addresses. However, each output

of a particular transaction can only serve as an input once in the blockchain. This procedure pre-

vents double spending in the Bitcoin blockchain. As each output from a particular transaction can

only be used once in the blockchain; therefore, all transactions in the blockchain are categorized as

either Unspent Transaction Outputs (UTXOs) or spent transaction outputs. [4].

Figure 1.2: Transaction propagation [4]

Transaction has three parts, metadata, inputs, and outputs. Metadata includes the size of the

transaction, the number of inputs, the number of outputs, and the hash of the entire transaction. The

transaction inputs are organized into an array, and each input follows a consistent format. An input
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includes information about a preceding transaction, such as its hash, serving as a hash pointer to the

previous transaction. Additionally, the input specifies the index of the previous transaction’s outputs

that are being claimed. The transaction outputs form an array, each output has two fields that each

has a value. The total of all output values must not exceed the total of all input values. If the output

values’ sum is less than the input values’ sum, the difference represents a transaction fee awarded

to the miner who validates and publishes the transaction [5].

Figure 1.3: Transaction content [5]

The private key is a secret, confidential, and long string of characters that is known only to

the owner of a Bitcoin wallet, it serves as the digital signature of ownership and control over the

associated Bitcoin. The private key is used to create digital signatures for Bitcoin transactions. It

is used to prove that the person initiating the transaction has the right to do so. The public key is

derived from the private key using a mathematical algorithm. It is a shorter string of characters,

and it is publicly known and associated with the owner’s Bitcoin address. The public key is used to

verify the digital signatures created with the private key. It confirms that the transaction has been

authorized by the private key holder.

Many anonymous peers work together on the network to maintain the blockchain. Some un-

trustworthy peers may want to modify past blocks, to prevent this each block needs to prove a

significant amount of work was invested in its creation. Untrustworthy peers seeking to change

previous blocks must exert more effort than honest peers who simply aim to add new blocks to the
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blockchain [4]. The connection between blocks in the blockchain ensures that modifying any trans-

action in the block needs to change all the blocks that come after it in the sequence. So, changing

a specific block increases the cost with every new block added to the blockchain, this shows the

importance of the proof of work in the Bitcoin blockchain. Bitcoin’s proof of work relies on the

unpredictability of cryptographic hashes. It means if any person changes the data and recalculates

the hash, he gets a new random number. Therefore, it is impossible to modify the data in a way that

makes the hash number predictable.

Bitcoin miners compete to add new blocks to the blockchain by solving a complex math puzzle.

If a miner succeeds, they can add their block to the blockchain, and it’s identified by its block height.

Sometimes, multiple miners create blocks at the same time, leading to a fork in the blockchain.

When this happens, each participant on the network decides which block to accept. They usually

pick the first one they see. Eventually, a miner produces another block that attaches to only one of

the competing simultaneously-mined blocks, this makes that side of the fork stronger than the other

side. Since multiple blocks can have the same height during a blockchain fork, block height should

not be used as a globally unique identifier. Instead, blocks are usually referenced by the hash of

their header.

Figure 1.4: Common and uncommon Forks [4]

1.2 Bitcoin transactions graph behavior

Bitcoin transactions form a graph-like structure due to their interconnectivity and dependency

on previous transactions. Each transaction contains information about the previous transaction it

9



refers to, identified by the ”prev hash” information, thereby creating a chain-like linkage between

transactions. This chain of transactions is commonly referred to as the blockchain. As new transac-

tions are added to the blockchain, they reference the outputs of previous transactions as their inputs,

effectively forming a directed acyclic graph (DAG) known as the transaction graph. This graph’s

structure captures the flow of funds through the Bitcoin network, as the outputs of one transaction

become the inputs of subsequent transactions. Transaction graph enables the verification of the en-

tire transaction history, ensuring that each Bitcoin being spent originates from legitimate sources and

has not been double-spent. This inherent transparency and immutability make Bitcoin’s transaction

graph an essential feature of its decentralized and secure nature.

Figure 1.5: Bitcoin address relationships look like graph behavior [7][8]

1.3 Feature explanation

Bitcoin address graphical features such as PageRank, k core, and component ID are discussed

in the following.

1.3.1 Pagerank

PageRank is an algorithm used to measure the importance or influence of nodes (web pages) in

a directed graph, typically represented as a web graph. It was developed by Larry Page and Sergey

Brin, the co-founders of Google, and is one of the foundational algorithms that fueled the success

of Google’s search engine. In a web graph, nodes represent web pages, and directed edges represent

hyperlinks between those pages. The PageRank algorithm assigns a numerical score to each page,
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which reflects the importance or popularity of the page within the entire web graph. The underlying

idea is that a page is more important if it is linked to by other important pages. The original concept

of PageRank can be understood through the following simplified explanation, each page in the web

graph is initially assigned an equal score (e.g., 1.0). During each iteration of the algorithm, the score

of each page is updated based on the scores of the pages linking to it. Pages with higher incoming

scores contribute more to the score of the current page.

The process of updating the scores continues for a certain number of iterations or until conver-

gence is reached. The final scores represent the PageRank of each page, with higher scores indicat-

ing higher importance or influence. PageRank is used by search engines to rank web pages in their

search results. Pages with higher PageRank scores are considered more relevant or authoritative and

are likely to appear higher in search results when relevant queries are made by users.

Although PageRank was initially developed for web graphs, the underlying concept of measur-

ing the importance of nodes in a network has been extended to various other applications, such as

social network analysis, recommendation systems, and citation networks.

1.3.2 Component ID

In the context of graphs, a ”component ID” refers to a unique identifier assigned to each con-

nected component in the graph. A connected component is a subgraph in which every node is

connected to at least one other node through a series of edges. In other words, all the nodes within a

connected component can be reached from any other node in the same component by traversing the

edges of the graph. An undirected graph consists of a set of nodes (vertices) connected by edges,

where the edges have no direction. A connected component in an undirected graph is a subset of

nodes where there is a path between any two nodes in the component. However, there may not be a

path between nodes in different components.

When a graph contains multiple connected components, each component is assigned a unique

component ID. The component IDs serve as a way to distinguish and group nodes belonging to the

same connected component. For example, if a graph has three connected components, they might be

labeled with component IDs 1, 2, and 3, respectively. Graph algorithms often use component IDs to

perform various operations on connected components, such as finding all components, determining
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the size of each component, identifying if two nodes are in the same component, and so on. Compo-

nent IDs are particularly relevant in applications like network analysis, social network analysis, and

community detection, where identifying and analyzing connected components can reveal important

structural properties and patterns within the graph.

It is important to note that the specific representation and calculation of component IDs may

vary depending on the graph data structure and the algorithms used for graph analysis. In some

cases, component IDs may be integers, while in other cases, they could be strings or other data

types, depending on the requirements of the analysis or the software library used for graph manip-

ulation[9].

1.3.3 K-core

In graph theory, a k-core is a subgraph of a graph in which every node has a degree of at least k.

In other words, a k-core is a maximal connected subgraph where each node has at least k neighbors

within the subgraph. To form a k-core, the process involves iteratively removing nodes with degrees

less than k until no more such nodes can be removed. The resulting subgraph is the k-core of the

original graph. The k-core concept is commonly used in graph analysis and has various applications,

including: Identifying central and highly connected regions.

Higher k-cores represent regions with denser connectivity and can be seen as the ”core” of

highly connected nodes in the graph. K-cores can be used as a preprocessing step in community

detection algorithms to find dense substructures in the graph. Displaying the k-core subgraphs can

help in visualizing the most connected parts of the network. The k-core decomposition can be used

to simplify the graph by removing less important nodes, and reducing its size while preserving its

core structure.

The k-core decomposition is a useful tool to understand the hierarchical organization of net-

works and to reveal important substructures within them. It allows researchers to analyze and inter-

pret complex networks in a more manageable and interpretable way. The k-core concept is closely

related to the concept of ”degree centrality,” which measures the number of edges connected to a

node. However, k-core goes beyond just the degree and provides a more nuanced view of node

connectivity in the graph [10].
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Figure 1.6: Illustration of the k-core decomposition[6]

In summary, Pagerank is a feature that measures the importance or influence of a node in a

network or graph. It assigns a numerical value to each node based on the quantity and quality

of incoming links. Nodes with higher Pagerank scores are considered more significant or central

within the network. The algorithm takes into account both the number and quality of incoming

links, giving more weight to links from highly ranked nodes. Pagerank is commonly used in fields

like social network analysis and information retrieval to identify important nodes or entities in a

network.

In graph theory, the component ID feature refers to a unique identifier assigned to each con-

nected component within a graph. A connected component is a subgraph where every node is

connected to at least one other node in the same subgraph. The component ID serves as a label

or tag that distinguishes one connected component from another. By assigning a component ID to

each connected component, we can identify and analyze the different clusters or groups of nodes

within a graph. This feature helps in understanding the connectivity patterns, identifying isolated or

disconnected nodes, and studying the overall structure and organization of the graph. Component

ID can be useful in various graph-related tasks, such as community detection, network visualization,

and analyzing the spread of information or influence within a network.
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1.4 Classifier methods

We use different machine-learning methods and compare them with each other to find the best

one.

