
Variable Intensity Patches With Swirls (VIPs):

Novel Data Augmentation for Retinal Vessel Segmentation

Prateek Jeet Singh Sohi

A Thesis

In The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

For the Degree of Master of Applied Science (Electrical and Computer Engineering)

Concordia University

Montréal, Québec, Canada

April 2024

© Prateek Jeet Singh Sohi, 2024

Concordia University
School of Graduate Studies

This is to certify that the thesis prepared

By: Prateek Jeet Singh Sohi

Entitled: Variable Intensity Patches With Swirls (VIPs):

Novel Data Augmentation for Retinal Vessel Segmenta-

tion
and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards

with respect to originality and quality.

Signed by the final examining commitee:

Dr. Nawwaf Kharma Chair

Dr. Mahdi S. Hosseini External examiner

Dr. Nawwaf Kharma Examiner

Dr. Maria Amer Supervisor

Approved by:

Dr. Zahangir Kabir, Graduate Program Director

2024

Dr. Mourad Debbabi, Dean

Gina Cody School of Engineering and Computer Science

Abstract

Variable Intensity Patches With Swirls (VIPs):

Novel Data Augmentation for Retinal Vessel Segmentation

Prateek Jeet Singh Sohi

A significant problem in retinal vessel segmentation (RVS) research is overfitting

mainly due to the lack of large datasets. Data augmentation can alleviate this prob-

lem. Current augmentation techniques for RVS do not address the main challenges of

localized variable intensities and microvessels in retinal images. This thesis proposes

a data augmentation technique (termed variable-intensity patches with swirls, VIPs)

to create augmented retinal images by randomly adding variable-size and variable-

intensity square patches with swirl structures to a training image, online during train-

ing. We add patches and swirls without overlapping the retinal vessels. Our variable

patches simulate images with illumination changes, and swirls add microvessel-like

structures. To evaluate our augmentation technique, we study recent RVS models

and examine the impact of their components, including augmentation, augmentation

mode, and preprocessing. We then propose both data preprocessing (gamma correc-

tion and contrast enhancement) and VIPs augmentation to address challenges in RVS.

Our experiments with in- and cross-datasets show that our combined augmentation

and preprocessing technique significantly improves the performance of RVS baseline

models (e.g., LWNet by 6.68% and SegRNet by 5.29% in AUC measure). Also, our

technique is more stable than all related works across RVS models. Our approach

helps to reduce the training-validation losses of RVS models and the gap between

iii

training and validation losses. We performed ablation studies on our technique: com-

paring patches versus swirls, looking at the impact of preprocessing, and analyzing

its hyperparameters.

iv

Acknowledgments

I would like to extend my sincere appreciation to my supervisor, Dr. Maria Amer

for her invaluable support, unwavering attention, and exceptional attention to detail

throughout my academic journey. Her perseverance and guidance played a pivotal

role in enabling me to achieve my academic goals.

I would like to express my heartfelt gratitude to my parents for their unwavering

and unconditional support throughout my academic journey. Their invaluable pres-

ence has been instrumental in my success, and I dedicate this entire thesis to my

supervisor and parents.

v

Contents

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Motivation and Problem Statement 1

1.2 Summary of Contributions . 3

1.3 Thesis Outline . 5

2 Related Works 6

2.1 Preliminaries . 6

2.2 Data Preprocessing and RVS . 7

2.3 General Purpose Data Augmentation 8

2.4 Augmentation Methods Specific to RVS 8

2.5 RVS Models and their Data Augmentation 10

2.5.1 Multi-U-net Networks . 12

2.5.2 Multi-branch Networks . 13

2.5.3 Networks Using Dilated Convolutions 14

2.5.4 Networks with Novel Modules 16

2.5.5 GAN Based Network . 19

2.5.6 GNN Based Network . 19

vi

2.5.7 Cross-domain Network . 19

3 Proposed Approach 20

4 Experimental Analysis 28

4.1 Simulation Setup . 28

4.2 In-dataset Analysis and Model Training 30

4.3 Cross: Comparison of Baseline RVS Models 38

4.4 Cross-dataset: Impact of Components of RVS 39

4.5 Proposed Versus Related Augmentation Works 42

4.6 Ablation study . 45

4.7 Visual Results . 48

5 Conclusion and Future Work 50

5.1 Conclusion . 50

5.2 Future Work . 51

Bibliography 53

Appendix A Additional In-Dataset Comparison 62

vii

List of Figures

1.1 Retinal vessel images from different datasets: (a) DRIVE [1] image.

(b) CHASEDB [2] image. (c) HRF [3] image. 2

2.1 Typical multi-U-net network widely used in RVS. A U-net [4] is a

full connected convolutional neural network used for medical image

segmentation. A mini-U-net has fewer down-sampling and up-sampling

layers. The depth and number of the mini-U-net varies depending on

the RVS model. The output of a mini-U-net is cascaded as input to

the next mini-U-net. 11

2.2 Visual representation of standard and dilated convolution with differ-

ent dilation rates. Dilated convolutions are used for increasing the

receptive field of a layer without incurring losses in resolution. 16

3.1 Visual examples depicting the outputs of the various steps used for

preprocessing(i.e., grayscale conversion followed by CLAHE [5] and

gamma correction) performed on an original DRIVE [1] image. . . . 21

3.2 (a) Original DRIVE [1] image. (b) Original CHASEDB [2] image. (c)

Original HRF [3] image. (d) Original image in (a) augmented with our

VIPs. (e) Original image in (b) augmented with our VIPs. (f) Original

image in (c) augmented with our VIPs. 22

viii

3.3 Flowchart of our proposed VIPs method depicting the process of patch

selection, intensity, and swirl transformation used for artificial simula-

tion of microvessel. 23

4.1 The training and validation loss as per Equation 13 versus the epoch

for LWNet [6] trained and validated with and without VIPs (a) on

HRF [3], (b) on DRIVE [1], and (c) on CHASEDB [2]. (CLAHEGC

was used for preprocessing.) The number of epochs for each dataset is

specified by the authors of the LWNet [6]. 34

4.2 The training and validation loss as per Equation 16 versus the epoch

for SegRNet [7] trained and validated with and without VIPs (a) on

HRF [3], (b) on DRIVE [1], and (c) on CHASEDB [2]. (CLAHEGC

was used for preprocessing.) . 35

4.3 The training and validation loss as per Equation 14 versus the epoch

for IterNet [8] trained and validated with and without VIPs (a) on

HRF [3], (b) on DRIVE [1], and (c) on CHASEDB [2]. (CLAHEGC

was used for preprocessing.) . 36

4.4 Validation scores versus the size of training sets both with and without

VIPs. (a) F-score and (b) AUC. (CLAHEGC was used for preprocessing.) 38

4.5 Graphical representation of the average P , R, F , Acc, and AUC values

for the cross-dataset analysis of RVS baselines as shown in the last part

of Table 4.7. 39

4.6 LWNet [6] (with CLAHEGC used for preprocessing): Graphical repre-

sentation of the average gains/loss in Table 4.9, in P , R, F , Acc, and

AUC comparing our proposed VIPs and related augmentation tech-

niques. 43

ix

4.7 SegRNet [7]: Graphical representation of the average gains/loss in Ta-

ble 4.10 in P , R, F , Acc, and AUC comparing proposed VIPs and

related augmentation techniques. 45

4.8 LWNet [6] with/without VIPs and with/without preprocessing (CLA-

HEGC): Graphical representation of the average gains/loss in Table

4.11, in P , R, F , Acc, and AUC for the ablation study. 46

4.9 (a) Original DRIVE [1] image. (b) Original image in (a) augmented

with our VIPs. (c) Segmented original image in (a) using LWNet

[6]. (d) Segmented original image in (a) using LWNet [6] trained

with VIPs+preprocessing. (e) Segmented original image in (a) us-

ing LWNet [6] trained with Robust [9] (second best augmentation

method)+preprocessing. (f) Segmented original image in (a) using

LWNet [6] trained with Cutmix [10] (third best augmentation method)

+ preprocessing. Note that the same preprocessing was used for all

methods. 49

x

List of Tables

4.1 Results for in-dataset analysis of RVS baselines. Red indicates best,

blue second best, and green third best result. 31

4.2 Complexity of RVS models in terms of number of trainable parameters. 31

4.3 Total number of training images used by LWNet [6] and SegRNet [7]

during a single training epoch after their augmentations both with and

without our VIPs. 32

4.4 Total number of unique image samples seen during the entire training

process by LWNet [6] and SegRNet [7] after augmentations both with

and without our VIPs. 32

4.5 Results for 10-fold cross validation of LWNet [6] both with and without

VIPs + preprocessing. We give the standard deviations in (). 37

4.6 Results for in-dataset analysis of LWNet [6] both with and without

VIPs + preprocessing on combined dataset. We give the gains/losses

over the baseline in (). 37

4.7 Results for cross-dataset analysis of RVS baselines. Red indicates best,

blue second best, and green third best result. Note the difference

between best (LWNet [6]) and second (SegRNet [7]) best model in

AUC is 2.62% and in F-score is 5.48%. 39

4.8 Impact of augmentation and preprocessing modalities on LWNet [6]

and SegRNet [7]. We give the gains/loss over baseline in (). 40

xi

4.9 Comparing LWNet [6] with proposed VIPs and related augmentation

techniques. CLAHEGC was used for preprocessing. We give the

gains/loss over baseline in (). Red indicates best, blue second best,

and green third best result respectively. 43

4.10 Comparing SegRNet [7] with proposed VIPs and related augmenta-

tion techniques. CLAHEGC was used for preprocessing. We give the

gains/loss over baseline in (). Red indicates best, blue second best,

and green third best result respectively. 44

4.11 Ablation study: LWNet [6] with/without VIPs and with/without pre-

processing (CLAHEGC). We give the gains/loss over baseline in ().

Red indicates best, blue second best, and green third best result re-

spectively. 46

4.12 Hyper-parameters and ablation (swirls versus patches): of our VIPs

with LWNet [6] (no preprocessing). Red indicates best, blue second

best, and green third best result respectively. 47

A.1 Results for in-dateset analysis of LWNet [6], SegRNet [7], and IterNet

[8] both with and without VIPs. We give the gains/loss over baseline

in (). (We used CLAHEGC as preproessing.) 62

xii

Chapter 1

Introduction

1.1 Motivation and Problem Statement

Retinal vessel segmentation (RVS) is essential for early disease detection. State-

of-the-art in RVS uses deep networks such as multi U-net [6, 11–13]. A U-net [4]

is a fully connected convolutional neural network that utilizes skip connections to

facilitate information transfer between it’s down-sampler and up-sampler part of the

network to improve localization. There are three main challenges with modern RVS

approaches:

(a) Datasets of retinal images are tiny (the largest is HRF [3] with 45 images). Small

datasets hinder the model’s generalization and cause over-fitting. Gathering

more data is expensive in the medical domain.

(b) Most RVS models find it difficult to segment microvessels that resemble contours

(noise) in the image background [8]. Microvessel segmentation is important for

early diagnosis because anomalies in the microvessels are the first signs for the

onset of degenerative retinal diseases.

1

(c) Most retinal images have localized intensity variations that make vessel segmen-

tation difficult [8].

The survey paper [14] presents a comprehensive review of RVS models and reports

that only 42% of the papers reviewed use data augmentation for regularization. The

survey paper [15] makes two main observations:

(a) Deep learning based RVS techniques struggle to segment microvessels.

(b) RVS techniques do not generalize well when there is domain shift, i.e., applied

on different datasets.

Therefore, the main challenges in RVS are:

1. Small size of RVS datasets hinders model generalization [14–16].

2. Localized intensity variations in RVS images make vessel segmentation difficult

[8]. (See Figure 1.1 for a visual example.)

3. Microvessel segmentation is difficult as most RVS models confuse them with

contours (noise) in the image background [8, 15]. (See Figure 1.1 magnified

portion for visual examples.)

Figure 1.1: Retinal vessel images from different datasets: (a) DRIVE [1] image. (b) CHASEDB [2]
image. (c) HRF [3] image.

2

Data augmentation can address such challenges by increasing the number of train-

ing samples and adding patterns to these new samples. The patterns should, however,

be appropriate for RVS.

The augmentation methods [9,16] specific to RVS do not solve the above challenges

since 1) they do not augment localized variable-intensity patterns, 2) they do not add

microvessel like pattern, and 3) they may heavily occlude the vessels as they do not

pay attention to their locations. Basic data-augmentation techniques embedded in

RVS models are not effective to address these challenges either. They use simple

operations such as flipping, rotation, jittering, or blur. Classical data augmentation

methods such as random Erase [17], CutMix [10], or Mosaic [18], used in image

classification or object detection, have not been applied to RVS. Probably because

they may randomly occlude objects (here vessels), resulting in major information loss.

To address the above main challenges in RVS, we propose to use both data prepro-

cessing (offline before training and inference) and data augmentation (online during

training at each epoch):

1. Preprocessing, gamma correction or contrast enhancement, helps address local-

ized intensity variations in RV images.

2. Data augmentation that adds both variable intensity patterns and swirls while

not occluding the vessels can address all challenges.

1.2 Summary of Contributions

In this thesis, we start by systematically studying the impact of components of RVS

models, including the deep learning model itself, the data augmentation it uses, and

possible preprocessing operations on training samples it may use. We arrive at the

following conclusions.

3

1. Augmentation is crucial to improve the performance of RVS models. For ex-

ample, when we evaluated the state-of-the-art RVS model LWNet [6] without

its data augmentation, its F1-score dropped by -6.56%. One main reason is the

small RVS datasets available for training.

2. RVS models have variable performances across datasets; for example, LWNet [6]

performance in the F1-score fluctuates between 80% and 57%.

3. The majority of RVS models use their own data augmentation, that is, adapted

to the model architecture. Our simulations show that, indeed, using the aug-

mentation method of one model into another model leads to a major loss in

performance.

4. Few augmentation methods exist that are specifically designed for RVS without

altering the model’s architecture. The challenge is to innovate a method that

is stable across RVS models; certainly data augmentation should not introduce

performance loss.

5. When adequately selected, data preprocessing can lead to performance gains

across RVS models.

To address these conclusions, we first propose the use of preprocessing operations

to improve the contrast between the blood vessels and the background and reduces the

amount of intensity variations. We perform preprocessing before training and before

inferencing. We then contribute a new data augmentation called VIPs (variable

intensity patches with swirls). We perform augmentation online during training at

each epoch. We add swirls to random-sized square patches in the background (without

overlapping the retinal vessels) and randomly vary the intensity of the patches to

generate augmented samples. Since swirls resemble unwanted contours that confuse

the RVS model, our method provides training examples with more contours than the

4

original training images at random locations in the image background, thus helping

the model reduce false negative predictions. By varying the intensity of randomly

selected square patches, we increase the number of training images with localized

intensity variations to aid model generalization.

1.3 Thesis Outline

Chapter 2 provides a comprehensive analysis of the related work. Section 2.1 pro-

vides the necessary preliminary information, Section 2.2 is a review of preprocessing

techniques used for RVS. In Section 2.3, we discuss general-purpose augmentation

methods related to RVS, while in Section 2.4 a summary of RVS specific augmenta-

tion methods is given. Finally, Section 2.5 gives a detailed account of the workings

of various RVS models and the data augmentation techniques they use.

Chapter 3 presents a detailed description of our proposed VIPs method and pre-

processing operations.

