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Abstract

Development of a Multi-Scale Model for Enhanced Performance by
Using a Modified Soft-Margin SoftMax Loss and its Application for
Facial Expression Recognition

Armin Nabaei

This thesis introduces an improved Convolutional Neural Network (CNN) model that selectively
excludes irrelevant elements from input vectors to extract distinct features. The model employs
Convolution (Conv) to encode data information and Deconvolution (Deconv) layers to reconstruct
the spatial dimensions of feature maps and utilizing shortcut connections to exploit applicable
sparsity and capture comprehensive and detailed information. This research addresses the
limitations of the traditional SoftMax Loss function, which tends to overfit by wrongly classifying
due to shortage of discriminability through integrating a regularization technique to the
conventional Cross-Entropy loss and introducing an adaptive-margin to the standard SoftMax
function. The adjusted SoftMax Loss is designed to enhance the separation of different embedding
vectors and tighten clusters of similar ones. This adjustment results in boosting both the diversity
between different classes and the similarity within the same class. These modifications aim to
elevate the proposed model’s accuracy, and evaluations are benchmarked against existing methods
using well-known datasets such as CIFAR10 , MNIST, and SVHN. Lastly, the application of the
model is fine-tunned in the domain of facial expression recognition (FER). This work asserts the
model's advanced capabilities over state-of-the-art methods in FER and demonstrated its
effectiveness through superior accuracy on three established datasets: FER-2013, RAF-DB, and
CK+.
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Chapter 1

Introduction

The exploration into convolutional networks (ConvNets) reveals a strategy to improve high-
resolution detail in image analysis. By innovatively linking layers, ConvNets encourage feature
reuse and oppose the diminishing gradient issue. Convolution layers, which downsampling
images, can lead to a loss of resolution. The superiority of Convolutional neural network (CNN)
for Image classification is well established [1], in view of ability to generate automatic features
depending on the application. However, its capability to generate automatic features heavily relies
on the architecture of CNN. Although deeper networks can improve accuracy, they also amplify
computational demands and risk of overfitting, particularly when training data is scarce.

In this domain, the loss function used to train the network aim to balance between grouping
similar items and separating different ones [2]. Also, regularization techniques like shrinking
insignificant weights and assigning differential weights for misclassifications have been employed
to mitigate overfitting risks. In the following, we conduct a brief review on challenges, objectives

in field of image classification, and then, describe the structure of the thesis.

1.1 Motivation

Existing convolutional neural network (ConvNet) models [2], [3], [4], [5] for categorizing images
often use a pathway that captures the context of the image as a feature extractor. However, the
process of convolution can sometimes lose details due to the limited receptive field of the
convolutions. To fix this, a model can be designed to include an expanding pathway with

deconvolution layers named transposed layers that works alongside the original pathway [6]. By



doing so, it retains both the detailed and broader information, which helps in identifying complex
and discriminable features.

Current Image datasets often contain a mix of 'hard' and 'easy' samples. Hard samples are those
that are not easily classified and often fall close to the decision boundaries, typically due to a lack
of detailed annotations, leading to under-learning. 'Easy' samples, on the other hand, may have too
much repetitive information, pushing the model to become overfitted to the training data [2].
Furthermore, the standard SoftMax loss function can become less effective when faced with
extremely high or low input values or when there's a significant difference between input values
[7]. Notably, performance of a loss function efficiently is limited due to its poor capability to
encourage in generating distinct features [8]. Improving how the loss function performs can make
the optimization process better. Since, the goal of optimization is to work with a convex loss
curvature to find the point of least error, a process known as convergence. But common loss
functions often lead to complex, irregular loss landscapes, causing standard optimizers to struggle
with poor convergence [9]. Recent enhancements to the SoftMax loss function attempt to lower

the risks of divergence and overfitting by introducing regularizations and penalties [8].

1.2 Objective

This thesis introduces a deep convolutional neural network (DCNN) designed to classify objects
in natural settings and recognize facial expressions. The architecture of the proposed network
utilizes efficiently connected layers and optimally chosen kernels to extract detailed and relevant
features. The main aim is to create a deep learning model that can generate a compact yet effective
representation of data. It uses mid-level information and an auxiliary classifier [1] to improve the
network's ability to distinguish between different categories.

Typical loss functions might not learn complex categories well and could lead to overlearning
simpler ones. Adding extra elements to the cross-entropy loss can improve learning for tough
categories and build noise tolerance to prevent overfitting [10]. In addressing this challenge, the
thesis explores a modified cross-entropy loss that penalizes wrong predictions with learnable
hyperparameters. The use of regularization technique in loss function during training reduces the
risk of overfitting, improves the flow of gradients, enhances the network's capacity to represent

complex information. The thesis examines an enhanced cross-entropy loss that uses learnable



hyperparameters to penalize incorrect predictions. Also, setting the right margin in softmax loss
[11] helps with generalization by pushing the model to learn distinct features. An adjustable margin
controls how discriminative the features are and has shown to be more effective, especially in
image classification domain where clear separation between classes is crucial for performance.

These modifications assist the model in learning features that distinguish more. With these
methods, the network gets better at distinguishing between classes and grouping similar ones

closely. It also handles variations in input data well and in the end, leads to more accurate results.

1.3 Discussion

The work develops a lightweight, precise model designed to tackle challenges related to
information degradation and the scarcity of annotated samples in facial expression recognition.
The model emphasizes generalization and enhances localization for the classification task. These
aspects are fulfilled through the development of a convolutional network capable of multi-scale
feature abstraction with incorporating shortcut connections which aids in enhancing gradient back-
propagation and stabilizing training. Model components are structured to integrate key aspects of
proven vision networks, essential for effective feature extraction and generation from limited
training data. This is crucial for a model's ability to select beneficial elements from the feature
vector, consequently boosting discriminability and facilitating the learning of complex features.
The model's effectiveness is demonstrated through benchmarking against recognized networks on
datasets like CIFAR10, MNIST, and SVHN, confirming its reliable performance.

Improvement of optimization by creating a smoother loss curvature [12] is facilitated through
the incorporation of additional terms into the loss function, acting as a regularization technique.
This improvement is powered by the integration of a loss function combining standard cross-
entropy with a refined focal loss [13], transforming fixed constants into adaptive parameters.
Experiments evaluation with traditional loss functions illustrates superior capabilities in mitigating
overfitting and achieving higher accuracy. However, the standard loss function's limited capacity
in promoting feature discriminability requires further refinement. Therefore, modifications to
SoftMax are employed to force the model towards greater feature discrimination, thus refining loss
performance. Additionally, for the classification task, the selection of an appropriate margin to

define class boundaries within the SoftMax function is vital in enhancing generalization.



This work expands the range of feature representation by introducing an adaptive margin [14],
in the SoftMax function as a learnable parameter. This adjustment separates dissimilar features
while grouping similar ones, enhancing the classifier's ability to distinguish features more clearly.
The improved SoftMax's performance evaluation, when compared to the conventional SoftMax,
highlights its ability to raise classifier accuracy. Also, sample classification visualization [15]
demonstrates that this method separates data points of different classes and groups those of the
same class more effectively than the standard SoftMax Loss function, which improves the
network's generalization from the training data.

Finally, the framework's performance evaluation against state-of-the-art models in facial
expression recognition on datasets like FER-2013, RAF-DB, and CK+ shows its capability that It
not only learns efficient features well but also correctly classifies hard samples from classes with

few examples, proving its ability as a robust vision network.

1.4 Organization of the Thesis

This thesis is organized as follows:

 Chapter 2 reviews the literature, discussing widely-used network models in vision, improvements
in SoftMax loss functions, and concludes with current facial expression learning (FEL) methods.
* Chapter 3 gives a detailed examination of the convolutional neural network (CNN) components
used in classification, exploring layers, connections. It explores how combining different levels of
detail helps to effectively extract useful information. and tackles training and optimization
techniques to prevent vanishing gradients. This chapter details tuning training hyperparameters
and evaluates the model’s performance on image classification datasets like MNIST, CIFAR10,
and SVHN.

* Chapter 4 focuses on improving the model accuracy discussed in Chapter 3. It expands on
changes to the Cross-Entropy (CE) Loss, the implementation of regularization to learn from
challenging samples, and an innovative method for adjusting margins in the SoftMax function for
clearer class distinction. The performance of these proposed changes is compared with traditional

algorithms on the MNIST and CIFAR10 datasets.



» Chapter 5 offers concluding insights on applying the methods described earlier to facial
expression recognition (FER) task. testing the proposed framework on recognized FER datasets:
FER2013, RAF-DB, and CK+. It includes a comparison with existing FER methods.

* Chapter 6 concludes the work completed and points out opportunities for future research that

build on this thesis.



CHAPTER 2. Literature Review

Chapter 2

Literature Review

2.1 Brief Overview of Convolutional Networks for Image Classification

The architecture of Convolutional Neural Networks (CNNs) is characterized by interchanging
layers of convolutions and subsampling, progressively increasing in complexity within the
network's structure. As the network deepens, the number of feature maps increases while the
spatial resolution diminishes. Each activation unit within a given layer may form multiple
connections to the feature maps of its preceding layer.

Image processing serves as a foundational step in Computer Vision, primarily focused on the
extraction of fundamental image characteristics such as edges, corners, and application of various
filters. Unlike image processing, which operates on raw images without the need for prior
knowledge, Computer Vision aims to produce meaningful descriptions from images [16]. The
significant impact of Convolutional Networks on image recognition was highlighted by Yann
LeCun in 1998 [1]. The state-of-the-art performance on image classification tasks was further
advanced on CIFAR10 and NORB databases, as presented in "Improving neural networks by
preventing co-adaptation of feature detectors" by G. E. Hinton [17], Subsequently, the superior
generalization capabilities of CNNs for unseen tasks in Vision paradigms were showcased in
"DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition" by J.
Donahue et al. [18]. Despite numerous explanations of ConvNets dominance in Image Processing
over handcrafted methods, CNNs often remain puzzling, with no transparent understanding of their

operational mechanisms or the specifics of their performance enhancements [19]. Real-world



databases are typically noisy, which complicates the use of standard ConvNets due to their need
for inductive bias. Co-adaptation of feature detectors refers to a scenario where certain neurons
become highly dependent, leading to significant output variations in response to random input
distortions. Regularization strategies [20], [21], [22] such as the implementation of dropout in
networks during training have been proposed to mitigate this issue and prevent overfitting by
randomly omitting units in each layer and assigning probabilities to training cases [17].

Among vision networks, three prominent models share architectural inspirations within the
ConvNet paradigm. DenseNet [23] architectures enhance the performance of ResNet [24] through
strategic modifications, leveraging the strengths of its earlier model. Similarly, the foundational
design of the plain ResNet model draws inspiration from the VGG [2] network's structure. The
inception [25] architecture, a neural network framework codenamed for its innovative structure,
leverages the Hebbian principle and multi-scale processing to dynamically define the model. This
approach enables a multiplicative expansion of network resources internally. The inception
concept, influenced by the Network in Network' paper [26], aims to augment the representational
capability of the network, a feature proven beneficial as demonstrated in the ILSVRC 2014

classification challenge.

2.1.1 Utilizing Inception for Improved Regularization

In the work "Rethinking the Inception Architecture for Computer Vision" [24], the authors explore
ways to make networks larger in a computationally efficient manner. They employ factorized
convolutions and strong regularization to this end. The paper highlights several key principles for
effective network scaling such as:

e The network's structure should avoid unnecessary complexity by cutting redundant
correlations without over-compressing. A cyclic graph is used for guiding information
flow and gradually reduces the input size until the final output. This method ensures that
higher-dimensional information is kept available for processing, aiding in the separation
of features.

e For spatial aggregation, lower-dimensional representations are preferred as they can
speed up learning. This is based on the idea that reducing dimensions increases unit

correlations, which helps in preserving essential information.



e Balancing the network's depth and width is crucial. The computational resources should
be distributed carefully to enhance the network's quality without excessive demands on
processing. Efficient convolutions are key to reducing computational demands and the
number of parameters. Smart dimensionality reduction can lead to more unique
parameters, saving memory and increasing the network's capacity. To avoid the high
computational cost of large convolutional filters, the paper suggests using two smaller
filters in sequence. For example, replacing one 5x5 filter with two 3x3 filters can yield
the same results with fewer parameters and improved weight sharing.

For processing medium-sized features, the paper proposes an approach where a larger
convolutional layer is replaced with two layers: one that captures features across the channel and
another that blends them spatially. This sequence is computationally efficient and effective for
spatial feature processing.

The auxiliary classifier introduced in [25], to improve convergence and combat vanishing
gradients in very deep neural networks also promotes stable learning, as argued in [27]. This paper
defines the auxiliary classifier as regularizer in which a batch normalization layer or dropout is
utilized. The integration of traditional image recognition frameworks with residual connections
has demonstrated substantial advancements, as shown in the ILSVR 2015 challenge. With
Inception-V3, the implementation of residual connections within the Inception architecture was
explored, resulting in moderate improvements. Subsequently, Inception-V4 presented the
advantages of residual connections for faster and more reliable training. While Inception
architectures offer extensive tunability, there is a tendency to be cautious in layer and filter
expansion to maintain training stability. The novel Inception modules introduced are characterized
by increased depth and diverse filter mapping techniques to the inputs, which generate a variety of
feature maps. The innovation in the latest Inception iteration lies in its cost-efficient design,
employing lightweight mappings through 1x1 convolutions after each convolutional layer. This
design fuses two distinct sampling methods and applies batch normalization only on a top primary
model rather than after each Residual-Inception module. This approach is considerate of GPU
memory constraints and seeks to minimize information degradation [28]. The Inception V3 study
[24] highlights the computational load of larger spatial filters (e.g., 5x5 or 7x7), noting that a 5x5
convolution requires approximately three times more operations than a 3x3 convolution. The

pursuit of reduced computational demand without sacrificing logical capability has led to the



proposition of replacing a 5x5 kernel with two successive 3%3 kernels, thereby maintaining the
network's performance while navigating the input activation grid more efficiently (refer to Figure

2.1).

Module 1 Module 2 | Filter Concatenate
| Filter Concatenate
3x3
| 5x5 | | 3x3 | I 1x1 | | 3x3 | | 3x3 | [ 1x1 |
| 1x1 | [ 1x1 | [ oo | | 1x1 | =] [ 1x1 | [ Pool | [ 1x1 |

" "

Figure 2. 1 Module 1: The original Inception module (left) [1]. Module 2: An enhanced Inception module with
increased efficiency, where each 5x5 convolution has been substituted by two 3x3 convolutions.

The Inception framework, as detailed in [1], is engineered by methodically stacking a series of
nine identical modules, referred to as Module 1, which are detailed in Figure 2.1. This repetitive
stacking is a deliberate design choice, enhancing the network’s ability to learn more complex
features at various scales without a significant increase in computational cost. Each instance of
Module 1 is a carefully arranged composition of convolutional layers, pooling layers, and
activation functions, working together to expand the network's depth and width.

Given the network's considerable depth, ensuring effective backpropagation of gradients through
all layers was challenging. A compelling observation is that shallower networks' impressive
performance on this task indicates that the features generated by the network's middle layers are
highly discriminative. Introducing auxiliary classifiers to these intermediate layers could promote
discriminative learning in the earlier stages of the classifier, enhance the backpropagation of the
gradient signal, and offer extra regularization.

The most notable example of this approach, GoogLeNet which is shown in figure 2.2. The
network utilizes rectified linear activation for all convolutions, including those within the Inception
modules (module 1 in Figure 2.1). The receptive field size for the network is 224x224 pixels,

processing RGB color channels. Designed for computational efficiency, the network has a depth
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of 22 layers, considering only those with parameters, or 27 layers when including pooling layers.
The total number of distinct building blocks forming the network approximates 100. Transitioning
from fully connected layers to global average pooling has enhanced the top-1 accuracy by roughly
0.6%, yet maintaining dropout proved crucial even after eliminating fully connected layers.

The challenge of effectively propagating gradients throughout the network's substantial depth
was addressed. The notable performance of shallower networks suggests that features from the
network's mid-layers are particularly discriminative. To promote early-stage discrimination within
the classifier, enhance gradient backpropagation, and provide added regularization, they proposed
adding auxiliary classifiers to these middle layers. Auxiliary classifiers are essentially smaller
convolutional networks positioned upon the output of Inception modules. During training, their
loss is factored into the network's total loss with a reduced weight (auxiliary classifiers' losses
contribute 0.3 to the overall loss). These auxiliary networks are removed during inference.

A notable experimental approach includes setting a lower positive bound as a penalty for
deviations in predicted labels or Label-Smoothing Regularization (LSR), which amplifies the
Cross-Entropy (CE) loss by accounting for all potential predictions. Gradient clipping to a
threshold of 2.0 and applying Batch Normalization (BN) exclusively to fully connected layers,
rather than convolutional layers, have proven effective in stabilizing the training process. Model
performance is assessed using a running average of parameters evaluated against the validation

set.
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2.1.2 Enhancing Feature Propagation Using DenseNet

In Densely Connected Convolutional Networks (DenseNet) [4], recognized for their proficiency
in extracting features across a range of computer vision tasks, each layer is connected to every
other in a feed-forward fashion. This design means that each layer has access to the feature maps
of all preceding layers. DenseNet's architecture was developed to mitigate the vanishing gradient
problem, boost feature propagation, and facilitate feature reuse. A deep DenseNet is shown with
three dense block structures. DenseNets, in contrast to the deep or wide structures typically seen,
harness the network’s potential by reusing features, leading to compact models that are
straightforward to train and remarkably efficient in terms of parameters. The practice of merging
feature maps from various layers diversifies the inputs for the following layers, enhancing the
model’s efficiency. This strategy is a key point of divergence from ResNets, which do not employ
such concatenation. Even when compared with Inception networks, which similarly concatenate
features from diverse layers, DenseNets stand out for their simplicity and greater efficiency. The
underlying principle of DenseNet's efficiency is that each layer accesses into the preceding layers'
feature maps within its block, essentially pooling the network’s entire "collective knowledge".
This can be compared to maintaining a global state of the network through the feature maps.

As illustrated in Figure 2.3, the architecture of DenseNet features three dense blocks, each
comprising an identical number of layers. Transition layers that perform convolution and pooling
separate these dense blocks. The transition layers are composed of a batch normalization layer, a
I1x1 convolutional layer, and a subsequent 2x2 average pooling layer. Introducing a 1x1
convolution as a bottleneck layer before each 3x3 convolution serves to limit the number of input
feature-maps, refining the process. A notable distinction of DenseNet from other architectures is
its capacity to operate efficiently with narrower layers.

In Figure 2.4, the concept of direct connections from any layer to all succeeding layers is
introduced. This configuration is schematically depicted in Figure 2.3, showing how DenseNet's
dense connectivity pattern earns its name. In this setup H (L"), the layer receives the feature maps
from all preceding layers, unifying the network's knowledge at each node. This dense connectivity
is central to what defines the architecture as a Dense Convolutional Network (DenseNet).

The function H(.) represents a composite function including three sequential operations: batch

normalization (BN), rectified linear activation (ReLU), and a 3 x 3 convolution (Conv).
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Consequently, the L' layer receives the feature-maps of all preceding layers, x0, . . ., x—1, as
input:
x = H ([x0, x1, . . ., x—1]). If each function H produces k feature maps, it follows that the L

layer has kO + k x (L—1) input feature-maps, where k0 is the number of channels in the input layer.
Within each dense block, layers inherit concatenated outputs from all previous layers as an input
tensor, while down-sampling is applied between dense blocks during training. The dense block is
created by densely convolutional layers connected. This connection is made after two
convolutions, which means each dense block consists of eight convolutional layers to increase
feature reuse and compensate for resolution loss abilities. Each layer is connected to all earlier
layers for better feature extraction.