1.4.1 Support Vector Machine (SVM) classifier

Support Vector Machine is a powerful and widely used supervised learning algorithm for classi-

fication and regression tasks. In the context of classification, it finds the optimal hyperplane that best

separates different classes in the feature space. The main idea is to maximize the margin between

the two classes, making SVM effective in dealing with both linearly separable and non-linearly sep-

arable datasets. The SVM classifier works by mapping input data points into a higher-dimensional

feature space and then finding the optimal hyperplane that separates the data points. It can handle

binary classification tasks as well as be extended to multi-class classification using techniques like

one-vs-one or one-vs-all. SVM is known for its ability to handle high-dimensional data and handle

overfitting well.

Figure 1.7: Support Vector Machine classifier with a non-linear kernel

1.4.2 Logistic Regression classifier

Logistic Regression is a linear classification algorithm used for classification tasks. Despite its

name, it is primarily used for classification, not regression. It predicts the probability of an instance

belonging to a particular class by applying the logistic function (sigmoid) to a linear combination of

input features. In logistic regression, the model estimates the probability of an instance belonging

to the positive class (e.g., class 1) given its features. If the probability is above a specified threshold
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(usually 0.5), the instance is classified as positive; otherwise, it is classified as negative (e.g., class 0).

Logistic regression is simple, interpretable, and efficient, but it may not perform well on complex,

non-linear datasets.

Figure 1.8: Logistic Regression Classifier.

1.4.3 Decision tree classifier

A decision tree is a non-linear and hierarchical tree-like structure used for both classification

and regression tasks. In the context of classification, the tree is built by recursively splitting the data

into subsets based on the features, aiming to create pure leaf nodes (each containing instances of

a single class). At each node, the decision tree algorithm selects the feature that best separates the

data based on some impurity measure (e.g., Gini impurity or entropy). The process continues until

a stopping criterion is met, such as a maximum tree depth or the minimum number of samples in

a leaf node. Decision trees are easy to interpret and visualize, but they can be prone to overfitting,

especially when the tree becomes deep.

1.4.4 Random Forest classifier

Random Forest is an ensemble learning method that builds multiple decision trees during train-

ing and combines their predictions to make a final classification decision. Each decision tree is

constructed using a random subset of the training data and a random subset of the features. This

randomness helps reduce overfitting and improve generalization. In the classification task, the final

prediction is made by taking a majority vote among the predictions of individual decision trees.

Random Forest is more robust than a single decision tree and performs well on a wide range of
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tasks. It is known for its ability to handle high-dimensional data and avoid overfitting.

1.4.5 Boosted Tree classifier

Boosted Tree is another ensemble learning method that combines weak learners (typically shal-

low decision trees) into a strong predictive model. The algorithm works in an iterative manner,

with each new tree correcting the errors of the previous ones. During training, the algorithm as-

signs higher weights to misclassified instances, which means the subsequent trees focus more on

these misclassified instances. The final prediction is obtained by aggregating the predictions of all

the weak learners. Boosted Trees are powerful and often provide superior accuracy compared to

individual decision trees or Random Forests, but they may be more prone to overfitting and can be

computationally expensive.

Figure 1.9: The architecture of Gradient Boosting decision tree

1.4.6 Neural deep learning

Often referred to simply as deep learning, is a subfield of artificial intelligence (AI) and machine

learning that focuses on training artificial neural networks to perform complex tasks. It is inspired by

the structure and function of the human brain’s neural networks, where neurons process and transmit

information to make decisions and perform various functions. At the core of deep learning are

Artificial Neural Networks (ANNs), which are computational models consisting of interconnected

layers of nodes called neurons. These neurons are organized in layers: an input layer, one or more

hidden layers, and an output layer. Each neuron in a layer receives input data, processes it using

mathematical operations, and passes the output to the next layer. The term ”deep” in deep learning
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refers to the use of multiple hidden layers in neural networks. The depth of a neural network allows

it to learn and represent hierarchical patterns and features in the data, making it capable of handling

more intricate and abstract relationships in the input data. The process of deep learning involves

two fundamental phases: training and inference[11].

Figure 1.10: Neural Network and Deep Learning Neural Network
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Chapter 2

Literature review

In this chapter, some important research and papers that work on Bitcoin address classification

and tracking will be discussed.

There are several research in the field of fraud detection and clustering Bitcoin addresses to

distinguish between illicit and licit activities. Some clustering methods for fraud detection rely on

elliptic dataset, as mentioned in [12]. Catarina [13] introduced a new approach called guilty walker

methods, which utilize graph structure and past labels to enhance the performance of machine learn-

ing methods for money laundering detection. Additionally, a paper by Joana [14] presented an ac-

tive learning solution for detecting money laundering in the Bitcoin blockchain when labeled data

is scarce.

Figure 2.1: Illicit F1-score obtained with Random Forest, for the standard 166 features and the new
GuiltyWalker features before and after feature selection [13]

Most Bitcoin fraud detection research uses the Elliptic dataset [15, 16, 17, 18, 19, 14, 20, 21,
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22, 23, 24, 25, 26] and [27, 28, 18, 29, 13, 30, 31, 32]. This is an anonymized dataset that due to

intellectual property issues, did not provide an exact description of all the features in the dataset.

There is a time step associated with each node, representing a measure of the time when a transaction

was broadcasted to the Bitcoin network. The time steps, running from 1 to 49, are evenly spaced

with an interval of about two weeks. Each time step contains a single connected component of

transactions that appeared on the blockchain within less than three hours between each other; there

are no edges connecting the different time steps.

The dataset includes 203,769 node transactions and 234,355 directed edges, representing the

flow of Bitcoin going from one transaction to the next. From the total number of transactions, 21%

(42,019) are labeled as licit, 2% (4,545) as illicit, and the remaining 77% (157,205) are unknown.

Besides the graph structure, the dataset has 166 anonymized features associated with each trans-

action. The first 94 relate to information about the transaction itself. Table 2.1 shows the Elliptic

dataset contents. More than anonymized features the Elliptic dataset can not follow the temporal

dynamics with the emergence or disappearance of new entities in the blockchain. For example at

time step t = 43, which follows a dark market shutdown, none of the models performs well after

this event as the figure 2.1 shows, the Elliptic dataset can not work well in sudden changes in the

underlying behavior of a system [33].

ID Feature 1 Feature 2 Feature 3 Feature 4 Feature 165 Feature 166
230425980 -0.17146 -0.18466 -1.2013 -0.12061 -0.1206 -0.1197

Table 2.1: Elliptic dataset.

Wai [29] proposed Inspection-L, which is a graph neural network (GNN) framework based on

self-supervised Deep Graph Infomax (DGI) and Graph Isomorphism Network (GIN). Supervised

learning algorithms like Random Forest (RF) are employed to detect illicit transactions for Anti-

Money Laundering (AML) purposes. In another work, Mark [18] utilized Graph Convolutional

Networks (GCN) for financial forensics, and explored binary classification tasks for predicting illicit

transactions using logistic regression, random forest, multilayer perceptron, and GCN. To improve

upon existing methods, combinations with GCN have been investigated. Furthermore, Aldo [30]

proposed EvolveGCN, a model that adapts GCN along the temporal dimension without relying on
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node embeddings. However, most prior research on Bitcoin address clustering for AML primarily

utilized pre-made datasets such as elliptic datasets, which lacked detailed headers and had only a

few numerical columns.

He [34] analyzed the associations between Bitcoin transactions and addresses. He proposed

an improved change address detection algorithm and compared it with the original algorithm to

demonstrate its effectiveness. Additionally, the researcher employed the Louvain algorithm along

with other heuristics to enhance the clustering method. Sarah [35] explores unique characteristics

and employs heuristic clustering to group Bitcoin wallets based on evidence of shared authority.

This approach considers multiple public keys observed in the blockchain into larger entities, with

heuristics considering different public keys used as inputs to a transaction and change addresses.

Furthermore, Goldsmith [36] analyzed six subnetworks of bitcoin transactions known to be as-

sociated with prominent hacking groups. Additionally, Nerurkar [37] focuses on extracting nineteen

features from the Bitcoin network and proposes a deep learning-based graph neural network model

that utilizes spectral graph convolutions and transaction features, with the incorporation of graph

convolutional networks (GCN) as well. Di [38] designed a system to visually analyze the flow of

Bitcoin transactions within the blockchain. This tool incorporates the concept of purity, enabling

analysts to quickly and effectively identify instances where Bitcoins are being mixed in a suspicious

manner, allowing for a better understanding of the timing and methods used in such transactions.

Zheng [39] utilized a novel heuristic method to cluster the incidence relationships between Bit-

coin addresses, and employed an enhanced Louvain algorithm to validate the incidence relationships

among users, but the heuristic method employed in this research may have some errors when de-

termining change addresses. Ron [40] focused on examining the common patterns observed in

user behavior, specifically related to the acquisition, expenditure, and balance of bitcoins in their

accounts. Additionally, the research investigates how users transfer bitcoins between different ac-

counts as a means of safeguarding their privacy.

