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Abstract

Cyber-Attack Detection Methodologies for Cyber-Physical Systems: A System Theoretic Approach

Mahdi Taheri, Ph.D.

Concordia University, 2024

Cyber-physical systems (CPS) are integral to critical infrastructures such as power networks, trans-

portation systems, and water treatment networks. Despite the advancements in developing more secure CPS

and monitoring systems, the number of successfully executed cyber-attacks in CPS has increased over the

past decade. The mentioned cyber-attacks, which can make CPS unstable, are performed by intelligent

adversaries who try to maintain their malicious attacks undetected. This thesis addresses several crucial

challenges related to cyber-attacks in CPS and multi-agent systems (MAS).

The first part of the thesis focuses on simultaneous cyber-attacks and fault detection and isolation

(CAFDI) in centralized and large-scale interconnected CPS. Proposed methodologies include centralized

and distributed CAFDI approaches, incorporating two filters and an unknown input observer (UIO)-based

detector to identify various deception attacks such as covert, zero dynamics, and replay attacks. The effec-

tiveness of the distributed CAFDI approach is demonstrated through a hardware-in-the-loop (HIL) simula-

tion of a four-area power network system.

The second part studies stealthy cyber-attacks in CPS, particularly zero dynamics, covert, and control-

lable attacks. Conditions for executing these attacks are derived from CPS Markov parameters and the

system observability matrix. Dynamic coding schemes are proposed as countermeasures, increasing the

number of actuators needed to execute cyber-attacks.

In the third part, zero dynamics and undetectable cyber-attacks in linear and nonlinear CPS are explored.

A new security metric, security effort (SE), is introduced to determine the minimum number of secured

actuators and sensors required to prevent such attacks in linear CPS. For nonlinear CPS, the study uses

Koopman operator theory and the extended dynamic mode decomposition (EDMD) algorithm to create a

iii



finite-dimensional linear representation of the system to identify critical sensor measurements that need

securing to prevent zero dynamics and covert attacks.

The fourth part addresses privacy-preserving consensus control, controllability cyber-attacks, unde-

tectable cyber-attacks, and detection methodologies in MAS. A distributed transformation-based consensus

control method is developed to protect agent privacy from eavesdroppers. Conditions for adversaries to

control the MAS network by attacking a few agents are explored, defining these as controllability cyber-

attacks. Undetectable cyber-attacks in MAS are defined and an event-triggered detection module to detect

such attacks is proposed.
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Chapter 1

Introduction

1.1 Motivation

Cyber-physical systems (CPS) are monitored and controlled by sensors, actuators, and computational

capabilities of embedded computers, and are linked via communication networks [1]. Our today’s life

massively depends on CPS due to their wide range of applications in different areas, such as power systems

and smart grid, next generation aerospace and transportation systems, Internet of things(IoT), unmanned

aerial vehicles (UAV), process control and water treatment networks [2, 3]. These systems provide us with

unique capabilities and high level performance and reliability in performing complex tasks [4].

Supervisory Control and Data Acquisition(SCADA) systems are considered as CPS [5]. These systems

have been utilized in controlling and monitoring critical infrastructures such as electrical power distribution

networks, oil and gas pipelines, and water distribution and water treatment plants. The disruption of SCADA

controlling units in any of the mentioned systems can lead to significant economic losses at a nationwide

scale.

In recent years, due to the increased use of wireless communication networks in control systems, such

as SCADA, security concerns related to these systems have been raised [5–8]. For instance, in 2000, the

SCADA system at Maroochy Water Services in Queensland, Australia, was subject to an attack through its

communication network [8]. A former employee, by using a laptop and a radio transmitter, was able to take

control over 150 pumping stations for three months [8]. In June 2010, it was discovered that the Iranian
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Figure 1.1: Cyber-physical system under deception attack on both input and output channels, where u(t)
denotes the control command, au(t) represents the cyber-attack signal on the input channel, u∗(t) represents
the control input of the plant, yp(t) denotes the output on the plant side, ay(t) denotes the attack signal on
the output channel, and y∗(t) denotes the output on the C&C side.

nuclear facilities were struck by the Stuxnet computer worm [9]. The Stuxnet targeted SCADA systems

in Iranian facilities and compromised Siemens programmable logic controllers (PLCs) to manipulate the

electrical power fed to the motor of gas centrifuges for short intervals to increase their speed beyond their

nominal limits, which eventually resulted in the breakdown of a number of operational centrifuges [9].

These incidents indicate the existence of a potential cyber threat against communication networks of CPS,

which cannot be tackled by conventional fault detection and isolation (FDI) methodologies.

Anomalies in physical components of CPS such as actuators and sensors are either cyber-attacks or

faults. Generally speaking, there are three types of cyber-attacks, namely integrity attacks in which trustwor-

thiness of communicated data are compromised by adversaries and result in deception, availability attacks

which are considered as the lack of system’s availability due to cyber-attacks lead to denial of service (DoS),

and confidentiality attacks in which unauthorized adversaries can read system’s information which causes

disclosure of information [10]. In deception (or integrity) type of cyber-attacks an adversary changes the

transmitted information of the system’s input or output by compromising the CPS network communication

channels as depicted in Figure 1.1. In this work, only deception cyber-attacks are considered.

In order to protect the CPS against malicious cyber-attacks, one needs to develop methodologies and
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monitoring systems that to preserve the privacy of communicated data in the communication networks and

to detect violations of data integrity. Hence, in this thesis, various methodologies and monitoring systems

for addressing the problem of cyber-attack detection in the CPS are developed and studied.

1.2 Literature Review

1.2.1 Centralized Cyber-Physical Systems (CPS)

Anomalies and machine induced faults as well as malicious cyber-attacks in physical components of

the CPS do occur and are observed in actuators and sensors. In recent years, cybersecurity challenges in

CPS, that include cyber-attacks on communication networks have attracted significant interest [2,11–13]. A

special type of cyber-attacks is defined as the deception attack in which an adversary changes the transmitted

information of the system’s input or output by compromising the CPS network communication channels.

Covert attacks, controllable attacks, and zero dynamics attacks are defined as undetectable attacks [14–17],

since they have no impact on the received output measurements on the command and control (C&C) side of

the CPS.

In [1] and [18], it has been shown that if the CPS have non-minimum phase zeros, adversaries can

perform zero dynamics attacks and make the system internally unstable, while the sensor measurements are

not affected by the attack signals. It has been demonstrated in [14] and [15] that both zero dynamics attacks

and controllable attacks belong to the weakly unobservable subspaces of the CPS. Furthermore, controllable

attacks are in the controllability subspace within the weakly unobservable subspace of the system [15]. Also,

in [19], data-driven approaches have been utilized to derive sufficient conditions under which adversaries

can carry out zero dynamics attacks. However, necessary and sufficient conditions in terms of the required

disruption resources and system knowledge for performing the zero dynamics and controllable attacks have

not been fully studied in the above work.

The minimum number of required actuators and sensors, i.e., the disruption resources, to execute an

undetectable or a perfectly undetectable cyber-attack such as the zero dynamics attacks, controllable attacks,

and covert attacks has been defined as the security index for the CPS [16,20–22]. In the case of undetectable

cyber-attacks, if the initial conditions of the CPS are known, the impact of the cyber-attack can still be
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detected in the sensor measurements [2,20], but perfectly undetectable attacks leave no impact on the outputs

of the CPS [22, 23].

Various monitoring systems and active cyber-attack detection methodologies have been proposed to ei-

ther detect stealthy cyber-attacks or prevent adversaries from executing them [17, 24–32]. Coding schemes

[29], modulation matrices [27], moving target approaches [33], and watermarking schemes [17, 28] which

are considered as active cyber-attack detection methodologies have been developed and employed that dis-

tort the system knowledge from adversaries point of view and prevent them from executing stealthy cyber-

attacks.

To detect stealthy cyber-attacks on output measurements in the CPS such as replay attacks, a bank of

multiplicative sensor watermarking filters was proposed in [17]. In [24], geometric theory was used to

define zero dynamics attacks and show their impact on the system. A method was also proposed to add

perturbations to the system matrices of the system (A,B,C) to change the zero dynamics of the system so

that the adversary can no longer excite these new zero dynamics modes. In [29], a sensor coding method was

proposed that reveals stealthy false data injection attacks by changing the direction of cyber-attacks where

an algorithm to compute the coding matrices was designed, and finally, a time-varying coding approach

was developed for the case when the adversary is capable of estimating a static coding matrix. A two-

way coding scheme is developed in [30], which in addition to distorting the adversary’s system knowledge,

under certain conditions for single-input single-output (SISO) systems, it can change the non-minimum

phase zeros to minimum phase ones.

On the other hand, for cyber-attack detection and monitoring systems, fault detection methods have been

utilized. However, due to the inherent differences between cyber-attacks and machine induced faults, in

some cases, such as covert attacks, zero dynamics attacks, and replay attacks fault detection methods fail to

detect cyber-attacks. This is due to the fact that faults represent structural physical anomalies in the system,

whereas cyber-attacks are injected intentionally by an intelligent adversary with the purpose of damaging

the nominal behavior of the system without being detected. Consequently, conventional fault diagnosis

algorithms should be fundamentally generalized to accommodate the malicious intelligent adversary cyber-

attacks threats.

As a brief overview, the geometric-based fault detection methodologies were proposed in [34, 35] to
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obtain necessary and sufficient conditions for existence of observers that can be used to generate a residual

signal for the purpose of fault detection and isolation (FDI). In addition to geometric approaches, many

algebraic model-based FDI methods have been introduced in the literature, such as unknown input observer

(UIO) [36, 37], interacting multiple model [38], multiple model [39], distributed detection algorithms [40,

41], and parity equation based approaches [42, 43].

In [44], a distributed covert attack detection methodology is proposed that utilizes two local observers

for each subsystem in a large-scale interconnected CPS. The proposed work in [44] assumes the existence

of certain secure communication channels among subsystems and that the adversaries are capable of per-

forming covert attack in one subsystem at any instance of time. Hence, each subsystem can detect covert

cyber-attacks in the neighboring subsystems. In [25], monitoring systems that utilize auxiliary filters have

been developed to detect stealthy cyber-attacks such as the zero dynamics attacks. In [45], the state-space

model of a linear system was augmented by adding switching auxiliary dynamics that are unknown to the

adversary and a switched Luenberger observer was designed to detect covert and zero dynamics attacks,

however, for implementation purposes the extended system and the switched observer need to be synchro-

nized.

In all the above work, the problem of detection and isolation of cyber-attacks and faults has not been

addressed. Hence, by using the above methods, a fault in the system can misleadingly be detected as a

cyber-attack and vice versa. Consequently, if a fault is misleadingly detected as a cyber-attack, the CPS

operators may consider a certain course of action, and therefore countermeasure strategies that are designed

to cope with the cyber-attack threats will not resolve the machine induced fault problem and will not recover

the CPS. On the other hand, if a cyber-attack is misleadingly detected as a fault, the CPS operators cannot

resolve the problem by utilizing fault-tolerant control methodologies or by repairing components of the

CPS that are misleadingly diagnosed to be defective. This issue has been taken into consideration in [46]

where a methodology to detect and isolate faults and cyber-attacks has been suggested. An event triggered

adaptive estimator is designed and proposed in [46] which can be used to isolate sensor replay attacks and

sensor faults. In [47], Bayesian Network models have been utilized and constructed to distinguish between

cyber-attacks and faults in sensor measurements for floodgates in water management infrastructures.

Due to stealthiness of covert and zero dynamics attacks, it is of paramount importance to develop
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methodologies that can be used to detect and isolate them. However, in [46] and [47], undetectable cyber-

attacks such as covert attacks and zero dynamics attacks have not been considered. In addition, due to

existence of physical component faults in the CPS, one needs to also clearly detect and isolate actuator and

sensor faults and cyber-attacks on actuators and sensors. Moreover, in [46] and [47], only detection and

isolation of sensor faults and cyber-attacks on sensor measurements have been investigated.

The security index (SI) for perfectly undetectable cyber-attacks in the CPS is defined as the minimum

number of actuators and sensors that should be compromised by adversaries to execute a perfectly un-

detectable cyber-attack [15, 16, 21, 22]. Computing the security index is an NP-hard problem [21, 48].

Therefore, in [21] and [22] structural system framework has been utilized to describe the CPS by using

graph theory to compute the security index in a generic sense by using computationally efficient algorithms.

In [15] and [16], an upper bound of the security index is defined and geometric control theory is utilized to

compute the security index over the weakly unobservable and controllable weakly unobservable subspaces

of the CPS. However, the notion of security index considers the CPS from the adversary’s point of view.

Hence, in certain cases, it may not provide CPS operators with adequate information to prevent zero dynam-

ics attacks, covert attacks, and controllable attacks. Consequently, one needs to study a security measure

that studies the CPS from the operator’s perspective.

As for the case of nonlinear CPS, the stealthiness of zero dynamics cyber-attacks for the quadruple-tank

process is investigated in [49] and it is shown that for a finite amount of time the executed zero dynamics

cyber-attack remains stealthy. Furthermore, in [50], a method to implement a stealthy type of cyber-attacks

for a class of nonlinear CPS is introduced. However, all the above works have assumed that adversaries have

a complete knowledge of the dynamics of the CPS, which may not be the case always.

The Koopman operator provides a linear infinite-dimensional representation of a given nonlinear system

which can be used in spectral analysis of nonlinear flows and dynamics [51–54]. In [55], by employing

Koopman eigenfunctions, Koopman eigenvalues, and Koopman modes, Koopman canonical form (KCF)

for nonlinear control affine systems has been introduced, which is then used to develop an observer for the

system. Considering that the Koopman operator is infinite-dimensional, it will be challenging to employ and

apply tools and methods that are available in linear systems to infinite-dimensional representation of a given

nonlinear system that the Koopman operator yields. Hence, data-driven algorithms such as the dynamic
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mode decomposition (DMD) and extended dynamic mode decomposition (EDMD) have been utilized to

come up with a linear finite-dimensional representation of a given nonlinear system for developing data-

driven model predictive controllers and data-driven fault diagnosis methodologies [56–60].

1.2.2 Multi-Agent Systems (MAS)

Multi-agent systems (MAS), due to their wide range of applications, such as in unnamed aerial vehicles

(UAV), next generation aerospace and transportation systems, autonomous and drive-less cars, have been a

major topic of research during the past decade [40, 41, 61–63]. One of the challenges in MAS is to reach a

consensus among the agents in a distributed manner. This problem has been addressed for systems having

various types of linear and nonlinear dynamics [61, 64–66]. To achieve consensus among agents, each

agent needs to transmit its information to its nearest neighboring agents. This communication is carried out

through network channels that exist among the agents.

The existence of communication networks makes the multi-agent systems vulnerable to cyber-attacks.

Suppose a group of agents are on an intelligence, surveillance, and reconnaissance (ISR) mission and an

intelligent adversary performs an attack on the incoming communication links for a subset of these agents.

The adversary, using the incoming communication signals can directly modify the received data associated

with the compromised agents.

The problem of data privacy protection calls for developing privacy preserving control approaches for

Internet of Things (IoT) devices over the edges of the network which leverage the distributed edge computing

capabilities of local servers as opposed to centralized cloud computing platforms. The practical limitation of

using cloud computing services can be pointed out as transmitting all the data to a central server which could

cause data latency, putting computational stress on a central cloud server, and requiring a high bandwidth

communication network [67]. Moreover, in the context of Internet of Battlefield Things (IoBT) one of the

main requirements is to protect the privacy of data, which contains sensitive information [68, 69].

There may exist honest-but-curious agents in the network that attempt to violate the privacy of other

agents by using the received information and learning about them (e.g. discovering sensitive information

such as location of an agent) [70]. Moreover, the transmitted information can be intercepted by eavesdrop-

per adversaries to perform confidentiality cyber-attacks [71]. Hence, protecting the data privacy of agents
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against adversaries while achieving their control objectives is of paramount importance.

Several privacy preserving control methodologies have been proposed in the literature [72–78]. In [75]

and [76], implementation of linear time-invariant (LTI) dynamic controllers for IoT networks by utilizing

Paillier semihomomorphic encryption have been studied. By using the proposed semihomomorphic encryp-

tion, one can outsource the processing of encrypted plant data to a cloud platform.

Encryption-based methodologies have also been proposed to address the problem of privacy preserv-

ing control in MAS [73, 79–82]. In [73], homomorphic encryption was utilized to address the average

consensus problem with finite-time convergence over cloud-based platforms. A decentralized multi-party

computational method for MAS was suggested in [80] which is developed based on a combination of private

sum aggregation and homomorphic encryption. In [81], the problem of average consensus for distributed

systems under undirected communication graphs was studied and a decentralized architecture by utilizing

homomorphic encryption was proposed.

Although efficiency of encryption-based methodologies in preserving the data privacy has been proven,

these methods have a number of disadvantages. To name a few, the process of encrypting data is compu-

tationally excessive for agents and IoT devices with limited computational resources, and compared to the

raw plant data, the encrypted data require higher bandwidth to be transmitted.

Differential privacy-based methodologies have been developed to address the problem of average con-

sensus in MAS by deliberately adding noise to each agent [74,83,84]. In [74], a privacy preserving algorithm

was proposed which guarantees that the initial values of agents will not be discovered by adversaries while

they communicate information reach an average consensus. A noise with Laplace distribution characteristics

was added to agents equipped with event-triggered controllers proposed in [84] to ensure that the privacy

of agents is preserved and they reach a consensus. However, in above works, the considered agents are

governed by single integrator dynamics.

In addition to encryption-based and differential privacy-based methodologies, isomorphisms and trans-

formation based methodologies have recently been used to address privacy issues in controlling systems over

cloud-based platforms [68,78,85]. In [68], isomorphisms and a communication protocol for control over the

cloud were utilized and proposed to transform dynamics of agents to a new basis and make the transformed

dynamics indistinguishable in the cloud. However, in this work a centralized cloud architecture is used to
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control the agents, which is not desirable due to bandwidth requirements and data latency problems that can

occur.

The work in [78], suggests transformation-based schemes to protect the privacy of an LTI system against

various types of adversaries, while being controlled over the cloud. Moreover, a method to measure the

privacy of the system is proposed in [78]. As an advantage, the computational overhead added due to using

transformation-based methodologies is light since the size of transmitted data remains the same and one

only requires matrix multiplication operations [78].

In addition to confidentially cyber-attacks, MAS are prone to integrity cyber-attacks. Secure consensus

tracking control strategies considering two types of attacks were proposed for MAS in [86]. A distributed

impulsive control for achieving synchronization in MAS subject to false data injection attacks has also

been proposed in [87]. The work in [88] has suggested a control scheme for multi-agent systems with

nonlinearities to reach a consensus while the agents are under deception attacks. In [89], cyber-physical

attacks on MAS using a system theoretic approach has been studied. It was shown that the attack on one

agent can spread into other agents that are reachable from the attacked agent. However, there are limitations

and shortcomings in the above work as all cyber-attacks on MAS are treated as similar to attacks on standard

LTI systems. On the other hand, cyber-attacks on communication channels among the agents and their

significance and impacts have not been addressed and studied in the literature.

The impact of a certain type of cyber-attacks on MAS in which the adversary uses the model of the

system to generate its attack signals has been studied in [90]. It is shown if the root of the directed spanning

tree contained in the network graph is under “cyber-physical” attacks, the entire MAS can become unstable.

In [91], a distributed methodology to detect cyber-attacks on communication networks among intercon-

nected systems and MAS that are equipped with consensus-based controllers has been proposed. However,

conditions under which the adversary is capable of performing undetectable cyber-attacks in MAS has not

been investigated in above references.

To increase security and reduce consumption of energy, one can employ an event-triggered protocol so

agents in MAS can communicate with one another. In [92–94], various types of event-triggered observer-

based methodologies have been proposed for linear MAS and LTI systems. The work in [95] has studied an

event-triggered unit that can be used to simultaneously reach a consensus and detect faults in MAS.
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1.3 General Problem Statement and Thesis Objectives

Given that CPS consist of both physical components and communication networks, they are prone to

both machine induced faults and cyber-attacks. One of the main challenges in theses systems is to address

the problem of cyber-attack and fault detection and isolation (CAFDI). In other words, to detect and iso-

late machine induced faults and malicious deception cyber-attacks, such as covert attacks, zero dynamics

attacks, replay attacks, and false data injection attacks. Furthermore, given that the CPS have applications in

both centralized and geographically dispersed systems, both centralized and large-scale interconnected CPS

should be considered to develop centralized and distributed CAFDI methodologies. In certain applications,

such as a single unmanned aerial vehicle (UAV), due to the centralized architecture of the system, having

a centralized CAFDI monitoring system is desirable, whereas in large-scale and geographically dispersed

CPS, such as power networks and smart grids, using a distributed CAFDI methodology is more suitable and

practical. Hence, our first objective in this thesis is to develop and investigate centralized and distributed

CAFDI monitoring methodologies for CPS.

In addition to cyber-attack monitoring methodologies in CPS, there exists active cyber-attack detec-

tion approaches. Coding schemes can be utilized as active countermeasures against stealthy cyber-attacks

in CPS. A coding scheme can be used to disrupt adversary’s system knowledge and to target its required

disruption resources for performing stealthy cyber-attacks. The latter can be achieved by increasing the

required disruption resources for executing stealthy cyber-attacks, such as zero dynamics attacks, control-

lable attacks, and covert attacks. In particular, such a coding scheme is designed and developed such that

it increases the CPS security index. The security index is a measure that indicates the minimum number

of compromised sensors and actuators necessary for performing certain stealthy cyber-attacks. Hence, in

presence of the above mentioned coding schemes, having only a certain number of secured actuators and

sensors will prevent the adversaries from executing undetectable cyber-attacks. Our second objective in this

thesis is to develop and study dynamic coding schemes that increase the security index of CPS.

Given that one of the main objectives of CPS operators is to secure their systems against undetectable

cyber-attacks, it is imperative that they are made aware of the baseline security requirements in terms of

disruption resources to accomplish this goal. As it was mentioned, adversaries require access to certain

disruption resources to perform stealthy cyber-attacks. Hence, one is interested in developing a security
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measure that denotes the minimum number of actuators and sensors that should be secured by CPS operators

to prevent adversaries from executing stealthy cyber-attacks. Moreover, in the case of nonlinear CPS, the

execution of zero dynamics and covert cyber-attacks and finding sensor measurements that should be secured

to prevent adversaries from performing the mentioned cyber-attacks are challenging problems that have not

been addressed in the literature. As for our third objective in this thesis, we aim to study and investigate

actuators and sensors that should be secured to prevent stealthy cyber-attacks in both linear and nonlinear

CPS.

Multi-agent systems (MAS) can be considered as distributed CPS. In MAS, agents share their infor-

mation with their neighboring agents to achieve goals such as consensus and formation control. Given the

existence of communication networks in MAS, they are susceptible to confidentially and integrity cyber-

attacks. Hence, as one of our objectives in this thesis, we aim to develop a control protocol for MAS which

ensures reaching a consensus in a distributed manner while agents’ data privacy is protected. Furthermore,

given that adversaries can inject their attack signals in the communication channels of MAS, under certain

conditions they may take control over the entire MAS. Also, it would be possible for adversaries to attack

certain nodes of the communication graph in a manner that all the agents follow that attack signal and reach

a new consensus point. This implies that one is injecting and introducing an undetectable cyber-attack in

the sense that residual signals, which become unbounded if the consensus is not achieved, in presence of

cyber-attacks approach to zero as time approaches to infinity. Consequently, one of the main challenges that

is addressed in this thesis is to develop a detector and generate residuals that are sensitive to undetectable

cyber-attacks.

1.4 Contributions of Thesis

The main contributions of this thesis are as follows.

• Cyber-attack and machine induced fault detection and isolation methodologies for cyber-physical

systems

◦ Based on both the plant side and the C&C side centralized estimation and observation methodol-

ogy, design conditions are developed and provided that can be used to detect and isolate actuator
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cyber-attacks, sensor cyber-attacks, actuator faults, and sensor faults in a centralized architec-

ture.

◦ A distributed filter design methodology based on observing the system from both the plant side

and the C&C side is introduced and developed that can be utilized to detect and isolate both

cyber-attacks and machine induced faults in large-scale interconnected systems.

◦ By utilizing our proposed methodologies, cyber-attacks such as covert attacks, zero dynamics

attacks, replay attacks, and false data injection attacks can be detected and isolated.

• Dynamic coding schemes as active countermeasures for cyber-attacks in cyber-physical systems

◦ Under certain assumptions, conditions under which one can carry out the zero dynamics and

controllable attacks are obtained. These conditions are derived in terms of the Markov parame-

ters of the CPS, elements of the observability matrix, and characteristic matrices of the system.

Therefore, these conditions outline both the required disruption resources, i.e., the required ac-

tuators to be attacked, and the level of system knowledge that adversaries need to execute the

zero dynamics and controllable cyber-attacks.

◦ By utilizing the proposed conditions for existence of zero dynamics and controllable attacks,

their implementation methodologies are then provided. As for the case of zero dynamics attacks,

the implementation solely relies on the Markov parameters of the CPS and elements of the

observability matrix.

◦ A dynamic coding scheme is then developed and proposed that under certain conditions can

increase the number of actuators that are needed to execute the zero dynamics and controllable

cyber-attacks to its maximum possible value. Therefore, the proposed dynamic coding scheme

can increase the actuators security index for the CPS.

◦ Necessary and sufficient conditions under which covert cyber-attacks can be performed in the

CPS are derived. The developed conditions can be used to determine which disruption resources

in terms of input and output communication channels of the CPS should be compromised to

carry out covert attacks.
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◦ An upper bound on the SI for covert attacks is defined which relies on the developed necessary

and sufficient conditions on the existence of covert attacks. Moreover, we provide and algorithm

that can be used to compute the upper bound on SI for covert attacks.

◦ As an active countermeasure against covert attacks, we develop and propose a dynamic coding

scheme. The proposed coding scheme includes an encoder on the C&C side and a decoder on

the plant side of the CPS. Under certain conditions, if there exists one secure input and two

secure output communication channels, adversaries will not be capable of performing covert

cyber-attacks in the CPS.

• The security requirement to prevent zero dynamics attacks and perfectly undetectable cyber-

attacks in linear and nonlinear cyber-physical systems

◦ The notion of SE is formally defined as a measure that denotes the minimum number of actuators

and sensors that should be secured to prevent adversaries from executing zero dynamics attacks,

covert attacks, and controllable attacks.

◦ Conditions under which the weakly unobservable subspace of CPS becomes zero are developed

and investigated. If these conditions are satisfied, no zero dynamics attacks, covert attacks, and

controllable attacks can be performed by the adversaries on the CPS.

◦ In order to study perfectly undetectable cyber-attacks, conditions under which the controllable

weakly unobservable subspace of CPS becomes zero are investigated. Therefore, under these

conditions, adversaries cannot execute perfectly undetectable cyber-attacks, i.e., covert attacks

and controllable attacks.

◦ The ε-stealthy cyber-attacks in terms of Koopman operator are defined which can be used to

categorize various types of cyber-attacks.

◦ A relative degree of the CPS by means of Koopman eigenfunction, Koopman eigenvalue, and

Koopman modes is defined. The proposed definition of the relative degree only requires matrix

multiplications and is easy to check and verify. Moreover, we use the relative degree to discover

internal dynamics of the CPS.
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◦ A method to identify sensor measurements that are needed by adversaries to execute zero dy-

namics and covert cyber-attacks in nonlinear CPS is developed. Hence, by securing certain

sensor measurements, one can prevent the execution of zero dynamics and covert cyber-attacks.

Moreover, data-driven strategies for executing and implementing the zero dynamics and covert

cyber-attacks by using the KCF of the CPS and the EDMD algorithm are proposed.

• Addressing confidentially and integrity cyber-attacks in multi-agent systems by utilizing privacy

preserving consensus control and event-triggered cyber-attack detection methodologies

◦ A unique isometric isomorphisms is developed and designed and used for each agent so that

adversaries require discovering all the utilized isometric isomorphisms to disclose information

of the entire network.

◦ To preserve the privacy of agents when they are communicating with agents in their nearest

neighborhood, a distributed consensus control is proposed that requires the transformed output

measurements and dynamic controller states of the nearest neighboring agents to ensure reaching

consensus.

◦ We introduce the notion of controllability attacks on communication channels of the MAS sys-

tems. The importance of these attacks by studying and developing conditions that would provide

the adversary full control over the entire MAS system is developed and formalized.

◦ It is shown that the adversary is not capable of exciting zero dynamics of the directly attacked

and healthy agents simultaneously.

◦ A definition is introduced and proposed that specifies characteristics of undetectable cyber-

attacks on MAS. Then conditions on the graph topology and its Laplacian matrix along with

detectors of MAS are developed so that an adversary is capable of performing undetectable

cyber-attacks. Moreover, if the above does not hold, we investigate under what conditions cyber-

attacks are detectable on a certain team of agents.

◦ Quasi-covert cyber-attacks are introduced where malicious hackers can inject in order to main-

tain their attacks undetected provided only non-root agents are compromised.
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◦ An event-triggered detector is proposed for quasi-covert cyber-attacks that given its event-based

communication strategy is more secure in comparison with conventional communication proto-

cols.

1.5 Thesis Outline

In Chapter 2, cyber-attacks in CPS are briefly reviewed and the implementation of stealthy cyber-attacks

such as zero dynamics attacks, covert attacks, and replay attacks are discussed.

In Chapter3, the problem of CAFDI is studied. Section 3.1 presents mathematical models consider-

ing faults and cyber-attacks. The proposed centralized CAFDI methodology with UIO-based detector and

residual signals is explored in Section 3.2. Design conditions for the distributed CAFDI methodology are

outlined in Section 3.3. In Section 3.4, a hardware-in-the-loop simulation and case studies demonstrate the

effectiveness of the analytical results. Concluding remarks are provided in Section 3.5.

Chapter 4 is devoted to the development of active cyber-attack detection methodologies, namely dynamic

coding schemes. Section 4.1 provides the state-space representation of the CPS system and defines specific

cyber-attacks. In Section 4.2, the input/output (I/O) representation of CPS and ε-stealthy cyber-attacks

are examined. Section 4.2 also explores zero dynamics, controllable cyber-attacks, and their existence

conditions. Conditions for covert attacks and the investigation of Security Index (SI) for covert attacks are

discussed in Sections 4.2.3 and 4.3. Dynamic coding schemes against zero dynamics attacks, controllable

attacks, and covert cyber-attacks are proposed in Sections 4.4 and 4.5. Finally, Section 4.6 presents three

numerical case studies to showcase the effectiveness of the proposed methodologies.

In Chapter 5, methods for finding the minimum number of actuators and sensors that should be secured

to prevent certain stealthy cyber-attacks in linear and nonlinear CPS are investigated. Section 5.1 provides

the state-space representation of both linear and nonlinear CPS systems, including objectives, definitions

for specific cyber-attacks, and the Koopman operator theory. Investigation into conditions leading to zero

weakly unobservable and controllable weakly unobservable subspaces of CPS is covered in Section 5.2.

The formalization of security effort (SE) for linear CPS is discussed in Section 5.3. Section 5.4 introduces

ε-stealthy cyber-attacks and methodologies for executing zero dynamics and covert attacks in nonlinear CPS

using the Koopman operator theory. Data-driven implementation of zero dynamics and covert cyber-attacks
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in nonlinear CPS is explored in Section 5.5. To showcase the effectiveness of the proposed methodologies,

Section 5.6 presents numerical case studies.

Confidentially and integrity cyber-attacks are explored in Chapter 6. Section 6.1 presents essential

graph theory concepts and establishes a model for MAS systems, including assumptions and lemmas. In

Section 6.2, we introduce a model for MAS systems with attacked communication channels and outline the

chapter objectives. The investigation of our privacy-preserving consensus control methodology for MAS is

covered in Section 6.3. Section 6.4 formulates necessary and sufficient conditions for an adversary to gain

full control over the MAS systems network. The limitations on zero dynamics attacks injected through com-

promised communication channels are explored in Section 6.4.3. Section 6.5 formally defines undetectable

cyber-attacks in MAS, while Section 6.6 develops an event-triggered cyber-attack detection methodology.

Finally, Section 6.7 provides illustrative numerical case studies demonstrating the capabilities of our pro-

posed methodologies.

Concluding remarks and future research directions are presented in Chapter 7.
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Chapter 2

Background: Cyber-Attacks in

Cyber-Physical Systems (CPS)

In this chapter, the state-space representation of cyber-physical systems (CPS) under cyber-attacks and

machine induced faults is provided. Moreover, the implementation of certain stealthy attacks such as covert

attacks, replay attacks and zero dynamics attack are investigated and discussed. Results in this chapter are

based on [1, 2, 18, 96]

2.1 Cyber-Physical Systems in Presence of Cyber-Attacks and Faults

Consider a strictly proper linear time-invariant (LTI) CPS represented by the following:

ẋ(t) =Ax(t) +Bu∗(t) + L1f1(t) +Nω(t),

yp(t) =Cx(t) + L2f2(t) + ν(t), (1)

where x(t) ∈ Rn denotes the state, yp(t) ∈ Rp is the measured output on the plant side, u∗(t) ∈ Rm

is the control input, and f1(t) ∈ Rmf and f2(t) ∈ Rpf represent actuator and sensor faults, respectively.

Additionally, ω(t) ∈ Rm and ν(t) ∈ Rp are zero mean wide-sense stationary (WSS) random Gaussian

processes representing process and measurement noise with covariance matricesQ andR, respectively. The

matrices (A, C, B, N) have appropriate dimensions and describe the CPS characteristics, while the known
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pair (L1, L2) captures the fault signatures.

In the event of a cyber-attack on actuators, the control input is modified as follows:

u∗(t) = u(t) + Saau(t), (2)

where u(t) ∈ Rm is the control command from the Command and Control (C&C), au(t) ∈ Rma describes

the effects of unknown cyber-attacks on actuators, and Sa is a matrix indicating the control input channels

under attack.

The output of the CPS on the C&C side during sensor cyber-attacks is expressed as:

y∗(t) = Cx(t) + L2f2(t) +Daay(t) + ν(t), (3)

where y∗(t) ∈ Rp denotes the outputs, ay(t) ∈ Rpa denotes the attack signal, and the known matrix Da

describes the sensor attack signature. A CPS in the presence of both actuator and sensor cyber-attacks is

illustrated in Figure 1.1.

Equations (1) and (2) provide a state-space realization of the CPS from the C&C side in the form:

ẋ(t) =Ax(t) +Bu(t) +Baau(t) + L1f1(t) +Nω(t), (4)

where Ba = BSa is interpreted as the actuator cyber-attack signature.

In (2) and (3), au(t) and ay(t) represent the impacts of the adversary’s attack on the control input and

output of the CPS, respectively. These signals can be arbitrarily manipulated by the malicious adversary,

intending to inflict maximum possible damage on the system components while remaining undetected.

2.1.1 Invariant zeros and output zeroing

Due to the linear representation of the system (4) and according to the superposition principle to study

the invariant zeros of the system, one can consider au(t) = 0, ay(t) = 0, f1(t) = 0, f2(t) = 0, ω(t) = 0,

and ν(t) = 0. Given s = z0 ∈ R, invariant zeros of the system (4) are those z0 in which the Rosenbrock

system matrix
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PΣ(s) =

sI −A −B

C 0


is rank deficient, i.e., the rank of PΣ(s) falls below its normal rank. Suppose s = z0 is an invariant zero of

system with associated zero state direction x0 6= 0 and zero input direction u0 6= 0 such that

z0I −A −B

C 0


x0

u0

 = 0. (5)

Hence, given the nonzero initial condition x(0) = x0 and control input u(t) = u0e
z0t, the state response of

(4) is X(t) = x0e
z0t 6= 0, whereas the received output measurement on the C&C side is y∗(t) = 0. For

a negative z0 one has a minimum phase invariant zero, which can not exert a major damage to the system

since u(t) and x(t) converge to zero as time approaches infinity. In contrary, excitation of a positive z0,

which is defined as a non-minimum phase invariant zero results in the increase of u(t) and X(t) as t→∞.

Below definitions of various types of invariant zeros for LTI systems are given [97]:

• Transmission zeros of the system (4) are defined as the invariant zeros of its observable and control-

lable (minimal) subsystem.

• Output decoupling zeros are the unobservable modes of the system (4). A given z0 is an output

decoupling zero of the presented LTI system if and only if the matrix pencil PΣ(z0) loses its normal

column rank. It follows that there exists a nonzero x0 such that (z0I −A)x0 = 0, and Cx0 = 0.

• Input decoupling zeros are the unreachable modes of the system. A given z0 is an input decoupling

zero of the system (4) if and only if the matrix

[
z0I −A −B

]

loses its normal row rank.

• The unreachable and unobservable modes of the LTI system are defined as its input-output zeros.

It is worth noting that all the output zeroing internal dynamics are called zero dynamics of the system.
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2.2 Modeling Deception Attacks

In (2) and (3), au(t) and ay(t) represent actuator and sensor cyber-attacks, respectively. Attack signals

au(t) and ay(t) can be arbitrarily designed by the malicious attacker. Consequently, the adversary’s objective

is to properly design au(t) and ay(t) to exert the maximum possible damage to the components of the system,

while reducing its detection risk.

Moreover, since the adversary compromises the system communication network to inject its malicious

attack signals, au(t) and ay(t) are limited by the network bandwidth, time delay in the network, and packet

dropouts. In this thesis, it is assumed that the network is ideal and the mentioned limitations are not consid-

ered.

2.2.1 Replay Attack

In replay attacks, adversaries attempt to change the control input of the system, while they are manip-

ulating the output in a manner that the received output on the C&C side (3) shows a nominal operational

condition of the system [1]. Hence, adversaries record the system output yp(t) from t = t1 which is yp(t1)

to t = t2 that is yp(t2). In the next step, by compromising all the output communication channels, i.e.,

Da = Ip, and considering ay(t) = −yp(t) + ỹ(t), where ỹ(t) is the recorded nominal output of the system

and belongs to {yp(t1), . . . , yp(t2)}, adversaries manipulate y∗(t) such that it shows the previously recorded

output measurement ỹ(t). Consequently, adversaries inject their actuator cyber-attack signals through au(t)

to either control the system or exert a damage to it. It is worth noting that to perform replay attack, adver-

saries do not need to know the parameters of the system.

2.2.2 Covert Attack

One of the main objectives of malicious attackers is to hack into a system without being detected. To this

end, adversaries need to perform undetectable cyber-attacks. A more sophisticated version of replay attack

is covert attack. In covert attacks, the sensor cyber-attack signal ay(t) is intelligently designed to eliminate

the impact of actuator cyber-attack on y∗(t) [2, 96], which makes this type of cyber-attacks undetectable.

Assume that the adversary has access to all the communication channels of the system and knows all
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system parameters. Consider the LTI system (4) under covert attacks such that for au(t) 6= 0 one has

ȧy(t) = Aay(t) +Baau(t),

where ay(0) = x(0). Due to the adversary’s full access to the communication channels, they can set

Da = −C and one can conclude that the impact of actuator cyber-attack au(t) is removed from the output

measurements on the C&C side that is given in (3).

2.2.3 Zero Dynamics Attack

Given the initial condition x(0) = x0, to excite the zero dynamics of the CPS (4), the adversary needs

to generate the actuator attack signal au(t) = au0e
z0t 6= 0 that satisfies the following [1]:

z0I −A −Ba

C 0


x0

au0

 = 0. (6)

In zero dynamics attacks, the adversary is capable of exciting non-minimum phase (z0 > 0) and min-

imum phase (z0 < 0) zeros of the system. Due to their significant and dangerous impact on the system,

only non-minimum phase type of zero dynamics attacks are considered in this thesis. In theory, for a given

z0 > 0, actuator cyber-attack signal au(t) can be unbounded as t → ∞ that results in an unbounded x(t),

while the resulting output is identically zero. This implies that the non-minimum phase zero dynamics at-

tacks result in a zero output and can lead the system to dangerous trajectories. To perform a zero dynamics

attack, the adversary needs to know all the system parameters and has access to the input communication

channels.
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Chapter 3

Cyber-Attack and Machine Induced Fault

Detection and Isolation Methodologies for

Cyber-Physical Systems

In this chapter, the problem of simultaneous cyber-attack and fault detection and isolation (CAFDI)

for both centralized and large-scale interconnected cyber-physical systems (CPS) is studied. The proposed

methodologies include centralized and distributed CAFDI approaches, which involve the use of two filters

on the plant and command and control (C&C) sides of the CPS, as well as an unknown input observer

(UIO)-based detector on the plant side. The chapter characterizes the conditions under which the proposed

methodologies can detect various types of deception attacks, such as covert attacks, zero dynamics attacks,

and replay attacks. In the proposed centralized CAFDI methodology, the transmission of estimates from the

C&C side filter to the plant side is required, with the assumption that a certain number of communication

channels are secured. Consequently, a bank UIO-based detectors are utilized on the plant side to detect and

isolate anomalies. It is also assumed that adversaries have knowledge of system parameters, filters, and the

UIO-based detector. To address the limitations of secure communication channels, modifications to the two

side filters and the UIO-based detector have been developed and implemented that eliminates the need for

any secured communication channel in the modified CAFDI module. However, information must now be

sent to and received from the plant side filter. Consequently, we develop a distributed CAFDI methodology
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for the interconnected large-scale CPS which consists of several subsystems. Finally, a hardware-in-the-

loop (HIL) simulation of a four area power network system under presence of both cyber-attacks and faults

by using an OPAL-RT real-time simulator and Raspberry Pi is provided to illustrate the effectiveness of our

proposed distributed CAFDI methodology. The work presented in this chapter has appeared in [26].

To summarize, the main contributions of this chapter are stated as follows:

(1) Based on both the plant side and the C&C side centralized estimation and observation methodology,

design conditions are developed and provided that can be used to detect and isolate actuator cyber-

attacks, sensor cyber-attacks, actuator faults, and sensor faults in a centralized architecture.

(2) A distributed filter design methodology based on observing the system from both the plant side and

the C&C side is introduced and developed that can be utilized to detect and isolate both cyber-attacks

and machine induced faults in large-scale interconnected systems.

(3) By utilizing our proposed methodologies, cyber-attacks such as covert attacks, zero dynamics attacks,

replay attacks, and false data injection attacks can be detected and isolated.

The remainder of the chapter is organized as follows. Mathematical models of the systems that take into

account faults and cyber-attacks and the definition of undetectable attacks are provided in Section 3.1. In

Section 3.2, our proposed centralized CAFDI methodology that consists of two side filters, the UIO-based

detector and residual signals are developed and investigated. Design conditions for the distributed CAFDI

methodology are proposed and developed in Section 3.3. To illustrate and demonstrate the effectiveness and

capabilities of our analytical results, a hardware-in-the-loop (HIL) simulation environment and case studies

are presented and extensively investigated in Section 3.4. Conclusions are provided in Section 3.5.
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3.1 Problem Statement and Formulation

3.1.1 Cyber-Physical Systems (CPS) Model

In this chapter, a strictly proper linear time-invariant (LTI) CPS of the form given below is studied:

ẋs(t) =Asxs(t) +Bsu∗(t) + L1f1(t) +N sωs(t),

yp(t) =Csxs(t) + L2f
s
2(t) + νs(t), (7)

where xs(t) ∈ Rn represents the state, yp(t) ∈ Rp denotes the measured output on the plant side, u∗(t) ∈

Rm denotes the control input, f1(t) ∈ Rmf and f s
2(t) ∈ Rpf correspond to actuator and sensor faults, re-

spectively. Moreover, ωs(t) ∈ Rn and νs(t) ∈ Rp denote zero mean wide-sense stationary (WSS) random

Gaussian processes that represent process and measurement noise with the covariance matrices Q and R,

respectively. The quadruple (As, Cs, Bs, N s) has appropriate dimensions and describe the CPS character-

istics, and the known pair (L1, L2) capture the fault signatures.