A key distinction of DenseNet from other architectures is its adoption of narrow layers. For
instance, a growth rate of 12 channels per layer allows feature maps to serve as a network's global
state, accessible throughout the network. DenseNet also emphasizes model compactness,
especially within transition layers. Concluding dense blocks, global average pooling is executed
instead of fully connected layers before the SoftMax classifier. DenseNet's feature fusion is
characterized by weight sharing within each dense block, with the subsequent blocks assigning
minimal weight to outputs to address feature redundancy, as evidenced in the DenseNet-BC
experiments. The classifier connected to the preceding dense block leverages weights from the
entire block, focusing on the final feature maps for higher-level feature production. DenseNet
accomplishes comparable performance to other networks with fewer parameters and
computational requirements, similar to executing deep supervision implicitly through short
connections (identity mapping), promoting feature reuse. DenseNet is scalable to hundreds of
layers without encountering optimization challenges.

Dense U-Net [3], framework adds a newly designed dense block through U-Net architecture to
introduce deep U-Net architecture as the first work. Each dense module comprises two convolution
layers (3 X 3) and a max-pooling layer with RelU as the rectified function. For the left-hand
crafting path with four steps and five dense blocks to capture semantic contextual information,
four stages and five dense blocks from the expansive right-hand path, including up-sampling and
two convolution layers followed by the Relu activation function to reconstruct the high-resolution

images.



Input

v
1]
=]
1</
4]
s
g
[£]
aX
¥
g
2
4
v}
<3
(2]
=
=]

Output
{Prediction}
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Figure 2. 4 Diagram of a Dense Block in DenseNet Architecture Showing Layer Connectivity and Growth Rate,
each dense block is created by densely convolutional layers connected.
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2.1.3 Advancing Deep CNNs with Residual Learning

The enhancement of image recognition architectures through increased depth has been extensively
studied, particularly focusing on the role of residual modules [4], [5]. Research has also delved
into the impact of shortcut connections on reducing the need for a large number of parameters [4],
[29]. Highway networks, which feature shortcut connections with learnable gate functions, were
introduced as an innovation in this space [30], [31]. Residual connections, which link the input
directly to the output when dimensions align, were incorporated to mitigate information
degradation in deep models. This adoption of residual learning at each layer serves to counteract
the potential performance drop associated with increased model depth. Three variations of identity
shortcut connections are explored: without residual learning, with moderate projection shortcuts,
and with full projection shortcuts; the latter is omitted to alleviate computational. In Figure 2.5,
they explore the implementation of deeper bottleneck architectures within ResNet-50, ResNet-
101, and ResNet-152. These architectures refine the foundational building block by incorporating
a stack of three layers instead of the conventional two. The structure of these three layers consists
of 1x1, 3x3, and again 1x1 convolutions. The primary role of the 1x1 layers is to first reduce and
subsequently increase (or restore) the dimensions. This strategic reduction and expansion enable
the central 3x3 layer to operate as a bottleneck, processing data with smaller input/output
dimensions. Such a bottleneck design, characterized by the sequence of three layers, is specifically
customized for deeper models to manage each residual function efficiently. Crucially, this design
facilitates the maintenance of residual blocks' complexity, especially through the final 1x1
convolution layer, which expands the dimensions back to their original size. Within the spectrum
of ResNet architectures, two main types of shortcuts are utilized to enhance the efficiency and
functionality of these networks. The first type, known as projected shortcuts, employs a 1x1 filter
to increase the dimensionality where necessary. The second type, identity shortcuts, provides
parameter-free connections. These connections are vital for an effective bottleneck design,
ensuring that the network can learn more complex functions without a proportional increase in
computational complexity. Comparatively, while all three models ResNet-50, ResNet-101, and
ResNet-152 leverage this bottleneck architecture, the depth of their networks varies, with ResNet-
152 being the deepest. This variation in depth allows for a sophisticate exploration of how
increasing the number of layers impacts the network's ability to learn more complex patterns

without significant increases in resource requirements. The adoption of bottleneck designs across
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these models illustrates a strategic approach to enhancing deep learning networks' efficiency and

performance, illustrating the balance between depth and computational feasibility.
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Figure 2. 5 Residual Learning: Implementation of 'Bottleneck' Layers in ResNet-50, ResNet-101, and ResNet-152 [32].

A key characteristic of the shortcut connections employed in these networks is the use of identity
mapping. This is achieved by concatenating input and output of the same dimension, supplemented
with zero padding where necessary, a technique that does not introduce any additional parameters
[32]. Identity mappings within this context are realized through shortcut connections that employ
element-wise addition, a design choice that introduces neither additional parameters nor
computational complexity. A residual block is thus composed of nonlinear layers, coupled with
identity mapping, where the input and output dimensions are compatible.

The comparison between two models for ImageNet, as tested by ResNet, is illustrated in Figure
2.6, focusing on the Plain Network and its residual peer. The Plain Network, shown in the middle
of Figure 2.6, draws inspiration from the VGG nets, represented on the left of the same figure.
This model utilizes 3%3 filters across its convolutional layers, following to two principal design
guidelines: (1) maintaining a consistent number of filters for layers with identical output feature
map sizes and (ii) doubling the number of filters whenever the feature map size is reduced by half,

thereby keeping the time complexity per layer unchanged. Downsampling is achieved directly
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through convolutional layers with a stride of 2, concluding in a global average pooling layer,
followed by a 1000-way fully connected layer with softmax. Notably, the Plain Network comprises
34 weighted layers and is characterized by a simpler structure and fewer filters compared to the
VGG nets. Specifically, the 34-layer baseline model requires 3.6 billion FLOPs, significantly less
than the 19.6 billion FLOPs of the VGG-19, accounting for just 18% of its computational
complexity. Building upon the Plain Network, the study introduces shortcut connections, as shown
on the right of Figure 2.8, transforming it into a residual network. These shortcuts, which do not
add any extra parameters when the input and output dimensions match, facilitate direct identity
mapping. For dimensionality mismatches, two approaches are considered: (A) identity mapping
with zero-padding for increased dimensions, adding no additional parameters, and (B) dimension
matching through 1x1 convolutions. These shortcuts, especially effective when crossing feature
maps of varying sizes, employ a stride of 2 to maintain efficiency. Despite the Plain Network's
lower complexity and reduced FLOP count relative to VGG19, the introduction of parameter-free
shortcut connections between pairs of 3x3 filters elevate it to the more advanced residual model.
This adaptation, coupled with the systematic use of batch normalization (BN) after each
convolution and before activation, without incorporating Dropout in any ResNet variant,
underscores a strategic architectural enhancement. This design choice notably excludes Dropout
across all depths of ResNet models (18, 34, 50, 101, 152, or 1202 layers), acknowledging that
deeper networks might face slower convergence. The ResNet architecture addresses the
degradation challenge, promoting higher accuracy with increased depth. Moreover, it optimizes
the training process by ensuring faster convergence at the start, highlighting its superior

performance and efficiency compared to its earlier versions.
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2.1.4 Changing Deep CNN Architectures with U-Net

The U-Net architecture [3], introduced in 2015, has gained prominence for its efficacy in image
segmentation tasks, particularly within the medical imaging domain. Its usage continues to grow
due to the flexibility and success of various U-Net adaptations. The fundamental architecture of
U-Net is divided into two principal pathways:

The first pathway is known as the contraction or analysis path, operating similar to a
conventional convolutional network to encode and compress information, facilitating
classification. The second pathway, the expansion or synthesis path, is comprised of transposed
convolution layers that progressively reconstruct the resolution of the output. This architectural
innovation enhances the precise localization required for detailed segmentation tasks, with the U-
shaped design proving instrumental in context-based learning for image segmentation.

The architecture of the network, depicted in Figure 2.7, is composed of two main segments: a
contracting path to the left and an expansive path to the right. The contracting path mirrors a
conventional convolutional network design, involving a series of two 3x3 convolutions without
padding, succeeded by a ReLU activation and a 2x2 max pooling with a stride of 2 for
downsampling. With each downsampling, the feature channels are doubled, enhancing the
network's ability to capture complex features. Conversely, the expansive path begins with
upsampling the feature map, followed by a 2x2 “Transposed Convolution” that decreases the
feature channels by half. This is immediately followed by merging it with a matched, size-adjusted
feature map from the contracting path, and then applying two additional 3x3 convolutions, each
succeeded by a ReLU. This merging, known as "Skip Connection," allows the network to recover
spatial information lost during downsampling. The need for cropping arises to compensate for the
spatial loss at each convolutional step. The final layer uses a 1x1 convolution to translate the 64-
component feature vector into the required number of output classes. Altogether, the network
comprises 23 convolutional layers. The first segment of the U-Net behaves similarly to the VGG
network, where the image's spatial resolution is reduced while the channel depth increases. In the
expansive path, this process is reversed: spatial resolution is amplified as the number of channels
diminishes. The expansive path also maintains a high number of feature channels, which is crucial
for conveying context information up to the higher resolution layers. Consequently, the expansive

path roughly mirrors the contracting path, completing the U-shaped structure of the architecture.
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This symmetry ensures that the network efficiently produces high-resolution outputs, making it

adept at tasks requiring detailed localization and segmentation.

Output: 3D Probability
maps for each class

Input: 3D Images | 64 64 128 64 64 2
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512
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Figure 2. 7 U-net [6] architecture with 32x32 pixels at the lowest resolution. Each brown box represents a
multi-channel feature map, with the number of channels indicated above the box.

The Standard U-Net [6] architecture is notably efficient when trained on a limited number of
samples. It was originally enhanced by incorporating data augmentation and a loss penalty function
to develop its performance. The architecture is distinguished by its dual-path design: an encoding
path that captures context and a symmetric decoding path that facilitates precise localization of
relevant information. To achieve high-resolution localized outputs, the results from the encoding
path layers are merged with the up-sampling segments of the decoding path. This integration
strengthens a more accurate learning of segmentation information from the initial convolutional
layers.

Attention U-Net [33], extension develops of vanilla U-Net with an attention module to surpass
irrelevant features and automatically learn to highlight salient regions with minimal extra
computation while increasing prediction accuracy. The attention block on top of U-Net is a self-
attention gating module utilized in CNN to specify more attention to local regions. U-Net has two

main advantages: the efficient use of GPU memory and extracting features from scaled images
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provide good performance in image segmentation. The purpose of solving difficulty in the
prediction of small objects with high variation for results, attention architectures consist of the
addition of scaled input and original.

The Inception U-Net architecture [34], merges the principles of Google’s Inception [25], with
the foundational U-Net [6], substituting each convolutional layer with an Inception module.
Additionally, a hybrid pooling layer namely Hartley spectral pooling which is adept at preserving
the spectral structure of features for enhanced discriminability is implemented to retain more
spatial information [35]. This model amplifies depth through the U-Net structure and widens via
the Inception module. The architecture is outlined by a contraction path and a subsequent
expansion path, which is carefully optimized with a weighted objective function customized for
segmentation loss. This function is a combination of three distinct loss functions: binary cross-
entropy (BCE), Dice coefficient loss (DCL), and Intersection over Union (IoU), each contributing
to the model's learning efficacy.

The Deep Residual U-Net [36], architecture employs residual skip connections to streamline the
training of deep networks. These connections enable efficient information flow, allowing for the
training of a network with fewer parameters while avoiding the issue of degradation. They simplify
the complex process of training image segmentation models that capture fine-grained details and
retain low-level information. Researchers further enhance the model's performance by employing
fine-tuning through transfer learning and extensive data augmentation to offset any potential
information loss. The network's architecture is sectioned into three key areas: the encoder, which
compresses the input data into a representative form; the decoder, which reconstructs the image
representation for semantic segmentation; and an intermediate bridge connecting the two. Each
module within the network maintains identity mapping, ensuring a direct connection between input
and output.

U-Net++ [37], is structured with an encoder and decoder, similar to its earlier version. What sets
it apart is the reconfiguration of skip connections, which, unlike the direct connections in the
standard U-Net, are densely interconnected. These enhanced skip pathways facilitate gradient
flow, making the network more receptive to training. Each paired encoder-decoder block within
U-Net++ incorporates a trio of convolutional layers. The design intent is to streamline optimization
by ensuring that the encoder and decoder receive feature maps of like semantic quality. U-Net++

employs deep supervision, allowing for precise and speed up model training.
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2.1.5 Optimizing Deep CNN Architectures Using VGG

Very Deep Convolutional Networks for Large-Scale Image Recognition network, codenamed
VGG [2], explained the significance of depth in visual representation frameworks, showcasing
models with 16 and 19 layers. In the 2014 ImageNet challenge, VGG achieved top ranks,
underscoring the vital role of increased depth in enhancing accuracy. The network uses a consistent
3x3 kernel size for filters, demonstrating robust generalization across various datasets for
localization and classification tasks. A key aspect of the ConvNet architecture that VGG highlights
is the improvement in performance through a progressive increase in depth, adding more
convolutional and MaxPooling layers. During experimentation, image inputs of size 224x224 were
preprocessed with VGG normalization before passing through convolutional layers with 3x3
kernel filters and minimal receptive fields, optimizing for precise information capture from
different image regions. Some variants of the model employ 1x1 convolutional layers as linear
transformers of input channels, paired with non-linear ReLU activation to amplify the decision
function's non-linearity without altering the conv layers' receptive fields. Padding with a stride of
1 is implemented to maintain spatial resolution post-convolution. The number of channels in the
convolutional layers starts at 64 and doubles incrementally, resulting in a width of 512, followed
by MaxPooling. The architecture concludes with three Fully Connected (FC) layers, choosing for
narrower widths compared to shallower models, as noted by Sermanent et al., 2014 [38].

The VGG ConvNets configurations are outlined in Table 2.1, with a straightforward preprocessing
step: every pixel has the mean RGB value, derived from the training set, subtracted from it. The
images experience a series of convolutional (conv) layers, employing 3 x 3 filters. In certain
configurations, 1 x 1 convolution filters are also applied, effectively performing a linear
transformation of the input channels, followed by a non-linear activation function. The stride of
the convolutions is consistently set at 1 pixel, with spatial padding maintained to ensure the original
spatial resolution remains preserved after the convolutions this requires a padding of 1 pixel for
the 3 x 3 conv layers. Spatial pooling is executed by five max-pooling layers distributed among
the conv layers, although not every conv layer is immediately followed by max-pooling. These
max-pooling layers operate over a 2 x 2 pixel window with a stride of 2, serving to reduce spatial
dimensions and allowing for the assumption of stronger feature representations at reduced
computational costs. The architecture's depth varies, leading to a series of conv layers succeeded

by three fully connected (FC) layers. The first two FC layers each have 4096 channels, while the
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third FC layer outputs a number of channels corresponding to the number of classes. A softmax
layer concludes the sequence. The design of the FC layers remains uniform across all models. All
hidden layers utilize the ReLU activation function to introduce non-linearity, enhancing the
network's ability to learn complex patterns. It is noteworthy that Local Response Normalisation
(LRN) is not employed in these networks with the exception of one as it does not boost
performance on the ILSVRC dataset. Additionally, LRN tends to increase both memory demands
and computational time. The tailored design of VGG ConvNets, with its focused convolutional
strategy and absence of LRN, showcases an efficient structure fine-tuned for robust image

classification performance without unnecessary computational overhead.
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Table 2. 1 Variations of VGG ConvNet architectures are presented column-wise. Configuration depth progresses
from left (A) to right (E), with additional layers highlighted in bold. Convolutional layer specifications are described

by 'conv-receptive field size-number of channels'. The ReLU activation function is omitted for simplicity.

ConvNet Configuration

A A-LRN B C D E

11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
Layers Layers Layers Layers Layers Layers

Input (224x224 RGB image)

conv3-64 conv3-64 conv3-64 conv3-64 conv3-64
LRN conv3-64 conv3-64 conv3-64 conv3-64

maxpool

cony3-128 conv3-128 S 22 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128

maxpool

conv3-256

conv3-256 cony3-256 conv3-256 SOUNEEA0 SOnySe2o8 conv3-256
conv3-256 conv3-256

conv3-256 conv3-256 conv3-256 conv3-256
convl-256 conv3-256

conv3-256

maxpool

conv3-512
conv3-512 conv3-512

conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512

conv3-512 conv3-512 conv3-512 conv3-512
convl-512 conv3-512

cony3-512

maxpool

conv3-512
conv3-512 conv3-512

conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512

conv3-512 conv3-512 conv3-512 conv3-512
convl-512 conv3-512

conv3-512

maxpool
FC-4096
FC-4096
FC-1000

soft-max
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2.2 Enhancing Classification with Modified Cross-Entropy Loss Functions

2.2.1 Cross-Entropy Loss

2.2.1.1 Highlighting Cross-Entropy in Neural Network Training

The loss function serves as the guiding force in the network training process, optimizing weight
adjustments during backpropagation by measuring the gap between predictions and actual targets.
This metric guides the iterative refinement of the network's weights, driving the loss towards a
minimum for improved model precision. Traditionally, sigmoid activations paired with sum
squared error were standard. However, current practices prefer SoftMax activation for the output
layer coupled with cross-entropy loss for classification tasks. As depicted in Figure 2.8, cross-
entropy (shown by the red curve) offers a superior loss trajectory over the traditional approach
(indicated by the blue line), especially apparent during the initial training phase when predictions
are most inaccurate. This improvement not only speeds up early learning phases but also
accelerates convergence, enhancing efficiency of the optimization process within backpropagation
and cutting down on the time required for gradient calculations. This passage focuses on the
evolution from traditional sigmoid and sum squared error to modern SoftMax and cross-entropy

methods, highlighting the benefits in terms of learning efficiency and speed of convergence.
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Figure 2. 8 displays the loss curves for cross entropy (red) and mean square error (blue) during model training [2].
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If we see the neural network as a function f(x;8), the outputs don’t describe y distribution
directly. This act is done by w (parameters). So, we can represent the loss function as
—logP(y;w(x)), and logarithm in loss is according to maximum likelihood suggestion. This
loss function provides an incrementally condition for optimization procedure to learn variance [7].

Total prediction error of a model is written by:

2.1
Exyp [ (hp() = y)?1 = Eyp [hp() —h (0)?] + E, [(h(O) — §()*] + Eyy [ = y)7]

Given a dataset D = { (x4, V1), ... , (xn, Yn)}, and (x, y) pairs are data points for regression. Here,
x is the input, y is the true label, ¥ is the predicted label, h is the model hypothesis, and & is a
weighted average of functions. E, ,, , represents the expected error , Ey p is variance, Ey is bias,
and E,, is noise. Understanding prediction errors, specifically bias and variance, is crucial for
evaluating a model's performance. This balance affects model accuracy and helps prevent

overfitting and underfitting.

e Bias: The difference between the model's average predictions and actual values. High-
bias models ignore training data, leading to significant errors on both training and test
datasets.

e Variance: The inconsistency of model predictions for a specific data point, showing data
spread. High-variance models closely follow training data but fail to generalize,
performing well on training sets but poorly on test sets.

e Irreducible Error: The noise inherent in data that cannot be eliminated, regardless of
model complexity.

Models with few parameters might exhibit high bias and low variance, suggesting a simplicity
that fails to capture complex patterns. Conversely, models with numerous parameters may show
low bias but high variance, fitting the training data too closely at the expense of generalizability.
The key lies in finding a balance between bias and variance to minimize overall error. This balance,
depicted in Figure 2.9, avoids the extremes of overfitting and underfitting. Reaching to the sweet
spot (shown in Figure 2.9) ensures that the model is neither too simple nor overly complex,

optimizing for both accuracy and generalizability.
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Figure 2. 9 Bias-Variance Trade-off in Machine Learning. This figure depicts the balancing
act between bias and variance [2].

