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ABSTRACT 

Development and testing of a three-dimensional deepwater oil spill model 

(DWOSM) to predict the transport and fate of subsea blowouts 

 

Zhaoyang Yang, Ph.D. 

Concordia University, 2024 

 

Offshore oil exploration and production in deep water are associated with 

environmental risks to marine ecosystems. Oil spill models have been used for decades 

to help responders make informed decisions by forecasting the movement and fate of 

released petroleum fluids. However, few existing tools could capture the sophisticated 

behaviors of deep-sea spills under extreme ranges of ambient conditions. This study 

develops a deepwater oil spill model (DWOSM) to predict subsea blowouts’ transport 

and weathering processes. Notably, DWOSM introduces near-field particle tracking to 

enable a smooth transition between near-field and far-field. It also uses thermodynamic 

modeling to predict the evolution of petroleum’s physicochemical properties in deep 

water. Furthermore, a state-of-the-art stochastic simulation-based risk assessment 

framework is improved by embedding the DWOSM and a polycyclic aromatic 

hydrocarbons (PAH)-related risk evaluation index.  

 The application of DWOSM is demonstrated in three cases. The first study case is 

a hypothetical blowout in the offshore waters of East Newfoundland, Canada. The 

DWOSM and its each module are juxtaposed with other established models. The 
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verification shows that DWOSM predictions align with other model outputs. Multiple 

spill scenarios are implemented to investigate the impacts of weathering processes on 

oil fate, which reveals the vital role of natural dispersion in surface oil mitigation under 

windy conditions. Second, DWOSM is applied to perform a hindcast of the Deepwater 

Horizon (DWH) blowout. Primary model outputs are validated through field 

observations and relevant modeling efforts. A good performance is presented in most 

validation results, manifesting the reliable capability of DWOSM to simulate deep-sea 

spill behaviors. Last, the new model is integrated into a risk assessment framework to 

evaluate the subsea blowout risk in the offshore area of East Newfoundland. Various 

simulations corresponding to each representative met-ocean condition are conducted to 

yield oil spill hazard mapping. The results indicate a low-risk level around the nearshore 

waters of the study area, but PAH exposure can jeopardize the aquatic biota in the oil-

infested region. In conclusion, this research contributes a novel modeling toolkit for 

predicting the complex behaviors of deep-sea blowouts and an improved stochastic 

simulation-based risk assessment methodology to quantify the subsea spill risk. 
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Chapter 1 Introduction 

1.1. Background and motivation 

Growing global energy demand has substantially driven oil and gas production 

over the last half-century. It was reported that worldwide petroleum production 

increased from 63,988 million barrels/day in 1980 to 95,703 in 2021 (US EIA, 2023). 

Meanwhile, advancements in exploration technologies (e.g., the construction and 

maintenance of shelf and drilling platforms) allow the petroleum industry to cost-

effectively access oil and gas reservoirs in deep (1,000-5,000 feet depth) and ultra-deep 

waters (>5,000 feet depth) (Makarynskyy, 2021). The share of global offshore oil 

production increased from 13% in 1990 to 30% in 2020, with particular growth of 

deepwater production from less than 1% before 2000 to nearly 10% in 2020 (Harris et 

al., 2015). In recent years, many countries and oil producers have cast their attention 

on primitive regions and become more reliant on production from deep and ultra-deep 

fields to offset declines in output from shallow waters. Since 2017, over half of the 

American marine-derived crude has originated from ultra-deep wells (Murawski et al., 

2020). Mexico successfully tendered a new round of exploration licenses in 2018, 

which could bolster deepwater production growth in the long term (IEA, 2018). In 2019, 

British Petroleum claimed the discovery of two oilfields and an extra billion barrels of 

oil at an existing field in the Gulf of Mexico (GOM), situated in water depths of over 

1,800 meters (Ron, 2019). Two years ago, the Canadian government permitted three 

fossil fuel firms to proceed with drilling plans in Newfoundland and Labrador offshore 

(CBC, 2022). More recently, the Guyana government offered fourteen blocks for tender 
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in Guyana’s offshore region (combined shallow and deepwater areas) with an estimated 

reserve of over eleven billion barrels of oil equivalent (GMNR, 2022). Overall, the 

share of deepwater in total offshore production is expected to rise from 23% in 2022 to 

30% in 2040 (IEA, 2018). Although offshore oil and gas production has matured after 

decades of practice, deep and ultra-deep drillings are associated with additional 

environmental risks compared with shallower exploit due to their complex operation 

and harsh conditions (e.g., immense pressure and low temperature). Notwithstanding 

these issues, the enormous profitability of ultra-deep wells resulting from their high 

production rate seems appealing to the oil industry (Murawski et al., 2020). Hence, 

escalating offshore activities unavoidably pose the potential threat of oil/gas blowouts 

to the ocean.  

As a major environmental issue that has drawn public concern in the last decades, 

a few early cases of anthropogenic marine petroleum pollution date back to a century 

ago, such as SS Petriana with spillage of 9,529 barrels in 1903 and Thomas W. Lawson 

leaked 58,000 barrels in 1907 (Makarynskyy, 2021). Over the last fifty years, it is 

estimated that more than ten million tons of oil have been released into the global ocean, 

with multiple spill locations spanning from subsea blowouts to tanker accidents. Among 

numerous past marine oil spill incidents, the Deepwater Horizon (DWH) oil spill was 

the first, and to date, only ultra-deep well blowout, causing an unprecedented ecological 

catastrophe and inestimable socioeconomic losses (Beyer et al., 2016; Murawski et al., 

2019). More details on the DWH blowout can be found in Section 5.1. Even though 

natural and anthropogenic hydrocarbon releases to the ocean occur daily, only very few 
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oil spills have severe or devastating effects on the marine environment and economy. 

For example, several million barrels of oil are annually leaked into the GOM through 

natural seepage from fractures in the seafloor (Board et al., 2003), but never resulted in 

ecosystem-level damage like the DWH blowout. Nevertheless, the aftermath of oil 

spills with relatively small leakage can still be disastrous, especially in ecologically 

sensitive areas. One representative case is the Wakashio oil spill on 25 July 2020: a 

Japanese-owned cargo ran aground on a coral reef off southeast Mauritius. Around 

1,000 tons of fuel were released into the lagoons and coastal areas, leading to 30 km of 

heavily contaminated shorelines (Degnarain, 2020). More than a hundred carcasses of 

whales and dolphins were found on the beach after the spill (Rajendran et al., 2022). 

The quantity of oil leaked from the Wakashio is lower than that of past major spill 

events; however, ecological damage will be vast and enduring since it occurred in a 

marine-protected area laden with fragile cold-water corals and sponges (BBC, 2020). 

Given the consequences of oil pollution on the environment, ecosystems, and economy, 

it is imperative to minimize the negative impact of oil spills regardless of their size. 

 The prerequisite of an effective oil spill response is comprehensively understanding 

the transport and fate of petroleum in various environmental compartments (Yang et al., 

2021). Generally, marine oil spills can be categorized into three types according to their 

sources: surface releases (e.g., tanker spills), subsea leaks (e.g., pipeline cracks and 

natural seep), and underwater blowouts (e.g., damaged blowout preventers). Deepwater 

blowouts are more complex than surface releases due to the extended interaction 

between petroleum and the water column before atmospheric exposure (Murawski et 
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al., 2020). In addition, blowouts have more significant volume fluxes and can generate 

highly turbulent flows than subsea leaks with weak plumes (Boufadel et al., 2020a). 

Since oil surfacing from the deep sea will undergo the same transport and weathering 

processes as oil stemming from a surface spill, only the behaviors of oil and gas emitted 

from blowouts are depicted here to avoid unnecessary duplication. As shown in Figure 

1-1, once petroleum fluids are discharged from a deepwater source, they will break into 

a spectrum of oil droplets and/or gas bubbles (a collective term that includes oil droplets 

and gas bubbles) having different sizes because the interface between the dispersed 

phase and ambient seawater rapidly destabilizes near the release orifice (Yapa et al., 

2012; Boufadel et al., 2020a). In the meantime, momentum and buoyancy fluxes lift 

particles and entrained ambient seawater jointly as single-phase or multiphase jet/plume 

to higher elevations in the water column. As the plume rises, its momentum and 

buoyancy are gradually depleted due to crossflows and the entrainment of ambient 

fluids, which may form intrusion layers of enhanced hydrocarbon content at a neutral 

buoyancy level. Large oil droplets and gas bubbles may escape from the plume and 

ascend to the sea surface along different pathways, whereas tiny bubbles and light 

components of oil droplets may dissolve into ambient seawater. Unlike dispersed oil, 

gas may be converted to crystalline solids named gas hydrates under high pressure and 

low temperature. Eventually, droplets reaching the surface may form slicks and are 

moved by advection and diffusion under the combined influences of currents, winds, 

and waves. A series of transformation processes will concurrently change the physical 

and chemical properties of the oil over a broad range of timescales (collectively termed 
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“weathering”), such as evaporation, emulsification, and spreading (Tarr et al., 2016). 

In turn, the weathering rate is highly influenced by the variation in oil properties. More 

details of petroleum weathering processes are introduced in section 2.4. 

 

Figure 1-1 Schematic diagram of a deepwater blowout. 

 

After an oil spill incident, knowing where oil is likely to move, what resources will 

be impacted, and the level of damage that will probably be caused to communities can 

provide invaluable information for decision-making regarding oil spill preparedness 

and response (Nelson et al., 2015). To predict the fate and transport of oil spills, 

researchers developed numerous comprehensive and easy-to-use toolkits, ranging from 

simple oil fate models to sophisticated three-dimensional (3D) numerical models (Yang 

et al., 2021). Nevertheless, oil spills are a complex topic involving several scientific 

specialties, environmental conditions, and extensive dimensional scales, especially for 

deepwater blowouts with additional complexity (Murawski et al., 2020). When 

simulating subsea blowouts, oil spill modeling is usually divided into two distinct 
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domains: near-field with spatiotemporal extent of the order of hours and a few hundred 

meters above the wellhead, and far-field up to several months and kilometers away from 

the source (Riazi, 2021). Near-field modeling aims to simulate near-field plume 

dynamics (e.g., spatial coverage and momentum); far-field modeling focuses on 

tracking the evolution of particles that exit from the plume region, such as composition 

and location (Murawski et al., 2020). Some oil spill models only focus on near-field or 

far-field modeling, which requires coupling with other components to simulate deep-

sea oil/gas blowouts. Though a few comprehensive models nearly touch upon every 

aspect of oil spill modeling (OSM) (e.g., plume model, droplet size distribution (DSD) 

model, particle tracking, weathering algorithms), they are still not all-inclusive or 

oversimplify some critical spill behaviors. For example, regarding subsurface oil 

tracking, due consideration should be given to the evolution of particle sizes and 

properties owing to fate processes and in situ conditions (Ainsworth et al., 2021). 

Furthermore, it is seen that the coupling of near- and far-field modeling with 

spatiotemporal dynamics of oil and water properties needs further investigation. 

Particularly for supporting regulatory approvals to future offshore oil and gas 

exploration/production in field conditions, such modeling tools should be examined at 

sea to develop protocols for environmental impact assessments. Nowadays, what makes 

the situation more concerning is that ultra-deep wells in the GOM expand to depths 

nearly twice that of DWH (Murawski et al., 2019). Hence, developing an operational 

oil spill forecasting system with robust integration of state-of-the-art numerical models 

becomes an urgent task to tackle potential deepwater blowouts. 
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1.2. Research objectives 

The primary goal of this study is to develop and evaluate a comprehensive 

deepwater oil spill model (DWOSM) in support of the response to deep-sea blowouts. 

Specifically, a hypothetical case and an actual past blowout accident are used as the 

study cases to verify the DWOSM. The specific objectives in line with the primary goal 

are presented as follows: 

1) To develop a 3D operational oil/gas blowout forecasting system by coupling 

multiple modeling components, including a two-phase flash calculation system, 

DSD model, jet/plume model, near-field and far-field particle tracking models, and 

fate algorithms.  

2) To assess the applicability of the DWOSM in a hypothetical oil blowout case 

occurring at eastern Canadian offshore waters by systematically comparing each 

module and other well-established models.  

3) To examine the validity of the DWOSM in a real-world case (i.e., DWH blowout) 

by comparing the hindcast results with the observation. 

4) To combine the deterministic model and the Monte Carlo method for quantitatively 

conducting an environmental risk assessment of spill-related polycyclic aromatic 

hydrocarbons (PAHs) in offshore waters of eastern Canada. A deep-sea blowout 

risk map is also generated based on a new risk assessment framework.  

1.3. Outline  

This doctoral dissertation contains three research chapters (i.e., 2-6) and concludes 

in Chapter 7. The detailed research organization is shown in Figure 1-2.  
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Chapter 1 gives background information on the current status of worldwide 

deepwater oil production. Some past major oil spills and the behaviors of deep-sea 

blowouts are also briefed. Finally, we state the present problems with deepwater OSM 

and specify the research objectives. 

Chapter 2 thoroughly reviews the studies regarding most aspects of deepwater 

OSM. The pros and cons of the commonly used methods in each direction are 

summarized and discussed, which is conducive to finding the optimal approaches for 

this study.  

Chapter 3 systemically describes the methodology for developing an operational 

deepwater oil/gas spill forecast system. Each modeling component is introduced in this 

chapter, including flash calculations, the DSD model, near- and far-field particle 

tracking models, and fate algorithms. This chapter also presents the integration of those 

components, the numerical method, and a stochastic simulation-based risk assessment 

approach. 

Chapter 4 depicts a case study of applying the DWOSM to predict a hypothetical 

blowout in eastern Canadian waters. Multiple well-established oil spill models, such as 

Spill Impact Mapping (SIMAP) and General NOAA Operational Modeling 

Environment (GNOME), are used to comprehensively compare with the DWOSM in 

this case, which aims to evaluate the applicability and validity of this newly developed 

model. Furthermore, the impacts of serval weathering processes on the oil budget are 

also numerically investigated in various simulation scenarios.  

Chapter 5 presents a real-world application of the DWOSM to the DWH incident. 
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DWOSM is used to provide the hindcast of transport and fate during the initial stage of 

the DWH spill. Its model performance in multiple outputs is validated by a series of 

comparisons, which mainly rely on remote sensing-based data, previous modeling 

efforts, and field measurements. 

Chapter 6 describes a PAH-related risk assessment based on integrating data 

mining techniques and the DWOSM. An oil spill risk mapping is eventually yielded for 

the offshore region of East Newfoundland, Canada. The effectiveness of subsea 

dispersant injection (SSDI) on spill mitigation is also numerically examined and 

discussed. 

Chapter 7 summarizes the conclusions and main contributions and proposes several 

recommendations for the following research. 
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Figure 1-2 Thesis organization. 
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Chapter 2 Literature Review 

2.1. Droplet size distribution models 

The size distribution of particles forming near the release point of a deep-sea 

blowout can significantly impact the transport and fate of petroleum fluids in the ocean, 

particularly for surfacing time and location in tandem with the rate of dissolution and 

biodegradation (Murawski et al., 2020). Therefore, the prediction performance of 

deepwater OSM largely depends on the accuracy of the DSD model. In contrast to 

numerous DSD-related studies since the DWH, the importance of DSD calculations did 

not receive sufficient attention from the early oil spill models (Nissanka and Yapa, 

2018). It is noteworthy that oil droplets can be generated both in underwater jets/plumes 

and under breaking wave conditions at the sea surface. Given that most spill response 

technologies focus on floating and stranded oil and are incapable of tackling submerged 

oil, the operational response is less concerned with whether oil is sedimented or 

degraded after the dispersion. Here, we only survey existing DSD models tailored for 

oil/gas blowouts because the droplet size of wave-entrained oil mainly influences the 

follow-up propagation and fate of submerged oil, even though these droplets may 

resurface and form a secondary slick.  

The approaches for calculating oil/gas DSDs resulting from subsurface releases can 

be categorized as equilibrium models (EMs) and population dynamic models (PDMs) 

(Socolofsky et al., 2015). EMs predict a characteristic quasi-stationary droplet size 

(typically the volume median diameter VMD) at the end of the primary breakup regime 

based on semi-empirical relations (Johansen et al., 2003 and 2013; Li et al., 2017). 
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They cannot generate the DSD from the predicted VMD without the assistance of a 

predefined statistical distribution (e.g., Rosin-Rammler and log-normal distributions). 

All the EMs originate from the seminal work by Hinze (1955) that correlates the VMD 

with turbulent energy and interfacial tension under stationary conditions. Johansen 

(2003) proposed a method to calculate the maximum oil droplet size at exit conditions 

of large-volume jets by analogy with droplet splitting in turbulent pipe flow. This study 

introduced the Weber number into the DSD calculation and has been widely adopted 

by the follow-up EMs. Hereafter, Boxall et al. (2012) developed a function of Reynolds 

and Weber numbers to predict droplets of water-in-oil emulsions under turbulent flow. 

Johansen et al. (2013) further improved EM by considering the viscosity effect, i.e., the 

breakup with smaller viscous numbers is governed by Weber number scaling, while 

Reynolds number scaling is applicable for larger viscous numbers. This modified 

approach is one of the most recognized EMs and has been adopted by various 

operational oil spill models (OOSMs) (Sim et al., 2015; Spaulding et al., 2017; 

Socolofsky et al., 2022). Li et al. (2017) proposed a unified droplet size model with a 

combination of Weber and Ohnesorge numbers, gaining an advantage over other EMs, 

i.e., it applies to both underwater blowouts and surface wave entrainment by adjusting 

model coefficients. 

PDMs build on a population balance equation (PBE) to emulate two competing 

processes of breakup and coalescence, which provides the temporal evolution of the 

size distribution of oil droplets and gas bubbles in turbulent flows (Bandara and Yapa, 

2011; Zhao et al., 2014a, b). This physics-based method has its roots in earlier PBE 
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developed for computing DSD in turbulent fluid columns (Nissanka and Yapa, 2018). 

Bandara and Yapa (2011) adapted PBE to predict the DSD of particles released from 

deepwater blowouts for the first time. Zhao et al. (2014a) used a discrete form of PBE 

to develop a DSD model (VDROP). Subsequently, Zhao et al. (2014b) combined it with 

an empirical jet model as VDROP-J to predict oil/gas DSDs at different times and 

downstream distances from the exit. Likewise, Nissanka and Yapa (2016) integrated 

Oildroplets, a PBE-based DSD model from their previous work, with a Lagrangian 

integral jet and plume model. 

Compared to EMs derived from empirical relations, physics-based PDMs seem 

more theoretically plausible because of their ability to simulate particle dynamics 

within the breakup region of multiphase jets/plumes (Cooper et al., 2021). PDMs also 

have the advantage over EMs of directly providing evolving DSD along the jet/plume 

trajectory without choosing a heuristic distribution. Nevertheless, a relatively heavier 

computational burden and additional specifications about ambient turbulence limit the 

application of PDMs to field conditions (Makarynskyy, 2021). The uses of EMs beyond 

the tested ranges are doubtful as their coefficients are obtained from given experiments. 

Yet, they have been well-validated through numerous laboratory experiments covering 

extensive release conditions (Nissanka and Yapa, 2018). Considering their 

practicability and simplicity, EMs are suitable for rapidly estimating DSD during a spill 

incident and have become the most popular choice in current oil spill models. 

2.2. Buoyant plume models 

Similar to methods of DSD prediction, there are two widely used techniques for 
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simulating buoyant plume dynamics at the field scale (Murawski et al., 2020). The first 

method is 3D computational fluid dynamics models that numerically solve a particular 

form of Navier‐Stokes equations, which can be further grouped into three types based 

on their scales and grids: Reynolds‐averaged Navier‐Stokes (RANS) model, large eddy 

simulation (LES), and direct numerical simulation (DNS). Compared with the other 

two methods, LES is a promising approach for modeling practical multiphase flow 

scenarios as it combines the advantages of the RANS and DNS (Boufadel et al., 2020a). 

Despite improvement in understanding the near-field plume behaviors since DWH, for 

instance, Daskiran et al. (2021) captured oil DSD and jet dynamics similar to 

experiment observation through LES, it is inherently less capable of characterizing 

flows requiring parameterization of sub-grid-scale processes (e.g., coalescence and 

breakup) (Boufadel et al., 2021). Furthermore, computational fluid dynamics modeling 

is always computationally costly; thus, most comprehensive toolkits designed to guide 

operational oil spill response rely on integral models (Murawski et al., 2020).  

Based on the assumption that the multiphase plume is of self-similarity, integral 

models resolve the cross-sectional averaged flow quantities (e.g., volume, momentum, 

and buoyancy) along the plume pathway. In the groundbreaking work of Morton et al. 

(1956), the concept of a buoyant plume and its governing equations were proposed and 

became the fundamental of follow-up studies on integral models. To date, two major 

integral models are available to predict the dispersed phase separation and the intrusion 

layer formation, i.e., double-plume models and a Lagrangian approach. The former uses 

an Eulerian framework to solve for an upward-rising inner plume and a separate, 
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annular outer plume in still waters. The round bubble plume model proposed by 

Milgram (1983) is commonly adopted to simulate the inner plume, while various 

studies use different algorithms for computing flux exchange between the inner and 

outer plumes. This approach can effectively predict multiple sequences of intrusion 

layers but is only appropriate in a quiescent environment, as crossflows will 

asymmetrize the outer plume to invalidate its equations (Dissanayake et al., 2018). The 

latter establishes a Lagrangian framework for modeling the behaviors of the inclined 

buoyant plume in the presence of crossflow. It is prevalently taken as the near-field 

modeling approach among subsea oil spill models, such as BLOOSM and Texas A&M 

Oilspill Calculator (TAMOC). Lee and Cheung (1990) developed the earliest 

Lagrangian jet/plume model for underwater blowouts and introduced control volume 

(CV) analysis for blowout simulations. Under such a scheme, a conceptual volume 

consisting of oil, gas, and entrained water is treated as a generalized entity analogous 

to an independent cylindrical, cross-sectional plume segment (Sim, 2015). At each step, 

the property change of the CV is driven by the entrainment of the ambient water and 

the crossflow, which may decelerate the jet motion and expand the CV volume until 

momentum and buoyancy vanish. Recent improvements to integral models include the 

physicochemical and thermodynamic equations to handle oil-gas mixtures and the 

particle tracking algorithm to quantify the contributing buoyancy of dispersed phases 

to the plume (Dissanayake et al., 2018; Boufadel et al., 2020a; Wang et al., 2022). It is 

worth noting that both integral models are only applied to solve the steady-state solution.  
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2.3. Transport models 

Spill trajectory forecast is one of the most decisive problems for oil spill 

preparedness and response since decision-makers need to prioritize protecting sensitive 

resources and shorelines (Yang et al., 2023). As a result, the module aiming for oil spill 

transport simulation becomes a critical component of OOSMs. In addition to a few new 

attempts, like applying the lattice Boltzmann method in oil spill trajectory modeling 

(Maslo et al., 2014), most studies adopt the Eulerian or Lagrangian approaches 

(Keramea et al., 2021; Yang et al., 2021). By boiling down the mathematics of oil 

transport to solving the advection-diffusion equation, the Eulerian method treats the 

particle phase as a continuum and simulates temporospatial variations of oceanographic 

fields (Makarynskyy, 2021). It mainly benefits from the three features: a) available to 

add empirical formulas describing the local changes/interactions of the oil with the 

environment; b) configuring a high-resolution mesh may capture more realistic details 

(e.g., coastlines and sea ice); c) the ability to reflect the impact of spill volume changes 

on the diffusion area of oil spills. In practice, this method is less effective than the 

Lagrangian representation in oil transport simulation because it requires generating 

numerical grids of the studied domain. Particularly for 3D partial differential equations, 

it is computationally intensive as the equation must be solved at every grid point 

regardless of whether oil exists.  

The Lagrangian method discretizes oil as a finite number of particles assigned with 

an initial location and mass to simulate the trajectories of each particle independently. 

This technique may effectively avoid numerical diffusion in an Eulerian framework and 
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has a lower computational cost since it only solves the system of ordinary differential 

equations (ODEs). Furthermore, a random walk scheme is often coupled with a 

Lagrangian framework to simulate oil displacement due to turbulent diffusion. Most 

spill models face common problems when they implement the Lagrangian method: a) 

lack the capability of EMs to mirror the impact of spill volume changes on the diffusion 

area; b) no criteria for the selection of particle number, while insufficient particles 

cannot accurately characterize horizontal oil dispersion and excessive particles will 

increase the unnecessary computational burden.  

Regarding subsea blowout releases, the algorithms for particle rise velocity are 

additionally required under a Lagrangian scheme. The commonly used methods in spill 

models include the two-equation approach (Zheng and Yapa, 2000) and the correlation 

formulations for fluid particles (Clift et al., 2005). The former adopts Stokes’ law to 

calculate the terminal velocity of small droplets (less than 1 mm) and integrate the drag 

coefficient for large droplets (typically greater than 10 mm). Some studies use 

interpolation for intermediate droplets to smooth the gap, while others apply the same 

methods with small or large droplets. Compared to the former, correlations offered by 

Clift et al. (2005) not only consider the oil properties and ambient conditions but also 

define the rise velocity under different regimes of particle shapes.  

2.4. Weathering algorithms 

Understanding the impacts of weathering processes on oil mass loss and 

characteristics after a spill can strongly support decision-making about what cleanup 

options should apply, as each countermeasure has its applicable conditions. For 
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example, aerial spraying of oil dispersant chemicals will miss the operational window 

of opportunity when the slick becomes too viscous due to weathering. Many modeling 

approaches tailored for individual fate processes are reviewed in the following sections. 

2.4.1. Spreading 

When oil appears on the sea surface, horizontal expansion of slicks immediately 

occurs under the gravitational action regardless of the presence of winds and currents. 

This process plays a crucial role in the early stage of weathering from two dimensions: 

the thickness of a slick becomes thinner, and the oil-contaminated area expands (Fingas, 

2017). Most oil spill models treat spreading as a driver of other weathering processes 

(e.g., evaporation and dispersion), which focus more on reasonably estimating the 

exposed surface area caused by spreading than itself.  

To date, the most widely accepted theory is still based on Fay’s regimes that divide 

the spreading into three separate phases: gravity-inertial, gravity-viscous, and 

interfacial tension (Simecek-Beatty and Lehr, 2017). The first phase represents that the 

oil extends laterally under the balance between the driving force of gravity and the 

retarding force from inertia. As it is transient (typically lasts for a few minutes) 

compared to the timescale of weathering, the area at the end of this stage acts as the 

initial condition of gravity-viscous spreading for practical purposes. A slick can be 

assumed to be an elliptical formation with the central axis oriented toward the 

downwind. In the second phase, the viscous shear of the water underlying the surface 

layer substitutes inertia as the retarding force. The last phase begins when the effect of 

gravity on the oil attenuates, and the interfacial tension continues to spread the oil. This 
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stage is often ignored because it only occurs when a slick becomes sheen (thinner than 

0.1 mm) and reaches terminal thickness (the minimum thickness of an oil slick). 

Notwithstanding that Fay spreading can capture the physics of an oil film on a quiescent 

water surface, its formulas underperformed in many reported cases due to the 

elongating slick (Simecek-Beatty and Lehr, 2017). To correct the underestimation for a 

slick area of an elongating oil film, Lehr et al. (1984) developed a wind-modified Fay 

model (WMFM) by separately calculating the major axis along the downwind direction 

and the minor axis. Simecek-Beatty and Lehr (2017) further modified the WMFM to 

simulate the thickness and length of oiled windrows by incorporating Langmuir 

circulation models and correcting surface area due to Langmuir effects. 

