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Abstract

Nonlinear Estimator For a Class of Systems with Linear Dynamics and Noisy Quadratic

Measurements

Mahmood Rezaee Qotb Abadi

This thesis proposes a novel nonlinear estimator to estimate the state of a class of systems

with linear dynamics and noisy quadratic measurements. It is shown that the error dynamics

is described by a nonlinear Verhulst logistic equation. This observation unveils a link between

population dynamics and state estimation for this class of systems. The stationary distri-

bution of the estimation error converges to a zero-mean Gaussian with adjustable variance.

This estimator is used to estimate the physical state variables in energy harvesters by using

the measurement of electrical energy. Furthermore, the problem of estimating the position

of a quadrotor in waypoint navigation using noisy range measurements can be formulated

in a way in which it can be solved by the proposed estimator. This application emphasizes

the practical use of the estimator, which guides the quadrotor through various pipeline con-

figurations. The quadrotor’s input is designed to maintain the piecewise affine trajectory

within the thickness of the pipeline for the inspection task. The simulation results illustrate

a stable estimation error that consistently converges to an area around zero with different

initial conditions. In addition to evaluating the performance of the proposed estimator, a

comparison is made with the Kalman filter for the augmented linearized system.
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Chapter 1

Introduction

1.1 Motivation

In control theory, robotics, signal processing, navigation, and other engineering fields, where

it is important to precisely and reliably determine the system’s current state, state estima-

tion plays a crucial role. This knowledge is essential to design controllers to stabilize the

system, improve performance, and promote better decision-making. Effective state estima-

tion becomes significantly more challenging and important in systems perturbed by noise.

Noise, an intrinsic feature of real-world systems, introduces uncertainty and can lead to er-

roneous decisions if not properly accounted for. Therefore, the development of robust state

estimation methods capable of estimating the states while handling noise is of paramount

importance.

State estimation involves the process of finding the internal state of a system by fusing a

mathematical model with input and output data measurements. State estimation techniques

are fundamental in various tasks related to analysis, monitoring, and energy management.

An estimation approach might suggest installing sensors throughout the system, covering

every conceivable aspect of the system. Nevertheless, in most practical applications, this

approach is neither feasible nor pragmatic. This can result in high costs, difficulties in man-
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agement, and potential changes to the original system design, among other concerns [1].

Consequently, state estimation methods can serve as a more practical and cost-effective al-

ternative to the installation of sensors.

In this context, this thesis addresses the critical challenge of state estimation in systems with

quadratic measurements perturbed by noise. We introduce a nonlinear estimator designed

for these types of systems, offering a versatile and accurate solution for estimating system

states even in the presence of considerable noise sources. To illustrate the practical signifi-

cance of this novel estimator, we present two distinct yet interconnected applications.

In the field of electrical circuits, estimating the voltage of a capacitor using the measurement

of the energy stored in the capacitor could be a theoretical subject of interest. Especially

when the energy measurements are affected by noise. Noisy measurements of the energy

stored in an inductor can also lead to inaccuracies in estimating the current through the

inductor. In mechanics, the kinetic energy of a moving body is proportional to the square

of its velocity. Therefore, it is possible to model the problem of estimating the body’s ve-

locity using measurements of the kinetic energy from noisy sensors. Similarly, in rotational

mechanics, the kinetic energy of a rotating body is proportional to the square of its angu-

lar velocity. Furthermore, in mechanical systems involving a spring, the potential energy

stored in the spring is proportional to the square of its displacement from equilibrium. If the

measurements of the potential energy are perturbed by noise, the problem of estimating the

displacement can be modeled as the same state estimation problem. The theoretical signif-

icance of these problems outweighs their practical application. This is primarily due to the

fact that, in many cases, it is more straightforward to measure physical variables such as volt-

age, current, velocity, or displacement as opposed to measuring power or energy directly. The

theoretical significance of estimating physical variables from energy measurements becomes

manifestly practical in our first application, where we leverage measurements of electrical

energy produced in an energy harvester to estimate crucial physical variables such as dis-

placement or velocity. In energy harvesters, electrical energy or power is readily available
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and often measured. Utilizing this existing measurement enables us to accurately estimate

important physical variables without the need for extra equipment or measurements.

1.1.1 Energy Harvester

The widespread use of portable electronic devices such as mobile phones, global positioning

systems (GPS), and wearable devices for health care, medical rehabilitation, and athletic

training is becoming more prevalent in our daily lives. Consequently, the need for mobile

power sources experiences a proportional rise. The energy requisites for these devices are

predominantly satisfied through battery systems. Nevertheless, the requirement to periodi-

cally recharge these batteries (or ultimately replace them) poses a substantial constraint on

the operational usage time (or longevity) of these portable electronic gadgets. This issue can

be addressed by directly linking the applicable device to an electrical grid. Nonetheless, the

availability of an electric grid is not universally attainable, particularly in developing nations

or during traveling to remote locations. Therefore, this solution becomes infeasible [2].

Up until the present time, efforts directed towards the enhancement of power efficiency and

the creation of batteries with improved power density have yielded an approximately two-

fold augmentation in power density every decade. However, the operational usage time of

any mobile system functioning without direct reliance on the electrical grid is constrained

by the necessity of carrying and recharging the battery [3]. This limitation highlights the

need for further research into portable electrical generation devices capable of augmenting

both the capacity and the operational usage time of electrical power. A promising and envi-

ronmentally friendly method to fulfill the aforementioned requirement is to harness the heat

[4], vibration [5], movement, and strain energy [6] produced by the human body to generate

electrical energy [2]. The foundation of this self-powered approach lies in the presence of

abundant kinetic energy sources within the human body, particularly during limb movements

such as joint rotations ([7], [8], and [9]). Transformation of kinetic energy into electrical en-

ergy can be achieved through piezoelectric, electromagnetic, and electrostatic mechanisms
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([10], [11], and [12]). Some applications of energy harvesting are shown in Figure 1.1.

(a) Applications of energy harvesting and asso-
ciative technologies [13]

(b) Self-powered sensing by rotational energy
harvesting from different application [14]

(c) Strap-on kinetic energy harvester from
walking [15]

(d) Bionic power knee energy harvester [16]

(e) A wearable battery motion energy har-
vester to power mobile devices [17]

(f) Human body movement energy harvester
smartwatch [18]

Figure 1.1: Applications of energy harvesting

In the field of energy harvesting, we embark on a journey that combines theory and practice.

As mentioned earlier while it is important in theory to estimate variables, such as displace-
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ment and velocity, from energy measurement, we often overlook their applications due to

the ease of direct measurement. However, in our application, we connect this theoretical

foundation with real-world usefulness. The electrical energy or power generated from the

energy harvesting process is easily measurable. The electrical energy or power produced is

approximately a factor of the mechanical energy due to energy loss. The kinetic energy is

proportional to the square of velocity, and the potential energy stored in a spring is pro-

portional to the squared of the displacement. Therefore, leveraging the measurement of

electrical energy or power allows us to accurately estimate key physical variables, such as

body movement velocity. This paves the way for an era of cost-effective state estimation

within the field of energy harvesting.

1.1.2 Navigation with Range Measurement

An essential challenge in navigation is to determine the position of a moving vehicle based

on a collection of range measurements between the vehicle and landmarks with known in-

ertial coordinates, especially in the presence of measurement noise [19]. This issue can be

further formulated as a state estimation task, utilizing the same framework of the quadratic

measurement state estimation problem.

Navigation is a critical task that pertains to the process of accurately determining and mon-

itoring the position, velocity, and orientation of an object or vehicle. It plays a vital role

in a vast array of fields including transportation, exploration, military operations, and in-

creasingly in personal mobility with applications to self-driving cars and unmanned aerial

vehicles (UAVs). One of the major goals when designing autonomous vehicles and high-tech

human-operated vehicles is the development of an efficient navigation system.

In recent years, UAVs have garnered a growing interest from both the research and industrial

sectors. A wide array of applications are enabled by combining UAVs with the Internet of

Things (IoT) ([20], [21]), such as environmental monitoring [22], the assessment of struc-
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tural health [23], precise agricultural practices [24], search and rescue missions [25], to name

a few. In the realm of autonomous UAV navigation, one of the common methodologies is

Inertial Navigation Systems (INS) [26]. An INS estimates a UAV’s current position and

velocity by means of continuous integration (over time) of sensor data; Although the INS

has widespread application, it suffers from the problem of cumulative error propagation.

As time progresses, the magnitude of the estimation error tends to increase. Consequently,

in practical scenarios, recourse is often made to the Global Positioning System (GPS) to

periodically recalibrate the INS ([27], [28]). Inertial Navigation Systems (INS) and Global

Positioning System (GPS)-related technologies have undergone an upsurge in interest and

rapid development. Given these advancements, and particularly the growing popularity of

GPS receivers, one may be led to believe that the navigation problem has practically been

solved except for a steady search of more accurate, cost-efficient, and reduced-size solutions.

Nevertheless, the navigation problem is still rather challenging in many real-world situations

when GPS signals are not available. Typical GPS-denied environments in which GPS is

unavailable, or not reliable, include

• Indoor: Within structures where the concrete walls block GPS signals, such as caves

either on land or underwater.

• Urban: In cities, GPS signals are unreliable and sometimes obstructed by nearby

structures or completely lost in tunnels.

• Space: Despite some experimental work on the use of GPS signals in space applica-

tions, GPS signals are often not accessible in space.

• Underwater: In lakes, rivers, or oceans.

Furthermore, GPS is vulnerable to both inadvertent and intentional interference, which can

disrupt its functionality. A temporary loss of GPS signals is not uncommon, lasting from

a few seconds to several minutes. In the case of UAVs that depend exclusively on GPS for
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their navigation, such an occurrence can have disastrous consequences [29]. In these GPS-

denied environments, different sensors must be used for navigation. The type of sensors

used depends on the environment, the mission scenario, cost constraints, etc. A common

choice is using Range-Only measurements which can be obtained from transponders, either

acoustic or electromagnetic, depending on the environment. The range-only localization

problem entails estimating the position of a vehicle with respect to a collection of places

whose inertial positions are known using the ranges or squared ranges measurement. Range

measurements can provide sufficient information to determine the position of the vehicle,

and they eliminate the need for additional equipment or sources, which can save costs and

increase the ease of implementation.

A quadrotor is a type of UAV that is lifted and propelled by four rotors. These rotors

are arranged in a cross configuration, with two rotors spinning clockwise and two spinning

counterclockwise. The quadrotor is able to perform a wide range of movements, including

vertical take-off and landing, hovering, forward and backward flight, and lateral movement.

These movements are achieved by adjusting the speed and thrust of each rotor. The ability

of the quadrotor to perform these movements makes it useful in a variety of applications,

such as aerial photography and surveillance, search and rescue, and delivery.

Waypoint navigation refers to the process of navigating a route or trajectory (mostly a

straight line) between a series of predetermined points, often termed ”waypoints”. These

waypoints are specific geographic locations, defined by coordinates in a reference system. The

vehicle in waypoint navigation, follows this sequence of waypoints to move from an origin

to a desired destination. This method of navigation is widely used in various applications

(Figure 1.2).
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(a) Pipeline Inspection [30] (b) Indoor Pipes and Valves Inspection [31]

(c) Oil and Gas Pipe Inspection [32] (d) Pipe Inspection [33]

(e) Train Railroad and Mining Inspection [34] (f) Sewer Inspection [35]

Figure 1.2: Applications of UAV’s waypoint-based navigation in GPS-denied environments

In this work, pipeline inspection is considered using a quadrotor as an inspector with a

waypoint-based navigation system based on quadratic range measurements. Pipeline inspec-

tion is a critical process for ensuring the integrity and safety of pipelines. It is typically

performed using specialized inspection tools (UAVs, UUVs, etc) that are designed to travel

8



through the pipeline and collect data on the potential leaks in the pipeline. The navigation

system in these inspectors should be as accurate as possible so that the exact location of

the leaks in the pipeline can be marked out even in GPS-denied environments. Potential

scenarios are the inspection of underground pipelines that are installed along GPS-denied

environments such as caves.

1.2 Literature Survey

State estimation is the process of determining the state of a system based on a set of mea-

surements and a mathematical model of the system. Classical estimation algorithms include

Kalman filtering [36] and particle filtering [37]. Sensor fusion techniques allow the system to

integrate data from several sensors in a consistent and reliable manner, resulting in a more

robust and accurate navigation system. These techniques can be applied in various forms,

such as probabilistic data association [38], extended Kalman filtering [39], and unscented

Kalman filtering [40]. By combining the strengths of multiple sensors and state estimation

techniques, sensor fusion can provide a more accurate and reliable estimate of the system’s

state, even in challenging environments. This is especially important in autonomous sys-

tems, as they often rely on a variety of sensor types, such as cameras, Lidars, and GPS, to

sense the environment and make decisions.

The problem of navigation and source localization using measurements from a set of sensors

has been widely researched in recent years. The sensor solutions depend on the environment,

the mission scenario, and cost constraints, to name a few. Common navigation solutions in-

clude Global Positioning System (GPS) [41], Long Baseline (LBL), Short Baseline (SBL),

and Ultra Short Baseline (USBL) navigation [42]. In addition to these methods, a number

of scholars have embraced a method referred to as SLAM, an acronym for Simultaneous Lo-

calization and Mapping, as a means of guiding vision-based navigation. Initially conceived
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for robotic applications, SLAM’s primary objective involves the estimation of a robot’s own

position (i.e., localization) and the positions of a set of landmarks (i.e., mapping) ([43], [44],

and [45]). In most cases, this can be accomplished through an EKF that uses range mea-

surements from the robot to the landmarks as observation data.

Paper [46] presents an indoor navigation approach for UAVs using low-cost range sensors.

The authors address the challenges of mapping and self-localization in complex unknown

indoor environments and propose a wall-following guidance algorithm for navigation. The

authors in [47] address the problem of UAVs circumnavigating an unknown target in a GPS-

denied environment by utilizing a method to estimate the target’s position using range-only

measurements obtained from the UAV’s sensors. The method entails estimating the target’s

position based on the range data, using a Kalman filter. Reference in [48] proposes a tech-

nique for UAV navigation in indoor GPS-denied environments, using range measurements

and odometry. The proposed algorithm extracts the range data and odometry from the

terrestrial radio measurements between the UAV and a set of stationary reference points

using inertial sensors, such as an accelerometer. Then a Kalman filter is used to fuse the

range and odometry measurements and estimate the UAV’s state. The article [49] developed

an indoor localization method for unmanned aerial vehicles (UAVs) by integrating range

distance measurements with data from an Inertial Measurement Unit (IMU), which includes

acceleration and angular rate. This method utilizes an Unscented Kalman Filter (UKF) to

enhance the fusion of these sensory inputs. Their research demonstrates improvements in

the accuracy and reliability of UAV localization within indoor environments, highlighting

the effectiveness of sensor data fusion. The research presented in [29] proposes an EKF to

estimate the position of the maneuvering UAV that lost its GPS connection, by measuring

the range to two individual UAVs at known locations. Article [50] provides a method that

takes advantage of aided measurements from one or more cooperative UAVs flying under

full GPS coverage to enhance the navigation performance of a UAV in GPS-challenging en-

vironments. A sensor fusion method based on an EKF is used that combines measurements
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from onboard inertial sensors and magnetometers, available GPS pseudoranges, position in-

formation from cooperative UAVs, and line-of-sight estimated by vision-based tracking [50].

In paper [28], relative navigation is proposed using only inter-satellite range measurements.