In Chapter 4, Section 4.1 describes our simulation setup, comparison matrices,

and datasets used. Section 4.3 quantitatively compares recent RVS baseline models

and identifies the best RVS model. Next, in Section 4.4, we study the effect that

individual components (that is, data augmentation and preprocessing) have on the

best RVS models. Section 4.5 compares our VIPs method with related augmentation

methods. This is followed by the ablation studies of our VIPs method in Section 4.6.

Section 4.7 then compares the visual results of our proposed VIPs method with other

related augmentation methods. Finally, we analyze the effects of VIPs on validation

and training loss during model training in Section 4.2.

Chapter 5 summarizes our contributions and provides information about the

prospective future work, which concludes this thesis.

5

Chapter 2

Related Works

Our thesis proposes to use both preprocessing and data augmentation to improve

performance of RVS models. Thus, this Chapter reviews related work to preprocess-

ing (Section 2.2), general-purpose data augmentation (Section 2.3), augmentation

methods specific to RVS (Section 2.4), and RVS models and their data augmentation

(Section 2.5).

2.1 Preliminaries

Data augmentation aims to increase the number of training samples by generating

modified copies of the original data. The modifications are achieved through simple

image transformations such as scale or blur or through sophisticated image operations

such as adding whole objects. Depending on the task and objectives, the modification

may lead to minor or major changes. The increase in training samples aims at better

generalization of deep learning models.

Data augmentation may be performed either offline (the dataset is expanded with

augmented samples before training) or online (the training images are augmented at

each training epoch). Online augmentation has the advantage of producing different

augmented images at each epoch; the model gets thus, trained on a larger number

6

of unique images compared to offline augmentation. The probability p of using a

specific transformation for augmentation in online modes is referred to as the p-value.

While in offline mode p-value refers to the percentage p of training images used for

augmentation out of all training images.

Preprocessing, on the other hand, enhances the image dataset before training,

using a set of transformations such as contrast enhancement. A critical difference

between offline data augmentation and preprocessing is that the number of training

images remains unchanged after preprocessing, that is, all images are preprocessed.

2.2 Data Preprocessing and RVS

There is little research on preprocessing methods for RVS. The RVS model AR-SA-

U-net [19] performs data preprocessing by extracting the green channel, followed by

CLAHE [5] (that is, contrast limited adaptive histogram equalization). The authors

do not mention the clip limit and gamma values. The RVS model Wave-Net [20]

performs preprocessing by converting all images to grayscale, then applying CLAHE

[5] followed by gamma correction with γ =1.2, but the clip limit used for CLAHE [5] is

not mentioned by the authors. The model Res2Unet [21] performs data preprocessing

by extracting the green channel, followed by CLAHE [5] and gamma correction. The

authors do not mention the clip limit and gamma values. To our knowledge, SegRNet

[7] is the only RVS paper that provides a complete set of hyper-parameter values

used for preprocessing for RVS. SegRNet [7] performs preprocessing by converting all

images to grayscale, then applying CLAHE [5] with a clip limit of 3 and grid size of

8 × 8, followed by gamma correction with γ =1.2.

The paper LIOT [22] proposes a preprocessing method for segmenting curvilinear

objects (including cracks and retinal vessels). LIOT [22] compares the pixel values of

the input image I(p) with a group of 8 neighboring pixels lying in the perpendicular

7

direction. The comparison made with groups on the top, bottom, left, and right side

for the individual channels form a 4-channel output image I(ps) given by Equation 1.

I(ps) =
8∑
1

[I(p) > I(pi
s)]× 2i−1,

[I(p) > I(pi
s)] = 1,

[I(p) < I(pi
s)] = 0.

(1)

Where, I(pi
s) is the pixel value at a Euclidean distance i from I(p) towards a direction

s (that is either towards the top, bottom, left, or right).

2.3 General Purpose Data Augmentation

This section reviews general-purpose augmentation methods, meaning those used

across traditional computer vision domains such as image classification and object

detection.

The patch-based random Erase [17] randomly occludes image patches by setting

pixel values inside the randomly selected patches to zero, which makes the classifica-

tion models more robust to occlusion. CutMix [10] augments an image by occluding it

with patches belonging to another image to get the train set. Mosaic [18,23] combines

random portions of four images to form the augmented sample. To the best of our

knowledge, such sophisticated augmentation methods have not been used in RVS. One

reason could be that these patch-based methods do not pay attention to the object’s

location (here, vessel) and may randomly occlude them, resulting in information loss.

2.4 Augmentation Methods Specific to RVS

There are papers such as [9,16] proposing data augmentation methods specific to RVS

without altering the model itself. The paper [16] shows that using transfer learning

8

(that is, they use pre-trained weights for a selected number of layers and train the

remaining layers on the target dataset) in addition to their proposed data augmen-

tation (random rotation, cropping, translation, shear, zoom, CLAHE, saturation,

sharpening, mean-shift blur, and gamma correction in the offline mode) improves U-

net [4] model performance. The authors of [16] do not mention the p-values used for

the augmentation.

The online data augmentation method [9] for RVS first performs vertical and

horizontal flipping with p=0.5 followed by channel-wise random gamma correction,

which takes the input image Vi and outputs an RGB image V ′
i with one of its channels

transformed using gamma correction as given in Equation 2.

V ′
i [:, :, k] = Vi[:, :, k]γi , γi ∈ [0.33, 3]. (2)

Where, V ′
i is the output image with an image channel transformed using gamma

correction, k is the randomly selected image channel in the set {R, G, B} corresponds

to the index values of the red, green, and blue color channels of the input image

Vi, γi is the gamma value used for gamma correction. Finally, channel-wise random

vessel augmentation applies a morphological transformation on the transformed image

V ′
i that alters vessel geometry by omitting vessels less than a certain thickness and

generates a rough segmentation map Mi. The final augmented image is given by V t
i

as shown in Equation 3.

V t
i = V ′

i (1−Mi)× β + Mi × β, β ∈ [0, 1]. (3)

Where, V t
i represents the final augmented image, Mi is a rough segmentation map,

V ′
i is the transformed image obtained after random channel-wise gamma correction,

and β is a control parameter.

Note that augmentation methods for RVS such as [9,16] use gamma correction as

9

part of their augmentation strategy, while RVS models such as [7,19–21] use gamma

correction for preprocessing.

As [9,16], our method is also specific to RVS, that is, we propose a data augmen-

tation to improve the model’s performance without altering the RVS model itself.

The main differences between our VIPs and [9,16] are as follows:

(a) They do not use any preprocessing.

(b) We utilize ground truth images to maintain the original structure of retinal

vessels while altering only the background.

(c) The swirl component of our method is specifically designed to improve the

segmentation of microvessels.

(d) Methods [9,16] do not attempt to solve the issues caused by localized intensity

variation, while the patch component of our VIPs method is specially designed

to address this problem.

(e) Unlike [9, 16] that only test there method on a single model, we evaluate our

method across RVS models and show it is stable (useful) .

2.5 RVS Models and their Data Augmentation

In this section, we categorize and present recent RVS models and their data augmen-

tation methods.

Many RVS models such as [6, 8, 11–13] are based on the U-net [4] architecture,

which is a fully connected convolutional neural network architecture that utilizes

skip connections to facilitate information transfer between it’s down-sampler and up-

sampler part of the network for improving localization. A skip connection passes the

output of a layer as input to a layer by skipping a few layers in between.

10

Many U-net based RVS models have multi U-Net architecture. In Figure 2.1, we

present a generalized representation of multi-U-net architectures. The main idea be-

hind the design of any multi-U-net architecture is to improve the model’s performance

by cascading the output of one U-net [4] to the next mini-U-net, which could lead to

better feature refinement, and an overall better model performance.

Conv layer

Max
pooling

layer

Conv layer

Max
pooling

layer

Conv layer

Max
pooling

layer

Conv layer

Max
pooling

layer

Conv layer

Conv layer

Trans-
Conv
layer

Conv layer

Trans-
Conv
layer

Conv layer

Trans-
Conv
layer

Conv layer

Trans-
Conv
layer

+

Max
pooling

layer

Conv layer

Max
pooling

layer

Conv layer

Trans-
Conv
layer

Conv layer

Trans-
Conv
layer

U-net
architecture

Mini U-net
architecture

Input U-net output Output

+

Figure 2.1: Typical multi-U-net network widely used in RVS. A U-net [4] is a full connected convolu-
tional neural network used for medical image segmentation. A mini-U-net has fewer down-sampling
and up-sampling layers. The depth and number of the mini-U-net varies depending on the RVS
model. The output of a mini-U-net is cascaded as input to the next mini-U-net.

11

2.5.1 Multi-U-net Networks

The RVS model IterNet [8] passes the output of the ultimate layer of a U-net [4] as

input to a series of 2 mini-U-nets connected in series and concatenates the output of

each U-net [4] to form the final segmentation map. For augmentation, IterNet [8] uses

random scale, shear, and shift with probability p = 0.05; random contrast, saturation,

brightness, rotation, horizontal and vertical flipping operations with p = 0.5 in the

online fashion. The models CRAUNet [13] and LWNet [6] use two U-nets [4] connected

in series. To improve information transfer between the down-sampler and up-sampler

part of the network, CRAUNet [13] uses a self-attention block called MFCA and

DropBlock [24] regularization to reduce over-fitting. For augmentation, vertical and

horizontal flipping and random rotation are used in an online fashion (the authors

do not mention the p values). For augmentation, LWNet [6] performs random scale,

translate, and rotate with p=0.33, color jitter with p=1, and horizontal and vertical

flipping with p=0.5 in the online mode. FR-Unet [12] uses full-resolution convolution

layers instead of skip connections (typically used in U-net [4]) for learning spatial

features between the network’s down-sampler and up-sampler side. The model FR-

Unet [12] performs online augmentation using horizontal and vertical flipping with

p = 0.5 and random rotation with p = 0.75. DCU-Net [11] cascades two U-nets in

series and uses a channel attention module to transfer information from the first U-

net’s [4] up-sampler side to the second U-net’s [4] corresponding down-sampler side. It

uses deformable convolution blocks [25] instead of convolutional blocks that improve

the model’s ability to capture vessel geometry. DCU-Net [11] crops the images to 48

× 48 and performs vertical and horizontal flipping to achieve augmentation. DCU-

Net [11] performs preprocessing by extracting the green channel of the image and

applying CLAHE [5] to it (the authors do not report the clip limit used for CLAHE

[5]).

12

2.5.2 Multi-branch Networks

CSGNet [26] is a fully connected network that consists of three branches, each branch

is trained on images scaled by 0.25, 0.5, and 1. The output of the lower-resolution

branches is passed as input to the higher-resolution branch, and all outputs are con-

catenated to form the final output image. For augmentation, CSGNet [26] performs

random rotation, mirror, and scaling, but the authors do not mention other details,

such as the mode or p-values. ILU-Net [27] proposes two down-sampling and up-

sampling blocks for U-net [4], namely DIB and UIB, which are symmetric blocks

consisting of three branches, where the first branch consists of a 1 × 1 convolutional

layers with the second and third branches consisting of an additional one and two 3 ×

3 convolutional layers respectively. The output of the DIB and UIB blocks is a con-

catenation of the feature map produced by their three branches. For augmentation,

ILU-Net [27] performs random rotation, offset, shear, scaling, horizontal flipping, and

SAMSIE [28] (spatially adaptive multi-scale image enhancement) in the offline mode.

However, the authors of ILU-Net [27] do not mention the p-values. AT-CNN [29] is a

U-net [4] inspired architecture with two branches on the down-sampler side, where the

first is a convolutional neural network (CNN), and the second one is an axial trans-

former. The output of the two branches is then fused and passed on to the up-sampler

side. Using axial self-attention with CNN for encoding helps capture local and global

features. For augmentation, AT-CNN [29] performs random flipping on cropped in-

put images of size 48 × 48 in the offline mode, and the p-values are not mentioned

by the authors. GDF-Net [30] consists of two mini-U-nets with their proposed ASPP

module instead of skip connections, the ASSP module passes the input feature map

parallelly to 4 dilated convolutional layers with dilation rates of 1, 6, 12, and 18 and

concatenates their output. The two U-nets [4] individually focus on global features

and the enhancement of local features. The outputs are fused with the input image

and passed to an attention-based fusion network that is also a modified U-net [4].

13

For augmentation, GDF-Net [30] performs random cropping, but the authors do not

mention other details, such as the mode or p-values. DPF-Net [31] is a two-path

U-net [4] like architecture where the first branch is a dense convolutional neural net-

work and the second branch is a recurrent convolutional neural network. It fuses the

multi-scale feature maps from each branch and passes them to the up-sampler side

using its interactive fusion block. DPF-Net [31] performs random cropping to obtain

patches of size 64 × 64, which are used as augmented samples.

In conclusion, multi-branch network architectures claim to have superior segmen-

tation capabilities for small and larger blood vessels by utilizing different-sized convo-

lution kernels for different branches, which incorporate both global and local features.

2.5.3 Networks Using Dilated Convolutions

The RVS model SegRNet [7] captures retinal blood vessel morphology using a DFM

block that magnifies the vessels and obtains denser features by performing dilated

convolutions using a DMFF block. For augmentation, SegRNet [7] performs ran-

dom brightness, motion blur, grid distortion, optical distortion, rotation, vertical flip,

horizontal flip, elastic transform, median blur, and random brightness contrast trans-

formations in the offline mode with p=1. It has a preprocessing step that converts all

images to grayscale, then applies CLAHE [5] with a clip limit of 3 and grid size of 8X8

followed by gamma correction with γ =1.2. The RVS model AR-SA-U-net [19] is a U-

net [4] variant that uses dilated convolutions to solve the issue of vanishing gradients

in the residual module. It proposes a new SCSE [32] based attention module added

as an intermediate block during downsampling and upsampling. AR-SA-U-net [19]

performs augmentation offline by cropping all the input images using a fixed-size

sliding window with p=1. It has a data preprocessing step by extracting the green

channel, followed by CLAHE [5]. The authors do not mention the clip limit and

gamma values. The model MAGF-Net [33] proposes two new network blocks, MSA

14

and HFP. The MSA specializes in multi-scale feature extraction by cascading three 3

× 3 consecutive convolutional layers to obtain respective fields of 5 ×5 and 7 × 7. The

HFP block solves the problem of information losses caused by max-pooling during

downsampling. HPF downsamples the dot product of Maxpooling, Avgpooling, and

3 × 3 convolutional operations performed on the feature maps. GT-DLA-dsHFF [34]

is a U-net [4] variant that adds a transformer between the ultimate layer of the down-

sampler and the input layer of the up-sampler to extract long-distance features. A

dual local attention module was introduced that used dilated convolutions to increase

the receptive field and unsupervised edge detection to preserve edge information to

aid with information transfer between corresponding down-sampler and up-sampler

blocks. It augments the data by performing random rotation, horizontal flip, and

color enhancement, but the authors do not mention other details, such as the mode

or p-values.

The main difference between the methods discussed in this section and others is

their use of dilated convolutions as a means of increasing the receptive field, which

leads to better extraction of global features, which could be a significant contributor

to their overall performance. We provide a pictorial representation of standard and

dilated convolution blocks in Figure 2.2.

15

Figure 2.2: Visual representation of standard and dilated convolution with different dilation rates.
Dilated convolutions are used for increasing the receptive field of a layer without incurring losses in
resolution.

