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Abstract

Advanced Stochastic Programming and Machine Learning Models for Healthcare Planning,

Scheduling, and Prediction Problems

Soheyl Khalilpourazari, Ph.D.

Concordia University, 2024

The increasing demand for global healthcare systems highlights the urgent need for innovative

solutions. In response to this challenge, we uses advanced Stochastic Programming and Machine

Learning methods to introduce significant improvements in appointment scheduling, operating room

planning, and modeling and prediction of the COVID-19 pandemic.

In the first paper, we study the healthcare appointment scheduling problem. The main chal-

lenges in appointment scheduling are uncertainties in no-shows, unpunctuality, and service times.

We propose a novel stochastic programming model that captures an exponential number of scenar-

ios using a pseudo-polynomial number of variables and constraints without relying on sampling

methods. The presented methodology is exact. We show that the generated schedules reduce total

costs by 34% on average by incorporating patient-dependent service times, 12% by considering

patient-and-time-dependent unpunctuality, and 67% by integrating patient-and-time-dependent no-

shows. In addition, we show that personalized reminders have the potential to reduce total costs by

23%.

In the second paper, we study a stochastic operating room planning problem. The unpredictabil-

ity of surgical durations poses a considerable challenge to efficient OR planning. Existing models

often overlook this source of uncertainty. This paper introduces a novel stochastic programming

model that effectively manages the uncertainty in surgical times. This model advances the litera-

ture by capturing an exponential number of scenarios in a weekly operating room planning problem

without sampling, simplifications, or approximations. The results of the computational experiments

revealed that our model obtains feasible solutions with an average optimality gap of 0.78% for
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instances with 80 surgeries and 1.48E+64 scenarios.

In the third, fourth and fifth papers, we focus on modeling and prediction of the COVID-19

pandemic and aim at developing methodologies that inform and guide public health decisions. In

these three papers, we proposed a hybrid reinforcement learning based algorithm as well as two

other evolutionary computation based algorithms to forecast the spread of the COVID-19 pandemic.

By applying these methods to real-world data from Canada, Quebec, Ontario, France and the U.S.,

we aim to offer insights into effective pandemic response strategies. We predict the pandemic

trajectory as well as the number of different cases with high accuracy.
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Chapter 1

Introduction

In today’s global landscape, healthcare systems are faced with unprecedented challenges. The emer-

gence of health crises, such as the COVID-19 pandemic, coupled with the increasing demands on

healthcare infrastructures highlights a pressing need. The main challenge is to offer high-quality

healthcare while improving healthcare operations without incurring unsustainable costs. Increasing

efficiency, accessibility, and maintaining high quality, present a complex issue that requires creative

and new solutions. Healthcare systems that are inefficient, inaccessible, or compromise quality can

lead to severe consequences for public health, economic stability, and social equity. Inefficiencies

lead to wasted resources and longer wait times that diminish the system’s responsiveness to public

health emergencies. Limited accessibility increases health disparities, which leaves vulnerable pop-

ulations without necessary care. Compromises on the quality of care can result in adverse health

outcomes that erode public trust in healthcare systems. Therefore, optimizing healthcare delivery is

not just a matter of administrative or operational concern but a vital issue that impacts society.

To address these challenges, this dissertation proposes different methods that use advanced

Stochastic Programming (SP) and Machine Learning (ML). The aim is to use these advanced

methodologies to introduce significant improvements in critical aspects of healthcare delivery in-

cluding appointment scheduling, operating room planning, and modeling and prediction of the

COVID-19 pandemic. By integrating stochastic programming and machine learning this study aims

to pave new paths in healthcare optimization and address major challenges healthcare facilities face

today.
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In the following, initially, we start with an introduction to appointment scheduling and operating

room planning problems, which are the focus of the first and second papers that are presented in

Chapters 2 and 3, respectively. Subsequently, we provide an introduction to modeling and prediction

of the COVID-19 pandemic that covers the subject of the third, fourth, and fifth papers which are

presented in Chapters 4, 5, and 6.

1.1 Appointment Scheduling

Appointment Scheduling (AS) focuses on assigning appointment times to a fixed number of patients

to provide inclusive, affordable, and timely access to high-quality healthcare, which has become a

critical concern in today’s society (Dai and Tayur, 2020; Samorani et al., 2022). Rapid develop-

ments in the healthcare sector have initiated a transition towards patient-centered care, a model that

emphasizes affordable, cost-effective, and quality health services prioritizing patient experience.

This is important since the waiting time for healthcare services in Canada are long. Thus, it has

become crucial for healthcare providers to continually improve and maintain the highest level of

service quality.

The main challenge in AS is that there are three main sources of uncertainties including patient

no-shows and unpunctuality, and variations in service times that negatively impact clinics’ opera-

tions, and reduce clinics’ efficiency and revenue. Service time durations in appointment scheduling

are uncertain due to the variability in patients’ health conditions and the nature of their visits. For

instance, new patients might require longer consultations for a comprehensive health assessment,

whereas return patients could be visiting for a quick check-up or a complex procedure based on

their ongoing treatment. In addition, patient no-show and unpunctuality refer to cases where a

patient does not show up for his/her scheduled appointment, or if he/she shows up for the appoint-

ment, he/she is not punctual. Moreover, the uncertainty in patient unpunctuality and no-shows is a

patient-and-time-dependent factor as their likelihood can vary based on the time of the appointment

and individual patient history, such as their past behavior regarding attendance, traffic, and weather

conditions.

Traditional models often fall short in capturing the full spectrum of these uncertainties that lead
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to inefficiencies and diminished service quality. In the information era and with more data becom-

ing available, incorporating patient-dependent and time-dependent considerations into appointment

scheduling models is essential. Using historical data, we can have a deeper understanding of pa-

tient behavior, which enables us to generate more accurate schedules. In addition, the dynamic

nature of these behaviors, influenced by the time of appointments, necessitates models that can in-

corporate patient-and-time-dependent considerations. To the best of our knowledge, no study in

the literature has simultaneously addressed all these sources of uncertainties with patient-and-time-

dependent consideration, which is mainly due to modeling complexity. Addressing this gap, this

dissertation introduces a novel stochastic programming model that, for the first time, accurately re-

flects patient-dependent service times, and patient-and-time-dependent unpunctuality and no-shows

simultaneously. This model’s innovation lies in its ability to capture an exponential number of sce-

narios and offer a more detailed and effective approach to appointment scheduling. This paper,

presented in Chapter 2, is submitted to Manufacturing & Service Operations Management.

1.2 Operating Room Planning

Operating room (OR) planning emerges as a critical area due to its significant impact on hospitals’

operational efficiency and finances. Operating rooms contribute substantially to hospital revenues;

therefore, optimizing their use is essential for improving service quality and reducing patient wait

times. The main challenge in OR optimization lies in the unpredictable nature of surgical times

which makes planning a complex task. Research in this area falls into three primary categories

based on the approach to uncertainty: deterministic models, stochastic programming models, and

robust optimization models. Deterministic models often overlook the variability in surgical times

which potentially leads to infeasible plans or unexpected costs. Stochastic programming models

consider a limited number of uncertain scenarios for the duration of surgical times, which offer

more realistic solutions but can become hard to solve with an increase in the number of scenarios.

Robust optimization models consider that the duration of surgeries belongs to an uncertainty set and

focus on optimizing the worst-case scenario, which might result in overly conservative plans. We

will provide more detail on these approaches in section 3.1.
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This dissertation introduces an innovative stochastic programming model for OR planning that

addresses the limitations of existing methodologies. Our proposed stochastic programming model

can capture an exponential number of scenarios without sampling which is a significant advance-

ment in OR optimization. We demonstrate the effectiveness of our model through extensive com-

putational experiments that highlight its capability in solving large size instances efficiently. This

paper, presented in Chapter 3, is published in Annals of Operations Research.

1.3 Modeling and Prediction of the COVID-19 pandemic

The unprecedented global impact of pandemics in the past and especially the COVID-19 pandemic

in recent years have highlighted the importance of an accurate modeling and prediction approach

for future outbreaks. During the COVID-19 pandemic, although most COVID patients recovered

independently, some other patients with severe and critical symptoms needed hospitalization (Public

Health Agency of Canada, 2020). However, given the capacity limitations of the healthcare system

and limited resources, it was not feasible to admit all patients to hospitals (Public Health Agency

of Canada, 2020; Government of Canada, 2023). To be prepared for similar problems in the future,

it is crucial to develop new methods to model and predict pandemics’ growth and determine when

to apply public health actions to prevent the spread of viruses/bacteria. Such approaches will also

provide policymakers with valuable information to optimize resource allocation in the healthcare

system to ensure proper patient care and equipment availability.

Recently, the SIDARTHE model proposed by Giordano et al. (2020) in Nature Medicine, shows

promising advances in pandemic modeling and prediction. However, the authors have highlighted

that the model’s complexity presents challenges in solving the set of differential equations (Giordano

et al., 2020). This model results in computing vital epidemiological parameters such as reproduction

rate that shows how fast a disease is spreading in the population. By solving the SIDARTHE model

we can estimate the future number of recovered, death, life-threatening, and infected cases, and

values of the parameters associated with the pandemic dynamics.

In this line of research, we have introduced several algorithms to find the optimal parameters

for the SIDARTHE model. In the first paper, we propose a new hybrid algorithm by combining
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the learning power of reinforcement learning with the problem-solving capabilities of evolutionary

computation to solve the SIDARTHE model. Using reinforcement learning as the algorithm’s core

and various evolutionary computation operators as updating mechanisms, our approach has been

able to efficiently solve the SIDARTHE model. In the second paper, we propose a fractal-based

algorithm to solve the problem and use Design on Experiments (DOE) to tune the parameters of the

algorithm to enhance its performance. In the third paper, we propose a gradient-enhanced evolu-

tionary algorithm that uses the gradient to better guide the search in the solution space to solve the

SIDARTHE model more efficiently. These approaches not only facilitate the efficient resolution of

complex differential equations associated with pandemic modeling but also help policymakers and

healthcare professionals with the tools needed to anticipate and mitigate the impacts of future pan-

demics. We have implemented our algorithms to real data from Canada, Quebec, Ontario, and the

U.S. and have provided several managerial insights about future trends of the COVID-19 pandemic.

The results of this line of research are published in three papers in Annals of Operations Research,

International Journal of Production Research, and Expert Systems with Applications. These papers

are presented in Chapters 4, 5, and 6, respectively.
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Chapter 2

Stochastic appointment scheduling with

patient-and-time-dependent probability

distributions 1

Abstract

Problem definition: Patient scheduling requires balancing provider idle time, overtime, and

patient waiting time. Yet, some factors such as no-shows, unpunctuality, and uncertain service

times make scheduling a challenging task resulting in high clinic costs and low patient satisfaction.

Addressing these factors in appointment scheduling is a difficult task since they follow patient-

and-time-dependent probability distributions. Current models often fail to incorporate patient-and-

time-dependent probability distributions and assume identical distributions for all patients in all

time slots. This is mainly due to increased modeling and solution complexity which can lead to

inefficiencies in scheduling, increased clinic costs, and reduced patient satisfaction. Methodol-

ogy: We propose a novel stochastic programming model that captures an exponential number of

scenarios using a pseudo-polynomial number of variables and constraints without relying on sam-

pling methods. We incorporate patient-dependent probability distributions for service times, and

patient-and-time-dependent distributions for no-shows and arrival times. To enhance the model,

1This paper is submitted to Manufacturing & Service Operations Management
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we explore the impact of personalized reminders on no-show rates and schedule effectiveness. We

investigate strategies to minimize the negative impact of no-shows on patient waiting times and the

provider idle time. Results: The results demonstrate that our proposed model is able to optimally

solve large-scale instances with up to 1.97E+8890 scenarios in a reasonable computational time.

We demonstrate that the generated schedules reduce total costs by 34% on average by incorporat-

ing patient-dependent service times, 12% by considering patient-and-time-dependent unpunctuality,

and 67% by integrating patient-and-time-dependent no-shows. In addition, we show that personal-

ized reminders has the potential to reduce total costs by 23%. Managerial insights: Our approach

has a significant potential to improve the efficiency of the healthcare services. The generated sched-

ules enhance patient satisfaction, improve clinic operations, and resource utilization by reducing

patient waiting time, provider idle time, and overtime costs. Furthermore, our findings highlight the

potential of personalized communication strategies in enhancing patient attendance and reducing

no-show rates.

2.1 Introduction

Ensuring inclusive, affordable, and timely access to high-quality healthcare has become a critical

concern in today’s society. To achieve this, continuous improvement in healthcare is essential, par-

ticularly in enhancing the patient experience. This includes not only the direct medical care received

but also the overall journey patients navigate through the healthcare system (Dai and Tayur, 2020;

Samorani et al., 2022). In this context, Appointment Scheduling (AS) is an essential tool for re-

ducing patient wait times, provider idle times, and clinic overtime. However, the effectiveness of

appointment scheduling is frequently undermined by uncertainties in service times, patient unpunc-

tuality, and patient no-shows.

The existing literature on the variability in service times has often treated service durations as

identically distributed for all patients (Hassin and Mendel, 2008; Kaandorp and Koole, 2007; Li

et al., 2016; Tai-Seale et al., 2007). This assumption overlooks the real-world scenarios where

service times vary due to multiple patient factors. Although classifications such as inpatient vs.

outpatient (Sickinger and Kolisch, 2009) and new vs. return patients (Cayirli et al., 2008) have been
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attempted, they fail to fully capture the variability in service times. The primary reason for this

is the inherent complexity and diversity of patient needs. Inpatient and outpatient classifications,

while useful, do not account for the wide range of medical conditions and associated treatments

that can significantly affect service times. Similarly, categorizing patients as new or return offers

limited insight into the actual time required for their care. New patients might need extensive ini-

tial consultations and evaluations, but this is not always the case. Conversely, return patients could

require simple follow-up visits or complex ongoing treatments. Thus, these classifications over-

look other crucial factors such as the health status of the patient. All these variables contribute to

the variability in service times which makes these classifications insufficient to accurately reflect

service time for each patient. In recent research, Salzarulo et al. (2016) showed that a scheduling

methodology based on patient-dependent service times results in more accurate schedules. Despite

the effectiveness of their approach regarding patient-dependent service times, the authors utilized

an identical method to model patient no-shows and unpunctuality, which did not include a patient-

and-time-dependent analysis of patient behaviors. This generalized approach potentially overlooks

the diverse nature of patient attendance patterns. Secondly, their solution methodology is an ap-

proximation rather than an exact approach. This aspect of their research, while practical for certain

scenarios, may not properly reflect the complexities present in real-world healthcare environments.

The approximation approach could potentially limit the model’s accuracy and adaptability in more

complex or variable clinical settings. Our model, unlike Salzarulo et al. (2016) can handle patient-

dependent stochastic service times, and patient-and-time-dependent unpunctuality and no-shows in

a more comprehensive manner. Our model captures an exponential number of scenarios which is

achieved through a novel stochastic programming model that has a significantly fewer variables

and constraints. The presented methodology is exact thus leading to a more precise and efficient

optimization of appointment schedules.

Patient unpunctuality is another source of uncertainty that negatively impacts operations at most

healthcare appointment systems. This factor has been mostly oversimplified in existing models to

a random variable with little to no consideration of patients’ historical behavior or appointment

time (Jiang et al., 2019; Zacharias and Yunes, 2020). Our proposed model addresses this gap by

incorporating a patient-and-time-dependent level of unpunctuality. We consider several factors such
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as individual behavior and external conditions such as traffic and weather to generate more accurate

schedules to improve healthcare services.

Another source of uncertainty that disrupts clinics’ operations is no-shows (i.e., a patient not

showing up for an appointment.). Pesata et al. (1999) showed that 14,000 missed appointments in a

children’s hospital in a metropolitan area with a population of 220,000 in a midwestern state in a year

resulted in a loss of more than one million dollars. Despite the limitations, the existing literature has

often addressed no-shows as an identical probability distribution for all patients (Luo et al., 2012;

Daggy et al., 2010; Bennett and Baxley, 2009). In the literature, there is a noticeable lack of focus on

the patient-and-time-dependent variations in no-show rates. This oversight represents a significant

gap in research highlighting the need for more comprehensive models that accurately reflect the

dynamic nature of patients’ behavior in healthcare scheduling. Our research aims to overcome this

limitation by integrating both patient and time dependency of no-shows into our approach. We

introduce a novel model that achieves more accurate schedules and results in reduced waiting times,

overtime, and higher provider utilization.

One of the main reasons that makes current models in appointment scheduling less efficient

is that they often fail to consider patient-and-time-specific factors due to modeling complexity (Li

et al., 2019; Kong et al., 2020). To address this gap, our research presents an innovative stochastic

programming approach to the problem. Our model uses a pseudo-polynomial number of variables

and constraints that are independent of the exponential number of stochastic scenarios. This enables

us to simultaneously consider patient-dependent stochastic service times, and patient-and-time-

dependent unpunctuality and no-shows. Our approach significantly improves healthcare providers’

resource utilization and enhances patient satisfaction by efficiently handling the complex and un-

predictable variables in healthcare scheduling.

The other important distinction between this paper and the literature is that the proposed ap-

proach considers a case when patients inform the clinic about their availability/unavailability by

responding to reminders. This feature allows the clinics to explore new ways to minimize the nega-

tive impact of no-shows on waiting times and provider idle time. We examine the cost-effectiveness

and potential benefits of implementing our new methodology in clinics and show that the gener-

ated schedules reduce total costs by 34% on average by incorporating patient-dependent service
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times, and 12% and 67% by considering patient-and-time-dependent unpunctuality and no-shows,

respectively. Furthermore, we show that considering incentives to encourage patients to respond

to reminders and inform the clinic about their no-show has the potential to reduce the total costs

further by 23%. Our research, in addition to the technical contributions, also provides several man-

agerial insights that help healthcare providers improve their services and stay competitive in today’s

patient-centered healthcare environment. This method will assist clinics in increasing patient satis-

faction which will potentially lead to lower patient turnover and higher patient retention rates which

are essential for healthcare providers in the competitive market.

The paper is structured as follows: In Section 2.2 we review the literature and identify research

gaps. In Section 2.3 we define the problem and introduce a novel stochastic programming model

for appointment scheduling considering uncertain service times, no-shows, and unpunctuality. In

Section 2.4 , we present computational results and extensive experiments to evaluate the efficiency

of our model. This section also studies the impacts of various factors on clinic efficiency. In Section

2.5 we conclude the paper and provide future research avenues.

2.2 Literature Review

Our research draws on four streams of research for addressing no-shows, unpunctuality and vari-

able service times including (i) deterministic models, (ii) stochastic optimization models including

stochastic programming and dynamic programming, (iii) robust optimization, and (iiii) queuing

theory and simulation approaches.

The extensive literature on deterministic models assumes that the primary parameters of the ap-

pointment scheduling models are known and remain unchanged throughout the scheduling horizon.

However, these approaches fail to account for potential fluctuations in the key parameters. Conse-

quently, any changes in these parameters will make the solution inapplicable or cause significant

costs to the clinic.

Stochastic programming models in the literature explore the modeling of appointment schedul-

ing under uncertain conditions with known probability distributions and study the effects of no-

shows, random service times, and unpunctuality. Jiang et al. (2019) study outpatient scheduling
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and propose a stochastic programming model for the problem. The authors use a Benders Decom-

position within the framework of a sample average approximation algorithm to solve the model.

They consider uncertainty in the service time and unpunctuality probabilities (identical distribu-

tions for all patients). Zhan et al. (2021) develop a stochastic programming model for an integrated

routing and appointment scheduling problem. The research consider stochastic service times and

generate 1,000 scenarios and solve the model using an L-shape algorithm within the sample av-

erage approximation. LaGanga and Lawrence (2012) propose a heuristic to solve an appointment

scheduling problem considering no-shows that could obtain near-optimal overbooked schedules to

minimize the effects of no-shows. Erdogan and Denton (2013) study an appointment scheduling

problem considering no-shows and present two stochastic linear programming models for the prob-

lem. The first two-stage model incorporate no-shows while the second stochastic model focus on

assigning appointments to patients dynamically over the planning horizon. They generate 10,000

random scenarios and solve the models using a decomposition-based algorithm. Shehadeh et al.

(2021) formulate a multistage stochastic mixed integer program for appointment scheduling prob-

lem with patient-dependent arrival times and service times. The authors use a Mont Carlo approach

to generate 200 scenarios and evaluate the performance of the model.

Dynamic programming is also another common approach to model and solve appointment

scheduling problems. Liu et al. (2010) model appointment scheduling with no-shows as a Markov

Decision Process (MDP) and propose heuristics to solve it. Feldman et al. (2014) study the appoint-

ment scheduling problem and consider patient preference and no-shows. The authors present two

models including a static and a dynamic one. In the static model, different subsets of appointment

days is offered to the patient while ignoring the current state of booked appointments. On the other

hand, the dynamic model uses the current state of booked appointments to offer the patient a set

of appointment days. Due to the complexity of solving the problem using dynamic programming,

they use an approximation approach instead to solve the problem. Soltani et al. (2019) propose a

discrete-time Markov chain process for appointment scheduling and address stochastic service times

and patient no-shows for multiple-provider systems. The objective function focuses on minimizing

patient waiting time, and provider idle time and overtime. Their approach use a machine learning

approach to capture patterns to guide a heuristic algorithm toward near-optimal solutions. Diamant
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et al. (2018) study the appointment scheduling problem with no-shows and formulate the problem

as a Markov decision process. They solve the model using an approximate dynamic programming

algorithm.

Some research in the literature has used queuing theory to model appointment scheduling. Liu

(2016) propose an M/M/1/K queuing model for choosing appointment scheduling window (i.e. pa-

tients cannot make appointments beyond a given day from the day when they make appointments)

with patient-specific no-show probabilities. Luo et al. (2019) propose an M/M/1/N queuing model

to determine the optimal appointment scheduling window to minimize no-shows. Zacharias and

Yunes (2020) study the appointment scheduling problem with time-dependent no-shows, unpunctu-

ality, and stochastic service times. The authors propose a single-server queueing model to determine

the clinic’s workload over time and prove that the objective function is supermodular.

Simulation approaches are also commonly used to address appointment scheduling problems in

the literature. Cayirli et al. (2012) introduce a ªDomeº appointment rule for appointment scheduling

by creating a planning constant, that controls the time intervals between appointments to denote

various appointment rules, considering no-shows and uncertain service times. To determine the

planning constant, the authors use a nonlinear regression and simulation and create a procedure to

minimize the effect of no-shows by adjusting the mean and standard deviation of service times.

Robust optimization is also widely used to handle uncertainties in the appointment scheduling

problem that focuses on enhancing scheduling robustness against worst-case scenarios. Mandel-

baum et al. (2020) propose a data-driven robust optimization approach for an appointment schedul-

ing problem with uncertain service durations and punctuality. They use a bootstrapping procedure

to generate service durations based on observed unpunctuality and service durations in the data.

Kong et al. (2020) present a distributionally robust approach for an appointment scheduling problem

with random service times and time-dependent no-shows to minimize the worst-case total expected

costs. Jiang et al. (2017) propose a distributionally robust optimization for an appointment schedul-

ing problem under no-shows and consider the worst-case expectation/conditional value-at-risk cost.

They formulate the problem as a mixed integer nonlinear programming model and solve it using a

completely positive decomposition algorithm that use approximation heuristics during the solution

process.
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Despite the significant advancements offered by these studies, several studies have applied iden-

tical probability distributions to patient no-shows and unpunctuality while neglecting the critical

aspect of service time variability linked to patient health states. The closest works to our research

are the papers that consider an individualized approach toward appointment scheduling. Salzarulo

et al. (2016) consider service time as a function of patient health conditions. While their method-

ology offers a step towards personalized scheduling, it does not fully capture the patient-and-time

dependency in unpunctuality and no-shows. In another research, Li et al. (2019) propose a Bayesian

nested logit model and provide an estimation of the individual no-show probabilities of patients. In

a case study and using a simulation approach, they provide an approximation solution and show that

their model improves the clinic’s profit, yet their approach may lack the consideration of variations

in service times and unpunctuality. The lack of an individualized approach toward appointment

scheduling is also evident in Kong et al. (2020) who consider random service times and time-

dependent no-shows.

In real-world appointment scheduling problems, service times are patient-dependent, and pa-

tient unpunctuality and no-shows are patient-and-time-dependent. Many researchers have studied

appointment scheduling with some of these complicating criteria and details separately. However,

in none of the studies above, we observe all uncertainty factors with explained details simultane-

ously (Kong et al., 2020; Salzarulo et al., 2016; Li et al., 2019; Zacharias and Yunes, 2020). This is

because considering these factors makes the modeling complex and cannot be solved optimally by

available optimization methodologies. As a remedy to these problems, we propose a novel stochas-

tic mixed-integer programming model that simultaneously considers patient-dependent stochastic

service times, and patient-and-time-dependent unpunctuality and no-shows. In addition, the pro-

posed model considers arbitrary probability distributions for uncertain parameters without limiting

the probability distributions to be of the same type and captures these distributions as they are

without any sampling. The model benefits from a pseudo-polynomial number of variables and con-

straints that enables us to consider an exponential number of stochastic scenarios and solve the

problem optimally or with a very low optimality gap in a reasonable time. Through these enhance-

ments, our research offers a more flexible, and comprehensive solution to appointment scheduling

challenges and sets a new benchmark for personalized patient care and clinic efficiency.
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2.3 Problem Definition and Formulation

We consider an appointment scheduling problem where we have to assign appointment times to a

certain number of patients. A single healthcare provider continues visiting patients up to a max-

imum overtime limit beyond which the remaining appointments are cancelled. Some of the main

challenges in this problem are as follows:

(1) Service durations are both stochastic and patient-dependent. This variability in service du-

rations reflects the diversity in patients’ health conditions. In our study, we explore a broad

setting where service durations are allowed to follow diverse, non-identical independent prob-

ability distributions without being confined to well-known distributions.

(2) Patient arrival times are stochastic and patient-and-time-dependent that reflect the uncertainty

associated with patient unpunctuality. Patient-dependency means that, for each patient, we

have a different set of probability distributions to represent his/her unpunctuality. Also, time-

dependency means that the amount of lateness/earliness depends on the allocated appointment

time. We consider this assumption to incorporate the effect of traffic in rush hours on patient

unpunctuality. This setting allows for greater modeling flexibility by considering patient-and-

time-dependency simultaneously.

(3) In some cases, patients may not show up for their appointment. As suggested by Kong et al.

(2020), we assume that the probability of no-shows is time-dependent. Our model advances

this assumption by incorporating both time-dependent and patient-dependent probabilities

for no-shows, thereby enriching the existing framework with a more detailed understanding

of patient behavior

The primary goal of this research is to minimize the weighted sum of healthcare provider idle

times, patient waiting times, and the penalties corresponding to health provider overtime. In the

following, initially, we present a simplified model that mainly focuses on the stochastic patient-

dependent service durations. This simplification allows us to establish a fundamental understanding

of the scheduling dynamics and the presented model without the added complexities of patient
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unpunctuality and no-shows. Building upon the simplified model, we progressively integrate the

stochastic patient unpunctuality and no-shows in Section 2.3.2. In Section 2.3.3, we further refine

our model to incorporate the impact of appointment reminders and patient notifications on no-show

probabilities. This enhancement captures the interactive dynamics between clinic communication

strategies and patient behavior and offers insights into how proactive patient notifications in re-

sponse to reminders can influence scheduling efficiency and resource allocation.

2.3.1 The Basic Stochastic Appointment Scheduling Model

We formulate the problem by a novel SP approach, called state variable model, that results in a

closed-form MIP model (Doulabi et al., 2022). The main advantage of this formulation is its ability

to handle an exponential number of scenarios efficiently using a pseudo-polynomial number of

variables and constraints. This feature is particularly beneficial as it facilitates the solution of large-

scale instances with an exponential number of scenarios within a computationally feasible time. To

present the proposed model, we define the sets, variables, and parameters as follows:

Sets:

I : The ordered set of patients, .i.e., I = {1, 2, . . . , |I|}. Also, we suppose I0 = I ∪ {0}

where ª0º denotes a dummy patient with a service time equal to 0 that is scheduled

before the first patient at the beginning of the clinic time.

T : The set of possible appointment times that are multiples of a small time unit (e.g., 2

minutes) denoted by θ, resulting in T = {0, θ, 2θ, 3θ . . . , L + O}. We suppose that all

stochastic service and arrival times are multiple of θ.
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Ti : The set of possible appointment times for patient i. We have

Ti =





{0}, i = 1,

{
t ∈ T | t ≥

∑
i′∈I:i′<i t

min
i′
}
, i ∈ I \ {1},

{.}, i = |I|+ 1.

T1 = {0} shows that we always offer the first available time to patient 1. In computation

of Ti for i ∈ I , we consider the minimum service time of previous patients denoted by

tmin
i′ . Also, i = |I| + 1 denotes a dummy patient that is always scheduled after the last

patient at a dummy time {.}.

Fi : The set of possible finish times for patient i. We have

Fi =





{
t ∈ T | t ≥

∑
i′∈I:i′≤i t

min
i′

}
∪ {f∗}, i ̸= 0,

{0}, i = 0.

In this relation, f∗ represents the case that the appointment of patient i finishes at the

time slot after cancellation threshold L+O. For simplicity of understanding the model,

one can consider f∗ = O + L+ 1.

Parameters:

L : The available clinic time.

O : The maximum available overtime of the clinic. After time L+O, the appointments of all

remaining patients (if any are available) are canceled.

tmin
i : The minimum possible service time of patient i.

cpifiti+1
: The waiting cost of patient i+1 provided that he/she is given an appointment time of ti+1

and the service to patient i has finished at the time fi. We have cpifiti+1
= αp[fi − ti+1]

+

where αp is the penalty for a patient waiting for a time unit and [x]+ is equal to x if it is

positive and 0 otherwise.
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cdifiti+1
: The health provider idle cost while waiting for patient i + 1 provided that the patient is

given an appointment time of ti+1 and the service to the previous patient i has finished

at the time fi. We have cdifiti+1
= αd[ti+1 − fi]

+ where αd is the penalty for the health

provider waiting for a time unit.

coifiti+1
: The expected over time cost corresponding to the service to patient i + 1 provided that

the patient is given an appointment time of ti+1 and the service to the previous patient i

has finished at the time fi. We have

coifiti+1
= αo

(
E[max

(
L,max (fi, ti+1) + d̃i+1

)
−max(L, fi)]

)
where d̃i+1 is a

random variable representing the service duration of the patient i+ 1.

αc : The cancellation cost of an appointment.

Variables:

witi : 1 if we assign time slot ti to patient i; 0 otherwise.

zifiti+1
: The probability that the service to patient i finishes at the time fi (for fi < O + L) and

we have w(i+1)ti+1
= 1, i.e., the next patient i + 1 is scheduled at the time ti+1. If

w(i+1)ti+1
= 1 holds, zifiti+1

will be equal to the above probability. Otherwise, it will

be equal to 0. In the case of i = |I| + 1, ti+1 can only take the dummy value ª.º and

we ignore the last condition w(i+1)ti+1
= 1. Also, for fi = O + L, zifiti+1

computes

the probability that the service to patient i finishes at the time fi or later and we have

w(i+1)ti+1
= 1. Finally, for fi = f∗, zifiti+1

represents the probability that patient i is

cancelled due to exceeding the cancellation threshold of O+L, while for the next patient

we have w(i+1)ti+1
= 1,

Using the given notation, we formulate the simplified appointment scheduling problem as (M1).
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(M1) min
∑

i∈I0

∑

fi∈Fi

∑

ti+1∈Ti+1

(
cpifiti+1

+ cdifiti+1

+ coifiti+1
+ αc

1(fi=f∗)

)
zifiti+1

(1)

∑

ti∈Ti

witi = 1, ∀i ∈ I, (2)

∑

fi−1∈Fi−1

z(i−1)fi−1ti = witi , ∀i ∈ I, ti ∈ Ti, (3)

∑

fi−1∈Fi−1

∑

ti∈Ti

z(i−1)fi−1ti Pr
(
max (ti, fi−1) + d̃i = fi

)
=

∑

ti+1∈Ti+1

zifiti+1
, ∀i ∈ I, fi ∈ Fi \ {f

∗}, (4)

∑

fi−1∈Fi−1

∑

ti∈Ti

z(i−1)fi−1ti Pr
(
max (ti, fi−1) + d̃i ≥ fi

)
=

∑

ti+1∈Ti+1

zifiti+1
, ∀i ∈ I, fi = f∗, (5)

witi ∈ {0, 1}, ∀i ∈ I, ti ∈ Ti, (6)

0 ≤ zifiti+1
≤ 1, ∀i ∈ I0, fi ∈ Fi, ti+1 ∈ Ti+1. (7)

In equation (1), the objective function minimizes the expected value of the total cost. The func-

tion includes an indicator, 1(fi=f∗) which is set to 1 when the condition fi=f∗ holds and 0 other-

wise. Constraint (2) ensures that we assign exactly a single appointment time to each patient to avoid

any missing or duplicated appointments. Constraint (3) establishes a relationship between variables

z(i−1)fi−1ti and witi . This constraint implies that if witi is equal to 0, then all corresponding vari-

ables z(i−1)fi−1ti are equal to 0. This is consistent with the definition of variables z(i−1)fi−1ti .

When witi is equal to 1, the sum of variables z(i−1)fi−1ti on the left-hand side of constraint (3)

must be equal to 1. This reflects that for a fixed i∈I, and ti∈Ti, z(i−1)fi−1ti variables represent

the probability distribution of the finish time of service to the patient (i−1). Constraint (4) con-

secutively compute the values of variables zifiti+1
using conditional probability relations based on

variables z(i−1)fi−1ti and the probability terms Pr(max(ti, fi−1)+d̃iξ=fi). The right-hand side of

this constraint calculates the probability that the appointment of patient i finishes at the time fi. The

left-hand side of the constraint (4) also computes the same probability by multiplying z(i−1)fi−1ti ,
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which represents the probability that the appointment of the patient (i − 1) finishes at the time

fi−1 and patient i is scheduled at the time ti, by the probability Pr(max(ti, fi−1)+d̃iξ=fi). This

represents the probability that the duration of the appointment for patient i is such that we fin-

ish patient i at the time fi. Similarly, constraint (5) calculate the values of variables zifiti+1
for

fi = f∗ using conditional probability relations based on variables z(i−1)fi−1ti and the probability

term Pr(max(ti, fi−1)+d̃iξ≥fi).

Theorem 1. Model (1) - (7) is a valid formulation.

The proof of Theorem 1 is provided in Appendix A. To illustrate the application of the proposed

model, particularly in managing service time uncertainty in the Appointment Scheduling (AS) prob-

lem, we provide a numerical example in Appendix B.

2.3.2 Incorporating No-Show and Punctuality

In this section, we enhance our model by incorporating stochastic arrival times and no-shows to

further align it with the unpredictable nature of real-world healthcare scheduling scenarios. We

introduce the random variable ãit to represent time perturbations in the arrival of patient i from

his/her appointment scheduled at time t. A negative value of ãit indicates that the patient arrives

earlier than expected, whereas a positive value indicates a delay. Moreover, we define parameter πit

to represent the probability of a no-show for patient i at appointment time t. These enhancements

are crucial for capturing the dynamic and uncertain aspects of patient attendance behavior. We

also note that that these stochastic parameters take into account the patient-and-time-dependency

simultaneously.

To integrate these factors into our state-variable model, we modify the transition probabilities in

constraints (4) and (5). The revised probabilities account for variations in arrival times, as denoted

by ãit, and the probability of patient no-shows, as represented by πit. Therefore, the updated tran-

sition probability in constraint (4), which now incorporates the stochastic nature of patient arrivals

and no-show probabilities, is formulated as:

πitPr ((max (ti, fi−1) )=fi) +(1−πit)Pr(max(ti+ãit, fi−1)+d̃i=fi). (8)
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Similarly, the revised probability for constraint (5) is formulated as:

πitPr ((max (ti, fi−1) )≥fi) +(1−πit)Pr(max(ti+ãit, fi−1)+d̃i≥fi). (9)

These modifications ensure that our model accurately reflects the stochastic nature of patient

arrival times and no-shows when determining the appointment start and finish times. This enhances

the model’s applicability and reliability in practical healthcare scheduling cases.

2.3.3 Incorporating No-Shows and Punctuality and Reminders

In this section, we augment our model to encompass a realistic scenario in healthcare scheduling

that is when patients notifying the clinic in advance if they are unable to attend their appointment.

This scenario is particularly relevant for clinics that utilize reminder systems and prompt patients to

confirm or cancel their appointments.

To model this new feature, we introduce a probability πinfo which represents the likelihood of

patients notifying the clinic about their no-show in response to reminders. Using this probability,

we can evaluate the effectiveness of the reminder system in prompting patient responses regarding

their appointment attendance.

The incorporation of πinfo necessitates modifications to the transition probabilities in con-

straints (4) and (5). These adjustments are essential to accurately represent the dynamics of the sys-

tem when patients proactively communicate their attendance or absence. By considering stochastic

service times, arrivals, no-shows, and the probability of responding to reminders, the new transition

probability for constraint (4) is formulated as:

πit

[
πinfo

1 (fi−1 = fi) + (1− πinfo) Pr (max(ti, fi−1) = fi)
]

+(1− πit) Pr
(
max(ti + ãit, fi−1) + d̃i = fi

)
.

(10)

Consequently, the probability transition in constraint (5) will be updated to reflect these addi-

tional factors. The revised formulation considering stochastic service times, arrivals, no-show, and
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the likelihood of patients responding to reminders is formulated as:

πit

[
πinfo

1 (fi−1 ≥ fi) + (1− πinfo) Pr (max(ti, fi−1) ≥ fi)
]

+(1− πit) Pr
(
max(ti + ãit, fi−1) + d̃i ≥ fi

)
. (11)

It is important to note that the validity of this enhanced model originates from the validity of the

original model as demonstrated in Appendix A. The primary difference in the enhanced model is in

the updated transition probabilities which now accommodate the added detail of patient responses

to reminders.

2.4 Computational results

Our computational analysis aims to evaluate the performance of the proposed state-variable model

through a series of targeted questions, each designed to assess a critical aspect of healthcare appoint-

ment scheduling. These computational analyses will aim at answering the following questions:

(1) Does our proposed state-variable model demonstrate computational efficiency?

(2) How does the inclusion of different HS levels influence the appointment scheduling effi-

ciency?

(3) What is the impact of patient-and-time-dependent SA on appointment scheduling efficiency?

(4) In what ways do considering patient-and-time-dependent NS levels affect the appointment

schedule?

(5) How does incorporating reminders to encourage patients to disclose their no-show behavior

alter the appointment schedule and overall system efficiency?

(6) What are the effects of enhanced patient show-up, for instance through incentives, on the

optimal appointment schedule efficiency?

To design our computational experiments, we consider the three key factors on clinic operational
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efficiency including service times, stochastic arrivals, and no-shows. As it will be discussed in Sec-

tion 2.4.1.1, we categorize service times into four levels and both stochastic arrivals and no-shows

into five levels to consider the independent and simultaneous effect of patient and time dependency

in in these factors. Our computational experiments include the following analyses to answer the

above questions:

(1) To answer Question 1, first, we evaluate the computational efficiency of the model by solv-

ing several instances using CPLEX in C++. This assessment will provide insights into the

practicality and scalability of the model in various settings.

(2) To answer Questions 2, 3, and 4, we separately explore the effects of incorporating patient-

dependent service times (HS), and patient-and-time-dependent stochastic arrival times (SA),

and no-shows (NS) into the scheduling model.

(3) To answer Question 5, we assess the influence of patient information-sharing through re-

sponding to reminders on appointment scheduling. This includes studying how encouraging

patients to proactively communicate their attendance intentions, particularly through no-show

disclosures in response to reminders, affect scheduling efficiency.

(4) To answer Question 6, we introduce a scaling parameter that adjusts the show-up probability

of patients. This parameter is crucial for understanding how fluctuations in patient attendance

probabilities affect the appointment schedule efficiency.

In the following, first we explain the instance generation and the different settings for HS, SA,

and NS factors in Section 2.4.1. Then in Section 2.4.2, we provide the results of the computational

experiments and provide several managerial insights.

2.4.1 Instance generation

To generate instances, we consider session lengths of 150, 210, and 270 minutes to reflect diversity

in clinical practices as in (Salzarulo et al., 2016; Klassen and Yoogalingam, 2009). Moreover, we

consider a predetermined overtime allowance of 60 minutes. Our model incorporates three cost

parameters including αd, αp, and αo which represent the cost per minute for healthcare provider
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idleness, patient wait time, and overtime, respectively. In our research, the cost ratio factor (αd/αp)

represents the relative importance of healthcare provider time to patient waiting time. Following

Klassen and Yoogalingam (2009) and Salzarulo et al. (2016), we explore the cost ratio across three

distinct levels including 1, 5, and 10, to understand its impact on operational efficiency. Moreover,

the overtime cost is set to 1.5 times higher than the idle time cost (Salzarulo et al., 2016). We

investigate the above-mentioned settings in instances with 10, 12, and 14 patients to assess the

effectiveness of the model across various clinical settings. This approach enables us to thoroughly

evaluate the interplay of these diverse factors and their collective impact on the efficiency of clinical

appointment scheduling.

Following Klassen and Yoogalingam (2009), we consider no-show rates ranging from 0% to

30% that are generated using a uniform distribution. To generate realistic values for unpunctuality,

we assume an average early arrival time of 10 minutes. The data is derived from several normal

distributions with means of -5, -10, and -15 minutes and a standard deviation of 1.7 as suggested by

(Salzarulo et al., 2016; Cayirli et al., 2008).