Apart from the Fay-type formulation, Geng et al. (2016) investigated the effect of 

waves on the propagation of oil droplets at sea. It suggested that Lagrangian transport 

models could overestimate the turbulent diffusion of surface oil. In sum, most spreading 

algorithms emphasize approximating the surface area and thickness of a slick 

depending on oil properties and sea state. The research regarding the impact of wave 

action and Langmuir circulation on oil spreading is insufficient because the data 

required by rigorous solutions to those problems are less obtainable in the emergency 

spill response (Keramea et al., 2021). Another issue is the uncertainty brought by the 

Lagrangian element (LE) number choice. The thickness is usually defined by the ratio 

of oil volume to surface area, while using different particle numbers may lead to 

discrepancies in the predicted mass of each LE.  
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2.4.2. Evaporation 

As the most critical removal mechanism for surface oil, evaporation usually 

dominates the volumetric reduction of slicks during the first few days after a spill, 

accounting for a 20% to 40% loss of oil mass corresponding to volatile hydrocarbon 

components (Afenyo et al., 2016). Lighter compounds enter the atmosphere, while 

heavier components remain at sea with higher density and viscosity. Presently, three 

representative methods are available to simulate the evaporation of hydrocarbon 

mixtures: the pseudo component (PC) evaporation model, empirical formulas, and the 

analytical approach (Fingas, 2017). As a widely used method in earlier oil evaporative 

works, the analytical approach treated oil as a single component to estimate its 

evaporation rate based on a dimensionless group, i.e., evaporative exposure that 

depends on time, wind speed, and spill area (Stiver and Mackay, 1984). Such an 

assumption is incompatible with the fact that the chemical compounds of the oil 

evaporate disproportionately. Taking advantage of its reliability and flexibility, the PC 

evaporation model currently replaces the analytical approach in the mainstream 

OOSMs. It assumes oil as a mixture of non-interacting components defined by 

distillation curve cuts, allowing each PC to evaporate disproportionately and 

independently (Sim et al., 2015). Vapor pressure and mass transfer coefficient are used 

to calculate the evaporation rate for individual components. The evaporative loss of a 

hydrocarbon mixture is the sum of evaporated mass or volume from each PC. Distinct 

from the two physics-based methods above, Fingas (2017) developed many statistical 

correlations from experimental data to predict the evaporative loss for specific oil types. 
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Instead of being air-boundary layer regulated, Fingas states that oil evaporates 

differently from water and is controlled by diffusion through the mass. In Fingas’s 

empirical formulas, evaporative fraction loss of petroleum fluids is time-dependent and 

relies on oil type and water temperature. Despite substantial equations given by Fingas 

(2017), those relations correspond to certain oil types and are less valid to predict any 

petroleum beyond the tested categories. Their application to operational spill response 

is also questionable because laboratory‐derived correlations have not been extensively 

verified in field conditions. Overall, compared with approaches that only provide the 

big picture of oil evaporation, the PC model is still the most widely recognized solution 

to predict the evaporative loss of hydrocarbon since it involves the more detailed 

chemical composition of the oil. 

2.4.3. Natural dispersion 

As a second major weathering process, natural dispersion (wave entrainment) can 

determine how long oil will remain on the sea surface. It occurs when wave action or 

turbulence creates tiny oil droplets and transfers them into the upper water column 

(Makarynskyy, 2021). Microdroplets with different definitions, ranging from <20 µm 

in Fingas (2017) to <100 μm in Boufadel et al. (2020b), are somewhat stable in water 

and will last for more extended periods. Larger droplets tend to surface rapidly and will 

not stay in the water column for over seconds. The entrainment rate primarily depends 

on the amount of wave energy and oil properties (e.g., viscosity and interfacial tension). 

Given the varying sea states and oil types, wave entrainment can either be insignificant 

to oil mass balance (e.g., heavy crude under calm waters) or the dominant removal 
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mechanism from surface oil (e.g., light oil during storm events).  

In the modeling of natural dispersion, the entrainment rate is usually explicitly or 

implicitly coupled to oil DSD (Makarynskyy, 2020). Delvigne and Sweeney (1988) 

conducted an experimental investigation on oil droplet formation by breaking waves, 

which is still the basis for modeling natural dispersion in most studies (Johansen et al., 

2015). This study developed an empirical formulation of the entrainment rate as a 

function of the dissipated wave energy per unit area, white capping coverage, oil 

viscosity, droplet size, etc. The original work did not give the total entrainment rate, 

which requires performing the integration over droplet size intervals. This 

experimentally derived method has several issues, particularly the overestimation of the 

dispersion rate. Fingas (2017) substituted the upper limit of droplet diameter with 20 

μm, allowing the entrained oil to be stable in the water rather than surfacing 

immediately. Some corrections were also made regarding the oil constant and the 

threshold of the onset of breaking waves. Other studies simulated the rate of natural 

dispersion based on the explicit prediction of entrained oil DSD generated by breaking 

waves. Johansen et al. (2015) developed a semi-empirical DSD model by introducing 

Weber and Reynolds numbers and formulated the first-order decay equation as an 

entrainment rate. Zeinstra‐Helfrich et al. (2017) modeled the consequence of natural 

and chemical dispersion for the size of surface oil over time, using a function of wind 

speed, oil properties, and dispersant application. This work also combined slick 

properties and environmental conditions into a newly defined indicator (‘‘dispersibility 

factor’’), which can be used to evaluate the favorability of natural dispersion and 
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chemical dispersants. As mentioned in section 2.1, the model proposed by Li et al. 

(2017) also applies to the sea with breaking waves. Although it stated that the DSD 

prediction agreed with the experimental data, the entrainment rates predicted from new 

models are even significantly faster than that of Delvigne and Sweeney’s method under 

high-speed wind conditions. Hence, more field observations are expected to be used to 

validate recently developed dispersion algorithms, especially at open sea with intensive 

wave actions. 

2.4.4. Emulsification 

Wave action can disperse water droplets into slicks, forming water-in-oil emulsions 

(sometimes called “mousse”) with distinct properties from non-emulsified oil. This 

process can considerably increase the volume and properties (e.g., viscosity and density) 

of floating oil, thereby decelerating many critical weathering processes (e.g., 

evaporation and dispersion) by orders of magnitude. Thus, emulsification significantly 

impacts the effectiveness of spill response technologies on surface oil removal. The 

most widely used modeling approach for emulsification originates from the first-order 

rate law model developed by Mackay et al. (1980), which assumed that the water 

fraction of the emulsified oil monotonically increases with wind speed to a specific 

threshold. Lehr et al. (2002) modified this work by introducing the effect of viscosity 

on the water fraction of emulsion. De-emulsification sometimes occurs when emulsions 

have lower stability. Xie et al. (2007) added a term to consider emulsion water loss for 

unstable and meso-stable emulsions. Except for the studies on forecasting 

emulsification rate, Fingas (2017) made noticeable progress in classifying emulsions 
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and their time to formation. According to oil properties and chemical constituents, the 

stability index is proposed to group the water-in-oil into four types: stable, mesostable, 

entrained, and unstable. Nonetheless, an emulsification model based on environmental 

conditions and oil properties is still anticipated, as the emulsion formation mechanism 

is poorly understood. 

2.4.5. Dissolution 

Water-soluble hydrocarbons can dissolve into the surrounding fluid, primarily 

controlled by the solubility of those compounds and the surface area of the oil-water 

interface (Tarr et al., 2016). For most surface releases, the dissolution is insignificant 

to the mass balance of an oil spill compared with other weathering processes, as only a 

small amount of oil components (e.g., lower-molecular-weight aromatics) might be lost 

to the water. Conversely, this process can be critical to deep-sea blowouts because 

deepwater-released oils are usually “live oils” containing significant amounts of 

dissolved gases (e.g., methane and ethane) (Murawski et al., 2020). The larger surface-

area-to-volume ratio of fluid particles is another factor that makes dissolution more 

impactful to the fate of deep-sea blowouts than that of surface spills. Despite barely 

measurable mass variation caused by dissolution for “dead oils” (oil that does not 

contain dissolved gases), soluble aromatic compounds are particularly toxic to aquatic 

life and should not be ignored in environmental impact assessment. Current dissolution 

models are similarly dependent on the calculation of the mass transfer rate. Cohen et al. 

(1980) used an oil-water partition coefficient and the water-phase transfer velocity to 

estimate the transfer rate of the soluble oil component. Zheng and Yapa (2002) 
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simulated the dissolution rate for a gas bubble using the bubble surface area, ambient 

concentration of solute, solubility, and mass transfer coefficient. In general, the 

differences among dissolution models mainly stem from the different methods used to 

compute mass transfer coefficients and solubility. 

2.4.6. Biodegradation 

Marine microbial communities can decompose petroleum hydrocarbons into 

simpler organic compounds, regarded as one of the most significant long-term natural 

processes to mitigate the environmental impact of oil spills. Since microbes only 

degrade hydrocarbons at the water-oil interface, diluted oil in the water column has a 

shorter half-life of a few orders of magnitude than floating or stranded oils (Prince et 

al., 2017; Makarynskyy, 2021). In addition to the water-oil interface area, influencing 

factors to the biodegradation rate include ambient temperature, nutrients (e.g., nitrogen 

and phosphorus) and oxygen availability, the nature of hydrocarbons, microbial 

population, and the degree of weathering (Fingas, 2017; Keramea et al., 2021). As 

biodegradation is typically considered less critical to the short-term fate of spilled oil, 

most OOSMs ignore it or simplify it as a first-order decay process primarily depending 

on oil composition (Dissanayake et al., 2018; Galagan et al., 2018; Keramea et al., 

2021). Component-specific decay coefficients are adopted to represent the 

biodegradation rate of each group of petroleum compounds. A few studies endeavor to 

incorporate a more realistic description of biodegradation kinetics into oil spill models, 

such as the surface area of the oil-water interface (Thrift-Viveros et al., 2015), lag phase 

for the onset of biodegradation (Prince et al., 2017), and the Monod kinetics 



26 

 

(Spanoudaki, 2016). Overall, the first-order decay equation is the only widely accepted 

approach for modeling hydrocarbon biodegradation in the maritime environment. 

2.4.7. Oil-shoreline interactions 

Compared to well-established modeling approaches of oil transport and fate in the 

marine environment, methods available to predict the behaviors and fate of spilled oil 

on seashores are limited because oil-shoreline interactions are poorly understood (Yang 

et al., 2021). Previous studies are primarily limited to focusing on individual processes 

of natural attenuation and translocation; only a few have attempted to characterize oil-

shoreline interactions (sometimes termed beaching) comprehensively. For instance, 

multiple oil-shoreline interactions are considered in the COZOIL model in the 

simulation of natural oil removal onshore for the first time; however, some essential 

processes to the mass balance of beached oil, such as biodegradation, are not included 

(Reed et al., 1989). A fate model is developed to investigate the mechanisms by which 

oil spills naturally dissipate from a beach by storms, tides, and weathering for stranded 

oil, which is based on the experiments of subsurface oiling conditions on coarse 

sediment (Humphrey, 1993). Its drawbacks include the insufficient predictive ability 

for how long stranded oil remains on the beach and limited applicability to other 

shoreline types than coarse pebble beaches (Humphrey et al., 1992). More recently, 

Geng et al. (2015) coupled the Monod kinetic model with a groundwater model to 

simulate the subsurface aerobic biodegradation of low-solubility hydrocarbons in a 

coastal environment. Although relevant fieldwork and applications have been 

conducted, excessive input parameters constrain its practicability in operational 
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response. Half-life values and oil-holding capacity are two methods commonly 

incorporated in OOSMs, which are simple and practical to estimate oil-shoreline 

interactions empirically. The former describes the adhesiveness of the oil to the 

different beach types; the latter delineates the maximum accumulation of oil stranded 

onshore (Etkin et al., 2008; Zelenke et al., 2012; Samaras et al., 2014). 

2.5. State-of-the-art of OOSMs 

Over the past few decades, three generations of oil spill models have been 

developed to deepen the understanding of oil behaviors and impacts (Berry et al., 2012; 

Nelson and Grubesic, 2019). The first generation comprises empirical transport models 

with simple fate algorithms; the second consists of two-dimensional hydrodynamics 

and fate algorithms; and the latest is 3D multi-component subsea blowout models with 

a fate module and a transport module (Berry et al., 2012). Both modules are the core 

parts of the most developed oil spill models: the former aims to simulate the movement 

of dispersed oil; the latter is tailored to estimate various weathering processes (Yang et 

al., 2021). Table 2-1 summarizes some state-of-the-art oil spill models and their features. 

Despite some overlap in terms of functionality, these modeling toolkits can be 

categorized into two groups pursuant to their aimed marine spill incidents: subsea 

oil/gas blowouts (TAMOC, SIMAP, and BLOOSM) and surface oil release (GNOME, 

MEDSLIK-II, and OpenDrift). The major difference between the two model types is 

whether to include a near-field model for simulating the jet/plume behavior. Unlike 

most blowout models that characterize the buoyant plume by a stack of conceptual 

volumes of mixed oil, gas, and entrained water, TAMOC has a unique capability that 
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tracks fluid particles within the main plume to account for the contributing buoyancy 

of dispersed phases to the plume. For surface spill models, the evident discrepancy is 

the choice of weathering processes in the fate module. Several processes (e.g., 

dissolution, biodegradation, and sedimentation) are only crucial to the long-term spill 

mass balance and are thus usually neglected by OOSMs for short-term forecasting. 

Compared to treating oil/gas compounds as a single entity, the PC approach is more 

accepted in fate modeling due to its flexibility and realistic representation, especially 

for evaporation and dissolution. Trajectory simulation methods adopted by most 

operational models are almost the same, but SIMAP additionally considers the wind-

induced drift angle when Ekman flow is not involved in current data.  
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Table 2-1 A summary of some widely used OOSMs and their features 

Model 

names 

Transport 

module 

Weathering module Programming 

languages Spreading Evaporation Dispersion Emulsification Dissolution Biodegradation Sedimentation 

TAMOC Lagrangian - - - - ✓ ✓ - 
Python, 

Fortran 

GNOME Lagrangian ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
Python, C, 

C++ 

SIMAP Lagrangian ✓ ✓ ✓ ✓ ✓ ✓ ✓ Java, C++ 

BLOOSM Lagrangian ✓ ✓ ✓ ✓ ✓ - - C++ 

MEDSLIK-

II 
Lagrangian ✓ ✓ ✓ ✓ - - - 

Fortran, 

Python 

OpenDrift 
Lagrangian, 

Eulerian  
✓ ✓ ✓ ✓ - - - Python 

 

Particle 

evolution  

Gas 

component 

DSD 

model 

Buoyant 

plume 

model 

Near-field 

particle 

tracking 

Subsurface 

model 

Surface 

model 
Beaching 

Oil 

database 

Pseudo 

components 

Coriolis 

effect 

multi-

properties 
✓ ✓ ✓ ✓ ✓ - - - ✓ - 

✓ - ✓ - - ✓ ✓ ✓ ✓ ✓ - 

✓ ✓ ✓ ✓ - ✓ ✓ ✓ - ✓ ✓ 

✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓ ✓ - 

- - - - - - ✓ ✓ ✓ - - 

✓ - ✓ - - ✓ ✓ ✓ ✓ - - 
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2.6. Oil spill risk assessment  

As a practical approach to help minimize the negative impact of hydrocarbon pollution, 

oil spill risk assessment aims to quantitatively estimate the potential harm of released petroleum 

on the marine ecosystem. Regardless of the difference in definitions of oil spill risk, most 

emphasize a function of the likelihood of incident occurrence and the severity of environmental 

and socioeconomic impacts led by corresponding spills for a particular region (Nelson and 

Grubesic, 2018; Chiri et al., 2020). The most commonly used method of oil spill risk 

assessments is based on stochastic or probabilistic modeling (i.e., the combination of 

deterministic simulations), which builds numerous hypothetical spill scenarios composed of 

various features of spill incidents, such as release location, oil type, and their corresponding 

likelihood. Meteorology and oceanography (met-ocean) variables, particularly for wind and 

currents, are the most critical contributing factors amidst the inputs of oil spill models. Spilled 

oil is advected by subsurface crossflows and surface winds and currents; its rates of weathering 

processes (e.g., evaporation and dispersion) are also highly affected by wind speed and wave 

mixing. Thus, stochastic OSM needs to be implemented under specific met-ocean conditions 

that can comprehensively characterize the historical variability of maritime environments in 

areas of interest. Such a methodology postulates that past regional met-ocean conditions 

statistically resemble future atmospheric and oceanic patterns (Liubartseva et al., 2021). Most 

previous stochastic simulation-based spill risk assessments randomly selected the 

environmental background data from a specific period and the number of model runs (Al Shami 

et al., 2017; Guo, 2017; Nelson and Grubesic, 2017; Niu et al., 2017; French-McCay et al., 

2017 and 2018; Amir-Heidari et al., 2019; Amir-Heidari and Raie, 2019; Wang et al., 2020; 
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Liubartseva et al., 2021; Zhu et al., 2021). However, they did not address a persistent problem 

in stochastic modeling: specifically, how many times or scenarios should run? Intuitively, the 

credibility of simulation output increases with more runs, but related computational resources 

and time can be unaffordable for emergency spill response.  

Another common issue is the interpretability of met-ocean pattern choice, i.e., can 

randomly selected current and wind datasets represent local atmospheric and oceanographic 

variabilities? Some studies above take environmental data during a limited period, like a few 

weeks, as the input of velocity fields. Since the chosen dataset may insufficiently capture the 

temporospatial variability of regional met-ocean patterns, whether those assessment results are 

instructive of future strategic response operations in areas of concern is doubtful. While using 

the long-term dataset as the input data is a straightforward solution to OSM, it means coping 

with a tremendous amount of data and computationally demanding numerical simulations, 

making stochastic simulation-based risk assessment extremely time-consuming. To tackle this 

challenge, Chiri et al. (2020) introduced statistical data mining techniques in 3D stochastic 

modeling for subsea oil blowouts. Through dimensionality reduction and pattern extraction, 

the feasibility and efficiency of stochastic simulation are significantly improved by minimizing 

its computational costs. This method is limited by only using a binary indicator to express the 

presence or absence of oil, which might be inadequate to delineate the spill hazard in the region. 

2.7. Summary 

This chapter presents an extensive overview of widely used approaches in almost every 

aspect of OSM, OOSMs, and spill risk assessment methods. Despite numerous existing OSM 

toolkits, many of them are not all-inclusive for forecasting complex deep-sea spills since 
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thermodynamic behaviors of fluid particles are usually simplified. It is seen that the coupling 

of near- and far-field Lagrangian schemes with spatiotemporal dynamics of oil and water 

properties currently needs further investigation, particularly for field conditions. An adequate 

investigation and comparison provide a basis for selecting the most appropriate methods from 

various OSM approaches, enabling us to integrate them for the development of the DWOSM 

system seamlessly. Furthermore, most studies about stochastic simulation-based spill 

assessment did not tackle the trade-off between the computational burden and the credibility 

of simulation results. Hence, the newly developed oil spill model is expected to capture the 

sophisticated physicochemical and thermodynamic processes of deep-sea spills. Further 

improvement in spill risk assessment is also required to involve a more comprehensive risk 

evaluation system. 
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Chapter 3 Methodology 

3.1. The framework of DWOSM 

DWOSM is fundamentally built on 3D Lagrangian particle tracking, which apportions 

spilled oil and gas to a certain amount of LEs subjected to transport by local hydrodynamic 

processes. For the dispersed phase within the water column, a LE represents a cloud composed 

of identically sized particles; it emulates a slick when a LE (only for oil droplets) reaches the 

sea surface. Since the thermodynamic and hydrodynamic processes occurring within a hundred 

meters above the wellhead and kilometers away from the release point are distinct, modeling 

of a deep-water blowout can be conducted separately as two stages: 1) near-field modeling is 

to simulate plume dynamics and to identify petroleum fluids escaping from the plume region; 

2) far-field modeling aims to track the trajectory and fate of dispersed oil beyond the near-field 

(Murawski et al., 2020). Therefore, a deep-sea blowout simulation requires a system of models 

to deal with various processes, including droplet/bubble breakup and coalescence, buoyant 

plume dynamics, oil/gas transport, weathering processes, etc.  

Specifically, DWOSM comprises multiple interlinked modeling components: two-phase 

flash calculations, DSD model, buoyant plume model, near- and far-field particle tracking 

models, and weathering algorithms (Figure 3-1). Those components constitute three modules 

through a holistic coupling: DWOSM-DSD, DWOSM-Nearfield, and DWOSM-Farfield. The 

workflow of the DWOSM can be generalized as follows: initially, flash calculation algorithms 

are employed to compute gas-liquid equilibrium compositions at the specified temperature, 

pressure, and overall compositions (see details in Appendix B). Its output defines oil and gas 

composition, supplying the data essential for thermodynamic modeling and oil fate simulation. 
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The DWOSM-DSD then predicts the diameters and volume fractions of droplets and bubbles 

as input to the DWOSM-Nearfield, mainly consisting of the plume model and the near-field 

particle tracking algorithm. Once particles escape from the plume region, their simulation 

results are used to provide initial conditions with the DWOSM-Farfield. Subsequently, 

dispersed-phase oil/gas is tracked in the water column and/or at the sea surface regarding the 

locations and the evolution of chemical composition and bulk properties.  

 

Figure 3-1 The framework of the DWOSM. 

 

To present a detailed picture of the composition of petroleum fluids in the output of oil fate 

modeling, this study adopts a PC approach that splits oil into multiple chemical groups having 

independent properties. DWOSM requires various model inputs to define initial conditions for 

the subsea blowout simulation, mainly including 1) 3D velocity fields of ocean current and 
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wind for far-field modeling, 2) vertical profiles of salinity, temperature, and crossflow for near-

field modeling, 3) spill information such as release flow rate and spill site location, 4) 

physicochemical properties of the released oil. The DWOSM model output directly towards 

helping decision-making in oil spill response majorly contains 1) a 3D oil spill trajectory; 2) 

the height of an intrusion layer and the plume trajectory; 3) oil and gas DSDs; 4) the evolution 

of the composition and properties of dispersed petroleum. 

In terms of numerical implementation, this study mainly involves two types of approaches: 

interpolation and numerical methods for ODEs. Computing spill trajectory requires continuous 

velocity fields, while output from hydrodynamic and atmospheric models is discrete (Yang et 

al., 2023). As a multivariate interpolation method on a 3D regular grid, trilinear interpolation 

is utilized to interpolate current and wind data in time and space, which can retrieve the velocity 

of current and wind information at arbitrary locations and times within the data range. The 

details of trilinear interpolation are depicted in Appendix A. Most formulas for the computation 

of OSM are a coupled system of ODEs, and stiffness sometimes arises when the system has 

widely varying eigenvalues. As one of the most popular tools for finding the numerical solution 

of stiff ODEs, the fifth-order backward differentiation formula (BDF5) with adaptive time step 

control is used in the DWOSM to ensure numerical accuracy and stability (Süli and Mayers, 

2003; Shim et al., 2011). The details of BDF5 and the adaptive time-stepping procedure are 

shown in Appendix A. The Python programming language is utilized to develop DWOSM and 

perform parallel computing via the built-in multiprocessing module. 
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3.2. Near-field modeling 

3.2.1. Droplet size distribution model 

Johansen et al. (2013) improved an EM by considering the viscosity effect found by Wang 

and Calabrese (1987), i.e., the breakup with smaller viscous numbers is governed by Weber 

number scaling while Reynolds number scaling is applicable for larger viscous numbers. It is 

hypothesized that the VMD 𝑑50  from a jet can be estimated based on the orifice size and 

modified Weber number as follows: 

𝑑50

𝑑𝑝𝑖𝑝𝑒
= 𝐴𝑊𝑒−3/5[1 + 𝐵𝑉𝑖(𝑑50/𝑑𝑝)

1/3]3/5                          (3-1) 

where 𝑊𝑒 =
𝜌𝑑𝑈

2𝑑𝑝𝑖𝑝𝑒

𝜎
  and 𝑉𝑖 =

𝜇𝑑𝑈

𝜎
  are the Weber number and the viscosity number, 

respectively. 𝑑𝑝𝑖𝑝𝑒  is the orifice diameter (m), 𝐴 and 𝐵 are two empirical coefficients (𝐴 = 24 

and 𝐵 = 0.06  in Johansen et al. (2013)), 𝜌𝑑  and 𝜇𝑑  are the density (kg/m3) and dynamic 

viscosity (kg/m/s) of dispersed oil, and 𝑈 is the exit velocity (m/s). 

Though there is debate about which distribution is better for delineating DSD statistically, 

the Rosin-Rammler distribution is often more widely accepted due to its computational 

simplicity and extensive applications (Makarynskyy, 2021). Hence, the median droplet size 

predicted from the above EM and the Rosin-Rammler distribution are combined to estimate 

the final DSD in the DWOSM. The cumulative DSD at given diameter size 𝑑 is calculated 

below (Nissanka and Yapa, 2018): 

𝑉(𝑑) = 1 − exp[−ln0.5 (
𝑑

𝑑50
)
𝑝

]                     (3-2) 

where spreading parameter 𝑝 = 1.8 in Johansen et al. (2013). 

3.2.2. Buoyant plume model 

This study uses a Lagrangian approach developed by Lee and Cheung (1990) to simulate 
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the near-field plume at a steady state because of its capability to handle realistic crossflows in 

the deep sea. As shown in Figure 3-2, the blowout duration is equally divided into a series of 

intervals, and each time interval corresponds to a non-interfering CV. The main properties of 

jet/plume CV are calculated at every time step using the equations as follows (Lee and Cheung, 

1990): 

Mass:                               𝑀𝑡+1 = 𝑀𝑡 + ∆𝑀𝑡                                 (3-3) 

Locations:               
𝑑𝑥

𝑑𝑡
= 𝑢𝑡∆𝑡   

𝑑𝑦

𝑑𝑡
= 𝑣𝑡∆𝑡  

𝑑𝑧

𝑑𝑡
= 𝑤𝑡∆𝑡  

𝑑𝑆

𝑑𝑡
= 𝑉𝑡∆𝑡                 (3-4) 

Momentum:                     𝐽𝑥𝑡+1 = 𝐽𝑥𝑡 + ∆𝑀𝑡𝑢𝑎𝑡  𝐽𝑦𝑡+1 = 𝐽𝑦𝑡 + ∆𝑀𝑡𝑣𝑎𝑡                  (3-5) 

𝑑𝐽𝑧

𝑑𝑡
= 𝐹𝑏 + 𝐹𝑝 + ∆𝑀𝑤𝑎                                       (3-6) 

Thickness:                                                   ℎ𝑡+1 = 𝑉𝑡+1∆𝑡                                     (3-7) 

Orientation:       sin 𝜙 =
𝑤

𝑉
  cos𝜙 =

√𝑢2+𝑣2

𝑉
  sin 𝜃 =

𝑣

√𝑢2+𝑣2
  cos 𝜃 =

𝑢

√𝑢2+𝑣2
         (3-8) 

where 𝑀𝑡  and 𝐽𝑡  denote the mass (kg) and momentum (kg m/s) of CV at 𝑡  time step, 

respectively. ∆𝑡 is the length of time step used in the near-field model (s). The location of a CV 

can be expressed in a 3D-coordinate (𝑥, 𝑦, 𝑧) (m). 𝑆 is the distance (m) along with the plume 

centerline. (𝑢𝑡 = 𝐽𝑥𝑡/𝑀𝑡, 𝑣𝑡 = 𝐽𝑦𝑡/𝑀𝑡, 𝑤𝑡 = 𝐽𝑧𝑡/𝑀𝑡) are the velocities (m/s) of a CV in XYZ 

directions at 𝑡 time step. 𝑉 = (𝑢2 + 𝑣2 + 𝑤2)1/2 is the magnitude of the CV velocity (m/s). 