2.5.4 Networks with Novel Modules

These are the networks that do not fall into other categories but propose new models

of their own. A recent U-net [4] modification ResDO-UNet [35] proposes a convolu-

tion layer called the DO-Conv layer that can extract robust context features, thus

increasing segmentation performance. ResDO-UNet [35] performs random cropping

for augmentation. The model WANet [36] incorporates a layer of second-order differ-

ential Gaussian filter (DSD-GMF) that provides feature maps associated with specific

vessel width, which are passed to a width attention module that captures channel

and position co-relation between the DSD-GMF feature maps and assigns them with

appropriate weight. For augmentation, WANet [36] uses random Gaussian blur, flip-

ping, rotation, cropping, and border crop in the online fashion. Wave-Net [20] is

a U-net [4] based architecture that uses a detail enhancement and de-noising block

(DED) instead of skip connections. A DED block consists of a 5 × 5 convolutional

layer followed by a 1 × 1 convolutional layer designed to capture spacial information

16

and a denoiser consisting of a 3 × 3 convolutional layer concatenated with a 3 × 3

raw feature map followed by a 1 × 1 convolutional layer. For augmentation, Wave-

Net [20] performs random cropping, but the authors do not mention other details,

such as the mode or p-values. Wave-Net [20] performs preprocessing by converting all

images to grayscale, then applying CLAHE [5] followed by gamma correction with γ

=1.2; the clip limit used for CLAHE [5] is not mentioned by the authors. The model

VG-DropDNet [37] uses VGG blocks on the down-sampler and up-sampler side of a

U-net [4] shaped architecture and replaces the skip connections with a DenseNet [38]

consisting of a dropout layer after each layer to avoid over-fitting. VG-DropDNet [37]

performs augmentation using random cropping with a fixed window size of 64 × 64

in the offline mode with p=1. The model PLVS-Net [39] is a U-net [4] like architec-

ture that captures spatial features with a prompt block on the down-sampler side.

The prompt block first generates an asymmetric feature map by passing the input

feature map through a 1 × 3 and 3 × 1 convolutional layer and concatenating them;

this asymmetric feature map is then concatenated with two more feature maps, each

obtained by passing the input feature map through a 3 × 3 convolutional layer and

transposed convolutional layer followed by batch normalization and ReLu layer. For

augmentation, PLVS-Net [39] performs brightness, color, contrast enhancement, ran-

dom flipping, and random rotation. The RVS model BFMD-SN-U-net [40] adds a

switchable normalization [41] (SN) layer at the end of every convolutional layer in

addition to using a BFMD module to reduce overfitting and improve generalization.

They use an attention module called GCI-CBAM to aid information transfer from

the down-sampler to the up-sampler side of the network to improve generalization.

BFMD-SN-U-net [40] performs data augmentation as mentioned in [16]; that is, they

perform random rotation, cropping, translation, shear, zoom, CLAHE, saturation,

sharpening, mean-shift blur, and gamma correction in the offline mode. However, the

authors of BFMD-SN-U-net [40] and [16] do not mention the p-values they use. The

17

model MFI-Net [42] is a U-net [4] like architecture that performs parallel attention

learning using a PSE module, which is a multi-scale extension of the SE [43] module

that is used to capture the variable widths of retinal vessels. To effectively capture

the inconsistent semantic features, MFI-Net [42] proposed a C2F module that trans-

fers information between the down-sampler and up-sampler sides. For augmentation,

MFI-Net [42] employed random flipping and rotation in the offline mode, the p-values

are not mentioned by the authors. BST-DSN model [44] fuses the output obtained

from the ultimate layer of each VGG block on the up-sampler side to obtain the seg-

mented image. For augmentation, BST-DSN [44] uses rotation, flipping, and scaling

operations to perform offline. Deep-Ret [45] proposes a customized residual network

that utilizes a novel loss function containing an orientation diversity term that en-

sures desirable orientation sensitivity and a noise robustness term to minimize the

effects of noise. The recent model Res2Unet [21] integrates the backbone Res2Net [46]

into U-net [4] in addition to channel attention for providing more robust predictions.

Res2Unet [21] performs the data preprocessing step by extracting the green channel,

followed by CLAHE and gamma correction. The authors do not mention the clip

limit and gamma values. Res2Unet [21] does not do data augmentation. The model

CS-net [47] uses channel and spatial attention modules to improve vessel localization

by increasing information gain. It performs vertical flipping with p = 0.5 and random

rotation with p = 1 in the online fashion. It uses a channel attention block to ef-

fectively utilize multi-channel spaces for feature representation. D-GaussianNet [48]

uses Gaussian-matched filters to estimate vessel curvature for the enhancement of

spatial attention. The authors of D-GaussianNet [48] do not provide details about

the augmentation method used.

The segmentation methods described in this section do not have a common un-

derlying concept to explain their overall performance. Instead, they rely on uniquely

designed modules to achieve better segmentation.

18

2.5.5 GAN Based Network

SEGAN [49] is a U-net [4] inspired generative adversarial network (GAN) that per-

forms flipping and rotation operations to achieve data augmentation; the authors do

not mention the exact hyper-parameter values and mode of augmentation.

2.5.6 GNN Based Network

Inspired by graph neural networks (GNN), BTU-Net [50] replaces the U-net [4] block

with a unidirectional graph that is optimized using the BTLBO [51] algorithm to find

the best block structure. It follows the data augmentation regime of ILU-Net [27].

2.5.7 Cross-domain Network

Curvilinear objects include cracks as well as retinal vessels. Models for curvilinear

object segmentation (COS) include JTFN [52] and LIOT [22]. COS papers claim

to be effective for both retinal and crack image segmentation. However, our simula-

tion shows that COS models such as JTFN [52] cannot compete with retinal-specific

models such as LWNet [6] in RVS. For example, the F-score under cross-dataset

CHASE-DB to DRIVE is 68.76% versus 80.18%. (Metrics and datasets are explained

in the simulation Section 4.1.) JTFN [52] is a U-Net-based model that performs

feature refinement using a feature interactive module and a gated attention unit. It

has two branches on the up-sampler side, one for boundary detection and another for

boundary refinement. The feature interactive module facilitates information trans-

fer between the boundary detector and the segmentation branch. For augmentation,

JTFN [52] utilizes color jitter, rotate, horizontal, and vertical flip transformations

with p = 0.5.

19

Chapter 3

Proposed Approach

Studying RVS models and their components, we conclude that few models use prepro-

cessing and that augmentation is often specific to the model architecture itself. Also,

we observe that related augmentation methods for RVS do not address the problem of

localized variable intensities in retinal vessel images, nor do they augment patterns to

simulate background contours that the models confuse with microvessels. To address

these limitations, we propose to use both preprocessing, to reduce localized intensity

variations in retinal vessel images, and data augmentation to add (augment with)

localized variations and microvessels.

We use preprocessing at training and inference time; that is, all images of a dataset

are preprocessed (enhanced) before RVS. Our experiments in Section 4.4 show that

the best preprocessing operations for RVS are contrast enhancement (specifically

the contrast-limited adaptive histogram equalization CLAHE from [5]) followed by

gamma correction on the grayscale image (as proposed in SegRNet [7]). The CLAHE

[5] transformation step of the pre-processing reduces localized intensity variations in

the image, while the gamma correction step improves the contrast between the image

background and retinal vessels. We provide visual examples obtained after each step

of the preprocessing pipeline using an original DRIVE [1] image in Figure 3.1.

20

Figure 3.1: Visual examples depicting the outputs of the various steps used for preprocessing(i.e.,
grayscale conversion followed by CLAHE [5] and gamma correction) performed on an original DRIVE
[1] image.

We propose a data-augmentation technique specific to RVS without altering the

architecture of the RVS model. We perform data augmentation online during training;

that is, at each training epoch, the augmentation is applied to an image with a

probability p. Augmentation at inference decreases inference speed and is, hence,

typically avoided. Our variable-intensity patches with swirls (VIPs) method creates

augmented retinal images by randomly adding variable-size and variable-intensity

square patches with swirl structures to a training image in online mode. We add

patches and swirls without overlapping the retinal vessels. Our variable patches

simulate image variations such as illumination changes, and our swirls add vessel-like

structures.

We provide visual samples of original images from DRIVE [1], CHASEDB [2], and

HRF [3] versus their VIPs counterparts in Figure 3.2.

The flow chart in Figure 3.3 allows an appreciation of the steps of the proposed

VIPs listed in Algorithm 1, which takes the input image img and its corresponding

binary map gt and produces an augmented image aug. As seen, the hyper-parameters

are α, β, and γ. The total number of patches to add equals α× the width of the input

image. Our intensity transformation multiplies pixels of each patch by a uniformly

random number selected from the interval [β, 1]. We induce swirls using a strength

threshold randomly chosen from [0, γ].

21

Figure 3.2: (a) Original DRIVE [1] image. (b) Original CHASEDB [2] image. (c) Original HRF [3]
image. (d) Original image in (a) augmented with our VIPs. (e) Original image in (b) augmented
with our VIPs. (f) Original image in (c) augmented with our VIPs.

Our algorithm starts by randomly selecting variable-sized square patches pimg of

width psize, with (px,py) being the coordinates of the anchor points over img. The

patch is an image window, img[px : psize + px, py : psize + py], which stretches from

px to px+psize in the x-direction and from py to py+psize in the y-direction. A retinal

image consists of vessels in the camera’s field of view and a black background outside

the field of view. We ensure that the randomly selected patches do not overlap with

the retinal vessels by discarding the patches that contain non-zero pixels in their

ground truth. Patches with even one zero-valued pixel are also discarded to ensure

the patches are inside the field of view, that is, max(pgt) = 0 and min(pimg) ̸= 0.

Then, we apply intensity variation and add a swirl to the selected patch. Our intensity

transformation for the selected patch can be summarized using Equation 4.

pimg =img[px : psize + px, py : psize + py]× ω, ω ∈ [β, 1]. (4)

Where, pimg is the image patch after the application of our intensity transformation,

img[px : psize+px, py : psize+py] is the selected image patch, ω is the intensity control

22

𝑝𝑖𝑚𝑔 = 𝑝𝑔𝑡 =

𝐼𝑛𝑝𝑢𝑡

𝑂𝑢𝑡𝑝𝑢𝑡

Patch extraction

Vessel overlap
prevention

Patch intensity
transformation

Swirl parameters

Swirl addition

Patch replacement

Output after
n iterations

Patch size and location

Iterator

Input

No

Yes

No

Yes

𝑀𝑖𝑛(𝑃𝑖𝑚𝑔
) ≠ 0,

𝑀𝑎𝑥(𝑃𝑔𝑡
) == 0

𝐼𝑛𝑝𝑢𝑡

Hyper-parameters

𝑃𝑖𝑚𝑔 = 𝑃𝑖𝑚𝑔 × 𝑟𝑎𝑛𝑑𝑜𝑚 𝛽, 1 , 𝑛

= 𝑛 + 1

𝑂𝑢𝑡𝑝𝑢𝑡

𝑝𝑔𝑡 = 𝑖𝑚𝑔[𝑝𝑥: 𝑝𝑠𝑖𝑧𝑒 + 𝑝𝑥 , 𝑝𝑦: 𝑝𝑠𝑖𝑧𝑒 + 𝑝𝑦]𝑝𝑖𝑚𝑔 = 𝑖𝑚𝑔[𝑝𝑥: 𝑝𝑠𝑖𝑧𝑒 + 𝑝𝑥 , 𝑝𝑦: 𝑝𝑠𝑖𝑧𝑒 + 𝑝𝑦]

𝐼𝑚𝑔 𝑔𝑡

𝛼 = 0.4, 𝛽 = 0.5, ϒ = 10

𝑃𝑠𝑖𝑧𝑒 ∈ 1, 𝑊 , 𝑝𝑥 ∈ 0, 𝑊 , 𝑝𝑦 ∈ 0, 𝐻

𝑊 = 𝑊𝑖𝑑𝑡ℎ 𝑖𝑚𝑔 , 𝐻 = 𝐻𝑒𝑖𝑔ℎ𝑡 𝑖𝑚𝑔 , 𝑛 = 0

n<α*W

𝑐𝑥, 𝑦 = 𝑟𝑜𝑢𝑛𝑑 𝑃𝑠𝑖𝑧𝑒 × 0.5 , 𝑟𝑜𝑢𝑛𝑑 𝑃𝑠𝑖𝑧𝑒 × 0.5 , 𝑟 = 𝑟𝑜𝑢𝑛𝑑 𝑃𝑠𝑖𝑧𝑒 × 0.5 , 𝑠 ∈ [0, 𝛾]

𝑝𝑖𝑚𝑔 = 𝑠𝑤𝑖𝑟𝑙(𝑝𝑖𝑚𝑔 , 𝑐𝑥,𝑦
, 𝑟, 𝑠)

𝑖𝑚𝑔 𝑝𝑥: 𝑝𝑠𝑖𝑧𝑒 + 𝑝𝑥 , 𝑝𝑦: 𝑝𝑠𝑖𝑧𝑒 + 𝑝𝑦 = pimg

Figure 3.3: Flowchart of our proposed VIPs method depicting the process of patch selection, inten-
sity, and swirl transformation used for artificial simulation of microvessel.

23

parameter, and β is the minimum possible value of the intensity control parameter.

We iteratively perform the patch selection and augmentation process until we have

the desired number of patches based on α; that is, we add α×W patches.

Algorithm 1 Proposed VIPs
1: Input img, gt
2: Output aug
3: Define:

patch quantity α=0.4
intensity control β = 0.5
swirl control γ = 10
number of iterations n = 0

4: W ← width of img
5: H ← height of img
6: while n < α × W do:
7: Randomly select patch size:

psize ∈ [1, W]
8: Randomly select anchor point:

(px ∈ [0,W], py ∈ [0, H])
9: Select patch:

pimg ← img[px : psize + px, py : psize + py]
10: Select gt patch:

pgt ← gt[px : psize + px, py : psize + py]
11: if max(pgt) = 0 and min(pimg) ̸= 0 then
12: n← n + 1
13: Perform intensity transformation:

pimg ← pimg × random(β, 1)
14: Define swirl center:

cx,y ← (round(psize × 0.5), round(psize × 0.5))
15: Define swirl radius: r ← round(psize × 0.5)
16: Define swirl strength: s← random(0, γ)
17: Perform swirl transformation:

pimg ← swirl(pimg, cx,y, r, s)
18: img[px :psize+px,py :psize+py] ← pimg

19: end if
20: end while
21: aug ← img

The process of swirl generation is described in Algorithm 2 (based on a code

of the standard scikit-image library [53] of Python). We use each pixel’s Cartesian

coordinates (x, y) in the selected patch to obtain its polar coordinates (η,θ) and

transform the angle θ using the parameters r (swirl radius) and s (swirl strength).

24

The transformed polar coordinates (η,θ′) are given by Equation 5.

(η, θ′) = (η, s× exp
−η
η′ +θ),

η′ = ln(2)× r

5 ,

(η, θ)← (2
√

(y − cy)2 + (x− cx)2, arctan(y − cy

x− cx

)).

(5)

Where, (η, θ′) represent the transformed polar coordinates, r corresponds to the radius

of the added swirl, (cx, cy) denotes the Cartesian coordinates of the center point of

the added swirl, s is the strength of the added swirl, and (x, y) are the Cartesian

coordinates within the selected patch. Finally, we convert the transformed polar

coordinates to Cartesian and replace the pixel values at (x, y) with those at the

transformed coordinates (x′, y′) to obtain a swirl on the image patch. The process of

adding swirls can be summarized using Equation 6.

swirlpatch = pimg[x′, y′],

(x′, y′) = (η × cos(θ′), η × sin(θ′)).
(6)

Where, swirlpatch represents our selected patch after swirl addition, (η, θ′) are the

transformed polar coordinates obtained from Equation 5, (x′, y′) are the transformed

Cartesian coordinates used for swirl addition.