Deep neural networks have achieved significant success in classification tasks, particularly when
dealing with limited annotated training data. In response to the challenge of noisy data, researchers
have proposed noise-robust loss functions. These functions aim to adapt and modify traditional
loss functions for better performance under noisy conditions. Examples include the ramp loss [39]
and unhinge loss [40], which incorporate L2 regularization to derive a convex loss function,
enhancing robustness against symmetric label noise (SLN) [41]. Recent efforts have focused on
further improving noise-robust loss functions, with particular emphasis on Mean Square Error
(MSE) and Cross Entropy (CE), aiming to refine their effectiveness in noisy environments.

The paper titled 'The generalized cross-entropy loss for training deep neural networks with noisy
labels' [2] introduces a generalized categorical cross-entropy (CCE) loss. This approach
outperforms the traditional Mean Square Error (MSE) as a baseline noisy-robust cost-function,
particularly in handling noisy labels and complex datasets. CCE is effective for dealing with both
closed-set and open-set noisy data samples. 'Open set' refers to scenarios where incorrect labels do
not match any ground truth classes in the dataset. Conversely, 'closed set' describes situations
where both incorrect and correct labels are from the known classes present in the training data.
Compared to MSE, cross-entropy loss, which is based on logarithmic error calculation, offers

several advantages. As a variation of Kullback-Leibler divergence, cross-entropy loss focuses on
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minimizing the discrepancy between the probability estimation (p) and the ground truth (q), along
with an additive constant. This method proves more efficient in refining model accuracy under

conditions of label noise and dataset complexity.

Cross Entropy = —< log(R,), L; > 22

The inner product is denoted by <>, where P; represents the prediction for the i, sample, and
L; is the one-hot encoded reference label. The goal of cross-entropy is to measure the discrepancy
between the predicted probability distribution of outcomes and the actual distribution for a specific
class of the model, known as the loss function. As predictions increasingly deviate from the true
values, the loss value in cross-entropy escalates exponentially. Essentially, cross-entropy
quantifies this deviation as the negative log-likelihood, summing up the correct log probabilities.
This process is particularly relevant for comparing two sub-gaussian probabilities, for which the
Bernoulli distribution is commonly applied [42].

Traditionally, classification tasks endeavor to find the most accurate weights for the model by
employing backpropagation to adjust for errors in misclassified patterns. This minimization of the
error function aims to improve the model's predictions but can lead to overfitting if weights become
too large, or 'saturated.' Hence, the significance of weight magnitude in achieving model
generalization is underscored, highlighting its importance over the basic count of hidden units in

preventing overfitting [10].

2.2.1.2 Improving Cross-Entropy Performance Using Regularization Techniques

Conventional cross-entropy struggles to learn complex classes and tends to overfit simpler ones
[2]. Introducing additional terms into cross-entropy can enhance learning for challenging classes
and add noise tolerance to reduce overfitting risks. Regularization techniques, such as weight
shrinkage, help prevent overfitting by controlling prediction density. If a model’s weights are too
variable, it may overfit by closely mirroring the training set’s output distribution. Cross-entropy
regularization provides various methods to modify learning approaches, preventing the loss
function from accruing extreme negative rewards [7]. In this sense, learning is the design of a

function, not only selecting parameters.
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Neural units in a saturated state generate minimal gradients. As a result, using mean absolute
error (MAE) or mean squared error (MSE) can lead to unsatisfactory outcomes. In contrast, the
cross-entropy (CE) loss function exhibits an advantage over MAE and MSE. This benefit persists
even when it's unnecessary to predict an entire distribution over the target variable y for each
feature set x [7]. The CE cost function focuses solely on the probability assigned to the correct
class, which often results in more efficient training, especially for classification problems. The

gradient calculation for the Cross-Entropy (CE) loss is defined as follows:

n oL (f(x;;0),v) n )
Z a0 - {l:zl - m Vg fyi (x;:0) 23

i=1

Here, 6 represents the weights associated with the input samples x, n denotes the number of
neurons in the layer, d stands for the derivative of the loss with respect to the weights, and
fv;(x;: 8) symbolizes the predicted probability of the correct class for the input x. In the context
of CE with a SoftMax output layer, aligned or matching samples receive a higher emphasis through

an implicit weighting in the gradient update, represented by either a larger value of fy;(x;: ) or

a smaller reciprocal 1 / £ (x;0) - This method implicitly adjusts the learning process to pay more
yi\ti

attention to samples that are already well-predicted, smoothing the path towards convergence.
Mean Square Error (MSE) treats each training sample equally, leading to a model that is robust
against outliers and noise. However, this equality means that MSE may require longer training
times, as it doesn't inherently prioritize challenging samples. This can make the learning process
slower because there's no built-in mechanism to focus on those samples that would benefit most
from correction. On the other hand, Cross-Entropy (CE) naturally puts more focus on the difficult
samples during training, which can be advantageous when working with clean, well-labeled data.
This focus can lead to faster learning on those samples that are furthest from their target
predictions. Yet, this same characteristic might result in overfitting when the data contains noisy
labels, as the model might learn the noise instead of the underlying pattern. The issue with using
CE becomes apparent at the start of the training phase. Initially, the SoftMax output leads to many
samples receiving very small gradient updates. If these samples are disregarded because their

contribution to the update is minimal, the effective number of samples that the model learns from
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drops significantly. This can greatly affect the model's ability to learn a broad range of patterns,
particularly those from less frequent or more complex samples.

To avoid this issue, the current formula introduced:

n

n
arge = Z Lerune (f (x36),y;) = argaminzvil'q(f(xi: 0),y) + (1 —v)Ly(k) 24
i=1 i=1
Where L, (k) is threshold (penalty as a regularization term), v; = 0, if f;,, (x;) < k (the SoftMax

output probability is under the threshold). Optimizing the above loss is the same as optimizing this

composition:

n
argemin = Z Vilg (f (x5 0),y:1) — viLq(k)
i=1 2.5

n n
= argewoa minz wiLq(f(x;:6),y;) — Lg(k) Z w;
= =1

i=1

The process of updating the weight vector w can be similar to the concept of pruning. In this
context, pruning occurs at each step of the iterative training process. This is accomplished by
evaluating the function f (x;; 8®), which represents the model's prediction for the input x; at the
tt" iteration with the current parameters 8. During an iteration, only those samples for which the
loss value falls below a predetermined threshold are maintained for the weight update [2]. This
selective process effectively focuses the model's learning efforts on the most informative samples
those that are not yet well-predicted while discarding the rest. Consequently, this targeted update
can lead to more efficient training, as the model is not overburdened with adjustments due to
samples that are already in close agreement with the model's prediction. This method can be
particularly advantageous when dealing with large datasets, as it helps in speeding up the training

by reducing computational overhead.
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2.2.1.3 Enhancing Cross-Entropy Performance for Robust Learning in Imbalanced Datasets

A notable regularization adaptation in CE is the Real-World Weighted Cross-Entropy (RWWCE)
[43], which allocates distinct weights for false positives (incorrect predictions) and false negatives

(omitted correct labels), enhancing the learning process.

L=+ Z[an x y log(hg(x)) + Wy, x (1 —y) x log(1 — hg(xm))] 2.6

m=1

where M represents the number of training samples, Wy is the weight assigned to the cost of false

negatives, and W, is the weight assigned to the cost of false positives. The variable y denotes the

target label, x the input data for training, and hg the hypothesis function parameterized by the
neural network weights. This model demonstrates robust performance on imbalanced datasets and,
importantly, the experiments indicate that this version could result in lower real-world costs. The
weights for this binary loss model are established through a specified matrix. Adjustments to cross-
entropy help tackle optimization obstacles. The landmark study titled “Modified Cross-Entropy
Method for Classification of Events in NILM Systems” [44] adds a new modification by setting a
cut-off point and penalizing log errors that cross this limit. This adjusted version of cross-entropy
loss deals well with samples that carry the same weight, which is especially useful for classes in
datasets where some types of data are rare. It also updates how samples are weighed, giving more
importance to reliable, noise-free data. This is especially vital in tasks like recognizing facial
expressions, where distinguishing between true and mistaken labels is crucial. By introducing
these penalties, the method shifts focus, giving an edge to accurate, clean samples, which can lead
to better, more reliable recognition performance.

In instances where the disparity between the predicted probability and the target value is less
than a predefined threshold, Cross-Entropy (CE) assigns greater weight compared to mean
absolute error (MAE), enhancing the model's ability to learn from hard samples. CE's weighting
scheme prioritizes clean data, yet it may lead to overfitting in deep convolutional neural networks
(DCNNSs). On the contrary, MAE assigns lesser weight to noisy samples, offering robustness
against noisy labels, but its weighting approach diminishes learning efficiency, making it less
effective for DCNNs in learning label distributions. To address these limitations, an improved

cross-entropy that incorporates the noise robustness of MAE, along with the weighted scheme of
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CE, is proposed in [45], [46]. This enhanced cross-entropy formulation motivates the model to
exhibit consistent behavior during both training and testing phases. Specifically, it reduces bias,
thereby making the model less prone to input variations, by employing a schedule sampling weight
for the hyperparameter within the cross-entropy formula. As training progresses, this parameter
increases in value, highlighting the importance of negative predictions associated with hard
samples, as empirically validated in [47]. DCNNs naturally tend to initially learn from easy
samples, gradually progressing to hard samples. The modified cross-entropy [134] with a weight

scheduling parameter is outlined as:

n n
L= —-[(1- ai).Zlong(ytly <tx)+ a; .Zlong Pely < t,x)] 2.7
t=1 t=1

In this work the standard cross-entropy (CE) loss is used across training methods, functions as
the core of the learning process, guiding the model when predictions y; match the actual targets
y:. However, the formula introduces a model-dependent version of CE for additional flexibility.
Specifically, when the predicted class y; aligns with the true class y;, the mixed CE simplifies to
the standard CE. Conversely, when J, does not equal y;, the mixed CE adjusts to accommodate
the discrepancies. This dual behavior allows mixed CE to act adaptively during scheduled
sampling, reinforcing the model's predictions when accurate and seeking to correct them when
they diverge. This approach seeks to find a balance between strengthening correct predictions and
addressing and correcting errors, tailoring the learning process to the specific needs and dynamics

i

of the training data. Where hyperparameter « is: a; = m 1<i<totaliye, , m=

"total_iter
0.5.
In a comprehensive framework that contains both active and passive components, the scaled

version of the loss function is expressed as:

Loveranl = @ Lactive + B- Lpassive 2.8

Here, a and S serve as balancing parameters. This dual-component term is notably characterized

by its robustness [49].
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A dynamic weighting scheme for the loss function, functioning as a self-adjusting weight
algorithm, enables the model to refine parameters when encountering minority class samples that
excessively affect classification. Misclassification error often arises from uniform weight
distribution across class samples. Therefore, during training, hard samples with incorrectly high-
confidence predictions are assigned increased weight. This contrasts with a static weighting
approach [50], which, while capable of balancing minority and majority classes, does not
differentiate between hard and easy samples as effectively as focal loss [13] exploited. The class
weight parameters are dynamically learned and self-adjust based on predicted probabilities [51].

Dynamically Weighted Balanced (DWB) Loss defined by the following formula:

n C
1 (1-Py)
Lows = = > > w' " Pyy log(Ry) = By(1 = By) 29

i=1 j=1

where w; is the class weight of class J, yj; is the j th element of one-hot encoded label of instance
x; and P;;is the predicted probability of the class j of instance x;. Here, W represents a
hyperparameter that can be optimized through cross-validation or can be set by determining an

appropriate log ratio. This log ratio is designed to smooth the weights, inversely proportional to

class frequency and is defined as follows:

max(n;|j € c

nj

2.10

Within the framework, which is describing, the penalty for incorrectly classifying a sample into
class j and class frequency n; is amplified by a factor corresponding to that class's weight w;. This
means that if a class j has an assigned cost weight of w;, any misclassification of that class is
penalized w; times more heavily compared to misclassifications of the majority class, which
carries a weight of 1. This weighted penalty system prioritizes the accurate classification of
minority classes, which is often crucial in imbalanced datasets where certain classes are
underrepresented. By assigning greater penalties to these classes, the model is motivated to learn
features specific to them more completely, thereby aiming to reduce bias towards the majority
class. Selecting adaptable weights within the cross-entropy (CE) loss significantly influences the

performance of deep neural networks (DNNs), conferring robustness to noisy labels and
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accelerating the learning process. The enhanced categorical cross-entropy [52] dynamically adjusts
weights by employing an exponential term within the weighting scheme, tailored to the predicted
probability distribution.

The learning progress differs significantly when dealing with clean data as opposed to noisy labels,
effectively categorizing the training data into easy and complex (hard) samples. Classes filled with
simple samples might fit the training data too well, leading to overfitting. Conversely, classes with
complex samples often don't fit enough, raising the risk of underfitting. To address this, techniques
that improve robustness are crucial. An example is the technique introduced in “Learning from
Noisy Labeled Data Using Symmetric Cross-Entropy Loss for Image Classification” [53], which
puts forward the Symmetric Cross-Entropy (SCE) method. This alternative to the traditional loss
function uses a ratio of samples adjusted based on the level of noise in the data, a step that’s
particularly important early in training. This adjustment helps the model focus on learning from
the simple samples at the beginning, thereby balancing the learning process across different types

of data. The sample ratio is defined as follows:

A(e) =1 — min {M T, T} where T is noise ratio. 2.1
max epoch
2.2.2 SoftMax Function
2.2.2.1 Understanding SoftMax and its Advantages in Classification
The standard cross-entropy is represented by the following formula:
L= ) qUklx) logP(klx) 2.12

zk
Where P(k|x) = ﬁ is a SoftMax as an activation function for the last layer of neural
j=1

networks in classification domain. In SoftMax, lower logits are higher entropy, so the prediction
has more uncertainty. The efficiency of loss functions is traditionally blocked by their limited
ability to promote discriminability during feature generation. A classifier is required to produce

a conditional probability distribution, where the goal is to align the argmax of the predicted
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probability vector closely with the correct class label. This is the essential function of a SoftMax
classifier. However, enhancements to the SoftMax function that require a model to yield more
distinct features have led to improved loss function performance. This subject has collected
considerable interest in research circles over recent years.

SoftMax function is applicable at any moment, there is a need of a probability distribution over
number of distinct categories. It's an extension of the sigmoid function, scaling up from binary to
multi-class classification. Before normalization, the log probabilities from the linear layer's output
(z=WT X h+ b) are well-suited for gradient optimization. This scaling translates into a Bernoulli
distribution, modulated by the parameters of the SoftMax function, which extends to the
multinomial distribution, also known as the categorical distribution. The logarithm in the log-
likelihood shields against negative exponentials that may hinder gradient updates, a phenomenon
known as vanishing gradients. The definition of SoftMax within the log-likelihood leverages the

natural property of logarithms to offset the exponential:

Log SoftMax (z); = z; — logz exp(z;) 2.13
j

Here, the input term always directly influences the loss function, avoiding saturation during
differentiation. By maximizing the log-likelihood, the first term is raised while minimizing the
second, giving us insight into the negative log-likelihood's heavy penalties on the most active
incorrect predictions. When a function has a correct answer, this term contributes minimally to the
overall training loss and is dominated by the costs of incorrectly classified samples. This model
variant remains numerically stable, shrinking numerical errors even when z oscillations to
extremely high or low values. SoftMax tends towards 1 with large gaps between the highest and
other values or zeroes out when the highest isn't the absolute maximum, indicating overconfidence
in an incorrect prediction. Here, the loss function must adjust, appropriately penalizing errors to
temper the overall impact on the loss [7].

It's important to understand how SoftMax output, when compared to a one-hot vector, can be
made more accurate through regularization techniques. Regularization, particularly using entropy,
introduces new information for the model to learn, thereby enabling the identification of more

distinctive feature vectors. This process is critical as it allows the model to enhance its ability to
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differentiate between classes effectively. The integration of cross-entropy loss with the SoftMax
classifier, commonly referred to as SoftMax-Loss [54], is a crucial step. This combination
leverages the strengths of both components: while SoftMax transforms the model's outputs into
probabilities, cross-entropy loss measures the difference between the predicted probabilities and
the actual distribution. Together, they work collaboratively to refine the model's predictions,

making the SoftMax-Loss function a cornerstone of effective model training [8]. (see figure 2.10)

Softmax Loss (Multi Class Logistic Loss) = Softmax Activation + Cross Entropy

v

v

| Model | SoftMax Cross-Entropy

Figure 2. 10 Optimizing a model via the cost function for classification tasks [8].

2.2.2.2 Improving Classification with Margin-Based SoftMax Variants

In classification domain, the creation of distinct decision boundaries between classes is essential.
Difficulty often occurs when predicted outputs float near these boundaries. To mitigate this,
researchers have developed multiple variations of the traditional SoftMax function. These novel
adaptations propose unique takes on the concept of margin, which serves to widen the gap between
classes, thereby enhancing class separability. Moreover, they aim to tighten the cluster of data
points within each class, strengthening the coherence of samples sharing the same label. This dual
strategy of expanding inter-class margins while compacting intra-class distances greatly
contributes to a model's discriminative power.

Literatures on margin loss frequently explores these SoftMax variants. The common thread
among these enhancements is the incorporation of a margin that is directly embedded into the
SoftMax function. This integration fundamentally modifies the decision landscape, amplifying the
model's ability to locate and sustain accurate class divisions. Such strategic modifications to the
SoftMax function have shown to significantly elevate classification accuracy, offering a more
maintain framework for complex, multi-class categorization tasks. For context and as a

foundational concept for subsequent content, the SoftMax function [11] is expressed as follows:



38

1 e
LSoftMax = - N z log 2.14

Where N is the training batch size, C is the number of classes, x; denotes the iy, input of samples,
f(x;) is the corresponding output of last FC layer, and y is the corresponding label, w is weight and

b is bias [55]. For simplicity, bias taken zero, and use x; instead of f(x;).

Angular SoftMax (A-softmax) [11] loss to promote Standard SoftMax is introduced for face
verification, consider A-SoftMax for a binary case, let's start by discussing its application in a
scenario with two classes, though this analysis can easily be extended to cases involving multiple
classes. The softmax loss function, in a two-class scenario, yields Resultant probabilities which
guide the assignment of predicted labels: a sample is classified into class 1 if pl > p2, and into
class 2 otherwise. The decision boundary in this context is determined by the expression
(W — WJ) x = 0. This equation can be simplified to (||[W;]|| cos 8;- |[W,||cos 8,) ||| = 0, where
0; and O, represent the angles between the input vector x and the weight vectors W, and W,,
respectively. Specifically, for A-SoftMax, the bias term ‘b’ is omitted, transforming the standard

SoftMax to the following expression:

ollxillcos(By,.D

1 1 ||X1||<1>(9yl i)
LSoftMax = N Z lOg e||X1||COS(e] 1) B N Z log

2.15

Where 7= eX(<0s(®i)-m) 4 Yo i e3c0s(%ii)  The angle 6 between the weight vector w
and the feature vector x is critical for positioning the learned embedding distribution within an
angular framework. To enhance the traditional softmax approach, A-softmax introduces two key
modifications [56] aimed at improving class separability and feature discrimination:

¢ Normalization and bias zeroing: The first adjustment involves normalizing the weight
vectors (||W;|| = |[W,]| = 1) and setting the biases to zero (bl = b2 = 0). This
transformation shifts the decision boundary from being linear to angular, defined by

cosf; - cosB@,= 0. While this adjustment promotes a more geometrically intuitive
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separation between classes, it does not necessarily ensure that the features learned by the
model are discriminative.

Incorporation of angular margin: To address the issue of discriminative feature learning,
the introduction of an angular margin is proposed. By incorporating an integer margin
parameter m (where m > 2), the model is encouraged to learn features that are not
only separable but also clearly distinguishable. The decision rule becomes based on
whether cos(m#6,) - cos(mé,) >0 or cos(mf,) - cos(m6,) >0, assigning samples to class
1 or class 2 respectively. Essentially, the model is pushed to ensure that the cosine of the
angle between the input and the weight vectors of the correct class, multiplied by the

margin m, is greater than the cosine of the angle to the incorrect class's weight vector.