It also explores the observability of range-only relative navigation, possible trajectories that

can produce the same time history of range measurements, and a method for computing

these solutions.

From a control point of view, the article [51] has developed a range-based sliding mode

control for the autonomous navigation of an aerial drone to approach and follow a herd of

cattle. The algorithm does not depend on the accuracy of the range measurements, however,

the rate of change of range measurements is used to fly the drone towards the herd. Article

[52] designs a robust heading controller that employs a sliding mode controller for UAVs to

effectively intercept both stationary and moving ground targets of interest. The proposed

approach offers low computing costs and minimal sensor requirements, merely relying on

range measurements. Article [53] introduces a trajectory generation and tracking method

for drones in urban environments. This algorithm navigates the drone along a predefined

path that passes through a given set of waypoints with linear segments between them. In

addition to aiding UAV navigation, the utilization of range measurements holds significant

prominence in the navigation of underwater vehicles. In reference [54], a synthetic long

baseline navigation algorithm is proposed for underwater vehicles. The vehicle uses range

measurements from a single transponder, and a discrete-time Kalman filter is designed for

the linearized model of the system to obtain the required estimates. In [55], the authors

address the problem of underwater navigation with unknown currents using range measure-

ments to a single beacon, and an analysis of the observability of the nonlinear system is

performed by linearizing it. A Luenberger estimator for the linearized system is introduced,

but in practice, an extended Kalman filter (EKF) is implemented to estimate the state with-

out any guarantees of global asymptotic stability. This problem has been further studied

in [56] and [57] using the EKF to solve a navigation problem based on single beacon range

11



measurements. In [58], the authors propose an algorithm based on the square of the range

measurements to a source while taking into account the inertial position of the agent. This

method is able to provide the necessary self-awareness of the agent’s motion to achieve Global

Exponential Stability (GES) under a persistent excitation condition. The work of Batista,

Silvestre, and Oliveira [59, 60, 61] on source localization and vehicle navigation based on

single-range measurements uses state augmentation to derive a linear time-varying (LTV)

model. The necessary and sufficient conditions for the observability of the nonlinear system

are derived, and a Kalman filter is applied to the augmented linear time-varying system

to estimate the system state with globally asymptotically stable error dynamics. Further

research by the same authors, including acceleration readings, can be found in [62], where

conditions were derived for globally asymptotically stable error dynamics. The article [61]

addresses the problem of navigation and source localization using range measurements to a

single source in the presence of unknown constant drifts. The system’s observability is stud-

ied and a Kalman filter is proposed for the LTV system with guarantees of global exponential

stability (GES) of the error dynamics. The estimator solutions proposed in [63] are inspired

by the work of Batista et al. with some noticeable differences, particularly in terms of the

augmented state definition and the formulation of persistent excitation (PE) conditions that

ensure uniformly exponentially stable (not just convergent) over time. Article [64] uses an

augmenting method proposed by Batista et al. [59, 60, 61] for state estimation in systems

with linear dynamics and quadratic output. It also introduces persistent excitation condi-

tions on the input and its derivatives to ensure uniform observability. In [65], the authors

introduced a systematic method for systems with linear dynamics and quadratic outputs into

a higher-dimensional LTV system by adding the minimum necessary auxiliary states. This

approach simplifies the observer design process by linearizing the output relation, facilitating

the use of a Kalman-type observer for global exponential state estimation.

Estimation methods for the class of linear systems with quadratic measurement in the ex-

isting literature frequently use the Kalman filter family. Especially navigation techniques
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based on range measurements gravitate towards linearizing the estimation problem and use

the Kalman filter. However, it is imperative to address these problems using a nonlinear

estimation method. Some of the most important limitations of the methods in the literature

are concerns about the convergence time and the accuracy of estimation. Consequently,

there exists a pressing need for improvement in these critical aspects.

1.3 Contributions

This thesis addresses the state estimation problem in a class of systems with linear dynamics

and quadratic measurements perturbed by noise. A novel nonlinear estimator is proposed to

estimate the state in this class of nonlinear systems, without transforming the system into

a linear system. The contributions of this work are:

1. In Chapter 3, The estimation error dynamics is found to be a non-autonomous Verhulst

logistic equation that unveils the link between the estimation problem and the popu-

lation dynamics. Moreover, the equation of time evolution of the probability density

function of the estimation error is derived (the Fokker-Planck-Kolmogorov equation).

Then, the stationary distribution of the error is proved to converge to a zero-mean

Gaussian with adjustable variance under certain conditions. Furthermore, the perfor-

mance of the proposed estimation method is illustrated through an example of velocity

estimation from energy measurement in human body energy harvesters.

2. In Chapter 4, the nonlinear estimator proposed in Chapter 3 is extended for piecewise

affine motions (each piece occurs on a given plane). The estimation error is proved

to converge to zero in steady-state. Moreover, a navigation algorithm is proposed for

a UAV pipeline inspector in a GPS-denied environment where the measurement is

squared range.
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1.4 Thesis Structure

This thesis will be subdivided into the following chapters. Chapter 2 provides an overview of

the theoretical preliminaries required in this thesis. These preliminaries include concepts in

linear algebra, probabilistic estimation, Brownian motion, stochastic differential equations,

and Verhulst population dynamics. Chapter 3 then proposes a nonlinear method of state

estimation with its application to energy harvesters to estimate physical states from noisy en-

ergy measurements. In Chapter 4, the same nonlinear estimator is extended to the piecewise

affine trajectories. A case study of state estimation for navigation of a quadrotor pipeline

inspector using a noisy range measurement is subsequently performed. Finally, Chapter 5

presents the conclusions and future considerations.
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Chapter 2

Theoretical Preliminaries

2.1 Introduction

In this chapter, a review of the theoretical preliminaries of this thesis is performed. In Section

2.2, conventions and notations used in this thesis are introduced. Subsequently, in Section

2.3, a review of probability theory is carried out followed by a summary of the Brownian

motion, stochastic differential equations, and the Fokker-Planck-Kolmogorov equation. A

concise review of state estimation is presented in Section 2.4 including the observability of

linear time-variant (LTV) and nonlinear systems and the Kalman filtering method for LTV

systems. Finally, the Verhulst population dynamics is briefly explained in Section 2.5.
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2.2 Conventions and Notations

2.2.1 Array and Matrix Conventions and Notations

In this thesis, a column array is denoted by a lowercase bold letter, and an m × n matrix

which is a two-dimensional array of numbers is denoted by an uppercase letter, e.g.,

a =


a1
...

an

 , A =



a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n
...

...
...

. . .
...

am1 am2 am3 . . . amn


. (2.1)

The transpose of the matrix A is designated as an n×m matrix AT . The matrix A−1 denotes

the inverse of the matrix A, and for a square matrix A, it satisfies AA−1 = A−1A = I, where

I is an identity matrix of the same dimensions as A.

Throughout this thesis, a vector is denoted by v⃗ = ve⃗v, where v = ∥v⃗∥ is the magnitude of

v and ∥.∥ denotes the 2-norm, and e⃗v is a unit vector that indicates the direction.

2.2.2 Change of Coordinates

Given that a vector may have different coordinates when observed from different reference

frames, it becomes necessary to change these coordinates when transitioning between said

frames. The notation used for the coordinates of the vector v⃗ ∈ R2 with respect to the frame

I, is I [v⃗] and can be written as the column array,

I [v⃗] =

v1
v2

 . (2.2)
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Figure 2.1: Change of coordinates

The rotation matrix RI
B to change the coordinates of a vector from the frame I to B in 2-D

is denoted by

RI
B =

cos(θ) − sin(θ)

sin(θ) cos(θ)

 (2.3)

where θ is the clockwise angle between the XI and the XB axis (see Fig.2.1). One can then

write

I [v⃗] = RI
B
B[v⃗] (2.4)

2.3 Probability Theory

In the context of this thesis, probability theory plays a fundamental role in modeling and

analyzing systems with noise. The probability space denoted by (Ω,F , p) is the underlying

concept in probability theory. The set Ω is the basic sample space in which its elements ω

are samples or outcomes. Events are specific subsets of Ω or collections of outcomes. The

probability of an event or a variable is denoted as p(x). This function signifies the likelihood

or chance associated with the occurrence of a specific event or the value of a random variable.

2.3.1 Random Variables and Stochastic Processes

In the study of probability theory, the concept of a random variable is crucial. Therefore, in

this section, a review of random variables is presented. Despite its nomenclature, a random

variable is neither intrinsically random nor a variable. It is in fact a deterministic function
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that associates a real number with each possible outcome of a random experiment, hence

providing a numerical representation of random outcomes.

Definition 1. [66] A real finite-valued function X(·) : Ω→ R is called a random variable

if, for every real number x, the inequality

X(ω) ≤ x (2.5)

defines an ω set, whose probability is defined.

Crucially, for this mapping to be valid in the probabilistic sense, it must be measurable

according to the next definition.

Definition 2. [67] Let (Ω,F , p) be a probability space. A function X : Ω → R is called F

measurable if for all open sets U ∈ R, their pre-image under X belongs to F ,

X−1(U) = {w ∈ Ω : X(w) ∈ U} ∈ F (2.6)

A random variable X is an F -measurable function. In other words, it is a measurable

function, denoted X(ω), which maps sets of events in F onto the real number line.

Definition 3. [66] The distribution function of the random variable x is defined for all real

x as follows:

Fx := p(X(ω) ≤ x) (2.7)

Definition 4. [66] A random variable x is continuous if there exists a Probability Density

Function (PDF) fX(·), such that

FX(x) =

∫ x

−∞
fX(s)ds, −∞ < x <∞ (2.8)

Theorem 2.1. [66] A probability density function exists provided that the distribution func-

tion is absolutely continuous. This implies that the distribution function FX(·), should be
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differentiable almost everywhere, with the exception being only at a finite or countably infi-

nite number of points. Therefore, it is evident from equation (2.8) that

fX(x) =
d

dx
FX(x) (2.9)

at all x where the derivative exists.

In the realm of random experiments, it is common for researchers to be particularly interested

in the expected value, or the mean, of a random variable. This concept is defined as follows.

Definition 5. [67] Suppose (Ω,F , p) is a probability space and X is integrable (based on

Lebesgue integral definition), i.e. X ∈ L1(Ω,F , p). The expected value (mean, average, first

moment) of a continuous random variable taking values x ∈ [xmin, xmax], is defined as

E[X] :=

∫ xmax

xmin

xfX(x)dx, (2.10)

where fX(x) ≥ 0 is the PDF and satisfies

∫ xmax

xmin

fX(x)dx = 1. (2.11)

The expected value for probability integrals with F = [xmin, xmax] can also be rewritten as

E[X] =

∫ xmax

xmin

x
dp

dx
dx =

∫
F

Xdp (2.12)

where X is a function that maps random outcomes into real values x and dp
dx

= fX(x) is the

PDF.

Theorem 2.2. [67] The expected value holds the following properties:

1. (Linearity) E[αX + βY ] = αE[X] + βE[Y ], ∀α, β ∈ R,

2. (Nested Expectation) E[E[X]] = E[X],
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3. (Inner Product) E[XY ] = ⟨X, Y ⟩ if E[X2] <∞, E[Y 2] <∞

Definition 6. [66] The n-th moment of x about the mean (n-th central moment) is defined

by

E
[
(x− E(x))n

]
:=

∫
(x− E(x))nfX(x)dx (2.13)

In some cases, a thorough understanding of the statistical interdependence or correlation

between two random variables is essential to fully grasp the dynamics of the underlying

system or process. Correlation can be defined based on the notion of covariance.

Definition 7. [67] The covariance between two random variables X and Y is defined as

KXY = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ]. (2.14)

The covariance between X and X is called the variance KXX = σ2
X , and two random variables

X, Y are uncorrelated if KXY = 0.

Definition 8. [68] In probability theory, events are called independent if the occurrence of

one event does not affect the probability of the occurrence of the others. Formally, a set

of events A1, A2, ..., An ∈ F is mutually independent if the probability of the intersection

of any subset of these events equals the product of their probabilities. i.e. for any subset

Ai1, Ai2, ..., Aik, this can be written as p(Ai1 ∩ Ai2 ∩ ... ∩ Aik) = p(Ai1)p(Ai2)...p(Aik).

Theorem 2.3. [69] If random variables X1, X2, ..., Xk are mutually independent, then

E

[
k∏

i=1

Xi

]
=

k∏
i=1

E[Xi] (2.15)

Theorem 2.4. [67] If two random variables X and Y are independent then they are uncor-

related.

Notice that the reverse is not true in general, meaning two variables being uncorrelated does

not imply that they are independent.
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It is important to note that the definition of the expected value for random vectors is iden-

tical to that for random variables. This is because, by definition, vector summation and

integration are executed coordinate-wise. However, random vectors are associated with a

distinct construct known as a covariance matrix.

Definition 9. [67] The covariance matrix of the random vector X is defined as

Kx = E[(X − E[X])(XT − E[XT ])] = E[XXT ]− E[X]E[XT ]. (2.16)

The covariance matrix is always symmetric since the element (i, j) of the covariance matrix is

the covariance KXiXj
between the random variables Xi and Xj. Furthermore, each element

(i, i) in the main diagonal is the variance (second moment about the mean) σ2
i of the random

variable Xi, i.e.

σ2
i = E[X2

i ]− E2[Xi]. (2.17)

Following the concept of individual random variables, one encounters stochastic processes,

which extend the theory’s application to variables changing over time or space. An intuitive

definition of a stochastic process is a series of random variables that are indexed by either

time or space.

Definition 10. [67] A stochastic process is a parameterized family of random variables

{Xt(ω)}t∈I indexed by a set I.

A stochastic process can thus be understood as a function with two parameters: the outcome

of a random experiment, represented as ω, and an index t, typically associated with the time

evolution. Stochastic processes can be interpreted in one of two ways:

1. For fixed ω, a stochastic process is a function of time, known as a sample path of the

stochastic process.

2. For fixed t, a stochastic process is a function of ω and behaves like a random variable.
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Figure 2.2: Gaussian probability density functions [70]

2.3.1.1 Gausssain Random Variable and Gaussian Process

In the study of random variables, the Gaussian random variables, also known as the normal

random variables, stand out as the most commonly employed and highly significant. This

is due to their ability to accurately represent a wide range of natural events, physical phe-

nomena, and random occurrences, including noise. Moreover, their widespread use is due in

part to the central limit theorem, which states that the sum or average of a large number

of independent and identically distributed random variables tends to follow a Gaussian dis-

tribution. These variables are characterized by a probability density function (PDF) that

follows the well-known bell-shaped curve, often referred to as the Gaussian distribution.

Definition 11. [71] A Gaussian random variable is one whose PDF can be written in

the general form

fX(x) =
1√
2πσ2

x

exp

(
− (x− µx)

2

2σ2
x

)
(2.18)

This PDF of the Gaussian random variable has two parameters, the first moment µx and

the second moment σx, which have the interpretation of the mean and standard deviation

respectively. The parameter σ2
x is referred to as the variance. These parameters define where

the distribution is centered and how it spreads out. Figure 2.2 illustrates some Gaussian

distributions with different means and variances.
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A Gaussian random variable is commonly represented by a simplified notation, denoted as

X ∼ N (µx, σ
2
x).

Theorem 2.5. [72] The n-th central moment (about the mean) of a Gaussian random vari-

able X ∼ N (µx, σ
2
x) is zero for odd moments, and for even moments is given by:

E[(X − µx)
n] = (n− 1)!! · σn

x (2.19)

According to this theorem the third central moment of X ∼ N (µx, σ
2
x) is zero, and the fourth

central moment is 3σ4
x.