25

Algorithm 2 swirl generation
1: Input: image patch pimg, swirl center (cx, cy), strength s, radius r
2: Output: swirlpatch

3: Initialize: iteration parameters x = 0, y = 0
4: swirlpatch ← pimg

5: for x ≤ psize :
6: for y ≤ psize

7: Convert (x,y) to polar co-ordinates:
(η, θ)← (2

√
(y − cy)2 + (x− cx)2, arctan(y−cy

x−cx
))

8: Transform polar co-ordinates to add a Swirl:
(η, θ′)← (η, s× exp

−η

η′ +θ) ; where η′ = ln(2)×r
5

9: Convert transformed polar to cartesian co-ordinates:
(x′, y′)← (η × cos(θ′), η × sin(θ′))

10: Replace pixel values in the patch with pixel values
for the transformed co-ordinates:
swirlpatch[x, y]← pimg[x′, y′]

11: end
12: end

The hyper-parameters of the proposed method are α to control the number of

patches, β as minimum intensity level, γ as maximum swirl strength, and the p-

value, the augmentation probability at each epoch. A γ=0 means only patches are

added to the image, and a β=1 means only swirls are added. We select the hyper-

parameters values to p=0.5 (that is, the probability of an image being augmented

by our method at each epoch, one reason for choosing p=0.5 is that it is the most

commonly used p-value in the literature), α=0.4 (that is, the total number of patches

to be added to the image are 0.4 times the width of the original image, we observed

that increasing the number of patches resulted in a high amount of overlapping be-

tween the selected patches which results in 0 valued regions of occlusion, while using

a lesser number of patches is insufficient to improve the models robustness to lo-

calized intensity variations), β=0.5 (meaning, the intensity level inside the selected

patch lies in between 0.5 to 1 times the original image, we visually observed that

setting β to a lower values cause a lot of pixel values to become close to zeros which

effectively causes occlusion in almost all the patches, while setting it to higher values

leads to insufficient intensity variations), and γ=10 (meaning that the maximum swirl

26

strength inside the patch can be 10, we selected this value to ensure that our swirls

closely resemble the contours of the image background, at higher value of γ the swirls

become too prominent and diss-similar for the original background while lower value

result in negligible swirl component). See also Section 4.6 for a thorough study of the

hyper-parameters.

27

Chapter 4

Experimental Analysis

In this Chapter, Section 4.1 explains the simulation setup. Section 4.3 determines

which are the best performing RVS baseline models. Section 4.4 demonstrates the im-

pact of data augmentation operations, its mode, and preprocessing on RVS to examine

the best option. In Section 4.5, we apply our VIPs and related data augmentation

methods on top of the best and second best baselines to perform a comparative anal-

ysis. In Section 4.6, we produce an ablation study of our VIPs method. Section

4.2 shows the effect of our VIPs method during model training using training versus

validation loss curves. Finally, in Section 4.7, we provide visual results.

4.1 Simulation Setup

The baseline RVS models we used for the experiments were: WANet [36] (2022),

FR-Unet [12] (2022), IterNet [8] (2020), SegRNet [7] (2023), and LWNet [6] (2022);

we trained them with the same hyper-parameters and the same data augmentation

as mentioned by the authors.

We selected three widely used RVS datasets in our simulations:

(a) DRIVE [1] consists of 40 images (565×584), 20 images for training, and 20 for

28

testing.

(b) CHASEDB [2] consists of 28 images (700×605), 20 images for training, and 8

for testing.

(c) HRF [3] consists of 45 high-resolution images (3504×2336), 15 images for train-

ing, and 30 for testing.

Most RVS datasets do not define validation sets but only train and test sets. Thus,

RVS papers [6, 22, 26, 54, 55] use two types of dataset analysis in-dataset and cross-

dataset.

(a) In-dataset analysis: the RVS models are trained and tested on the train and

test split of the same datasets. This can be considered the validation step in

the train-validate-test simulation framework.

(b) Cross-dataset analysis: the models are trained on the train set of one dataset

but tested on the test set of another dataset. Cross-dataset analysis can be seen

as the test phase in the context of the train-validate-test simulation framework.

Since RVS datasets are small, cross-dataset analysis is essential to ascertain the gen-

eralization capability of RVS models.

Performance measures (metrics) used for RVS are Precision (P), Recall (R), F1

score (F), the area under the precision recall curve (AUC), and Accuracy (Acc) [14],

as given by Equation 7, 8, 9, 10, and 11.

P = TP

FP + TP
. (7)

R = TP

FN + TP
. (8)

F = 2×R× P

R + P
. (9)

29

AUC =
1∑

i=0

P (Ri−1) + P (Ri)
2 ×∆Ri, ∆Ri = Ri −Ri−1. (10)

Acc = TP + TN

FP + TP + FN + TN
. (11)

Where, TP is the number of true positive predictions, FP is the number of false

positives, FN is the number of false negatives, and i represents the segmentation

threshold. As common in RVS literature, P , R, and F values are given based on the

optimal segmentation threshold calculated to achieve the best F1 score. To calculate

the AUC, we use the Scikit-learn python library [56].

P is the proportion of correctly segmented pixels. R measures the proportion of

ground truth pixels correctly segmented. P and R are interdependent. This makes it

challenging to improve one without affecting the other. Also, it is difficult to establish

true segmentation labels. Therefore, R is typically used, not P . The accuracy metric

Acc might not be reliable in cases where the data has a significant class imbalance. In

the case of RVS data, there are far more pixel values that represent the background

(true negative, TN) than pixel values that represent the blood vessels (true positive,

TP), making it a classic example of class imbalance [6]. In fact, we can observe in

our results (see, for example, Figure 4.5) that there is very little difference between

the Acc values of different RVS models. For the reasons mentioned above, the F1

score and AUC are considered more reliable performance indicators as they combine

both P and R in a more unified way.

4.2 In-dataset Analysis and Model Training

In this section, based on in-dataset analysis, we examine which are the best RVS

models, check if they overfit due to small dataset sizes, and examine if our VIPs

method helps reduce such overfitting. We then perform 10-fold cross-validation and

combine all three datasets into one to examine how RVS models perform under a

30

larger dataset (of images having different sizes, quality, and acquisition devices).

We performed in-dataset analysis for all five baseline models on all three datasets,

i.e., CHASEDB [2], DRIVE [1], and HRF [3], as shown in Table 4.1. We notice

from the average values of Table 4.1 that overall, the best baseline is LWNet [6]

followed by SegRNet [7]. Additionally, based on Table 4.2, we infer that LWNet [6]

is the most compact model architecture while SegRNet [7] has approximately ten

times the number of trainable parameters in comparison to LWNet [6], while the

most computationally complex model IterNet [8] is approximately 200 times more

complex.
CHASEDB [2] DRIVE [1] HRF [3]

Model P R F Acc AUC P R F Acc AUC P R F Acc AUC
IterNet [8] 79.51 82.01 80.10 96.21 63.2 81.00 81.21 81.08 96.52 61.35 79.28 78.58 78.75 94.01 61.02

WANet [36] 88.71 75.68 81.68 97.39 64.32 86.35 78.23 82.09 95.34 63.21 67.11 78.65 72.42 93.13 62.65
FRUNet [12] 76.63 86.82 81.35 97.05 64.21 85.39 80.63 82.72 97.07 64.31 79.11 83.47 81.23 97.11 62.55
SegRNet [7] 82.41 85.29 83.83 97.81 64.04 82.06 83.46 82.27 96.91 64.08 80.06 80.4 80.23 95.96 65.35
LWNet [6] 85.50 86.16 85.83 97.78 66.52 81.50 82.79 82.14 97.05 63.81 79.02 80.84 79.92 96.74 64.22

Average
Model P R F Acc AUC

IterNet [8] 79.93 80.60 79.98 95.58 61.86
WANet [36] 80.72 77.52 78.73 95.29 63.39
FRUNet [12] 80.38 83.64 81.77 97.08 63.69
SegRNet [7] 81.51 83.05 82.11 96.89 64.49
LWNet [6] 82.01 83.26 82.63 97.19 64.85

Table 4.1: Results for in-dataset analysis of RVS baselines. Red indicates best, blue second best,
and green third best result.

Model number of trainable parameters
IterNet [8] 13,604,072

WANet [36] 3,919,682
FRUNet [12] 5,719,621
SegRNet [7] 641,601
LWNet [6] 68,482

Table 4.2: Complexity of RVS models in terms of number of trainable parameters.

We select LWNet [6], SegRNet [7], and IterNet [8] to analyze the performance of

heavy and light weight models, and the generalization capability of our VIPs method

when validated using models of different computational complexity. These RVS mod-

els have their own unique set of data augmentation operations and modes (i.e., online

for LWNet [6], and IterNet [8] and offline for SegRNet [7]). Recall that LWNet [6]

and IterNet [8] have no preprocessing step, but SegRNet [7] does (which uses CLAHE

for contrast enhancement and gamma correction; we term it CLAHEGC).

31

Table 4.3 indicates that due to the use of offline augmentation in SegRNet [7] the

total number of images used for a single training epoch is 12 times that of LWNet [6],

additionally since our VIPs is an online augmentation method it has no effect on the

number of images used in each training epoch.

Number of training images in a single Epoch
Model CHASEDB [2] DRIVE [1] HRF [3]

(20 original training samples) (20 original training samples) (15 original training samples)
SegRNet [7] 260 260 195
LWNet [6] 20 20 15

SegRNet [7] + VIPs 260 260 195
LWNet [6] + VIPs 20 20 15

Table 4.3: Total number of training images used by LWNet [6] and SegRNet [7] during a single
training epoch after their augmentations both with and without our VIPs.

However, as shown by Table 4.4, the total number of unique samples used by

LWNet [6] during the entire training process is much larger than SegRNet [7]. This

is because LWNet [6] performs training in an online fashion. Additionally, by adding

our online VIPs to SegRNet [7], it gets 50 times the number of unique samples during

the course of training.

Number of unique samples seen during training
Model CHASEDB [2] DRIVE [1] HRF [3]

SegRNet [7] 260 260 195
LWNet [6] 800 400 450

SegRNet [7] + VIPs 13000 13000 9750
LWNet [6] +VIPs 800 400 450

Table 4.4: Total number of unique image samples seen during the entire training process by LWNet
[6] and SegRNet [7] after augmentations both with and without our VIPs.

LWNet [6], SegRNet [7], and IterNet [8] use Adam optimizer [57] to obtain the

update weights as given by Equation 12.

wi+1 = wi −
mi

1− βi
2
× (α√

vi

1−βi
2

+ ϵ),

mi = β1 ×mi−1 + (1− β1)(
δϕ

δwi

),

vi = β2 ×mi−1 + (1− β2)(
δϕ

δwi

)2.

(12)

32

Where, wi are the current weights at epoch i, wi+1 are the updated weights, α is the

learning rate, β1 and β2 are the decay rate of the gradients moving average set at 0.9

and 0.99, mi is the moving average of the gradients, vi is the moving average of the

squares of the gradients.

LWNet [6] uses two mini-U-nets cascaded in series, thus its overall loss function

ϕt is a sum of the individual mini-U-net’s binary cross entropy loss ϕ1 and ϕ2 as given

in Equation 13.

ϕt = ϕ1 + ϕ2. (13)

Similarly, IterNet [8] cascades a U-net [4] into two mini U-nets connected in series

and its overall loss function is also a sum of the individual U-net’s [4] and mini U-nets

binary cross entropy loss ϕ1, ϕ2, and ϕ3 as shown in Equation 14.

ϕt = ϕ1 + ϕ2 + ϕ3. (14)

The individual binary cross entropy loss ϕ can be expressed using Equation 15.

ϕ = 1
N
×

N∑
i=1

(−(yi × log(pi)) + (1− yi)× log(1− pi)). (15)

Where, N is the total number of predictions, yi are the actual labels that are 0 or 1,

and pi are the predicted probabilities.

SegRNet [7] uses dice loss [58] (ϕd) as the loss function given in Equation 16.

ϕd = 1−
∑N

n=1 pi × yi + ϵ∑N
n=1 pi + yi + ϵ

−
∑N

n=1(1− pi)× (1− yi) + ϵ∑N
n=1 2− pi − yi + ϵ

. (16)

Where, N is the total number of predictions, yi are the actual labels that are 0 or

1, pi are the predicted probabilities, and ϵ is a very small value that prevents the

denominator from ever becoming 0.

To examine the generalization capability of each baseline and how our VIPs

33

method affects their generalization, we analyze the loss function plots at training

and validation. Based on the training graphs of light-weight baseline LWNet [6] us-

ing the loss function in Equation 13, we observe in Figure 4.1 overfitting of baseline

(black versus green curves) but our proposed VIPs (blue versus red) not only helps

to reduce the training and validation loss but also reduces the gap between training

and validation loss on all three datasets (DRIVE [1], CHASEDB [2], HRF [3]). This

implies that our VIPs is useful in reducing over-fitting during the training process.

Figure 4.1: The training and validation loss as per Equation 13 versus the epoch for LWNet
[6] trained and validated with and without VIPs (a) on HRF [3], (b) on DRIVE [1], and (c) on
CHASEDB [2]. (CLAHEGC was used for preprocessing.) The number of epochs for each dataset is
specified by the authors of the LWNet [6].

Based on the training plots of the more computationally complex SegRNet [7] as

shown in Figure 4.2, we observe that the gaps between the training and validations

loss are much larger than observed in LWNet [6] indicating that SegRNet [7] shows

34

a higher tendency to overfitting on the training data. Figure 4.2 shows that using

our VIPs reduces the gap between the training and validation losses across all three

datasets (CHASEDB [2], DRIVE [1], and HRF [3]), indicating that using our VIPs

helps to reduce overfitting.

Figure 4.2: The training and validation loss as per Equation 16 versus the epoch for SegRNet
[7] trained and validated with and without VIPs (a) on HRF [3], (b) on DRIVE [1], and (c) on
CHASEDB [2]. (CLAHEGC was used for preprocessing.)

The training plots of IterNet [8] as shown in Figure 4.3 also have a larger gap

between the training and validation losses than LWNet [6] and that they are signifi-

cantly reduced across all three datasets when we use our VIPs. Based on our analysis

of the training plots and the in-datasets analysis, we deduce 1) due to small dataset

sizes, RVS models seem to suffer from the problem of over-fitting and using smaller,

less complex models such as LWNet [6] seems much more beneficial than using more

35

complex models with a larger number of trainable parameters, 2) despite the similar

performance of SegRNet [7] and LWNet [6] in terms of F-score and AUC, in terms

of model complexity and generalization LWNet [6] is a much better baseline model,

and 3) using proposed VIPs reduces overfitting for all three models across all three

datasets.

Figure 4.3: The training and validation loss as per Equation 14 versus the epoch for IterNet
[8] trained and validated with and without VIPs (a) on HRF [3], (b) on DRIVE [1], and (c) on
CHASEDB [2]. (CLAHEGC was used for preprocessing.)

To better analyze and validate the effects of our approach (VIPs+preprocessing)

on RVS model generalization, we performed 10-fold cross-validation, both with and

without our proposed VIPs on all three datasets (i.e., CHASEDB [2], DRIVE [1],

and HRF [3]) using the best RVS model LWNet [6]. Based on the average values of

Table 4.5, we observe that our VIPs method not only improves the performance of

36

the baseline LWNet [6] but also reduces the standard deviation in all metrics.

