
1

2

Solutions to Selected exercises

 from

An Introduction to Database Systems

Bipin C. Desai

Concordia University

Montreal

BytePress

3

Limit of Liability/Disclaimer of Warranty:

The author and the publisher have taken care to prepare this book. However, there is no warranty of the
accuracy, completeness or presentation of the latest version/generation of any system discussed in this
book. The reader must be aware of the fact that software systems often have multiple bugs and are not
well thought out, and are usually suitable for limited situations and/or data combinations. Hence the
user must be responsible for the appropriate application of any technique and use of any software or
code examples.

Furthermore, there is no assurance whatsoever of the possible usefulness or commercialization of any
programs, scripts and examples given in this book.

Any references given are based on their existence at the time of writing and the authors and the
publishers do not endorse them or imply any usefulness of the information found therein. The reader
must be aware that any web site cited may change, disappear or change their terms of service.

Published by: Electronic Publishing BytePress.com Inc.
ISBN: 978-1-98-839210-3

Copyright Forward 2024 by Bipin C. Desai
This publication may be used under the spirit of sharing and universal benefits.

4

Dedication

To my family

Bipin C. Desai

5

6

Table of Contents
Preface..9
1. Basic Concepts...11

Solution to selected exercises..12
2. Data Models...13

Solution to selected exercises..14
3. FILE ORGANIZATION..15

Solution to selected exercises..16
4. The Relational Model...21

Solution to selected exercises..22
5. Relational Database Manipulation...31

Solution to selected exercises..32
6. Relational Database Design...51

Solution to Selected Exercises:...52
7. Synthesis Approach and Higher Order Normal Form..57

Solution to selected exercises..58
8. The Network Model...59

Solution to selected Exercises...60
8.8 vii. True...65

9. The Hierarchical Data Model...67
Solution to selected exercises..68

10. Query Processing...79
Solution to selected exercises..80

11. Recovery...87
Solution to selected exercises..88

12. Concurrency Management...89
Solution to selected exercises..90

13. Database Security, Integrity & Control..91
Solution to selected exercises..92

14. Database Design...93
Solution to selected exercises..94

15. Distributed Databases..95
Solution to selected exercises..96

16. Current Topics in Database Research...97
Solution to selected exercises..98

17. Database Machines...99
Solution to selected exercises..100

Appendix: CopyForward..101

7

8

Preface

The purpose of this guide is to assist the student of an introductory course in database system in
conjunction with the author’s text Introduction to Database Systems. It is suggested that the student try
the exercises given a the end of the chapters before consulting the solutions given here and compare
their the solutions.

The organization of this guide follows the suggested plan diagrammed in the preface of the text.
Solutions for selected end of chapter exercises are given. The exercises in some of the chapters are of a
general nature and their solutions are not included. The chapters on File organization and Higher order
normal forms would not be covered in many undergraduate syllabus: and Chapters 8 and 9, are often
considered obsolete, and not covered in these courses. Hence the solution to the exercises in these
chapters are not provided.

Bipin C. DESAI

9

10

1. Basic Concepts

Objectives: This chapter introduces the student to the following concepts and gives overview of
a DBMS system.

Concept of modelling for database
Concept of entities and their attributes and keys
Concept of relationship and their attributes
Concept of data integration for sharing
Three level architecture for a database system
Mapping between levels and data independence
Components and structure of a DBMS
Pros and cons of a DBMS

11

Solution to selected exercises

12

2. Data Models

Objectives: This chapter introduces the student to the following concepts and gives and
overview of different database models.

Concept of data associations and introduction of the concept of functional dependency
Concept of relationships among entities
Entity-Relationship model and its use
Concept of aggregation, generalization and specialization
Introduction to relational, network and hierarchical models
Comparison of these models.

In this chapter we look at the method of modelling entities, and the interrelations of these
entities. We introduce the concept of association amongst various attributes of an entity and the
relationships among entities. We, also, introduce the data models used in database applications. They
differ from each other in the methods used to represent the relationships among entities.   

13

Solution to selected exercises

14

3. FILE ORGANIZATION

Objectives: This is an optional chapter and may be skipped in most of the programs where, a
course in File Systems is a prerequisite or co-requisite to the course in database systems. The chapter
introduces the student to the following concepts and gives overview of file systems.

.Characteristics of storage devices

.The components of a file

.Basic file access and primary key retrieval

.Serial, Sequential, and Index-Sequential Files

.Concept of Multi-level Indexing

.Concept of hashing and Direct File organization

.Extensible Hashing

.Secondary Key Retrieval

.Inverted Index Files

.Multi-list Files

.Cellular Files

.Ring Files

.Tree Structured files

. B
+

-tree and B-tree and their comparison

In this chapter, we focus on a number of methods used to organize files and the issues involved
in the choice of a method. File organization deals with the structure of data on secondary storage
devices. In designing the structure the designer is concerned with the access time involved in the
retrieval of records based on primary or secondary keys, as well as the techniques involved in updating
data. We discuss the following file organization schemes: sequential, index sequential, multi-list, direct,
extensible hashing, and tree structured. The general principles involved in these schemes are presented,
while not delving into the implementation issues under a specific operating system.

15

Solution to selected exercises

3.3.  (a)    Each entry in the bucket will have a key value of 10 bytes and    block address of 5 bytes for
a total of 15 bytes. This means that we can have a maximum of 66 entries in a block of a bucket. Since
there are 1000 buckets. each bucket has 1000 entries and the total number of blocks per bucket is 16.
On the average half of these buckets have to be accessed to find an existing record and the actual
record would require another access for a total of 9 accesses per record.