Definition 12. [73] A stochastic process {Y(t) : t ≥ 0} is called a Gaussian process, if

for all t1 < t2 < ... < tn the vector (Y(t1), ...,Y(tn)) is a Gaussian random vector.

2.3.2 Brownian Motion

Definition 13. [74] Suppose X1, X2, ... are independent and identically distributed random

variables with equal probability having the value of −1 or 1. then

Sn = X1 +X2 + ...+Xn, (2.20)

is a simple random walk in Z. Random walk represents a discrete-time process where at

every individual time unit, there is an identical likelihood of either advancing to the right or

regressing to the left on a line.

The Central Limit theorem yields that as n increases, Sn converges to a normal distribution

with zero-mean and variance n (see [74] for the proof).

Definition 14. [75] Discrete-time Brownian motion can be defined as the random variable

w(t) = w(0) +
t∑

n=1

Sn. (2.21)
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where w(0) ∈ R, and the increments are ∆w(t) = w(t)− w(t− 1) = St, thus E[∆w(t)] = 0.

Continuous Brownian motion is essentially the continuous-time version of a random walk

where one decreases both the time intervals and the magnitude of each step. Therefore,

in the limit, the process evolves from discrete-time to continuous-time. Mathematically, let

∆t = k−1 for k ̸= 0, and ∆wk(n) for each increment n ∈ N be equal to either
√
∆t or −

√
∆t

with equal probability.

w(t) = w(kt∆t) = wk(t) = w(0) +
kt∑

n=1

∆wk(n) (2.22)

Continuous-time is thus divided into increments of ∆t units. If w(0) is known with proba-

bility 1, one can write the following for the expected value and variance of wk(t):

E[wk(t)] = E[w(0)] +
kt∑

n=1

E[∆wk(n)] = w(0) (2.23)

E
[(

wk(t)− E[wk(t)]
)2]

=
kt∑

n=1

E
[(
∆wk(n)

)2]
=

kt∑
n=1

(
1

2
(
√
∆t)2 +

1

2
(−
√
∆t)2

)
= t (2.24)

Continuous-time Brownian motion is W (t) = lim
k→∞

wk(t) which is a stochastic process, that is

a collection of random variables indexed by time. A more rigorous definition of continuous-

time Brownian motion is provided as follows.

Definition 15. [73] If the following holds, a vector-valued stochastic process {W (t) ∈ Rn : t ≥ 0}

starting at W0 ∈ Rn is referred to as n-dimensional Brownian motion (also called Wiener

process):

• W (0) = W0, and E[W (t)] = W0.

• The process has independent increments, i.e. for every choice of non-negative real

0 ≤ t1 ≤ t2 ≤ ... ≤ tm, the increments W (tm) −W (tm − 1), W (tm − 1) −W (tm −

2), ..., W (t2)−W (t1) are independent random vectors.
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Figure 2.3: Gaussian distributions of Brownian motion [76].

• The increments W (t+ h)−W (t) are normally distributed with expectation zero (zero-

mean Gaussian) and variance nh > 0 for all t ≥ 0 (Please see Figure 2.3).

• The function t→ W (t) is continuous almost surely (with probability one).

If n = 1, then the Brownian motion is called one-dimensional Brownian motion, and if

W0 = 0, then the Brownian motion is called a standard Brownian motion (denoted by W̄ ).

Remark. [75] For each 0 < t1 < t2,

E

[((
W (t2)−W (t1)

)T(
W (t2)−W (t1)

))2
]
= n(n+ 2)(t2 − t1)

2. (2.25)

The graphical representation of different Brownian motions is shown in Figure 2.4. The top

panel depicts the standard Brownian motion, characterized by its zero mean and its variance

expanding over time, with the sample paths contained within the quantiles 1, 5, 10, 90, and

95%. The PDF on the right illustrates the normal distribution of the endpoints of the

paths centered at the initial value X0 of 0. The middle panel shows Brownian motion with a

constant drift where the mean path is linear. The PDF here reflects the normal distribution of

the paths’ endpoints, skewed by the drift. The bottom panel shows a Brownian motion with
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a linear drift, resulting in geometric Brownian motion, marked by an exponential increase

in the average path. This results in a log-normal distribution of the final values, indicating

the non-negative nature of the process.

Figure 2.4: Graphical representations of different Brownian motions [76].
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Theorem 2.6. Even though Brownian motion t → W (t) is everywhere continuous, it is

nowhere differentiable almost surely. (See [77] for proof.)

Lemma 2.1. [77] (Scaling Invariance). Suppose {W̄ (t) : t > 0} is a standard Brownian

motion and let α > 0. Then the process {X(t) : t > 0} defined by X(t) = 1
α
W̄ (α2t) is also a

standard Brownian motion.

Theorem 2.7. [73] Brownian motion with start in W0 ∈ R is a Gaussian process.

Definition 16. [78] Consider the following Gaussian process for every n ∈ N

ξ
(n)
t := n

(
W (t)−W (t− 1/n)

)
; 0 ≤ t <∞ (2.26)

with E
[
ξ
(n)
t

]
= 0 and covariance E

[
ξ
(n)
t ξ

(n)
τ

]
= Qn(t− τ), where

Qn(s) =

 n2( 1
n
− s); |s| ≤ 1/n

0; |s| ≥ 1/n
(2.27)

as n→∞, the sequence of functions {Qn}∞n=1 approaches the Dirac delta. In a generalized,

distributional sense,

ξt = lim
n→∞

ξ
(n)
t (2.28)

is a zero-mean Gaussian process with covariance E
[
ξtξτ

]
= δ(t − τ) and it is called White

Noise.

It has been shown in [66, 79, 80], that if ξ̄(t) is a standard white Gaussian noise, it is the

formal derivative of the Brownian motion. Thus, we have:

dW̄ (t) = ξ̄(t)dt (2.29)

where dW̄ (t) represents infinitesimal displacements of standard Brownian motion with E[dW̄ (t)] =
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0, E[dW̄ (t)2] = dt. For the white noise ξ with the variance σ2, we have:

dW (t) = ξ(t)dt = σξ̄(t)dt (2.30)

where dW (t) represents infinitesimal displacements of Brownian motion with E[dW (t)] =

0, E[dW (t)2] = σ2dt.

2.3.3 Stochastic differential equations

In standard calculus, a differential equation representing a continuous dynamical system

with a finite-dimensional state is of the form

df(t)

dt
= G(t, f(t)), t ≥ t0 (2.31)

where G(t, f(t)) is the rate of the change with respect to t of the function f(t), which can

depend on both t, and the value of f at time t. Given an initial condition, the value of f(t)

can be described as

f(t) = f(t0) +

∫ t

t0

G(τ, f(τ))dτ, (2.32)

which can be calculated either directly by analytically solving the integral or the main dif-

ferential equation if possible, or by using numerical methods.

In stochastic calculus, the dynamical system in equation (2.31) subject to random distur-

bances can be described by a stochastic differential equation (SDE) of the form

dXt

dt
= G

(
t, ξ(t), Xt

)
, t ≥ t0 (2.33)

where Xt is a stochastic process and ξ(t) is the white Gaussian noise. An important special

case of equation (2.33) is the following SDE with additive noise.

dXt

dt
= F (t,Xt) + σ(t,Xt)ξ(t), t ≥ t0 (2.34)
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where the term F (t,Xt) is called the drift, and σ(t,Xt) is the diffusion term. The white

Gaussian process ξ(t) is not mean square Riemann integrable and equation (2.34) lacks any

mathematical meaning [66]. Consequently, using equation (2.30), one can rewrite equation

(2.34) and consider the formally equivalent SDE of the form

dXt = F (t,Xt)dt+ σ(t,Xt)dW (t), t ≥ t0, (2.35)

where W (t) is a Brownian motion. It can be inferred from this SDE that the process Xt

evolves at time t similar to a Brownian motion with drift F (t,Xt), and variance σ(t,Xt)
2.

Given an initial condition, the process Xt can be described as

Xt = Xt0 +

∫ t

t0

F (τ,Xτ )dτ +

∫ t

t0

σ(τ,Xτ )dW (τ), (2.36)

where the first integral is a standard calculus integral (Riemann integral) and the second

integral defined in a mean square sense is the stochastic (Itô) integral [81]. One of the Itô

stochastic integration results is

∫ b

a

df(t,W (t)) =
∑
ti

f(ti+1,W (ti+1))− f(ti,W (ti))

= f(b,W (b))− f(a,W (a))

(2.37)

(Proof: [82])

2.3.4 Fokker-Planck-Kolmogorov Equation

The Fokker-Planck equation describes the time evolution of the probability density function

(PDF). The solution of the SDE (2.35), is a stochastic process, and the probability density

of an Itô process Xt can be found by deriving the Fokker-Planck-Kolmogorov equation.

Theorem 2.8. [83] (Fokker-Planck-Kolmogorov equation). The probability density p(t,Xt)
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Figure 2.5: Simulation of the Ornstein-Uhlenbeck process [84]

of the solution of the SDE in equation (2.35) solves the partial differential equation (PDE):

∂p(t,Xt)

∂t
= − ∂

∂Xt

(
F (t,Xt)p(t,Xt)

)
+

1

2

∂2

∂X2
t

(
D(t,Xt)p(t,Xt)

)
, (2.38)

where F (t,Xt) is the drift coefficient, D(t,Xt) = σ2
Wσ2(t,Xt) is the diffusion coefficient

with σ2
W being the variance or intensity of the Brownian motion. This PDE is called the

Fokker–Planck–Kolmogorov (FPK) equation and is an initial value problem with the given

initial condition p(t0, Xt0) at time t = t0. (For proof see [83].)

Definition 17. [83] The stationary distribution of the solution of the FPK equation (2.38)

when it exists is the probability density function ps(Xt) that does not change with time. Thus,

the time derivative of the PDF is zero, i.e.,

∂ps(Xt)

∂t
= 0.

Example 2.1. [84] The Ornstein-Uhlenbeck process is a stochastic differential equation

used to model the velocity of a particle under the influence of friction and random forces,
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whose mean value reverts over time. The Fokker-Planck-Kolmogrov equation for this process

describes the time evolution of the probability density function p(t, Vt) for the velocity Vt at

time t.

Given a stochastic differential equation (SDE) for the Ornstein-Uhlenbeck process in the

form [84]:

dVt =

(
− ξ

m
Vt

)
dt+

√
2σ2

m
dW̄t, (2.39)

where Vt is the velocity, ξ is the friction coefficient, m is the mass, σ2 is the variance of the

process, and dW̄t represents the increment of a Wiener process (standard Brownian motion).

Substituting F (t, Vt) = − ξ
m
Vt, and the term D(t, Vt) =

2σ2

m2 into equation (2.38), we have:

∂p(t, Vt)

∂t
= − ∂

∂Vt

(
− ξ

m
Vt.p(t, Vt)

)
+

1

2

∂2

∂V 2
t

(
2σ2

m2
.p(t, Vt)

)
,

= − ξ

m

∂

∂Vt

(
Vt.p(t, Vt)

)
+

σ2

m2

∂2p(t, Vt)

∂V 2
t

(2.40)

The stationary distribution ps(Vt) satisfies the condition ∂ps(Vt)
∂t

= 0, indicating that ps(Vt)

does not change with time. For the stationary case, the Fokker-Planck equation simplifies

to the following ordinary differential equation (ODE):

0 = − ξ

m

∂

∂Vt

(
Vt.p(t, Vt)

)
+

σ2

m2

∂2p(t, Vt)

∂V 2
t

. (2.41)

We can conclude that a process is stationary if this equation has a unique solution.

By integrating this equation we have,

σ2

mξ

∂p(Vt)

∂Vt

+ Vt.p(Vt) = C, (2.42)

where C is an integration constant. The solution of this first order ODE for ps(Vt) is then

given by

p(Vt) = e−
mξV 2

t
2σ2

(
mξC

σ2

∫
e

mξV 2
t

2σ2 dVt +K

)
. (2.43)
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where K is a constant. The normalization condition
∫∞
−∞ ps(Vt)dVt = 1, and the non-

negativity condition ps(Vt) ≥ 0 for all Vt imply that C must be 0 and K = 1√
2π σ2

mξ

. This

conclusion arises because any non-zero value of C would affect the asymptotic behavior of

ps(Vt) by making it unbounded, causing the violation of these constraints. Consequently,

the stationary distribution of the Ornstein-Uhlenbeck process is Gaussian:

ps(Vt) =
1√
2π σ2

mξ

exp

(
− V 2

t

2 σ2

mξ

)
, (2.44)

with mean 0 and variance σ2

mξ
. The stationarity can be seen in Figure 2.5 where this process

is simulated with various initial conditions.

2.4 State Estimation

In many practical scenarios, the accurate estimation of the current state of a dynamical

system is of paramount importance. This necessity arises either for the design of a controller

or for the real-time acquisition of system information, serving as a basis for decision-making

or surveillance. A prevalent approach to address this problem involves using sensors on

or within the physical system. The ultimate aim is to construct a reliable estimation of

the entire system state based on this sensor data. Notably, the feasibility of implementing

such an algorithm depends on the premise that the measurements from the sensors possess

sufficient information to uniquely determine the system’s state, namely observability.

The process of designing an observer is guaranteed through the observability property. This

property essentially enables the determination of the initial state vector of the system by

having access to information about the system’s input and the resulting output over an

interval of time. While the observability of linear systems is independent of the input, this

is typically not the case for nonlinear systems, and one must take into account inputs that

distinguish the states, specifically, inputs that produce distinct outputs. In other words,
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these inputs must be properly selected in a way that they generate distinct outputs under

different system states. This distinction is necessary to establish observability in nonlinear

systems; please see [85].

2.4.1 Linear Time-Varying System

Consider a linear time-variant (LTV) system with the state space model

ẋ(t) = A(t)x(t) +B(t)u(t)

y(t) = C(t)x(t) +D(t)u(t)

(2.45)

where x(t) ∈ Rn is the state, u(t) ∈ Rm represents the input, y(t) ∈ Rp is the output, and

the matrices A(t), B(t), C(t), and D(t) are the time varying state space matrices.

2.4.1.1 Observability

The assessment of observability for time-varying systems is closely tied to finite time intervals.

Various observability concepts and definitions have been developed in this regard, and the

reader can refer to [86], [87], [88], and [89] for different perspectives and approaches to

characterizing observability in time-varying systems.

Definition 18. [64] An LTV system is called observable on [t0, T ] if any initial state x(t0)

is uniquely determined by the input u(t) and the output y(t) for t ∈ [t0, T ].

The concept of uniform observability is of significant importance, as it guarantees the well-

conditioning and solvability of the state estimation process via the design of exponentially

stable observers.

Assumption 2.1. The matrix-valued functions A(t), B(t), C(t), and D(t) of the LTV system

(2.45) are continuous and bounded on [0,+∞),

Definition 19. [90] The LTV system (2.45) (the pair A(·), C(·)) under Assumption 2.1 is
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uniformly completely observable if there exist τ, δ > 0 such that

∀t ≥ 0, 0 < δI ≤ W (t, t+ τ) :=

∫ t+τ

t

Ψ(s, t)TCT (s)C(s)Ψ(s, t) ds (2.46)

with Ψ(s, t) as the state transition matrix of ẋ = A(t)x and I as the identity matrix. The

matrix W is referred to as the observability Grammian of the system.