CHASEDB [2] DRIVE [1] HRF [3]
Model P R F Acc AUC P R F Acc AUC P R F Acc AUC

LWNet [6] 83.44 82.04 82.65 97.37 66.39 83.21 74.11 78.34 95.93 64.83 86.86 66.71 73.48 96.26 64.83
(±3.18) (±2.34) (±0.94) (±0.23) (±0.45) (±2.42) (±2.69) (±1.41) (±0.23) (±1.06) (±4.37) (±4.36) (±4.93) (±0.59) (±3.23)

LWNet [6] + VIPs 84.73 81.23 82.90 97.44 66.17 84.05 74.12 78.71 96.02 65.183 85.08 69.39 76.29 96.27 65.83
(±2.41) (±1.77) (±0.93) (±0.23) (±0.35) (±2.43) (±1.67) (±0.88) (±0.19) (±0.43) (±3.89) (±4.22) (±2.32) (±0.61) (±0.46)

Average
Model P R F Acc AUC

LWNet [6] 84.50 74.29 78.16 96.52 65.35
(±3.32) (±3.13) (±2.42) (±0.35) (±1.58)

LWNet [6] + VIPs 84.60 74.91 79.30 96.58 65.73
(±2.91) (±2.55) (±1.37) (±0.34) (±0.41)

Table 4.5: Results for 10-fold cross validation of LWNet [6] both with and without VIPs + prepro-
cessing. We give the standard deviations in ().

To study the effects of VIPs on a larger dataset with more diverse examples, we

train and validate the best model, that is, LWNet [6] with and without VIPs on a

combined dataset (we termed COMB) we created by combining the train and test

splits of all three datasets (DRIVE [1], CHASEDB [2], and HRF [3]) for training and

validation respectively. Recall these datasets, which have images of different aspect

ratios captured using different imaging devices. Table 4.6 shows that our proposed

VIPs improves LWNet [6] in all metrics and specifically by 1.61% in terms of F-score

and 1.63% in terms of AUC.

Combined Dataset
Model P R F Acc AUC

LWNet [6] 69.87 70.33 70.10 96.03 64.86
LWNet [6] +VIPs 70.10 73.40 71.71 96.84 66.49

(0.23) (3.06) (1.61) (0.80) (1.63)

Table 4.6: Results for in-dataset analysis of LWNet [6] both with and without VIPs + preprocessing
on combined dataset. We give the gains/losses over the baseline in ().

To examine how the model performs under different datasets, we compare the

validation F-score and AUC values versus the size of the training sets (from small to

larger) in Figure 4.4. First, we observe that using our proposed VIPs + preprocessing

helps improve the validation F-score and AUC values for all training set sizes. Second,

we see that combining the datasets into a large one “COMB” does not seem to be

helpful. This can be due to the variable quality of the images in the COMB dataset.

A word of caution is that these results are in-dataset. Cross-dataset comparison (as

37

given in the next sections) is more reliable.

Figure 4.4: Validation scores versus the size of training sets both with and without VIPs. (a)
F-score and (b) AUC. (CLAHEGC was used for preprocessing.)

4.3 Cross: Comparison of Baseline RVS Models

Due to the small size of the RVS datasets but also due lack of train, validate, an test

splits, a cross-dataset analysis allows to evaluate model’s performance with more con-

fidence than in-dataset analysis. Models are evaluated with unseen data from a fully

different dataset. We systematically considered all six possible cross-combinations of

the three datasets, i.e., DRIVE [1], CHASEDB [2], and HRF [3], selected as shown in

Table 4.7. We notice from the average values of Table 4.7 and Figure 4.7 that overall,

the best baseline is LWNet [6] followed by SegRNet [7]. In the following analysis we

thus, focus on studying these two RVS models.

38

DRIVE [1] to CHASEDB [2] DRIVE [1] to HRF [3] CHASEDB [2] to DRIVE [1]
Method P R F Acc AUC P R F Acc AUC P R F Acc AUC

WANet [36] 74.51 33.24 45.97 94.00 35.45 65.96 61.57 63.69 93.47 54.58 88.02 56.53 68.84 95.51 56.23
FRUNet [12] 68.08 28.72 40.21 94.91 36.49 4.08 55.03 7.57 47.91 15.66 89.16 54.93 67.98 94.32 49.55
IterNet [8] 52.24 51.68 51.96 93.90 36.42 54.56 60.22 57.25 93.42 32.97 63.87 63.61 63.74 92.15 35.77

SegRNet [7] 63.25 81.89 71.37 95.44 66.88 46.90 88.21 61.24 93.73 54.30 57.86 83.49 68.35 94.41 45.63
LWNet [6] 74.10 80.73 77.28 96.35 70.60 66.63 70.87 68.68 95.12 58.50 80.05 80.11 80.18 96.58 53.72

CHASEDB [2] to HRF [3] HRF [3] to DRIVE [1] HRF [3] to CHASEDB [2]
Method P R F Acc AUC P R F Acc AUC P R F Acc AUC

WANet [36] 77.51 77.93 77.72 95.55 63.54 43.32 69.48 53.37 89.35 36.65 55.98 70.18 62.28 94.13 54.58
FRUNet [12] 5.49 74.86 10.37 47.91 27.21 85.65 59.84 70.08 95.63 44.37 73.28 64.75 68.56 96.56 52.91
IterNet [8] 77.72 71.55 74.51 96.81 54.91 74.14 77.77 75.91 93.52 49.50 57.87 53.91 55.82 92.31 41.23

SegRNet [7] 53.62 83.04 65.16 94.63 58.32 64.56 77.10 70.24 94.55 50.23 76.48 47.86 58.88 94.99 48.30
LWNet [6] 67.36 74.78 70.88 95.74 60.29 71.95 74.77 73.33 95.07 53.19 58.54 57.02 57.77 91.32 43.05

Average
Method P R F Acc AUC

WANet [36] 67.55 61.49 61.98 93.67 50.17
FRUNet [12] 54.29 56.36 44.13 79.54 37.70
IterNet [8] 63.40 63.12 63.20 93.69 41.80

SegRNet [7] 60.45 76.93 65.87 94.63 53.94
LWNet [6] 69.77 73.05 71.35 95.03 56.56

Table 4.7: Results for cross-dataset analysis of RVS baselines. Red indicates best, blue second best,
and green third best result. Note the difference between best (LWNet [6]) and second (SegRNet [7])
best model in AUC is 2.62% and in F-score is 5.48%.

Figure 4.5: Graphical representation of the average P , R, F , Acc, and AUC values for the cross-
dataset analysis of RVS baselines as shown in the last part of Table 4.7.

4.4 Cross-dataset: Impact of Components of RVS

Impact of preprocessing: There is little research on preprocessing methods for

RVS. SegRNet [7] proposes a preprocessing method for RVS. The paper LIOT [22]

proposes a preprocessing method for the segmentation of curvilinear objects (cracks

39

DRIVE [1] to CHASEDB [2] DRIVE [1] to HRF [3] CHASEDB [2] to DRIVE [1]
Method P R F Acc AUC P R F Acc AUC P R F Acc AUC

Preprocessing
LWNet [6] with 56.13 71.79 63.01 94.89 55.53 68.13 70.32 69.21 95.08 63.99 70.74 75.95 73.25 95.14 54.76

LIOT [22] (-17.97) (-8.94) (-14.27) (-1.46) (-15.07) (1.50) (-0.55) (0.53) (-0.04) (5.49) (-9.31) (-4.16) (-6.93) (-1.44) (1.04)
LWNet [6] with 76.55 82.06 79.21 96.52 70.61 70.55 68.39 69.45 96.06 56.69 80.69 79.05 79.86 96.12 52.26

CLHAEGC (2.45) (1.33) (1.93) (0.17) (0.01) (3.92) (-2.48) (0.77) (0.94) (-1.81) (0.64) (-1.06) (-0.32) (-0.46) (-1.46)
SegRNet [7] without 70.26 58.89 64.07 95.41 57.02 58.28 77.47 66.52 96.24 49.26 82.43 45.08 58.28 96.44 45.87

CLHAEGC (7.01) (-23.00) (-7.30) (-0.03) (-9.86) (11.38) (-10.74) (5.28) (2.51) (-5.04) (24.57) (-38.41) (-10.07) (2.03) (0.24)
No data augmentation (DA)

LWNet [6] no DA 51.16 53.26 52.19 92.50 35.51 71.13 69.43 70.27 96.28 59.83 78.66 75.15 76.87 96.01 52.97
(-22.94) (-27.47) (-25.09) (-3.85) (-35.09) (4.50) (-1.44) (1.59) (1.16) (1.33) (-1.39) (-4.96) (-3.31) (-0.57) (-0.75)

SegRNet [7] no DA 97.75 0.31 0.61 93.08 5.43 93.05 3.66 7.05 94.58 6.27 93.55 11.00 19.69 94.71 12.40
(34.50) (-81.58) (-70.76) (-2.36) (-61.45) (46.15) (-84.55) (-54.19) (0.85) (-48.03) (35.69) (-72.49) (-48.66) (0.30) (-33.23)

Augmentation swap
LWNet [6] with 32.80 67.50 44.15 89.85 33.21 70.07 64.05 66.92 96.08 62.59 77.40 76.94 77.17 96.01 57.13

SegRNet’s [7] DA (-41.30) (-13.23) (-33.13) (-6.50) (-37.39) (3.44) (-6.82) (-1.76) (0.96) (4.09) (-2.65) (-3.17) (-3.01) (-0.57) (3.41)
SegRNet [7] with 30.13 26.85 28.40 92.18 23.48 47.17 36.08 40.89 95.45 50.02 72.55 71.45 71.99 95.79 50.56
LWNet’s [6] DA (-33.12) (-55.04) (-42.97) (-3.26) (-43.40) (0.27) (-52.13) (-20.35) (1.72) (-4.28) (14.69) (-12.04) (3.64) (1.38) (4.93)

Online versus offline
LWNet [6] offline 64.94 78.63 71.13 91.80 38.32 74.37 80.92 77.51 96.20 59.71 77.22 78.78 77.99 96.17 59.71

with its DA (-9.16) (-2.10) (-6.15) (-4.55) (-32.28) (7.74) (10.05) (8.83) (1.08) (1.21) (-2.83) (-1.33) (-2.19) (-0.41) (5.99)
SegRNet [7] online 64.79 27.45 38.57 93.93 34.32 57.70 60.71 59.17 95.29 52.65 66.96 66.52 66.74 93.34 49.39

with its DA (1.54) (-54.44) (-32.80) (-1.51) (-32.56) (10.80) (-27.50) (-2.07) (1.56) (-1.65) (9.10) (-16.97) (-1.61) (-1.07) (3.76)
CHASEDB [2] to HRF [3] HRF [3] to DRIVE [1] HRF [3] to CHASEDB [2]

Method P R F Acc AUC P R F Acc AUC P R F Acc AUC
Preprocessing

LWNet [6] with 70.97 71.89 71.43 95.48 58.46 66.64 73.32 69.82 94.44 56.31 59.54 65.78 62.51 95.22 55.03
LIOT [22] (3.61) (-2.89) (0.55) (-0.26) (-1.83) (-5.31) (-1.45) (-3.51) (-0.630 (3.12) (1.00) (8.76) (4.74) (3.90) (11.98)

LWNet [6] with 76.12 69.61 72.72 96.65 56.79 77.55 77.84 77.70 95.36 60.15 70.90 69.72 70.31 94.22 49.03
CLAHEGC (8.76) (-5.17) (1.84) (0.91) (-3.50) (5.60) (3.07) (4.37) (0.29) (6.96) (12.36) (12.70) (12.54) (2.90) (5.98)

SegRNet [7] without 81.97 48.06 60.59 96.44 51.87 80.12 42.28 55.35 96.24 49.26 89.13 0.05 10.60 93.40 9.43
CLAHEGC (28.35) (-34.98) (-4.57) (1.81) (-6.45) (15.56) (-34.82) (-14.89) (1.69) (-0.97) (12.65) (-47.80) (-48.28) (-1.59) (-38.87)

No data augmentation (DA)
LWNet [6] no DA 74.76 70.55 72.59 96.53 59.27 71.26 73.33 72.28 95.05 55.63 43.74 45.43 44.57 88.73 23.00

(7.40) (-4.23) (1.71) (0.79) (-1.02) (-0.69) (-1.44) (-1.05) (-0.02) (2.44) (-14.8) (-11.59) (-13.20) (-2.59) (-20.05)
SegRNet [7] no DA 68.00 7.76 13.93 94.96 17.52 9.33 50.69 15.76 70.12 14.02 13.64 34.65 19.57 80.23 17.42

(14.38) (-75.28) (-51.23) (0.33) (-40.80) (-55.23) (-26.41) (-54.48) (-24.43) (-36.21) (-62.84) (-13.21) (-39.31) (-14.76) (-30.88)
Augmentation swap

LWNet with SegRNet DA 71.78 72.85 72.31 96.54 59.88 71.77 72.83 72.30 95.11 63.47 31.37 22.50 26.20 91.36 11.32
SegRNet’s [7] DA (4.42) (-1.93) (1.43) (0.80) (-0.41) (-0.18) (-1.94) (-1.03) (0.04) (10.28) (-27.17) (-34.52) (-31.57) (0.04) (-31.73)

SegRNet with 59.57 66.68 62.93 94.67 55.29 64.80 59.85 62.23 95.50 46.87 43.43 40.17 41.74 93.76 40.03
LWNet’s [6] DA (5.95) (-16.36) (-2.23) (0.04) (-3.03) (0.24) (-17.25) (-8.01) (0.95) (-3.36) (-33.05) (-7.69) (-17.14) (-1.23) (-8.27)

Online versus offline
LWNet [6] offline 62.76 65.01 63.86 96.51 58.75 55.59 58.03 56.78 92.42 24.05 71.25 69.90 70.57 95.21 58.61

with its DA (-4.60) (-9.77) (-7.02) (0.77) (-1.54) (-16.36) (-16.74) (-16.55) (-2.65) (-29.14) (12.71) (12.88) (12.80) (3.89) (15.56)
SegRNet [6]online 62.68 56.00 59.15 95.66 52.64 75.77 30.47 43.47 94.22 48.70 65.53 66.39 65.96 94.49 38.68

with its DA (9.06) (-27.04) (-6.01) (1.03) (-5.68) (11.21) (-46.63) (-26.77) (-0.33) (-1.53) (-10.95) (18.53) (7.08) (-0.50) (-9.62)
Average

Method P R F Acc AUC
Preprocessing

LWNet [6] with 65.36 71.51 68.21 95.04 57.35
LIOT [22] (-4.41) (-1.54) (-3.15) (0.01) (0.79)

LWNet [6] with 75.39 74.45 74.88 95.82 57.59
CLAHEGC (5.62) (1.40) (3.52) (0.79) (1.03)

SegRNet [7] without 77.03 45.31 52.57 95.70 43.79
CLAHEGC (16.59) (-31.63) (-13.31) (1.07) (-10.16)

No data augmentation (DA)
LWNet [6] no DA 65.12 64.53 64.80 94.18 47.70

(-4.65) (-8.52) (-6.56) (-0.85) (-8.86)
SegRNet [6] no DA 62.55 18.01 12.77 87.95 12.18

(2.11) (-58.92) (-53.11) (-6.68) (-41.77)
Augmentation swap

LWNet [6] with 59.20 62.78 59.84 94.16 47.93
SegRNet’s [7] DA (-10.57) (-10.27) (-11.51) (-0.87) (-8.63)
SegRNet [7] with 52.94 50.18 51.36 51.36 51.36
LWNet’s [6] DA (-7.50) (-26.75) (-14.51) (-0.07) (-9.57)

Online versus offline
LWNet [6] offline 67.69 71.88 69.64 94.72 49.86

with its DA (-2.08) (-1.17) (-1.71) (-0.31) (-6.70)
SegRNet [7] online 65.57 51.26 55.51 94.49 46.06

with its DA (5.13) (-25.68) (-10.36) (-0.14) (-7.88)

Table 4.8: Impact of augmentation and preprocessing modalities on LWNet [6] and SegRNet [7].
We give the gains/loss over baseline in ().