The vertical momentum 𝐽𝑧 (kg m s-1) is modified by adding the buoyant force of the dispersed 

oil 𝐹𝑝 =
−𝑔

𝛾𝜌𝑟
∑ [(𝜌𝑎 − 𝜌𝑝,𝑖)

𝜌𝑀𝑝,𝑖

𝜌𝑝,𝑖
] 𝑘  (Dissanayake et al., 2018); 𝑘 = (

𝑏−𝑟

𝑏
)4  is the buoyancy 

efficiency coefficient between 0 and 1 based on the distance 𝑟 (m) between the particle and the 

plume centerline (see details in the next section). The momentum amplification factor 𝛾 

accounts for turbulent kinetic energy production by the dispersed phase (default to 1.1). The 

radius of the plume element is 𝑏 (m), and 𝑔 is the gravitational constant (9.81 m/s2). 𝑀𝑝,𝑖  and 
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𝜌𝑝,𝑖 are the total mass the density of the i-th particle type in the LE. The net vertical buoyant 

force for a single-phase plume is expressed as 𝐹𝑏 =
−𝑔

𝜌𝑟
[𝑀(𝜌𝑎 − 𝜌)] . The CV density, the 

ambient density, and a reference density (kg/m3) are denoted by 𝜌, 𝜌𝑎 and 𝜌𝑟 (kg/m3). (𝑢𝑎𝑡, 

𝑣𝑎𝑡 , 𝑤𝑎𝑡 ) are the velocities (m/s) of ambient current in XYZ directions at 𝑡  time step. The 

thickness of a CV at 𝑡 time step is ℎ𝑡 (m). The jet axis makes an angle of 𝜙 with the horizontal 

plane, and 𝜃 is the angle between the x-axis and the projection of the jet axis on the horizontal 

plane.  

 

Figure 3-2 Schematic diagram of the Lagrangian plume and a CV, 

(modified from Lee and Cheung (1990)). 

 

The incremental mass ∆𝑀𝑡  (kg) of a CV at each time step, which consists of two 

components: the shear entrainment ∆𝑀𝑠 (kg) due to the difference between the plume element 
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velocity and the ambient velocity in the direction of the jet axis and the forced entrainment 

∆𝑀𝑓 due to the ambient crossflow. For the modeling of jet entrainment (i.e., the addition of 

ambient fluid into the plume), the maximum between ∆𝑀𝑠 and ∆𝑀𝑓 is adopted to determine 

the mass of entrained water at each time step. The formulation of entrainments is presented 

below (Lee and Cheung, 1990). 

1. Shear Entrainment 

∆𝑀𝑠 = 2𝜋𝛼𝑠𝑏ℎ∆𝑈∆𝑡𝜌𝑎                       (3-9) 

𝛼𝑠 = {
0.055 + 0.6 sin ∅/𝐹𝑙

2, |
𝐹𝑙
2

sin ∅
| > 21.43

0.055 + 0.00131𝐹𝑙
2/ sin ∅ , |

𝐹𝑙
2

sin ∅
| ≤ 21.43

          (3-10) 

where 𝛼𝑠  and 𝐹𝑙 =∆𝑈/(g′𝑏𝑔)
1/2  are the shear entrainment coefficient and the local 

densiometric Froude number, respectively. ∆𝑈 = |�⃗� − �⃗� 𝑎𝑗𝑒𝑡| is the relative jet velocity in the 

direction of the jet axis. �⃗� 𝑎𝑗𝑒𝑡  is a component of the ambient current projected along the plume 

centerline. g′ is the reduced gravity (m/t2).  

2. Forced entrainment 

∆𝑀𝑓 = ∆𝑀𝑓𝑥 + ∆𝑀𝑓𝑦 + ∆𝑀𝑓𝑧                  (3-11) 

∆𝑀𝑓𝑥 = 𝜌𝑎|𝑢𝑎|[2𝑏ℎ√1 − cos2 ∅ cos2 𝜃 + 𝜋𝑏∆𝑏|cos∅ cos 𝜃| +
𝜋𝑏2

2
|∆(cos∅ cos 𝜃)|]∆𝑡                                                           

(3-12) 

∆𝑀𝑓𝑦 = 𝜌𝑎|𝑣𝑎|[2𝑏ℎ√1 − cos2 ∅ sin2 𝜃 + 𝜋𝑏∆𝑏|cos∅ sin 𝜃| +
𝜋𝑏2

2
|∆(cos∅ sin 𝜃)|]∆𝑡                                                                            

(3-13) 

∆𝑀𝑓𝑧 = 𝜌𝑎|𝑤𝑎|[2𝑏ℎ|cos∅| + 𝜋𝑏∆𝑏|sin ∅| +
𝜋𝑏2

2
|∆(sin ∅)|]∆𝑡                      (3-14) 

where ∆𝑀𝑓𝑥, ∆𝑀𝑓𝑦, and ∆𝑀𝑓𝑧 are the forced entrainments ∆𝑀𝑓 (kg) in the XYZ directions. A 

term with a prefix ∆ denotes the difference of this property between the previous and current 
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CVs.  

In this study, most initial conditions for solving the plume model originate from Lee and 

Cheung (1990). The plume Froude number method is additionally employed to correct the 

initial volume flux by estimating the entrainment at the plume source (Wüest et al., 1992). 

3.2.3. Near-field particle tracking 

Due to the buoyancy-driven motion, subsurface particles have a slip velocity relative to 

their surrounding fluid. They may not follow the same trajectory around the plume centerline 

when a buoyant plume bends over in the presence of crossflows. As a result, some particles 

may exit through the periphery of the included plume and rise upward in the water column. It 

reduces their buoyancy contribution to the plume as particles move away from the plume 

centerline (Dissanayake et al., 2018). With such a loss of buoyancy from the plume, the ambient 

stratification will eventually trap the uprising plume to form intrusion layers (Johansen, 2003). 

Since the conservation of vertical momentum depends on whether particles are in the plume 

region, particle tracking should be implemented simultaneously with the solution of the plume 

element. We use the particle tracking algorithm developed by Dissanayake et al. (2018) to 

calculate the particle position relative to the plume centerline and the buoyancy efficiency of 

particles to the plume. The local coordinate system is defined at the base of a plume element 

(𝜆, 𝜉, 𝜂) with unit vectors: I  along the plume centerline, m⃗⃗⃗  orientating to the curvature center, 

and n⃗  normal to I  and m⃗⃗⃗  (Figure 3-3). 

𝑑�⃗� 

𝑑𝑡
= (𝑉 + 𝑢𝑙

′)I + (𝑢𝑚
′ − 𝑓𝑒𝜉)m⃗⃗⃗ + (𝑢𝑛

′ − 𝑓𝑒𝜂)n⃗             (3-15) 

where 𝑓𝑒 = ∆𝑀/(2𝜋𝑏
2ℎ𝜌𝑎) is the entrainment frequency (s-1); (𝑢𝑙

′, 𝑢𝑚
′ , 𝑢𝑛

′ ) are slip velocities 

of a particle projected on the LNM directions (m/s). 
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Figure 3-3 Schematic diagram of the local coordinate system in near-field modeling, 

(modified from Dissanayake et al. (2018)). 

 

3.3. Far-field particle tracking 

Figure 3-4 illustrates near- and far-field processes of deep-sea spills. Once particles leave 

the plume region, their transport is predominated by ocean currents, buoyancy, and ambient 

turbulence. The mass flux of each particle type predicted from the DWOSM-Nearfield is 

converted into individual particles simulated within the far-field framework. The total number 

of LEs is determined by user-defined particle release frequency. The Lagrangian particle-

tracking algorithm is used to simulate oil/gas movement in the advection-diffusion stage, 

expressing the 3D trajectory of a LE in the water column and at the sea surface by the following 

equation: 
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𝑑𝑆 

𝑑𝑡
= {

�⃗⃗� 𝑐 + 𝑢′⃗⃗  ⃗ + 𝑢𝑠�̂�, 𝑧 < 0

�⃗� 𝑠𝑢𝑟 + 𝑢′⃗⃗  ⃗, 𝑧 = 0
                      (3-16) 

where 𝑆 = (𝑥, 𝑦, 𝑧) is the displacement vector of a LE at a Cartesian coordinate system; �⃗⃗� 𝑐 =

(𝑢𝑐 , 𝑣𝑐 , 𝑤𝑐) is the advective velocity vector due to the ocean current; 𝑢𝑠 is the rise velocity (m/s) 

of particles within the water column (see details in Section 3.5.2) and �̂� is the unit vector in the 

vertical direction. The random walk technique is used to simulate the turbulent diffusion 

velocity 𝑢′⃗⃗  ⃗ = √
6

∆𝑡
(𝑅𝑥√𝐾ℎ , 𝑅𝑦√𝐾ℎ , 𝑅𝑧√𝐾𝑧) . 𝑅𝑥 , 𝑅𝑦 , and 𝑅𝑧  are assumed to be uniformly 

distributed independent random numbers ranging from -1 to 1. 𝐾ℎ and 𝐾𝑧 are horizontal and 

vertical diffusion coefficients (m2/s), respectively.  

 

Figure 3-4 Schematic diagram of near- and far-field modeling for a deep-sea blowout, 

(modified from Chapman et al. (2014)). 

 

As mentioned above, oil droplets reaching the sea surface may form a slick, and then the 

sea surface wind begins to participate in the advection of surface oil. Similar to the particle 

tracking for subsurface oil, an oil slick is generalized as a LE and undergoes transport and 
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weathering simultaneously. The advective velocity of surface oil �⃗� 𝑠𝑢𝑟 can be expressed as a 

linear combination of current velocity �⃗⃗� 𝑐 = (𝑢𝑐 , 𝑣𝑐)  and wind speed �⃗⃗� 𝑤 = (𝑢𝑤 , 𝑣𝑤)  at the 

height of 10 meters over the sea surface. 

�⃗� 𝑠𝑢𝑟 = 𝑎𝑐�⃗⃗� 𝑐 + 𝑎𝑤𝐷�⃗⃗� 𝑤                       (3-17) 

where the current drift factor 𝑎𝑐 and the wind drift factor 𝑎𝑤 default as the commonly used 

values 1 and 0.03, respectively. 𝐷 = [
cos 𝜃 sin 𝜃
−sin 𝜃 cos𝜃

] is the transformation matrix accounting 

for the wind deflection due to the Coriolis effect. It is only considered when Ekman flow is not 

included in the current data supplied to the DWOSM. 𝜃 is the deviation angle, which equals to 

40° − 8√|�⃗⃗� 𝑤| when �⃗⃗� 𝑤 < 25m/s and zero for other conditions. 

3.4. Fate algorithms 

Particles rising from the deep sea undergo a different weathering pattern than surface slicks 

because of their extended interaction with ambient seawater. Hence, the fate modeling for 

subsurface oil/gas and surface oil is implemented at particle and slick-based scales, respectively. 

From the perspective of practice response, decision-makers are less concerned about the fate 

of non-surfacing oil because most spill response technologies can only remove floating or 

beached oil (Murawski et al., 2020). More surface weathering processes are considered in the 

fate algorithms of DWOSM, including spreading, evaporation, natural dispersion, and 

emulsification. Dissolution and biodegradation are only included in the fate modeling of 

subsurface oil and gas because of a larger surface area to volume ratio of droplets and bubbles 

than slicks. Oil-shoreline interactions are simplified here for brevity, as none of the current 

methods can realistically describe the natural attenuation and fate of beached oil. DWOSM-

Farfield will cease to track LEs once they contact or traverse the boundary defined by the 
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shoreline geometry data.  

3.4.1. Surface weathering 

1. Spreading 

As the improved performance than traditional Fay’s formulas, the WMFM is applied here 

to calculate the slick surface area required by the evaporation model (Simecek-Beatty and Lehr, 

2017). The exposed area of the slick (𝐴𝑠) (m
2) is expressed as: 

𝐴𝑠 = (
𝜋

4
)10−3𝑄𝑅                          (3-18) 

where 𝑄 = 1.7(
𝜌𝑎−𝜌𝑜

𝜌𝑜
)
1

3𝑉𝑏
1

3𝑡𝑚
1

4101.5  is the minor axis of the ellipse (m), 𝑅 = 𝑄 +

0.03𝑊𝑘

3

4𝑡𝑚
3

4101.5 is the major axis. 𝜌𝑜 is the oil density (kg/m3), 𝑉𝑏  is the initial volume of an 

oil spill (barrel), 𝑡𝑚 is the time after spill (minute), 𝑊𝑘  is the 10-meter-elevation wind speed 

(knot). 

The thickness of an oil film will not be infinitesimal as spreading proceeds in actual cases. 

The spreading process will terminate once it reaches the minimum thickness of an oil slick. 

Slick terminal thicknesses with initial kinematic viscosity greater than 10-4 m2/s or smaller than 

10-6 m2/s are set as 10-4 m and 10-5 m, respectively (Reed, 1989). Linear interpolation is used 

to obtain the terminal thickness of oil with intermediate viscosity. 

2. Evaporation 

The PC model is used to predict the evaporative loss of surface oil mass given its good 

extendibility and is depicted below:   

𝑑𝑚𝑖

𝑑𝑡
= −(1 − 𝑌)

𝐴𝑠𝛼𝑀𝑖𝑃𝑖

𝑅𝑇
(
𝑚𝑖/𝑀𝑖

∑𝑚𝑖/𝑀𝑖
)                   (3-19) 

where 𝑚𝑖 is the mass of i-th PC (kg), 𝑌 is the water content of the emulsion (%), 𝑀𝑖 is the 

molar weight of i-th PC (kg/mol). 𝑃𝑖 is the vapor pressure at the water temperature of i-th PC 
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(Pa), which is estimated by the modified Antoine equation (Yang et al., 2017). 𝛼𝑖 =

0.0048𝑊10
0.78𝑆𝑐

−
2

3 is a wind dependent mass transfer coefficient (m/s) of i-th PC, 𝑊10 is the 

wind speed measured at 10 m height (m/s). 𝑆𝑐 = 1.38(
𝑀𝑤

𝑀𝑖
)
1

3  is Schmidt number, 𝑀𝑤  is the 

molecular weight of water (0.018 kg/mol). 𝑅 is the universal gas constant (8.3144 J/(K mol)), 

𝑇 is the water temperature (K). 

3. Emulsification 

This study first adopts methodology formulated by Fingas (2017) to determine the 

emulsion stability 𝑆𝑒𝑚 and the time to form a specific water-in-oil state. Once the emulsion 

stability is obtained, its corresponding category of the emulsion can be found in the relation 

given by Fingas (2017). In this study, the unstable water-in-oil emulsion is regarded as non-

emulsified oil because its density and viscosity barely change due to emulsification. The time 

to emulsion in minutes (𝑡𝑒𝑚) is calculated as: 

 𝑡𝑒𝑚 = 𝑎𝑒𝑚 + 𝑏𝑒𝑚/𝐻𝑤
1.5                       (3-20) 

where 𝐻𝑤  is the wave height (cm), 𝑎𝑒𝑚  and 𝑏𝑒𝑚  are the two empirical coefficients varying 

with the emulsion type. Specifically, 𝑎𝑒𝑚 = 27.1 and 𝑏𝑒𝑚 = 7520 if the emulsion is “stable”, 

𝑎𝑒𝑚 = 47 and 𝑏𝑒𝑚 = 49100 if the emulsion is “meso-stable”, 𝑎𝑒𝑚 = 30.8 and 𝑏𝑒𝑚 = 18300 

if the emulsion is “entrained”,  as given in Equation 3-21. Otherwise, there will be no formation 

of emulsion.  

 The emulsification only begins in the fate simulation when slicks are exposed to the 

atmosphere for over 𝑡𝑒𝑚. Then, the water content of oil slicks is estimated by a first-order 

relation as (Lehr et al., 2002): 

𝑑𝑌

𝑑𝑡
= 𝑘𝑒𝑚

𝜈0

𝜈𝑒𝑚
𝑊10

2 (1 −
𝑌

𝑌𝑚𝑎𝑥
)                  (3-21) 
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where 𝑌𝑚𝑎𝑥 is the maximum water fraction (%) derived from a function of the asphaltene/resin 

ratio in the study of Fingas and Fieldhouse (2004), 𝜈𝑒𝑚 is the kinematic viscosity of emulsion 

(m2/s), 𝑣0 is the initial kinematic viscosity of oil (m2/s), 𝑘𝑒𝑚 is an empirical constant between 

1×10-6 and 2×10-6. 

4. Natural dispersion 

Considering an excellent fit to observational data from a full-scale experimental oil spill 

with a wide testing range of oil viscosities, the first-order decay equation formulated by 

Johansen et al. (2015) is used to simulate the reduction in surface oil mass 𝑄𝑠  (kg) due to 

entrainment by breaking waves: 

𝑑𝑄𝑠

𝑑𝑡
= −𝛼𝑄𝑠                               (3-22) 

where 𝛼 = 𝑃∗𝑊𝐶𝐶/𝑇𝑚 is an entrainment coefficient (s-1), 𝑃∗ is the volume fraction (%) of oil 

contained in oil droplets smaller than the limiting diameter 𝐷∗ (mm), 𝑇𝑚 = 0.812𝜋𝑊10/𝑔 

is the mean wave period (s). The white capping coverage 𝑊𝐶𝐶 (%) is expressed using an 

empirical correlation (Callaghan, 2008): 

𝑊𝐶𝐶 = {
3.18 × 10−3(𝑊10 − 3.7)

3, 3.7 < 𝑊10 < 11.25

4.82 × 10−4(𝑊10 + 1.98)
3, 9.25 < 𝑊10 < 23.1

          (3-23) 

 Johansen et al. (2015) also provided a semi-empirical model to calculate the 

characteristic droplet size 𝐷 (m) resulting from surface entrainment: 

𝐷

ℎ𝑒𝑚
= 2.251𝑊𝑒−3/5[1 + 0.027𝑉𝑖3/5]                 (3-24) 

where ℎ𝑒𝑚 is the oil slick thickness (m). 

Similar to the routine in the DWOSM-DSD, the droplet sizes presumably follow a 

predefined statistical distribution determined by 𝐷 and other parameters (here is a lognormal 

distribution). Eventually, 𝑃∗ can be found in the newly derived DSD through a distribution 
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fitting. Different oil fractions are presumed to be entrained equally owing to wave 

entrainment acts on the slick with well-mixed components. 

3.4.2. Subsurface weathering 

1. Dissolution 

The mass loss of each PC due to the dissolution is calculated by a first-order decay 

equation: 

𝑑𝑚𝑖

𝑑𝑡
= −𝐴𝑑𝛽𝑖(𝐶𝑠,𝑖 − 𝐶𝑎,𝑖)                         (3-25) 

where 𝐴𝑑 is the surface area of oil droplet (m2), 𝛽𝑖 is the mass transfer coeffeicent of the i-th 

PC (m/s), 𝐶𝑠,𝑖 and 𝐶𝑎,𝑖 are the solubility (kg/m3) and the ambient concentration (kg/m3) for i-th 

PC. The details of calculating the mass transfer coefficient and solubility of PC are introduced 

in section 3.5.2. 

2. Biodegradation 

Modeling the mass loss of each PC due to the biodegradation is similar to predicting the 

dissolution rate: 

𝑑𝑚𝑖

𝑑𝑡
= −𝑘𝑖𝑚𝑖                               (3-26) 

where 𝑘𝑖  is the first-order biodegradation rate for i-th PC (day-1), which can be found in 

Galagan et al. (2018). 

3.5. Particle/slick evolution  

The LEs are treated differently in the water column and on the surface by the DWOSM as 

they exist in distinct forms (i.e., droplets/bubbles in the subsurface and slicks on the surface) 

and experience different weathering processes. This section elaborates on surface and 

subsurface oil properties and the methods of calculating their change along with ambient 
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conditions. 

3.5.1. Surface slick properties  

Two physical properties are involved in surface oil fate modeling, i.e., viscosity and density. 

As the model input of fate algorithms, oil properties changed by weathering, in turn, affect 

weathering processes to varying degrees. Their simulation is implemented based on semi-

empirical formulas at a slick-based scale for brevity.  

1. Density 

Environmental factors and weathering processes jointly contribute to the variation in 

density, including evaporation, water content, temperature. Buchanan and Hurford (1988) 

integrated multifactor into a single equation to calculate the density of emulsified oil: 

𝜌𝑒𝑚 = 𝑌𝜌𝑤 + 𝜌0(1 − 𝑌)(1 + 𝐶1𝑓𝑒)[1 − 𝐶2(𝑇 − 𝑇0)]         (3-27) 

where 𝑓𝑒  is the mass fraction lost due to evaporation, 𝜌𝑒𝑚 is the density of emulsion (kg/m3) at 

ambient temperature 𝑇 (K), 𝜌0 is the initial density of oil (kg/m3) at initial temperature 𝑇0 (K), 

𝜌𝑤 is the density of seawater (kg/m3). 𝐶1 and 𝐶2 are two empirical constant given by Lehr et 

al. (2002). 

2. Viscosity 

In contrast to a limited range of oil density variation, the viscosity of emulsified oil can 

increase from a few centistokes to more than a million. The kinematic viscosity of emulsion 

𝑣𝑒𝑚 at 𝑇 can be expressed as (Pal & Rhodes, 1989): 

𝑣𝑒𝑚 = 𝑣0 exp(𝐾𝑣𝑖𝑠𝑓𝑒𝑎𝑣𝑝) exp (
2.5𝑌

1−0.65𝑌
) exp[𝐶3(

1

𝑇
−

1

𝑇0
)]         (3-28) 

where 𝑣0 is the initial kinematic viscosity of oil at 𝑇0, 𝐾𝑣𝑖𝑠 is the constant ranging from 1 to 10 

(Mackay et al., 1980), and 𝐶3 is an empirical constant also given by Lehr et al. (2002). 
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3.5.2. Subsurface particle properties  

Unlike the sea surface environment, ambient conditions where droplets and bubbles ascend 

from the deep sea to the surface vary drastically, particularly for the pressure and temperature. 

Thus, the evolution of subsurface oil and gas properties is simulated at the particle scale using 

thermodynamic modeling based on the Peng-Robinson Equation of State (PR-EOS) (Lopez-

Echeverry et al., 2017).  

1. Shape 

To precisely characterize the free motion of underwater particles, the shape of the dispersed 

phase can be categorized into three groups: spherical, ellipsoidal, and spherical-cap. Several 

dimensionless quantities are introduced to predict the particle shape collectively, including the 

Bond number (𝐸𝑜), Reynolds number (𝑅𝑒), and Morton number (𝑀𝑜). The criteria for each 

generalized shape group are listed below: the particle shape is categorized as spherical once 

the 𝐻  parameter (
4

3
𝐸𝑜𝑀𝑜−0.149(𝜇𝑑/𝜇𝑐)

−0.14 ) is less than two, indicating that particles are 

approximated by spheres (𝜇𝑐 is the dynamic viscosity (kg/m/s) of the continuous phase); it 

corresponds to ellipsoidal when these conditions are met (𝐸𝑜 < 40 and 𝑀𝑜 < 10-3 and 𝑅𝑒 >

0.1 and 𝐻 < 1000), representing oblate particles with a convex interface around the surface; 

otherwise, the spherical cap is used to delineate the shape of particles under rest conditions.  

2. Surface area and diameter 

Empirical correlations for the surface area and diameter of a particle corresponding to 

different shapes can be found in the book by Clift et al. (2005).  

3. Rise velocity 

Extensive empirical correlations for the rise velocity of fluid particles were proposed by 
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Clift et al. (2005), which accounts for the equivalent diameter, the dynamic viscosity of the 

continuous phase, the oil-water interfacial tension (IFT), and the density of dispersed phase 

and ambient seawater. In addition, different modifications for the Reynolds number were 

correspondingly given to spherical and ellipsoidal particles.  

When the particle shape is spherical, 𝑅𝑒 is expressed as below:  

𝑅𝑒 =

{
 
 

 
 
𝑁𝐷

24
− 1.7569 × 10−4𝑁𝐷

2 + 6.925 × 10−7𝑁𝐷
3 − 2.3027 × 10−10𝑁𝐷

4, 𝑁𝐷 ≤ 73

10−1.7095+1.33438𝑊−0.11591𝑊2
, 73 < 𝑁𝐷 ≤ 580

10−1.81391+1.34671𝑊−0.12427𝑊2+0.006344𝑊3
, 580 < 𝑁𝐷 ≤ 1.55 × 107

105.33283−1.21728𝑊+0.19007𝑊2−0.007005𝑊3
, 1.55 × 107 < 𝑁𝐷 ≤ 5 × 10

10

     

                                                                            (3-29) 

where 𝑁𝐷 =
4𝜌𝑐(𝜌𝑐−𝜌𝑑)𝑔𝑑

3

3𝜇𝑐
2  is the “Best number”, 𝑊 = log10𝑁𝐷 is the common logarithm of 

𝑁𝐷, 𝑑 is the equivalent spherical diameter (m), 𝜌𝑐 and 𝜇𝑐 are the density (kg/m3) and dynamic 

viscosity (kg/m/s) of the continuous phase, respectively.  

For the particle with an ellipsoidal shape, 𝑅𝑒 is calculated as: 

𝑅𝑒 = 𝑀−0.149(𝐽 − 0.857)                    (3-30) 

where 𝐽 = {
0.94𝐻0.757 , 2 < 𝐻 ≤ 59.3

3.42𝐻0.441 , 𝐻 > 59.3
. 

Both spherical and ellipsoidal particles adopt the same equation for calculating rise 

velocity:  

𝑢𝑠 =
𝜇𝑐

𝜌𝑐𝑑
𝑅𝑒                            (3-31) 

here, the difference in the rise velocity of clean and dirty ellipsoidal particles is ignored, as all 

the particles are assumed to be contaminated in this study.  

A simple empirical relation is used to compute the rise velocity of spherical cap fluid 

particles: 
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𝑢𝑠 = 0.711√𝑔𝑑∆𝜌𝑜𝑤                      (3-32) 

where ∆𝜌𝑜𝑤 is the relative oil-water density difference. 

4. Density and viscosity 

The density of the fluid particle is computed by the ratio of average molar mass to molar 

volume using the PR-EOS (see details in Appendix B). We implement the volume shift to 

correct the density given that cubic EOSs inherently fail to provide a reliable prediction of 

liquid phase densities (Lin and Duan, 2005). Viscosity simulations of hydrocarbon mixture are 

based on a corresponding states model, and their calculation scheme is well documented in 

Pedersen et al. (2014). 

5. Interfacial tension 

An empirical correlation dependent on density difference and temperature is used to 

express the IFT between the dispersed phase and the continuous phase (Danesh, 1998). 