2.4.1.1 Service times

As in Salzarulo et al. (2016), in Set 1, we model the service times as probability functions of

patients’ health states. In the following, we consider four levels of information on patients’ health

states. Each level introduces increasing complexity in terms of patient-dependent information and

needs, as follows:

HS0 (Level 1): This baseline level does not incorporate any specific health information and assumes

that appointment durations are uniform and not influenced by individual patient characteristics.

HS1 (Level 2): At this level, patients are classified as either returning or new. To estimate the mean

examination time for the ith patient and its standard error, we utilize a logarithmic transformation

as follows (Salzarulo et al., 2016):

ln (µi) = 2.329RP + 2.247NP, (12)

σi = 0.658. (13)
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HS2 (Level 3): Here, we incorporate more patient-specific information and categorize patients into

four health states including Low Health, Moderate Health, High Health, and Excellent Health. In

addition, we consider factors such as prescription medication (PM), physical examination (PE), total

chronic conditions (TC), and unspecified visit reasons (NR). The log-transformed mean examination

time is computed as follows (Salzarulo et al., 2016):

ln (µi) = 3.088HLow
i + 2.430HMid

i + 2.341HHigh
i + 2.184HPerf

i

+0.147TC − 0.106NR+ 0.315PE − 0.102PM, (14)

with a standard error of σi = 0.644.

HS3 (Level 4): This advanced level includes the main effects of HS2 and additional two-way

interactions. At this level, we calculate the log transformation of ith patient’s mean examination

duration and the standard deviation as follows (Salzarulo et al., 2016):

ln (µi) = 3.112HLow
i + 2.462HMid

i + 2.388HHigh
i + 2.245HPerf

i + 0.145TC−

0.116NR+ 0.265PE − 0.108PM − 0.105NP − 0.369BC + 0.785NP (BC), (15)

σi = 0.642. (16)

Table 2.4 presents a concise summary of the key factors considered at each health state level.

This Table outlines the presence (+) or absence (-) of each factor across HS0, HS1, HS2, and HS3

(Salzarulo et al., 2016).

To assess the impact of varying levels of health state information levels on appointment schedul-

ing, we generate 10 instances for each combination of clinic time, cost ratio, and the number of

patients. This approach yields a substantial dataset comprising 1080 unique instances that offers

a rich basis for in-depth analysis. This comprehensive approach allows us to perform a detailed

investigation of how health state information affects appointment scheduling in clinical settings.
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Table 2.4: Key factors at each health state level

Health State

HS0 HS1 HS2 HS3

Return Patients (RP) - + - -

New patients (NP) - + + -

Low Health- (HLow
i ) - - + +

Moderate Health- (HMid
i ) - - + +

High Health- (HHi
i ) - - + +

Excellent Health- (H
Perf
i ) - - + +

Total Chronic (TC) - - + +

No Reason (NR) - - + +

Physical Examination (PE) - - + +

Prescription Medication (PM) - - + +

Birth Control (BC) - - - +

New Patient × Birth Control NP(BC) - - - +

2.4.1.2 Patient Unpunctuality

In Set 2, we examine different levels of patient unpunctuality categorized as SA0, SA1, SA2, SA3,

and SA4 where each represents varying degrees of information about patient unpunctuality.

SA0 (Level 1): This baseline level assumes all patients are punctual and arrive on time.

SA1 (Level 2): Here, we introduce a single unpunctuality distribution for all patients that is uniform

across various time slots. This setting represents the case that the clinic collects unpunctuality data

regardless of the patient information and the appointment time.

SA2 (Level 3): We consider different unpunctuality distributions for different time slots. We note

that the distribution considered for each time slot is independent of the patient information, and it

applies to the time slot regardless of the patient information. This setting represents the case that

the clinic collects the unpunctuality data considering the appointment time regardless of the patient

information.

SA3 (Level 4): At this level, we consider different patient-dependent unpunctuality distributions

that apply to all time slots. Essentially, it acknowledges the variance in patient arrival patterns but

assumes these patterns are consistent across various times of the day. This setting models a scenario

where the clinic gathers unpunctuality data unique to each patient but does not differentiate the data

based on appointment times.
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SA4 (Level 5): In the most detailed level, SA4, we introduce patient-and-time-dependent unpunc-

tuality distributions. This setup represents the case where the clinic collects detailed unpunctuality

data considering both the patient behavior and the appointment times.

In the following, we first explain the formulas for SA4 in which the unpunctuality of patient i

is patient-and-time-dependent. Then, we provide information about other levels that are simplified

versions of the fifth level. For SA4, we model patient unpunctuality using a truncated normal distri-

bution with a mean µit and standard deviation σarrival. For this purpose, we present the following

equation:

µit = µi + β
(
µ
(αt

α

)
− µ

)
, (17)

where µi stands for the mean unpunctuality of patient i during regular traffic. Besides, the coefficient

β is a control parameter to increase or decrease the effect of traffic. Coefficient αt is the traffic

index that reflects the relative traffic volume at time slot t. The average traffic index α and average

punctuality µ are calculated over all time slots and patients, respectively, as follows.

α =

∑
t∈T αt

|T |
. (18)

µ =

∑
i∈I µi

|I|
. (19)

In Eq.(18), for the values of αt we have used the traffic data of arterial roads in urban areas of

Ohio in 2016 (Ohio Department of Transportation, 2023). Also, in Eq.(19), we generate patient-

specific mean unpunctuality µi using a uniform distribution in the range of [-25, -5] minutes. This

results in |I| × |T | distributions for µit in SA4. In all these truncated normal distributions, we

considered the domain of [µit−3σit, µit+3σit] for the random parameter where σit is the standard

deviation of distribution.

To construct the unpunctuality models for SA1, SA2, and SA3, we average µit over different

dimensions. For SA3, we calculate the average of the parameter µit over time slots yielding a unique

truncated normal distribution for each patient. For SA2, we average µit over patients for each time

slot which yields a truncated normal distribution for each time slot. Finally, for SA1, parameter
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µit is averaged over both patients and time slots which creates a single distribution applicable to all

patients and time slots.

To assess the impact of varying levels of detail about patient unpunctuality on appointment

scheduling, we generate 10 instances for each combination of clinic time, cost ratio, and the number

of patients that results in a total of 1350 instances. Such an extensive evaluation is crucial to thor-

oughly investigate how different levels of unpunctuality information affect appointment scheduling.

This will enhance our understanding of the dynamics involved in managing patient arrivals in vari-

ous healthcare settings.

2.4.1.3 No-shows

In Set 3 of our analysis of the appointment scheduling problem, we have integrated no-shows as a

pivotal factor. We consider five distinct levels including NS0, NS1, NS2, NS3, and NS4 to represent

varying degrees of information about patient no-shows.

NS0 (Level 1): At this level, we consider a basic scenario with no specific no-show data in which

all patients are assumed to attend their appointments.

NS1 (Level 2): Here a single distribution for no-shows applicable to all patients across all time

slots. The distribution is valid for all time slots and all patients as we do not have time and patient

dependency. This level models a scenario where a clinic collects no-show data regardless of the

patient and the appointment time.

NS2 (Level 3): This level introduces time-dependent no-show distributions. We consider a specific

distribution for each timeslot that applies to all patients assigned to that timeslot. This setting

represents a case in which clinics collect no-show data based on appointment times while ignoring

individual patient characteristics.

NS3 (Level 4): Here, we focus on patient- dependent no-show distributions that are consistent

across different time slots. This approach represents clinics that collect individual patient no-show

data regardless of their appointment times.

NS4 (Level 5): This is the most detailed level, where no-show probabilities are tailored to individual

patients and specific time slots. This setting depicts a clinic collecting comprehensive no-show data

considering both patient behavior and appointment times.
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In the following, we first explain the process to generate NS4, and then we provide information

about NS3, NS2, NS1, and NS0 levels. For NS4, the no-show probability for each patient i at

time slot t is set to πit=π
′
i+π

′′
t , where parameter π

′′
t is a time-dependent no-show parameter and

parameter π
′
i is a patient-dependent constant that enables πit to take varying values for different

patients at a particular time slot t. For π
′′
t , we refer to Figure 1-a in Kong et al. (2020) for time-

dependent no-show probabilities. Besides, we uniformly generated π
′
i in the interval [-0.3, 0.3].

To generate NS3, we calculate the average of πit over different time slots for each patient and

obtained a distinct truncated normal distribution for each patient. For NS2, we compute the average

of πit across patients for each time slot which yields a unique truncated normal distribution for each

time slot. Furthermore, for NS1, we calculate the average of πit across both patients and time slots

and determine one truncated normal distribution for all patients and all time slots.

To assess the impact of varying no-show levels on appointment scheduling, we generate 10

instances for each combination of clinic time, cost ratio, and the number of patients that results in a

total of 1350 instances.

2.4.2 Computational experiments and results

In this section, we report the computational results to answer questions presented at the beginning

of Section 2.4. To solve the proposed model, we use CPLEX 12.10 on a PC with an AMD Rome

7532 @ 2.40 GHz 256M cache L3 CPU and 16 GB of RAM. We considered a time limit of 24 hours

for each instance. Remarkably, the majority of instances were resolved well before this limit that

shows the effectiveness of the model in handling complex scheduling problems. This performance

indicates not only the computational viability of the proposed approach for real-world application

but also its potential for scalability to larger or more complex instances in healthcare scheduling.

2.4.2.1 Tractability of the model

In the following, we perform a comprehensive assessment of our proposed appointment scheduling

model and focus particularly on its performance and computational efficiency. We use the CPLEX

solver and extensively test the model across various settings. Table 2.5 presents the summary of

the computational results of the CPLEX on 270 instances. In this table, the first three columns
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indicate the settings of instances including the number of patients, clinic time, and cost ratio. In

the next columns, we report 1) the number of the stochastic scenarios captured by our model, 2)

the number of variables, 3) the number of constraints, 4) the number of nodes exploited in the

branch-and-bound tree, 5) lower bound, 6) upper bound, 7) time: computational time of the model

in seconds, 8) gap(%): which is computed by gap =
100(UB − LB)

LB , 9) waiting cost, 10) idle cost, and

11) overtime cost. We note that in all these instances we considered HS, NS, and SA at their highest

level of detail that provide in-depth information about the health state, no-show, and unpunctuality

of the patients. This means that the unpunctuality and no-show probabilities follow patient-and-

time-dependent distributions.

Table 2.5 reveals that the proposed model efficiently solves appointment scheduling problems

with an exponential number of stochastic scenarios (Ω = 1.97E+8890) within a reasonable time

limit. This represents a significant accomplishment, especially considering the complexity and scale

of the addressed scheduling problems, which involve patient-and-time-dependent unpunctuality and

no-shows, along with patient-dependent service times. The average optimality gap reported is 0.2

percent with the majority of instances achieving optimal solutions within the allocated time limit.

The average number of variables and constraints are 171323 and 12020, respectively, which are

relatively low considering the exponential number of stochastic scenarios captured by the proposed

model. This highlights the efficiency and innovation of our approach.

A key observation from our analysis is the impact of the number of patients on the clinic’s op-

erational costs. Specifically, as the number of patients increases, while keeping clinic time and cost

ratio constant, there is a corresponding rise in waiting costs, idle costs, and overtime costs. Further-

more, an increase in the cost ratio also leads to increases in costs across waiting costs, idle costs,

and overtime costs. This highlights the need for balancing the workload of healthcare providers and

the patient satisfaction to avoid overburdening the former and dissatisfaction in the latter.

Figure 2.1 presents a visual representation of the calculated finish time probabilities as deter-

mined by our proposed model for a given instance with 14 patients.
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Table 2.5: Computational results of the CPLEX in solving the proposed state-variable model.

No. of patients Clinic time Cost ratio |Ω| No. of variables No. of constraints No. of nodes LB UB Time (sec) Gap (%) Waiting Cost Idle Cost Overtime Cost

10 150 1 9.14E+4050 83031 6880 1551 19.96 19.96 833 0.00 6.31 13.65 0.00

5 9.14E+4050 83031 6880 2326 51.08 51.08 856 0.00 25.41 25.66 0.01

10 9.14E+4050 83031 6880 2367 69.57 69.57 894 0.00 41.53 28.02 0.01

210 1 8.04E+5198 135903 8824 1987 19.31 19.31 1554 0.00 5.59 13.72 0.00

5 8.04E+5198 135903 8824 2354 49.74 49.74 1454 0.00 24.49 25.24 0.00

10 8.04E+5198 135903 8824 3070 68.00 68.00 1735 0.00 41.16 26.84 0.00

270 1 8.28E+6349 201735 10768 1843 19.94 19.94 1834 0.00 6.23 13.71 0.00

5 8.28E+6349 201735 10768 2736 51.05 51.05 2351 0.00 25.70 25.35 0.00

10 8.28E+6349 201735 10768 2350 69.54 69.54 2040 0.00 41.53 28.01 0.00

12 150 1 9.06E+4859 101435 9259 8420 31.45 31.45 9336 0.00 10.10 20.97 0.38

5 9.06E+4859 101435 9259 13114 81.28 81.28 11098 0.00 40.13 39.70 1.45

10 9.06E+4859 101435 9259 10622 112.21 112.21 8629 0.00 64.24 44.92 3.04

210 1 6.95E+6239 166043 11875 7638 30.04 30.04 15247 0.00 9.72 20.32 0.00

5 6.95E+6239 166043 11875 11051 78.30 78.30 17283 0.00 39.42 38.88 0.00

10 6.95E+6239 166043 11875 15599 106.94 106.94 17161 0.00 63.18 43.76 0.00

270 1 5.59E+7618 246491 14491 7399 31.19 31.19 21833 0.00 10.16 21.03 0.00

5 5.59E+7618 246491 14491 6071 80.43 80.43 18945 0.00 40.39 40.04 0.00

10 5.59E+7618 246491 14491 7860 110.34 110.34 17537 0.00 62.61 47.74 0.00

14 150 1 7.17E+5669 119839 11978 14762 41.12 41.12 21304 0.00 14.91 19.82 6.40

5 7.17E+5669 119839 11978 22654 107.94 107.94 30993 0.00 47.52 40.32 20.11

10 7.17E+5669 119839 11978 39844 158.07 158.68 43079 0.49 72.48 47.74 38.47

210 1 9.69E+7279 196183 15362 15203 32.03 32.15 42442 0.37 10.78 21.37 0.00

5 9.69E+7279 196183 15362 21997 83.97 84.94 47453 1.13 41.02 43.91 0.00

10 9.69E+7279 196183 15362 36605 113.69 116.76 62017 2.90 65.43 51.33 0.00

270 1 1.97E+8890 291247 18746 4502 34.58 34.58 18916 0.00 13.36 21.22 0.00

5 1.97E+8890 291247 18746 7313 88.29 88.29 22508 0.00 45.79 42.50 0.00

10 1.97E+8890 291247 18746 16904 120.30 121.05 43601 0.60 71.94 49.11 0.00

Average 171323 12020 10672 68.90 69.11 17886 0.20 34.86 31.66 2.59
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Figure 2.1: Calculated finish time probabilities in 3D.

Based on Figure 2.1, we observe that the probability of finish time of the appointment for last

patients becomes more uncertain compared to those of first patients. This is mainly due to the fact

that the uncertainty in no-show, unpunctuality, and service durations of the first patients affect the

start time of the appointment for later patients.

2.4.2.2 Analysis of Health States (HS)

In Table 2.6, we thoroughly examine the impact of varying levels of Health State (HS) on the

appointment scheduling problem. In this table, for all instances, we have considered the highest

levels of stochastic arrival (SA4) and no-shows (NS4) for all patients. This means we have patient-

and-time-dependent unpunctuality and no-show probability distributions. For instances with the

setting of HS3, we have reported the results obtained from the proposed model directly in the table.

However, the solutions of instances with other health settings (i.e., HS0, HS1, and HS2) must be

evaluated in the reference setting of ªHS3-SA4-NS4º that represents the real-world situation. This

approach aligns with our objective outlined in Question 2 of Section 2.4 that aims to assess the
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significance of incorporating detailed patient health information into scheduling effectiveness.

In order to simulate these solutions (HS0, HS1, and HS2) in the context of the most compre-

hensive health state setting (HS3-SA4-NS4), we first solve the proposed model with ª(HS0, HS1,

or HS2)-SA4-NS4º and save their appointment schedule presented by witi variables. Then, we fix

the witi variables and resolve the model with the reference setting of ªHS3-SA4-NS4º to assess

(or equivalently simulate) the solutions obtained in ª(HS0, HS1, or HS2)-SA4-NS4º. This method

allows us to directly compare the outcomes across different health state settings which provides

insights into the value of detailed patient health information in optimizing appointment scheduling

in complex healthcare environments.

Our results indicate that as we move from HS0 to more detailed levels of HS (HS1, HS2, and

HS3), there is a significant decrease in the total cost, waiting cost, and overtime cost for a given

instance. This trend highlights the substantial benefits of incorporating a comprehensive range of

health related factors into the scheduling model. By integrating more detailed and patient-specific

health information, the model benefits from more accurate probability distributions for service times

and subsequently generates more efficient schedules. Moreover, the results reveal that an increase

in the cost ratio leads to higher total, waiting, idle, and overtime costs across all HS levels.

When comparing HS2 against HS3, we notice only marginal improvements in reducing total

costs. This suggests that while advancing from a moderate to a more detailed understanding of

patient health states does contribute to efficiency, the gains are relatively slight. Given the costs as-

sociated with collecting and integrating more detailed health state data, stakeholders must carefully

consider whether the slight improvements justify the additional efforts and used resources. This is

especially pertinent in settings where resources are limited, and the incremental cost savings might

not offset the investment required for gathering comprehensive health data.

Similarly, the transition from HS0 to HS1 also shows improvements in total cost; however, these

improvements are modest. This comparison indicates that moving from a basic to a slightly more

detailed health state offers benefits, but similar to the HS2 to HS3 transition, the value of these

improvements must be weighed against the costs of data collection and processing.
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Table 2.6: Computational results for HS variations.

Instance information Total Cost Waiting Cost Idle Cost Overtime Cost

No. of patients Clinic time Cost ratio HS0 HS1 HS2 HS3 HS0 HS1 HS2 HS3 HS0 HS1 HS2 HS3 HS0 HS1 HS2 HS3

10 150 1 46.63 45.61 20.48 19.96 41.15 40.08 5.95 6.31 5.48 5.52 14.53 13.65 0 0 0 0

5 79.89 79 51.91 51.08 68.83 68.99 24.59 25.41 11.06 10 27.32 25.66 0.01 0.01 0.01 0.01

10 100.36 100.24 70.97 69.57 87.59 88.27 40.55 41.53 12.75 11.96 30.41 28.02 0.02 0.02 0.01 0.01

210 1 45.62 45.02 19.84 19.31 40.28 39.62 5.68 5.59 5.34 5.39 14.17 13.72 0 0 0 0

5 77.44 77.32 50.39 49.74 66.92 67.59 24.45 24.49 10.52 9.74 25.94 25.24 0 0 0 0

10 99.88 99.95 69.44 68 87.03 87.74 39.86 41.16 12.85 12.21 29.58 26.84 0 0 0 0

270 1 47.33 45.19 20.46 19.94 41.97 39.67 5.86 6.23 5.36 5.53 14.6 13.71 0 0 0 0

5 79.88 78.99 51.87 51.05 68.83 68.83 24.57 25.7 11.06 10.15 27.29 25.35 0 0 0 0

10 100.83 100.95 71.07 69.54 87.23 89.05 40.8 41.53 13.59 11.89 30.27 28.01 0 0 0 0

12 150 1 61.67 63.97 32.05 31.45 53 55.73 11.34 10.1 8.32 7.88 20.34 20.97 0.34 0.35 0.38 0.38

5 114.97 113.11 82.33 81.28 96.95 96.42 42.05 40.13 16.18 14.85 38.83 39.7 1.85 1.83 1.46 1.45

10 145.33 144.29 113.23 112.21 123.22 121.96 66.89 64.24 18.22 18.48 43.29 44.92 3.89 3.84 3.05 3.04

210 1 60.84 62.22 30.52 30.04 52.83 54.47 9.33 9.72 8.01 7.75 21.19 20.32 0 0 0 0

5 110.33 109.82 79.13 78.3 93.66 95.28 40 39.42 16.67 14.54 39.12 38.88 0 0 0 0

10 139.9 138.94 108.11 106.94 121.21 121 64.69 63.18 18.69 17.94 43.42 43.76 0 0 0 0

270 1 61.32 64.45 31.52 31.19 53 56.68 10.12 10.16 8.32 7.77 21.4 21.03 0 0 0 0

5 113.56 111.94 81.48 80.43 97.22 96.31 39.76 40.39 16.34 15.63 41.72 40.04 0 0 0 0

10 139.7 139.04 111.91 110.34 120.96 120.23 66.43 62.61 18.73 18.8 45.48 47.74 0 0 0 0

14 150 1 82.8 81.74 42.06 41.12 70.96 69.99 15.41 14.91 7.83 7.76 20.17 19.82 4 3.99 6.48 6.4

5 156.38 159.39 109.09 107.94 118.3 122.67 44.96 47.52 16.79 15.27 43.58 40.32 21.29 21.45 20.55 20.11

10 214.91 213.98 160.33 158.68 149.93 150.75 69.13 72.48 20.13 18.56 52.35 47.74 44.85 44.67 38.85 38.47

210 1 78.82 77.77 32.81 32.15 71.24 70.26 9.6 10.78 7.58 7.5 23.21 21.37 0 0 0 0

5 133.37 133.02 85.91 84.94 116.95 118.21 39.79 41.02 16.43 14.81 46.12 43.91 0 0 0 0

10 166.91 166.28 117.82 116.76 147.27 147.96 65.17 65.43 19.64 18.32 52.65 51.33 0 0 0 0

270 1 80.56 79.85 35.02 34.58 72.8 72.37 11.57 13.36 7.76 7.48 23.45 21.22 0 0 0 0

5 135.51 137.54 88.93 88.29 118.86 122.08 41.88 45.79 16.66 15.46 47.05 42.5 0 0 0 0

10 170.05 168.5 123.53 121.05 149.93 150.39 65.51 71.94 20.12 18.11 58.01 49.11 0 0 0 0

Average 105.36 105.11 70.08 69.11 89.56 90.1 34.29 34.86 12.98 12.2 33.17 31.66 2.82 2.82 2.62 2.59
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2.4.2.3 Analysis of Stochastic Arrivals (SA)

In Table 2.7, we report the results of computational experiments performed to assess the impact

of different levels of Stochastic Arrivals (SA) on the efficiency appointment scheduling problem.

These findings are key in addressing Question 3, as outlined at the beginning of Section 2.4. This

analysis is instrumental in understanding the extent to which stochastic patient arrival times impact

the overall effectiveness and optimization of healthcare scheduling and provide valuable insights for

enhancing operational efficiency in clinical settings.

In this table, for all instances, we have considered the highest levels of Health State (HS3)

and No-Shows (NS4) for all patients. For instances, we have reported the results obtained from

the proposed model in ªHS3-SA4-NS4º setting directly in the table. However, the solutions of

instances with other stochastic arrival settings (i.e., SA0, SA1, SA2, and SA3) must be evaluated in

the reference setting of ªHS3-SA4-NS4º, as discussed in the previous subsection. This is because

we aim at assessing the importance of including different levels of patients’ stochastic arrivals in

the effectiveness of appointment scheduling.

The outcomes show that SA4, which combines both patient-and-time-dependent unpunctuality

factors, significantly outperforms other stochastic arrival settings. This indicates that, by integrating

the highest level of detail in unpunctuality, the model allocates appointment slots more effectively

that leads to reduced costs and enhanced operational efficiency.

Settings SA2 and SA3 benefit from modeling two different aspects of uncertainty in patients’

arrival times and therefore none of them is expected to dominate the other one in all instances.

However, interestingly, our results indicate that in most instances SA2 dominates SA3 in terms of

the total cost. This observation is reasonable considering that typical traffic patterns are expected

to be the main factor affecting the punctuality of patients. However, it is conceivable that patient

demographics might emerge as a significant factor influencing scheduling outcomes on a case-by-

case basis. Also, our results indicate that SA2 and SA3 outperform SA1, which is a simplified

version of both settings considering only one probability distribution for all patients and all time

slots. Finally, as expected, we observe SA1 is superior to SA0 that assumes that all patient are

punctual.
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Table 2.7: Computational results for SA variations.

Instance information Total Cost Waiting Cost Idle Cost Overtime Cost

No. of patients Clinic time Cost ratio SA0 SA1 SA2 SA3 SA4 SA0 SA1 SA2 SA3 SA4 SA0 SA1 SA2 SA3 SA4 SA0 SA1 SA2 SA3 SA4

10 150 1 22.6 21.24 20.51 20.99 19.96 6.16 5.63 6.24 5.38 6.31 16.44 15.62 14.27 15.61 13.65 0 0 0 0 0

5 58.6 55.21 52.18 54.99 51.08 37.64 33.66 28.85 34.1 25.41 20.95 21.55 23.32 20.88 25.66 0.01 0.01 0.01 0.01 0.01

10 82.02 75.82 70.77 75.47 69.57 61.47 54.07 44.25 54.53 41.53 20.53 21.73 26.51 20.94 28.02 0.01 0.01 0.01 0.01 0.01

210 1 22.16 20.78 19.77 20.38 19.31 5.59 5.2 5.89 5.3 5.59 16.58 15.58 13.88 15.08 13.72 0 0 0 0 0

5 58.12 54.6 50.32 54.31 49.74 39.05 33.65 26.24 33.44 24.49 19.07 20.94 24.08 20.88 25.24 0 0 0 0 0

10 79.67 75.59 69.57 75.26 68 56.68 55.26 42.89 55.02 41.16 22.98 20.34 26.68 20.23 26.84 0 0 0 0 0

270 1 22.62 21.62 20.7 21.12 19.94 6.22 5.25 6.51 5.3 6.23 16.39 16.37 14.19 15.82 13.71 0 0 0 0 0

5 59.1 55.48 52.25 55.46 51.05 37.11 34.24 28.27 33.98 25.7 21.99 21.24 23.98 21.48 25.35 0 0 0 0 0

10 83.17 77.19 71.55 76.41 69.54 64.2 55.31 43.75 57.53 41.53 18.97 21.88 27.8 18.88 28.01 0 0 0 0 0

12 150 1 36.95 34.14 33.24 33.53 31.45 8.8 10.01 11.99 10.22 10.1 27.5 23.63 20.78 22.87 20.97 0.66 0.5 0.47 0.44 0.38

5 92.3 87.27 83.1 85.88 81.28 54.44 49.6 43.6 46.96 40.13 36.43 36.24 38.03 37.52 39.7 1.43 1.43 1.48 1.4 1.45

10 126.82 119.99 114.55 117.53 112.21 89.8 80.32 66.67 76.96 64.24 33.85 36.53 44.82 37.46 44.92 3.17 3.14 3.06 3.11 3.04

210 1 35.46 32.66 31.05 31.88 30.04 8.42 9.27 10.47 8.57 9.72 27.04 23.38 20.58 23.31 20.32 0 0 0 0 0

5 89.93 83.09 79.94 82.51 78.3 56.02 46.92 41.13 46.5 39.42 33.92 36.18 38.81 36.02 38.88 0 0 0 0 0

10 120.64 113.53 108.98 112.93 106.94 89.33 79.04 66.17 76.44 63.18 31.31 34.49 42.81 36.49 43.76 0 0 0 0 0

270 1 36.45 33.74 32.85 33.03 31.19 8.07 10.44 12.25 9.98 10.16 28.38 23.3 20.6 23.05 21.03 0 0 0 0 0

5 90.43 85.34 81.36 83.93 80.43 54.46 49.65 41.8 47.13 40.39 35.98 35.7 39.56 36.8 40.04 0 0 0 0 0

10 123.01 115.81 113.49 113.89 110.34 87.77 80.11 66.12 77.15 62.61 35.24 35.69 47.38 36.74 47.74 0 0 0 0 0

14 150 1 46.89 44.87 42.83 44.03 41.12 13.97 12.96 15.78 14.58 14.91 24.91 23.94 20.55 22.27 19.82 8.01 7.97 6.5 7.18 6.4

5 120.01 117.69 110.24 114.25 107.94 63.04 53.06 47.85 53.67 47.52 37.01 43.85 42.27 40.57 40.32 19.95 20.78 20.12 20.01 20.11

10 175.15 171.65 162.93 168.52 158.68 99.48 86.2 73.02 87.25 72.48 36.59 46.88 50.92 42.89 47.74 39.07 38.57 38.99 38.38 38.47

210 1 38.01 35.96 33.72 35.01 32.15 7.11 8.04 12.05 8.69 10.78 30.9 27.92 21.67 26.31 21.37 0 0 0 0 0

5 95.78 90.7 87.23 90.35 84.94 56.79 46.56 43.91 49.33 41.02 38.99 44.13 43.32 41.02 43.91 0 0 0 0 0

10 132.12 126.34 119.3 125.91 116.76 94.15 81.64 66.25 82.54 65.43 37.97 44.71 53.05 43.37 51.33 0 0 0 0 0

270 1 39.45 38.5 36.47 36.28 34.58 8.24 11.21 15.26 9.94 13.36 31.21 27.29 21.21 26.34 21.22 0 0 0 0 0

5 97.85 93.93 89.92 92.62 88.29 57.29 46.37 46.46 47.08 45.79 40.56 47.57 43.46 45.54 42.5 0 0 0 0 0

10 134.09 131.3 124.46 128.05 121.05 94.34 85.13 70.8 83.14 71.94 39.76 46.17 53.66 44.92 49.11 0 0 0 0 0

Average 78.5 74.56 70.86 73.54 69.11 46.88 41.79 36.46 41.52 34.86 28.94 30.09 31.78 29.4 31.66 2.68 2.68 2.62 2.61 2.59
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We also observe that, an increase in the cost ratio results in higher costs across all SA levels.

Similarly, an increase in the number of patients also leads to an increase in costs that highlights the

challenges posed by larger patient volumes.

2.4.2.4 Analysis of No-Shows (NS)

In Table 2.8, we have reported the computational results for assessing the impact of different levels

of no-show (NS) on the efficiency appointment scheduling problem. These findings contribute to

addressing research Question 4 as outlined at the beginning of Section 2.4.

In this table, for all instances, we have considered the highest levels of Health State (HS3)

and Stochastic Arrivals (SA4) for all patients. As discussed in subsections 2.4.2.2 and 2.4.2.3, we

have evaluated the solutions of instances with NS0, NS1, NS2, and NS3 in the reference setting

of ªHS3-SA4-NS4º. Also, the results of NS4 are directly reported as obtained from the proposed

model.

The results indicate that NS4 significantly outperforms other no-show settings thanks to combin-

ing patient-and-time-dependent no-show factors. This outcome suggests that more detailed no-show

information enables clinics to schedule appointments more effectively thus maximizing resource

utilization. Additionally, similar to the SA analysis, we observe NS2 results in lower total cost than

NS3 implying that time dependency plays a more critical role than patient dependency in no-shows.

This analysis highlights that while our conclusions are generally applicable, variations might oc-

cur on a case-by-case basis, where patient demographics could emerge as a more critical factor in

no-shows.

Notably, NS2 and NS3 demonstrate superior performance compared to NS1, which can be at-

tributed to NS1’s lack of consideration for both time-dependent and patient-dependent no-show

probabilities. Furthermore, NS1 outperforms NS0 which shows the importance of acknowledging

no-shows in the scheduling process. Across all levels of no-shows, an increase in the cost ratio leads

to increased costs. Similarly, as the number of patients increases, so do the total costs, along with

specific increases in waiting, idle, and overtime costs.
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Table 2.8: Computational results for NS variations.

Instance information Total Cost Waiting Cost Idle Cost Overtime Cost

No. of patients Clinic time Cost ratio NS0 NS1 NS2 NS3 NS4 NS0 NS1 NS2 NS3 NS4 NS0 NS1 NS2 NS3 NS4 NS0 NS1 NS2 NS3 NS4

10 150 1 32.25 22.44 21.26 21.04 19.96 0.74 9.6 5.85 10.5 6.31 31.46 12.84 15.41 10.53 13.65 0.05 0 0 0 0

5 141.46 71.2 58.65 57.16 51.08 1.06 58.64 31.21 44.24 25.41 140.35 12.55 27.43 12.92 25.66 0.05 0.01 0.01 0.01 0.01

10 268.62 107.69 79.8 85.01 69.57 1.64 98.71 52.98 75.74 41.53 266.89 8.96 26.81 9.25 28.02 0.1 0.01 0.01 0.02 0.01

210 1 32.03 22.02 20.71 21.11 19.31 0.58 10.15 5.66 11.69 5.59 31.44 11.88 15.05 9.42 13.72 0 0 0 0 0

5 144.82 73.15 57.5 61.26 49.74 0.86 61.96 30.19 51.55 24.49 143.96 11.19 27.31 9.7 25.24 0 0 0 0 0

10 273.58 115.26 79.95 91.73 68 1.09 108.59 52.63 85.8 41.16 272.49 6.67 27.32 5.93 26.84 0 0 0 0 0

270 1 31.62 24.19 21.41 22.5 19.94 0.76 13.58 5.56 13.47 6.23 30.86 10.61 15.85 9.02 13.71 0 0 0 0 0

5 142.58 82.97 58.93 66.13 51.05 1.06 75.29 30.86 57.82 25.7 141.51 7.68 28.07 8.31 25.35 0 0 0 0 0

10 268.75 125.16 81.38 96.53 69.54 1.63 120.45 51.87 91.18 41.53 267.13 4.71 29.51 5.35 28.01 0 0 0 0 0

12 150 1 55.12 33.35 32.51 33.28 31.45 1.43 13.54 9.49 15.77 10.1 46.3 19.51 22.59 17.2 20.97 7.39 0.3 0.42 0.31 0.38

5 231.98 94.9 85.85 93.24 81.28 2.56 70.3 41.32 72.31 40.13 205.91 23.06 43.12 19.36 39.7 23.51 1.54 1.41 1.57 1.45

10 433.35 140.54 118.07 131.32 112.21 3.09 119.8 68 111.27 64.24 393.12 17.12 47.01 16.51 44.92 37.13 3.61 3.06 3.54 3.04

210 1 49.55 32.74 30.78 32.62 30.04 0.85 15.05 8.6 17.34 9.72 48.7 17.69 22.17 15.28 20.32 0 0 0 0 0

5 219.19 98.58 82.6 93.09 78.3 1.43 81.13 39.09 76.31 39.42 217.76 17.45 43.51 16.79 38.88 0 0 0 0 0

10 415.59 146.7 113.83 134.07 106.94 1.75 134.31 67.3 121.77 63.18 413.84 12.4 46.54 12.3 43.76 0 0 0 0 0

270 1 50.18 35.48 32.27 35.06 31.19 1.18 19.04 8.97 20.73 10.16 48.99 16.44 23.3 14.33 21.03 0 0 0 0 0

5 220.63 103.71 84.7 101.17 80.43 1.85 87.29 40.2 87.14 40.39 218.77 16.43 44.49 14.03 40.04 0 0 0 0 0

10 415.83 158.06 117.01 150.18 110.34 2.41 148.93 71.17 141.45 62.61 413.42 9.13 45.84 8.73 47.74 0 0 0 0 0

14 150 1 69.96 46.89 43.22 42.95 41.12 2.4 21.96 14.2 20.27 14.91 44.92 19.05 22.05 17.18 19.82 22.63 5.87 6.97 5.5 6.4

5 282.79 130.99 115.73 118.98 107.94 4.11 82.29 46.8 76.11 47.52 192.48 29.18 48.75 23.54 40.32 86.2 19.52 20.18 19.33 20.11

10 515.33 200.88 173.01 177.47 158.68 5.34 135.45 79.68 114.1 72.48 359.99 24.09 54.5 23.76 47.74 150 41.35 38.83 39.61 38.47

210 1 49.24 35.87 33.62 34.56 32.15 1.15 14.77 9.48 16.75 10.78 48.03 21.09 24.14 17.8 21.37 0.05 0 0 0 0

5 209.57 104.49 93.3 97.2 84.94 2.09 75.5 39.92 74.65 41.02 207.42 28.99 53.38 22.56 43.91 0.05 0 0 0 0

10 399.66 162.42 130.23 138.34 116.76 2.76 144.55 71.26 119.7 65.43 396.79 17.86 58.97 18.64 51.33 0.1 0 0 0 0

270 1 50.27 40.16 37.29 40.3 34.58 1.67 20.86 11.45 24 13.36 48.6 19.3 25.84 16.3 21.22 0 0 0 0 0

5 212.56 109.79 95.99 105.1 88.29 2.78 82.87 43.21 85.58 45.79 209.78 26.93 52.78 19.52 42.5 0 0 0 0 0

10 400.56 174.35 132.51 153.59 121.05 3.69 158.52 73.63 139.63 71.94 396.88 15.83 58.88 13.96 49.11 0 0 0 0 0

Average 208.04 92.37 75.26 82.78 69.11 1.92 73.45 37.43 65.81 34.86 193.99 16.25 35.21 14.38 31.66 12.12 2.67 2.63 2.59 2.59
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2.4.2.5 Analysis of reminder systems

In this section, we analyze the impacts of effective communication with patients on the efficiency of

the clinic’s scheduling system particularly in terms of managing no-shows. We investigate whether

sending reminders to patients to inform the clinic about their potential no-shows is economically

viable and how it influences overall clinic efficiency. To conduct a thorough investigation, we as-

sess various levels of πinfo that represents the likelihood of patients revealing their no-shows in

response to reminders. We perform this analysis for πinfo∈{0, 0.2, 0.4, 0.6, 0.8, 1} indicating

different scenarios from ªno response to remindersº to ªabsolute certainty in patient communica-

tionº regarding no-shows. By examining this spectrum, we aim to understand the effect of different

degrees of patient engagement and communication effectiveness on the scheduling process. The

primary aim is to address Research Question 5 outlined at the start of Section 2.4 which focus on

how different extents of patient responsiveness to reminders influence the overall effectiveness of

the scheduling strategy.

We analyze instances with 10, 12, and 14 patients to ensure that our findings are applicable

across clinics with different sizes. In all these instances, we consider the highest level of information

available for health state (HS), stochastic arrival (SA), and no-shows (NS) to carry out our analysis.

The findings presented in Table 2.9 shed light on the potential enhancements in scheduling efficiency

that can be realized through the implementation of successful patient communication strategies.

The results show a 23% reduction in the average total cost as the probability of patients in-

forming the clinic about potential no-shows (πinfo) increases from 0 to 1. This improvement is

achieved mainly thanks to substantial decreases in total waiting and idle costs. This significant

reduction highlights the importance of effective communication between patients and clinics. Our

results show that sending reminders to patients to inform the clinic about their potential no-shows

is a highly effective strategy in enhancing the overall efficiency of the healthcare system. Our study

also reveals that reminder systems results in more significant savings in total, waiting, and idle costs

in clinics with higher cost ratios.

The results also indicate that our model is computationally effective in providing practitioners

with the opportunity to assess the economic feasibility of establishing a reminder system. This
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Table 2.9: Computational results for information level variations.