3.3. (b)    In the index sequential organization, there would be one entry per file block. Each file block
contains 5 records, hence there will be a total of 200000 index entries. Since each index block could
have 66 entries, the total number of index blocks is 3031. A binary search will require 12 accesses in
the index block followed by an access to the file for the actual record, for a total of 13 accesses.

In the index sequential organization, there would be one entry per file block. Each file block contains 5
records, hence there will be a total of 200000 index entries. Since each index block could have 66
entries, the total number of index blocks is 3031. A binary search will require 12 accesses in the index
block followed by an access to the file for the actual record, for a total of 13 accesses.

3.3. (c)    Each index (internal) node of the B
+

-tree index would be able to contain a maximum of 66
key values and 67 pointers. We assume that the B

+
-tree is a dense index, hence each key value is in the

leaf node. The number of lowest level internal nodes is 15152. At the next level there will be 230
nodes. Then on the following level, we would have 4 nodes and there would be one node at the root
level. The total number of nodes is therefore, 1 + 4 + 230 + 15152 = 15387, and the height of the tree is
4.

3.3. (d) The number of lowest level internal nodes is 30304. At the next level there will be 919 nodes.
On the succeeding level, we would have 28 nodes and there would be one node at the root level. The
total number of nodes is therefore, 1 + 28 + 919 + 30304 = 31252, and the height of the tree is still 4.

3.4. (a)    Since there are ten million records and 10000 buckets, the number of entries per bucket is
10,000,000/10,000 = 1000. Since this represents half the capacity of the bucket, each bucket is to have
a capacity for 2000 entries. Each entry consists of a key value and a block address and requires 10
bytes. Hence, the size of the bucket is 20,000 bytes, or, it requires 2 physical blocks. Since hashing is
used, the first block access would find the correct bucket and the next access would find the appropriate
record.

3.4. (b)    The number of data blocks is given by:
 2*10*106*100/10,000 = 2*105
Since there is an entry in the index for each block, the number of blocks needed for this level of
indexing is given by:

2*105*10/10,000 = 200
The binary search in these number of blocks would need 8 accesses followed by an access to one data
block for a total of 9 accesses.

3.4. (c)    The number entries in the leaf nodes is 10*10
6
 and assuming a leaf node contains a key value

and a block address, there will be 1000 entries per leaf node and 10,000 leaf nodes. This is also the
number of entries in the lowest level internal node of the B

+
-tree. Assuming the nodes are full, there

would be 200 nodes at this level and one node at the root level. The height of the tree is two. The
number of disk accesses required, is two for the root and the internal node of the B

+
-tree combined,

followed by one for the leaf node, as well as one for the data block containing the actual record.   

16

3.5. (a) With a block size of 5,000 bytes and a record size of 200 bytes, the blocking factor is 25.
Hence, the total number of blocks in the file would be 1,000,000/25 = 40,000.

Time to read each block = 25*10-3 + 5,000/(100 * 103)
        = 75* 10-3 sec

Time to process the tape = 40,000*75*10-3 sec
          = 3,000 sec

3.5. (b)    With a block size of 50,000 bytes Title and a record size of 200 bytes, the blocking factor is
250. Hence, the total number of blocks in the file would be 1,000,000/250 = 4,000.

Time to read each block = 25*10-3 + 50,000/(100 * 103)
        = 525* 10-3 sec

Time to process the tape = 4,000*525*10-3 sec
          = 2,100 sec

3.7.   
Since 80% of the tape is to be used to record data, each block would be of a 2.4 inch length giving a
blocking factor of 120.

3.11.    (a)    

3.11. (b)

17

For Dept = COMP we access record 1, and make the following entry in the DONTAG list: <record 1,
Advisor = Smith F, 10>; <record 1, Status = F2, 6>. We find the next record for Dept = COMP list to be
8 and access this record. No entries are made in the DONTAG list. The next record to be accessed for
Dept = COMP list is 10. Here we make the following entry in the DONTAG list: <record 10, Advisor =
Smith F, 14>. The next record to be accessed for Dept = COMP list is 12. Here we make the following
entry in the DONTAG list: <record 12, Status = F2, ┴> The last record to be accessed for Dept =
COMP list is 13.    No entries are made in the DONTAG list. At the end of traversing this list, the
DONTAG list contains the following entries:

<record 1, Advisor = Smith F, 10>
<record 1, Status = F2, 6>
<record 10, Advisor = Smith F, 14>
<record 12, Status = F2, ┴>

Now the list for Status = F2 is to be traversed. The first record from the directory is found to be 1.
Before accessing this record, the DONTAG list is consulted and it is found that there is an entry in it for
this record which also indicates that the next record for Status = F2 to be 6. Since from the DONTAG
list we find that the record has not been previously accessed, we access it. Processing this record we
find that the DONTAG list does not have to be updated and we discover, further, that the next record
having the same value for Status is 12. However, the DONTAG list entry <record 12, Status = F2, ┴>
indicates that this record was already accessed and there are no further records in this list.

Now the list for Advisor = Smith F is to be processed starting with the record 1. Consulting the
DONTAG list, we conclude that this record was already accessed and that the next record in this list is
10. Again the DONTAG list tells us that this last record was already processed earlier and that we now
have to access and process record 14. Since there is no entry for record 14 in the DONTAG list, we
access it and find that the next record to be accessed is record 15. This last record is the tail of the list
and we have accessed all records satisfying the query.