Fleder [41] created a system to extract Bitcoin addresses from public forums. Additionally,

a method was developed to link users to transactions using incomplete transaction data. The re-

searchers also introduced a graph-analysis framework that enabled the tracing and clustering of

user activity. By combining publicly available information from web-scraped forums and Bitcoin’s
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transaction ledger, the study demonstrated that the Bitcoin transaction network is not completely

anonymous. Moreover, the researchers were able to connect Bitcoin forum users to the original Silk

Road nodes.

Tironsakkul [42] introduced a novel approach known as Address Taint Analysis, which builds

upon existing techniques used in transaction-based taint analysis. Their primary focus was on track-

ing Bitcoins that had undergone mixing through a mixer service. They also investigated the poten-

tial benefits of combining address taint analysis with address clustering and backward tainting. To

minimize false-positive outcomes, they put forward a set of filtering criteria that took into account

the characteristics of withdrawn transactions. Furthermore, the researchers identified two potential

improvements for both address taint analysis and filtering criteria. Firstly, they recommended the

utilization of external information to enhance the accuracy of tracking results. Secondly, they pro-

posed the incorporation of more sophisticated address clustering methods to bolster the effectiveness

of the analysis.

Wu [43] introduced a framework called FABT, which aims to facilitate the forensic analysis of

Bitcoin transactions through the identification of suspicious Bitcoin addresses. The framework es-

tablishes a formalized approach for analyzing transaction patterns based on a wide range of features,

enabling the examination of various clues within a given case. Spagnuolo [44] introduced BitIodine,

a modular framework, which is designed to parse the blockchain and perform various tasks related

to address clustering, user classification, and information visualization. The framework utilizes two

heuristics, namely Multi-input transactions and change address guessing, to identify addresses that

are likely to belong to the same user or group of users. It then proceeds to classify and label these

users, while also visualizing the extracted information from the Bitcoin network in a comprehensive

manner.

Shojaeinasab [45] addressed the issue of losing traceability of funds in Bitcoin and other cryp-

tocurrency networks due to the utilization of mixing services. The researcher develops techniques to

trace the transactions and addresses associated with these services, as well as identify the addresses

involved in the circulation of both illicit and clean funds.

There are many machine learning methods such as support vector machines, decision tree, lo-

gistic regression, and neural networks (deep learning). These classifiers each have their strengths
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Figure 2.2: Building blocks of BitIodine [44]

and weaknesses, and their effectiveness can vary depending on the nature of the data and the specific

problem at hand. Archie [46] provided an SVM model for binary classification of bitcoin addresses

with a small number of bitcoin addresses 114000 samples that provided the below results.

Classifier Length F1 Score Precision Recall Accuracy AUC
Service binary SVM[46] 114K 0.727 0.907 0.907 0.606

Table 2.2: Evaluation metrics binary classification with SVM classifier [46]

Classifier False Negative False Positive True Positive True Negative
Service binary SVM[46] 6K 1.4K 10.6K 6.5K

Table 2.3: Confusion matrix binary classification with SVM classifier [46]

Based on our results, the SVM model can not generate good results with a large number of

bitcoin addresses, Archie [46] just worked on binary classification with old and small amounts of

bitcoin addresses. He [34] introduced five heuristic methods for Bitcoin address clustering. Re-

searchers used the address 18yVghac MaDU 8SzG48 7h2e Qvj2S aUCbtXj as an example, that

applied the heuristics H1, H1 + H2, H1 + H2 + H3, and H1 + H2 + H3 + H4 iteratively. Through

experiments, they found that under different heuristic conditions, the number of addresses obtained

was 35, 39, 120, and 6,469, respectively. These addresses were divided into 74,286 entity nodes

across 1,247 communities. However, He [34] did not provide any statistical results such as accuracy

and precision, the research solely presented numerical outcomes regarding the number of clusters

and communities formed as figure 2.3 shows. Researchers provided 6 common Heuristics as table

4.1.
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Algorithm Name
H1 Common-input-ownership heuristic
H2 Change address detection heuristic
H3 Coinbase transaction mining address clustering heuristic
H4 Multiple mining pool address clustering heuristic
H5 Mixing transaction recognition heuristic
H6 Louvain community detection algorithm

Table 2.4: Heuristic name in paper [34].

Figure 2.3: Heuristics results in paper [34]

Heuristic algorithm H1 [34] is an address clustering technique that leverages the concept of

common-input-ownership within the Bitcoin transaction framework when multiple addresses are

utilized as inputs for a transaction. H1 considers that these input addresses can be logically grouped

together, indicating a shared control by a singular transaction entity. The accuracy of address clus-

tering achieved through H1 can theoretically attain 100%.

Figure 2.4: Common input ownership schematic diagram H1 [34]

Another address clustering strategy is the change address detection heuristic algorithm. The
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investigations conducted by Androulaki [47] and Meiklejohn [35] show the importance of change

addresses in user privacy within the Bitcoin ecosystem. These findings show the role of change

addresses in enhancing the anonymity infrastructure.

Heuristic algorithm 2 (H2) [34] is used for identifying change addresses in Bitcoin transac-

tions. Change addresses are addresses used to receive the remaining funds in a transaction after

the intended payment is made. The existing methods for identifying change addresses in Bitcoin

transactions rely on four specific conditions including the address only being used once as an output

and not being part of a Coinbase transaction. He [34] suggests two scenarios for identifying change

addresses. In the first scenario, if a transaction has only two output addresses and one of them

appears only once while the other has significantly more funds, the one-time address is considered

the change address. In the second scenario, if a transaction has more than two output addresses, the

change address is identified based on the four conditions proposed by Meiklejohn [35]. This new

approach aims to improve the accuracy of change address detection and facilitate the analysis of

Bitcoin transactions and their connections. Androulaki [47] investigated the importance of change

addresses in user privacy within the Bitcoin ecosystem. These findings show the role of change

addresses in enhancing the anonymity infrastructure.

Heuristic algorithm H3 focuses on clustering output addresses of Coinbase transactions, which

are rewards given to miners when they successfully add a new block to the blockchain. Miners

combine their computational power under the control of a pool owner. Miners in these pools calcu-

late hash values, and the rewards are distributed by the pool owner. This trend led to more miners

joining mining pools for stability and reduced costs. The key insight of this algorithm is that the

output addresses of Coinbase transactions, which are responsible for rewarding miners, are typically

controlled by the same entity. This assumption is based on the fact that in mining pools, the pool

owner controls the payouts to individual miners. This heuristic helps in clustering output addresses

of Coinbase transactions, facilitating the analysis of mining activities on the Bitcoin blockchain.

Heuristic algorithm H4 is based on the number of output addresses and is designed for clustering

multiple mining pool addresses. The key distinction between H4 and H3 lies in the clustering

target. H4 focuses on grouping addresses related to various mining pools, and its heuristic rule

is as follows, if a transaction contains more than 100 output addresses, and at least one of these
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addresses is recognized as belonging to a specific mining pool, then all the output addresses in the

transaction are attributed to the owner of that particular mining pool as Lewenberg [48] and Zheng

[49] discussed.

Heuristic algorithm H5 focuses on identifying mixing transactions in the Bitcoin blockchain.

Mixing transactions is a way to obscure the source of funds and increase privacy in Bitcoin trans-

actions, which can be used for legitimate purposes but are also associated with potentially illicit

activities. H5 aims to recognize these mixing transactions using a heuristic approach, if there are

more than four input addresses and output addresses of a transaction, there will be mixing transac-

tions in the transaction [50].

Heuristic algorithm H6 leverages the Louvain community detection algorithm to identify re-

lationships between entities in the Bitcoin blockchain. The Louvain algorithm is known for its

efficiency in discovering community structures within large networks. As Blondel [51] mentioned,

it can provide a hierarchical view of the community structure. In the context of transaction net-

works, the Louvain algorithm is employed to divide the network into distinct communities. H6

extends the work of previous heuristic algorithms (H1 to H4), which clustered address groups. With

the information obtained from these earlier heuristics, H6 goes a step further by using the Louvain

community detection algorithm to uncover relationships between different entities in the Bitcoin

transaction network. This can help identify group activities connections, and interactions among

various entities, including the possibility of intermediary roles.

Additionally, Meiklejohn [35] introduced two heuristics for Bitcoin address clustering. Heuris-

tic 1 states that if two or more addresses are inputs to the same transaction, they are controlled by

the same user. By applying Heuristic 1, they started with 12,056,684 public keys and ended up with

5,577,481 distinct clusters. Heuristic 2 focused on the one-time change address, which is controlled

by the same user as the input addresses. Applying Heuristic 2 resulted in 3,384,179 clusters.

These studies relied on heuristics that primarily focused on common input ownership and change

addresses for clustering. They provided numerical results in terms of the number of clusters or ad-

dresses within a class. Most of the studies focus on finding illicit activity based on closed-source

datasets such as elliptic datasets. These datasets have old and small amounts of Bitcoin addresses

that are not useful for Bitcoin classification in the real world. There is no reliable research about
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Bitcoin address classification in the real world without focusing on illicit detection. Our research

focuses on graph behavior features and machine learning methods. Our research classifies Bitcoin

addresses into binary and multi-class categories and links Bitcoin addresses to their real-world own-

ers by using our own dataset and provides better statistical and evaluation metric results than the

previous works.