Instance information Average of Total Cost Average of Waiting Cost Average of Idle Cost Average of Overtime Cost

No. of patients Clinic time Cost ratio 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

10 150 1 19.96 19.28 18.44 17.35 15.92 13.84 6.31 6.29 5.89 5.77 5.54 5.23 13.65 12.99 12.55 11.58 10.38 8.61 0 0 0 0 0 0

5 51.08 49.57 47.49 44.77 40.65 34.25 25.41 24.71 24.48 21.97 20.84 17.52 25.66 24.86 23.01 22.8 19.8 16.72 0.01 0.01 0.01 0.01 0.01 0.01

10 69.57 67.65 64.98 61.34 55.94 46.61 41.53 40.2 38.56 34.98 32.71 27.52 28.02 27.43 26.4 26.35 23.22 19.08 0.01 0.01 0.01 0.01 0.01 0.01

210 1 19.31 18.58 17.7 16.48 14.92 12.61 5.59 5.51 5.77 5.48 5.06 4.38 13.72 13.07 11.93 11.01 9.86 8.23 0 0 0 0 0 0

5 49.74 48.06 45.91 42.96 38.48 31.28 24.49 24.02 23.49 21.33 18.91 15.82 25.24 24.05 22.42 21.63 19.57 15.46 0 0 0 0 0 0

10 68 65.93 63.14 59.16 53.27 42.77 41.16 40.08 37.31 33.28 30.93 24.68 26.84 25.86 25.82 25.88 22.34 18.09 0 0 0 0 0 0

270 1 19.94 19.28 18.46 17.34 15.93 14.01 6.23 6.1 5.72 5.76 5.59 5.42 13.71 13.17 12.74 11.57 10.34 8.6 0 0 0 0 0 0

5 51.05 49.47 47.44 44.71 40.59 34.28 25.7 25.02 24.46 21.95 20.83 17.59 25.35 24.45 22.98 22.76 19.76 16.69 0 0 0 0 0 0

10 69.54 67.65 64.95 61.31 55.91 46.58 41.53 39.62 38.56 34.97 32.7 27.66 28.01 28.03 26.39 26.33 23.2 18.92 0 0 0 0 0 0

12 150 1 31.5 30.8 30.3 28.9 27.6 25.7 10.1 10.4 10.7 10.1 9.82 9.62 21 20.1 19.2 18.5 17.4 15.8 0.4 0.4 0.4 0.4 0.4 0.4

5 81.3 79.5 77.2 74.1 69.9 63.2 40.1 38.8 38.2 37.8 35.3 32.1 39.7 39.3 37.5 34.9 33.2 29.7 1.5 1.5 1.4 1.4 1.4 1.4

10 112 110 107 102 96.3 86.6 64.2 62.3 60 57.9 54.8 49.9 44.9 44.8 43.5 41.4 38.5 33.9 3 3 3 3 2.9 2.8

210 1 30 29.6 28.3 27.1 25.6 23.4 9.72 9.91 9.41 9.01 8.64 8.52 20.3 19.7 18.9 18.1 17 14.9 0 0 0 0 0 0

5 78.3 76.1 73.9 70.1 65.3 57.7 39.4 38 36.2 35.4 33.1 29.3 38.9 38.1 37.7 34.7 32.2 28.5 0 0 0 0 0 0

10 107 104 101 96.2 89.5 78.5 63.2 60.6 60.2 55.6 53 46 43.8 43.6 40.7 40.6 36.5 32.4 0 0 0 0 0 0

270 1 31.2 31.5 30.1 29.1 27.5 25.5 10.2 12 10.4 11.5 9.92 8.9 21 19.5 19.7 17.6 17.6 16.6 0 0 0 0 0 0

5 80.4 78.2 76 73.2 68.7 62 40.4 38.8 38 36 35.2 32.6 40 39.4 38 37.2 33.5 29.4 0 0 0 0 0 0

10 110 108 105 100 94.7 84.1 62.6 64.4 60.1 60.5 53 50.6 47.7 43.7 44.8 39.9 41.7 33.5 0 0 0 0 0 0

14 150 1 41.1 41.3 39.9 38.7 37.4 35.7 14.9 15.7 14.9 14.3 13.6 13.1 19.8 19.3 18.9 18.4 17.8 16.6 6.4 6.3 6.2 6 6 6

5 108 106 104 101 97.3 91.5 47.5 47.1 46.7 44.6 42.8 41 40.3 39.2 37.6 37 34.9 31.3 20 20 20 20 20 19

10 159 157 153 149 143 134 72.5 69.5 67.6 67.3 63.9 59.3 47.7 48.9 47.7 43.9 42 38 38 38 38 38 38 37

210 1 32.2 31.5 30.8 29.9 28.8 26.8 10.9 10.2 10.1 10 10.3 9.25 21.3 21.3 20.7 19.8 18.5 17.6 0 0 0 0 0 0

5 84.9 83.2 80.8 77.8 73.5 66.9 41 40.8 40 36.5 35.6 34.3 43.9 42.5 40.8 41.3 37.9 32.6 0 0 0 0 0 0

10 117 114 111 107 101 90.7 65.4 65.9 64.1 61.8 59.2 54.6 51.3 48.4 47 45.1 41.8 36.1 0 0 0 0 0 0

270 1 34.6 34.3 33.7 32.6 31.3 30.1 13.4 12.2 12.3 12.2 11.8 13 21.2 22.1 21.4 20.4 19.5 17.1 0 0 0 0 0 0

5 88.3 86.8 84.9 81.8 78.3 72.5 45.8 44.9 41.9 41.8 40 38.4 42.5 41.9 43 40.1 38.3 34.1 0 0 0 0 0 0

10 121 119 116 112 106 98.3 71.9 69.6 64.6 66.7 61.9 57.4 49.1 49.1 51.3 45.6 44.4 40.9 0 0 0 0 0 0

Average 69.11 67.66 65.6 62.86 59.04 52.95 34.86 34.16 32.95 31.65 29.82 27.17 31.66 30.92 30.1 28.68 26.71 23.31 2.59 2.57 2.55 2.53 2.51 2.47
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analysis is also applicable in determining the most effective communication methods (SMS, emails,

phone calls) based on cost effectiveness and patient response rates.

2.4.2.6 Analysis of enhanced show-up rate

In this section, we analyze the effect of increasing patients’ show-up rates in the efficiency of the

appointment scheduling systems. The motivation behind this analysis is that clinics can increase

patients’ show-up rates through incentivization and penalty mechanisms. Thus, we introduce a new

parameter α that represents the adjustment in no-show rates as in πit := (1− α)πit. The values

of α > 0 reflect having enhanced show-up rates, while α < 0 represents a decreased likelihood of

patient attendance, possibly due to negative past experiences. In our analysis, we consider different

values of α ∈ {−0.2,−0.1, 0, 0.1, 0.2}. Our approach involves comparing the results of the

scheduling model with the ªHS3-SA4-NS4º setting before and after adjusting the no-show rates.

We have provided the results of this analysis in Table 2.10. These results are crucial as they provide

a deep understanding of the implications of adjusting patient show-up probabilities.

According to Table 2.10, the extreme case of enhanced show up, α = 0.2, results in around 10%

improvement in the average total cost compared to the reference setting of α = 0. This indicates

that, by employing strategies such as incentivization, clinics can better utilize their resources, reduce

idle times, and minimize the waiting time for patients.

On the other hand, the degraded show up rates in the case of α = −0.2 results in an average

deterioration of 13.58%. This observation highlights the criticality of enhancing patient experience

through multifaceted approaches, such as cultivating a congenial environment within healthcare

settings. By implementing strategies like incentivization, clinics can optimize resource utilization,

diminish idle periods, and curtail patient waiting times and thus elevate the overall efficiency and

satisfaction in healthcare delivery.
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Table 2.10: Computational results for Show-up adjustment coefficient.

Average of Total Average of Waiting Average of Idle Average of Overtime

Instance information Show-up adjustment coefficient Show-up adjustment coefficient Show-up adjustment coefficient Show-up adjustment coefficient

No. of patients Clinic time Cost ratio -0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2 -0.2 -0.1 0 0.1 0.2

10 150 1 25.41 22.8 19.96 17.53 15.67 8.28 6.93 6.31 5.75 4.74 17.12 15.88 13.65 11.78 10.93 0 0 0 0 0

5 64.5 58.71 51.08 45.42 40.9 33.95 30.89 25.41 22.57 21.17 30.54 27.82 25.66 22.84 19.71 0 0 0.01 0.01 0.02

10 87.12 80.29 69.57 62 56.59 53.49 48.78 41.53 36.97 33.86 33.63 31.5 28.02 25 22.68 0 0.01 0.01 0.03 0.05

210 1 24.91 22.28 19.31 16.76 14.74 8.18 6.64 5.59 5.43 4.03 16.72 15.64 13.72 11.34 10.71 0 0 0 0 0

5 63.76 57.82 49.74 43.95 39.2 34.06 29.68 24.49 21.79 19.33 29.7 28.13 25.24 22.16 19.87 0 0 0 0 0

10 86.24 79.17 68 60.04 54.36 52.54 47.15 41.16 35.58 30.52 33.7 32.02 26.84 24.47 23.85 0 0 0 0 0

270 1 25.41 22.84 19.94 17.52 15.58 8.19 7.29 6.23 5.74 4.62 17.22 15.55 13.71 11.77 10.95 0 0 0 0 0

5 64.56 58.72 51.05 45.37 40.86 33.66 30.71 25.7 22.56 21.15 30.9 28.01 25.35 22.81 19.71 0 0 0 0 0

10 87.13 80.32 69.54 61.92 56.49 53.9 48.56 41.53 36.46 34.71 33.23 31.76 28.01 25.46 21.79 0 0 0 0 0

12 150 1 36 34.2 31.5 29.2 27.7 13.2 11.4 10.1 10.3 9.83 22.8 22.6 21 18.1 16.1 0 0.1 0.4 0.8 1.7

5 89 86.8 81.3 76.4 73.1 49.1 44.5 40.1 36.7 35.1 39.7 41.7 39.7 36.6 32.6 0.2 0.6 1.5 3.1 5.5

10 119 118 112 107 104 75.6 71.4 64.2 59.2 56.1 42.8 45.2 44.9 41.4 36.5 0.5 1.3 3 6.2 11

210 1 34.9 33 30 26.9 24.5 11.4 10.5 9.72 8.5 7.54 23.5 22.5 20.3 18.4 16.9 0 0 0 0 0

5 87.8 84.8 78.3 71 64.6 48.8 42.2 39.4 35.1 30.4 39 42.6 38.9 35.9 34.3 0 0 0 0 0

10 117 115 107 97.9 89.3 74.3 69.6 63.2 56.7 52 42.8 45.6 43.8 41.2 37.2 0 0 0 0 0

270 1 36.3 34.1 31.2 28.6 25.9 13.4 12.1 10.2 9.47 8.29 22.9 22 21 19.2 17.6 0 0 0 0 0

5 89.7 86.7 80.4 74.1 67.9 48.6 44.3 40.4 35.3 32.4 41.1 42.4 40 38.8 35.5 0 0 0 0 0

10 119 118 110 101 92.7 74.8 71 62.6 57.4 55.1 44.3 47 47.7 43.7 37.6 0 0 0 0 0

14 150 1 41.4 40.9 41.1 42.7 44.8 14.9 14.3 14.9 14.3 13.9 25.3 23.2 19.8 17.9 15.6 1.2 3.3 6.4 10 15

5 106 106 108 117 128 53.9 49.5 47.5 44.5 44.1 48.5 46.8 40.3 37.3 32.1 3.7 9.3 20 35 52

10 147 151 159 179 204 84 77.6 72.5 69 63.8 55.7 54.8 47.7 43 40.6 7.6 18 38 67 100

210 1 39.5 36 32.2 28.8 25.9 13.1 11.3 10.9 9.22 7.74 26.3 24.7 21.3 19.6 18.2 0 0 0 0 0

5 101 94.6 84.9 77.2 70.8 52.6 48.2 41 35.7 34.5 48.6 46.4 43.9 41.4 36.3 0 0 0 0 0

10 138 130 117 107 98.1 83.6 75.9 65.4 62.3 54.6 54.6 54.2 51.3 44.5 43.5 0 0 0 0 0

270 1 41.5 38.5 34.6 31.4 28.4 16.1 13.7 13.4 11.1 9.49 25.5 24.8 21.2 20.3 18.9 0 0 0 0 0

5 104 97.5 88.3 81.3 75.5 52.3 45.7 45.8 38.7 39 51.5 51.8 42.5 42.6 36.4 0 0 0 0 0

10 143 134 121 112 104 81.6 78.1 71.9 66.8 57.4 61.1 56 49.1 44.8 46.2 0 0 0 0 0

Average 78.5 74.88 69.11 65.14 62.36 42.5 38.82 34.86 31.6 29.09 35.51 34.84 31.66 28.97 26.38 0.49 1.22 2.59 4.56 6.89
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2.5 Conclusion

Our research introduces a novel approach to the address the pressing challenges of healthcare ap-

pointment scheduling through an efficient stochastic model. This model adeptly navigates the com-

plexities in patient scheduling by considering the intrinsic uncertainties tied to service times, patient

unpunctuality, and no-shows. In addition, these uncertainties are characterized by their patient-and-

time-dependent distributions which is a critical aspect that previous models have often oversimpli-

fied due to the modeling and solution complexity. We showed that our model is efficient in solving

large-scale instances optimally within a reasonable computational time. The proposed model cap-

tured an exponential number of scenarios while maintaining a polynomial number of variables and

constraints for the first time in this field. Our novel integration of uncertain variables at an indi-

vidualized time-dependent level has revealed significant operational efficiencies, demonstrated by

a notable reduction in total clinic costs. Specifically, we observed a comprehensive cost reduc-

tion of 34% attributed to the consideration of patient-dependent service times. Furthermore, the

model’s sensitivity to patient-and-time-dependent unpunctuality and no-show probabilities leaded

to additional cost reductions of 12% and 67%, respectively. These findings highlight the critical

importance of embracing the complexity of patient behavior patterns in scheduling models to opti-

mize healthcare delivery and operational efficacy. Our findings highlight the vital importance of an

optimized resource allocation, which maintains system efficiency without overburdening healthcare

providers or compromising patient satisfaction.

We introduced personalized reminders as a strategic approach to reduce no-shows within our

model framework that showed the profound impact of personalized communication in mitigating

no-show rates. This consideration resulted in a further 23% reduction in total costs. This strategic

insight highlights the transformative potential of using data-driven, patient-centric communication

strategies to enhance clinic efficiency and patient engagement. Our model not only challenges the

conventional paradigms of healthcare scheduling but also sets a new benchmark for integrating

patient-specific data to drive operational improvements. The detailed understanding and application

of stochastic variables, reflective of real-world patient behaviors, enhance the model’s practical rel-

evance and applicability across diverse healthcare settings. By considering a wider array of factors,
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our model proved how an patient-and-time-dependent appointment scheduling approach can signif-

icantly enhance healthcare service efficiency and result in considerable cost savings and improved

patient satisfaction.
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Chapter 3

Stochastic weekly operating room

planning with an exponential number of

scenarios1

Abstract

In this paper, we consider a two-stage stochastic weekly operating room planning problem with

an exponential number of scenarios. The objective function is to minimize the sum of the fixed

opening cost of operating rooms and the expected overtime costs that are computed in the second

stage. We propose a state-variable model to formulate the two-stage stochastic operating room plan-

ning problem and prove its validity. The main advantage of the proposed state-variable model is that

it has a pseudo-polynomial number of variables and constraints that are significantly fewer than the

number of variables and constraints in an equivalent scenario-based stochastic programming model.

We improve the quality of the proposed model by developing an enhanced model that includes re-

markably fewer variables and constraints. We also strengthen the model by developing several valid

inequalities, including worst-case scenario and symmetry-breaking cuts. We carried out extensive

computational experiments to evaluate the performance of the proposed model. The computational

results show that the proposed model is capable of finding optimal solutions of instances with 50

1This paper is published in Annals of Operations Research in 2022 and has been cited 16 times as of March 2024.

44



surgeries and 1.55E+40 scenarios that is a significant improvement over the state-of-the-art models.

The results revealed that the model finds feasible solutions with an average optimality gap of 0.78%

for instances with 80 surgeries and 1.48E+64 scenarios.

3.1 Introduction

The main goal of healthcare managers is to provide high-quality services to patients in an econom-

ical manner. In recent decades, there has been an emergent interest in applying operations research

methods to optimize service quality and cost in the healthcare sector. Among these applications,

operating room planning is one of the most notable examples, which has attracted the attention of

many researchers and practitioners in recent years (Cardoen et al., 2010). This is mainly because

Operating Rooms (ORs) generate more than 70% of hospitals’ total revenue (Bandi and Gupta,

2020; Guerriero and Guido, 2011). Therefore, optimizing the utilization of ORs will reduce costs

and increase the revenue and utilization rate of the ORs, resulting in lower waiting times for patients.

Optimizing the utilization of ORs is a complex process in nature. One of the most critical fac-

tors that increase the complexity of operating room planning problems is the uncertainty in surgical

times. In order to handle these uncertainties, scientists use different methodologies that we can

categorize into three main groups. Most papers in the literature neglect the uncertainty of surgical

durations and propose deterministic models (Erekat et al., 2020; Park et al., 2021; Ozkarahan, 2000;

Ogulata and Erol, 2003; Fei et al., 2008, 2009; Roshanaei et al., 2017; Marques and Captivo, 2017;

Mateus et al., 2017). In this category, we consider papers studying integrated operating room plan-

ning and scheduling problems (Naderi et al., 2021; Roshanaei and Naderi, 2021; Roshanaei et al.,

2020; Marques et al., 2012; Vijayakumar et al., 2013; Molina-Pariente et al., 2015; Hashemi Doulabi

et al., 2016; Roshanaei et al., 2017). The main downside of deterministic models is that the obtained

plans may turn out to be infeasible or result in a significant unexpected overtime cost in practice due

to ignoring the uncertainty of surgical times. Because of the same reason, many researchers studying

other applications have proposed various methodologies to model the underlying uncertainties.

In the second category, researchers proposed stochastic models for operating room planning

problems (Guo et al., 2021; Atighehchian et al., 2020; Zhang et al., 2020; Lamiri et al., 2008; Denton
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et al., 2010; Hans et al., 2008; Min and Yih, 2010; Wang et al., 2014; Choi and Wilhelm, 2014;

Jebali and Diabat, 2015; Freeman et al., 2015). Wang et al. (2014) presented a new mathematical

model for an operating theater allocation problem under uncertain demand and surgery duration.

The authors proposed a Sample Average Approximation (SAA) framework and a Generation-Based

Heuristic (CGBH) to formulate the problem and solve it. They showed that the average gap of the

proposed methodology is less than 5% in instances with up to 100 patients and 200 scenarios. Choi

and Wilhelm (2014) proposed a mathematical model for capacity allocation of the operating rooms.

In their computational experiments, they considered 10 surgery specialties and 10 operating rooms.

The authors solved instances with up to 250 scenarios using a News-Vendor-based heuristic. Jebali

and Diabat (2015) developed a two-stage stochastic programming model for an operating room

planning problem. The authors used an SAA approach to solve the model. In the computational

experiments, the authors generated 1000 scenarios and considered the scheduling of 30 patients.

They reported an average optimality gap of 3% for 87.50% of the generated scenarios. Freeman

et al. (2015) proposed a new stochastic model for operating theater scheduling under uncertainty.

The authors considered uncertainties in the duration of the elective surgeries and also the arrival

time of random emergency patients. They solved the model using a two-step method considering

15 scenarios and six operating rooms. Their proposed algorithm resulted in an average 2.3% to 5%

gap for different categories of instances.

Atighehchian et al. (2020) presented a two-step stochastic model for operating room scheduling

in a multi-resource environment and offered L-shaped-based solution methods to solve the problem.

The authors solved several instances with at most 30 patients and 400 stochastic scenarios. Zhang

et al. (2020) presented a new mathematical model for an advance surgery scheduling problem with

multiple operating rooms and downstream units. They applied a Column-Generation-based Heuris-

tic to solve the model. They solved the model with up to 80 patients and 150 scenarios for the

lower bound problem in each iteration of SAA and obtained solutions with an average optimality

gap of around 1%. Guo et al. (2021) proposed a model for the stochastic distributed operating room

scheduling problem. They embedded the proposed model in an SAA and developed three versions

of Logic-based Benders Decomposition (LBBD) to solve the model. The authors considered in-

stances with at most 75 patients and 100 stochastic scenarios and found solutions with an average
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optimality gap of 20%.

Compared to the works in the first category, the papers in the second category are more reliable

and applicable in practice because of addressing the uncertainty by scenarios. However, in these

works, the main issue is that the number of variables and constraints in proposed models are linear

to the number of scenarios. Therefore, such models are solvable only when a few scenarios (e.g.,

1000 scenarios) are available. We refer to ª1000 scenariosº as ºa few numbersº because it accounts

only for 100× (1000
450

) =1.27E-25% of all possible scenarios in an operating room planning problem

with 50 surgeries and 4 possible durations for each surgery.

In the last category, scientists presented robust optimization models to deal with uncertain sur-

gical durations (Breuer et al., 2020; Shehadeh and Padman, 2021; Denton et al., 2010; Addis et al.,

2016; Marques and Captivo, 2017; Neyshabouri and Berg, 2017; Wang et al., 2017). The main

advantage of these models is that the obtained solutions are immunized against the worst-case sce-

narios. However, the obtained schedules can be too conservative against uncertainty and may show

poor performance in practice as they do not consider probability distributions and ignore optimizing

the expected objective function.

Recently, Hashemi Doulabi et al. (2020) proposed a general modeling approach for a class of

two-stage stochastic optimization problems. In these problems, for a given first-stage solution, one

can determine the optimal values of recourse decisions sequentially by inspection. Their proposed

formulation, referred to as the state-variable model, is capable of modeling problems with an expo-

nential number of scenarios without any need for sampling.

In this paper, we extend their model to formulate stochastic weekly operating room planning

where the decision-maker must consider the deadlines of surgeries and assign surgeries to operat-

ing rooms over a week. We also present an enhanced model with significantly fewer variables and

constraints than the primary model. Moreover, we develop some valid inequalities to improve the

quality of the enhanced model. By extensive computational experiments, we demonstrate the signif-

icant effect of the proposed enhancements. Our computational results show that the proposed model

optimally solves instances with up to 50 surgeries and 1.55E+40 scenarios. Our model also finds

solutions with an average optimality gap of 0.78% for instances with 80 surgeries and 1.48E+64

scenarios. One of the main advantages of the proposed model is that it can easily formulate chance
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constraints for restricting overtime periods. Hence, we study the computational behavior of the

proposed model in the existence of chance constraints. The significance of our contribution to the

literature is more evident by noting that the maximum number of scenarios considered in many op-

erating room planning and scheduling problems does not exceed 1500 scenarios (Lamiri et al., 2008;

Denton et al., 2010; Hans et al., 2008; Min and Yih, 2010; Wang et al., 2014; Choi and Wilhelm,

2014; Jebali and Diabat, 2015; Freeman et al., 2015).

The remainder of this paper is organized as follows. In Section 3.2, we present the problem

definition and a classic scenario-based stochastic model to better understand the problem. In Section

3.3, we develop a primary state-variable model for the problem. In Section 3.4, we first propose an

enhanced state-variable model, and then we develop several valid inequalities to further improve the

model. In Section 3.5, we present some computational results, and finally, we present the concluding

remarks and directions for future studies in Section 3.6.

3.2 Problem definition

In the weekly operating room planning problem, we must assign a set of surgeries, denoted by I,

to a set of identical operating rooms on workdays of a week. For each surgery i, we must respect

a deadline ddi, which means the assigned surgical day must be on or before day ddi. The main

difficulty of this operating room planning problem is that surgical times are stochastic. Therefore,

if the sum of surgical times assigned to an operating room exceeds the standard available time in

operating rooms, we must pay an overtime penalty proportional to the length of overtime. The

objective function is to minimize the sum of fixed opening cost of operating rooms, which are

determined in the first-stage model, and the expected overtime costs that we compute in the second

stage after realization of uncertain surgical times.

To have a better understanding of the problem, we present a classic two-stage stochastic pro-

gramming model obtained by extending the model proposed by Denton et al. (2010). In this model,

we suppose that several stochastic scenarios with known probabilities are available. We introduce

the sets, parameters, variables and the model as follows.

Sets:
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I : The set of surgeries.

Id : The set of surgeries with a deadline of larger than or equal to d.

D : The set of days.

Rd : The set of operating rooms available on day d.

Di : The subset of days D for which the deadline ddi is respected (Di = {d ∈ D|d ≤ ddi}).

Ω : The set of available uncertain scenarios.

Parameters:

cf : The fixed cost of opening any operating room on any day.

co : The overtime cost per time unit.

L : The normal available time in each operating room.

M : The maximum available allowed overtime in each operating room.

tiω : The duration of surgery i in scenario ω.

pω : The probability of realization of scenario ω.

Variables:

ydr : 1 if we open operating room r on day d; 0 otherwise.

xdri : 1 if we assign surgery i to operating room r on day d; 0 otherwise.

odrω : The overtime used in operating room r on day d in scenario ω.

min
∑

d∈D

∑

r∈R
cfydr +

∑

ω∈Ω

∑

d∈D

∑

r∈Rd

pωc
oodrω (20)

∑

d∈Di

∑

r∈Rd

xdri = 1 ∀i ∈ I (21)

xdri ≤ ydr ∀d ∈ D, r ∈ Rd, i ∈ Id (22)

odrω ≥
∑

i∈Id
tiωxdri − L ∀d ∈ D, r ∈ Rd, ω ∈ Ω (23)

odrω ≤Mydr ∀d ∈ D, r ∈ Rd, ω ∈ Ω (24)

xdri ∈ {0, 1} ∀d ∈ D, r ∈ Rd, i ∈ Id (25)

ydr ∈ {0, 1} ∀d ∈ D, r ∈ Rd (26)

odrω ≥ 0 ∀d ∈ D, r ∈ Rd, ω ∈ Ω (27)
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In Model (20)-(27), the objective function computes the sum of opening cost of operating rooms

and expected cost of overtimes. Constraint (21) assigns each surgery to an operating room on a day.

Constraint (22) implies that xdri can take 1 only if ydr is equal to 1. Constraint (23) computes the

amount of overtimes in each operating room over a week. Constraint (24) restricts the maximum

available overtime in each operating room. Constraints (25)-(26) state that xdri and ydr are binary

variables. The main issue with the classic Model (20)-(27) is that it is a scenario-based model that

can solve instances with only a few thousands of scenarios. However, as discussed in Section 3.1,

real-world operating room planning and scheduling problems include a significantly larger number

of scenarios. The other shortcoming with the above model is that it is inflexible in modeling chance

constraints. In the real world, practitioners are interested in controlling the probability of using

overtime in each operating room. However, the above model is not able to address these issues. The

model we propose in the next section is capable of addressing these issues.

3.3 Proposed state-variable model

We propose the following model for the weekly operating room planning problem defined in Section

3.2. In this model, we suppose that surgical durations are independent of each other, and for each

surgery, a separate set of uncertain scenarios are available. We also assume that possible values of

stochastic surgical times are multiples of a time unit τ that we set to 5 minutes. In the following,

except to Ω, pω, and odrω, we keep all other sets, variables, and parameters as defined in Section

3.2. Moreover, we introduce some additional notations as follows.

Sets:
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Ωi : The set of available scenarios for the surgical time of surgery i. Using this set, we

define the set of scenarios for all surgeries as Ω = Ω1 × Ω2 × ...× Ω|I|.

I0d : I0d = Id ∪ {0}. Index 0 refers to a dummy surgery with a trivial duration t0 = 0 that

is scheduled at the beginning of each operating room.

Ti : The set of all possible values for the cumulative time used by any subset of surgeries

1 to i assigned to the same operating rooms, i.e.,

Ti =
{
0, τ, 2τ, . . . ,min

(∑
i′∈I:
i′≤i

max
ω∈Ωi′

(ti′ω), L+M
)}

.

T ′
i : The set of all possible values for the cumulative used time by any subset of surgeries

1 to i assigned to the same operating rooms provided that there is enough remaining

operating room time to schedule surgery i + 1 such that this surgery finishes before

the end of the overtime period, i.e.,

T ′
i =

{
0, τ, 2τ, . . . ,min

(∑
i′∈I:
i′≤i

max
ω∈Ωi′

(ti′ω), L+M − max
ω∈Ω(i+1)

(t(i+1)ω)
)}

.

The difference between Ti and T ′
i is that, in Ti we ignore addition of the future

surgeries i + 1 to |I| in the definition of this set, while we consider addition of

surgery i + 1 to the operating room in definition of T ′
i and make sure that there will

enough time available for performing this surgery.

Parameters:

cit : The expected overtime cost corresponding to surgery i if it starts

at time t. We compute it by E
ω∈Ωi

[
comax(0, t+tiω−max(t, L))

]
.

Variables:

ydr, xdri: As defined in Section 3.2.

z1drit : The probability that the total surgical times of those surgeries 1 to i allocated to

operating room r on day d is equal to t and we have also assigned surgery (i+ 1) to

the same operating room (i.e., xdr(i+1) = 1).
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z0drit : The probability that the total surgical time of those surgeries 1 to i allocated to oper-

ating room r on day d is equal to t and we have not assigned surgery (i + 1) to the

same operating room (i.e., xdr(i+1) = 0).

We formulate the weekly operating room planning problem as follows.

min
∑

d∈D

∑

r∈Rd

cfydr +
∑

d∈D

∑

r∈Rd

∑

i∈I0
d
\|I|

∑

t∈T ′
i

c(i+1)tz
1
drit (28)

(21)− (22), (25)− (27) (29)
∑

t∈T ′
i

z1drit = xdr(i+1) ∀d ∈ D, r ∈ Rd, i ∈ I
0\|I| (30)

∑

t∈Ti
z0drit = 1− xdr(i+1) ∀d ∈ D, r ∈ Rd, i ∈ I

0\|I| (31)

1(i ̸=|I|∧t∈T ′
i )
z0drit + z1drit =

1(t∈T(i−1))z
0
dr(i−1)t +

∑

t′∈T ′
(i−1)

:

t′≤t

z1dr(i−1)t′Pr(t′ + tiω = t) ∀d ∈ D, r ∈ Rd, i ∈ I, t ∈ Ti

(32)

0 ≤ z0drit ≤ 1 ∀d ∈ D, r ∈ Rd, i ∈ I
0, t ∈ Ti

(33)

0 ≤ z1drit ≤ 1 ∀d ∈ D, r ∈ Rd, i ∈ I
0\|I|, t ∈ T ′

i

(34)

xdri = 0 ∀i ∈ I, d /∈ Di, r ∈ Rd (35)

In Model (28)-(35), the first part of the objective function represents the opening cost of oper-

ating rooms, and the second part computes the expected overtime cost. Constraint (29) is the set

of first stage constraints as defined in Model (20)-(27). Constraints (30)-(31) are the linking con-

straints between first-stage variables xdr(i+1) and the state-variables z0drit and z1drit. Constraint (30)

implies that if xdr(i+1) is equal to 1 (or 0), then the sum of left-hand side state variables z1drit must

be equal to 1 (or 0). Similarly, Constraint (31) enforces the sum of left-hand side state variables

z0drit must be equal to 1 (or 0) if xdr(i+1) is equal to 0 (or 1). We note that these constraints are

valid with respect to the definitions of variables z1drit and z0drit. We refer to constraint (32) as the

transition constraint that links the state variables of surgery i, (i.e., z0drit and z1drit) to state variables
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for surgery i− 1, (i.e., z0dr(i−1)t and z1dr(i−1)t). In this constraint, 1(.) is an indicator that is equal to

1 if condition (.) is satisfied, and 0 otherwise. Both sides of constraint (32) independently represent

the probability that the total surgical times of those surgeries 1 to i assigned to operating room r on

day d is equal to t. With respect to the definition of z0drit and z1drit, it is clear that the left-hand side

computes this probability correctly. Moreover, the right-hand side of constraint (32) properly cal-

culate this probability value by conditional probability relations based on the probabilities z0dr(i−1)t

and z1dr(i−1)t. Considering constraints (30)-(31), either z0drit or z1drit will be equal to the probability

value computed on the right-hand side of constraint (32).

Constraints (33)-(34) enforce the bounds of variables z0drit and z1drit. Constraint (35) implies

that if the deadline for surgery i is before day d, then we cannot schedule this surgery on this day.

We cannot remove constraint (35) from the model because all variables xdri appear in constraints

(30)-(31).

To have an idea about why the proposed model is correct, it is enough to note that for i = 0,

constraints (30)-(31) set z0dr00 = 1 and z1dr00 = 0 or z0dr00 = 0 and z1dr00 = 1 that are valid relations

because the dummy surgery 0 starts at time 0 in all operating rooms. Then, constraints (30)-(31)

for i = 1, and constraint (32) for i = 0 guarantees the proper computation of values z0dr1t and

z1dr1t. Following the same way, by induction we can prove that all values of z0drit and z1drit are

correctly computed for all i ∈ I0\|I|. This is the basis of the formal proof that we have presented

in Appendix C for the validity of Model (28)-(35)

Theorem 2. Model (28)-(35) is valid for the weekly operating room planning problem.

Proof. Appendix C.

An advantage of the proposed Model (28)-(35) over the classic Model (20)-(27) is that we can

easily enforce chance constraint (36) to control the probability of using overtime in operating rooms.

∑

t∈Ti:t>L

z0drit ≤ α ∀d ∈ D, r ∈ Rd, i ∈ I
0, t ∈ Ti (36)

In constraint (36), the left-hand side of the inequality computes the probability of using overtime

periods. Parameter α represents the maximum probability of using overtime in an operating room.
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3.4 Enhancements

We present two enhancements to improve the efficiency of Model (28)-(35). The idea of the first

one is to reformulate Model (28)-(35) by eliminating some redundant state-variables z0drit and z1drit

and their corresponding transition constraint (32). As the second enhancement, we develop some

valid inequalities.

3.4.1 Enhanced model

As explained in Section 3.3, we cannot simply remove constraint (35) because all variables xdri

including those fixed to zero by constraint (35), appear in constraints (30)-(31). The main issue of

having redundant variables xdri i ∈ I, d ∈ Di, r ∈ Rd is not just about them, but it is about the

huge number of corresponding variables z0drit and z1drit respectively defined for i ∈ I, d /∈ Di, r ∈

Rd, t ∈ Ti and i ∈ I, d /∈ Di, r ∈ Rd, t ∈ T
′
i . The idea of the modification that we present here is

to remove all variables xdri, z
0
drit and z1drit defined for i ∈ I, d /∈ Di, r ∈ Rd. We suppose that on

each day d ∈ Di, surgeries in I0d are ordered lexicographically. We define nid, pid and ld as follows.

Parameters:

nid : The surgery in I0d after surgery i considering the lexicographic order.

pid : The surgery in I0d before surgery i considering the lexicographic order.

ld : The last surgery in I0d considering the lexicographic order.

We also respectively replace sets Ti and T ′
i with Tid and T ′

id as defined below.

Sets:
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Tid : The set of all possible values for the cumulative time used by any subset of surgeries

1 to i in Id assigned to the same operating rooms, i.e.,

Tid =
{
0, τ, 2τ, ...,min

(∑
i′∈Id:
i′≤i

max
ω∈Ωi′

(ti′ω), L+M
)}

.

The difference of Tidfrom Ti is that i′ ∈ I is replaced with i′ ∈ Id under the summa-

tion.

T ′
id : The set of all possible values for the cumulative times used by any subset of surgeries

1 to i in Id assigned to the same operating rooms provided that there is enough

remaining operating room time to schedule the next surgery nid such that this surgery

finishes before the end of the overtime period, i.e.,

T ′
id =

{
0, τ, 2τ, . . . ,min

(∑
i′∈Id:
i′≤i

max
ω∈Ωi′

(ti′ω), L+M − max
ω∈Ω(i+1)

(t(nid)ω)
)}

.

The difference of T ′
id from T ′

i is that i′ ∈ I is replaced with i′ ∈ Id under the

summation.

Based on the above notation, we reformulate model (28)-(35) as follows.

min
∑

d∈D

∑

r∈Rd

cfydr +
∑

d∈D

∑

r∈Rd

∑

i∈I0
d
\|I|

∑

t∈T ′
id

c(i+1)tz
1
drit (37)

(21)− (22), (25)− (26) (38)
∑

t∈T ′
id

z1drit = xdr(nid) ∀d ∈ D, r ∈ Rd, i ∈ I
0
d\ld (39)

∑

t∈Tid
z0drit = 1− xdr(nid) ∀d ∈ D, r ∈ Rd, i ∈ I

0
d\ld (40)

z0drit + 1(i ̸=lt
d
∈T ′

id
)z

1
drit =

1(t∈T(pid)d)
z0dr(pid)t +

∑

t′∈T ′
(pid)d

:

t′≤t

z1dr(pid)t′Pr(t′ + tiω = t) ∀d ∈ D, r ∈ Rd, i ∈ Id, t ∈ Tid[−5pt]

(41)
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0 ≤ z0drit ≤ 1 ∀d ∈ D, r ∈ Rd, i ∈ I
0, t ∈ Tid (42)

0 ≤ z1drit ≤ 1 ∀d ∈ D, r ∈ Rd, i ∈ I
0\ld, t ∈ T

′
id (43)

Model (37)-(43) is very similar to the Model (28)-(35). The main difference is that we replaced

sets Ti and T ′
i , and surgery indices (i+1), (i− 1), and |I| by Tid, T ′

id, nid, pid, and ld, respectively.

We also dropped all redundant variables z0drit and z1drit defined for i ∈ I, d ∈ Di, r ∈ Rd and their

corresponding transition constraints (32). In fact, in constraint (41), we link variables z0drit and z1drit

to z0dr(pid)t and z1dr(pid)t′ . In constraint (41), a surgery pid may or may not have been scheduled on

day d. However, in Constraint (32) in the previous model we know that, if (i − 1) ∈ Id, surgery

(i− 1) is definitely not scheduled on day d. Moreover, we can rewrite the chance constraint (36) as

follows.

∑

t∈Tid:t>L

z0dr(ld)t ≤ α ∀d ∈ D, r ∈ Rd, i ∈ I
0, t ∈ Ti (44)

The difference between the original model (20)-(27) and the enhanced model (37)-(43) is that in

the later one we have removed redundant indices based on the deadlines of the surgeries. Therefore,

the validity of the enhanced model (37)-(43) originates from the correctness of the original model

(20)-(27) as proven in Appendix C.

3.4.2 Valid inequalities

In this subsection, we develop valid inequalities to improve the efficiency of the proposed model.

The first two valid inequalities rely on the worst-case realization of surgical times. The following

three valid inequalities are symmetry-breaking constraints.

56



3.4.2.1 Worst-case scenario valid inequalities

The first valid inequality is a knapsack inequality for the worst-case scenarios of surgical times.

∑

i∈Id
max
ω∈Ωi

(tiω)xdri ≤ L+M ∀d ∈ D, r ∈ Rd (45)

Valid inequality (45) implies that for the worst-case scenario, where surgical times take their

maximum possible values, the total surgical times in each operating room on each day cannot exceed

the sum of regular operating room time and the maximum allowed overtime. This constraint is a

valid inequality and not an essential constraint to the model because in Model (37)-(43), we have

discretized the available time into a limited number of time units. Therefore, the constraint on

the maximum available time in operating rooms is implicitly satisfied. However, enforcing this

constraint explicitly by Constraint (45) would be more effective.

The subsequent valid inequality enforces a lower bound on the minimum number of required

operating rooms during the planning horizon for the worst-case scenarios of surgical times.

∑

d∈D

∑

r∈Rd

ydr ≥




∑
i∈I max

ω∈Ωi

(tiω)

L+M




∀d ∈ D, r ∈ Rd (46)

In (46), the left-hand side is equal to the number of opened operating rooms during the plan-

ning horizon, and the right-hand side calculates a lower bound on this number for the worst-case

realization of scenarios for surgical times.

3.4.2.2 Symmetry breaking valid inequalities

The following valid inequalities guarantee that the Model (37)-(43) does not present the same

weekly operating room plan by more than one solution. These valid inequalities are inspired by

those developed by Denton et al. (2010). The first set of symmetry-breaking valid inequality is as

follows.

ydr ≥ yd(r+1) ∀d ∈ D, r ∈ Rd\{|Rd|} (47)

yd|Rd| ≥ y(d+1)1 ∀d ∈ D\{|D|} (48)
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Valid inequality (47) states that among all operating rooms available on any day d ∈ D, we must

open the one with the smallest index before the other one. This valid inequality ensures that if the

decision-maker decides to use fewer than |Rd| operating rooms on the day d, then the same daily

schedule cannot be presented by swapping the schedules of opened operating rooms with those of

the closed ones. Moreover, valid inequality (48) implies that there is not any advantage in using

operating rooms on the day d + 1 or later days, while there are unused operating rooms on the

current day d.

Valid inequalities (47) and (48) partially break symmetry in the model. We can still find the

same weekly operating room plan by swapping the schedules of opened operating rooms on the

same day. Therefore, to avoid this symmetry, we use the following constraint that enforces surgery

i to be scheduled in one of the operating rooms 1 to i within the planning horizon.

∑

d∈Di

∑

r∈Rd:
r≤i

xdri = 1 ∀i ∈ I (49)

Constraint (49) is valid because it is always possible to satisfy it by swapping the operating

rooms’ schedules on a day such that surgery i is scheduled in one of the operating rooms 1 to i on

that day. Considering the deadlines of surgeries, we can improve the constraint (49) as follows.

∑

d∈Di

∑

r∈Rd:
r≤oid

xdri = 1 ∀i ∈ I (50)

In valid inequality (50), oid represents the order of surgery i in the set Id that is ordered lex-

icographically. This valid inequality implies that if we cannot schedule m surgeries with indices

i′ < i on day d because of their earlier deadlines, then it is possible to restrict the potential operat-

ing rooms for surgery i on day d to operating rooms 1 to i−m. This is valid because we can obtain

such a daily schedule by swapping the operating rooms’ schedules on a day.

The last symmetry breaking constraint is slightly more complicated than the previous ones.

Therefore, we explain it in more detail. As suggested by valid inequality (50), if we want to schedule

surgery i on the day d, we can restrict the potential operating rooms for this surgery to rooms 1 to oid.

As we discussed before, this restriction eliminates considerable symmetry in the model. However,
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in some cases, we may obtain the same daily schedule by swapping the schedule of operating rooms.

To explain this issue, let us suppose that we have scheduled surgery i on day d with oid = 10, and

among surgeries j with ojd < 10 only surgery i′ with oi′d = 1 is scheduled on day d too. Valid

inequality (50) suggests that we must schedule surgery i in one of the operating rooms 1 to 10.

However, since other surgeries j with ojd < 10 and j ̸= i′ are not scheduled on this day, we can

obtain identical solutions by swapping the schedule of the operating room, including surgery i by

that of any operating room 2 to 10. Here, we saved operating room 1 for surgery i′. Therefore, to

address this symmetry, we propose the following constraint.

∑

r′∈Rd:
r≤r′≤oid

xdr′i ≤
∑

i′∈Id:
oi′d≥r−1&
oi′d≤oid−1

xd(r−1)i′ ∀d ∈ D, i ∈ Id, r ∈ Rd\1 : r ≤ oid (51)

Valid inequality (51) states that if we schedule surgery i on day d in operating room r or any

other operating room with a larger index (i.e.,
∑

r′∈Rd:
r≤r′≤oid

xdr′i = 1 ), then at least one of the

surgeries with oi′d ≥ r − 1 and oi′d ≤ oid − 1 must have be scheduled in operating room r − 1,

i.e.,
∑

i′∈Id:
oi′d≥r−1&
oi′d≤oid−1

xd(r−1)i′ ≥ 1. On the right-hand side of (51), we have restricted surgeries i′ ∈ Id

to those with oi′d ≥ r − 1, because other ones with oi′d < r − 1 cannot be scheduled in operating

room r − 1 with respect to constraint (50).

3.5 Computational results

Here, we present the computational results on the stochastic weekly operating room planning prob-

lem. We used CPLEX to solve the MIP models. We run all numerical experiments on a computer

with two Intel Xeon X5650 CPUs running at 2,67 GHz. We considered a time limit of 24 hours.