6. Solubility 

The solubilities of different PCs are calculated through modified Henry's law, accounting 

for the dependence of Henry's law constant on pressure, temperature, and salinity (Dissanayake 

et al., 2018). 

7. Mass transfer coefficient 

Mass transfer rates can be impacted by whether the phase boundary of a fluid particle is 

contaminated or not. The oil-seawater interface is commonly regarded as contaminated as clean 

particles (surfactant-free systems) are rare in the real world (Zheng and Yapa, 2000; Zhao et 

al., 2017; Pesch et al., 2018). This study predicts the mass transfer coefficient of dirty particles 

based on the Sherwood Number and particle properties (Clift et al., 2005).  
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8. Diffusivity 

The revised Othmer-Thakar equation is applied to estimate the diffusivities of dissolved 

substances in aqueous solutions (Gao et al., 2021), which is used to compute the mass transfer 

coefficient of various components.  

It is noticeable that the methods mentioned above need multiple thermodynamic 

component-specific properties. Nevertheless, most existing oil databases miss relative 

information, such as critical properties and binary interaction parameters. Gros et al. (2018) 

presented a collection of methods to compute the properties necessary for those simulations 

utilizing the data obtainable from the commonly used oil library, the Automated Data Inquiry 

for Oil Spills (ADIOS), developed by the National Oceanic and Atmospheric Administration 

(NOAA) (accessible at https://github.com/NOAA-ORR-ERD/OilLibrary as of Feb 14, 2024). 

This novel procedure is employed to provide the parameters for modeling thermodynamic 

properties. 

3.6. Stochastic simulation-based risk assessment framework 

A methodological framework presented by Chiri et al. (2020) is modified by introducing 

a new evaluation method to obtain the PAH-related blowout risk. As shown in Figure 3-5, the 

first step is to choose offshore waters with deepwater wells or reservoirs as a targeted area. 

Next, environmental field data suitable for the specified region, including ocean currents and 

wind forcing, need to be determined. Selecting reanalysis products with extended temporal 

scope and fine spatial resolution is highly recommended (Chiri et al., 2020). The former may 

guarantee that the database used for retrieving met-ocean variables contains sufficient 

information on long-term oceanic circulation; the latter is required to capture vital spatial 
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features within the study area, such as convoluted shorelines or small islands. After acquiring 

oceanic and atmospheric reanalysis, the unification of their temporal resolutions is necessary, 

and then datasets are merged into a single matrix (see details in the following paragraph). Since 

the dimension of the newly assembled matrix can easily surpass tens of thousands, 

computational complexity and the curse of dimensionality will severely hinder the follow-up 

procedure, especially for clustering. Principal Component Analysis (PCA), a widely used 

dimensionality reduction technique via singular value decomposition in machine learning 

(Kherif and Latypova, 2020), is applied to identify the principal components of the matrix 

obtained from the previous step. Once the matrix compression is completed, cluster analysis 

becomes feasible to extract met-ocean patterns from the low-dimensional data generated from 

PCA. As one of the most popular unsupervised learning, a K-means clustering algorithm is 

used here for partitioning the dataset into a user-specified number of clusters based on squared 

Euclidean distances (Sinaga and Yang, 2020). Each cluster represents a 3D spatiotemporal 

evolution of regional met-ocean conditions during a period. Finally, a collection of new 

environmental data is available to be the input of current and wind fields for stochastic OSM. 

Multiple deterministic simulations of a deep-sea blowout are conducted using the DWOSM to 

predict the oil transport and fate under each met-ocean pattern, providing statistical attributes 

for spill risk quantification. A series of hazard maps can be produced by averaging 

superimposed simulation results from all the spill scenarios. 
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Figure 3-5 The flowchart of an integrated stochastic modeling methodology (left panel) and 

the workflow of the met-ocean pattern extraction (right panel). 

 

The right panel of Figure 3-5 exhibits a detailed flow diagram for dimensionality reduction 

and pattern extraction. Before the implementation of PCA, current and wind datasets should be 

assembled into one matrix 𝑀0  for convenience. This matrix contains information on three 

types of velocity fields: surface ocean currents, winds, and depth-averaged subsurface currents. 

Rather than adopting the original 3D ocean reanalysis product, the current dataset is divided 

into surface and underwater parts pursuant to the hypotheses stated by Chiri et al. (2020): a) in 

a water column, the rise velocity of oil droplets driven by buoyancy is considerably faster than 

their horizontal velocity caused by subsurface crossflows; b) no significant velocity gradient 

exists along the vertical profile of water depth. The first premise implies a limited horizontal 

displacement of rising droplets, making only subsurface current data near the vertical 

projection of the release point crucial to oil transport modeling. The second allows using a 

depth-averaged velocity of subsurface currents to characterize crossflows within the entire 

water column. Combined with the two premises, the raw datasets are transformed into a 
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concatenation of wind fields and surface and subsurface current fields as 𝑀0:  
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(3-33) 

where 𝑈  and 𝑉  are longitudinal and latitudinal velocity components, respectively. 𝑤  and 𝑣 

denote winds and ocean currents, respectively. 𝑈𝑑  and 𝑉𝑑  are the depth-averaged current 

velocity in the water column. 𝑛𝑤 and 𝑛𝑐 represent the total node number of the mesh grid for 

wind and surface current fields at a time step, respectively. 𝑇 is the maximum time step for 

both wind and current data. Each row of 𝑀0 represents the spatial met-ocean condition at a 

time step.  

 The dimensions of 𝑀0  are evidently enormous and cannot be applied directly to the 

clustering algorithm. PCA is accordingly used to compress the size of 𝑀0, generating a new 

matrix 𝑀1 below. 

[
 
 
 
𝑃𝐶1

1

𝑃𝐶1
2

⋮
𝑃𝐶1

𝑇



𝑃𝐶2
1

𝑃𝐶2
2

⋮
𝑃𝐶2

𝑇



⋯
⋯
⋮
⋯


𝑃𝐶𝑁
1

𝑃𝐶𝑁
2

⋮
𝑃𝐶𝑁

𝑇]
 
 
 

𝑇×𝑁

                                        (3-34) 

where 𝑃𝐶𝑖
𝑡  denotes the i-th principal component at 𝑡  time step. 𝑁  is the total number of 

principal components.  

A rearrangement is required to consider the temporal evolution of met-ocean conditions 

before employing K-means clustering to 𝑀1. Assume that the number of time steps of met-

ocean patterns within the simulation duration is 𝐷. Through repeatedly sliding a window of 𝐷 

rows of principal components along with each column of 𝑀1, 𝑇 − 𝐷 + 1 sub-patterns with 𝑁 

data nodes and 𝐷 time steps are created to represent every possible met-ocean pattern having 
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consecutive 𝐷-steps over the entire time series. A matrix 𝑀2 is eventually yielded below as a 

result of reconstruction for 𝑀1.  
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Here, each row means principal components derived from met-ocean variables during the 𝐷-

steps period. 

 Applying the K-means algorithm necessitates a predefined cluster number. We initialized 

the number of met-ocean patterns as one and determined whether to increase the cluster on the 

basis of follow-up evaluations (the right panel of Figure 3-5). By using clustering analysis to 

𝑀2, the centroid(s) of each cluster and the label for those sub-patterns will be generated. The 

labeled rows of 𝑀2 are then substituted with their cluster centroids that represent the average 

of data points within that cluster, i.e., build a matrix 𝑀3 ((𝑇 − 𝐷 + 1) × (𝐷 ∗ 𝑁)). Afterward, 

𝑀3 is rearranged into a 3D matrix 𝑀4 ((𝑇 − 𝐷 + 1) × 𝐷 × 𝑁)) by splitting up its columns. 

With the eigenvectors generated by PCA, 𝑀4  can be further restored as 𝑀5  ( (𝑇 − 𝐷 +

1) × 𝐷 × (2𝑛𝑤 + 2𝑛𝑐 + 2) ) for comparison with the original dataset. Similar to the 

reorganization from 𝑀1  to 𝑀2 , 𝑀0  is reconstructed as 𝑀0′  ( (𝑇 − 𝐷 + 1) × 𝐷 × (2𝑛𝑤 +

2𝑛𝑐 + 2)) by moving a 𝐷-steps window. When 𝑀0′ and 𝑀5 are of identical size, the next step 

is to measure the error between the original dataset and extracted met-ocean patterns. In the 

realm of environmental sciences, various approaches have emerged over the last decades to 

characterize model performance, i.e., most evaluate the similarity among modeled and 

observed variables (Bennett et al., 2013). Willmott et al. (2015) comparatively examined three 

commonly used model-performance metrics and found that a refined Willmott’s dimensionless 
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index of agreement (−1 ≤ 𝑑𝑟 ≤ 1 ) has the broadest utility. Hence, this study used this 

statistical index as an error metric. The agreement index closer to one indicates better 

agreement between model predictions and observations, yet some discrepancies present in how 

great the value of Willmott’s index can indicate good simulation performance, varying from 

0.5 in Willmott et al. (1985) to 0.65 in Chiri et al. (2020). This study adopted a conservative 

threshold of 0.7 to ensure a well-accepted result of clustering analysis. If the current index of 

agreement does not meet the condition (the right panel of Figure 3-5), we step back to 

implement PCA with the updated cluster number; otherwise, the pattern extraction is completed. 

Each cluster represents a spatiotemporal evolution of met-ocean patterns within the study area 

during the simulation period. Hereafter, stochastic OSM corresponding to k patterns becomes 

achievable. 

 Instead of employing a binary indicator from the original work for risk quantification, PHA 

concentration and surface oil loading are used to characterize the level of surface oil 

contamination. Table C-1 summarizes the thresholds of the two indexes and the rationale for 

formulating them from the perspective of appearance and ecological impacts. The risk indicator 

and other oil spill features (e.g., slick area and thickness) are computed by iterating grid cells 

of a 3D mesh grid encompassing the waters where oil appears. An integrated risk index (𝑅𝐼𝑖) 

at the i-th voxel is calculated as: 

𝑅𝐼𝑖 = ∑ 𝑃𝑘,𝑖
𝑆𝑃𝐴𝐻𝐶𝑃𝐴𝐻,𝑘,𝑖𝑆𝑂𝐿𝛿𝑘,𝑖

𝐾

𝐾
𝑘=1                      (3-36) 

where 𝑃𝑘,𝑖 is the probability (%) of oil occurrence at the i-th voxel under the k-th met-ocean 

pattern. 𝐾 is the total number of met-ocean patterns. 𝑆𝑃𝐴𝐻  and 𝑆𝑂𝐿  are scaling coefficients for 

PAH concentration (μg/l) and surface oil loading (g/m2), respectively. 𝐶𝑃𝐴𝐻𝑠𝑘,𝑖  and 𝛿𝑘,𝑖  are 
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PAH concentration and surface oil loading at the i-th voxel under the k-th met-ocean pattern, 

respectively. 

3.7. Summary 

This chapter introduces detailed methodologies for developing DWOSM, including the 

model structure, composition, input data, and numerical methods. The methods used in each 

modeling component are summarized below: 

1) A well-tested EM is used to predict oil and gas DSDs emanating from subsea blowouts, 

which provides the information required by particle tracking and fate algorithms.  

2) A Lagrangian plume model coupled with advanced near-field particle tracking and 

fate algorithms, collectively termed DWOSM-Nearfield, is applied to simulate the 

near-field plume dynamics and track the dispersed phase in the plume region. Its 

output of particles exiting from the plume serves as the input to offer the initial 

condition of DWOSM-Farfield.  

3) Integration of Lagrangian particle tracking and various fate algorithms allow 

DWOSM-Farfield to forecast the transport and fate of spill oil and gas beyond the 

near field. Furthermore, empirical correlations and thermodynamic modeling based 

on the PR-EOS are used to simulate the evolution of particle/slick properties with 

ambient conditions. 

4) A recent stochastic simulation-based risk assessment framework is modified by 

embedding DWOSM and adding a PAH-related risk evaluation indicator to quantify 

the risk spatial distribution resulting from subsea oil spills.  
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Chapter 4 Application and Testing of DWOSM in Eastern 

Canadian Waters 

4.1. Overview of the study site 

The study area for testing DWOSM is the offshore waters of eastern Newfoundland, 

Canada (Figure 4-1). Regulatory approval has recently been granted for offshore oil and gas 

development in deep waters off the east coast of Canada in the Flemish Pass Basin, about 500 

kilometers east of St. John's, Newfoundland (CBC, 2022). This and the Canada-Newfoundland 

Offshore Petroleum Board's consideration to award new oil and gas leases within the region, 

including the Northeast Newfoundland Slope Conservation Area (designated a "Marine 

Refuge" by the Department of Fisheries and Oceans in 2017 to protect fragile cold-water corals 

and sponges that provide essential habitat for fish), has raised environmental concerns (WWF, 

2020). The predictive models developed under this study are applied to a hypothetical test case 

based on site-specific data to determine potential ecological risks from an accidental subsurface 

oil release to this region of concern. The hypothetical spill event for model evaluation is based 

on the following scenario. At 12:00 on 10 October 2021, a ruptured underwater pipeline at 

800m depth accidentally released a Canadian east coast crude oil with an American Petroleum 

Institute (API) gravity of 37.1 in eastern Newfoundland waters at a flow rate of 3,000 barrels 

per day. This blowout lasted ten days and eventually ceased at 12:00 on 20 October 2021, 

following the release of 4769.6 cubic meters of crude oil. 
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Figure 4-1 The study area of a hypothetical blowout in Eastern Canadian waters. 

 

4.2. Model configurations and data collection 

Since the DWOSM is an integrated system composed of multiple individual components, 

comparisons among each module and established oil spill models are accordingly made to 

investigate their validity and utility (Figure 4-2). Simulation scenarios for all modules are 

defined based on the hypothetical blowout case (Table D-1), except for DWOSM-DSD, as an 

open-source PDM is not found. As a compromise, the DWOSM-DSD module is validated by 

comparing its output with laboratory observations and simulation results from a previous study. 

Rest are compared to corresponding spill models employing the same or close configurations. 

Specifically, the DWOSM-DSD is used to hindcast the observed oil droplet size and its related 

volume fraction from SINTEF’s tower basin experiments. The DSD results from the EM are 

also compared with the simulation result from a PDM model Oildroplets (Brandvik et al., 2013). 

Then, the DWOSM-Nearfield module and the TAMOC (version 2.1.0, accessible at 
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https://github.com/socolofs/tamoc as of Feb 14, 2024) are applied to simulate plume dynamics 

and particle trajectories within the plume region. Regarding validation of the far-field modeling, 

oil spill trajectories predicted from the DWOSM-Farfield are respectively compared with the 

output from two OOSMs, i.e., SIMAP and PyGNOME (an open-source scripting interface of 

GNOME, version 1.1.3, accessible at https://github.com/NOAA-ORR-ERD/PyGnome as of 

Feb 14, 2024). Only SIMAP is used for a comparison of oil mass balance as some 

functionalities of PyGNOME (e.g., coupling between surface oil weathering with underwater 

blowouts) are presently less well-tested and still under active development. After the 

verification for near-field modeling, constant and spatiotemporally varying background winds 

and currents are input to SIMAP and GNOME to examine the far-field particle tracking under 

different environment fields, respectively. Furthermore, through the presence and absence of 

each weathering process involved in the DWOSM, various scenarios are formulated to 

investigate the impacts of different factors on the mass balance of an oil spill. 

 

Figure 4-2 Diagram of comparative scenarios designed for model verification. 
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4.3. Results and discussion  

4.3.1. Comparison of near-field modeling 

SINTEF performed a series of tower basin experiments to investigate the DSD of 

underwater oil versus release conditions (i.e., flow rates and nozzle diameters) and physical 

properties of petroleum (e.g., viscosity, density, and IFT) (Brandvik et al., 2013). The 

experimental setups for different simulations of subsurface oil releases are shown in Table 1. 

The nozzle diameter ranged from 0.5 to 3.0 mm, and the initial release velocity varied from 9.4 

to 42.4 m/s. More details of SINTEF experiment setups were reported in the study of Brandvik 

et al. (2013) and Brandvik et al. (2014b). 

Table 4-1 The initial setup of SINTEF laboratory experiments for model validations. 

Experiments 

Nozzle 

diameter 

(mm) 

Release 

velocity 

(m/s) 

IFT 

(mN/m) 

Specific 

gravity 

Viscosity 

(cP) 

Brandvik et al., 

2013 

Exp1 0.5 17.0 

15.5 0.839 10 

Exp2 0.5 42.4 

Exp3 1.5 9.4 

Exp4 1.5 14.1 

Exp5 2.0 26.5 

Exp6 3.0 11.8 

Brandvik et al., 

2014a and b 

Exp7 1.5 26.4 

Exp8 3.0 18.8 

Note: Exp denotes experiment.  

 

Figure 4-3 presents the comparison between observations from tower tank experiments 

and oil DSD simulated from the DWOSM-DSD and the Oildroplets. Both model results fit the 

experimental data well in most cases, particularly Exp-1, 3, and 8, with mean absolute error 

(MAE) and root mean squared error (RMSE) less than 6.6 and 8.5, respectively (see Figure 4-

3 a, c, and h). The modeled DSD from the DWOSM-DSD has a larger discrepancy on Exp- 4, 

6, and 7 than the results of Oildroplets (EM's MAE ranges from 8.0 to 14.5, and RMSE varies 
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from 9.5 to 18.0; PDM's MAE ranges from 3.2 to 6.3 and RMSE varies from 3.5 to 6.8), of 

which tiny droplets (<200 μm) account for a higher fraction compared to the actual value 

(Figure 4-3 - d1, f1, and g1). The EM model employed by the DWOSM is based on semi-

empirical relations derived from given experiments. This study uses coefficients estimated by 

Brandvik et al. (2014) and does not implement calibration of empirical parameters with 

different release conditions and oil properties. During actual spill incidents, it is commonplace 

to omit calibration for those coefficients and adopt widely used values due to the urgency of 

the response. On the other hand, the EM model performs better in some experiments (Exp-1, 

2, 5, and 8) than the calibrated PDM and close predictions to observations (Figure 4-3 - a2, b2, 

e2, and h2), indicating the applicability and validity of empirical coefficients taken in this study. 
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Figure 4-3 The comparison of DSD between SINTEF experimental observations and hindcast 

results from DWOSM-DSD and Oildroplets: figures a1-h1 are a direct comparison of 

cumulative volume fraction; figures a2-h2 show evaluation of model performance and error 

metrics. 

 

Table 4-2 summarizes some essential results of plume dynamics at the near-field 

termination and droplet evolution within the plume region from the TAMOC and the DWOSM-

Nearfield module. In DSD computation, both models assign oil volume fractions into ten 

logarithmic spaced droplet size bins (numbered from 0 to 9). Generally, two simulations have 

close predictions except for the mass of oil droplets at the exiting point (Table 4-2). The time 
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that petroleum fluids travel from the release point over the plume periphery is within a range 

of 0.01 to 0.12 hours. As shown in Figure 4-4, all the oil droplets are beyond the near-field 

region when they ascend to a depth of 777.0 meters. The differences in the predicted depth of 

exiting points are negligible, mirrored by their relative error of less than 0.5%. The rise velocity 

of oil droplets obtained from DWOSM-Nearfield ranges from 0.03 to 0.15 m/s, slightly faster 

than that from TAMOC, leading to a shorter time required by droplets to escape from the plume. 

However, absolute errors for rise velocity and timing of exit are trivial from a practical 

standpoint, fewer than 0.03 m/s (size bin 5) and 2.4 minutes (size bin 0), respectively. All the 

size bins simulated from DWOSM have around two times greater droplet mass than that of 

TAMOC. Although both models adopt the EM to predict oil DSDs, TAMOC performs flash 

calculations and accordingly produces a certain fraction of gas in its composition output. 

DWOSM entirely ignores this procedure when the gas-oil ratio (GOR) is zero. Both models 

use the flow rate of dead oil as an input of the near-field simulation, while the appearance of 

gas composition enlarges the mass flux of petroleum fluids in the TAMOC simulation. 

Consequently, the increasing exit velocity reduces the size of oil droplets and thus makes their 

mass smaller. Likewise, the discrepancies in the predictions of the near-field plume dynamics 

are caused by the same reason. The enhanced initial momentum drives the buoyant plume to 

reach further and higher (Figure 4-4). As the rate of shear entrainment is positively correlated 

to a characteristic velocity in the plume, more entrained ambient waters increase the plume 

element mass and width from the result of TAMOC. 
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Table 4-2 A compassion of near-field plume and particles results between TAMOC and 

DWOSM-Nearfield. 

I 

The results of near-field particles 

Rise velocity (m/s) Timing of exit (hours) Depth of exiting point (m) Droplet mass (kg) 

T D R T D R T D R T D R 

0 0.02 0.03 0.50 0.12 0.08 0.33 777.0 779.3 0.0 4.4×10-7 9.1×10-7 0.52 

1 0.04 0.05 0.25 0.07 0.05 0.29 779.4 782.0 0.0 1.2×10-6 2.6×10-6 0.52 

2 0.05 0.07 0.40 0.05 0.03 0.40 780.9 783.4 0.0 3.5×10-6 7.4×10-6 0.52 
3 0.07 0.09 0.29 0.03 0.02 0.33 783.4 784.8 0.0 1.0×10-5 2.1×10-5 0.52 

4 0.10 0.12 0.20 0.02 0.02 0.00 784.6 785.8 0.0 2.9×10-5 6.0×10-5 0.52 

5 0.12 0.15 0.25 0.02 0.01 0.50 785.6 785.6 0 8.1×10-5 1.7×10-4 0.52 

6 0.14 0.14 0.0 0.01 0.02 1.00 785.7 785.6 0.0 2.3×10-4 4.8×10-4 0.52 

7 0.14 0.14 0.0 0.01 0.02 1.00 785.8 785.7 0.0 6.5×10-4 1.4×10-4 0.52 

8 0.14 0.13 0.07 0.02 0.02 0.0 785.9 785.8 0.0 0.0019 0.0039 0.52 

9 0.13 0.13 0.0 0.02 0.02 0.0 785.9 785.9 0 0.0053 0.0110 0.52 

The results of plume dynamics at the termination 

Depth of intrusion layer (m) Plume element mass (kg) Plume width (m) 
T D R T D R T D R 

785.1 785.0 0.0 302.2 262.9 0.15 11.7 11.0 0.06 

Note: T and D denote the result from TAMOC and DWOSM-Nearfield, respectively; R represents 

relative error, I means index. 

 

Figure 4-4 The trajectories of the near-field plume and particles predicted from DWOSM-

Nearfield (in blue) and TAMOC (in red). 
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4.3.2. Comparison of far-field modeling 

4.3.2.1. SIMAP model 

A comprehensive comparison of oil fate modeling between DWOSM-Farfield and SIMAP 

is carried out in constant and varying environmental fields. When wind conditions are stable, 

the two models present comparable trends of oil mass in three environmental compartments: 

sea surface, water column, and atmosphere (Figure 4-5a). The mass of surfaced and evaporated 

oil increases linearly, and half of the released oil leaves on the sea over ten days; submerged 

oil is on the uplift during the initial phase (around the first three days in SIMAP and less than 

one day in DWOSM) and then maintains a relatively low level. More surface oil from DWOSM 

allows slightly faster evaporation than SIMAP until volatile hydrocarbon components are gone. 

There is little discrepancy between mass balance predictions from the two models except for 

submerged oil. Ten days after the spill, nearly 250 metric tons (Mts) and 50 Mts of oil remain 

in the upper water column from SIMAP and DWOSM, respectively. This disagreement is 

caused by different algorithms of wave entrainment taken by the two spill models since similar 

approaches are applied to simulate evaporation and dissolution. Compared with the mass 

balance under stable and weak-wind conditions, surface and subsurface oil trends are 

substantially altered in varying wind fields (Figure 4-5b, c, and d). Submerged oil from SIMAP 

fluctuates and rises to 1,186 Mts at ten days, 143 Mts greater than that of DWOSM (Figure 4-

5c); both predicted surface oils unsteadily climb to about 1300 Mts despite the inconsistency 

prior to the last two days (Figure 4-5b). The effect of wind forcing on oil evaporation is less 

significant than other processes, causing parallel tendencies of oil entering the air in the two 

simulations (Figure 4-5d).  
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Similar to the scenario using steady background fields, the discrepancy in surface and 

subsurface oil is attributable to different dispersion algorithms employed in the two models. It 

was reported that the difference in entrainment rates between Li’s algorithm and Delvigne and 

Sweeney’s model could be considerably amplified as the wind speed increases from 4 to 10 

m/s (Li et al., 2017). In particular, the fraction of dispersed oil in the SIMAP is five times 

greater than that of the traditional method at a wind speed of 10 m/s. The derivation of Li’s 

entrainment model is based on several individual processes, including white capping coverage, 

wave energy dissipation, and significant wave height, to obtain a natural dispersion rate as a 

function of wind speed. Those processes are positively related to wind speed and can increase 

energy dissipation rate but are not independent. Such integration double counts the effects of 

high winds/waves as its multiple parameters rely on wind speed, likely leading to an 

overestimated entrainment rate. Overall, evaporation dominates the mass balance of oil spills 

without the wind-wave effect, while natural dispersion becomes predominant under strong 

winds. Given the wide variations in entrainment models, further study is required to examine 

the accuracy and validity of the two methods in various environmental conditions. 
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Figure 4-5 The mass balance from SIMAP and DWOSM-Farfield at ten days: a) under constant 

wind conditions; b) surface, c) submerged, and d) evaporated oil under varying wind conditions. 

 

Cross-sections of the trajectories of subsurface droplets and surfaced oil under steady 

environmental fields illustrate that spill trajectory forecasts obtained from the two models are 

primarily consistent (Figure 4-6). Large oil droplets rise rapidly in the water column, and 

smaller droplets are progressively carried farther downstream by subsurface currents as they 

eventually reach the sea surface; afterward, the surfaced oil is deviated by the steady northeast 

wind and drifts toward the downwind direction without curvature. Multiple spill sources appear 

on the sea since oil droplets surface at different times and locations owing to their distinct rise 
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velocities. Those droplets from the smallest size bins move underwater for an extended time 

compared to large droplets, thus surfacing south away from the initial spill sources. The most 

significant difference in the spatial distribution of LEs is that the subsurface oil from SIMAP 

widely disseminates south, beyond the surface oil (Figure 4-6 c and e). It may be attributed to 

the following reasons: 1) the DSD predicted from the Vdrop-J has a minor fraction of 

microdroplets and is supplied to SIMAP simulation as input for the near-field modeling; 2) 

diffusion coefficients in SIMAP were assumed differently for above and below the depth of the 

surface mixed layer (pycnocline), allowing more intensive horizontal turbulent diffusion in the 

upper water column; 3) different algorithms are used to predict the rise velocity in the two 

models. In the SIMAP model, the rise velocities of small droplets (<1 mm) and large droplets 

(≥1 mm) are calculated by Stokes’ law and the method using the drag coefficient of ambient 

fluid, respectively. As described in section 3.5.2, this study applies empirical correlations 

proposed by Clift et al. (2005) to compute the terminal velocity of rising particles. Importantly, 

microdroplets from the SIMAP simulation have remarkably slower rise velocity than 

millimeter-scale droplets; hence, droplets tend to stay in the water column for an extended 

period and spread widely underwater. Nevertheless, those tiny oil droplets account for a 

negligible fraction of the total spill volume. Thus, the discrepancy between subsurface oil 

distributions from the two simulations is far less significant than what appears visually on 

trajectory mapping. 
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Figure 4-6 The oil trajectory from SIMAP (left panels, surface oil in black and subsurface oil 

droplets in deep blue) and DWOSM-Farfield (right panels, surface oil in red and subsurface oil 

droplets in deep blue): a-b) at four, c-d) seven, and e-f) ten days. 