In case of injection of a cyber-attack on actuators, the control input is expressed and changed to

u∗(t) = u(t) + Saau(t), (8)

where u(t) ∈ Rm represents the control command which is the output of the C&C, au(t) ∈ Rma denotes

a vector describing the effects of unknown cyber-attacks on actuators, and Sa is a matrix of appropriate

dimension that indicates the control input channels that are under attack.

The output of the CPS on the C&C side when sensors are under cyber-attack can be expressed as

y∗(t) = yp(t) +Daay(t), (9)

where y∗(t) ∈ Rp denotes the output, ay(t) ∈ Rpa denotes the attack signal, and the matrix Da describes

the sensor attack signature.

Equations (7) and (8) provide a state space realization of the CPS from the C&C side in the following
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form:

ẋs(t) =Asxs(t) +Bsu(t) +Bs
aau(t) + L1f1(t) +N sωs(t), (10)

where Bs
a = BsSa is to be interpreted as the actuator cyber-attack signature.

Definition 3.1 (Weakly Unobservable Subspace [98]). Let us denote the CPS by Σ = (As, Bs, Bs
a, L1, N

s,

Cs, L2, Da). Under the fault free scenario f1(t) = 0 and f s
2(t) = 0, the noise free scenario ωs(t) = 0 and

νs(t) = 0, and the cyber-attack free scenario au(t) = 0 and ay(t) = 0, a point xs(0) = xs
0 ∈ Rn is called

weakly unobservable if there exists an input function u(t) such that the output satisfies y∗(t) = 0, ∀ t ≥ 0.

The set of all weakly unobservable points is called weakly unobservable subspace and is denoted by V (Σ).

Moreover, the largest weakly unobservable subspace is denoted by V ∗(Σ).

Let us denote Xs(xs(0), u(t), au(t), ay(t)) as the solution to (10) under the fault free condition, and

Y (xs(0), u(t), au(t), ay(t)) = CsXs(xs(0), u(t), au(t), ay(t)) as the corresponding output of the CPS, ∀ t ≥

0.

Definition 3.2 (Undetectable Cyber-Attacks [15]). Given initial conditions xs
0 ∈ Rn and x̄s

0 ∈ Rn, in the

CPS (10) under the fault free scenario, the cyber-attack on actuators and sensors using a(t) = [au(t)>

ay(t)
>]> 6= 0, is designated as undetectable if Y (xs

0, u(t), au(t), ay(t)) = Y (x̄s
0, u(t), 0, 0), ∀t ≥ 0, other-

wise, the cyber-attack is defined as detectable.

Definition 3.3 (Input Observable Systems [99]). The system (C, A, B) is input observable if B is monic

and Im(B) does not intersect with the unobservable subspace of (C, A), where Im(B) denotes the image of

B.

In the same manner as described in [35] and [99], the sensor fault and sensor noise can be represented

by pseudo actuator fault and pseudo process noise, respectively. It is worth noting that in this representation,

as described below, sensor faults are mapped into and represented by pseudo actuator faults.

Towards the above end, the following auxiliary invertible LTI system that is driven by the appropriate

f2(t), which represents the pseudo actuator fault, and ωa(t), which captures the pseudo process noise, is
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expressed as:

ẋa(t) = Aaxa(t) + La
2f2(t) +N aωa(t),

Caxa(t) = L2f
s
2(t) + νs(t),

(11)

where xa(t) ∈ Rpf+p, f2(t) ∈ Rpf , and ωa(t) ∈ Rp. By incorporating the dynamics of (10) and (11), one

can obtain the augmented and extended CPS in the following form:

ẋ(t) =Ax(t) +Bu(t) +Baau(t) + F1f1(t) + F2f2(t)

+Nω(t),

y∗(t) =Cx(t) +Daay(t), (12)

where x(t) = [xs(t)>, xa(t)>]>, A = diag(As, Aa), B = [Bs>, 0m×(pf+p)]
>, Ba = [Bs

a
>, 0ma×(pf+p)]

>,

F1 = [L1
>, 0mf×(pf+p)]

>, F2 = [0pf×n, L
a
2
>]>, N = diag(N s, N a), ω(t) = [ωs(t)>, ωa(t)>]>, and

C = [Cs, Ca]. It should be noted that the defined output y∗(t) in (9) is equal to the one that is given by (12),

however, the representations are different.

3.1.2 Model of the Interconnected CPS

In this section, our objective is to provide a representation of a class of interconnected CPS that are

distributed in nature and consist of several subsystems as depicted in Figure 3.1. Consequently, considering

the large-scale of interconnected CPS, one needs to develop a scalable distributed CAFDI methodology that

is more desirable for this type of CPS.

We consider the interconnected CPS as consisting ofN subsystems. The dynamics of the i-th subsystem

is expressed as:

Si :



ẋi(t) = Aixi(t) +
∑
j∈Ni

Aijxj(t) +Biu
∗
i (t)

+F i1f
i
1(t) + F i2f

i
2(t) +Niωi(t),

y∗i (t) = Cixi(t) +Di
aa
i
y(t), i = 1, . . . , N,

(13)
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Figure 3.1: Distributed interconnected cyber-physical system consisting of N subsystems under actuator
and sensor attacks. Dashed lines indicate the possible interconnections among C&C centers of different
subsystems.

where xi(t) ∈ Rni+pfi+pi denotes the state of the i-th subsystem, u∗i (t) ∈ Rmi denotes the control input of

the subsystem i, y∗i (t) ∈ Rpi denotes the measured output on the C&C side of Si, aiy(t) ∈ Rpai denotes the

sensor attack signal in the i-th subsystem, ωi(t) ∈ Rni+pi denotes the zero mean WSS random Gaussian

noise of Si with the covariance matrix Qi, f i1(t) ∈ Rmfi and f i2(t) ∈ Rpfi correspond to actuator and

pseudo actuator faults in the subsystem i, respectively, that are derived using a similar method as shown in

Section 3.1.1.

Moreover, the matrix Aij represents the physical coupling between subsystems i and j ∈ Ni, where Ni

is the set of neighboring subsystems that are coupled with the i-th subsystem. Furthermore, one has

Biu
∗
i (t) = Biui(t) +Bi

aa
i
u(t),

where ui(t) ∈ Rmi denotes the control input generated on the C&C side of Si, aiu(t) ∈ Rmai denotes the

actuator attack signal in the subsystem i, Bi
a = BiS

i
a describes the actuator attack signature of the i-th

subsystem, and the matrix Sia of appropriate dimension indicates the control input channels of Si that are
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compromised by adversaries. The quadruple (Ai, Aij , Bi, Ci) has appropriate dimensions and describes

the characteristics of the i-th subsystem, Ni is the noise signature of Si, and the known pairs (F i1, F
i
2) and

(Bi
a, D

i
a) capture fault and attack signatures of Si, respectively.

We consider the following assumptions throughout this chapter.

Assumption 3.1. In the CPS (7), the number of states is greater than the number of actuators and sensors,

i.e., n > m and n > p.

Assumption 3.2. The adversary has full knowledge on the parameters of (7) and (13), and has access to

all the input and output communication channels, i.e., ma = m, pa = p, mai = mi, and pai = pi.

Remark 3.1. It should be emphasized that there may exist local controllers on the plant side of the CPS

(12) and the interconnected CPS (13). Hence, the C&C as shown in Figures 1.1 and 3.1 act as outer control

loops of the CPS.

Remark 3.2. It should be noted that in the interconnected CPS (13), communication channels among the

C&C centers of subsystems can be compromised by adversaries. However, detection of this type of cyber-

attack is not within the scope of this chapter and is not addressed here. Methodologies for detecting cyber-

attacks on the communication channels among the C&C centers of subsystems can be found in [100] and

[101].

3.1.3 Objectives

Our main objective in this chapter is to address the simultaneous cyber-attack and fault detection and

isolation (CAFDI) problem for the CPS both corresponding to centralized and distributed architectures.

Towards this end, we design a bank of observers such that each set of residual signals corresponding to

observers is sensitive and specified to detect one specific type of anomaly, namely either an actuator cyber-

attack au(t), a sensor cyber-attack ay(t), an actuator fault f1(t), and/or a pseudo actuator fault f2(t), while

each residual is decoupled from all the other anomalies.

Decoupling the residuals from one another implies that the occurrence of anomalies only affects those

residual signals that are designated to them. We also do not limit our focus on detecting only detectable
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cyber-attacks (see Definition 3.2). Our goal and objective is to further detect the so-called undetectable

cyber-attacks in the sense of Definition 3.2, e.g., covert and zero dynamics attacks.

First, we assume that the adversary cannot compromise all the communication channels among the pro-

posed C&C side filter and the UIO-based detector, although they have a complete knowledge of parameters

of the filters and detectors. Next, we investigate conditions under which adversaries have access to all the

communication channels among the C&C side filter and UIO-based detector. We modify our proposed

centralized CAFDI module to address the latter problem. Moreover, we extend our results to develop and

propose a distributed CAFDI methodology for the interconnected large-scale CPS.

3.2 Centralized Cyber-Attack and Fault Detection and Isolation Methodol-

ogy

The presence of network layer in the CPS has enabled malicious adversaries to perform cyber-attacks

on the entire system. On the other hand, due to the existence of this network layer, it is possible to observe

the CPS from both the plant side and its C&C side. The idea of observing the CPS from both the plant

side and the C&C side is illustrated in Figure 3.2. Our goal in this framework is to utilize information from

the designed filters on both sides via a communication channel and generate residuals that are specifically

sensitive to faults and cyber-attacks. Using these residuals, the isolation between faults or cyber-attacks can

also be achieved.

Two filters having the same characteristics on both sides are designed in Subsections 3.2.1 and 3.2.2.

By using communication channels, states of the C&C side filter are transmitted to the plant side to generate

a residual signal that is sensitive to only cyber-attacks while this communication channel may still be com-

promised by an adversary. However, we assume that there exists a certain number of secure communication

channels to transmit states of the C&C side filter to the plant side.

A detector on the plant side that utilizes an unknown input observer (UIO) is designed in Subsection

3.2.3. The detector utilizes the previously generated residuals as additional input so that the UIO-based

detector is sensitive to both cyber-attacks and faults. The reason for selecting UIO as the main detector

is that it enables one to utilize a general design structure to simultaneously address the considered CAFDI
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Figure 3.2: Observers/filters on both the plant side and the C&C side of the CPS, where zc(t) represents the
states of the C&C side filter, zp(t) denotes the states of the plant side filter, ac(t) denotes the cyber-attack
on the communication channels, and res(t) denotes the residual signals that are generated on the plant side.

problems.

Our proposed centralized CAFDI methodology is presented in Subsection 3.2.4. It is worth noting that

by utilizing the proposed methodology, one is still capable of detecting several types of stealthy cyber-

attacks on the system, such as covert attacks and zero dynamics attacks. Moreover, in Subsection 3.2.5,

the case where all the communication channels between the C&C side filter and the plant side module are

non-secure is studied. Consequently, the C&C side and the plant filters as well as the UIO-based detector

are modified to address the CAFDI problem for the CPS in which all the communication channels among

the two side filters and detectors are compromised by adversaries.
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3.2.1 Command & Control (C&C) Side Filter

From the C&C side and according to (12), the output of the CPS is governed by

y∗(t) = Cx(t) +Daay(t). (14)

We have the following standing assumption to be considered throughout this chapter.

Assumption 3.3. Only the communication channels can be compromised and attacked. Consequently, on

the C&C side one has access to the control signal, u(t), before its manipulation by the adversary. Moreover,

on the plant side one has access to yp(t) before its manipulation by the malicious attacker.

The proposed filter on the C&C side can be expressed as

ż`c(t) = F `pz
`
c(t) + T `pBu(t) +K`

py
∗(t), (15)

where z`c(t) ∈ Rn represents the filter state that estimates xs(t) from the C&C side, and the matrices

F `p , T
`
p , and K`

p are of appropriate dimensions that are designed and selected subsequently. The index

` ∈ {SA,AA, SF,AF} designates if the filter is designed for detecting sensor attacks, actuator attacks,

sensor faults, and actuator faults, respectively.

3.2.2 Plant Side Filter

On the plant side, sensor measurements are carried out before sensor cyber-attacks, and the output of

the CPS can be expressed as follows:

yp(t) = Cx(t).

Moreover, on this side one has access to the potentially manipulated control signal u∗(t) = u(t) + Saau(t).

The proposed filter on the plant side is expressed in the following form:

ż`p(t) =F `pz
`
p(t) + T `pBu

∗(t) +K`
pyp(t), (16)

where z`p(t) ∈ Rn denotes the filter state estimating xs(t) from the plant side. Similar to the C&C side
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filters, the index ` ∈ {SA,AA, SF,AF}, indicates if the filter is designed for detecting sensor attacks,

actuator attacks, sensor faults, and actuator faults, respectively.

The error signals between estimated states for both sides can be defined as e`p(t) = z`p(t) − z`c(t). The

representation of the error dynamics between the two filter states can be derived as follows:

ė`p(t) =F `pe
`
p(t) + T `pBaau(t)−K`

pDaay(t). (17)

It follows from (17) that the error dynamics is only sensitive to cyber-attacks.

3.2.3 UIO-Based Detector and Residual Signal Generation

We have adopted the UIO design from [36] to develop a UIO-based detector on the plant side with the

following representation:

ż`(t) =F `z`(t) + T `Bu∗(t) +K`yp(t) + L`(z`p(t)− (z`c(t) +Dcpacp(t))),

x̂`(t) =z(t)` +H`yp(t),

(18)

where z`(t) ∈ Rn+pf+p, and x̂`(t) ∈ Rn+pf+p denotes the estimated states by the detector, and acp(t) ∈ Rnc

denotes the cyber-attack on the communication channel between the two filters with the signature Dcp. The

matrices F `, T `, K`, L`, and H` are of appropriate dimensions and will be specified subsequently, with

` ∈ {SA,AA, SF,AF}, denoting the categories defined previously.

The error between the states of the detector and the CPS is defined as e`(t) = x(t)− x̂`(t). Let

res`(t) = yp(t)− Cx̂`(t) = Ce`(t), (19)

denote a residual signal. By selecting K` = K`
1 + K`

2, F ` = A −H`CA −K`
1C, with K`

1 of appropriate

dimension, andK`
2 = FH`, the dynamics associated with e`(t) can now be expressed in the following form:
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ė`(t) =(A−H`CA−K`
1C)e`(t) + (I − T ` −H`C)(Bu(t)

+Baau(t)) + (I −H`C)F1f1(t) + (I −H`C)F2f2(t)

+ (I −H`C)Nω(t)− L`e`p(t)− L`Dcpacp(t).

(20)

Definition 3.4. A cyber-attack/fault is detected if the residual signal res`(t) given by (19) exceeds a pre-

specified threshold η > 0 as follows:

‖res`(t)‖2 > η,

where ‖.‖2 indicates the Euclidean norm.

Remark 3.3. To select the threshold η, one may need to perform Monte Carlo simulation runs for the

healthy system, i.e., for the fault free and cyber-attack free system in presence of external disturbances and

noise and choose the maximum value of ‖res(t)`‖2 as η.

Definition 3.5 (Decoupled Residual). The residual signal res`(t) given by (19) is decoupled from an anoma-

lous signal in the set {au(t), ay(t), acp(t), f1(t), f2(t)} if the dynamics and trajectory of res`(t) are not

affected by that anomalous signal.

The following assumption stands throughout this section.

Assumption 3.4. The malicious adversary knows the parameters of the C&C side filter in (15), the plant

side filter in (16), and the UIO-based detector in (18).

3.2.4 Filters and Detectors Design for Cyber-Attack and Fault Detection and Isolation Ob-

jectives

The error dynamics in (17) and (20) can now be augmented as follows:

˙̌e`(t) = F̌ `ě`(t) + B̌`u(t) + B̌`
aau(t) + F̌ `1f1(t) + F̌ `2f2(t)− Ǩ`

pay(t)− Ľ`acp(t) + Ň `ω(t), (21)
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where ě`(t) = [e`(t)
>
e`p(t)

>
]>, and

F̌ ` =

F ` −L`
0 F `p

 , B̌ =

(I − T ` −H`C)B

0

 ,
B̌`

a =

(I − T ` −H`C)Ba

T `pBa

 , F̌ `1 =

(I −H`C)F1

0

 ,
F̌ `2 =

(I −H`C)F2

0

 , Ǩ`
p =

 0

K`
pDa

 , Ľ` =

L`Dcp

0

 ,
Ň ` =

(I −H`C)N

0

 ,

(22)

where ` ∈ {SA,AA, SF,AF}.

Assumption 3.5. There exist q = max{ma, pa} secure communication channels among the C&C side filter

in (15) and the UIO-based detector in (18), i.e., rank(Dcp) = n− q. Moreover, Cq = {c1, . . . , cq} denotes

the set of secured communication channels, where cζ ∈ {1, . . . , n}, for ζ ∈ {1, . . . , q}.

In the following, it is shown how one can generate four residual signals resAA(t), resSA(t), resAF(t),

and resSA(t) to detect the actuator cyber-attack, the sensor cyber-attack, the actuator fault, and the sensor

fault, respectively, by using a bank of filters and four UIO-based detectors.

Proposition 3.1. Under Assumption 3.5, the residual signal resAA(t) = yp(t)− Cx̂AA(t) is affected by the

actuator cyber-attacks au(t) and is decoupled from ay(t), acp(t), f1(t), and f2(t) in the sense of Definition

3.5, if the following conditions for the augmented dynamics (21) hold for ` = AA, namely:

(1) T ` = I −H`C;

(2) (I −H`C)F1 = 0;

(3) (I −H`C)F2 = 0;

(4) L`Dcp = 0;
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(5) KAA
p Da = 0;

(6) the triplet (C, F `, L̄`) is left-invertible, where L̄` = [l`c1 · · · l
`
cq ], and l`cζ is the cζ-th column of L`, for

ζ = 1, . . . , q;

(7) the Rosenbrock system matrix

PΣu(s) =

sI − F AA
p −T AA

p Ba

LAA 0(n+pf+p)×ma

 ,
does not have any non-minimum phase zero dynamics;

(8) rank (LAAT AA
p Ba) = rank (T AA

p Ba);

(9) F̌ ` is Hurwitz.

Proof. The augmented error dynamics associated with eAA(t) and eAA
p (t) are governed by (21) where ` =

AA. Under Conditions 1) to 5), the dynamics (21) become

˙̌eAA(t) = F̌AAěAA(t) + B̌AA
a au(t) + ŇAAω(t). (23)

Consequently, the error signal ěAA(t) is not affected by the control command u(t), the actuator fault f1(t),

the sensor fault f2(t), the sensor attack ay(t), and the communication channel attack signal ac(t). It should

be noted that having LAADcp = 0 implies that

Im(Dcp) ⊆ Ker(LAA).

Hence, since as per Assumption 3.5 we consider rank(Dac) = n − q, there exists a nonzero LAA with

rank(LAA) = q which satisfies LAADcp = 0.

Furthermore, (23) can be partitioned into the following two subsystems:

ėAA
p (t) = FAA

p eAA
p (t) + TAA

p Baau(t), (24)
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and

ėAA(t) =FAAeAA(t)− LAAeAA
p (t) + (I −HAAC)Nω(t),

resAA(t) =CeAA(t).

(25)

Based on Condition 6) and according to (25), the impact of eAA
p (t) will appear in resAA(t) for any

au(t) 6= 0.

Consider eAA
p (t) in (24) with the output LAAeAA

p (t) in order to construct the Rosenbrock system matrix

PΣu(s). To prevent stealthy attacks on the plant side filter, one needs to design this filter and LAA such

that the Rosenbrock system matrix PΣu(s) has no non-minimum phase zero dynamics and is left-invertible

[14]. The Rosenbrock system matrix PΣu(s) being left-invertible is equivalent to the largest controllability

subspace of the system (LAA, FAA
p , TAA

p Ba) contained in ker(LAA), and designated as R∗(Σu) being zero

[98]. One has (refer to Theorem 8.22 in [98] and Theorem 5.6 in [102])

R∗(Σu) = V ∗(Σu) ∩W ∗(Σu), (26)

where V ∗(Σu) is the largest weakly unobservable subspace that is equivalent to the largest output-nulling

subspace of the triplet (LAA, FAA
p , TAA

p Ba), and W ∗(Σu) is the smallest conditioned invariant subspace

containing Im(TAA
p Ba) [15].

As described in [98] and [102], these subspaces can be computed by using the following algorithm

V0 = Ker(LAA),

Vk = V0 ∩ FAA
p
−1

(Vk−1 + Im(TAA
p Ba)), (27)

and

W0 = Im(TAA
p Ba),

Wk = W0 + FAA
p (Wk−1 ∩ Ker(LAA)), (28)

where Vk and Wk converge to V ∗(Σu) and W ∗(Σu), respectively, in at most k = n steps.
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Given (26), (27), and (28), R∗(Σu) = 0, if V0 ∩W0 = 0, or equivalently,

Ker(LAA) ∩ Im(TAA
p Ba) = 0. (29)

The equation (29) implies that Im(TAA
p Ba) should not be in the null space of LAA, which is equivalent to

rank (LAATAA
p Ba) = rank (TAA

p Ba). (30)

Given that as per Assumption 3.5 one has rank(LAA) ≥ rank (TAA
p Ba), therefore the matrix LAA can be

obtained such that (30) holds.

The Rosenbrock system matrix PΣu(s) being left-invertible implies that for any au(t) 6= 0, LAAeAA
p (t) 6=

0.

Finally, in order to detect actuator cyber-attacks, the governing dynamics in (23) should be stable. This

completes the proof of the Proposition 1.

Proposition 3.2. Under Assumption 3.5, the residual signal resSA(t) = yp(t) − Cx̂SA(t) is affected by the

sensor cyber-attacks ay(t) and is decoupled from au(t), acp(t), f1(t), and f2(t) in the sense of Definition

3.5, if Conditions 1)-4), 6), and 9) of the Proposition 3.1 for ` = SA, and the following conditions for the

augmented error dynamics (21) hold, namely:

(1) T SA
p Ba = 0;

(2) the Rosenbrock system matrix

PΣy(s) =

sI − F SA
p KSA

p Da

LSA 0(n+pf+p)×pa

 ,
does not have any non-minimum phase zero dynamics; and

(3) rank (LSAKSA
p Da) = rank (KSA

p Da).

Proof. The proof follows along similar lines to that of Proposition 3.1 and is omitted for sake of brevity.
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Remark 3.4. Suppose Condition 8) of the Proposition 3.1 is not satisfied and PΣu(s) is not left-invertible.

In this case, it has been shown in [14] that one can find an actuator cyber-attack au(t) 6= 0 such that

LAAeAA
p (t) = 0. This type of cyber-attack has been represented in [14] and has been defined as “unde-

tectable controllable attacks” in [15]. According to (24) and (25) the actuator cyber-attack signal au(t)

can affect the error eAA(t) only through LAAeAA
p (t). Hence, the adversary has the capability of injecting a

stealthy cyber-attack by using au(t) that does not affect the residual signal resAA(t) = CeAA(t). Similarly,

it can be shown that if Condition 3) of Proposition 3.2 is not satisfied and PΣy(s) is not left-invertible, the

adversary can inject stealthy attack using ay(t) which does not affect the residual resSA(t).

Remark 3.5. In Propositions 3.1 and 3.2, there is no assumption on the nature, characteristics, and type

of sensor and actuator cyber-attacks. This implies that by using the proposed methodology, one is capable

of detecting and isolating detectable attacks, such as false data injection attacks, as well as undetectable

attacks (refer to Definition 3.2), such as covert attacks and zero dynamics attacks. Furthermore, since as per

Definition 3.4, we are using a threshold checking mechanism to make a decision on the anomalous status

of the CPS, it would be still possible for adversaries to design their attack signals such that the residual

remains below the threshold. Hence, in such a scenario, adversaries will try to reduce the amplitude of their

attack signals to remain undetected which implies that the attack signals may not necessarily lead the CPS

to dangerous conditions.

Proposition 3.3. The residual signal resAF(t) = yp(t)−Cx̂AF(t) is affected by the actuator fault f1(t) and

is decoupled from au(t), ay(t), acp(t), and f2(t) in the sense of Definition 3.5, provided that LAF = 0 and

Conditions 1), 3), and 9) of the Proposition 3.1 hold for ` = AF.

Proof. In light of the Conditions 1) and 3) of the Proposition 3.1, and setting ` = AF, (21) yields

˙̌eAF(t) =F̌AFěAF(t) + B̌AF
a au(t) + F̌AF

1 f1(t)− ǨAF
p ay(t)− ĽAFacp(t) + ŇAFω(t).

Moreover, by setting LAF = 0, the dynamics of eAF(t) is governed by:

ėAF(t) = FAFeAF(t) + (I −HAFC)F1f1(t) +Nω(t).
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and consequently, the residual signal resAF(t) = CeAF(t) is only sensitive to the actuator fault f1(t). In

addition, F̌AF should be Hurwitz in order to have a stable error dynamics eAF(t). This completes the proof

of the Proposition 3.

Proposition 3.4. The residual signal resSF(t) = yp(t) − Cx̂SF(t) is affected by the pseudo actuator fault

f2(t) and is decoupled from au(t), ay(t), acp(t), and f1(t) in the sense of Definition 3.5, provided that

LSF = 0 and Conditions 1), 2), and 9) of the Proposition 3.1 hold for ` = SF.

Proof. Setting ` = SF, the proof follows along similar lines to that of Proposition 3.3 and is omitted for

sake of brevity.

As stated in [36], the Conditions 2) and 3) in the Proposition 3.1 are solvable if and only if rank(CF1) =

rank(F1); and rank(CF2) = rank(F2). The next theorem provides sufficient conditions for isolability of

sensor and actuator faults.

Theorem 3.1. The residuals resAF(t) and resSF(t) can be simultaneously generated to detect and isolate

f1(t) and f2(t) if F>1 F2 = 0.

Proof. In order to generate the residual signal resAF(t), the Condition 2) in Proposition 3.3 should hold,

which can be interpreted as requiring

Im(I −HAFC) ⊂ Ker(F>2 ). (31)

and at the same time, the impact of f1(t) should show up in the dynamics of e(t), that implies (I −

HAFC)F1 6= 0. The latter condition is equivalent to having

Im(F>1 ) ⊂ Im(I −HAFC). (32)

From (31) and (32), it can be inferred that Im(F>1 ) ⊂ Ker(F>2 ), which implies that F>1 F2 = 0. Note that

the case of generating the residual signal resSF(t) provides one with the same result. This completes the

proof of the Theorem 3.1.
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It follows from the definitions of F1 and F2 that the condition F>1 F2 = 0 is always satisfied. Therefore,

as long as Conditions 2) and 3) in Proposition 3.1 are solvable, the actuator faults and pseudo actuator faults

can be detected and isolated.

Remark 3.6. Given that LAF and LSF are equal to zero in the Propositions 3.3 and 3.4, in order to gen-

erate the residual signals resAA(t), resSA(t), resAF(t), and resSF(t) one needs to construct a bank of four

filters (two on each side) with the states zAA
p (t), zAA

c (t), zSA
p (t), and zSA

c (t), and four UIO-based detectors

with the states x̂AA(t), x̂SA(t), x̂AF(t), and x̂SF(t) according to the Propositions 3.1-3.4. In the Propositions

3.1 and 3.2, the matrices KAA
p and T SA

p have been utilized to decouple sensor cyber-attacks and actuator

cyber-attacks in the sense of Definition 3.5 from the generated residual signals, respectively. Hence, one

can conclude that there is no contradiction among the conditions to generate resAA(t) and resSA(t). Sub-

sequently, from Theorem 3.1 it can be seen that no contradiction exists among the design conditions in the

Propositions 3.3 and 3.4 to generate resAF(t) and resSF(t). Moreover, in the Propositions 3.3 and 3.4,

the matrix L` has been employed to decouple the cyber-attack signals from resAF(t) and resSF(t), which

indicates that there are no contradictions in the design conditions for the Propositions 3.1-3.4.

Remark 3.7. One application of the proposed centralized CAFDI methodology could be the detection and

isolation of anomalies in a single UAV. Consider a UAV that is remotely controlled and receives its way

points from the C&C center. An adversary is capable of performing man-in-the-middle cyber-attack to either

hijack or destroy the UAV. Considering the availability of relatively cheap and powerful microcontrollers,

it is reasonable to assume that a UAV can have adequate computational resources to deploy and run the

proposed UIO-based detector and filters in its plant side. Moreover, given that in our proposed centralized

CAFDI methodology, detection of anomalies occurs in the plant side, this information can be relayed back

to the C&C side as a flag for corrective actions to be considered.

3.2.5 The Case of Fully Non-Secure Communication Channels

In the previous subsection, under Assumption 3.5, we considered the existence of secure communication

channels between the two side filters. Consequently, the generated residuals in the Propositions 3.1-3.4 were

decoupled from the communication channel attack signal acp(t). However, it is possible that adversaries

compromise all the communication channels among the two side filters. Hence, in this subsection we remove
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the Assumption 3.5 and consider the case where there exists no secure communication channel among the

filters. Furthermore, the proposed filters in (15) and (16) are modified to address the CAFDI problem.

In order to develop the modified filters, one requires two communication channels, one from the C&C

side filter to the plant side filter and the other from the plant side filter to the C&C side filter to transmit

states of the two filters to one another. Moreover, the specified communication channels are assumed to be

fully compromised by the adversaries.

The proposed filter on the plant side is modified in the following form:

ż`p(t) =F `pz
`
p(t) + T `pBu

∗(t) +K`
pyp(t) + δp(t)L`p(z`p(t)− (z`c(t) +Dcpacp(t))), (33)

where δp(t) denotes a scalar random variable in the interval [δ1, δ2], δ1 and δ2 are positive real numbers, z`c(t)

denotes the state of the C&C side filter transmitted to the plant side, and acp(t) ∈ Rnc denotes the cyber-

attack on the communication channel from the C&C side filter to the plant side filter with the signature

Dcp.

Consequently, the modified filter on the C&C side can be expressed as

ż`c(t) =F `pz
`
c(t) + T `pBu(t) +K`

py
∗(t) + δc(t)L

`
p(z`c(t)− (z`p(t) +Dpcapc(t))), (34)

where δc(t) ∈ [δ1, δ2] denotes a scalar random variable and apc(t) ∈ Rnc denotes the cyber-attack on the

communication channel from the plant side filter to the C&C side filter associated with the signature Dpc.

Assumption 3.6. The adversary has access to all the communication channels among the two side filters,

i.e., Dcp = Dpc = In.

Considering Assumption 3.6, and the dynamics (33) and (34), the governing dynamics of the error

e`p(t) = z`p(t)− z`c(t) can be derived as follows:

ė`p(t) =F `p (t)e`p(t) + T `pBaau(t)−K`
pDaay(t)− δp(t)L`pacp(t) + δc(t)L

`
papc(t), (35)

where F `p (t) = F `p + δ(t)L`p, and δ(t) = δp(t) + δc(t).

41



Moreover, the dynamics of the UIO-based detector on the plant side, as given in (18), can now be

rewritten in the following form:

ż`(t) =F `z`(t) + T `Bu∗(t) +K`yp(t) + L`(z`p(t)− (z`c(t) + acp(t))),

x̂`(t) =z(t)` +H`yp(t).

(36)

Consequently, the error dynamics of e`(t) = x(t)− x̂`(t) in (20) can be reformulated as follows:

ė`(t) =(A−H`CA−K`
1C)e`(t) + (I − T ` −H`C)(Bu(t)

+Baau(t)) + (I −H`C)F1f1(t) + (I −H`C)F2f2(t)

+ (I −H`C)Nω(t)− L`(e`p(t)− acp(t)).

(37)

Assumption 3.7. The malicious adversary does not have knowledge on the parameters δp(t)L`p in (33) and

δc(t)L
`
p in (34), however, the remaining parameters in (33), (34), and (36) are known to the adversary.

Remark 3.8. Given the randomness of the variables δp(t) and δc(t), it is reasonable to assume that adver-

saries do not know the values of the parameters stated in Assumption 3.7. Moreover, δp(t) and δc(t) can

have any arbitrary probability distributions associated with them.

Lemma 3.1. Let Assumptions 3.6 and 3.7 hold and consider the CPS (12) under cyber-attacks and faults.

Given the modified plant side filter (33) and the modified C&C side filter (34), adversaries cannot design

communication channel attack signals acp(t) and apc(t) to ensure L`(e`p(t) − acp(t)) = 0, ∀t > 0 in the

error dynamics (37).

Proof. We consider three possible scenarios, namely acp(t) = 0 and apc(t) 6= 0, apc(t) = 0 and acp(t) 6= 0,

and finally acp(t) 6= 0 and apc(t) 6= 0. Let acp(t) = 0 and consider the error dynamics e`p(t) in (35) with the

output L`e`p(t). Given the unknown random parameter δc(t)L
`
p in the dynamics of e`p(t), adversaries cannot

design apc(t) 6= 0 such that −K`
pDaay(t) + δc(t)L

`
papc(t) = 0 or T `pBaau(t) + δc(t)L

`
papc(t) = 0, ∀t > 0.

Moreover, since adversaries do not know F `p (t) and δc(t)L
`
p, they cannot execute zero dynamics attacks

or perform “undetectable controllable attacks” (refer to Remark 3.4) on the triplet (L`, F `p (t), δc(t)L
`
p). A

similar argument can be used to show that adversaries cannot make L`(e`p(t) − acp(t)) = 0, ∀t > 0, in the

case of apc(t) = 0 and acp(t) 6= 0.
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Let acp(t) 6= 0 and apc(t) 6= 0. Since the parameter F `p (t) is unknown to adversaries, they cannot

design the communication attack signal acp(t) to eliminate the impact of cyber-attacks in (35) from the

signal L`(e`p(t)− acp(t)). This completes the proof of the lemma.

Proposition 3.5. Let Assumptions 3.6 and 3.7 hold and consider the modified plant side filter (33), the

modified C&C side filter (34), and the UIO-based detector (36), where ` = AA. The residual signal

resAA(t) = yp(t) − Cx̂AA(t) is affected by au(t), acp(t), and apc(t) and is decoupled from ay(t), f1(t),

and f2(t) in the sense of Definition 3.5 provided that the Conditions 1)-3), and 5) of the Proposition 3.1 and

the following conditions hold for the error dynamics (35) and (37), namely:

(1) the triplet (C, F `, L`) is input observable in the sense of Definition 3.3;

(2) F ` is Hurwitz;

(3) F `p (t) is designed such that there exists a symmetric positive definite matrix Q`p(t) that satisfies

F `p (t)> + F `p (t) = −Q`p(t), (38)

where βepIn ≤ Q`p(t), and βep is a positive scalar.

Proof. Let ` = AA. Under the Conditions 1)-3), and 5) in the Proposition 3.1, the error dynamics (35) and

(37) become

ėAA
p (t) =FAA

p (t)eAA
p (t) + TAA

p Baau(t)− δp(t)LAA
p acp(t) + δc(t)L

AA
p apc(t), (39)

and

ėAA(t) =FAAeAA(t)− LAA(eAA
p (t)− acp(t)) + (I −HAAC)Nω(t), (40)

respectively.

Consider the error dynamics in (39) with the output LAA(eAA
p (t)−acp(t)). Given that adversaries do not

know FAA
p (t), by utilizing the actuator attack signal au(t), they cannot excite the zero dynamics of the triplet
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(LAA, Fp(t), TAA
p Ba) or carry out “undetectable controllable attacks” (refer to Remark 3.4). Moreover,

according to Lemma 3.1, and given that (C, F `, L`) is input observable, the impact of cyber-attacks au(t),

acp(t), and apc(t) in (39) will be manifested in the residual signal resAA(t) = CeAA(t) through the error

dynamics (40).

Consequently, in order to detect cyber-attacks, one needs to show that the error dynamics (40) and (39)

are stable. The dynamics (40) is stable if FAA is Hurwitz. Furthermore, consider the Lyapunov function

candidate Vep(eAA
p (t)) = eAA

p (t)
>
eAA

p (t).

The derivative of Vep(eAA
p (t)) along the trajectories of (39) can be obtained as

V̇ep(eAA
p (t)) =ėAA

p (t)
>
eAA

p (t) + eAA
p (t)

>
ėAA

p (t)

=− eAA
p (t)

>
QAA

p (t)eAA
p (t).

(41)

It follows from (41) that V̇ep(eAA
p (t)) ≤ −βep‖eAA

p (t)‖2, which implies that under Condition 2), the error

dynamics (39) is stable [103]. This completes the proof of the proposition.

Remark 3.9. According to the Condition 3) in the Proposition 3.5, one needs to design F `p (t) such that (38)

holds. Given that F `p (t) = F `p + δ(t)L`p, one has F `p (t) + F `p (t)> = F̃ `p + δ(t)L̃`p, where F̃ `p = F `p + F `p
>

and L̃`p = L`p + L`p
> are symmetric matrices. Thus, one can use F `p to design F̃ `p such that F̃ `p + 2δ1L̃

`
p and

F̃ `p + 2δ2L̃
`
p are negative definite, which is the sufficient condition for (38) to hold.

Proposition 3.6. Under the Assumptions 3.6 and 3.7, the residual signal resSA = yp(t)−Cx̂SA(t) generated

by utilizing the modified plant side filter (33), the modified C&C side filter (34), and the UIO-based detector

(36) is affected by ay(t), acp(t), and apc(t) and is decoupled from au(t), f1(t), and f2(t) in the sense of the

Definition 3.5 provided that the Conditions 1)-3) of the Proposition 3.1, the Condition 1) of the Proposition

3.2, and the Conditions 1)-3) of the Proposition 3.5 for ` = SA hold.

Proof. The proof follows along similar lines to that of the Proposition 3.5 and is omitted for sake of brevity.

Remark 3.10. In the Proposition 3.1, the residual signal is only sensitive to the actuator attack signal au(t),

however, due to not having any secure communication channel in the Proposition 3.5, the residual signal is
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affected by the set of signals {au(t), acp(t), apc(t)}. Similarly, the residuals in the Propositions 3.2 and 3.6

are affected by the sensor attack signal ay(t) and the set {ay(t), acp(t), apc(t)}. Therefore, when there is no

secure communication channel, the generated residuals in the Propositions 3.5 and 3.6 cannot be decou-

pled from cyber-attacks on the communication channels between the two side filters. Moreover, the given

conditions in the Propositions 3.3 and 3.4 can be used to design and implement actuator and sensor fault

detection and isolation modules, respectively. In other words, having non-secure communication channels

among the two side filters does not affect the performance of our proposed fault detection and isolation

methodologies and modules.

3.3 Distributed Cyber-Attack and Fault Detection and Isolation Methodol-

ogy for Interconnected CPS

In this section, our objective is to extend our results in the Subsection 3.2.5 and address the CAFDI

problem for large scale interconnected CPS given by (13) through a distributed architecture. The proposed

CAFDI methodology is distributed in the sense that CAFDI modules on each subsystem communicate infor-

mation with their neighboring subsystems. Hence, each subsystem can detect and isolate its cyber-attacks

and faults as well as anomalies in its neighboring subsystems. Furthermore, we consider the detection of

both detectable and undetectable cyber-attacks (refer to Definition 3.2) in our proposed methodology.

3.3.1 UIO-Based Detectors and Filters Design for the i-th Subsystem

In this subsection, we use a similar approach as in the Subsection 3.2.5 to design both side filters and

UIO-based detectors. Each subsystem is equipped with a bank of filters both on its plant side and its C&C

side, where both side filters transmit their states to one another over compromised communication channels.

In this methodology, we consider the existence of one secure communication channel among the two side

filters. Moreover, a detector by using the UIO is designed and utilized on the plant side of each subsys-

tem. Each UIO-based detector receives estimated states of the UIO-based detectors in its neighborhood

through compromised communication channels. It should be noted that in our proposed distributed CAFDI

methodology for interconnected CPS, two side filters of each subsystem do not transmit information to the
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Figure 3.3: The distributed CAFDI methodology for the i-th subsystem, where Di
cp and Di

pc are rank defi-
cient matrices that denote the signatures of the cyber-attack signals on the communication channels between
the C&C and the plant side filters.

nearby filters that are in the other subsystems. The proposed distributed CAFDI methodology is depicted in

Figure 3.3.

Consequently, the proposed filter on the plant side of Si is given by

ż`pi(t) =F `piz
`
pi(t) + T `piBiu

∗
i (t) +K`

piypi(t) + δpi(t)L
`
pi(z

`
pi(t)

− (z`ci(t) +Di
cpa

i
cp(t))),

(42)

where z`pi(t) ∈ Rni denotes the state of the plant side filter on the i-th subsystem, ypi(t) = Cixi(t) denotes

the measured output of Si on the plant side, zci(t)
` ∈ Rni denotes the state of the C&C side filter of Si

which is transmitted to the plant side, aicp(t) ∈ Rnci denotes the cyber-attack on the communication channel

from the C&C side filter of Si to its plant side filter with the signature Di
cp, and δpi(t) ∈ [δ1, δ2] denotes a
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scalar random variable.

Moreover, the proposed filter on the C&C side of the i-th subsystem is governed by

ż`ci(t) =F `piz
`
ci(t) + T `piBiui(t) +K`

piy
∗
i (t)

+ δci(t)L
`
ci(z

`
ci(t)− (zpi(t) +Di

pca
i
pc(t))),

(43)

where δci(t) ∈ [δ1, δ2] is a scalar random variable, and aipc(t) ∈ Rnci denotes the cyber-attack on the

communication channel from the plant side filter of Si to its C&C side filter with the signature Di
pc.

Let us define the error e`pi(t) = z`pi(t) − z`ci(t) for the i-th subsystem. The dynamics of the error e`pi(t)

can be derived in the following form:

ė`pi(t) =F `pi(t)e
`
pi(t) + T `piB

i
aa
i
u(t)−K`

piD
i
aa
i
y(t)

− δpi(t)L
`
piD

i
cpa

i
cp(t) + δci(t)L

`
ciD

i
pca

i
pc(t),

(44)

where F `pi(t) = F `pi + δci(t)L
`
ci + δpi(t)L

`
pi.

The UIO-based detector of Si can be expressed in the following form:

ż`i (t) =F `i z
`
i (t) + T `i Biu

∗
i (t) +K`

i ypi(t) +
∑
j∈Ni

Aij(x̂
`
j(t)

+Dij
ppa

ij
pp(t)) + δzi(t)L

`
i(z

`
pi(t)− (z`ci(t) +Di

cpa
i
cp(t))),

(45)

where δzi(t) ∈ [δ1, δ2] denotes a random variable, x̂`j(t) = z`i (t) + H`
i ypi(t) denotes the estimation of the

state in the j-th subsystem which is transmitted through a communication channel to the UIO-based detector

in Si, and aijpp(t) ∈ Rnj denotes the malicious attack signal on the communication channel among Si and

Sj with the signature Dij
pp, for j ∈ Ni. Moreover, the matrices F `i , T

`
i , K

`
i , L

`
i , and H`

i are of appropriate

dimensions and satisfyK`
i = K`

1i+K`
2i, F

`
i = Ai−H`

iCiAi−K`
1iCi, whereK`

1i is a matrix of appropriate

dimension, and K`
2i = F `iH

`
i .
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Consequently, the error dynamics of e`i(t) = xi(t)− x̂`i(t) in the subsystem i can be expressed by

ė`i(t) =F `i e
`
i(t) + (I − T `i −H`

iCi)(Biui(t) +Bi
aa
i
u(t))

+ (I −H`
iCi)

∑
j∈Ni

(Aij(e
`
j(t)−Dij

ppa
ij
pp(t)))

+ (I −H`
iCi)(F

i
1f

i
1(t) + F i2f

i
2(t))

− δzi(t)L
`
i(e

`
pi(t)−Di

cpa
i
cp(t)). (46)

where z`i (t) ∈ Rni+pfi+pi , and x̂`i(t) ∈ Rni+pfi+pi is the estimated states by the detector of Si.