3.5.1 Instance generation

In all instances, we consider five days during the planning horizon. We considered having 8 hours

of regular operating room times and a maximum of 2 hours overtime. We generated the deadlines of

surgeries by an integer uniform distribution of U [1, 5]. We also set the maximum number of operat-

ing rooms on each day to the right-hand side of the constraint (46). This value is a quite reasonable
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upper bound for the daily number of operating rooms and makes the problem significantly difficult

because it results in many variables and constraints in proposed models. In addition, as suggested

in Denton et al. (2010), we considered 4437$ as the opening cost of operating rooms. We set the

per-minute cost of overtime to {1.5, 1.75, 2, 4} times of the per-minute cost of regular operating

room time. We refer to this ratio as the overtime factor (OF ). Moreover, we set the number of

patients to n = {20, 30, 40, 50, 60, 70, 80, 90}. For each combination of OF and n, we generated

10 instances that resulted in a total number of 320 instances. We generated surgical times from

lognormal distributions provided in Table 1 of Vinden et al. (2016), which studied a real case in a

teaching hospital in Ontario, Canada. In order to use the lognormal distributions, we considered a

truncated version, taking into accounting 99% of the whole probability. Moreover, as our model

handles discrete surgical times, we approximated the modified lognormal distributions by discrete

probability distributions with a constant step of 5 minutes for surgical times.

3.5.2 Results

In the following computational experiments, we aim at answering the following questions:

(1) How does Model (37)-(43) perform compared to the classic stochastic programming model

(20)-(26)?

(2) Are the proposed enhancements in Section 3.4 effective in improving the performance of the

proposed model? In other words, how does Model (37)-(43) perform compared to Model

(28)-(35)?

(3) What is the largest size of operating room planning problems that we can solve by the pro-

posed model (37)-(43)? How does the model perform on instances with different values of

overtime factor (OF )?

(4) How does the proposed Model (37)-(43) perform in the presence of chance constraint (44)?

In all the following tables, each row presents the average computational results for 10 instances.

Table 3.4 reports the results of the experiments that we conducted on instances with OF = 1.5 to

answer the first question. In this table, we compare the classic Model (20)-(27) to Model (37)-(43)
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enhanced by valid inequalities. Since the number of scenarios in the classic Model (20)-(27) in-

creases exponentially in the number of scenarios for each surgery, we modified the original instances

by considering only 2 equiprobable scenarios for each surgical duration. We randomly generated

these two scenarios for each surgery from the lognormal distributions in Table 3.4 of (Vinden et al.,

2016). We note that this modification is just because of the inefficiency of the stochastic program-

ming model (20)-(26) in modeling problems with exponential scenarios. For all other computational

results presented in Tables 3.5-3.7, we considered the original instances with discretized lognormal

distributions, as explained in Section 5.1. In Table 3.4, Column ªInstance Info.º gives some infor-

mation about the generated instances. Under this column, ª|I|º and ª|Ω|º respectively present the

number of surgeries and the number of scenarios in the stochastic programming model (20)-(26).

Columns ªProposed model with enhancementsº and ªStochastic programming modelº respectively

provides computational results of models (37)-(43) and (20)-(26). Under these two columns, we

have the following columns: 1) V : The number of variables, 2) C : The number of constraints, 3)

N : The number of nodes exploited in the branch-and-bound tree, 4) Time: Computational time of

the models in seconds, 5) Gap(%): Optimality gap that we compute by Gap = 100(UB−LB)/LB,

6) OSI: The number of optimally solved instances out of 10 instances reported in each row of the

table.

As we can see in Table 3.4, the classic Model (20)-(27) can barely solve instances with up

to 16 surgeries. This model cannot even find any feasible solution for instances with 20 or more

surgeries. However, the proposed Model (37)-(43) optimally solves instances with 20 surgeries.

For other instances, it finds feasible solutions with an optimality gap of less than 1.42%. The poor

performance of the stochastic programming model is due to the exponential number of scenarios

that this model cannot handle, while the proposed Model (37)-(43) can quickly solve instances with

exponential scenarios.

Table 3.4 also shows that Model (37)-(43) is significantly faster than the classic Model (20)-(27).

For instance, the average computational time of the classic Model (20)-(27) in instances with 14

surgeries is 2816 seconds, while the enhanced Model (37)-(43) solved the same instances in an
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Table 3.4: Comparison of the enhanced Model (37)-(43) with the classic stochastic programming

model (20)-(26) for instances with OF =1.5.
Instance Info. Classic Model (20)-(27) Enhanced Model (37)-(43)

I Ω V C N Time Gap(%) OSI V C N Time Gap(%) OSI

10 1.02E+03 10309 10338 27 10 0.00 10 8119 4971 0 1 0.00 10

11 2.05E+03 20555 20588 254 23 0.00 10 9119 5566 8 1 0.00 10

12 4.10E+03 41045 41084 730 101 0.00 10 10954 6627 173 7 0.00 10

13 8.19E+03 82006 82047 2299 467 0.00 10 11161 6716 179 9 0.00 10

14 1.64E+04 163938 163987 281 2816 0.00 10 13715 8272 0 1 0.00 10

15 3.28E+04 327776 327823 6245 25044 0.03 8 13174 7928 473 36 0.00 10

16 6.55E+04 655465 655519 1362 49223 17.16 7 14870 8893 832 166 0.00 10

20 1.05E+06 - - - - - - 19386 11587 14982 4953 0.00 10

30 1.07E+09 - - - - - - 47152 27785 60234 44363 0.23 5

40 1.10E+12 - - - - - - 65483 38277 33765 86400 0.62 0

50 1.13E+15 - - - - - - 113044 66092 25636 86400 0.58 0

60 1.15E+18 - - - - - - 131708 76954 10242 86400 0.92 0

70 1.18E+21 - - - - - - 195577 113932 8171 86400 1.04 0

80 1.21E+24 - - - - - - 230248 134139 4384 86400 1.30 0

90 1.24E+27 - - - - - - 287390 167922 1816 86400 1.42 0

Table 3.5: Comparison of the enhanced Model (37)-(43) with the original Model (28)-(35) for

instances with OF =1.5.
Instance Info. Original Model (28)-(35) Enhanced Model (37)-(43)

I Ω V C N Time Gap(%) OSI V C N Time Gap(%) OSI

20 1.44E+16 42751 25193 217721 62025 5.45 4 23584 14142 11676 6912 0.00 10

30 1.34E+24 81630 47646 15075 86400 3.70 0 48801 28860 23721 60548 0.26 3

40 1.94E+32 118332 69173 4142 86400 6.16 0 68054 40284 6878 45922 0.09 5

50 1.55E+40 186090 108336 1018 86400 12.19 0 105624 62296 3719 71383 0.78 2

60 1.92E+48 224792 130806 411 86400 16.31 0 133778 78618 1842 86400 0.27 0

70 2.72E+56 328935 191910 0 86400 - 0 193779 114239 1093 86400 1.30 0

80 1.48E+64 377405 219235 2 86400 - 0 216977 127374 739 86401 0.78 0

90 3.05E+72 509603 296910 0 86400 - 0 306616 180278 40 86401 8.00 0

Average 233692 136151 29796 83353 - - 137152 80761 6214 66296 1.44 -

average of 1 second. We can also observe that the average number of exploited nodes in the branch-

and-bound tree for classic Model (20)-(27) is 718.2 versus 72 for enhanced Model (37)-(43). More-

over, for instances with 15 and 16 surgeries, the classic Model (20)-(27) is not able to optimally

solve these instances and has an average optimality gap of 8.5%. The reported average computa-

tional time for the classic Model (20)-(27) in these instances is 37,133 seconds, while the enhanced

Model (37)-(43) solved these instances optimally in on average 101 seconds. It worth mentioning

that the average number of variables for classic Model (20)-(27) is 187,870, while the enhanced

Model (37)-(43) has on average 11,587 variables. Besides, the enhanced Model (37)-(43) has a

significantly lower number of constraints compared to the classic Model (20)-(27).
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In Table 3.5, we presents some computational results for the original instances with OF = 1.5

to answer the second question about the effect of the proposed enhancements. In these instances, we

generated surgical times from lognormal distributions provided in Table 1 in Vinden et al. (2016).

In this table, we have compared the original Model (28)-(35) to Model (37)-(43) enhanced by valid

inequalities. We observe that the average optimality gap for the enhanced model is 1.44% while

we cannot compute this value for the original Model (28)-(35) because of its failure in finding

any feasible solution for instances with 70 or more surgeries. However, we can observe that the

enhanced Model (37)-(43) significantly outperforms the original Model (28)-(35) in instances with

up to 60 surgeries. We also note that the original Model (28)-(35) finds feasible solutions only for 2

instances with 60 surgeries. It is also noteworthy the average optimality gaps of models (28)-(35) to

Model (37)-(43) for instances with up to 50 surgeries are 6.88% and 0.28% respectively. Moreover,

we observe that the average number of variables and constraints in the enhanced Model (37)-(43)

are 70% less than those of the Model (28)-(35). This is because, we have removed a large number

of variables and constraints in the enhanced Model (37)-(43). Figure 3.1 shows that, in Model

(37)-(43), as the number of surgeries increases, the number of variables and constraints increase

polynomially. Also, we can see that the computational time and the number of exploited nodes in

the branch-and-bound tree increase exponentially as the number of surgeries increases from 10 to

30. This is reasonable with respect to the NP-hard complexity of the problem. Beyond 30 surgeries,

the number of nodes decreases because larger instances are more difficult and the time limit stops

exploitation of nodes in the branch-and-bound tree.

In Table 3.6, we assess the performance of our enhanced Model (37)-(43) on instances with

different values of OF . In this table, we have three additional columns ªLBº, ªUBº, and ªV SSº.

The first two columns represent the values of lower and upper bounds respectively. Column ªV SSº

provides the values of stochastic solution that we compute by V SS = 100(UBsim−UB)/UBsim.

In this formula, to compute UBsim, we first solve the expected value problem obtained by replacing

the stochastic surgical times by their mean values. Then we fix the obtained surgical allocation from

the expected value problem in model (37)-(43) and set UBsim to the obtained optimal objective

value of the recent model. We observe that the for different settings of OF , the proposed model

is stable and the average optimality gap is less than or equal to 1.50%. It is also noteworthy that
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Figure 3.1: Computational time and number of variables, constraint, and nodes versus the number

of surgeries.

the average values of V SS varies between 60% to 70%. We expect to see that for larger OF ,

the average upper bound values are larger. However, the results of Table 3.6 contradicts with this

expectation. This is due to the unstable performance of the model on instances with 90 surgeries.

Ignoring these instances, we observe that the average values of upper bounds, computational time,

and optimality gaps are increasing in OF . In Table 3.6, the largest instances with OF = 1.5, 1.75, 2,

and 4 that are optimally solved the enhanced model include 50 surgeries. The number of scenarios

in these instances is 1.55E+40.

In Tables 3.7 and 3.8, we evaluate the performance of the enhanced Model (37)-(43) with the

chance constraint (44) by setting the chance-constraint factor α to {0.01, 0.02, 0.03, 0.04, 0.10, 0.20,

0.30, 1.00}. These values show that the maximum probability of using overtime varies from 1% to

100%. In these tables, we presented the computational times and optimality gaps for different values

of α. Moreover, for α ≥ 0.02, we have presented columns ªImp(%)º. The values of Imp(%),

show that by increasing the maximum probability of using overtime, how much the objective value

improves compared to the case of α = 0.01. We have presented the results of Tables 3.7 and 3.8 for

instances with up to 60 surgeries, because the proposed model cannot find solutions with reasonable

optimality gaps for larger instances. In these tables, we observe that the average optimality gaps are
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Table 3.6: Computational results of the enhanced Model (37)-(43) on instances with different values

of OF .
Instance Info. Enhanced Model (37)-(43)

OF |I| Ω N Time LB UB Gap(%) OSI V SS(%)

1.5 20 1.44E+16 11676 6912 23983 23983 0.00 10 40.08

30 1.34E+24 23721 60548 32920 33003 0.26 3 50.06

40 1.94E+32 6878 45922 45712 45750 0.09 5 80.07

50 1.55E+40 3719 71383 54676 55121 0.78 2 80.01

60 1.92E+48 1842 86400 65276 65452 0.27 0 60.05

70 2.72E+56 1093 86400 77819 78814 1.30 0 80.01

80 1.48E+64 739 86401 86210 86872 0.78 0 80.00

90 3.05E+72 40 86401 98237 106075 8.00 0 79.59

Average 3.81E+71 6214 66296 60604 61884 1.44 2.86 68.73

1.75 20 1.44E+16 13239 17926 23988 23988 0.00 9 50.14

30 1.34E+24 24540 60501 32932 33031 0.32 3 70.10

40 1.94E+32 6757 46168 45713 45758 0.10 5 70.09

50 1.55E+40 3704 77998 54691 55138 0.78 1 80.05

60 1.92E+48 1695 86401 65284 65482 0.30 0 50.10

70 2.72E+56 1185 86401 77852 78879 1.34 0 60.07

80 1.48E+64 742 86401 86233 86946 0.83 0 60.04

90 3.05E+72 60 86401 98267 106462 8.34 0 46.55

Average 3.81E+71 6490 68524 60620 61960 1.50 2.57 60.89

2 20 1.44E+16 25900 18234 23991 23992 0.00 9 60.09

30 1.34E+24 26960 60543 32945 33059 0.36 3 70.07

40 1.94E+32 7464 48547 45714 45766 0.12 5 90.04

50 1.55E+40 3444 78448 54706 55153 0.78 1 60.16

60 1.92E+48 1850 86543 65293 65525 0.35 0 50.10

70 2.72E+56 1147 86591 77882 78945 1.38 0 39.70

80 1.48E+64 711 86662 86254 87322 1.25 0 79.60

90 3.05E+72 96 86693 98295 105318 7.15 0 49.65

Average 3.81E+71 8447 69033 60635 61885 1.42 2.57 62.43

4 20 1.44E+16 23590 20308 24016 24023 0.03 8 50.28

30 1.34E+24 23070 60554 33061 33284 0.70 3 40.19

40 1.94E+32 7651 55498 45726 45827 0.23 4 30.48

50 1.55E+40 3844 78502 54780 55287 0.90 1 50.33

60 1.92E+48 2313 86400 65364 65817 0.69 0 30.37

70 2.72E+56 1397 86400 78047 79222 1.51 0 40.34

80 1.48E+64 584 86401 86402 87677 1.48 0 49.93

90 3.05E+72 104 86401 98500 103651 5.24 0 16.44

Average 3.81E+71 6214 66296 60604 61884 1.44 2.29 68.73

less than 4.00% and decreasing in α. These tables also show that by increasing the value of α from

0.01 to 1.00 the objective value improves between 2.37% and 8.60%.

3.5.3 Discussion

Considering the limited surgical capacities of hospitals due to the pandemic, an efficient manage-

ment of operating rooms is vital. Stochastic duration of surgeries is one of the main features of

operating room scheduling problems that have been studied in the literature, but there is still a sig-

nificant research gap in this area. The reason behind the importance of considering the uncertainty
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Table 3.7: Computational results of the enhanced Model (37)-(43) with chance constraint (44) for

instances with OF=1.5 and α ∈ {0.01, 0.02, 0.03, 0.04}.

Instance Info. α = 0.01 α = 0.02 α = 0.03 α = 0.04

|I| T ime Gap(%) T ime Gap(%) Imp.(%) T ime Gap(%) Imp.(%) T ime Gap(%) Imp.(%)

20 5219 0.00 4136 0.00 0.01 5067 0.00 0.01 9188 0.00 0.02

30 32850 2.68 46267 5.40 0.00 45938 5.37 0.00 42265 4.15 1.11

40 49779 2.97 48425 2.97 0.01 47938 2.98 0.01 46130 2.98 0.01

50 79334 5.90 79256 5.24 0.71 75057 4.45 1.48 70220 4.50 1.48

60 86400 7.47 86400 7.47 11.12 86400 6.02 12.47 86400 6.04 12.47

Average 50716 3.80 52897 4.22 2.37 52080 3.76 2.79 50841 3.53 3.02

Table 3.8: Computational results of the enhanced Model (37)-(43) with chance constraint (44) for

instances with OF=1.5 and α ∈ {0.10, 0.20, 0.30, 1.00}.

Instance Info. α = 0.10 α = 0.20 α = 0.30 α = 1.00

|I| T ime Gap(%) Imp.(%) T ime Gap(%) Imp.(%) T ime Gap(%) Imp.(%) T ime Gap(%) Imp.(%)

20 3165 0.00 0.02 12510 0.00 0.02 12902 0.00 0.02 6912 0.00 1.61

30 47004 4.21 2.34 57416 2.85 4.75 57865 2.85 4.75 60548 0.26 8.14

40 47087 2.98 0.01 47963 0.09 2.65 47912 0.09 2.65 45922 0.09 2.65

50 71697 3.78 2.25 71013 2.27 3.64 70707 2.27 3.64 71383 0.77 5.11

60 86400 6.65 22.50 86401 5.34 23.77 86401 5.34 23.77 86400 0.27 25.51

Average 51071 3.52 5.42 55061 2.11 6.97 55157 2.11 6.97 54233 0.28 8.60

of surgical durations is that many surgeries are canceled at the end of the day due to the unexpected

longer durations of previous surgeries. Our proposed model takes into account the stochastic du-

rations of surgeries and avoid such cancellations by including the expected overtimes of operating

rooms.

Our results showed that we can find the near-optimal solutions of large instances with 80 surg-

eries and 1.48E+64 stochastic scenarios in a reasonable time using a compact integer programming

model. The obtained results demonstrated that the proposed model is significantly more efficient

than classic scenario-based stochastic programming models. Another advantage of the proposed

model in comparison to other models in the literature is that it can be easily implemented in com-

mercial optimization software, without any need for the use of other complicated approaches such

as SAA. Therefore, the proposed model has the potential to be used by practitioners for weekly

operating room planning problems.
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3.6 Conclusion

In this research, we proposed a new state-variable model for a stochastic weekly operating room

planning problem with an exponential number of scenarios. The objective function of the mathe-

matical models aimed to minimize the sum of the fixed opening cost of operating rooms and the

expected overtime costs that are computed in the second stage. We first proved that our model is

valid and showed that the proposed model has several advantages over classical models. The main

advantage of the offered model is that it has a pseudo-polynomial number of variables and con-

straints that are significantly fewer than the number of variables and constraints in an equivalent

scenario-based stochastic programming model. After presenting the original state-variable model,

we enhanced the model to involve less variables and constraints. We also strengthened the model by

developing several valid inequalities, including worst-case scenario and symmetry-breaking cuts.

We evaluated the performance of the proposed models against the classic scenario-based stochas-

tic programming model for the problem in several small, medium, and large size instances. Our

results revealed that the proposed original state-variable model provides promising solutions com-

pared to the classic model. The original state-variable model was able to solve instances with up

to 20 patients optimally while the classical model could not solve the instances with more than

14 patients optimally. Besides, we showed that the original state-variable model was able to solve

instances with up to 90 patients with an average optimality gap of 1.42%. In addition, we demon-

strated that our model has significantly fewer variables and constraints. Moreover, we compared the

performance of the enhanced state-variable model to the original state variable model and showed

that the worst-case scenario and symmetry-breaking cuts significantly improved the model effi-

ciency. The results of the computational experiments disclosed that the enhanced model has even

remarkably fewer variables and constraints enabling us to solve large size instances with 50 surg-

eries and 1.55E+40 scenarios optimally. Furthermore, the results revealed that the enhanced model

obtains feasible solutions with an average optimality gap of 0.78% for instances with 80 surgeries

and 1.48E+64 scenarios.

For future work, it would be interesting to extend the proposed state-variable model for operat-

ing room scheduling problems with the allocation of surgical specialty. Another research direction
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is to consider the scheduling of emergency cases together with the elective surgeries. Moreover,

extension of the state-variable models for other scheduling applications is another future research

avenue.
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Chapter 4

Designing a hybrid reinforcement

learning based algorithm with

application in prediction of the

COVID-19 pandemic in Quebec1

Abstract

World Health Organization (WHO) stated COVID-19 as a pandemic in March 2020. Since

then, 26,795,847 cases have been reported worldwide, and 878,963 lost their lives due to the illness

by September 3, 2020. Prediction of the COVID-19 pandemic will enable policymakers to opti-

mize the use of healthcare system capacity and resource allocation to minimize the fatality rate. In

this research, we design a novel hybrid reinforcement learning-based algorithm capable of solving

complex optimization problems. We apply our algorithm to several well-known benchmarks and

show that the proposed methodology provides quality solutions for most complex benchmarks. Be-

sides, we show the dominance of the offered method over state-of-the-art methods through several

measures. Moreover, to demonstrate the suggested method’s efficiency in optimizing real-world

1This paper is published in Annals of Operations Research in 2021 and has been cited 70 times as of March 2024.
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problems, we implement our approach to the most recent data from Quebec, Canada, to predict

the COVID-19 outbreak. Our algorithm, combined with the most recent mathematical model for

COVID-19 pandemic prediction, accurately reflected the future trend of the pandemic with a mean

square error of 6.29E-06. Furthermore, we generate several scenarios for deepening our insight into

pandemic growth. We determine essential factors and deliver various managerial insights to help

policymakers making decisions regarding future social measures.

4.1 Introduction

Researchers use optimization in nearly every study area. Optimization remains a fundamental chal-

lenge in science and engineering, primarily because of the difficulty of real-world problems and

the limitations of traditional methods. Randomization Search Algorithms (RSAs) are among the

most flexible and most efficient methodologies to solve complicated problems. These algorithms

are mostly polynomial-time algorithms and have significantly lower computational complexity. As

one of the most commonly used RSAs, metaheuristics are algorithms that are inspired by natural

phenomena to perform optimization. Metaheuristics perform very well in exploring the feasible

region and evade local optimum using effective movement processes.

Healthcare science is one of the top research areas in which metaheuristics have been widely

applied to. Using these algorithms, scientists can optimize healthcare systems significantly in terms

of several objectives, including minimizing cost, waiting time, service time, delivery time, and

maximizing reliability or customer satisfaction. In December 2019, a novel strain of coronavirus

called SARS-Cov-2 discovered in China. The virus causes COVID-19, a severe respiratory disease.

Regardless of primary measures applied by the government of China, the disease spread quickly to

many countries leading to 26,795,847 infected cases and 878,963 deaths. Currently, there are no

effective medications and vaccines for the disease. However, the effectiveness of some treatment

options is under study via clinical trials (Government of Canada, 2023). Although most people

with mild COVID-19 symptoms recover independently, some other people with severe and critical

symptoms need hospitalization in wards and Intensive Care Units (Public Health Agency of Canada,

2020). However, due to the limited capacity of the healthcare system, it is impossible to admit all
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the patients in hospitals.

Efficient Modeling and prediction of the COVID-19 pandemic will meaningfully aid the pol-

icymakers and healthcare experts in making decisions to stop the spread of the disease. Besides,

by forecasting the upcoming trend of the epidemic, we can also optimally allocate resources to

hospitals that will avoid equipment shortages and save patients’ lives. Prediction of the COVID-

19’s trend is challenging because of its uncertain nature and complication. Recently, scientists have

provided a novel model to simulate the COVID-19 pandemic called SIDARTHE and was initially

offered in research by Giordano et al. (2020) published in Nature Medicine. The researchers high-

lighted the efficiency of the proposed formulation in modeling the pandemic growth. Nevertheless,

they emphasized that solving the presented set of differential equations is difficult because of the

exceptional characteristics of the model.

In the current research, we offer a novel search methodology that will solve many complex op-

timization problems very efficiently in a short time. Our algorithm simultaneously benefits from

the advantages of Machine Learning (ML) and Evolutionary Computation (EC). In our research,

we propose a hybrid algorithm that involves a Reinforcement Learning (RL) technique as the main

engine and several ECs as updating operators. The learning process achieved by the RL method ac-

celerates the algorithm and enables us to resolve complicated large-scale problems. The procedure

utilizes several operators to enhance the exploration and exploitation capabilities of the algorithm.

These features help the proposed process to sidestep local optimum while exploiting the solution

space intelligently. We implement the algorithm on several well-known recently developed bench-

marks to show its efficiency in solving such complex problems. Moreover, we highlighted signifi-

cant differences in the performance of the method comparing to other methodologies using robust

statistical tests.

Furthermore, we use the proposed algorithm to model and predict the COVID-19 pandemic

in Quebec, Canada, that has the most cases of COVID-19 in the country. Our results accurately

predict the peak in the number of infected cases of COVID-19 in the province. The outcomes

also determine the peak of the number of cases that develop life-threatening symptoms that will

require hospitalization. We also perform complex sensitivity analyses to portray future scenarios

that enable us to provide detailed information to policymakers and healthcare professionals. In our
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study, we also measure the effectiveness of implementing measures such as social distancing and

partial lockdown on pandemic growth.

The rest of the current study is prepared as follows: In Section 4.2, we deliver a comprehensive

review of existing research on the topic. In Section 4.3, we offer a novel algorithm to resolve

many complex problems using RL and EC. In Section 4.4, we apply our algorithm to several well-

known benchmark functions. We assess the performance of the suggested approach and compare

its efficiency to state-of-the-art methods. In Section 4.5, we implement our method to model and

predict the COVID-19 pandemic in Quebec, Canada. In Section 4.6, we perform sensitivity analyses

and provide valuable managerial insights to fight the COVID-19 pandemic. In Section 4.7, we

conclude the paper.

4.2 Survey on Research Conducted

The core idea behind most EC algorithms is to follow a swarm intelligence that is inspired by animal

behavior and natural phenomenon. Mirjalili and Lewis (2016) categorized metaheuristics into four

main groups: Evolutionary Algorithms (EAs), Physics-based Algorithms (PAs), Swarm Algorithms

(SAs), and Machine Learning-based Algorithms (MLAs). EAs imitate the evolution procedure in

nature to solve complex problems. PAs utilize laws of physics that enable this family of algorithms

to handle complicated problems. On the other hand, SAs simulate the swarm behavior of many

individuals in a group. Also, MLAs use artificial intelligence and machine learning to enhance the

performance of the previous families of algorithms in terms of exploration and exploitation. Table

4.1 provides some of the most advanced metaheuristics developed in recent years.
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Table 4.1: Classification of the metaheuristics.
EAs PAs SAs Other algorithms MLAs

Genetic Algorithms Small-World Particle Swarm Stochastic Fractal Hybrid Q-Learning

(GA) (Holland, 1992) Optimization Algorithm Optimization (PSO) Search (SFS) based Algorithm

(SWOA) (Du et al., 2006) (Eberhart and Kennedy, 1995) (Salimi, 2015) (This research)

Genetic Programming Curved Space Grasshopper Sine Cosine Algorithm

(GP) (Koza, 1992) Optimization (CSO) Optimization Algorithm (SCA) (Mirjalili, 2016b)

(Moghaddam et al., 2012) (Saremi et al., 2017)

Degree-Descending Charged System Ant Lion Water Cycle Algorithm

Search Strategy (DDS) Search (CSS) Optimization Algorithm (WCA) (Eskandar et al., 2012)

(Cui et al., 2018) (Kaveh and Talatahari, 2010) (ALO) (Mirjalili, 2015)

Biogeography Based Multi-Verse Crow Search Virus colony search

Optimizer (BBO) Optimization (MVO) Algorithm (CSA) (Li et al., 2016)

(Simon, 2008) Algorithm (Mirjalili et al., 2016) (Askarzadeh, 2016)

Differential Evolution Black Hole Mechanics Salp Swarm Gradient-Based Optimizer

(DE) (Price, 2013) Optimization (BHMO) Algorithm (SSA) (GBO) (Ahmadianfar et al., 2020)

(Kaveh et al., 2020) (Mirjalili et al., 2017)

Estimation of Galaxy-based Search Grey Wolf Lightning Search

distribution algorithm Algorithm (GBSA) Optimizer (GWO) Algorithm (LSA)

(EDA) (Wang et al., 2013) (Shah-Hosseini, 2011) (Mirjalili et al., 2014) (Shareef et al., 2015)

Evolution Strategy Simulated Annealing Dragonfly Coronavirus Optimization

(ES) (Rechenberg, 1978) (SA) (Kirkpatrick et al., 1983); Algorithm (DA) Algorithm (COA)

(Mirjalili, 2016a) (MartÂınez- ÂAlvarez et al., 2020)

Evolutionary Gravitational Search Cuckoo Search Sine±Cosine Crow Search

Programming (EP) Algorithm (GSA) (CS) (Yang and Deb, 2009) Algorithm (SCCSA)

(Fogel, 1998) (Rashedi et al., 2009) (Khalilpourazari and Pasandideh, 2020)

Central Force Whale Optimization Water Cycle Moth Flame

Optimization (CFO) Algorithm (WOA) Optimization (WCMFO)

(Formato, 2007) (Mirjalili and Lewis, 2016) (Khalilpourazari and Khalilpourazary, 2019)

Many researchers used these algorithms to solve complex optimization problems in different

fields (Hoursan et al., 2020; Sangaiah et al., 2020). Defined by the No Free Lunch (NFL) The-

orem, we can logically prove that no single method performs optimally in resolving all problems

(Adam et al., 2019; Wolpert and Macready, 1997). Any metaheuristic algorithm may perform well

in some benchmarks but weak in others. This theorem makes this field of study highly interesting

for researchers searching for an algorithm that performs promising in many benchmarks. In our

algorithm, we consider several ECs and operators and let an RL method decide which algorithm to

use to relocate each element. Besides, learning during the optimization process will significantly
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reduce the computational burden and improve the quality of the results. The learning process ac-

celerates the algorithm due to the fact that using the learning process over iterations, the algorithm

adapts its operators to perform the best for each problem.

Moreover, we consider a proper framework to maintain a decent equilibrium between explo-

ration and exploitation of the feasible region over generations of the algorithm to avoid local optima.

We show the efficiency of our algorithm on the most complex benchmarks in the literature. Besides,

we apply the suggested algorithm to predict the COVID-19 pandemic in Quebec, Canada. Our out-

comes express that the designed algorithm robustly predicts the future trends of the pandemic.

4.3 Algorithm Development

Metaheuristics work based on randomization. By randomization, we mean that these algorithms use

random stepsizes while updating each particle’s position in the solution space. Metaheuristics use

unique operators and strategies to update the position of each particle (solution). The efficiency of

these operators and algorithms significantly depends on the solution space of the problem. For in-

stance, some algorithms follow a direct updating procedure, such as Water Cycle Algorithm (WCA),

while some other encircle the best solution to update the position of a given particle, such as Grey

Wolf Optimizer (GWO). Each of these operators and moving strategies has unique advantages that

enable the algorithms to perform well in optimizing specific problems. Therefore, developing new

algorithms that could efficiently solve a higher number of optimization problems is essential.

In this study, we use several operators (moving strategies) from various algorithms to update the

particles’ position in the solution space. For updating each particle, we have to choose an operator

from the given set of operators. Determining the best strategy and the most efficient operator for

any given optimization problem is computationally challenging. Therefore, we use a reinforcement

learning method that learns and optimizes the choice of operators during the optimization process

to achieve optimal performance. In the following, we first describe all the features of the offered

algorithm, and then we define the algorithm in a unique structure.
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4.3.1 Q-learning

Reinforcement Learning (RL) that approximates dynamic programming, and neuro-dynamic pro-

gramming, is a type of machine learning which determines the best actions in a specific environment

to maximize a reward (Bertsekas, 2019). One of the main features of reinforcement learning is that

the agent receives a reward or punishment after executing an action. The RL continues to interact

with the environment to achieve the optimal policy via trial and error.

The Q-Learning is one of the most efficient Reinforcement Learning algorithms that determine

an optimal policy by evaluating taken actions using the environment. Q-learning is a way to op-

timize solutions in a Markov Decision Process (MDP) problem (Akhtar, 2017). The Q-learning

algorithm aims to maximize the anticipated reward by determining the optimal state-action pairs.

The algorithm uses a Q (s, a) table where st is the state and at is the action at time step t, and

Q is the cumulative reward matrix. The algorithm updates the components of the Q-table Q (s, a)

iteratively using Eq. (52).

Q(t+1)(st, at) = Qt(st, at) + ϵt(rt + γmax(Qt(st+1, at+1))−Qt(st, at)), (52)

In Eq. (52), ϵt denotes the learning rate parameter and rt is the obtained reward/punishment

from the current action. Besides, the expression γ is the scaling factor. One of the main challenges

in designing an efficient Q-learning algorithm is in determining the importance of the information

gained throughout interactions with the environment. For instance, assigning a value close to 1 to

the learning rate parameter means that we consider higher importance for the recent information

gained. To optimize the value of the learning rate parameter throughout iterations, we use an adap-

tive methodology that uses Eq. (53) to intelligently tune the learning rate parameter to explore and

exploit the search region (Zamli et al., 2018).

ϵt = 1− 0.9
t

MT
, (53)

In Eq. (53), t is the iteration index, and MT is the maximum generation. In this research, we

consider a reward value of 1 if the current action improves the solution quality of the particle;
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otherwise, we consider a punishment value of -1. Based on the given illustrations, we present the

Pseudo-code of the Q-learning in Algorithm 1.

Algorithm 1 Pseudo Code for the Q-Learning Algorithm

0: Input states, actions, gamma, and initial Q(s, a) table;

0: while stopping criteria not met do

0: Select the best action from the Q-table;

0: Execute the action and observe the reward and new state;

0: Update the current state, s(t) = s(t+1);

0: end while

0: return The Q-table; =0

In this research, we consider several efficient operators from different algorithms and let the

Q-learning algorithm determine the best action throughout the optimization process to modify the

location of each particle in the feasible space. In the following subsections, we present the operators

in detail.

4.3.2 Grey Wolf Optimizer

Similar to other swarm intelligence-based systems, GWO initially generates a set of primary solu-

tions. Then, it sorts the solutions regarding their fitness and considers the three best solutions as the

dominant wolves (Alpha, Beta, and Delta). The following equations imitate the encircling behavior

of the grey wolves around prey:

D⃗ = |C⃗ · X⃗p(t)− X⃗(t)|, (54)

X̄(t+ 1) = X⃗p(t)− A⃗ · D⃗, (55)

In Eqs. (54)-(55), t represents the iteration index and A⃗ and C⃗ characterize location vectors of target

and other grey wolves. X⃗p(t) and X⃗(t) are the position of the prey and grey wolf, respectively.

These coefficients are calculated as follows:

A⃗ = 2a1 · r⃗1 − a1, (56)

C⃗ = 2 · r⃗2, (57)
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In Eqs. (56)-(57), a1 decreases over iterations from 2 to 0 and r⃗1 and r⃗2 are random vec-

tors. After encircling the prey, the wolves start the hunting process. To mathematically express the

movements of grey wolves in the hunting process, we consider that the Alpha, Beta, and Delta have

superior knowledge of the probable position of the target (possible optimal solution of the problem).

In this framework, the following formulas are recommended to mimic the hunting process:

D⃗α = |C⃗1 · X⃗α − X⃗|, D⃗β = |C⃗2 · X⃗β − X⃗|, D⃗δ = |C⃗3 · X⃗δ − X⃗|, (58)

X̄1 = X⃗α − A⃗1 · D⃗α, X̄2 = X⃗β − A⃗2 · D⃗β , X̄3 = X⃗δ − A⃗3 · D⃗δ, (59)

X̄(t+ 1) =
X⃗1 + X⃗2 + X⃗3

3
. (60)

Figure 4.1 depicts a graphical interpretation of the hunting action in 2D space.

Figure 4.1: Hunting behavior in GWO.

4.3.3 Sine-Cosine Algorithm

SCA is a newly developed search procedure that mimics the sine and cosine like movements in the

feasible space to modify the elements using eq. (10):

X = Xbest +R1 · sin(R2) · cos(R3) · (R4) (61)

In Eq. (61), X is the present location, Xbest is the location of the best particle and R1, R2, R3, R4
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are random numbers in (0, 1]. Throughout iterations, R2 displays the movement path, R3 controls

the moving distance, R1 guarantees a suitable equilibrium among underline or deemphasize the

desalination, and R4 selects a sine or cosine measure for updating procedure. Figure 4.2 shows the

movement behavior of the sine and cosine actions.

Figure 4.2: Updating procedure in SCA.

SCA uses sine and cosine movements intelligently to evade local optima. In addition to adjusting

the particles’ movements during the solution process, SCA reduces the value of R1 parameter using

the below formula to sustain a proper equilibrium between exploration and exploitation as follows:

R1 = a2 −
t · a2
T

(62)

In Eq. (62), t displays present repetition, a2 is a constant, and T is the maximum generation.

4.3.4 Moth-Flame Optimization

Like most of the optimization paradigms, MFO initiates the optimization by creating random solu-

tions. Then, it mimics the spiral flying actions of the moths around light sources using a logarithmic

spiral function as follows:

IP
(X+1)
i = |Fi − IPX

i | · e
b·t · cos(2πt) + Fi, (63)

In Eq. (63), t is a constant in [−1, 1], and b is a constant for determining the form of the

logarithmic spiral. Fi is the flame (the best solution), IPX
i is the moth, and |Fi − IPX

i | calculates

the distance between the moth and flame. Figure 4.3 shows the spiral movement around the flame.
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Figure 4.3: The spiral fly path of the moths around the flame.

In order to maintain a suitable balance among its exploration and exploitation, the MFO algo-

rithm reduces the search radius using the following equations:

a3 = −1 + t(
−1

MT
) (64)

tt = (a3 − 1)× rand + 1 (65)

In Eqs. (64)-(65), t displays present repetition, and MT is the maximum generation.

4.3.5 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is one of the most efficient procedures for optimization, and

it performs promisingly in solving many complex problems. PSO is a population-based algorithm

that uses the following equation to update the location of a given particle in the solution space:

xi(t+ 1) = xi(t) + vi(t+ 1) (66)

In Eq. (66), xi(t) presents the current location of the particle and vi(t+1) determines the veloc-

ity of the particle. The vi vector is the main component of the updating operator that is calculated

as follows:
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vi(t+ 1) = ωvi(t) + C1r1(pi(t)− xi(t)) + C2r2(G(t)− xi(t)) (67)

In Eq. (67), r1, r2 are random numbers in (0, 1], C1, C2 are coefficients, pi(t) is the best solution

found by the particle so far, and G(t) is the best solution attained so far.

4.3.6 Water Cycle Algorithm

The Water Cycle Algorithm (WCA) is one of the best algorithms for solving complex problems.

WCA is a population-based nature-inspired metaheuristic that mimics the flow of streams to rivers

and sea to perform optimization as presented in Eq. (68).

x
(i+1)
current = xicurrent + C(xibest sol − xicurrent) (68)

In Eq. (68), C is a random value. We use the updating operator in the WCA as one of the means

to update the location of a given particle in the feasible space. Figure 4.4 represents the updating

procedure in WCA.

Figure 4.4: Updating procedure in WCA.

4.3.7 Gaussian Walks and LÂevy Flight

In this subsection, we use the leading operators of the Stochastic Fractal Search (SFS) offered by

(Salimi, 2015). SFS utilizes an important scientific property called ªfractalº. Fractals are compli-

cated geometric shapes that generally have a ªfractional dimension,º resulting in self-similarity. SFS

follows Diffusion Limited Aggregation (DLA), which is an efficient technique to create fractals. To

simulate the DLA, we use the Gaussian walk and LÂevy flight. Figure 4.5 presents a fractal shape

produced through the DLA scheme.

We use the following equation to simulate the diffusion process in the DLA method.
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Figure 4.5: A fractal produced through the DLA method.

xqi = xi + β × Gaussian(|BP |, σ)− (ε×BP − ε′ × xi) (69)

In Eq. (69), q describes the number of new solutions created through the diffusion of each

particle, σ is the standard deviation of the Gaussian walk, and BP is the best solution. Also, xqi

denotes new particles produced via the diffusion process and xi is the i-th solution. Besides, ε′ and

ε are randomly generated numbers in (0, 1]. The element σ is defined using the below formula:

σ =

∣∣∣∣
log(g)

g
× (Pi −BP )

∣∣∣∣ (70)

where
log(g)

g decreases the length of Gaussian jumps over iterations. Element g is the iteration

number and Pi is the current position of the particle.

In order to enhance exploration and randomness in the population, we also apply a LÂevy flight-

based updating procedure to the particle under consideration as follows:

Xi
new = Xi

c +Xi
c ⊗ Levy(D) for i = 1, . . . ,m (71)

The expression Xi
new is the new location and Xi

c is the current location of the particle, respec-

tively. We calculate the LÂevy flight using Eq. (72).
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Levy(x) =
0.01× σ × r1

|r2|1/β
(72)

where r1 and r2 are random numbers. In Eq. (72), σ is obtained as follows:

σ =

(
Γ(1 + β) sin(πβ/2)

Γ((1 + β)/2)β2((β−1)/2)

)1/β

(73)

4.3.8 The Developed Hybrid Q-Learning Based Algorithm

In this section, we propose a novel Hybrid Q-Learning based Algorithm (HQLA) to solve compli-

cated optimization problems. The idea behind this algorithm is to design a solution methodology

that is capable of solving complicated problems by adapting its operators to any solution space.

We designed an optimization procedure that can benefit from the advantages of several algorithms.

The process can use any movement strategy based on each updating operator. However, a reinforce-

ment learning based algorithm (Q-learning) selects the best action in each iteration for each particle.