 

4.3.2.2. GNOME model 

Snapshots of the oil distribution from GNOME and DWOSM-Farfield at three moments 

show that surface and subsurface oil trajectories predicted from the two models largely overlap 

and drift toward the same direction (Figures 4-7 and 4-8). The paths of rising droplets barely 

change with time as subsurface currents are close to steady flows (Figure 4-9). Initially, large 

oil droplets reach the sea surface within a half day, and both simulated slicks drift 50 km off 
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the east during the first two days and form an L-shaped oil band (Figures 4-7c and 4-8). The 

distance between the far end of the trajectory from DWOSM and the release point is slightly 

further than the results of GNOME. Afterward, surfaced oil stretches toward the southeast 

seven days after the spill, forming two bend-shaped films crossing 140 km from the release 

point to the end of the trajectory (Figures 4-7f and 4-8). The two predictions are consistent until 

a discrepancy appears at the far end of the oil slicks. Ten days later, oil stripes drift towards the 

south monolithically and have significant curvature caused by the south current and wind 

(Figure 4-9). They extend 160 km from north to south and 140 km from west to east (Figures 

4-7i and 4-8). Similar to previous moments, most predicted trajectories overlap despite a few 

slicks distancing from the release point not matching well. 

 

Figure 4-7 A comparison of oil trajectories between DWOSM-Farfield and GNOME 

simulations. 

Note: The first row shows oil trajectories at two days (a - c); the second row is at seven days (d - f); the 

third row is at ten days (g - i). The first column denotes oil trajectories from the Longitude-Depth view 
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(a, d, g); the second is from the Latitude-Depth view (b, e, h); The third is from the Longitude-Latitude 

view (c, f, i) (DWOSM-Farfield in blue; GNOME in red). 

 

 

Figure 4-8 The bathymetry around the spill site and the 3D oil trajectories from DWOSM-

Farfield at two, seven, and ten days. 
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Figure 4-9 A snapshot of current and wind fields and the oil spill trajectory predicted from 

DWOSM-Farfield at 12:00, on 30 October 2021. 

 

To qualify the difference between the simulation results, the output is visualized by 

histograms based on the spatial distribution of surfaced oil (Figure 4-10). It is obvious that the 

distributions of simulated slicks from the two models are generally close. The latitudinal ranges 

of predicted oil slick distribution from DWOSM are nearly 0.05⸰ broader than from GNOME 

at two days (Figure 4-10a), basically equal at seven days (Figure 4-10b), and 0.05⸰ more 

expansive at ten days (Figure 4-10c). Likewise, the longitudinal extents of DWOSM results 

are 0.05 wider than GNOME and 0.24⸰ broader at seven and ten days. The difference in the 

trajectory prediction of the two models is mainly because of different methods to calculate the 
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rise velocity of oil droplets, which makes rising droplets take different pathways and have 

different timing to reach the sea surface. 

 

Figure 4-10 Distribution and histograms of simulated oil trajectories from GNOME and 

DWOSM-Farfield: a) at two, b) seven, c) ten days. 

Note: The top and right sub-panels show the longitudinal and latitudinal distributions (DWOSM-

Farfield in blue, GNOME in red). 

4.3.3. Impacts of weathering processes on oil fate 

The effects of weathering processes and changes in oil properties on spill mass balance are 

investigated by including or not those factors in modeling scenarios (Figure 4-11). As shown 

in Figure 4-11a, whether or not the emulsification is taken into account, there is little change 



76 

 

in the oil budget before the first five days. Subsequently, the lack of emulsification increases 

the subsurface oil mass by 141 Mts on average and marginally reduces the oil entering the air 

compared to the business-as-usual (BAU) scenario. The mass of surfaced oil begins to decline 

at the same period and decreases by 74 Mts at ten days. In contrast to a minor variation in mass 

balance brought by water uptake, evaporation and entrainment substantially alter the mass 

fraction of surface and subsurface oil (Figure 4-11 b and c). Without the involvement of the 

evaporation process, surfaced oil mass fluctuates severely and only remains at 526 Mts after 

ten days, roughly half of the value in the BAU scenario (Figure 4-11b). At the same time, 

submerged oil soars to 3,501 Mts under an evaporation-related scenario, 1,290 Mts greater than 

the level in the BAU scenario. More dramatically, excluding natural dispersion entirely 

reverses the proportion of mass distribution between surfaced and submerged oils (Figure 4-

11c). Under the BAU scenario, submerged oil dominates the mass balance and rises to 2,211 

Mts within ten days, while evaporated and surfaced oils maintain similar increasing trends and 

approximately account for less than half of subsurface oil. Once wave entrainment effects on 

slicks are ignored, surfaced and evaporated oils increase from 21.5 % (BAU) to 58.6 % and 

23.6 % (BAU) to 39.0 %, respectively. Conversely, simulated oil mass drops from 54.9 % 

(BAU) to only 2.4 % in the water column. When oil properties remain unchanged in the fate 

modeling, a similar trend with the result of an emulsification-related scenario appears: the 

variation in oil properties does not initially change the mass balance (Figure 4-11a and d). It is 

also found that the variation caused by constant oil properties is slightly greater than that owing 

to emulsification. 
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Figure 4-11 Effects of the absence or presence of various weathering processes and oil property 

variation on oil mass balance in DWOSM: a) emulsification, b) evaporation, c) entrainment, 

and d) oil viscosity and density. 

 

Emulsification can substantially contribute to the volumetric increase in slicks, whereas 

the fate modeling of DWOSM only involves the mass of oil rather than the emulsion; therefore, 

the predicted slick mass does not change due to water uptake. Once no water-in-oil emulsion 

forms, more surface oil is transferred underwater as a low-viscosity slick is easier to disperse 

naturally (Figure 4-11a). As a consequence, the mass of evaporated hydrocarbons is also 

reduced when the exposed surface area of slicks decreases. Obviously, the change in the mass 
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balance owing to evaporation is more prominent than that caused by emulsification (Figure 4-

11b). Compared with surface oil in the BAU scenario, it seems counterintuitive that its mass 

does not increase but falls by ignoring evaporation. The evaporative loss of volatiles in the oil 

mixture also makes weathered oil more viscous, impeding the natural dispersion of oil. In turn, 

not including evaporation decelerates the rise of oil viscosity, indirectly facilitating dispersion 

to entrain more surface oil into the water column. Due to the lack of evaporation, natural 

dispersion becomes the only primary process reducing surface oil. Meanwhile, high-speed 

winds prevail in the spill zone of this study case (Figure 4-9b), amplifying wave heights and 

the fraction of the sea surface covered with breaking waves. In addition to no evaporative loss 

in the exposed area of slicks, these factors jointly enhance the entrainment rate and thus allow 

natural dispersion to dominate the oil spill budget without evaporation.  

Comparable mass balance trends are presented from the simulation results of the spill in 

the stable and weak-wind conditions (Figure 4-5a) and the no-entrainment scenario (Figure 4-

11c). Wind speed plays a determining role in the dispersion algorithm since no entrainment 

occurs once it is lower than the threshold for onset of breaking waves. As natural dispersion is 

omitted, only a limited amount of dissolved hydrocarbons and droplet clouds ascending in the 

water column constitute submerged oil. Unlike soaring dispersed oil mass in the no-evaporation 

scenario (Figure 4-11b), evaporative loss of oil increases steadily (Figure 4-11c) because this 

process basically ceases as volatile components are gone. Furthermore, the simulation with 

constant oil properties provides a result close to the no-emulsification scenario (Figure 4-11 a 

and d). The reason is straightforward: non‐weathered (scenario using constant properties) and 

less weathered (no-emulsification scenario) oils have a lower viscosity than weathered oil, 
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leading to less entrained surface oil and more dispersed oil. In summary, natural dispersion is 

the most impactful weathering process for the spill mass balance resulting from the DWOSM, 

followed by evaporation. It is worth noting that this conclusion is only valid for the specific 

spill scenario as the wind speed is exceptionally high, and the tested oil type is a light crude in 

the case study. A systematic sensitive analysis is required for more generalized conditions to 

obtain the importance of factors in model formulation despite a tremendous computational 

burden. 

4.4. Summary 

In this chapter, DWOSM is applied to a hypothetical blowout at 800 meters in eastern 

Newfoundland waters for model verification by comparing the integration of three OOSMs. 

Firstly, oil DSDs generated from a DWOSM-DSD are compared with experimental 

observations and outcomes from a PDM. It indicates that prediction in DWOSM-DSD 

primarily agrees with experimental and modeling results under different release conditions. 

Then, the comparison for spill trajectory shows considerable similarity in surface slicks under 

the constant wind and current fields. Specifically, the two models have the same drift direction, 

but underwater oil is less widely disseminated downstream in DWOSM simulations than 

SIMAP. The two models adopt different methods for the vertical velocity of oil droplets in the 

water column, resulting in different surfacing times and locations. Regarding oil mass balance, 

the two simulation results have similar trends: surface oil is predominant in spill mass balance 

under weak-wind conditions, and submerged oil prevails in high-speed winds. The discrepancy 

is that SIMAP's results have more oil mass in the water column since entrainment algorithms 

taken by the two models are distinct. Last, spill trajectories between DWOSM and GNOME 
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are compared to examine the validity of the simulation under actual environmental fields. Not 

surprisingly, the two predicted oil trajectories largely agreed due to the same algorithms for oil 

transport apart from rise velocity. In sum, the DWOSM performs well in modeling deepwater 

blowouts compared with other established toolkits, proving that the newly integrated system 

can forecast deep-sea spills and is all-inclusive for OSM on different scales and processes. 
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Chapter 5 Model Validation through a Hindcast of the DWH 

Blowout 

5.1. Overview of the study site 

The GOM is a semi-enclosed marginal sea situated in the west of the North Atlantic Ocean, 

which connects the tropical and North Atlantic and serves as the inception point for the North 

Atlantic’s western boundary current, i.e., the Gulf Stream (Liu, 2011). It possesses abundant 

oil and gas storage underneath the seafloor, rich fisheries resources in the water column, and 

valuable wetlands along the coast. The DWH was a semi-submersible offshore drilling rig at 

the Macondo Prospect (88.367◦W, 28.740◦N) in Mississippi Canyon Block 253 of the north-

central GOM (Beyer et al., 2016) (Figure 5-1). An explosion due to misconduct and blowout 

preventer failure occurred on the oil platform at around 7:45 pm center daylight time (CDT) 

on April 20, 2010. After a 36-hour fire, the charred superstructure collapsed and sank into the 

sea floor of 1,522 m at 10:22 (CDT) on April 22, 2010, resulting in the damaged riser pipe that 

connected the wellhead to the drilling platform. A large oil slick was observed at the former 

drilling site soon after the platform fell. During this unprecedented environmental catastrophe, 

an estimated 3.19 to 4.90 million barrels of crude oil, along with several hundred thousand tons 

of hydrocarbon gases, were released into the subsea until the damaged well was capped three 

months later (Shultz et al., 2015; Beyer et al., 2016). Various response activities were 

conducted to mitigate the negative impacts of this disastrous accident, such as in-situ burning, 

mechanical recovery, and surface dispersant application. It is worth noting that the chemical 

dispersant Corexit® 9500 was massively deployed for the first time during the deep-sea oil 

spill (Paris et al., 2018). From the end of April to mid-July 2010, 771,000 gallons of dispersant 
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were intermittently injected at the Macondo Prospect wellhead to prevent the oil from rising to 

the sea surface (Kujawinski et al., 2011; French-McCay, 2021a). 

 

Figure 5-1 The location of the sunk DWH drilling rig. 

 

5.2. Model configurations and data collection 

The data supplied to this modeling effort mainly originate from reanalysis products 

generated by hydrodynamic and atmospheric models in tandem with oil spill information from 

other relevant studies. Some key model inputs and their related source can be found in Table 

E-1. Current and wind data are the two most crucial inputs for Lagrangian trajectory modeling 

as they jointly move drifting objects at the water surface. Several current and wind reanalyses 

are publicly available with varying temporospatial resolutions and coverages (French-McCay 

et al., 2021b). This study selects the two freely accessible datasets with the finest resolution, 
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i.e., HYCOM + NCODA Gulf of Mexico 1/25° Reanalysis (accessible at 

https://tds.hycom.org/thredds/catalogs/GOMu0.04/expt_50.1.html?dataset=GOMu0.04-

expt_50.1-2010 as of Feb 14, 2024) and 10-meter-elevation wind from ERA5 (accessible at 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-

levels?tab=overview as of Feb 14, 2024). The former is tailored for GOM and generated from 

the HYbrid Coordinate Ocean Model (HYCOM), which has 1/25° spatial resolution and three 

hourly time steps. The latter stems from the fifth-generation European Centre for Medium-

Range Weather Forecasts (ECMWF) reanalysis for the global climate, with 1/4° spatial 

resolution and hourly temporal resolution. Given the lack of DWH measurements for 

Conductivity, Temperature, and Depth (CTD) required by near-field modeling, the water 

column data is retrieved by interpolating related variables in the current reanalysis near the 

sunk rig. To forecast the locations of stranded oil on the coastline, a high-resolution geography 

database extracted through NOAA’s GNOME Online Oceanographic Data Server (accessible 

at https://gnome.orr.noaa.gov/goods/tools/GSHHS/coast_subset as of Feb 14, 2024) is used to 

define the boundary of the computational domain. The daily averages of GOR and oil flow rate 

are adopted for brevity despite the GOR and the flow rate of the damaged wellhead fluctuating 

during the DWH (McNutt et al., 2012; Reddy et al., 2012). Oil information fed into the fate 

algorithms comes from the ADIOS Oil Database. SSDI, a response technology for preventing 

subsurface oil from reaching the sea surface, was applied to a major blowout for the first time 

and began at the end of April (Ramírez-León, 2012). A ten-fold reduction in IFT for treated oil 

and gas is employed in this model configuration to mimic the effectiveness of SSDI (Zhao et 

al., 2015). The gas-water IFT presumably cannot be reduced below 40 mN/m (Kashefi et al., 
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2016). Rest input data and model configuration referred to previous studies and modeling 

investigations (Table E-1). It is worth noting that only the first two weeks of the DWH are 

simulated instead of the entire three months. Large-scale response activities were implemented 

a few days after the spill; for instance, aerial dispersant applications started on April 25, and 

in-situ burning began on May 5 (Boufadel et al., 2021). They artificially changed the oil 

trajectory and mass balance, whereas most information about the consequences of mitigation 

events remains unknown. This study only conducts a short-term hindcast to minimize the 

uncertainties in OSM.  

This study mainly compares six primary outputs from the DWOSM hindcast with remote 

sensing-based estimates, field measurements, and previous modeling works (Table 5-1). 

Knowing the overall DSD is crucial to evaluating the transport and fate of oil droplets and gas 

bubbles following a subsea spill. In practice, only a local DSD is measurable for a deepwater 

blowout, which will likely cause overestimating or underestimating the overall DSD based on 

the measurement location (Daskiran et al., 2021). A few distributions were observed through 

the two dives at a water depth of 702-1,198 m during the M/V Jack Fitz 3 (JF3) cruise in mid-

June 2010 (Davis and Loomis, 2014). Since the absence of DSD measurements through the 

DWH incident (Zhao et al., 2015), the oil/gas DSD result is validated by comparing hindcast 

results with other simulations and a few observed median droplet diameters and local DSDs. 

Detailed airborne chemical measurements conducted by Ryerson et al. (2012) during the DWH 

are used to examine whether the modeled gaseous hydrocarbon mass reaching the sea surface 

agrees with observation. Comparatively, verifying surface oil location is the most achievable 

task in validating the oil spill model results because satellite imagery data provides reliable 
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information about the spatial distribution of slicks over a period. A daily compilation of texture-

classifying neural network algorithm (TCNNA) outputs generated from Synthetic Aperture 

Radar (SAR) images collected from the DWH is used to validate modeled surface oil 

trajectories (accessible at https://response.restoration.noaa.gov/gulf-mexico-erma as of Feb 14, 

2024). Considering the short simulation time and the limitation of DWOSM, only the vertical 

distribution of the intrusion layer is compared with the detected extent of the deep plume, as 

the horizontal scale (tens of kilometers) of trapped subsurface plumes greatly exceeded the 

vertical scale (~100 m) (Camilli et al., 2010; Hazen et al., 2010). Shortly after the DWH spill, 

large-scale field surveys are conducted through the Shoreline Cleanup Assessment Techniques 

(SCAT) to collect data on coastline oiling conditions (Santner et al., 2011). It can offer helpful 

information for verifying the modeled distribution and timing of beached oil. Research related 

to validating the simulated oil fate is challenging because of a scarcity of accurate observations 

that quantitatively depict the amount of released oil distributed in each environmental 

compartment (i.e., sea surface, water column, shore, and atmosphere). Only some remote 

sensing-based estimates of surface oil volume derived from satellite-borne sensor data are 

found, including SAR, MODIS Visible, and MODIS Thermal Infrared Sensor (TIR) (French-

McCay et al., 2021a and b). The rest of the hindcasts of oil fate in DWOSM are compared with 

simulation results from the SIMAP. 
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Table 5-1 The information used for the validation of DWH hindcast. 

Modeled objects Validation data  Description  

Oil and gas DSDs Simulations of 

oil/gas DSD and 

observed volume 

median droplet 

diameter from 

related studies 

Simulations from Zhao et al. (2014 and 

2015), Spaulding et al. (2017); 

observational data from Davis and 

Loomis, (2014), Spaulding et al. (2017), 

and French-McCay et al. (2021b).  

Chemical 

composition of 

surfaced bubbles 

Simulations and 

airborne 

atmospheric 

chemical data 

Gros et al. (2017) made TAMOC 

simulations for the DWH blowout; 

airborne chemical measurements were 

obtained by Ryerson et al. (2012) in May 

and June 2010. 

Surface oil 

distribution 

TCNNA SAR 

Potential Oiling 

Footprints 

This product was created from surface 

anomalies identified from satellite-borne 

SAR using a TCNNA (Garcia-Pineda et 

al., 2013). 

Subsurface plume 

and intrusion layer 

Observation from 

related studies 

Underwater measurements from Camilli 

et al. (2010) and Hazen et al. (2010). 

Stranded oil 

locations 

Mobile SCAT 

maximum oiling 

Field observations obtained by SCAT 

(accessible at 

https://erma.noaa.gov/gulfofmexico as of 

Feb 14, 2024) 

Oil mass budget Hindcast from 

related studies and 

remote sensing-

based estimates of 

surface oil volume 

Simulated mass balance from French-

McCay et al. (2021a and b). 

5.3. Selection of error metrics for spill trajectory modeling 

As the most important output of OSM, the accuracy of spill trajectory forecast must be 

demonstrated through a good performance mirrored by error metrics instead of only a simple 

visual comparison. Three error measures suitable for validating Lagrangian model output 

against satellite imagery are selected here to quantitatively evaluate the performance of spill 

trajectory modeling from different perspectives, including the centroid skill score, the area skill 

score, and a 2D measure of effectiveness (2D-MOE) (Dearden et al., 2021). 

The centroid skill score is designed to indicate how close the predicted oil trajectory is to 

the observed spill region. First, the spatial difference between the geometric centers of observed 
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and modeled trajectories is gauged by a centroid displacement index 𝐶𝐼 below: 

𝐶𝐼 =
∆𝑥

𝐿𝑂𝐵𝑆
                                                           (5-1) 

where ∆𝑥 is the distance between the centroids of the observed slick and the predicted oil at a 

given moment, and 𝐿𝑂𝐵𝑆 is the length scale of the observed spill area. Specifically, 𝐿𝑂𝐵𝑆 is the 

distance along the diagonal of a bounding box enclosing the observed oil-contaminated waters. 

In short, 𝐶𝐼 measures the absolute error in the predicted centroid location, normalized by the 

length scale of the observed oil geometry. 

The centroid skill score 𝐶𝑆𝑆 can then be defined based on 𝐶𝐼 as: 

𝐶𝑆𝑆 = {
1 −

𝐶𝐼

𝐶𝑇
, 𝐶𝐼 < 𝐶𝑇

0, 𝐶𝐼 ≥ 𝐶𝑇
                                               (5-2) 

where 𝐶𝑇  is a user-selected tolerance threshold. A 𝐶𝑇  value equaling one means that a 

comparison has any skill score only when the distance between the locations of the observed 

and predicted centroids must not exceed the magnitude of the observed length scale. A 𝐶𝑆𝑆 of 

one corresponds to perfect overlap between observed and predicted centroids, whereas zero 

indicates no “skill”. 

The area skill score is tailored to complement the weakness of the centroid skill score by 

measuring the size of the predicted spill area relative to the observed region. The area index 𝐴𝐼 

is introduced in a manner analogous to 𝐶𝐼 below: 

𝐴𝐼 =
|𝐴𝑃𝑅−𝐴𝑂𝐵𝑆|

𝐴𝑂𝐵𝑆
                                                     (5-3) 

which is the normalized magnitude of the difference between predicted and observed slick 

areas at a given moment. 

The area skill score 𝐴𝑆𝑆 is then defined based on 𝐴𝐼 as 
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𝐴𝑆𝑆 = {
1 −

𝐴𝐼

𝐴𝑇
, 𝐴𝐼 < 𝐴𝑇

0, 𝐴𝐼 ≥ 𝐴𝑇
                                             (5-4) 

where 𝐴𝑇 is a user-selected tolerance threshold. Similarly, an 𝐴𝑇 value of one implies that the 

error in the predicted area should range within the magnitude of the observed spill area; 

otherwise, it equals zero. An 𝐴𝑆𝑆  of one means a perfect agreement between predicted and 

observed areas. 

 As 𝐴𝑆𝑆  does not involve any discrepancy in the shape of the predicted spill trajectory 

relative to the observation, a 2D-MOE is used to measure how much the modeled area overlaps 

with observations. It is expressed as: 

𝑀𝑂𝐸 = (𝑥, 𝑦) = (
𝐴𝑂𝑉

𝐴𝑂𝐵
,
𝐴𝑂𝑉

𝐴𝑃𝑅
) = (1 −

𝐴𝐹𝑁

𝐴𝑂𝐵
, 1 −

𝐴𝐹𝑃

𝐴𝑃𝑅
)                    (5-5) 

where 𝐴𝑂𝑉  is the overlap between observations and predictions; 𝐴𝑂𝐵 and 𝐴𝑃𝑅 are observed and 

predicted slick areas, respectively. 𝐴𝐹𝑁 is the false negative (the area where oil appears but is 

not predicted), and 𝐴𝐹𝑃 is the false positive (the region where oil is predicted but neglected). A 

perfect 2D-MOE score of (𝑥, 𝑦) = (1,1) represents a complete overlap between observations 

and predictions. A value of 𝑥 close to one and 𝑦 close to zero indicates that the result has a 

significant false positive (i.e., the spill coverage is overestimated). Conversely, a low 𝑥 value 

with a high 𝑦 value shows the predominant false negative led by underestimating the oil spill 

region.  

Likewise, the 2D-MOE also has a limitation as the agreement regarding the spill size and 

shape is not considered. This could result in low or even zero MOE values, especially when 

the two trajectories are in close proximity but have less overlap. A poor performance will be 

unnecessarily indicated for forecast cases with little or no overlap caused by a minor offset 

despite the simulation accurately capturing the shape and size of observed slicks (Dearden et 
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al., 2021). As in this study, such misleading results can be minimized by complementing 𝐶𝑆𝑆 

and 𝐴𝑆𝑆 into adopted error metrics. 

5.4. Results and discussion 

5.4.1. Oil/gas droplet size distribution 

DWOSM-DSD module provides the hindcast of the VMD of untreated oil as 3.24 mm. Its 

DSD yielded from the Rosin-Rammler distribution fitting indicates that the oil droplet size 

ranges from 0.46 to 10.06 mm before applying dispersants (April 22 to 29) (Figure 5-2a). 

Droplet sizes in the VDROP-J simulations vary from 1.01 to 7.94 mm, with a median of 3.85 

mm marginally greater than the size of VDM from this hindcast. Two studies produce close 

simulation results of VMD of oil droplets despite adopting distinct initial setups and modeling 

approaches. A comparatively apparent discrepancy yet appears in the gas DSD: bubble sizes 

given by DWOSM-DSD are somewhat evenly distributed in size bins from 3.01 to 17.96 mm; 

in the study of Zhao et al. (2014), over 73% of gas bubbles had diameters ranging from 7.60 to 

10.06 mm, and the rest were within 1.46 to 7.60 mm (Figure 5-2b). Unlike the steady VMD 

provided by an EM, Zhao et al. (2014) used a PDM, VDROP-J, to predict the DSD of 

droplets/bubbles 200 m away from the wellhead. Relatively high IFT at the seawater-gas 

interface allows less turbulent breakup, resulting in gas bubbles with a larger diameter than oil 

droplets and increased volume fractions corresponding to larger bubbles (Gros et al., 2017; 

Zhao et al., 2017).  

All the modeled oil/gas DSDs decrease significantly after SSDI application, and their 

VMDs are reduced by a factor of 2 to 3 on average (Figures 5-2c and d). DWOSM and VDROP-

J simulations generate close cumulative distribution functions (CDFs) of oil droplet sizes and 
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nearly identical VMD. In contrast, a bimodal DSD from Spaulding et al. (2017) had a dual 

peak at 0.16 and 2.50 mm, presenting a curve of CDF with an obvious inflection point around 

0.16 mm. The two peaks in DSD were led by the partial treatment of the riser release: one 

represents smaller chemically dispersed droplets, and the other refers to larger untreated 

droplets. Compared with Holocam measurements from the two dives, all three simulations 

yield oil droplet sizes over an order of magnitude larger, especially for the VDROP-J result that 

is entirely even out of the observed size range (Figure 5-2c). The VMD for the dives was 

reported to range from 0.07 to 0.25 mm, which differs from multiple observations that most 

surfaced droplets were millimeter-sized even after applying SSDI (Ryerson et al., 2012; Reddy 

et al., 2012; French-McCay, 2021 a and b). Large-sized oil droplets rising rapidly in the water 

column were not captured by deep dives, thereby obtaining a local DSD with a substantially 

smaller size range than those modeled overall DSDs. Among three simulations, the VMD from 

the bimodal DSD is closer to the in-situ measurement of median droplet diameters (~2-3 mm) 

from the riser pipe (French-McCay et al., 2021b). Nonetheless, VMDs of treated oil from 

DWOSM-DSD and VDROP-J (~1.31 mm) are also an acceptable approximation (absolute 

error of 0.69-1.69 mm) from the perspective of operational response. The sizes of chemically 

dispersed gas bubbles range from 1.88 to 6.37 mm with VDMs of 3.72 mm from DWOSM-

DSD and 2.60 mm for VDROP-J outputs (Figure 5-2d), which are generally agreed regarding 

the trend of CDFs. A threshold of minimal gas-water IFT adopted in this study enables an 

extended size range compared to VDROP-J simulations. 
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Figure 5-2 Comparison of the cumulative volume size distributions of untreated a) oil and b) 

gas, treated c) oil and d) gas. 