3.11. (c)

18

3.16.      File before modifications:

19

File after modifications

20

4. The Relational Model

Objectives: This chapter introduces the student to the Relational data model and relational
algebra and calculus. The following concepts are introduced:

Concept of attributes, domains, tuples, and relations
Operation on relations
Integrity rules
Relation Schemes
Representing relations
Relational Algebra and operations
Relational Calculus
Tuple    Calculus
Domain Calculus
Comparison of Relational Algebra and Relational Calculus

21

Solution to selected exercises

4.1. Relations P and Q are as follows:

4.1.1.    Find the projection of Q on the attributes (B,C).

4.1.2.    Find the natural join of P and Q on the common attributes.

4.1.3. Divide P by the relation that is obtained by first selecting those tuples of Q where the value of B
is either b1 or b2 and then projecting Q on the attributes (C,D).

4.2    The relational database scheme is given as:

PARTS(P # ,Name,Colour)

22

SUPPLIER(S # ,Name,Address)
CAN_SUPPLY(S #, P # ,Quality)
SUPPLY(S #, P # ,Price,Qty)

The relations CAN_SUPPLY and SUPPLY contain foreign keys S#, P#. Presence of foreign
keys requires the maintenance of referential integrity. The addition, deletion and modification of tuples
must ensure this integrity.

4.3.(a)

4.3 (b)
Let Y = PARTS ⨝ SUPPLY ⨝SUPPLIER
Now find the unary relation R containing the S# of suppliers who supply bolts costing less than $0.01.

R = π
(SUPPLIER.S#)

(σ
(PARTS.Name='bolts'∧SUPPLY.Price<.01)

Y

The details of the parts supplied by these SUPPLIERs is obtained as follows:
π

(PARTS.P#,PARTS.Name,PARTS.Colour,R.S#)
(σ

CAN_SUPPLY.Quality>x
Z)

where Z is the relation obtained by a natural join of R, CAN_SUPPLY, and PARTS.

23

4.4. (a)

π
S#

ENROLL ⨝(σ(TEACH.Prof='Smith'⋁ TEACH.Prof='Jones')TEACH)

{s│∃e,t(e ∈ENROLL ∧ t ∈ TEACH ∧ (t[Prof] = 'Smith' ⋁ t[Prof] = 'Jones')

 ∧ e[C#] = t[C#] ∧ e[Section] = t[Section] ∧ s[S#] = e[S#]}

4.4. (b)
π

S#
(ENROLL ⨝ TEACH ⨝ ADVISE)

{s│∃e,t,a (e ∈ ENROLL ∧ t ∈ TEACH ∧ a ∈ ADVISE ∧ e[C#] = t[C#] ∧

e[Section] = t[Section] ∧ t[Prof] = a[Prof] ∧ a[S#] = e[S#] ∧ s[S#] = a[S#]}

4.4. (c)
Let TEACH1 and TEACH2 be copies of the relation TEACH.
Let R = TEACH1 x TEACH2, then

S=σ
(TEACH1.Prof=TEACH2.Prof∧TEACH1.C#=TEACH2.C# ∧TEACH1.Section≠TEACH2.Section)

(R)

The required response is given by π
TEACH1.Prof

S

{p│∃t1, t2 (t1 ∈ TEACH ∧ t2 ∈ TEACH ∧ t1[C#] = t2[C#] ∧ t1[Section]≠t2[Section]

 ∧ t1[Prof] = t2[Prof] ∧ p[Prof] = t2[Prof])

4.4. (d)
A way to tackle this rather complex query is to break it down into a set of simpler queries and then deal
with them individually. This approach is illustrated below:

- Find the set of courses that Mr. Doe has passed: PASS(C#)

- Find the courses that Mr. Doe cannot do: CANNOTDO(C#)

- Subtract the above set of courses from the set of all courses to get those that he can do.
CANDO(C#)

- Some of these may have been already completed. Therefore, to find the required response subtract
from the above set of courses that can be done by Mr. Doe, those that he has passed.

- Find the set of courses that Mr. Doe has passed: PASS(C#)

PASS(C#)=π
C#

((σ
GRADES.Grade≠’F’

GRADES)⨝(σ
STUDENT.Sname='John Doe'

STUDENT))

24

-The courses being offered are given by the projection of TEACH on C#.

-To find the courses that Mr. Doe can do we find those courses for which he has the required
prerequisite. This is obtained by performing the Cartesian product of the courses being offered with
PASS. The attribute of PASS being renamed Pre_C#. Let us call this relation HAS_PRE_REQ(C#,
Pre_C#)

HAS_PRE_REQ(C#, Pre_C#)=(π
TEACH.C#

TEACH) x PASS[Pre_C#]

Now the courses that Mr. Doe cannot do is given by:

CANNOTDO(C#) = π
C#

(PRE_REQ - HAS_PRE_REQ)

Courses he can do is then given by:

CANDO(C#) = (π
C#

TEACH) - CANNOTDO

Subtracting the courses already completed, we get the courses for which Mr. Doe can now enrol:

CAN_ENROLL(C#) = CANDO(C#) - PASS(C#).