When optimization begins, the algorithm performs several random actions to evaluate the efficiency

of each type of operator. As the iterations continue, Q-learning learns how to employ different ac-

tions to achieve the best possible solution. For each action, we consider a reward equal to 1 if the

current operators improve the solution quality; Otherwise, the algorithm assigns a punishment value

of -1 to the action. The Pseudo-code of the algorithm is available in Algorithm 2.
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Algorithm 2 Pseudo Code for the HQLA

1: Input parameters of the algorithm;
2: Create a set of randomly generated solutions;
3: while stopping criteria not met do
4: Check for infeasibility of the particles;
5: Bring infeasible particles to the feasible solution space;
6: Sort the solutions based on their fitness value;
7: for each particle do
8: if it is the first iteration then
9: Select a random action;

10: else
11: Select the action using the Q-table;
12: end if
13: if the action is GWO then
14: Use GWO operators to update the position of the particle;
15: else if the action is SFS then
16: Use SFS operators to update the position of the particle;
17: else if the action is WCA then
18: Use WCA operators to update the position of the particle;
19: else if the action is PSO then
20: Use PSO operators to update the position of the particle;
21: else if the action is MFO then
22: Use MFO operators to update the position of the particle;
23: else if the action is SCA then
24: Use SCA operators to update the position of the particle;
25: end if
26: Check for infeasibility of the particle;
27: Bring infeasible particle to the feasible solution space;
28: Calculate the objective function value of the particle;
29: Determine the reward/punishment value;
30: Update the current state, s(t) = s(t+ 1);
31: end for
32: end while
33: Return the best solution; =0

4.4 Results and discussions

Metaheuristics are approximation algorithms that are based on randomized movements. Therefore,

their performance may differ from one problem to another. Thus, to show the efficiency of a meta-

heuristic algorithm, we should apply them to many benchmark functions. For this purpose, we use

29 benchmarks, including Unimodal, multimodal, fixed dimensional multimodal, and hybrid com-

posite functions that are among the most complex benchmarks in the literature. For more details

regarding these benchmarks, see Appendix D.

We compare our algorithm to state-of-the-art methods, including Crow Search Algorithm (CSA),
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Artificial Bee Colony (ABC), Cuckoo Search (CS), Genetic Algorithm (GA), Moth-Flame opti-

mization (MFO), Gravitational Search Algorithm (GSA), and Dragonfly Algorithm (DA). In order

to solve the benchmark functions, we considered 15000 Number of Function Evaluations (NFEs) to

perform a reasonable assessment. Besides, to draw a reliable conclusion, we apply each algorithm

on each benchmark 30 times, and report mean, standard deviation, worst and best results. Table 4.2

provides more details about the values of the main parameters of the algorithms.

Table 4.2: The values of the parameters of the algorithms.

Algorithm Parameter Value Algorithm Parameter Value

HQLA Number of initial solutions 30 GA Cross over probability 0.9

ω Decreases linearly from 0.9 to 0.4 Mutation probability 0.005

C2 2 Number of initial solutions 30

C1 2 GSA Number of initial solutions 30

a1 Decreases linearly from 2 to 0 G0 1

a2 Decreases linearly from 2 to 0 α 20

a3 Decreases linearly from -1 to -2 MFO a3 Decreases linearly from -1 to -2

CSA Number of initial solutions 30 Number of initial solutions 30

DA Number of initial solutions 30 CS Discovery rate of alien solutions 0.25

ABC Number of initial solutions 30

In the first step, we assess the performance of the HQLA on unimodal benchmarks (F1-F7).

Figure 4.6 depicts a 2D representation of these benchmark functions.
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Figure 4.6: 2D representation of F1-F7.

Unimodal benchmarks do not have several local optima and are considered to assess the ex-

ploitation ability of metaheuristic algorithms. This set of test suites are difficult to solve since the

algorithms should first locate the global optima approximately and then perform exploitation to

provide the best approximation of the location of the global optima. Table 4.3 provides detailed

information on the performance of the algorithms in unimodal benchmarks. Based on the results

of Table 4.3, we observe that the HQLA performs the best in most of the benchmarks. In F1-F5

and F7, the HQLA outperforms all other algorithms by obtaining the best possible solution for all

benchmarks. In F6, HQLA ranks third in providing the best solution for this benchmark. Besides,

HQLA provides the lowest standard deviation that shows very low variability in the performance

of this algorithm. Moreover, considering the boxplot of the results of Table 4.3 present in Figures

4.7, 4.8, and 4.9, it becomes apparent that HQLA has the lowest and narrowest boxplot among the

algorithms.
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Table 4.3: Computational outcomes of the algorithms in solving unimodal benchmark functions

HQLA CSA ABC DA CS MFO GSA GA

F1

Average 2.14E-66 2.25E-05 6.10E-02 6.02E+00 3.68E-05 6.34E-14 2.53E-18 1.21E-02

Std Dev 6.92E-66 2.78E-05 0.056501 16.50088 1.82E-05 1.1E-13 9.7E-19 0.009841

Worst 3.20E-65 1.23E-04 2.37E-01 8.36E+01 9.72E-05 5.61E-13 5.91E-18 3.37E-02

Best 8.88E-105 1.98E-06 5.96E-03 0.00E+00 1.63E-05 6.96E-16 1.35E-18 2.61E-04

F2

Average 6.95E-37 3.81E-03 7.54E-02 1.69E+00 1.16E-02 6.67E-01 4.93E-09 1.58E-02

Std Dev 2.5E-36 0.002926 0.035631 2.274098 0.002961 2.494438 1.12E-09 0.009469

Worst 1.31E-35 1.37E-02 1.69E-01 1.09E+01 1.66E-02 1.00E+01 7.85E-09 3.81E-02

Best 4.31E-57 6.10E-04 2.15E-02 1.33E-01 6.33E-03 2.78E-10 3.21E-09 1.99E-03

F3

Average 5.39E-37 1.68E-02 1.62E+03 1.96E+02 7.00E-02 1.67E+02 3.31E+00 6.13E+01

Std Dev 2.24E-36 0.025618 396.8719 580.7061 0.025593 897.525 3.383667 27.55541

Worst 1.25E-35 1.34E-01 2.51E+03 3.20E+03 1.42E-01 5.00E+03 1.31E+01 1.32E+02

Best 1.61E-44 7.80E-04 7.52E+02 4.76E-02 3.33E-02 2.05E-05 6.14E-02 1.72E+01

F4

Average 2.64E-25 1.08E-02 1.76E+01 1.30E+00 2.59E-01 3.76E-02 1.23E-09 6.21E-01

Std Dev 6.16E-25 0.008445 4.709691 1.290182 0.068563 0.137389 2.11E-10 0.162887

Worst 2.98E-24 3.46E-02 2.44E+01 5.21E+00 4.23E-01 7.47E-01 1.76E-09 9.66E-01

Best 1.76E-28 1.98E-03 8.29E+00 0.00E+00 1.19E-01 1.45E-04 8.47E-10 2.86E-01

F5

Average 5.34E+00 6.45E+00 8.06E+01 3.66E+03 5.92E+00 3.18E+03 6.91E+00 3.65E+01

Std Dev 0.227996 2.09398 33.02036 16096.55 2.065037 16131.83 0.19993 38.87984

Worst 5.93E+00 9.38E+00 1.58E+02 9.01E+04 1.00E+01 9.00E+04 7.55E+00 1.33E+02

Best 4.88E+00 3.55E-01 1.74E+01 6.94E+00 3.03E+00 1.16E+00 6.46E+00 2.68E+00

F6

Average 5.36E-06 1.56E-05 5.46E-02 5.47E+00 3.06E-05 7.57E-14 2.60E-18 1.40E-02

Std Dev 1.66E-06 1.16E-05 0.043146 25.99325 1.65E-05 1.51E-13 8.35E-19 0.009801

Worst 1.01E-05 4.10E-05 1.41E-01 1.45E+02 6.71E-05 7.85E-13 5.09E-18 3.67E-02

Best 2.42E-06 1.09E-06 7.47E-03 2.22E-06 7.31E-06 1.91E-16 1.33E-18 6.39E-04

F7

Average 2.87E-04 2.72E-03 9.01E-02 1.74E-02 1.06E-02 5.82E-03 5.63E-03 2.88E-03

Std Dev 0.000182 0.001551 0.036762 0.013218 0.00359 0.003094 0.002614 0.001706

Worst 7.50E-04 6.82E-03 1.61E-01 5.44E-02 1.72E-02 1.60E-02 1.18E-02 7.37E-03

Best 2.15E-05 8.77E-04 3.30E-02 2.43E-03 3.95E-03 2.02E-03 8.37E-04 6.79E-04

Furthermore, Figures 4.10, 4.11, and 4.12, that present the convergence plots of the methods,

disclose that the HQLA can maintain a perfect balance among exploration and exploitation of the
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solution space. In Figure 4.10, 4.11, and 4.12, we observe that the HQLA can continually improve

the best solution attained in each iteration by choosing the best operator to explore the solution

space. The learning process in HQLA enables the algorithm to determine the best operator to change

the location of the particles in the solution region by evaluating the efficiency of each updating

mechanism. Based on these observations, we conclude that HQLA is a reliable technique for this

family of benchmark functions.

Figure 4.7: Boxplot of the results in F1-F9 benchmarks.

87



Figure 4.8: Boxplot of the results in F10-F18 benchmarks.

The second and third family of the benchmarks are multimodal and fixed-dimension multimodal

benchmarks. These benchmarks contain several local optima that make the solution process a com-

plicated task. To perform well in solving these benchmark functions, the algorithms should maintain

an excellent balance among exploration and exploitation. This will help the algorithms avoid local

optimum. Figures 4.13-4.14 show a schematic view of these benchmark functions in 2D.
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Figure 4.9: Boxplot of the results in F19-F23 benchmarks.
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Figure 4.10: Convergence Plot of the algorithms.
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Figure 4.11: Convergence Plot of the algorithms.
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Figure 4.12: Convergence Plot of the algorithms.

Figure 4.13: 2D representation of F8-F13.
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Figure 4.14: 2D representation of F14-F17.

We provide detailed information on the performance of the algorithms on solving multimodal

and fixed-dimension multimodal benchmarks in Tables 4.4-4.5. Based on the results, we observe

that in F8-F12, F14, and F16-23 (14 out of 16) benchmark functions, the HQLA outperforms other

algorithms considering average, standard deviation, best and worst values over 30 repetitions. In

some of these benchmarks, such as F9 and F11, the standard deviation of the results provided by

HQLA is zero. In these benchmark functions, the HQLA achieves global optima in all the rep-

etitions. These results indicate that HQLA is a robust and reliable algorithm in solving complex

optimization problems. HQLA is able to choose between several operators that enable the algo-

rithms to explore and exploit the solution region intelligently. The learning process in the HQLA

helps the algorithm evaluate the efficiency of the operators and discover the most efficient operator

(action) for any problem. Besides, Figures 4.10, 4.11, and 4.12 depict the perfect balance among

exploration and exploitation in the performance of the HQLA throughout iterations. Moreover, in

F13 and F15, the HQLA ranked second among all algorithms, which shows its high capability in

solving optimization problems. Furthermore, Figures 4.7, 4.8, and 4.9 , disclose that the boxplot of

the outcomes of the HQLA is narrower and lower than any other algorithm that highlights the su-

periority of the proposed methodology over existing approaches. The last family of the benchmark

functions is hybrid composite benchmarks that are the most challenging (Liang et al., 2005). Figure

4.15 presents a graphical representation of these benchmark functions in 2D.
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Table 4.4: Computational outcomes of the algorithms in solving multimodal benchmark functions

HQLA CSA ABC DA CS MFO GSA GA

F8

Average -3.59E+03 -2.74E+03 -3.61E+03 -2.98E+03 -3.46E+03 -3.42E+03 -1.56E+03 -3.75E+03

Std Dev 214.4446 283.4627 90.24338 376.9813 98.34133 375.2893 244.7475 155.5952

Worst -3.08E+03 -2.22E+03 -3.44E+03 -2.39E+03 -3.31E+03 -2.64E+03 -1.21E+03 -3.36E+03

Best -4.07E+03 -3.38E+03 -3.77E+03 -3.75E+03 -3.70E+03 -3.97E+03 -2.15E+03 -4.19E+03

F9

Average 0.00E+00 7.69E+00 6.16E+00 2.64E+01 1.18E+01 2.18E+01 3.78E+00 7.36E-03

Std Dev 0 4.149784 1.863144 10.72399 2.272461 11.97422 2.06159 0.007922

Worst 0.00E+00 1.99E+01 1.05E+01 4.08E+01 1.71E+01 4.97E+01 8.95E+00 4.34E-02

Best 0.00E+00 2.98E+00 2.22E+00 8.02E+00 7.53E+00 6.96E+00 9.95E-01 5.32E-04

F10

Average 8.88E-16 1.83E-09 2.26E-05 7.51E-07 4.88E-10 8.88E-16 3.19E-10 3.10E-04

Std Dev 9.86E-32 1.49E-09 4.01E-05 4.04E-06 3.96E-10 9.86E-32 1.43E-10 0.001217

Worst 8.88E-16 7.16E-09 2.09E-04 2.25E-05 1.66E-09 8.88E-16 6.78E-10 6.10E-03

Best 8.88E-16 2.45E-10 1.78E-12 8.88E-16 3.02E-11 8.88E-16 1.22E-10 8.88E-16

F11

Average 0.00E+00 1.28E-01 5.01E-01 4.05E-01 7.53E-02 1.78E-01 1.52E+00 8.03E-02

Std Dev 0 0.077065 0.128705 0.256938 0.015921 0.111694 0.78624 0.024518

Worst 0.00E+00 3.71E-01 8.17E-01 9.68E-01 1.07E-01 5.27E-01 2.95E+00 1.23E-01

Best 0.00E+00 3.75E-02 2.94E-01 0.00E+00 4.77E-02 6.40E-02 1.21E-01 2.29E-02

F12

Average 9.15E-07 9.39E-02 1.05E-02 6.54E-01 2.41E-02 9.36E-02 3.18E-03 8.95E-05

Std Dev 3.92E-07 0.187187 0.00722 0.588009 0.020125 0.449848 0.017111 0.00012

Worst 1.95E-06 6.25E-01 3.00E-02 2.17E+00 9.70E-02 2.50E+00 9.53E-02 5.19E-04

Best 4.02E-07 2.52E-06 4.20E-04 6.49E-05 2.07E-03 2.41E-17 2.46E-20 5.89E-07

F13

Average 4.40E-06 1.90E-03 3.14E-02 7.02E-01 5.93E-04 1.83E-03 2.64E-19 8.44E-04

Std Dev 1.68E-06 0.004102 0.013352 1.387596 0.000331 0.004095 1.13E-19 0.00221

Worst 8.88E-06 1.11E-02 6.68E-02 5.22E+00 1.87E-03 1.10E-02 5.20E-19 1.13E-02

Best 1.83E-06 4.27E-07 3.75E-03 1.38E-02 1.40E-04 1.21E-16 1.01E-19 4.31E-06

F14

Average 9.98E-01 9.98E-01 9.98E-01 1.30E+00 9.98E-01 1.16E+00 5.00E+00 9.98E-01

Std Dev 4.61E-12 3.33E-16 2.41E-09 0.853122 3.07E-15 0.450142 3.794397 1.13E-10

Worst 9.98E-01 9.98E-01 9.98E-01 4.95E+00 9.98E-01 2.98E+00 1.54E+01 9.98E-01

Best 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01 9.98E-01
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Table 4.5: Computational outcomes of the algorithms in solving multimodal benchmark functions

HQLA CSA ABC DA CS MFO GSA GA

F15

Average 3.72E-04 3.07E-04 1.07E-03 1.73E-03 4.29E-04 1.37E-03 3.74E-03 1.42E-03

Std Dev 0.000241 1.89E-13 0.000279 0.00127 9.41E-05 0.001882 0.001868 0.001202

Worst 1.32E-03 3.07E-04 1.83E-03 8.09E-03 6.75E-04 8.33E-03 1.02E-02 6.85E-03

Best 3.07E-04 3.07E-04 5.09E-04 7.03E-04 3.16E-04 4.22E-04 1.18E-03 5.56E-04

F16

Average -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00

Std Dev 9.35E-10 0 3.75E-09 7.56E-09 0 0 0 0

Worst -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00

Best -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00 -1.03E+00

F17

Average 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01

Std Dev 1.45E-07 1.11E-16 6.8E-06 5.18E-10 1.84E-14 1.11E-16 1.11E-16 1.2E-06

Worst 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01

Best 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01 3.98E-01

F18

Average 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00

Std Dev 1.28E-07 4.7E-15 0.005074 1.74E-06 4.97E-15 2.52E-15 3.35E-15 5.38E-05

Worst 3.00E+00 3.00E+00 3.02E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00

Best 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00 3.00E+00

F19

Average -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00

Std Dev 0.001966 2.66E-15 3.84E-09 0.001171 2.66E-15 2.66E-15 2.66E-15 9.07E-06

Worst -3.85E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00

Best -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00 -3.86E+00

F20

Average -3.28E+00 -3.32E+00 -3.32E+00 -3.27E+00 -3.32E+00 -3.21E+00 -3.32E+00 -3.28E+00

Std Dev 0.056061 0.021345 2.86E-05 0.075844 2.94E-07 0.038462 1.33E-15 0.05714

Worst -3.20E+00 -3.20E+00 -3.32E+00 -3.08E+00 -3.32E+00 -3.14E+00 -3.32E+00 -3.20E+00

Best -3.32E+00 -3.32E+00 -3.32E+00 -3.32E+00 -3.32E+00 -3.32E+00 -3.32E+00 -3.32E+00

F21

Average -1.02E+01 -9.74E+00 -1.01E+01 -8.47E+00 -1.02E+01 -6.65E+00 -7.62E+00 -8.64E+00

Std Dev 0.00034 1.592751 0.024798 2.383475 4.19E-07 3.389785 3.414204 2.977379

Worst -1.02E+01 -2.68E+00 -1.00E+01 -5.06E+00 -1.02E+01 -2.63E+00 -2.68E+00 -2.68E+00

Best -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 -1.02E+01 -1.01E+01

F22

Average -1.04E+01 -1.04E+01 -1.04E+01 -7.96E+00 -1.04E+01 -8.67E+00 -1.04E+01 -8.74E+00

Std Dev 0.000252 4.39E-13 0.034619 2.851794 7.13E-07 2.936026 0 2.992735

Worst -1.04E+01 -1.04E+01 -1.02E+01 -2.77E+00 -1.04E+01 -1.84E+00 -1.04E+01 -2.75E+00

Best -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01 -1.04E+01

F23

Average -1.05E+01 -1.05E+01 -1.05E+01 -8.52E+00 -1.05E+01 -8.84E+00 -1.05E+01 -9.58E+00

Std Dev 0.000296 1.65E-11 0.032012 2.661454 2.18E-05 3.106381 8.88E-15 2.447214

Worst -1.05E+01 -1.05E+01 -1.04E+01 -3.84E+00 -1.05E+01 -2.42E+00 -1.05E+01 -2.87E+00

Best -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01 -1.05E+01
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Figure 4.15: 2D representation of F24-F29.

Computational results of solving this family of benchmark functions using each algorithm are

available in Table 4.6. Considering the results, we observe that the HQLA provides the best results

and outperforms other algorithms in solving hybrid composite benchmarks. Table 4.6 shows that

the HQLA obtained the lowest average, standard deviation, and best values for these benchmark

functions while maintaining the lowest worst value. Besides, Figure 4.17 approves this statement by

showing that the boxplot of the HQLA is narrower and lower than any other algorithms. Moreover,

Figure 4.16 shows that the HQLA adjusts exploration and exploitation by intelligently choosing the

best operators in each iteration. Based on Figure 4.16, we observe that the HQLA can improve the

best solution consistently throughout iterations.
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Table 4.6: Computational outcomes of the algorithms in solving composite benchmark functions.

HQLA CSA ABC DA CS MFO GSA GA

F24

Average 6.286974 89.47798 74.9472 127.8248 11.7614 102.5087 229.0856 129.6113

Std Dev 2.737264 103.3183 14.01152 116.2458 2.422529 67.72289 76.66939 146.3853

Worst 9.41E+00 2.48E+02 1.02E+02 4.62E+02 1.84E+01 1.78E+02 2.81E+02 5.04E+02

Best 5.48E-01 6.91E+00 5.77E+01 4.92E+01 8.76E+00 4.45E+00 2.86E+00 1.65E+01

F25

Average 4.051293 41.6118 74.98699 92.44491 34.89759 89.83728 202.1975 64.50657

Std Dev 1.305113 36.35972 12.03202 94.10962 53.20973 87.77274 150.2123 83.70854

Worst 5.78E+00 1.03E+02 9.35E+01 2.34E+02 1.81E+02 2.57E+02 5.34E+02 2.37E+02

Best 1.64E+00 3.22E+00 5.10E+01 6.72E+00 5.45E+00 1.76E-14 1.37E+00 2.91E+00

F26

Average 5.800523 89.67129 75.67468 143.2063 11.27073 70.93509 241.6218 188.6492

Std Dev 2.535319 104.9326 12.05648 146.979 2.933045 69.55739 81.02934 162.9257

Worst 9.23E+00 2.54E+02 8.96E+01 5.31E+02 1.71E+01 2.25E+02 2.88E+02 5.15E+02

Best 3.27E-01 1.35E+00 5.12E+01 2.82E+01 7.68E+00 6.34E+00 2.90E+00 2.50E+01

F27

Average 5.824902 35.16891 77.9421 161.152 9.838745 76.15984 186.7724 98.29543

Std Dev 2.358736 68.64897 16.40409 151.9523 2.625766 81.88245 123.7938 77.67603

Worst 8.89E+00 2.41E+02 1.00E+02 5.50E+02 1.31E+01 2.26E+02 3.34E+02 2.37E+02

Best 1.85E+00 4.13E+00 4.27E+01 4.24E+01 3.38E+00 5.33E+00 4.40E+00 1.80E+01

F28

Average 5.907383 104.8916 67.73344 105.7646 11.92527 102.206 202.6379 85.30539

Std Dev 2.128054 114.5205 14.15686 66.0598 2.57178 75.31781 137.0966 63.38328

Worst 9.12E+00 2.68E+02 9.49E+01 2.37E+02 1.66E+01 2.26E+02 4.31E+02 2.35E+02

Best 2.34E+00 8.17E+00 4.91E+01 4.95E+01 8.13E+00 7.10E+00 5.02E+00 1.69E+01

F29

Average 5.907383 104.8916 67.73344 105.7646 11.92527 102.206 202.6379 85.30539

Std Dev 2.128054 114.5205 14.15686 66.0598 2.57178 75.31781 137.0966 63.38328

Worst 9.12E+00 2.68E+02 9.49E+01 2.37E+02 1.66E+01 2.26E+02 4.31E+02 2.35E+02

Best 2.34E+00 8.17E+00 4.91E+01 4.95E+01 8.13E+00 7.10E+00 5.02E+00 1.69E+01
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Figure 4.16: Convergence Plots for algorithms in solving composite problems.

Figure 4.17: Boxplot of the results in Composite benchmarks.

Although we showed that the HQLA outperforms other state-of-the-art methods in terms of

solution performance, we apply Friedman’s test, which is a powerful statistical test, to show the
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statistical superiority of our algorithm to other methods. Table 4.7 presents the results of Fried-

man’s test. Based on the outcomes, the average rank of the HQLA is 3.036207, which is far smaller

than that of other algorithms. Therefore, from a statistical point of view, HQLA performs signifi-

cantly better than all other algorithms. We note that we perform the Friedman’s test at a 95 percent

confidence level.
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Table 4.7: Results of the Friedman’s test.

HQLA CSA ABC DA CS MFO GSA GA

F1 1.033333 4.233333 7.233333 7.266667 4.9 3.033333 2.033333 6.266667

F2 1 4.1 6.966667 7.9 5.3 2.633333 2.7 5.4

F3 1 2.8 7.933333 6.166667 3.933333 2.433333 5.133333 6.6

F4 1.1 3.833333 8 5.966667 5.2 3.433333 2.1 6.366667

F5 2.133333 3.666667 7.1 6.833333 2.8 4.466667 4.033333 4.966667

F6 3.366667 3.966667 7.233333 7.3 4.766667 2 1 6.366667

F7 1 2.833333 7.966667 6.4 6.1 4.333333 4.533333 2.833333

F8 3.266667 6.6 2.8 5.733333 4.166667 3.833333 8 1.6

F9 1 4.833333 4.333333 7.466667 6.166667 6.9 3.3 2

F10 2.25 6.666667 7.8 3.066667 5.533333 2.25 5.233333 3.2

F11 1.016667 3.8 6.666667 5.983333 2.866667 4.733333 7.633333 3.3

F12 2.933333 5.2 6.033333 7.566667 6.533333 2.333333 1.2 4.2

F13 2.933333 4.3 7.066667 7.933333 5.433333 2.633333 1 4.7

F14 5.333333 2.533333 6.7 3.216667 2.766667 3.2 7.966667 4.283333

F15 2.233333 1 5.3 6.4 3.066667 4.9 7.666667 5.433333

F16 7.6 3.45 7.266667 3.883333 3.45 3.45 3.45 3.45

F17 6.9 2.816667 7.9 3.3 5.166667 2.816667 2.816667 4.283333

F18 6.9 4.233333 8 3.916667 3.416667 2.166667 4.466667 2.9

F19 6.466667 2.533333 5.233333 6.666667 2.533333 2.533333 2.533333 7.5

F20 5.366667 2.3 4.833333 6.166667 3.133333 6.516667 1.05 6.633333

F21 4.633333 2.566667 6 4.133333 3.566667 4.8 3.566667 6.733333

F22 4.95 2.866667 6.7 5.233333 4.466667 3.283333 1.566667 6.933333

F23 5.833333 2.4 7.166667 5.5 4.333333 3.166667 1.766667 5.833333

F24 1.2 4.5 5 5.9 2.6 4.9 7.1 4.8

F25 1.6 4 5.6 5.4 4.1 5 6.1 4.2

F26 1.5 3.9 5.4 5.6 2.5 4.2 7 5.9

F27 1.4 3.4 5.9 6.1 2.6 4.7 6.1 5.8

F28 1.1 4.8 4.9 5.5 2.6 5.5 6.2 5.4

F29 1 3.5 5.5 6.4 2.6 5.2 5.6 6.2

Averagee 3.036207 3.711494 6.363218 5.824138 4.02069 3.839655 4.236207 4.968391
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4.5 Multi-Criteria Parameter Estimation and Curve Fitting

Quebec is one of Canada’s provinces that is dealing with the COVID-19 epidemic triggered by the

SARS-CoV-2 virus. The province has been reported the most COVID-19 cases that account for

more than 63,713 confirmed cases of COVID-19 and 5,770 death cases by the disease. On April

29, 2020, Quebec hospitals announced that the healthcare system capacity could not respond to

the influx of the COVID-19 patients to the hospitals (Weeks and Ha, 2020). On June 28, 2020,

Montreal’s Emergency Rooms (ERs) reported near capacity status due to limited resources (Fahmy

and Ross, 2020). These highlight the need for a methodology that could accurately predict the

future trend of the pandemic in the province that enables the policymakers to optimize the resource

allocation to avoid loss of lives, as many scientists declared that resource shortages such as ventilator

shortages are the difference between life and death for patients (Kliff et al., 2020). Developing new

methodologies to predict pandemic growth is essential to optimize resource allocation and determine

the optimal time to implement lockdown measures. On the other hand, we could optimize resource

allocation for life-threatening cases admitted to ICUs and reduce the disease’s fatality rate. In this

section, we use the most recent and accurate model called SIDARTHE, presented by Giordano et al.

(2020) published in Nature Medicine. The scientists showed that using the model, we could predict

the future trend of the pandemic accurately. However, the solution to the problem is a cumbersome

task. For more information on the SIDARTHE model, see Appendix E. In this research, we used the

SIDARTHE model and applied it to real data from Quebec, Canada. In order to solve the model, we

utilize HQLA. Figure 4.18 shows the convergence plot of HQLA throughout iterations. We divided

the period (from January 25, 2020 (day 1) to July 19, 2020 (day 176)) into six stages as follows in

which the Quebec government applied specific restrictions to control the pandemic:

• Stage 1 (from January 25, 2020, to March 15, 2020)

• Stage 2 (from March 15 to March 24)

• Stage 3 (from March 24 to March 28)

• Stage 4 (from March 28 to April 2)
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• Stage 5 (from April 2 to April 13)

• Stage 6 (after April 13)

Figure 4.18: Performance of HQLA in solving the SIDARTHE model.

Table 4.8: Results of fitting the model to real-data for Quebec.

Parameters Stages

after Apr 13 Apr 2 to Apr 13 Mar 28, to Apr 2 Mar 24, to Mar 28 Mar 15 to Mar 24 January 25, to March 15

α 0.088024 0.088024 0.08988 0.421243 0.421243 0.11807

β 0.000233 0.000233 0.000233 0.000752 0.000752 0.002927

δ 0.000233 0.000233 0.000233 0.000752 0.000752 0.002927

γ 0.031887 0.031887 0.071847 0.208933 0.208933 0.055155

ε 0.042366 0.013056 0.013056 0.013056 0.039123 0.039123

ζ 0.02182 0.021848 0.021848 0.084829 0.084829 0.084829

η 0.02182 0.021848 0.021848 0.084829 0.084829 0.084829

θ 0.108995 0.108995 0.108995 0.108995 0.108995 0.108995

λ 0.056476 0.056476 0.056476 0.02434 0.02434 0.02434

κ 0.017181 0.017058 0.017058 0.013091 0.013091 0.013091

ξ 0.017181 0.017058 0.017058 0.013091 0.013091 0.013091

ρ 0.017181 0.017058 0.017058 0.02434 0.02434 0.02434

σ 0.000218 0.017058 0.017058 0.013091 0.013091 0.013091

µ 0.00269 0.00269 0.00269 0.003922 0.003922 0.003922

υ 0.028218 0.028218 0.028218 0.031303 0.031303 0.031303

τ 0.009446 0.009446 0.009446 0.009446 0.009446 0.009446

We note that we considered the sum of mean square errors as the objective function value for
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our model, and its optimal value for our case study is 6.29 × 10−6. Based on the outcomes, we

observe that the HQLA can solve the problem very efficiently. Table 4.8 shows detailed statistics

about the optimized factors of the model. Note that the results of Table 4.8 are the output of the

optimization process and solving the SIDARTHE model for Quebec data using HQLA.

In the following, we compared our results with actual data from Quebec to validate our results.

Figure 4.19 shows the predicted and actual data from Quebec. In Figure 4.19, we accurately pre-

dict the number of infected cases, recovered cases, and cumulative diagnosed cases. Based on the

outcomes, we conclude that the HQLA is an efficient solution methodology for the problem.

As mentioned earlier, we separated the planning horizon into six phases in which the Quebec

government announced detailed limitations to control the epidemic. The first case of COVID-19

was detected in Quebec, Canada, on February 27, 2020 (Lapierre, 2020). In the first phase, the

transmission rate was considered low. Based on our results, we observe that the transmission rates

were low at the first stage, and the reproduction rate was R0 = 1.0998. Quebec province first

announced a state of emergency on March 12, 2020. We consider March 15, 2020, to March 24,

2020, as the second phase of the pandemic due to a drastic increase in the number of cases. On

March 15, the Quebec government ordered the closure of all recreational and entertainment facilities

(Gou, 2020).

Following the quick progress in the number of infected cases, on March 27, Montreal declared

a local state of emergency, and the Quebec government ordered the closure of all universities and

schools. Besides, on March 20, the province banned indoor gatherings. In the second phase of the

pandemic, our study estimates a reproduction rate of R0 = 3.8028 for Quebec province. From

March 24, 2020, to March 28, 2020, Quebec received more COVID-19 test kits enabling the health-

care authorities to perform more tests and determine the infected cases. In this phase, we approxi-

mate the reproduction rate equal to R0 = 4.6096.
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Figure 4.19: Prediction vs. data using HQLA. Non-Diagnosed Asymptomatic (ND AS), Diagnosed

Asymptomatic (D AS), Non-Diagnosed Symptomatic (ND S), Diagnosed Symptomatic (DS), and

Diagnosed with Life-Threatening Symptoms (D IC).

From March 28, 2020, to April 2, 2020, strict actions taken by the government decreased the

reproduction rate to R0 = 1.1193. The reproduction rate dropped over the next period to R0 =

1.0248 from April 2, 2020, to April 13, 2020. After April 13, 2020, the reproduction rate was

considered to be R0 = 0.7782. In order to present the progress of the pandemic in the next few

months, we extended our prediction to the next 365 days, as is shown in Figures 4.20 and 4.21.
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Figure 4.20: Prediction of future cases using SIDARTHE and HQLA.

Figure 4.21: Prediction of future cases using SIDARTHE and HQLA. Non-Diagnosed Asymp-

tomatic (ND AS), Diagnosed Asymptomatic (D AS), Non-Diagnosed Symptomatic (ND S), Diag-

nosed Symptomatic (DS), and Diagnosed with Life-Threatening Symptoms (D IC).
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Based on our results, considering the current social distancing and limitations, we will expe-

rience a significant decrease in the number of cases in the next few months if and only if strict

measures such as partial lockdown remain in place for the next few months.

4.6 Sensitivity Analyses and Managerial Insights

In the previous section, we reflected the pandemic growth over the next few months, considering

the current partial lockdown and closure measures. However, in May 2020, the Quebec govern-

ment ordered a gradual reopening of the businesses. Consequently, it is vital to discover how the

reopening of the businesses will impact forthcoming circumstances. In this section, we examine

the consequence of variation in transmission rates on the progress of the pandemic. Therefore, we

augmented the parameters α, β, γ, δ, and ϵ and explore their impact on the number of infected,

recovered, cumulative diagnosed, and death cases. We portray the outcomes in Figures 4.22 - 4.25.

Figure 4.22: Future scenarios of the infected cases in Quebec.
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The outcomes prove that the parameter α has a substantial effect on the pandemic growth, and

increasing this parameter increases the number of infected, recovered, cumulative diagnosed, and

death cases. Besides, increasing β, γ, and δ increases the number of infected, recovered, cumulative

diagnosed, and death cases. Moreover, increasing the parameter ϵ remarkably reduces the number

of infected, recovered, cumulative diagnosed, and death cases. Therefore, to decrease the spread

of the virus and stop the pandemic, we need to reduce the transmission rate of the infection by

applying significant social distancing and behavioral measures while increasing the detection rate

of asymptomatic cases.

Based on our results, we observe that from day 250, we will see an increase in the number of

infected cases from October 1, 2020, in Quebec by limiting the lockdown measures. Therefore,

starting October 1, 2020, Quebec will experience a significant increase in the number of infected

cases.

Figure 4.23: Future scenarios of the recovered cases in Quebec.
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Figure 4.24: Future scenarios of the cumulative diagnosed cases in Quebec.

4.7 Conclusion

COVID-19 is a severe health threat, and the condition is growing every day. Therefore, presenting

new procedures to model and predict the COVID-19 pandemic is vital. Prediction of the COVID-19

pandemic will enable policymakers to optimize the use of healthcare system capacity and resource

allocation to minimize the fatality rate. In this research, we design a new hybrid reinforcement

learning-based algorithm capable of solving complex optimization problems. We applied our al-

gorithm to several well-known benchmarks and show that the presented methodology provides

high-quality solutions for the most complex problems in the literature. Besides, we showed the

superiority of the offered method to state-of-the-art methods through several measures. Moreover,

to demonstrate the efficiency of the proposed methodology in optimizing real-world problems, we

implemented our approach to the most recent data from Quebec, Canada, to predict the COVID-19
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Figure 4.25: Future scenarios of the death cases in Quebec.

outbreak. Our algorithm, combined with the most recent mathematical model for COVID-19 pan-

demic prediction, accurately reflected the future trend of the pandemic. Furthermore, we analyzed

several scenarios for deepening our insight into pandemic growth. We determined essential factors

and delivered various managerial insights to help policymakers making decisions regarding future

social measures. Our results showed that the transmission rate caused by the interaction of a sus-

ceptible case with an asymptomatic case has the most significant effect on future trends. Increasing

this parameter can significantly increase the number of infected, recovered, cumulative diagnosed,

and death cases. Besides, increasing the transmission rate due to contact of a susceptible case with

a diagnosed, ailing, and recognized case increases the number of infected, recovered, cumulative

diagnosed, and death cases. Moreover, increasing the parameter ε remarkably reduces the number

of infected, recovered, cumulative diagnosed, and death cases. Therefore, to decrease the spread

of the virus and stop the pandemic, we need to reduce the transmission rate of the infection by
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applying significant social distancing and behavioral measures while increasing the detection rate

of asymptomatic cases. As future research, from a mathematical modeling viewpoint, it would be

worthwhile to consider stochasticity in the proposed model. Besides, it would be interesting to use

the proposed model to plan for resource management during the pandemic to decrease the fatality

rate by increasing the healthcare system capacity. Based on the predictions, healthcare managers

can plan for testing kit allocation to test centers. Also, it would be worthwhile to consider the

age, medical condition, and gender of the infected cases in the model from a modeling perspective.

Moreover, it would also be interesting to use the proposed model to plan for managing healthcare

resources such as Personal Protective Equipment (PPE) and Ventilators during the pandemic.
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Chapter 5

Robust Modeling and Prediction of the

COVID-19 Pandemic in Canada1

Abstract

Developing new methodologies to predict the COVID-19 pandemic will help policymakers plan

to contain the spread of the virus. In this research, we develop a Stochastic Fractal Search algorithm

combined with a mathematical model to forecast the pandemic. To enhance the algorithm, we em-

ployed a design of the experiments approach for tuning. We applied our algorithm to public datasets

to model the COVID-19 pandemic in Canada in the upcoming months. Our algorithm predicts the

number of infected, recovered, life-threatening, and death cases. We show that increasing the test-

ing capacity would enhance the detection of asymptomatic cases and limit community transmission.

Moreover, we performed sensitivity analyses to discover the effects of changes in transmission rates

on pandemic growth. The sensitivity analyses provide a realistic overview of the future number of

cases if the transmission rates change due to the emergence of new variants or change in social mea-

sures. Considering the outcomes, we provide several managerial insights to minimize community

transmission.

1This paper is published in International Journal of Production Research in 2021 and has been cited 38 times as of

March 2024.
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5.1 Introduction

In December 2019, scientists announced that they have discovered a new strain of coronavirus in

Wuhan, China. The virus known as SARS-Cov-2 causes a severe respiratory illness called COVID-

19. Even though the officials in China took early steps to put measures to control the outbreak,

the virus has spread worldwide, causing 13,036,550 cases and 571,574 deaths by July 13, 2020.

Currently, in July 2020, neither medication nor vaccine is available. However, some medicines and

vaccines are under development (Government of Canada, 2023). Although most cases have mild

symptoms and recover with no need for hospitalization, some cases with severe symptoms need

hospitalization. However, because of the limited resources, all patients cannot be admitted to the

hospitals. Therefore, it is crucial to implement some restrictions and measures to contain the virus,

such as social distancing or lockdown. In addition, it is essential to model and predict the spread of

the virus and the peak time of the pandemic. To predict the peak time of infected and death cases,

we need to know some epidemiological parameters of the pandemic, such as the reproduction rate

at each stage of the pandemic. The reproduction rate presents the average number of new cases

produced by one case in a population. The reproduction rate is affected by many parameters, such

as the contact rate and the probability of infection transmission (Milligan and Barrett, 2015). Since

COVID-19 is a new disease, epidemiological parameters of the infection and its spread are still not

very well known (Teles, 2020). In recent months several researchers aimed to develop mathematical

models to predict the future trends of the outbreak.

Many researchers have proposed machine learning methodologies to forecast the future trends

of the outbreak in different countries (Abebe, 2020; Alamo et al., 2020; Ardabili et al., 2020; Gar-

cia et al., 2020; Kavadi et al., 2020; Lalmuanawma et al., 2020; Malki et al., 2020; Panwar et al.,

2020; Peng and Nagata, 2020; Pinter et al., 2020; Tuli et al., 2020; Wang et al., 2020). Malki et al.

(2020) proposed several regressor machine learning models to determine the connection between

the COVID-19 pandemic spread and various environmental measures including moisture and tem-

perature. Kavadi et al. (2020) suggested a Partial Derivative Regression method combined with a

Nonlinear Machine Learning approach to forecast the pandemic. The authors applied their method-

ology to data from India and showed that their model could predict future daily new cases. In
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another research, Tuli et al. (2020) proposed a learning-based methodology to forecast the COVID-

19 outbreak by a generalized statistical distribution. The authors used a cloud computing platform

to apply their methodology to real data and obtained real-time predictions of the epidemic growth.

All of these machine-learning-based approaches have some limitations that make their results less

realistic and applicable; First of all, huge data are required to train these approaches. Besides, the

proposed approaches do not predict the number of cases with severe and asymptomatic symptoms.

Moreover, they are not based on epidemiological models and therefore they are not able to provide

important epidemiological data including the reproduction rate, and different transmission rates.

Another research trend under the category of machine learning is the use of Long-Short Term

Memory (LSTM) to predict the COVID-19 pandemic (Alakus and Turkoglu, 2020; Arora et al.,

2020; Bouhamed, 2020; Chimmula and Zhang, 2020; Shoeibi et al., 2024; Tian et al., 2020; Yang

et al., 2020). Chimmula and Zhang (2020) suggested a deep learning algorithm relied on LSTM to

forecast daily new cases and the possible ending point of the outbreak. Another instance in this area

is Arora et al. (2020) that used a deep learning-based approach via LSTM to predict India’s future

cases. Compared to the LSTM of Chimmula and Zhang (2020), the algorithm proposed by Arora

et al. (2020) can only predict the number of infected cases over a short period and does not provide

any insight into the ending point of the pandemic. The proposed LSTM has the same shortcomings

mentioned earlier for the other machine learning algorithms. On top of those issues, the other

downside of using LSTM is that it requires a large amount of memory that makes the experiments

burdensome.

Another category of prediction methods for COVID-19 is based on epidemiological models

(Okuonghae and Omame, 2020; Giordano et al., 2020; Higazy, 2020). Okuonghae and Omame

(2020) proposed a model investigating several non-pharmaceutical criteria on the population dy-

namics and the illness spread. One of the most efficient approaches to predict the COVID-19 pan-

demic is the model presented by (Giordano et al., 2020). The authors developed a new model that

considers daily new cases and predicts the number of infected, death, and recovered cases. The

authors called the model SIDARTHE since it takes into account susceptible (S), infected (I), diag-

nosed (D), ailing (A), recognized (R), threatened (T), healed (H), and extinct (E) cases. The authors

implemented the model on real data from Italy and showed that their model could predict future
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trends. One of the main challenges in applying the proposed model to real-world data is the compu-

tational complexity of solving it (Giordano et al., 2020). Higazy (2020) extended the SIDARTHE

model and studied the fractional-order SIDARTHE model with several policies.