Note: The red line represents 50% of the volume fraction; the VDM can be found in the x-coordinate 

of the intersection between a curve of CDF and the red line; the CDF at 200 m downstream distance in 

Vdrop-J simulations is derived from Zhao et al. (2014); bimodal CDF is from Spaulding et al. (2017); 

observations from the two dives (#5 and #6) in the Holocam measurements during the JF3 cruise. 

 

Incomplete records of oil/gas overall DSDs before and after dispersant treatment challenge 

the validation of the hindcast of the DWH spill (Zhao et al., 2015). Nevertheless, considering 

a minor discrepancy between modeled VMDs and field measurement, we surmise that the DSD 

hindcast from DWOSM-DSD is adequate to characterize the size distribution of spilled 
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petroleum fluids and further serve as the input of subsequent simulation. On the other hand, 

microdroplets (<100 μm) generated by the turbulent release constituted the deepwater intrusion 

layers. The smallest droplet size in this study is still larger than a typical microdroplet but is 

smaller than the minimal binned size in VDROP-J results, irrespective of applying SSDI. 

Hence, oil DSDs yielded from DWOSM-DSD may be more representative than the result of 

VDROP-J. 

5.4.2. Plume trajectory and intrusion height 

Figure 5-3 shows the plume region and its centerline provided by the DWOSM-Nearfield. 

The buoyant plume ascended to the water depth of 1,046 meters and then descended to 1,106 

meters with a radius of 99.2 meters as its momentum and buoyancy dissipated. The location 

where the plume trajectory eventually ceases is approximated as the trap height and the width 

of the plume element at the final simulation step as the extent of the dominant intrusion layer. 

Two observational records of the DWH deep plume are found: Hazen et al. (2010) detected a 

deep-sea oil plume from 1,099 to 1,219 m at distances of 10 km from the wellhead from 25 

May to 2 June 2010; Camilli et al. (2010) indicated the presence of a continuous plume of oil, 

over 35 kilometers in length, at approximately 1,100 meters depth during 23-27 June 2010. The 

modeled heights of stable intrusion layers appear from 1,000 to 1,197 m, close to an observed 

primary deep intrusion height with a relative error of 2.49% (Hazen’s data) and 0.18% 

(Camilli’s data). Although the time corresponding to the near-field simulation is inconsistent 

with when a deep plume was detected, most of the microdroplets and dissolved-phase 

hydrocarbons retained in the intrusion layer barely move vertically in contrast to their 

significant horizontal movement. It is mirrored well by the limited change in the two plume 
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center heights within a nearly one-month interval and a huge length-to-width ratio of the 

detected intrusion. A trap height of 1,015 meters modeled by French-McCay et al. (2018) was 

slightly shallower than in this study, likely due to ignoring the reduced momentum caused by 

particles exiting from the plume region. Secondary shallower intrusions (800-300 m) are 

omitted because the DWOSM-Nearfield cannot predict multiple trapping depths (Spier et al., 

2013). Yet, a reasonable quantitative estimate of the trap height and diameter of the near-field 

intrusion is provided in response to the DWH. Furthermore, the modeled plume orientation 

agrees well with the forensic assessment result of the deep plume with movement to the 

southwest (Driskell and Payne, 2018; Payne and Driskell, 2018). Since the plume and 

dispersed-phase particles in the near field will not be further tracked in DWOSM-Farfield once 

the momentum is neutralized, some measurements obtained from several kilometers off the 

wellhead, such as water-soluble compound concentration (Reddy et al., 2012; Ryerson et al., 

2012), are inappropriate for validating the results from this study. In future research, we will 

attempt to adjust the formulation of DWOSM to simulate the concentrations of different 

hydrocarbons in the deep plume. 
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Figure 5-3 The 3D trajectory of the modeled near-field plume from DWOSM-Nearfield. 

Note: The red line represents the centerline of the buoyant plume; the shaded blue area denotes the near-

field plume region. 

 

5.4.3. Surfacing gas bubble composition 

As gas bubbles released from the deep-sea blowout rise in the water column, a substantial 

mass fraction of low molecular weight hydrocarbons dissolve into the ambient environment 

and eventually do not reach the sea surface (Figure 5-4). No methane and ethane occur in the 

modeled chemical composition of surfaced bubbles, consistent with airborne measurements 

during the DWH spill (Ryerson et al., 2012). Observed petroleum compounds with heavier 

molecular weight have an increasing mass percent in surfaced fluid particles, fitting with the 

rule of thumb for hydrocarbon aqueous solubility. The propane and isobutane mass fractions in 

the DWOSM output are remarkably close to field observations, with a mean absolute error of 

less than 1.1%. TAMOC and DWOSM simulations somewhat underestimate the remaining 

percent of n-butane on the sea surface, having absolute errors of 12.2% and 10.0%, respectively. 
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This is probably due to an overestimated aqueous solubility of n-butane in thermodynamic 

modeling. The detected composition of surfaced bubbles and simulation results jointly reveal 

that primary gaseous hydrocarbons (mainly methane) in rising bubbles were dissolved in 

ambient water instead of entering the atmosphere during the DWH incident. 

 

Figure 5-4 Comparison between modeled and observed mass fractions of primary 

hydrocarbons in surfaced gas bubbles during the DWH blowout. 

Note: TAMOC simulations originated from Gros et al. (2017); observation is based on airborne 

measurement by Ryerson et al. (2012). 

 

 A mass distribution diagram along the water column is approximated by superimposing 

the relations between the remaining mass fraction of each hydrocarbon in different-size bubbles 

and their corresponding water depth (Figure 5-5). At the same height, the shaded area adjacent 

to the red line represents the lingering mass percentage in smaller bubbles with a higher 

surface-area-to-volume ratio; the region closer to the green line suggests the residual fraction 
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in larger bubbles. The wide range of remaining mass fractions at most heights demonstrates the 

importance of particle size to the fate of petroleum fluids released from the deepwater spill. 

Gaseous compounds with heavier molecular weight appear to have an increasing chance of 

reaching the sea surface. Methane and ethane in tiny bubbles almost dissolve off around 1,000 

m as a higher surface-area-to-volume ratio leads to a faster dissolution rate, while larger 

bubbles still could transport a small amount of them from the wellhead to near the sea surface. 

A few propane in microbubbles become wholly dissolved around 834 m; most fractions are 

transferred into the higher water column (100-800 m depth) and rapidly disperse in the upper 

200 m. Unlike faster dissolution rates of other major components, C4 hydrocarbons can be 

carried by even the minimal bubbles to the upper water column. The remaining fractions of 

isobutane and n-butane reach over 60% in some surfaced bubbles and average 16.7% for the 

total released butane. Despite a minor proportion of butane in natural gas, it still may cause 

toxicological impacts (e.g., asphyxia and cardiac toxicities) on responder personnel exposed to 

gaseous butane (Vahabzadeh and Megarbane, 2022). Nonetheless, simulation results indicate 

that the mass of surfaced natural gas components (~0.03% of the released gaseous 

hydrocarbons) was limited during the first two weeks after the spill. Compared with field 

measurements that almost methane and ethane and 78% of propane dissolved below 1,100 m 

(Reddy et al., 2012), the hindcast from DWOSM has less dissolved gaseous fractions, i.e., 61% 

of methane, 46% of ethane, and 24% of propane. Fluid particles in subsurface plume samples 

obtained from intrusion layers in June 2010 were mainly dissolved and typically within a 

micrometer scale. The minimum bubble size modeled by DWOSM-DSD is around 0.2 mm 

even with treatment and less likely to be trapped in the deepwater plume. Hence, this diagram 
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is more representative of hydrocarbon mass distribution for millimeter-scale bubbles at various 

depths.  

 

Figure 5-5 The vertical distribution of the remaining mass fraction of primary hydrocarbons in 

gas bubbles along the water depth from 22 April to 6 May 2010. 

Note: The boundary of the shaded area represents the extremum (maximum in the green line and 

minimum in the red line) of the remaining mass fraction in different-size bubbles at a specific water 

depth. Blue curves are the mean remaining mass fractions derived from the weighted sum of the volume 

fraction of each bubble. 

5.4.4. Oil spill trajectory 

First, a direct comparison between modeled surface oil trajectories and TCNNA outputs in 

various moments shows a good agreement in terms of spatial distribution (Figure 5-6). Five 

days after the blowout, a C-shaped oil slick extending 90.4 km east-northeastward from the 

sunk rig appeared on the water area of 1,558.9 km2 around 140 km off the coast of Alabama 

and Mississippi (Figure 5-6a). Local wind measurements and sea surface height records 
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revealed that three days of northwest winds and anticyclonic eddies to the east jointly 

determined the slick motion (Liu et al., 2013). Surface oil in DWOSM simulations drifts along 

the same orientation with observed slicks but does not coincide at the far end, as no significant 

curvature appears in the modeled trajectory. On April 26, 2010, at 10:85 (CDT), scattered slicks 

with 2,970.9 km2 did not move away from the spill site and stretched along the east-west 

direction with 126.5 km (Figure 5-6b). Wind direction shifting from west to north from April 

25 to 26 prevented oil from drifting shoreward (Figure 5-7). Compared with the previous 

hindcast, the modeled trajectory also appears to elongate horizontally but with a lesser lateral 

extension of 42.3 km than detected. On April 29, 2010, at 07:09 (CDT), nearly ten thousand 

square kilometers of nearshore waters close to Garden Island Bay were covered by a vast and 

unshattered oil patch (Figure 5-6c). Less intensive winds after April 28 allowed a large area of 

slicks to remain on the sea surface without being dispersed by waves. Southward and 

southeastward winds were prevalent above oil-infested waters from April 26 to 29 (Figure 5-

7), which makes it hard to explain why slicks approached the Mississippi River Delta (MRD) 

in the past three days. Such motion was likely due to Ekman effects resulting from the impacts 

of southward and southwestward winds (Liu et al., 2013). A spatial consistency is mirrored by 

a large overlaid area between the two trajectories despite a prediction miss of 2,497.9 km2 of 

oil-covered waters on the west of the release site. At the beginning of May 2010, floating oil 

became sporadic and formed an inverse triangular-shaped slick with a coverage of 4,479.1 km2 

(Fig. 5d). Amplified northwest winds after April 29 could be one of the causes of shattered 

surface oil (Figure 5-7). The simulated trajectory is in general agreement with observations; 

however, clustered particles poorly reflect the discontinuity of detected oil and are closer to the 



99 

 

coastline of the northern Gulf. A Lagrangian approach can only predict the presence or absence 

of oil, whereas it is hard to visualize the slick thickness satisfactorily. The LEs contact north of 

the MRD around this time, where the DWH oil was first stranded (Liu et al., 2013). On May 

3, 2010, at 18:57 (CDT), surface oil was shaped into a bent band with a width of 46.0 km and 

a length of 207.3 km and oriented to the northeast of the rig site (Figure 5-6e). Western winds 

with a reduced speed near May 3 made widespread intact slicks recur (Figure 5-7). A few 

intermittent slicks beyond the periphery of the oil band approached or even stranded on the 

Chandeleur Islands. There is a substantial miss by DWOSM hindcast on the west and east sides 

of oil-infested waters. In comparison with a corresponding oiling footprint, the simulated 

floating oil trajectory presents a consistent shape yet has a narrower longitudinal dispersion 

near the spill site and a wider latitudinal extension. On the 13th day after the blowout, a giant 

slick overlaid 21,430.6 km2 of offshore waters starting from 44.3 km south of the rig wreck to 

near the Mississippi-Alabama barrier islands (Figure 5-6d). Less windy conditions do not favor 

the mitigation of floating oil (Figure 5-7), which facilitates the accumulation of oil continually 

surfacing from the leak site. Substantial oil traces emerged on the nearshore waters of the MRD 

and barrier islands.  



100 

 

 

Figure 5-6 The prediction and observation of oil slick trajectory in the DWH spill on a) April 

25 06:50, b) April 26 10:58, c) April 29 07:09, d) May 1 22:51, e) May 3 18:57, f) May 5 06:51. 

Note: A cluster of red points represents the hindcast of surface oil; the grey shaded area is the TCNNA 

SAR oiling footprint; the blue patches are the continent of the north GOM; the blank space denotes 

open waters. 
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Figure 5-7 Wind record from NOAA stations 42040 from April 22 to May 6, 2010. 

Note: It is freely accessible at https://www.ndbc.noaa.gov/station_page.php?station=42040 as 

of Feb 14, 2024. 

 

In addition to direct comparison, the performance of spill trajectory modeling is 

quantitatively evaluated by four error measures from different perspectives (Table 5-2). Remote 

sensing-based observations applied to validate trajectory hindcast is Eulerian data, while the 

spill movement prediction is based on a Lagrangian framework (Liu et al., 2013). Therefore, 

the convex hull formed by modeled trajectories is first calculated to facilitate the quantitative 

comparison. Subsequently, the minimum bounding box is generated to determine the length of 

each trajectory. As shown in Table 5-2, centroid skill scores ranging from 0.81 to 0.97 imply 

that the centroid distances of predicted trajectories are always less than the length of the 

observed slick during the simulation. Centroid distance error on May 1 is more significant than 

other moments, also directly mirrored by the discrepancy in spatial distribution (Figure 5-6d). 

https://www.ndbc.noaa.gov/station_page.php?station=42040
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Nonetheless, the distance between the two centroids is further lessened to 16.85 km on May 5, 

the minimum error among these simulations. Regarding the error of predicted surface oil area, 

DWOSM simulation results (>0.9 of 𝐴𝑠𝑠) are quite close to the observed slick area at 7, 11, and 

13 days after the spill. The most apparent errors appear on April 25 (0.49 of 𝐴𝑠𝑠) and May 1 

(0.41 of 𝐴𝑠𝑠) due to overestimating exposure area. Particularly for the modeled trajectory on 

May 1, neglecting the slick discontinuity resulted in an exaggerated oil area hindcast despite 

consistent geometry. Furthermore, 2D-MOE indicates the performance of oil trajectory 

prediction by true positive (x-MOE) and false negative (y-MOE) indexes. All x-MOE indexes 

are greater than 0.5 apart from the hindcast on May 3, implying that most simulations 

successfully predict the occurrence of over 50% surface oil at the corresponding moment. 

Results with higher x-MOE and lower y-MOE mean that the correctly modeled oil-covered 

area exceeds the region where a hazard was predicted but not observed. Decision-makers 

usually adopt a minimum regret strategy to identify all floating oil possible, i.e., maximize true 

positives regardless of the expense of increasing false positives. Hence, this study provides a 

satisfactory trajectory hindcast from the perspective of the priority of oil spill identification. 

Table 5-2 Error metrics for modeled spill trajectory of the DWH blowout. 

Time (CDT) 𝐶𝑠𝑠 𝐴𝑠𝑠  Centroid distance error (km) 2D-MOE 

2010.04.25 06:50 0.90 0.49 18.36 (0.67, 0.34) 

2010.04.26 10:58 0.92 0.71 19.71 (0.51, 0.28) 

2010.04.29 07:09 0.96 0.91 22.43 (0.77, 0.72) 

2010.05.01 22:51 0.81 0.41 37.36 (0.55, 0.25) 

2010.05.03 18:57 0.92 0.99 42.04 (0.47, 0.46) 

2010.05.05 06:51 0.97 0.90 16.85 (0.87, 0.82) 

  

This study adopts the heaviest shoreline oiling characteristics observed by field surveys 

using SCAT to verify the hindcast of stranded oil distribution. The Chandeleur Islands, barring 
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the MRD, were among the first coastal regions in the northern GOM threatened by exposure 

to the DHW spill (Kenworthy et al., 2017). As of May 5, the hindcast of stranding locations 

around the Chandeleur Islands has a good agreement with SCAT-based observations (Figure 5-

8). Distances between predicted stranding locations and the maximum oiling spots vary from 

2.3 to even 0.1 km, fully capable of providing reliable information for decision-makers to 

formulate a response plan for tackling nearshore oil pollution. A successive northwestward 

wind forcing from the end of April to the onset of May probably contributed to oil beaching on 

the MRD and the Chandeleur Islands (Liu et al., 2013). Hindcast results also provide a few 

false positives on the Mississippi-Alabama barrier islands but are trivial to decision-making for 

operational response (Figure 5-7f). It is worth noting that deploying booms prevented 

substantial floating oil from stranding but is not included in current simulations.  

 

Figure 5-8 The distribution of observed and simulated oil stranding on the Chandeleur Islands 

as of May 5, 2010. 
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Note: Blue circles represent the beached oil observed by SCAT shoreline surveys; red crosses denote 

the modeled location of stranded oil from DWOSM; the blue patches are the continent of the north 

GOM; the blank space is open waters. 

 

Overall, simulations in DWOSM provide the surface oil distribution analogous to the 

oiling footprint inferred from satellite imagery and accurately predict the locations of stranded 

oil during the initial stage of the DWH spill. A comparison between wind data and observed 

trajectories illustrates that surface oil motion was highly associated with wind speed and 

direction at most times. Some prediction errors occur to varying degrees because oil spill 

models naturally inherit the uncertainties from current and wind data supplied to Lagrangian 

trajectory modeling. A single combination of two background vector fields is used to predict 

the oil movement, whereas trajectory forecasts stemming from various hydrodynamic and 

atmospheric reanalysis can be distinct (Liu et al., 2013; French-McCay et al., 2021b). Future 

studies will investigate the performance of trajectory forecasts driven by varying reanalysis 

products. On the other hand, the DWOSM model will cease to simulate near-field particles 

once the buoyant plume is neutralized and cannot track the dispersed-phase oil/gas. Although 

some measurements of chemistry samples and sensor-based indicators are available to verify 

the spatial extent of subsea intrusion layers, the current simulation cannot involve deepwater 

concentrations away from the wellhead and the deep plume beyond the near field. 

5.4.5. Oil budget 

According to environmental compartments where oil appears and the process of how 

petroleum fluids are weathered, the released oil is categorized into five groups to uncover the 
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big picture of an oil budget in the initial stage of the DWH (Figure 5-9). In this study, degraded 

oil is not counted in the mass balance because the degradation has an insignificant impact on 

the slick mass in the short term (Galagan et al., 2018). It presumably generalizes the total mass 

of released oil as the sum of surface and subsurface oil in tandem with evaporated and beached 

oil. Degraded subsurface oil belongs to the category of submerged oil for this oil budget as it 

is still retained in the water column. A series of comparisons of the simulated oil budget 

between DWOSM and SIMAP shows comparable trends in the two models’ outcomes (Figures 

5-9a and b). For the hindcast results of DWOSM, surfaced oil begins to evaporate rapidly a 

few hours after the spill (Figure 5-9c). The mass of oil entering the atmosphere almost linearly 

increases to 6.80×104 Mts during the first two weeks, accounting for 57.2% of total released 

oil as of May 5, 2010. Unlike the fast growth of volatilized hydrocarbons, oil lingering in the 

water column increases steadily in the first 210 hours and abruptly rises from 1.02×104 to 

2.70×104 Mts in the next two days (Figure 5-9d). Surface oil mass usually grows faster than 

submerged oil during the first nine days but presents an opposite trend against subsurface mass 

in the following hindcast, i.e., drops from 1.98×104 to 1.26×104 Mts (Figure 5-9e). Given that 

the release condition of this simulation is constant, such a decrease in surface oil is caused by 

intensified wind-induced breaking waves that facilitate the natural dispersion of surface oil. 

Ten days after the spill, surface oil resumes increasing at a similar rate as before, implying that 

the sea state turns stable and unfavorable to surface wave entrainment (Figure 5-9e). An abrupt 

decline and subsequent rebound in surface oil mass on the tenth day generally fits with NOAA’s 

wind speed record after April 30 (Figure 5-9e). Oil biodegraded in the water column has no 

fluctuating tendency and climbs to 2.99×103 Mts, accounting for only 5.81% of the total mass 
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(Figure 5-9f). Moreover, the mass of oil stranded on the northern GOM coast is negligible to 

the oil budget. 

 

Figure 5-9 The oil budget of the first two-week DWH spill: (a) DWOSM and (b) SIMAP mass 

balance, (c) evaporated oil, (d) submerged oil, (e) surface oil, and (f) degraded oil. 

Note: SIMAP simulations and remote sensing-based estimates originated from French-McCay et al. 

(2021 a and b). 
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Obviously, more submerged oil and less evaporated oil appear in the oil budget from 

SIMAP simulation than DWOSM (Figures 5-9 a and b). The evaporated mass has a similar but 

slower upward trend to the DWOSM result and eventually rises to 3.66×104 Mts (Figure 5-9c). 

As the most significant discrepancy between the two simulations, submerged oil increases 

rapidly to 3.34×104 Mts in the first week, and its uplift even accelerates until 250 hours after 

the spill (Figure 5-9d). In the following three and a half days, subsurface oil promptly declines 

from 5.79×104 to 5.02×104 Mts, eventually taking up 42.5% of the total leaked oil mass as of 

May 6. Such a reverse is mainly contributed by reduced wave dispersion under low wind 

conditions after May 3 and augmented biodegradation owing to considerable accumulation of 

subsurface oil (degraded oil is individually accounted for in the oil budget from SIMAP 

hindcast). A comparable trend of surface oil with DWOSM results is presented: floating oil 

steadily increases to 3.93×103 Mts during the first 100 hours and rises abruptly to 1.29×104 

Mts in the next three days, conversely corresponding to the variation in submerged oil mass 

(Figures 5-9 d and e). From April 29 to May 6, floating oil mass drops to 1.35×103 Mts on the 

noon of May 6 and bounces back to 1.91×104 Mts. A trough of surface oil mass from both 

simulations generally coincides with a wind speed peak observed around May 2 by a moored 

buoy (Figure 5-7). A slight inconsistency in the timing of turning points from surface oil 

hindcasts is due to different wind reanalysis data used by the two studies (French-McCay et al., 

2021b).  

The two oil spill models employ different algorithms to calculate the amount of dispersed 

surface oil, as discussed in section 4.3.2. This led to remarkably less oil remaining on the sea 



108 

 

surface in SIMAP hindcast as floating oil is almost entrained into the upper water column. 

However, estimates derived from various remote sensing data demonstrate that surface oil 

never substantially diminished, even under windy conditions around May 2 (Figures 5-7), to 

the degree shown in the SIMAP simulation (Figure 5-9e). Notably, data derived from SAR 

images through processing by TCNNA and Oil Emulsion Detection Algorithm (OEDA) 

techniques exhibit a monotonic upward trend of surface oil mass. Although the impact of 

surface dispersant application has not been considered in this study, the hindcast of the oil mass 

budget provided by DWOSM might be more realistic, given the overestimated surface 

entrainment rate induced by the double-counting issue. SSDI, barring natural dispersion, may 

also eliminate the modeled amount of surface oil and yet appear less effective as it could not 

suppress a surge in floating oil mass even after treatment (Figure 5-9c), as proved by a study 

of Paris et al. (2018). 

Building upon a series of coupled algorithms tailored for oil fate forecast and some existing 

remote sensing data, this study provides and validates the hindcast of oil mass distribution 

during the initial phase of the DWH spill. A primary challenge to oil fate modeling is a scarcity 

of information on the oil budget available for validation throughout the spill event, with 

additional uncertainty led by intensive mitigation activities. Satellite imagery is the sole source 

of field measurements to verify the modeled oil fate and is only feasible for surface oil. Our 

hindcast seems to overestimate slick mass in the first week due to the lack of involvement in 

surface dispersant use for modeling the oil budget. Nonetheless, it is more aligned with 

estimates than SIMAP simulations afterward. Furthermore, the estimation of floating oil mass 

requires the observation of slick thickness; however, most of the oil is distributed in the thick 
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portion of a slick whose thickness ranges over several orders of magnitude (Fingas, 2018). 

Ambiguity in remotely gauging the thickness regimes of slicks is also manifested by a 

discrepancy amidst different satellite image-based estimates (Figure 5-9e). 

5.5. Summary 

In this chapter, DWOSM is applied to perform a hindcast for the transport and fate of oil 

and gas during the initial period of the DWH spill. A series of vital oil spill simulation results 

are validated by comparing them with field observations (e.g., remote sensing-based estimates 

and in-situ measurements) and relevant modeling works. All the comparisons show a good 

agreement between these simulations and observed data/modeling studies from a practical 

response point of view: the modeled VMD of treated oil droplets (1.31 mm) has an absolute 

error of 0.69-1.69 mm; the height of the intrusion layer is exceptionally close to the detection 

with a relative error of 0.18%; a perfect fit is reflected by none of the methane and ethane 

appearing in surfaced bubbles from hindcast results and observation; simulated trajectories are 

consistent with oiling footprints at most moments with a value of 𝐶𝑠𝑠 and 𝐴𝑠𝑠 over 0.8 and 2D-

MOE exceeding 0.5; the output of surface oil mass generally agree with remote sensing based 

estimates. Based on comparative analysis among simulated and observed data and wind 

measurements, it is known that wind speed and direction play an essential role in affecting the 

spatial distribution of spilled oil and the partition of released hydrocarbons in environmental 

compartments. In sum, the DWOSM successfully provides a hindcast of the DWH blowout, 

which exhibits the reliable capacity to forecast the behaviors of large-scale deep-sea blowouts. 
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Chapter 6 Regional Risk Assessment for Subsea Blowouts in 

Eastern Canadian Waters 

6.1. Overview of the study site 

The study area in Chapter 4 is taken as the target region for evaluating regional deep-sea 

spill risk. As shown in Figure 6-1, a green bounding box covering from 40° N to 55° N latitude 

and 30° W to 60° W longitude is selected to ensure that the study area includes the main 

geographical features within East Newfoundland waters, such as the Grand Banks, the Flemish 

Cap, and marine refuge. Here, hydrodynamic and climate conditions are additionally 

introduced as follows. The proximity to the continental shelf and the North Atlantic Ocean 

makes these waters have significant bathymetric variations, with parts to depths over 5,000 

meters. The Labrador Current and the Gulf Stream flows are the dominant currents in the 

Northwest Atlantic, converging at the Grand Banks to create one of the richest fishing grounds 

worldwide. Most of the Labrador Current is a southeast flowing with roughly consistent 

magnitude and direction throughout the water column year-round (C-CORE, 2015). The 

average velocity varies from 0.07 m/s at 1,500 m to 0.2 m/s at 50 m, with a smooth gradient 

along the water depth. The monthly mean surface current velocity is within the range of 0.22 

to 0.32 m/s, double the depth-averaged subsurface velocity. Hence, these statistics indicate that 

regional hydrodynamic conditions align with the second premise of this methodology. Local 

wind condition is characterized by strong winds during the winter, with annual mean speeds 

ranging from 6.15 to 10.44 m/s.  
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Figure 6-1 Study area of deep-sea spill risk assessment in East Newfoundland waters. 

 

6.2. Model configurations and data collection 

  A risk assessment framework is thoroughly described in section 3.6 and is implemented in 

this study case. This study proposes two spill scenarios involving whether or not to apply SSDI 

(scenarios 1 and 2 in Table 6-1), aimed at investigating the effectiveness of dispersants on 

subsea spill mitigation. Reducing the input of oil/water IFT can lead to a smaller predicted 

median droplet size, which implements the modeling of subsurface dispersant application. It is 

worth noting that the effectiveness of SSDI highly depends on the dispersant-to-oil ratio (DOR). 