By comparing A-softmax to the traditional softmax loss, the key differences and advantages

become clear. A-SoftMax’s modifications aim to enhance model performance by:

1.

Promoting feature discriminability: Through the angular margin, features are learned in
a way that emphasizes inter-class differences and intra-class similarities.

Shifting to angular decision boundaries: By normalizing weight vectors and removing
biases, the decision criteria move from linear distances to angular separations, which can

be more naturally aligned with how humans distinguish between categories.

These enhancements offered by A-softmax are designed to improve the robustness and accuracy

of classification models, particularly in complex, high-dimensional spaces where traditional

method may struggle to differentiate between closely situated or overlapping classes.

In the context of A-Softmax loss, for example to evaluate a sample ' x  that could be part of

either class 1 or class 2, which are represented by the weight vectors W; and W,, respectively. The

fundamental classification rule imposed by A-Softmax loss dictates that for sample ' x ' to be

classified as belonging to class 1, cos(6;) > cos(8,). This condition can be equivalently expressed

by the inequality mf, < 8,. This means that the angle formed by ' x ' and the weight vector of

class 1, when scaled by the factor 'm', should be less than the angle formed by ' x ' and the weight

vector of class 2. By introducing the multiplicative factor ' m ', the A-Softmax loss effectively

enforces a stricter angular criterion for class determination, enhancing the model's ability to

distinguish and categorize samples more distinctly [56].
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A straightforward definition exists for choosing the angular parameter in additive margin
SoftMax [57]. This method of applying additive hyperparameter (m) is more interpretable
compared to A-SoftMax loss, and It’s given by:

T
wy,fi

P(6) =cosb—m — wherex=cos0 = Y(x) =x-m=——""—
[[wy || 161

2.16

The parameter m is used for the purpose of learning an angular margin between different feature
W§ifi

vectors and
[ 161

means normalization of input x under transformation will be happen.

In the training phase, the hyperparameter labeled m plays a crucial role in utilizing input features.
For L-SoftMax loss [58], the margin is determined by the similarity between two feature vectors,
which is measured by the cosine of the angle between them. This margin is adjusted by the
hyperparameter m, known as a hard angle margin. Here, a hard margin implies that the margin
parameter must be a positive integer to expand the Taylor series. This adjustment improves an
angular decision margin between classes. Although it requires both forward and backward
computation to decide on the angle, it achieves a clearer separation of classes compared to the
original softmax. The paper "The Soft-Margin Softmax for Deep Classification" [57] builds upon
the fundamental idea of using a soft margin, represented as a real-number distance. This approach
simplifies the forward computation and eliminates the need for backward computation. These
methods have proven effective in preventing network divergence, focusing instead on compacting
similar samples. To illustrate the concepts of hard and soft margins, consider the standard SoftMax
framework used in binary classification for a sample x which is correctly classified to class 1 (as
opposed to class 2). As the training progresses, the weight allocated to class 1 surpasses that
assigned to the input features corresponding with class 2. This process is mathematically

represented by the following equation:

[lwy | |IxI| cos(81) > [Iw,l| |IxI| cos(®,) 2.17

The concept of introducing a hard margin (angular margin) by L-Softmax loss is implemented

by formulating an intermediate term that facilitates the classification of samples close to the
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decision boundary, effectively distinguishing class 1 from class 2. The mathematical expression

of this concept is represented as follows:

[lwyl| |IxI]| cos(®) = [lwql||Ixl| cos(a®y) > [lwyl||IxI| cos(8,) 2.18

From a different perspective, the angle in L-SoftMax is m times smaller than the angle in the
original SoftMax. Consequently, this reduces the angle between the learned feature and w;. This
observation is true for every class. Essentially, L-SoftMax loss constrains the acceptable angle for
each class. The complex computations required for both backward and forward propagation by L-
SoftMax is made more manageable with Soft-Margin Softmax. This is achieved by reformulating

the angle equation to introduce a soft margin, as described below:

WiXx = wix—m > wix 2.19

In the equation, m represents the distance margin as a real positive number, hence the Soft-
Margin SoftMax is expressed as follows:

T . —
eWy;Xi—m

Si = T T
eWini—m + 2]!(¢Yi eW]- Xj 220

Hence, the Soft Margin SoftMax loss is formulated as follows:

o
VyiXi—m

L = —log( ) 221

Ty k Wy Xj
ewyix1 m+ Z]*Yie

“Margin Matters: Towards More Discriminative Deep Neural Network Embeddings for Speaker
Recognition” [59] explained specifies three fundamental modifications to standard SoftMax loss
functions: A-SoftMax [60], AM-SoftMax [57], and AAM-SoftMax [61]. In A-SoftMax, criteria

for the magnitude of the angular margin must be:
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®(8y,:) = cos(m8y, ;) < cos(By, ;) 2.22

The AM-SoftMax function replaces the multiplicative angular margin used in A-SoftMax loss,
which proved to be inefficient for gradient-based optimization methods. Instead, it introduces an

additive margin alongside input normalization to control feature vector magnitudes effectively.

The key enhancement in defining ‘P(Qyi,i)iS5
@(0y,;) = cos(8y,;) —m 2.23

The AAM-SoftMax (Additive Angular SoftMax) approach is predicated on the concept of arc
displacement of an input vector within a hyper spherical space. This method involves the

utilization of the following formula:

2.24
q)(eyi,i) = cos(By,; + m)
The formulation could be in what is termed the AAM-SoftMax, defined as follows:
es(cos(eyi+m)) 295

N
1
LaaM-softMax = — N Z log

i=1

Z

The scale factor 's' is strategically employed to mitigate the issue of vanishing gradients, as outlined

in [59]. The specific formulation is as follows:

7 — oS(cos(oy;+m)) | ZC o5(cos(6;)) 2.26
j=1j#yj

The AM-SoftMax introduces a constant margin to enhance class separability, but this does not
account for the varying angles between sample features and their corresponding class centroids.
DAM-SoftMax [14] proposes a dynamic margin for SoftMax, where smaller value of cos@
between a sample and its class centroid are penalized with a larger margin. This approach promotes
greater compactness within the class feature space. The underlying principle of this technique is

visualized to explain the conceptual reasoning.
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Figure 2. 11 Figures (a) and (b) depict shifts by a constant margin in AM-SoftMax. In contrast, (¢) and (d) show
transformations by a dynamic margin in DAM-SoftMax, assuming smaller angles indicate greater sample distances
from their respective classes. Specifically, in (c), the feature vector (black line) is distant from the class (red line),
resulting in a larger additive angle for this training sample compared to the sample in (d) [14].

In AM-SoftMax, constants (a) and (b) in Figure 2.11 are adjusted by a fixed margin, whereas in
DAM-SoftMax, (c¢) and (d) in figure 2.11 are adjusted dynamically. As depicted in (¢), the feature
vector, represented by the black line, is significantly distant from its class centroid, denoted by the
red line. Consequently, a more substantial additive angular margin is allocated for this particular
training instance relative to the one in (d). To achieve the objective of learning discriminative
features on the hypersphere, which involves both the norms of the neural network output and the
angle contributing to the SoftMax posterior , the following computation by Large Margin Cosine

Loss (LMCL) for Deep Face Recognition [62] is recommended:
2.27
N ei

— _1yN — _1
Lsoftmax = — N Zi:l —logp; = — N &i=17 logzg ofi
j=1

= fi=w'x= ||w]|| || cos ;
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In the cosine variant of the margin SoftMax function, the verification process compares angles
rather than magnitudes between the prediction and ground truth which requires more computation
burden. Large Margin Cosine Loss for Deep Face Recognition introduces a margin in the cosine
space rather than in the angular space. The norm of the feature vector ||w|| is constrained to a
constant value. Consequently, the posterior probability during training is dependent upon the

cosine of the angle rather than the norm, as expressed by:

s cos(Byi,i)

1 e
Lys = N Z - long oS cos(8;) 2.28
i

This formulation considers the feature vector f(x) and the weight vector (w) with angle 0 for a

given sample in a two-class scenario (cy, ¢;), as depicted in the following schematic representation:

class, class;

fx)
) 62> 6, ) x belongs to ¢,
. 61

w X et W cos(81) > cos(6,)

Figure 2. 12 feature vector f(x) and weight (w) for class sample C [62].

Thus, a sample x is classified into class ¢;, if cos(0;) > cos(0,) . The corresponding margin is

defined as follows:

Cos (8)

€2
» Cos(6;)

€1

magnitude > 0

Figure 2. 13 Visualization of sample classification using the cosine variant of the SoftMax function (LMCL) [62].
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For a correct classification into class c;, the criterion is cos(0;) —m > cos(6,) ,and

conversely, for class c,, the criterion is cos(60,) — m > cos(0,):

s(cos(Oy l) m)

Ly = Z_lo 2.29
ms N s(cos(Oy 1) m) + Z] ; es(cos(GJ i)

¢, : cos(B;) = cos(8,) +m

c, : cos(B,) = cos(6;)+m

The concept of Double Additive Margin SoftMax loss (DAMS), as proposed in [63], employs
dual additive margin criteria to amplify both intra-class compactness and inter-class separation.

The formula is as follows:

es.(cos(eyi)—m)

2|>—*

N
Z 2.30
i s(cos 63’1 -m) + Zc Lo es.(cos(90)+m)

Where g(0.) = cos(6.) + m, the geometric interpretation on the hypersphere manifold for
classifying a sample to class 1 should adhere to the proved AM-SoftMax loss rule, which states
cos(6;) —m < cos(0,) and implies cos(8;) — cos(0,) < m. Conversely, in DAM-SoftMax,

the inequality is modified to:
cos(6;) —m < cos(0,) + m leadingto cos(0;) — cos(6,) < 2m 2.31

The hyperparameter selection method introduced by this technique results in greater inter-class
margins and reduced intra-class variances compared to AM-SoftMax. From the classification

3

perspective, selecting an optimal value for ‘m’ enhances generalization by promoting
discriminative feature learning on the hypersphere, ensuring that all weight vectors corresponding
to a class are closely clustered. A wise choice of ‘m’ improves robustness to noisy data. However,
‘m’ should be carefully calibrated; if it is too large, it may restrict convergence, leading to a decline

in overall performance, as discussed in [62].
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2.3 Brief Overview of Automated Facial Expression Recognition Methods

The early neural network models for facial expression recognition, as introduced by Ekman and
Friesen and later implemented by Lisetti et al., adopted a two-step process involving the detection
of seven core emotions, followed by classification via a Multi-layer Perceptron (MLP) or RBF.
Further progress led to the development of hybrid models [64] that combined wavelet transforms
and neural networks [65], where low-dimensional features were transformed into higher
dimensions using wavelet Karhunen-Loeve transforms. Attention-based hybrid methods [66],
incorporating both Neural Networks and Recurrent Neural Networks (RNNs), were designed to
account for the temporal dynamics in feature extraction, while others relied on a 2D Discrete
Cosine Transform (2DDCT) approach for feature detection and classification using a
constructively designed feedforward network with a single hidden layer [67].

The initiation of Convolutional Neural Network (CNN) applications for facial expression
recognition marked a significant departure from hand-crafted feature extraction methods.
Pioneered during the FER-Workshop in 2013 [68], CNNs demonstrated a remarkable decrease in
generalization error, proving superior in analyzing unseen data. While traditional feature extraction
models were replaced by CNN's automated feature learning capabilities, integrating hand-designed
modules as auxiliary branches further enhanced the framework's ability to extract nuanced and
informative features. “Local Learning with Deep and Handcrafted Features for Facial Expression
Recognition” [69] introduces a SIFT module alongside a CNN branch, capturing vector features for
each sample using a bag-of-visual-words algorithm, then features are classified via a traditional
local-learning algorithm, such as k-means. The innovation in this approach lies in its utilization of
multiple parallel branches, incorporating spatial information through a pyramid model for multi-
scale inputs, which provides a comprehensive view of the input data. Additionally, this work
distinguishes itself by segmenting the input into patches or sub-regions, enhancing local feature
extraction. An SVM-Linear classifier is employed within the local-learning framework,
transitioning from linear to non-linear classification by designating individual SVM classifiers to
closely related test samples within different classes, a technique referred to as one-versus-rest.

Current research emphasizes the significance of assigning appropriate weights as a form of
learning uncertainty, as described in [70]. This perspective deviates from the Gaussian distribution
assumption, considering the inherent noise in facial images that can lead to misclassification. The

proposed uncertainty model is equipped for multi-task learning and accommodates multi-scaled
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input images, which are pre-processed to enhance low-resolution images. A supplementary module
external to the main ConvNet body is recommended to prompt the model to generate optimal
weights. A novel loss function is introduced, tailored to address the challenge of learning from
hard versus easily discernible features.

The primary goal of FER models splits into two fundamental objectives: the extraction of
discriminative features and the activation of the model to produce informative features that
increase the differences between classes in the data representation area. This is achieved through
the introduction of auxiliary loss functions that serve as regularization mechanisms. Notable
research employs the center loss function, which utilizes the mean and standard deviation of
specific classes to reduce the Euclidean distance of intra-class features to their respective class
means. By adhering to this principle, the model is refined to discard noisy features that fall outside
of class clusters, thus focusing on relevant feature extraction [71]. An auxiliary loss in “Learn
from All: Erasing Attention Consistency for Noisy Label Facial Expression Recognition” [72] used
Consistency loss for the helper branch with randomly different augmented input for memorizing
semantic meaning, helps the overall loss focus on the key part of features, not the whole of them.
Another aspect of using augmentation techniques is creating real-life sample input by methods like
randomly erasing parts. Because in real life, most FER datasets include low-resolution hard
samples. So, researchers prefer to utilize in-the-wild databases by the assumption of models for a
noisy condition.

As mentioned, one of the main topics for researchers in the FER domain is the need for sufficient
clean training samples. So many methodologies have been proposed to overcome this issue. One
is related to augmentation techniques to produce new noisy samples by introducing functions like
randomly erasing parts of each input. It means, occluded images deliberately are created to enforce
the model to learn noisy samples; then, the risk of overfitting can be reduced [73].

One of the biggest challenges in Facial Expression Recognition (FER) is handling low-resolution
images. Utilizing inputs at multiple scales allows for learning of local features and a
comprehensive understanding of the feature map's structure. As mentioned in [74], a pyramid-
scaled input enhances an ensemble model's ability to interpret images This includes a super-
resolution module that addresses the challenge of low-resolution images. It upscales images using
traditional algorithms to make up for their lack of precision. Additionally, the system employs a

label smoothing function that provides more information about similar classes. For instance, it
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reduces the weight of correct labels for 'fear' expressions, which are often confused with 'disgust’
and 'surprise' in predictions.

One significant aspect of using a Deep Metric Learning (DML) method for automated facial
expression recognition is encouraging the network to improve the discrimination of embedding
feature vectors to enhance variation for between-class samples and learn semantically meaningful
features in embedding space, which leads to robustness against within-class variations. As
mentioned in “Ad-Corre: Adaptive Correlation-Based Loss for Facial Expression Recognition in the
Wild” [74], an auxiliary loss is proposed to guide the network to generate higher correlation for
intra-class feature vectors and less correlated feature vectors for inter-class samples. So, by
penalizing the input pairs, the model can extract more discriminative features and break the
symmetric feature vectors of an input image. The focus is on generating discriminative feature
vectors to handle intra-class variability and inter-class similarities. By introducing regularization
components that produce varied mean vectors for different labels, the model is prompted to
generate consistent feature vectors for similar labels, enhancing its discriminative power.

FaceNet2ExpNet: Regularizing a Deep Face Recognition Net for Expression Recognition
by H. Ding [75] discusses the risk of overfitting due to the scarcity of annotated training samples.
To mitigate this issue, an auxiliary loss function derived from output distributions is employed to
reduce the distance between embedding vectors and the mean values of their respective classes,
thereby diminishing intra-class variation. The loss function is formulated following the Maximum
Likelihood Estimation process, with the aim of harnessing the low-entropy, highly expressive
features of facial images. Subsequently, the model is fine-tuned with cross-entropy in an
independent training phase, benefiting from label supervision to bolster its discriminative efficacy.
The discussion also covers using combined, multi-task learning networks in FER domain. These
models face performance constraints due to the costly and time-consuming process of annotating
labels, including landmarks and Action Units (AUs). However, the development of such models
is crucial for advancing the field and providing robust solutions to the challenges presented by
real-world facial expression data.

Some works demonstrate that suitable optimization techniques in training can help the network
to diminish problems of vanishing and exploding gradients by using some methods for decreasing
learning rate linearity or exponentiality. An adaptive learning rate adjusts the learning rate based

on local gradient value, which guides the model to find optima by correctly updating weights.
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During the hyperparameter tuning phase, the model learns to identify key features. If the learning
rate is too high, the loss function may not converge properly, resulting in divergence or oscillation
around the minima. On the other hand, a low learning rate might cause the model to get stuck in
non-optimal. Additionally, to improve the model's learning ability and achieve better classification
accuracy, a mix of validation and training datasets is used, especially when there are only a few

images available for training [71], [76], [77], [78].
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Chapter 3

Proposed Neural Network Architecture

3.1 Introduction

The content of this chapter was showcased at the IVADO 2024 [79], and ICCSIT 2022 [80]
conferences. It received the second-place award at the 6th Annual Graduate Student Research
(GSR) Conference in 2022 [81].

In the field of computer vision, the search for more advanced neural network architectures is
constant, driven by the goal of achieving higher accuracy and efficiency in tasks ranging from
image classification to object recognition. This work introduces an architecture influenced by U-
Net, VGG, and Inception modules, designed for classification tasks. The reason for this standard
vision networks property integration is to utilize U-Net's excellent multi-scale feature mapping
capability with the VGG’s ability to extract high-level features using small receptive fields and the
Inception framework's skill in dealing with auxiliary classifier as regularizer and introducing batch
normalization in improvement of training stability, thereby creating a robust and flexible model.
This introduction prepares for a comprehensive review of the proposed architecture, its
application, and the practical assessment of how it performs compared to current standard
networks in demonstrating robust generalization across widely used datasets for localization and
classification tasks.

This chapter presents a model tailored for image categorization, beginning with an overview of
the proposed architecture. Subsequently, the details of each individual component within this

framework are described. The model's precision in image classification has been validated using
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datasets, including MNIST, CIFAR10, and SVHN and the model’s effectiveness is evaluated to
a range of recognized classification CNN models.

This chapter introduces a model called EmoSynthNet, designed to efficiently extract information
when trained on limited data. This approach addresses the issue of overfitting in deep
convolutional networks, which typically require large amounts of annotated data. Insufficient data
can block a model's ability to generalize, requiring methods to extend its applicability to wider
domains.

Expanding the size of a network introduces more parameters, increasing the risk of overfitting.
To oppose this, innovative techniques are explored such as reusing feature maps, optimizing
computational resources, and processing information across various scales. These features are then
combined, allowing subsequent layers to utilize abstract features from multiple scales.
Additionally, by propagating contextual information to higher resolution layers through an

expansive path, the model's performance is further enhanced as outlined in this chapter.

3.2 Discussion of EmoSynthNet Framework

The architecture of proposed model ¢ EmoSynthNet’ is designed with a dual-branch approach,
each focusing on distinct computational criteria and perspectives. The following sections will
delve into the specifics of their construction, comparing how each branch contributes to the overall

performance and efficiency of the model.