4.5. (a) Let us first find the relation X as follows:
X = σ

(Conductor='Letitia Melody')
Y

where Y(Conductor,Composition,Player,Instrument) is given as :
Y= CONDUCTS ⨝ REQUIRES ⨝ PLAYS
Then the list of players and their instruments that can be part of the orchestra when Letitia Melody
conducts is given by:

π
(Player,Instrument)

X

{z│∃c,r,p(c ∈ CONDUCTS ∧ r ∈ REQUIRES ∧ p ∈ PLAYS

∧ c[Conductor] = 'Letitia Melody' ∧ c[Composition] = r[Composition]

∧ r[Instrument] = p[Instrument] ∧ z[Player] = p[Player] ∧ z[Instrument] = p[Instrument])}

Note: The schema of z define in the TRC query,

4.5 (b) Let TEMP be the relation defined below:
TEMP = σ

Conductor='Letitia Melody'
CONDUCTS

Then the players who like the composition they are likely to play is given by:

25

π
LIKES.Player

(REQUIRES ⨝ PLAYS ⨝ LIKES ⨝ TEMP)

 {x│∃c,r,p,l(c ∈ CONDUCTS ∈ r ∈ REQUIRES ∧ p ∈ PLAYS ∧ l ∈ LIKES

∧ c[Conductor] = 'Letitia Melody' ∧ c[Composition] = r[Composition]∧ l[Player] = x[Player]

∧ c[Composition] = l[Composition] ∧ r[Instrument] = p[Instrument] ∧ l[Player] = p[Player])}

4.7 (a) Select tuples from rel
1
 such that the attribute B has either the value B1 or B2.

4.7 (b) σ
B='B1'⋁B='B2'

(rel
1
)

4.7(c) {t│t ∈ rel
1
 ∧ (t[B] = 'B1' ⋁ t[B] = 'B2')}

4.10. "Get complete details of employees working on a Database project."

{s │ s ∈ EMPLOYEE ∧ ∃u,t(t ∈ PROJECT ∧ t[Project_Name] = 'Database'

 u ∧ ∈ ASSIGNED_TO ∧ u[Project#] = t[Project#] ∧ s[Emp#] = u[Emp#])}

The above can be written using the identity ∃xA(x) = ¬∀x(¬A(x)) as follows:

{s │ s ∈ EMPLOYEE ¬∧ ∀u,t (t ∉ PROJECT ⋁ t[Project_Name] ≠ 'Database'

⋁ u ∉ASSIGNED_TO ⋁  u[Project#] ≠ t[Project#] ⋁ s[Emp#] ≠ u[Emp#])}

The query "Get complete details of employees working on all Database projects" can be expressed as
follows:

{s | s ∈ EMPLOYEE ∧∀t (t ∉ PROJECT ⋁ t[Project-Name] ≠ 'Database'

⋁ ∃u(u ∈ ASSIGNED_TO ∧ u[Project#] = t[Project#] ∧ s [Emp#] = u[Emp#])}

The above can be written using the negating both of the identity ∃xA(x) = ¬∀x(¬A(x)

 i.e., ¬(∃xA(x))= ¬(¬∀x(¬A(x))) which is:

∀x(A(x)) = ¬∃x(¬A(x))as follows:

{s │ s ∈ EMPLOYEE ∧ ¬∃t(¬{t ∉ PROJECT ⋁ t[Project-Name] ≠ 'Database'

⋁ ∃u(u ∈ ASSIGNED_TO ∧ u[Project#] = t[Project#] ∧ s [Emp#] = u[Emp#])}]

{s │ s ∈ EMPLOYEE ∧ ¬∃t(t ∈ PROJECT ∧ t[Project_Name] = 'Database'

∧¬∃ u (u ∈ASSIGNED_TO ∧  u[Project#] = t[Project#] ∧ s[Emp#] = u[Emp#])}

"List the complete details of employees working on both COMP353 and COMP354."

{s │ s ∈ EMPLOYEE ∧ ∃u
1
,u

2
 (u

1
 ∈ ASSIGNED_TO

26

 u∧
2
 ∈ ASSIGNED_TO u∧

1
[Emp#] = u

2
[Emp#]

 s[∧ Emp#] = u
1
[Emp#] u∧

1
[Project#] = 'COMP353'

 u∧
2
[Project#] = 'COMP354')}

Interchanging the quantifiers using ∃xA(x) = ¬∀x(¬A(x)) we get:

{s │ s ∈ EMPLOYEE ¬∧ ∀u
1
,u

2
 (u

1
 ∉ ASSIGNED_TO

⋁ u
2
 ∉ ASSIGNED_TO ⋁ u

1
[Emp#] ≠ u

2
[Emp#]

⋁s[Emp#] ≠ u
1
[Emp#] ⋁ u

1
[Project#] ≠ 'COMP353'

⋁ u
2
[Project#] ≠ 'COMP354')}

--
Exercise: modify the above query to read "List the complete details of employees working on either
'COMP353' or COMP354 or both."

--
"Get employee numbers of employees, excluding employee 107, who works on at least one project that
employee 107 works on".

{t[Emp#]│ t ∈ ASSIGNED_TO ∧ ∃s (s ∈ ASSIGNED_TO    s[∧ Emp#] = 107

 ∧ ∃u(u ∈ ASSIGNED_TO s[∧ Project#] = u[Project#]

 u[∧ Emp#] ≠ 107 t[∧ Emp#] = u[Emp#])}

Interchanging the quantifiers using ∃xA(x) = ¬∀x(¬A(x)) we get:

{t[Emp#]│ t ∈ ASSIGNED_TO ∧ ¬∀s (s ∉ ASSIGNED_TO    ⋁ s[Emp#] ≠ 107

 ⋁ ¬∃u(u ∈ ASSIGNED_TO s[∧ Project#] = u[Project#]

 u[∧ Emp#] ≠ 107 t[∧ Emp#] = u[Emp#])}

"Get employee numbers of employees who do not work on project COMP453".