Moreover, by utilizing (45), one can generate a residual signal on the plant side of Si in the following

form:

resi`(t) = ypi(t)− Cix̂`i(t) = Cie
`
i(t). (47)

Definition 3.6. A cyber-attack/fault on the i-th subsystem is detected if the following inequality is satisfied

for the residual signal (47):

‖resi`(t)‖2 > η`i ,

where η`i > 0 is a pre-specified threshold.

Similar to the value of η in Definition 3.4 (see also Remark 3.3), the prescribed threshold η`i can be

computed by means of Monte Carlo simulation runs for the healthy system.

Definition 3.7. The generated residual signal in (47) which belongs to the i-th subsystem is decoupled from

an anomalous signal in the set {aiu(t), aiy(t), a
i
cp(t), aipc(t), a

i
pp(t), f i1(t), f i2(t)} if that anomalous signal

does not affect the dynamics and trajectories of resi`(t).

We consider the following assumptions throughout this subsection.

Assumption 3.8. The qicp-th communication channel from the C&C side filter to the plant side filter and the

qipc-th communication channel from the plant side filter to the C&C side filter are secured, where qicp, q
i
pc ∈

{1, . . . , ni}, i.e., rank(Di
cp) = ni − 1 and rank(Di

pc) = ni − 1, for i, j = 1, . . . , N . Moreover, all the

communication channels among the nearby UIO-based detectors can be compromised, i.e., rank(Dij
pp) =

nj + pfj + pj .
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Assumption 3.9. In the plant side filter (42), the C&C side filter (43), and the UIO-based detector (45) of Si,

only the random parameters δpi(t)L
`
pi, δci(t)L

`
pi, and δzi(t)L

`
i are unknown to the adversary, respectively,

and the adversary knows the other parameters.

Remark 3.11. The random variables δpi(t), δci(t), and δzi(t) can have any arbitrary probability distribu-

tions.

Proposition 3.7. Consider the Assumptions 3.8 and 3.9, the plant side filter (42), the C&C side filter (43),

and the UIO-based detector (45). The residual signal resAA
i (t) = ypi(t)−Cix̂AA

i (t) in the i-th subsystem is

affected by actuator cyber-attack signals aiu(t) in Si and aju(t) in Sj and malicious attack signals aijpp(t) and

ajrpp(t), for j ∈ Ni and r ∈ Nj . Moreover, the generated resAA
i (t) is decoupled from the sets of anomalous

signals {aiy(t), f i1(t), f i2(t), ajy(t), f j1 (t), f j2 (t)} and {aicp(t), aipc(t), a
j
cp(t), ajpc(t)} in the sense of Definition

3.7 if for the error dynamics (44) and (46) and every i = 1, . . . , N , the following conditions hold:

(1) T `i = I −H`
iCi;

(2) (I −H`
iCi)F

i
1 = 0;

(3) (I −H`
iCi)F

i
2 = 0;

(4) L`ciD
i
pc = 0, L`piD

i
cp = 0, L`iD

i
cp = 0;

(5) the triplet (Ci, F
`
i , l̄

`
i ) is input observable, where l̄`i is the qicp-th column of L`i;

(6) F `i is Hurwitz;

(7) F `pi(t) is designed such that

F `pi(t)
> + F `pi(t) = −Q`pi(t), (48)

whereQ`pi(t) is a symmetric positive definite matrix that satisfies βiepIn ≤ Q`pi(t), and βiep is a positive

scalar;

(8) and KAA
pi D

i
a = 0.
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Proof. Let ` = AA. Considering the provided conditions in this proposition, the dynamics of errors eAA
i (t)

and eAA
j (t) can be derived in the following form, namely:

ėAA
i (t) =Fie

AA
i (t) + (I −HAA

i Ci)
∑
j∈Ni

Aij(e
AA
j (t)−Dij

ppa
ij
pp(t))− δzi(t)L

AA
i eAA

pi (t), (49)

and

ėAA
j (t) =Fje

AA
j (t) + (I −HAA

j Cj)
∑
r∈Nj

Ajr(e
AA
r (t)−Djr

ppa
jr
pp(t))− δzj(t)L

AA
j eAA

pj (t), (50)

where r ∈ Nj . From (49) and (50) it can be inferred that resAA
i (t) = Cie

AA
i is affected by the actuator

attack signals aiu(t) and aju(t).

The remainder of the proof follows along similar lines to that of Propositions 3.1 and 3.5.

Proposition 3.8. Let the Assumptions 3.8 and 3.9 hold and set ` = SA. The residual signal resSA
i (t) =

ypi(t) − Cix̂
SA
i (t) generated by using the plant side filter (42), the C&C side filter (43), and the UIO-

based detector (45) in Si is affected by sensor cyber-attack signals aiy(t) in the subsystem i and ajy(t) in

the j-th subsystem and communication attack signals aijpp(t) and ajrpp(t), for j ∈ Ni and r ∈ Nj . More-

over, resSA
i (t) is decoupled from the sets of anomalous signals {aiu(t), f i1(t), f i2(t), aju(t), f j1 (t), f j2 (t)} and

{aicp(t), aipc(t), a
j
cp(t), ajpc(t)} in the sense of Definition 3.7 if for every i = 1, . . . , N , T SA

pi B
i
a = 0 and the

Conditions 1)-7) of the Proposition 3.7 hold for the error dynamics (44) and (46).

Proof. The proof follows along similar lines to that of Propositions 3.5 and 3.7 and is omitted for sake of

brevity.

Proposition 3.9. Let the Assumption 3.8 holds and set ` = AF. The residual signal resiAF(t) = ypi(t) −

Cix̂
AF
i (t) that is generated in the i-th subsystem by using the UIO-based detector (45) is affected by ac-

tuator faults f i1(t) and f j1 (t) and malicious attack signals aijpp(t) and ajrpp(t), for j ∈ Ni and r ∈ Nj .

Moreover, resiAF(t) is decoupled from the sets of anomalous signals {aiu(t), aiy(t), f
i
2(t), aju(t), ajy(t), f j2 (t)}

and {aicp(t), aipc(t), a
j
cp(t), ajpc(t)} in the sense of the Definition 3.7, if the Conditions 1), 3), 4) and 6) of the

Proposition 3.7 hold and L`i = 0.
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Proof. The proof follows along similar lines to that of the Propositions 3.3 and 3.7.

Proposition 3.10. Consider the Assumption 3.8 and let ` = SF for the modified UIO-based detector in (45).

The generated residual signal resiSF(t) = ypi(t)−Cix̂SF
i (t) in Si is affected by pseudo actuator faults f i2(t)

and f j2 (t) and communication channel attack signals aijpp(t) and ajrpp(t), for j ∈ Ni and r ∈ Nj . Further-

more, resiSF(t) is decoupled from the sets of anomalous signals {aiu(t), aiy(t), f
i
1(t), aju(t), ajy(t), f j1 (t)} and

{aicp(t), aipc(t), a
j
cp(t), ajpc(t)} in the sense of the Definition 3.7, if the Conditions 1), 2), 4), and 6) of the

Proposition 3.7 hold and L`i = 0.

Proof. The proof follows along similar lines to that of the Propositions 3.3 and 3.7 and is omitted for sake

of brevity.

Theorem 3.2. The residual signals resiAF(t) and resiSF(t) in the Propositions 3.9 and 3.10, respectively,

can be simultaneously generated to detect and isolate f i1(t) and f i2(t) if F i1
>
F i2 = 0, for i = 1, . . . , N .

Proof. The proof follows along similar lines to that of Theorem 3.1.

Remark 3.12. It should be pointed out that in the Propositions 3.7-3.10, for detecting anomalies, i.e.,

faults and cyber-attacks, in the neighboring subsystems, the matrix H`
i should be designed such that (I −

H`
iCi)Aij 6= 0, for i, j = 1, . . . , N and ` ∈ {SA,AA, SF,AF}.

3.3.2 Non-Secure Communication Channels Among Two Side Filters and Nearby UIO-

Based Detectors

In this subsection, we consider the case where there is no secure communication channel among the

plant side filter (42) and the C&C side filter (43), and vice versa. Hence, in the following, we investi-

gate the performance of our proposed CAFDI methodology in the previous Subsection under the following

assumption.

Assumption 3.10. The adversary has access to all the communication channels among the two side filters

and nearby UIO-based detectors, i.e., rank(Di
cp) = rank(Di

pc) = ni and rank(Dij
pp) = nj + pfj + pj , for

i, j = 1, . . . , N .
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Under the Assumption 3.10, the Condition 4) in the Proposition 3.7 cannot be satisfied. Hence, the im-

pact of cyber-attacks on the communication channels among the two side filters (43) and (42) and the nearby

UIO-based detectors in (45) cannot be eliminated from the generated residuals in the Propositions 3.7-3.10.

Corollary 3.1 (Proposition 3.7). Consider the Assumptions 3.9 and 3.10. Since the Condition 4) in the

Proposition 3.7 cannot be satisfied, the generated residual resAA
i (t) = ypi(t)− Cix̂AA

i (t) cannot be decou-

pled from the sets of cyber-attack signalsU ia = {aicp(t), aipc(t), a
ij
pp(t)} in Si andU ja = {ajcp(t), ajpc(t), a

jr
pp(t)}

in the subsystem Sj in the sense of the Definition 3.7, for j ∈ Ni and r ∈ Nj .

Proof. The proof follows along similar lines to that of the Lemma 3.1 and Proposition 3.7.

Corollary 3.2 (Proposition 3.8). Let the Assumptions 3.9 and 3.10 hold. The residual signal resSA
i (t) =

ypi(t) − Cix̂
SA
i (t) generated in the Proposition 3.8 cannot be decoupled from the sets of attack signals

Y i
a = {aicp(t), aipc(t), a

ij
pp(t)} in the subsystem i and Y j

a = {ajcp(t), ajpc(t), a
jr
pp(t)} in the j-th subsystem in

the sense of the Definition 3.7, where j ∈ Ni and r ∈ Nj .

Proof. The proof follows along similar lines to that of the Lemma 3.1 and Proposition 3.8 and is omitted

for sake of brevity.

Remark 3.13. The Corollaries 3.1 and 3.2 indicate the importance of having one secure communica-

tion channel from the C&C side filter (43) to the plant side filter (42), and vice versa. Hence, under the

Assumption 3.10, although the residual signals resAA
i (t) and resSA

i (t) can be used to detect and isolate

actuator and sensor cyber-attacks, respectively, they are also affected by the sets of anomalous signals

{aicp(t), aipc(t), a
ij
pp(t)} and {ajcp(t), ajpc(t), a

jr
pp(t)}.

Remark 3.14. In this chapter, two main centralized and distributed CAFDI methodologies have been de-

veloped and proposed. In the Propositions 3.1-3.4, a centralized CAFDI methodology is proposed while it

is assumed that there exists a set of secure communication channels to transmit information from the C&C

side filter of the CPS (15) to its plant side UIO-based detector (18). Moreover, the designed CAFDI module

in the Propositions 3.1-3.4 only requires transmission of information from the C&C side to the plant side of

the CPS. In order to eliminate our assumption on the number of secure communication channels, a modified

version of our centralized CAFDI module is developed in the Propositions 3.5 and 3.6 where one does not
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need to have any secure communication channel on the two sides. However, the proposed methodology in

the Propositions 3.5 and 3.6 requires one to transmit information both from the C&C side of the CPS to

its plant side and from the plant side to its C&C side. Finally, in the Propositions 3.7-3.10, our proposed

CAFDI methodologies in previous sections have been extended to detect and isolate cyber-attacks and faults

in large-scale interconnected CPS through a distributed architecture. In the Propositions 3.7-3.10, we as-

sume that there exist one secure communication channel from the C&C side filter (43) to the plant side filter

(42) and one secure communication channel from the plant side filter (42) to the C&C side filter (43). The

proposed CAFDI methodology in the Propositions 3.7-3.10 requires one to transmit information from the

C&C side of the CPS to its plant side and from the plant side to its C&C side as well as the transmission of

information among the nearby UIO-based detectors.

3.4 Case Studies

In this section, two case studies are provided to demonstrate and verify the capabilities and advantages of

our proposed methodologies as compared to the available results in the literature. In the first case study, the

effectiveness of the proposed CAFDI methodology in Propositions 3.1-3.4 for simultaneous detection and

isolation of cyber-attacks and faults in a Quadruple-Tank Process (QTP) are illustrated. The continues-time

linear QTP model given in [104] is used. Moreover, to simulate the covert and zero dynamics attacks the

models in [2] and [1] are used, respectively. It is worth noting that the considered QTP is a positive system

(see [105, 106] for more details on positive systems).

In the second case study, a hardware-in-the-loop (HIL) simulation is provided to demonstrate and verify

the capabilities of our proposed methodologies. A four area power network system is simulated by utilizing

the OPAL-RT real-time simulator and 4 Raspberry Pis.

3.4.1 Quadruple-Tank Process

In our first case study, two types of cyber-attacks are considered, namely covert attacks and zero dy-

namics attacks. Moreover, detection and isolation of simultaneous loss of effectiveness fault in the actuator

and sensor bias fault with cyber-attacks are also demonstrated and validated. The linearized state-space
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representation of the QTP (system (7)) with a non-minimum phase zero is given by [104],

As =



−0.015821 0 0.025633 0

0 −0.010941 0 0.017822

0 0 −0.025633 0

0 0 0 −0.017822


,

Bs =



0.048221 0

0 0.034956

0 0.07755

0.055931 0


, Cs =

0.5 0 0 0

0 0.5 0 0

 ,

Dcp =



1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0


, Aa =


−1 0 0

0 −2 0

0 0 −3

 , (51)

Ca = [0 1 1; 1 1 1], Bs
a = Bs, L1 = [0.048221 0 0 0.055931]>, La

2 = [1 0 0]>, N s = [1 1 1 1]>, Da =

0.5 × I2, N a = [0 1 1]>, where all the input and output channels are compromised by adversaries as they

have access to two out of the four communication channels. Hence, the third and the fourth communication

channels among the C&C side filter (15) and the UIO-based detector (18) are secured, i.e., q = 2. The co-

variance matrices of ωs(t) and ωa(t) are specified as Q = diag(0.1, 0.1, 0.1, 0.1) and Ra = diag(0.2, 0.2),

respectively.

A bank of plant side filters as given by (16), C&C side filters as presented by (15), and detectors as

provided in (18) are designed such that the conditions of Propositions 3.1-3.4 are satisfied. Moreover, the

residual signals resAA(t), resSA(t), resAF(t), and resSF(t) are generated according to Propositions 3.1-3.4,

respectively.

To determine the threshold for the residual signals resAA(t) and resSA(t) of the actuator and sensor

cyber-attacks 100 Monte Carlo simulation runs are conducted according to Remark 3.3, and the threshold

is determined as η = 0.1. Moreover, the threshold for residuals that are used to detect actuator and sensor

faults is computed according to the method provided in Remark 3.3 and is set to η = 0.4.
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Figure 3.4: Detection of a zero dynamics attack that is injected at t = 0 (s).

Scenario 1 (Zero Dynamics Attacks): The system presented in (51) has a non-minimum phase zero at

s = 0.00127798, that is associated with the zero state direction xs
0 = [0, 0, −0.63604564, 0.61796063]>

and the zero input direction u0 = [−0.33810175, 0.31505206]>.

As can be seen in Fig. 3.4, the residual signal resAA(t) = yp(t)−Cx̂AA(t) that is designed to detect ac-

tuator cyber-attacks has increased (due to a zero dynamics attack) while the other residuals are successfully

below the threshold.

Scenario 2 (Covert Attacks): In this scenario, a covert attack scenario is considered. The adversary is

capable of completely removing the impact of actuator cyber-attack au(t) = [−2, −1]> which starts at

t = 10 (s) from the sensor measurements by using the sensor cyber-attack Daay(t) = −Cxcov(t), where

ẋcov(t) = Axcov(t) + Baau(t). As shown in Fig. 3.5, the increase in actuator and sensor cyber-attacks

residuals, resAA(t) and resSA(t), respectively, that exceed the threshold indicate the occurrence of these

cyber-attacks.

Scenario 3 (Faults): In this scenario, 50 percent loss of effectiveness in the first actuator, has occurred at
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Figure 3.5: Detection of actuator and sensor cyber-attacks in case of covert attacks.

t = 5 (s). Moreover, bias fault in the second sensor which is modeled as pseudo actuator fault, f2(t) = 1,

also exists in the system from t = 15 (s) onward. It can be observed from Fig. 3.6 that due to occurrence of

faults the corresponding residuals have been increased.

Scenario 4 (Simultaneous Injection of Cyber-Attacks and Faults): In this scenario, the detection and

isolation of simultaneous cyber-attacks and faults is demonstrated. In this scenario, the system is under a

covert attack at t = 0 (s) and actuator and sensor faults occur at t = 5 (s) and t = 15 (s), respectively. As

depicted in Fig. 3.7, these anomalies can both be detected and isolated successfully.

3.4.2 Four Area Power Network

As depicted in Figure 3.8, the power system and all the plant side dynamics are simulated on the OPAL-

RT simulator and the C&C side controllers and filters are deployed and simulated on the Raspberry Pis.

Our HIL simulation setup is shown in Figure 3.9. Similar to the distributed wide area monitoring systems
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Figure 3.6: Detection of actuator and sensor faults.

(WAMS), in Figure 3.8, we have utilized Phasor Data Concentrator (PDC) units which acquire, archive,

exchange, and process data within each area [107, 108]. Furthermore, in [109] a methodology has been

proposed which can be used to represent the IEEE New England 39-bus power system as a 4 area network.

The governing dynamics of the power system in the i-th area is given by [110]:

δ̇v
i (t) =fb

i (t),

Tpiḟ
b
i (t) =− (fb

i (t)− fnom) +Kpi(Pti(t)− Pdi

+
∑
j∈Ni

Vi(t)Vj(t)Bij sin(δv
i (t)− δv

j (t))),

TViV̇i(t) =Ēfi − (1− (Xdi −X ′di)Bii)Vi(t)− (Xdi −X ′di)

×
∑
j∈Ni

Vj(t)Bij cos(δv
i (t)− δv

j (t))),

(52)
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Figure 3.7: Detection and isolation of different simultaneous cyber-attacks and faults.

for i = 1, . . . , 4. Moreover, the dynamics of the turbine and the governor can be expressed by [110]:

TtiṖti(t) =− Pti(t) + Pgi(t),

TgiṖgi(t) =− 1

Ri
(fb
i (t)− fnom)− Pgi(t) + ui,

(53)

where the definition of parameters and their values in (52) and (53) are provided in Tables 3.1 and 3.2,

respectively. Also, Ni is the set of neighborhoods of the subsystem Si, for i = 1, . . . , 4. In this case study,

we have N1 = {2, 4}, N2 = {1, 3}, N3 = {2, 4}, and N4 = {1, 3}.

It should be noted that the nonlinear dynamics in (52) is used in the HIL simulation. However, in order

to design our proposed CAFDI methodology for the interconnected large-scale CPS in the Propositions 3.7-

3.10, we have linearized the power system dynamics using Simulink “Model Linearizer” app. Consequently,

by utilizing the linearized model, we design and implement a bank of two side filters and UIO-based de-

tectors to detect and isolate cyber-attacks and faults for the four area power network system in the HIL
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Table 3.1: List of symbols used in (52) and (53).

Symbol Description

δv
i (t) Voltage Angle
fb
i (t) Frequency
Vi(t) Voltage
Pti(t) Turbine Output Power
Pgi(t) Governor Output Power
fnom Nominal Frequency
Tpi Time Constant of the Generator
Tti Time Constant of the Turbine
Tgi Time Constant of the Governor
TVi Direct Axis Transient Open-Circuit Constant
Kpi Governor Gain
Ri Speed Regulation Coefficient
Xdi Direct Synchronous Reactance
X ′di Direct Synchronous Transient Reactance
Bij Transmission Line Susceptance
ui Control Input to the Governor
Ēfi Constant Exciter Voltage
Pdi Unknown Power Demand

Table 3.2: Values of parameters used in (52) and (53).

Symbol Area 1 Area 2 Area 3 Area 4

Tpi (s) 21 25 23 22
Tti (s) 0.30 0.33 0.35 0.28
Tgi (s) 0.080 0.072 0.070 0.081
TVi (s) 5.54 7.41 6.11 6.22
Kpi (s−1 p.u.−1) 120 112.5 115 118.5
Ri (s−1 p.u.−1) 2.5 2.7 2.6 2.8
Xdi (p.u.) 1.85 1.84 1.86 1.83
X ′di (p.u.) 0.25 0.24 0.26 0.23
Bii (p.u.) -13.6 -12.9 -12.3 -12.3
Ēfi (p.u.) 1 1 1 1
Pdi (p.u.) 0.01 0.015 0.012 0.014
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Figure 3.8: The architecture of the HIL simulation for our proposed distributed CAFDI in the four area
power network system. Black dashed and solid lines denote communication of data and physical couplings
among subsystems, respectively.

simulation platform.

HIL Simulation Results for the Four Area Power Network

In this case study, we develop a CAFDI methodology for a four area power network system under

cyber-attacks and faults. Each subsystem is connected to its neighboring subsystems through tie-lines with
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Figure 3.9: The implemented HIL simulation platform.

B12 = −5.4 p.u., B23 = −5 p.u., B34 = −4.5 p.u., and B14 = −5.2 p.u., with the base power of 1000

MW.

In this case study, we consider that the actuator of each subsystem as well as the first and the third

sensors of all the subsystems are under faulty conditions. Furthermore, all the input and output channels of

all the subsystems are compromised by adversaries. As depicted in Figure 3.8, each subsystem is equipped

with a bank of plant side filters given by (42), C&C side filters in (43), and UIO-based detectors provided

in (45) that are designed according to the Propositions 3.7-3.10. As per the Assumption 3.8, we assume that

there exists one secured communication channel from (43) to (42) and one secured communication channel

from (42) to (43).

Scenario 1 (Covert Attacks): In this scenario, a covert attack on the subsystem S1 is considered. The

covert attack starts at at t = 50 (s) and ends at t = 300 (s). As shown in Figure 3.10 the impact of both the

actuator and sensor attacks on S1 can be seen in the generated residual of S1 and nearby subsystems which

are S2 and S4. Hence, the covert cyber-attack on the subsystem S1 is detected by this subsystem and its

neighboring subsystems.

Scenario 2 (Faults): Actuator and sensor faults are injected to the subsystem S1. The subsystem S1 is under

an actuator fault from t = 60 (s) to t = 300 (s), and a sensor fault starting from t = 150 (s) to t = 350 (s).
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Figure 3.10: Detection of covert cyber-attack on the subsystem S1.

As depicted in Figure 3.11, S1 has been able to detect its local actuator fault, but the neighboring subsystems,

i.e., S2 and S4, have not detected the actuator fault. This is due to the linearization that was made for (52)

which has resulted in having (I−HAF
1 C1)A1j = 0, for j = 2 and 4 (see Remark 3.12). However, the sensor

fault is successfully detected and isolated in the subsystems S1, S3, and S4.

Scenario 3 (Simultaneous Injection of Cyber-Attacks and Faults): In this scenario, actuator and sensor

cyber-attacks as well as actuator and sensor faults are simultaneously injected to the subsystem S1. The

subsystem S1 is under an actuator attack starting from t = 50 (s) to t = 220 (s), a sensor attack starting

from t = 100 (s) to t = 250 (s), an actuator fault from t = 150 (s) to t = 300 (s), and a sensor fault starting

from t = 200 (s) to t = 350 (s). As depicted in Figure 3.12, all the anomalies are successfully detected and

isolated.
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Figure 3.11: Detection and isolation of faults in the subsystem S1 and nearby subsystems.

Performance Evaluation

A confusion matrix analysis [111] is employed to evaluate the performance of our proposed CAFDI

methodology for the 4 area power network. Given a classifier and its corresponding instances, four possible

outcomes are obtained as (1) TP (True Positive), if the instance is positive and is truly classified as positive,

(2) FN (False Negative), if the instance is positive and incorrectly classified as negative, (3) TN (True

Negative), if the instance is negative and correctly classified as negative, and (4) FP (False Positive), if the

instance is negative and incorrectly classified as positive [111]. Based on the possible outcomes, true positive

rate (TPR) and false positive rate (FPR) can be used as performance metrics and measures, where TPR =

TP/(TP+FN) and FPR = FP/(FP+TN). In particular, the Receiver Operating Characteristic (ROC)

curve which shows the TPR versus FPR for various threshold levels is also utilized in this subsection.

The ROC curves for S1, S2, and S4 are depicted in Figure 3.13. Moreover, as illustrated in the previous

subsection, cyber-attacks and faults on S1 cannot be detected in S3, therefore, the ROC curve for the 3-rd
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Figure 3.12: Detection and isolation of simultaneous cyber-attacks and faults in the subsystem S1 and nearby
subsystems.

subsystem is not provided. It can be seen in Figure 3.13 that for the case of actuators cyber-attacks, sensors

cyber-attacks, and sensor faults S1, S2, and S4 have high TPR. Moreover, the neighboring subsystems S2

and S4 have lower ROC for actuator faults, that was also observed in Figures 3.11 and 3.12.

3.5 Conclusion

In this chapter, the problem of simultaneous detection and isolation of machine induced faults and in-

telligent malicious adversarial cyber-attacks has been studied. Centralized and distributed methodologies

based on the cyber-physical systems (CPS) two side filters and UIO-based detectors have been proposed

and developed. In both methodologies, a bank of filters along with UIO-based detectors are designed on the

plant side and a bank of filters was implemented on the C&C side of the CPS. In case of the proposed dis-

tributed CAFDI methodology, the UIO-based detector of each subsystem communicates information with
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Figure 3.13: ROC curves where the subsystem S1 is under cyber-attacks and faults.

UIO-based detectors in the nearby subsystems. Hence, under certain conditions, each subsystem can detect

and isolate its cyber-attacks and faults as well as anomalies in its nearby subsystems. Using the proposed

centralized and distributed strategies, one is capable of simultaneously detecting machine induced actua-

tor and sensor faults as well as undetectable cyber-attacks, such as covert and zero dynamics attacks, and

detectable cyber-attacks, such as false data injection attacks.
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Chapter 4

Dynamic Coding Schemes as Active

Countermeasures for Cyber-Attacks in

Cyber-Physical Systems

In this chapter, we study stealthy cyber-attacks in cyber-physical systems (CPS), namely zero dynamics

attacks, covert attacks, and controllable attacks. In particular, under certain assumptions, we investigate

and propose conditions under which one can execute zero dynamics and controllable attacks in the CPS.

The above conditions are derived based on the Markov parameters of the CPS and elements of the system

observability matrix. Consequently, in addition to outlining the number of required actuators to be attacked,

these conditions provide one with the minimum system knowledge needed to perform zero dynamics and

controllable cyber-attacks. As a countermeasure against the above stealthy cyber-attacks, we develop a

dynamic coding scheme that increases the minimum number of the CPS required actuators to carry out zero

dynamics and controllable cyber-attacks to its maximum possible value. It is shown that if at least one

secure input channel exists, the proposed dynamic coding scheme can prevent adversaries from executing

the zero dynamics and controllable attacks even if they have complete knowledge of the coding system.

Moreover, we address three main problems in the context of covert cyber-attacks in the CPS. Firstly, we aim

to investigate and develop necessary and sufficient conditions in terms of disruption resources of the CPS

that enable adversaries to execute covert cyber-attacks. These conditions can be utilized to identify the input
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and output communication channels that are needed by adversaries to execute covert attacks. Secondly,

we utilize the derived conditions to define an upper bound on the security index (SI) for covert attacks

in the CPS. The upper bound determines the minimum number of actuators and sensors that are needed

to be attacked to execute a covert cyber-attack. Lastly, this chapter introduces and develops a dynamic

coding scheme as a countermeasure against covert attacks. Under certain conditions and assuming the

existence of one secure input and two secure output communication channels, the proposed dynamic coding

scheme prevents adversaries from executing covert cyber-attacks. Finally, three illustrative numerical case

studies are provided to demonstrate the effectiveness and capabilities of our derived conditions and proposed

methodologies.

To summarize, the main contributions of this chapter are as follows:

(1) Under certain assumptions, conditions under which one can carry out the zero dynamics and control-

lable attacks are obtained. These conditions are derived in terms of the Markov parameters of the

CPS, elements of the observability matrix, and characteristic matrices of the system. Therefore, these

conditions outline both the required disruption resources, i.e., the required actuators to be attacked,

and the level of system knowledge that adversaries need to execute the zero dynamics and controllable

cyber-attacks.

(2) By utilizing the proposed conditions for existence of zero dynamics and controllable attacks, their

implementation methodologies are then provided. As for the case of zero dynamics attacks, the im-

plementation solely relies on the Markov parameters of the CPS and elements of the observability

matrix.

(3) A dynamic coding scheme is then developed and proposed that under certain conditions can increase

the number of actuators that are needed to execute the zero dynamics and controllable cyber-attacks

to its maximum possible value. Therefore, the proposed dynamic coding scheme can increase the

actuators security index for the CPS.

(4) Necessary and sufficient conditions under which covert cyber-attacks can be performed in the CPS

are derived. The developed conditions can be used to determine which disruption resources in terms

of input and output communication channels of the CPS should be compromised to carry out covert
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attacks.

(5) An upper bound on the SI for covert attacks is defined which relies on the developed necessary and

sufficient conditions on the existence of covert attacks. Moreover, we provide and algorithm that can

be used to compute the upper bound on SI for covert attacks.

(6) As an active countermeasure against covert attacks, we develop and propose a dynamic coding scheme.

The proposed coding scheme includes an encoder on the C&C side and a decoder on the plant side of

the CPS. Under certain conditions, if there exists one secure input and two secure output communica-

tion channels, adversaries will not be capable of performing covert cyber-attacks in the CPS.

The remainder of the chapter is organized as follows. State-space representation of the CPS system

along with the definitions for certain cyber-attacks are provided in Section 4.1. In Section 4.2, the I/O repre-

sentation of the CPS and the definition of ε-stealthy cyber-attacks are studied. Moreover, definitions of the

zero dynamics and controllable cyber-attacks along with the conditions for their existence are investigated

in Section 4.2. In Sections 4.2.3, conditions for execution of covert attacks are studied. Moreover, the SI for

covert attacks is investigated in Section 4.3. Dynamic coding schemes against the zero dynamics attacks,

controllable attacks, and covert cyber-attacks are proposed in Sections 4.4 and 4.5. Finally, three numerical

case studies are presented in Section 4.6 to illustrate and demonstrate the effectiveness and capabilities of

our proposed methodologies.

4.1 Problem Statement and Formulation

Let us consider the following discrete-time linear time-invariant CPS:

x(k + 1) =Ax(k) +Bu(k) + ω(k),

y(k) =Cx(k) + ν(k), (54)

where x(k) ∈ Rn denotes the state, u(k) ∈ Rm denotes the control input, and y(k) ∈ Rp denotes the sensor

measurement. Moreover, ω(k) ∈ Rn and ν(k) ∈ Rp are process and measurement noise that are represented

by zero mean Gaussian distributions, respectively. The system characteristic matrices A, B, and C are of
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appropriate dimensions.

In the presence of actuator and sensor cyber-attacks, the CPS (54) can be expressed as:

x(k + 1) =Ax(k) +B(u(k) + Laau(k)) + ω(k),

y(k) =Cx(k) +Daay(k) + ν(k), (55)

where au(k) ∈ Rma represents the actuator attack signal, and ay(k) ∈ Rpa denotes the sensor attack

signal. Additionally, the signatures of actuator and sensor cyber-attack signals are captured by Ba = BLa

and Da, respectively. Furthermore, in our examination, we omit the consideration of noise effects on the

CPS and assume ω(k) = 0 and ν(k) = 0 for all k ≥ 0. Nevertheless, to demonstrate the robustness of

our proposed methodologies against noise, the numerical case study in Section 4.6.3 is conducted in the

presence of both process and sensor noise.

Consider Ia = {u1, . . . , uma} and Sa = {s1, . . . , spa} as the sets of compromised input and output

communication channels with |Ia| = ma and |Sa| = pa, respectively, where | · | denotes the cardinality of

a set. The matrices La and Da are defined with entries corresponding to the compromised elements in the

communication channels. We have La = [lu1 · · · luma ], where li ∈ Rm is a vector with all its entries equal

to zero except for the i-th element that is equal to one, for i = u1, . . . , uma. Moreover, Da = [ds1 · · · dspa ],

where all entries of dq ∈ Rp are zero except for the q-th element, for q = s1, . . . , spa.

Let yo(x(0), u(k), au(k), ay(k)) denote the output of (55) as a function of the initial state x(0), the con-

trol input u(k), and attack signals [au(k), ay(k)]. In the following, by utilizing the notion of yo(x(0), u(k),

au(k), ay(k)), we define the “zero dynamics attacks” (studied in [24] and [18]), “covert attacks” [2,96], and

“controllable attacks” (studied in [14–16, 31]).

Definition 4.1. By considering yo(x(0), u(k), au(k), ay(k)) the following cyber-attacks can be defined:

(1) Let x(0) = x0 6= 0 and ay(k) = 0, ∀k ≥ 0. The actuator attack signal au(k) 6= 0 is defined as a

zero dynamics cyber-attack if yo(x0, 0, au(k), 0) = 0, for every k ≥ 0.

(2) The set of attack signals au(k) 6= 0 and ay(k) 6= 0 is a covert attack if yo(0, 0, au(k), ay(k)) = 0,

∀t ≥ 0. In this type of cyber-attacks, adversaries need to have access to both input and output

communication channels.
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(3) Let ay(k) = 0, ∀k ≥ 0. The cyber-attack signal au(k) 6= 0 is designated as a controllable cyber-attack

if yo(0, 0, au(k), 0) = 0, for every k ≥ 0.

It should be emphasized that the cyber-attack 3 in Definition 4.1 is referred to as the “zero stealthy

attack” in [14], “zero state induced attack” in [31], and “controllable attack” in [15] and [16]. However,

we have adopted the convention from [15] and [16] since the above cyber-attack is related to a certain

controllable subspace of the system (see [16] for more details).

Definition 4.2 ( [98, 112]). The CPS (55) is left invertible with respect to the cyber-attack signal au(k) if

for all a1
u(k), a2

u(k) ∈ Rma , having yo(0, 0, a1
u(k), 0) = yo(0, 0, a2

u(k), 0) implies a1
u(k) = a2

u(k), for every

k ≥ 0.

Remark 4.1. By considering the linearity of the CPS, it follows from Definition 4.2 that the CPS is left

invertible if and only if yo(0, 0, au(k), 0) = 0 implies that au(k) = 0. Hence, controllable cyber-attacks in

Definition 4.1 can be executed if and only if the CPS (55) is not left invertible in the sense of Definition 4.2

(see [14–16] for more details).

Definition 4.3 (Invariant Zeros). λ ∈ C is an invariant zero of the triple (C,A,Ba) if and only if there

exist a nonzero state-zero direction x0 ∈ Rn and an input-zero direction g ∈ Rma such that the following

holds [97, Definition 2.1]: λI −A −Ba

C 0


x0

g

 =

0

0

 . (56)

Consequently, given an invariant zero λ, a state-zero direction x0 6= 0, and a nonzero input-zero direction g,

au(k) = gλk 6= 0, which is designated as the zero dynamics cyber-attack signal in Definition 4.1, satisfies

yo(x0, 0, au(k), 0) = 0, for every k ≥ 0 [97, Lemma 2.7].

Below, we have adopted and modified the definitions in [2, 15–18, 21, 24] in order to provide a formal

and unified definition for the stealthy and perfectly undetectable cyber-attacks on actuators of the CPS.

Definition 4.4 (ε-Stealthy Cyber-Attacks). Let x(0) = x0 ∈ Rn. A cyber-attack that is performed by utiliz-

ing au(k) and ay(k) on the CPS (55) is ε-stealthy if ‖yo(x0, u(k), 0, 0)− yo(x0, u(k), au(k), ay(k))‖∞ ≤ ε,

∀ k ∈ N, where ε is a positive scalar. Moreover, an actuator attack is designated as perfectly undetectable

if it is 0-stealthy, i.e., yo(x0, u(k), 0, 0) = yo(x0, u(k), au(k), ay(k)).
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It should be noted that in Definition 4.4, we have adopted the notion of “perfectly undetectable attacks”

from [21]. The main reason for choosing this designation is that the impact of perfectly undetectable attacks

cannot be seen in the output measurements.

Due to the linearity of the CPS (55) and according to Definition 4.4, a cyber-attack is perfectly unde-

tectable if and only if yo(0, 0, au(k), ay(k)) = 0, ∀ k ≥ 0 [21]. Consequently, covert attacks and control-

lable attacks are perfectly undetectable cyber-attacks. Moreover, zero dynamics attacks are considered as

ε-stealthy cyber-attacks.

4.1.1 Objectives

We have six objectives in this chapter. Our first objective is to study and propose conditions under which

adversaries are capable of performing zero dynamics and controllable attacks in the sense of Definition 4.1.

These conditions can be utilized to investigate vulnerability of the CPS to zero dynamics and controllable

attacks that are designated as ε-stealthy and perfectly undetectable cyber-attacks in Definition 4.4, respec-

tively. The second objective is to investigate the problem of implementation of zero dynamics and control-

lable cyber-attacks. In particular, we aim to utilize the above conditions for the existence of zero dynamics

and controllable attacks and propose methodologies for designing actuator attack signals that lead to zero

dynamics and controllable attacks. As for the third objective, we consider a countermeasure and develop a

dynamic coding scheme that can be utilized to increase the security index of the CPS (55) to its maximum

possible value, i.e., m actuators. Consequently, if the proposed dynamic coding scheme is used, adversaries

will need to compromise all the input communication channels of the CPS to perform the zero dynamics

and controllable cyber-attacks. Our fourth objective is to investigate and study necessary and sufficient

conditions in terms of disruption resources under which adversaries are capable of performing covert cyber-

attacks. These conditions determine input and output communication channels that should be attacked by

adversaries to execute covert attacks in the CPS. As for our fifth objective, we utilize the derived necessary

and sufficient conditions for performing covert attacks to find an upper bound on the security index (SI) for

covert attacks in the CPS. By utilizing the upper bound on the SI for covert attacks, one can find the number

of actuators and sensors that should be attacked to execute a covert cyber-attack. Our sixth objective is to

develop and propose a dynamic coding scheme as a countermeasure against covert attacks that could be
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utilized by the CPS operators. Hence, in presence of the proposed dynamic coding scheme, if the CPS op-

erators secure 1 input and 2 output communication channels, adversaries will not be capable of performing

covert cyber-attacks in the CPS.

4.2 Input/Output Model of the CPS and Stealthy Cyber-Attacks

In this section, we present the Input/Output (I/O) model for the CPS (55) within a specified time window.

Subsequently, we define ε-stealthy cyber-attacks in terms of the I/O model.

The I/O model of the CPS (55) over the time window {0, 1, . . . , N − 1} can be represented as:

Y (N) = ONx(0) + CNU(N) + CaUa(N) +DaYa(N), (57)

where Y (N) = [y(0)>, y(1)>, . . . , y(N − 1)>]> represents the output of the I/O model. Other vectors

include U(N) for inputs, Ua(N) for actuator attack signals, and Ya(N) for sensor attack signals. Moreover,

Da = IN ⊗Da.

The matrices ON, CN, and Ca are structured as shown in (59). Specifically,

ON =



C

CA

...

CAN−1


, CN =



0 0 · · · 0

CB 0 · · · 0

...
...

. . .
...

CAN−2B CAN−3B · · · 0


, (58)

Ca =



0 0 · · · 0

CBa 0 · · · 0

...
...

. . .
...

CAN−2Ba CAN−3Ba · · · 0


. (59)

Let Y(x(0), U(N), Ǔa(N)) denote the output of the I/O model in (57) over the time window {0, 1, . . .

, N − 1}. This function depends on the initial state x(0), the vector of control inputs U(N), and the vector

of attack signals denoted by Ǔa(N) = [Ua(N)>, Ya(N)>]>. In the following, the stealthy and perfectly

undetectable actuator cyber-attacks in terms of the I/O model (57) are defined.
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Definition 4.5 (I/O ε-Stealthy Cyber-Attacks). A cyber-attack Ǔa(N) 6= 0 in the I/O CPS model (57) is

ε-stealthy if ‖Y(x0, U(N), 0) − Y(x0, U(N), Ǔa(N))‖∞ ≤ ε holds, ∀N ≥ 1, where x0 ∈ Rn. Moreover,

Ǔa(N) is perfectly undetectable if it is 0-stealthy, i.e., Y(x0, U(N), 0) = Y(x0, U(N), Ǔa(N)).

It should be emphasized that since Y (N) is defined as the concatenated vector of output measurements

y(k), any type of ε-stealthy actuator attack in the CPS (55) will result in the same level of stealthiness in the

I/O model of the CPS (57), and vice versa.

Lemma 4.1. A cyber-attack is perfectly undetectable in the sense of Definition 4.5 if and only if CaUa(N) +

DaYa(N) = 0 holds, ∀N ≥ 1.

Proof. It follows readily that

Y(x0, U(N), Ǔa(N)) = Y(x0, U(N), 0) + Y(0, 0, Ǔa(N)).

Hence, a cyber-attack is perfectly undetectable in the sense of Definition 4.5 if and only if Y(0, 0, Ǔa(N)) =

0, ∀N ≥ 1, which is equivalent to having CaUa(N) + DaYa(N) = 0. This completes the proof of the

lemma.

In the following, we utilize the I/O model (57) to study the zero dynamics cyber-attacks, covert attacks,

and controllable cyber-attacks. Therefore, we consider the following assumption throughout this chapter.

Assumption 4.1. Adversaries do not know the characteristic matrices of the CPS (54), i.e., the triple

(A,B,C). However, they know components of ON and elements of CN that are given by (58).

4.2.1 Zero Dynamics Cyber-Attacks

Adversaries need to compromise input communication channels of the CPS in order to perform the zero

dynamics attacks. Moreover, according to Definitions 4.1 and 4.3, the zero dynamics attack signals are

designed such that for a certain x(0) = x0 6= 0 one has yo(x0, 0, au(k), 0) = 0, where au(k) 6= 0. Similar

to the latter description of the zero dynamics attacks which is based on the state-space representation of the

CPS in (55), we define the zero dynamics attacks by utilizing the I/O model of the CPS as given by (57).

73



Definition 4.6 (Zero Dynamics Cyber-Attacks in I/O Models). Let au(k) = gλk 6= 0, ∀k ≥ 0, with a

nonzero g ∈ Rma and λ ∈ C (cf. Definition 4.3). The actuator cyber-attack signal au(k) in the I/O

model of the CPS (57) is defined as a zero dynamics attack if for a certain x(0) = x0 6= 0 one has

Y(x0, 0, [Ua(N)>, 0]>) = 0, ∀N ≥ 1, i.e., ONx0 + CaUa(N) = 0.

In order to further investigate the zero dynamics attacks, we need to define controlled invariant subspaces

and the relative degree of the CPS (55).

Definition 4.7. Let I = {1, . . . ,m} denote the set of all input channels of the CPS (55). The relative

degree of the CPS (55) with respect to the q-th input channel is given by rq if CAiBq = 0, for all i < rq− 1

and CArq−1Bq 6= 0, for every q ∈ I , where Bq is the q-th column of B. If for any positive integer i

one has CAiBq = 0, the relative degree with respect the q-th input channel cannot be defined. Moreover,

let Ia = {a1, . . . , ama} denote the set of attacked input communication channels. Hence, one has ra =

min{ra1 , . . . , rama
}.