If we classify Bitcoin addresses we can find very useful information about the addresses to

examine the privacy implications associated with the use of Bitcoin in commercial transactions.
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Chapter 3

Classification framework

3.1 Creating dataset

Available datasets are not open source, they do not have information about the features and they

do not have enough Bitcoin address samples also they are not updated. These problems with the

available datasets made us create our dataset. Creating the dataset has three phases as downloading

Bitcoin addresses through Bitcoin core and web scraping for labeling Bitcoin addresses and creating

features for each Bitcoin address that we labeled.

3.1.1 Obtaining Bitcoin addresses

To work with Bitcoin data we have to download the Bitcoin blockchain on our local computer,

there are large amounts of data in the Bitcoin blockchain that contains input, output addresses,

transactions, blocks, and other information, and also there are some links between transactions that

we need to explicit these links to consider graph features of Bitcoin addresses. Therefore, we need

Bitcoin block parsers to explicit links in these large amounts of transactions. There are different

block parsers in GitHub but most of them require a long time to parse this large amount of data;

however, the Bitcoingraph parser can do this task in a short period of time so we use this block

parser for our task [52].
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3.1.2 Enriching blockchain data

After downloading our Bitcoin addresses, we need to label these Bitcoin addresses in differ-

ent classes, to test machine-learning classification algorithms, so we have to find tagged Bitcoin

addresses through different websites such as Wallet Explorer, Bitcoinwhoswho, and Bitcoinabuse

[53]. There are a lot of tagged historical Bitcoin addresses on these websites that are distributed

in different parts and pages which need preprocessing to use. Therefore, we can not take them

manually or use the wget command to download website pages. We have to write a Python code

that automatically gathers Bitcoin addresses and preprocesses the available tags in different parts

of Wallet Explorer, Bitcoinwhoswho, and Bitcoinabuse websites. Then the code tags Bitcoin ad-

dresses through these tags and saves them with their category. We consider five distinct classes:

crypto-currency exchanges, online marketplaces, mining pools, fundraising/charity platforms, and

gambling; and 180 companies for fine-grained classification. This procedure is called web scrapping

or web crawling which is a common method for gathering data from websites. For web scraping,

we must use Regex for pattern matching and extracting specific information from HTML.

3.1.3 Calculating Bitcoin address features

To complete the dataset we need to calculate different features for each Bitcoin address. We

choose Bitcoin address features based on class behaviors and Bitcoin graph behaviors. For example,

transactions in the crypto-currency exchanges class often have a large number of connections that

cause the exchange transactions to have more in degree and out degree than other categories. Since

component ID refers to the connected component to which a node belongs, exchange transactions

based on their behavior usually have more component ID, so these kinds of features are useful

for our classification. Mining pools usually involve large transactions, as they collect rewards from

many miners. Therefore, transactions associated with pools might have higher values. Since mining

pools might have transactions spread across various block heights as they continuously receive

contributions from miners; therefore, the height of bitcoin addresses in the blockchain would be

a good feature for classification. Mining pools may exhibit characteristics of a highly connected

subgraph (high k-core) as many miners contribute to the same pool so the k-core and core id would
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be good features for classification purposes. For online marketplaces, the delta might vary more

as they receive payments and spend funds for different activities so it can be a good feature for

classification as well.

Class Feature
Exchange High in degree and out-degree
Exchange High Component ID

Mining pool High values
Mining pool height is important
Mining pool High k-core

Online marketplace High Delta

Table 3.1: Bitcoin address feature calculation

We calculate 30 features such as PageRank, component ID, k-core, entity ID, value, delta, in

degree, out-degree, core id, avg value, in degree std, out degree std, and height as table 3.2 shows.

For calculating features we use Python and the Turicreate library built-in functions. Turicreate

is a library for working on graphs for machine learning purposes. For example, for calculating in

degree feature we calculate the number of transactions incoming to that address using the transaction

history of the entire Bitcoin blockchain. Since we are working on a huge amount of data like Bitcoin

transactions we need to use special big data tools such as SFrame, which is a data structure for

processing large-scale data efficiently. We merge the output files from the block parser into a single

SFrame.

Since Bitcoin transactions form a graph, we need to consider all the blocks together. It is not

feasible to calculate features for small block numbers and merge them into a larger block number as

graph features such as PageRank, component ID, and core ID are inherently tied to the specific block

numbers. For example, if we use block 100000 110000 and block 110000 120000 separately, the

resulting features for each address are calculated independently. Merging block 110000 120000 with

the features of block 100000 110000 would yield different results compared to directly calculating

the features for block 100000 120000, which is more accurate. We use a large block number range,

specifically from block height 400000 to 440000, which contains a total of 3M Bitcoin addresses.

This block range allows for more accurate feature calculation.

The K-core decomposition recursively removes vertices from the graph with degree less than
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Feature Description
PageRank PageRank for each vertex (Address) in the graph

Component ID component ID corresponding to each vertex (Address) in the graph
Entity ID calculate the entity ID for each Bitcoin address using the common input own-

ership
Value amount of bitcoin that bitcoin address contains
Delta total changes in PageRank during the last iteration for each vertex (Address)

In degree number of edges directed into that vertex or number of incoming edges to a
particular vertex

Out degree number of edges directed out from that vertex or number of outgoing edges
from a particular vertex

Core ID measure of global of vertex centrality
avg value average value of the bitcoin amount that bitcoin address contains

In degree std standard deviation of in degree feature
Out degree std standard deviation of out degree

Height block number of the transaction that has the bitcoin addresses
Shortest path shortest directed path distance from a single source vertex to all other vertices

Triangle counts the number of triangles in the graph and for each vertex
Kmax the maximum core id assigned to any vertex
Kmin the minimum core id assigned to any vertex

Color ID color ID assigned to each vertex represents a numerical label identifying the
color group to which the vertex belongs

txsize the size of this transaction (tx) in bytes
Min sent minimum BTCs sent in a tx by inputs
Max sent maximum BTCs sent in a tx by inputs
Var sent variance of BTCs sent in a tx by inputs

txfee The fee paid by this transaction
Var received variance of BTCs received in a tx by outputs

Time date and time of the transaction
Max received maximum BTCs received in a tx by outputs
Total received total BTCs received in a tx by outputs

txinput val total BTCs sent by inputs in a tx
txoutput val total BTCs sent to outputs in a tx
Total sent total BTCs sent in a tx by inputs

Table 3.2: All the features that we calculate

k. The value of k where a vertex is removed is its core ID (vertex’s core id). The algorithms

iteratively remove vertices that have less than k neighbors recursively. The algorithm guarantees

that at iteration k+1, all vertices left in the graph will have at least k+1 neighbors. The vertices were

removed at iteration k is assigned with a core ID equal to k.

In the context of a graph, such as a Bitcoin graph, each node represents a Bitcoin address,

and the directed edges between nodes represent the amount of Bitcoin sent or received. The basic
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idea behind PageRank is to assign a numerical score to each node in the graph, representing the

likelihood that a random walker will arrive at that node. The score is computed iteratively based on

the structure of the graph.

Here is a simplified explanation of how the PageRank algorithm works. Initially, all nodes are

assigned an equal PageRank score. This score could be set to 1/N, where N is the total number of

nodes in the graph. The PageRank scores are updated iteratively based on the graph structure. The

basic idea is that a node’s importance is determined by the importance of the nodes that link to it.

The more incoming links a node has, and the more important those linking nodes are, the higher the

node’s PageRank.

For example, consider a graph where each node represents a Bitcoin address and directed edges

represent transactions between addresses. The weight of each edge could represent the amount

of Bitcoin transferred in that transaction. Address A has outgoing transactions to B, C, and D.

Address B has outgoing transactions to C. Address C has outgoing transactions to A and D. A

simplified version of the PageRank algorithm to determine the influence of each address in this

Bitcoin transaction graph will be discussed. Assign an equal PageRank score to each address. For

simplicity, let’s start with equal scores (1/N, where N is the total number of addresses). Update the

PageRank scores based on the incoming transactions. The new PageRank score for each address is

proportional to the sum of the PageRank scores of the addresses that sent Bitcoin to it. Introduce

a damping factor to model the likelihood that Bitcoin users will continue to make transactions.

Typically, this is a value between 0 and 1 (e.g., 0.85). Repeat the iteration until the PageRank scores

converge.

Figure 3.1: PageRank formula
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3.2 Analysis existing methods

There are many machine learning methods such as support vector machines, decision tree, lo-

gistic regression, and neural networks (deep learning). These classifiers each have their strengths

and weaknesses, and their effectiveness can vary depending on the nature of the data and the specific

problem at hand. Logistic regression is a popular linear model for binary classification, it works well

when the relationship between the features and the target variable is approximately linear. However,

Logistic regression has problems with complex and non-linear relationship datasets such as Bitcoin

datasets. SVM inherently is a binary classifier that can not work well for large datasets, also train-

ing an SVM can be computationally expensive, especially for large datasets. SVM is so sensitive to

noise and outliers. Random Forests consume a large amount of memory, particularly when dealing

with a large number of trees or deep trees. Training decision trees can be computationally expen-

sive, especially for very large datasets, Random Forest can not work with imbalanced datasets such

as ours since can be biased toward the dominant class.