3.2.1 Discussion of The Main Branch

EmoSynthNet's main branch, depicted in Figure 3.1, takes inspiration from the VGGI19
architecture by Zisserman and Simonyan [2]. This represents the first significant exploration into
the impact of depth within convolutional networks, a concept pioneered by VGG to improve the
detection of fine details in images. By refining the convolutional pathway, VGGI19 aimed to
simplify complexity and reduce the number of parameters, effectively lowering the likelihood of
overfitting, especially in situations where data is limited. The approach in EmoSynthNet extends
this methodology, aiming to further enhance image analysis capabilities while maintaining a

balance between model complexity and performance.
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VGG underlines the importance of depth in computer vision models by presenting two distinct
architectures with 16 and 19 layers and represents a significant advance in the domain of visual
representation. A key feature of VGG is its use of smaller receptive fields, scaling down from
AlexNet’s [82] 11x11 to a more compact 3x3. This strategic choice enhances the model's ability
to incorporate more non-linear activation layers, which in turn mitigates the risk of overfitting.
Additionally, VGG maintains a consistent kernel size of 3x3 throughout its architecture and
utilizes 1x1 convolutions as linear transformations for channel-wise feature integration and
improve computational efficiency.

The proposed model (EmoSynthNet) , reflecting the efficient high-resolution image processing
of VGGNet, adopts a deep CNN framework.

The EmoSynthNet’s architecture reveals in a main branch as shown in Figure 3.1, where the
main branch is divided into two distinct segments: an analytical segment consisting of blocks 1
through 4, and a synthetic segment including block 5 alone.

The analytical section is marked by the use of 3x3 kernel sizes, recognized for their
computational efficiency, and 1x1 kernels that serve as linear transformers of input channels,
enhancing the decision function's non-linearity without modifying the convolution layers'
receptive fields. A 1 x 1 convolution, often termed as a 'network in network' layer, has unique
capabilities. It acts as a flexible tool within a convolutional neural network. By applying this
convolution, the dimensionality of the input can be reduced, creating a compressed representation
that is more manageable for the network. This is particularly useful when there is a need to mitigate
the computational load without losing critical information. Beyond just reduction, 1 x 1
convolutions can also increase the network's depth while keeping the spatial dimensions
Unchanged. This allows the model to learn more complex features without expanding the size of
the feature maps. It’s like having a mini neural network for each pixel that can process all the
information from the channels at that pixel. Furthermore, by introducing non-linearity, 1 x 1
convolutions can enhance the decision-making capabilities of the network. When stacking these
layers, they effectively become a multi-layer perceptron for each pixel location. This can be
especially beneficial when dealing with tasks that require understanding of fine-grained details,
as it allows the network to make more sophisticated decisions based on local pixel information

[26]. [82]
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Unlike VGG19, EmoSynthNet introduces shortcut connections between 3x3 filter pairs . This,
along with Batch Normalization after each convolution and prior to activation layer [83], and
strategic Dropout integration, marks a significant architectural advancement. To maintain the
integrity of the features and facilitate the reuse of feature maps, skip connections are strategically
integrated within blocks 1 and 3. The Residual Network (ResNet) architecture [32], introduced
and utilized shortcut connections to transmit information smoothly, reduce training time and
improve accuracy, without increasing complexity or the model's parameter count that identify and
amplify relevant features, suppressing the unnecessary.

In the process from block 1 to block 4, each convolutional layer concludes with an Exponential
Linear Unit (ELU) activation to prevent vanishing gradient and improve dying ReLU problem for
faster convergence and better generalization. This layer is immediately followed by a Batch
Normalization (BN) layer, ensuring consistency and stability in the network’s learning process.
Notably, as progress through the blocks, there is a progressive doubling in the number of channels,
beginning from 32 in the first block and escalating to a robust 512 channels block 4, reflecting an
intentional design to enhance the network's capacity for feature extraction. EmoSynthNet's block
2 has four conv layers with 128 channels, while block 1 has four conv layers with 64 channels,
except the initial one with 32 channels, block 3 has four conv layers with 256 channels, and block
4 has three conv layers with 512 channels.

In Figure 3.1, the VGG19 architecture is illustrated on the left, blocks 1 and 2 characterized by
its use of two convolutional layers followed by a MaxPooling layer while blocks 3 to 5
characterized by its use of four convolutional layers followed by a MaxPooling layer. This design
choice aims to reduce overfitting and expanded the field of view by merging contextual details and
disregarding precise location data. On the right, EmoSynthNet’s customization is depicted, where
it improves upon the VGG19 concept by implementing consecutive 3x3 convolutional layers and
substituting the standard MaxPooling with Average Pooling. This modification is critical for
preserving the data's seasonality and trends while maintaining residual information. This
arrangement helps balance consideration of low-level features with network complexity.

The EmoSynthNet main branch combines two influential frameworks in vision tasks,
specifically taken from idea of U-Net [6] framework. U-Net is architected for multi-scale feature
mapping, utilizing an encoder to concentrate high-level complexities into refined features,

combined with a decoder for high-resolution mapping. The common issue of vanishing gradients
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is addressed through skip connections, bridging contraction steps with expansion paths, thereby
preserving detail-rich context. U-Net's design facilitates feature extraction from minimal data sets.

While convolution layers reduce image resolution by downsampling, a synthetic segment
opposes this effect by employing transposed layers to restore detail. The addition of transposed
layers after the analytic segment enhances the network's effectiveness with limited data, improving
the precision of localization. The synthesis segment features four layers designed for dimension
expansion: two transposed convolutional layers and two custom upsampling layers. Transposed
convolutions increase the feature maps' spatial dimensions using adjustable parameters. In
contrast, upsamplers enlarge spatial dimensions by a factor of two without relying on learnable
parameters. The incremental approach of upsampling using smaller kernels significantly cuts down
on the number of parameters, offering a more efficient alternative to wide-ranging upsampling that

typically requires medium to large-sized kernels.
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3.2.2 Discussion of The Side Branch

Adding depth to the network often improves accuracy but can also increase computational load
and the risk of overfitting, especially in data-constrained environments. Therefore, pairing an
auxiliary classifier with the main classifier can sharpen early-stage feature discrimination and
boost training stability.

The concept of an auxiliary structure in EmoSynthNet design as shown in Figure 3.2 (right
image) is inspired by the inception module [25], as presented in Figure 3.2 (left image). In the
specific case of Inception, an auxiliary classifier was introduced as a regularizer to aid in stabilizing
training. The inception module's design, aimed at expanding filter banks, served as the foundation
for the auxiliary module proposed in this work. This module has been modified for EmoSynthNet’s
auxiliary modules in terms of the type and number of layers and incorporates short connections
within the module itself. The approach integrates additional branches within the network to
strengthen feature extraction capabilities and improve overall model robustness by providing
multiple scales of observation within the same layer.

Inception's module architecture is distinguished by its scalability, adaptability, and efficiency in
the field of computer vision. It provides a framework that leverages sparse connections for the
majority of computations, coupled with aggregated features. The architecture incorporates a
sequence of stacked convolutions and, in certain instances, max pooling with a stride of two. This
design allows the model to process visual information at multiple scales simultaneously, enabling
it to abstract features across scales and reinforce network learning. The improved gradient back-
propagation across the layers is a direct result of this multi-scale feature abstraction.

The EmoSynthNet side branch with 14 layers is composed of a pair of auxiliary modules, as
presented In Figure 3.2 (right image), followed by an average pooling layer. Each auxiliary module
with seven convolutional layers, surpassing the inception module (left image) by one layer. These
modules are organized into three sub-branches, integrating a max-pooling layer with a stride of 1,
compared to the inception's stride of 2. A key distinction lies in the decision to minimize the width
and extend the depth of each module and use of short connections. In place of the inception
module's four branches, the EmoSynthNet’s auxiliary modules utilize three branches, which
include two sequential convolution layers of 3 X 3 and 5 X 5, enhancing the network's ability to

capture complex features at various scales.
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The EmoSynthNet auxiliary pathway’s design strategically merges the outputs from the three
sub-branches. It also utilizes skip connections from the second convolutional layers of the first and
third sub-branches, with the goal of expanding the feature map collection. To balance the spatial
dimensions of the side branch output, a 7X7 kernel size pooling layer is employed. This adjustment
is crucial for allowing a smooth concatenation with the output from Block 5’s first transposed

convolution layer, as detailed in Figure 3.1.

Concatenation
Conv 3x3 Conv5x5 | | Convix1i |
Conv 1x1 Conv 1x1 Conv1xl | | MaxPool 3x3
. | Conv3x3 [ convixl | Conv 5X5

Conv1x1 |

Conv 1x1

MaxPool 3x3

Figure 3. 2 Structure of the Inception Module (Left) and the Auxiliary Module of the Proposed Framework (Right).

3.2.3 Design and Analysis of EmoSynthNet Framework

The Inception U-Net architecture [34] combines the strengths of Google’s Inception model [25]
with the robust structure of U-Net [6], replacing traditional convolutional layers with Inception
modules. By doing so, the model achieves greater depth using U-Net's proven framework and
increased width from the Inception modules' capacity to handle multi-scale information. The
resulting architecture of the EmoSynthNet framework features a main branch akin to U-Net for
depth and a side branch for width that draws on the principles of the Inception modules (as detailed
in section 3.2.2). Additionally, the Deep Residual U-Net [36] architecture incorporates residual
connections that ease the training of deep networks by facilitating a smoother flow of information.
This concept has guided the incorporation of short connections throughout the framework,
enhancing the efficient propagation of gradients and improving learning in deep network

structures.
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The proposed model's architecture (EmoSynthNet), delineated in Figure 3.3, is structured into a
primary branch as shown in Figure 3.1 Following VGG's paradigm, and a side branch as shown in
Figure 3.2. Following Inception’s paradigm,

EmoSynthNet’s main branch includes a total of 34 layers, the primary branch with 20 layers
retains spatial resolution from the input across all maps within blocks 1 to 4. EmoSynthNet’s side
branch includes a total of 14 layers for multi-scale processing.

The diagram of the proposed model is shown in Figure 3.3, which consists of a main branch and
a side branch (Figure 3.2). The main branch of EmoSynthNet has two parts: an analysis segment
consisting of blocks 1 to 4 and a synthesis segment consisting of block 5. The side branch consists
of two auxiliary modules and an average pooling layer. The main branch of the network has 20
layers. In blocks 1 to 4, the spatial resolution of all the maps produced by the various convolutional
layers is the same as that of the input to the block. Blocks 1 and 3 use skip connections. The
analysis segment of EmoSynthNet uses kernel size 3 X 3. Each convolutional layer of blocks 1 to
4 is followed by an exponential linear unit (ELU) and a batch normalization (BN) layer. In the
analysis segment, the number of channels doubles after each block, starting from 64 at the output
of the first block to 512 at the output of the fourth block. The synthesis segment has a total of 4
layers, of which two are transposed convolutional layers, and the other two are upsamplers.
Transposed convolutional layer increases the spatial size of the feature maps through learnable
parameters. The upsampler increases the spatial size of each feature map from (n X n) to 2n X
2n) without using any learnable parameters. The benefit of upsampling in stages using small-sized
kernels is that it reduces the number of parameters by a significant amount compared to that in
multi-scale upsampling using kernels of medium to large size. The skip connections allow
effective information transfer from the analysis segment to the synthesis segment without an
increase in the number of parameters.

The side branch displayed in Figure 3.3 is composed of two auxiliary modules having the same
structure, as shown in Figure 3.2. Each auxiliary module consists of 7 convolutional layers
followed by a rectified linear unit (ReLU) divided into 3 sub-branches with one maxpooling layer.
The first sub-branch includes a 1 X 1 convolution layer with 64 filters followed by two successive
5 X 5 convolution each with 96 filters. The second sub-branch consists of a max-pooling layer
followed by a 1 X 1 convolution layer with 64 filters. The third sub-branch has the same structure

as the first sub-branch except that the first convolution layer has 128 filters, while the second and
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third convolution layers use 192 filters using kernels of size 3 X 3 instead of 5 X 5. The outputs
of the three sub-branches, along with the outputs from the second convolution layers of the first
and third sub-branches, are concatenated with the aim of increasing the numbers of feature maps.
Then, a pooling layer with a kernel of size 7 X 7 is used to adjust the spatial size of the output of
the side branch so that it can be concatenated with the output of the first transposed convolution
layer of Block 5.

Assuming the size of the input image to the network to be m X m, it’s seen from Figure 3.3 that

the input to the first transposed convolution layer in Block 5 is of size m/ 16 %X m/ 16 - The size of

the output of the first transposed layer using a kernel of size 3 X 3, stride 1 and without padding

1s (m/ 16 T 2) X (m/ 16 T 2)- After concatenation with the output of the side branch, the output

has 1408 feature maps (512 maps from the first transposed convolution layer and 896 maps from

the side branch), each of spatial size ("/; 61T 2) % ™/4 ¢+ 2). Then, the upsampling layer
increases the spatial size of the feature map to (m/8 +4) X (m/8 + 4). This process of the

transposed layer is repeated using 256 filters, each using a kernel size of 3 X 3. The output of this
transposed layer is upsampled using a 2 X 2 kernel size. Thus, the output of block5 has 256 maps,
each of the spatial size (/4 + 12) x (M/, +12).

Block 6 consists of a flattening layer followed by three dense layers containing 128, 64, and 10
neurons, respectively and a SoftMax activation layer. The output of block 5 is fed to the flattening
layer that produces a one-dimensional feature vector of size 256 * (m/ 4t 12)2. Thus, the
numbers of the outputs from the three dense layers are respectively 128, 64, and 10. A SoftMax
activation function completes the sequence, producing a probability distribution over the different
classes, effectively indicating the model's prediction for class membership.

The model's structure is optimized to ensure an effective balance in resource distribution across
computational dimensions. This includes parallel computation capabilities, shared weights, and a
significant reduction in dimensionality, leading to more efficient memory utilization. Additionally,

the utility of residual connections is explored.
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3.3 Experimental Results

In this section, the classification accuracy of the EmoSynthNet is evaluated through simulations.
Three widely used object recognition datasets: MNIST, CIFAR10, and SVHN are employed to
benchmark the model's performance. Comparative analysis is carried out between EmoSynthNet
against established networks results documented in published literature, and against vision

networks deployed in this work, indicating the efficacy of the EmoSynthNet in classification task.

3.3.1 Datasets

MNIST

The MNIST dataset, distinguished for its straightforward structure and small image sizes, serves
as a benchmark for assessing image classification algorithms. It comprises 70,000 grayscale
images of handwritten digits from 0 to 9, arrayed across 10 classes, with each image sized at 28x28
pixels. The dataset is split into a training set of 60,000 images and a testing set of 10,000 images,
necessitating minimal pre-processing for effective classifier training. Figure 2.3(a) presents a

sample from the MNIST dataset.

CIFARIO

CIFARI10, known for its diversity and real-world complexity, consists of 60,000 color images
categorized into 10 distinct classes. Each 32x32 pixel image is part of a collection where 50,000
constitute the training set and 10,000 make up the testing set. This dataset ensures mutual
exclusivity among classes, avoiding overlap between similar categories such as 'automobile' and
'truck’ or 'dog' and 'cat,' as illustrated in Figure 2.3(b). The unnamed dataset presents an array of
more intricate and varied classes when compared to CIFAR10, encompassing both fine-grained

and broader categories.

SVHN

The Street View House Numbers (SVHN) [84] dataset, known for its application in natural scene
image recognition, is a pivotal resource in machine learning and object recognition research. This

dataset comprises labeled digits captured from street-level photographs, presented in both cropped
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and original formats. Notably, SVHN facilitates the development of advanced algorithms by
offering a real-world challenge with a straightforward setup, minimizing the need for extensive
data preprocessing and formatting. The dataset includes images printed digits (from 0 to 9) and
divided to a substantial training set contains 73257 images, test set 26032 and the extra set 531131,
each sized at 32x32 pixels. These images are systematically categorized into a training set, a testing
set, and an additional set derived from house numbers visible in Google Street View images. This
categorization is designed to support a wide range of experiments, focusing on practical, yet
complex, real-world problems. For instance, the experiments highlighted in Figure 3.10 utilize the
cropped version of the dataset, specifically extracted from street house numbers, to demonstrate
the application of various machine learning models. This approach underscores the dataset's

relevance and versatility in tackling real-world challenges in image recognition.
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Figure 3. 4 Sample images from datasets: MNIST (Top), SVHN (Down left), CIFAR10 (Down right) .
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3.3.2 Training Methodology Analysis

The network is trained using backpropagation (BP), which updates the weight of the network to
acquire an optimal solution by calculating the gradient of the loss function relative to the weights
of the network. This process is repeated until the loss function reaches a minimum value. During
training, each batch consisting of 64 images is fed to the network. Hence, the network sees shuffled
images in small numbers during the process of updating the weights, thus reducing the
computational demand. The training dataset was augmented by a factor of 0.2 using zooming,
shearing, and flipping. The number of training epochs is limited to 100 in experiments. The training
is performed in an end-to-end manner, using the Adam optimizer with 0.9 momentum. The model
was observed to converge to an optimal solution efficiently for a learning rate of 0.001 and
decreased by a factor of 0.1 every time the validation error is not decreasing after every 5 epochs.
A weight class function that assigns more loss weight for classes with fewer labels is applied. A
two-scale training is implemented wherein the training starts with a scale setting of 1/255, and
then, switching to a scale value of 1/512 in the later part of training to speed up the training similar
to VGG models training. Simulations are carried out using Google Collaboratory Pro, with GPU
and High-Ram runtime configuration settings.

Figure 3.5 (left column) maps out the final 20 epochs, showing model accuracy and validation
loss on the MNIST (Figure 3.5 (a)) and CIFAR10 (Figure 3.5 (c)) datasets. These outcomes arise
after fine-tuning hyperparameters to enhance the model's capacity to generalize. Additional tests
involved implementing regularization techniques, confirming the consistency of these
improvement trends across datasets.

In Figure 3.5 (right column) validation loss for MNIST (Figure 3.5 (b)) and CIFAR 10 (Figure
3.5(d)) has been shown. On MNIST, the loss plateaus after the 10th epoch, and a similar trend is
noted on CIFAR 10, where the validation loss stops to decline after the 14th epoch. Despite this,
the training loss continues to diminish across all epochs for both datasets. This pattern is mirrored
in the accuracy plots for MNIST in Figure 3.5 (a) and CIFAR10 in Figure 3.5 (a), with no
substantial improvements beyond epochs 10 and 14, respectively. These patterns are classic signs

of overfitting, suggesting that the model isn't learning new features beyond these points.
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Figure 3. 5 Training / Validation accuracy and loss of the EmoSynthNet of Figure 2.1 implementation on MNIST (a)
and the accuracy pruned over 99%, CIFAR10 (b) and the accuracy pruned over 85%.

The confusion matrices for MNIST and CIFARI10, as shown in Figure 3.6, illuminated on
classification performance using Cross-Entropy loss and Adam. For CIFAR10, a considerable
pattern appears with 'cat' and 'dog' classes often confused, revealing misclassification rates of 8.9%
FN (False Negative means missed correct labels (Type I error)) and 9.4% FP (False Positive means
Incorrectly predicted positive cases (Type II error)). respectively. This may highlight the difficulty
in differentiating between similar features of noisy samples. The confusion matrix for CIFAR10
also indicates that certain classes with similar shapes and textures are prone to higher
misclassification rates. For example, 'cats' being mistaken for 'frogs' at a rate of 6.4% FP which
points to some visual similarities between these categories that the model struggles to analyze. In

contrast, the MNIST dataset shows minimal confusion, with the largest misclassification being
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only 0.001% between the numerals such as ‘0’ and ‘8’, ‘0’ and ‘2°, ‘0’ and ‘7°. This demonstrates
the model's exceptional accuracy in distinguishing clear, distinct digit patterns for number zero
which may be caused due to noisy samples for class zero or lack of ability to extract sufficient
features for this specific class. For MNIST, despite the overall high accuracy, subtle confusions
suggest that the model may benefit from additional regularization [20] to refine its precision for
these similarly shaped numerals. Addressing the misclassifications as indicated by the confusion
matrix is crucial when applying regularization techniques, such as penalizing the loss function or
implementing dropout. In the case of MNIST, the error range is tiny, maintaining above 99%
accuracy most of the time. CIFAR10's errors, however, stem from misidentification between
classes with similar features. Although errors in MNIST are small, they highlight the necessity of
regularization strategies to effectively distinguish hard-to-separate samples with shared
characteristics.