{ t[Emp#]│ t ∈ ASSIGNED_TO ∧
¬∃u(u ∈ ASSIGNED_TO u[∧ Project#] = 'COMP453' t[∧ Emp#] = u[Emp#])}

Interchanging the quantifiers using ∃xA(x) = ¬∀x(¬A(x)) we get:

{ t[Emp#]│ t ∈ ASSIGNED_TO ∧ ∀u (u ∉ ASSIGNED_TO

 ⋁ u[Project#] ≠ 'COMP453' ⋁ t[Emp#] ≠ u[Emp#])}

"Compile a list of employee numbers of employees who work on all projects."

27

{ t[Emp#]│ t ∈ ASSIGNED_TO ∧
∀p(p ∈ PROJECT → ∃u(u ∈ ASSIGNED_TO

 p[∧ Project#] = u[Project#] t[∧ Emp#] = u[Emp#]))}

This can be re-written f → g can be replaced by ¬ f ⋁ g :

{ t[Emp#]│ t ∈ ASSIGNED_TO ∧
∀p(p ∉ PROJECT ⋁ ∃u(u ∈ ASSIGNED_TO

 p[∧ Project#] = u[Project#]
 t[∧ Emp#] = u[Emp#]))}

Interchanging the quantifiers using ∀x(A(x)) = ¬∃x(¬A(x)), we get:

{ t[Emp#]│ t ∈ ASSIGNED_TO ∧
¬∃p(p ∈ PROJECT ¬∧ ∃u(u ∈ ASSIGNED_TO

 p[∧ Project#] = u[Project#] t[∧ Emp#] = u[Emp#]))}

"Get employee numbers of employees, not including employee 107, who work on at least one project
that employee 107 works on".

{ t[Emp#]│ t ∈ ASSIGNED_TO ∧
∃s,u (s ∈ ASSIGNED_TO    u ∧ ∈ ASSIGNED_TO

 s[∧ Project#] = u[Project#] s[∧ Emp#] = 107
 t[∧ Emp#] ≠ 107 t[∧ Emp#] = u[Emp#])}

After interchanging the quantifiers, we get:

{ t[Emp#]│ t é ASSIGNED_TO ∧
¬∀s,u (s ≠ ASSIGNED_TO    ⋁ u ∉ ASSIGNED_TO

 ⋁ s[Project#] ≠ u[Project#] ⋁ s[Emp#] ≠ 107
 ⋁ t[Emp#] = 107 ⋁ t[Emp#] ≠ u[Emp#])}

4.12 (a) Acquire details of the projects for each employee by name.
π

EMPLOYEE.EmpName,PROJECT.Project#,PROJECT.Project_Name,PROJECT.Cheif_Architect
(X)

Here the relation X is given as: ASSIGNED_TO ⨝ EMPLOYEE ⨝ PROJECT

4.12 (b) Compile the names of projects to which employee 107 is assigned.

Let X be the relation as :    (σ
EMPLOYEE.EmpN#=107

(ASSIGNED_TO)) ⨝ PROJECT

Then the project names are obtained as: π
PROJECT.Project_Name

(X)

28

4.12 (c) Access all employees assigned to projects whose chief architect is employee 109.

The required employee numbers are given by:

π
EMPLOYEE.Emp#

((ASSIGNED_TO) ⨝ (X))

where the relation X is given by:

X = π
PROJECT.Project#

(σ
PROJECT.Cheif_Architect=109

(PROJECT))

4.12 (d) Derive the list of employees who are assigned to all projects where employee 109 is the chief
architect.

The list is given by ASSIGNED_TO ÷ X, where X is obtained as follows:

X = π
.Project#

(σ
Cheif_Architect=109

(PROJECT))

4.12 (e) Get all project names to which employee 107 is not assigned.
Let X be given by:

X = π
Project#

(σ
Emp#=107

(ASSIGNED_TO))

and let Y. the project numbers where 107 is not assigned is given by:

Y = π
Project#

PROJECT - X
Then the required response is given by Z where Z is:

Z = π
PROJECT.Project_Name

(PROJECT ⨝ Y)

4.12 (f) Get complete details of employees who are assigned to projects not assigned to employee 107.
Let X be given by:

X = π
PROJECT.Project#

(σ
ASSIGNED_TO.Emp#=107

(ASSIGNED_TO))

and let Y be given by:

Y = ASSIGNED_TO ⨝ (π
PROJECT.Project#

PROJECT - X)

Then the requires response is given by:

π
EMPLOYEE.Emp#EMPLOYEE.EmpName

(EMPLOYEE ⨝ Y)

4.13 (a) Acquire details of the projects for each employee by name.

{e[EmpName],p │ ∃ e,a,p(e ∈ EMPLOYEE ∧ a ∈ ASSIGNED_TO

∧ p ∈ PROJECT ∧ a[Project#] = p[Project#] ∧ a[Emp#] = e[Emp#]}

4.13 (b) Compile the names of project to which employee 107 is assigned.

{p[Project_Name] │ ∃ a,p (a ∈ ASSIGNED_TO     p ∧ ∈ PROJECT

 a[∧ Emp#] = 107 a[∧ Project#] = p[Project#])}

29

4.13 (c) Access all employees assigned to projects whose chief architect is employee 109.