It should be noted that in [19] and [31], it has been shown that ONx0 + CaUa(N) = 0 is equivalent to

having a zero dynamics cyber-attack. In the following theorem, the existence of zero dynamics cyber-attacks

by utilizing the Markov parameters and elements of the observability matrix of the CPS is studied.

Theorem 4.1. Let x(0) = x0 ∈
⋂ra−1
i=0 ker(CAi) and assume that ker(CAra−1)

⋂
ker(CAra) = 0. A zero

dynamics cyber-attack in the sense of Definitions 4.3 and 4.6 that is associated with x0 can be performed if

and only if there exists g ∈ Rma such that CArax0 + CAra−1Bag = 0 and Im(CAra+1x0 + CAraBag) ⊆

Im(CAra−1Bag).

Proof. According to Definition 4.6, in case of zero dynamics attacks, au(k) is designed such that every row

of ONx0 + CaUa(N) is equal to zero. The latter is equivalent to having

CArax0 + CAra−1Baau(0) = 0, (60a)

CAra+1x0 + CAraBaau(0) + CAra−1Baau(1) = 0, (60b)

...

CAN−1x0 + CAN−2Baau(0) + CAN−3Baau(1)

+ CAN−4Baau(2) + · · ·+ CAra−1Baau(N − 2) = 0. (60c)
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Next, we show that havingCArax0+CAra−1Bag = 0 and Im(CAra+1x0+CAraBag) ⊆ Im(CAra−1Bag)

are necessary and sufficient conditions for (60) to hold for every N ≥ ra.

Necessary Condition: Suppose for any given g ∈ Rma one has CArax0 + CAra−1Bag 6= 0 and

Im(CAra+1x0 + CAraBag) * Im(CAra−1Bag).

Moreover, assume that au(k) is a zero dynamics cyber-attack. Consequently, there does not exist any

au(0) = g such thatCArax0+CAra−1Baau(0) = 0 holds. Furthermore, there does not exist any au(1) = gλ

that can satisfy (60b). Hence, (60) does not hold, which contradicts our assumption.

Sufficient Condition: Assume there exists g such that

CArax0 + CAra−1Bag = 0. (61)

Moreover, let Im(CAra+1x0 + CAraBag) ⊆ Im(CAra−1Bag). Hence, there exists a nonzero λ ∈ R such

that the following holds:

CAra+1x0 + CAraBag + CAra−1Bagλ = 0. (62)

Now, we show that under the above assumptions, there exists a zero dynamics attack signal, i.e., au(k) =

gλk, that is a solution to (60), for k ∈ {0, 1, . . . , N − 2} and every N ≥ ra.

Let us rewrite (61) as CAra−1(Ax0 +Bag) = 0. Therefore, g satisfies

Ax0 +Bag = α̂0x0 + α̂1x1, (63)

where x0 6= x1 and x1 ∈ ker(CAra−1) such that x0 is a basis of the null space of CAra−1 and x1 denotes a

linear combination of its other bases, that implies Im(x0) 6= Im(x1). Also, α̂0 ∈ R and α̂1 ∈ R are scalars.

One can substitute CAra−1Bag = −CArax0 into the left-hand side of (62) such that CAra+1x0 +

CAraBag − CArax0λ = 0. Hence, considering (63), one has

CAra(Ax0 +Bag − λx0) = CAra(α̂0x0 + α̂1x1 − λx0) = 0. (64)

Since Im(x0) 6= Im(x1) and it is assumed that ker(CAra−1)
⋂

ker(CAra) = 0, therefore (64) is satisfied if

and only if α̂1 = 0 and α̂0 = λ.
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Hence, in (63), one has α̂0 = λ and α̂1 = 0. Since x0 ∈ ker(C) and (λI−A)x0−Bag = 0, according to

the Definition 4.3, λ is an invariant zero of the triple (C,A,Ba). Moreover, one has g = (Ba)
†(λI − A)x0,

which is also consistent with the definition of the input-zero direction in [97, Chapter 2].

We have Ax0 +Bag = λx0. Moreover, it can be shown that A2x0 +ABag+Bagλ = A(Ax0 +Bag) +

Bagλ = λ2x0. Consequently, one can derive Aix0 +
∑i

j=1A
i−jBagλ

j−1 = λix0, for i ≥ 1. Moreover,

it can be easily shown that the i-th equation in (60) is equal to CAra−1(Aix0 +
∑i

j=1A
i−jBagλ

j−1) =

CAra−1(λix0) = 0, for every i ≥ 1. This completes the proof of the theorem.

Corollary 4.1. Let hypotheses of Theorem 4.1 hold. The input-zero direction g and the invariant zero λ of

the CPS (55) that are associated with x0 ∈
⋂ra−1
i=0 ker(CAi) can be expressed in the following form:

(1) g = −(CAra−1Ba)†CArax0;

(2) λ = −(CAra−1Bag)†(CAraBag + CAra+1x0).

Proof. Given that the hypotheses of Theorem 4.1 hold, g and λ that satisfy (61) and (62) are the input-zero

direction and the invariant zero of the triple (C,A,Ba), respectively, as per Definition 4.3.

It follows from (60a) that the CPS has an input-zero direction g = −(CAra−1Ba)
†CArax0. Moreover,

since CAra−1Bag is a nonzero vector, it has a unique left pseudoinverse. Consequently, from (60b) one

obtains λ = −(CAra−1Bag)†(CAraBag + CAra+1x0). This completes the proof of the corollary.

It should be noted that in Corollary 4.1, if the initial condition of the CPS, i.e., x(0) = x0, satisfies

the condition in Theorem 4.1 and ker(CAra−1)
⋂

ker(CAra) = 0, an invariant zero λ = −(CAra−1Bag)†

×(CAraBag+CAra+1x0) exists. Therefore, in general, the given λ does not depend on the initial condition

of the system, but rather on those states that belong to the weakly unobservable or output-nulling subspace of

the system (refer to [98] for more information). Also, it can be easily seen that since the vector CAra−1Bag

has a unique left pseudoinverse, both states x0 and x̂0 = α1x0, where α1 is a nonzero scalar, result in the

same invariant zero λ.

As stated in Theorem 4.1, under certain assumptions, if and only if CArax0 + CAra−1Bag = 0 and

Im(CAra+1x0 + CAraBag) ⊆ Im(CAra−1Bag), adversaries are capable of performing the zero dynamics

attacks. In particular, the above necessary and sufficient conditions indicate the existence of all invariant
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zeros of the system that for a nonzero input result in a zero output (see Definition 4.3), and not just the

existence of the transmission zeros (refer to [113] for a detailed discussion). In the case where the CPS is

controllable and observable, the set of invariant zeros only contains transmission zeros of the system [113].

Hence, if the triple (C,A,Ba) denotes a controllable and observable CPS and conditions in the Theorem 4.1

are satisfied, adversaries can execute a zero dynamics cyber-attack that excites a transmission zero of the

CPS.

Note that in [114, Lemma 4] and [97, Lemma 3.2], it has been shown that having Im(CArax0) ⊆

Im(CAra−1Ba) is a necessary condition for the existence of invariant zeros, which implies the existence of

a g that satisfies CArax0 +CAra−1Bag = 0. However, in Theorem 4.1, it has been shown that under the as-

sumption that ker(CAra−1)
⋂

ker(CAra) = 0, having the above condition and Im(CAra+1x0+CAraBag) ⊆

Im(CAra−1Bag) are necessary and sufficient for the existence of the zero dynamics attacks which are those

invariant zeros of the CPS that given a nonzero input, result in a zero output.

Moreover, similar to the proposed g in Corollary 4.1, the input-zero direction has been studied in [114,

Propositions 1 and 2] and [97, Chapter 3]. It should be noted that results in the Corollary 4.1 hold under

the assumption that ker(CAra−1)
⋂

ker(CAra) = 0, but in [114] and [97] the above assumption has not

been considered. Moreover, the given formula in Corollary 4.1 to compute the invariant zero λ has not been

provided in [114] and [97].

Under certain assumptions, Theorem 4.1 provides the necessary and sufficient conditions under which

adversaries are capable of performing the zero dynamics cyber-attacks. Therefore, adversaries may compro-

mise certain input communication channels of the CPS (55) such that the corresponding La results in having

CArax0 + CAra−1Bag = 0 and Im(CAra+1x0 + CAraBag) ⊆ Im(CAra−1Bag). Moreover, in Theorem

4.1, one has x0 ∈ ker(CAra−1) and ker(CAra−1)
⋂

ker(CAra) = 0. Hence, CArax0 6= 0, which implies

that x0 does not belong to the unobservable subspace of the system.

It should be noted that in order for adversaries to investigate conditions in the Theorem 4.1, they need

to know the initial condition of the CPS x(0). Given that as per Assumption 4.1 adversaries have access to

CN and ON, once N ≥ n, if ON has a full column rank, i.e., the CPS is observable, adversaries can estimate

the initial condition by solving the equation Y (N) = ONx(0) + CNU(N) for x(0).

Remark 4.2. Let x0, g, and λ be the state-zero direction, the input-zero direction, and the invariant zero
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of the CPS (57), as per Corollary 4.1, respectively. Moreover, consider ka as the time instant at which the

adversary initiates the zero dynamics attack such that x(ka) 6= x0. According to [97, Lemma 2.6], the zero

dynamics attack signal au(k) = gλk results in having yo(x(ka), 0, au(k − ka), 0) = CAk−ka(x(ka) − x0),

for k ≥ ka. Consequently, in the case where A is a Schur stable matrix, the error due to initiating the

zero dynamics attack at the time instant ka, i.e., CAk−ka(x(ka) − x0), will converge to zero. The latter is

demonstrated in Section 4.6.1.

Moreover, by utilizing the Corollary 4.1, adversaries can compute g and λ in terms of the components

of ON, i.e., the observability matrix, and elements of CN, i.e., the Markov parameters in (58) to design their

cyber-attack signals. Also, based on results in the Corollary 4.1, adversaries are capable of discovering

whether the zero dynamics of the system is minimum phase, i.e., |λ| < 1, or it is non-minimum phase, i.e.,

|λ| > 1.

4.2.2 Controllable Cyber-Attacks

As discussed in Definition 4.1, under controllable cyber-attacks, one has yo(0, 0, au(k)) = 0, where

au(k) 6= 0. In the following, an equivalent definition for controllable cyber-attacks is provided.

Definition 4.8 (Controllable Cyber-Attacks in the I/O Model). Let au(k) 6= 0, ∀k ≥ 0. The attack

signal Ua(N) in the I/O model of the CPS (57) is designated as a controllable cyber-attack if one has

Y(0, 0, [Ua(N)>, 0]>) = 0, ∀N ≥ 1, i.e., CaUa(N) = 0.

Consequently, as per Lemma 4.1, the controllable cyber-attack in Definition 4.8 is perfectly unde-

tectable. In the following theorem, we investigate conditions under which controllable cyber-attacks in

Definition 4.8 can be performed on the I/O model of the CPS (57).

Theorem 4.2. A controllable cyber-attack in the sense of Definition 4.8 can be executed in the CPS if there

exists a nonzero â0 ∈ ker(CAra−1Ba), such that Im(ABaâ0) ⊆ Im(Ba).

Proof. According to Definition 4.8, in the case of controllable cyber-attacks, the actuator cyber-attack signal
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au(k) should be designed such that CaUa(N) = 0, which is equivalent to

CAra−1Baau(0) = 0, (65a)

CAraBaau(0) + CAra−1Baau(1) = 0, (65b)

CAra+1Baau(0) + CAraBaau(1) + CAra−1Baau(2) = 0, (65c)

...

CAN−2Baau(0) + CAN−3Baau(1) + CAN−4Baau(2)

+ · · ·+ CAra−1Baau(N − 2) = 0. (65d)

Suppose that au(0) ∈ ker(CAra−1Ba), and there exists â0 ∈ ker(CAra−1Ba) such that Im(ABaâ0) ⊆

Im(Ba). Let au(0) = â0. Let us rewrite the left-hand side of (65b) as CAra−1(ABaau(0) + Baau(1)).

Consequently, since Im(ABaâ0) ⊆ Im(Ba), one can design au(1) such that

ABaâ0 +Baau(1) = Baâ0. (66)

Hence, by substituting (66) in (65b), one can conclude that there exists the cyber-attack signal au(1) that

satisfies (65b).

The left-hand side of (65c) can be rewritten as CAra−1(A2Baâ0 +ABaau(1) +Baau(2)). Considering

that Im(ABaâ0) ⊆ Im(Ba) and ABaâ0 +Baau(1) = Baâ0, au(2) can be designed in the following form

A(ABaâ0 +Baau(1)) +Baau(2) = Baâ0, (67)

which satisfies (65c).

Consequently, it can be shown that since Im(ABaâ0) ⊆ Im(Ba), there exists au(j) in the j-th equation

of (65) that satisfies

ABaâ0 +Baau(j) = Baâ0, (68)

for j ≥ 2. Consequently, there exists an au(j) that is the solution to the j-th equation in (65). This completes

the proof of the theorem.
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In [31], cyber-attacks that satisfy the condition in Definition 4.8, i.e., CaUa(N) = 0, are defined as

“zero state inducing” attacks. Moreover, necessary and sufficient conditions for the existence of this type

of cyber-attack based on weakly unobservable and output-nulling reachable subspaces of the system have

been provided in [31, Theorem 3]. However, as opposed to [31], the studied conditions in Theorem 4.2 rely

only on A, Ba, and the first Markov parameter of the CPS and are easier to be verified and validated. In the

following corollary, the implementation of controllable cyber-attacks is studied.

Corollary 4.2. Assume that the conditions in Theorem 4.2 hold and let au(0) ∈ ker(CAra−1Ba). The

actuator cyber-attack signal to perform a controllable attack in the sense of Definition 4.8 can be expressed

as

au(k) = au(0)h(k)−B†aABaau(0)h(k − 1), (69)

for k ≥ 1, where h(k) ∈ R such that h(0) = 1 and h(k) for k ≥ 1 can be any arbitrary function.

Proof. Let h(k) ∈ R such that h(0) = 1. Moreover, as per Theorem 4.2, consider au(0) ∈ ker(CAra−1Ba)

such that Im(ABaau(0)) ⊆ Im(Ba). Consequently, au(1) can be designed such that

ABaau(0)h(0) +Baau(1) = Baau(0)h(1). (70)

Given that the left-hand side of (65b) can be rewritten as CAra−1(ABaau(0)h(0) +Baau(1)), (70) satisfies

(65b). Moreover, since Ba is an injective map, au(1) can be uniquely derived as au(1) = au(0)h(1) −

B†aABaau(0)h(0).

Similar to au(1), one can design au(2) to satisfy

ABaau(0)h(1) +Baau(2) = Baau(0)h(2). (71)

Also, considering (70), the left-hand side of (65c) can be rewritten as CAra−1(ABaau(0)h(1) + Baau(2)).

Thus, the given au(2) in (71) satisfies (65c). Hence, one has au(2) = au(0)h(2)−B†aABaau(0)h(1).

Consequently, au(k) can be designed to satisfy

ABaau(0)h(k − 1) +Baau(k) = Baau(0)h(k), (72)
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for k ≥ 1. Moreover, considering (72), the left-hand side of the (k + 1)-th equation in (65) can be derived

as CAra−1(ABaau(0)h(k − 1) + Baau(k)). Given that au(k) is designed according to (72), au(k) satisfies

the (k + 1)-th equation in (65), for k ≥ 1. Therefore, from (72) it follows that the controllable cyber-attack

signal au(k) can be designed according to (69). This completes the proof of the corollary.

Theorem 4.2 can be used to study existence of controllable cyber-attacks in the CPS. Furthermore,

one needs to know the first Markov parameter of the CPS, i.e., CAra−1Ba, and matrices A and Ba to

investigate the proposed conditions in Theorem 4.2. However, as per Assumption 4.1, adversaries do not

know the matrices A and B. Hence, in the following corollary, under certain conditions, the existence

and implementation of controllable cyber-attacks by utilizing only the Markov parameters of the CPS are

studied.

Corollary 4.3. Let us assume that ker(CAra−1)
⋂

ker(CAra) = 0. Adversaries can execute a controllable

cyber-attack in the CPS according to the Definition 4.8 if there exist nonzero â0 ∈ ker(CAra−1Ba) and

â1 ∈ Rma that satisfy CAraBaâ0 + CAra−1Baâ1 = 0 and CAra+1Baâ0 + CAraBaâ1 = 0. Moreover, by

considering au(0) = â0, a controllable cyber-attack signal can be expressed as

au(k) = â0h(k) + â1h(k − 1), (73)

for k ≥ 1, where h(k) ∈ R such that h(0) = 1 and h(k) for k ≥ 1 can be any arbitrary function.

Proof. From CAraBaâ0 + CAra−1Baâ1 = 0, it follows that

CAra−1(ABaâ0 +Baâ1) = 0. (74)

Moreover, having CAra+1Baâ0 + CAraBaâ1 = 0 implies that

CAra(ABaâ0 +Baâ1) = 0. (75)

Consequently, since ker(CAra−1)
⋂

ker(CAra) = 0, it follows from (74) and (75) thatABaâ0 +Baâ1 =

0, which implies that Im(ABaâ0) ⊆ Im(Ba). Hence, conditions in the Theorem 4.2 for existence of con-

trollable cyber-attacks are satisfied.
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From ABaâ0 + Baâ1 = 0, it follows that â1 = −B†aABaâ0. Hence, as per Corollary 4.2, one can set

au(0) = â0 and design a controllable cyber attack in the following form:

au(k) = au(0)h(k)−B†aABaau(0)h(k − 1),

for k ≥ 1, where h(0) = 1 and h(k) ∈ R can be any arbitrary function. This completes the proof of the

corollary.

Remark 4.3. In order to find â0 and â1 in the Corollary 4.3, one needs to solve


CAra−1Ba 0

CAraBa CAra−1Ba

CAra+1Ba CAraBa


â0

â1

 =


0

0

0

 , (76)

for â0 and â1. It is worth notifying that if the hypothesis of Corollary 4.3 holds, (76) can be easily solved by

using the mldivide MATLAB function.

The derived conditions in the Theorem 4.1 and Corollary 4.3 for the CPS (55), rely on components of

ON, i.e., the observability matrix, and elements of CN , i.e., the Markov parameters, given by (58). Hence,

by employing methodologies in [115–118], and utilizing the results in Theorem 4.1 and Corollary 4.3, one

can study the vulnerability of the CPS to zero dynamics attacks and controllable attacks, respectively, in a

data-driven manner.

4.2.3 Covert Attacks

According to [2], in the case of covert attacks, adversaries compromise both input and output communi-

cation channels of the CPS and design their attack signals au(k) 6= 0 and ay(k) 6= 0 such that the impact of

actuator attacks cannot be observed in the transmitted sensor measurements to the control side of the CPS.

In the following, a definition for covert attacks is given in terms of the I/O model of the CPS (57).

Definition 4.9 (Covert Attacks for the I/O Model). Let each element of au(k) ∈ Rma and ay(k) ∈ Rpa be

nonzero for some k ≥ 0. The attack signal Ǔa(N) = [Ua(N)> Ya(N)>]> in the I/O model of the CPS (57)

is designated as a covert attack if one has Y(0, 0, Ǔa(N)) = 0, ∀N ≥ 1, i.e., CaUa(N) +DaYa(N) = 0.
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In order to further investigate covert cyber-attacks, we need to define a relative degree for the CPS (55).

Definition 4.10. The relative degree of the q-th output of the CPS (55) with respect to the actuator attack

signal au(k) is rqa if CqAiqBa = 0 for all iq < rqa − 1 and CqAr
q
a−1Ba 6= 0, for q = 1, . . . , p, where Cq is

the q-th row of C. If for any positive integer iq one has CqAiqBa = 0, the relative degree for the q-th output

with respect to au(k) cannot be defined. Moreover, one has ra = min{r1
a , . . . , r

p
a}.

We are now in a position to provide necessary and sufficient conditions under which covert attacks in

the sense of Definition 4.9 can be carried out in the I/O model of the CPS (57).

Theorem 4.3. Given any actuator attack signal au(k) ∈ Rma , a covert attack in the sense of Definition 4.9

can be executed in the CPS (57) if and only if relative degrees of all the outputs for triples (C,A,Ba) and

(D∗aC,A,Ba) are equal as per Definition 4.10, where D∗a = DaD
>
a , i.e., CqAr

q
a−1Ba = (D∗aC)qA

rqa−1Ba,

for q = 1, . . . , p, where (D∗aC)q denotes the q-th row of D∗aC.

Proof. It follows from Definition 4.9 that in the case of covert attacks, adversaries should design the actuator

attack signal au(k) and the sensor attack signal ay(k) such that the following holds true:

CAra−1Baau(0) +Daay(1) = 0, (77a)

CAraBaau(0) + CAra−1Baau(1) +Daay(2) = 0, (77b)

...

CAN−2Baau(0) + CAN−3Baau(1) + CAN−4Baau(2)

+ · · ·+ CAra−1Baau(N − 2) +Daay(N − 1) = 0. (77c)

Consequently, in order to cancel out the impact of actuator attacks in (77), adversaries need to design

the sensor attack signal in the following form:

ay(j + 1) = −
j∑

γ=0

D>a CA
ra+γ−1Baau(j − γ), (78)

for j = 0, . . . , N − 2.

Necessary Condition: Suppose (77) holds and relative degrees of triples (C,A,Ba) and (D∗aC,A,Ba)
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are not equal. Given the definition of D∗a , the relative degree of the q-th row of D∗aC with respect to the

actuator attack signal au(k) is either equal to that of Cq and au(k) or does not exist. Consider ŝ ∈ Sa as a

sensor at which CŝAr
ŝ
a−1Ba 6= 0 and (D∗aC)ŝA

rŝa−1Ba = 0, where (D∗aC)ŝ denotes the ŝ-th row of D∗aC.

Considering (78), let us rewrite the left-hand side of the j-th equation of (77) in the following form:

[(Ip −D∗a )CAra−1Ba · · · (Ip −D∗a )CAra+j−1Ba]


au(j − 1)

...

au(0)

 , (79)

for j = 1, . . . , N − 1. Consequently, (77) holds if and only if all rows of (79) are equal to zero. However,

since we are considering any actuator attack signal, and CŝAr
ŝ
a−1Ba 6= 0 and (D∗aC)ŝA

rŝ−1Ba = 0, there

exists at least one nonzero row in (79), i.e., the row that corresponds to the ŝ-th sensor, which contradicts

the assumption.

Sufficient Condition: Assume that the relative degrees of triples (C,A,Ba) and (D∗aC,A,Ba) for all

the sensors are equal. Hence, CqAiBa = (D∗aC)qA
iBa, for any i ∈ N and ∀q ∈ {1, . . . , p}. The latter

implies that (78) is the solution to (77), and all rows in (79) are equal to zero. This completes the proof of

the theorem.

Theorem 4.3 states that in order to perform a covert attack, only those sensor measurements that are

affected by actuator attacks are required to be manipulated. In other words, those sensors that one cannot

define a relative degree for with respect to the actuator attack signal au(k) are not needed to be compromised

in the case of covert attacks since they will not be affected by actuator attacks.

Remark 4.4. Consider a case where the hypothesis of Theorem 4.3 is not hold. Consequently, if the triple

((IP − D∗a)C,A,Ba) is not left invertible (see [98] for more details), adversaries can design a certain

actuator attack signal au(k) that makes (79) equal to zero despite having (Ip − D∗a)CAra−1Ba 6= 0.

However, in this case, the actuator attack signal au(k) should be specifically designed to make (79) equal

to zero whereas in Theorem 4.3, if the conditions are satisfied, adversaries can perform covert attacks for

any arbitrary actuator attack signal. Hence, it can be concluded that the given necessary and sufficient

conditions in Theorem 4.3 provide one with an upper bound for the number of actuators and sensors that
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should be manipulated to execute covert attacks.

Corollary 4.4. Assume that the hypothesis of Theorem 4.3 holds. Given any au(k) ∈ Rma , the sensor attack

signal in a covert attack can be expressed by

ay(k + 1) = −
k∑
γ=0

D>a CA
ra+γ−1Baau(k − γ),

for k ≥ 0, where ay(0) = 0.

Proof. The proof follows along similar lines to that of Theorem 4.3 and is omitted for the sake of brevity.

The conditions derived in Theorem 4.3 and Corollary 4.4 for the CPS (55) rely on certain elements

within ON and CN, namely, the observability matrix and the Markov parameters, which are defined by

(59). Therefore, through the application of methodologies in [115–118], and by utilizing results presented

in Theorem 4.3 and Corollary 4.4, one can investigate the vulnerability of the CPS to covert attacks by

employing a data-driven approach.

4.3 Computing the Security Index for Covert Cyber-Attacks

In this section, we adopt the notion of security index from [16, 20, 21] to quantify the minimum number

required actuators and sensors that should be compromised to carry out a covert attack. The security index

in the CPS (55) for covert attacks can be defined in the following form [16, 20, 21], namely:

SIc := min
au(·),ay(·)

‖au(·)‖0 + ‖ay(·)‖0

s.t. a(k) = [au(k)> ay(k)>]> is a covert attack,

(80)

where ‖ · ‖0 denotes the L0 norm.

The computation of the SIc in (80) is an NP-hard problem. Hence, graph-based methods for the struc-

tural representation of the CPS as well as geometric approaches have been utilized to find an upper bound for

SIc [16, 20]. On the other hand, in this section, we define an upper bound for covert cyber-attacks security

index based on necessary and sufficient algebraic conditions provided in Theorem 4.3 (see Remark 4.4). In
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particular, given the necessary and sufficient conditions in Theorem 4.3, below, we formulate the problem

of computing an upper bound for SIc in (80) as a trace minimization problem.

Let us define L∗a = LaL
>
a . Considering that L∗a is a diagonal matrix with 0 and 1 entries, the pro-

vided condition in Theorem 4.3 for the existence of covert attacks can be rewritten as CqAr
q
a−1BL∗a =

(D∗aC)qA
rqa−1BL∗a , for q = 1, . . . , p.

Definition 4.11. In the CPS (55), an upper bound for covert cyber-attacks security index is defined as

S̄Ic := min
L∗

a ,D
∗
a

trace

L∗a 0

0 D∗a



s.t.


(Ip −D∗a)1CA

r1a−1BL∗a
...

(Ip −D∗a)pCA
rpa−1BL∗a

 = 0.

(81)

It should be noted that given Ba = BLa, at each instance of the minimization problem in (81), the

relative degree rqa should be updated accordingly, for q = 1, . . . , p. Algorithm 1 can be utilized to find the

provided S̄Ic in (81).

4.4 Dynamic Coding Scheme to Prevent Zero dynamics and Controllable

Cyber-Attacks

The studied cyber-attacks in Section 4.2 can be executed by adversaries that cause damage to the CPS

while remaining undetected. Hence, in this section, a dynamic coding scheme on the input communication

channels is developed that, under certain conditions, can be used to prevent adversaries from performing

stealthy cyber-attacks such as the zero dynamics and controllable attacks on actuators. The coding scheme is

designed such that having only one secure input communication channel will result in preventing adversaries

from executing the zero dynamics attacks and controllable cyber-attacks.
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Algorithm 1 Pseudo code to find S̄Ic

Input: (A,B,C), and the set of all inputs and outputs S = {u1, . . . , um, y1, . . . , yp}
Output: S̄I , and S̄min which is the set of actuators and sensors that should be at-
tacked

1: Initialize S̄I = m+ p, S̄min = S, L∗a = Im, D∗a = Ip
2: Set l = |S|, where | · | denotes the cardinality of a set
3: for i = 1 : 2l − 1 do
4: Create the empty set Ŝ = {}
5: for j = 1 : l do
6: if the j-th bit of the binary representation of i is equal to 1 then
7: Add j-th member of S to Ŝ
8: end if
9: end for

10: Compromise actuators and sensors that belong to the set Ŝ, and update L∗a , D∗a , and r1
a , . . . , r

p
a ac-

cordingly
11: if L∗a 6= 0 and D∗a 6= 0 then

12: if

(Ip −D∗a )1CA
r1a−1BL∗a

...
(Ip −D∗a )pCA

rpa−1BL∗a

 = 0 and |Ŝ| ≤ S̄I then

13: S̄I = |Ŝ|
14: S̄min = Ŝ
15: end if
16: end if
17: end for
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Figure 4.1: The architecture of the CPS and the dynamic coding scheme, where ue(k) is the output of the
encoder and ud(k) is the output of the decoder.

4.4.1 CPS Model in Presence of the Dynamic Coding Scheme

An encoder, that is denoted by E , on the command and control (C&C) side and a decoder, denoted by

D, on the plant side of the CPS are designed. The CPS along with the encoder E and the decoder D are

depicted in Figure 4.1.

The dynamics of the encoder and the decoder on the input communication channels of the CPS are
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governed by

E :


xe(k + 1) = Aexe(k) +Beu(k),

ue(k) = Cexe(k) +Deu(k),

(82)

D :


xd(k + 1) = Adxd(k) +Bd(ue(k) + Laau(k)),

ud(k) = Cdxd(k) +Dd(ue(k) + Laau(k)),

(83)

where xe(k), xd(k) ∈ Rne and ue(k), ud(k) ∈ Rm denote the states and outputs of the encoder E and the

decoder D, respectively. Moreover, one has xe(0) = xd(0) = 0. The following lemma provides necessary

and sufficient conditions under which the decoder D is the inverse of E such that once au(k) = 0, one has

ud(k) = u(k), ∀k ≥ 0.

Lemma 4.2 ( [17]). Let au(k) = 0. One has ud(k) = u(k), ∀k ≥ 0, if and only if there exists an invertible

matrix T that satisfies the following:

DdCe + CdT = 0, T−1BdDe = Be, Dd = D−1
e ,

T−1AdT + T−1BdCe = T−1AdT −BeCdT = Ae.

In presence of E and D, the dynamics of the CPS (55) under actuator attacks can be expressed as

x(k + 1) =Ax(k) +Bud(k) + ω(k),

y(k) =Cx(k) + ν(k). (84)

Consequently, the I/O model of the CPS (84) under noise free conditions is derived in the following

form:

Y (N) = ONx(0) + CN(U(N) + CdUa(N)), (85)
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where Cd = Γd ⊗ La and

Γd =



Dd 0 · · · 0

CdBd Dd · · · 0

...
...

. . .
...

CdA
N−2
d Bd CdA

N−3
d Bd · · · Dd


. (86)

Assumption 4.2. The encoder (82) and the decoder (83) are designed according to Lemma 4.2. Moreover,

adversaries have knowledge on the parameters of Γd in (86).

As can be seen from (85), due to existence of the coding scheme, the impact of actuator cyber-attack

signals shows up as CNCdUa(N) in the sensor measurements. It should be noted that since Γd is by definition

an invertible matrix, ker(CN) = ker(CNΓd). According to Definition 4.8, ker(CN) determines the existence

of controllable cyber-attacks. Hence, having Γd in (85) does not result in introducing additional controllable

cyber-attacks that can be executed in the CPS.

Furthermore, since Γd is invertible, one has Im(CN) = Im(CNΓd). Moreover, as per Definition 4.6, in

order for the zero dynamics cyber-attacks to exist, one needs to have Im(ONx(0)) ⊆ Im(CN). Consequently,

since Im(CN) = Im(CNΓd), Γd does not introduce any new zero dynamics in the CPS (85). However, in order

to take into account the impact of the decoder D, the zero dynamics and controllable attacks in presence of

the coding scheme need to be redefined. Also, the definition of the relative degree should be modified for

the CPS in presence of the dynamic coding scheme.

Definition 4.12 (Cyber-Attacks and the Coding Scheme). In the I/O model of the CPS (85), let Ua(N) =

C̃dŨa(N), where C̃d is designed such that CNCdC̃d = Ca. Consequently, the following can be stated:

(1) There exists a zero dynamics cyber-attack if Ũa(N) is designed according to Definition 4.6 such that

ONx(0) + CNCdC̃dŨa(N) = 0.

(2) The actuator cyber-attack is a controllable attack if Ũa(N) is designed according to Definition 4.8

such that CNCdC̃dŨa(N) = 0.

Moreover, if one cannot execute the zero dynamics and controllable cyber-attacks in the CPS (84), the CPS

is considered to be secure against these cyber-attacks.
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Definition 4.13. Let Ia = {a1, . . . , ama} denote the set of compromised input communication channels. The

relative degree of the CPS (84) with respect to the q-th attacked input channel is rd
q if CAiB(DdLa)q = 0

for all i < rd
q − 1 and CAr

d
q−1B(DdLa)q 6= 0, for every q ∈ Ia , where (DdLa)q denotes the q-th column

of DdLa. Moreover, rd
a = min{rd

a1 , . . . , r
d
am}.

As stated in Definition 4.12, the adversary’s objective is to cancel out the impact of the dynamic coding

scheme by designing the actuator cyber-attack signals and maintaining the cyber-attack stealthy. Hence, the

design conditions for E and D under which adversaries cannot evade the coding scheme to maintain their

attacks undetected are discussed in the next subsection.

The following assumption holds throughout this section.

Assumption 4.3. In the CPS (84), there exists at least one secure input communication channel, i.e.,

rank(La) < m.

4.4.2 Designing the Dynamic Coding Scheme for Securing the CPS Against Zero Dynamics

and Controllable Cyber-Attacks

As per Definition 4.12, in order to execute the zero dynamics and controllable cyber-attacks, adversaries

need to first eliminate the impact of the coding scheme by designing C̃d. Hence, our objective is to design

and develop the coding scheme such that having only one secured input channel will prevent adversaries

from having CNCdC̃d = Ca. If the latter objective is achieved, the impact of the actuator cyber-attacks will

always show up in the sensor measurements and cannot be eliminated by adversaries.

Theorem 4.4. Under Assumption 4.3, for any set of attacked input channels Ia, i.e., any La, adversaries

cannot perform zero dynamics and controllable cyber-attacks in the sense of Definition 4.12 if CdBd is a

full rank matrix and Im((CdBd)q) * Im((Dd)q), for q = 1, . . . ,m, where (CdBd)q and (Dd)q are the q-th

columns of CdBd and Dd, respectively.

Proof. According to the Definition 4.12, in zero dynamics cyber-attacks, one hasONx(0)+CNCdUa(N) = 0,
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which at instances k = rd
a and k = rd

a + 1 results in

CAr
d
ax(0) + CAr

d
a−1BDdLaau(0) = 0, (87a)

CAr
d
a +1x(0) + (CAr

d
aBDd + CAr

d
a−1BCdBd)Laau(0)

+ CAr
d
a−1BDdLaau(1) = 0. (87b)

The actuator cyber-attacks signal can be written as au(1) = az
u(1) + ad

u(1), where az
u(1) is designed

according to the Corollary 4.1 and is the zero dynamics cyber-attack signal for the triple (C,A,BDdLa).

Moreover, ad
u(1) is designed to eliminate the impact of the dynamic coding from the sensor measurements

such that

CAr
d
a−1BCdBdLaau(0) + CAr

d
a−1BDdLaa

d
u(1) = 0. (88)

In case of controllable cyber-attacks, at k = rd
a and k = rd

a + 1 one has

CAr
d
a−1BDdLaau(0) = 0, (89a)

CAr
d
aBDdLaau(0) + CAr

d
a−1BCdBdLaau(0)

+ CAr
d
a−1BDdLaau(1) = 0. (89b)

Similar to the case of the zero dynamics cyber-attacks the actuator attack signal can be recast as au(1) =

ac
u(1) + ad

u(1), where ac
u(1) is designed according to the Corollary 4.2 for the triple (C,A,BDdLa), and

ad
u(1) is designed to cancel out the impact of the coding scheme such that it satisfies (88).

The condition (88) is satisfied if

CdBdLaau(0) +DdLaa
d
u(1) = ζâ0, (90)

where ζ is a scalar and â0 ∈ ker(CAr
d
a−1B). If ζ 6= 0, CdBdLaau(0) + DdLaa

d
u(1) will show up in the

next instances of the output, i.e., k ≥ rd
a + 2. Hence, adversaries may try to design adu(1) to satisfy (90) for

ζ = 0.

There exists ad
u(1) that can satisfy (90) for ζ = 0 if Im(CdBdLaau(0)) ⊆ Im(DdLa). Since CdBd
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is a square matrix, having a full rank CdBd such that Im((CdBd)q) * Im((Dd)q), for q = 1, . . . ,m,

implies that the q-th column of CdBd is a basis of Rm which is different from all the columns of Dd.

The latter implies that all the columns of Dd should be accessible by the adversaries, i.e., La = Im, to have

Im(CdBdLa) ⊆ Im(DdLa). Hence, under Assumption 4.3, if Im((CdBd)q) * Im((Dd)q), for q = 1, . . . ,m,

having any rank deficient La results in Im(CdBdLaau(0)) ⊆ Im(CdBdLa) * Im(DdLa). This completes

the proof of the theorem.

As the main implication of the proposed dynamic coding scheme in Theorem 4.4, the security index for

the CPS (84) is now equal to m. Hence, even if adversaries know the dynamics of the CPS (54), the encoder

E in (82), and the decoder D given by (83) (as considered in Assumption 4.2), the adversaries still need to

compromise all the input channels of the CPS to execute the zero dynamics and controllable cyber-attacks.

Note that a static coding scheme where Ad = 0, Bd = 0, Cd = 0, and Dd 6= 0 may require more

than one secure communication channel to prevent adversaries from performing the zero dynamics and

controllable cyber-attacks. For instance, in case of a static coding scheme, for a certain x(0) and rank(La) =

m − 1, i.e., one secure input channel, it is possible to have CAr
d
ax(0) + CAr

d
a−1BDdLag = 0 such that

Im(CAra+1x0 + CAraBDdLag) ⊆ Im(CAra−1BDdLag) (refer to Theorem 4.1), which are the necessary

and sufficient conditions for existence of zero dynamics cyber-attacks, under certain assumptions. On the

other hand, if Theorem 4.4 is utilized to design the dynamic coding scheme, having only one secure input

channel will prevent adversaries from executing the zero dynamics and controllable cyber-attacks.

Since in the Theorem 4.4 there is no condition on Ad, it can be selected as Ad = Im. However, Bd,

Cd, and Dd should be designed according to Theorem 4.4. Consequently, Ae, Be, Ce, and De should be

designed to satisfy the conditions in the Lemma 4.2.

4.5 Dynamic Coding Scheme to Prevent Covert Cyber-Attacks

In this section, a dynamic coding scheme on the input communication channels is developed and pro-

posed which can be used to prevent adversaries from performing covert attacks. The coding scheme is

designed such that having only one secure input and two secure output communication channels will result

in preventing adversaries from executing covert cyber-attacks.
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We utilize the encoder (82) and the decoder (83). In presence of E and D, the dynamics of the CPS (55)

under both actuator and sensor attacks can be described as follows:

x(k + 1) =Ax(k) +Bud(k) + ω(k),

y(k) =Cx(k) +Daay(k) + ν(k).

(91)

Consequently, the noise free I/O model of the CPS (91) takes the following form:

Y (N) = ONx(0) + CNU(N) + CNCdUa(N) +DaYa(N), (92)

where Cd = Γd ⊗ La and Γd is defined in (86).

The presence of the coding scheme leads to the appearance of actuator attack signal impact as CNCdUa(N)

in sensor measurements. Given the existence of the coding scheme in (91), we need to redefine the relative

degree for our system.

Definition 4.14. The relative degree of the q-th output of the CPS (91) with respect to the actuator attack

signal au(k) is rqd if CqAiqBDdLa = 0 for all iq < rqd − 1 and CqAr
q
d−1BDdLa 6= 0, for q = 1, . . . , p,

where Cq represents the q-th row of C. If for any positive integer iq one has CqAiqBDdLa = 0, the relative

degree for the q-th output with respect to au(k) cannot be defined. Also, we define rd = min{r1
d , . . . , r

p
d}.

The following assumption holds throughout this section.

Assumption 4.4. In the CPS (91), there exist at least one secure input communication channel and two

secure output communication channels, i.e., rank(La) < m and rank(Da) < p− 1.

4.5.1 Design Specifications of the Dynamic Coding Scheme for Securing the CPS Against

Covert Attacks

In presence of the coding scheme and in the case of covert attacks, adversaries may try to use sensor

attack signals to eliminate the impact of actuator attack signals from output measurements. Hence, the

proposed coding schemes should satisfy two requirements. First, when there exists a secure input commu-

nication channel, the impact of the coding scheme cannot be canceled out through actuator attack signals.
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Second, to design the coding matrices such that all sensors are affected by actuator attacks. Under the latter

condition, adversaries need to have access to all output communication channel to eliminate the impact of

their actuator cyber-attacks from sensor measurements. Design specification of E and D are provided in the

following theorem.

Theorem 4.5. Under Assumption 4.4, consider qs1 and qs2 as two secure output communication channels. In

the CPS (91), adversaries cannot perform covert cyber-attacks in the sense of Definition 4.9 if the following

conditions are satisfied:

(1) Cqs1A
rd−1BDdLa = 0;

(2) ker(Cqs2A
rd−1BDdLa) ∩ ker(Cqs1A

rdBDdLa) = 0;

(3) and Cqs1A
rd−1BCdBdLa = 0.

Proof. Adversaries need to design their attack signals such that CNCdUa(N) +DaYa(N) = 0. Hence, at the

rd-th and rd + 1-th instances of the output, actuator and sensor attack signals should satisfy the following:

CArd−1BDdLaau(0) +Daay(1) = 0, (93a)

CArdBDdLaau(0) + CArd−1BCdBdLaau(0)

+ CArd−1BDdLaau(1) +Daay(2) = 0. (93b)

Under Assumption 4.4, measurements that are transmitted through the communication channels qs1

and qs2 cannot be manipulated by means of sensor attacks. Moreover since in condition 1) we have

Cqs1A
rd−1BDdLa = 0, in order to satisfy (93a), the actuator attack signal should be designed such that

au(0) ∈ ker(Cqs2A
rd−1BDdLa). Furthermore, it follows from condition 2) that Cqs1A

rdBDdLaau(0) 6= 0.

Since qs1 is a secure output communication channel and as per conditions 1) and 3) we haveCqs1A
rd−1BDdLa

×au(1) = 0 and Cqs1A
rd−1BCdBdLaau(0) = 0, respectively, the impact of au(0) cannot be removed from

the qs1-th communication channel and (93b) cannot be satisfied. This completes the proof of the theo-

rem.

The main objective in Theorem 4.5 is to design the coding scheme such that the impact of actuator attack

signals show up in the sensor measurements that are secured. Moreover, the proposed design specifications
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in Theorem 4.5 ensure that adversaries are not capable of removing the impact of their actuator attacks

from sensor measurements that are transmitted through secure output communication channels qs1 and qs2.

Hence, as the main implication of Theorem 4.5, the CPS operators can prevent adversaries from executing

covert attacks by securing 3 input and output communication channels and employing the proposed coding

scheme in this subsection.

According to Theorem 4.5, in order to design the coding scheme,Dd should satisfyCqs1A
rd−1BDdLa =

0 and ker(Cqs2A
rd−1BDdLa)∩ ker(Cqs1A

rdBDdLa) = 0, simultaneously. Consequently, Cd and Bd should

satisfy Cqs1A
rd−1BCdBdLa = 0, where one simple design choice could be CdBd = Dd. Also, Theorem 4.5

does not impose any design conditions on Ad. After designing the decoder D, the encoder E should be

developed as per Lemma 4.2.