This research proposes a Stochastic Fractal Search algorithm combined with the SIDARTHE

model to predict the COVID-19 pandemic. The proposed methodology predicts cumulative diag-

nosed, recovered, death, and infected cases. The developed algorithm addresses the computational

complexity of solving the SIDARTHE model for the first time. It finds a high-quality solution

for the SIDARTHE model and efficiently determines many epidemiological parameters that pro-

vide vital data to policymakers and healthcare experts. We enhance our algorithm’s performance

using a robust design of experiment approach for parameter tuning. To validate the efficiency of

the suggested methodology, we applied our algorithm on recent data from Canada to forecast the

COVID-19 pandemic. We show that the algorithm solves the model in a short time with high ac-

curacy. Using our solution approach, we derive all the epidemiological parameters of the pandemic

in Canada that will significantly help the policymakers enhance the healthcare system’s efficiency

while minimizing the spread of the virus. Moreover, we perform sensitivity analyses to generate

possible scenarios of future trends.

The remainder of this research is prepared as follows: In Section 5.2, the SIDARTHE model is

presented and a Stochastic Fractal Search algorithm is developed to model the COVID-19 outbreak.

We also suggest a parameter tuning methodology to enhance the performance of the algorithm.

In Section 5.3, we implement the proposed methodology on real data from Canada and obtain a

reliable model to predict future cases of COVID-19. In Section 5.4, we perform sensitivity analyses

to determine the most critical epidemiological parameters and observe the effect of changes in these

parameters on future trends of the pandemic. In Section 5.5, we conclude the paper and provide

future research directions.

5.2 Mathematical model and algorithm development

Giordano et al. (2020) first proposed the SIDARTHE model which consists of eight differential

equations to model the COVID-19 pandemic. The model takes into account different health states
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for cases. This model projects the number of daily new cases with different types of symptoms.

For more information about the SIDARTHE model, please refer to Appendix E. Giordano et al.

(2020) mentioned that the solution of the suggested model is a challenging task. In the following,

we present an efficient algorithm to solve this model and obtain a quality solution for the decision

variables.

5.3 Stochastic Fractal Search

Salimi (2015) proposed a new algorithm called Stochastic Fractal Search (SFS). SFS uses a funda-

mental mathematical concept known as ºfractalº. Fractals contain complex geometric shapes that

have self-similarity. SFS uses a Diffusion Limited Aggregation (DLA) to generate fractals. To

mimic the DLA and explore and exploit the solution space, SFS utilizes the Gaussian walk and

LÂevy flight as random walks during the optimization process. Figure 5.1 presents a self-similar

shape. SFS starts optimization by initiating a set of particles (random solutions in the solution

Figure 5.1: A fractal produced through the DLA method.

space). Then, it assigns a specific amount of electric energy to each particle as follows:

Ei =
E

P
. (74)
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In this relation, P stands for the number of particles, E represents the total initial energy, and Ei

shows the amount of electric energy assigned to particle i ∈ {1, . . . , P}. SFS utilized the diffusion

process to produce new solutions around each solution in the initial set to create new solutions. The

diffusion process is inspired by the dielectric breakdown process in which an electrically insulating

material abruptly converts to an electrical conductor under immense voltage. The phenomenon

allows the electric current to go through it, creating fractal shapes.

To generate new solutions, the SFS applies LÂevy flight and Gaussian walk to imitate DLA

development (Salimi, 2015). Although both LÂevy flight and Gaussian walks generate fractals, the

created clusters vary remarkably in shape. The cluster generated through LÂevy flight consists of

different islands (sets of short steps) linked by lengthy trips (long steps), which make the LÂevy flight

proper for exploration of the solution space (Chakrabarti et al., 2006). On the contrary, the Gaussian

walk generates a denser and smaller cluster that contains several small steps (Chakrabarti et al.,

2006). The behavior of the Gaussian walk makes it an excellent walk to enhance the exploitation of

the algorithm. Therefore, SFS swaps randomly between LÂevy flight and Gaussian walk to benefit

from both (Salimi, 2015). LÂevy distribution, denoted by L(s), could be stated as the following

formula (Yang, 2010):

L(s) =
1

π

∫ ∞

0
exp(−αxβ

′
) cos(sx) dx, (75)

In Eq. (75), s is the input of the LÂevy function, β′ is a parameter in (0, 2], and α denotes the distribu-

tion scale factor. We note that calculating the stepsize using relation Eq. (75) is not straightforward

(Mousavirad and Ebrahimpour-Komleh, 2017). Therefore, we used the approximation algorithm

proposed by Mantegna (1994) to compute the step size. Then, SFS utilizes the below equations to

perform the diffusion procedure (Salimi, 2015):

xqi = xi + β × Gaussian(|BP |, σ)− (ϵ×BP − ϵ′ × xi), (76)

xqi = xi + αq
i stepsize, (77)

xqi = xi + β × Gaussian(|xi|, σ). (78)
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In equations (76)-(78), parameter q represents the number of generated particles using the dif-

fusion of each initial solution, and parameter σ shows the standard deviation of the Gaussian walk.

Also, BP is the position of the best solution, and αq
i stands for the coefficient of the stepsize that

is updated, as we will discuss later. Besides, xqi represents the new solutions generated by the dif-

fusion procedure, and xi shows the i-th particle. In addition, ϵ′ and ϵ represent randomly selected

values in (0, 1]. Furthermore, SFS adjusts the Gaussian parameter as σ = |β × (xi − BP )| and

cuts the length of jumps as optimization continues by setting β = log(g)
g where g is the iteration

number. Subsequently, the remaining solutions create a set of particles for the next iteration. Then

SFS distributes the reduced energy by ignoring less efficient solutions among the new set as follows:

Ei
new = Ei

old +

(
fiti∑P
i=1 fiti

)
ωξ. (79)

In equation (79), Ei
old and Ei

new represent the energy of particle i before and after the procedure.

Also, fiti is the fitness value of particle i and ω denotes the energy obtained from eliminating the

low-quality particles. Moreover, ξ is the distribution rate among all particles.

In the design of metaheuristics, two main challenges should be appropriately addressed to

achieve high performance: i) the updating process, and ii) exploration-exploitation tuning. To per-

form the updating process, numerical procedures are employed to move the particles toward the

best solution. For this purpose, first, SFS ranks the solutions based on their fitness value. Then, it

assigns a probability to every particle as follows:

pri =
N − Rank(xi) + 1

N
. (80)

In equation (80), Rank(xi) shows the rank of solution i, and N stands for the total number of solu-

tions. Consequently, better solutions obtain higher probabilities. Then SFS updates the variables in

each particle as:

xnew
i (j) =





xr(j)− ξ′(xt(j)− xi(j)) if ξ′ > pri

xi(j) otherwise

(81)

In equation (81), xnew
i is the new position of xi where index j refers to the j-th decision variable.
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Also, ξ′ is a random number generated using a uniform distribution in (0, 1]. Also, xr(j) and xt(j)

are randomly selected solutions. Moreover, in the second updating procedure, SFS increases the

exploration by adjusting the positions of particles as:

xnew
i (j) =





xi(j)− ζ × (xt(j)−BP (j)) if ξ′ ≤ 0.5

xi(j) + γ × (xt(j)− xr(j)) if ξ′ > 0.5

(82)

In equation (82), ζ and γ are random numbers generated from a Gaussian Normal distribution. To

ensure an appropriate trade-off in exploration and exploitation, we use the following equations that

control the stepsize throughout iterations:

αq
i =

log(min(E∧))× (UB − LB)

g × log(Ei)
, (83)

αq
i =

(UB − LB)

(g × log(Ei))3/2
. (84)

In equations (83)-(84), min(E∧) is the amount of energy for the worst solution. Also, LB and

UB are the lower and upper limits of the variables, respectively. During the optimization process,

we randomly use one of the equations (83)-(84) to calculate αq
i . The pseudo-code of the SFS is

presented in Algorithm 3.

5.4 Case study

Canada is one of the countries experiencing the COVID-19 pandemic. The first case of COVID-19

in Canada was reported on January 25, 2020. Canada has confirmed 107,589 COVID-19 cases and

8,783 death cases by July 13, 2020. Presenting a robust prediction model will significantly help the

government control daily new cases by wisely planning for restrictions and lockdowns. Besides,

the prediction model will help healthcare professionals plan for the upcoming peak by forecasting

the future number of infected people with life-threatening symptoms. Using our results, healthcare

managers can plan for resources in the most efficient way. We applied our methodology to the

public datasets provided by the Canadian Health Authority to predict the COVID-19 outbreak in

Canada. The input data used in this research is available online (Statistics Canada, 2020). The data
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ranges for a period of 160 days from January 25, 2020 to July 1, 2020. In the following subsection,

first, we tune the SFS to achieve the best performance of the algorithm. Then we used the tuned

algorithm to model the pandemic in Canada.

Algorithm 3 Pseudocode of SFS

1: Enter the values of the algorithm parameters;
2: It← 0; {Referring to iteration}
3: MT ← Maximum iteration;
3: for i = 1 to Npop do
3: for j = 1 to Nvar do
4: Initial solution (i, j)← (UB(j)− LB(j)) · rand(0, 1) + LB(j);
4: end for
4: end for
4: while It ≤MT do
4: for i = 1 to Npop do
4: for j = 1 to Ndiff do
5: Generate a new particle;
5: end for
5: end for
6: Perform the updating;
7: Order the solutions;
7: for i = 1 to Npop do
7: for j = 1 to Nvar do
8: Generate a new particle;
8: if probability ≤ rand(0, 1) then
9: Update the corresponding element;
9: end if
9: end for
9: end for

10: Perform the updating;
11: Order the solutions;
11: for each solution found while updating do
12: Generate a new particle;
12: if probability ≤ rand(0, 1) then
13: Modify the solution;
13: end if
13: end for
14: It← It+ 1;
14: end while
15: return the best solution; =0
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5.5 Tuning the Stochastic Fractal Search algorithm

Evolutionary-based search algorithms are based on randomization. The parameter setting of these

algorithms affects the performance of the algorithm drastically. Although we cannot ensure con-

vergence of any evolutionary algorithm, we can tune the parameters to maximize the algorithm’s

performance over several runs. In other words, we can minimize the deviation of the algorithm

from its best performance. To tune our algorithm and find the best parameter setting, we use fac-

torial designs or Design of Experiments (DOE) and consider the output as the response. We pass

the information to the Taguchi Method that is a well-known robust design methodology. Taguchi

Method works by adjusting control factors (i.e., parameters of RSFS) to minimize inconsistency in

the performance of the algorithm (Roy, 2010; Taguchi et al., 2004). The SFS has four main input

parameters, including the number of start points, the maximum number of generations, the number

of diffusions, and the probability of Gaussian walks. The number of start points determines the

number of solutions in the population during the optimization process. The maximum number of

generations specifies the maximum number of iterations in the algorithm. The number of diffusions

determines the number of particles generated by the diffusion of every solution. The probability of

Gaussian walks shows the probability of using Gaussian walks throughout the optimization process.

Table 5.1 presents the parameters of RSFS and their three levels.

Table 5.1: Different levels of the parameters in SFS.

Parameters LB-UB Level

1 2 3

Number of start points 30-70 30 50 70

Maximum number of generations 300-1000 300 700 1000

Number of diffusion 1-9 1 5 9

Probability of Gaussian walks 0-0.5 0 0.25 0.5

To design a robust algorithm, we use L9 orthogonal array. In each row, the experiment deter-

mines different levels for each parameter and requires a response. In this research, we consider

minimizing the sum of mean square errors between predicted and real data for the number of cumu-

lative diagnosed, recovered, and infected cases as the objective function. In this study, we consider
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the normalized sum of mean square errors as the response. The Taguchi method calculates a mea-

sure referred to as the Signal to Noise ratio (SN ratio) using the following formula (Najafi et al.,

2009; Roy, 2010):

S/N = −10 log

(
1

m

m∑

i=1

1

y2i

)
. (85)

In Eq. (85), m denotes the number of test runs and yi is the response in the i-th run. Table 5.2

presents the results of the Taguchi method.

Table 5.2: Results of tuning the algorithm.

Run Order Number of start points Maximum number of generations Number of diffusions Probability of random walks Normalized Response S/N

1 1 1 1 1 0.032353 -29.8017

2 1 2 2 2 0.536585 -5.40722

3 1 3 3 3 1 0

4 2 1 2 3 0.338462 -9.40981

5 2 2 3 1 0.085603 -21.3502

6 2 3 1 2 0.6875 -3.25455

7 3 1 3 2 0.846154 -1.45101

8 3 2 1 3 0.511628 -5.82092

9 3 3 2 1 0.328358 -9.67304
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Figure 5.2: Convergence plot of the algorithms.

Figure 5.2 represents the convergence plot and the average value of the objective function (i.e.,

the sum of mean square errors) among all particles throughout iterations. This figure also shows

that the performance of the SFS is significantly affected by the parameter setting, especially those

parameters that control the exploration and exploitation ability of the algorithm. Figure 5.3 shows

the results of the Taguchi method for the S/N ratio.

In this section, we report the results of our forecasting model for data in Canada based on the

high-quality solution obtained by RSFS. Figure 5.4 shows the convergence curve and the sum of the

mean square errors throughout iterations. We considered several periods from day 1 to day 160 to

reflect the applied social measures by federal and provincial governments.

In Figure 5.4, we observe that the algorithm improves the quality of the initial solutions quickly
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Figure 5.3: Results of parameter tuning (SN ratios).

using its efficient exploration ability. In this phase, the RSFS adjusts the Gaussian parameter as

σ = |β × (xi −BP )| and cuts the length of jumps throughout iterations by setting β = log(g)
g where

g is the iteration number. Therefore, at the beginning of the optimization process, RSFS focuses

more on exploration and tries to search the solution space and avoid trapping in local optima. In

Figure 5.4, we can see that around iteration 50, the RSFS finds the first major local optimal, resulting

in a lower objective function value for the best solution. After a few iterations, the algorithm finds

a better solution and leaves the local optima. After iterations 250, the RSFS cuts the length of

the random walks and focuses more on exploitation. Table 5.3 shows Canada’s epidemiological

parameters for each stage of the pandemic.

Figure 5.4: Performance of the RSFS in solving the problem.
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Table 5.3: The output of the model for different stages.

Stages after April 13 April 2 to April 13 March 28 to April 2 March 24 to March 28 March 15 to March 24 January 25 to March 15

α 0.1954 0.1954 0.2038 0.4652 0.4652 0.1779

β 0.0019 0.0019 0.0019 0.0034 0.0034 0.0048

δ 0.0019 0.0019 0.0019 0.0034 0.0034 0.0048

γ 0.1563 0.1563 0.1762 0.3037 0.3037 0.3926

ε 0.0922 0.0673 0.0673 0.0673 0.1238 0.1238

ζ 0.0374 0.0383 0.0383 0.0430 0.0430 0.0430

η 0.0374 0.0383 0.0383 0.0430 0.0430 0.0430

θ 0.1799 0.1799 0.1799 0.1799 0.1799 0.1799

λ 0.1162 0.1162 0.1162 0.0499 0.0499 0.0499

κ 0.0359 0.0346 0.0346 0.1480 0.1480 0.1480

ξ 0.0359 0.0346 0.0346 0.1480 0.1480 0.1480

ρ 0.0359 0.0346 0.0346 0.0499 0.0499 0.0499

σ 1.8783e-04 0.0346 0.0346 0.1480 0.1480 0.1480

µ 0.0121 0.0121 0.0121 0.0255 0.0255 0.0255

υ 0.0289 0.0289 0.0289 0.0336 0.0336 0.0336

τ 0.0127 0.0127 0.0127 0.0127 0.0127 0.0127

Our proposed RSFS finds the best parameters of the SIDARTHE model for each stage of the

case study. Using these parameters, we have plotted Figure 5.5 that shows the number of different

types of cases over time.

In Figure 5.5, we observe that the best solution provided by the RSFS algorithm perfectly fits

real data of COVID-19 in Canada. Our results not only are useful to project the future number of

different types of cases, but also they provide insight into some data that are unknown for health

policymakers. For example, Figure 5.5 estimates the number of cases with mild symptoms or with-

out any symptoms that are not detected but contribute significantly to community transmission. It

is noteworthy that the minimum error for results is 5.41E-07.
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Figure 5.5: Prediction vs. data using RSFS.

Canada reported its first case on January 25, 2020. In the early days of the pandemic, the risk for

Canadians was considered negligible by healthcare officials due to the low transmission rate. As our

prediction model shows, the transmission rates between cases were low initially, starting January 25,

2020, to March 15, 2020. Our model indicates that the reproduction rate was R0 = 1.0812, which

is a low rate for the COVID-19 (Giordano et al., 2020). On March 5, 2020, Canada reported its first

community transmission case (Slaughter, 2020). Following rapid increase in the number of detected

cases, most of Canada’s provinces stated a state of emergency. Quebec was the first province that

declared a state of emergency on March 12, 2020. The province was considered as the epicenter

of the outbreak in Canada, with the most COVID-19 cases. We consider the second stage from

March 15, 2020, to March 24, 2020. The Quebec government called off schools and entertainment
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centers on March 13 and 15, respectively (Gouvernement du QuÂebec, nd). On March 16, The federal

government of Canada restricted travel to Canada to only Canadian citizens, permanent residents,

and U.S. citizens. On March 20, Canada and the United States temporarily closed their border. On

March 20, the Quebec government forbid indoor gatherings and also applied mandatory measures

for outdoor gatherings. On March 12, the Government of Ontario announced the closure of schools

(Ontario.ca, nd). Also, On March 23, all ºnon-essentialº businesses were ordered to close. The

same measures were applied by other provinces such as British Columbia and Alberta. During

the second stage, our model shows a reproduction rate of R0 =2.3449. From March 24 to March

28, 2020, higher number of test kits arrived in Canada, leading to better testing and determination

of infected people. As a result, the reproduction rate raised to R0 = 3.1555. From March 28 to

April 2, 2020, vigorous measures applied by the officials significantly reduced the reproduction rate

resulting in R0 = 1.0699. The reproduction rate kept decreasing due to the practical measures to

R0 = 1.0168 and R0 = 0.9182 in the last two stages.

Figure 5.6 depicts details regarding the future trends in the next 204 days. In Figure 5.6, we have

projected the anticipated number of different cases with different types of symptoms over the next

few months. Based on these data, we can observe the upcoming peak in the number of cases, that

will help the healthcare policymaker plan for future social measures such as lockdowns. In Figure

5.6, we have plotted the number of Cumulative Infected, Current Total Infected, Recovered, Deaths,

Diagnosed Cumulative Infected, Diagnosed Current Total Infected, and Diagnosed Recovered cases.

These data help the policymakers plan for resource allocation to avoid resource shortages in the

healthcare system. For instance, using these data, the policymakers can estimate the number of

COVID-19 tests that they will need to perform per day in the upcoming months.
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Figure 5.6: Results of RSFS for Canada. Diagnosed Symptomatic (D S), Non-Diagnosed Asymp-

tomatic (ND AS), Non-Diagnosed Symptomatic (ND S), Diagnosed Asymptomatic (D AS), and

Diagnosed with Life-Threatening Symptoms (D IC).

5.5.1 Curve Fitting and Estimating the values of Epidemiological Parameters in

Quebec

Quebec has been dealing with a surge in daily new cases since January 2020. The province has

reported a record high in daily new cases in April 2020 and announced that most hospitals are

full. Since the transmission rates in Quebec are different from those of other provinces, we applied

our methodology to model the pandemic in the province to project future scenarios. Figure 5.7

presents the output of the model for Quebec that is equivalent to Figure 5.5 we depicted before for

Canada. To understand this figure, we refer the readers to the explanation of Figure 5.5. Figure

5.7 shows the prediction of the number of daily new cases, recovered cases, cumulative diagnosed

cases, and the cases with severe symptoms in Quebec. The outcomes show that the restrictions

applied by the government are effective in reducing community transmission and limit pandemic

growth. Considering the results, we note that maintaining the current measures is vital to limit the

spread of the virus.
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Figure 5.7: Results of the modeling and prediction of the COVID-19 pandemic in Quebec.

5.5.2 Curve fitting and estimating the values of epidemiological parameters in On-

tario

Ontario is one of the main provinces of Canada that has been dealing with the ongoing viral pan-

demic caused by the SARS-Cov-2 virus. The province announced a state of emergency on March

17, 2020. During the first two months of the pandemic, the province faced a significant surge in

daily new cases. The province considered several measures such as lockdowns and remote work-

ings to limit the pandemic growth. Due to the high number of patients, hospitals faced a shortage

of equipment for treating all patients. To be able to control the pandemic and limit the community

transmission, we need to model and forecast the upcoming trends. Figure 5.8 presents the output
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of the model for Ontario that is equivalent to Figure 5.5. To understand this figure, we refer the

readers to the explanation of Figure 5.5. Based on the outcomes, we observe different transmission

rates in the different stages of the pandemic. Our methodology approximated that the transmission

rates were 0.8170, 8.3268, 10.9885, 2.1213, 1.0901, and 0.9166. from Stages 1 to Stage 6, respec-

tively. It becomes apparent that the transmission rates increased significantly over the first stages

of the pandemic. However, the measures applied by the government were effective and reduced the

transmission rates and community transmission. We note that it is essential to keep the measures in

place for the upcoming months since our model shows that the province will still have COVID-19

cases in the next 200 days, even in the best scenario.

Figure 5.8: Results of the modeling and prediction of the COVID-19 pandemic in Ontario.
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5.5.3 Managerial insights and sensitivity analyses

The prediction of future scenarios in the previous section is based on the presence of social dis-

tancing measures. Yet, some entertainment centers were allowed to reopen while maintaining social

distancing. Therefore, it is essential to explore how restorations would influence future scenarios.

This section investigates the effect of changes in transmission rates because of the reopening of

businesses and changes in adaptation to behavioral recommendations. Therefore, we increased the

values of the parameters α, β, γ, δ, and ε and investigate their effect on the number of different

cases. Figures 5.9-5.12 show the results. Increasing α significantly rises the number of cases. In

addition, increasing β, γ, and δ increases the number of cases as well.

By comparing Figure 5.9, we can realize that α is the most important parameter in the future

number of cases. It makes sense because α represents the transmission rate from an infected case

(that is not diagnosed) to a susceptible case. On the other side, in Figure 5.9, we can see that the

future number of cases is not sensitive to changes in parameters β and δ because they represent the

transmission rates from diagnosed/ailing cases to susceptible cases. This is reasonable because di-

agnosed cases must legally respect the quarantine conditions or they will be fined. Figure 5.9 shows

that, by increasing the number of tests (ε), the number of infected cases increases. This is because

those with mild symptoms will be diagnosed more and must respect the quarantine conditions. Also,

in Figure 5.9, we observe that the number of cases does not increase as parameter γ increases. Here,

γ represents the transmission rate from recognized cases (infected and detected cases) to susceptible

cases. This behavior is reasonable because, as we can see in Figure 5.5, the number of recognized

cases is significantly less than the number of cases with mild or no symptoms. Therefore, they will

not contribute significantly to the community transmissions.

Figures 5.10-5.12 present a sensitivity analysis of the main parameters similar to the one we

showed in Figure 5.9. In these three figures, we have performed the analysis for the infected,

recovered, and death cases, respectively. Hence, to limit the transmission of the disease, we should

limit community transmission by employing social distancing measures, while increasing the testing

capacity. This research determined asymptomatic patients as the main drivers of the pandemic.
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Figure 5.9: Sensitivity analyses for infected cases in Canada.

Figure 5.10: Sensitivity analyses for Cumulative Diagnosed Cases (CDC) in Canada.

131



Figure 5.11: Sensitivity analyses for number of recovered cases in Canada.

Figure 5.12: Sensitivity analyses for number of death cases in Canada.
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5.6 Conclusion and outlook

COVID-19 is a serious disease that is spreading quickly. Hence, developing a methodology to

predict the growth of the COVID-19 pandemic is essential. This research presented an efficient

Robust Stochastic Fractal Search algorithm combined with a mathematical model to forecast the

COVID-19 pandemic. To enhance the performance of our algorithm, we used a robust design

of experiment approach for tuning. We used the proposed methodology to model the COVID-19

outbreak in Canada. Our results showed that our algorithm obtains a promising fit function to

real data. We calculated epidemiological parameters for Canada and estimated the reproduction

rate of the virus in different stages of the pandemic. We showed that the measures applied by the

provincial and federal governments effectively reduced the community transmission leading to a

sharp decrease in the number of daily new cases. In addition, our methodology estimated the number

of symptomatic and non-symptomatic cases as well as the number of cases with mild symptoms

and severe symptoms. These results help the policymakers to plan for resource allocation in the

upcoming months and optimize the use of the resource in the healthcare system. Such planning

and optimization will minimize the probability of equipment shortages in the hospitals and also the

number of death cases due to limited equipment. Moreover, we performed sensitivity analyses to

estimate the possible future scenarios. We changed the transmission rates to explore the effect of

variations in these vital parameters on future trends. Our findings disclosed that the transmission

rate from an asymptomatic infected case to a susceptible case is the most important factor. Any

increase in this rate raises the number of infected cases. In addition, increasing the transmission rate

from other cases to susceptible cases also raised the number of cases. Moreover, increasing testing

capacity reduced the number of cases. Therefore, to limit the virus transmission and slow down

the pandemic growth, we should apply effective social distancing measures, while increasing the

diagnosis rate of asymptomatic cases. As future research directions, researchers can use the results

of this study as an input to an optimization model to decide on the optimal allocation of limited

resources such as testing kits. Finally, another direction for future studies is to consider the effects

of vaccination on the growth of the pandemic in the proposed methodology and find a step-by-step

plan for relaxing the social measures.
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Chapter 6

Gradient-Based Grey Wolf Optimizer

with Gaussian Walk: Application in

Modelling and Prediction of the

COVID-19 Pandemic1

Abstract

This research proposes a new type of Grey Wolf optimizer named Gradient-based Grey Wolf

Optimizer (GGWO). Using gradient information, we accelerated the convergence of the algorithm

that enables us to solve well-known complex benchmark functions optimally for the first time in this

field. We also used the Gaussian walk and LÂevy flight to improve the exploration and exploitation

capabilities of the GGWO to avoid trapping in local optima. We apply the suggested method to

several benchmark functions to show its efficiency. The outcomes reveal that our algorithm performs

superior to most existing algorithms in the literature in most benchmarks. Moreover, we apply our

algorithm for predicting the COVID-19 pandemic in the US. Since the prediction of the epidemic

is a complicated task due to its stochastic nature, presenting efficient methods to solve the problem

1This paper is published in Expert Systems with Applications in 2021 and has been cited 79 times as of March 2024.
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is vital. Since the healthcare system has a limited capacity, it is essential to predict the pandemic’s

future trend to avoid overload. Our results predict that the US will have almost 16 million cases by

the end of November. The upcoming peak in the number of infected, ICU admitted cases would

be mid-to-end November. In the end, we proposed several managerial insights that will help the

policymakers have a clearer vision about the growth of COVID-19 and avoid equipment shortages

in healthcare systems.

6.1 Introduction

Scientists employ optimization in almost every research field. Optimization is a significant chal-

lenge in science and engineering, mainly due to the complexity of problems on the one hand and the

shortcomings of classical approaches, on the other hand. Random Search Algorithms (RSA) are one

of the most efficient means of solving complex real-world problems (Zabinsky et al., 2009; Solis and

Wets, 1981; Hong and Nelson, 2007). These algorithms sacrifice optimality to find a high-quality

near-optimal solution in a short time. The main feature of these methods is randomness embedded

in their framework during the iterations of the algorithm. RSAs are more flexible and easier to

apply compared to traditional methods in terms of implementation complexity. Metaheuristics are

one group of the main RSAs that have been widely used to resolve complex optimization problems.

Some of the most recent metaheuristic algorithms are Grey Wolf Optimizer (GWO), Salp Swarm

Algorithm (SSA), and Coronavirus Herd Immunity Optimizer (CHIO).

Healthcare science is one of the main fields in which optimization makes a remarkable im-

provement. In December 2019, a new virus named SARS-Cov-2 emerged in China that causes

severe respiratory disease (COVID-19). The virus spread rapidly to more than 213 countries re-

sulting in 22,185,755 cases and 780,369 deaths. Improvement in modeling the COVID-19 outbreak

will significantly help the authorities in decision making. Besides, these insights enable us to op-

timally distribute resources and side-step equipment shortages in hospitals and save humans’ lives.

Prediction of the COVID-19 pandemic is challenging due to its stochastic nature and complexity.

Zhang et al. (2020) proposed a piecewise Poisson formulation to study the recent cases of the
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COVID-19 pandemic. Using the suggested model, the researchers projected the peak of the epi-

demic. Chimmula and Zhang (2020) presented a deep learning-based method using Long-Short

Term Memory (LSTM) to forecast the progress of the COVID-19 outbreak. The authors also aimed

at estimating the possible ending point of the epidemic. The offered methodologies have several

limitations that make their outcomes inapplicable. Scientists should provide enormous data to train

the LSTM. Moreover, the suggested method cannot forecast either the number of cases with life-

threatening symptoms or the number of asymptomatic cases. Furthermore, LSTM cannot estimate

essential epidemiological statistics, including the reproduction rate. Arora et al. (2020) utilized a

deep learning-based method using LSTM to forecast India’s forthcoming COVID-19 cases. Their

offered method has the same limitations as the method suggested by Chimmula and Zhang (2020),

which makes their forecasts valid for a short period. Many researchers utilized LSTM and machine

learning techniques to forecast the future pandemic scenarios in several countries; however, most of

them have the same limitations (Abebe, 2020; Alamo et al., 2020; Garcia et al., 2020; Lalmuanawma

et al., 2020; Panwar et al., 2020; Peng and Nagata, 2020)

One of the most recent models to define the pandemic is the SIDARTHE model. The model was

first presented in a paper by (Giordano et al., 2020). The authors claimed that the formulation is able

to project the future trend of the outbreak over a more extended period of time. Besides, the model

provides the policymakers and healthcare professionals with vital epidemiological information such

as reproduction rate. Although the model is very efficient in predicting future trends, the scientists

highlighted that solving the model optimally is complicated due to its unique characteristics.

As mentioned earlier, solving complex optimization problems using metaheuristics is easier

compared to classical methods. Grey Wolf Optimizer (GWO) is one of the most recent and effi-

cient metaheuristic algorithms in the literature. GWO is inspired by the hunting behavior of Grey

wolves in nature. The GWO performs acceptably in exploration by adapting the search radius of

the wolves in the first iterations. It maintains a good diversity among the wolves to avoids local

optima. However, we could improve the exploration ability of the GWO to enhance its ability to

search the solution space more intelligently (Long et al., 2018). The lack of efficient exploration

ability in GWO is apparent from its results in multimodal benchmark functions (Mirjalili et al.,

2014). Besides, to enhance the algorithm to efficiently exploit the solution space, we should add
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some new operators to the algorithm. The GWO performs average in the exploration of the solution

space, considering its results in composite benchmarks in which other algorithms dominate GWO

in most benchmarks (Mirjalili et al., 2014). Random movements such as Gaussian and LÂevy walks

in the exploration phase will remarkably increase the exploration ability of the algorithm.

In the exploitation phase, the GWO uses random movements on a tiny scale that do not nec-

essarily guarantee an improvement in the best solution. Using gradient information that always

guarantees improvement in the best solution will significantly improve the performance of GWO.

GWO is applied successfully to many optimization problems in different fields such as text doc-

ument clustering (Rashaideh et al., 2019), feature selection (Abdel-Basset et al., 2020), predicting

the strength of concretes (Golafshani et al., 2020), biodiesel production (Samuel et al., 2020), multi-

objective flexible job-shop scheduling problem (Zhu and Zhou, 2020), and three-dimensional path

planning for UAVs (Dewangan et al., 2019). For more detailed information about applications of

GWO, please see (Faris et al., 2018).

In this research, we present a new algorithm called Gradient-based Grey Wolf Optimizer (GGWO)

that enables scientists to solve many real-world optimization problems. In our algorithm, we utilize

the advantages of the gradient that presents valuable information about the solution space. In many

optimization problems, gradient information is available or could be estimated. Using gradient

information, we explore the solution space more intelligently by considering the gradient direc-

tion in our search process, leading us to the optimal or a good near-optimal solution. Almost all

metaheuristic algorithms ignore the gradient information, which increases the probability of getting

trapped in local optima. This motivated us to add the gradient in one of the most efficient algorithms

to improve the exploration and exploitation abilities of the method. Considering gradient informa-

tion, we accelerate the algorithm that enables us to solve well-known complex benchmark functions

optimally for the first time in the field.

Besides, we use deep mathematical concepts such as Gaussian walk and LÂevy flights to improve

the search efficiency of our method. The proposed contributions enable the suggested algorithm to

avoid local optima. Our computational results on several benchmarks demonstrate the superiority

of our algorithm to other algorithms in the literature. Moreover, we apply several statistical tests to

determine significant differences in the performance of the algorithm compared to state-of-the-art
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methodologies. Moreover, we apply the devised algorithm to forecast the spread of the pandemic

in the United States, with most cases of COVID-19. Our results predicted the maximum number of

infected and hospitalized cases in the United States that will happen in mid-to-end November 2020.

Besides, we perform further analysis to project future scenarios. We also measured the effect of the

implemented restrictions by the government.

We have organized the remainder of this paper as follows: Section 6.2 provides a detailed lit-

erature review. Section 6.3 proposes a new methodology to solve optimization problems based

on gradient information and random walks. In Section 6.4, we carry out computational experi-

ments on challenging benchmarks using our algorithm. Section 6.5 presents an application of our

methodology for forecasting the spread of the COVID-19 outbreak. In Section 6.6, we analyzed

the uncertainty in the future spread of the pandemic. Section 6.7 concludes the paper, including an

outlook on future research avenues.

6.2 Survey on the relevant literature

The underlying idea of most of the metaheuristic algorithms is to mimic a swarm behavior of

nature. Mirjalili and Lewis (2016) divided metaheuristics into three categories: Swarm Algorithms

(SAs), Evolutionary Algorithms (EAs), and Physics-based Algorithms (PAs). EAs, PAs, and SAs

mimic the evolution process, law of physics on particles, and swarm behavior, respectively. The

classification of metaheuristic algorithms includes a variety of strategies aimed at solving complex

optimization problems. These strategies are broadly categorized into four main groups:

• Evolutionary Algorithms: These algorithms are inspired by the process of natural evolution.

Examples include Genetic Programming (GP) (Koza, 1992), Biogeography-Based Optimizer

(BBO) (Simon, 2008), Evolutionary Programming (EP) (Fogel, 1998), Genetic Algorithms

(GA) (Holland, 1992), Evolution Strategy (ES) (Rechenberg, 1978), and Differential Evolu-

tion (DE) (Storn and Price, 1997).

• Physics-based Algorithms: Inspired by physical phenomena, this category includes Sim-

ulated Annealing (SA) (Kirkpatrick et al., 1983), Galaxy-based Search Algorithm (GBSA)

(Kaveh and Talatahari, 2010), Central Force Optimization (CFO) (Formato, 2007), Curved
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Space Optimization (CSO) (Moghaddam et al., 2012), and Gravitational Search Algorithm

(GSA) (Rashedi et al., 2009).

• Swarm-based Algorithms: These algorithms model the behavior of social animals. Key ex-

amples are Particle Swarm Optimization (PSO) (Kennedy and Eberhart, 1995), Artificial Bee

Colony (ABC) (Karaboga and Basturk, 2007), Ant Lion Optimizer (ALO) (Mirjalili, 2015),

Grey Wolf Optimizer (GWO) (Mirjalili et al., 2014), and Whale Optimization Algorithm

(WOA) (Mirjalili and Lewis, 2016).

• Other Population-based Algorithms: This group encompasses various innovative strate-

gies such as Stochastic Fractal Search (SFS) (Salimi, 2015), Sine Cosine Algorithm (SCA)

(Mirjalili, 2016b), and Water Cycle Algorithm (WCA) (Eskandar et al., 2012).

Each category represents a unique approach to navigating complex search spaces, leveraging

the principles of evolution, physical laws, collective animal behavior, or other innovative concepts

to identify optimal or near-optimal solutions to a wide range of problems.

Based on the classification of Mirjalili and Lewis (2016), our algorithm is in the category of

the swarm-based algorithms; however, this is not the only classification in the literature. For in-

stance, based on Blum and Roli (2003), metaheuristics could be classified based on different per-

spectives such as nature-inspired vs. non-nature inspired, population-based vs. single point search,

dynamic vs. static objective function, one vs. various neighborhood structures, and memory us-

age vs. memory-less methods. Based on the latter classification, our algorithm is in the class

of population-based nature-inspired algorithms with the static objective function. The readers are

referred to Blum and Roli (2003) for more details regarding the latter classifications. Grey Wolf Op-

timizer (GWO) is one of the most efficient algorithms in solving complex optimization problems.

The GWO performs acceptably in exploration by modifying the distance between grey wolves in the

first iterations. It maintains a proper distance and diversity between the wolves to avoid local optima.

However, the exploration ability of the GWO could be significantly improved (Long et al., 2018).

Using random movements like Gaussian and LÂevy walks during the exploration phase will remark-

ably increase the exploration ability of the algorithm. However, GWO suffers from a lack of an

efficient exploitation ability (Bansal and Singh, 2021; Long et al., 2018). In the exploitation phase,
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the GWO uses random movements on a tiny scale that do not necessarily guarantee an improvement

in the best solution. However, gradient information, which always guarantees improvement in the

best solution, will significantly improve the performance of GWO. In this research, we enhanced

the GWO by adding new operators to search the solution space using the gradient information for

the first time. We called the algorithm Gradient-based Grey Wolf Optimizer (GGWO). The gradient

provides valuable information about the solution space and enables the GGWO to achieve highly

accurate results. Gradient information and new operators meaningfully enhanced the performance

of the GGWO in exploiting the neighborhood of the best solution. Moreover, we apply a Gaussian

walk and LÂevy flight at the end of each iteration to enhance exploration. These features enable

GGWO to avoid local optima while maintaining proper exploitation throughout the optimization

process. We demonstrate the superiority of our methodology on some benchmarks using robust sta-

tistical tests. Furthermore, as an application, we use our proposed algorithm to forecast the spread

of the COVID-19 pandemic in the US. Our results show that our algorithm could predict the future

trends of the pandemic.

6.3 Designing an Accelerated Grey Wolf Optimizer

We will first illustrate the fundamentals of Grey Wolf Optimizer (GWO), then we will accelerate

the GWO using gradient information, Gaussian and LÂevy flights.

6.3.1 Grey Wolf Optimizer

GWO, recently proposed by Mirjalili et al. (2014), is inspired by grey wolves’ hunting strategies

in nature. Generally speaking, grey wolves are hierarchically categorized into four classes: Alpha,

Beta, Delta, and Omega (Abdel-Basset et al., 2020). The Alpha is the dominant wolf in the pack.

He/she makes all the decisions in the swarm. Other swarm members must comply with his/her

decision. Besides, the only wolves that breed in the swarm are Alphas. Beta wolves’ assist Alpha

and communicate between Alpha wolves and other wolves. Beta wolf is the best nominee for

being Alpha if one of the Alpha wolves dies or is too old to manage the swarm. The Beta fulfills

the orders of the Alpha but also controls other wolves of the swarm. Omega wolves represent
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the lowest-ranked grey wolves (Dhargupta et al., 2020). Omega wolves always follow other high-

ranking wolves. Wolves that are not included in the Alpha, Beta, or Omega class are named Delta

wolves. The Deltas manage the Omega wolves while assisting Alpha and Beta. Like many other

swarm intelligence-based algorithms, GWO starts optimization by initializing a population. Then,

after determining the dominant members, the wolves update their location in the solution space

around the target. We apply Eqs. (86) to (86) to simulate the encircling process:

D⃗ = |C⃗ · X⃗p(t)− X⃗(t)|, (86)

X̄(t+ 1) = X⃗p(t)− A⃗ · D⃗, (87)

In Eq. (86) to (86), t represents the iteration index and A⃗ and C⃗ characterize location vectors of

target and other grey wolves. X⃗p(t) and X⃗(t) are the position of the prey and grey wolf, respectively.

These coefficients are calculated as follows:

A⃗ = 2a1 · r⃗1 − a1, (88)

C⃗ = 2 · r⃗2, (89)

In Eq. (88)-(89), a1 decreases over iterations from 2 to 0 and r⃗1 and r⃗2 are random vectors. After

encircling the prey, the wolves start the hunting process. To mathematically express the movements

of grey wolves in the hunting process, we consider that the Alpha, Beta, and Delta have superior

knowledge of the probable position of the target (possible optimal solution of the problem). In this

framework, the following formulas are recommended to mimic the hunting process:

D⃗α = |C⃗1 · X⃗α − X⃗|, D⃗β = |C⃗2 · X⃗β − X⃗|, D⃗δ = |C⃗3 · X⃗δ − X⃗|, (90)

X̄1 = X⃗α − A⃗1 · D⃗α, X̄2 = X⃗β − A⃗2 · D⃗β , X̄3 = X⃗δ − A⃗3 · D⃗δ, (91)

X̄(t+ 1) =
X⃗1 + X⃗2 + X⃗3

3
. (92)

The GWO performs the above actions repeatedly to find a near-optimal solution for the problem
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until a stopping criterion is met.

6.3.2 Accelerated Gradient-based Grey Wolf Optimizer

To perform fine in terms of exploration, an algorithm should maintain an appropriate balance be-

tween exploration and exploitation. GWO searches the solution space by updating the position of

the dominated wolves regarding the position of Alpha, Beta, and Delta. By reducing the parameter

a over iterations, GWO aims at exploration in the first iterations and then focuses on exploiting in

the last iterations. Besides, adjusting this parameter helps the GWO avoid trapping in local optima.