Evaluating the uniform observability of a time-varying linear system (LTV) can be complex,

as calculating the Gramian necessitates the integration of solutions of ẋ = A(t)x. Therefore,

it is well-established to use the observability properties of LTV systems which are related to

the attributes of the observability matrix O(t) defined in Theorem 2.9.

Theorem 2.9. The system (2.45) is observable for a specific time t̄ ∈ (t0, T ] if Rank
(
O(t̄)

)
=

n, where n is the order of the system, and O(t) :=



O0(t)

O1(t)

...

On−1(t)


with O0(t) = C(t), Oi(t) =

Oi−1(t)A(t) + Ȯi−1(t), i = 1, ..., n− 1. (Proof: [64])

The instantaneous observability at t is guaranteed using Theorem 2.9. However, uniform

observability cannot be characterized only in terms of rank conditions, unless one can prove

Rank
(
O(t)

)
= n for all t. For general LTV systems, a sufficient condition for uniform

observability is stated in Theorem 2.10 and Proposition 2.1.

Proposition 2.1. [91] Consider an LTV system (2.45) satisfying Assumption 2.1. Suppose

there exists a positive integer K such that

1. The k-th order derivative of A (resp. C) is well-defined and bounded on [0,+∞) up to

k = K (resp. up to k = K + 1).

2. There exists an n × n matrix O(t) defined in Theorem 2.9 and two scalars δ̄, τ̄ > 0
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such that

∀t ≥ 0, 0 < δ̄ ≤
∫ t+τ̄

t

∣∣det(O(s))∣∣ ds. (2.47)

Then, this system is uniformly observable.

Theorem 2.10. [86] The bounded LTV system (2.45) (under Assumption 2.1) is uniformly

completely observable if there exists a positive scalar δ̄ > 0 such that

∀t ≥ 0, 0 < δ̄I ≤ OT (t)O(t) (2.48)

where O(t) is defined in Theorem 2.9 and I is the identity matrix.

Theorem 2.11. [91] For a time-varying linear system (2.45) that satisfies Assumption 2.1,

the following properties hold:

1. The pair
(
A(·), C(·)

)
is uniformly observable if and only if the pair

(
A(·)−LC(·), C(·)

)
is uniformly observable, where L(·) is any bounded matrix-valued time-function.

2. If the pair
(
A(·), C(·)

)
is uniformly observable, then for any a > 0, there exists a

bounded matrix La(t) such that the linear observer

˙̂x = A(t)x̂+ La(t)(y − C(t)x̂)

is uniformly exponentially stable with a convergence rate determined by ”a”, i.e. there

exists ca > 0 such that

∥x̂(t)− x(t)∥ ≤ cae
−a(t−t0) ∥x̂(t0)− x(t0)∥ ,

for any t ≥ t0 and any initial conditions x(0) and x̂(0).
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Example 2.2. Consider the following LTV state-space model:

ẋ(t)
ẏ(t)

 =

 0 0

u(t) 0


x(t)
y(t)

+

1
0

u(t)

y(t) =

[
0 1

]x(t)
y(t)

 ,

(2.49)

where x(t) and y(t) are the states, and u(t) and z(t) represent the input and output of the

system respectively. For the instantaneous observability of this system we have

O0(t) = C(t) =

[
0 1

]
,

O1(t) = O0(t)A(t) + Ȯ0(t) =

[
0 1

] 0 0

u(t) 0

 =

[
u(t) 0

]
,

O(t) =

 0 1

u(t) 0

 .

(2.50)

When u(t) ̸= 0 for t ∈ [t1, t2] with t1 ≥ 0, t2 > t1, rank of O(t) is equal to 2. Therefore,

the system has instantaneous observability (Theorem 2.9). For uniform observability, if we

design the input to be u(t) = u0t
α with u0 > 0 and integer α ≥ 0, we have

∫ T

0

∣∣det(O(t))∣∣dt = ∫ T

0

u0t
αds =

u0T
α+1

α + 1
≥ δ̄ > 0. (2.51)

Since there exists a T > 0 and δ̄ = u0Tα+1

α+1
satisfying the inequality (2.51), the LTV system

in (2.49) is uniformly observable with the designed input (Proposition 2.1).

The instantaneous observability rank condition is necessary and sufficient for the observ-

ability of Linear Time-Invariant (LTI) systems. In Example 2.2, considering the constant

input u(t) = u0 > 0, the system (3.4) becomes an LTI system and the rank condition for

O(t) is sufficient and necessary. However, Example 2.3 shows an LTV system that exhibits
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instantaneous observability at most time instances but fails to achieve uniform observability.

Example 2.3. Consider a linear time-varying (LTV) system described by the following

state-space representation:

ẋ(t)
ẏ(t)

 =

0 sin(t)

0 0


x(t)
y(t)

+

0
1

u(t), (2.52)

z(t) =

[
1 0

]x(t)
y(t)

 .

The observability matrix O(t) for this system is:

O(t) =

1 0

0 sin(t)

 . (2.53)

The rank of O(t) is 2 (full rank) for t ̸= nπ, n ∈ Z, ensuring instantaneous observability

at these points. However, at t = nπ, the rank of O(t) reduces to 1 due to the zero value

of sin(t). For uniform observability, the system’s observability matrix must maintain full

rank across the entire time domain. In this example, the existence of points (t = nπ) where

the observability matrix’s rank is less than the system’s order 2 implies the system does not

satisfy the condition for uniform observability. The system’s state cannot be fully determined

from the output z(t) at these points.

2.4.1.2 Kalman-Bucy Filter

In this section, the continuous-time Kalman-Bucy filter and its usual assumptions are re-

called. The Kalman filter in continuous-time is designed for LTV systems modeled by

ẋ(t) = A(t)x(t) +B(t)u(t) +Q
1
2ω(t)

y(t) = C(t)x(t) +D(t)u(t) +R
1
2v(t)

(2.54)
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where t ∈ R represents time, x(t) ∈ Rn is the state vector, u(t) ∈ Rl is the bounded input,

y(t) ∈ Rm is the output, and ω(t) ∈ Rn and v(t) ∈ Rm are two independent white noise

processes with identity covariance matrices. The matrices A(t), B(t), C(t), Q(t),and R(t) are

bounded real matrices of appropriate sizes. Moreover, Q(t) and R(t) are symmetric positive

semi-definite matrices. The initial condition x(t0) ∈ Rn is an initial state vector following

the Gaussian distribution x(t0) ∼ N (x0, P0) with x0 ∈ Rn and P0 ∈ Rn×n.

The Kalman-Bucy filter [92] for this LTV system is as follows

˙̂x(t) = A(t)x̂ dt+B(t)u(t) dt+K(t)
(
y(t)− C(t)x(t)

)
(2.55)

K(t) = P (t)CT (t)R−1(t) (2.56)

d

dt
P (t) = A(t)P (t) + P (t)AT (t)− P (t)CT (t)R−1(t)C(t)P (t) +Q(t) (2.57)

x̂(t0) = x̂0, P (t0) = P0, (2.58)

where the solution of the Riccati Equation (2.57) is represented as a matrix function, denoted

as P (t) ∈ Rn×n, while K(t) ∈ Rn×m is the Kalman gain. The Kalman filter is well-recognized

for its optimal properties with respect to estimating the state of a linear dynamic system in

the presence of Gaussian noise. Furthermore, it is established that P (t) remains bounded.

The dynamics of the Kalman filter are stable under the conditions that the matrix pair

(A(t), Q(t)1/2) is uniformly completely controllable (see [93] for definition), and the matrix

pair (A(t), C(t)) is uniformly completely observable (equivalent to uniformly observable un-

der Assumption 2.1) [10,2]. Stability in this context firstly means the error covariance matrix

converges to a steady-state value or remains bounded over time. Secondly, the estimation

error does not grow unbounded over time (either remains bounded or converges to zero).

Example 2.4. This example outlines the design of the Kalman-Bucy filter for the system

(2.49) with constant input u(t) = u0. Assuming the process and measurement noise are
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white noise processes with covariance matrices given by:

Q(t) = 0.01 · I2, R(t) = 0.01, (2.59)

where I2 is the 2 × 2 identity matrix. Assume the initial conditions x̂(0) = [0, 0]T and

P (0) = I2. Initially, at t0 = 0 we have:

K(0) = P (0)CTR−1 =

1 0

0 1


0
1

 · 100 =

 0

100

 . (2.60)

The steady-state Kalman gain Kss can be calculated by solving the following Algebraic

Ricatti Equation (ARE)

0 = APss + PssA
T − PssC

TR−1CPss +Q, (2.61)

This equation does not involve derivatives of P with respect to time. Using numerical

methods, we obtain the steady-state error covariance matrix Pss and the steady-state Kalman

gain Kss as follows:

Pss =

6.21× 1014 1.01× 10−3

1.01× 10−3 1× 10−2

 , Kss =

0.101
1

 (2.62)

Here, we used Python programming language, specifically the ”scipy” library [94], which pro-

vides numerical methods for solving Riccati equations. The function ”solve continuous are”

from ”scipy.linalg” is used to find the solution of equation (2.61). This function internally

uses an advanced method based on the Schur decomposition (detailed in [95]), which involves

decomposing the matrix into a form that simplifies the Riccati equation. (Please refer to

[96] for more information about this library and its functions.)
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2.4.2 Observability of Nonlinear Systems

Typically, the observability of a nonlinear system is a local problem and can be characterized

by the conventional observability rank condition as outlined in [85]. However, this condition

is insufficient for the design of an observer since it tightly depends on the input used in

the system. In such cases, the design of an observer is limited to specific classes of inputs

that are deemed suitable. These inputs are typically referred to as ”regular” or ”persistently

exciting” inputs, see [97], [98], [99], and [100].

2.5 Population Dynamics

A population is a collection of members of the same species that reside in a certain area. The

logistic equation models bacterial, plant, animal, and human population expansion, bound

by the maximum population size (carrying capacity). The autonomous Verhulst logistic

equation has the form [101]

Ṅ(t) = N(t)
(
a− bN(t)

)
, t ≥ 0, N(0) = N0 > 0, (2.63)

The non-autonomous Verhulst logistic equation is usually denoted by [101]

Ṅ(t) = N(t)
(
a(t)− b(t)N(t)

)
, t ≥ 0, N(0) = N0 > 0, (2.64)

where N(t) is the population, N0 > 0 is the initial condition, a is the nonzero rate of growth

and a
b
= K is the carrying capacity where b ̸= 0. In the case of N0 < K, both a(t) and

b(t) are positive continuous functions. The population with a positive growth rate grows

and converges to the carrying capacity (blue line in Figure 2.6). When N0 > K, the growth

rate a(t), and b(t) are negative. In this case, the population decreases and converges to the

carrying capacity (orange line in Figure 2.6).
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Figure 2.6: Typical logistic curves for positive and negative growth [103]

The solution of the ODE (2.64) is given by [102]:

N(t) =
N0 exp

(∫ t

0
a(s) ds

)
1 +N0

∫ t

0
exp

(∫ s

0
a(ν) dν

)
b(s) ds

, (2.65)

Typically, This model is stochastically perturbed in two ways. The first one is additive noise

and the model can be described as follows

dN(t) = N(t)

[(
a(t)− b(t)N(t)

)
dt

]
+ σ(t)dW (t), t ≥ 0, (2.66)

where W (t) is 1−dimensional standard Brownian motion with W (0) = 0, N(0) = N0 and

N is a positive random variable. Here a(t), b(t), and σ(t) are bounded continuous functions

defined on t ∈ [0,∞). It is reasonable to assume that N0 is independent of W (t).

The second model is perturbed by multiplicative noise. Suppose that parameter a(t) is

stochastically perturbed as

a(t) + ξ(t) (2.67)
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Figure 2.7: Population dynamics over 100 years with a negative growth rate using the
Verhulst logistic model.

where ξ(t) is zero-mean white noise with the variance or intensity of σ2(t). Then using

equation (2.30), this perturbed system may be described as follows [104]

dN(t) = N(t)

[(
a(t)− b(t)N(t)

)
dt+ σ(t)dW (t)

]
, t ≥ 0. (2.68)

In population dynamics, negative population growth will occur if a greater percentage of

the population dies than can be replaced (population decline phase) [105]. This decline is

influenced by the negative growth rate a < 0, which is further moderated by the logistic

term b, showing how the population stabilizes at a lower density as time progresses.

Figure 2.7 presents a graphical representation of population dynamics under a negative

growth rate scenario. The initial population N0 is set to 1000 individuals, the growth rate

is a = −0.05 per year, and b = 0.0001 per individual per year. The model is analyzed over

a period of 100 years to clearly observe the population’s approach towards zero.
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Chapter 3

Nonlinear State Estimation and its

Application in Energy Harvesters

3.1 Introduction

State estimation involves mathematical methods used to reconstruct the states of a sys-

tem using measurements. The key challenge in state estimation is to offer robust real-time

estimates despite measurement noise. Throughout this chapter, we will dive into the math-

ematical formulations and principles of the state estimation problem for a class of systems

with linear dynamics and noisy quadratic measurements. Subsequently, we propose our in-

novative solution to this problem, the nonlinear estimator, and present the observability

conditions and the rigorous proof of the stability of the estimation error. The proposed

nonlinear estimator is then applied to the kinetic energy harvesting estimation problem.

3.2 Problem Statement

A particular class of systems with linear dynamics and quadratic measurements perturbed

by noise is considered in this thesis. By focusing on this class, the goal is to derive observ-

ability conditions and design a nonlinear estimator to estimate the state.
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Figure 3.1: Block diagram of the nonlinear estimation and control framework

It is assumed that the state of the system has a piecewise affine trajectory in 3D. Our pro-

posed method uses a 1D nonlinear estimator in each sector of the trajectory and a switching

algorithm to switch between sectors. This system can be viewed as a hybrid system, since

it exhibits continuous dynamics and discrete event switching. The block diagram in Figure

3.1 demonstrates our proposed method’s estimation and control framework. The model of

the system in each sector can be described as

ẋ(t) = αu(t)

y(t) = β
x2(t)

2
+ ξ(t),

(3.1)

where x(t) is the state, u(t) is the input of the system, the output y(t) is the quadratic

measurement, and ξ(t) is zero-mean white noise with variance σ2.

Problem formulation: Given the model (3.1), design a trajectory for u(t) that makes the

state x(t) observable and propose an estimator for x̂(t) that guarantees that E[δx(t)] → 0

as t→∞, where δx(t) = x(t)− x̂(t).
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3.3 Noiseless Problem

3.3.1 Observability

For nonlinear systems, local observability is often evaluated using a test that linearizes the

system. However, a significant complexity with such systems is that their observability can

vary based on the input. Therefore, aiming at global observability we must consider inputs

that distinguish the states.

We consider first the case where there is no noise,

ẋ(t) = u(t)

y(t) =
x2(t)

2
.

(3.2)

The problem is to estimate the state x(t) from the measurement y(t). It is clear that this

problem does not have a unique solution if the input of the system is equal to zero, because

of the fact that both x(t) and −x(t) would lead to the same value of y(t). We therefore,

assume that the input u(t) is determined by the designer and that there exist t1, t2, such

that u(t) ̸= 0 for t ∈ [t1, t2] with t1 ≥ 0, t2 > t1. Under this assumption, one can write an

augmented linear model ([59], [64]) of model (3.2) as

ẋ(t)
ẏ(t)

 =

 0 0

u(t) 0


x(t)
y(t)

+

1
0

u(t)

y(t) =

[
0 1

]x(t)
y(t)


(3.3)

Theorem 3.1. The linear time-varying system in (3.3) is uniformly observable assuming

the input u(t) = u0t
α with u0 > 0 and integer α ≥ 0 where u(t) ̸= 0 for t ∈ [t1, t2] with

t1 ≥ 0, t2 > t1.