4.6 Numerical Case Studies

In this section, three case studies are provided. In the first case study, the zero dynamics cyber-attacks

are investigated. Motivated by the studied Quadruple-Tank Process (QTP) in [24, 104], a modified state-

space representation of the QTP with an additional input is considered. We use the results in Theorem 4.1 to

investigate the existence of the zero dynamics cyber-attacks for the modified QTP and implement the attack

by utilizing Corollary 4.1. Moreover, following results in Section 4.4 and Theorem 4.4, a dynamic coding

scheme is designed and implemented for the modified QTP.

The second case study is concerned with controllable cyber-attacks in the flight control system of a

small single-engine fighter aircraft. We obtain the dynamics of the aircraft from [119, 120]. By utilizing

Theorem 4.2 and Corollary 4.3, the existence and implementation of the controllable cyber-attacks in the

considered flight control system are studied. Moreover, the proposed dynamic coding scheme in Section 4.4

and Theorem 4.4 is implemented and analyzed for the second case study. In the third case study, we study

covert cyber-attacks, as per Definition 4.9, in the flight control system of the fighter aircraft.

4.6.1 Zero Dynamics Attacks in the Quadruple Tank Process

In the first case study, we consider the zero dynamics cyber-attacks in the sense of Definition 4.6. In

[104] and [24], the QTP has two main pumps which their input voltages correspond to two control inputs of
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the system. However, in this case study, we consider an additional pump which pumps water into the first

tank. The linearized characteristic matrices of the QTP with the additional pump and the sampling period of

Ts = 0.5 (s) are expressed by [24]

A =



0.975 0 0.042 0

0 0.977 0 0.044

0 0 0.958 0

0 0 0 0.956


, B =



0.0515 0.0016 0.0515

0.0019 0.0447 0

0 0.0737 0

0.0850 0 0


, C =

0.2 0 0 0

0 0.2 0 0

 .

We assume that the first two actuators of the QTP are under cyber-attacks and the third actuator is

secured, i.e., we have

Ba =



0.0515 0.0016

0.0019 0.0447

0 0.0737

0.0850 0


.

Consequently, the relative degree ra is equal to 1 (refer to Definition 4.7). Let us consider the initial con-

dition x̄0 = [0, 0, −1, 2]>, that belongs to the null space of C and Im(CAx̄0) ⊆ Im(CBa). However, since

there does not exist any g ∈ R2 such that Im(CA2x̄0 + CABag) ⊆ Im(CBag), according to Theorem 4.1,

the initial condition x̄0 is not associated with any invariant zero.

From Theorem 4.1, it follows that the given QTP with (A,Ba, C) has two zeros that correspond to

initial conditions x01 = [0, 0, 0.1, 0.1]> and x02 = [0, 0, −0.72, 0.69]>. In particular, for each ini-

tial condition one has Im(CAx0) ⊆ Im(CBa), which result in having CAx0 + CBag = 0 such that

Im(CA2x0 + CABag) ⊆ Im(CBag). Moreover, for the QTP system, one has ker(C)
⋂

ker(CA) = 0.

Hence, one can utilize the Corollary 4.1 to compute the input-zero direction that corresponds to x01 as

g1 = [−0.0786, −0.0951]> with a minimum phase zero λ1 = 0.8886.

Moreover, the initial condition x02 corresponds to the input-zero direction g2 = [0.6091, −0.7051] and

a non-minimum phase zero λ2 = 1.0306. It should be emphasized that using the Rosenbrock system matrix

of the triple (C,A,Ba) or the tzero MATLAB function, one can also find both invariant zeros of the QTP

as λ1 = 0.8886 and λ2 = 1.0306 (refer to [24]). Consequently, for the initial condition x02, we design
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Figure 4.2: The QTP system under the zero dynamics cyber-attack injected at t = 0 (s).

the zero dynamics cyber-attack signal au(k) = g2λ
k
2 . As shown in Figure 4.2, once the zero dynamics

cyber-attack is injected at k = 0, i.e., t = 0 (s), in presence of the process and measurement noise, sensor

measurements of the QTP remain close to zero, while the values of states grow unbounded. Moreover, since

A is a Schur stable matrix and as discussed in Remark 4.2, considering Figure 4.3, the error due to starting

the zero dynamics cyber-attack at k = 20, i.e., t = 10 (s) where x(10) 6= x02 is minimal and not significant.

Given that the third actuator in the modified QTP is secured, Assumption 4.3 is satisfied and the proposed

dynamic coding scheme in Section 4.4 can be employed. Hence, we design an encoder E given by (82) and

a decoder D (83) that satisfy the conditions in Lemma 4.2. The parameters of E and D are Ad = I3,
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Figure 4.3: The zero dynamics cyber-attack injected at t = 10 (s) in the QTP system.

Cd = −Ce = I3, Dd = D−1
e = I3, Ae = Ad −BeCd, and

Be = Bd =


0 1 1

1 0 1

1 1 0

 .

It can be seen that the q-th column of CdBd is different from the q-th column of Dd, for q = 1, . . . , 3.

Hence, conditions in Theorem 4.4 are satisfied and in presence of the dynamic coding scheme, adversaries

will not be able to execute zero dynamics cyber-attacks. As shown in Figure 4.4, by utilizing the designed
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Figure 4.4: Impact of the dynamic coding scheme in securing the modified QTP against the zero dynamics
cyber-attack injected at t = 0 (s).

dynamic coding scheme, the impact of the zero dynamics cyber-attack can be seen and detected in the sensor

measurements.

4.6.2 Controllable Attacks in the Flight Control System of a Fighter Aircraft

In our second case study, we consider the controllable cyber-attacks that are described in Definition 4.8.

The characteristic matrices of the linearized aircraft system with the sampling period of Ts = 0.5 (s) are
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given by [119, 120]

Af =



1.0214 0.0054 0.0003 0.4176 −0.0013

0 0.6307 0.0821 0 −0.3792

0 −3.4485 0.3779 0 1.1569

1.1199 0.0024 0.0001 1.0374 −0.0003

0 0.3802 −0.0156 0 0.8062


,

Bf =



0.1823 −0.1798 −0.1795 0.0008

0 −0.0639 0.0639 0.1397

0 −1.5840 1.5840 0.2936

0.8075 −0.6456 −0.6456 0.0013

0 −0.1005 0.1005 −0.4114


,

Cf =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

 .

The matrix Bf has a full column rank and is an injective map. In this case study, the first 3 actuators

of the system are compromised by adversaries, i.e., Ia = {1, 2, 3}, and the input channel 4 is attack free.

Hence, one has rank(La) = 3, and the actuator cyber-attack signature is Ba = [(Bf)1, (Bf)2, (Bf)3], where

(Bf)q denotes the q-th column ofBf. Since Cf(Bf)q 6= 0, for every q = 1, . . . , 4, each actuator of the system

Σf = (Cf, Af, Bf) yields a relative degree equal to 1 which implies that ra = 1.

The basis of the null space of CfBa is â0 = [−0.8124, −0.4122, −0.4122]>. Given that ker(Cf)
⋂

ker(CfAf) = 0, by utilizing Remark 4.3, there exists â1 = [−0.3764, −0.3349, −0.3349]> that satisfies

CfAfBaâ0 + CfBaâ1 = 0 and CfA
2
fBaâ0 + CfAfBaâ1 = 0. Consequently, according to Corollary 4.3 and

Definition 4.2, adversaries are capable of performing controllable cyber-attacks in the sense of Definition 4.8

and the flight control system Σf is not left invertible. We set au(0) = â0 and as per Corollary 4.3 , we design

h(k) = (k + 1)2 and the actuator attack signal in the following form:

au(k) = â0h(k) + â1h(k − 1), (94)
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Figure 4.5: Controllable cyber-attacks in the flight control system.

for k ≥ 1. As shown in Figure 4.5, the sensor measurements of the flight control system in presence of the

controllable attacks and noise are close to zero, while the state of the system is growing unbound.

In order to make the flight control system Σf secure against controllable cyber-attacks in the sense of

Definition 4.12, we design an encoder E and a decoder D with their dynamics given by (82) and (83),

respectively. The decoder D and the encoder E are designed to satisfy the conditions in Lemma 4.2 such
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that Ad = I4, Cd = −Ce = I4, Dd = D−1
e = I4, Ae = Ad −BeCd, and

Be = Bd =



0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0


.

Since the q-th column of CdBd is different from the q-th column of Dd = I4, for q = 1, . . . , 4, it follows

from Theorem 4.4 that in presence of the dynamic coding scheme, adversaries will not be able to execute

controllable cyber-attacks on the flight control system Σf. Moreover, as depicted in Figure 4.6, in presence

of the proposed dynamic coding scheme, the impact of the controllable cyber-attack given by (94) can now

be observed and detected in the sensor measurements.

4.6.3 Covert Attacks in the Flight Control System of a Fighter Aircraft

In this subsection, we study covert cyber-attacks, as per Definition 4.9, in the flight control system of a

fighter aircraft.

Executing Covert Attacks (Theorem 4.3): We consider scenarios where each actuator of the system

is attacked separately. If the first input channel is compromised by adversaries, i.e., La = [1, 0, 0, 0], we

have r1
a = 1 and Cf1A

r1a−1
f Ba = [0.1823, 0, 0]>, where by definition Ba = BfLa. Moreover, according

to Definition 4.10, assuming that only the first input communication channel is compromised, a relative

degree cannot be defined for the second and the third outputs since CqAiqBa = 0, for any positive integer

iq and q = 2 and 3. Hence, adversaries need to only compromise the first output communication channel to

satisfy the condition Cf1A
r1a−1
f Ba = (D∗aCf)1A

rqa−1
f Ba in Theorem 4.3 and perform a covert cyber-attack,

i.e., Da = [1, 0, 0]>.

Following Corollary 4.4, we design a covert attack signal for the case where only the first input and

the first output communication channels of the flight control system are under cyber-attacks. As shown in

Figure 4.7, in presence of the system and the process noise, a covert cyber-attack is executed and the sensor

measurements are close to zero while the values of states are increasing.

Having either the second or the third or the fourth input communication channels compromised yields a
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Figure 4.6: Impact of the dynamic coding scheme in securing the flight control system against controllable
cyber-attacks.

relative degree equal to 1 for all the outputs, i.e., ra = 1 for q = 1, 2, 3 if La = [0, 1, 0, 0] or La = [0, 0, 1, 0]

or La = [0, 0, 0, 1]. Consequently, in order to execute covert attacks, when any actuator other than the first

one is under cyber-attacks, adversaries need to compromise all 3 output communication channels of the

system to satisfy the condition CfqA
rqa−1
f Ba = (D∗aCf)qA

rqa−1
f Ba in Theorem 4.3, for q = 1, . . . , 3.

Calculating the S̄Ic (Definition 4.11, Algorithm 1): We utilize Algorithm 1 to compute an upper

bound for the security index for covert attacks in the flight control system. In order to initialize the algorithm,

we use the given characteristic matrices of the flight control system and create the set of inputs and outputs

S = {u1, . . . , u4, y1, . . . , y3}. There exists 127 different combinations of members of the set S. Algorithm 1
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Figure 4.7: Covert attack while the first input and the first output communication channels are compromised.

yields the outputs S̄Ic = 2 and S̄min = {u1, y1}. Hence, the minimum number of actuators and sensors that

should be attacked by adversaries to perform a covert attack is 2 which includes the first actuator and the

first sensor.

The Coding Scheme (Theorem 4.5): Our objective is to make the flight control system secure against

covert cyber-attacks. Under Assumption 4.2, an encoder E and a decoder D with their dynamics given

by (82) and (83) are designed, respectively. As per Assumption 4.4, we consider that the actuator 1 and

sensors 1 and 2 are secured, i.e., qs1 = 1 and qs2 = 2. Moreover, the decoder D and the encoder E satisfy

the conditions in Theorem 4.5. The characteristic matrices of the encoder and the decoder are Ad = I4,
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Cd = −Dd, Bd = Dd, De = D−1
d , Be = I4, Ce = −B−1

d BeCd, Ae = Ad −BeCd, and

Dd =



1 0.575 −0.0026 0.574

0 0.7911 0.0009 −0.2085

0 −0.2085 0.0009 0.7918

0 0.0009 1 0.0009


.

Considering that the first and the second sensors are secured, we design the actuator attack signal such

that its impact on these two sensors is zero. In order to achieve this goal, we have used the results in [14,15]

to design the actuator attack signal to be a controllable cyber-attack that its impact cannot be observed in

sensors 1 and 2. Also, since sensor 3 is not secured and can be manipulated by adversaries, the sensor attack

signal is designed to cancel out the impact of the actuator attack signal on this sensor. Consequently, in

Figure 4.8, it can be seen that the impact of the actuator attack signal cannot be seen in the sensor readings.

As depicted in Figure 4.9, in presence of the proposed dynamic coding scheme, adversaries cannot eliminate

the impact of their actuator attack signals from sensor measurements despite knowing the parameters of

encoder and the decoder and the attack signal can now be observed in the sensor measurements.

4.7 Conclusion

This chapter has studied the vulnerability of the CPS to zero dynamics attacks, covert attacks, and con-

trollable cyber-attacks. Given that these cyber-attacks are considered to be stealthy, they can cause damage

to the CPS without being detected. Under certain assumptions, we have studied and derived conditions

for existence of these cyber-attacks in terms of nonzero Markov parameters of the CPS and entries of the

observability matrix. Moreover, in addition to providing the number of required actuators to be attacked in

case of zero dynamics and controllable attacks, the derived conditions represent the level of required system

knowledge to carry out these stealthy cyber-attacks. Furthermore, a dynamic coding scheme was developed

to increase the security index of the CPS to its maximum possible value. Hence, in presence of deploying the

dynamic coding scheme, if one actuator is secured, adversaries will not be capable of performing the zero

dynamics and controllable cyber-attacks. Moreover, three key challenges related to covert cyber-attacks in
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Figure 4.8: Covert attack while actuators 2, 3, and 4 along with sensor 1 are compromised.

the CPS were addressed. We have investigated and formulated necessary and sufficient conditions in the

sense of disruption resources of the CPS that adversaries need in order to carry out covert cyber-attacks.

These conditions can be employed to determine the input and output communication channels required for

executing covert attacks. Furthermore, we have utilized the developed conditions to define an upper bound

on the security index (SI) for covert attacks in CPS which determines the minimum number of actuators

and sensors that should be attacked to execute a covert cyber-attack. As a countermeasure against covert

cyber-attacks, a dynamic coding scheme has been introduced and developed. Under certain conditions and

assuming the existence of one secure input and two secure output communication channels, the proposed

coding scheme effectively prevents adversaries from executing covert cyber-attacks.
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Figure 4.9: Covert attack in presence of the dynamic coding scheme.
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Chapter 5

The Security Requirement to Prevent Zero

Dynamics Attacks and Perfectly

Undetectable Cyber-Attacks in Linear and

Nonlinear Cyber-Physical Systems

In this chapter, zero dynamics and perfectly undetectable cyber-attacks in linear and nonlinear cyber-

physical systems (CPS) are studied. The impacts of zero dynamics attacks and perfectly undetectable cyber-

attacks cannot be observed in outputs of the CPS. Adversaries are capable of executing these cyber-attacks

and leading the CPS to undesirable trajectories while remaining undetected. In this chapter, we introduce and

formally define the notion of security effort (SE) as a novel security metric for linear CPS that determines

the minimum number of actuators and sensors that should be secured and kept attack free in order to prevent

adversaries from executing zero dynamics attacks, covert attacks, and controllable attacks. Moreover, since

zero dynamics attacks, covert attacks, and controllable attacks belong to weakly unobservable and control-

lable weakly unobservable subspaces of the CPS, conditions under which these subspaces become zero are

obtained and investigated. Subsequently, in this chapter, we study the data-driven implementation of stealthy

cyber-attacks for a class of nonlinear CPS. In particular, we consider and study zero dynamics and covert

cyber-attacks. By utilizing the Koopman operator theory, a given control affine CPS is transformed into the
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Koopman canonical form, and its relative degree is defined in terms of the Koopman modes, Koopman eigen-

values, and Koopman eigenfunctions. Consequently, the relative degree of the CPS is utilized to determine

zero dynamics cyber-attacks. In contrast to the linear case, adversaries need to compromise both input and

output communication channels of the CPS to maintain their attacks undetected. Moreover, the Koopman

canonical form of the CPS is used to define and implement covert cyber-attacks in nonlinear CPS. Hence,

by utilizing the Koopman canonical form of the CPS, we find sensors that should be secured to prevent zero

dynamics and covert cyber-attacks in nonlinear CPS. The extended dynamic mode decomposition (EDMD)

provides a linear finite-dimensional approximation of the CPS. Consequently, approximated dynamics of

the CPS are utilized to introduce data-driven zero dynamics and covert cyber-attacks. Finally, numerical

case studies are provided to illustrate the effectiveness of our proposed methods. The work presented in this

chapter has partly appeared in [121, 122].

To summarize, the main contributions of this chapter are stated as follows:

(1) The notion of SE is formally defined as a measure that denotes the minimum number of actuators and

sensors that should be secured to prevent adversaries from executing zero dynamics attacks, covert

attacks, and controllable attacks.

(2) Conditions under which the weakly unobservable subspace of CPS becomes zero are developed and

investigated. If these conditions are satisfied, no zero dynamics attacks, covert attacks, and control-

lable attacks can be performed by the adversaries on the CPS.

(3) In order to study perfectly undetectable cyber-attacks, conditions under which the controllable weakly

unobservable subspace of CPS becomes zero are investigated. Therefore, under these conditions,

adversaries cannot execute perfectly undetectable cyber-attacks, i.e., covert attacks and controllable

attacks.

(4) The ε-stealthy cyber-attacks in terms of Koopman operator are defined which can be used to categorize

various types of cyber-attacks.

(5) A relative degree of the CPS by means of Koopman eigenfunction, Koopman eigenvalue, and Koop-

man modes is defined. The proposed definition of the relative degree only requires matrix multipli-

cations and is easy to check and verify. Moreover, we use the relative degree to discover internal
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dynamics of the CPS.

(6) A method to identify sensor measurements that are needed by adversaries to execute zero dynamics

and covert cyber-attacks is developed. Hence, by securing certain sensor measurements, one can

prevent the execution of zero dynamics and covert cyber-attacks. Moreover, data-driven strategies for

executing and implementing the zero dynamics and covert cyber-attacks by using the KCF of the CPS

and the EDMD algorithm are proposed.

The remainder of the chapter is organized as follows. State-space representation of the linear and non-

linear CPS systems along with objectives and the definitions for certain cyber-attacks and the Koopman

operator theory are provided in Section 5.1. Conditions under which weakly unobservable and controllable

weakly unobservable subspaces of the CPS become zero are investigated in Section 5.2. Moreover, the secu-

rity effort (SE) for linear CPS is formally in Section 5.3. In Section 5.4, by utilizing the Koopman operator

theory, ε-stealthy cyber-attacks and methodologies to execute zero dynamics and covert attacks in nonlinear

CPS are presented. Furthermore, data-driven implementation of zero dynamics and covert cyber-attacks in

nonlinear CPS are discussed in Section 5.5. Numerical case studies are presented in Section 5.6 to illustrate

and demonstrate the effectiveness of our proposed methodologies.

5.1 Problem Statement and Formulation

5.1.1 Model of the Linear CPS

We consider a linear time-invariant (LTI) CPS in the following form:

ẋ(t) =Ax(t) +Bu(t),

y(t) =Cx(t), (95)

where x(t) ∈ Rn is the state, y(t) ∈ Rp is the output, and u(t) ∈ Rm denotes the control input. The

characteristic matrices of the system, i.e., (A,B,C), are of appropriate dimensions. We assume that B is an

injective map, i.e., B has full column rank, since otherwise, its linearly dependent columns can be removed.
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5.1.2 Linear CPS Under Cyber-Attacks

Let U = {u1, . . . , um} and Y = {y1, . . . , yp} denote the sets of input and output communication

channels in the CPS (95) with |U| = m and |Y| = p, respectively, where | · | denotes the cardinality of a

set. Moreover, let Us and Ys denote the sets of secured input and output channels of the CPS, respectively.

Consequently, Ua = U/Us = {ua
1, . . . , u

a
ma
}, with |Ua| = ma is the set of attacked inputs and Ya = Y/Ys =

{ya
1, . . . , y

a
pa
}, with |Ya| = pa denotes the set of attacked outputs.

The CPS (95) under cyber-attacks can be expressed by

ẋ(t) =Ax(t) +B(u(t) + Laau(t)),

y(t) =Cx(t) +Daay(t), (96)

where au(t) ∈ Rma is the actuator attack signal and ay(t) ∈ Rp is the sensor attack signal. Moreover,

Ba = BLa and Da are the actuator attack and the sensor attack signatures, respectively. The matrix Da =

diag(d1, d2, . . . , dp) ∈ Rp×p is diagonal, where dr = 1 if the r-th sensor measurement belongs to the set

Ya for r = 1, . . . , p, and dr = 0 if yr ∈ Ys. Hence, one has rank(Da) = pa. Furthermore, the matrix

La = [lua
1
, . . . , lua

ma
] ∈ Rm×ma denotes the input channels that are compromised by adversaries, where ua

q-

th element of lua
q
∈ Rm is equal to 1, and the rest of its entries are zero, for q = 1, . . . ,ma. Consequently,

La is an injective operator, i.e., rank(La) = ma.

5.1.3 Various Types of Cyber-Attacks in the Linear CPS

Given the linearity of the CPS (96), and due to the superposition principle, one can separately consider

and study the impact of cyber-attacks and control inputs on the CPS. Hence, we eliminate the effects of u(t)

from the CPS in the following form:

ẋ(t) =Ax(t) +Baau(t),

y(t) =Cx(t) +Daay(t). (97)

Let Y (x(0), au(t), ay(t)) denote the output of the CPS (97) as a function of the initial condition x(0),
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the actuator attack signal au(t), and the sensor attack signal ay(t), ∀t ≥ 0. This chapter is concerned with

cyber-attacks that their impacts cannot be observed in the output measurements of CPS. In the following,

the above types of cyber-attacks are defined according to [2, 123–125].

Definition 5.1. In the CPS (97), the following cyber-attacks are defined:

(1) The actuator attack signal au(t) 6= 0 is a zero dynamics attack if Y (x(0), au(t), 0) = 0, ∀t ≥ 0,

where x(0) 6= 0, and adversaries only need to have access to input communication channels.

(2) The attack signal a(t) = [au(t)>, ay(t)
>]> 6= 0 is a covert attack if Y (0, au(t), ay(t)) = 0, ∀t ≥ 0.

(3) The actuator attack signal au(t) 6= 0 is a controllable attack if Y (0, au(t), 0) = 0, ∀t ≥ 0, where

adversaries need to compromise input communication channels.

Definition 5.2 ( [21]). The cyber-attack signal a(t) = [au(t)>, ay(t)
>]> 6= 0 is designated as perfectly

undetectable if it satisfies Y (0, au(t), ay(t)) = 0, ∀t ≥ 0.

Consequently, as per Definitions 5.1 and 5.2, there are two types of perfectly undetectable cyber-attacks.

First, if one has au(t) 6= 0 and ay(t) 6= 0 such that Y (0, au(t), ay(t)) = 0, ∀t ≥ 0, this is referred to as a

covert attack in [2, 96, 123]. Second, if au(t) 6= 0 and ay(t) = 0 such that Y (0, au(t), 0) = 0, ∀t ≥ 0, this

is defined as a controllable attack in [124, 125], and a zero stealthy attack in [126].

However, since the cyber-attack that results in having Y (0, au(t), 0) = 0 is related to the controllable

weakly unobservable subspace of the system (see [125] and [98] for more details), we have adopted the

convention from [124] and [125] and refer to this type of perfectly undetectable cyber-attacks as controllable

attacks. Moreover, despite the fact that the given zero dynamics attack in Definition 5.1 is not perfectly

undetectable (as per Definition 5.2), under certain initial conditions, it results in a zero output. Hence, in

this chapter, in addition to perfectly undetectable cyber-attacks, we also investigate zero dynamics attacks.

5.1.4 Overview of Koopman Operator Theory for Nonlinear CPS

In this subsection, by adopting the results in [52–55], the Koopman operator theory for a nonlinear

system is briefly studied. Let us consider a nonlinear system expressed by

ẋ = f(x), (98)

113



where x ∈ X ⊂ Rd is the state and f : X→ X is a nonlinear vector field. Moreover, the flow map Φ(t, x0)

is the solution to (98) at the initial condition x0 ∈ X. Consider F as the space of all complex-valued scalar

functions ψ : X → C. Consequently, Kt : F → F is defined as the Koopman operator which satisfies

(Ktψ)(·) = ψ ◦ Φ(t, ·).

Due to the linearity of the Koopman operator [52, 54], it can be characterized by its eigenvalues and

eigenfunctions. The eigenfunction of Kt can be defined as the function φ : X → C that satisfies Ktφ =

eλtφ, where λ ∈ C is the Koopman eigenvalue. Moreover, it can be shown that the Koopman eigenfunction

φ satisfies Lfφ = λφ [55], where Lf = f.∇ denotes the Lie derivative with respect to f and “·” denotes the

dot product. Consequently, the time-varying function Ψ̃(t, x) = Ktψ is the solution to ∂Ψ̃
∂t = Lf Ψ̃, where

Ψ̃(0, x) = ψ(x0).

It should be noted that the Koopman operator is infinite dimensional. Moreover, if φ1 and φ2 are eigen-

functions of the Koopman operator with their corresponding eigenvalues λ1 and λ2, respectively, it follows

that φq1φ
l
2 is an eigenfunction with the eigenvalue qλ1 + lλ2, for any q, l ∈ N. In addition to the point

spectrum, the Koopman operator could possess both residual and continuous parts of the spectrum [55,127].

However, this work is restricted to the point spectra of the Koopman operator.

Consider φi as an eigenfunction of Kt with λi as its eigenvalue. Consequently, the vector-valued ob-

servable r(x) ∈ Fp, where p ∈ N, can be represented in the following form:

r(x) =
∞∑
i=1

φi(x)vri , (99)

where vri ∈ Rp, for i = 1, 2, . . . are the Koopman modes corresponding to r(x) [54, 55]. It should be noted

that the Koopman eigenfunctions and eigenvalues depend on the dynamics of the system (98) and the space

F . However, the Koopman modes vri are specific to the observable r(x).

5.1.5 Nonlinear CPS Model in the Koopman Canonical Form

Consider the following control affine nonlinear system

ẋ = f(x) +
m∑
j=1

gj(x)uj , y = h(x), (100)
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where x ∈ X ⊂ Rd is the state, uj ∈ R, for j = 1, 2, . . . ,m, is the control input, gj : X→ Rd is the control

nonlinear coupling term, and h : X→ Rp denotes the nonlinear output function.

The following assumption holds throughout the chapter.

Assumption 5.1 ( [55]). There exists a finite subset of Koopman eigenfunctions φi(x), for i = 1, 2, . . . , n

and n > d, such that

x =

n∑
i=1

φi(x)vxi , h(x) =

n∑
i=1

φi(x)vhi , (101)

where vxi ∈ Cd and vhi ∈ Cp.

Remark 5.1. If Assumption 5.1 holds, the state x and h(x) can be represented by a finite subset of Koopman

eigenfunctions. However, if x =
∑∞

i=1 φi(x)vxi and h(x) =
∑∞

i=1 φi(x)vhi , adopting a finite number of

Koopman eigenfunctions results in a truncation error in approximating x and h(x). The truncation error can

be made arbitrarily small by choosing a greater number of Koopman eigenfunctions. Further discussions

on the case where one requires an infinite number of Koopman eigenfunctions in Assumption 5.1 can be

found in [55].

In the following, equation (101) in the Assumption 5.1 is utilized to represent the Koopman Canoni-

cal Transform (KCT) and to express the nonlinear system (100) in terms of its Koopman eigenfunctions,

Koopman eigenvalues, and Koopman modes.

If φi(x) is a complex-valued Koopman eigenfunction, i.e., φi(x) : X → C, we choose φi+1(x) as

its complex conjugate. Hence, in Assumption 5.1, one has 2nc complex-valued Koopman eigenfunctions,

where nc is the number of distinct complex conjugate pairs (φi(x), φi+1(x)). Without loss of generality,

suppose in Assumption 5.1 the first nr Koopman eigenfunctions are real-valued, i.e., φi(x) : X → R for

i = 1, . . . , nr, and the 2nc remaining eigenfunctions are complex-valued such that n = nr + 2nc. Consider

the following change of coordinates [55]:

z(t) =


z1(t)

...

zn(t)

 = T (x(t)), (102)

where T (x) = [φ̂1(x), . . . , φ̂n(x)]>, φ̂ir(x) = φir(x) for ir = 1, . . . , nr, and [φ̂nr+2ic−1(x), φ̂nr+2ic(x)]> =
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[2Re(φnr+2ic−1(x)),−2Im(φnr+2ic(x))]> for ic = 1, . . . , nc. Moreover, Re(·) and Im(·) denote the real and

imaginary parts of a complex number, respectively.

The Lie derivative of T (x) yields

LfT (x) = ΛT (x), (103)

where Λ ∈ Rn×n is a block diagonal matrix such that its ir-th diagonal entry is Λir,ir = λir for ir = 1, . . . , nr,

and Λ has a block diagonal entry in the following form

 Λî,̂i Λî,̂i+1

Λî+1,̂i Λî+1,̂i+1

 = |λ|

 cos(argλî) sin(argλî)

− sin(argλî) cos(argλî)

 ,
for î = nr + 2ic − 1 and ic = 1, . . . , nc, where argλî denotes the argument of λî.

Consequently, through the change of coordinate (102), equation (100) is transformed into its Koopman

canonical form (KCF) as follows:



ż = Λz +

m∑
j=1

g̃j(z)uj ,

y = Chz,

x = Cxz,

(104)

where Cx = [ṽx1 · · · ṽxn], Ch = [ṽh1 · · · ṽhn], and g̃j(z) = LgjT (x)|x=Cxz . Moreover, ṽhir = vhir for ir =

1, . . . , nr, and [ṽh
î
, ṽh

î+1
] = [Re(vh

î
), Im(vh

î
)] for î = nr + 2ic − 1 and ic = 1, . . . , nc. Also, Cx has a

similar structure as Ch.

5.1.6 Model of the Control Affine Nonlinear CPS Under Cyber-Attacks

In this chapter, we consider CPS under actuator and sensor cyber-attacks as depicted in Figure 5.1. The

nonlinear CPS (100) under cyber-attacks can be expressed in the following form:


ẋ∗ = f(x∗) +

m∑
j=1

gj(x
∗)(uj + aju),

y∗ = h(x∗) + ay,

(105)
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Figure 5.1: The CPS framework under cyber-attacks.

where x∗ ∈ X is the state of the CPS in the presence of cyber-attacks, y∗ ∈ Rp is the manipulated sensor

measurements by adversaries, aju ∈ R is the actuator cyber-attack on the j-th input, and ay ∈ Rp is the

sensor cyber-attack signal. Under the attack free conditions, i.e., au = 0 and ay = 0, one has x∗(t) = x(t),

∀t ≥ 0. Consequently, the Koopman canonical form (104) of the CPS in presence of the actuator and sensor

cyber-attacks is given by


ż∗ = Λz∗ +

m∑
j=1

g̃j(z
∗)(uj + aju),

y∗ = Chz∗ + ay,

(106)

where x∗ = Cxz∗.
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5.1.7 Objectives

We have five objectives in this chapter. Our first objective is to develop and study conditions under

which adversaries cannot perform zero dynamics attacks, covert attacks, and controllable attacks that are

provided in Definition 5.1. The latter is achieved by studying conditions under which the largest weakly

unobservable and the largest controllable weakly unobservable subspace of the linear CPS are zero. As for

our second objective, we formally define a security measure that determines the minimum number of input

and output communication channels that should be secured in order to prevent adversaries from performing

certain cyber-attacks that are provided in Definitions 5.1 and 5.2. Moreover, the proposed security measure

is studied from a geometric control perspective. Our third objective is to formally define a measure of

stealthiness for cyber-attacks in the nonlinear control affine CPS (105). The stated measure which is defined

by means of the Koopman eigenfunctions and Koopman modes of the CPS can be used to categorize various

types of cyber-attacks based on their levels of detectability. The fourth objective is to utilize the Koopman

eigenfunctions, Koopman eigenvalues, and Koopman modes of the CPS (100) which are used in (104)

to define a relative degree for nonlinear systems. By using the defined relative degree and the normal form

representation of the CPS, one can discover its internal dynamics, i.e., the zero dynamics. Our fifth objective

is to utilize the KCF of the CPS which can be approximated by means of the EDMD algorithm to propose

strategies for executing zero dynamics and covert cyber-attacks in nonlinear CPS systems and to find sensor

measurements that should be secured to prevent adversaries from performing zero dynamics and covert

attacks.

5.2 Investigation of Weakly Unobservable and Controllable Subspaces for

Linear CPS

In case of the covert attacks, adversaries design their sensor attack signals such that they cancel out the

impact of actuator attacks from sensor readings [96]. Hence, the sensor attack signal is designed in the
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following from:

ẋa(t) =Axa(t) +Baau(t),

ya(t) =− Cxa(t), (107)

where xa(t) ∈ Rn and ay(t) = ya(t). One can augment the dynamics in (97) and (107) into the following

form:

˙̌x(t) =Ǎx̌(t) + B̌aau(t),

y(t) =Čx̌(t), (108)

where x̌(t) = [x(t)>, xa(t)
>]>, y(t) = Cx(t) + Daya(t), Ǎ = diag(A,A), B̌a = [B>a , B

>
a ]>, and

Č = [C, −DaC]. In terms of the main advantage of the augmented system (108), only the actuator attack

signal is an input to the system, and the sensor attack signal ay(t) is expressed by using the dynamics given

by (107). Let Y̌ (x̌(0), au(t)) represent the output of the augmented system (108) as a function of the initial

condition x̌(0) and the actuator attack signal au(t). In the following, it is shown how one can utilize the

augmented system (108) in order to study cyber-attacks on the CPS (97). In particular, it is shown that

covert attacks, controllable attacks, and zero dynamics attacks in CPS (97) can be equivalently studied in

the augmented system (108).

Theorem 5.1. In the augmented dynamics (108), one has Y̌ (x̌(0), au(t)) = 0 if and only if there exists a

sensor attack signal ay(t) ∈ Rp and x̌(0) = [x(0)>, x(0)>]> such that Y (x(0), au(t), ay(t)) = 0 holds

true, ∀t ≥ 0.

Proof. Necessary Condition: Suppose Y̌ (x̌(0), au(t)) = 0 holds and for any ay(t) ∈ Rp, one has

Y (x(0), au(t), ay(t)) 6= 0, where x̌(0) = [x(0)>, x(0)>]>. It follows from Y̌ (x̌(0), au(t)) = 0 that

y(t) = Cx(t) + Daya(t) = 0, ∀t ≥ 0. Since Y (x(0), au(t), ay(t)) 6= 0, from (97), one obtains y(t) =

Cx(t) +Daay(t) 6= 0. However, considering ay(t) = ya(t) results in having y(t) = Cx(t) +Daay(t) = 0,

which contradicts the assumption.

Moreover, suppose Y̌ (x̌(0), au(t)) = 0 and Y (x(0), au(t), ay(t)) = 0, where x̌(0) = [x(0)>, xa(0)>]>
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such that x(0) 6= xa(0). According to the definition of the augmented system (108), having Y̌ (x̌(0), au(t)) =

0 implies that one either has Cx(t) = −Daya(t) = DaCxa(t) for Cx(t) 6= 0 or in the other case,

Cx(t) = 0 and Daya(t) = DaCxa(t) = 0. Since in both (107) and (108) the input is au(t), one should have

x(0) = xa(0) for either case of Cx(t) = DaCxa(t) 6= 0 or Cx(t) = 0 and DaCxa(t) = 0 to hold, which

contradicts the assumption.

Sufficient Condition: Assume that there exists a sensor attack signal ay(t) ∈ Rp such that Y (x(0), au(t),

ay(t)) = 0 and x̌(0) = [x(0)>, x(0)>]>. Moreover, due to the linearity of (108), one obtains

Y̌ (x̌(0), au(t)) = Y (x(0), au(t), 0)−DaY (x(0), au(t), 0). (109)

If a(t) = [au(t)>, ay(t)>]> is either a zero dynamics attack or a controllable attack, as per Def-

inition 5.1, one has ay(t) = 0 and Y (x(0), au(t), 0) = 0. Consequently, it follows from (109) that

Y̌ (x̌(0), au(t)) = 0, ∀t ≥ 0. Also, if a(t) = [au(t)>, ay(t)>]> is a covert attack, according to Definition 5.1,

Y (0, au(t), ay(t)) = 0 holds. Consequently, due to the definition of (107), one obtains ay(t) = ya(t) and

y(t) = Cx(t) +Daya(t) = 0, ∀t ≥ 0. This completes the proof of the theorem.

Remark 5.2. As the main implication of the Theorem 5.1, a(t) = [au(t)>, ay(t)
>]> in the CPS (97) results

in Y (x(0), au(t), ay(t)) = 0 if and only if Y̌ (x̌(0), au(t)) = 0, where x̌(0) = [x(0)>, x(0)>]>. Hence, if

no zero dynamics attacks, covert attacks, and controllable attacks can be executed in the augmented system

(108), the above cyber-attacks cannot be performed on the CPS (97) as well.

5.2.1 Cyber-Attacks and the Weakly Unobservable Subspace

Considering Theorem 5.1 and Remark 5.2, in order to study zero dynamics attacks, covert attacks, and

controllable attacks in the CPS (97), one can study these cyber-attacks in the augmented system (108).

Hence, in the following, we study and derive conditions under which zero dynamics attacks, covert attacks,

and controllable attacks cannot be performed in (108) from a geometric control theory perspective.

Definition 5.3 (Weakly Unobservable Subspace). Consider the triple (Č, Ǎ, B̌a) in (108). A point x̌(0) ∈

R2n is defined as weakly unobservable if there exists au(t) 6= 0 such that the output satisfies y(t) = 0,

∀ t ≥ 0. The set of all weakly unobservable points is called weakly unobservable subspace and is denoted
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by V . Moreover, the largest weakly unobservable subspace is denoted by V ∗.

Given the Definition 5.3, and considering the results in [126, Theorem 1] and [124, Lemma 7], if V ∗ =

0, no zero dynamics attacks, covert attacks, and controllable attacks can be executed in the augmented

system (108). In the following, conditions under which V ∗ = 0 are studied and proposed.

Definition 5.4 ( [128]). Consider X ⊆ Rn and Z ⊆ Rp as finite-dimensional inner product vector spaces

and the matrix Q ∈ Rp×n. One has

(1) Z = QX := {z : z = Qx, x ∈ X}.

(2) X = Q−1Z := {x : z = Qx, z ∈ Z}.

Theorem 5.2. Let Im(B̌a) 6= 0. In the augmented system (108), one has V ∗ = 0 if for any S ⊆ Ker(Č),

one has ǍKer(Č) ∩ (S + Im(B̌a)) = 0.

Proof. As described in [128, Algorithm 4.1.2] and [98], the largest weakly unobservable subspace of the

system (108) can be computed in 2n steps by using the following algorithm:

V0 =Ker(Č),

Vk =V0 ∩ Ǎ−1(Vk−1 + Im(B̌a)). (110)

Since for any S ⊆ Ker(Č), one has ǍKer(Č) ∩ (S + Im(B̌a)) = 0, any g ∈ Ker(Č) results in

having Ǎg = z /∈ S + Im(B̌a). Hence, we have Ǎ−1(S + Im(B̌a)) ∩ Ker(Č) = 0, since otherwise,

as per Definition 5.4, there exists g ∈ Ker(Č) such that Ǎg = z ∈ S + Im(B̌a), which contradicts

having ǍKer(Č) ∩ (S + Im(B̌a)) = 0. Consequently, according to (110), V ∗ = V2n = 0 since for any

V2n−1 ⊆ ker(Č), we have V0 ∩ Ǎ−1(V2n−1 + Im(B̌a)) = 0. This completes the proof of the theorem.

5.2.2 Perfectly Undetectable Cyber-Attacks and the Controllable Weakly Unobservable Sub-

space

In this subsection, conditions under which in the augmented system (108) perfectly undetectable cyber-

attacks, i.e., covert and controllable attacks, cannot be performed are investigated. However, one needs to

first study the following definitions.
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Definition 5.5 (Strongly Reachable Subspace [98]). The subspace W ⊆ R2n is the strongly reachable sub-

space of the triple (Č, Ǎ, B̌a) in (108) if V = W ⊥ is the weakly unobservable subspace of (B̌>a , Ǎ
>, Č>).

Moreover, W ∗ denotes the smallest strongly reachable subspace.

Definition 5.6 (Controllable Weakly Unobservable [98]). The subspace R ⊆ V ∗ is designated as the

controllable weakly unobservable subspace of the triple (Č, Ǎ, B̌a) if one has R ⊆ W ∗. Moreover, R∗ =

V ∗ ∩W ∗ denotes the largest controllable weakly unobservable subspace.

Definition 5.7 (Left-Invertibility [98]). Let x̌(0) = 0. The augmented system (Č, Ǎ, B̌a) in (108) is left-

invertible if for any y(t) = 0 one has au(t) = 0, ∀t ≥ 0.

Lemma 5.1 ( [98]). Let Σ̌ = (Č, Ǎ, B̌a) denote the system in (108). The following statements are equiva-

lent:

(1) The system Σ̌ is left-invertible.

(2) R∗ = 0 and B̌a is injective.

(3) V̌ ∗ ∩ Im(B̌a) = 0 and B̌a is injective.

As shown in [125, Theorem 1], covert attacks and controllable attacks are related to the controllable

weakly unobservable subspace of the system (Č, Ǎ, B̌a), i.e., the subspace R∗. Hence, since B̌a is an

injective map by definition, from Lemma 5.1 it follows that adversaries are capable of executing perfectly

undetectable cyber-attacks if and only if for the triple (Č, Ǎ, B̌a) one has R∗ 6= 0, or equivalently, the triple

(Č, Ǎ, B̌a) is not left-invertible.

Theorem 5.3. The system Σ̌ = (Č, Ǎ, B̌a) in (108) is left-invertible if for any S ⊆ Ker(Č), one has

Ǎ(Im(B̌a) ∩ Ker(Č)) ∩ (S + Im(B̌a)) = 0.

Proof. Considering Lemma 5.1 and since Ba has full column rank by definition, one needs to show that

having Ǎ(Im(B̌a) ∩ Ker(Č)) ∩ (S + Im(B̌a)) = 0 for every S ⊆ Ker(Č) results in V ∗ ∩ Im(B̌a) = 0.

Having Ǎ(Im(B̌a) ∩ Ker(Č)) ∩ (S + Im(B̌a)) = 0 implies that for any g ∈ Im(B̌a) ∩ Ker(Č), one has

Ǎg /∈ S+ Im(B̌a). Hence, for any S ⊆ Ker(Č), we have Im(B̌a)∩Ker(Č)∩ Ǎ−1(S+ Im(B̌a)) = 0. Since
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for V2n−1 ⊆ ker(Č), we have V0 ∩ Im(B̌a) ∩ Ǎ−1(V2n−1 + Im(B̌a)) = 0, one obtains

V2n ∩ Im(B̌a) =V0 ∩ Im(B̌a) ∩ Ǎ−1(V2n−1 + Im(B̌a)) = 0.

This completes the proof of the theorem.

5.3 Security Effort for Linear CPS

In this section, the security effort (SE) is formally defined as a measure that shows the minimum number

of input and output communication channels that should be secured by CPS operators and should be kept

attack free to prevent adversaries from executing cyber-attacks that are provided in Definitions 5.1 and

5.2. Specifically, it is shown how one can study the SE for a given CPS from a geometric control theory

perspective.