Chemical dispersants typically reduce oil/water IFT by 100 to 200 folds owing to different 

DORs and oil types (Socolofsky et al., 2015; Brandvik et al., 2021; Socolofsky et al., 2022). 
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Without considering the effects of DORs on the DSD, this study decreases the oil/water IFT by 

100 times for brevity. Considering that DWOSM is tailored for emergency response and 

ignores weathering processes essential to the long-term oil fate (e.g., biodegradation for surface 

oil and sedimentation), all the deterministic simulations are conducted within five days, a 

relatively short duration for large-scale spill accidents like the DWH blowout. The gigantic 

spill size (>50,000 bbls) is used to evaluate the risk brought by catastrophic blowouts (Holand, 

2017). Hibernia crude oil is selected as the spilled substance since its field locations are 

distributed within the study area. While the computation of the risk index requires PAH 

concentration, the ADIOS oil database does not clarify the correspondence between pseudo 

components and specific compounds. According to experimental measurement (ECCC, 2021) 

and the splitting scheme from similar studies (Stout and Wang, 2017; Galagan et al., 2018), 

one of the aromatic pseudo components is chosen to approximate PAHs from the crude 

corresponding to around 1% of oil mass. The rest of the model settings, such as diffusion 

coefficients for the random walk scheme, use some typical values from previous studies 

(Galagan et al., 2018). 

Table 6-1 Spill scenario configuration and model settings. 

Scenario 

index 
SSDI 

Flow rate 

(bbls/day) 

Simulation 

period 

(days) 

Depth 

(meters) 

Release 

location 
Oil type 

1 No 

30000 5 800 
50.11 °N, 

49.67 °W 

Hibernia-type 

crude 

(API=37.1) 
2 Yes 

Simulation 

step (mins) 

Surface horizontal 

diffusion coefficient 

(cm2/s) 

Subsurface diffusion 

coefficient (cm2/s) 
Release 

diameter 

(m) 

Particle 

release 

interval 

(mins) 
Horizontal Vertical 

15 105 103 10 0.2 15 

 

As a critical component of the Copernicus Earth observation programme, the Copernicus 
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Marine Environment Monitoring Service (CMEMS) publicly provides substantial in-situ and 

satellite observations and reanalysis products for the global ocean in NetCDF format (Le Traon 

et al., 2019) (accessible at https://data.marine.copernicus.eu/products as of Feb 14, 2024). This 

study retrieves hydrodynamic and atmospheric variables required by OSM from CMEMS via 

a Python toolbox (accessible at https://github.com/copernicusmarine/cmemsapi as of Feb 14, 

2024). Specifically, the CMEMS Global Ocean Reanalysis product is selected as the data 

source of current fields, displayed on a standard regular mesh grid at 1/12° and 50 vertical 

levels. The daily 3D currents are included from the top layer to the bottom, with the temporal 

extent from 1 Jan 1992 to 31 Dec 2020. Since no consecutive long-term wind time series 

compatible with selected current data is available at CMEMS, a reanalysis product consisting 

of two separate datasets, termed Global Ocean Hourly Reprocessed Sea Surface Wind and 

Stress from Scatterometer and Model, is used as expedient to agree on the temporal extent of 

current fields. The bias corrections of the first dataset are based on QuikSCAT SeaWinds 

scatterometer observations (ranges from 1999-2009 with 1/4° horizontal resolution); the 

second relies on Metop-A/B/C ASCAT scatterometer observations (ranges from 2007-present 

with 1/8° horizontal resolution). We spatially average the ASCAT dataset to reduce its 

resolution and merge it with the QuikSCAT SeaWinds dataset to produce a new wind field with 

the temporal extent from 1 Jan 1999 to 31 Dec 2020. Coastline data is the subset of a global 

self-consistent, hierarchical, high-resolution geography database retrieved from the GNOME 

Online Oceanographic Data Server. For information on spilled oil, the ADIOS OilLibrary 

adopts SARA (saturate, aromatic, resin, and asphaltene) categorization to estimate the 

physicochemical properties of specified petroleum types as the input of DWOSM. Pursuant to 
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the produced water concentration percentage from the Hibernia Platform (HMDCL, 2020), a 

certain amount of aromatic pseudo components from the original database is substituted with 

some primary volatile organic compounds (VOCs) that occur naturally in crude oil, including 

benzene, toluene, and ethylbenzene. Another common VOC contaminant (well-known as one 

of the BTEX compounds), xylenes, is precluded in the fate simulation due to the various 

properties of its three isomers (p-xylene, o-xylene, and m-xylene). 

6.3. Results 

The initial step after selecting the area of interest and environmental datasets is to assemble 

𝑀0  (Figure 3-5). In the study area, the node number of gridded surface current data 𝑛𝑐  is 

65,702 (182 in latitude and 361 in longitude); wind data has 7,381 grid points 𝑛𝑤 (61 in latitude 

and 121 in longitude). It is noteworthy that the selected atmospheric reanalysis has a temporal 

resolution incompatible with two other datasets. Therefore, the daily mean speed is computed 

to reconstruct the hourly wind product. Regarding subsurface currents, the depth-averaged 

velocity is derived by calculating the mean values of grid cells where the vertical projection of 

the release point exists. With those velocity components, 𝑀0  is generated with huge 

dimensions (8,035× 146,168), representing a collection of met-ocean conditions within the 

study area through 22 years (1 Jan 1999 to 31 Dec 2020). PCA is then performed on 𝑀0 to 

obtain principal components that capture more than 95% of the variance. A matrix 𝑀1 with 

reduced dimensions (8,035 × 398) is accordingly generated, indicating 398 principal 

components at each time step. As mentioned, the simulation period 𝐷  used for stochastic 

modeling defaults to five days. To reconstruct 𝑀1 as the input data of the K-means algorithm, 

a matrix 𝑀2  with dimensions (8,031× 1,990) is produced by flattening 8,031 sub-patterns 
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having a 5-step duration at each row. As the result of applying K-means clustering to 𝑀2, we 

obtain 𝑀3 (8,031×1,990) and further split its rows to build a 3D matrix 𝑀4 (8,031×5×398). 

Though multiplying the eigenvectors yielded from the PCA application, 𝑀4 is restored to 𝑀5 

having the comparable size (8,031× 5× 146,168) with 𝑀0′  for evaluating the agreement 

between extracted patterns with original datasets. After repeated comparisons, the trend of the 

refined Willmott’s index is presented in Figure 6-2: a sharp rise in 𝑑𝑟 from 0.05 to 0.66 as the 

cluster number increases from 1 to 14; then, 𝑑𝑟 steadily reaches the termination criteria when 

the cluster number equals 55. So far, 55 met-ocean patterns representative of the spatiotemporal 

evolution of local met-ocean conditions have been successfully acquired, which offers the 

cornerstone for stochastic OSM. These patterns are used as the input of environmental 

background data for each spill scenario (Table 6-1), requiring only 108 simulation runs in total. 

Compared with 8,031 possible 5-day sub-patterns from raw datasets, the computational 

complexity of stochastic simulation is substantially reduced by order of magnitudes. 

 

Figure 6-2 The relation between the cluster number used in the K-means clustering algorithm 
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and a refined Willmott’s index. 

 

Oil spill risk index and other attributes are computed at hexahedral meshes covering the 

maximum extent where LEs appear in all model runs, i.e., 48.61°  N to 51.11°  N latitude, 

47.67° W to 50.67° W longitude, and water depth from 800 meters to surface. The mesh is 

uniformly segmented by 1/20° horizontal grid cells and 50 vertical levels, generating 150,000 

cubical voxels. Through averaging the output of stochastic simulation within each voxel, the 

scenario-averaged maps of oil contamination resulting from two hypothetical blowouts under 

various met-ocean conditions are exhibited in Figures 6-3 and 6-4. Figure 6-3a shows 100% 

oiling occurrence around the projection of the release point to the mid-depth layer (400 meters) 

and the sea surface, indicating oil exists in those corresponding voxels under every run of 

scenario 1. Limited horizontal displacement of subsurface oil implies the rapid rise velocity of 

droplets in the water column, consistent with the first hypothesis adopted in modeling 

methodology. As the oiling probability map illustrates, most slicks drift toward the southeast 

and east of oil surfacing locations and distance away from the east coast of Newfoundland; a 

few spill trajectories appear at other orientations with a likelihood less than 5%, some as far as 

136 kilometers off the southwest of the oil-concentrated region where most droplets surfaced. 

Despite the total spill coverage reaching 23,394 km2, only 3% of the potential oil-contaminated 

area repeatedly appears in almost every simulation (Figure 6-3). The mean concentration of 

PAHs at the mid-depth layer along the rising path of droplets is 421 μg/l (Figure 6-3b), which 

is likely to cause sublethal or even lethal effects on marine biota (Nagpal, 1993; French-McCay, 

2018). Surface PAH concentration in spill-prone areas (>40% oiling probability) varies from 

81 to 414 μg/l, substantially greater than the level (an arithmetic mean of 7.14 μg/l) in the other 
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contaminated zones. On the top layer, the mean area exposed to oil slicks is lower than 1.8×104 

m2 within over 90% polluted grid cells (Figure 6-3c); around 62 km² sea surface is covered by 

water-in-oil emulsions (slick volume including water content) with a thickness exceeding 15 

mm, while the remaining spill area is overlaid with emulsified slicks thinner than 1 mm 

(arithmetic mean 0.08 mm) (Figure 6-3d). 

 

Figure 6-3 Five-day oil spill hazard mapping for scenario 1: (a) oiling probability; (b) PAH 

concentration; (c) exposure area to surface oil; (d) slick thickness. 

 

Applying SSDI decelerates the rise velocity of droplets from 0.13 to 0.08 m/s (arithmetic 

mean), allowing the horizontal displacement of subsurface oil at the mid-water depth to 

magnify near six-fold with 100% oiling probability (Figures 6-3a and 6-4a). Although the 

maximum spatial extent and drift orientation of surface oil trajectories remain unchanged with 
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scenario 1, the potential spill coverage expands from 23,394 to 28,323 km2, with 8% area 

having over 20% oil occurrence. It also suggests that SSDI makes fluid particles propagate 

horizontally across a wider region, as submerged oil with reduced size tends to stay in the water 

column for an extended period and surface at locations farther from the spill site. More PAH 

contents, ranging from 9 to 417 μg/l with an arithmetic mean of 306 μg/l, appear 400 meters 

below the surface under scenario 2 (Figure 6-4b). In surface voxels with oil occurrence, PAH 

concentrations are mainly lower than 5 μg/l and peak at 287 μg/l around spill-prone areas. 

Compared to the PAH-related risk under scenario 1, the peak level of PAHs at the sea surface 

is reduced by 31% despite the enlarged scope being potentially affected. The area exposed to 

slicks sharply drops from 1.6× 105 to 1.4× 104 m2 as spill trajectories move away from oil 

surfacing locations (Figure 6-4c), which particularly have less exposure level around surfacing 

points than in scenario 1. Similarly, the thickness of emulsified oil reduces from 14.2 to 0.02 

mm when the offset of slicks to surfacing locations increases, with an arithmetic mean of 0.11 

mm in 97% of spill areas (Figure 6-4d). 
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Figure 6-4 Five-day oil spill hazard mapping for scenario 2: (a) probability of oil occurrence; 

(b) PAHs concentration; (c) exposure area to surface oil; (d) slick thickness. 

 

In contrast to observable SSDI-induced variations on other spill features (Figure 6-4), there 

is no apparent impact on the spatial distribution of VOCs in floating slicks (Figure 6-5). The 

surface areas exposed to toluene and ethylbenzene marginally vary from 2,530.42 to 2,376.16 

km2 and 2,808.12 to 2,684.39 km2, respectively. These extents are roughly an order of 

magnitude smaller than the coverage of oiling probability five days after the blowout, which 

only appear on a southeast-oriented circle sector centered on the spill-prone area within a radius 

of around 39 km (Figures 6-3a, 6-4a, and 6-5). Peak surface concentration after treatment 

reduces to 2.11 μg/l benzene, 2.76 μg/l toluene, and 4.04 μg/l ethylbenzene, which is mitigated 

approximately by 30% than the level of scenario 1. Regardless of dispersant application, the 
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surface concentration of VOCs is lower than 0.40 μg/l on most oiled mesh grids. Ethylbenzene 

has the highest spatial averaging concentration among the three selected VOCs, with 0.25 μg/l 

in scenario 1 and 0.23 μg/l in scenario 2. Nonetheless, modeled 5-day VOC exposure levels to 

the surface water, even for peak concentrations, are far lower than the chronic effects 

benchmark (>590 μg/l for benzene, >30 μg/l for toluene, and >130 μg/l for ethylbenzene) for 

many aquatic species (ECCC, 2023).  
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Figure 6-5 Five-day surface VOC concentration mapping under (a) scenario 1; (b) scenario 2. 

 

The integrated risk indicator for the two spill scenarios is visualized with different scales 

to accentuate the discrepancy in spatial distribution (Figure 6-6). Logarithmic mapping for both 

scenarios exhibits the quantified risk spanning several orders of magnitude from over 10 to 106 

(Figures 6-6a and 6-6c). A catastrophic blowout could seemingly impact vast areas of the sea 

surface (23,113 km2 in scenario 1 and 28,541 km2 in scenario 2) within the study domain. 

Nevertheless, the top voxels with a low-risk level (<103) account for over 93% of the total 

oiling area in both stochastic simulations. The risk index at grid cells with less oiling likelihood 

is negligibly tiny (<10) compared with spill-prone areas (>105) (Figures 6-6b and 6-6d). The 

linear-scale risk indicator illustrates that the dispersant treatment substantially diminishes the 

maximum risk index from 3.4×106 to 1.9×106. Risk levels (except peak) around where droplets 

reached the surface were conversely elevated from an average of 9.3×104 to 2.3×105. The 

surfacing time of submerged oil is deferred to some degree; hence, droplets tend to drift 
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downstream farther and have broader dissemination on the sea. In summary, similar to the 

oiling probability map, the SSDI application amplifies the risky area but mitigates the regional 

risk of blowouts, mirrored by a reduced arithmetic mean of risk index from 8,536 to 7,891 

within the potential oiled zone. 

 

Figure 6-6 Five-day risk mapping of scenario 1 is shown in (a) logarithmic and (b) linear scales; 

scenario 2 is shown in (c) logarithmic and (d) linear scales. 

 

The effectiveness of SSDI on risk mitigation for subsea blowouts is quantified using 

histograms (Figure 6-7). Although the potential spill area is amplified to some degree after 

treatment, unaltered medians of oiling probability reveal that dispersant use barely changes the 

overall distribution of surface oil occurrence (Figure 6-7a). Most spill areas (>83%) magnified 

by SSDI have less likelihood of being polluted, aligning with expanded potential trajectories 

having low oiling probability (<2.7%) (Figures 6-3a and 6-4a). Spill-prone areas slightly 

increase but have a negligible impact on the statistical distribution of oiling possibility. 
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Chemical dispersants also alter median emulsion thickness insignificantly from 0.39 to 0.41 

mm and a maximum from 15.3 to 17.2 mm (Figure 6-7d). Unlike less effective mitigation on 

surface oiling probability and thickness, two contributing factors to the risk indicator (i.e., PAH 

concentration and surface oil loading) are markedly reduced by 26% and 27%, respectively 

(Figures 6-7b and 6-7e). Median PAH contents at the surface decrease from 11.5 to 8.5 μg/l, 

dropping the highest concentration from 454 to 332 μg/l. Both scenarios present maximum 

surface oil loading over 10 g/m2 and ensemble medians close to 1 g/m2. It implies that minor 

slicks may appear dark brown or metallic, and the majority tend to be oil sheen on the sea 

(Galagan et al., 2018). Reduced sub-indexes correspondingly diminish median spill risk 

indicators from 8.7×104 to 4.7×104 and the maximum from 1.8×106 to 4.7×106 (Figure 6-7f), 

demonstrating the potential capability of SSDI to eliminate blowout risk on the sea.  
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Figure 6-7 The histogram for stochastic OSM results at the sea surface with or without SSDI: 

(a) surface oiling probability, (b) PAH concentration, (c) slick area, (d) slick thickness, (e) 

surface oil loading, (f) risk index. 

Note: The inset figures that zoom into vertical lines illustrate the median under the two scenarios. 

 

The mass balance diagram depicts the predicted temporal oil distribution in three 

environmental compartments: water column, atmosphere, and sea surface (Figure 6-8). 

Without the involvement of SSDI, oil droplets could arrive on the surface only two hours after 

spills at a mean rise velocity of over 0.1 m/s (Figure 6-8a). Surface oil dominates the mass 

balance for hypothetical blowouts, and its ensemble mean keeps an almost linear increase to 
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1.51×104 Mts. The extremum of surface oil mass ranges from 1.31×104 to 1.76×104 Mts at five 

days. As slicks accumulate on the water, the evaporation of volatile components begins to play 

a critical role in the natural attenuation of oil spills. The estimated mean mass of oil entering 

the atmosphere is up to 0.41×104 Mts, accounting for 20.6% of total released petroleum. 

Different wind conditions engender varying evaporation rates for floating slicks, leading to a 

broad range of volatilized mass from 0.18×104 to 0.60×104 Mts. Submerged oil mass has a 

limited variation from 0.18×104 to 0.35×103 Mts and slowly climbs to 0.67×103 Mts at the end 

of the simulation. This is likely due to increased oil viscosity as the result of rapid evaporation 

and emulsification, severely hindering the rate of wave entrainment. Likewise, surface oil 

remains predominant in the spill mass balance after applying SSDI, but its ensemble mean 

decreased by 0.37×104 Mts than in scenario 1 (Figure 6-8b). An observable effect of SSDI on 

the mass balance prediction is the uplift in submerged oil that increased by around five times 

than scenario 1, despite only a minor proportion of the total released oil mass. Less evaporative 

mass loss, an average of 0.34×104 Mts, is also presented in scenario 2 as the reduced surface 

area of slicks. Oil entering the atmosphere varies from 0.13×104 to 0.52×104 Mts, on average 

82.9% of the evaporative loss than scenario 1.  
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Figure 6-8 The diagram of oil mass balance from stochastic simulation under (a) scenario1 and 

(b) scenario2. 

Note: Shaded areas depict the variation range of oil fate (mean ± maximum/minimum). 

6.4. Discussion 

Our study begins by extracting representative met-ocean patterns from oceanic and 

atmospheric reanalysis. The choice of a conservative threshold of Willmott’s index allows the 

newly produced dataset to capture the spatiotemporal evolution of currents and winds in the 

area of interest. It also provides the rationale for the definition of spill scenarios regarding 

environmental background fields. Hazard mapping for hypothetical blowouts in the east 

offshore waters of Newfoundland is implemented by overlapping the results of deterministic 

simulations under 55 met-ocean conditions. Whether to use SSDI or not, none of the potential 

oil trajectories reach the seashore within five days after the spill (Figures 6-6a and 6-6c). As 

mentioned in section 6.1, the southeast-flowing Labrador Current dominates the local 

hydrodynamic regime, thereby usually migrating slicks along the current flow direction. 

Combined with great distances (>300 km) between active offshore fields and shorelines, 
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surface oil has less likelihood of arriving on the coast during a short period. This implies a 

longer window of opportunity for responders to tackle oil pollution before slicks are stranded. 

Nevertheless, the water depths of active offshore oil rigs are less than 100 meters in 

Newfoundland and Labrador. The coverage of spill location from this case study is also limited 

and thus cannot ensure the coastal area is risk-free from oil accidents closer to the shore. In the 

event of blowouts at shallow-water fields or coastal zones, released oil will more likely arrive 

at the shorelines faster than our predictions. In future works, we will investigate the spill risk 

of currently operating wells (e.g., the White Rose and the Hibernia oil field) and pending 

offshore projects (e.g., Bay du Nord), which are associated with potential blowouts occurring 

at different depths and locations (Equinor, 2023). 

A good agreement between the distributions of oiling probability and PAH concentrations 

aligns with the utility of PAHs as an indicator of the general distribution of petroleum 

hydrocarbons in oil-contaminated sites (Sammarco et al., 2016) (Figures 6-3 and 6-4). The 

predicted concentrations range from tens to hundreds of micrograms per liter, sufficient to 

acutely cause lethal impacts on marine biota, especially for fish at earlier life stages (French-

McCay et al., 2018). Treated exposure levels of PAHs are still inadequate to eliminate its 

biological hazards, not to mention the additional risk of adding chemical dispersants. There is 

a distinct discrepancy in the surface distribution between the concentrations of PAHs and VOCs 

(Figures 6-3, 6-4, and 6-5). Unlike heavy fractions exhibiting great persistence in crude oil, 

BTEX compounds are volatile due to their high vapor pressure and can evaporate off from 

surfaced oil within one day or less (Jordan and Payne, 1980; Avens et al., 2011). Therefore, the 

traces of three VOCs coincide with oil surfacing locations and disappear entirely as slicks drift 
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away from the spill source (Figure 6-5).  

Considering that the contamination levels of selected VOCs are well below the 

environmental quality guidelines, we believe that surfaced VOCs have no significant adverse 

effects on aquatic life in the upper water column for our case. However, those highly volatile 

chemicals emitting from fresh slicks can rapidly enter the air, exposing responder personnel 

working near the sea surface to VOCs through dermal contact and inhalation. Many workers 

participating in the DWH cleanup operations underwent respiratory distress, headaches, skin 

problems, nausea, and even hematuria (Sammarco et al., 2016). The risk of airborne VOCs to 

wildlife and human health cannot be ruled out here and thus will be evaluated in follow-up 

research. Some recent findings suggest that SSDI significantly contributed to mitigating the 

atmospheric emissions of VOCs during the DWH (Gros et al., 2017; Crowley et al., 2018; 

Afshar-Mohajer et al., 2019; Zhao et al., 2021). Evidence shows that on-field responders were 

not required to wear respiratory protection after applying dispersants at the wellhead (Boufadel 

et al., 2023). We conclude around a 30% reduction in the peak concentrations of selected 

volatiles, similar to the simulation result of a 28% VOC emission decrease from Gros et al. 

(2017) despite the different VOC definitions and less effective in mitigating benzene from this 

study.  

SSDI, in response to hypothetical blowouts, magnifies pathways of simulated oil to a 

certain degree, especially for non-spill-prone areas, but is less consequential to the maximum 

spatial extent of slicks (Figures 6-3a and 6-4a). Considerable chemically dispersed petroleum 

eventually emerged around where the untreated oil surfaced, spread over a wider area and 

further from the spill site. In terms of the predicted spill mass balance (Figure 6-8), a vast 
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amount of treated oil (>70% total release oil mass) still leaves the water column after five days, 

implying the necessity for other cleanup techniques to tackle the oil pollution, such as 

mechanical recovery, in-situ burning, and even surface dispersant use. Taken together, these 

findings indicate that SSDI may be incapable of keeping most rising oil droplets submerged 

for a period long enough to meet the objective of decision-makers using dispersants. The 

effectiveness of SSDI, which significantly increases the water column sequestration of the 

dispersed oil phase, was also not detected during the DWH spill (Boufadel et al., 2023). It was 

reported that the addition of dispersants could no longer substantially reduce droplet sizes when 

the initial DSDs are tiny (typically <300 µm) (Paris et al., 2012 and 2018). In this case study, 

the maximum terminal velocity of untreated oil only scales down from 0.15 m/s to 0.09 m/s, 

which only causes the 2- to 6-hour lag time to retain submerged droplets. Hence, treated 

droplets with millimeter-scale diameters still transport most hydrocarbons to the sea surface. A 

recent study reveals that the deployment of the dispersant Corexit® 9500 failed to maintain the 

oil submerged as none of the significant effects were detected during the DWH blowout (Paris 

et al., 2018). The underperformance of changing oil vertical distribution in the first and only 

real-world application (i.e., the DWH) and adverse toxic effects make unrestricted SSDI 

applications responding to deep-sea spills highly debatable. The relatively shallow water depth 

of this hypothetical blowout may also lead to less effectiveness in reducing surface oiling 

(NASEM, 2020).  

On the other hand, numerous numerical experiments, including this work, exhibit the 

promising potential of SSDI to mitigate the contamination level of certain aspects of deep-sea 

spills (Spaulding et al., 2017; Crowley et al., 2018; French-McCay et al., 2018). Controversy 
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about the effectiveness and impacts of dispersant use, particularly on deep-sea blowouts, will 

continue until more scientific evidence emerges. As a novel and supplemental method to SSDI, 

subsea mechanical dispersion (SSMD) enhances turbulent dissipation near the release nozzle 

to reduce the oil droplet sizes from blowouts and performed well in extensive studies (Brandvik 

et al., 2020). Further studies will examine its effectiveness in mitigating the risk of deep-sea 

blowouts.  

Although datasets selected for pattern extraction cover sufficient temporospatial extent, 

some ocean variables vital to oil transport and fate (e.g., water temperature and sea ice) are 

currently not included in this work. Global warming has caused an increasing annual number 

of ice-free days within offshore Newfoundland and Labrador (C-CORE, 2015). Even when the 

pack ice emerges during the limited freeze-up dates, it only exists in lower concentrations along 

the coast, which has minimal influence on the deepwater basins of interest (e.g., the Grand 

Banks and the Flemish Pass). Thus, we surmise whether incorporating sea ice in met-ocean 

patterns is insignificant to spill risk assessment results. However, icing and pack ice conditions 

must be considered once blowouts occur in nearshore areas because slicks are very likely to 

encounter sea ice in winter. The threat of icebergs to offshore operations should also be 

involved in future spill risk assessments, as ocean currents sometimes carry icebergs along the 

east coast of Newfoundland (Kaiser, 2021). Regarding water temperature, particularly sea 

surface temperature, its variation can substantially affect the rate of weathering processes like 

evaporation and even make oil lose fluidity when the temperature is below the pour point. We 

will attempt to include temperature for refining met-ocean patterns in the follow-up study. 

Moreover, the oceanic reanalysis database used in this study originates from a global ocean 
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general circulation model designed to describe global-scale hydrodynamic and thermodynamic 

processes in oceans. More complex processes occurring at finer resolutions, such as coastal 

hydrodynamics, are difficult to capture by this model type.  

Another major limitation of the current risk assessment is the lack of information on 

biological resources, especially for the distribution of oil-sensitive species. The study area 

encompasses a maritime region of over 370,000 km2 offshore waters of Eastern Newfoundland, 

which contains a variety of marine biota and their habitats (e.g., fish, coral reefs, benthos, 

marine mammals, and sea turtles). As the foundation of marine food webs and a crucial role in 

nutrient and carbon cycling between the atmosphere and ocean, the plankton community 

thrives in upwelling areas along the continental shelf and within the Flemish Cap (GC, 2020). 

The predicted exposure of PAHs reaching hundreds of micrograms per liter has a lethal impact 

on environmentally sensitive regions mentioned above in a brief time frame; VOCs pose fewer 

toxic threats through the pathways aside from inhalation because of their low concentration at 

the sea surface. Furthermore, a constant spill location in scenario definition and no involvement 

of biological information may be inadequate to obtain credible risk distributions of petroleum 

pollutants. In addition to including species distribution and the toxicity thresholds of PAHs to 

valued components, we will combine the actual oil reservoir conditions within the study area 

to replenish spill scenario settings regarding the spill size, location, and oil type. The 

environmental sensitivity index for shoreline areas will also be incorporated into the 

methodological framework. 