Proof. According to Theorem 2.9 provided in Chapter 2, for the instantaneous observability
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of the LTV system (3.3) we have

O0(t) = C(t) =

[
0 1

]
,

O1(t) = O0(t)A(t) + Ȯ0(t) =

[
0 1

] 0 0

u(t) 0

 =

[
u(t) 0

]
,

O(t) =

 0 1

u(t) 0

 .

(3.4)

When u(t) ̸= 0 for t ∈ [t1, t2] with t1 ≥ 0, t2 > t1, rank of O(t) is equal to 2. Therefore,

the system has instantaneous observability. For uniform observability using the assumption

u(t) = u0t
α with u0 > 0 and integer α ≥ 0, one can write

∫ T

0

∣∣det(O(t))∣∣dt = ∫ T

0

u0t
αds =

u0T
α+1

α + 1
≥ δ̄ > 0. (3.5)

Since there exists a δ̄ = u0Tα+1

α+1
and T > 0 satisfying the inequality (3.5) and based on

Theorem 2.9 and Proposition 2.1 (Chapter 2), the system (3.3) is uniformly observable given

the assumed input.

Theorem 3.1 implies that if the designer picks such input the problem of estimating x(t)

from knowledge of y(t) is guaranteed to have a solution. In the case of the constant input

u(t) = u, the system becomes an LTI system with the following constant observability matrix

O =

 C

CA

 =

0 1

u 0

 , |O| = −u. (3.6)

Since the determinant is not zero when the system’s input u is not zero, then the state x(t)

can be estimated from the measurement of y(t). The literature has focused on the solution

of this estimation problem using the transformation to the linear model (3.3), and then de-

signing a Luenberger linear observer or a Kalman filter for time-varying linear systems.
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3.3.2 Nonlinear Observer

This thesis will depart from previous approaches by proposing a nonlinear estimator for noisy

measurements. The second author of [106] solved the noiseless problem as follows.

Consider an observer proposed in [107] to find an estimate x̂(t) of the state with dynamics

˙̂x(t) = u(t) + L

(
x2(t)

2
− x̂2(t)

2

)
= u(t) +

L

2
(x(t) + x̂(t))(x(t)− x̂(t)), (3.7)

where L is a gain to be determined by the designer. Writing the dynamics of the estimation

error δx(t) = x(t)− x̂(t) yields

δẋ(t) = ẋ(t)− ˙̂x(t) = −L

2
(x(t) + x̂(t))(x(t)− x̂(t)) = −L

2
(2x(t)− δx(t))δx(t), (3.8)

which is a Verhulst equation with a growth rate proportional to −L. To solve this Verhulst

equation, article [106] follows the standard procedure and performs the change of variables

δx(t) =
ḟ(t)

1− L
2
f(t)

, (3.9)

which is well defined for all values of f(t) that are different from 2/L. This condition will

be later guaranteed when stating the main result in the theorem. Under the change of

coordinates (3.9) equation (3.8) is transformed to

f̈(t) + Lx(t)ḟ(t) = 0, (3.10)

which is linear and has the solution

f(t) = f(0)e−
∫ t
0 Lx(τ)dτ . (3.11)
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Replacing (3.11) into the change of coordinates (3.9) then yields the error solution

δx(t) =
δx0e

−
∫ t
0 Lx(τ)dτ

1− L
2
δx0

∫ t

0
e−

∫ s
0 Lx(τ)dτds

, (3.12)

where, for a constant u the integral in the denominator is

∫ t

0

e−L(x0s+0.5us2)ds =√
π

2Lu
e

Lx20
2u

[
er

(√
L

2u
x0 +

√
Lu

2
t

)
− er

(√
L

2u
x0

)]
,

and the er function is defined as usual by

er(z) =
2√
π

∫ z

0

e−τ2dτ. (3.13)

The equilibrium points of equation (3.8) are obtained from the condition δẋ(t) = 0, leading

to the solution

δx(t) = 0, ∀t ≥ 0, (3.14)

and the (potential) solution

δx(t) = 2x(t), ∀t ≥ 0. (3.15)

Note, however, that (3.15) only represents an equilibrium point if x(t) is constant, because

otherwise equation (3.15) would lead to δẋ(t) = 2ẋ(t) ̸= 0. Given the assumption that u ̸= 0

for t ∈ [t1, t2] with t1 ≥ 0, t2 > t1, it is not possible that x(t) will be constant for all time

(ẋ = u) and therefore the equation (3.15) does not represent any equilibrium point. This

leaves δx(t) = 0, ∀t ≥ 0, as the only equilibrium point.

Theorem 3.2. [107, 106] Let |x0| ≤ x̄0. If L > 0, x̂0 ≥ x̄0, u(t) = u0t
α with u0 > 0 and

integer α ≥ 0, then δx(t)→ 0 as t→∞.

Proof. [107, 106] The solution (3.12) converges to zero if L > 0, δx0 ≤ 0 and if
∫ t

0
x(τ)dτ

converges to infinity, which is the case when u(t) = u0t
α with u0 > 0 and integer α ≥ 0.
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3.4 Noise-Corrupted Model: Nonlinear Estimator

The system model (3.1), (using equation (2.30) explained in Chapter 2), can be written as

follows

dx(t) = u(t)dt

z(t) = y(t)dt =
x2(t)

2
dt+ dW (t).

(3.16)

where dW (t) = ξ(t)dt represents infinitesimal displacements of Brownian motion (or Wiener

process) with E[dW (t)] = 0,E[dW (t)2] = σ2dt, and σ is the standard deviation of the noise.

The following nonlinear estimator is proposed to estimate the state using noisy measure-

ments.

dx̂(t) =u(t)dt+ L (z(t)− ẑ(t)) dt

= u(t)dt+ L

(
x2(t)

2
dt+ dW (t)− x̂2(t)

2
dt

)
= u(t)dt+

L

2
(x(t) + x̂(t))(x(t)− x̂(t))dt+ LdW (t).

(3.17)

One can obtain the estimation error dynamics for the system with additive noise (3.16) as

dδx(t) = dx(t)− dx̂(t)

= u(t)dt− u(t)dt− LdW (t)

− L

2
δx(t)

(
2x(t)− δx(t)

)
dt

= −L

2
δx(t)

(
2x(t)− δx(t)

)
dt− LdW (t)

(3.18)

where, as before, x̂(t) is the estimated state, δx(t) = x(t)− x̂(t) is the estimation error, and

L is the estimator gain. Thus, the error δx(t) is a stochastic process, and the error dynamics

is modeled by the SDE (3.18).
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Theorem 3.3. If the trajectory x(t) is such that

| lim
t→∞

x(t)| = |x∞| ≫
|δx∞|
3

, (3.19)

where δx∞ is the stationary value of the estimation error δx(t), then there is a stationary

probability density p(δxj∞) with a local maximum for δxj∞ = 0. This distribution can be

approximated by the Gaussian probability density

p(δxj∞) =
1√
2πσ2

∞
e
−

δx2j∞
2σ2∞ , (3.20)

where

σ2
∞ =

Lσ2

2x∞
. (3.21)

Moreover, if L is chosen such that

L≪ 2x∞

σ2
(3.22)

then σ∞ ≪ 1, and the stationary probability density is concentrated close to its mean.

Proof. The Fokker-Planck equation is

∂p(t, δx(t))

∂t
=− ∂

∂δx(t)

[
F
(
t, δx(t)

)
p
(
t, δx(t)

)]
+

1

2

∂2

∂δx2(t)

[
D
(
t, δx(t)

)
p
(
t, δx(t)

)] (3.23)

where p(t, δx(t)) is the probability density function of the error, F (t, δx(t)) is the drift

coefficient, and D(t, δx(t)) is the diffusion coefficient. From equation (3.18) we have

F
(
t, δx(t)

)
= −L

2
δx(t)

(
2x(t)− δx(t)

)
(3.24)

and

D
(
t, δx(t)

)
= L2σ2. (3.25)
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Replacing F and D in (3.23) and setting ∂P (t,δx(t))
∂t

= 0 to find a stationary distribution yields

p′′(δx∞) + a(δx∞)p′(δx∞) + a′(δx∞)p(δx∞) = 0, (3.26)

where

a(δx∞) =

(
2x∞δx∞

Lσ2
− δx2

∞
Lσ2

)
, (3.27)

and the prime symbol denotes the total derivative with respect to δx. Note that the last

two terms of equation (3.26) form the expression for the derivative of a product. Therefore,

equation (3.26) can be integrated to yield

p′(δx∞) + a(δx∞)p(δx∞) = c, (3.28)

where c is a constant of integration. The constant c must be zero for a local maximum at

δx∞ = 0, and the solution of (3.28) is then

p(δx∞) = p0e
− δx2∞

2σ2∞
(1− δx∞

3x∞ )
, (3.29)

where σ2
∞ is given by expression (3.21). The result then follows from assumption (3.19).

3.5 State Estimation using Energy Measurement with

Application in Energy Harvesters

In pursuit of advancing technology and addressing the growing demand for mobile power

sources, scientists and engineers have been exploring innovative solutions to extend the

operational lifespan of portable electronic devices. This quest has led to a remarkable break-

through in the form of harvesting energy from the human body itself.

In energy harvesters, apart from harnessing the kinetic energy stored within our bodies, we

can utilize the generated electrical energy measurements to gain insights into the system’s
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mechanics and physical state. Solving this state estimation problem leads to obtaining the

real-time system’s state which can be used in system diagnosis, boosting performance, and

optimizing the decision-making.

The kinetic energy of a moving body is proportional to the square of its velocity. This is

mathematically denoted by KE = 1
2
mv2b , where m is the body’s mass and vb is its velocity.

The generated electrical energy on the other hand can be measured using voltage measure-

ments [108] or methods such as Monjolo (a power-proportional, energy-harvesting approach

to energy-metering with the energy-harvesting power supply as the sensor [109]). The elec-

trical power or energy Ee in the output is proportional by the efficiency coefficient η
COH

to the kinetic energy KE in the input. The harvester’s efficiency commonly quantified as

Cost of Harvesting (COH) [110], can be used to obtain the kinetic energy (KE ≈ 1
η
COH

Ee).

Consequently, it is possible to model the problem of estimating the moving body’s velocity

using noisy energy measurements. Given the force F (t) = mv̇b(t) as the input, the following

models this system as

v̇b(t) =
F (t)

m
= αu(t)

y(t) = Ee + ξ(t) =
1

2
η
COH

mv2b (t) + ξ(t),

(3.30)

where considering the body velocity to be the state x(t) = vb(t), this system is the same as

the main nonlinear system (3.1), and one can use the nonlinear estimator to estimate the

body velocity using the electrical energy measurement.

3.6 Simulation Results

In this section, simulation results will illustrate the effectiveness of the proposed nonlinear

estimator for the kinetic energy harvester using the noisy energy measurement. The system

in equation (3.30) is simulated with different inputs such as
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• constant input

ẋ(t) = u(t) = u0 ̸= 0 (3.31)

• ramp input

ẋ(t) = u(t) = u0t

u0 ̸= 0

(3.32)

• feedback input

ẋ(t) = u(t) = −αx̂(t) + β

x̂(0) ̸= β

α
, α ̸= 0

(3.33)

The measurement of the energy in this system is perturbed by Gaussian white noise with

zero-mean and variance equal to 0.1Joules. A nonlinear estimator (3.17) is designed for the

system (3.30). Moreover, a Kalman filter (3.34) is also designed for the augmented system

(3.3) to compare our proposed method to the established methods in the literature.

Since the system (3.30) is observable, and based on Theorem 2.11, one can design a Kalman-

Bucy filter (or even a Luenberger observer) for this system as follows

 ˙̂x(t)

˙̂y(t)

 =

 0 0

u(t) 0


x̂(t)
ŷ(t)

+

1
0

u(t) +

K1

K2

 (y(t)− ŷ(t)). (3.34)

where K1 and K2 are the estimator gains.
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One can write the error dynamics of this estimator as follows

ėL =

ẋ(t)
ẏ(t)

−
 ˙̂x(t)

˙̂y(t)


=

 0 −K1

u(t) −K2

 eL.

(3.35)

The closed-loop eigenvalues of the error dynamics can be found by solving the following

quadratic equation

λ2 +K2λ+K1u(t) = 0 (3.36)

It is straightforward to show that assuming u(t) > 0, the eigenvalues are in the left-half plane

and the error is asymptotically stable whenK1 > 0 andK2 > 0. Moreover, the Kalman gains

K1 and K2 can be found by solving the Ricatti equation (2.57) (please refer to Example 2.4).

3.6.1 Constant Input

3.6.1.1 Nonlinear Estimator, Constant Input

Figure 3.2 shows the estimation error for a constant input (u(t) = 1). In this figure, 10

error trajectories or sample paths with different noise seeds are shown, all with the initial

condition x(0) = 0 and initial estimation x̂(0) = 10m/s.

Figure 3.3 illustrates the average of the estimation error’s different sample paths with differ-

ent estimator gains to see the effect of increasing L. Increasing L decreases the convergence

time; however, the steady-state variance of the estimation error σ2
∞ increases proportionally

to L which follows equation (3.21) in Theorem 3.3. Therefore, there is a trade-off between

faster convergence and precision of the steady-state estimation.
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Figure 3.2: The estimation error’s sample paths in the nonlinear estimator. (constant input)

Figure 3.3: Averages of the estimation error’s sample paths in the nonlinear estimator with
different estimator gain L. (constant input)
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3.6.1.2 Augmented State Method with Kalman Filter, Constant Input

Figure 3.4 depicts 10 estimation error trajectories (different noise seeds) of the Kalman filter

for the augmented system with constant input (u(t) = 1), with the initial condition x(0) = 0

and initial estimation x̂(0) = 10m/s, and the weighting matrices Q = 0.1× I2, R = 0.1.

Figure 3.4: The estimation error’s sample paths with the Kalman filter. (constant input)

Figure 3.5 shows the averages of estimation error’s sample paths with different Kalman filter

weighting matrices (Q and R). In the case with noise covariances Q = 0.1× I2, R = 0.1, the

mean error converges to zero, and its steady-state variance is lower compared to others.

3.6.1.3 Comparison, Constant Input

To compare the nonlinear estimator with the augmented state method with the Kalman

filter, figure 3.6 illustrates the averaged trajectories of the estimation error for both methods

with the best parameters I could find. The estimation error’s mean is closer to zero (more

accurate), and the variance in steady-state is smaller too (more precise) for the proposed

nonlinear estimator.
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Figure 3.5: Averages of the estimation error (Kalman filter, ramp input)

Figure 3.6: The estimation error of the nonlinear estimator and Kalman filter.
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3.6.2 Ramp Input

3.6.2.1 Nonlinear Estimator, Ramp Input

Figure 3.7 illustrates the estimation error sample paths of the nonlinear estimator with a

bounded ramp input (u(t) = t bounded between 0 to 10 seconds). The initial condition of

the system is x(0) = 0 and initial estimation is x̂(0) = 10m/s.

Figure 3.7: Estimation error sample paths (ramp input, L = 1).

3.6.2.2 Augmented State Method with Kalman Filter, Ramp Input

Figure 3.8 shows the estimation error of the Kalman filter in the augmented system with

bounded ramp input.
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Figure 3.8: Error sample paths (Kalman filter, ramp, Q = 0.1× I2, R = 0.01).