5.3.1 Definition of the Security Effort (SE)

The SE is defined as the solution to the following optimization problem:

SEΣ := min
au(·),ay(·)

m− ‖au(t)‖0 + p− ‖ay(t)‖0

s.t. ẋ(t) =Ax(t) +Bau(t),

y(t) =Cx(t) + ay(t),

y(t) 6=0, x(0) ∈ Rn,

a(t) 6=0,

(111)

where a(t) = [au(t)>, ay(t)>]>.

If conditions in (111) are satisfied, adversaries cannot design a cyber-attack signal a(t) that results in

Y (x(0), au(t), ay(t)) = 0, ∀t ≥ 0. In other words, in problem (111), SEΣ denotes the minimum number of

actuators and sensors that should be secured so that the weakly unobservable subspace of the CPS in (97) is

empty, and consequently, no zero dynamics attacks, covert attacks, and controllable attacks can be initiated

and executed.
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Considering that in order to perform zero dynamics cyber-attacks and perfectly undetectable cyber-

attacks, i.e., covert attacks and controllable attacks, adversaries need to have access to at least one input

communication channel and actuator, one has 0 < SEΣ ≤ m. This implies that in the worst-case scenario,

the CPS operators need to secure all the input communication channels to prevent zero dynamics attacks

and perfectly undetectable cyber-attacks. However, similar to the problem of computing the security index

in [21], computing SEΣ is an NP-hard problem, which makes it computationally intensive to solve.

It follows from Theorem 5.1 and Definition 5.3 that if the weakly unobservable subspace of the aug-

mented system (108) is zero, i.e., V ∗ = 0, no zero dynamics attacks, covert attacks, and controllable attacks

can be executed in both the CPS (97) and the augmented system (108). Consequently, according to Theo-

rem 5.2, V ∗ = 0 if for any S ⊆ Ker(Č), one has ǍKer(Č) ∩ (S + Im(B̌a)) = 0.

Consequently, an upper bound for the SE in problem (111) can be given in the following form:

S̄EΣ := min
rank(Ba), rank(Da)

m− rank(Ba) + p− rank(Da)

s.t. ǍKer(Č)∩(Ker(Č) + Im(B̌a)) = 0.

(112)

Consequently, in Algorithm 2, a pseudo code for finding an upper bound on SEΣ is proposed. Let

S = {u1, . . . , um, y1, . . . , yp} denote the set of all actuators and sensors of the CPS as described in Sec-

tion 5.1.2. In Algorithm 2, by utilizing the binary representation of the elements of S, its power set is

created. Consequently, the sufficient condition ǍKer(Č) ∩ (Ker(Č) + Im(B̌a)) = 0 is considered for each

subset of the power set to check if V ∗ = 0 is satisfied and to compute S̄EΣ as an upper bound for the SE,

i.e., SEΣ ≤ S̄EΣ. Moreover, one of the outputs of Algorithm 2 is the set S̄min which contains the actua-

tors and sensors that should be secured to prevent adversaries from performing zero dynamics and perfectly

undetectable cyber-attacks in the CPS, where |Ŝmin| = S̄EΣ.

5.3.2 Security Effort (SE) for Perfectly Undetectable Cyber-Attacks

The specified SE in optimization problems (111) and (112) are defined to prevent all zero dynamics

attacks, covert attacks, and controllable attacks that belong to the weakly unobservable subspace of the

CPS. However, as per Definition 5.1, in contrast to zero dynamics attacks, the execution of covert attacks

and controllable attacks does not depend on the initial conditions x(0) of the CPS. Moreover, according
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Algorithm 2 Pseudo code to find an upper bound for SEΣ

Input: Ǎ = diag(A,A), B̌a = [B>a , B
>
a ]>, and Č = [C, −DaC], S = {u1, . . . , um, y1, . . . , yp}

Output: S̄EΣ, S̄min

1: Initialize S̄Es = m+ p
2: Set l = |S|, where | · | denotes the cardinality of a set
3: for i = 1 : 2l − 1 do
4: Create the empty set Ŝ = {}
5: for j = 1 : l do
6: if the j-th bit of the binary representation of i is equal to 1 then
7: Add j-th member of S to Ŝ
8: end if
9: end for

10: Secure only actuators and sensors that belong to the set Ŝ, update B̌a and Č accordingly, and set
Q = ker(Č)

11: if ǍQ∩ (ker(Č) + Im(B̌a)) = 0 and |Ŝ| ≤ S̄Es then
12: S̄Es = |Ŝ|
13: Ŝ∗ = Ŝ
14: end if
15: end for
16: S̄EΣ = min{S̄Es,m} and S̄min = Ŝ∗

to Definition 5.2, covert attacks and controllable attacks are perfectly undetectable cyber-attacks. Hence,

one may only be interested in preventing perfectly undetectable cyber-attacks in the CPS (97). Thus, in the

following, SE for perfectly undetectable cyber-attacks is formally defined and investigated.

The SE for perfectly undetectable cyber-attacks in the CPS can be expressed as

ŜEΣ := min
au(·),ay(·)

m− ‖au(t)‖0 + p− ‖ay(t)‖0

s.t. ẋ(t) =Ax(t) +Bau(t),

y(t) =Cx(t) + ay(t),

y(t) 6=0, x(0) = 0,

a(t) 6=0,

(113)

The only difference between SEΣ in (111) and ŜEΣ in (113) is that in (113) one has x(0) = 0, which

implies that zero dynamics attacks are excluded in computing the ŜEΣ. Furthermore, given that R∗ ⊆ V ∗,

one has ŜEΣ ≤ SEΣ. Moreover, according to Theorem 5.1, if conditions in (113) hold, no covert attacks
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and controllable attacks can be executed in the CPS (97) and the augmented system (108). Also, as per

Definition 5.7, the augmented system (108) is left-invertible. Hence, it can be inferred that the optimization

problem (113) determines the minimum number of input and output communication channels that should be

secured to make the CPS (97) left-invertible. Similar to the case of SEΣ in (111), (113) is also an NP-hard

problem to be solved.

In order to compute the upper bound of the SE for perfectly undetectable cyber-attacks, which is des-

ignated as ˆ̄SEΣ, results in Theorem 5.3 are utilized. It follows from Theorem 5.3 that Σ̌ = (Č, Ǎ, B̌a) is

left-invertible if for any S ⊆ Ker(Č), one has Ǎ(Im(B̌a) ∩ Ker(Č)) ∩ (S + Im(B̌a)) = 0. Hence, the

problem of computing ˆ̄SEΣ can be rewritten in the following form:

ˆ̄SEΣ := min
rank(Ba), rank(Da)

m− rank(Ba) + p− rank(Da)

s.t. Ǎ(Im(B̌a) ∩ Ker(Č)) ∩ (Ker(Č) + Im(B̌a)) = 0.

(114)

Therefore, one can modify Algorithm 2 to determine an upper bound for ŜEΣ, i.e., ˆ̄SEΣ. In order to

compute ˆ̄SEΣ, one needs to set Q = Im(B̌a) ∩Ker(Č) in steps 10 of Algorithm 2. Moreover, the output of

the algorithm is ˆ̄SEΣ = min{S̄Es,m}.

5.4 ε-Stealthy Cyber-Attacks in the Sense of Koopman Operator for Non-

linear CPS

The main focus of this section is to propose a data-driven method for implementation of two types of

stealthy cyber-attacks, namely the zero dynamics and covert cyber-attacks, for the nonlinear CPS (105).

Thus, similar to the case of linear CPS [2, 17], one needs to formally define ε-stealthy cyber-attacks for the

nonlinear CPS.

Under Assumption 5.1, equations (100) and (104) yield

y(t) = h(x(t)) =

n∑
i=1

φ̂i(x(t))ṽhi . (115)
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Moreover, in presence of cyber-attacks, from equations (105) and (106) it follows that:

y∗(t) =
n∑
i=1

φ̂i(x
∗(t))ṽhi + ay. (116)

The following assumption holds throughout the chapter.

Assumption 5.2. The difference between the outputs in equations (115) and (116) is bounded such that

‖y(t)− y∗(t)‖ ≤ c, where c > 0.

Remark 5.3. As per Assumption 5.2, in stealthy cyber-attacks, adversaries are assumed to design their

attack signals such that y(t)− y∗(t) remains bounded.

Definition 5.8 (ε-Stealthy Cyber-Attacks). Under the Assumptions 5.1 and 5.2, a cyber-attack on the CPS

(105) is ε-stealthy if

‖
n∑
i=1

(φ̂i(x(t))− φ̂i(x∗(t)))ṽhi − ay‖∞ ≤ ε, ∀t ≥ 0 (117)

where ‖ · ‖∞ denotes the infinity norm, i.e., supremum norm. Moreover, a cyber-attack is designated as

perfectly undetectable if it is 0-stealthy.

5.4.1 Zero Dynamics of the Nonlinear CPS in the Sense of the Koopman Operator

In this subsection, by means of the Koopman eigenfunctions, Koopman eigenvalues, and Koopman

modes, a relative degree is defined for the nonlinear CPS (100). Subsequently, internal dynamics, i.e., the

zero dynamics, of the CPS are characterized.

Definition 5.9 (Relative Degree [129]). Letm ≥ p. The system (100) has a vector relative degree {r1, . . . , rp}

at x = x0 if

(1) LgjLkfhq(x0) = 0, for j = 1, . . . ,m and k < rq − 1, where hq(x) is the q-th entry (or component)

of h(x), for q = 1, . . . , p, and
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(2) the following matrix has full row rank at x = x0:

M(x) =



Lg1L
r1−1
f h1(x) · · · LgmL

r1−1
f h1(x)

Lg1L
r2−1
f h2(x) · · · LgmL

r2−1
f h2(x)

· · · · · · · · ·

Lg1L
rp−1
f hp(x) · · · LgmL

rp−1
f hp(x)


.

Assumption 5.3 ( [129]). In the CPS (100), one has m ≥ p and the system has the vector relative degree

{r1, . . . , rp} at x = x0 as stated in Definition 5.9.

Lemma 5.2. For the CPS (100) and the transformed dynamics (104), one has LgjLifhq(x) = Chq Λig̃j(z),

for x = Cxz and any integer i ≥ 0, where Chq is the q-th row of Ch. Moreover, under Assumptions 5.1 and

5.3, the vector relative degree of the nonlinear CPS (100) in the sense of Definition 5.9 is equal to the vector

relative degree of the transformed system (104) at each point x0 = Cxz0.

Proof. The proof is omitted due to space limitations.

Remark 5.4. It follows from Lemma 5.2 that, at any point in the state-space, one can define the relative

degree for the nonlinear CPS (100) in terms of the spectral properties of the Koopman operator.

Remark 5.5. Considering that n > d, from Lemma 5.2 one can conclude that when compared to (100),

the Koopman canonical transformation in (102) has resulted in having n − d additional zero dynamics or,

equivalently, internal dynamics in the transformed system (104). Moreover, since Cx by definition is a

surjective map, but not an injective one, it can be inferred that the null space of Cx having a dimension of

n− d has contributed to having the additional internal dynamics.

Let us define u = [u1, . . . , um]> ∈ U ⊂ Rm, where U is the space of admissible control inputs. From

(115) it follows that the zero dynamics of the CPS (100) are excited if there exists a certain x0 6= 0 such that

u satisfies

[ṽh1 · · · ṽhn]


φ̂1(x(t))

...

φ̂n(x(t))

 = 0, ∀t ≥ 0. (118)
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However, it would be challenging to directly determine the pair (x0, u) from the Koopman eigenfunctions,

Koopman eigenvalues, and Koopman modes of the CPS in (104) to satisfy (118).

Consequently, in the following, the normal form (in the sense of [129]) for the CPS in its KCF (104)

is derived to study the zero dynamics of the system. Let Assumption 5.3 hold and r = r1 + · · · + rp. If

r < n, one can define ζqiq = Chq Λiq−1z, for every iq = 1, . . . , rq and q = 1, . . . , p. Moreover, we choose

ηiη = liη(z) ∈ R, for iη = 1, . . . , n− r. The function liη(z) should be chosen such that the Jacobian matrix

of the following map is nonsingular at z = z0:

U(z) = col(Ch1 z, . . . , C
h
1 Λr1z, . . . , ChpΛrp−1z, l1(z), . . . , ln−r(z)), (119)

where col(·) denotes the column vector.

Consequently, the dynamics of (104) under new coordinates can be expressed by

ζ̇q1 =ζq2 ,

. . . . . .

ζ̇qrq−1 =ζqrq ,

ζ̇qrq =aq(ζ, η) +
m∑
j=1

bqj(ζ, η)uj ,

η̇ =Q(ζ, η) + P (ζ, η)u,

(120)

for q = 1, . . . , p, where ζ = [ζ1
1 , . . . , ζ

1
r1 , . . . , ζ

p
rp ]
>, η = [η1, . . . , ηn−r]

>, y = [ζ1
1 , . . . , ζ

p
1 ]>, aq(ζ, η) =

Chq ΛrqU−1(η, ζ), bqj(ζ, η) = Chq Λrq−1g̃j(U
−1(ζ, η)), and Q(ζ, η) and P (ζ, η) depend on the choice of

liη(z).

Proposition 5.1. Let Assumptions 5.1 and 5.3 hold. For the CPS (100) and its KCF (104), one has y ≡ 0 if

z0 ∈
⋂rq−1
k=1 ker(Chq Λk) such that x0 = Cxz0 6= 0, for q = 1, . . . , p, and u = − [M̂(U−1(0, η))]†a(U−1(0,

129



η)), where

M̂(z) =



Ch1 Λr1−1g̃1(z) · · · Ch1 Λr1−1g̃m(z)

Ch2 Λr2−1g̃1(z) · · · Ch2 Λr2−1g̃m(z)

· · · · · · · · ·

ChpΛrp−1g̃1(z) · · · ChpΛrp−1g̃m(z)


, a(z) =



Ch1 Λr1z

Ch2 Λr2z

· · ·

ChpΛrpz


,

and [·]† denotes a pseudoinverse of the matrix.

Proof. The proof is omitted due to space limitations.

Remark 5.6. In view of the Proposition 5.1, the internal dynamics, i.e., the zero dynamics, of the CPS (100)

can be obtained and characterized by η̇ = Q(0, η) − P (0, η)[M̂(U−1 (0, η))]−1b(U−1(0, η)). Also, the

stated internal dynamics can be either stable or unstable.

5.4.2 Zero Dynamics Cyber-Attacks in the Nonlinear CPS

In light of the zero dynamics of the CPS (100) that is discussed in the previous subsection, we now

investigate a method that may be employed by adversaries to carry out a zero dynamics cyber-attack and

exploit this type of vulnerabilities in nonlinear CPS. It is assumed that the adversaries have two main ob-

jectives. The first objective is to maintain their cyber-attacks stealthy in the sense of Definition 5.8. Their

second objective is to cause the maximum possible damage to the CPS, which in the case of zero dynamics

cyber-attacks, it can be achieved if the internal dynamics of the CPS (provided in Remark 5.6) are unstable.

Since the superposition principle does not hold for nonlinear systems, adversaries need to consider the

impact of the control input of the CPS on the stealthiness of their cyber-attacks. Hence, in order to perform

the zero dynamics cyber-attacks in the CPS (105) and its KCF (106), adversaries may eliminate the impact

of the control input and design their actuator attack signals as follows

au = −u− [M̂(U−1(0, η))]−1b(U−1(0, η)), (121)

where au = [a1
u, . . . , a

m
u ]>. Moreover, if the initial conditions of the CPS satisfy the hypothesis of the

Proposition 5.1, one obtains y∗ = ay as the output of the CPS (105). Furthermore, in order to increase the
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stealthiness level of the cyber-attack in (121), i.e., to decrease ε in (117), adversaries can use the dynamics

of the KCF (104) and design their sensor attack signals in the following form:

˙̂z = Λẑ +
m∑
j=1

g̃j(ẑ)uj , ŷ = Chẑ, (122)

where ay = ŷ and ẑ ∈ Rn.

Remark 5.7. It should be noted that without performing the sensor cyber-attacks, i.e., ay = 0, since

φ̂i(x
∗(t))ṽhi = 0, the actuator cyber-attack (121) will be ε-stealthy in the sense of Definition 5.8, where

ε satisfies ‖
∑n

i=1 φ̂i(x(t))ṽhi ‖∞ ≤ ε, ∀t ≥ 0. Hence, as opposed to the zero dynamics cyber-attacks in

linear systems (see [24] for more details), in the case of zero dynamics cyber-attacks in nonlinear CPS,

adversaries should perform the sensor cyber-attack ay = ŷ to decrease ε.

If the initial condition in (122) is set to ẑ(0) = z(0), according to Definition 5.8, the zero dynamics

cyber-attack which is carried out by utilizing au in (121) and the ay given by (122) will be 0-stealthy, i.e.,

perfectly undetectable. Moreover, in terms of the stealthiness of the cyber-attack as per Definition 5.8, if

ẑ(0) 6= z(0), one obtains

‖
n∑
i=1

(φ̂i(x(t))− φ̂i(x̂(t)))ṽhi ‖∞ ≤ ε̂, ∀t ≥ 0 (123)

where x̂(t) = Cxẑ(t) and ε̂ > 0.

Remark 5.8. As a countermeasure against zero dynamic attacks, one may investigate adding sensors or

modifying y = h(x) such that internal dynamics of the CPS in its KCF (104) are stable. The latter can

be achieved by studying Koopman eigenfunctions, Koopman eigenvalues, and Koopman modes and the

transformation z(t) = T (x), however, it is not within the scope of this chapter and is not addressed here.

5.4.3 Covert Cyber-Attacks in the Nonlinear CPS

In the case of covert cyber-attacks for linear systems, adversaries compromise both input and output

communications of the CPS [2, 96]. Moreover, actuator cyber-attack signals can be designed arbitrarily,

whereas sensor cyber-attack signals are designed to eliminate the impact of actuator attacks from sensor

measurements.

131



In order to execute a covert cyber-attack in the CPS (100), adversaries can design the actuator cyber-

attack signal au to achieve their malicious goals and objectives. Consequently, the sensor cyber-attack signal

is designed as ay = −h(x∗) + ŷ, where ŷ is given by (122). Similar to the zero dynamics cyber-attacks,

covert cyber-attacks will be 0-stealthy if ẑ(0) = z(0), and as shown in (123), ε̂-stealthy, otherwise.

Remark 5.9. From the proposed zero dynamics cyber-attacks and covert cyber-attacks in Sections 5.4.2

and 5.4.3, respectively, it can be concluded that the zero dynamics cyber-attacks are a special case of covert

cyber-attacks. To be more precise, the proposed zero dynamics cyber-attack in Section 5.4.2 is a covert

cyber-attack in which actuator cyber-attack signals are designed according to the Proposition 5.1.

Corollary 5.1. Let the q-th sensor measurement of the CPS (100) be secured such that h−q(x) =
∑n

i=1 φ
q
i (x)

×vh−qi , where h−q(x) contains all the entries of h(x) except for the q-th one. If x 6=
∑n

i=1 φ
q
i (x)vxi , adver-

saries will not be able to perform zero dynamics and covert cyber-attacks in the CPS.

Proof. Since the q-th sensor is secured, one has x 6=
∑n

i=1 φ
q
i (x)vxi . Consequently, adversaries will not

be able to eavesdrop all the necessary sensor measurements to develop an accurate model of (122) for

performing stealthy cyber-attacks. It should be noted that the decrease in accuracy of the dynamics in (122)

results in a lower level of stealthiness, i.e., a greater ε in (117). This completes the proof of the corollary.

Remark 5.10. One can utilize Corollary 5.1 to study the importance of each sensor measurement in trans-

forming the CPS (100) into its KCF (104). The latter can be carried out by removing the q-th sensor

measurement and investigating whether h−q(x) =
∑n

i=1 φ
q
i (x)v

h−q
i satisfies x =

∑n
i=1 φ

q
i (x)vxi (refer to

the Assumption 5.1). Hence, if having the q-th sensor measurement is necessary for x =
∑n

i=1 φ
q
i (x)vxi to

hold, as a countermeasure to covert and zero dynamics cyber-attacks, one should protect the privacy of the

communication channels that correspond to the q-th sensor measurement.

5.5 Data-Driven Approximation of the Dynamics and Cyber-Attacks in the

Nonlinear CPS

As discussed in Sections 5.4.2 and 5.4.3, in the implementation of the proposed zero dynamics and covert

cyber-attacks, it is assumed that adversaries know the characteristic dynamics of the KCF of the CPS (104).
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However, this assumption may not be satisfied. Hence, in this section, a linear discrete-time approximation

of the KCF of the CPS in (104) is provided by utilizing the EDMD algorithm [56–58, 130]. Consequently,

the approximated data-driven representation of the KCF is used to implement the zero dynamics and covert

cyber-attacks.

We assume that the adversaries have access to the following snapshot data matrices:

X̃ = −[γ1, . . . , γk], Ỹ = [γ+
1 , . . . , γ

+
k ], Ũ = [u1, . . . ,uk],

where γi = [y>i,nd ū
>
i,nd−1 y

>
i,nd−1 · · · ū>i,0 y>i,0]>, γ+

i = [y>i,nd+1 ū
>
i,nd

y>i,nd · · · ū
>
i,1 y

>
i,1]>, ui = ūi,nd , and

yi,j is the vector of sensor measurements in the CPS (100) that have been resulted from the vector of control

inputs ūi,ĵ , for j = 0, . . . , nd + 1, and ĵ = 0, . . . , nd. Moreover, nd is the number of control inputs that are

captured over different time windows to construct the above snapshot data matrices.

Following [56], let

(Â, B̂) ∈ arg min
A,B
‖Ylift −AXlift −BŨ‖F,

where Xlift = [Ψ(γ1), . . . ,Ψ(γk)], Ylift = [Ψ(γ+
1 ), . . . ,Ψ(γ+

k )], and Ψ(x) = [ψ1(x), . . . , ψn(x)]> is a

given basis of the nonlinear lifting functions, and ‖ · ‖F denotes the Frobenius norm. Furthermore,

Ĉ ∈ arg min
C
‖Y − CXlift‖F,

where Y = [y1,nd , . . . , yk,nd ].

Consequently, adversaries can obtain a linear approximation of the dynamics in (122) as expressed below

ẑk+1 = Âẑk + B̂uk, ŷk = Ĉẑk, (124)

where ẑk ∈ Rn and uk is the sampled control input.

Hence, in the case of zero dynamics cyber-attacks, the actuator attack signal should be set to au
k = −uk+

ua
k, where the initial conditions of the CPS should satisfy the conditions in the Proposition 5.1. Moreover,

ua
k = b0σ

k 6= 0, where b0 ∈ Rm and σ ∈ R are the input-zero direction and the zero dynamics of the triple

(Ĉ, Â, B̂), respectively (see Chapter 1 in [97]). Also, since the proposed au
k excites the zero dynamics of a
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linear approximation of the CPS (104), i.e., au
k excites the zero dynamics of the triple (Ĉ, Â, B̂), the sensor

cyber-attack signal is designed as ay
k = −yk+ ŷk to increase the stealthiness level of the cyber-attack, where

yk is the sampled output measurement of the CPS. As for the case of covert cyber-attacks, the actuator attack

au
k can be any arbitrary signal and the sensor cyber-attack should be set to ay

k = −yk + ŷk.

5.6 Numerical Case Studies

5.6.1 Linear CPS: the Quadruple-Tank Process

In this case study, we compute the SE by using (112) and (114) for a Quadruple-Tank Process (QTP)

with a non-minimum phase zero. The characteristic matrices of the QTP are expressed as follows [104]:

A =



−0.0158 0 0.0256 0

0 −0.0109 0 0.0178

0 0 −0.0256 0

0 0 0 −0.0178


,

B =



0.0482 0

0 0.0349

0 0.0775

0.0559 0


, C =

0.5 0 0 0

0. 0.5 0 0

 . (125)

The QTP in (125) is left-invertible, which as per Definition 5.7 it implies that no controllable attack can

be performed on it. However, it is vulnerable to zero dynamics attacks and covert attacks. In the case where

there exists no secure input and output communication channel, i.e., Ba = B and Da = Ip, the adversaries

can execute both zero dynamics attacks and covert attacks as shown in Figures 5.2 and 5.3, respectively.

If only one actuator is secured, the adversaries cannot execute zero dynamics attacks, but they are still

capable of performing covert attacks. Consequently, securing the first actuator and the first sensor will result

in V ∗ = 0. Hence, the SE for the QTP is SEΣ = 2.

In order to prevent perfectly undetectable cyber-attacks, i.e., covert attacks and controllable attacks, one

needs to compute ŜEΣ given by (114). Consequently, ŜEΣ = 2 and securing the first actuator and the first
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Figure 5.2: The QTP under zero dynamics attacks where the states become unbounded while the outputs
show an attack-free behavior.

sensor results in having Im(B̌a) ∩ V ∗ = 0. Thus, having one secure input and one secure output commu-

nication channel prevents adversaries from executing perfectly undetectable cyber-attacks in the QTP. As

seen from Figure 5.4, once the first actuator and the first sensor are secured, the adversaries cannot perform

covert attacks.

As it was mentioned earlier, adversaries need to compromise both input channels to perform zero dy-

namics attacks in the QTP. Moreover, as for the case of covert attacks, adversaries need to have access to

at least 2 input and 1 output communication channels. Hence, if one considers both zero dynamics and

perfectly undetectable cyber-attacks, the security index for the QTP is equal to 2. However, the system

operators need to secure 1 input and 1 output communication channel to prevent both zero dynamics and
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Figure 5.3: The QTP under covert attacks where the states become unbounded while the outputs show a
normal attack-free behavior.

perfectly undetectable cyber-attacks in the QTP, i.e., SEΣ = 2. Moreover, the security index for only per-

fectly undetectable cyber-attacks is equal to 3 and the system operators can prevent them by securing 1 input

and 1 output communication channel, i.e., ŜEΣ = 2. Hence, in this case study, we have SEΣ = ŜEΣ while

the security index for undetectable cyber-attacks is 2 and that for perfectly undetectable cyber-attacks is 3.
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Figure 5.4: Preventing adversaries from executing a covert attack in the QTP by securing the first input and
the first output communication channel given that the first output remains unbounded and detectable.

5.6.2 Stealthy Cyber-Attacks in Nonlinear CPS

In this case study, the effectiveness of our proposed methodologies and results in Sections 5.4 and 5.5

are illustrated. We consider the following nonlinear control affine system [54, 55]:

ẋ =

 0.3x1

0.2(x2 − x2
1)

+

 1

x2
1

u1 +

0

1

u2

y =h(x) = x2
1 + x2,

(126)
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where x = [x1, x2]>. Similar to [55], we consider the following KCT (102):

z(t) =


z1

z2

z3

 =


φ1

φ2

φ3

 = T (x),

where φ1 = x1, φ2 = x2 + 0.5x2
1, and φ3 = x2

1. Consequently, the KCF characteristic matrices in (104) are

Λ =diag(0.3, 0.2, 0.6), Cx =

1 0 0

0 1 −0.5

 ,
Ch =

[
0 1 0.5

]
, g̃1(z) =

[
1 z1 + z3 2z1

]>
,

g̃2(z) =

[
0 1 0

]>
.

States of the system (126) and its nominal output y(t) along with the output of the KCF with the control

input u1 = − 0.5x1 and u2 = −2x2 are depicted in Figure 5.5.

Since Chg̃1(z) = 2z1 + z3 and Chg̃2(z) = 1, it follows from Lemma 5.2 that at any point in the state-

space the relative degree of the system (126) is equal to 1. Moreover, according to (119) and (120), we

define

U(z) =


0 1 0.5

1 0 0

0 0 1

 z,

where ζ1 = Chz, η1 = z1, and η2 = z3. Moreover, (126) in its normal form can be expressed by

ζ̇1 =0.2ζ1 + 0.2η2 + (2η1 + η2)u1 + u2,

η̇1 =0.3η1 + u1,

η̇2 =0.6η2 + 2η1u1,

y =ζ1.

Consequently, as per Proposition 5.1, if z(0) ∈ ker(Ch), the control input u1 = 0 and u2 = −0.2η2
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Figure 5.5: Response of the original system and its KCF.

results in y ≡ 0. Moreover, it can be easily seen that the internal dynamics of (126), given by η̇1 = 0.3η1

and η̇2 = 0.6η2, are unstable. If z1(0) = 1, from the definition of φ3 one obtains z3(0) = 1, therefore,

z2(0) = −0.5 satisfies the condition z(0) ∈ ker(Ch). Moreover, from x = Cxz we derive x(0) = [1, −1]>.

Under initial condition z(0) = [1, −0.5, 1]>, a zero dynamics attack is performed on the system (126),

where the nominal control input is u = [−0.5x1, −2x2]>. The manipulated output of the system, i.e.,

y∗ = h(x∗) + ay, and the actual output without the sensor attack, i.e., y∗ = h(x∗), are shown in Figure 5.6,

where ay is designed based on (122). As it can be seen in Figure 5.6, the actual output of the system without

sensor attacks is equal to zero while the the system is internally unstable and |x2| is increased over time.

Also, in Figure 5.6, the received output measurements of the system which are manipulated by the adversary,

i.e., y∗ = h(x∗) + ay, show the nominal attack free behavior of the system similar to Figure 5.5.

Moreover, the case of covert attack is shown in Figure 5.7, where the adversary’s objectives are to make

the system unstable and to maintain the attack stealthy. It can be observed from Figure 5.7 that as the result

of the covert attack, the actual output of the system without sensor attacks, i.e., y∗ = h(x∗), is increased
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Figure 5.6: System under zero dynamics attacks.

over time which, in theory, can lead to an unbounded output measurement while the manipulated output is

similar to the case of attack free system in Figure 5.5, i.e., the nominal output y. Hence, both objectives of

the adversary in the performed covert attack in Figure 5.7 are achieved.

5.7 Conclusion

In this chapter, stealthy cyber-attacks in linear and nonlinear cyber-physical systems (CPS) were studied.

The notion of security effort (SE) is developed and formally specified as a security measure for linear

CPS. The SE metric denotes the minimum number of input and output communication channels that should

be secured to prevent adversaries from executing zero dynamics attacks, covert attacks, and controllable

attacks. Moreover, it is shown that SE can be specified to prevent only perfectly undetectable cyber-attacks

in the CPS, namely covert attacks and controllable attacks. Since zero dynamics attacks, covert attacks, and
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controllable attacks belong to the weakly unobservable and controllable weakly unobservable subspaces of

the CPS, conditions for making these subspaces equal to zero are developed and investigated. Hence, the

conditions that are developed to make weakly unobservable and controllable weakly unobservable subspaces

equal to zero are utilized to compute SE. As for nonlinear CPS, by utilizing the Koopman operator theory,

data-driven stealthy cyber-attacks for a class of nonlinear CPS have been studied. The notion of ε-stealthy

cyber-attacks for nonlinear CPS was defined which can be used as a measure of detectability for these

systems. Moreover, the Koopman canonical form of the nonlinear control affine CPS was utilized to define

relative degree for a given system using its Koopman eigenfunctions, Koopman eigenvalues, and Koopman

modes. Consequently, a methodology was proposed to discover internal dynamics, i.e., the zero dynamics,

of the nonlinear CPS. Furthermore, strategies for executing zero dynamics and covert cyber-attacks were

proposed. Moreover, conditions for finding sensor measurements that should be secured to prevent prevent

zero dynamics and covert cyber-attacks in nonlinear CPS were studied.
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Chapter 6

On Cyber-Attacks in Multi-Agent Systems

In this chapter, four main problems for multi-agent systems (MAS) are investigated and addressed,

namely the privacy preserving consensus control, executing controllability cyber-attacks in the MAS, per-

forming undetectable cyber-attacks in MAS, and developing cyber-attack detection methodologies for these

systems. The MAS require sharing their information with their neighboring agents to reach a consensus in

a distributed manner. In this chapter, a transformation-based consensus control methodology is developed

and implemented that can be utilized to reach a consensus among agents in a distributed manner without

revealing their true information to their neighboring agents. The proposed methodology protects agents’

privacy against eavesdropper adversaries and malicious agents capable of intercepting and accessing the

agents’ exchanged data. A unique isometric isomorphism is employed for each agent to map the true value

of exchanged sensor measurements and state estimates. By leveraging the property of isometric isomor-

phism in preserving norms, it is shown that reaching a consensus among agents is equivalent to that can be

accomplished by the transformed agents’ dynamics. Moreover, this chapter aims at investigating a novel

type of cyber-attacks that is injected to the MAS having an underlying directed graph. The cyber-attack,

which is designated as the controllability attack, is injected by the malicious adversary into the communi-

cation links among the agents. The adversary, leveraging the compromised communication links disguises

the cyber-attack signals and attempts to take control over the entire network of MAS. The adversary aims

at achieving this by directly attacking only a subset of the multi-agents. Conditions under which the mali-

cious hacker has control over the entire MAS network are provided. Two notions of security controllability
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indices are proposed and developed. These notions are utilized as metrics to evaluate the controllability that

each agent provides to the adversary for executing the malicious cyber-attack. Furthermore, the possibility

of introducing zero dynamics cyber-attacks on the MAS through compromising the communication links

is also investigated. Our next objective in this chapter is to study and develop conditions for a network of

MAS where a malicious adversary can utilize vulnerabilities in order to ensure and maintain cyber-attacks

undetectable. We classify these cyber-attacks as undetectable in the sense that their impact cannot be ob-

served in the generated residuals. It is shown if an agent that is the root of a rooted spanning tree in the MAS

graph is under a cyber-attack, the attack is undetectable by the entire network. Next we investigate if a non-

root agent is compromised, then under certain conditions cyber-attacks can become detectable. Moreover, a

novel cyber-attack that is designated as quasi-covert cyber-attack is introduced that can be used to eliminate

detectable impacts of cyber-attacks to the entire network and maintain these attacks as undetected. Finally,

an event-triggered based detector is proposed that can be used to detect the quasi-covert cyber-attacks. The

work in this chapter has partly appeared in [13, 131, 132].

The main contributions of this chapter are stated below.

(1) A unique isometric isomorphisms is developed and designed and used for each agent so that adver-

saries require discovering all the utilized isometric isomorphisms to disclose information of the entire

network.

(2) To preserve the privacy of agents when they are communicating with agents in their nearest neighbor-

hood, a distributed consensus control is proposed that requires the transformed output measurements

and dynamic controller states of the nearest neighboring agents to ensure reaching consensus.

(3) We introduce the notion of controllability attacks on communication channels of the MAS systems.

The importance of these attacks by studying and developing conditions that would provide the adver-

sary full control over the entire MAS system is developed and formalized.

(4) It is shown that the adversary is not capable of exciting zero dynamics of the directly attacked and

healthy agents simultaneously.

(5) A definition is introduced and proposed that specifies characteristics of undetectable cyber-attacks on

MAS. Then conditions on the graph topology and its Laplacian matrix along with detectors of MAS
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are developed so that an adversary is capable of performing undetectable cyber-attacks. Moreover,

if the above does not hold, we investigate under what conditions cyber-attacks are detectable on a

certain team of agents.

(6) Quasi-covert cyber-attacks are introduced where malicious hackers can inject in order to maintain

their attacks undetected provided only non-root agents are compromised.

(7) An event-triggered detector is proposed for quasi-covert cyber-attacks that given its event-based com-

munication strategy is more secure in comparison with conventional communication protocols.

The remainder of the chapter is organized as follows. In Section 6.1, the basic concepts in graph the-

ory that are required are presented and model of MAS systems along with certain assumptions and lemmas

are provided. Model of MAS systems where the communication channels are under attack as well as the

objectives of this chapter are introduced in Section 6.2. Our proposed privacy preserving consensus control

methodology for MAS is investigated in Section 6.3. In Section 6.4, necessary and sufficient conditions

for the adversary to gain full control over the MAS systems network are formulated and presented. The

limitations on zero dynamics attacks that the adversary is capable of injecting by compromising the commu-

nication channels are investigated in Section 6.4.3. Undetectable cyber-attacks in MAS are formally defined

and introduced in Section 6.5. Moreover, an event-triggered cyber-attack detection methodology is devel-

oped and investigated in Section 6.6. Illustrative numerical case studies to demonstrate the capabilities of

our proposed methodologies are provided in Section 6.7.

6.1 Preliminaries

6.1.1 Graph Theory

A directed graph (digraph) G is defined with a set of vertices or nodes V = {1, 2, . . . , N} and the set

E ⊂ V ×V that denotes the edges of the digraph. The pair of distinct vertices G : (i, j) ∈ E defines an edge.

Graph G is called directed if (i, j) ∈ E does not imply (j, i) ∈ E . The matrix A = [aij ] ∈ RN×N denotes

the adjacency matrix of G, where aij = 1 when there exists a link from node j to i. The set Ni denotes

the set of neighbors of the node i which contains those nodes that have an edge to i. Moreover, |Ni| = di,
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where | · | is the cardinality of the set. The Laplacian matrix of the graph G is defined as L = D−A, where

D = diag(d1, d2, . . . , dN ) denotes the in-degree matrix. A directed path between nodes i and j, that is

denoted by Pij , is a sequence of edges that connects the node i to the node j and follows along the direction

of edges.

6.1.2 Model of MAS

We consider a group of N agents with the i-th agent dynamics, denoted by Σi, expressed by

Σi :


ẋi(t) = Axi(t) +Bui(t),

yi(t) = Cxi(t), i = 1, . . . , N,

(127)

where xi(t) ∈ Rn is the state of the i-th agent, ui(t) ∈ Rm denotes the control input of agent i, and

yi(t) ∈ Rp represents the sensor measurement of the i-th agent. The matrices (A, B, C) are of appropriate

dimensions and agents are assumed to be controllable and observable.

Definition 6.1. Consensus is achieved among agents in (127) if for any initial condition the following holds:

lim
t→∞
‖xi(t)− xj(t)‖ = 0,

for all i, j = 1, . . . , N , where ‖.‖ denotes the Euclidean norm.

Lemma 6.1 ( [93, 133]). If the digraph G contains a directed spanning tree, the algebraic multiplicity of

the eigenvalue λ0 = 0 of the Laplacian matrix L associated with the digraph is one. Moreover, 1N and

r = [r1, . . . , rN ]> ∈ RN are the right and left eigenvectors associated with λ0, respectively, where for

scalar ri, i = 1, . . . , N , one has
∑N

i=1 ri = 1.

Lemma 6.2 ( [134]). Given the matrices Q, W, M, and Z with appropriate dimensions, the Kronecker

product ⊗ satisfies the following conditions:

(i) (Q+W )⊗M = Q⊗M +W ⊗M ;

(ii) (Q⊗W )(M ⊗ Z) = (QM)⊗ (WZ).
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Lemma 6.3 ( [93,133]). The algebraic multiplicity of the eigenvalue λ0 = 0 of the Laplacian matrix L0 that

belongs to the graph G0 is one if G0 contains a directed spanning tree. Furthermore, the other eigenvalues

have positive real parts and the right and left eigenvectors associated with λ0 are denoted by 1N and

r0 = [r1, . . . , rN ]> ∈ RN , respectively, where
∑N

j=1 rj = 1 with scalar rj .

Assumption 6.1. The directed graph G contains at least one directed spanning tree. The set Vr = {ir, ir +

1, . . . , ir +Nr − 1} contains agents that constitute as roots of directed spanning trees in G and Nr denotes

the number of these agents.

6.2 Problem Statement

6.2.1 Privacy Preserving Control in MAS

Since we assume that states of the MAS (127) are not measurable, i.e., p < n, to reach a consensus

among agents, each agent requires an observer-based controller. The proposed observer-based consensus

protocols in the literature, such as in [64, 66, 135, 136] require agents to transmit their observer states and

output measurement information to their neighboring agents. Hence, each agent has access to its neighbors’

sensitive information, which can be considered as private information. Moreover, adversaries that are ca-

pable of reading the transmitted data among agents will have access to this sensitive information and can

exploit it for malicious purposes and cyber-attacks.

Models of Adversaries

In this work, we consider two types of adversaries, namely external eavesdroppers and internal honest-

but-curious agents in the MAS, where both have access to the parameters of A, B, and C. Eavesdropper

adversaries are capable of reading transmitted data among agents, but they cannot manipulate data or inject

malicious cyber-attack signals into the communication links among the agents.

A group of agents in the MAS is considered as honest-but-curious if they are legitimate participants of

the distributed consensus protocol and will not deviate from it, but attempt to learn all possible information

about the neighboring agents from the received data [70]. For instance, consider a group of self-driving

cars with vehicle-to-vehicle (V2V) communication capabilities which are on the route and need to reach an
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agreement on their speed according to speed limitations of that area and road conditions. In this scenario, an

honest-but-curious agent can discover location and the traveled route of other cars. Hence, an honest-but-

curious agent is considered as an adversary in the sense that it violates data privacy of other agents.

Privacy and Control Objectives

The objectives of this part of the chapter are twofold. Our control objective is to design a distributed

dynamic controller for MAS (127) that ensures reaching a consensus among the agents in sense of Definition

6.1. The second objective is to protect the privacy of agents by developing a transformation-based scheme

for MAS and the proposed dynamic controller that can be utilized to preserve the privacy of agents against

eavesdropper adversaries and honest-but-curious agents, while consensus is ensured. Preserving privacy of

agents is achieved if agents do not share the true values of observer state and output measurement with their

neighboring agents, and also the transformed dynamics are indistinguishable from the original ones.

6.2.2 Controllability Cyber-Attacks in MAS

To design a consensus control protocol for the MAS in (127), one needs to first estimate the states of the

system since only a few are assumed to be measurable. Consider the following observer-based consensus

protocol for the system (127) [64]:

˙̂xi(t) =Ax̂i(t) +Bui(t) +H
∑
j∈Ni

(ζy(t) + Cζx(t)),

ui(t) =Kx̂i(t),

(128)

where x̂i(t) ∈ Rn denotes the state of the observer for the i-th agent, ζy(t) = yj(t) − yi(t), ζx(t) =

x̂i(t) − x̂j(t), H ∈ Rn×p is a full column rank observer gain matrix, and K ∈ Rm×n is a control gain

matrix that should be designed.

Cyber-Attack on the Communication Links

As described in (128), the agent j ∈ Ni transmits its observer state x̂j(t) and output yj(t) to the agent i

as the pair pji(t) = (x̂j(t), yj(t)). Since this communication is carried out through a network link, it would

147



Agent jAgent i
ˆ( ( ), ( ))j jx t y t

Other Network Agents
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Figure 6.1: A communication link cyber-attack on the agent i. aji1 (t) designates the cyber-attack on the
transmitted states of the observer, and aji2 (t) designates the cyber-attack on the transmitted output measure-
ments.

be prone and vulnerable to cyber-attacks, as illustrated in Figure 6.1. The adversary disguises their injected

signals as legitimate information from the neighboring agents of their target such that the targeted agent i

only receives the cyber-attack signals. This cyber-attack can be considered as a man-in-the-middle type of

attack [137].

Consequently, the malicious attacker adds signals aji1 (t) = ajix̂ (t)− x̂j(t) and aji2 (t) = ajiy (t)− yj(t) to

pji(t) so that the agent i receives pa
ji(t) = (x̂j(t) + aji1 (t), yj(t) + aji2 (t)) = (ajix̂ (t), ajiy (t)) from the agent

j. Two cyber-attack signals ajix̂ (t) ∈ Rn and ajiy (t) ∈ Rp are unknown and are to be designed based on the

adversary’s intentions.

Assumption 6.2. The adversary is capable of executing the worst case scenario attack in which all the

incoming communication links of a given agent are under attack.

Remark 6.1. Since the MAS have limited power resources and to make their communications more efficient
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they use the same communication protocols and encryption/decryption algorithms on all their communi-

cation channels [138]. Hence, if an adversary discovers a vulnerability for one channel of an agent, it is

capable of attacking other channels as well.