We conducted a comparative analysis of different machine-learning techniques on our dataset

to determine the most suitable one for the task, which that shows the boosted tree works well for

binary classification purposes in our task. The boosted tree has some advantages in comparison

with other methods in our task. For example, the boosted tree has high predictive accuracy that can

handle complex relationships in the dataset and also can handle missing data well. Boosted trees are

flexible and don’t make strict assumptions about the distribution of the data and we can use different

loss functions with that. Table 3.3 shows a comparison between different machine learning methods

that the Boosted Tree classifier can provide better results for our work.

For a better understanding of research in the field of fraud classification with the Elliptic dataset,

we simulated these papers [31, 18] and repeated their results as below figure 3.2 shows.
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Classifier F1 Score Precision Recall Accuracy
SVM 0.34 0.58 0.22 0.62

Logistic Regression 0.32 0.58 0.20 0.61
XGBRegressor 0.30 0.51 0.20 0.61

GradientBoostingRegressor 0.29 0.52 0.20 0.57
AdaBoostRegressor 0.27 0.46 0.22 0.60
PoissonRegressor 0.33 0.44 0.15 0.52
LGBMRegressor: 0.34 0.57 0.25 0.63

SGDRegressor 0.28 0.40 0.19 0.53
OrthogonalMatchingPursuitCV 0.37 0.48 0.25 0.59

RANSACRegressor 0.20 0.52 0.24 0.47
LassoLars 0.35 0.59 0.25 0.65

k-Nearest Neighbours 0.29 0.52 0.23 0.59
Bagging Classifier 0.28 0.52 0.17 0.55

Random Forest 0.71 0.72 0.71 0.69
Boosted Tree 0.73 0.72 0.73 0.79

Table 3.3: Comparison between different machine learning methods

Figure 3.2: Repeated result illicit F1-score [31]

3.3 Our classifier and evaluation

In the binary classification of bitcoin addresses, we conduct a comparative analysis of different

machine-learning techniques on our dataset to determine the most suitable one for the task that

shows the boosted tree classifier works well for binary classification with our large dataset samples

in comparison with Archie’s work [46]. However, for multi-classification purposes, the boosted tree

doesn’t provide good results, which makes us use deep learning methods for multi-classification

purposes. One of the main advantages of deep learning is its ability to automatically learn relevant
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features from raw data and deep learning does not need manual feature engineering, which was

common in traditional machine-learning approaches.

We also explore the coefficients of the features, as they represent the strength and direction of

the relationship between each input feature and the output variable. A positive coefficient indicates

that an increase in the input feature is associated with an increase in the output variable, while a

negative coefficient indicates that an increase in the input feature is associated with a decrease in

the output variable. The ”highest positive coefficient” refers to the input feature with the greatest

positive impact on the output variable, while the ”lowest negative coefficient” refers to the input

feature with the greatest negative impact on the output variable. Based on table 3.4a and 3.4b the

most efficient features for binary classification are PageRank, in degree, out-degree,avg value, delta,

and core id.

3.4 Deep learning model

For multi-classification and linking Bitcoin addresses to their real-world owners, we use the

Multilayer Perceptron (MLP) deep learning model and implement it with the Keras library and

Python program language. For the multi-classification purpose, our deep learning model has hidden

layers and 10 features as input neurons and Adam optimizer that we achieve 90% as the F1 score

and 92% as accuracy as figure 3.3 and for linking Bitcoin addresses to their owners we use the

deep-learning model with hidden layers that each has different neurons. The input layer contains 15

features as the input features, also, this study consists of 180 real-world owners’ Bitcoin addresses

for linking Bitcoin addresses to their owners. We achieve an accuracy of 67% for linking Bitcoin

addresses to their owners which is a good result in this regard.

The first row of the table 3.4 illustrates the outcomes of Archie’s work [46]. The second and

third rows of the table 3.4 illustrate the outcomes of our binary classification with the boosted tree

classifier, where a specific Bitcoin address is categorized into either financial or non-financial, or

into service-related or non-service-related classes. The last row of table 3.4 presents the outcomes

of multiclass classification with the boosted tree, wherein a Bitcoin address is assigned to one of the

six designated classes, namely finance, service, gambling, pool, miscellaneous, or charity. Table 3.5
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compares our binary classification confusion matrix with the binary classification of Archie’s work

[46].

Based on the results in table 3.4 and multiclass confusion matrix with the boosted tree classifier,

table 3.7 exhibits notable false positive and false negative rates. It indicates that the boosted tree

classifier encountered challenges in accurately assigning Bitcoin addresses to the appropriate cate-

gories. It is apparent that conventional machine learning methods such as the boosted tree can not

provide good performance for multi-class classification, particularly in terms of F1 score. as table

3.4 and table 3.5. To address these issues and improve the performance of the multi-classification

model, we use deep learning for multi-class classification and linking Bitcoin addresses to their

real-world owner purpose.

Classifier Length F1 Score Precision Recall Accuracy AUC
Service binary SVM[46] 114K 0.727 0.907 0.907 0.606

Finance binary Boosted Tree 3.1M 0.73 0.72 0.73 0.790 0.87
Service binary Boosted Tree 3.1M 0.76 0.86 0.69 0.780 0.86

Multi Boosted Tree 3.1M 0.47 0.74 0.76 0.73

Table 3.4: Evaluation metrics binary and multi-classification with boosted tree classifier in compar-
ison with [46].

Classifier False Negative False Positive True Positive True Negative
Service binary SVM[46] 6K 1.4K 10.6K 6.5K

Finance binary Boosted Tree 21K 22K 58K 106K
Service binary Boosted Tree 34K 12K 75K 87K

Table 3.5: Confusion matrix binary and multi-classification with boosted tree classifier in compari-
son with [46].

Classifier Length Merged T F
Finance binary 3.1M 1.05M 322K 520K
Service binary 3.1M 1.05M 442K 399K

Multi 3.1M 1.05M - -

Table 3.6: Dataset that used with Boosted Tree classifier.
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Actual / Predicted Finance Service Gambling Pool
Finance 62565 15559 2396 0
Service 22217 0 0 0

Gambling 0 8426 5314 0
Pool 473 143 20 6

Table 3.7: Confusion matrix for Multi-classification with Boosted Tree Classifier

Figure 3.3: Shows the confusion matrix for multiclassification with neural deep learning method

The 3.4a and 3.4b show the coefficient comparison for different features to identify important

features with high coefficients.

To test how well our model performs in identifying fraudulent Bitcoin addresses, we fed our

model with some known Bitcoin addresses or suspected addresses associated with fraud or scams

to determine their respective categories. In online scam alert websites, since their databases about

fraudulent Bitcoin addresses are mostly created by user reports, they contain a lot of inactive Bitcoin

addresses. An inactive Bitcoin address means this address has no activity yet. Therefore it is not

possible to calculate their features such as in degree, out degree, and other graph features. So we

should use Bitcoin addresses that have an activity in the blockchain. Our experiment results are in

the appendix section. These Bitcoin addresses are Found in the DirtyHash [54] scam blacklist and
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Service SVM Service logistic
Highest Positive Coefficients

Core id Core id
0.0036 0.0199

Avg value Avg value
0.0012 0.0034

Component id Component id
0.0 0.0

Lowest Negative Coefficients
delta delta

-4.4436 -0.5642
Intercept Intercept
-1.088 -2.215

pagerank pagerank
-0.0013 -0.0002

Out degree out degree
-0.0005 -0.0

In degree in degree
-0.0002 -0.0

(a) Coefficients of each feature for Service mod-
els.

Finance SVM Finance logistic
Highest Positive Coefficients
(intercept) (intercept)

1.0915 2.1556
pagerank
0.0017

in degree
0.0006

transaction count
0.0001

Lowest Negative Coefficients
delta delta

-82.344 -1.162
core id core id
-0.0127 -0.1752

avg value avg value
-0.0012 -0.0025

out degree pagerank
-0.0004 -0.0004

component id in degree
-0.0 -0.0001

(b) Coefficients of each feature for Finance mod-
els.

Figure 3.4: Coefficients of each feature.

dark web websites that are labeled as Fraud.