This paper adds two novel features to GWO to enhance its performance and propose a novel algo-

rithm called Gradient-Based Grey Wolf Optimizer (GGWO). First, we propose a new procedure to

use gradient information to improve the algorithm’s exploitation and exploration abilities. In many

optimization problems, the gradient will provide valuable information about the shape of the solu-

tion space by determining the steepest slope at each point in the solution space. We move particles

to the nearest local optima using gradient information while maintaining a proper exploration abil-

ity. Such updating operators enable GWO to search the solution space more efficiently and enhance

the exploration ability of the algorithm to side-step local optima. We propose the following new

updating formulations for Omega wolves: For i = 1, . . . ,m and w = 1, . . . , n, the position of the

w-th wolf in the i-th dimension at iteration t+ 1 is updated as:

Xi
W (t+ 1) =





Eqns. (90) to (92) if γ ∂f
∂Xi

(Min)
≤ ∂f

∂Xi
W

(t) < γ ∂f
∂Xi

(Max)

Xi
W (t)− rand(0, 1)λi(t)

(
∂f

∂Xi
W

(t)
)
, otherwise

(93)

where i is the index of decision variables in the optimization problem, and n is the number of

grey wolves. The terms ∂f
∂Xi

(Max)
and ∂f

∂Xi

(Min)
show the largest positive and the smallest negative

slopes for each dimension at each iteration of the algorithm. Whereas γ is a continuous parameter

determined in (0, 1]. In the above formulation, we update λi using equation (94) as follows:

λi(t) = 0.1
(Ubi − Lbi)

max
(
| ∂f
∂Xi

k

(Min)
|, | ∂f

∂Xi
k

(Min)
|
) . (94)
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Based on the given illustrations in Pahnehkolaei et al. (2017), it is apparent that:

|λi(t)

(
∂f

∂Xi
w

(t)
)
| ≥ 10(Ubi − Lbi). (95)

In some optimization problems, the gradient of the problem may be unknown due to the non-

differentiability of the objective function or discrete characteristics of the decision variables. In

order to handle those problems, we present the following equation:

∂f

∂X
=

f(t)− f(t− 1)

X(t)−X(t− 1)
. (96)

The second contribution that we have added to GWO is the use of Gaussian walk and LÂevy

flight. These two are random walks to increase randomness in the GGWO and boost its exploration

ability. LÂevy flight and Gaussian walks create self-similar clusters (trajectories) but differ signif-

icantly in structure. The cluster created by the lÂevy flight contains several islands (sets of short

steps) connected by long excursions (Chakrabarti et al., 2006). However, the Gaussian walk creates

a denser and smaller cluster (within the same number of iterations) that consists of many small steps

(Mousavirad and Ebrahimpour-Komleh, 2017). Random selection of these two methods enhances

the exploration capability of the GGWO by helping the algorithm avoid local optima. Therefore,

GGWO switches randomly between LÂevy flight and Gaussian walks to use the advantage of both

(Salimi, 2015). In the proposed GGWO, we use the following formulations to update the position of

Omega wolves in the solution space at the end of each iteration. For i = 1, . . . ,m and w = 1, . . . , n,

the new position of the wolf is given by:

Xi
W,new = Xi

W +K × Gaussian(|θi|, σ)− (ξ × θi − ξ′ ×Xi
W ) (97)

Xi
W,new = Xi

W +Xi
W × Levy(η) (98)

where θi and |σ| represent the best solution and standard deviation of the Gaussian distribution,

respectively. GGWO changes the Gaussian parameter as σ = |K × (xi − BP)| and reduces the

length of steps over iterations by setting K = (log(l))/l, where l is the iteration number. The
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expression Xi
W,new is the new position of the wolf, and Xi

W is its current position. Besides, ξ′ and ξ

are random numbers in (0, 1]. The LÂevy flight is computed by Eq. (99).

Levy(x) =
0.01× σ × r1

|r2|(1/β)
(99)

where r1 and r2 are random numbers in (0, 1]. β is a constant equal to 1.5. In Eqn. (99), we

compute σ by:

σ =



Γ(1 + β) sin

(
πβ
2

)

Γ
(
1+β
2

)
β2(

β−1
2 )




1
β

(100)

Based on the given illustrations, the main framework of the GGWO is the same as GWO; how-

ever, with some significant changes. For instance, first, instead of the classical GWO operators, the

GGWO uses a combination of the original operators and gradient-based operators to update the po-

sition of the wolves. Besides, we need to add a new feature to the GGWO (a function) to calculate

the gradient of the objective function at each point of the solution space. Moreover, we use Gaus-

sian walk and levy flight to increase randomness at the end of each iteration, which significantly

improved the exploration and exploitation by using both long and short steps to move the particles

in the solution space. The pseudo-code of the GGWO is presented as follows:

6.4 Results and Discussion

In order to evaluate the efficiency of the offered GGWO, we compare it with well-known algo-

rithms in the literature, including Grey Wolf Optimizer (GWO), Gradient-based Water Cycle Algo-

rithm (GWCA), Artificial Bee Colony (ABC), Gravitational Search Algorithm (GSA), hybrid Parti-

cle Swarm Optimization Gravitational Search Algorithm (PSOGSA), Particle Swarm Optimization

(PSO), Salp Swarm Algorithm (SSA), Sine-Cosine Algorithm (SCA), and Moth-Flame Optimiza-

tion (MFO). Table 6.1 provides the values of the parameters of the algorithms. We implement the

experiments considering two different dimensions, 30 and 50, to enhance the benchmark functions’

complexity. In all the tests, we consider a maximum NFEs of 30,000 as the stopping condition. We

also set the control parameter γ to 0.9 in all tests. We repeat the solution process by each algorithm
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Algorithm 4 Grey Wolf Optimizer (GGWO)

1: Input the parameters of GGWO

2: for i = 1 to npop do

3: Create a random solution

4: Calculate the fitness

5: end for

6: Sort the solutions based on the fitness values

7: Set the best three solutions as Alpha, Beta, and Delta, respectively.

8: Set the remaining wolves as Omegas

9: it = 1
10: while stopping criterion is not met do

11: for i = 1 to npop do

12: Calculate and update A and C

13: Calculate the value of ∂f
∂Xi

W

(t)

14: Update the position of wolves using Eq. (8)

15: end for

16: Calculate the fitness values of all wolves

17: Update the Alpha, Beta, and Delta

18: for i = 1 to number of Omegas do

19: Update the position of Omega wolves using Eqs. (12) to (13)

20: end for

21: Decrease a⃗
22: it = it+ 1;
23: end while=0
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50 times to enhance the accuracy of the results. Besides, we report the average, standard deviation,

best, and worst values of the objective function for each test problem and each algorithm. Table

6.2 presents the used benchmarks. These benchmarks are known as complex benchmarks in the

literature (Lozano et al., 2011; Liao et al., 2015).

Table 6.1: Main parameters of the algorithms.

Algorithm Parameter Value Algorithm Parameter Value

GWCA

parameter γ 0.9

PSO

parameter c1 2

dmax 0.001 parameter c2 2

Nsr 4 Inertial weight Linearly decreases from 0.6 to 0.3

ABC

# of onlookers 0.5*pop

GSA

Rnorm 2

# of employed bees 0.5*pop Rpower 1

# of scouts 1 Alpha and G0 20 and 100

GGWO
parameter γ 0.9

MFO
parameter a Linearly decreases from -1

parameter a Linearly decreases from 2 to 0 parameter b 1

GWO parameter a Linearly decreases from 2 to 0 SCA parameter a Linearly decreases from 2 to 0

PSOGSA
parameter c1 0.5

SSA parameter c1) No parameter
parameter c2 1.5

Table 6.2: Benchmark functions.
Function Formulation Range D

Ackley f1(x) = −20 exp
(
−0.2

√
1
N

∑N
i=1 x

2
i

)
− exp

(
1
N

∑N
i=1 cos(2πxi)

)
+ 20 + e [−32, 32]N 30,50

Rastrigin f2(x) =
∑N

i=1 x
2
i − 10 cos (2πxi) + 10 [−5.12, 5.12]N 30,50

Sphere f3(x) =
∑N

i=1 x
2
i [−100, 100]N 30,50

Griewank f4(x) = 1
4000

∑N
i=1 x

2
i −

∏N
i=1 cos(

xi√
i
) + 1 [−600, 600]N 30,50

High Conditioned Elliptic f5(x) =
∑N

i=1

(
106
) i−1

D−1x2i [−10, 10]N 30,50

Rosenbrock f6(x) =
∑N−1

i=1 100(xi+1 − xi)
2 + (xi − 1)2 [−30, 30]N 30,50

Shifted Ackley f7(x) = −20 exp
(
−0.2

√
1
N

∑N
i=1 z

2
i

)
− exp

(
1
N

∑N
i=1 cos(2πzi)

)
+ 20 + e [−32, 32]N 30,50

Shifted Rastrigin f8(x) =
∑N

i=1 z
2
i − 10 cos (2πzi) + 10 [−5.12, 5.12]N 30,50

Shifted Sphere f9(x) =
∑N

i=1 z
2
i [−100, 100]N 30,50

Shifted Griewank f10(x) = 1
4000

∑N
i=1 z

2
i −

∏N
i=1 cos(

zi√
i
) + 1 [−600, 600]N 30,50

Shifted High Conditioned Elliptic f11(x) =
∑N

i=1

(
106
) i−1

D−1 z2i [−10, 10]N 30,50

Shifted Rosenbrock f12(x) =
∑N−1

i=1 [100(zi+1 − zi)
2(zi − 1)2] [−30, 30]N 30,50

In the first four benchmark functions (F1, F2, F3, and F4) in dimension 30, the outcomes in

Tables 6.3 and 6.4 show that our proposed method, GGWO performs significantly better than all

the other algorithms in D30. The results in Tables 6.5 and 6.6 show the superiority of GGWO over
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other algorithms in these benchmarks in D50 as well. Our proposed algorithm provides consider-

ably better solutions in F1-F4 than any other algorithm due to its advanced operators to maximize

exploration and exploitation abilities. Figure 6.1 shows that the GGWO avoids trapping in local op-

tima and rapidly reaches the optimal solution for the problems. Besides, GGWO offers significantly

lower average, best, worst, and standard deviation of objective function value for these benchmarks

compared to other algorithms.

Figures 6.2, 6.3, 6.4, and 6.5 show the boxplots of the results in which GGWO presents signifi-

cantly lower and narrower charts. The offered GGWO performs very well in F5, F6, and F7 bench-

marks in dimension 30 considering average, best, worst, and standard deviation of results compared

to other methods based on Tabls 6.3 and 6.4. In addition, in dimension 50, GGWO achieves the

third optimum (lowest) results, as shown in Tables 6.5 and 6.6. Moreover, in F5 from Figure 6.1,

GGWO’s convergence curve shows its exploration and exploitation capabilities and efficiency in

avoiding local optima.

The results in Tables 6.3 and 6.4 show that our designed algorithm performs meaningfully better

than all the other methods in F8 and F9 for dimension 30. This is because GGWO has a significantly

lower average compared to the other algorithms. Besides, based on the best, worst, and standard

deviation of the objective function, we could conclude that the GGWO is the best solution approach

for this benchmark. In addition, Tables 6.5 and 6.6 shows that for F8 and F9 in dimension 50,

GGWO has significantly lower results considering average, best, worst, and standard deviation of

the objective function. Therefore, GGWO is a reliable and robust algorithm since it has consistent

performance and could find a promising solution in all repetitions. Besides, in F8 and F9, GGWO

makes a perfect trade-off amid both exploration and exploitation based on the data provided in

Figure 6.1. Although the other algorithms got trapped in local optima, GGWO could achieve global

optima quicker without trapping in local optima.

Considering F10 and F12 in dimension 30, the GGWO performs the best. Besides, for di-

mension 50, GGWO performs well in terms of average, best, worst, and standard deviation of the

objective function. In F11 for dimension 30, GGWO performs outstanding comparing to all the

other methods. It has significantly lower average, standard deviation, best, and worst values than

the other algorithms based on results in Tables 6.3 and 6.4. Besides, in F11 for dimension 50,
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GGWO’s performance is much promising than other algorithms in terms of average, best, worst,

and standard deviation from Tables 6.5 and 6.6. Furthermore, based on Figure 6.1, in F11, GGWO

ensures the right balance amid exploration and exploitation. In contrast to the other algorithms that

get trapped in local optima, GGWO reaches the global optima.

To draw a reliable conclusion and demonstrate the superiority of the offered algorithm, statistical

tests are conducted in this section. For this purpose, we apply Tukey’s multiple comparison tests to

discover significant differences in the performance of the algorithms. Figures 6.2, 6.3, 6.4, and 6.5

show the results of Tukey’s multiple comparison tests schematically. Based on Figures 6.2 and 6.3

for dimension 30 and 50, the results of comparing the boxplot of the GGWO to other algorithms for

the first four benchmarks (F1, F2, F3, and F4) show that the boxplot of the GGWO is significantly

lower and thinner than all the other algorithm. In F5, F6, F7, F8, F10, and F12, the boxplots of

the GGWO are lower than most of the algorithms, especially in F9 and F11, the box plot of the

GGWO is a line at zero. This is because GGWO obtained the global optima of the benchmarks in

all repetitions. These results show that the proposed algorithm not only performs remarkably but

also performs significantly robust and reliable.
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Table 6.3: Results of the simulations in 30 dimensions.

Benchmark Statistics
Algorithms

GGWO GWO GWCA ABC GSA PSOGSA PSO SSA SCA MFO

F1

Average 0 8.64E-15 1.07E-15 7.78298 6.23E-09 11.6611 6.07E-07 1.520216 14.29482 14.15397

StdDev 0 2.75E-15 5.84E-15 1.02873 1.25E-09 8.345575 2.64E-06 0.923497 8.284824 8.396961

Best 0.00E+00 7.11E-15 0 4.727577 4.85E-09 2.11E-10 2.79E-11 1.76E-05 3.08E-08 8.71E-08

Worst 0.00E+00 1.42E-14 3.20E-14 9.587644 1.14E-08 19.38025 1.41E-05 3.222505 2.02E+01 2.00E+01

F2

Average 0 0.253528 0 70.24234 24.24192 131.5994 39.599863 58.238599 3.6824603 149.93231

Std Dev 0 9.75E-01 0 10.32227 7.713473 41.05358 6.66E+00 1.64E+01 8.55E+00 3.21E+01

Best 0 0 0 41.16908 13.9294 61.68735 27.85883 2.79E+01 1.01E-11 98.57154

Worst 0 4.34E+00 0 92.06869 44.773 209.9356 5.37E+01 8.95E+01 2.83E+01 2.27E+02

F3

Average 0.00E+00 2.28E-62 2.36E-29 1.51191 8.67E-09 2.666667 5.87E-08 1.79E-05 1.59E-05 2.666667

Std Dev 0.00E+00 3.68E-62 1.29E-28 6.15E-01 1.79E-09 6.914918 2.50E-07 1.72E-06 2.70E-05 6.914918

Best 0 2.71E-64 1.23E-45 0.593387 5.80E-09 2.75E-10 2.02E-11 1.39E-05 6.81E-08 2.98E-08

Worst 0 1.59E-61 7.04E-28 2.68743 1.31E-08 20 1.38E-06 2.11E-05 0.000108 20

F4

Average 0 0.002502 0 1.461505 0.082105 33.15244 0.011078 0.008941 0.08646 21.09083

StdDev 0 0.0084466 0 0.268137 0.190495 50.22736 0.010589 0.0094284 0.2018043 45.48769

Best 0 0 0 1.076298 0 0 0 1.52E-08 3.02E-12 4.47E-14

Worst 0 0.044127 0 2.169038 1.025695 180.4868 0.049282 0.039202 0.850527 180.2163

F5

Average 1.83E-44 7.46E-121 9.45E-66 7706.8 241.9223 41346.57 1.44E-11 23856.1263 8.57E-06 542387.86

Std Dev 7.04E-44 1.67E-120 5.18E-65 5264.083 159.92 124323 7.60E-11 11888.77 4.68E-05 542451.75

Best 2.09E-48 8.71E-125 1.56E-154 804.9848 40.904 3.21E-06 1.26E-18 2781.57 6.83E-18 70214.2

Worst 3.81E-43 7.99E-120 2.84E-64 20380.17 719.373 529831.7 4.17E-10 48046.444 0.000291 2706358.3

F6

Average 34.85498 26.43985 1.62E-24 5105.301 36.1634 3151.067 50.051 333.7611 28.36875 2680335

Std Dev 27.24732 0.62575 7.46E-24 2839.1764 40.7528 16416.77 27.905481 604.0928 1.409943 14592674.1

Best 23.46658 25.09341 0 974.2829 24.0738 14.20298 15.03268 23.15309 27.11928 1.189283

Worst 147.9126 27.93068 4.08E-23 12450.14 233.399 90023.83 85.36001 2309.699 33.39472 7994325
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Table 6.4: Results of the simulations in 30 dimensions.

Benchmark Statistics
Algorithms

GGWO GWO GWCA ABC GSA PSOGSA PSO SSA SCA MFO

F7

Average 1.942059 1.77E+00 3.13E-02 6.87411 6.38E-09 1.27E+01 1.37E-08 2.20E+00 3.8256 8.24452

Std Dev 0.435974 4.09E-01 1.71E-01 1.10026 1.01E-09 7.72E+00 3.46E-08 9.17E-01 0.263284 7.647263

Best 4.16E-06 1.09E+00 1.56E-07 4.57E+00 4.52E-09 2.09E-10 3.60E-11 2.07E-05 3.18E+00 5.38E-08

Worst 2.50E+00 2.73E+00 9.37E-01 9.122293 9.15E-09 19.4627 1.88E-07 4.298275 4.24E+00 1.94E+01

F8

Average 2.653285 14.50399 6.007273 70.35375 27.22869 130.1343 41.32392 62.81495 80.68202 147.561

Std Dev 3.308464 6.75E+00 7.630498 9.115818 5.514884 3.17E+01 1.03E+01 1.91E+01 2.17E+01 3.14E+01

Best 0 4.87896 0 42.18886 1.69E+01 7.36E+01 2.19E+01 2.89E+01 4.61E+01 55.71759

Worst 12.9344 3.03E+01 25.86894 81.53446 41.78826 197.9958 5.97E+01 1.05E+02 1.31E+02 1.93E+02

F9

Average 0.00E+00 7.36E-01 1.72E-15 1.337828 8.39E-09 1.36E+00 1.23E-08 1.72E-05 2.18E+00 2.02E+00

Std Dev 0.00E+00 2.67E-01 2.63E-15 4.39E-01 1.28E-09 5.177062 4.69E-08 2.10E-06 1.95E-01 6.17E+00

Best 0 2.99E-01 5.55E-17 0.441513 5.83E-09 2.82E-10 2.48E-11 1.23E-05 1.81E+00 1.72E-08

Worst 0 1.45E+00 1.40E-14 2.456872 1.14E-08 20.712 2.58E-07 2.14E-05 2.71688 20.77365

F10

Average 0.015744 1.142719 0.064927 1.549616 0.078723 32.66406 0.006484 0.013608 2.048136 26.3487

Std Dev 0.014757 0.176141 0.183418 0.33096 0.103276 43.75126 0.008487 0.016441 0.200311 46.67469

Best 1.56E-11 0.748066 9.21E-11 1.089729 0 0 0 1.92E-08 1.71E+00 8.99E-15

Worst 0.04916 1.52756 1.0161 2.3278 0.505 99.19931 0.03196 0.07847 2.5636 171.0315

F11

Average 0.00E+00 1.55E+03 7.67E-27 6974.676 243.352 70235.01 4.67E-11 27888.19 1.13E+04 526409.4

Std Dev 0.00E+00 1.14E+03 3.38E-26 5005.006 164.8371 198201.4 1.93E-10 15809.66 4.92E+03 788901.1

Best 0.00E+00 1.70E+02 0.00E+00 523.054 27.1468 1.07E-06 1.10E-19 5121.041 4.36E+03 7121.163

Worst 0.00E+00 5.52E+03 1.86E-25 23425.73 658.5043 920733.9 1.02E-09 62981.94 25798.35 3677252

F12

Average 32.40043 253.9273 4.31E+01 4974.308 35.59113 2251077 44.5655 118.949 1579.494 24584.68

Std Dev 17.36383 242.061 2.52E+01 3151.212 46.26933 1229469 30.6383 260.1012 729.624 40160.65

Best 17.90934 36.21686 27.43943 1626.709 20.27133 17.17134 7.104455 24.5781 619.937 6.028516

Worst 84.31829 1292.285 1.10E+02 13565.01 264.3985 6734709 103.615 1404.456 4580.251 97478.38
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Figure 6.1: Convergence plot of the algorithms in dimension 30.

Tables 6.7, 6.8, and 6.9 present the outcomes of Tukey’s multiple comparison tests for objective

function values of the benchmarks in dimension 30 and 50. Based on the results, in F1 and F2 for
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dimension 30 and 50, all the tests show p-values less than 0.05, except for the second row. This in-

dicates that there are significant differences between the performances of the compared algorithms.

Therefore, our proposed algorithm performs significantly better than all other algorithms (GWO,

ABC, GSA, PSOGSA, PSO, SSA, SCA, and MFO) in terms of objective function value at 95%

confidence level except for GWCA. However, based on the average, best, worst, and standard devi-

ation values, we observe that the GGWO performs much better than GWCA in F1 and F2 (Tables

6.3 and 6.4). Our proposed method accomplishes outstanding results in F3 and F5 for dimensions

30 and 50 compared to other solution methods.

In F4 for dimension 30, GGWO performs statistically better than the other algorithms. Likewise,

in the same benchmark for dimension 50, GGWO achieves better results than other methods. Based

on the average, best, worst, and standard deviation values in this benchmark, we determine that the

GGWO performs much better than GWO and GWCA in F4 (in Tables 6.3 and 6.4). In F6 and F7 for

dimension 30, GGWO performs significantly better than all the other algorithms. For dimension 50,

GGWO performs better than all the other algorithms except SSA. However, based on the average,

best, worst, and standard deviation values, the GGWO outperforms SSA in solving F7 (in Tables

6.3 and 6.4). In F8 for dimension 30 and 50, GGWO outperforms most of the other algorithms.

Besides, considering the average, standard deviation, best, and worst cases, GGWO beats GWCA

(in Tables 6.3 and 6.4). In F9, F10, F11 and F12, in dimensions 30 and 50, GGWO outperforms

other state-of-the-art algorithms.

In this section, we perform more in-depth statistical tests, such as Friedman’s test, to make

a consistent conclusion. Friedman’s test discovers extensive differences among algorithms at a

95% confidence level. It is one of the most famous and widely used statistical tests to compare

algorithms in the literature. Tables 6.10 and 6.11 show the Friedman tests’ scores for each algorithm

considering algorithms’ performance in all dimensions. In Friedman’s test, the lower the score, the

more effective the method is. In Tables 6.12 and 6.13, we assigned a rank for each algorithm in each

benchmark function based on the scores obtained in Tables 6.10 and 6.11. Results of Tables 6.12

and 6.13 disclosed that for both dimensions 30 and 50, the proposed algorithm ranked first in most

of the benchmark functions, including F1, F2, F3, F4, F8, F9, and F11. Considering F5, F6, and

F10, GGWO ranked third. In F7, GGWO performs better than five algorithms for both dimensions
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Table 6.5: Results of the simulations in 50 dimensions.

Benchmark Statistics
Algorithms

GGWO GWO GWCA ABC GSA PSOGSA PSO SSA SCA MFO

F1

Average 1.18E-16 1.43E-14 4.74E-16 1.10E+01 3.80E-09 1.58E+11 9.81E-02 2.41E+00 1.56E+01 18.86403

Std Dev 6.49E-16 2.18E-15 1.23E-15 1.29E+00 3.88E-10 5.48E+00 3.73E-01 6.76E-01 8.77E+00 3.129202

Best 0 1.07E-14 0.00E+00 7.86E+00 2.97E-09 4.11E-10 1.18E-06 3.24E-05 4.50E-04 2.85E+00

Worst 3.55E-15 2.13E-14 3.55E-15 1.27E+01 4.78E-09 1.96E+01 1.47E+00 3.57E+00 20.4345 2.00E+01

F2

Average 0 1.260281 0 168.097 30.0477 2.29E+02 9.26E+01 8.50E+01 2.57E+01 273.0153

Std Dev 0 4.796155 0.00E+00 20.5388 6.719748 3.38E+01 2.03E+01 2.76E+01 3.52E+01 5.43E+01

Best 0 0 0 116.4862 18.90422 1.56E+02 6.27E+01 3.38E+01 2.60E-04 1.52E+02

Worst 0 18.9042 0.00E+00 204.64 41.78827 293.5112 1.53E+02 1.40E+02 1.33E+02 3.59E+02

F3

Average 0 1.06E-54 4.21E-30 5.25E+00 7.04E-09 2.00E+00 2.56E-05 2.99E-05 8.21E-02 1.15E+01

Std Dev 0 2.10E-54 1.28E-29 1.01E+00 5.68E-10 6.10E+00 3.56E-05 1.22E-06 1.33E-01 1.29E+01

Best 0 5.16E-56 2.71E-44 3.93E+00 5.95E-09 5.70E-10 3.35E-07 2.79E-05 5.81E-05 6.32E-04

Worst 0 8.67E-54 4.38E-29 7.45E+00 8.11E-09 2.00E+01 0.000149 3.28E-05 5.48E-01 28.28427

F4

Average 0 0.001723 0 5.93384 1.44335 60.13315 0.004186 0.009848 0.247561 57.22312

Std Dev 0 0.005711 0 2.449968 0.72796 64.11064 0.008477 0.00998 0.32939 64.881

Best 0 0.00E+00 0 1.53E+00 0.350652 0 4.30E-13 5.92E-08 7.83E-05 1.87E-06

Worst 0 0.022141 0 11.31384 3.30963 180.336 0.03934 0.036919 0.952744 270.9139

F5

Average 2.34E-36 3.88E-105 2.90E-58 9.08E+04 244.6193 299933.2 2.98E-07 4.27E+04 0.38588 2.57E+06

Std Dev 1.09E-35 1.37E-104 1.06E-57 3.87E+04 151.415 1141383 8.91E-07 2.05E+04 0.980396 1.89E+06

Best 3.50E-40 2.39E-109 8.07E-91 3.03E+04 78.73644 0.134512 2.05E-09 1.77E+04 8.27E-06 1.15E+05

Worst 5.99E-35 5.42E-104 4.17E-57 1.63E+05 761.5141 4498815 4.91E-06 9.83E+04 3.5341 6491725

F6

Average 62.18671 46.75566 8.95E-24 4.32E+04 44.75936 2667924 94.89612 76.9411 4952.241 800426

Std Dev 51.01123 0.702115 2.60E-23 2.49E+04 0.528158 1461248 55.11365 109.9943 6071.786 2439969

Best 44.42791 46.11286 0 7121.636 44.04607 37.49836 27.04189 44.79358 49.06581 80.781

Worst 279.2602 48.56676 1.28E-22 8.23E+04 46.45274 800359 249.9203 643.8471 23217.09 8003304

1
5
3



Table 6.6: Results of the simulations in 50 dimensions.

Benchmark Statistics
Algorithms

GGWO GWO GWCA ABC GSA PSOGSA PSO SSA SCA MFO

F7

Average 2.44568 2.245981 0.39543 10.8829 3.89E-09 15.9417 2.21E-05 2.538247 4.521862 17.96136

Std Dev 0.192152 0.245903 0.704873 1.22773 4.05E-10 3.092674 3.27E-05 0.53835 0.546814 3.045411

Best 2.0781 1.69206 1.49E-07 8.23459 3.28E-09 2.85818 7.98E-07 1.374312 4.047869 2.57947

Worst 2.769214 2.621921 2.140674 12.7309 4.58E-09 19.29966 0.000131 3.333027 6.377384 19.41094

F8

Average 3.681349 39.81563 8.68934 167.5958 28.45582 231.3938 99.33005 82.51514 193.6459 280.7398

Std Dev 4.181849 13.17458 14.20356 16.70806 4.671152 41.25106 17.65016 23.03776 33.18219 54.5312

Best 0 12.74205 0 129.7736 18.90422 159.193 68.6521 33.82857 136.1962 207.1563

Worst 12.9344 69.08735 36.81349 191.6545 38.80337 313.4414 136.309 136.309 258.4204 423.467

F9

Average 0 1.1938 1.58E-15 5.11762 7.16E-09 7.22E-10 2.58E-05 3.04E-05 3.36659 9.82966

Std Dev 0 0.33094 1.32E-15 1.1258 1.11E-09 4.51E-11 5.52E-05 1.96E-06 0.362941 12.70863

Best 0 0.60971 2.04E-16 3.12082 5.59E-09 6.45E-10 1.40E-06 2.68E-05 2.84272 0.00037

Worst 0 2.080546 5.95E-15 7.55719 1.11E-08 8.38E-10 0.000287 3.44E-05 4.44995 35.5646

F10

Average 0.03344 1.41276 0.05428 5.907881 1.901848 51.6887 0.00394 0.004104 3.468887 48.3729

Std Dev 0.09759 0.18717 0.11744 2.50211 0.89989 57.03139 0.005661 0.006345 0.4469 61.78711

Best 5.75E-11 1.140895 8.49E-07 1.57466 0.078681 1.11E-16 5.76E-14 4.17E-08 2.68606 1.32E-05

Worst 0.52315 1.843354 0.578953 10.73243 4.461654 185.81 0.017226 0.022126 4.6253 186.1236

F11

Average 0 6132.125 3.75E-25 104725.1 327.9037 9289.844 1.92E-06 46914.21 50080.83 2069598

Std Dev 0 3531.791 1.60E-24 58102.98 208.638 50629.72 6.67E-06 22315.88 18612.17 1356685

Best 0 1200.19 1.08E-32 14737.57 61.2343 0.064453 7.99E-10 19700.93 16444.15 398587.8

Worst 0 12604.24 8.78E-24 228529 798.1094 277356.2 3.61E-05 92357.54 86449.89 7605752

F12

Average 54.44438 669.3124 65.17494 57467.26 45.61572 54.55684 91.01528 131.4435 31723.78 7821421

Std Dev 30.41612 227.4713 28.98188 48491.88 5.515901 24.25274 38.9426 166.5185 95236.72 32471414

Best 44.70562 346.0705 47.47152 8973.947 44.35261 38.37738 39.82111 41.48509 3659.787 2.032239

Worst 214.3801 1187.163 193.4626 227428.3 74.80706 131.1459 172.8936 640.1873 531852 1.67E+08
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30 and 50. Besides, GGWO ranked fourth and third in dimensions 30 and 50, respectively. The

results in Table 6.12 also show that the average ranking of the GGWO is 2.083333 and 2 regarding

all the benchmark functions in dimensions 30 and 50, respectively. The outcomes rank the GGWO

first among all other algorithms. Considering the best case, the GGWO is better than all the other

algorithms. In addition, the worst case of GGWO is significantly lower than all the other algorithms.

In other words, it obtained the best rank among all solution methods in terms of the best worst-case

rank, which shows the robustness of the offered methodology. The results indicate that the GGWO

can achieve very competitive outcomes compared to the other novel metaheuristic methods and

perform better for most benchmark functions.
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Table 6.7: Results of Tukey’s multiple comparison test for dimensions 30 and 50.

Benchmark Comparison
Dimension 30 Dimension 50

P-value Significant diff P-value Significant diff

F1

GGWO-GWO 2.56E-13 Yes 1.81E-13 Yes

GGWO-GWCA 0.33371 No 0.1694 No

GGWO-ABC 1.21E-12 Yes 1.71E-12 Yes

GGWO-GSA 1.21E-12 Yes 1.71E-12 Yes

GGWO-PSOGSA 1.21E-12 Yes 1.71E-12 Yes

GGWO-PSO 1.21E-12 Yes 1.71E-12 Yes

GGWO-SSA 1.21E-12 Yes 1.71E-12 Yes

GGWO-SCA 1.21E-12 Yes 1.71E-12 Yes

GGWO-MFO 1.21E-12 Yes 1.71E-12 Yes

F2

GGWO-GWO 0.16074 Yes 0.1608 Yes

GGWO-GWCA Nan No Nan No

GGWO-ABC 1.20E-12 Yes 1.21E-12 Yes

GGWO-GSA 1.18E-12 Yes 1.21E-12 Yes

GGWO-PSOGSA 1.20E-12 Yes 1.21E-12 Yes

GGWO-PSO 1.20E-12 Yes 1.21E-12 Yes

GGWO-SSA 1.20E-12 Yes 1.21E-12 Yes

GGWO-SCA 1.20E-12 Yes 1.21E-12 Yes

GGWO-MFO 1.20E-12 Yes 1.21E-12 Yes

F3

GGWO-GWO 1.21E-12 Yes 1.20E-12 Yes

GGWO-GWCA 1.21E-12 Yes 1.20E-12 Yes

GGWO-ABC 1.21E-12 Yes 1.20E-12 Yes

GGWO-GSA 1.21E-12 Yes 1.20E-12 Yes

GGWO-PSOGSA 1.20E-12 Yes 1.20E-12 Yes

GGWO-PSO 1.21E-12 Yes 1.20E-12 Yes

GGWO-SSA 1.21E-12 Yes 1.20E-12 Yes

GGWO-SCA 1.21E-12 Yes 1.20E-12 Yes

GGWO-MFO 1.20E-12 Yes 1.20E-12 Yes

F4

GGWO-GWO 0.041926 Yes 0.081493 No

GGWO-GWCA Nan No Nan No

GGWO-ABC 1.21E-12 Yes 1.20E-12 Yes

GGWO-GSA 3.45E-07 Yes 1.20E-12 Yes

GGWO-PSOGSA 5.76E-11 Yes 5.72E-11 Yes

GGWO-PSO 1.70E-08 Yes 1.20E-12 Yes

GGWO-SSA 1.21E-12 Yes 1.20E-12 Yes

GGWO-SCA 1.21E-12 Yes 1.20E-12 Yes

GGWO-MFO 1.21E-12 Yes 1.20E-12 Yes
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Table 6.8: Results of Tukey’s multiple comparison test for dimensions 30 and 50.

Benchmark Comparison
Dimension 30 Dimension 50

P-value Significant diff P-value Significant diff

F5

GGWO-GWO 3.02E-11 Yes 2.98E-11 Yes

GGWO-GWCA 3.02E-11 Yes 2.98E-11 Yes

GGWO-ABC 3.02E-11 Yes 2.98E-11 Yes

GGWO-GSA 3.02E-11 Yes 2.98E-11 Yes

GGWO-PSOGSA 3.02E-11 Yes 2.98E-11 Yes

GGWO-PSO 3.02E-11 Yes 2.98E-11 Yes

GGWO-SSA 3.02E-11 Yes 2.98E-11 Yes

GGWO-SCA 3.02E-11 Yes 2.98E-11 Yes

GGWO-MFO 3.02E-11 Yes 2.98E-11 Yes

F6

GGWO-GWO 1.75E-05 Yes 0.000167 Yes

GGWO-GWCA 2.11E-11 Yes 1.94E-11 Yes

GGWO-ABC 3.02E-11 Yes 2.98E-11 Yes

GGWO-GSA 0.40354 No 0.063459 No

GGWO-PSOGSA 0.83026 No 0.5394 No

GGWO-PSO 0.22823 No 0.051812 No

GGWO-SSA 3.83E-06 Yes 8.62E-05 Yes

GGWO-SCA 9.51E-06 Yes 4.57E-10 Yes

GGWO-MFO 0.007959 Yes 9.65E-10 Yes

F7

GGWO-GWO 0.012111 Yes 0.003828 Yes

GGWO-GWCA 1.04E-10 Yes 3.60E-11 Yes

GGWO-ABC 2.86E-11 Yes 2.95E-11 Yes

GGWO-GSA 2.86E-11 Yes 2.95E-11 Yes

GGWO-PSOGSA 0.000222 Yes 2.95E-11 Yes

GGWO-PSO 2.86E-11 Yes 2.95E-11 Yes

GGWO-SSA 0.013165 Yes 0.3552 No

GGWO-SCA 2.86E-11 Yes 2.95E-11 Yes

GGWO-MFO 0.006316 Yes 7.21E-11 Yes

F8

GGWO-GWO 6.44E-10 Yes 3.09E-11 Yes

GGWO-GWCA 0.17834 No 0.2345 No

GGWO-ABC 2.31E-11 Yes 2.80E-11 Yes

GGWO-GSA 2.31E-11 Yes 2.78E-11 Yes

GGWO-PSOGSA 2.31E-11 Yes 2.80E-11 Yes

GGWO-PSO 2.31E-11 Yes 2.80E-11 Yes

GGWO-SSA 2.31E-11 Yes 2.80E-11 Yes

GGWO-SCA 2.31E-11 Yes 2.80E-11 Yes

GGWO-MFO 2.31E-11 Yes 2.80E-11 Yes
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Table 6.9: Results of Tukey’s multiple comparison test for dimensions 30 and 50.

Benchmark Comparison
Dimension 30 Dimension 50

P-value Significant diff P-value Significant diff

F9

GGWO-GWO 1.21E-12 Yes 1.21E-12 Yes

GGWO-GWCA 1.21E-12 Yes 1.21E-12 Yes

GGWO-ABC 1.21E-12 Yes 1.21E-12 Yes

GGWO-GSA 1.21E-12 Yes 1.21E-12 Yes

GGWO-PSOGSA 1.21E-12 Yes 1.21E-12 Yes

GGWO-PSO 1.21E-12 Yes 1.21E-12 Yes

GGWO-SSA 1.21E-12 Yes 1.21E-12 Yes

GGWO-SCA 1.21E-12 Yes 1.21E-12 Yes

GGWO-MFO 1.21E-12 Yes 1.21E-12 Yes

F10

GGWO-GWO 3.02E-11 Yes 0.000587 Yes

GGWO-GWCA 0.20095 No 3.02E-11 Yes

GGWO-ABC 3.02E-11 Yes 4.50E-11 Yes

GGWO-GSA 0.004215 Yes 0.002052 Yes

GGWO-PSOGSA 0.023234 Yes 0.001114 Yes

GGWO-PSO 0.000182 Yes 0.099258 No

GGWO-SSA 0.44642 No 3.02E-11 Yes

GGWO-SCA 3.02E-11 Yes 1.87E-05 Yes

GGWO-MFO 0.039167 Yes 0.000587 Yes

F11

GGWO-GWO 1.21E-12 Yes 1.21E-12 Yes

GGWO-GWCA 4.57E-12 Yes 1.21E-12 Yes

GGWO-ABC 1.21E-12 Yes 1.21E-12 Yes

GGWO-GSA 1.21E-12 Yes 1.21E-12 Yes

GGWO-PSOGSA 1.21E-12 Yes 1.21E-12 Yes

GGWO-PSO 1.21E-12 Yes 1.21E-12 Yes

GGWO-SSA 1.21E-12 Yes 1.21E-12 Yes

GGWO-SCA 1.21E-12 Yes 1.21E-12 Yes

GGWO-MFO 1.21E-12 Yes 1.21E-12 Yes

F12

GGWO-GWO 4.08E-11 Yes 3.02E-11 Yes

GGWO-GWCA 8.88E-06 Yes 3.32E-06 Yes

GGWO-ABC 3.02E-11 Yes 3.02E-11 Yes

GGWO-GSA 1.87E-05 Yes 1.17E-09 Yes

GGWO-PSOGSA 0.030317 Yes 0.000225 Yes

GGWO-PSO 0.29047 No 0.004033 Yes

GGWO-SSA 0.05012 No 0.43764 No

GGWO-SCA 3.02E-11 Yes 3.02E-11 Yes

GGWO-MFO 2.39E-08 Yes 1.85E-08 Yes
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Figure 6.2: Dimension 30 boxplots.
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Figure 6.3: Dimension 30 boxplots.
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Figure 6.4: Dimension 50 boxplots.
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Figure 6.5: Dimension 50 boxplots.

162



Table 6.10: Friedman’s test for dimension 30.

GGWO GWO GWCA ABC GSA PSOGSA PSO SSA SCA MFO

F1 10.33 25.17 11.00 73.80 44.03 69.53 42.27 62.40 84.77 81.70

F2 15.17 16.57 15.17 76.40 42.40 87.20 60.63 58.90 39.90 92.67

F3 5.50 15.50 25.50 92.83 50.77 46.00 45.90 80.33 74.50 68.17

F4 18.50 24.53 18.50 90.17 54.98 69.47 50.15 57.60 54.27 66.83

F5 25.50 5.93 15.07 74.83 63.03 61.37 36.57 83.10 44.63 94.97

F6 37.76 47.30 5.50 92.60 35.57 46.83 49.73 67.37 59.17 63.17

F7 50.33 46.47 29.10 83.87 13.13 73.93 11.57 55.67 72.83 68.10

F8 9.17 24.73 13.97 66.03 35.73 87.57 46.50 60.47 69.97 90.87

F9 5.50 75.13 15.50 82.97 43.43 31.97 34.70 63.83 93.40 58.57

F10 32.53 70.23 37.90 79.17 43.08 54.58 17.33 30.23 88.07 51.87

F11 5.67 52.97 15.33 65.80 42.57 49.17 25.50 81.87 72.77 93.37

F12 32.30 65.60 45.43 90.73 20.13 29.37 27.00 42.30 80.10 72.03
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Table 6.11: Friedman’s test for dimension 50.