Given the observer-based consensus protocol (128), the closed-loop equations of the system (127) and

observer (128) given the communication link cyber-attacks can be reformulated as follows:

ẋi(t) = Axi(t) +BKx̂i(t), (129)

˙̂xi(t) = Ax̂i(t) +BKx̂i(t) +H
∑

j∈Ni(ζy(t) + qia
ji
2 (t)

+C(ζx(t)− qiaji1 (t))), (130)

for i = 1, ..., N with qi = 1 if the communication links of the agent i are under attack, and qi = 0, otherwise.

Objectives in Designing Controllability Cyber-Attacks

The objectives of this topic are threefold. The first objective is to investigate conditions on the MAS and

its Laplacian matrix under which the adversary can gain full controllability over the system in (129). The

adversary attempts to directly attack a subset of MAS agents and control the remaining agents as followers

of the attacked agents. The second objective is to propose and investigate controllability measures that are

based on graph of the MAS which is not fully controllable by the adversary and can be employed to inject

attacks on agents that can be controlled through the directly attacked agents. And finally, the third objective

is to study the possibility of executing zero dynamics attacks in the MAS governed by (129).

6.2.3 Undetectable Cyber-Attacks in MAS

In [135], for MAS in the form of (127) an observer-based consensus protocol was proposed as follows:

˙̂xi(t) =Ax̂i(t) +Bui(t)− cFζi(t),

ui(t) =cKεi(t),

(131)

where x̂i(t) ∈ Rn denotes the observer state of the i-th agent, ζi(t) =
∑

j∈Ni((yj(t)− yi(t)) + C(x̂i(t)−

x̂j(t))), εi(t) =
∑

j∈Ni(x̂i(t) − x̂j(t)), c ∈ R is a scalar, F ∈ Rn×p is the observer gain matrix, and
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K ∈ Rm×n denotes the control gain matrix to be selected. It should be noted that the observer (131) is a

special case of that in [135] in which the MAS do not have a leader.

It has been shown in [135] that if the Assumption 6.1 holds, the observer and control parameters in (131)

can be designed such that the closed-loop system reaches a consensus in sense of the Definition 6.1.

Lemma 6.4 ( [93]). Given the Hurwitz matrixH ∈ Rn×n, there exists a nonsingular matrix PH that satisfies

P−1
H HPH = JH and ‖eHt‖ ≤ ‖PH‖‖P−1

H ‖cHe
λm

Ht, ∀ t ≥ 0, where JH denotes the Jordan canonical form of

H , cH > 0 is a positive constant, and max Re(λ(H)) < λm
H < 0.

Cyber-Attacks on MAS and Residual Generation

The state estimator (131) for the i-th agent receives information from the agent j ∈ Ni that is represented

as pair pji(t) = (x̂j(t), yj(t)). Since the communication links among agents are vulnerable to cyber-attacks,

the adversary is capable of injecting attack signals ajix̂ (t) ∈ Rn and ajiy (t) ∈ Rp to pji(t). Therefore, the

agent i under cyber-attacks receives the manipulated pair paji(t) = (x̂j(t) + ajix̂ (t), yj(t) + ajiy (t)) from the

agent j.

Remark 6.2. cyber-attacks on MAS in this chapter can be considered as the “man-in-the-middle” type of

attack [137]. In this cyber-attack type the adversary first blocks the received information from a group of

neighboring agents of a compromised agent. Following this the adversaries inject their attack signals as

legitimate information that are then received from a group of neighboring agents and transmitted to the

targeted agent.

Consequently, the closed-loop equations of the MAS (127) and the observer (128) under cyber-attacks

can be represented in the following form:

ẋi(t) = Axi(t) +BcKεi(t)−BcK
∑
j∈Ni

qia
ji
x̂ (t), (132)

˙̂xi(t) = Ax̂i(t) +BcKεi(t)− cFζi(t)−BcK
∑
j∈Ni

qia
ji
x̂ (t)

−cF
∑
j∈Ni

qi(a
ji
y (t)− Cajix̂ (t)), i = 1, . . . , N, (133)
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where qi = 1 if the incoming communication links to the agent i are compromised and under cyber-attack,

and qi = 0, otherwise.

To detect anomalies in the i-th agent or its neighboring agents one can utilize the received information

from the neighboring agents and generate the following residual signals:

resiy(t) =
∑
j∈Ni

‖(yj(t)− yi(t)) + qia
ji
y (t)‖, (134)

resix̂(t) =
∑
j∈Ni

‖(x̂i(t)− x̂j(t))− qiajix̂ (t)‖. (135)

Objectives in Designing Undetectable Cyber-Attacks in MAS and Event-Triggered Detectors

We are pursuing three main objectives in this topic. First, we introduce a formal definition for unde-

tectable cyber-attacks on MAS in the sense that residuals (134) and (135) converge to zero as time ap-

proaches to infinity. Following that we show that under certain conditions on the network the cyber-attacks

on a given agent which happens to be the root of the communication graph can become undetectable. The

second objective is to introduce a novel type of undetectable cyber-attacks that are designated as quasi-

covert cyber-attacks in which if a group of non-root agents are compromised, still the adversary is capable

of eliminating and hiding the impact of cyber-attacks on agents that could otherwise detect them. The final

objective is to develop an event-triggered based detector with the goal of detecting quasi-covert cyber-attack

signals that are developed in the second objective.

6.3 Proposed Methodology for Privacy Preserving Consensus Control

In this section, our proposed transformation-based scheme to preserve the privacy of the MAS is stud-

ied. Isometric isomorphisms are utilized to transform the original dynamics of each agent and its dynamic

controller to a new basis. It is shown that by utilizing the proposed dynamic controller in this chapter, agents

can reach a consensus and preserve their privacy. Moreover, design conditions for the proposed dynamic

controller are provided.
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6.3.1 Privacy Preserving Distributed Consensus Control

Let us consider the i-th agent in the MAS (127) and invertible linear maps (isomorphisms)Pi : Rn → Rn

and Si : Rp → Rp as similarity transformations. One can use Pi and Si to transform the dynamics of the

agent i into the following form:

Σ̃i :


˙̃xi(t) = Ãix̃i(t) + B̃iui(t),

ỹi(t) = C̃x̃i(t), i = 1, . . . , N,

(136)

where x̃i(t) = Pixi(t), Ãi = PiAP
−1
i , B̃i = PiB, C̃i = SiCP

−1
i .

Definition 6.2 (Isometric Isomorphism [139]). Let (X, ‖ · ‖X) and (Z, ‖ · ‖Z) denote normed vector spaces

over the field of real numbers. A linear isomorphism U : X → Z is an isometric isomorphism between X

and Z if

‖Ux‖Z = ‖x‖X ,

∀x ∈ X . Moreover, U−1 is also an isometric isomorphism.

In this chapter, a dynamic controller is proposed for the MAS (127) that can be employed to reach a

consensus among the agents and preserve their privacy. Let us consider distinct isometric isomorphisms Pq

and Sq, for every q = 0, . . . , N , such that P0 = MQ, where M ∈ Rn×n and Q ∈ Rn×n are invertible

matrices. The proposed dynamic controller for the i-th agent, that is denoted by Ci, is given by

Ci :


ζ̇i(t) = Ãiζi(t) + B̃iui(t) + H̃iΠi(t),

ui(t) = K
∑
j∈Ni

P̄ (zx
i (t)− zx

j (t)),
(137)

for i = 1, . . . , N , where ζi(t) ∈ Rn is the state of the dynamic controller of the agent i, P̄ = MP−1
1 ,

zx
i (t) = Fiζi(t), Fi = P1QP

−1
i , Πi(t) =

∑
j∈Ni(H̄(zx

i (t) − zx
j (t)) + (Jjzy

j (t) − Jiz
y
i (t))), H̄ =

S0CQ
−1P−1

1 , zy
i (t) = Jiyi(t), Ji = S0Si, Ji = S0S

−1
i S−1

0 , and H̃i = PiH . One can consider

x̂i(t) = P−1
i ζi(t) as the true value of the i-th agent’s state estimation. Moreover, matrices H and K

are of appropriate dimensions and to be designed subsequently. Without loss of generality, we assume that

the agent 1 is the root of the spanning tree contained in the digraph G.
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Remark 6.3. Given the dynamics of the controller Ci in (137), the agent i receives zx
j(t) and zy

j(t) from

its neighboring agents and transmits zx
i (t) and zy

i (t). Moreover, the matrices (P̄ , Fi, H̄, Ji, Ji, H̃i)

have been computed off-line by a third party (e.g., an operator) and integrated into the dynamics of Ci.

Hence, each honest-but-curious agent i does not need to know Sq and Pq, for q = 0, . . . , N , to compute

(P̄ , Fi, H̄, Ji, Ji, H̃i).

Remark 6.4. Given that in this chapter we assume that each agent in the MAS (127) can be an honest-but-

curious adversary, it is reasonable to limit the access of all agents to certain parameters of Ci and isometric

isomorphisms. Hence, in the proposed consensus protocol (137), the i-th agent has access to ui(t) and

Πi(t), and has knowledge of (ζi(t), yi(t)), (zx
j(t), z

y
j(t)), and (P̄ , Fi, H̄, Ji, Ji, H̃i), for i = 1, . . . , N

and j ∈ Ni. The set of all information known to an honest-but-curious agent is defined as its “view of the

protocol” [70]. Moreover, honest-but-curious agents and eavesdropper adversaries do not have knowledge

of Pq and Sq, for q = 0, . . . , N .

Remark 6.5. Considering that our control objective is to reach a consensus among the agents, internal

dynamics of the controller Ci in (137) is similar to the agent’s dynamics. However, to achieve control

objectives other than reaching a consensus, one can design the controllers having internal dynamics that

are different from the agent’s dynamics.

One can augment dynamics of the transformed MAS (136) and the controller (137) as given below

Ẋi(t) = ĀiXi(t) + K̄i

∑
j∈Ni

(X̂i(t)− X̂j(t)), (138)

where Xi(t) = [x̃i(t)
> ζi(t)

>]>, X̂i(t) = [γi(t)
> ζ̂i(t)

>]>, γi(t) = P0xi(t), ζ̂i(t) = P0P
−1
i ζi(t), Āi =

I2 ⊗ Ãi, and

K̄i =

 0 B̃iK

−H̃iC̃0 B̃iK + H̃iC̃0

 .
Given that a distinct transformation Pi is employed for each agent, we haveN heterogeneous augmented
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dynamics in (138). Let us define

Ǎ =



Ā1 0 · · · 0

0 Ā2 · · · 0

...
...

. . .
...

0 0 · · · ĀN


, Ǩ =



K̄1 0 · · · 0

0 K̄2 · · · 0

...
...

. . .
...

0 0 · · · K̄N


. (139)

Using (139), one obtains

Ẋ (t) = ǍX (t) + Ǩ(L⊗ I2n)X̂ (t), (140)

where X (t) = [X1(t)>, . . . ,XN (t)>]>, and X̂ (t) = [X̂1(t)>, . . . , X̂N (t)>]>.

Assumption 6.3. Each agent handles its output measurement yi(t) as private information. Hence, eaves-

dropper adversaries are not capable of reading yi(t), for every i = 1, . . . , N . Moreover, except for the

agent i, the rest of the network do not have access to yi(t).

Theorem 6.1. Let Assumptions 6.1 and 6.3 hold. By using the controller Ci (137) as the consensus protocol

in the MAS (127) and distinct isometric isomorphisms Pq1 6= Pq2 and Sq1 6= Sq2 , for q1, q2 = 0, . . . , N ,

q1 6= q2, agents reach a consensus in the sense of Definition 6.1 if and only if matrices Ã0 + λzB̃0K and

Ã0 + λzH̃0C̃0 are Hurwitz for z = 2, . . . , N , where λz 6= 0 is the z-th eigenvalue of the Laplacian matrix

L. Moreover, one has ‖xi(t)− xj(t)‖ = ‖γi(t)− γj(t)‖, ∀t ≥ 0.

Proof. Let us define the disagreement vector between states of agents according to:

δ(t) = X̂ (t)− (1Nr
> ⊗ I2n)X̂ (t). (141)

It follows that δ(t) = 0 if and only if X̂1(t) = X̂2(t) = · · · = X̂N (t). Moreover, from (140) one obtains

˙̂X (t) = (IN ⊗ Ā0 + (L⊗ K̄0))X̂ (t).
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Consequently,

δ̇(t) = (IN ⊗ Ā0 + (L⊗ K̄0))δ(t). (142)

Since we assume that the digraph G contains a spanning tree and from Lemma 6.1, there exists a block

diagonal matrix ∆ ∈ RN−1×N−1 with diagonal entries equal to nonzero eigenvalues of L, and matrices

T ∈ RN×N , Y ∈ RN×N−1, W ∈ RN−1×N such that T = [1N Y ] and:

T−1 =

r>
W

 , T−1L̃T = J =

 0 01×N−1

0N−1 ∆

 ,
where r is defined in Lemma 6.1 [66].

Consequently, we use T−1 to transform the dynamics of δ(t) such that ε1(t) = (T−1 ⊗ I2n)δ(t) =

[ε1
1(t)>, ε1

2:N (t)>]>. It follows from definition of δ(t) and ε1(t) that ε1
1(t) = 0. Hence,

ε̇1
2:N (t) = (IN−1 ⊗ Ā0 + (∆⊗ K̄0))ε1

2:N+1(t). (143)

Similar to [93], by using the Jordan canonical form of the matrix IN−1 ⊗ Ā0 + (∆⊗ K̄0), it can be shown

that the matrices along the diagonal are similar to

Ã0 + λqB̃0K λzB̃0K

0 Ã0 + λzH̃0C̃0


for z = 2, . . . , N , where λz is the z-th nonzero eigenvalue of the Laplacian matrix L. Hence, the stability of

(143) is achieved if and only if Ã0 + λzB̃0K and Ã0 + λzH̃0C̃0 are Hurwitz. The stability of (143) implies

lim
t→∞
‖x̌i(t)− x̌j(t)‖ = lim

t→∞
‖X̂i(t)− X̂j(t)‖ = 0, (144)

which follows the definition of isometric isomorphisms, where x̌i(t) = [xi(t)
> x̂i(t)

>]>. Moreover, from

Definition 6.2 it can be inferred that ‖x̌i(t) − x̌j(t)‖ = ‖X̂i(t) − X̂j(t)‖, ∀t ≥ 0, which implies that the

norm between agent states trajectories in the transformed space by the isometric isomorphism P0 is equal to
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that of in the original space. This completes the proof of the theorem.

Remark 6.6. From Definition 6.2 it can be seen that an isometric isomorphism preserves the norm between

metric spaces, which has contributed to having ‖x̌i(t) − x̌j(t)‖ = ‖X̂i(t) − X̂j(t)‖, ∀t ≥ 0, as well as

reaching a consensus in MAS as stated in Theorem 6.1. The latter implies that the energy of input signal

in (137) considering the proposed transformations Pi and Si is equal to that of without any transformation.

Hence, our proposed consensus control methodology (137) does not increase the energy consumption of

agents. However, reaching a consensus among agents also can be achieved by using non-isometric isomor-

phisms. Hence, if preserving the norm between agent states in the transformed space is not desirable, one

can employ non-isometric isomorphisms for the MAS (127).

6.3.2 Indistinguishibility of Dynamics

Considering the two types of adversaries in this chapter, namely eavesdropper adversaries and honest-

but-curious agents, a privacy preserving consensus protocol was introduced in the last subsection. In Al-

gorithm 3 below, the pseudo code of the communication protocol for the agent i and its controller Ci are

provided. However, the next step is to show that the dynamics of the MAS Σi is indistinguishable from

the dynamics of Σ̃i by adversaries. Towards this end, the following definition is adopted from [78] and is

modified accordingly.

Algorithm 3 Pseudo code of the communication protocol for the i-th agent

Input:
Γi = (Σi, yi(t)), Fi, Ji, zx

j (t), zy
j (t), ∀ j ∈ Ni

Output:
zx
i (t), zy

i (t)

communication protocol:

(1) Use Fi and Ji to encode ζi(t) and yi(t) into zx
i (t) = Fiζi(t) and zy

i (t) = Jiyi(t), respectively;

(2) Transmit zx
i (t) and zy

i (t) to the agent q, where i ∈ Nq, for q ∈ {1, . . . , N} and q 6= i;

(3) Use ζi(t), yi(t), and the received zx
j (t) and zy

j (t), for j ∈ Ni, to update ui(t) using (137);

(4) Use the updated ui(t) in (127).
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Definition 6.3. The pairs Γi = (Σi, yi(t)) and Γ̃i = (Σ̃i, ỹi(t)) are indistinguishable from the perspective

of eavesdropper adversaries and honest-but-curious agents, for i = 1, . . . , N , if the exchanged data among

the agents, zx
i (t) and zy

i (t), when Γi is considered as the input to the Algorithm 3, and when Γ̃i is considered

as the input to the algorithm, can be made the same.

Theorem 6.2. By utilizing Algorithm 3, Γi = (Σi, yi(t)) and Γ̃i = (Σ̃i, ỹi(t)), for i = 1, . . . , N , are

indistinguishable from the perspective of eavesdropper adversaries and honest-but-curious agents in the

sense of Definition 6.3.

Proof. Similar to [78], indistinguishibility of Γi = (Σi, yi(t)) and Γ̃i = (Σ̃i, ỹi(t)) can be derived by

running two instances of the Algorithm 3. First, consider Γi = (Σi, yi(t)), Fi, and Ji as inputs, and second

consider Γ̃i = (Σ̃i, ỹi(t)), Fi, and J̄i = S0 as inputs, for i = 1, . . . , N . Following the steps provided in the

Algorithm 3, it can easily be seen that for both inputs the resulting output would be zx
i (t) and zy

i (t). Hence,

Γi = (Σi, yi(t)) and Γ̃i = (Σ̃i, ỹi(t)), for i = 1, . . . , N , are indistinguishable by both types of adversaries.

This completes the proof of the theorem.

6.3.3 Designing Isometric Isomorphisms

In this subsection, two unitary transformations over the field of real numbers, which preserve the inner

product, are presented for being employed as isometric isomorphisms for the MAS (127). These transfor-

mations are called Givens rotation and Householder transformation [140, 141].

Definition 6.4 (Givens rotation [140]). A Givens rotation matrix G(αi, βi, θi) ∈ Rn×n for the i-th agent

is a rotation matrix with diagonal entries equal to 1, and 0 elsewhere, except for intersections of αi-th and

βi-th rows and columns. The G(αi, βi, θi)v rotates the vector v ∈ Rn by θi radians in the (αi, βi) plane in
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the counterclockwise scale. The Givens rotation matrix is represented in the following form:

G(αi, βi, θi) =



1 · · · 0 · · · 0 · · · 0

...
. . .

...
...

...

0 · · · ci · · · −si · · · 0

...
...

. . .
...

...

0 · · · si · · · ci · · · 0

...
...

...
. . .

...

0 · · · 0 · · · 0 · · · 1



, (145)

where ci = cos θi, and si = sin θi.

Definition 6.5 (Householder transformation). [141]] Consider the matrix Qi ∈ Rn×n as a transformation

over the field of real numbers for the i-th agent. The Qi is a Householder transformation if it can be

expressed according to

Qi = In − 2viv
>
i , (146)

where vi ∈ Rn with ‖v‖ = 1.

Remark 6.7. Both G(αi, βi, θi) and Qi are unitary transformations, which implies that they are isometric

isomorphisms. Hence, we can utilize either Givens rotations or Householder transformations to design sets

of distinct isometric isomorphisms Vp = {P0, . . . , PN} and Vs = {S0, . . . , SN} for the MAS (127).
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6.4 Controllability cyber-attacks

6.4.1 Conditions for Controllability

In this subsection, controllability of the MAS (129) and its observer that is provided in (130) from the

adversary’s point of view is studied. Let us define

Ǎ =

A 0

0 A

 , B̌ =

0 B

0 B

 , Ȟ =

 0 0

−H H

 ,
Ȟa =

 0

H

 , Ǩ =

K 0

0 K

 , Č =

C 0

0 C

 .
(147)

Using (147), the augmented dynamic of (129) and (130) can be derived as follows:

˙̌xi(t) =(Ǎ+ B̌Ǩ)x̌i(t) + ȞČ
∑
j∈Ni

(x̌i(t)− x̌j(t))

+ ȞČ
∑
j∈Ni

qix̌j(t) + Ȟaqiai(t),

(148)

where x̌i(t) = [xi(t)
> x̂i(t)

>]>, and ai(t) =
∑

j∈Ni a
ji
y (t)− Cajix̂ (t).

One can easily partition the agents into two groups, namely the first group contains agents that are di-

rectly under attack and the second group consists of agents that receive information from their neighboring

agents without any manipulation by the adversary. Consequently, one has xf(t) = [x̌1(t)>, x̌2(t)>, ...,

x̌Nf(t)
>]>, which designates the state of those agents that are not directly under attack and act as follow-

ers. Second, xa(t) = [x̌Nf+1(t)>, x̌Nf+2(t)>, ..., x̌N (t)>]>, which designates the directly attacked agents.

The subscripts “f” and “a” are used to denote followers and attacked agents, respectively. Nf denotes the

number of followers and Na denotes the number of attacked agents, where N = Nf + Na. Without loss of

generality, we assume that the first Nf agents are not under attack. Consequently, the Laplacian matrix can

be partitioned into the following form:

L =

Lf lfa

laf La

 , (149)
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where Lf ∈ RNf×Nf is a grounded Laplacian matrix [142], La ∈ RNa×Na , lfa ∈ RNf×Na , and lfa ∈ RNa×Nf .

The dynamics of all N agents can be expressed as follows:

ẋa(t) = Aaxa(t) +Baa(t), (150)

ẋf(t) = Afxf(t) + Afaxa(t), (151)

whereAa = INa⊗(Ǎ+B̌Ǩ)+Da⊗ȞČ,Af = INf⊗(Ǎ+B̌Ǩ)+Lf⊗ȞČ,Da = diag(dNf+1, dNf+2, ..., dN ),

Ba = INa ⊗ Ȟa, Afa = lfa ⊗ ȞČ, and a(t) = [aNf+1(t)>, aNf+2(t)>, ..., aN (t)>]>. The dynamics of di-

rectly attacked agents (150) and the followers (151) can be augmented in the following form:

ẋa(t)

ẋf(t)

 =

Aa 0

Afa Af


xa(t)

xf(t)

+

Ba

0

 a(t). (152)

We are now in a position to state our first definition as well as the first result of this section.

Definition 6.6. The MAS described in (152) is controllable by the adversary if, for every x∗a and x∗f and

every finite T > 0, there exists an attack signal a(t), 0 < t < T , such that the MAS states do transition from

xa(0) = 0 and xf(0) = 0 to xa(T ) = x∗a and xf(T ) = x∗f , respectively.

Theorem 6.3. The adversary is capable of controlling the system (152) if the pairs (Ǎ+ B̌Ǩ + diȞČ, Ȟa)

for i = Nf + 1, ..., N , and (Af, Afa) are controllable, rank(
∑2nN−1

k=1 MkQ
>
k w1) is either equal to 2nNf if

Nf ≤ Na or equal to 2nNa ifNa < Nf, whereQ = [Q1, . . . , Q(2nN−1)],Qk = AkaBa for k = 1, . . . , 2nN−

1, Q0 = Ba, M = [M1, . . . ,M(2nN−1)], Mk =
∑k−1

z=0 A
z
f AfaQk−1−z , columns of Mk are nonzero, and

w1 ∈ R(2nNa)×(2nNa) is a matrix that satisfies w1 ∈ ker(B>a ).

Proof. Let us define

A∗ =

Aa 0

Afa Af

 , B∗ =

Ba

0

 . (153)

The controllability matrix of the system (152), C∗ =

[
B∗, A∗B∗, . . . (A∗)2nN−1B∗

]
, can be expressed
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in the following form:

C∗ =

Q0 Q1 · · · Q(2nN−1)

0 M1 · · · M(2nN−1)

 .
For the system (152) to be controllable, C∗ should be of full row rank. Hence, controllability is achieved if

[Q0, Q] and M are right invertible and rows of Q and M , under some conditions that are provided below,

are linearly independent.

From the definition of Q0 and Q, one can conclude the right invertibility of [Q0, Q] is equivalent to the

pair (Aa, Ba) being controllable. For this pair the matrix Da is diagonal, therefore, Aa = blockdiag((Ǎ +

B̌Ǩ + dNf+1ȞČ), ..., (Ǎ+ B̌Ǩ + dNȞČ)) is a block diagonal matrix. The operator blockdiag(·) denotes

a block diagonal matrix. In addition, INa ⊗ Ȟa = bockdiag(Ȟa, ..., Ȟa) is block diagonal. Hence, the

controllability condition can be studied for each attacked agent separately.

The matrix M = [M1, . . . ,M(2nN−1)] can be written as the product of two matrices, namely M∗ and

Q∗, i.e., M = M∗Q∗, where

M∗ =

[
Afa AfAfa . . . (Af)

2nN−2Afa

]
,

Q∗ =



Ba AaBa A2
aBa · · · A

(2nN−2)
a Ba

0 Ba AaBa · · · A
(2nN−3)
a Ba

...
...

. . .
...

...
... Ba AaBa

0 0 · · · 0 Ba


.

The rows of the matrices Mk =
∑k−1

z=0 A
z
fAfaQk−1−z , k = 1, . . . , 2nN − 1, are equal to the rows of M∗

multiplied by the columns of Q∗. The matrices Mk not having any zero column is equivalent to them not

having any basis of ker(M∗) in common with basis of Im(Q∗). In other words, ker(M∗) ∩ Im(Q∗) = 0.

This condition along with the fact that the number of rows of M∗ is smaller than the dimensions of Q∗, in

turn imply that rank(M) = rank(M∗). Consequently, for M to be right invertible, M∗ should be of full row

rank, which is satisfied if the pair (Af, Afa) is controllable.
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Considering w1 ∈ ker(B>a ) and an appropriate matrix w2, one has

w>1 0

0 w>2


Ba Q

0 M

 =

0 w>1 Q

0 w>2 M

 . (154)

Rows of w>1 Q and w>2 M should not be linearly dependent to have a right invertible C∗. This is satisfied if

w>1 Q 6= w>2 M for every w2. This implies there does not exist any w>2 such that the rows of w>1 Q and w>2 M

are linearly dependent if ker(M) * ker(w>1 Q). This condition is satisfied if ker(M) ∩ ker(w>1 Q) = 0. For

the latter condition to be satisfied the following matrix

S =

[
M1 . . . M(2nN−1)

]
×


Q>1 w1

...

Q>(2nN−1)w1


=

2nN−1∑
k=1

MkQ
>
k w1,

(155)

should be either full row rank if Nf ≤ Na or full column rank if Na < Nf. This completes the proof of the

theorem.

Remark 6.8. Since the conditions in Theorem 6.3 are difficult to verify the adversary may not be able to

gain control over the entire network as described in Definition 6.6. In such a scenario the adversary is

capable of injecting its attack signals to the directly targeted agents and control the followers through them.

In this type of attack, states of the directly attacked agents are used as control inputs to the followers.

The definition of controllability of MAS followers is provided below.

Definition 6.7. The followers (151) are controllable through the directly attacked agents by the adversary

if for every x∗f and every finite T > 0, there exists a proper xa(t), 0 < t < T , such that the state transitions

can be accomplished from xf(0) = 0 to xf(T ) = x∗f .

Assumption 6.4. The set of eigenvectors of Lf span RNf .

It should be noted that the grounded Laplacian matrix in case of a directed graph is not necessarily

diagonalizable. For example, consider the Laplacian matrix L = [1, 0, 0, −1; −1, 1, 0, 0; 0, −1, 1, 0; 0,
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0, −1, 1] and its corresponding grounded Laplacian matrix Lf = [1, 0, 0; −1, 1, 0; 0, −1, 1], where the

agent 4 is directly under cyber-attack. The algebraic multiplicity of the eigenvalue of Lf, namely λ = 1, is

3, however, its geometric multiplicity is 1, implying that Lf is not diagonalizable. Since in the Theorem 6.4

provided below one requires Lf to be diagonalizable, the above Assumption 6.4 is given.

Proposition 6.1 ( [143]). The system ẋi(t) = Axi(t) + Bui(t) is controllable if and only if ∀ vk, k =

1, ..., n, where vk is the k-th eigenvector of A, vk /∈ ker(BT ).

Theorem 6.4. Under Assumption 6.4 the adversary is capable of controlling the system (151) through the

directly attacked agents (150) according to the Definition 6.7 if and only if the pairs (Ǎ+B̌Ǩ+diȞČ, Ȟa),

(Lf, lfa), and (Ǎ+ B̌Ǩ + λjȞČ, ȞČ) are controllable for i = Nf + 1, ..., N and j = 1, ..., Nf, where λj

is the jth eigenvalue of Lf .

Proof. In this attack scenario, the adversary uses xa(t) as the control input to the followers. Hence, the

adversary should be capable of setting xa(t) to its desired value, which can be achieved if (150) is control-

lable. Consequently, the followers in (151) should be controllable through xa(t). Since (150) is considered

to be controllable, the adversary is capable of designing a(t) such that xa(t) tracks its desired trajectory (see

Theorem 5.2.5 and Corollary 5.2.6 in [144]).

The controllability condition of the pair (Aa, Ba) was studied in Theorem 6.3. Controllability of (Af, Afa)

indicates that the followers are controlled via the state of the attacked agents, xa(t). In view of Assumption

6.4, there always exists an invertible matrix P , with its rows representing Nf right eigenvectors of Lf, such

that PLfP
−1 = diag(λ1, ..., λNf). Using the similarity transformation P ⊗ In, (151) can be rewritten as

ẋ
p
f (t) = (P ⊗ In)Af(P

−1 ⊗ In)x
p
f (t) + (P ⊗ In)(lfa ⊗ ȞČ)xa(t), (156)

where xp
f (t) = (P ⊗ In)xf(t). Since P is nonsingular, the controllability of xp

f (t) implies the controllability

of xf(t). The matrix (P ⊗ In)Af(P
−1 ⊗ In) = blockdiag(Ǎ + B̌Ǩ + λ1ȞČ, ..., Ǎ + B̌Ǩ + λNfȞČ)

is block diagonal and (P ⊗ In)(lfa ⊗ ȞČ) = Plfa ⊗ ȞČ. Consequently, (156) can be expressed in the
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following form:

ẋpf (t) =blockdiag(Ǎ+ B̌Ǩ + λ1ȞČ, ..., Ǎ+ B̌Ǩ + λNfȞČ)

× xp
f (t) + (Plfa ⊗ ȞČ)xa(t).

(157)

Since the rows of P are the right eigenvectors of Lf, in view of Proposition 6.1, the controllability of (Lf, lfa)

can be interpreted as not having completely zero rows in the matrix Plfa. The vector xf(t) contains the states

of Nf followers, however, due to the similarity transformation, xp
f (t) contains a combination of these states,

but still one has Nf modes that are the Nf different blocks of blockdiag(Ǎ+ B̌Ǩ + λ1ȞČ, ..., Ǎ+ B̌Ǩ +

λNfȞČ). Next we provide and prove the necessary and sufficient conditions of our proposed methodology

that are stated in this theorem.

Necessary Condition: Assume the j-th mode of (157) is controllable through xa(t), while either (Ǎ +

B̌Ǩ + λjȞČ, ȞČ) is not controllable or the j-th row of Plfa is zero. Due to block diagonal structure of

(157), either the uncontrollability of (Ǎ+ B̌Ǩ + λjȞČ, ȞČ) or the j-th row of Plfa being zero results in

the uncontrollability of the mode j, which contradicts the assumption on this mode.

Sufficient Condition: Suppose that the mode j is uncontrollable, while (Ǎ + B̌Ǩ + λjȞČ, ȞČ) is

controllable and the j-th row of Plfa is nonzero. However, from the block diagonal structure of (157), the

mode j being uncontrollable implies that either (Ǎ+ B̌Ǩ + λjȞČ, ȞČ) is uncontrollable or the j-th row

of Plfa is zero, which is a contradiction. This completes the proof of the theorem.

Remark 6.9. As shown in Theorem 6.4, the problem of interest here is to show that there exists a proper

xa(t) that satisfies the controllability objective provided in Definition 6.7. However, designing the attack

signal a(t) such that xa(t) follows the adversary’s desired trajectory is not within the scope of this chapter

and is not addressed here.

Remark 6.10. Generally speaking, the difference between the goals in Definitions 6.6 and 6.7 has resulted

in different types of conditions that need to be satisfied in Theorems 6.3 and 6.4. In Theorem 6.3, the

conditions are more restrictive, however they ensure controllability over the entire network for the adversary.

Nevertheless, the main objective of the malicious hacker is to exert the maximum possible influence on the

MAS given the available resources. Consequently, the adversary may not be able to control the entire
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network as studied in Theorem 6.3, whereas they can still compromise the system and lead the MAS to

dangerous trajectories only if the conditions in Theorem 6.4 are satisfied. This result is illustrated through

the numerical example that is provided in Section 6.7.2.

6.4.2 Cybersecurity Controllability Index

As shown in Theorem 6.4, the only condition on controllability of the MAS that connects the structure

of the communication graph among the followers and the directly attacked agents is the controllability of

(Lf, lfa). By leveraging this controllability condition, we aim to define two security metrics for the MAS.

These notions can be used to evaluate the security of the MAS with respect to their controllability by an

adversarial intruder. In this subsection, we assume that all the conditions in Theorem 6.4, except for the

controllability of (Lf, lfa), hold true. Let us denote L̂f = PLfP
−1 = diag(λ1, ..., λNf) and l̂fa = Plfa, where

rows of P are the Nf right eigenvectors of Lf.

Definition 6.8. The security controllability index of the directly attacked agent i, designated by SCIi, is

defined by:

SCIi = rank(Ci), i = Nf + 1, ..., N, (158)

where Ci = [(l̂fa)i, L̂f(l̂fa)i, . . . , L̂
Nf−1
f (l̂fa)i] denotes the controllability matrix (considered not to be ill-

conditioned) and (l̂fa)i denotes the i-th column of l̂fa.

The maximum value for SCIi can be Nf, which if satisfied implies that all the followers can be manip-

ulated and controlled via the agent i.

Definition 6.9. The security controllability index (SCI) of the MAS is defined as

SCI = rank(C), (159)

where C = [l̂fa, L̂f l̂fa, . . . , L̂
Nf−1
f l̂fa].

The problem for the adversary is to find the minimum number of directly attacked agents that gives the

full control over the multi-agent network. More specifically, the adversary’s goal is to minimize |Na| such

that SCI = Nf. In the literature this problem is referred to as actuator placement problem [145]. Solving
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the above minimization problem provides the adversary with the minimum required number of agents that

the hacker needs to compromise and attack. A few methods that incorporate graph of the network to select

agents for ensuring controllability over the MAS have been suggested in [146–150].

Remark 6.11. Due to the possibility of existence of sufficiently small singular values and ill-conditioning

of the matrices C and Ci for i = Nf + 1, ..., N in (158) and (159), one may have nearly singular matrices.

In such cases rank(C) and rank(Ci) can be computed by imposing a tolerance condition on computation of

the rank such that if the singular value is smaller than a pre-specified tolerance level it is then considered to

be zero.

6.4.3 Zero Dynamics Attacks Through the Communication Links

Given an s = sa and the dynamics of the directly attacked agents in (150), the zero dynamics of the

MAS are those sa in which the Rosenbrock system matrix

Pa(s) =

sI −Aa −(INa ⊗ Ȟa)

INa ⊗ C 0

 (160)

is rank deficient, i.e., its rank falls below its normal rank. This implies that there exist nonzero xa0 and a0

such that saI −Aa −(INa ⊗ Ȟa)

INa ⊗ Č 0


xa0

a0

 = 0, (161)

where Xa(t) = xa0e
sat with Xa(t) defined as the solution to (150) and a(t) = a0e

sat.

The zero dynamics of the followers (151) are defined as s = sf and are associated with nonzero direc-

tional vectors xf0 and xaf such that the following is satisfied:

sfI −Af −(lfa ⊗ ȞČ)

INf ⊗ Č 0


xf0

xaf

 = 0, (162)

where Xf(t) = xf0e
sft with Xf(t) as the solution to (151) and Xa(t) = xafe

sft.
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Definition 6.10. The zero dynamics sa and sf are excited in the systems (150) and (151) if their initial

conditions and the attack signal satisfy the conditions in (161) and (162), respectively.

From (161) and (162) one can conclude that the differences that exist between the attacked agents and

the followers can result in having different zero dynamics in these two groups. Moreover, in case of an

attacker exciting the zero dynamics, the states should satisfy xi(t) ∈ ker(C), for i = 1, . . . , N , to have a

zero output in the system [15].

Lemma 6.5. The zero dynamics of the followers (151) and the directly attacked agents (150) are excited by

the adversary in the sense of Definition 6.10 if (162) and (161) for sa = sf hold true, while (lfa⊗ȞČ)xaf 6= 0

and (INa ⊗ Ȟa)a0 6= 0, respectively.

Proof. Suppose the output of the system is zero with nonzero xaf and a0 that are in the ker(lfa ⊗ ȞČ) and

ker(INa ⊗ Ȟa), respectively. This implies that the attack signal does not have an impact on exciting the

zero dynamics. Therefore, in the case of zero dynamics attack by the adversary it is necessary for the attack

signals to satisfy xaf /∈ ker(lfa⊗ȞČ) and a0 /∈ ker((INa⊗Ȟa)). This completes the proof of the lemma.

Theorem 6.5. The adversary is not capable of simultaneously exciting the zero dynamics of the directly

attacked agents (150) and the followers (151) in the sense of Definition 6.10.

Proof. Suppose the adversary excites the zero dynamics of directly attacked agents in (150) so that Xa(t) =

xa0e
sat is in ker(INa ⊗ Č). Consequently, xa0 should be of the form xa0 = INa ⊗ x̌a0, where x̌a0 ∈ ker(Č).

Since (lfa⊗ ȞČ)× (INa ⊗ x̌a0) = lfa⊗ ȞČx̌a0 = 0 one can conclude xaf = Xa(0) = xa0 ∈ ker(lfa⊗ ȞČ),

which based on Lemma 6.5 implies that the adversary is not capable of exciting the zero dynamics of

the followers. Now let us assume (162) holds and the zero dynamics of the followers are excited by the

adversary. Therefore, (lfa⊗ ȞČ)xaf 6= 0 is satisfied. This implies thatXa(0) = xaf /∈ ker(INa⊗ Č). Hence,

(161) does not hold and the zero dynamics of the directly attacked agents (150) cannot be excited by the

adversary. This completes the proof of the theorem.
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6.5 Undetectable cyber-attacks in MAS

In this section, conditions to introduce and inject undetectable cyber-attacks are investigated and devel-

oped. Let us define Ǎ = I2 ⊗A, Ǩ = I2 ⊗ cK, Č = I2 ⊗ C, and

B̌ =

0 B

0 B

 , F̌ =

 0 0

cF −cF

 ,
B̌a =

 −BcK 0

−BcK − cFC cF

 .
(163)

By utilizing (147) and augmenting the dynamics (132) and (133) yields:

˙̌xi(t) =Ǎx̌i(t) + (B̌Ǩ − F̌ Č)
∑
j∈Ni

(x̌i(t)− x̌j(t))

+ B̌aǎi(t),

(164)

where x̌i(t) = [xi(t)
>, x̂i(t)

>]>, ǎi(t) =
∑

j∈Ni qiǎji, and ǎji(t) = [ajix̂ (t)>, ajiy (t)>]>.

Definition 6.11. The cyber-attacks on communication links in the MAS (148) are undetectable by the entire

network if the MAS reaches a consensus under attack free conditions, i.e., ǎi(t) = 0, as per Definition 6.1,

and in presence of cyber-attacks, i.e., ǎi(t) 6= 0, ∀ t > 0, the following equations are satisfied:

lim
t→∞
‖yi(t)− yj(t)− qiajiy (t)‖ = 0, (165)

lim
t→∞
‖x̂i(t)− x̂j(t)− qiajix̂ (t)‖ = 0, (166)

∀ i, j = 1, . . . , N .

Remark 6.12. If ǎi(t) = 0 and the MAS reaches a consensus, the residuals (134) and (135) converge to

zero as t → ∞ as expected since no cyber-attack is injected to the system. If in presence of cyber-attacks,

i.e., ǎi(t) 6= 0, equations (165) and (166) are satisfied, it can be inferred that limt→∞ res
i
y(t) = 0 and

limt→∞ res
i
x̂(t) = 0 for i = 1, . . . , N . Consequently, the cyber-attack is undetectable.
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Theorem 6.6. Under Assumptions 6.1 and 6.2, let the cyber-attacks on the agent i in (148) be selected as

ajix̂ (t) = a0 − x̂j(t) and ajiy (t) = Ca0 − yj(t) for j ∈ Ni, where a0 ∈ Rn is a constant vector. The above

cyber-attacks are undetectable by all agents if i ∈ Vr, and A+BcK and A+ λ̃r
kcFC for k = 2, . . . , N + 1

are Hurwitz, where λ̃r
k 6= 0 is the k-th eigenvalue of the matrix

L̃r =

 0 01×N

−Dr Lr

 ,
where Dr = [0>i−1, di, 0

>
N−i]

>, Lr = L+QrA, Qr = diag(0i−1, qi,0N−i), and 0m×n ∈ Rm×n denotes a

matrix with all entries equal to 0.

Proof. By adding the cyber-attack signals to (148) and augmenting the dynamics of agents, one obtains

˙̌x(t) = (IN ⊗ Ǎ+ Lr ⊗ (B̌Ǩ − F̌ Č))x̌(t) +Dr ⊗ B̌ǎ0,

where x̌(t) = [x̌1(t)>, x̌2(t)>, . . . , x̌N (t)>]>, ǎ0 = [a>0 , (Ca0)>]>. One can consider the adversary as a

virtual agent that transmits its information a0 and Ca0 to the i-th agent. Since from the agent i there exists

paths to the rest of N − 1 agents the virtual adversary agent is the root of a directed spanning tree that is

contained in the graph Gr with L̃r as its Laplacian matrix. Hence, the state space representation of the MAS

augmented with the virtual adversary agent can be represented as follows:

˙̃xr(t) = (Ĩr ⊗ Ǎ+ L̃r ⊗ (B̌Ǩ − F̌ Č))x̃r(t),

where x̃r(t) = [1>2 ⊗ a>0 , x̌(t)>]>, Ĩr =

 0 01×N

0N IN

, and 1n ∈ Rn denotes a vector with all its elements

equal to 1. In similar manner as in [66], the disagreement vector δr(t) = x̃r(t) − (1N+1r̃
>
r ⊗ I2n)x̃r(t) is

defined, where r̃r is the left eigenvector of L̃r as defined in the Lemma 6.3. Consequently, we obtain

δ̇r(t) = (Ĩr ⊗ Ǎ+ L̃r ⊗ (B̌Ǩ − F̌ Č))δr(t). (167)

It can be shown from the definition of δr(t) that δr(t) = 0 if and only if 12 ⊗ a0 = x̌1(t) = x̌2(t) =
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· · · = x̌N (t). Therefore, if (167) is stable, one can conclude that all the agents reach a0 corresponding to

the consensus set point.