40

and retinal vessels). We compared the preprocessing of SegRNet [7] (we term it

CLAHEGC) and LIOT [22] for RVS. As seen in the preprocessing part of Table 4.8,

CLAHGC is by far superior to LIOT [22]. Comparing with and without preprocessing,

Table 4.8 shows a significant performance drop of -4.57 % in the F-scores for SegRNet

[7] when we train it without its CLAHEGC preprocessing. While adding CLAHEGC

to LWNet [6] gives average gains of 3.52 % in F-score. These results indicate that

adequate preprocessing of the data before training benefits RVS models.

Impact of not using data augmentation: From the third part of Table 4.8,

it is evident that RVS heavily depends on data augmentation techniques; we observe

average losses of -6.55 % and -53.10 % in terms of F-score for LWNet [6] and SegRNet

[59] respectively when no data augmentation is used.

Impact of unique data augmentation: Through this experiment, we aim to

understand the dependency of an RVS model on its own data augmentation. From

the fourth part of Table 4.8, we conclude that the specific operations for augmentation

proposed by the authors are an integral part of the RVS models in question: swapping

the set of augmentation between LWNet [6] and SegRNet [7] leads to average losses of

-14.51 % and -11.51 % in terms of F-score for LWNet [6] and SegRNet [7] respectively.

Impact of online versus offline augmentation: We change the mode of data

augmentation for LWNet [6] from online to offline and vice-versa for SegRNet [7]

while keeping their data augmentation as mentioned by their authors; this is done

to understand the impact that augmentation modes have on model performance. In

the fifth part of Table 4.8, we observe on average losses of -1.71 % and -10.36 % for

LWNet [6] and SegRNet [7] indicating that the mode of augmentation is important

and model specific.

Conclusion: based on the above studies, a given RVS model seems to operate

optimally with its own set of operations for augmentation and its mode (online or

41

offline). However, the set of preprocessing used for SegRNet [7] has shown signifi-

cant gains for LWNet [6], while LIOT [22] is not useful for LWNet [36]. The losses

caused due to the use of offline augmentation mode (that is, increasing the number of

training samples before training) for LWNet [6] indicates that simply increasing the

number of images blindly does not lead to improved model generalization. Adequate

preprocessing (CLAHEGC) appears to be a crucial step that improves model gener-

alization; one reason could be that preprocessing increases the contrast between the

retinal vessels and background, thus reducing the chances of pixel miss-classification.

4.5 Proposed Versus Related Augmentation Works

Using cross-datasets, we study the performance of our VIPs augmentation method

(with parameters p=0.5, α=0.4, β=0.5, and γ=10), the RVS-specific augmentation

method [9] (we term as “Robust”), and the general-purpose augmentation methods

Mosaic [23], CutMix [10], and Erase [17]. For this, based on our study in Section

4.4, we add them to the baselines for LWNet [6] as-is but equipped with CLAHEGC

preprocessing and to SegRNet [7] as-is (with its CLAHEGC). The results are in Tables

4.9 and 4.10. Comparing the two tables, we conclude that our method is stable across

RVS models and datasets and by far outperforms all related works.

42

DRIVE [1] to CHASEDB [2] DRIVE [1] to HRF [3] CHASEDB [2] to DRIVE [1]
Method P R F Acc AUC P R F Acc AUC P R F Acc AUC

LWNet [6] + VIPs 76.03 82.50 79.13 96.78 70.71 74.05 75.87 74.95 95.94 68.23 81.14 81.69 81.41 96.63 54.84
(1.93) (1.77) (1.85) (0.43) (0.11) (7.42) (5.00) (6.27) (0.82) (9.73) (1.09) (1.58) (1.23) (0.05) (1.12)

LWNet [6] + Robust [9] 76.53 83.16 79.71 96.74 70.28 76.97 70.39 73.53 95.79 65.82 81.4 79.65 80.51 96.60 49.94
(2.43) (2.43) (2.43) (0.39) (-0.32) (10.34) (-0.48) (4.85) (0.67) (7.32) (1.35) (-0.46) (0.33) (0.02) (-3.78)

LWNet [6] + Mosaic [23] 75.36 81.59 78.35 96.53 70.67 71.20 67.64 69.37 95.3 58.05 80.18 76.65 78.38 96.31 40.9
(1.26) (0.86) (1.07) (0.18) (0.07) (4.57) (-3.23) (0.69) (0.18) (-0.45) (0.13) (-3.46) (-1.80) (-0.27) (-12.82)

LWNet [6] + cutmix [10] 75.52 84.11 79.59 96.76 71.23 72.29 73.06 72.67 95.62 63.95 80.52 78.78 79.64 96.49 44.62
(1.42) (3.38) (2.31) (0.41) (0.63) (5.66) (2.19) (3.99) (0.5) (5.45) (0.47) (-1.33) (-0.54) (-0.09) (-9.10)

LWNet [6] + Erase [17] 75.86 81.32 78.50 96.57 72.61 71.27 65.90 68.48 95.16 58.19 80.94 77.14 78.99 96.47 48.27
(1.76) (0.59) (1.22) (0.22) (2.01) (4.64) (-4.97) (-0.20) (0.04) (-0.31) (0.89) (-2.97) (-1.19) (-0.11) (-5.45)

CHASEDB [2] to HRF [3] HRF [3] to DRIVE [1] HRF [3] to CHASEDB [2]
Method P R F Acc AUC P R F Acc AUC P R F Acc AUC

LWNet [6]+ VIPs 76.66 76.56 76.61 96.25 60.61 78.21 77.46 77.83 96.06 63.26 71.63 67.71 69.61 95.46 61.78
(9.30) (1.78) (5.73) (0.51) (0.32) (6.26) (2.69) (4.50) (0.99) (10.07) (13.09) (10.69) (11.84) (4.14) (18.73)

LWNet [6] + Robust [9] 76.97 70.39 73.53 95.95 57.70 75.89 77.98 76.92 95.80 64.98 69.58 66.78 68.15 95.31 60.76
(9.61) (-4.39) (2.65) (0.21) (-2.59) (3.94) (3.21) (3.59) (0.73) (11.79) (11.04) (9.76) (10.38) (3.99) (17.71)

LWNet [6] + Mosaic [23] 76.42 66.33 71.02 95.66 48.37 76.49 79.10 77.78 96.04 47.56 64.73 71.29 67.85 94.81 45.89
(9.06) -(8.45) (0.14) (-0.07) (-11.92) (4.54) (4.33) (4.45) (0.97) (-5.63) (6.19) (14.27) (10.08) (3.49) (2.84)

LWNet [6] + Cutmix [10] 76.77 71.08 73.82 95.97 55.07 76.35 78.16 77.24 95.96 50.32 69.43 71.39 70.39 95.38 55.14
(9.41) (-3.7) (2.94) (0.23) (-5.22) (4.40) (3.39) (3.91) (0.89) (-2.87) (10.89) (14.37) (12.62) (4.06) (12.09)

LWNet [6] + Erase [17] 75.83 65.96 70.55 95.62 48.65 73.86 77.36 75.57 96.07 50.88 66.15 68.42 67.27 94.88 54.68
(8.47) (-8.82) (-0.33) (-0.11) (-11.64) (1.91) (2.59) (2.24) (1.00) (-2.31) (7.61) (11.40) (9.50) (3.56) (11.63)

Average
Method P R F Acc AUC

LWNet [6] + VIPs 76.29 76.97 76.59 96.19 63.24
(6.51) (3.91) (5.23) (1.15) (6.68)

LWNet [6] + Robust [9] 76.22 74.73 75.39 96.03 61.58
(6.45) (1.67) (4.03) (1.00) (5.02)

LWNet [6] + Mosaic [23] 74.06 73.77 73.79 95.78 51.91
(4.29) (0.72) (2.43) (0.74) (-4.65)

LWNet [6] + Cutmix [10] 75.15 76.10 75.56 96.03 56.72
(5.37) (3.05) (4.20) (1.00) (0.16)

LWNet [6] + Erase [17] 73.99 72.68 73.23 95.80 55.55
(4.21) (-0.36) (1.87) (0.76) (-1.01)

Table 4.9: Comparing LWNet [6] with proposed VIPs and related augmentation techniques. CLA-
HEGC was used for preprocessing. We give the gains/loss over baseline in (). Red indicates best,
blue second best, and green third best result respectively.

Figure 4.6: LWNet [6] (with CLAHEGC used for preprocessing): Graphical representation of the
average gains/loss in Table 4.9, in P , R, F , Acc, and AUC comparing our proposed VIPs and related
augmentation techniques.

43

For LWNet baseline [6], Table 4.9 and Figure 4.6 shows that our VIPs significantly

improves the baseline on average by 6.68% in AUC and by 5.23% in F-score. Our

method outperforms all related augmentation methods, e.g., it gives an average gain

of 5.23 % in F-score versus 4.20% of the second best related work CutMix [10]. It

is Interesting to note that our method introduces no loss in any of the six individ-

ual cross-dataset cases, whereas the second and third best methods, “CutMix” and

“Robust” introduce major losses (e.g., -4.39% in R under CHASEDB [2] to HRF [3]).

For the baseline SegRNet [7], Table 4.10 and Figure 4.7 shows that our VIPs

remains the best augmentation method, as it is for LWNet [6]. For instance, it gives

best average gains of 5.29% in AUC and of 1.03% in F-score over baseline while all

related methods cause major losses in F-score and the second best (Cutmix [10])

method is inferior to our method by AUC is 1.49%.

DRIVE [1]to CHASEDB [2] DRIVE [1] to HRF [3] CHASEDB [2] to DRIVE [1]
Method P R F Acc AUC P R F Acc AUC P R F Acc AUC

SegRNet [7] + VIPs 64.72 81.81 72.27 95.66 68.69 48.53 87.53 62.44 93.79 60.39 58.77 83.94 69.14 96.06 55.32
(1.47) (-0.08) (0.90) (0.22) (1.81) (1.63) (-0.68) (1.20) (0.06) (6.09) (0.91) (0.45) (0.79) (1.65) (9.69)

SegRNet [7] + Robust [23] 73.57 67.76 70.55 96.07 66.33 57.56 80.99 67.29 95.58 59.89 59.74 79.97 68.39 95.92 57.46
(10.32) (-14.13) (-0.82) (0.63) (-0.55) (10.66) (-7.22) (6.05) (1.85) (5.59) (1.88) (-3.52) (0.04) (1.51) (11.83)

SegRNet [7] + Mosaic [23] 72.36 68.82 70.55 96.01 66.31 53.02 84.09 65.03 94.92 57.87 75.53 56.32 64.52 96.58 54.19
(9.11) (-13.07) (-0.82) (0.57) (-0.57) (6.12) (-4.12) (3.79) (1.19) (3.57) (17.67) (-27.17) (-3.83) (2.17) (8.56)

SegRNet [7]+ Cutmix [10] 80.79 47.73 60.01 95.58 56.40 62.80 72.16 67.15 96.04 59.76 67.73 72.38 69.98 96.57 58.78
(17.54) (-34.16) (-11.36) (0.14) (-10.48) (15.90) (-16.05) (5.91) (2.31) (5.46) (9.87) (-11.11) (1.63) (2.16) (13.15)

SegRNet [7]+ Erase [17] 72.10 51.22 59.89 95.29 56.29 56.24 63.97 59.85 95.18 53.27 72.96 62.66 67.42 96.66 56.62
(8.85) (-30.67) (-11.48) (-0.15) (-10.59) (9.34) (-24.24) (-1.39) (1.45) (-1.03) (15.10) (-20.83) (-0.93) (2.25) (10.99)

CHASEDB [2] to HRF [3] HRF [3] to DRIVE [1] HRF [3] to CHASEDB [2]
Method P R F Acc AUC P R F Acc AUC P R F Acc AUC

SegRNet [7] + VIPs 54.58 82.99 65.85 95.78 58.36 64.64 76.44 70.05 96.26 62.33 77.67 51.20 61.72 95.11 50.32
(0.96) (-0.05) (0.69) (1.15) (0.04) (0.08) (-0.66) (-0.19) (1.71) (12.10) (1.19) (3.34) (2.84) (0.12) (2.02)

SegRNet [7] + Robust [9] 51.69 77.84 62.12 94.67 55.29 74.32 59.72 66.23 96.64 58.94 84.05 29.07 43.20 94.69 40.60
(-1.93) (-5.20) (-3.04) (0.04) (-3.03) (9.76) (-17.38) (-4.01) (2.09) (8.71) (7.57) (-18.79) (-15.68) (-0.30) (-7.70)

SegRNet [7] + Mosaic [23] 75.25 58.77 66.00 96.60 58.73 53.85 65.38 59.06 95.00 52.56 84.10 32.29 46.67 94.87 43.86
(21.63) (-24.27) (0.84) (1.97) (0.41) (-10.71) (-11.72) (-11.18) (0.45) (2.33) (7.62) (-15.57) (-12.21) (-0.12) (-4.44)

SegRNet [7]+ Cutmix [10] 64.09 72.78 68.16 96.18 60.63 70.02 65.57 67.72 96.55 60.27 79.61 40.71 53.87 95.16 50.63
(10.47) (-10.26) (3.00) (1.55) (2.31) (5.46) (-11.53) (-2.52) (2.00) (10.04) (3.13) (-7.15) (-5.01) (0.17) (2.33)

SegRNet [7] + Erase [17] 65.72 63.51 64.60 96.09 57.49 66.43 59.14 62.57 96.10 55.69 71.75 40.75 51.98 94.77 48.85
(12.10) (-19.53) (-0.56) (1.46) (-0.83) (1.87) (-17.96) (-7.67) (1.55) (5.46) (-4.73) (-7.11) (-6.90) (-0.22) (0.55)

Average
Method P R F Acc AUC

SegRNet [7] + VIPs 61.49 77.32 66.91 95.44 59.24
(1.04) (0.38) (1.03) (0.81) (5.29)

SegRNet [7] + Robust [9] 66.82 65.89 62.96 95.60 56.42
(6.37) (-11.04) (-2.91) (0.97) (2.47)

SegRNet [7] + Mosaic [23] 69.02 60.95 61.97 95.66 55.59
(8.57) (-15.98) (-3.90) (1.03) (1.64)

SegRNet [7]+ Cutmix [10] 70.84 61.89 64.48 96.01 57.75
(10.39) (-15.04) (-1.39) (1.38) (3.80)

SegRNet [7] + Erase [17] 67.53 56.88 61.05 95.68 54.30
(7.08) (-20.05) (-4.82) (1.05) (0.75)

Table 4.10: Comparing SegRNet [7] with proposed VIPs and related augmentation techniques.
CLAHEGC was used for preprocessing. We give the gains/loss over baseline in (). Red indicates
best, blue second best, and green third best result respectively.

44

Figure 4.7: SegRNet [7]: Graphical representation of the average gains/loss in Table 4.10 in P , R,
F , Acc, and AUC comparing proposed VIPs and related augmentation techniques.