3.4.1 Tracking dark web UnlockDevices marketplace transaction

Based on dark web information the UnlockDevices marketplace provided this Bitcoin address

3LnzwDcMdRFbVLG6B71e68ydQ4JYWaKUrE for payment. This Bitcoin address has 85 trans-

actions, and 0.61625000 BTC was sent to 16csF6xeY 2bj1EZWk 3B8nGj9md vTWaNdpe in one

of the transactions as below the figure 3.5, the UnlockDevices marketplace bitcoin address sent

some Bitcoins in multiple transactions at different times to this address 16csF6xeY 2bj1EZWk

3B8nGj9md vTWaNdpe that figure 3.5 shows one of them.
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Figure 3.5: Tracking Bitcoin address in Dark web

Based on our investigation the 16csF6xeY2bj1EZWk3B8nGj9mdvTWaNdpe can be a mixer

or an exchange since this Bitcoin address is in a wallet that has 90000 Bitcoin addresses. As we

checked the majority of its payments are made into the Bitcoin address 1NDyJtN Tjmwk5 xPNhj

gAMu4HD Higtobu1s it is more probable to be a mixer since the majority of its payments are

made into the Bitcoin address 1NDyJtN Tjmwk5 xPNhj gAMu4HD Higtobu1s which belongs to

the Binance exchange.

The Bitcoin address 1NDyJtNTjmwk5 xPNhjgAM u4HDHig tobu1s belongs to the Binance

exchange as they announced that [55]. Our model classified this Bitcoin address as an exchange.

As we checked most of the Bitcoin addresses in the wallet that contains 16csF6xeY 2bj1EZW

k3B8nGj9md vTWaNdpe sent money to the Binance address as the final source of all of their trans-

actions. The figure 3.6 shows the tracking in summary.
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Figure 3.6: Tracking Bitcoin address in Dark web

In summary, the research project has successfully fulfilled its primary objectives of classifying

Bitcoin addresses into binary and multi-class categories and linking Bitcoin addresses to their real-

world owners. The research project provides better statistical evaluation metric results than the

previous works.
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Chapter 4

Implementation

Our project has some implementation details that are discussed in this chapter. The project is a

mixture of big data and machine learning so we need to consider some specific approaches.

4.1 Block parser

We need Bitcoin block parsers to explore links in Bitcoin transactions. There are different block

parsers in GitHub, for example, Rusty block parser [56]. Most of the block parsers like the Rusty

block parser provide outputs that are only usable by relational databases. Based on our experience

importing block parser outputs to relational databases takes a long time. Using Rusty block parser

that works with relational databases can not show graph relationships in Bitcoin transactions. We

use Bitcoingraph [52] block parser which is much faster than other block parsers. The Bitcoingraph

block parser outputs are compatible with the graph databases that can show graph relations in Bit-

coin transactions better than other block parsers. The table 4.1 shows Bitcoingraph block parser

outputs.

We convert Bitcoingraph block parser outputs to SFrame. Since we are working on a huge

amount of data like Bitcoin transactions we need to use big data data structures such as SFrame.

To convert the dataset to SFrame we use the TuriCreate library [9] developed by Apple. TuriCreate

simplifies the development of custom machine-learning models and converting data to SFrame,

table 4.2 shows TuriCreate common ML tasks.
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Output file Description
addresses.csv sorted list of Bitcoin addressed

blocks.csv list of blocks (hash, height, timestamp)
transactions.csv list of transactions (hash, Coinbase/non-Coinbase)

outputs.csv list of transaction outputs (output key, id, value, script type)
rel-block-tx.csv relationship between blocks and transactions (block-hash, tx-hash)

rel-input.csv relationship between transactions and transaction outputs (tx-hash, output key)
rel-output-address.csv relationship between outputs and addresses (output key, address)

rel-tx-output.csv relationship between transactions and transaction outputs (tx-hash, output key)

Table 4.1: Bitcoingraph block parser outputs

ML Task Description
Recommender Personalize choices for users

Image Classification Label images
Drawing Classification Recognize Pencil/Touch Drawings and Gestures
Sound Classification Classify sounds

Object Detection Recognize objects within images
One Shot Object Detection Recognize 2D objects within images using a single example

Style Transfer Stylize images
Activity Classification Detect an activity using sensors

Image Similarity Find similar images
Classifiers Predict a label
Regression Predict numeric values
Clustering Group similar datapoints together

Text Classifier Analyze sentiment of messages

Table 4.2: TuriCreate common ML tasks

4.2 Memory efficiency methods

Memory usage in our project is very important since we are working with a huge amount of

Bitcoin transactions. We use some techniques to optimize memory usage. There are 3 important

big data structures Spark, Dask, and SFrame. We checked all of them in our project and Spark can

not work well with the Bitcoin transaction dataset based on our results. We use SFrame and Dask

dataframe structures. The other technique to optimize memory usage is deleting variables that are

no longer used within the code. There are some interdependencies among certain variables deleting

a single variable may not necessarily lead to the release of memory. To address this problem we

use the memory profiler and memory visualization method. The memory profiler method calculates

the memory usage of each code line. The memory visualization method explores how variables are
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interrelated and linked to each other. Therefore, we can find interdependencies between variables

that might hinder effective memory management. We also change the default location for storing

libraries and temporary working files. This is so efficient for working with large datasets and large

results in the output. Dask, SFrame, and Spark dataframes are data structures used in different

distributed computing frameworks for processing large-scale data efficiently. Each of them has its

own unique characteristics and usage scenarios.

Dask dataframe is part of the Dask library, which provides parallel computing capabilities for

Python. It is designed to handle large datasets that do not fit into memory by breaking them down

into smaller partitions that can be processed in parallel across multiple cores or machines. Dask

leverages task scheduling to execute operations on these partitions in a distributed manner. Dask

dataframe closely resembles the Pandas dataframe API, making it easy for users familiar with Pan-

das to work with larger-than-memory datasets. It supports most of the Pandas dataframe operations

and provides scalability by distributing the computations.

SFrame is a data structure provided by the TuriCreate library (previously known as Graphlab

Create) for scalable machine learning and data manipulation tasks. TuriCreate is primarily used

for building machine learning models, and the SFrame is its core data structure for handling large

datasets. SFrame is optimized for memory efficiency and fast data manipulation on large data. It

can be thought of as a horizontally partitioned dataframe, where each partition holds a subset of the

overall data. SFrame supports various data transformations, filtering, and joins, and it can handle

datasets that are too large to fit into memory.

Spark is part of the Apache Spark framework, a distributed computing system for big data

processing. Spark dataframe is an abstraction built on top of the distributed Resilient Distributed

Dataset (RDD) providing a high-level API for working with structured and semi-structured data.

Spark dataframe is designed for distributed data processing and fault tolerance. It supports various

data operations, including filtering, aggregation, joins, and window functions. Spark optimizes data

processing by performing distributed transformations and leveraging memory caching for iterative

computations.

Each of these data structures has its strengths and usage cases, depending on the specific re-

quirements and the scale of data processing tasks. Choosing the right one depends on factors like
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the size of the dataset, the complexity of operations, and the existing ecosystem and tools that we

are working with. We checked all three Spark, Dask, and SFrame, and finally, Dask and SFrame

work better than Spark.

4.3 Implementation steps

Figure 4.1 shows the implementation steps that we followed in summary. As figure 4.1 shows

the implementation steps start with running the Bitcoin core. By downloading Bitcoin core on our

local computer we can run a full node on the Bitcoin network. Running a full node means we can

have a complete copy of the entire Bitcoin blockchain on our local computer. Bitcoin full node

is about 500 GB, the downloading time of this large amount of data relies on some factors such

as internet speed, RAM, and operating system. Based on our experience, Linux works better than

others. In the next step, we run the Bitcoingraph parser to find links that exist between transactions

explicitly. There are some links between Bitcoin transactions and we need to find these links to

consider graph features of Bitcoin addresses. For this purpose, we have to use block parsers. There

are different Block parsers like Rusty and Bitcoingraph.

Figure 4.1: Implementation Steps
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Some of the block parsers can not show the links between Bitcoin addresses explicitly and

usually, they require a long time to parse this large amount of Bitcoin data. For example, Rusty

Block Parser provides 4 files as output. To use these files we have to import them into the SQL

database. However, it has some main problems such as it takes a long time to import its output files

to the SQL database, and also it can not show the links between bitcoin transactions explicitly.

We choose the Bitcoingraph as it provides more practical data that is compatible with the Neo4J

NoSQL database which helps to consider the graph behavior of Bitcoin transactions and links be-

tween Bitcoin transactions. Table 4.3 shows the Rusty block parser outputs, and also figure 4.2

shows the Noe4j output for Bitcoin transactions. Neo4j is a graph database management system

that is designed to store, retrieve, and manage data in the form of nodes, relationships, and prop-

erties. It is particularly well-suited for applications where relationships between data points are

crucial, making it a powerful tool for modeling and querying connected data. Neo4j can be used to

model and explore the relationships between different elements in the Bitcoin network. By repre-

senting Bitcoin transactions and addresses as nodes and relationships in a graph database, we can

explore and query the data in a way that emphasizes the connections between different elements.

This can be particularly useful for analyzing complex relationships in the Bitcoin network.

Figure 4.2: Neo4j output for Bitcoin transactions

44



Output file Description
blocks.csv block-hash ; height ; version ; blocksize ; hashPrev

transactions.csv txid ; hashBlock ; version ; lockTime
tx-in.csv txid ; hashPrevOut ; indexPrevOut ; scriptSig ; sequence
tx-out.csv txid ; indexOut ; height ; value ; scriptPubKey ; address

Table 4.3: Rusty block parser outputs

In the next step, we have to apply a pre-clustering method to calculate the entity ID for each

Bitcoin address with using the common input ownership heuristic. The converting step converts the

block parser outputs to an SFrame for memory management. This step uses the TuriCreate library

for converting to the SFrame.