{a[Emp#] │ ∃ a,p (a ∈ ASSIGNED_TO p ∧ ∈ PROJECT

 p[∧ Cheif_Architect] = 109 p[∧ Project#] = a[Project#])}

4.13 (d) Derive the list of employees who are assigned to all projects where employee 109 is the chief
architect.

{t[Emp#] │ t ∈ ASSIGNED_TO ∧ ∀p(p ∈ PROJECT ⋁ p[Cheif_Architect] ≠ 109

⋁ ∃ a (a ∈ ASSIGNED_TO p[∧ Project#] = a[Project#] t[∧ Emp#] = a[Emp#]))}

4.13 (e) Get all project names to which employee 107 is not assigned.

{ p[Project_Name] │ p PROJECT ∈ ∧ ¬∃a (a ASSIGNED_TO ∈
 p[∧ Project#] = a[Project#] a[∧ Emp#] = 107)}

4.13 (f) Get complete details of employees who are assigned to projects not assigned to employee 107
{ e │ e EMPLOYEE ∈ ∧∃ e1,a,p (e1 EMPLOYEE a ASSIGNED_TO ∈ ∧ ∈

 p∧ PROJECT e[∈ ∧ Emp#] = e1[Emp#] e1[∧ Emp#] = a[Emp#]
 p[∧ Project#] = a[Project#] ¬Éa1(a1 ASSIGNED_TO ∧ ∈
 a1[∧ Project#] = p[Project#] a[∧ Emp#] = 107))}

4.14 (a) Acquire details of the projects for each employee by name.
{<m,p,n,c> │ ∃ e1,p1(<e1,m> EMPLOYEE <p1,e1> ASSIGNED_TO ∈ ∧ ∈

 <p1,n,c> PROJECT p = p1)}∧ ∈ ∧
4.14 (b) Compile the names of projects to which employee 107 is assigned.
{<n> │ ∃ p,e,p1,c(<p,e> ASSIGNED_TO ∈

 <p1,n,c> PROJECT p = p1 e = 107)}∧ ∈ ∧ ∧
4.14 (c) Access all employees assigned to projects whose chief architect is employee 109.

{<e> │ ∃ p, n,c (<p,e> ASSIGNED_TO ∈
 <p,n,c> PROJECT c = 109)}∧ ∈ ∧

4.14 (d) Derive the list of employees who are assigned to all projects where employee 109 is the chief
architect.

{<e> │ ∀p,n,c(<p,n,c> ∉ PROJECT ⋁ c ≠ 109

 ⋁ ∃ p1(<p1,e> ASSIGNED_TO p = p1)))}∈ ∧
4.14 (e) Get all project names to which employee 107 is not assigned.
{<n> │ ∃ p,c (<p,n,c> PROJECT∈

 ¬∧ ∃ p1,e(<p1,e> ASSIGNED_TO p1 = p e = 107)}∈ ∧ ∧

4.14 (f) Get complete details of employees who are assigned to projects not assigned to employee 107.
{ <e,m> │ ∃ p,n,c,p1,e1(<e,m> EMPLOYEE∈

 <p,n,c>∧ PROJECT∈
 (<p1,e1> ASSIGNED_TO e = e1 p1 = p∧ ∈ ∧ ∧
 (∧ ¬∃p2,e2(<p2,e2> ASSIGNED_TO ∈
 p2 = p e2 = 107))}∧ ∧

30

5. Relational Database Manipulation
Objectives: This chapter introduces the student to the commercial data manipulation languages. We
look at the main features of SQL, QUEL, and QBE and illustrate their usage. It is normal to cover
details of SQL, the most common of these languages. In addition, some versions of QBE are also
implemented in many commercial DBMSs and therefore the student should be familiarized with its
concepts. The concept of using SQL and QUEL embedded in HLL is presented too. A comparison of
SQL and QUEL with their shortcomings is included.

The following features of SQL are discussed:

Data definition facilities: create table, alter table, create index, drop table, drop index statements
Data manipulation facilities: select, delete, insert, and update statements
Method of specifying predicates and joins in SQL
Use of arithmetic and aggregate operators
Method of specifying joins in SQL
Nested queries and manipulating sets in SQL
Specifying quantifiers in SQL
Creating views in SQL

The following features of QUEL are discussed:

Data definition facilities: create, index, modify, and destroy statements
Data manipulation facilities: retrieve, range, delete, append, and replace statements
Method of specifying predicates and joins
Aggregation in QUEL
Use of temporary relations in QUEL to implement the SQL nested query feature
Creating views in QUEL
The basic data retrieval, aggregation and update features of QBE are discussed:

31

Solution to selected exercises

5.1. SQL

(a) List all students taking courses with Smith or Jones.

select S#,Sname
from STUDENT, ENROLL, TEACH
where STUDENT.S# = ENROLL.S# and

ENROLL.Section = TEACH.Section and
(TEACH.Prof = 'Smith' or TEACH.Prof = 'Jones')

(b) List all students taking at least one course that their advisor teaches.

select ADVISE.S#
from ENROLL, TEACH, ADVISE
where ENROLL.Section = TEACH.Section and

TEACH.Prof = ADVISE.Prof and
ENROLL.S# = ADVISE.S# and
ENROLL.C# = TEACH.C#

(c) List those professors who teach more than one section of the same course.
select t1.Prof
from TEACH t1, TEACH t2
where t1.Prof = t2.Prof and

t1.C# = t2.C# and
t1.Section ¤ t2.Section

(d) List the courses that student "John Doe" can enrol in, i.e., has passed the necessary prerequisite
courses but not the course itself.