4.6 Ablation study

In the first cross-dataset ablation study, we examine the effects of using preprocessing

(CLAHEGC) only, data augmentation VIPs only, and data augmentation VIPs +

preprocessing on the LWNet [6] baseline. For VIPs, we used the proposed set of

hyper-parameters p=0.5, α=0.4, β=0.5, and γ=10. From Table 4.11 and Figure

4.8, we observe that adding “VIPs with preprocessing” to the LWNet [6] baseline

gives the best results compared to “VIPs without preprocessing” and “preprocessing

without VIPs”. Not only is the average gain the highest among the three modes

but “VIPs with preprocessing” is more stable, that is, it introduces no losses in any

of the individual cross-dataset cases. The mode “preprocessing without VIPS” can

introduce major losses (e.g., -5.17% in R under CHASEDB to HRF).

45

DRIVE [1] to CHASEDB [2] DRIVE [1] to HRF [3] CHASEDB [2] to DRIVE [1]
Method P R F Acc AUC P R F Acc AUC P R F Acc AUC

LWNet [6] + VIPs 76.03 82.50 79.13 96.78 70.71 74.05 75.87 74.95 95.95 68.23 81.14 81.69 81.41 96.63 54.84
with preprocessing (1.93) (1.77) (1.85) (0.43) (0.11) (7.42) (5.00) (6.27) (0.83) (9.73) (1.09) (1.58) (1.23) (0.05) (1.12)
LWNet [6] + VIPs 75.02 81.31 78.04 96.41 70.81 73.93 73.34 73.64 95.75 60.14 80.30 80.53 80.41 96.59 54.57

without preprocessing (0.92) (0.58) (0.76) (0.06) (0.21) (7.30) (2.47) (4.96) (0.63) (1.64) (0.25) (0.42) (0.23) (0.01) (0.85)
LWNet [6] with 76.55 82.06 79.21 96.52 70.61 70.55 68.39 69.45 96.06 56.69 80.69 79.05 79.86 96.12 52.26

preprocessing (no VIPs) (2.45) (1.33) (1.93) (0.17) (0.01) (3.92) (-2.48) (0.77) (0.94) (-1.81) (0.64) (-1.06) (-0.32) (-0.46) (-1.46)
CHASEDB [2] to HRF [3] HRF [3] to DRIVE [1] HRF [3] to CHASEDB [2]

Method P R F Acc AUC P R F Acc AUC P R F Acc AUC
LWNet [6] + VIPs 76.66 76.56 76.61 96.25 60.61 78.21 77.46 77.83 96.06 63.26 71.63 67.71 69.61 95.46 61.78
with preprocessing (9.30) (1.78) (5.73) (0.51) (0.32) (6.26) (2.69) (4.50) (0.99) (10.07) (13.09) (10.69) (11.84) (4.14) (18.73)
LWNet [6] + VIPs 76.79 75.13 75.95 96.17 61.03 74.33 75.78 75.05 95.58 63.27 61.24 58.76 59.97 93.97 47.38

without preprocessing (9.43) (0.35) (5.07) (0.43) (0.74) (2.38) (1.01) (1.72) (0.51) (10.08) (2.70) (1.74) (2.20) (2.65) (4.33)
LWNet [6] with 76.12 69.61 72.72 96.65 56.79 77.55 77.84 77.70 95.36 60.15 70.90 69.72 70.31 94.22 49.03

preprocessing (no VIPs) (8.76) (-5.17) (1.84) (0.91) (-3.50) (5.60) (3.07) (4.37) (0.29) (6.96) (12.36) (12.70) (12.54) (2.90) (5.98)
Average

Method P R F Acc AUC
LWNet [6] + VIPs 76.29 76.97 76.59 96.19 63.24
with preprocessing (6.52) (3.92) (5.24) (1.16) (6.68)
LWNet [6] + VIPs 73.60 74.14 73.84 95.72 59.45

without preprocessing (3.83) (1.10) (2.49) (0.72) (2.98)
LWNet [6] with 75.39 74.45 74.88 95.82 57.59

preprocessing (no VIPs) (5.62) (1.40) (3.52) (0.79) (1.03)

Table 4.11: Ablation study: LWNet [6] with/without VIPs and with/without preprocessing (CLA-
HEGC). We give the gains/loss over baseline in (). Red indicates best, blue second best, and green
third best result respectively.

Figure 4.8: LWNet [6] with/without VIPs and with/without preprocessing (CLAHEGC): Graphical
representation of the average gains/loss in Table 4.11, in P , R, F , Acc, and AUC for the ablation
study.

In the second cross-dataset ablation study, we discuss the hyper-parameters and

patches-versus-swirls of our method using two cross-dataset cases: HRF to DRIVE

and HRF to CHASEDB. We perform these experiments on LWNet [6] baseline without

46

preprocessing to understand the contribution of our VIPs and their various compo-

nents towards performance gains. The hyper-parameters are α to control the number

of patches, β as minimum intensity level, γ as maximum swirl strength, and the p-

value, the augmentation probability at each epoch. We vary one hyper-parameter

while keeping the others constant. Based on Table 4.12, VIPs perform best on aver-

age with proposed hyper-parameters of α=0.4, β=0.5, γ=10, and p=0.5, that is, they

best simulate vessel-like contours.
HRF [3] to CHASEDB [2] HRF [3] to DRIVE [1] Average

Method P R F Acc AUC P R F Acc AUC P R F Acc AUC
LWNet [6] 58.54 57.02 57.77 91.32 43.05 71.95 74.77 73.33 95.07 53.19 65.25 65.90 65.55 93.20 48.12

α=variable, β=0.5, γ=10, and p=0.5
LWNet [6] + VIPs (α=0.1) 57.62 51.33 54.30 90.98 40.23 73.42 73.91 73.66 94.71 54.19 65.52 62.62 63.98 92.85 47.21

LWNet [6] + VIPs (α=0.4, Ours) 61.24 58.76 59.97 93.97 47.38 74.33 75.78 75.05 95.58 63.27 67.78 67.27 67.51 94.77 55.32
LWNet [6] + VIPs (α=0.6) 52.21 52.40 52.30 92.66 41.18 72.19 72.13 72.16 95.12 61.43 62.20 62.26 62.23 93.89 51.30

α=0.4, β=variable, γ=10, and p=0.5
LWNet [6] + VIPs (β=0.25) 58.61 56.20 57.38 93.59 46.42 70.36 72.21 71.28 94.9 56.54 64.49 64.21 64.33 94.25 51.48
LWNet [6] + VIPs (β=0.75) 50.17 59.98 54.64 92.35 40.98 71.98 75.77 73.83 95.19 63.24 61.08 67.88 64.24 93.77 52.11

LWNet [6] + VIPs (β=1, only swirls) 62.44 53.44 57.59 93.95 47.14 73.06 74.79 73.92 95.37 61.10 67.75 64.12 65.76 94.66 54.12
α=0.4, β=0.5, γ=variable, and p=0.5

LWNet [6] + VIPs (γ=0, only patches) 57.61 57.09 57.35 93.66 46.27 72.98 74.30 73.64 94.62 54.61 65.30 65.70 65.50 94.14 50.44
LWNet [6] + VIPs (γ=20) 53.94 54.56 54.25 92.93 43.83 72.04 75.66 73.81 95.29 63.33 62.99 65.11 64.03 94.11 53.58

α=0.4, β=0.5, γ=10, and p=variable
LWNet [6] + VIPs (p=0.25) 60.59 57.83 59.17 93.11 47.01 68.49 77.40 72.67 94.73 57.38 64.54 67.62 65.92 93.92 52.19
LWNet [6] + VIPs (p=0.75) 51.57 52.97 52.26 92.03 40.80 74.01 74.62 74.32 94.34 62.91 62.79 63.79 63.29 93.18 51.85

Table 4.12: Hyper-parameters and ablation (swirls versus patches): of our VIPs with LWNet [6]
(no preprocessing). Red indicates best, blue second best, and green third best result respectively.

For α=0.1, false negative predictions increase, indicating that the number of

patches is insufficient for the model to distinguish between the contours and thin

vessel features. At α=0.6, we observe major losses in P , R, and F compared to the

baseline, indicating that too many patches cause loss (masking) of critical features in

training data.

At β=1, there is no intensity variation between the patches (i.e., only swirls are

induced), and when γ=0, there is no swirl component. In both cases, we observe

comparable performance to the model baseline, and this shows that stand alone,

neither of them is sufficient for accurate replication of the contours we want our

model to learn.

For p=0.25, the performance is comparable to LWNet [6] baseline; this is expected

since the original augmentation regime of LWNet [6] generates most training images

47

here, and at p=0.75 we see performance drops of greater than 2% because the model

doesn’t get enough original images for training.

4.7 Visual Results

Figure 4.9 shows visual results. Upon closer inspection of the magnified patches shown

in Figure 4.9, it is evident that our proposed VIPs method is capable of segmenting

a significantly larger number of microvessels as compared to the baseline, second [9],

and third [10] best related augmentation methods. This supports our claim that using

VIPs aids with the segmentation of the real microvessels.

48

(a)

(b)

(c)

(d)

(e)

(f)

Figure 4.9: (a) Original DRIVE [1] image. (b) Original image in (a) augmented with our VIPs. (c)
Segmented original image in (a) using LWNet [6]. (d) Segmented original image in (a) using LWNet
[6] trained with VIPs+preprocessing. (e) Segmented original image in (a) using LWNet [6] trained
with Robust [9] (second best augmentation method)+preprocessing. (f) Segmented original image
in (a) using LWNet [6] trained with Cutmix [10] (third best augmentation method) + preprocessing.
Note that the same preprocessing was used for all methods.

49

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Datasets in retinal vessel segmentation (RVS) are small, causing overfitting of RVS

models. Data augmentation can reduce overfitting. However, related augmentation

methods for RVS do not address the problem of localized variable intensities in Retinal

vessel images nor augment patterns to handle microvessels. This thesis proposed a

method to reduce overfitting (improve the generalization) of models in RVS through

data preprocessing and augmentation. Our data augmentation used intensity-size

variant patches with swirls. The swirls simulated the background contours in retinal

images to address the class imbalance between real microvessels and background

contours. The variable patches were introduced to address pixel misclassification in

regions with intensity changes. The thesis also examined the impact of different types

of data augmentation and their mode (online versus offline). Furthermore, we studied

the effect of preprocessing training samples before augmentation and proposed using

contrast enhancement and gamma correction (CLAHEGC) on the grayscale images,

as in [7], for preprocessing.

Simulations demonstrated that using the proposed variable intensity patches (VIPs)

50

with preprocessing improved the performance of state of the art RVS models. For

example, in terms of AUC, LWNet improved by 6.68% and SegRNet by 5.29%, and

in terms of F-score, LWNet improved by 5.21% and SegRNet by 1.03%. Our method

is stable (boost performance) across RVS models and also across RVS datasets. Our

simulation showed that augmenting with both swirls and patches is more effective

than using only one.

Furthermore, our VIPs outperformed other augmentation techniques; for example,

compared to the second best method Robust, VIPS improved LWNet by 6.68% versus

5.02% in terms of AUC. We noticed that our method added to the baseline is more

stable than related augmentation methods, that is, adding VIPs to different RVS

models always achieved gains on average, while adding related augmentation method

can produce major losses. We experimentally showed that our VIPs not only helps

to reduce the training and validation losses of the RVS models, but also reduces the

gap between training and validation losses during training.

5.2 Future Work

Our VIPs augmentation method shown significant improvement for existing RVS

models as it enhances their generalization capabilities. Datasets available in the RVS

domain are very small. Therefore, there is a large scope of testing our VIPs augmen-

tation method for its efficacy on voluminous RVS datasets that may be available in

the future.

While developing our augmentation method, we observed that selecting the hyper-

parameters for our VIPs methods was a crucial but time-consuming process. We

propose exploring techniques of selecting hyperparameters such as AutoAugment [60],

grid search, and random grid search [61].

Furthermore, given the overlap between the RVS and crack segmentation domains

51

we propose that, exploring our technique on crack segmentation methods and datasets

may prove to be beneficial. There is a future possibility for the applicability of our

method, to enhance the performance of curvilinear object segmentation methods like

JTFN [52], which claim to be capable of segmenting both cracks and retinal vessels.

52

Bibliography

[1] J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and B. van Ginneken, “Ridge-

based vessel segmentation in color images of the retina,” IEEE Trans. Med.

Imag., vol. 23, no. 4, pp. 501–509, 2004.

[2] M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. Rudnicka, C. Owen,

and S. Barman, “An Ensemble Classification-Based Approach Applied to Retinal

Blood Vessel Segmentation,” IEEE Trans. Biomed. Eng., vol. 59, no. 9, pp. 2538–

2548, 2012.

[3] A. Budai, R. Bock, A. Maier, J. Hornegger, and G. Michelson, “Robust Vessel

Segmentation in Fundus Images,” Int. J. Biomed. Imaging, vol. 2013, p. 154860,

Dec 2013.

[4] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for

Biomedical Image Segmentation,” in Med Image Comput Comput Assist Interv,

pp. 234–241, Springer International Publishing, 2015.

[5] K. J. Zuiderveld, “Contrast limited adaptive histogram equalization,” in Graph-

ics gems, 1994.

[6] A. Galdran, A. Anjos, J. Dolz, et al., “State-of-the-art retinal vessel segmentation

with minimalistic models,” Sci Rep 12, vol. 6174, 2022.

53

[7] J. Ryu, M. U. Rehman, I. F. Nizami, and K. T. Chong, “SegR-Net: A deep

learning framework with multi-scale feature fusion for robust retinal vessel seg-

mentation,” Comput. Biol. Med., vol. 163, p. 107132, 2023.

[8] Li,L. and Verma,M. and Nakashima,Y. and Nagahara,H. and Kawasaki,R., “Iter-

net: Retinal image segmentation utilizing structural redundancy in vessel net-

works,” in Proc. IEEE Winter Conf. App. Computer Vision, pp. 3645–3654,

2020.

[9] X. Sun, H. Fang, Y. Yang, D. Zhu, L. Wang, J. Liu, and Y. Xu, “Robust retinal

vessel segmentation from a data augmentation perspective,” in Ophthalmic Med-

ical Image Analysis (H. Fu, M. K. Garvin, T. MacGillivray, Y. Xu, and Y. Zheng,

eds.), (Cham), pp. 189–198, Springer International Publishing, 2021.

[10] S. Yun, D. Han, S. Chun, S. Oh, Y. Yoo, and J. Choe, “CutMix: Regularization

Strategy to Train Strong Classifiers With Localizable Features,” in Proc. IEEE

Int. Conf. Computer Vision, (Los Alamitos, CA, USA), pp. 6022–6031, nov 2019.

[11] X. Yang, Z. Li, Y. Guo, and D. Zhou, “DCU-net: a deformable convolutional

neural network based on cascade U-net for retinal vessel segmentation,” Multi-

media Tools and Applications, vol. 81, pp. 15593–15607, May 2022.

[12] W. Liu, H. Yang, T. Tian, Z. Cao, X. Pan, W. Xu, Y. Jin, and F. Gao,

“Full-Resolution Network and Dual-Threshold Iteration for Retinal Vessel and

Coronary Angiograph Segmentation,” IEEE J. Biomed. Inform., vol. 26, no. 9,

pp. 4623–4634, 2022.

[13] F. Dong, D. Wu, C. Guo, S. Zhang, B. Yang, and X. Gong, “CRAUNet: A

cascaded residual attention U-Net for retinal vessel segmentation,” Comput. Biol.

Med., vol. 147, p. 105651, 2022.

54

[14] O. Sule, “A Survey of Deep Learning for Retinal Blood Vessel Segmentation

Methods: Taxonomy, Trends, Challenges and Future Directions,” IEEE Access,

vol. 10, pp. 38202–38236, 2022.