This comparison underlines the importance of customizing regularization techniques to specific
challenges presented by each dataset. The application of dropout and penalty adjustments to the
loss function can be informed by these findings. Similarly, adjusting the loss penalty for CIFAR10
could help the model learn more robust features for classes with high semantic similarity but
distinct characteristics, improving the distinction between classes like 'cat' and 'dog'. These
customized regularization techniques aim to enhance the model's generalization capabilities,

thereby reducing the error rates and improving the accuracy across both datasets.
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Grad-CAM, or Gradient-Weighted Class Activation Mapping [85], leverages the gradients
flowing into the final convolutional layer to generate a localization map, emphasizing pivotal
regions within the image for predicting a particular class. The strength of Grad-CAM lies in its
ability to identify class-specific regions within non-attention CNN models, all without
necessitating alterations to the network architecture or re-training the model. Grad-CAM enhances
the interpretability of a classifier [86], [87], [88] by attributing significance to individual neurons.
It computes the gradients of the output category, denoted as y¢ (prior to the SoftMax operation),
with respect to the feature map activations, A¥, of the convolutional layer. These convolutional
layers inherently encapsulate class-specific semantic information, similar to 'object parts.' By
globally averaging the gradients across the width and height (i, j) dimensions, it specifies the

importance weights, aj, for the neurons, according to the formula:

o1 ay°
af= ;) Y2 3.1
i

Global Gradient
average pooling via backprop

These importance weights, ay,, effectively linearize the deep network's decision-making process,
highlighting the significance of specific feature maps for the target class. A linear combination of
these weights with the activation maps yields a coarse heatmap that aligns with the dimensions of
the final convolutional feature map.

Figure 3.7 illustrates the Grad-CAM visual explanations for the EmoSynthNet demonstrates that
the neurons highlighted by Grad-CAM as crucial for the class-discriminative localization are vital
for the identification of the object class, independent of bounding box annotations. Given that the
datasets utilized for training contain images with a single object, the model exhibits amplified
precision in recognizing images with individual objects, particularly those classes featured within
the training datasets, such as dogs, cats, and vehicles. Convolutional layers are adept at preserving
spatial details that fully connected layers might overlook. Therefore, we expect the concluding
convolutional layers to offer an optimal balance of high-level semantics and complex spatial data.
These layers' neurons detect semantic, class specific features within an image, such as distinct

object parts. Grad-CAM exploits the gradients flowing into the CNN's final convolutional layer to
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allocate significance to each neuron for specific decision-making processes. This method has
broad applicability, enabling the interpretation of activations across any layer in a deep network.
Backpropagating the signal for the class of interest to the relevant rectified convolutional feature
maps yields the initial Grad-CAM localization, visualized as a blue heatmap. This heatmap
outlines the relative 'importance' of different regions in making a classification decision, showing
where the model focuses its attention. However, upon examination, particularly in Figure 3.7's first
and fourth rows, the heatmap, while highlighting the recognized object a car or a hand isn't
exceptionally precise. The highlighted area includes parts of the object and the surrounding
environment. It indicates that the model detects a car or hand, but doesn't clarify which specific
features confirm the classification. This is where deeper layers come into play, surpassing simple
edge detection of earlier layers. They begin to understand and emphasize the distinct shapes that
define objects, such as the details of a car's design or the curvature of a hand. These defining
features start to emerge, marked by vibrant green and yellow shades, against the context of less

relevant areas shaded in red.
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Grad-CAM Grad-CAM

Figure 3. 7 From left to right, each two columns display the qualitative results for the Original Image, and the Grad-

CAM Visualization, respectively, accompanied by their confidence levels. Grad-CAM effectively localizes the
categories of the original objects.

3.3.3 Comparative Performance Analysis

3.3.3.1 Evaluating Results with Contemporary Vision Networks

Table 2.1 shows the classification accuracy of the EmoSynthNet and contrasts it with seven
existing vision frameworks, each employing a unique network performance methodology.

Uniformly, these models leverage the ADAM and CE for error reduction. The table’s fourth and
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fifth columns detail the classification performance on the MNIST and CIFAR10 datasets,
correspondingly. Notably, the best, second-best, and third-best accuracy results are denoted in red,
blue, and green fonts. Table 2.1 shows that the EmoSynthNet surpasses all comparative methods
in accuracy. Specifically, the proposed architecture achieves a 1.13% improvement over the
enhanced InceptionV3 + SWAT model on the C10 dataset and a 0.05% increase compared to the
VGG19 + SWAT model on the MNIST dataset. The superiority of EmoSynthNet is further
emphasized by its accuracy increments: by 0.02% over the second-best method, which
incorporates Cross-Entropy (CE) loss, and by 0.05% over the third-best on MNIST. For the
CIFARI10 dataset, the enhancements are even more clear, with a 0.35% and 1.13% accuracy raise

over the second and third-ranked methods, respectively.

These results are especially significant considering they were attained irrespective of the choice
between Cross Entropy (CE) and Mean Squared Error (MSE) loss functions. Such outcomes
suggest that while certain regularization approaches may be effective for particular architectures
and datasets, their effectiveness is not widely applicable. The EmoSynthNet’s architecture,
therefore, demonstrates a comprehensive adaptability and effectiveness across two widely used

object recognition datasets.

Table 3. 1 Comparative analysis of classification accuracy among various methods on MNIST and CIFAR-10
benchmarks: The most effective method is emphasized in bold red, followed by the second most effective in
blue, and the third in green.

Methods Loss Optimizer MNIST  CIFARIO

DMoCo-V1 (2021) [89], CE Adam 97.6% 85.0
ResNet-26 (2023) [90], CE SGD 97.2% 91.1%
Inceptionv3 (2023) [91], MSE Adam 99.51%

ResNet50 (2023) [91], MSE Adam 98.83% 81.76%
DensNet121 (2023) [91], MSE Adam 99.36% 84.92%
VGG19 (2023) [91], MSE Adam 83.98%
ResNet50 (2022) [92], MSE Adam 99.56% 86.21%
EmoSynthNet, MSE Adam 99.63% 89.69%

EmoSynthNet, CE Adam 99.61% 91.45%
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3.3.3.2 Comparing Performance with Existing Vision Networks

Table 3.2 highlights EmoSynthNet's computational efficiency with greater FLOPS (approximately
1.12 Giga Floating Point Operations Per Second (FLOPS) computed as a unite of speed in
computation) in comparison to established vision networks like MobileNetV2, EfficientNetBO,
ResNet50, VGG19, and DenseNet121. EmoSynthNet presents a compact design with fewer
parameters (~34 million) and a compact memory footprint (~82 MB). Its structure, 34 layers deep,

ranks just after VGG19, signifies a more efficient network that doesn't sacrifice processing speed.

Table 3. 2 Details of experimented comparative CNN models

Parameters FLOPS Approx. Size

Methods (Millions) ~ (Billion) ~ (in MB) Depth
MobileNetV2 [93], 4 0.006 14 105
EfficientNetBO [88], 5 0.008 29 132

ResNet50 [92], 26 0.078 98 107
VGG19 [91], 144 0.417 549 19
DensNet121 [94], 8 0.057 33 242
EmoSynthNet, 21 1.120 82 34

Performance evaluations on CIFAR10 and SVHN datasets, detailed in Tables 3.3 and 3.4,
showcase EmoSynthNet's enhanced ability to learn features effectively with smaller datasets
relative to standard classification networks deployed in this work. In unseen test data,
EmoSynthNet demonstrates robust generalization, and aspect highlighted through superior

precision, recall, and F1-score metrics against conventional vision architectures.
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Precision, recall and F1l-score metrics calculated in Tables 3.3, 3,4 are essential for assessing

classification performance beside accuracy, and are explained as following:

e Precision: The ratio of correctly predicted positive instances to all predicted positive
instances, highlighting accuracy. A high precision indicates few false positives, essential
where such errors are costly.

¢ Recall: Known as sensitivity, recall measures the fraction of correctly predicted positives from
all actual positives, reflecting the model's ability to capture relevant instances. High recall
signifies minimal false negatives.

e F1-Score: Harmonizing precision and recall, the F1-Score provides a balanced metric,

particularly beneficial in unbalanced class distributions.

Figures 3.8 and 3.10 visualize EmoSynthNet's comparative accuracy advantages in training
SVHN,CIFAR-10 respectively, and Figures 3.9 and 3.11 visualize EmoSynthNet's comparative
accuracy advantages in validation SVHN,CIFAR-10 respectively. The simulation has been
implemented with an experimental setup for SVHN mirroring CIFAR-10: 50 training epochs,
batch size of 96, an initial learning rate of 0.001 adjusted lack training progress. The Cross-Entropy
loss function, along with Adam optimizer, pushed EmoSynthNet to the forefront 86.32% test
accuracy on CIFAR-10 and 95.75% test accuracy on SVHN, surpassing VGG19 and DenseNet121
which followed closely behind. The comparable performance of EmoSynthNet is remarkable,
considering its lower parameter count, reduced memory requirements, and greater number of
FLOPS, as demonstrated in Table 3.2. The upcoming strategy of loss in chapters 4 will be applied
to EmoSynthNet, focusing on amplifying discriminative feature identification to elevate

classification accuracy for more complex datasets on chapter 5.
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Table 3. 3 Comparative analysis among existing vision networks vs the EmoSynthNet and functions on

CIFAR-10 dataset. The most effective method is emphasized in bold.

CIFARI10
Methods Optimizer Loss Accuracy  Error  Precision  Recall ~ F1-Score
MobileNetV2, Adam CE 77.23% 1.20  78.30%  76.65% 0.77
EfficientNetBO, Adam CE 81.26% 093  82.24% 80.87% 0.81
ResNet50, Adam CE 82.59% .10 8291% 82.21% 0.82
DensNet121, Adam CE 85.68% 0.85  86.00%  85.34% 0.85
VGG19, Adam CE 86.03% 1.05  86.35% 85.78% 0.86
EmoSynthNet, Adam CE 86.32% 0.67 87.03% 85.99% 0.86
1
0.95
5 09
:
<
0.85
0.8
075
Epochs
Run + Value Step Relative
(4] DenseNet121/20240303-053151/train 0.9977 49 35.2 min
L EfficientNetB0/20240303-064455/train 0.994 49 22.67 min
(0] EmoSynthNet(ours)/20240303-224554/train 0.997 49 2.169 hr
(] MobileNetV2/20240303-062040/train 0.9889 49 17.52 min
(] ResNet50/20240303-043535/train 0.998 49 22.32 min
VGG19/20240303-051625/train 0.9971 49 10.87 min

Figure 3. 8 Training accuracy comparison plots of the EmoSynthNet against existing vision networks on CIFAR10.
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0.82
Efﬁclenr_Ner_B_l]
0.8
0.78
MobileNetv2
0.76
0.74
0.72 |
0 5 10 15 20 25 30 35 40 45 49 X9
Epochs
Run Value Step Relative
®  DenseNet121/20240303-053151/validation 0.857 49 35.2 min
EfficientNetB0/20240303-064455/validation 0.8128 49 22.67 min
@ EmoSynthNet(ours)/20240303-224554/validation 0.8633 49 2.169 hr
®  MobileNetV2/20240303-062040/validation 0.7722 49 17.52 min
®  ResNet50/20240303-043535/validation 0.8261 49 22.32 min
® VGG19/20240303-051625/validation 0.8604 49 10.87 min

Figure 3. 9 Validation accuracy comparison plots of the EmoSynthNet against existing vision networks on

CIFARIO0.
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Table 3. 4 Comparative analysis among existing vision networks vs the EmoSynthNet and functions on SVHN
dataset. The most effective method is emphasized in bold.

Accuracy

SVHN
Methods Optimizer Loss Accuracy  Error  Precision  Recall ~ F1-Score

MobileNetV2, Adam CE 90.32% 0.54  90.80% 90.11% 0.90

EfficientNetBO, Adam CE 91.50% 0.41 92.09%  91.20% 0.91

ResNet50, Adam CE 92.95% 046  93.21% 92.84% 0.93

VGG19, Adam CE 94.14% 0.55 95.18% 93.53% 0.94

DensNet121, Adam CE 94.68% 034  94.83% 94.56% 0.94

EmoSynthNet, Adam CE 95.75% 033  96.01% 95.66% 0.95
1
0.98
0.96
0.94
092
0.9
0.88
0.86

0 5 10 15 20 25 30 35 40 45 49x)
Epochs -
Run Value Step Relative

] DenseNet121/20240303-071518/train 0.9994 49 49.88 min

o EfficientNetB0/20240303-085033/train 0.9966 49 31.81 min

EmoSynthNet/20240304-210805/train 0.9944 49 58.24 min

e} MobileNetv2/20240303-081439/train 0.9941 49 25.05 min

[°] ResNet50/20240303-052507/train 0.9987 49 31.68 min

Q VGG19/20240304-221922/train 0.9731 49 13.6 min

Figure 3. 10 Training accuracy comparison plots of the EmoSynthNet against existing vision networks on SVHN.
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Figure 3. 11 Validation accuracy comparison plots of the EmoSynthNet against existing vision networks on SVHN.
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3.4 Summary

This chapter examines the proposed model's performance, highlighting its superior accuracy
compared to existing vision models with Cross Entropy (CE) loss and Mean Squared Error (MSE)
loss. The network architecture and training process are outlined, highlighting how a synchronized
structure and precise hyperparameter tuning enhance the model's training efficiency. Results show
that the proposed model performs in a comparable manner to existing vision networks due to its
capability to extract distinct features effectively. Next chapter will discuss enhancing the proposed
model's accuracy (EmoSynthNet) by employing the proposed SoftMax loss (MAM-SoftMax),
designed to mitigate the challenge of limited sample availability in classification task. Then,

chapter 5 will present the application of this framework for facial expression recognition task.
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Chapter 4

SoftMax-Loss Function

4.1 Introduction

The loss function plays a vital role in adjusting weights during the backpropagation stage of the
neural network's training process. It measures the difference between the expected outcome and
the actual prediction, guiding weight adjustments through the calculation of gradients. Typically,
this process is repeated multiple times to refine the weights, with the goal of minimization and
improving accuracy. Standard loss functions can lead to underlearning of complex classes and
overfitting of simpler ones. Including extra terms in cross-entropy loss can help learn difficult
classes better and add noise tolerance to prevent overfitting (as outlined in Section 2.2.1.2).

Chapter 4 discusses the reasoning behind the approach to cross-entropy and SoftMax, offering a
clear explanation of their roles in feature learning, and advanced methods that enhance the
traditional backpropagation process, refining the network's learning strategies. Here, methods to
optimize the penalty application in cross-entropy function and to strategically select
hyperparameters that project samples effectively in the embedding space are presented. This
method enables the networks to generalize more effectively from training data.

In this chapter, a regularization technique within the loss function, alongside a method for
selecting margins in SoftMax functions are introduced. These are designed to amplify the
dispersion between different classes while maintaining consistency within the same class (Section

2.2.1.3 details the use of advanced regularization algorithms in cross-entropy to create unique
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features. Following this, Section 2.2.2.2 investigates the techniques for choosing margins in
softmax. These techniques aim to improve the separation between different classes while keeping
instances of the same class closer together. This discussion highlights the significance of these
methods in enhancing the ability to distinguish between features more effectively). Then, an
assessment between the performance of proposed functions against existing approaches and
simulation of the geometric interpolation of embedded learned features are demonstrated. This
comparative analysis aims to illustrate the effectiveness of the proposed methods in improving the
learning and generalization capacity of neural networks. The aim is to secure uniform model
efficiency throughout the training and testing stages, focusing on producing unique feature vectors
that are distinctive. This consistency is crucial to ensure that the model not only learns effectively
but also generalizes well to new, unseen data, which is a hallmark of a robust machine learning

model.

4.2 Proposed Softmax-Loss Function

4.2.1 Symmetric Cross-Entropy (SCE) Loss Function

This section explains the role of loss functions in driving a model towards its highest confidence
level. The goal is to reach a state of certainty in predictions, ensuring the model performs equally
well during training and testing. This represents an even distribution of current knowledge and the
ability to generalize (see Section 2.2.1.1).

In machine learning, entropy is a measure of a system's uncertainty, while cross-entropy assesses
the amount of information present, emphasizing its robustness against irregular data [8]. This
strength comes from regularization methods like Tikhonov regularization [95], which is also
known as L2 norm, enhancing the model's performance. Using regularization in cross-entropy loss
is beneficial for detailed classifications of classes that are rich in information, and it helps prevent
the model from simply memorizing large amounts of data due to its ability to generalize well.
Cross-entropy (CE) often struggles with noisy data in multi-class classification problems. New
variants of CE have been introduced that apply stricter penalties to difficult samples, improving
the handling of noisy data early in training. This strategy reduces the risk of overfitting and
recognizes that Gaussian distribution assumptions don't always fit individual, noisy data (refer to

Section 2.2.1.2).
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The main advancement comes from modifying CE to respond better, affecting the size of
gradient steps, and leading to quicker convergence and sharper separation of classes. The aim isn't
to reach zero loss but to produce a vector whose argmax corresponds to the correct label. The
suggested method in this work (Symmetric Cross-Entropy (SCE) ) adds new penalty terms as
hyperparameters to address confidence errors, taken from the concept of Focal loss (FL) [13], to
combat underlearning. An extra function combined with CE measures the gap between wrong
predictions and the truth, adjusting weight updates in the logarithmic space to balance the loss.
The primary focus of the proposed loss (SCE) is enhancing its ability to set boundaries based on
specific criteria to simplify and improve the optimization process. This enables the extraction of
feature vectors with minimal variability. Moreover, the scale parameter is dynamically adapted
based on the magnitude of errors, demanding more focus on misclassifications early on training
and as training progresses computed error is diminished better. This technique is designed to
amplify the loss curve, resulting in steeper gradients during optimization, which is particularly
beneficial for handling data contamination and outliers. learning incorrect predictions is proposed
as a weighted term to tackling difficult samples.

The cross-entropy (CE) loss for binary classification is defined as:

CE = —[yilog(y,) + 1 —y0(1 - y,)] 4.1

Where y,, is the model’s prediction, y; is a ground truth. To make things easier to determine
easy/hard samples in correct predictions for cross-entropy (CE), CE is written as: “—logy,, ".

To handle classes that are not equally represented, a weight factor is presented. This is a
hyperparameter, alpha (o), that ranges between 0 and 1. For the more common class is set to a,
(CE= —alogyp) and for the less common class, the weight is set to 1-a (CE= —(1 -
o) logy;—_p). This helps to balance the classes. While the factor o adjusts the weight given to
positive and negative examples, it does not consider differentiate between easy/hard examples. FL
loss addresses this by modifying the loss function, reducing the focus on simple examples, and
concentrating more on difficult ones during training. It introduced a modulating term of :

(1 —yp)Y with tunable parameter gamma (y>0) as a learnable hyperparameter to penalize the

relative loss for poor classification samples (hard examples) and reduce the relative loss for well-
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classified samples . Also, a scaling parameter a is introduced as a trade-off variable. FC formula

for a batch of N samples is written as follows:

N
1
FC= — NZ o (1= y,)" log(yy) 4.2
i=1

To enhance the loss function efficiently, integrating of applying two adaptive hyperparameters
is designed to maximize the distinction between different classes. This approach applies
customized regularization terms to incorrect predictions, thereby helping the model to concentrate
on learning from imbalanced datasets. A tunable parameter is proposed for the scaling of loss
weights (referred to as alpha in FC loss). This term is exceeded in power of square for the time
where the difference between prediction and correct label is negligible and prevent vanishing
gradient, which calculates the discrepancy between the model's predictions and the actual ground

truth across a batch of N samples. The formulation alpha is as follows:

alpha = Ve —¥p)? 4.3

Z| -
M=

._.
1l
[y

where y; is the true label for the i-th sample, and y,, is the corresponding prediction by the model.
By dynamically adjusting alpha, the model is encouraged to refine its accuracy, particularly for
those samples that are more sensitive to get correctly classified. The intent behind this modification
is to not only address the immediate challenge of hard samples but also to equip the learning
process with a more insightful focus, thereby enhancing overall model performance. The learnable
value alpha represents a critical adjustment. This dynamic element is essential in modulating the
influence of loss for samples that are classified with a high degree of certainty, enabling a focus
on samples that require additional learning and minimizing the impact from those that are well-
identified.