3.6.2.3 Comparison

Figures 3.9 and 3.10 show the averages of the estimation error’s different sample paths with

different observer gains (L) and Kalman filter noise covariances Q and R. Figure 3.9 illus-

trates that increasing L decreases the convergence time. However, following equation (3.21)

in Theorem 3.3, the steady-state variance of the estimation error σ2
∞ increases proportionally

to L.

Figure 3.11, illustrates the averaged trajectories of the estimation error for both methods

with the best parameters the author could find.

Similar to the constant input case, the convergence time of the estimation error towards a

region proximal to zero is less using the nonlinear estimator relative to the Kalman filter.

Furthermore, the mean value of the estimation error is closer to zero, and the steady-state

variance is notably reduced using the nonlinear estimator compared to the Kalman filter.
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Figure 3.9: Averages of sample paths (ramp input).

Figure 3.10: Averages of the estimation error (Kalman filter, ramp input).
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Figure 3.11: Estimation error of the nonlinear estimator and Kalman filter.

3.6.3 Feedback Input

In this section, the input of the system is designed as follows

u(t) = −αx̂(t) + β

x̂(0) ̸= β

α
, α ̸= 0

(3.37)

where u(t) is the input of the system, consisting of two constants α and β, and x̂(t) is the

estimated state. The quadratic measurement of the system is perturbed by Gaussian white

noise with zero-mean and variance equal to 0.1Joules, and the initial state is x(0) = 0m/s.

A nonlinear estimator for this system and a Kalman filter for the augmented system is

designed to estimate the state from the noisy measurement.

3.6.3.1 Nonlinear Estimator, Feedback Input

Figure 3.12 shows the estimation error of the nonlinear estimator with α = 1 and β = 10. In

this figure, 10 error sample paths with different noise seeds have been shown, all with initial
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estimations x̂(0) = 20m/s which satisfies the condition x̂(0) ̸= β
α
.

Figure 3.12: The estimation error’s sample trajectories in the nonlinear estimator. (α = 1,
β = 10, x̂(0) = 20)

Figure 3.13: The averaged estimation error’s sample paths in the nonlinear estimator with
different L. (α = 1, β = 10, x̂(0) = 20)
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Figure 3.13 represents a comparison between the averaged estimation errors with different

estimator gains for α = 1 and β = 10. Increasing L leads to a faster convergence and es-

timation error’s mean closer to zero, but higher error’s variance in the steady-state as before.

3.6.3.2 Augmented State Method with Kalman Filter, Feedback Input

Figure 3.14 shows the estimation error sample paths of the Kalman filter in the augmented

system with α = 1, β = 10, noise covariances Q = 0.01× I2, R = 0.01, and x̂(0) = 20.

Figure 3.14: The estimation error’s sample paths in the Kalman filter. (α = 1, β = 10,
x̂(0) = 20)

Figure 3.15 shows the averaged estimation errors of the Kalman filter with different Q and

R in the augmented system with α = 1, β = 10 and x̂(0) = 20.
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Figure 3.15: Averages of the estimation error (Kalman filter, feedback input).

3.6.3.3 Comparison, Feedback Input

To compare the methods, Figures 3.16 and 3.17 illustrate the averaged trajectories of the

estimation error for both methods with the best parameters found by the author. The initial

estimated state is x̂(0) = 20, α = 1 and β = 10 for the simulation in Figure 3.16, and

x̂(0) = 10, α = 1 and β = 30 respectively for the simulation in Figure 3.17.

The results indicate a faster convergence of the mean of the estimation error to zero in the case

of the nonlinear estimator when compared to the Kalman filter. Furthermore, the estimation

error using the nonlinear filter consistently maintains a state of equilibrium at zero after

convergence. This denotes a stable accuracy in estimation following the initial convergence

phase. However, despite the aforementioned advantages of the nonlinear estimator, the

Kalman filter exhibits a lower estimation error variance in the steady-state in this case.
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Figure 3.16: The estimation error of the nonlinear estimator and Kalman filter. (α = 1,
β = 10, x̂(0) = 20)

Figure 3.17: The estimation error of the nonlinear estimator and Kalman filter. (α = 1,
β = 30, x̂(0) = 10)
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3.6.3.4 State Variable, Feedback Input

Figures 3.18 and 3.19 illustrate the trajectories of the state (body velocity) with the input

in (3.37) alongside the averaged trajectories of the estimated state using both methods. In

these simulations α = 1, β = 30, and the initial estimations are selected as x̂(0) = 10m/s

and x̂(0) = 50m/s respectively.

Figure 3.18: Averaged trajectories of the state and the estimated states. (x̂(0) = 10m/s)

Figure 3.19: Averaged trajectories of the state and the estimated states. (x̂(0) = 50m/s)
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It can be inferred from Figures 3.18 and 3.19 that the state converges to the steady-state

value β/α. Moreover, the estimated state trajectory using the Kalman filter depends on the

initial estimate. In the case of |x̂(0)| > |β|, the estimation using the Kalman filter is worse

than |x̂(0)| < |β|.

3.6.4 Discussion of Simulation Results

From the simulations presented above, one can draw the following conclusions:

• The nonlinear estimation gain L is proportional to the steady-state variance of the

estimation error σ2
∞ and inversely proportional to the convergence time.

• The convergence time of the estimation error to zero is smaller using the nonlinear

estimator relative to the Kalman filter. Furthermore, the estimation error’s mean

is closer to zero, and the steady-state variance is lower in the nonlinear estimator

compared to the Kalman filter with the weighting matrices tested in this thesis.

• In the case of the feedback input and |β| > |x(0)|, the estimation error of the nonlinear

estimator converges to a neighborhood of zero. However, it may deviate from zero for

the Kalman filter at some times. (Figures 3.16, 3.17)

• The Mean Squared Error (MSE) of the nonlinear estimator is less than the Kalman

filter using the parameters tested in this thesis for both methods.

• The nonlinear estimator is simpler to tune than the Kalman filter.
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3.7 Conclusion

In this chapter, a method of state estimation is proposed for a class of systems with linear

dynamics and squared measurements perturbed by zero-mean Gaussian noise. This proposed

nonlinear estimator is used to estimate the body velocity in a kinetic energy harvester using

the measurements of the generated electrical energy.

The error dynamics of the nonlinear estimator were described by a nonlinear Verhulst logistic

equation. This observation unveiled a link between the state estimation using noisy squared

measurements and population dynamics. The equation of time evolution of the estimation

error PDF is derived. Then it has been proved that the stationary distribution of the

estimation error will converge to a zero-mean Gaussian with adjustable variance under a

certain assumption on the steady-state value of velocity (3.19).

The simulation results demonstrate the performance of the proposed nonlinear estimator in

terms of convergence speed and steady-state error estimation mean (accuracy) and variance

(precision), compared to the Kalman filter. The nonlinear estimator not only achieved faster

convergence for all inputs but also maintained convergence, unlike the Kalman filter. Its

mean squared error (MSE) was lower. Additionally, the nonlinear estimator proved to be

simpler to tune, representing a significant practical advantage.
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Chapter 4

Waypoint Navigation Based on Range

Measurement with Application to

Pipeline Inspection

4.1 Introduction

Regular inspections of pipelines are necessary to evaluate their condition, as they frequently

exhibit problems such as corrosion or external damage. In particular, in the oil and gas

sector, the damaged pipes might have serious consequences, such as explosions or environ-

mental risks. Preventing financial losses and environmental contamination and maintaining

safe working conditions all depend on the early diagnosis of these problems. Tradition-

ally, pipeline inspection was a labor-intensive and potentially dangerous task. Furthermore,

although manual pipeline inspection can be performed regularly, it is time consuming and un-

safe in hazardous places [111]. To address these issues, employing UAVs with vision sensors

offers a promising, cost-efficient, and reliable alternative for performing similar inspection

tasks [112], [113]. These autonomous quadrotors reduce human interaction and, therefore,

significantly decrease the possibility of human error and enhance the reliability of inspection
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by providing high-quality and consistent data in dangerous and repetitive operations [114].

Nowadays, the majority of UAVs are capable of autonomous navigation using the Global Po-

sitioning System (GPS) and inertial sensors. Despite the high level of automation achieved,

these GPS-based UAV navigation methods are highly dependent on GPS signals. Their re-

liance on GPS presents a challenge for GPS-denied environments where there is poor satellite

coverage, multipath propagation, and deliberate jamming [115], [116]. One of the alterna-

tives commonly used for UAV navigation in GPS-denied environments is range measurement

sensors due to their lightweight, cost-effective, and low power consumption. Range typically

derives from analyzing the time of flight of specific signal transmissions, which can be either

acoustic or electromagnetic in nature. In pipeline inspection, UAVs are frequently employed

to navigate extensive pipeline systems typically situated in GPS-denied environments, such

as underground or within tunnels. Employing range measurement for UAV navigation in

these scenarios not only addresses the challenge of GPS unavailability but also contributes

to reduced power consumption. The reason is that range sensors use less power compared to

other sensors for GPS-denied navigation [117]. This reduction in power usage enables UAVs

to complete vast pipeline mapping tasks without the need for frequent recharging.

The application of pipeline monitoring necessitates that the unmanned aerial vehicle (UAV)

navigates to predetermined specific geographic markers, or ”waypoints,” with efficiency and

reliability. To achieve this goal with autonomous reliability, the deployment of a navigation

system is crucial so that the UAV persistently maintains its spatial and temporal positioning

within the environment [118]. These waypoints are at the turning points of the pipeline where

range measurement emitters (sources) are installed. Within this context, the quadrotor de-

pends on an accurate estimation based on range measurements to an emitter to maintain an

accurate course, ensuring that it remains within safe proximity to the pipeline while covering

the entirety of the structure.

The range measurements provide critical data that help the quadrotor navigate through

waypoints, even in challenging or GPS-denied environments, effectively compensating for
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any potential loss or interference of signals. Nevertheless, it is important to consider that

range data alone does not provide directional information; hence, solely relying on range

measurements does not specify the exact location of the quadrotor. Instead of a unique and

specific point, a range sensor provides a wide spectrum of possible positions [119].

In addition, range measurements are subject to inaccuracies caused by environmental noise

or malfunctioning equipment [120]. Noise in distance measurements increases the effects of

incomplete data and adds to uncertainty [121]. Therefore, it is essential to implement an

estimation algorithm that accurately determines the exact position of the quadrotor.

This chapter aims to present the estimation and control problem of a navigation system.

The theoretical framework of the nonlinear estimator is elaborated upon and extended to

piecewise affine motions. This expansion is illustrated in a practical case study focusing on

the application of a nonlinear estimator. This case study is centered on position estimation

within the navigation system of a quadrotor, specifically designed for pipeline inspection

tasks in a waypoint scenario using noisy range measurements. Simulation results demon-

strate the effectiveness and robustness of this approach in real-world scenarios.

4.2 Problem Formulation

4.2.1 Motion in 3D

Let r⃗(t) ∈ R3 be the position of a vehicle and let a range measurement emitter (source) be

located at the position s⃗. Additionally, let

d(t) =
∥∥∥r⃗(t) + ξ⃗(t)− s⃗

∥∥∥
denote the measured range between the vehicle and the source, where ∥.∥ denotes the 2-

norm, ∥r⃗(t)− s⃗∥ is the actual range, and ξ⃗(t) is a zero-mean Gaussian measurement noise

vector.
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Without loss of generality, assuming the source is at the origin, the navigation model of the

vehicle moving in 3D can be written as

˙⃗r(t) = v⃗(t) (4.1)

y(t) =

∥∥∥r⃗(t) + ξ⃗(t)
∥∥∥2

2

where v⃗(t) ∈ R3 is the velocity vector (input), and y(t) is the measurement. The problem is

then to estimate the position from the measurement y(t).

In the pipeline inspection application, assuming a flat piecewise affine pipeline geometry and

a constant altitude for the UAV flying above it, this model can be transformed into a simpler

model.

Please note that the observability and state estimation of this nonlinear model depend on the

input. Therefore, estimation methods are studied for different inputs and vehicle motions.

In [122], the estimation problem under the helical and affine motions in 3D is addressed

using the nonlinear estimator. Here, the nonlinear estimator-based navigation algorithm is

demonstrated for vehicles with piecewise affine motion.

4.2.2 Picewise Affine Motion in 2D

Inspired by the pipeline inspection scenario, the navigation geometry (top view) of a flat

pipeline is shown in Figure. 4.1. There are several fixed sources installed at different way-

points. The route between every two consecutive waypoints Oj and Oj+1 is a straight line on

the East-North (EN) plane with a known bearing angle θj from North. Let I0 denote an in-

ertial reference frame consisting of the East-North (EN) plane in the East-North-Up (ENU)

coordinate system. Furthermore, let the symbol Ij, j = 1, 2, . . . , N denote an inertial local

reference frame aligned with I0, with its origin located at the position of the j-th waypoint.

Let Bj represent a local reference frame, wherein the Xj axis is oriented along the straight

line between the j-th waypoint and the (j + 1)-th waypoint (see Figure. 4.1).
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Figure 4.1: Navigation geometry with several waypoints.

Operating as an aerial inspector, the quadrotor maintains a constant altitude from the

pipeline while flying above it. The quadrotor utilizes the squared range measurements to

navigate, exclusively sourced from the waypoint from which it is progressively distancing

itself. The position of the quadrotor and the source located at the j-th waypoint expressed

in I0 are denoted by r⃗(t) and s⃗j respectively. The coordinates of the quadrotor’s relative

position vector r⃗j(t) = r⃗(t) − s⃗j are expressed in Ij. The coordinates of any vector r⃗ in a

frame Ij are denoted by Ij [r⃗]. From section 2.2.2, the rotation matrix RIj
Bj

is

sin(θj) − cos(θj)

cos(θj) sin(θj)

 (4.2)
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where θj is the clockwise bearing angle between the North axis of Ij and the Xj axis of frame

Bj. The coordinates of the quadrotor’s relative position vector expressed in Ij are given by

Ij [r⃗POj
(t)] = RIj

Bj

Bj [r⃗POj
(t)]

=

sin(θj) − cos(θj)

cos(θj) sin(θj)


xj(t)

0


=

sin(θj)
cos(θj)

xj(t)

(4.3)

where xj(t) is the displacement of the quadrotor relative to the source at Oj along Xj. Ig-

noring the drag, the quadrotor’s model in each segment while flying at a constant altitude

along Xj is

ẋj(t)

v̇j(t)

 =

0 1

0 0


xj(t)

vj(t)

+

0
g

 tan(ϕ) (4.4)

where vj(t) is the velocity of the quadrotor along Xj, ϕ is the pitch angle shown in Fig. 4.1,

and g is the gravitational acceleration. Note that by properly choosing the angle ϕ(t), one

can determine the time evolution of the velocity vj(t). Therefore, we will consider the input

signal of the system to be the velocity vj(t).