[15] J. Cervantes, J. Cervantes, F. GarcÃŋa-Lamont, A. Yee-Rendon, J. E. Cabrera,

and L. D. Jalili, “A comprehensive survey on segmentation techniques for retinal

vessel segmentation,” Neurocomputing, vol. 556, p. 126626, 2023.

[16] S. Deari, I. Oksuz, and S. Ulukaya, “Importance of Data Augmentation and

Transfer Learning on Retinal Vessel Segmentation,” in 2021 29th Telecommuni-

cations Forum (TELFOR), pp. 1–4, 2021.

[17] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random Erasing Data

Augmentation,” in Proc. AAAI Conf. Artificial Intelligence, vol. 34, pp. 13001–

13008, Apr. 2020.

[18] F. Dadboud, V. Patel, V. Mehta, M. Bolic, and I. Mantegh, “Single-stage uav

detection and classification with yolov5: Mosaic data augmentation and panet,”

in 2021 17th IEEE International Conference on Advanced Video and Signal Based

Surveillance (AVSS), pp. 1–8, 2021.

[19] H. Wang, G. Xu, X. Pan, Z. Liu, N. Tang, R. Lan, and X. Luo, “Attention-

inception-based U-Net for retinal vessel segmentation with advanced residual,”

Computers & Electrical Engineering, vol. 98, p. 107670, 2022.

[20] Y. Liu, J. Shen, L. Yang, H. Yu, and G. Bian, “Wave-Net: A lightweight deep net-

work for retinal vessel segmentation from fundus images,” Comput. Biol. Med.,

vol. 152, p. 106341, 2023.

[21] X. Li, J. Ding, and J. Tang, “Res2Unet: A multi-scale channel attention network

for retinal vessel segmentation.,” Neural Comput & Applic, vol. 34, 2022.

55

[22] T. Shi, N. Boutry, Y. Xu, and T. Geraud, “Local Intensity Order Transforma-

tion for Robust Curvilinear Object Segmentation,” IEEE Trans. Image Process.,

vol. 31, pp. 2557–2569, 2022.

[23] A. Bochkovskiy, C. Wang, and H. Liao, “YOLOv4: Optimal Speed and Accuracy

of Object Detection,” arXiv preprint arXiv:2004.10934, 2020.

[24] G. Ghiasi, T. Lin, and Q. Le, “DropBlock: A regularization method for convo-

lutional networks,” in Adv. Neural Inf. Process. Syst. (S. Bengio, H. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, eds.), vol. 31,

Curran Associates, Inc., 2018.

[25] J. Hu, L. Shen, S. Albanie, G. Sun, and E. Wu, “Squeeze-and-Excitation Net-

works,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 42, pp. 2011–2023, aug

2020.

[26] S. Guo, “CSGNet: Cascade semantic guided net for retinal vessel segmentation,”

Biomed. Signal Process. Control, vol. 78, p. 103930, 2022.

[27] Z. Zhu, Q. An, Z. Wang, Q. Li, H. Fang, and Z. Huang, “ILU-Net: Inception-Like

U-Net for retinal vessel segmentation,” Optik, vol. 260, p. 169012, 2022.

[28] Z. Huang, X. Li, L. Wang, H. Fang, L. Ma, Y. Shi, and H. Hong, “Spatially adap-

tive multi-scale image enhancement based on nonsubsampled contourlet trans-

form,” Infrared Physics & Technology, vol. 121, p. 104014, 2022.

[29] T. Jiao, H. Xiang, C. Liu, and X. Zhang, “Algorithm for Retinal Vessel Segmen-

tation based on Axial Transformer and Convolutional Neural Network,” in 2022

China Automation Congress (CAC), pp. 1462–1466, 2022.

56

[30] J. Li, G. Gao, L. Yang, and Y. Liu, “GDF-Net: A multi-task symmetrical net-

work for retinal vessel segmentation,” Biomed. Signal Process. Control, vol. 81,

p. 104426, 2023.

[31] J. Li, G. Gao, L. Yang, G. Bian, and Y. Liu, “DPF-Net: A Dual-Path Progres-

sive Fusion Network for Retinal Vessel Segmentation,” IEEE Transactions on

Instrumentation and Measurement, vol. 72, pp. 1–17, 2023.

[32] A. G. Roy, N. Navab, and C. Wachinger, “Recalibrating Fully Convolutional

Networks with Spatial and Channel ’Squeeze & Excitation’ Blocks,” CoRR,

vol. abs/1808.08127, 2018.

[33] J. Li, G. Gao, Y. Liu, and L. Yang, “MAGF-Net: A multiscale attention-guided

fusion network for retinal vessel segmentation,” Measurement, vol. 206, p. 112316,

2023.

[34] Y. Li, Y. Zhang, J.-Y. Liu, K. Wang, K. Zhang, G.-S. Zhang, X.-F. Liao, and

G. Yang, “Global Transformer and Dual Local Attention Network via Deep-

Shallow Hierarchical Feature Fusion for Retinal Vessel Segmentation,” IEEE

Transactions on Cybernetics, vol. 53, no. 9, pp. 5826–5839, 2023.

[35] Y. Liu, J. Shen, L. Yang, G. Bian, and H. Yu, “ResDO-UNet: A deep residual

network for accurate retinal vessel segmentation from fundus images,” Biomed.

Signal Process. Control, vol. 79, p. 104087, 2023.

[36] D. Alvarado-Carrillo and O. Dalmau-Cedeno, “Width Attention based Convo-

lutional Neural Network for Retinal Vessel Segmentation,” Expert Syst. Appl.,

vol. 209, p. 118313, 2022.

[37] A. Desiani, Erwin, B. Suprihatin, F. Efriliyanti, M. Arhami, and E. Setyan-

ingsih, “VG-DropDNet a Robust Architecture for Blood Vessels Segmentation

on Retinal Image,” IEEE Access, vol. 10, pp. 92067–92083, 2022.

57

[38] G. Huang, Z. Liu, and K. Q. Weinberger, “Densely Connected Convolutional

Networks,” CoRR, vol. abs/1608.06993, 2016.

[39] M. Arsalan, T. M. Khan, S. S. Naqvi, M. Nawaz, and I. Razzak, “Prompt Deep

Light-Weight Vessel Segmentation Network (PLVS-Net),” IEEE/ACM Transac-

tions on Computational Biology and Bioinformatics, vol. 20, no. 2, pp. 1363–

1371, 2023.

[40] S. Deari, I. Oksuz, and S. Ulukaya, “Block Attention and Switchable Normal-

ization Based Deep Learning Framework for Segmentation of Retinal Vessels,”

IEEE Access, vol. 11, pp. 38263–38274, 2023.

[41] P. Luo, R. Zhang, J. Ren, Z. Peng, and J. Li, “Switchable Normalization for

Learning-to-Normalize Deep Representation,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 43, pp. 712–728, feb 2021.

[42] Y. Ye, C. Pan, Y. Wu, S. Wang, and Y. Xia, “MFI-Net: Multiscale Feature Inter-

action Network for Retinal Vessel Segmentation,” IEEE Journal of Biomedical

and Health Informatics, vol. 26, no. 9, pp. 4551–4562, 2022.

[43] J. Hu, L. Shen, and G. Sun, “Squeeze-and-Excitation Networks,” in 2018

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7132–

7141, 2018.

[44] S. Guo, K. Wang, H. Kang, Y. Zhang, Y. Gao, and T. Li, “BTS-DSN: Deeply su-

pervised neural network with short connections for retinal vessel segmentation,”

Int. J. Med. Inform., vol. 126, pp. 105–113, 2019.

[45] V. Cherukuri, V. Kumar B.G., R. Bala, and V. Monga, “Deep Retinal Image

Segmentation With Regularization Under Geometric Priors,” IEEE Trans. Image

Process., vol. 29, pp. 2552–2567, 2020.

58

[46] S. Gao, M. Cheng, K. Zhao, X. Zhang, M. Yang, and P. Torr, “Res2Net: A

New Multi-Scale Backbone Architecture,” IEEE Trans. Pattern Anal. Machine

Intell., vol. 43, pp. 652–662, feb 2021.

[47] L. Mou, L. Zhao, Y.and Chen, J. Cheng, Z. Gu, H. Hao, H. Qi, Y. Zheng,

A. Frangi, and J. Liu, “CS-Net: channel and spatial attention network for curvi-

linear structure segmentation,” in Int. Conf. on Med. Imag. Computing and

Computer-Assisted Intervention, pp. 721–730, Springer, 2019.

[48] D. Alvarado-Carrillo, E. Ovalle-Magallanes, and O. Dalmau-Cedeño, “D-

GaussianNet: Adaptive Distorted Gaussian Matched Filter with Convolutional

Neural Network for Retinal Vessel Segmentation,” in Geometry and Vision

(M. Nguyen, W. Q. Yan, and H. Ho, eds.), (Cham), pp. 378–392, Springer In-

ternational Publishing, 2021.

[49] Y. Zhou, Z. Chen, H. Shen, X. Zheng, R. Zhao, and X. Duan, “A refined equi-

librium generative adversarial network for retinal vessel segmentation,” Neuro-

computing, vol. 437, pp. 118–130, 2021.

[50] C. Rajesh, R. Sadam, and S. Kumar, “An evolutionary U-shaped network for

Retinal Vessel Segmentation using Binary Teaching-Learning-Based Optimiza-

tion,” Biomed. Signal Process. Control, vol. 83, p. 104669, 2023.

[51] A. Taheri, K. RahimiZadeh, and R. Rao, “An efficient Balanced Teaching-

Learning-Based optimization algorithm with Individual restarting strategy for

solving global optimization problems,” Inf. Sci., vol. 576, pp. 68–104, 2021.

[52] M. Cheng, K. Zhao, X. Guo, Y. Xu, and J. Guo, “Joint topology-preserving

and feature-refinement network for curvilinear structure segmentation,” in Proc.

IEEE Int. Conf. Computer Vision, pp. 7127–7136, 2021.

59

[53] S. van der Walt, J. Schonberger, J. Nunez-Iglesias, F. Boulogne, J. Warner,

N. Yager, E. Gouillart, and T. Yu, “scikit-image: image processing in Python.,”

PeerJ 2:e453, 2014.

[54] Y. Yan, S. Zhu, S. Ma, Y. Guo, and Z. Yu, “CycleADC-Net: A crack seg-

mentation method based on multi-scale feature fusion,” Measurement, vol. 204,

p. 112107, 2022.

[55] Z. Qu, L. Zhuo, J. Cao, X. Li, H. Yin, and Z. Wang, “TP-Net: Two-Path

Network for Retinal Vessel Segmentation,” IEEE J. Biomed. Inform., vol. 27,

no. 4, pp. 1979–1990, 2023.

[56] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-

sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:

Machine learning in Python,” Journal of Machine Learning Research, vol. 12,

pp. 2825–2830, 2011.

[57] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint arXiv:1412.6980, 2014.

[58] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-Net: Fully Convolutional Neural

Networks for Volumetric Medical Image Segmentation,” in 2016 Fourth Interna-

tional Conference on 3D Vision (3DV), pp. 565–571, 2016.

[59] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep Convolutional

Encoder-Decoder Architecture for Image Segmentation,” IEEE Trans. Pattern

Anal. Machine Intell., vol. 39, no. 12, pp. 2481–2495, 2017.

[60] E. D. Cubuk, B. Zoph, D. Mane, V. Vasudevan, and Q. V. Le, “Autoaugment:

Learning augmentation strategies from data,” in Proc. IEEE Conf. Computer

Vision Pattern Recognition, June 2019.

60

[61] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,”

Journal of Machine Learning Research, vol. 13, no. 10, pp. 281–305, 2012.

61

Appendix A

Additional In-Dataset Comparison

Based on the first half of the in-dataset average results in Table A.1 we observe that

LWNet [6] is only slightly better than the larger SegRNet [7] in terms of F-score by

0.21% and AUC by 0.36%. The average values of the second half of Table A.1 show

that our proposed VIPs improves LWNet [6], SegRNet [7], and IterNet [8] by 0.45%,

0.64%, and 0.31% respectively in terms of F-score, also we see gains of 0.13%, 0.54%,

and 0.34% in terms of AUC.
DRIVE [1] HRF [3] CHASEDB [2]

Method P R F Acc AUC P R F Acc AUC P R F Acc AUC
Baselline

IterNet [8] 81 81.21 81.08 96.52 61.35 79.28 78.58 78.75 94.01 61.02 79.51 82.01 80.1 96.21 63.2
SegRNet [7] 82.06 83.46 82.27 96.91 64.08 80.06 80.4 80.23 95.96 65.35 82.41 85.29 83.83 97.81 64.04
LWNet [6] 81.50 82.79 82.14 97.05 63.81 79.02 80.84 79.92 96.74 64.22 85.50 86.16 85.83 97.78 66.52

Baselline + VIPs
IterNet [8] + VIPs 80.77 81.9 80.92 96.61 61.65 79.46 78.39 78.92 94.09 60.99 80.01 82.1 81.04 96.77 63.96

(-0.23) (0.69) -(0.16) (0.09) (0.3) (0.18) (-0.19) (0.17) (0.08) -(0.03) (0.5) (0.09) (0.94) (0.56) (0.76)
SegRNet [7] + VIPs 81.87 83.83 82.84 96.95 64.83 80.37 81.81 81.05 95.99 65.55 82.91 85.86 84.35 97.95 64.72

(-0.19) (0.37) (0.57) (0.04) (0.75) (0.31) (1.41) (0.82) (0.03) (0.2) (0.5) (0.57) (0.52) (0.14) (0.68)
LWNet [6] + VIPs 81.76 83.68 82.71 97.08 64.01 79.63 81.28 80.44 97.03 64.81 85.54 86.67 86.10 97.85 66.63

(0.26) (0.89) (0.57) (0.03) (0.2) (0.61) (0.44) (0.52) (0.29) (0.59) (0.04) (0.51) (0.271) (0.07) (0.11)
Average

Method P R F Acc AUC
Baselline

IterNet [8] 79.93 80.60 79.98 95.58 61.86
SegRNet [7] 81.51 83.05 82.11 96.89 64.49
LWNet [6] 82.01 83.26 82.63 97.19 64.85

Baselline + VIPs
IterNet [8] + VIPs 80.08 80.80 80.29 95.82 62.20

(0.15) (0.2) (0.31) (0.24) (0.34)
SegRNet [7] + VIPs 81.72 83.83 82.75 96.96 65.03

(0.21) (0.78) (0.64) (0.07) (0.54)
LWNet [6] + VIPs 82.31 83.88 83.08 97.32 65.15

(0.3) (0.62) (0.45) (0.13) (0.3)

Table A.1: Results for in-dateset analysis of LWNet [6], SegRNet [7], and IterNet [8] both with and
without VIPs. We give the gains/loss over baseline in (). (We used CLAHEGC as preproessing.)

62

	Abstract
	List of Figures
	List of Tables
	Introduction
	Motivation and Problem Statement
	Summary of Contributions
	Thesis Outline

	Related Works
	Preliminaries
	Data Preprocessing and RVS
	General Purpose Data Augmentation
	Augmentation Methods Specific to RVS
	RVS Models and their Data Augmentation
	Multi-U-net Networks
	Multi-branch Networks
	Networks Using Dilated Convolutions
	Networks with Novel Modules
	GAN Based Network
	GNN Based Network
	Cross-domain Network

	Proposed Approach
	Experimental Analysis
	Simulation Setup
	In-dataset Analysis and Model Training
	Cross: Comparison of Baseline RVS Models
	Cross-dataset: Impact of Components of RVS
	Proposed Versus Related Augmentation Works
	Ablation study
	Visual Results

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography
	Appendix Additional In-Dataset Comparison