6.5. Summary 

This study modifies the framework of an integrated stochastic OSM by employing a new 
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indicator, and then applies it to evaluate the short-term PAH-related risk from potential 

blowouts in the offshore area of east Newfoundland. Over fifty representative met-ocean 

patterns are extracted from 22-year oceanic and atmospheric reanalysis products using data 

mining techniques. By doing so, the number of model runs pertaining to environmental 

background becomes well-defined, dramatically reducing the computational cost required by 

stochastic simulation. A newly developed DWOSM designed for deep-sea blowouts is 

employed for each deterministic simulation. Two hypothetical blowout scenarios around an oil 

field with active exploration licenses are proposed to quantitatively compare the regional spill 

risk level with or without SSDI application. Ultimately, we obtain a series of five-day hazard 

maps that characterize the spatial distribution of spill features and risk within the area of interest.  

The results reveal that released oil from a catastrophic blowout can rapidly reach the sea 

surface within a few hours and most likely drift towards the east and southeast after surfacing. 

Owing to the presence of the southeast-flowing Labrador Current, the nearshore area of 

Newfoundland has a low risk of oil spillage shortly after the spill. An oil-infested area tends to 

form around the surfacing location for most oil droplets, necessitating sufficient preventive 

practices to counter the large volume of emerging oil. Downstream areas are open seas with 

dynamic conditions for diluting spilled oil. Nevertheless, the risk of valued species exposed to 

hazardous petroleum compounds, particularly for PAHs, cannot be ruled out, and the 

information on distributions of targeted marine biota must be considered in the follow-up 

studies. After the treatment of SSDI, an increasing portion of subsurface oil remains submerged 

while the spatial distribution of surface and subsurface oil is amplified. Contrary to mitigating 

the risk level in the spill-prone region, the risk beyond there is somewhat elevated. The 
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effectiveness of SSDI in spill risk reduction is still questionable and needs further investigation. 

Future work will focus on refining spill scenario settings and completing the met-ocean pattern. 

Chapter 7 Conclusions and Future Perspective 

7.1. Conclusions  

This dissertation is dedicated to developing a novel operational OSM toolkit, DWOSM, 

for predicting the transport and fate of oil/gas released from deep-sea blowouts. Through 

integrating three individual modules, DWOSM is capable of forecasting a series of blowout 

behaviors in support of the oil spill response. Specifically, DWOSM-DSD intends to predict 

the diameter size of oil droplets/gas bubbles and their corresponding volume fraction; 

DWOSM-Nearfield aims to simulate the evolution of buoyant plume dynamics; DWOSM-

Farfield is to forecast the spill trajectory and the change in oil mass and properties beyond the 

near field. Terminal near-field simulation results provide initial conditions to DWOSM-

Fairfield, which achieves the coupling of near- and far-field modeling. Different case studies 

are presented in this dissertation, including a hypothetical case in Eastern Canadian waters and 

a real-world case of the DWH blowout in the GOM, which is used to test the applicability and 

validity of the DWOSD. Apart from the model development and verification, the DWOSM and 

a risk evaluation system are also embedded into a recent integrated stochastic modeling 

methodology. The PAH-related risk in the offshore waters of east Newfoundland is successfully 

evaluated through stochastic simulation of deep-sea blowouts. The main conclusions of the 

three research tasks are summarized as follows: 

1. A hypothetical blowout at 800 meters in eastern Newfoundland waters is used for model 

testing by comparing the integration of three OOSMs. DSD simulations are verified with 
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experimental observations and outcomes from a PDM, indicating that the prediction for 

oil DSDs primarily agrees with experimental and modeling results. The spill trajectory 

comparison shows considerable similarity in surface slicks under constant environmental 

fields, while the two models have the same drift direction but a less extended subsurface 

oil trajectory of DWOSM-Farfield than SIMAP. A discrepancy in the results of the 

modeled oil budget is due to different selections of entrainment algorithms. Spill trajectory 

results from DWOSM and GNOME are consistent under actual fields, proving the good 

applicability of DWOSM for spill trajectory forecast. These results indicate that the new 

model is comprehensive for numerically characterizing different deepwater spill processes.  

2. The DWH blowout is taken for real-field validation by comparing the hindcast result with 

observational data and previous modeling outcomes. Simulated intrusion height, chemical 

composition of surfaced gas, and oil stranding locations are highly close to measurements, 

implying that DWOSM can capture the intricate deep-sea spill behaviors. The hindcast of 

surface oil trajectory is aligned with the oiling footprint at most moments. For oil budget 

calculation, the surface oil mass may be overestimated first but then agree with the remote 

sensing-based estimate. This case study demonstrates the ability to forecast large-scale 

deep-sea spills in response to blowout events. 

3. A modified stochastic modeling framework is applied to evaluate the deepwater spill risk 

in an offshore area of Newfoundland. Five-day risk mapping results reveal the coastal area 

of Newfoundland has a low-risk level of oil contamination within the short term after the 

blowout. A comparison between the two modeling scenarios exhibits the potential of 

applying SSDI to mitigate the spill risk but amplify the oil dissemination. The predicted 
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distribution of hazardous petroleum compounds shows that, unlike rapidly evaporated 

VOCs, PAHs emitting from a catastrophic spill can severely threaten aqueous species.  

7.2. Contributions  

The main contributions of this study to develop and verify the novel DWOSM, which can 

be summarized below: 

1. Unlike most deepwater oil spill toolkits, which couple near- and far-field models using the 

results at the end of the near field as the input for far-field modeling, DWOSM adopts near-

field particle tracking to smooth the transition between the two models. The coupling of 

near- and far-field modeling is well-tested in the context of hypothetical and field cases. It 

demonstrates that such an integration approach can effectively capture deep-sea spill 

processes occurring at distinct spatiotemporal scales. 

2. The sophisticated thermodynamic modeling based on the PR-EOS is integrated into the 

DWOSM, enabling this model to predict the evolution of the thermodynamic and 

physicochemical properties of dispersed oil and gas under varying ambient conditions in 

the deep sea. Particularly, the mass transfer and rise velocity of particles can be computed 

using constantly updated information. Such an advance has not been involved in most 

current OOSMs. 

3. The DWOSM and a PAH-related risk evaluation system are incorporated into a state-of-

the-art stochastic modeling methodology, which allows quantitative characterization of the 

risk level of spill exposure to marine life. This stochastic simulation-based risk assessment 

result provides scientific evidence for decision-making support in response to subsea 

blowouts in Eastern Canadian waters with pending offshore activities.  
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7.3. Recommendations for future studies  

This section lists some limitations of DWOSM and modeling efforts and then proposes 

corresponding recommendations for future work as follows: 

1. Some critical weathering processes for the long-term oil fate, such as sedimentation and 

surface oil biodegradation, are presently not considered in DWOSM. More oil spill 

behaviors will be incorporated into the fate algorithms.  

2. SSDI is the only oil spill response technology available to be simulated in the DWOSM 

system, whereas several countermeasures are widely used to mitigate the negative impact 

of oil spills in practice, such as skimmer, booming, surface dispersant application, and in-

situ burning. Future studies will endeavor to integrate cutting-edge algorithms for 

modeling the cleanup processes.  

3. The thresholds tailored for the risk evaluation indicator of this study, particularly for PAH 

concentration, are not species-specific and cannot provide helpful information about the 

threat to specific aquatic life. Data relevant to local biological resources, such as the 𝐿𝐶50 

and temporospatial distribution of valued ecosystem components, will be collected and 

incorporated in the future spill risk assessment. 
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Appendices 

A: Solution Techniques 

1. Trilinear interpolation 

The trilinear equation is derived by applying the linear interpolation multiple times. It 

approximates the value of a function at an intermediate point 𝐶 (𝑥, 𝑦, 𝑧) within the local axial 

rectangular prism linearly using data on the lattice points (Figure A-1).  

 

Figure A-1 Schematic of trilinear interpolation. 

 

The solution to the interpolation problem can be expressed as: 

𝑓(𝑥, 𝑦, 𝑧) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑦 + 𝑎3𝑧 + 𝑎4𝑥𝑦 + 𝑎5𝑥𝑧 + 𝑎6𝑦𝑧 + 𝑎7𝑥𝑦𝑧     (A-1) 

where the coefficients are solved by the linear system below: 
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1 𝑥1 𝑦0 𝑧0 𝑥1𝑦0 𝑥1𝑧0 𝑦0𝑧0 𝑥1𝑦0𝑧0
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here 𝑥0 denotes the lattice point below 𝑥, and 𝑥1 denotes the lattice point above 𝑥 and similarly 

for 𝑦0, 𝑦1, 𝑧0, 𝑧1. Solving this system can yield the result: 

𝑎0 =
−𝑐000𝑥1𝑦1𝑧1+𝑐001𝑥1𝑦1𝑧0+𝑐010𝑥1𝑦0𝑧1−𝑐011𝑥1𝑦0𝑧0

(𝑥0−𝑥1)(𝑦0−𝑦1)(𝑧0−𝑧1)
+

𝑐100𝑥0𝑦1𝑧1−𝑐101𝑥0𝑦1𝑧0−𝑐110𝑥0𝑦0𝑧1+𝑐111𝑥0𝑦0𝑧0

(𝑥0−𝑥1)(𝑦0−𝑦1)(𝑧0−𝑧1)
                                                                   

(A-2) 

𝑎1 =
𝑐000𝑦1𝑧1−𝑐001𝑦1𝑧0−𝑐010𝑦0𝑧1+𝑐011𝑦0𝑧0

(𝑥0−𝑥1)(𝑦0−𝑦1)(𝑧0−𝑧1)
+

−𝑐100𝑦1𝑧1+𝑐101𝑦1𝑧0+𝑐110𝑦0𝑧1−𝑐111𝑦0𝑧0

(𝑥0−𝑥1)(𝑦0−𝑦1)(𝑧0−𝑧1)
          (A-3) 

𝑎2 =
𝑐000𝑥1𝑧1−𝑐001𝑥1𝑧0−𝑐010𝑥1𝑧1+𝑐011𝑥1𝑧0

(𝑥0−𝑥1)(𝑦0−𝑦1)(𝑧0−𝑧1)
+

−𝑐100𝑥0𝑧1+𝑐101𝑥0𝑧0+𝑐110𝑥0𝑧1−𝑐111𝑥0𝑧0

(𝑥0−𝑥1)(𝑦0−𝑦1)(𝑧0−𝑧1)
      (A-4) 

𝑎3 =
𝑐000𝑥1𝑦1−𝑐001𝑥1𝑦1−𝑐010𝑥1𝑦0+𝑐011𝑥1𝑦0

(𝑥0−𝑥1)(𝑦0−𝑦1)(𝑧0−𝑧1)
+

−𝑐100𝑥0𝑦1+𝑐101𝑥0𝑦1+𝑐110𝑥0𝑦0−𝑐111𝑥0𝑦0

(𝑥0−𝑥1)(𝑦0−𝑦1)(𝑧0−𝑧1)
    (A-5) 

𝑎4 =
−𝑐000𝑧1+𝑐001𝑧0+𝑐010𝑧1−𝑐011𝑧0+𝑐100𝑧1−𝑐101𝑧0−𝑐110𝑧1+𝑐111𝑧0

(𝑥0−𝑥1)(𝑦0−𝑦1)(𝑧0−𝑧1)
                      (A-6) 

𝑎5 =
−𝑐000𝑦1+𝑐001𝑦1+𝑐010𝑦0−𝑐011𝑦0+𝑐100𝑦1−𝑐101𝑦1−𝑐110𝑦0+𝑐111𝑦0

(𝑥0−𝑥1)(𝑦0−𝑦1)(𝑧0−𝑧1)
                    (A-7) 

𝑎6 =
−𝑐000𝑥1+𝑐001𝑥1+𝑐010𝑥1−𝑐011𝑥1+𝑐100𝑥0−𝑐101𝑥0−𝑐110𝑥0+𝑐111𝑥0

(𝑥0−𝑥1)(𝑦0−𝑦1)(𝑧0−𝑧1)
                     (A-8) 

𝑎7 =
𝑐000−𝑐001−𝑐010+𝑐011−𝑐100+𝑐101+𝑐110−𝑐111

(𝑥0−𝑥1)(𝑦0−𝑦1)(𝑧0−𝑧1)
                                     (A-9) 

2. BDF5 

The first order ODEs can be written as: 

𝑦′ = 𝑓(𝑡, 𝑦)                               (A-10) 

with initial condition 𝑦(𝑡0) = 𝑦0 in the interval 𝑎 ≤ 𝑡 ≤ 𝑏.  

 The BDF5 is expressed an implicit form as below: 

𝑦𝑛+1 − 𝑦𝑛 = ℎ𝑓(𝑡𝑛+1, 𝑦𝑛+1)                    (A-11) 

𝑦𝑛+2 −
4

3
𝑦𝑛+1 +

1

3
𝑦𝑛 =

2

3
ℎ𝑓(𝑡𝑛+2, 𝑦𝑛+2)                   (A-12) 
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𝑦𝑛+3 −
18

11
𝑦𝑛+2 +

9

11
𝑦𝑛+1 −

2

11
𝑦𝑛 =

6

11
ℎ𝑓(𝑡𝑛+3, 𝑦𝑛+3)                (A-13) 

𝑦𝑛+4 −
48

25
𝑦𝑛+3 +

36

25
𝑦𝑛+2 −

16

25
𝑦𝑛+1 +

3

25
𝑦𝑛 =

12

25
ℎ𝑓(𝑡𝑛+4, 𝑦𝑛+4)         (A-14) 

𝑦𝑛+5 −
300

137
𝑦𝑛+4 +

300

137
𝑦𝑛+3 −

200

137
𝑦𝑛+2 +

75

137
𝑦𝑛+1 −

12

137
𝑦𝑛 =

60

137
ℎ𝑓(𝑡𝑛+5, 𝑦𝑛+5)                                                                        

(A-15) 

where ℎ represents the step size and 𝑡𝑛 = 𝑡0 + 𝑛ℎ. 

3. Adaptive step size control 

 For the 𝑛𝑡ℎ order method, the local error at the i-th point is approximated by: 

𝑒𝑖
(𝑛) ≅ 𝑦𝑖

(𝑛) − 𝑦𝑖
(𝑛−1)                                   (A-16) 

where 𝑦𝑖
(𝑛)  is the estimated solution obtained by the 𝑛𝑡ℎ  order method and 𝑦𝑖

(𝑛−1)  is the 

estimated solution obtained by the 𝑛 − 1𝑡ℎ order method.  

The local error in each step need to satisfy the following condition: 

|𝑒𝑖| ≤ 휀                                 (A-17) 

where 휀 = 𝑟|𝑦𝑖| + 𝑎𝑖 is the specified error tolerance, the scalar relative error tolerance 𝑟 has a 

default value of 10-3, and the vector of absolute error tolerances 𝑎𝑖 has by default all its values 

equal to 10-6. 

Once the local error does not meet this criteria, the step size is adjusted as below: 

ℎ𝑖 = (𝑒𝑖
)
1

𝑛ℎ𝑖
′
                              (A-18) 

where ℎ𝑖 and ℎ𝑖
′
 are the new time step size and the old time step at the 𝑖𝑡ℎ step, respectively. 
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B: Two-phase Flash Calculations 

1. Flash calculation development 

Flash calculation algorithms aim to determine the fraction of gas and liquid and the 

composition of each phase at equilibrium. From a thermodynamic viewpoint, a necessary 

condition of equilibrium is that the fugacities of the individual components should be the same 

for an isothermal system. Considering the case of two-phase equilibrium in a 𝑁𝑐-component 

mixture of an overall composition 𝑧, the fugacities of liquid 𝑓𝑖
𝑙 and gas 𝑓𝑖

𝑣 are: 

𝑓𝑖
𝑙 = 𝑓𝑖

𝑣, 𝑖 = 1,2,… , 𝑁𝑐                          (A-19) 

The thermodynamic model enables to calculate component fugacities, given temperature 

𝑇, pressure 𝑃, and phase composition (𝑥 in liquid and 𝑦 in gas): 

 𝑓𝑖
𝑙 = 𝑓𝑖(𝑇, 𝑃, 𝑥) =, 𝑓𝑖

𝑣 = 𝑓𝑖(𝑇, 𝑃, 𝑦)                  (A-20) 

The equilibrium factor of i-th component 𝐾𝑖 is the ratio of the liquid fugacity coefficient 

to the gas fugacity coefficient:  

𝐾𝑖 =
∅𝑖
𝑙

∅𝑖
𝑣 =

�̂�𝑖
𝑙/(𝑥𝑖𝑃)

�̂�𝑖
𝑣/(𝑦𝑖𝑃)

=
𝑦𝑖

𝑥𝑖

�̂�𝑖
𝑙

�̂�𝑖
𝑣                         (A-21) 

where 𝐾𝑖 =
𝑦𝑖

𝑥𝑖
 at equilibrium.                            

The Rachford-Rice equation derived from material balance is  

𝑔(𝑉) = ∑ 𝑧𝑖
𝐾𝑖−1

1−𝑉+𝑉𝐾𝑖

𝐶
𝑖=1                           (A-22) 

𝑔′(𝑉) = −∑ 𝑧𝑖
(𝐾𝑖−1)

2

1−𝑉+𝑉𝐾𝑖

𝐶
𝑖=1                         (A-23) 

where 𝑉 is the overall fraction of vapor phase. 

2. PR-EOS 

PR-EOS can be expressed in the form: 

𝑃 =
𝑅𝑇

𝑣−𝑏
−

𝑎(𝑇)

𝑣(𝑣+𝑏)+𝑏(𝑣−𝑏)
                        (A-24) 
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where 𝑣 is the molar volume, 𝑎(𝑇) is the temperature-dependent attractive parameter, 𝑏 is the 

co-volume parameter. For the pure component 𝑖, 𝑎(𝑇) and 𝑏 are: 

𝑎(𝑇) = 𝑎𝑐𝛼(𝑇) = 𝑎𝑐 (1 + 𝑚(1 − √
𝑇

𝑇𝑐
))

2

                (A-25) 

𝑏 = 0.07780
𝑅𝑇𝑐

𝑃𝑐
        (A-26) 

𝑎𝑐 = 0.45724
𝑅2𝑇𝑐

2

𝑃𝑐
       (A-27) 

𝑚 = {
0.37464 + 1.54226𝜔 − 0.26992𝜔2, 𝜔 ≤ 0.49

0.379642+ 1.48503𝜔 − 0.164423𝜔2 + 0.016666𝜔3, 𝜔 > 0.49
  (A-28) 

where 𝑇𝑐  and 𝑃𝑐  are the critic temperature and pressure. The acentric factor 𝜔  means the 

deviation of the molecular shape from spherically symmetric structure. 

 For a muti-component system, the mixing rule is required to describe the prevailing forces 

between molecules of different components forming the mixture. 𝑎(𝑇) and 𝑏 for a mixture are 

described as: 

𝑏 = ∑ 𝑦𝑗𝑏𝑗𝑗                                (A-29) 

𝑎(𝑇) = ∑ ∑ 𝑦𝑖𝑦𝑗(1 − 𝛿𝑖𝑗)[𝑎(𝑇)𝑖𝑎(𝑇)𝑗]
1

2𝑗𝑖                  (A-30) 

where 𝛿𝑖𝑗 is the binary interaction parameter between components 𝑖 and 𝑗. 

For computation of the compressibility factor 𝑍, PR-EOS can be rewritten as: 

𝑍3 − (1 − 𝐵)𝑍2 + (𝐴 − 3𝐵2 − 2𝐵)𝑍 − (𝐴𝐵 − 𝐵2 − 𝐵3) = 0       (A-31) 

𝐴 =
𝑎𝑃

𝑅2𝑇2
    𝐵 =

𝑏𝑃

𝑅𝑇
                             (A-32) 

The fugacity of a petroleum fluid of a muti-component system is calculated by: 

𝑓 = 𝑒
− ln(𝑍−𝐵)+(𝑍−1)𝐵𝑝−

𝐴

21.5𝐵
[𝐴𝑝−𝐵𝑝]ln(

𝑍+(20.5+1)𝐵

𝑍−(20.5−1)𝐵
)
                 (A-33) 

𝐴𝑝 =
2𝑎(𝑇)

1
2 ∑ 𝑦𝑗𝑎𝑗(1−𝛿𝑖𝑗)

𝑁
𝑗=1

𝑎(𝑇)
𝐵𝑝 = 𝑏𝑖/∑𝑏𝑖                   (A-34) 

3. Flash calculation procedure 

The successive substitution method is implemented until its convergence is satisfied 
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(Figure B-1). The flash calculation procedure is as follows: 

 Step 1: feeding the input data including temperature, pressure and fluid composition with 

the molar fractions of each component. The thermodynamic properties known for each 

component include molecular weight, critical temperature and pressure, critical volume, 

critical compressibility factor, and acentric factor. 

Step 2: obtain an estimate for 𝐾𝑖 using Wilson’s correlation as below: 

ln(𝐾𝑖) = ln (
𝑃𝑐,𝑖

𝑃
) + 5.373(1 + 𝜔𝑖)(1 −

𝑇𝑐,𝑖

𝑇
)                 (A-35) 

Step 3: using the Newton-Raphson method to solve the Rachford-Rice equation as: 

𝑉𝑛+1 = 𝑉𝑛 −
𝑔(𝑉𝑛)

𝑔′(𝑉𝑛)
                              (A-36) 

The error function is |
𝑉𝑛+1−𝑉𝑛

𝑉𝑛+1
|, and this criterion for convergence a tolerance is 10-5. 

Step 4: compute the mole fractions of components in the vapor and liquid: 

𝑥𝑖 =
𝑧𝑖

1−𝛽+𝛽𝐾𝑖
    𝑦𝑖 =

𝐾𝑖𝑧𝑖

1−𝛽+𝛽𝐾𝑖
                       (A-37) 

Step 5: compute the compressibility factor using the Newton-Raphson method. 

Step 6: compute the fugacity coefficients of the vapor and liquid phases (𝑓𝑖
𝑙 and 𝑓𝑖

𝑣) using 

the new compressibility factors. 

Step 7: update 𝐾𝑖 and check if the convergence condition is satisfied: 

(
𝑓𝐿

𝑓𝑣
− 1)

2

< 10−8                         (A-38) 

Step 8: repeat steps 2- 7 until convergence is attained. 
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Figure B-2 Flowchart of two-phase flash calculations (modified from Neto et al. (2015)). 
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C: Risk Assessment   

Table C-1 The thresholds for surface oil pollution, modified from Galagan et al. (2018). 

Threshold 
Scaling 

coefficient 
Rationale 

Concentration of PAHs (𝐶𝑃𝐴𝐻  in μg/l)  

𝐶𝑃𝐴𝐻𝑠 = 0 0 No impacts. 

0 < 𝐶𝑃𝐴𝐻𝑠
≤ 1 

1 

A screening threshold of 1μg/l is commonly applied to 

assess potential impacts on sensitive marine resources and 

early life stages because no significant ecological effects 

were found when exposure concentration was below this 

level. 

1 < 𝐶𝑃𝐴𝐻𝑠
≤ 10 

2 
Exposure exceeding 10μg/l may induce sublethal effects 

on the aqueous biota. 

10
< 𝐶𝑃𝐴𝐻𝑠
≤ 1000 

3 

Sublethal and chronic toxicity of PAHs to most marine 

animals (Nagpal, 1993); acutely toxic to some aquatic 

biota (French-McCay, 2018). 

1000
< 𝐶𝑃𝐴𝐻𝑠  

4 
Lethal concentration 50 (𝐿𝐶50 ) of PAHs to majority of 

marine aquatic life (Nagpal, 1993). 

 

Surface oil loading (𝛿 in g/m2)  

0 ≤ 𝛿
< 0.01 

0 No impacts. 

0.01 ≤ 𝛿
< 1 

1 

Appear as barely visible or sporadic or rainbow sheen. A 

conservative threshold to assess the potential impact on 

socioeconomic resources. 

1 ≤ 𝛿
< 10 

2 

Appear as sporadic sheen or rainbow sheen (Fingas, 

2018). A conservative threshold for assessing sublethal 

effects of surface oil on marine life. 

10 ≤ 𝛿 <
1000 

3 
Mostly thick oil (Fingas, 2018). Sublethal effects on 

marine mammals and sea turtles. 

1000 ≤ 𝛿 4 
Thick oil or water-in-oil emulsion (Fingas, 2018). Risk of 

mortality for all marine life. 
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D: Supporting Material for Chapter 4 

Table D-1 A summary of inputs to DWOSM for simulating a hypothetical oil blowout. 

Parameter Value (unit) Source 

Oil flow rate at the release point 3000 (bbl/day) - 

GOR 0 (scf/bbl)  

Depth of the release point 800 (m) - 

Equivalent circular diameter of 

the release 
0.05 (m) - 

Release duration 
2021.10.20 12:00 - 10.30 

12:00 10:30 
- 

Release interval 15 min - 

Location 
Latitude: 50.11 

Longitude: -49.67 
- 

Substance released 

Representative east coast 

Canadian crude recovered off 

the coast of Newfoundland 

The ADIOS Oil 

Database 

Number of oil elements in each 

release interval 
10 - 

Current data NetCDF file 

Global Ocean 1/12° 

Physics Analysis and 

Forecast updated Daily 

Wind data NetCDF file 

Global Ocean Wind L4 

Near real Time 6 hourly 

Observations 

Coefficients for surface 

horizontal diffusion, subsurface 

horizontal diffusion, subsurface 

vertical diffusion 

105, 103, 10 (cm2/s) - 
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E: Supporting Material for Chapter 5 

Table E-1 A summary of model inputs for the DWH hindcast. 

Parameter Value (unit) Source  

Current data HYCOM + NCODA Gulf of Mexico 1/25° 

Reanalysis (GOMu0.04/expt_50.1) 

Cummings & 

Smedstad., 2013. 

CTD data Derive from the interpolated current data 

Wind data ERA5 hourly data  Hersbach et al., 

2023 

Shoreline data Global Self-consistent, Hierarchical, High-

resolution Geography Database (GSHHG) 

Wessel & Smith, 

1996 

Spill site location 88.366◦W, 28.738◦N at the water depth of 1500 

m  

McNutt et al., 2012; 

Reddy et al., 2012 

GOR 1600 standard cubic feet of gas per barrel of oil 

(scf/bbl)  

Oil flow rate  60000 (bbl/day) 

Oil type and 

properties 

A crude oil produced from the GOM The ADIOS Oil 

Database 

Gas composition Measurement for the mass fraction and chemical 

composition of natural gas released from BP 

blowout 

Reddy et al., 2012 

Release diameter 0.48 (m) Crowley et al., 

2018 

Simulation 

duration  

2010.04.22 10:30 - 05.06 10:30 (CDT time) - 

Particle release 

frequency 

30 particles (15 droplets + 15 bubbles) emanating 

from the near-field model per 15 mins 

- 

Horizontal 

diffusion 

coefficients 

106 cm2/s for surface LEs 

103 cm2/s for subsurface LEs 

French-McCay et 

al., 2021b 

Vertical diffusion 

coefficients 

1 cm2/s for subsurface LEs 

SSDI application Strat from 2010.04.30 12:00 (CDT time) Ramírez-León, 

2012 

Step size for 

simulation  

15 (min) - 
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