As before, this query is resolved by breaking it down into a set of simpler queries:

(i) Find the courses John Doe cannot do,
(ii) Find the courses John Doe can do,
(iii) Find courses John Doe can enrol-in.

(i) Let us first create a temporary relation TEMP1(C#) and store the courses that John Doe has passed
in it as follows:

insert into TEMP1
select C#
from STUDENT, GRADES

32

where Sname = 'John Doe' and
Grade ≠ 'F' and STUDENT.S# = GRADES.S#

Now let us find the Cartesian product of the courses offered and the courses passed, to find those
courses for which he has the necessary prerequisites. Save the result into another relation TEMP2(C#,
Pre_C#).

insert into TEMP2
select TEACH.C#, Pre_C# = TEMP1.C#
from TEACH, TEMP1

Now let us find the set of courses that he cannot do and store it into the temporary relation
TEMP3(C#):
insert into TEMP3

select C#
from PRE_REQ
where not exists

(select *
from TEMP2
where PRE_REQ.C# = TEMP2.C# and
PRE_REQ.Pre_C# = TEMP2.Pre_C#)

(ii) Now let us find the courses that John Doe can do and store these in a temporary relation
TEMP4(C#) as follows:

insert into TEMP4
(select C#
from TEACH) minus
(select C#
from TEMP3)

(iii) Now we can find the courses that he can enrol-in as:

(select C#
from TEMP4) minus

(select C#
from TEMP1)

QUEL

(a) List all students taking courses with Smith or Jones.

range of s is STUDENT
range of e is ENROLL
range of t is TEACH
retrieve (s.S#, s.Sname)
where s.S# = e.S# and

33

e.C# = t.C# and
e.Section = t.Section and
(t.Prof = 'Smith' or
t.Prof = 'Jones')

(b) List all students taking at least one course that their advisor teaches.

range of a is ADVISE
range of e is ENROLL
range of t is TEACH
retrieve (a.S#)
where e.C# = t.C# and

e.Section = t.Section and
t.Prof = a.Prof and
e.S# = a.S#

(c) List those professors who teach more than one section of the same course.

range of t1 is TEACH
range of t2 is TEACH
retrieve (t1.Prof)
where t1.Prof = t2.Prof and

t1.C# = t2.C# and
t1.Section ¤ t2.Section

5.2
CONDUCTS (Conductor, Composition)
REQUIRES (Composition, Instrument)
PLAYS (Player, Instrument)
LIKES (Player, Composition)

SQL

(a) List the players and their instruments that can be part of the orchestra when Letitia Melody
conducts.

select Player, Instrument
from CONDUCTS REQUIRES PLAYS
where CONDUCTS.Composition = REQUIRES.Composition and

REQUIRES.Instrument = PLAYS.Instrument and
Conductor = 'Letitia Melody'

(b) From the above list of players, identify those who like the composition they are likely to play.

select LIKES.Player
from CONDUCTS, REQUIRES, PLAYS, LIKES
where CONDUCTS.Composition = REQUIRES.Composition and

34

CONDUCTS.Composition = LIKES.Composition and
REQUIRES.Instrument = PLAYS.Instrument and
PLAYS.Player = LIKES.Player

QUEL

(a) List the players and their instruments that can be part of the orchestra when Letitia Melody
conducts.

range of c is CONDUCTS
range of r is REQUIRES
range of p is PLAYS
retrieve (p.Player,p. Instrument)
where c.Composition = r.Composition and

r.Instrument = p.Instrument and
c.Conductor = 'Letitia Melody'

(b) From the above list of players, identify those who would like the composition they are likely to
play.

range of c is CONDUCTS
range of r is REQUIRES
range of p is PLAYS
range of l is LIKES
retrieve (l.Player)
where c.Composition = r.Composition and

r.Instrument = p.Instrument and
c.Composition = r.Composition and
c.Composition = l.Composition and
c.Conductor = 'Letitia Melody'

QBE

(a) List the players and their instruments that can be part of the orchestra when Letitia Melody
conducts.

──────────────────┬────────────────────┬──────────────────
 CONDUCTS │ Conductor │ Composition
══════════════════╪════════════════════╪══════════════════
 │ Letitia Melody │ C0
 │ │

──────────────────┬────────────────────┬──────────────────
 REQUIRES │ Composition │ Instrument
══════════════════╪════════════════════╪══════════════════
 │ C0 │ IN
 │ │

35

──────────────────┬────────────────────┬──────────────────
 PLAYS │ Player │ Instrument
══════════════════╪════════════════════╪══════════════════
 │ P.PL │ P.IN
 │ │

(b) From the above list of players, identify those who would like the composition they are likely to
play.