Considering motion in each segment j in the local coordinate frame Bj, one can write the

quadrotor dynamics with squared range measurements perturbed by zero-mean Gaussian

noise ξ(t) with variance σ2
W as

ẋj(t) = vj(t) (4.5)

yj(t) =
(xj(t) + ξ(t))2

2
=

1

2
x2
j(t) +

1

2
ξ2(t) + xj(t)ξ(t),
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Problem formulation: Given

• the positions of the waypoints Oj, j = 1, . . . , N and the straight paths connecting them

(i.e., θj, j = 1, . . . , n),

• a constant altitude h0 from the flat pipeline for the autonomous vehicle,

• range measurements of the squared distance to the source emitter located at the de-

parture waypoint which are perturbed by Gaussian white noise,

and assuming that

1. the initial position is above the pipeline,

2. a controller to maintain a constant altitude and to hover to change direction is available,

3. wind and drag are neglectable,

and given the navigation model in (4.1), design v⃗(t) that makes the position r⃗(t) observable

at each pipeline segment and keeps the quadrotor flying on top of the pipeline geometry at all

times. Additionally, propose an estimator for x̂j(t) that guarantees that E[δxj(t)]→ 0 as t→

∞, where E[.] is the mathematical expectation operator, and δxj(t) = xj − x̂j(t). Moreover,

design and simulate a waypoint navigation algorithm using the proposed estimator for a

quadrotor in a pipeline inspection task. The quadrotor must remain within safe proximity

to the pipeline while covering the entirety of the structure.

4.3 Methodology

4.3.1 Noise Approximation

The first step in solving the estimation problem is to simplify the noise. To do so, a new

variable can be defined for the noise term as

η(t) =
1

2
ξ2(t) + xj(t)ξ(t). (4.6)
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The thesis [19] proves that η(t) is neither zero-mean nor a Gaussian random variable.

Theorem 4.1. The mean (expected value) and the variance of η(t) are given by

µη := E[η(t)] =
1

2
σ2
W

σ2
η := E[(η(t)− µη)

2] =
1

2
σ4
W + x2

j(t)σ
2
W .

(4.7)

Proof. Following the proof in [19], since xj(t) and ξ(t) are mutually independent random

variables and given E[ξ(t)] = 0, and E[ξ2(t)] = σ2
W , then the mean of η(t) can be found as

µη := E[η(t)] = E
[1
2
ξ2(t)

]
+ E[xj(t)ξ(t)] = E

[1
2
ξ2(t)

]
+ E[xj(t)]E[ξ(t)]

=
1

2
σ2
W + 0 =

1

2
σ2
W .

(4.8)

To find the variance of η(t), we first compute E[η2(t)] as follows using the fact that E[ξ3(t)] =

0, and E[ξ4(t)] = 3σ4
W .

E[η2(t)] = E
[(

1

2
ξ2(t) + xj(t)ξ(t)

)2]
= E[

1

4
ξ4(t)] + E[xj(t)ξ

3(t)] + E[x2
j(t)ξ

2(t)]

=
3

4
σ4
W + 0 + E[x2

j(t)]E[ξ2(t)]

=
3

4
σ4
W + x2

j(t)σ
2
W

(4.9)

Then the variance of η(t) is calculated as

σ2
η := E[(η(t)− µη)

2] = E[η2(t)− 2η(t)µη + µ2
η]

= E[η2(t)]− 2µηE[η(t)] + µ2
η

=
3

4
σ4
W + x2

j(t)σ
2
W − 2µ2

η + µ2
η

=
1

2
σ4
W + x2

j(t)σ
2
W .

(4.10)
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The inherent complexity of ranging errors due to signal noise presents substantial challenges

in their accurate modeling. Presuming these noises to be zero-mean Gaussian is an over-

simplification that requires careful consideration. However, in practice, this assumption is

necessary to formulate the problem and make it treatable [19]. Practical scenarios often

demonstrate that η(t) is quite close to a zero-mean Gaussian variable, particularly when

the magnitudes of the range significantly exceed the standard deviation of the measurement

noise [19]. In the case of xj(t) ≫ σ2
W , one can make the approximation η(t) ≈ xj(t)ξ(t)

which is a zero-mean Gaussian random variable. The assumption xj(t) ≫ σ2
W is really a

rather mild assumption, as the measurements would not be usable if the measurement noise

was in the same order of magnitude as the true value. However, this assumption fails when

the vehicle is quite close to the source. Please refer to [123], [124], and [125] for some remarks

about this matter.

4.3.2 Nonlinear Estimator

Assume that dW (t) = ξ(t)dt represents infinitesimal displacements of Brownian motion (or

Wiener process) with E[dW (t)] = 0, and variance E[dW (t)2] = σ2
Wdt. Using the noise

approximation (η(t) ≈ xj(t)ξ(t)), one can rewrite equation (4.5) for segment j as

dxj(t) = vj(t)dt (4.11)

zj(t) = yj(t)dt =
1

2
x2
j(t)dt+ xj(t)dW (t)

Using the nonlinear estimator with the gain L (proposed in the previous chapter) to find an

estimate x̂j(t) of the position

dx̂j(t) = vj(t)dt+ L

(
yj(t)−

1

2
x̂2
j(t)

)
dt

= vj(t)dt+ L

(
1

2
x2
j(t)dt+ xj(t)dW (t)− 1

2
x̂2
j(t)dt

)
.

(4.12)
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The estimation error SDE can then be written as

dδxj(t) = dxj(t)− dx̂j(t)

= vj(t)dt− vj(t)dt− L

(
1

2
x2
j(t)dt−

1

2
x̂2
j(t)dt

)
− Lxj(t)dW (t)

= −L

2
δxj(t)

(
2xj(t)− δxj(t)

)
dt− Lxj(t)dW (t).

(4.13)

The convergence theorem for the error (4.13) is now stated. The diffusion term of the error

SDE (3.18) (Chapter 3) is independent of the state while it is proportional to the state in

SDE (4.13).

Theorem 4.2. If the trajectory xj(t) is such that

| lim
t→∞

xj(t)| = |xj∞| ≫
|δxj∞|

3
, (4.14)

where δxj∞ is the stationary value of the estimation error δxj(t), then there is a stationary

probability density p(δxj∞) with a local maximum for δxj∞ = 0. This distribution can be

approximated by the Gaussian

p(δxj∞) =
1√
2πσ2

∞
e
−

δx2j∞
2σ2∞ , (4.15)

where

σ2
∞ =

Lxj∞σ2
W

2
. (4.16)

Moreover, if L is chosen such that

L≪ 2

xj∞σ2
W

(4.17)

then σ∞ ≪ 1, and the stationary probability density is concentrated close to its mean.

Proof. The proof follows the one in the previous chapter by deriving the Fokker-Planck-
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Kolmogorov (FPK) equation for the given stochastic differential equation (SDE) (4.13) as

∂p(t, δxj)

∂t
= − ∂

∂δxj

[F (t, δxj)p(t, δxj)] +
1

2

∂2

∂δx2
j

[D(t, δxj)p(t, δxj)] , (4.18)

where p(t, δxj) is the PDF of error δxj(t), F (t, δxj) is the the drift coefficient and D(t, δxj)

is the diffusion coefficient given by

F (t, δxj) = −
L

2

(
2xj(t)δxj − δx2

j

)
D(t, δxj) = L2σ2

Wx2
j(t).

(4.19)

Substitute the expressions for F (t, δxj) and D(t, δxj):

∂p(t, δxj)

∂t
=

∂

∂δxj

[
L

2

(
2xj(t)δxj − δx2

j

)
p(t, δxj)

]
+

1

2

∂2

∂δx2
j

[
L2x2

j(t)σ
2
Wp(t, δxj)

]
(4.20)

The stationary distribution is the PDF ps(δxj∞) that does not change with time. Thus, the

time derivative of the PDF is zero, i.e.,

∂ps(δxj∞)

∂t
= 0

Substitute this into the FPK equation and given xj(t) = xj∞ in the stationary state,

0 =
∂

∂δxj∞

[
L

2

(
2xj∞δxj∞ − δx2

j∞

)
ps(δxj∞)

]
+

1

2

∂2

∂δx2
j∞

[
L2x2

j∞σ2
W ps(δxj∞)

]
= Lxj∞

(
ps(δxj∞) + δxj∞

∂ps(δxj∞)

∂δxj∞

)
− L

2

(
2δxj∞ps(δxj∞) + δx2

j∞

∂ps(δxj∞)

∂δxj∞

)
+

L2x2
j∞σ2

W

2

∂2ps(δxj∞)

∂δx2
j∞

= L (xj∞ − δxj∞) ps(δxj∞) + L

(
xj∞δxj∞ −

1

2
δx2

j∞

)
∂ps(δxj∞)

∂δxj∞

+
L2x2

j∞σ2
W

2

∂2ps(δxj∞)

∂δx2
j∞

=
∂2ps(δxj∞)

∂δx2
j∞

+
1

Lx2
j∞σ2

W

(
2xj∞δxj∞ − δx2

j∞

) ∂ps(δxj∞)

∂δxj∞

+
1

Lx2
j∞σ2

W

(2xj∞ − 2δxj∞) ps(δxj∞)

(4.21)

Moreover, since ps(δxj∞) is just a function of δxj∞ , one can write the following second-order
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ordinary differential equation (ODE)

d2ps(δxj∞)

dδx2
j∞

+
1

Lx2
j∞σ2

W

(
2xj∞δxj∞ − δx2

j∞

) dps(δxj∞)

dδxj∞

+
1

Lx2
j∞σ2

W

(2xj∞ − 2δxj∞) ps(δxj∞) = 0.

(4.22)

The solution of this linear second-order ODE with polynomial coefficients can be solved by

integration leading to the following first-order linear equation [126].

dps(δxj∞)

δxj∞

+

(
−1

Lx2
j∞σ2

W

δx2
j∞ +

2

Lσ2
Wxj∞

δxj∞

)
= c (4.23)

The constant c must be zero for a local maximum at δxj∞ = 0. Then the solution of this

ODE is

p(δxj∞) = p0e
−

δx2j∞
2σ2∞

(
1−

δxj∞
3xj∞

)
, (4.24)

where σ2
∞ is given by expression (4.16). The result then follows from assumption (4.14).

A navigation algorithm design is still required to ensure that the quadrotor maintains its

piecewise affine trajectory above the pipeline geometry. This includes designing a velocity

for each segment that makes the quadrotor fly on a straight line aligned with the pipeline.

Moreover, the quadrotor needs a switching algorithm at each turning point (waypoint) to

change direction and sync with the new range source located at the departure waypoint.

4.3.3 Piecewise Affine Trajectory

In this section, the conditions under which the nonlinear estimator (4.12) is applicable to

the quadrotor navigation system with piecewise affine motion are investigated. Consider the

noiseless navigation model in the pipeline segment j:

˙⃗rj(t) = v⃗j(t) (4.25)

y(t) =
∥r⃗j(t)∥2

2
.
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One can use a nonlinear observer of the following form to estimate the position,

˙⃗
r̂j(t) = v⃗j(t) + L⃗

(
y(t)− ŷ(t)

)
(4.26)

where ⃗̂rj is the estimated position vector and L⃗ is the observer gain vector. The error

dynamics is given by

˙⃗
δr(t) = ˙⃗rj(t)−

˙⃗
r̂j(t)

= −L⃗
(
(rj)

T rj − (r̂j)
T r̂j

2

)
= − L⃗

2

(
2rj(t)− δr(t)

)T
δr(t)

(4.27)

where δ⃗r(t) is the error vector and the notation (rj)
T is used for transpose of the column

array with the coordinates of vector r⃗j. Let the coordinates of any vector expressed in the

local frame Bj be shown in bold letters
(
such as Bj [r⃗j(t)] = r(t) and Bj [v⃗j(t)] = v(t)

)
for

simplicity of notation. Then the complete dynamic model equations are

ṙ(t) = v(t)

y(t) =
∥r(t)∥2

2
=

1

2
rT (t)r(t) (4.28)

˙̂r(t) = v(t) + Lδy(t) = v(t) +
L

2

(
∥r(t)∥2 − ∥r̂(t)∥2

)
(4.29)

δṙ(t) = −Lδy(t) = −L

2

(
2r(t)− δr(t)

)T
δr(t) (4.30)

δẏ(t) = δr(t)Tv(t)− r̂(t)TLδy(t) (4.31)

Theorem 4.3. [122] If L ̸= 0, any equilibrium point of the error dynamics (4.30) satisfies

∥r∞∥ = ∥r̂∞∥ . (4.32)
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Proof. Since L ̸= 0, the equation δṙ(t) = 0 yields,

(
rT∞ − r̂T∞

) (
r∞ + r̂∞

)
= 0

⇐⇒ rT∞r∞ = r̂T∞r̂∞

(4.33)

Therefore, this happens iff ∥r∞∥ = ∥r̂∞∥.

Equation (4.32) positions r∞ and r̂∞ on a circle with the same radius.

Theorem 4.4. Assume r⃗j(0) = r0e⃗j (assumption 1), and let ⃗̂rj(0) = r̂0e⃗j, L⃗ = Le⃗j, and

v⃗j(t) = vj(t)e⃗j where e⃗j is the direction vector that is tangent to the pipeline segment j.

Then ⃗̂rj(t) = r̂(t)e⃗j, and r⃗j(t) = r(t)e⃗j.

Proof. Integrating (4.25), we have

r⃗j(t) = r⃗j(0) +

∫ t

0

v⃗j(s)ds

= r0e⃗j +

∫ t

0

v(s)e⃗jds

= (r0 + V (t))e⃗j = r(t)e⃗j

(4.34)

Similarly integrating (4.26)

⃗̂rj(t) = ⃗̂rj(0) +

∫ t

0

v⃗j(s)ds+

∫ t

0

L⃗δy(s)ds

= r̂0e⃗j + e⃗j

∫ t

0

v(s)ds+ e⃗j

∫ t

0

Lδy(s)ds

= (r̂0 + V (t) + LδY (t))e⃗j = r̂(t)e⃗j

(4.35)

As a result of Theorem 4.4, as long as the vehicle’s velocity is aligned with Xj, the position

of the vehicle started on Xj, remains on it by appropriately designing ⃗̂r(0) and L⃗. Moreover,

⃗̂rj(t) will be aligned with Xj at all times.
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Theorem 4.5. [122] Let the equilibruim points of equations (4.30) and (4.31) be denoted as

δr∞, δy∞. Under the assumptions of Theorem 4.4, vj ̸= 0, and L ̸= 0,

1. δy∞ = 0,

2. δr∞ = 0 is the only equilibrium point,

3. moreover, if δy(t)→ 0 as t→∞, then δr(t)→ 0 as t→∞.

Proof. Since L⃗ = Le⃗j with L ̸= 0, and v⃗j(t) = vj(t)e⃗j, then using equation (4.30) and

δṙ∞ = 0 yields

δy∞ = 0. (4.36)

For the second result, the conditions for equilibrium points of equation (4.31) imply

δẏ∞ = 0, (4.37)

and δy(t) = δy∞ = 0 is a constant equilibrium point of (4.31). At a constant equilibrium

point δr(t) = δr∞. From equation (4.31) we have

δrT∞v∞ = 0. (4.38)

Since v∞ and δr∞ are both aligned with Xj (Theorem 4.4), they cannot be orthogonal.

Given that v∞ ̸= 0, from this dot product we conclude that δr∞ = 0.

Finally, since δy(t) is the difference of two squared norms, it is uniformly continuous. By

invoking Barbalat’s Lemma and given the uniform continuity of δy(t), one must have δẏ(t)→

0 as t→∞. Then from equation (4.31) we conclude that δr(t)→ 0 as t→∞ [122].

Based on these theorems, the nonlinear estimator proposed can be used to estimate the

position of the quadrotor in each pipeline segment provided δy → 0 as t→∞.