Additionally, the grounded weight parameter by L2 norm , is playing a key concept for the SCE-
Loss. Here, it is defined through a tensor operation by evaluating the correlation between incorrect
predictions and model predictions. It measures the closeness of predicted outcomes to incorrect

classes, and as confidence in predictions increases, the weight parameter decreases, reducing the
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loss influence from accurately classified samples. This process ensures that the learning is directed
towards enhancing the understanding of more subtle or difficult samples. Incorporating the
parameters ‘alpha’ and ‘weight’ into the learning mechanism significantly improves the model's
learning efficiency as shown in results section 4.3, strengthening accuracy and generalization

capabilities.
weight = |[(1 — yo) — ypll2 4.4
To summarize the enhancements made, the refined SCE loss is expressed as shown below.
SCE Loss = alpha( weight * log(yp)) 4.5

This formulation integrates the aforementioned learnable elements, ‘alpha’ and ‘weight’, to
adjust the contribution of each sample to the overall loss. It carefully adjusts the impact based on
classification certainty, thus prioritizing learning from those samples that have not yet been
learned. The complete expression for the proposed loss function provides a sophisticated approach
to optimizing the classification process, ensuring that the model is not only accurate but also robust
against overfitting and underlearning. Therefore, the total loss with joining cross-entropy loss

(LCE ), is defined as:

SCE Loss =« LCE + B LSCE 4.6

« and f serve as balancing parameters to fine-tune the impact of each component. In the
experiments conducted for this work, these factors were set to o«= 0.5, and B= 0.5. This

configuration of the loss function aims to enhance the learning process, leading to better

generalization and discrimination in the model's performance [49] .
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4.2.2 Maximized Adaptable Margin SoftMax (MAM-SoftMax) Function

As outlined in sections 2.2.2.1, metric-based learning methods have become a standard in
classification tasks where data is scarce. Multiple logistic function with codename SoftMax, first
time proposed by Bridle [96] to replace squared error criterion with scoring relative entropy for
classifier based on maximum likelihood (ML). Standard convolution outputs can be perceived as
a Gaussian mixture distribution [97].The challenge lies in characterizing the model through density
estimation (construction of an estimate) based on the maximum likelihood estimation (MLE)
criterion for neural component. For binary classification, a sigmoid output suffices, but for
multiple classes, the normalized exponential function better known as the SoftMax function steps
in to manage the model's performance. Whenever, the aim is to represent a probability distribution
over different classes, then utilizing the SoftMax function which is a generalization of the sigmoid
function can be a well alternative. The name 'SoftMax' can be somewhat misleading, as it implies
a connection to the argmax function, yet operates differently. Unlike argmax, which produces a
non-continuous, one-hot vector that isn't differentiable, SoftMax yields a continuous and
differentiable output. This distinction comes from the 'Soft' aspect of SoftMax, indicating a
smoother, differentiable version of argmax. Therefore, a more descriptive name might have been
'Soft Argmax' to more accurately reflect its nature and functionality, diverging from the traditional
naming convention of SoftMax [7]. Think of the SoftMax function as coordinating a race among
participants, where it's crucial to maintain everyone's motivation by applying both encouragement
and penalization. SoftMax (as detailed in section 2.2.2.1), exponentiates and normalizes the

unnormalized log probability of linear layers outputs. and defined as:

exp(z) i

SoftMax (z); = =————= ,in which z; = logP(y = i|x)
2 exp(z)

According to logistic regression [98], exponential function in SoftMax works well in training
with utilizing maximum Log-Likelihood. It’s because of the log nature to undo the impact of exp.
Otherwise, the term fails in learning the arguments of exp and becomes a negative value. SoftMax
tends to approach 1 when there's a large gap between the highest value and the others, indicating
a high probability for an incorrect prediction due to overconfidence or it approaches 0 when the

highest value isn't significantly larger, indicating vanishing gradient. To address it, the loss
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function must effectively adjust the error by appropriately penalizing the impact of each
participant's contribution to the total cost [7].

Conventional SoftMax probabilities, created through logarithmic and exponential calculations,
are vulnerable to numerical underflow and overflow. This is mitigated by the Logsumexp
operation, which utilizes the normalization property. The essence of SoftMax is about maximizing
information entropy, represented in probability, to decrease the unpredictability of one output
based on another variable.

To enhance feature discrimination, it's crucial to secure the distribution against noise within and
between classes. Prior to this adjustment, feature vectors are revised in SoftMax through enhanced
functions that exploit innovations in margin expansion. Improving compacting intra-class relations
while expanding inter-class separations proposes a decision space instead of boundary decision
creates a new gate of working on imbalance database for research in SoftMax. Specifically, facial
expression recognition field which suffer of shortage and high noisy datasets [99].

As detailed in Section 2.2.2.2, the use of a multiplicative angular margin in softmax has shown
limitations for gradient-based learning. An additive margin, combined with input normalization to
control the feature vector sizes, has proven more effective. This strategy relies on adjusting the arc
of an input vector within a spherical space. For classification, choosing the right margin for
softmax can improve generalization by encouraging the learning of distinct features, ensuring that

each class's weight vectors are tightly grouped. Properly setting boundary distances can enhance
the model's resilience to noisy data. However, margins must be set with attention which could

lead to an excessive condition that is beyond what is desirable performance and restrict
the learning process. A larger or dynamic margin in softmax [54], [58] can lead to more compact
features within a class. These considerations inspired this section to suggest an adaptive margin
for soft margin softmax function, which adjusts flexibly to improve class separability and model
robustness. The constant hyperparameters in margin based SoftMax functions shift values within
the exponential space. This assumption led to the introduction of various margin schemes, such as
cosine, angular, soft margin, additive soft margin, double additive, etc., designed to adjust outliers
towards a more interpretable standard deviation range effectively centering data closer to the
normal distribution's peak.

The proposed SoftMax “ Maximum Adaptive Margin SoftMax (MAM-SoftMax)” is tailored for

datasets with an irregular distribution due to imbalanced datasets, aiming to provide a more
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significant margin for less-represented classes for facial expression. The design of MAM-SoftMax
is centered on the classification of challenging samples that float near the decision boundary. The

utilized concept of MAM-SoftMax is derived to maximize the margin [63]. The margin
hyperparameter is optimized in MAM-SoftMax by adjusting as a scalable learnable parameter,
which depends on the class distribution's mean and variance. This hyperparameter serves as a
measure for the effective number of neighboring feature vectors sharing the same class, bonded
by an adhesive boundary decision parameter named 'm'. The methodology involves prior and
posterior normalization to prompt underflow and overflow issues by managing the embedding
space for feature vector shifts. Despite the risk of saturation in SoftMax, faster convergence is
achieved by permitting the use of a learnable parameter, deriving from the inherent scale
invariance of the SoftMax function (referred to section 2.2.2.2).

The conventional SoftMax can be written as follows [100]:

eWyii ( e||wyi| [l cos(ey;) 43
LsoftMax = —1log T = —log ’
Z]K eWyiki Z]K e||wyi| |1xi]| cos(6;)

In which x; denotes the feature sample, y; is the target, w is the weight parameter of the last fully
connected layer, which is named classifier, Kis the total number of classes, and 6 is the angle
between inner product of w; and x;. 6 can be scaled by a constraint with the purpose of encouraging
SoftMax to learn more discriminative features. As detailed in section 2.2.2.2, there is a simpler
definition on choosing the angular parameter in additive margin SoftMax (AM-SoftMax) [57] .
The method of applying additive hyperparameter ‘m’ is more interpretable compared to A-
SoftMax [56] and It’s given by:

T¢
wy,fi

P(0) =cosO—m — wherex=cos® = J(x) =x—m=r—>——
[lwy, ] 116

This enhancement empirically proved to avoid network divergence to aim more compactness for
corresponding samples [57]. The basic intuition of the above idea is that in standard SoftMax,

sample x is classified correctly to class 1 for a binary classification with two classes (class1, and
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class 2) when during training the assigned weight corresponding to class 1 is larger than assigned

weight to input features related to class 2 [100]. This formula is given by:

[lwyl||IxI]| cos(8;) > [Ilw,l||IxI| cos(8,) 4.10

This concept can involve incorporating a margin by introducing an intermediate variable as
mentioned in L-SoftMax [58], that helps to differentiates between class1 and class2 by identifying
samples located near the decision boundary. This effectively. The implementation is demonstrated

as follows:

[lwl||Ixl| cos(81) = [lwyl| [IxI| cos(a®) > [lwyl]|IxI| cos(8,) 4.11

As detailed in section 2.2.2.2, a chosen as a positive integer value (named hard margin) and due
to complex computation through backward and forward propagation, the formula with angels is

addressed in additive form to introduce the soft margin equation by:

WiX = wix—m > wix 4.12

Where m is a distant margin and solely needs forward computation, thus the SM-SoftMax [100]

can be defined as:

ewgiXi—m
Li = —log( o) 13
T . +Zk W] Xj
eWinI—m j¢ie

The use of a learnable parameter (detailed in section 2.2.2.2) is justified by the characteristic of
SoftMax being invariant to adding a scale to its input [61]. The objective in MAM-SoftMax is to
create areliable method for tuning and learning hyperparameter 'm' as a margin distant real positive
number. In cases where a network performs multi-class classification, it produces a multi-variant
Gaussian distribution of results [101]. The means of the distributions match the different classes
in the learned feature space and are used in margin computation. This is a key factor in achieving
quicker convergence. The solution, which presented in SM-SoftMax loss, is enhanced, and

introduced the margin parameter named ‘M’, allowing for choosing variable margin distances
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between classes. Unlike the AM-SoftMax [57] that uses a fixed or integer-only margin, MAM-
SoftMax allows 'm' to take on any real positive value, offering greater flexibility and precision in
class separation. Hence, ‘M’ values are adaptable and developed based on the greatest variation
observed in the data distribution of each class. By adapting ‘M’ to reflect the most significant
distribution changes, the learning model is able to tune the class boundaries for improving accuracy

and generalization. The proposed method for hyperparameter ‘M’ can be formulated as follows:
M, « Y ArgMax (x) + € 4.14
M; < logM,
M. « Cliping (0 < M, < 4)

My < Mean (x) + M,

In this case, x represents the input, M,, denotes the upper limit of the input range, and ‘€’ represents
for the initial value which is set to default value 0.2. M; is the value of normalized margin through
logarithmic terms, while M., is the clipped margin value that prevents the gradient from reaching
extreme highs or lows. Then, The adjustable hyperparameter, known as the margin, is tuned
according to the central mean of each data sample's distribution in logarithmic space to achieve
the widest range My [63]. Here, M. denotes the initial margin value, and My represents the
maximum variation applied to the mean of each distribution in a multi-class classification task

Thus, for data from class 1, the margin selection formula can be expressed as:

Wix >wix— m>» wlx— My = wix 4.15

Finally, the normalized MAM-SoftMax output is defined as follows:

eWr}I,-‘iXi—MU
MAM - SoftMax = —log( ) 4.16

T T
wy.xi—MU k oW X
eV + §Jile 17
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This approach incorporates both prior and posterior normalization to prevent underflow and
overflow, managing the embedding space for adjusted feature vectors effectively. Normalization
techniques serve a dual purpose: they not only speed up convergence but also solve the saturation
problem in functions like SoftMax, which happens with very high or low values. Evaluations in
next section on CIFAR-10, MNIST, and RAF-DB show MAM-SoftMax loss boosts accuracy and
speed up convergence over traditional methods by pulling similar data points together and pushing
different ones further apart. In the following, Figure 4.1 demonstrates algorithm of proposed loss

and SoftMax functions.
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SCE Loss Algorithm

Input (ytrue ’ ypred)

weight « ||(1 — Yrye) = Ypred Il2

(contribution of wrong prediction in
scaling as a regularization term)

1
alpha = N Z?‘r:l(ytrue - ypred)z
Ype — 2 logip Yy : (lognormalization)

Lyroposeat < alpha , (< weight,y, >) >

(<> denotes multiplication)

Return Lproposed

LOSSSCE = aLc:c:e + BLPro‘posed
(a& f default values are 0.5 )

Output LOSSSCE

MAM-SoftMax algorithm

Input (x)
m « ), argmax (X;) + Initialized value (defult = 0.2)
Clippingm «<0 >m =>4
exp m < Y Mean (exp x;) + log,;, m

exp(x;—m) < exp x * exp (—m)

exp(x;—m) )
exp xj +exp(xj—m)

Syam ~ Proposed SoftMax « — 10g(2

j=i

Return SMAM

Figure 4. 1 Algorithms of SCE-Loss function (Up), and MAM-SoftMax (Down)
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4.3 Experimental Results

Table 4.1 describes the performance of the EmoSynthNet with 3 loss functions (MSE, CCE, and
the MAM-SoftMax Loss). From the table, it’s seen, boosting accuracy by using MAM-SoftMax
and achieving a 3%~4% improvement over the original SoftMax loss and MSE. On CIFAR10,
MAM-SoftMax has achieved notable improvement with 93.63% accuracy for EmoSynthNet
model proposed in Chapter 3 (EmoSynthNet). In Table 4.1, the bold-faced values in red font
indicate the results from the best-performing methods, and those in blue and green fonts indicate
the results from the second-best and third-best performing methods. From the results, the following
observations resulted; the EmoSynthNet (supervised by MAM-SoftMax loss) outperforms the
conventional function, by improving the best accuracy performance of CE loss on the validation
set (93.63% by MAM-SoftMax loss vs. 91.54% by CE loss on the C10 dataset). This result
demonstrates that MAM-SoftMax loss can promote the discriminative power of deep-learned
features. Second, compared to MSE loss, the MAM-SoftMax loss achieves better performance
(93.63% by MAM-SoftMax loss vs. 89.69% by MSE loss on the C10 dataset). The implemented
idea in the proposed MAM-SoftMax for choosing an adaptable margin with the maximum possible
value is taken from hinge loss in choosing the maximum decision boundary for SVM classifier
[102], and escalating wrong penalization idea of the loss functions is taken from focal loss, which

reduces well-classified example loss values.

Table 4.1 Improvement in accuracy of the EmoSynthNet using the MAM-SoftMax loss function. The bold-faced
values in red font indicate the results from the best-performing methods, and those in blue and green fonts indicate
the results from the second-best and third-best performing methods, respectively.

Methods Loss Optimizer MNIST CIFAR10
EmoSynthNet RMSE/MSE Adam 99.63 89.69
EmoSynthNet SoftMax+ CE Loss Adam 99.61 91.54
EmoSynthNet MAM-SoftMax Loss Adam 99.66 93.63

Figures 4.2 illustrates a side-by-side comparison of the proposed SoftMax Loss (MAM-SoftMax
and SCE Loss) with conventional SoftMax Loss functions, experimented on CIFAR-10 dataset. It
is clearly seen that maximizing the margin in softmax reduces the impact of samples close to the

decision boundary. Additionally, using regularization in cross-entropy (CE) loss leads to more
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distinct embeddings. Therefore, the MAM-SoftMax loss enhances the traditional SoftMax and CE
Loss by providing greater computational efficiency and more stable training. The result in Figure
4.2 points out that MAM-SoftMax loss surpasses state-of-the-art SoftMax functions by improving
feature discriminability, compressing intra-class variations, and expanding inter-class separation
for more effective classification, and contributing to smoother loss curvature resulting higher
accuracy. The following section continues with more assessments of MAM-SoftMax Loss's
performance. Figure 4.3 presents accuracy and loss metrics from the network's performance
proposed in [103] on MNIST dataset. These figures validate performance of MAM-SoftMax using
SCE-Loss function against the conventional SoftMax and CE Loss functions. The result in Figure
4.3, in particular, demonstrate the proposed functions improves performance of image
classification in terms of accuracy through creating a smoother loss curve, which simplifies
reaching better convergence in the optimization process. The model evaluated here, referenced
from "Striving for Simplicity" by J.T Springenberg et al. [103], was trained using the Adam

optimizer with a learning rate of 0.001 over 30 epochs.
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The study of how loss landscapes affect generalization is carried out using various visualization
techniques with filter normalization, as shown in "Visualizing the Loss Landscape of Neural
Nets"[9]. This research examines how networks with shortcut connections lead to flatter loss
landscapes and investigates the influence of training parameters on the characteristics of
minimizers.

The 1D linear interpolation approach to investigate the paths taken by different minimization
methods, as implemented by Goodfellow et al. [104], has several limitations. Primarily, it struggles
to effectively represent the complexities of non-convex shapes through one-dimensional plots.
Alternatively, one can utilize Contour Plots and Random Directions. This technique requires
selecting a central point 6* on the graph and two directional vectors, 6 and m. For the one-
dimensional case, function is plotted as f(a) = L(6* + ad) while for the two-dimensional

scenario, the plot is:

f(a, B) = L(O* + ad + fn) 421

This approach [12] has been employed in Figure 4.4 to demonstrate how distinct optimization
algorithms discover various local minima within the two-dimensional projected area. It is
important to note that each plot's center aligns with a minimizer and the two axes characterize two
random directions.

Figures 4.4 illustrates the contour of the loss functions shaped by SCE Loss function following a
process of dimensionality reduction for simplicity. The character of the loss landscape is a key
factor in model generalization broad. Smooth valleys in this landscape often lead to lower
generalization errors. Conversely, rough, and steep areas can result in higher errors and slow down
learning. The SCE Loss results in a landscape with fewer sharp valleys and disordered regions,

promoting more consistent gradient information and preventing overfitting during optimization.
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Figure 4. 4 Loss contour visualization: comparative 2d representation of conventional loss functions and MAM-
SoftMax Loss.
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The low-dimensional representation may give the impression of convexity, but this doesn't
necessarily hold in higher dimensions. Instead, this observation suggests that the positive
curvatures are common; in more technical terms, the mean curvature, or the average of the
eigenvalues, is positive. These calculations are performed in Figure 4.5 by using an implicitly
Lanczos method, which relies only on Hessian-vector products (HVPs) computed via automatic
differentiation, without needing the Hessian's full representation or its factorization [9] . The

process involves determining the smallest and largest eigenvalues of the Hessian, A,,;, and A,,44.