In the web scraping step, we need to label Bitcoin addresses in different classes, to test machine-

learning classification algorithms, so we have to find tagged Bitcoin addresses through different

websites such as Wallet Explorer, Bitcoinwhoswho, and Bitcoinabuse. This step has two main

implementation factors. First, we need to preprocess the available data on these websites. For

this purpose, we should use Regular Expression (Regex). It is a powerful tool used for pattern

matching within strings. Regular expressions provide concise and flexible means to search, match,

and manipulate text. Second, most of the websites have rate limiting. Rate limiting is a technique

used by web services to control the amount of incoming requests from a single user or client in

order to prevent abuse, ensure fair usage, and maintain system stability. It is often expressed as a

certain number of requests allowed per minute, hour, or another defined time period. To solve this

problem we have to send requests in a specific pattern.

In the next step, we should obtain the maximum block numbers based on the available memory

limitation. Since there is a large amount of data we can not consider many block numbers. By

using memory efficiency methods such as SFrame and Dask, the maximum address number that we

can use is about 3M Bitcoin addresses. In the next step, we calculate the features for each Bitcoin

address using Python and the TuriCreate built-in functions. The features that we calculate, focused

on Bitcoin graph behavior. The next step focuses on creating the dataset with the provided data from

the previous steps. In the next step, we try to find the most important features that have the most

effect on the results. For this purpose, we explore the coefficients of the features, as they represent

the strength and direction of the relationship between each input feature and the output variable.

45



The last 3 steps rely on machine learning methods that we applied to our dataset.

4.4 Project main challenges

Our project has three main challenges, that will be discussed here. First, Bitcoin transactions

behave like a graph but showing these graph behaviors and finding the links that exist between

transactions are not simple. There are about 1 billion Bitcoin transactions, and a lot of Bitcoin

addresses in the Bitcoin blockchain. These Bitcoin addresses may be used in different blocks; for

example, one Bitcoin address may appear in block 200 and after several times the Bitcoin address

reappears in block 9000; therefore, finding relations between such Bitcoin addresses that are reused

in different blocks is not simple. So, finding relationships and graph behavior explicitly in the

Bitcoin blockchain is not easy. To solve this problem, we use the Neo4j database to show Bitcoin

transaction links explicitly. By using the Neo4j database we can find Bitcoin graph features more

accurately and simply.

Second, there is no publicly available dataset suitable for testing machine-learning classification

algorithms for Bitcoin addresses, also the labeled data is scarce. To solve this challenge, we use web

scrapping to find labeled data through trusted websites.

Third, our project is a mixture of big data and machine learning. Working with this huge amount

of data needs to have unlimited memory or use memory efficiency methods to manage memory

usage. There are different memory efficiency methods such as using big data structures, deleting

unused variables, and setting libraries’ cache files to save in storage instead of memory. Deleting

unusable variables to release memory is a good approach for memory management but it is not

simple. Since there are some hidden interconnections between different variables if we delete one

variable the allocated memory may not be released if this variable has interconnections with other

variables. So, to solve this problem we use some memory management tools such as memory

visualization and memory profiler that show variables interconnections and memory usage of each

line of code. These are the main challenges in our project that we solved with different methods.
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Figure 4.3: Memory visualization interconnections

4.5 Conclusion and Future work

In this study, we presented classifying Bitcoin addresses into binary and multi-class categories

and linking Bitcoin addresses to their real-world owners with our own dataset that contains a very

large amount of recent Bitcoin addresses. We used Bitcoin graph features and deep learning models

and all of these help to achieve good results in classification in comparison with previous studies.

However, previous studies relied on heuristics that primarily focused on common input ownership

and change addresses for clustering. Previous studies provided numerical results in terms of the

number of clusters or the number of addresses within a class. Previous studies do not provide

accurate results in the classification and clustering of Bitcoin addresses, also they did not provide

information about linking Bitcoin addresses to real owners.

For future research, there are some fields to further improve the classification and analysis of

Bitcoin addresses. Adding more off-chain information, into the extracted features can enhance

the accuracy and precision of address classification. Future research can find more real owners of

Bitcoin addresses to increase the accuracy of linking Bitcoin addresses to their real-world owners.

The proposed dataset can be more enriched for anti-money laundry applications by adding illicit

Bitcoin addresses to the dataset, this is an interesting field for future research
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Appendix A

Our experiment results

These Bitcoin addresses are Found in the DirtyHash [54] scam blacklist and dark web websites

that are labeled as Fraud.

Bitcoin address Description Predicted

3LnzwDcMdRFbVLG6B71e68ydQ4JYWaKUrE Dark Web UnlockDe-

vices Marketplace [57,

58]

Marketplaces

37s7r9QiE6pJM5aipFHgpHigCswamXZ4jo BancoPanama Mar-

ketplace [59, 58]

Marketplaces

1FFQrpn8oMUdRmBm9RrcjprngxrYbLaYNw Dark web AlphaBay-

Market Marketplace

[60]

Marketplaces

112FWGSL2q7rVTgabQuJbo3WwKid8dMEtj Dark web Joker’s

Stash Marketplace

[61]

Marketplaces

1QATskw4LGVjhfB5UPZwiyVLKP9zdPcKir Dark web Scam Advi-

sor Marketplace [62]

Marketplaces

1DZNCsgd9BW7zfwj63A4yYKAGMCog6P7Eh Dark web SilkRoad

Marketplace

marketplaces
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34xp4vRoCGJym3xR7yCVPFHoCNxv4Twseo Binance Exchange

[63, 64, 65]

Exchange

3LCGsSmfr24demGvriN4e3ft8wEcDuHFqh CoinCheck Exchange

[66]

Exchange

3MgEAFWu1HKSnZ5ZsC8qf61ZW18xrP5pgd OK Exchange [67] Exchange

bc1qchctnvmdva5z9vrpxkkxck64v7nmzdtyxsrq64 Bitmex Exchange [68] Exchange

1N52wHoVR79PMDishab2XmRHsbekCdGquK Bittrex Exchange [69,

70]

Exchange

16rF2zwSJ9goQ9fZfYoti5LsUqqegb5RnA OKX Exchange [71,

72]

Exchange

1J1F3U7gHrCjsEsRimDJ3oYBiV24wA8FuV F2Pool Pool [73, 74] Pool

3HhF6vJaghhZGCP7StsLw1gwNJyUtRUSAC Crypto Marketplace

[75]

Marketplace

39884E3j6KZj82FK4vcCrkUvWYL5MQaS3v Binace Exchange [76] Exchange

12TaAbLWBNKB1NLYH92CPnC1DizQoNK6FN Gambling [77] Gambling

162bzZT2hJfv5Gm3ZmWfWfHJjCtMD6rHhw Gate.io Exchange [76] Exchange

3BMEXqGpG4FxBA1KWhRFufXfSTRgzfDBhJ Bitmex Exchange [76] Exchange

1LoPb7P5ix4rknWzFH4NHEoFQyru6ett3z Hacking Darkweb

Marketplace [78]

Marketplace

1LU4sSfLAukDcbJim9dvNKELHxk4YMSnW1 F2Pool Pool [76] Pool

3M219KR5vEneNb47ewrPfWyb5jQ2DjxRP6 Binance Exchange

[79, 65, 63]

Exchange

1A7znRYE24Z6K8MCAKXLmEvuS5ixzvUrjH Kraken Exchange [80] Exchange

bc1qm34lsc65zpw79lxes69zkqmk6ee3ewf0j77s3h Binance Exchange

[81, 82, 63]

Exchange

3FupZp77ySr7jwoLYEJ9mwzJpvoNBXsBnE OK Exchange [76] Exchange

1G1pCNLKZCZde4dgznZDE5wiikQeyDGeuh Brawker Marketplace

[83]

Marketplace
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1CbR8da9YPZqXJJKm9ze1GYf67eKAUfXwP Sheep Marketplace

[84]

Marketplace

174psvzt77NgEC373xSZWm9gYXqz4sTJjn Sheep Marketplace

[84]

Marketplace

1B3csgD92bu53CFE44F4dG3MYf6fHM1PVL BitBooks Marketplace

[85]

Marketplace

1CK6KHY6MHgYvmRQ4PAafKYDrg1ejbH1cE SlushPool Pool [76] Pool

1MHiYYKmXJPLhbEq2oihAHaHHmwveSm8bU Deepbit Pool [86] Pool

3H5JTt42K7RmZtromfTSefcMEFMMe18pMD Poloniex Exchange

[76]

Exchange

bc1q080rkmk3kj86pxvf5nkxecdrw6nrx3zzy9xl7q KuCoin Exchange

[76]