From Lemma 6.3 and considering that Gr contains a directed spanning tree it follows that there exist

matrices T ∈ RN+1×N+1, Y ∈ RN+1×N , W ∈ RN×N+1, and block diagonal matrix ∆ ∈ RN×N with

diagonal entries equal to nonzero eigenvalues of L̃r such that [66]:

T = [1N+1 Y ], T−1 =

r̃>
W

 , T−1L̃T = J =

 0 01×N

0N ∆

 .
Let us define ε(t) = (T−1 ⊗ I2n)δr(t) = [ε1(t)>, ε2:N+1(t)>]>. It follows from Lemma 6.3 and

definition of δr(t) that ε1(t) = 02n and

ε̇2:N+1(t) = (IN ⊗ Ǎ+ ∆⊗ (B̌Ǩ − F̌ Č))ε2:N+1(t). (168)

It is easy to show that the matrices IN ⊗ Ǎ + λ̃r
k ⊗ (B̌Ǩ − F̌ Č) for k = 2, . . . , N + 1 having a similar

structure to

A+ λ̃r
kcFC 0n×n

−λ̃r
kcFC A+BcK

 .
Consequently, if A + BcK and A + λ̃r

kcFC for k = 2, . . . , N + 1 are Hurwitz, (167) is stable and

states of all the agents reach a0 as t → ∞. Hence, according to the Definition 6.11, the cyber-attacks are

undetectable from the entire network.

6.5.1 Cyber-Attacks Injected to Non-Root Agents

In this subsection, cyber-attacks that are injected to the communication links of agents that do not belong

to the set Vr are investigated.

Definition 6.12. The agents in the network that are directly under cyber-attacks and their incoming com-

munication channels are compromised are included in the set Vda = {ia, ia + 1, . . . , ia +Nda − 1}, where

Nda is the number of directly attacked agents.

Definition 6.13 ( [151]). The reachable subgraph of the vertex i, R(i), is defined as the vertex subgraph

that contains the node i and all reachable nodes from it.
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Definition 6.14. The directed path between the vertices i and j, denoted by Pij , is a directed healthy path

if none of the communication links on this path is compromised by adversaries.

By utilizing the Definitions 6.12-6.14, agents in the network can be partitioned into two groups. For

agents from the root nodes of the directed tree, i.e., the set Vr, there exist directed healthy paths that constitute

the first group. Agents in this group are designated as “uncompromised” where their states can be stacked

into the vector xnc(t) = [x̌1(t)>, x̌2(t)>, . . . , x̌Nnc(t)
>]>. The second group consists of the remaining net-

work agents. This group contains agents in the vertex subgraphs of directly attacked agents, i.e., the set Vda,

such that there does not exist any directed healthy path among agents in Vr and these nodes. The agents that

belong to this group are designated as “attacked” agents and xa(t) = [x̌Nnc+1(t)>, x̌Nnc+2(t)>, . . . , x̌N (t)>]>

represents the states of this group. The subscripts “nc” and “a” are employed to denote the Nnc uncompro-

mised agents and the Na attacked agents, respectively. Without loss of any generality, we assume that the

first Nnc agents are not under cyber-attacks. Consequently, the Laplacian matrix is partitioned into the

following form:

L =

Lnc lnca

lanc La

 , (169)

where Lnc ∈ RNnc×Nnc , La ∈ RNa×Na , lnca ∈ RNnc×Na , and lanc ∈ RNa×Nnc .

The state space representation of the entire MAS can now be described in the following form:

ẋa(t) = Aaxa(t) + Aancxnc(t) +Baa(t), (170)

ẋnc(t) = Ancxnc(t) + Ancaxa(t), (171)

whereAa = INa⊗ Ǎ+La⊗(B̌Ǩ− F̌ Č), Aanc = lanc⊗(B̌Ǩ− F̌ Č), Anc = INnc⊗ Ǎ+Lnc⊗(B̌Ǩ− F̌ Č),

Anca = lnca⊗(B̌Ǩ−F̌ Č),Ba = Qa⊗B̌a, andQa = diag(qNnc+1, qNnc+2, . . . , qN ) ∈ RNa×Na is a diagonal

matrix.

Definition 6.15. The set of N agents is partitioned into two subsets, namely Vnc = {1, 2, . . . , Nnc} and

Va = {Nnc + 1, Nnc + 2, . . . , N}, that contain uncompromised and attacked agents, respectively.

Definition 6.16. The set of uncompromised agents that receive information from the set of attacked agents

are defined by Vnca = {inca, inca + 1, . . . , inca + Nnca − 1}, where Nnca is the number of uncompromised
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agents that receive information from the agents in Va. In other words, j ∈ Vnca if and only if j ∈ Vnc and

there exists i ∈ Va such that i ∈ Nj .

Assumption 6.5. None of agents in the set Vr is directly under attack, i.e., Vr ∩ Vda = 0.

Without loss of generality, let us assume that the first Nda agents in the set Va create the set of directly

attacked agents. We are now in a position to state our main result of this subsection.

Theorem 6.7. Let the Assumptions 6.1-6.5 hold and the cyber-attacks on agents in the set Vda are de-

signed as ajix̂ (t) = a0 − x̂j(t) and ajiy (t) = Ca0 − yj(t) for j = 1, . . . , Nnc and j ∈ Ni, where

Ca0 6= limt→∞ yir(t), a0 6= limt→∞ xir(t), and a0 ∈ Rn is a constant vector. Consequently, the following

can be stated:

(1) The cyber-attacks are undetectable on the set of nodes Va if A + BcK and A + λ̃kcFC for k =

2, . . . , Na + 1 are Hurwitz, where λ̃k 6= 0 denotes the k-th eigenvalue of the Laplacian matrix

L̃a =

 0 01×Na

−Da La

 ,
with Da = [dnc

ia
, dnc

ia+1, . . . , d
nc
ia+Nda−1

, 0>Na−Nda ]> and dnc
i = |Ni ∩ Vnc| for i ∈ Vda.

(2) The cyber-attacks are detectable by agents that belong to the set Vnca.

Proof. Substituting the cyber-attack signals into (170) the following can be expressed:

ẋa(t) = (INa ⊗ Ǎ+ La ⊗ (B̌Ǩ − F̌ Č))xa(t) +Da ⊗ B̌aǎ0, (172)

where ǎ0 = [a>0 , (Ca0)>]>. It follows from (172) that the nodes which belong to the set Va do not receive

information from the nodes in the set Vnc. Since the cyber-attack signal a0 is the same for all agents in the

set Vda, one can consider the adversary as a virtual agent that is the root of a directed spanning tree contained

in the graph Ga with L̃a as its Laplacian matrix. The virtual adversary agent transmits its information a0 and

Ca0 to all the directly attacked agents. Consequently, the dynamics of the attacked agents augmented with
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the virtual adversary agent can be derived as given below:

˙̃xa(t) = (Ĩa ⊗ Ǎ+ L̃a ⊗ (B̌Ǩ − F̌ Č))x̃a(t),

where x̃a(t) = [1>2 ⊗ a>0 , xa(t)
>]> and Ĩa =

 0 01×Na

0Na INa

.

Following along the same steps as in the proof of the Theorem 6.6 it can be concluded that if A+BcK

and A + λ̃kcFC, with k = 2, . . . , Na + 1, are Hurwitz, the states of all agents in the set Va reach a0 as

t→∞. Therefore, according to the Definition 6.11 the cyber-attacks are undetectable by agents that belong

to the set Va.

Suppose all agents in (170) and (171) reach a consensus. Following along the results previously derived

it follows that states of the attacked agents, and consequently uncompromised agents, should reach a0,

which contradicts the assumption that Ca0 6= limt→∞ yir(t) and a0 6= limt→∞ xir(t). Therefore, the entire

network cannot reach a consensus. The residuals for the agent j ∈ Vnc with i ∈ Va and i ∈ Nj are nonzero

as t→∞ since x̂i(t) 6= x̂j(t) and yi(t) 6= yj(t). This completes the proof of the theorem.

Remark 6.13. Suppose in Theorem 6.7 one has Ca0 = limt→∞ yir(t) and a0 = limt→∞ xir(t), which

implies that the attack signals will not change the consensus set point and follow the control objective of the

MAS. Hence, it is reasonable to assume that the control objective of adversaries differs from the group of

agents, in other words Ca0 6= limt→∞ yir(t) and a0 6= limt→∞ xir(t).

6.5.2 Quasi-Covert Cyber-Attack on the MAS Network

In the Theorem 6.7, it was shown that cyber-attack signals are detectable by agents that belong to the

set Vnc and receive information from agents in the set Va. Hence, if an adversary attacks the communication

channels that connect agents in these two sets, they may be able to manipulate the transmitted information

such that impacts of cyber-attacks are made hidden and eliminated. In this chapter, this attack methodology

where impacts of cyber-attacks on the set Vnc are eliminated is denoted by the “quasi-covert cyber-attacks”.

Assumption 6.6. The adversary has knowledge on the parameters of the MAS (127) and the observer-based

consensus protocol (131).
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To conceal impacts of cyber-attacks on the set Vnc the adversary needs to attack the outgoing communi-

cation links from the nodes in the set Va to the agents that belong to Vnc. These agents are included in the

set Vnca. To achieve this, under Assumption 6.6 the adversary is capable of running the following process:

ẋc
i(t) = Axc

i(t) +BcKεc
i(t), (173)

˙̂xc
i(t) = Ax̂c

i(t) +BcKεc
i − cFζc

i (t), (174)

for i = Nnc + 1, Nnc + 2, . . . , N , where xc
i(t), x̂

c
i(t) ∈ Rn, for any arbitrary initial conditions xc

i(0) and

x̂c
i(0), and

εc
i(t) =

∑
k∈Ni∩Va

(x̂c
i(t)− x̂c

k(t)) +
∑

j∈Ni∩Vnc

(x̂c
i(t)− x̂j(t)),

ζc
i (t) =

∑
k∈Ni∩Va

((Cxc
k(t)− Cxci (t)) + C(x̂c

i − x̂c
k(t)))

+
∑

j∈Ni∩Vnc

((yj(t)− Cxci (t)) + C(x̂c
i − x̂j(t))).

Lemma 6.6. Let the Assumptions 6.1-6.6 hold and agents in the set Vda are under cyber-attacks as specified

in the Theorem 6.7. The adversary is capable of eliminating impacts of these cyber-attacks and make

them undetectable on the set Vnca by adding cyber-attack signals âijx̂ (t) = x̂c
i(t) − x̂i(t) and âijy (t) =

Cxc
i(t) − yi(t) for i ∈ Va and j ∈ Vnca to the outgoing communication channels of agents in the set Va to

agents that belong to Vnca.

Proof. Let us define x̌c
i(t) = [xc

i(t)
>, x̂c

i(t)
>]> for i ∈ Va and xc(t) = [xc

Nnc+1(t)>, xc
Nnc+2(t)>, . . . ,

xc
N (t)>]>. Consequently, the dynamics of xc(t) can be derived as follows:

ẋc(t) = Aaxc(t) + Aancxnc(t). (175)

By adding the cyber-attack signals âijx̂ (t) and âijy (t) to the outgoing communication channels of agents

in the set Va, (171) can be reformulated in the following form:

ẋnc(t) = Ancxnc(t) + Ancaxc(t). (176)
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One can augment (175) and (176) as follows:

˙̄x(t) = (IN ⊗ Ǎ+ L⊗ (B̌Ǩ − F̌ Č))x̄(t), (177)

where x̄(t) = [xnc(t)
>, xc(t)

>]>. If the observer-based control protocol is designed such that the MAS

reaches a consensus, then the augmented dynamics in (177) also reaches a consensus. Hence, according to

the Definition 6.11, the cyber-attacks on nodes in Vda are undetectable by the entire MAS and their impacts

on agents in Vnc are eliminated.

6.6 Event-Triggered Cyber-Attack Detection Methodology

6.6.1 Event-Triggered Detector Module

Our objective in this section is to interrupt disclosure capabilities of the adversary by employing an

event-triggered protocol of information exchange among our proposed detector modules.

The event-triggered detector for the i-th agent is designed as follows:

żi(t) =Azzi(t) +Bzx̂i(t) + Fz
∑
j∈Ni

(e
Az(t−tjkj )

zj(t
j
kj

)

− eAz(t−tiki )zi(t
i
ki

) + qz
ia
ji
z (tjkj )), i = 1, . . . , N,

(178)

where zi(t) ∈ Rn is the state of detector for agent i, tiki denotes the time of the most recent triggering

event of the agent i, ki ∈ N indicates the ki-th event on the agent i, zi(tiki) denotes the latest broadcast

state of the detector for the i-th agent, Az is a diagonal Hurwitz matrix, and the matrices (Az, Bz, Fz) are

of appropriate dimensions that should be designed. Also qz
i = 1 indicates that the i-th detector is under

cyber-attacks, and qz
i = 0 if it is not under attack, and ajiz (tjkj ) ∈ Rn denotes the cyber-attack signal on the

received information from the neighboring agents. It is worth noting that given the detector (178) and the

consensus-based observer (131) the agents receive output measurement information, observer states, and

detector states from their neighboring agents.
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Similar to [92], we define the state error for the i-th agent as

ez
i(t) = e

Az(t−tiki )zi(t
i
ki

)− zi(t), t ∈ [tiki , t
i
ki+1). (179)

Moreover, the triggering function on the agent i is defined as

f z
i (t, ez

i(t)) = ‖ez
i(t)‖ − cze

−αt, (180)

where cz and α are positive constants to be selected and designed. The triggering function (180) determines

the occurrence of an event by the agent i. Hence, f z
i (t, ez

i(t)) ≥ 0 implies that an event is triggered by the

agent i. Consequently, this agent updates its detector’s state such that zi(tiki+1) = zi(t), and tiki+1 = t.

Subsequently, the updated state zi(tiki+1) is broadcast to agents that agent i belongs to their neighboring set

and they use the updated state in their detectors. Due to an event by the i-th agent, the state error (179) of

this agent is reset to zero.

One can augment states of detectors into the vector z(t) = [z1(t)>, z2(t)>, . . . , zN (t)>]> such that

dynamics of detectors can be expressed as follows:

ż(t) =(IN ⊗Az)z(t) + (IN ⊗Bz)x̂(t)− L⊗ Fz(ez(t)

+ z(t)) +Qz ⊗ az(t),

(181)

where x̂(t) = [x̂1(t)>, x̂2(t)>, . . . , x̂N (t)>]>, ez(t) = [ez
1(t)>, ez

2(t)>, . . . , ez
N (t)>]>, Qz = diag(qz

1, q
z
2,

. . . , qz
N ), az(t) = [a1

z(t)>, a2
z(t)>, . . . , aNz (t)>]>, and aiz(t) =

∑
j∈Ni a

ji
z (tjkj ) for i = 1, . . . , N .

Theorem 6.8. Let the Assumption 6.1 hold. Consider the MAS (148) and the detector (178) under cyber-

attack free conditions, with the triggering function parameters (180) satisfy 0 < cz and 0 < α < −max Re(

λ(Ãz)), where λ(Ãz) denotes the eigenvalue of Ãz = IN ⊗ Az − ∆z ⊗ Fz, and ∆z can be computed in a

similar manner as described for ∆ in the proof of Theorem 6.6, where the Laplacian matrix is now L. The

detectors in (181) reach a consensus if and only if Az − λiFz, i = 2, . . . , N , are Hurwitz, where λi 6= 0

is the i-th eigenvalue of L. Moreover, the detector (181) does not exhibit Zeno behavior under attack free

conditions.

176



Proof. Under cyber-attack free conditions the expression (181) can be rewritten as

ż(t) =(IN ⊗Az − L⊗ Fz)z(t) + (IN ⊗Bz)x̂(t)

− (L⊗ Fz)ez(t),

Following along the derivations in [93], and since by definition the triggering function (180) does

not cross zero in the interval t ∈ [tiki , t
i
ki+1), we have ‖ez

i(t)‖ < cze
−αt, which implies that ‖ez(t)‖ <

√
Ncze

−αt. Therefore, it can be concluded that ‖ez(t)‖ → 0 as t→∞.

In a similar manner as in the proof of Theorem 6.6, let us define the disagreement vector δz(t) =

z(t) − (1Nr
> ⊗ In)z(t). Since under cyber-attack free conditions states of the observers x̂(t) reach a

consensus and 1N is the right eigenvector corresponding to the zero for IN − 1Nr
>, it follows that δ̇z(t) is

independent of x̂(t) once the agents reach a consensus.

Let us define εz(t) = (T−1
z ⊗ In)δz(t) = [εz

1(t)>, εz
2:N (t)>]>. Similar to the proof of the Theorem 6.6

it can be shown that εz
1(t) = 0n and

ε̇z
2:N (t) = (IN ⊗Az −∆z ⊗ Fz)ε

z
2:N (t)− (∆zWz ⊗ Fz)e

z
2:N (t), (182)

where ez
2:N (t) = [ez

2(t)>, . . . , ez
N (t)>]>, Tz ∈ RN×N , Yz ∈ RN×N−1, Wz ∈ RN−1×N , and the block

diagonal matrix ∆z ∈ RN−1×N−1 has diagonal entries that are equal to the nonzero eigenvalues of L such

that Tz = [1N Yz], T
−1
z =

r>
Wz

 and T−1
z LTz = Jz =

 0 01×N−1

0N−1 ∆z

.

Following along the proof of Theorem 6.6, it can be shown that (182) is stable if and only if Az − λiFz,

for i = 2, . . . , N , are Hurwitz.

To show that (181) does not exhibit the Zeno behavior one needs to show that the inter-event intervals

are lower bounded. The solution to (182) can be derived as follows:

εz
2:N (t) = eÃztεz

2:N (0) +

∫ t

0
eÃz(t−τ)(∆zWz ⊗ Fz)e

z
2:N (τ)dτ,
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where Ãz = IN ⊗Az −∆z ⊗ Fz. From the Lemma 6.4, it can be concluded that

‖εz(t)‖ = ‖εz
2:N (t)‖ ≤ α3e

λm
Ãz
t
+ α2e

−αt, (183)

where α3 = α1+α2, α1 = cÃz
nN‖PÃz

‖‖P−1
Ãz
‖‖εz(0)‖, α2 = (cÃz

nN‖PÃz
‖‖P−1

Ãz
‖‖∆zWz⊗Fz‖

√
Ncz)/(

|α+λm
Ãz
|), cÃz

> 0 is a positive constant, and max Re(λ(Ãz)) < λm
Ãz
< −α < 0. It follows from (183) that

‖δz(t)‖ ≤ ‖Tz ⊗ In‖‖εz(t)‖ ≤ β1e
λm
Ãz
t
+ β2e

−αt, where β1 = ‖Tz ⊗ In‖α3 and β2 = ‖Tz ⊗ In‖α2.

In the interval t ∈ [tiki , t
i
ki+1) the dynamics of ez(t) can be expressed as

ėz(t) = (IN ⊗Az − L⊗ Fz)ez(t)− (IN ⊗Bz)x̂(t)− (L⊗ Fz)z(t).

Let us define δe(t) = ez(t)− (1Nr
> ⊗ In)ez(t), which is governed by

δ̇e(t) =(IN ⊗Az − L⊗ Fz)δe(t)− ((IN − 1Nr
>)⊗Bz)x̂(t)

− (L⊗ Fz)δz(t).

Since it is assumed that the MAS is cyber-attack free, δz(t) does not approach to zero unless ((IN−1Nr>)⊗

Bz)x̂(t) approaches to zero. Thus, there exists a bounded scalar M > 0 such that ‖((IN − 1Nr
>) ⊗

Bz)x̂(t)‖ ≤ M‖δz(t)‖. Moreover, given that ‖IN − 1Nr
>‖ ≥ ‖IN‖, by definition one can conclude that

‖ez(t)‖ ≤ ‖δe(t)‖. Therefore, it implies that

‖ėz(t)‖ ≤‖δ̇e(t)‖ ≤ ‖IN ⊗Az − L⊗ Fz‖‖IN − 1Nr
>‖

× ‖ez(t)‖+ ‖L⊗ Fz‖‖δz(t)‖

+ ‖((IN − 1Nr
>)⊗Bz)x̂(t)‖ ≤ gz(t),

where gz(t) , a1e
λm
Ãz
t

+ a2e
−αt, a1 = (‖L ⊗ Fz‖ + M)β1, and a2 = (‖L ⊗ Fz‖ + M)β2 +

√
N‖IN ⊗

Az − L⊗ Fz‖‖IN − 1Nr
>‖.

Let t∗ denote the latest triggering instant and consider τ∗ = t− t∗ as the time-interval between the two

latest triggered events. Given that at the triggering instant f z
i (t, ez

i(t)) = 0, it can be concluded that in the i-th

detector the next event cannot be triggered before ‖ez
i(t)‖ = cze

−αt, that implies ‖ez(t)‖ = ‖
∫ t
t∗ ėz(s)ds‖ ≤
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∫ t
t∗ gz(s)(s)ds =

√
Ncze

−αt. Since t∗ ≥ t, we have e−αt ≤ e−αt
∗

and eλ
m
Ãz
t ≤ e

λm
Ãz
t∗ . Consequently, τ∗ is

lower bounded by τ̄ , which is the solution to the equation (a1e
λm
Ãz
t∗

+ a2e
−αt∗)τ̄ =

√
Ncze

−α(t∗+τ̄), that

is equivalent to (a1e
(λm
Ãz

+α)t∗
+ a2)τ̄ =

√
Ncze

−ατ̄ .

Since 0 < α < |λm
Ãz
| < −max Re(λ(Ãz)), there exists τ̃ such that τ∗ ≥ τ̄ ≥ τ̃ , where τ̃ is the strictly

positive solution to the equation (a1 + a2)τ̃ =
√
Ncze

−ατ̃ . Hence, τ̃ is the lower bound on the inter-event

times of the detector (178), which implies that there are no Zeno behavior. This completes the proof of the

theorem.

Definition 6.17. A cyber-attack injected to the closed-loop MAS (132) and the observer (133) is detected if

the residual signal

resiz(t) =
∑
j∈Ni

‖zj(tjkj )− zi(t
i
ki

) + qjia
ji
z (t)‖, (184)

satisfies the inequality ‖resiz(t)‖ > ηz, where ηz is the cyber-attack detection threshold.

Assumption 6.7. The adversaries do not have knowledge on the parameters of the event-triggered detector

(178). Hence, they are not capable of designing ajiz (tjkj ) such that zj(t
j
kj

) − zi(tiki) + qjia
ji
z (tjkj ) = 0 as

tjkj →∞.

Remark 6.14. Since agents communicate their state detectors according to the triggering function (180),

the adversary does not have access to these states continuously. Consequently, it is quite reasonable to

assume that the adversary does not have knowledge of the exact values of the parameters in (178).

Corollary 6.1. Consider the Assumptions 6.1-6.7 hold and the MAS (148) is under quasi-covert cyber-

attacks as introduced in the Lemma 6.6. Given that the triggering function (180) has parameters that are

provided in the Theorem 6.8, let the cyber-attack signal be denoted by ajiz (tjkj ) = az0− e
Az(t−tjkj )

zj(t
j
kj

) for

i ∈ Vda and j ∈ Vnc, where az0 ∈ Rn is a constant vector. Consequently, the generated residual (184) by the

k-th agent is nonzero if k ∈ Va or k ∈ Vnca, and Bz is full column rank, and Az − λqFz, for q = 2, . . . , N ,

are Hurwitz in detectors (181), where λq is defined as in Theorem 6.8.

Proof. Suppose Bz is a full column rank matrix and Az − λqFz, for q = 2, . . . , N , are Hurwitz. Conse-

quently, following along the steps as in proof of Theorem 6.7, the detectors that belong to the set Va do
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not reach az0 as the consensus set point since dynamics of the virtual adversary agent does not have Bzx̂i.

Hence, cyber-attacks are detectable by using the detectors of agents that belong to this set.

Since under cyber-attacks the agents observers states do not reach a consensus, δ̇z(t) in the proof of

Theorem 6.8 depends on x̂(t), which implies that the detectors do not reach a consensus as well and the

cyber-attacks are detectable on the set Vnca. This completes the proof of the corollary.

6.7 Numerical Case Studies

6.7.1 Privacy Preserving Consensus Control for Formation Flying of Satellites

In this numerical case study, the effectiveness of the proposed privacy preserving dynamic controller

Ci in reaching consensus among the MAS Σi is illustrated. Dynamics of agents and controllers are given

by (127) and (137), respectively. In this case study, our objective is to achieve formation flying among a

group of satellites such that they reach the same velocity along the x-axis, the y-axis, and the z-axis in three

dimensional space. Moreover, satellites are required to maintain a prescribed distance from one another.

A group of 6 satellites is considered with the characteristic matrices given by [66]:

A =

 0 I3

A1 A2

 , B =

 0

I3

 , C =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 ,

A1 =


0 0 0

0 3ω2
0 0

0 0 −ω2
0

 , A2 =


0 2ω0 0

2ω0 0 0

0 0 0

 ,

where xi(t) = [ri(t)
> ṙi(t)

>]>, ri(t) = [xx
i (t), x

y
i (t), x

z
i(t)]

> ∈ R3 denotes the position of the i-th satel-

lite, ṙi(t) = [ẋx
i (t) ẋ

y
i (t) ẋ

z
i(t)]

> ∈ R3 is the velocity vector of the satellite i, and ω0 = 0.001 is the circular

orbit rate.

Moreover, our objective is to have ‖(ri(t)−hi)− (rj(t)−hj)‖ = 0 and ‖ṙi(t)− ṙj(t)‖ = 0 as t→∞,

where hi − hj ∈ R3 denotes the prescribed constant separation between the i-th and the j-th satellites, for
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Figure 6.2: Communication graph of the satellites.

j ∈ Ni. Consequently, we modify Πi(t) and ui(t) in (137) as given below


Πi(t) =

∑
j∈Ni

(H̄(z̃x
i (t)− z̃x

j (t)) + (Jj z̃y
j (t)− Jiz̃

y
i (t))),

ui(t) = K
∑
j∈Ni

P̄ (z̃x
i (t)− z̃x

j (t)),

for i = 1, . . . , 6, where z̃x
i (t) = zx

i (t) − h̃x
i , z̃

y
i (t) = z

y
i (t) − h̃

y
i , h̃

x
i = Pi[h

>
i 0>1×3]>, and h̃y

i = Jihi. Also,

we have h1 = [20 20 0]>, h2 = [−20 −20 0]>, h3 = [−60 −60 0]>, h4 = [−40 −40 0]>, h5 = [40 40 0]>,

h6 = [80 80 0]>.

The communication graph among the satellites is shown in Figure 6.2. Moreover, the Laplacian matrix

associated with the communication graph is given by:

L =



0 0 0 0 0 0

−1 2 −1 0 0 0

0 0 1 −1 0 0

−1 0 0 1 0 0

0 0 0 −1 1 0

0 0 0 0 −1 1


.

The nonzero eigenvalues of the matrix L are 1 and 2.

In this case study, due to its simplicity, we have used the Givens rotation provided in Definition 6.4 to
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design the isometric isomorphisms. One can also use the Householder transformation to achieve control and

privacy objectives stated in Subsection 6.2.1. We choose, for q = 0, . . . , 6, Pq = G1(α
p
q, β

p
q , θ

p
q) ∈ R6×6

such that αp
q = 3, βp

q = 4, and θp
q = (q + 1)π/13. Moreover, let Sq = G2(αs

q, β
s
q, θ

s
q) ∈ R3×3, where we

select αs
q = 2, βs

q = 3, and θs
q = (q + 1)π/17.

The parameters of dynamic controller Ci are selected as

K =


−22 −4 −6 −4 4 −10

−18 −18 −12 −2 −6 6

−22 −8 −22 2 −4 −2

 , H =



−42 −24 −42

−2 −22 −22

−2 −2 −20

−22 −22.2 −24

−22 −20 −36

−22 0 −36


.

In Figure 6.3, the output measurements of all satellites are shown. As seen from Figure 6.3, satellites

reach a formation flying, while they utilize the controller Ci and share z̃x
i (t) and z̃y

i (t). Moreover, accord-

ing to Theorem 6.2 their dynamics are indistinguishable by eavesdroppers and honest-but-curious agents.

Relative positions of satellites in three dimensional space is shown in Figure 6.4. The transformed output

measurements, ỹi(t) are shown in Figure 6.5 and Figure 6.6 which are different from true output measure-

ments. Adversaries are capable of reading the transmitted signal z̃y
i (t) shown in Figure 6.7. However, from

Figure 6.7 it can be seen that by eavesdropping the signal z̃y
i (t), adversaries cannot discover true positions

of satellites.

6.7.2 Controllability Cyber-Attacks in MAS

In this numerical example, the controllability conditions that are provided in Theorems 6.3 and 6.4 are

studied for a MAS system consisting of 6 agents. The agent dynamics and its observer are given by (127),
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Figure 6.3: Output measurement of each satellite.

and (128), respectively, with the following matrices [66]:

A =

−2 2

−1 1

 , B =

1

0

 , C =

1 0

0 1

 ,
H =

 0 0.3

−0.3 0

 , K =

[
−1 2

]
.

The communication graph among the agents is shown in Figure 6.8, and its corresponding Laplacian
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Figure 6.4: Relative positions at t = [2, 100).

matrix is L = [1, 0, 0, 0, 0, -1; 0, 2, 0, 0, -1, -1; 0, -1, 1, 0, 0, 0; 0, -1, -1, 2, 0, 0; 0, -1, 0, 0, 1, 0; 0, 0, 0, 0,

-1, 1].

Let us assume that the incoming communication links of agents 4, 5, and 6 are under attack so that

one obtains Lf = [1, 0, 0; 0, 2, 0; 0, -1, 1] and lfa = [0, 0, -1; 0, -1, -1; 0, 0, 0], where the eigenvalues

of Lf are λ1 = 1, λ2 = 1, λ3 = 2, corresponding to the right eigenvectors [1, 0, 0]T , [0, 0, 1]T , and

[0, 0.7071, −0.7071]T , respectively. Since the geometric multiplicity of each eigenvalue is equal to its

algebraic multiplicity, conditions in Assumption 6.4 hold. In this example, the conditions in Theorem 6.3

are not satisfied and rank(C∗) = 5. Hence, the adversary does not have control over the entire MAS system

as provided in Definition 6.6, however, an adversary may still impact the followers as described in Definition

6.7 and Theorem 6.4.

Considering Theorem 6.4, the rank of the controllability matrices (Ǎ+B̌Ǩ+diȞČ, Ȟa) for i = 4, 5, 6

are equal to 4, the rank of the controllability of the pair (Lf, lfa) is 3, and the rank of the controllability of

(Ǎ + B̌Ǩ + λjȞČ, ȞČ) for j = 1, 2, 3 is equal to 4. Therefore, the adversary has the capability of
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Figure 6.5: The transformed outputs, ỹi(t).

manipulating and controlling the three agents 1, 2, 3 by simultaneously attacking the agents 4, 5, and 6.

As shown in Figure 6.9, the six agents reach a consensus and their states converge, while at t = 30

(s) the adversary injects its attack signals to the agents 4, 5, and 6 and the remaining agents are controlled

through the directly attacked agents. In Figure 6.9, to illustrate the capability of the adversary in controlling

all the agents, the states of each agent are set to different values by choosing different attack signals for the

directly attacked agents.

In Figure 6.10, it can be seen that the attack that has occurred at t = 30 (s) is designed such that the

agents reach a new consensus that is desirable to the adversary. In this attack scenario, the directly attacked
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Figure 6.6: Transformed positions in 3D space at t = [2, 100).

agents have the same attack signals so that they reach to the same point and the remaining agents follow

them. This example illustrates that even without having full controllability over the MAS systems as stated

in Definition 6.6, the adversary is capable of imposing a major impact on the trajectory and behavior of the

agents.

The security controllability index for the directly attacked agents are SCI4 = 0, SCI5 = 1, SCI6 = 2,

and for the MAS system is SCI = 3. It follows that SCI4 = 0, which implies that through agent 4 the

adversary is not capable of controlling any of the followers. However, attacking the agents 5 and 6 do not

provide controllability over the agent 4 to the adversary, and hence, in this case it will be attacked directly.
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Figure 6.7: The transmitted signal z̃y
i (t) among satellites.

6.8 Undetectable Cyber-Attacks in MAS and Event-Triggered Detector Mod-

ule

In this case study, cyber-attacks that are introduced in the Theorem 6.7 and the quasi-covert cyber-attacks

in the Lemma 6.6 are investigated. Moreover, the effectiveness of event triggered detector that was proposed

in Section 6.6 in detecting the quasi-covert cyber-attacks is demonstrated and illustrated. A MAS consisting

of 6 agents along with their observer-based consensus protocols having the dynamics as given in (127) and
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Figure 6.9: State trajectories of the six agents in presence of cyber-attack injected at t = 30 (s).
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Figure 6.10: Change in the consensus set point by the adversary injecting cyber-attack signals at t = 30 (s).

(131), respectively, with the following parameters are studied [66] in:

A =

−2 2

−1 1

 , B =

1

0

 , C =

1 0

0 1

 ,
F =

15 0

15 15

 , K =

[
2 −10

]
, c = −2.

The Laplacian matrix of the communication links among agents is given by L =[1, -1, 0, 0, 0, 0; -1, 1, 0, 0,

0, 0; -1, 0, 2, -1, 0, 0; 0, -1, 0, 2, 0, -1; 0, 0, -1, 0, 1, 0; 0, 0, 0, 0, -1, 1]. The detector parameters in (178) are

Az =

−1 0

0 −2

, Bz = I2 × 5, Fz = I2 × 10, cz = 0.002, and α = 0.2.
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Figure 6.11: Residuals of agents while the cyber-attacks are injected at t = 10 (s).

Agents 1 and 2 are the roots of the spanning trees as contained in graph G of the network. In this case

study, agents 4 and 5 are directly under cyber-attacks such that Vda = {4, 5}, Va = {4, 5, 6}, Vnc = {1, 2, 3},

and Vnca = {3}.

In Figure 6.11, the residuals of agents in presence of cyber-attacks as introduced in the Theorem 6.7 are

shown. After the occurrence of the cyber-attack at t = 10 (s) it is detected by the agent 3 that belongs to the

set Vnca, whereas it is undetectable by the rest of network agents.

The impacts of the quasi-covert cyber-attack on MAS are illustrated in Figure 6.12. As can be observed

in this figure the agent 3 states after the quasi-covert cyber-attack is injected at t = 30 (s) reach to those of

the agents 1 and 2. Consequently, this cyber-attack is undetectable on the entire network as shown in Figure

6.13. By using the event-triggered detectors that are proposed in (178), the residuals (184) are generated

and shown in Figure 6.14. It follows from this figure that all agents’ residuals that belong to the set Va are

nonzero and exceed the threshold ηz = 3. Moreover, the agent 3 residual exceeds the threshold as well.

190



0 5 10 15 20 25 30 35 40 45 50

time(s)

-40

-20

0

20

40
States of Agents Under Quasi-Covert Cyber Attack (Agents 4 and 5 Directly Under Cyber Attacks)

Agent 1

Agent 2

Agent 3

Agent 4

Agent 5

Agent 6

0 5 10 15 20 25 30 35 40 45 50

time(s)

-10

0

10

20

30
States of Agents

Figure 6.12: States of agents in presence of cyber-attacks at t = 10 (s) and quasi-covert cyber-attacks at
t = 30 (s).

6.9 Conclusion

In this chapter, four main problems related to cyber-attacks in multi-agent systems (MAS) were studied.

First, the problem of data privacy protection of MAS was investigated. By utilizing our proposed isometric

isomorphisms, dynamics of agents are transformed into new bases. Each agent employs a unique isomet-

ric isomorphism. Moreover, a dynamic consensus protocol has been developed which uses the transformed

sensor measurements and controller states of the neighboring agents to reach consensus in the MAS and pre-

serve the privacy of agents. An algorithm is also provided to describe the communication protocol among

the agents in order to ensure that the transformed dynamics of agents are indistinguishable by eavesdrop-

per adversaries and honest-but-curious agents. As for the second problem, certain types of cyber-attacks

on MAS systems were investigated and developed. In one cyber-attack scenario, the adversary targets the

incoming communication links for a team of agents and disguises the attack signals as transmitted informa-

tion among the agents. Therefore, there are two groups of agents, those that are first directly attacked, and

those that can be considered as followers of the first group. The conditions under which the adversary has
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Figure 6.13: Residuals approach to zero after occurrence of the quasi-covert cyber-attacks at t = 30 (s).

full control over the two agent groups were investigated. The notions of security controllability for each of

the directly attacked agents as well as the entire MAS system have been proposed and developed. These

notions can be used to identify agents that allow the adversary high control authority over the MAS network.

Moreover, it was shown that the adversary is not capable of simultaneously performing zero dynamics at-

tacks on the directly attacked agents and the followers. In the third problem, detectability of cyber-attacks

on the communication links of certain teams of MAS has been investigated. A definition that can be used to

specify undetectable cyber-attacks on MAS was developed and proposed. It was shown that cyber-attacks

on communication links of the root of a directed spanning tree graph are undetectable. Moreover, cyber-

attacks on the non-root agents were investigated. It was shown that cyber-attacks on non-root agents can

be detected by the set of agents provided that one can determine an uncompromised directed path from the

root of the graph to these agents. Novel quasi-covert cyber-attacks were introduced that can be injected to

maintain and ensure these attacks on non-root agents remain undetectable by the entire network. Finally, an

event-triggered detector was proposed that is capable of detecting quasi-covert cyber-attacks.
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Chapter 7

Conclusions and Future Directions of

Research

In this thesis, various cyber-attack detection methodologies for cyber-physical systems (CPS) were de-

veloped and studied from a system theoretic point of view. In Chapter 3, the focus was on addressing the

challenge of simultaneously detecting and isolating machine-induced faults and intelligent malicious adver-

sarial cyber-attacks within CPS. Two methodologies, centralized and distributed, were introduced based on

the use of filters and unknown input observers (UIO) on both the plant and command and control (C&C)

sides of the CPS. The proposed distributed methodology involves communication between UIO-based de-

tectors of each subsystem and those in nearby subsystems. This enables each subsystem, under specific

conditions, to identify and isolate both its own cyber-attacks and faults, as well as anomalies in neighboring

subsystems. Through the centralized and distributed strategies, the simultaneous detection of machine-

induced actuator and sensor faults, along with undetectable cyber-attacks like covert and zero dynamics

attacks, and detectable cyber-attacks such as false data injection attacks, becomes achievable.

Chapter 4 explores the vulnerability of CPS to zero dynamics attacks, covert attacks, and controllable

cyber-attacks. These stealthy cyber-attacks can cause damage to the CPS without being detected. Under

certain assumptions, we derived conditions for the existence of these cyber-attacks based on nonzero Markov

parameters and entries of the observability matrix. Moreover, based on the derived conditions, the required

level of system knowledge and disruption resources for executing zero dynamics attacks, covert attacks, and
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controllable attacks can be determined for CPS.

Consequently, a dynamic coding scheme was specifically introduced for zero dynamics and controllable

attacks to maximize the security index of the CPS and increase their resiliency against the mentioned cyber

threats. In presence of the dynamic coding schemes, securing just one actuator prevents adversaries from ex-

ecuting zero dynamics and controllable cyber-attacks. Also, challenges related to formulating necessary and

sufficient conditions regarding disruption resources that adversaries need for executing covert cyber-attacks

were tackled. These conditions help to identify the input and output communication channels necessary for

performing covert attacks. Furthermore, an upper bound on the security index for covert attacks was defined

which indicates the minimum number of actuators and sensors that need to be attacked for a successful

covert cyber-attack. As a countermeasure, a dynamic coding scheme was developed that under certain de-

sign conditions and assuming the existence of secure input and output communication channels, prevents

the occurrence of covert cyber-attacks.

In Chapter 5, the focus is on studying stealthy cyber-attacks within both linear and nonlinear CPS. The

concept of security effort (SE) is introduced as a formal metric for linear CPS, representing the minimum

number of input and output communication channels that should be secured to prevent adversaries from

executing zero dynamics attacks, covert attacks, and controllable attacks. Since zero dynamics attacks and

perfectly undetectable cyber-attacks belong to the weakly unobservable and controllable weakly unobserv-

able subspaces of the CPS, the SE is defined and derived based on making these subspaces zero.

In the case of nonlinear CPS, the Koopman operator theory is employed to investigate data-driven

stealthy cyber-attacks. The concept of ε-stealthy cyber-attacks is defined as a measure of detectability for

nonlinear CPS. The Koopman canonical form of the nonlinear control affine CPS is utilized to determine

the relative degree, enabling the discovery of internal dynamics, i.e., the zero dynamics, of the nonlinear

CPS. Strategies for executing zero dynamics and covert cyber-attacks in nonlinear CPS are proposed, and

conditions for securing sensor measurements to prevent these cyber-attacks are studied.

Chapter 6 addresses four key issues concerning cyber-attacks in multi-agent systems (MAS). First, the

problem of protecting data privacy within MAS is explored. Isometric isomorphisms are utilized to trans-

form the dynamics of agents into new bases, with each agent using a unique isometric isomorphism. A dy-

namic consensus protocol is developed, employing transformed sensor measurements and controller states
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to achieve consensus while preserving agents’ privacy. An algorithm is provided to ensure communica-

tion protocols maintain the indistinguishibility of transformed dynamics from eavesdropper adversaries and

honest-but-curious agents.

The second problem investigates specific types of cyber-attacks on MAS. In one scenario, the adversary

targets incoming communication links for a group of agents, disguising attack signals as transmitted infor-

mation. Conditions for the adversary to have full control over the entire MAS by attacking a few number

of agents are investigated. Moreover, notions of security controllability for individual agents and the entire

MAS system are introduced. It is demonstrated that how the adversary can perform zero dynamics attacks

on directly attacked agents and their followers.

The third problem concerns the detectability of cyber-attacks on communication links within MAS

teams. A definition for undetectable cyber-attacks on MAS is proposed. Cyber-attacks on the root of a

directed spanning tree graph are shown to be undetectable, while those on non-root agents can be detected if

an uncompromised directed path from the root to these agents exists. Moreover, quasi-covert cyber-attacks

are introduced as novel cyber-attacks in MAS. As for the fourth problem, an event-triggered detector is

proposed to detect cyber-attacks in MAS. It is demonstrated that the proposed event-triggered detector can

detect quasi-covert cyber-attacks in MAS.

7.1 Future Research Directions

The future research direction of this thesis can be summarized below.

(1) Considering that in real-world application, CPS contain nonlinearities, developing CAFDI method-

ologies for nonlinear CPS would be an interesting topic for further investigation.

(2) We have adopted a centralized design approach for the proposed dynamic coding schemes in this

thesis. In order to make the coding scheme design and implementation more efficient, one needs to

investigate developing distributed dynamic coding schemes that can be used in distributed CPS and

MAS.

(3) Computation of the proposed security effort (SE) is an NP-hard problem. Hence, as for a future

work, one may investigate a method to determine the SE in a generic manner that is computationally

196



efficient.

(4) Considering the availability of data for various systems in the modern world, developing a data-driven

cyber-attack detection methodology for nonlinear CPS can be an interesting topic and a focus for

future works.

(5) Our proposed privacy preserving consensus control methodology was developed for homogeneous

MAS. Hence, as an extension of this work, one can focus on developing a privacy preserving consen-

sus protocol for heterogeneous MAS.

(6) As for our proposed transformation method for privacy preserving control, we utilized Given’s rotation

and Householder transformation which are linear isometric isomorphisms. To extend this work, one

can explore nonlinear isomorphisms for privacy preservation control which may lead to higher levels

of data privacy protection.

(7) In Theorem 6.4, we have an assumption on the grounded Laplacian of the MAS. Relaxing this as-

sumption is challenging and can be a focus of future research which can help to address the problem

of controllability in MAS with directed graph that has applications in the general problem of actuator

placement for large-scale CPS.

(8) A challenging topic for future investigation is to study and develop cyber-attack detection and moni-

toring systems for nonlinear MAS.
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[56] M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical systems: Koopman operator meets

model predictive control,” Automatica, vol. 93, pp. 149–160, 2018.

203
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