The ratio |/1mi” / 1

across the loss landscapes, with the same reference point and random
max

directions. Figure 4.5 highlights the differences in the loss geometry between the SCE Loss
function and the conventional ones in which blue areas denote regions that are more convex, while
yellow signifies areas with considerable negative curvature. Convex areas in the plot of the SCE
Loss actually correlate with zones having negligible negative eigenvalues, meaning no substantial
non-convex characteristics are missed. Conversely, some regions near other minimizers exhibit
clear negative curvatures. Large negative curvatures in disordered zones could be areas of concern
in the optimization landscape. The findings emphasize SCE Loss function can improve
performance of classification task, demonstrating its ability to better navigate the feature space for

enhanced class distinction.
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Figure 4. 5 Comparative Loss Surfaces: Proposed SoftMax Loss vs. Conventional Loss Functions.
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Automatic dimensionality reduction serves as a crucial tool in machine learning, simplifying
both pre-processing and the visualization of complex, high-dimensional data. It involves projecting
complex vectors into a more manageable, lower-dimensional space. A key technique in this
process is t-Distributed Stochastic Neighbor Embedding (t-SNE) [15], a probabilistic method
renowned for its efficacy in visualizing high-dimensional data through a dimensionality-reduction
lens. This approach is optimized through the Barnes-Hut approximation, allowing for efficient
computation. t-SNE establishes an embedding concept rooted in probable neighbors, working to
maintain the integrity of local neighborhoods. It centers each data point within a Gaussian
distribution in the high-dimensional space and leverages the resulting pairwise dissimilarities to
infer a probability distribution that captures the essence of neighboring relationships. The general
goal of t-SNE embedding is to closely approximate this probabilistic landscape, a task at which t-
SNE and its derivatives succeed, even when applied to vast datasets comprising millions of
instances. The innovation of MAM-SoftMax Loss lies in its ability to expand additive angular
margins, which translates into an adaptable distinction between the features of different classes,
surpassing the conventional SoftMax's performance. As demonstrated in Figure 4.6, the proposed
SoftMax encourages a tighter, more integrated clustering of features within the same class while
ensuring a distinct separation from features of other classes. Take, for instance, the distinctive
separation achieved among the dog, cat, deer, and horse classes, each learning unique features that
anchor them in distinct regions of the embedding space. This contrasts with the standard SoftMax,
where classes may converge too closely due to inadequate feature discrimination. The result
includes an obvious boost in classification accuracy on CIFAR10 with the MAM-SoftMax

function, highlighting its enhanced ability to discriminate learned features.
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4.4 Summary

In this chapter, an improved SoftMax Loss was introduced, featuring an adaptable margin
controlled by a learnable hyperparameter for an optimal margin maximization. The enhanced
SoftMax Loss function was evaluated across diverse datasets, showcasing better performance
when compared to traditional functions. Notably, the expanded margin in MAM-SoftMax has a
geometrically design, contributing to its clear interpretability. Furthermore, the findings suggest
that SCE-Loss function enhanced with regularization technique can be effective for better
convergence and more distinct features. The results confirmed that the proposed approach can beat
existing algorithms in image classification task. The next chapter will deploy and evaluate the
application of proposed framework for facial expression recognition against state-of-the-art
models, covering seven distinct basic emotion categories consist of surprise, fear, disgust,

happiness, sadness, anger, and neutral.
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Chapter 5

Application of EmoSynthNet to Facial Expression Recognition

5.1 Introduction

Inrecent years, facial expression recognition has become a key area of research in computer vision,
due to the goal of equipping computers with the ability to understand human emotions [105].Facial
Expression Learning (FEL) is a prominent field in human-computer interaction, with applications
in healthcare, education, smart robotics, and more [106]. The number of large-scale benchmark
databases for Facial Expression Learning (FEL) has grown in recent years, leading to significant
improvements in the recognition accuracy of Convolutional Neural Network (CNN) methods
[107], [108], [109]. Despite impressive progress, FEL remains challenging due to a few reasons:
(1) Limited ability of convolutional networks to capture the global context of input images. (2)
Similarity between classes, where different expressions may look alike. (3) Variation within
classes, as images of the same expression may differ due to factors like background, gender, or
age. (4) Sensitivity to scale, as images taken in natural settings vary in size and resolution, which
can affect the performance of deep learning networks [110].

Correctly identifying an emotion from a static facial image is still a big challenge. This is because
some emotions look similar, and FER datasets often have uneven and inaccurate emotion labels
[111].The main goal of facial expression recognition (FER) when looking at a single facial image
is to identify basic emotions such as happiness, sadness, and neutrality [72] [112]. The primary
aim of Facial Expression Recognition (FER) systems is to detect distinctive features among a

scarcity of labeled samples while minimizing the overfitting.
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Many of the best current methods start by training deep learning models on clearer datasets to
get a good understanding of general facial features. Then, they adjust these models for specific
FER tasks [113]. Beyond Convolutional Neural Networks (CNNs), other models like Graph
Neural Networks (GNNs) and some Hybrid Vision Transformers (Hybrid ViT’s) have also been
exploited for FER, showing prominent results. A Hybrid ViT combines a pre-trained CNN with
multiple Transformer blocks [114], [115]

Deep Metric Learning (DML) methods play a vital role in automated FER by promoting feature
distinction between classes and consistency within classes. FER models try to develop informative
features that increase differences between classes and shorten variations within the same class.
Then, the use of auxiliary loss functions as regularization, or main label smoothing techniques, can
reduce the gap between the model's output prediction and the true class values, thereby mitigating
within-class variations [74], [116], [117], [118].

In this chapter, the efficiency of the EmoSynthNet with advanced SoftMax Loss for FER task is
showcased. The model is adeptly designed to detect emotions through a Deep Convolutional
Neural Network (DCNN) framework, inputting of static face emotion images and aiming for fine-
grained classification despite limited clean data. The comparison between state-of-the-art deep
learning methods and the proposed framework on three widely used facial expression datasets
shown in tables 5.1, 5.2, 5.3 demonstrates the superior performance of EmoSynthNet in term of
accuracy. The behavior of the model in terms of loss, accuracy, and confusion matrix during

training and validation is shown in Figures 5.2, 5.3, 5.5, and 5.6, respectively.
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5.2 Experimental Results

Facial Expression Recognition (FER) on FER2013:

The FER2013 [119] dataset includes both lab-controlled and in-the-wild RGB facial images. The
images are labeled with 7 basic expressions: 0=Angry, 1=Disgust, 2=Fear, 3=Happy, 4=Sad,
5=Surprise, and 6=Neutral. The Disgust label has the fewest images, about 600, while the other

labels have nearly 5,000 images each.

Disgust Fear Angry Happy Neutral Surprise

o A% SRl

The FER-2013 dataset is a collection of 35,887 facial expression images. These images, gathered

by Pierre Luc Carrier and Aaron Courville through a Google image search, were published for the
ICML 2013 challenge under the same name. The dataset includes a mix of laboratory-controlled
and naturalistic 'in-the-wild' images, depicting six basic emotional states plus a neutral expression.
They have been standardized to 48x48 pixel grayscale images. However, the dataset is known to
have a labeling accuracy of about 68% +5%, as indicated by Ian J. Goodfellow, which points to a
significant mislabeling challenge.

Comprising 28709 train and 7178 test images across seven emotion categories [120] (‘Angry’,
‘Disgust’, ‘Fear’, ‘Happy’, ‘Sad’, ‘Surprise’, Neutral’). For FER-2013, most methods incorporate
fine-tuning of transfer learning models or combine convolutional models with handcrafted
features, often using classic classifiers like SVM or KNN to address the labeling misclassification
[120], [121], [122].

As shown in the comparative Table 5.1, the accuracy results from most competitors in the FER-
2013 challenge are still modest. Based on results observation, the effectiveness of purely CNN-
based models on this dataset appears to remain limited. The proposed model, EmoSynthNet,
clearly performs better than all existing SOTA network architectures on the FER-2013 dataset in
terms of accuracy. The method achieved top-1 accuracy on the FER-2013 dataset, surpassing the
state-of-the-art results (~17%) compared to the second work “Ensemble ResmaskingNet with 6

other CNNs by Pham et al.”, with a recorded test-accuracy of 93.79%. This improvement
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highlights the strength of the EmoSynthNet model, enhanced by the proposed loss functions, in

extracting highly informative features from a limited amount of data.

Table 5. 1 FER-2013 test set accuracy comparison

-~ Medd  Accuracy (%)
1 EmoSynthNet, 9379

2 PAtt-Lite [123], 92.50

3 Ensemble ResmaskingNet with 6 other CNNs [119], 76.82

4 EmoNetXt [124], 76.12

5 Segmentation VGG-19 [125], 75.97

6 Local Learning Deep+BOW [69], 75.42

7 LHC-Net [121], 74.42

8 LHC-NetC [121], 74.28

9 Residual Masking Network [119], 74.14

10 ResNet18 With Tricks [126], 73.70

11 VGGNet [73], 73.28

12 CNNs and BOWN + global SVM [122], 73.25

13 ResNet50 [127], 73.20

14 SE-Net50 [127], 72.50

15 CNN Hyperparameter Optimisation [78], 72.16

16 Ad-Corre [74], 72.03

Figure 5.1 offers a visual comparison of classification outcomes using standard and proposed
SoftMax-Loss functions. It is a comparison of the performance between MAM-SoftMax and the
standard SoftMax loss demonstrates the efficacy of the proposed approach in improving inter-class
separation and intra-class compactness, as shown through the geometric interpolation on the
hypersphere manifold, the standard softmax shows the difficulty of detection for some samples

belong to certain classes (class 0 "angry", class 1 "disgust", class 2 "fear") where placed in center
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of embedding space because there are limited samples and their emotion patterns look similar,
making it tough to classify them apart. However, the proposed SoftMax-Loss overcomes these

problems by using margin and regularization techniques.

Figure 5. 1 Feature space visualization of classified test sample of FER-2013 dataset:

Conventional SoftMax Loss (Top), MAM-SoftMax Loss (Bottom).

Additionally Figure 5.2, highlights the loss, and accuracy metrics observed during testing and

confusion matrix. The confusion matrix (Figure 5.3) for FER-2013 shows that classes “0” and “1”,
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which have similar looks, are more likely to be confused. So, for the FER-2013 dataset, there's a
clear pattern where the "Angry" and "Disgust" classes get mixed up often. For example, 11% of
the time, samples that are actually "Disgust" are predicted as "Angry." This shows it's hard to tell

the difference between similar emotions, especially when there aren't many examples.
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108

Facial Expression Recognition (FER) on RAF-DB :

The Pyramid with Super Resolution for in-the-wild Facial Expression Recognition paper [128]
discussed the RAF-DB, a comprehensive facial expression dataset with nearly 30.000 images. This
experiment exploits the basic emotion subset of the database including 12,271 training samples
and 3,068 test samples [123], varying in color, size, and consists of both aligned and original
photos. The dataset is broken down into a primary set of seven basic emotions [129] of: ‘Surprise’,
"Fear’, ’Disgust’, ’Happiness’, ’Sadness’, ’Anger’, ‘Neutral’, and a secondary set with 12

compound expressions, annotated by expert human coders.

Due to its imbalanced nature, it introduces a Prior Distribution Label Smoothing (PDLS) loss
function, which uses prior class label knowledge to group similar emotions together while
distinguishing between different ones. This approach led to achieving outstanding validation
accuracy on the RAF-DB. Preprocessing techniques such as random cropping and grayscale
conversion have been applied. This preprocessing was aimed at reducing computational demands
and improving model output efficiency.

The table 5.2 compares the accuracy of the EmoSynthNet model with other models on the RAF-
DB dataset. EmoSynthNet shows the best performance on this benchmark. It did better than the
DDAMEN [1] as the second-best performance by 0.59%, making EmoSynthNet the top method
for FER tasks.

The visualization in Figure 5.4 illustrates the classification effectiveness using both standard and

proposed SoftMax-Loss, showing clear differentiation in mitigating variation within the classes.
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Also, Figure 5.4 shows that the MAM-SoftMax loss function, unlike the standard softmax loss,
greatly improves EmoSynthNet's ability to classify rare samples close to decision boundaries that
are usually hard for the classifier to identify.

Figures 5.5 shows the accuracy and loss measurements, along with a normalized confusion
matrix. These figures prove the ability of the EmoSynthNet as a facial expression recognition
method to work well with new data. The confusion matrix Figures 5.5 and visualization of Figure
5.4 show how the proposed loss function (MAM-SoftMax) puts in place harder penalties to get
better at telling emotions apart by special attention to the 'Fear' class , which is often mixed up
with 'Anger’. The matrix shows that 16% of 'Fear' samples are confused with ‘Sad’ class, since
poor distinctive features , and 18% of 'Disgust' samples are mistaken for 'Neutral' due to not enough

training data to learn distinctive features for 'Disgust'.

Table 5. 2 RAF-DB test set accuracy comparison

~ Mode  Accuracy (%)
~ 1 EmoSynthNet 9194

2 DDAMEFN [130], 91.35

3 ViT _base + MAE [131], 91.07

4 TransFER [132], 90.91

5 EAC [72], 90.35

6 DAN [129], 89.70

7 RUL (ResNet-18) [70], 88.98

8 PSR (VGG-16) [128], 88.98

9 MVIT [133], 88.62

10 EfficientFace [87], 88.36

11 MA-Net [72], 88.36

12 DACL (ResNet-18) [116], 87.78

13 MixAugment [134], 87.54

14 SCN [135], 87.03

15 RAN [136], 86.90

16 gACNN [137] 85.07




110

Standard SoftMax MAM-SoftMax

Figure 5. 4 Feature space visualization of how hard samples are classified on the RAF-DB dataset by Standard
SoftMax and MAM-SoftMax (Top), and feature space visualization of test samples RAF-DB dataset classified using

MAM-SoftMax (Bottom).
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Facial Expression Recognition (FER) on CK+:

The Cohn-Kanade dataset, also known as CK+ [107], includes a collection of 593 image sequences
of emotional expressions from 123 subjects, detailed in a resolution of 640%490 and 640x480
pixels [138]. Each sequence transitions from a neutral state to the peak of an expressed emotion.
However, only 327 sequences have annotations for one of the 7 basic emotions (‘Angry’,

‘Disgust’, ‘Fear’, ‘Happy’, ‘Sad’, ‘Surprise’, Neutral’) [120].

Surprise

Classes of ‘Contempt’ and ‘Neutral’ get merged [123], reducing the number of basic emotion
categories to seven. For the purposes of this thesis, the last two frames from each annotated
sequence were selected to enhance the training and testing datasets, with the initial frame
representing a neutral expression [111].

As part of the preprocessing, the originally colored images were converted to grayscale and
resized to a manageable dimension of 48x48 pixels, simplifying computational demands. Previous
studies employing the CK+ dataset have often fine-tunned pre-trained models under supervision
to mitigate data scarcity [139]. This experiment leverages the learned weights from the FER-2013
and RAF-DB facial expression databases to improve the quality of learned features. EmoSynthNet
using MAM-SoftMax compresses the labels of similar classes and amplifies discriminative
features, enhancing the model's ability to distinguish subtle nuances among uncertainty.

The methodology deployed has achieved a new benchmark as shown in Table 5.3, attaining
highest accuracy of 100% using a 10-fold cross-validation protocol [138], surpassing previous
SOTA results. Figure 5.6 shows the accuracy, loss, and a confusion matrix, comparing how the

standard and the new SoftMax-Loss classify data. Figure 5.7 presents a geometric interpolation
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that displays the effectiveness of classification with MAM-SoftMax, emphasizing EmoSynthNet

model’s performance improve.
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Table 5. 3 CK+ test set accuracy comparison

Model
EmoSynthNet
PAtt-Lite [123],
ViT +SE [138],
FAN [75],
FDRL [106],
FN2EN [75],
ST network [140],
Nonlinear eval on SL+SSL Puzzling (B0) [139],
DeepEmotion [141],
IF-GAN [142],
SCAN-CCI [142],
PPDN [143],
ST-RNN [141],
DTAGN [144],
pACNN [145],
gACNN [145],

Accuracy (%)
100.00

100.00
99.8
99.7

99.54
98.6

98.50

98.23

98

97.52

97.31
97.3
97.2
97.2

97.03

96.40
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Figure 5. 7 Feature space visualization of how test samples are classified on the CK+ dataset using MAM-SoftMax.

As detailed in section 3.3.2, Gradient-Weighted Class Activation Mapping (Grad-CAM) is a
visualization tool applied to various CNN architectures, aiding in identifying key regions for
concept prediction within images. Figure 5.8 illustrates the application of Grad-CAM on the final
layer of EmoSynthNet, which highlights important parts for the classification decision. Although
Grad-CAM effectively indicates significant image regions, it doesn't capture fine details as
precisely as pixel-level techniques like Guided Backpropagation, which filters out negative
gradients. The distinction between various emotional states as interpreted by the network remains

somewhat non-transparent when relying only on heatmaps. By integrating Grad-CAM with
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Guided Backpropagation through element-wise multiplication, a more refined visualization called
Guided Grad-CAM is produced. This method sharpens the visualization, identifying specific facial
features like eyes, nose, and mouth that are crucial for emotion classification. Guided Grad-CAM,
developed by Selvaraj et al [85], combines the concepts of Gradient backpropagation [103], and
Grad-CAM [85]. This hybrid technique showcases the most powerful class-specific units for
classification decisions, providing a detailed explanation of how CNNs detect facial emotions
[125], [138], essentially 'learning' through a vocabulary of discriminative units similar to words,

each corresponding to class-specific elements.

Original image Grad-CAM

Original image Grad-CAM

Original image Grad-CAM

Figure 5. 8 Facial Emotion Visualization with Grad-CAM: Coarse Localization and Enhanced Detailing
via Guided Grad-CAM Methodology.
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5.3 Summary

The final chapter presents the validation of the developed image -classification model
(EmoSynthNet) for FER application across three distinct datasets: FER-2013, RAF-DB, and CK+.
These datasets incorporate a diverse range of facial images, both captured in controlled
environments and taken from the wild, presenting various age groups and demographics in both
color and grayscale formats. This chapter begins with a detailed description of the datasets utilized
and the preprocessing techniques employed to prepare the data for the experimental trials.
Following this, the study compares the performance of the introduced model against state-of-the-
art FER methodologies, utilizing standard evaluation metrics to assess image classification
efficacy. The findings indicate that the EmoSynthNet, equipped with the newly designed SoftMax-

Loss and is able to surpasses existing deep learning methods in facial expression learning (FEL).
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This thesis introduces a model inspired by U-Net, Inception, and VGG architectures, designed to
process input data effectively by focusing on meaningful features. It leverages an analysis path to
generate a latent space and a synthesis path to improve data handling efficiency and localization
precision. Enhanced by an auxiliary classifier, the model adeptly processes images across multiple
scale feature maps, aiming to select a subset of beneficial feature vector elements. This selection
process introduced in chapter 3 and experimented in image classification datasets is pivotal for
enhancing discriminability and learning complex features.

Another part of this these delves into refining the traditional backpropagation process and
learning strategies of the network by introducing a regularization technique to modify the Cross-
Entropy function and implement an adaptive Soft-Margin SoftMax function. This modification is
intended to maximize the separation of dissimilar feature representations while bringing similar
ones closer together, addressing the limitations of standard SoftMax Loss function. This function
typically struggles with underlearning complex classes and overfitting simpler ones. Also, by
incorporating additional terms into the cross-entropy loss, the aim was to improve learning for
difficult classes and introduce noise tolerance in SoftMax Loss to mitigate risk of overfitting. This
approach improves training stability, ensuring consistent model performance throughout training
and testing phases.

The ultimate goal of this thesis is to encourage a learning embedding space where distinct
features are emphasized, facilitating the generalization of complex features. By fine-tuning the

proposed method for facial expression learning (FEL),a balanced model capable of performing
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robustly across various image classification, face recognition was achieved. This model represents
a promising approach in developing deep learning methods that can adapt to a broad spectrum of

data efficiently.

6.2 Future Work

This thesis explored how to handle limited training samples and complex feature learning to reduce
risk of overfitting. In the future, the method will be tested as a multi-task learning approach with
more detailed facial benchmarks and in areas like head pose estimation to improve generalization.
Tuning the weights of attentive feature extractors, like the Vision Transformer (ViT), whether as
a main component or an add-on, is crucial for results. Finding the right regularization and
optimization techniques is also a challenge, as is adapting loss functions for more stable training
in tough situations with noisy data. This is particularly true when data is scarce. One promising
solution could be creating a new loss function that dynamically assigns weights [146]. This method
would help with learning different quantities that have varied scales and units in classification and
regression.

Future work includes selecting the best architecture for data classification in different fields such
as healthcare, audio, and textures. Since various tasks affect the model differently, choosing the
right architecture is key and could lead to different outcomes [147]. To address the issue of data
scarcity, some types of CNN-based Generative Adversarial Networks (GANs) will be explored to
create new facial expressions. The urgent need for more research and development is emphasized
to enhance the accuracy and reliability of automated facial expression recognition in real-time

situations, even with limited resources.
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