Exchange

1GrwDkr33gT6LuumniYjKEGjTLhsL5kmqC Bybit Exchange [76] Exchange

1E8xjHavR1NwVv6tWTC6pX7Z93MWmMmPTx Minng Pool [87] Pool

3E2adcep2NRRpriLnWn1AvW3AHKqBx2mMr Kraken Exchange [76] Exchange

13Ygcd5spiSnexGkhL29y6J8EokMKX4jW9 Gambling [77] Gambling

19ihxgbVYHv5P9uAWhPJYcPEqJfqkrGy9n Mining Pool [87] Pool

17A16QmavnUfCW11DAApiJxp7ARnxN5pGX Poloniex Exchange

[80]

Exchange

1Kr6QSydW9bFQG1mXiPNNu6WpJGmUa9i1g Bitfinex Exchange

[76]

Exchange

3LYJfcfHPXYJreMsASk2jkn69LWEYKzexb Binance Exchange

[63]

Exchange

1DarkNeMzR1nzUeKkMYs3hWJhSvRzgZ4Fk Agora darkweb Mar-

ketplace [88]

Marketplace

1Eg8WSxvfeZaKmqhNZrECTUb58x3y1AWYN Sheep Marketplace

[89]

Marketplace

50



3LQUu4v9z6KNch71j7kbj8GPeAGUo1FW6a Binance Exchange

[76]

Exchange

1GympjxbuH3jWUiCHNV4bZccf8zh8aS3fw Gambling [77] Gambling

38UmuUqPCrFmQo4khkomQwZ4VbY2nZMJ67 OK Exchange [76] Exchange

3HroDXv8hmzKRtaSfBffRgedKpru8fgy6M Gate.io Exchange [76] Exchange

3DVJfEsDTPkGDvqPCLC41X85L1B1DQWDyh OKEx Exchange [76] Exchange

18cHaZhMX8ps4kUy8HbnXMKfYnp82ovUZJ Mining Pool [87] Pool

3JZq4atUahhuA9rLhXLMhhTo133J9rF97j Bifinex Exchange [76] Exchange

336xGpGweq1wtY4kRTuA4w6d7yDkBU9czU Coincheck Exchange

[80]

Exchange

14eQD1QQb8QFVG8YFwGz7skyzsvBLWLwJS Kraken Exchange [80] Exchange

1DYJYmg5u5RpCNSujCQd36ATRavYqbXUry Weipool Pool [90] Pool

16rCmCmbuWDhPjWTrpQGaU3EPdZF7MTdUk Bittrex Exchange [80,

91]

Exchange

16rCmCmbuWDhPjWTrpQGaU3EPdZF7MTdUk Bitstamp Exchange

[80]

Exchange

1AnwDVbwsLBVwRfqN2x9Eo4YEJSPXo2cwG Kraken Exchange [80] Exchange

14dxwuQwkQiLbZjJFfciZ26xSGdRU5mKEp P2Pool Pool [92] Pool

15qx9ug952GWGTNn7Uiv6vode4RcGrRemh blockcypher Market-

place [93]

Marketplace

1Ewkm6ejW9HXZRQ7dMofVchhbcuofXTJTg Digital Art Market-

place [94]

Marketplace

3FHNBLobJnbCTFTVakh5TXmEneyf5PT61B Binace Exchange [76] Exchange

3HcEUguUZ4vyyMAPWDPUDjLqz882jXwMfV Kraken Exchange [76] Exchange

36hmYCWsH4us2XUEokRVndJxAzSfDkLXXw Others [2] Others

18YAvNScUiVqcSnWy8QYjw3FABymw2PiKz Others [2] Others

18DRbhvVMsnhQfVPYqoRmyyB3NAKycWTG9 Ball Pool [92] Pool

1J1zegkNSbwX4smvTdoHSanUfwvXFeuV23 P2Pool Pool [92] Pool
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38fJPq4dYGPoJizEUGCL9yWkqg73cJmC2n KuCoin Exchange

[76]

Exchange

14kmvhQrWrNEHbrSKBySj4qHGjemDtS3SF Gate.io Exchange [76] Exchange

1JosHWaA2GywdZo9pmGLNJ5XSt8j7nzNiF MPoolMonitor Pool

[95]

Pool

3QQQftBYbBoKADrovaeveX4Gs6H6MMu6u3 OKEx Exchange [76] Exchange

3Hi5VHVgmYZYfAPc9aNvQoNXyEv5rYvJQN Bitstamp Exchange

[76]

Exchange

34HpHYiyQwg69gFmCq2BGHjF1DZnZnBeBP Binace Exchange [76] Exchange

1ELRFi1VuxMxmzwTyLxRzVNEoxihxsRUBF E-Pool Pool [96] Pool

1L2g5dL3burP7vA2agbfeKw6RZKGnRurMf MegaCoin Pool [97] Pool

bc1q2qqqt87kh33s0er58akh7v9cwjgd83z5smh9rp Bybit Exchange [76] Exchange

3D2oetdNuZUqQHPJmcMDDHYoqkyNVsFk9r Bitfinex Exchange

[80]

Exchange

13ULoNrYTavFPovDkR1DL3iAZksShbQP7g Bitcoin Chaser Gam-

bling [98]

Gambling

3FrSzikNqBgikWgTHixywhXcx57q6H6rHC Binance Exchange

[80]

Exchange

3Cbq7aT1tY8kMxWLbitaG7yT6bPbKChq64 Huobi Exchange [80] Exchange

1FuckbFLZpmWLuyHyFJw1RGkWm3yRM1L5D Ball Pool [92] Pool

3Eh8hVjYCEVBdxsnyD2P2zrVLGZi84gzi7 Kraken Exchange [76] Exchange

3GUBZQVvqNsoe6xg5XVvv5X7iJvMUP2Gtg Others [2] Others

1MJtsk4AUWU4fSr2sSMzbg8WTUoUdw8byM Others [2] Others

1C7VMBwL1DEnxGvEE9zPWkUgK4QiT6QrS8 bustabit.com Gam-

bling [99]

Gambling

3JmxvMqm35aLDUHXDbESy6rQz4M8MBQD32 OKEx Exchange [76] Exchange

1Bat7qkbWDjN3SqXYyYCmBqKNbTsnuZsVY Ball Pool [92] Pool
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395vnFScKQ1ay695C6v7gf89UzoFpx3WuJ Binance Exchange

[76]

Exchange

1DXhNVViVYu4xPGUu4pYH2cTr72UPMqKAt Bitcoin faucet Gam-

bling [100]

Gambling

3ANziRvoBdNGkmGopgyhvzPuBvcL8sRL7S OKEx Exchange [76] Exchange

3EGdfMJbhPCnxN44SKNZ94AVt9wwULd67S Kraken Exchange [76] Exchange

1FoWyxwPXuj4C6abqwhjDWdz6D4PZgYRjA Binance Exchange

[76]

Exchange

3LhfhgcYNiCceJrjDuMbYWqxPkKkgDQ4ay OKEx Exchange [76] Exchange

1Kd8zawHp2Wy5y2JE36mfc5VdfKkgpMqDg Others [2] Others

1MooseXJNFugR6r26aGk2AM8v7Crrk3iVE BetMoose Gambling

[101]

Gambling

3J1oFuTTWhHGJF2vLorfvReLkirX1JtWJj Kraken Exchange [76] Exchange

1111111111111111111114oLvT2 Binance Exchange

[76]

Exchange

3G7e21FgygBmWDRMykauLANpuBK8iKqXpJ OKx Exchange [76] Exchange

1StatsQytc7UEZ9sHJ9BGX2csmkj8XZr2 ELIGIUS Pool [102] Pool

33W3jbvNdykbyWtv1bvwLKuJrXW2cUvjzk OKEx Exchange [76] Exchange

bc1ql7r624hyquhlk5z42gyercm63ujyu62a3fg64k OKEx Exchange [76] Exchange

1JQULE6yHr9UaitLr4wahTwJN7DaMX7W1Z OK Exchange [76] Exchange

1LnoZawVFFQihU8d8ntxLMpYheZUfyeVAK OK Exchange [76] Exchange

1DcT5Wij5tfb3oVViF8mA8p4WrG98ahZPT OK Exchange [76] Exchange

3NAE4hKEvxkjjyRFSWTPbczTE3NgXm8SWh Others [2] Others

1CY7fykRLWXeSbKB885Kr4KjQxmDdvW923 OK Exchange [76] Exchange

36anhsRT1mMZjd617yTb3omgTGEPhSTURc Others [2] Others

36NkTqCAApfRJBKicQaqrdKs29g6hyE4LS OK Exchange [76] Exchange

3MHcS3Cy6HrDSoXVTc2ttQbx7ZK47i95cb OKEx Exchange [76] Exchange
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13oPp2XG8PJJUbKUuhQ7ptMC3hnVcc1QzA SuzukiDICE Gam-

bling [103]

Gambling

12ZDggFG3EyyPuz7PwEq3o58gWWCgB5pf3 YABTCL.com Gam-

bling [104]

Gambling

bc1quq29mutxkgxmjfdr7ayj3zd9ad0ld5mrhh89l2 OKEx Exchange [76] Exchange

1KFHE7w8BhaENAswwryaoccDb6qcT6DbYY F2Pool Pool [105,

106]

Pool

Table A.1: Fraudulent Bitcoin address classification results
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