GGWO GWO GWCA ABC GSA PSOGSA PSO SSA SCA MFO

F1 10 25.5 11 69.5 35.83 76.4 46.03 58.26 86.23 86.23

F2 15.16 16.7 15.16 73.53 46.06 88.06 56 67.06 35.76 91.46

F3 5.5 15.5 25.5 89.83 44.5 41.03 56.86 62.16 78.73 85.36

F4 15.5 19.68 15.5 84.5 74.76 66.21 42.33 52.33 58.43 75.73

F5 25.5 5.5 15.5 83.53 64.7 57.4 35.5 76.26 46.33 94.76

F6 36 44.66 5.5 93.16 27.1 40.36 50.73 50.56 78.5 78.4

F7 47.03 41.46 19.33 76.26 5.5 86.26 22.03 47.93 66.16 93

F8 11.35 33 12.58 68.86 25.63 84.7 52.83 47.7 75.8 92.53

F9 5.5 71.5 15.5 90.76 35.5 25.5 47.2 53.8 82.23 77.5

F10 23.93 59.1 38.96 84.2 64.43 59.36 15.36 23.2 76.83 59.6

F11 5.5 55.16 15.5 81.16 44.46 37.86 25.5 71.43 72.9 95.5

F12 32.36 69.63 42.63 90.7 14.46 18.06 42.8 39.36 82.93 72.03
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Table 6.12: Ranking of the algorithms based on Friedman’s test for dimension 30.

GGWO GWO GWCA ABC GSA PSOGSA PSO SSA SCA MFO

F1 1 3 2 8 5 7 4 6 10 9

F2 1 3 2 8 5 9 6 7 4 10

F3 1 2 3 10 6 5 4 9 8 7

F4 1 3 2 10 6 9 4 7 5 8

F5 3 1 2 8 7 6 4 9 5 10

F6 3 5 1 10 2 4 6 9 7 8

F7 5 4 3 10 2 9 1 6 8 7

F8 1 3 2 7 4 9 5 6 8 10

F9 1 8 2 9 5 3 4 7 10 6

F10 3 8 4 9 5 7 1 2 10 6

F11 1 6 2 7 4 5 3 9 8 10

F12 4 7 6 10 1 3 2 5 9 8

Average 2.08 4.41 2.58 8.83 4.33 6.33 3.66 6.83 7.66 8.25

Best 1 1 1 7 1 3 1 2 4 6

Worst 5 8 6 10 7 9 6 9 10 10
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Table 6.13: Ranking of the algorithms based on Friedman’s test for dimension 50.

GGWO GWO GWCA ABC GSA PSOGSA PSO SSA SCA MFO

F1 1 3 2 7 4 8 5 6 9 10

F2 1 3 2 8 5 9 7 6 4 10

F3 1 2 3 10 5 4 6 7 8 9

F4 1 3 2 10 8 7 4 5 6 9

F5 3 1 2 9 7 6 4 8 5 10

F6 3 5 1 10 2 4 7 6 9 8

F7 5 4 2 8 1 9 3 6 7 10

F8 1 4 2 7 3 9 6 5 8 10

F9 1 7 2 10 4 3 5 6 9 8

F10 3 5 4 10 8 6 1 2 9 7

F11 1 6 2 9 5 4 3 7 8 10

F12 3 7 5 10 1 2 6 4 9 8

Average 2 4.166 2.41 9 4.41 5.91 4.75 5.66 7.58 9.08

Best 1 1 1 7 1 2 1 2 4 7

Worst 5 7 5 10 8 9 7 8 9 10

6.5 A case study of the COVID-19 Pandemic in the United States

We use one of the most recently developed models called SIDARTHE to forecast the COVID-19

pandemic (Giordano et al., 2020). The model reflects eight states, including susceptible, infected,

diagnosed, ailing, recognized, threatened, healed, extinct cases. This formulation takes into account

several health states for patients. The recommended formulation consists of several differential

equations to demonstrate the outbreak. For more information about this model please refer to Ap-

pendix E.

he United States is part of the COVID-19 pandemic created by acute respiratory syndrome

coronavirus 2 (SARS-CoV-2). The country announced its first community transmission case of
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COVID-19 in January 2020. Up to date, the US has reported more than 4,918,420 COVID-19 cases

and 160,290 death cases, making it the country with the most COVID-19 cases. To optimize the

limited resources of the healthcare systems, it is crucial to forecast the pandemic’s future trends.

This approach will enable managers to estimate the peak of the outbreak and plan for the worst-case

scenario. Since COVID-19 is a novel virus, the epidemiological parameters are unknown (Ahamad

et al., 2020). Thus, we need to present novel methodologies to model the outbreak.

In the following, we resolve the sum of the mean square error model using the GGWO and attain

the optimum result for the model. Figure 6.6 displays the convergence of GGWO and the average

objective value of the grey wolves over the iterations.

Figure 6.6: Convergence plot of the GGWO.
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Table 6.14: Results of fitting the model to real-data for the U.S.

Parameters Stages

Jan 22, to Mar 13 Mar 13 to Mar 22 Mar 22, to Mar 26 Mar 26, to May 22 May 22 to May 25 after May 25

α 0.13946 0.442191 0.442191 0.088807 0.126069 0.126069

β 0.002902 0.004443 0.004443 0.004443 7.22E-05 7.22E-05

δ 0.036517 0.285809 0.285809 0.02874 0.033251 0.033251

γ 0.002902 0.004443 0.004443 0.004443 7.22E-05 7.22E-05

ε 0.019209 0.019209 0.017224 0.017224 0.017224 0.02025

ζ 0.054364 0.054364 0.054364 0.022792 0.022792 0.000193

η 0.054364 0.054364 0.054364 0.022792 0.022792 0.000193

θ 0.070311 0.070311 0.070311 0.070311 0.070311 0.070311

λ 0.013641 0.013641 0.013641 0.067394 0.067394 0.067394

κ 0.009172 0.009172 0.009172 0.008573 0.012395 0.012395

ξ 0.009172 0.009172 0.009172 0.008573 0.012395 0.012395

ρ 0.013641 0.013641 0.013641 0.008573 0.012395 0.012395

σ 0.009172 0.009172 0.009172 0.008573 0.008573 0.0003

µ 0.005856 0.005856 0.005856 0.005631 0.005631 0.005631

υ 0.031166 0.031166 0.031166 0.029214 0.029214 0.029214

τ 0.004884 0.004884 0.004884 0.004884 0.004884 0.004884

We note that we did not reflect the mean square error of the death cases since the data might

be profoundly affected by patients’ age, health state, and gender. The data used in this research is

available at Humanitarian Data Exchange (2020). In Figure 6.6, we can observe a perfect trade-

off between exploration and exploitation in the performance of the GGWO. Table 6.14 presents

the results of the case study in the US. Figure 6.7 describes the accuracy of the predicted model

versus real-data. We observe that the offered procedure forecast future trends precisely. It is also

noteworthy that the sum of square errors for suggested parameters is 1.44E-06.
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Figure 6.7: Prediction vs. real-data from the US.

Figure 6.8 shows the predicted number of different types of individuals that will develop life-

threatening symptoms. Based on the outcomes of our study, we predict that the US will experience

the peak of the pandemic in terms of infected cases during mid-November 2020. Our model fore-

casts that the number of infected cases in the US could reach 16 million by that time. Figure 6.8

depicts an accurate prediction on the number of infected cases that develop life-threatening symp-

toms in the future so that the policymakers and healthcare professionals, and managers could plan

for ICU and ventilator allocation.

During the first stage of the outbreak in the US, the transmission rates were low from January

22 to March 13. Based on our results, the reproduction rate was R0 = 1.9249, for this stage. On

February 26, 2020, the first community case of the US was reported by the Centers for Disease
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Control and Prevention (CDC). On March 2, 13, and 16, the US government applied some travel

restrictions from 26 European countries and the UK and Ireland, respectively, to contain the spread

of the virus. On March 11, 2020, the World Health Organization (WHO) stated the outbreak to be

a pandemic. In our study, we consider March 13-22 as the second stage due to the fact that a rapid

increase in the number of cases was reported in the country. The reproduction rate was approx-

imately R0 = 7.2482 for this stage. As becomes evident, the reproduction number significantly

increased in this stage due to community transmission.

On March 19, the testing capacity remarkably increased to detect more infected cases. Since,

in this critical time interval, the testing capacity increased, so the detection rate changed from the

previous stages. Therefore, we considered March 22-26 as the third stage in our study. During this

stage, the reproduction number was R0 = 7.4134, which shows exponential growth in this time

interval. During the fourth stage, March 26 to May 22, the transmission rates were considerably

reduced due to dynamic lockdown and social distancing measures. That is why we observe a mean-

ingful reduction in the reproduction rate for this stage R0 = 0.8999. In the fifth stage, May 22

to May 25, we observe an increase in the transmission rates of the virus since other states start to

experience exponential growth in the number of COVID-19 cases. During this stage, the reproduc-

tion rate reported R0 = 1.2581. In the last stage, after May 25, we observe an increase in the ε

parameter due to a significant increase in the number of everyday tests resulting in R0 = 1.4374.

In the case of continuing the current measures and restrictions, we predicted the future trends of the

pandemic in the US over the next 362 days. Figure 6.8 presents more details about the model and

predictions.
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Figure 6.8: Prediction of future pandemic trends.

Based on the outcomes, we determined that keeping the current restrictions such as social dis-

tancing and partial lockdowns in place will significantly help to slow down the spread of the virus. It
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worth mentioning that any deviation in the future parameters could significantly affect the predicted

trends. Therefore, it is crucial to study the effect of changes in the main parameters of the pandemic

on future outcomes.

6.6 Sensitivity Analyses and Managerial Insights

The provided forecast of future pandemic growth in the earlier section considers strict social dis-

tancing, behavioral recommendations, and preventing gatherings. However, some businesses are

permitted to reopen while continuing social distancing. On the other hand, the pandemic has been

started to evolve in more states in the country. Hence, it is vital to discover the effects of reopenings

and pandemic growth that create variations in the transmission rates on the upcoming situations.

Therefore, we augmented the values of the parameters α, β, γ, δ, and ε, and explored the out-

comes. Such deviations could meaningfully influence the number of cases. We portray the results

in Figures 6.9 to 6.11. Our results show that the parameter α plays a prominent role in the number

of infected cases. Increasing parameter α surge the number of infected people considerably.

Increasing α also rises the number of infected people who develop life-threatening symptoms

significantly. Therefore, it becomes disclosed that strict measures such as social distancing are the

only factors that can decrease this parameter. Increasing α more than four percent will result in a

new higher peak in the number of patients who need ICU admission. Our results show that the US

will experience its peak in the number of infected people from November 1, 2020, to January 10,

2021. Any increase in this parameter of more than 4 percent will create another peak in the num-

ber of infected cases who need ICU admission. Therefore, social distancing, wearing masks, and

avoiding gatherings are the most critical factors that will help the country pass the peaks. Increasing

other parameters such as β and δ have the same effect; however, their influence on the number of

infected cases is lower than those of parameter α.

Moreover, increasing the value of ε considerably decreases the portion of infected, recovered,

cumulative diagnosed, and death cases. Hence, to contain the virus and stop the pandemic, we can

increase testing capacity by at least 40 percent to avoid experiencing another surge of infection who

need ICU admission. We discovered that increasing parameter ε by 100 percent would reduce the
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total infected case in the upcoming peak by 50 percent. Our study discovered that asymptomatic

cases play the most substantial role in spreading the virus.

Figure 6.9: Prediction of the COVID-19 cases in the U.S. as Parameter α increases.
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Figure 6.10: Prediction of the COVID-19 cases in the U.S. as Parameter ϵ increases.
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Figure 6.11: Prediction of the COVID-19 cases in the U.S. as Parameter β and δincreases.

6.7 Conclusion and outlook

The original GWO algorithm cannot maintain a proper balance between exploration and exploita-

tion. In this research, we address this issue by presenting a new version of this algorithm, called

GGWO, that enables us to solve optimization problems accurately. Our algorithm used the ad-

vantages of the gradient that provides valuable information about the solution space. Using gradi-

ent information, we accelerated the algorithm that enables us to solve many well-known complex

benchmark functions optimally for the first time in the field. Besides, we used deep mathematical

concepts such as Gaussian walk and LÂevy flight to improve the search efficiency of our method-

ology. These contributions enabled the proposed algorithm to avoid trapping in local optima. Our
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computational results on several benchmarks demonstrated the superiority of our algorithm to other

algorithms in the literature. Moreover, we applied several robust statistical tests to determine signif-

icant differences in the performance of the algorithm compared to state-of-the-art methodologies.

Our outcomes revealed that our algorithm is able to solve most benchmarks optimally without trap-

ping in local optima for the first time. Moreover, in instances with dimension 50, Friedman’s test

showed that our algorithm’s average rank is 2, which is the best average rank among the analyzed

algorithms. In 7 out of 12 benchmarks, the proposed algorithm was ranked first.

Moreover, we applied our algorithm for predicting the COVID-19 pandemic in the US. Our

results projected the highest number of infected individuals in the United States in mid-November

2020. The results also determined the peak of the number of hospitalized cases. Besides, we

performed several analyses to depict upcoming scenarios of the pandemic to help the authorities.

The results showed that the transmission rate from an infected person to a susceptible case is the

most critical factor in future trends. A surge in this constant would meaningfully raise the total

number of cases. Besides, rising the transmission rate from a diagnosed or recognized person to a

susceptible case causes a surge in the total number of cases. Moreover, any increase in the value

of ε decreases the total number of cases. Thus, to contain the virus, governments should reduce

the infection transmission rate by applying more restrictions on social activities and simultaneously

increasing daily tests. Our study revealed that asymptomatic cases have the most significant role in

spreading the virus.

As one of the potential research avenues, it would be interesting to take stochasticity and un-

certainty into account. In addition, considering the effect of information sharing and spread in pan-

demic growth would be interesting (Belen et al., 2011). Besides, considering other factors such as

age, sex, race, and health condition would significantly increase the accuracy of the model. From an

algorithmic perspective, presenting a multi-objective version of the proposed algorithm could solve

many-objective optimization problems. Moreover, the authorities could use the proposed method-

ology to optimize resource allocation during the outbreak. Furthermore, healthcare managers could

plan for testing kit allocation to test centers using the offered prediction methodology.
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Chapter 7

Conclusion

This dissertation focused on addressing complex challenges in appointment scheduling, operating

room planning, and modeling and prediction of COVID-19 pandemic. This study significantly ad-

vanced research in these healthcare areas by introducing innovative stochastic programming mod-

els, and machine learning and evolutionary computation based algorithms. We provided a new

framework for appointment scheduling that comprehensively addressed uncertainties including no-

shows, unpunctuality, and service time variability. In operating room planning, we proposed a novel

state-variable model that efficiently handled surgical time uncertainty, that demonstrated substan-

tial operational improvements. The study on pandemic prediction employed advanced algorithms

to enhance forecasting accuracy that contributed valuable insights for healthcare policymakers and

healthcare professionals. Each area benefits from innovative methodologies that promote efficiency,

accuracy, and resilience in healthcare systems.

In chapter 2 we proposed a novel stochastic programming model for appointment scheduling

problem considering uncertainties in service times, unpunctuality and no-shows. These uncertain-

ties were characterized by their patient-and-time-dependent distributions which is critical aspect

that previous models have often oversimplified due to modeling complexity. We showed that our

model is efficient in solving large-scale instances optimally within a reasonable computational time.

The proposed model captured an exponential number of scenarios while maintaining a pseudo-

polynomial number of variables and constraints for the first time in this field. Our approach showed

significant improvement in appointment scheduling that is demonstrated by a notable reduction
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in total clinic costs. Specifically, we observed a comprehensive cost reduction of 34% attributed

to the consideration of patient-dependent service times. Furthermore, the model’s capability to

consider patient-and-time-dependent unpunctuality and no-show probabilities resulted in additional

cost reductions of 12% and 67%, respectively. These findings highlighted the critical importance

of integrating patient behavior and time dependency in appointment scheduling models to optimize

healthcare delivery and operational efficacy.

Our research on personalized reminders as a strategic approach to reduce no-shows within our

model revealed the profound impact of personalized communication in reducing no-show rates. This

consideration resulted in a further 23% reduction in total costs. This strategic insight highlighted

the transformative potential of using data-driven, patient-centric communication strategies to en-

hance clinic efficiency and patient engagement. Our model not only challenged the conventional

paradigms of healthcare scheduling but also set a new benchmark for integrating patient-and-time-

specific data to drive operational improvements.

In chapter 3, we proposed a new state-variable model for a stochastic weekly operating room

scheduling problem with an exponential number of scenarios. We first proved the validity of the pro-

posed model. The main advantage of the offered model was that it maintained a pseudo-polynomial

number of variables and constraints that were significantly fewer than the number of variables and

constraints in an equivalent scenario-based stochastic programming model. In addition, we further

enhanced the model to involve fewer variables and constraints and added several valid inequalities,

including worst-case scenario and symmetry-breaking cuts to strengthen the model. We evaluated

the performance of the proposed models against the classic scenario-based stochastic programming

formulation in several small, medium, and large size instances.

The results demonstrated the superior efficacy of the proposed state-variable model over tra-

ditional approaches. Our model could optimally address up to 20 patient instances, which was

significantly more than the classic model’s benchmark of 14. Our evaluations extended to scenarios

involving up to 90 patients in which an average optimality gap of 1.42% was reported. The model’s

formulation distinguished by a significant reduction in the number of variables and constraints fur-

ther enhanced computational efficiency. Comparative evaluations with the enhanced version that

incorporated worst-case scenario and symmetry-breaking cuts indicated substantial improvements
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in model performance. These improvements enabled us to find optimal solutions for complex in-

stances involving 80 with an optimality gap of 0.78% 1.48E+64 scenarios.

In Chapters 4, 5, and 6 we proposed a novel hybrid reinforcement learning based algorithm,

as well as two other evolutionary computation-based algorithms to solve complex problems. We

applied our algorithms to several complex benchmarks in the literature and through in-depth com-

putational experiments we showed that our algorithm outperforms other state-of-the-art methods.

We applied our algorithms to solve SIDARTHE model on real-data from Canada, Ontario, Quebec,

and the U.S. to model the COVID-19 pandemic’s progression. We have provided a detailed analysis

and insights into the transmission dynamics and the impact of government-imposed measures on

controlling the spread of the virus. By categorizing the pandemic into different phases, based on

governmental measures and public health responses, we aimed to model and pandemic growth at

each stage. For instance, for Quebec case, we have observed a significant variation in the reproduc-

tion rates (R0) throughout the course of the pandemic. Initially, with low transmission rates and a

reproduction rate of R0 = 1.0998, the situation seemed to be manageable. However, as the pan-

demic progressed a sharp increases in the reproduction rate were observed peaking at R0 = 4.6096

before strict measures helped to decrease it substantially to R0 = 0.7782. Our hybrid reinforce-

ment learning-based algorithm has not only accurately reflected these trends but has also projected

the future trajectory of the pandemic under various scenarios. Through our analysis, we revealed

the critical importance of maintaining and adapting social distancing measures combined with en-

hanced testing efforts for asymptomatic cases to control the spread of COVID-19 virus. Our study

provided valuable insights for policymakers and healthcare administrators to combat the pandemic.

The sensitivity analyses conducted revealed the significant influence of social behavior and govern-

mental policies on the pandemic’s trajectory. The parameter adjustments in our model demonstrated

how varying levels of social distancing, business closures, and the reopening of businesses could

potentially alter the course of the pandemic.
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Appendix A

Proof of Theorem 1

To establish the validity of Model (M1), we need to confirm the accuracy of the following state-

ments:

(1) Variables witi and zifiti+1
are well-defined by the proposed model.

(2) Objective function (1) computes the expected total cost correctly.

Proof of Statement 1: Constraints (2) and (6) ensure the well-definition of the variables witi .

The proof of consistency between the values of variables zifiti+1
and their formal definitions is

established through an induction method. We first study the case i= 1 as the basis of induction. In

this case, constraint (3) results in z000=w10 = 1 that coincides with the definition of z000 as we

expect the appointment of dummy patient 0 to finish at 0 and the next patient i = 1 to be scheduled

at the beginning of the scheduling horizon. We note that we have w10 = 1 based on constraint (2).

As the inductive step, we suppose that for a fixed i−1, the model has computed all variables

z(i−1)fi−1ti ∀fi−1 ∈ Fi−1, ti ∈ Ti properly. In the following, supposing that ỹi is a random

variable representing the finish time of appointment for patient i, we first show that all variables

zifiti+1
∀fi ∈ Fi\{f

∗}, ti+1 ∈ Ti+1 are well-defined and then we discuss how it can be justified for

fi = f∗, ti+1 ∈ Ti+1 = {.}
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zifiti+1
= Pr

((
w(i+1)t(i+1)

= 1
)
∧ (ỹi = fi)

)

= Pr
(
w(i+1)t(i+1)

= 1
)
Pr (ỹi = fi)

= w(i+1)t(i+1)
Pr (ỹi = fi)

= w(i+1)t(i+1)

∑

ti∈Ti

Pr (witi = 1)Pr (ỹi = fi | witi = 1) . (A.1)

In the recent equations, we used the assumption that the two events
(
w(i+1)t(i+1)

= 1
)

and

(ỹi=fi) are independent. This assumption holds because w(i+1)t(i+1)
is not subject to uncertainty

and is determined by the decision maker’s choice. According to the latest formula, if w(i+1)t(i+1)
= 0

then it follows that zifiti+1
= 0 which aligns with constraint (3). Consequently, we can exclude
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w(i+1)t(i+1)
from the final expression and proceed as below:

zifiti+1
=
∑

ti∈Ti

Pr (witi = 1)Pr (ỹi = fi | witi = 1) (A.2)

=
∑

ti∈Ti

witi




∑

fi−1∈Fi−1

Pr
(
ỹ(i−1) = f(i−1)

)
Pr
(
ỹi = fi | (witi = 1) ∧

(
ỹ(i−1) = f(i−1)

))



(A.3)

=
∑

ti∈Ti




∑

fi−1∈Fi−1

witiPr
(
ỹ(i−1) = f(i−1)

)
Pr
(
ỹi = fi | (witi = 1) ∧

(
ỹ(i−1) = f(i−1)

))



(A.4)

=
∑

ti∈Ti




∑

fi−1∈Fi−1

witiPr
(
ỹ(i−1) = f(i−1)

)
Pr
(
max(ti, fi−1) + d̃i = fi

)

 (A.5)

=
∑

ti∈Ti




∑

fi−1∈Fi−1

Pr (witi = 1)Pr
(
ỹ(i−1) = f(i−1)

)
Pr
(
max(ti, fi−1) + d̃i = fi

)



(A.6)

=
∑

ti∈Ti




∑

fi−1∈Fi−1

Pr
(
(witi = 1) ∧

(
ỹ(i−1) = f(i−1)

))
Pr
(
max(ti, fi−1) + d̃i = fi

)



(A.7)

=
∑

ti∈Ti




∑

fi−1∈Fi−1

z(i−1)fi−1tiPr
(
max(ti, fi−1) + d̃i = fi

)

 (A.8)

=
∑

ti∈Ti

∑

fi−1∈Fi−1

z(i−1)fi−1tiPr
(
max(ti, fi−1) + d̃i = fi

)
(A.9)

Also, relation A.6 is valid as witi= Pr (witi= 1) holds, given that witi is a binary variable

determined by the decision maker and lacks any uncertain nature. Relation A.7 is valid because

the events witi= 1 and Pr
(
ỹ(i−1)=f(i−1)

)
are independent. Finally, the validity of relation A.8

aligns with the definition of z(i−1)fi−1ti (the basis of induction), ensuring that constraints (3)-(4)

correctly define variables zifiti+1
for fi ∈ Fi\{f

∗}, ti+1 ∈ Ti+1. To complete the proof of validity

of Statement 1, it remains to demonstrate that variables zifiti+1
for fi = f∗, ti+1 ∈ Ti+1 = {.}
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are well-defined. This can be established through a process similar to that outlined in relations A.2-

A.9 with the sole distinction being the substitution of fi = f∗ and ti+1 = ., and also replacing

Pr
(
max(ti, fi−1) + d̃i = fi

)
with Pr(max(ti, fi−1) + d̃i ≥ fi). This completes the proof for the

validity of Statement 1.

Proof of Statement 2: To verify that the objective function is accurately computed, we focus on

the representation of random cost variables for patient i including c̃waiting
i , c̃idlei , and c̃overtime

i .

These variables are contingent upon the scheduled appointment times and the uncertain parameters

of service time.

Total expected cost =
∑

i∈I0
E
(
c̃waiting
i + c̃idlei + c̃overtime

i + c̃cancellationi

)

=
∑

i∈I0

(
E
[
c̃waiting
i

]
+ E

[
c̃idlei

]
+ E

[
c̃overtime
i

]
+ E

[
c̃cancellationi

])

=
∑

i∈I0

∑

fi∈Fi

∑

ti+1∈Ti+1

Pr
(
(ỹi = fi) ∧

(
w(i+1)(ti+1) = 1

))

×
(
E
[
c̃waiting
i | (ỹi = fi) ∧

(
w(i+1)(ti+1) = 1

)]
+

E
[
c̃idlei | (ỹi = fi) ∧

(
w(i+1)(ti+1) = 1

)]
+

E
[
c̃overtime
i | (ỹi = fi) ∧

(
w(i+1)(ti+1) = 1

)]
+

E
[
c̃cancellationi | (ỹi = f∗) ∧

(
w(i+1)(ti+1) = 1

)])

=
∑

i∈I0

∑

fi∈Fi

∑

ti+1∈Ti+1

zifiti+1

×
(
cpifiti+1

+ cdifiti+1
+ coifiti+1

+ αc
1(fi=f∗)

)
(A.10)

Therefore, Statement 2 holds too and Theorem 1 is valid.
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Appendix B

Appointment Scheduling Example

Let us consider a practical example. This example involves two patients both of whom have already

been assigned their appointment slots. Thus, Constraint (2) regarding single appointment assign-

ments per patient is satisfied and we have w10= 1, w2(30)= 1. The service times for Patient 1 are

(20, 40) minutes with corresponding probabilities of (0.5, 0.5), and for Patient 2 we have service

times of (20, 30) minutes and corresponding probabilities of (0.5, 0.5). The model captures the

probability of different finish times for each patient considering their respective service time distri-

butions. This information is presented in Table B.1 which outlines the probability of each patient

finishing their appointment at various times.

Table B.1: Probability of finish times for each patient

Line Number Patient Finish time Probability

1 0 0 1

2 1 20 0.5

3 40 0.5

4 2 50 0.25

5 60 0.5

6 70 0.25

First, we schedule Patient 1 in the first appointment slot. Following Constraint (3) we derive the

following set of constraints (θ = 10):
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z000 = 1 (B.1)

z00(t1) = 0 for t1 ∈ T1\{0} (B.2)

which validates the first line of Table 1.

Considering Constraint (4), we also derive the following constraint:

z000 Pr(max(0, 0) + d̃1 = 20) = z1(20)(20) + z1(20)(30) + z1(20)(40) + z1(20)(50)

+ z1(20)(60) + z1(20)(70) + z1(20)(80) + z1(20)(90). (B.3)

Upon simplification, we obtain:

0.5 = z1(20)(20) + z1(20)(30) + z1(20)(40) + z1(20)(50)

+ z1(20)(60) + z1(20)(70) + z1(20)(80) + z1(20)(90) (B.4)

From Constraint (3) for Patient 2, we have: Therefore, from constraints, we have:

∑

f1∈F1

z1f1(t1) = 0 for t1 ∈ T1 \ {30} (B.5)

Thus, from (B.5) and (B.4) we have:

0.5 = z1(20)(30) (B.6)

which validates the second line of Table 1.

Considering Constraint (4) for Patient 1 and f = 40, we have:

z000 Pr(max(0, 0) + d̃1 = 40) = z1(40)(20) + z1(40)(30) + z1(40)(40) + z1(40)(50)

+ z1(40)(60) + z1(40)(70) + z1(40)(80) + z1(40)(90). (B.7)
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Upon simplification, we obtain:

0.5 = z1(40)(20) + z1(40)(30) + z1(40)(40) + z1(40)(50)

+ z1(40)(60) + z1(40)(70) + z1(40)(80) + z1(40)(90). (B.8)

Also, by considering Constraint (3) for Patient 2, we have
∑

f1∈F1
z1f1(t1) = 0 for t1 ∈ T1 \ {30}.

Now, based on (B.5) and (B.8), we can show that:

0.5 = z1(40)(30) (B.9)

This validates the third line of Table B.1. Furthermore, considering Constraint (4) for Patient 2 and

f = 50, we derive:

z1(20)(30) Pr(max(30, 20) + d̃2 = 50) +
∑

ti∈Ti\{30}
z1(20)(ti) Pr(max(ti, 20) + d̃2 = 50)

+
∑

ti∈Ti

z1(40)(ti) Pr(max(ti, 40) + d̃2 = 50) = z2(50)(·) (B.10)

In Constraint (B.10), the expression
∑

ti∈Ti\30 z1(20)(ti) Pr(max(ti, 20)+ d̃2 = 50) is equal to zero

considering (B.5). The expression
∑

ti∈Ti
z1(40)(ti) Pr(max(ti, 40) + d̃2 = 50) is equal to zero

since max(ti, 40) + d̃2 = 50 is not possible. Therefore, we have:

0.5 · 0.5 = z2(50)(.) (B.11)

This validates the fourth line of Table B.1. Further, considering Constraint (B.4) for Patient 2 and

f = 60 we have:
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z1(20)(30) Pr(max(30, 20) + d̃2 = 60) +
∑

ti∈Ti\{30}
z1(20)(ti) Pr(max(ti, 20) + d̃2 = 60)

+ z1(40)(30) Pr(max(30, 40) + d̃2 = 60)

+
∑

ti∈Ti\{30}
z1(40)(ti) Pr(max(ti, 40) + d̃2 = 60) = z2(60)(.) (B.12)

Given (B.12), expressions
∑

ti∈Ti\{30} z1(20)(ti) Pr(max(ti, 20) + d̃2 = 60) and

∑
ti∈Ti\{30} z1(40)(ti) Pr(max(ti, 40) + d̃2 = 60) are equal to zero considering (B.12). Thus, we

have:

0.5 · 0.5 + 0.5 · 0.5 = z2(60)(.) (B.13)

which validates the fifth line of Table B.1. Considering Constraint (4) for Patient 2 and f = 70 we

have:

∑

ti∈Ti\{30}
z1(20)(ti) Pr(max(ti, 20) + d̃2 = 70) + z1(20)(30) Pr(max(30, 20) + d̃2 = 70)

+ z1(40)(30) Pr(max(30, 40) + d̃2 = 70) +
∑

ti∈Ti\{30}
z1(40)(ti) Pr(max(ti, 40) + d̃2 = 70)

+
∑

ti∈Ti

z1(f ̸=40)(ti) Pr(max(ti, f ̸= 40) + d̃2 = 70) = z2(50)(.) (B.14)

In above equality,
∑

ti∈Ti\30
z1(20)(ti) Pr(max(ti, 20)+ d̃2 = 70) is equal to zero considering (B.5).

In addition, z1(20)(30) Pr(max(30, 20) + d̃2 = 70) is equal to zero since max(30, 20) + d̃2 = 70

is not possible. Moreover, z1(40)(30) Pr(max(30, 40) + d̃2 = 70) is equal to zero considering

(B.5). Finally,
∑

ti∈T i\30 z1(40)(ti) Pr(max(ti, 40) + d̃2 = 70) is equal to zero since constraint

(3) for Patient 2 shows z1(20)(30) + z1(40)(30) +
∑

ti∈Ti
z1(f ̸=20)(30) = 1. Which together with

0.5 = z1(20)(30) and 0.5 = z1(20)(40) proves
∑

ti∈Ti
z1(f ̸=20)(30) = 0. Thus we have:
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0.5 = z2(50)(.) (B.15)

which validates the last line of Table B.1.
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Appendix C

Proof of Theorem 2

To prove the validity of Model (28)-(35), by induction we show that Model (28)-(35) computes

the values of variables z0drit and z1drit correctly. We first consider the case i = 0 as the basis

of induction. In constraint (30)-(31), we have T0 = {0}. Therefore, we can rewrite these two

constraints for i = 0 as follows.

z1dr00 = xdr1 d ∈ D, r ∈ Rd, i ∈ I
0\|I| (C.1)

z0dr00 = 1− xdr1 d ∈ D, r ∈ Rd, i ∈ I
0\|I| (C.2)

Constraints (C.1) and (C.2) show that for i = 0, z0drit and z1drit are defined properly. Now, let us

suppose that variables z0dr(i−1)t and z1dr(i−1)t are already computed correctly. As the inductive step,

we have to show that the model calculates the values of variables z0drit and z1drit properly.

The left-hand side of constraint (32) represents the probability that the cumulative used time in

operating room r on day d by surgeries 1 to i is equal to t. Also with respect to constraint (30)-(31) it

is clear that one of the variables z0drit and z1drit will be equal to 0. Therefore, only the other variable

appears on the left-hand side of constraint (32). Consider the following notation.

Adrit : The event that the cumulative used time in operating room r on day d by surgeries 1

to i is equal to t.

Pr(.) : Probability of event (.).

To complete the proof, we have to show that Pr(Adrit) is equal to right-hand side of constraint
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(32).

Pr(Adrit) =
∑

t′∈Ti−1:
t′≤t

Pr(Adr(i−1)t′)Pr(Adrit|Adr(i−1)t′)

=
∑

t′∈Ti−1:
t′≤t

Pr(Adr(i−1)t′)
[
Pr(xdri = 0)Pr(Adrit|Adr(i−1)t′ ∧ xdri = 0)

+ Pr(xdri = 1)Pr(Adrit|Adr(i−1)t′ ∧ xdri = 1)
]

(C.3)

It is clear that Pr(Adrit|Adr(i−1)t′ ∧ xdri = 0) = 1 holds for t′ = t if t ∈ T(i−1). For other

values of t′ we have Pr(Adrit|Adr(i−1)t′ ∧ xdri = 0) = 0. Also Pr(Adrit|Adr(i−1)t′ ∧ xdri = 1) =

Pr(t′ + tiω = t) holds. Considering these points, we can rewrite the above relation as follows.

Pr(Adrit) = 1(t∈T(i−1))Pr(Adr(i−1)t)Pr(xdri = 0)

+
∑

t′∈Ti−1:
t′≤t

[
Pr(xdri = 1)Pr(Adr(i−1)t′)Pr(t′ + tiω = t)

]

= 1(t∈T(i−1))Pr(Adr(i−1)t ∧ xdri = 0)

+
∑

t′∈Ti−1:
t′≤t

[
Pr(Adr(i−1)t′ ∧ xdri = 1)Pr(t′ + tiω = t)

]

= 1(t∈T(i−1))z
0
dr(i−1)t +

∑

t′∈Ti−1:
t′≤t

z1dr(i−1)t′Pr(t′ + tiω = t) (C.4)

The last equality is valid with respect to the definition of z0dr(i−1)t and z1dr(i−1)t′ variables. We

observe that the right-hand side of constraint (32) is equal to Pr(Adrit) and therefore the proof is

complete.
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Appendix D

Benchmark Functions

Table D.1: The unimodal benchmark functions.

Function Range fmin

f1(x) =
∑n

i=1 x
2
i [-100,100]10 0

f2(x) =
∑n

i=1 |xi|+
∏n

i=1 |xi| [-10,10] 10 0

f3(x) =
∑n

i=1(
∑i

j−1 xj)
2 [-100,100] 10 0

f4(x) = maxi{|xi| , 1 ≤ i ≤ n} [-100,100] 10 0

f5(x) =
∑n−1

i=1

[

100(xi+1 − x2
i )

2 + (xi − 1)2
]

[-30,30] 10 0

f6(x) =
∑n

i=1([xi + 0.5])2 [-100,100] 10 0

f7(x) =
∑n

i=1 ix
4
i + random[0, 1) [-1.28,1.28] 10 0

F8(x) =
∑n

i=1 −xi sin(
√

|xi|) [-500,500] 10 −418.9829× 5

F9(x) =
∑n

i=1

[

x2
i − 10 cos(2πxi) + 10

]

[-5.12,5.12] 10 0

F10(x) = −20 exp(−0.2
√

1
n

∑n
i=1 x

2
i )− exp( 1

n

∑n
i=1 cos(2πxi)) + 20 + e [-32,32] 10 0

F11(x) =
1

4000

∑n
i=1 x

2
i −

∏n
i=1 cos(

xi√
i
) + 1 [-600,600] 10 0

F12(x) =
π
n
{10 sin(πy1) +

∑n−1
i=1 {(yi − 1)2[1 + 10 sin2(πyi+1)]

+(yn − 1)2}+
∑n

i=1 u(xi, 10, 100, 4)
[-50,50] 10 0

yi = 1 + xi+1
4

u(xi, a, k,m) =



















k(xi − a)mxi > a

0− a < xi < a

k(−xi − a)mxi < a

F13(x) = 0.1{sin2(3πxi) +
∑n

i=1(xi − 1)2[1 + sin2(3πxi + 1)]

+(xn − 1)2[1 + sin2(2πxn)]}+
∑n

i=1 u(xi, 5, 100, 4)
[-50,50] 10 0
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Table D.2: The unimodal benchmark functions.

Function Range fmin

F14(x) = ( 1
500

+
∑25

j=1
1

j+
∑

2
i=1

(xi−aij)6
)−1 [-65,65] 2 1

F15(x) =
∑11

i=1[ai −
x1(b

2
i+bix2)

b2
i
+bix3+x4

]2 [-5,5] 4 0.00030

F16(x) = 4x2
1 − 2.1x4

1 = 1
3
x6
1 + x1x2 − 4x2

2 + 4x4
2 [-5,5] 2 -1.0316

F17(x) = (x2 − 5.1
4π2 x

2
1 + 5

π
x1 − 6)2 + 10(1− 1

8π
) cosx1 + 10 [-5,5] 2 0.398

F18(x) = [1 + (x1 + x2 + 1)2(19− 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2)]

×[30 + (2x1 − 3x2)2 × (18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2)]
[-2,2] 2 3

F19(x) = −
∑4

i=1 ci exp(−
∑3

j=1 aij(xj − pij)
2) [1,3] 3 -3.86

F20(x) = −
∑4

i=1 ci exp(−
∑6

j=1 aij(xj − pij)
2) [0,1] 6 -3.32

F21(x) = −
∑5

i=1[(X − ai)(X − ai)
T + ci]

−1 [0,10] 4 -10.1532

F22(x) = −
∑7

i=1[(X − ai)(X − ai)
T + ci]

−1 [0,10] 4 -10.4028

F22(x) = −
∑10

i=1 [(X − ai)(X − ai)
T + ci]

−1
[0,10] 4 -10.5363
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Appendix E

SIDARTHE model

In this appendix, we describe the SIDARTHE model proposed by Giordano et al. (2020). The model

considers eight states for people, including Susceptible, Infected, Diagnosed, Ailing, Recognized,

Threatened, Healed, Extinct and provide the following definitions (see Figure E.1):

1) Susceptible: uninfected case, 2) Infected: undetected asymptomatic or pauci-symptomatic case,

3) Diagnosed: detected asymptomatic case, 4) Ailing: undetected symptomatic case, 5) Recognized:

detected symptomatic case, 6) Threatened: detected with life-threatening symptoms, 7) Healed:

recovered, 8) Extinct: dead. We use the notation presented below to represent the model.
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Indices

t State index

Parameters

α Transmission rate due to contact of a susceptible case with an infected case.

β Transmission rate due to contact of a susceptible case with a diagnosed case.

δ Transmission rate due to contact of a susceptible case with an ailing case.

γ Transmission rate due to contact of a susceptible case with a recognized case.

ε The rate of detecting asymptomatic cases.

ζ The probability that an infected case is aware of being infected.

The probability that an infected case is unaware of being infected. η

θ The detection rate of symptomatic cases.

λ, κ, ξ, ρ , σ The recovery rate of the five categories of infected cases.

µ The probability that an undetected/detected infected case shows life-threatening symp-

toms.

υ The probability that a detected infected case develops life-threatening symptoms.

τ Mortality rate.

State variables

S(t) The fraction of susceptible (not infected) cases in the population.

I(t) The fraction of infected (infected and undetected cases without symptoms) cases in the

population.

D(t) Fraction of diagnosed (infected and detected cases without symptoms) cases in the

population.

A(t) The fraction of ailing (infected and undetected cases with symptoms) cases in the

population.

R(t) The fraction of recognized (infected and detected cases with symptoms) cases in the

population.

T (t) The fraction of threatened (infected detected cases that developed life-threatening

symptoms) cases in the population.

H(t) The fraction of recovered cases in the population.

E(t) The fraction of death cases in the population.
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Based on the notations, Giordano et al. (2020) represented the following model:

Ṡ(t) = −S(t)(αI(t) + βD(t) + γA(t) + δR(t)) (E.1)

İ(t) = S(t)(αI(t) + βD(t) + γA(t) + δR(t))− (ϵ+ ζ + λ)I(t) (E.2)

Ḋ(t) = ϵI(t)− (η + ρ)D(t) (E.3)

Ȧ(t) = ζI(t)− (θ + µ+ κ)A(t) (E.4)

Ṙ(t) = ηD(t) + θA(t)− (υ + ξ)R(t) (E.5)

Ṫ (t) = µA(t) + υR(t)− (σ + τ)T (t) (E.6)

Ḣ(t) = λI(t) + ρD(t) + κA(t) + ξR(t) + σT (t) (E.7)

Ė(t) = τT (t) (E.8)

Figure E.1: ºGraphical scheme representing the interactions among different stages of infection

in the mathematical model SIDARTHE: S, susceptible (uninfected); I, infected (asymptomatic or

pauci-symptomatic infected, undetected); D, diagnosed (asymptomatic infected, detected); A, ail-

ing (symptomatic infected, undetected); R, recognized (symptomatic infected, detected); T, threat-

ened (infected with life-threatening symptoms, detected); H, healed (recovered); E, extinct (dead).º

(Giordano et al., 2020)
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