The proposed quadrotor navigation algorithm will be divided into three sections: initializa-

tion, flying forward, and changing direction.
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4.3.4 Initialization of the Quadrotor

The first phase involves positioning the quadrotor directly above the first pipeline segment at

an altitude distance h0 above each range measurement emitter stationed at the waypoints to

avoid colliding. (The navigation problem with the vehicle starting off the pipeline has been

studied in [122].) Figure 4.2 shows a quadrotor in a pipeline inspection mission. Since h0 is

known to or measured by the quadrotor, it can find xj from the range using the Pythagorean

theorem. Moreover, the initial estimation is in the form ⃗̂r(0) = r̂(0)e⃗j, and L ̸= 0 at all time.

Figure 4.2: A quadrotor in a pipeline inspection mission. (This picture is generated by
DALL-E-3, a modern text-to-image AI tool released by OpenAI [127].)

4.3.5 Flying Forward

The velocity (input) design with the feedback of position estimation is proposed for the

quadrotor in each pipeline segment as

v⃗j(t) = −α⃗̂rj(t) + β⃗j, (4.39)
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where the initial estimate is chosen as ⃗̂rj(0) = r̂(0)e⃗j ̸= β⃗j

α
, and α ̸= 0 ∈ R1 and β⃗j = βj e⃗j ∈

R2 are the design parameters.

To find the final position of the quadrotor, one can rewrite (4.39) as

v⃗j(t) = ˙⃗rj(t) = −α
(
r⃗j(t)− δ⃗r(t)

)
+ β⃗j

= −αr⃗j(t) + γ⃗(t),

(4.40)

where γ⃗(t) = αδ⃗r(t) + β⃗j. Given the initial condition r⃗j(0),

r⃗j(t) = r⃗j(0)e
−αt +

∫ t

0

e−α(t−τ)γ⃗(τ)dτ. (4.41)

For all the simulations in chapter 3, the position r⃗j∞ converged to the steady-state value

β⃗j/α. For the quadrotor to fly from r⃗j(0) to the next waypoint, β⃗j/α is thus chosen as Oj+1

(the position of the next waypoint).

Moreover, from Theorem 4.4, one can write β⃗j = βj e⃗j and ⃗̂rj(t) = r̂(t)e⃗j, and using equation

(4.39) we have

v⃗j(t) = −αr̂(t)e⃗j + βj e⃗j = vj(t)e⃗j. (4.42)

So this design also aligns the velocity vector with the pipeline segment. The values of α and

βj must be chosen to make r̂(t) ̸= βj

α
so that the assumption vj(t) ̸= 0 is satisfied.

4.3.6 Changing direction

One of the key benefits of quadrotor UAVs is their ability to perform yaw motion while

maintaining stable hovering. This is achieved through the manipulation of the torque pro-

duced by the clockwise and counter-clockwise rotors, which are typically arranged in pairs.

The flight controller calculates the desired rotor speeds to achieve the desired yaw motion.

The ability to perform yaw motion in a hover state allows quadrotors to change direction in

hovering mode before switching to motion toward the next waypoint.
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The quadrotor’s model in each segment can be written in 1D as in equation (4.5). Each

time the quadrotor reaches a waypoint, the model will switch to the exact same dynam-

ics, only with different initial positions, velocities, and measurement values. This system

can be viewed as a hybrid system, since it exhibits continuous dynamics and discrete-event

switching. A common issue in designing switching logic for a system is avoiding ”chatter-

ing,” which refers to rapid, undesirable switching. The switching strategy utilized in the

proposed navigation system is shown in Algorithm 1 with its flowchart shown in Figure 4.3.

This method guarantees that the switch does not activate immediately in response to mi-

nor changes, thereby preventing potential chattering due to the uncertainties in estimation.

Moreover, the system is designed to wait a certain dwell time before switching again to a

new subsystem which is also important since the estimation is unreliable when the quadrotor

is close to the departure waypoint.

Algorithm 1 Waypoint Switch Algorithm

Input: waypoints, estimated position, current time
Parameter: threshold = 0.2 m, dwell time = 1 s
Output: segment number

Initialize persistent variables: current segment, last switch time
if current segment is empty then
current segment ← 1

end if
if last switch time is empty then
last switch time ← 0

end if
if (current time - last switch time) > dwell time then
for i = 1 to size(waypoints, 2) do
distance ← norm(estimated position - waypoints(:, i))
if distance < threshold and current segment ̸= i then
current segment ← i
last switch time ← current time
break

end if
end for

end if
segment number ← current segment
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Figure 4.3: Flowchart of the switching algorithm
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The block diagram in Figure 4.4 represents the estimation and control framework of our

proposed navigation system for a quadrotor in the inspection of pipelines. This diagram

includes several critical components. Primarily, the ”Controller (Input Design)” block, which

is formulated in accordance with equation (4.39). This block is responsible for designing the

input controls for the quadrotor. It utilizes the 2D estimated position of the quadrotor

along with the position of the upcoming waypoint which the quadrotor is navigating toward.

Furthermore, the quadrotor model with noisy range measurements is defined by equation

(4.1). The block ”1D Nonlinear Estimator” operates based on the dynamics outlined in

equation (4.12), and ”1D to 2D Transformation” is based on equation (4.3). Lastly, the

switching algorithm, an essential aspect of the navigation system, is described in the previous

section.

Figure 4.4: Block diagram of the estimation and control
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4.4 Simulation Results

This section presents the simulation results of a practical case study that underscores the

application of a nonlinear estimator in a real-world navigation setting. The focus of this case

study is accurate position estimation in a quadrotor’s navigation system, which is designed

for pipeline inspection operations in a waypoint scenario. The quadrotor only measures the

squared range perturbed by noise to show the practicality and reliability of this method in

GPS-denied environments.

Similar to Figure 4.1, two pipeline geometries with five segments are considered and assumed

to be known. In each illustrative scenario, the navigation algorithm is designed to enable

the quadrotor to perform the inspection task. The quadrotor initiates its flight from an

arbitrary point at h0 = 1 meters above the pipeline. The objective is for the quadrotor

to autonomously navigate and fly along the entire span of the pipeline’s geometry, ensur-

ing comprehensive and consistent coverage. Moreover, using the nonlinear estimator, the

quadrotor is tasked with estimating its position in the East−North (E0−N0) frame. This

navigation system has access to the squared range measurements from the sources from

which the quadrotor is flying away at each segment. These measurements are crucial, yet

they are perturbed by Gaussian white noise with zero-mean and a variance of 0.1 m. The

gain of the nonlinear observer is selected as L = 1 in all simulations.

The velocity (input) of the quadrotor is designed based on equation (4.39) at each pipeline

segment. Upon arriving at a waypoint, this input undergoes modification through the ad-

justment of the vector parameter β⃗j, aligning it with the position of the next waypoint.

All the system, input, and measurement models are designed in 2D, assuming the pipeline

has a constant altitude, and the quadrotor flies at a constant altitude. The position esti-

mation using the nonlinear estimator is necessary here to navigate through the pipeline and

determine above which segment the quadrotor is flying.
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4.4.1 First Pipeline Geometry with 5 Segments

In the first scenario, the navigation geometry of a pipeline with 6 waypoints (5 segments)

is assumed to be known with the position of the waypoints as given in Table 4.1, and

the clockwise angle between the pipeline segments and E0 as shown in Table 4.2. The

quadrotor’s initial position is (0, 0) and the initial estimation is (0.98, 2.85). The real and

estimated trajectories of the quadrotor in the top view (2D, East-North frame) are shown

in Figure 4.5. The pipeline with a diameter of 1m is also depicted.

Table 4.1: Position of the Waypoints in Meters

Waypoint 1 Waypoint 2 Waypoint 3 Waypoint 4 Waypoint 5 Waypoint 6

Position

0

0

 10

5

 15

15

 20

10

 30

40

 30

40


Table 4.2: Angles in Degree

Segment 1 Segment 2 Segment 3 Segment 4 Segment 5

Angle θ1 = 71.56° θ2 = 45° θ3 = −35.53° θ4 = −123.69° θ4 = −146.31°

Figure 4.5: The real, and estimated position of the quadrotor in 2D (top view)
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Figures 4.6 and 4.7 display the estimation error trajectories with different noise seeds along

the E0 axis and the N0 axis respectively. The estimation error converges to a small neigh-

borhood of zero after the switching transients subside. The variance is less than the pipeline

diameter.

Figure 4.6: The estimation error’s sample trajectories along E0 axis

Figure 4.7: The estimation error’s sample trajectories along N0 axis
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Figures 4.8 and 4.9 depict the designed input (velocity) trajectory of the quadrotor along

E0 and N0 for flying on top of the pipeline (the real trajectory in Figure 4.5).

Figure 4.8: Velocity (input) of the quadrotor along E0 axis

Figure 4.9: Velocity (input) of the quadrotor along N0 axis
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It is shown in Figures 4.10 and 4.11 that the estimation error of the nonlinear estimator will

be stable and converge to a neighborhood of zero for different initial estimates.

Figure 4.10: Estimation error trajectories along E0 axis with different initial estimates.

Figure 4.11: Estimation error trajectories along N0 axis with different initial estimates.
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4.4.2 Second Pipeline Geometry with 5 Segments

Another navigation geometry based on a real natural gas pipeline in Finland [128] is consid-

ered in this section. The waypoints’ position is given in Table 4.3, and the clockwise angle

between the pipeline segments and E0 is shown in Table 4.4. The quadrotor’s initial position

is (2, 57) and the initial estimation is (2.8, 55.2). The real and estimated trajectories of the

quadrotor in the top view and the pipeline with a diameter of 1m are shown in Figure 4.12.

Table 4.3: Position of the Waypoints in Meters

Waypoint 1 Waypoint 2 Waypoint 3 Waypoint 4 Waypoint 5 Waypoint 6

Position

 0

65

 10

30

 30

45

 40

5

 60

5

 80

25


Table 4.4: Angles in Degree

Segment 1 Segment 2 Segment 3 Segment 4 Segment 5

Angle θ1 = −74.05° θ2 = 36.87° θ3 = −75.96° θ4 = 0° θ5 = 45°

Figure 4.12: The real, and estimated quadrotor’s position in 2D (top view)

94



Figures 4.13 and 4.14 display the estimation error trajectories with different noise seeds along

the E0 axis and the N0 axis, respectively.

Figure 4.13: The estimation error’s sample trajectories along E0 axis

Figure 4.14: The estimation error’s sample trajectories along N0 axis
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Figures 4.15 and 4.16 depict the designed input (velocity) trajectory of the quadrotor along

E0 and N0 for flying on top of the pipeline (the real trajectory in Figure 4.5).

Figure 4.15: Velocity (input) of the quadrotor along E0 axis

Figure 4.16: Velocity (input) of the quadrotor along N0 axis
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To compare our proposed nonlinear estimator to the established method in the literature, a

Kalman filter is designed for the LTV augmented system. Figures 4.17 and 4.18 illustrate

the averaged trajectories of the estimation error for both methods with the parameters (L

and noise covariances Q and R for Kalman filter) that yielded the best results.

Figure 4.17: Averaged estimation error along E0

Figure 4.18: Averaged estimation error along N0
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The convergence time of the estimation error towards a neighborhood of zero is smaller using

the nonlinear estimator when compared with the Kalman filter. The estimation error is lower

for the proposed estimator than the one for the Kalman filter.

4.5 Conclusions

In this chapter, pipeline inspection by an autonomous UAV (quadrotor) with a waypoint-

based self-navigating system is studied in a GPS-denied environment. A nonlinear estimator

is proposed for the position estimation of the quadrotor using the square of noisy range

measurements. The algorithm designs the velocity so that the quadrotor flies on top of the

piecewise affine pipeline geometry using the estimated position.

The simulation results reveal that the estimation error is stable and the expected value

converges to zero for different pipeline geometries and various initial estimates. Moreover, at

the switching points (waypoints), the estimation error converges to a neighborhood around

zero in all simulations, even with an inaccurate initial estimate. Finally, simulation results

show that our proposed nonlinear estimator performs favorably when compared to a Kalman

filter for the augmented state system.
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Chapter 5

Conclusions and Future Work

This thesis presents a study on the development and application of a state estimation method

for a class of systems with linear dynamics and noisy quadratic measurements. This study

includes proposing a nonlinear estimator for applications on energy harvesters and a UAV

navigation system for pipeline inspection. The performance of the nonlinear estimator is

compared to the traditional Kalman filter.

Chapter 3 of this thesis introduces a nonlinear estimator for the body velocity in a kinetic

energy harvester using the measurements of the generated electrical energy. The observabil-

ity conditions for this system are derived based on the input, yielding that the input must

be non-zero at all times for the system to be uniformly observable. Then, it has been shown

that a nonlinear Verhulst logistic equation describes the estimation error dynamics. This

observation unveiled a link between the state estimation using quadratic measurements and

population dynamics. Moreover, the time evolution equation of the estimation error PDF is

derived (the Fokker-Planck-Kolmogorov equation). It has been proved that the stationary

distribution of the estimation error will converge to a zero-mean Gaussian with adjustable

variance under certain assumptions (equation (3.19)).

The simulation results demonstrate the enhanced performance of the proposed nonlinear

estimator in terms of convergence speed and steady-state error estimation mean (accuracy)
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and variance (precision), compared to the Kalman filter using the weighting matrices tested

in this thesis. The estimator not only achieved faster convergence for all inputs but also

maintained convergence, unlike the Kalman filter. The mean of the estimation error for the

nonlinear estimator converged to zero and its steady-state variance was less than the one for

the Kalman filter in most of the simulations. Overall, the mean squared error (MSE) for

the nonlinear estimator was lower than for the Kalman filter. Additionally, the nonlinear

estimator was shown to be simpler to tune, representing a significant practical advantage.

In Chapter 4, the focus is shifted to the specific application of range-only vehicle naviga-

tion. The complexities introduced by non-Gaussian measurement noise are addressed by

approximating this noise as zero-mean Gaussian under the condition that the vehicle is far

enough from the source. The nonlinear estimator was adapted to this context. The Fokker-

Planck-Kolmogorov equation was derived to find the time evolution of the estimation error

PDF. It was proved that the stationary distribution of the estimation error converges to a

zero-mean Gaussian with adjustable variance under certain assumptions. Thus the expected

value of the estimation error was proven to converge to zero as time goes to infinity, and the

stationary variance to be adjusted using the estimator gain.

The rest of Chapter 4 transitions from theoretical analysis to a practical application, show-

casing the implementation of the nonlinear estimator in a simulated pipeline inspection

conducted by an autonomous UAV (quadrotor). The nonlinear observer in the previous

chapter is extended to a 2D case with piecewise affine motion. Moreover, it has been shown

through extensive simulations that the nonlinear estimator performs well in practice for the

system with measurement noise in 2D. Simulation results indicated a stable estimation error.

Notably, regardless of the initial estimate, the estimation error converged to a neighborhood

of zero, and the quadrotor maintained its flight path directly above the pipeline geometry.

Connecting these findings, theoretical analysis and practical applications demonstrate the

nonlinear estimator’s advantages over the Kalman filter. Its successful implementation in

UAV navigation for pipeline inspection underscores its potential for facilitating complex au-
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tonomous operations in various industries.

Potential future research directions include establishing the theoretical conditions for stabil-

ity and convergence in 3D with different vehicle motions. Moreover, the performance of the

nonlinear estimator can also be investigated in the presence of the process noise. The next

step toward future work in the pipeline inspection application is to relax the assumptions

such as ”no wind and drag” and ”initialization on top of the pipeline”. Finally, one can

investigate the use of two range signals from different sources to make the estimation more

accurate even when the quadrotor is very close to the source.
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