──────────────────┬────────────────────┬──────────────────
 CONDUCTS │ Conductor │ Composition
══════════════════╪════════════════════╪══════════════════
 │ Letitia Melody │ C0
 │ │

──────────────────┬────────────────────┬──────────────────
 REQUIRES │ Composition │ Instrument
══════════════════╪════════════════════╪══════════════════
 │ C0 │ IN
 │ │
 │ │

──────────────────┬────────────────────┬──────────────────
 PLAYS │ Player │ Instrument
══════════════════╪════════════════════╪══════════════════
 │ P.PL │ P.IN
 │ │
 │ │
──────────────────┬────────────────────┬──────────────────
 LIKES │ Player │ Composition
══════════════════╪════════════════════╪══════════════════
 │ P.PL │ C0
 │ │
 │ │

5.3

Acquire details of the projects for each employee by name.

select Emp#, EmpName, Project_Name
from ASSIGNED_TO, EMPLOYEE, PROJECT
where ASSIGNED_TO.Project# = PROJECT.Project# and

 ASSIGNED_TO.Emp# = EMPLOYEE.Emp#

Compile the names of project where employee 107 is assigned.

select Project_Name
from ASSIGNED_TO, PROJECT

36

where ASSIGNED_TO.Project# = PROJECT.Project# and
 EMPLOYEE.Emp# = 107

Access all employees assigned to projects whose chief architect is employee 109.

select a.Emp#
from ASSIGNED_TO a, PROJECT p
where a.Project# = p.Project# and

 p.Cheif_Architect = 109

Derive the list of employees who are assigned to all projects where employee 109 is the chief architect.

select a1.Emp#
from ASSIGNED_TO a1
where (select a2.Project#

from ASSIGNED_TO a2
 where a1.Emp# = a2.Emp#)
 contains
 (select p.Project#

from PROJECT p
where p.Cheif_Architect = 109)

or

select a1.Emp#
from ASSIGNED_TO a1
where not exists

(select *
 from PROJECT p

where p.Cheif_Architect = 109 and
not exists

 (select *
from ASSIGNED_TO a2
where a1.Emp# = a2.Emp# and
a2.Project# = p.Project#))

Get all project names to which employee 107 is not assigned.

select Project_Name
from PROJECT
where Project# not in

(select Project#
 from ASSIGNED_TO

where Emp# = 107)

37

or

select Project_Name
from PROJECT p
where not exists

(select *
 from ASSIGNED_TO a

 where p.Project# = a.Project# and
 Emp# = 107)

or

(select p.Project_Name
from PROJECT p
where Project# in

(select distinct p1.Project#
 from PROJECT p1)

minus
(select distinct a.Project#

 from ASSIGNED_TO a
 where a.Emp# = 107))

Get complete details of employees who are assigned to projects not assigned to employee 107.

select e.Emp# e.EmpName
from EMPLOYEE e, PROJECT p
where e.Project# = p.Project#

and not exists
(select *

 from ASSIGNED_TO a
where a.Project# = p.Project# and

 a.Emp# = 107)

5.5.

SQL

select a,b
from REL1
where b = 'B1' or b = 'B2'

QUEL

range of r is REL1
retrieve (r.all)
where r.b = 'B1' or r.b = 'B2'
QBE

38

──────────────────┬────────────────────┬──────────────────
 REL1 │ A │ B
══════════════════╪════════════════════╪══════════════════
 P. │ X │ B1
 │ Y │ B2

5.6.

SQL

(a) List all modules that use the HEAPSORT and BINARY_SEARCH modules.

select c1.Module
from CONSISTS_OF c1, CONSISTS_OF c2
where c1.Module = c2.Module and

c1.Sub_Module = 'HEAPSORT' and
c2.Sub_Module = 'BINARY_SEARCH'

(b) List employees that were involved in the development of all modules that use the HEAPSORT and
BINARY_SEARCH modules.

select distinct Employee
from DEVELOPED_BY, CONSISTS_OF c1, CONSISTS_OF c2
where c1.Module = c2.Module and

c1.Sub_Module = 'HEAPSORT' and
c2.Sub_Module = 'BINARY_SEARCH' and
c1.Module = DEVELOPED_BY.Module

QUEL

(a) List all modules that use the HEAPSORT and BINARY_SEARCH modules.

range of c1 is CONSISTS_OF
range of c2 is CONSISTS_OF
retrieve (c1.Module)
where c1.Module = c2.Module and
 c1.Sub_Module = 'HEAPSORT' and
 c2.Sub_Module = 'BINARY_SEARCH'

(b) List employees that were involved in the development of all modules that use the HEAPSORT and
BINARY_SEARCH modules.

range of c1 is CONSISTS_OF
range of c2 is CONSISTS_OF
range of d is DEVELOPED_BY
retrieve (d.Employee)

39

where c1.Module = c2.Module and
 c1.Sub_Module = 'HEAPSORT' and
 c2.Sub_Module = 'BINARY_SEARCH' and
 c1.Module = d.Module

The above query does not list employees who are involved indirectly with the development of
HEAPSORT or BINARY_SEARCH. One level of indirection can be obtained as shown
below and a modification can be used to get two level of indirection. A multilevel
indirection is not expressible in relational algebra calculus and hence in SQL or QUEL.

select distinct Employee
from DEVELOPED_BY, CONSISTS_OF c1, CONSISTS_OF c2
where c1.Sub_Module = c2.Module and

(c2.Sub_Module = 'HEAPSORT' or
c2.Sub_Module = 'BINARY_SEARCH') and
c1.Module = DEVELOPED_BY.Module

range of c1 is CONSISTS_OF
range of c2 is CONSISTS_OF
range of d is DEVELOPED_BY
retrieve (d.Employee)
where c1.Sub_Module = c2.Module and
 (c2.Sub_Module = 'HEAPSORT' or
 c2.Sub_Module = 'BINARY_SEARCH') and
 c1.Module = d.Module

5.8.

SQL

update EMPLOYEE
set Pay_Rate = 1.05 * Pay_Rate
where Empl_No in

(select Empl_No
from DUTY_ALLOCATION
where Posting_No = 7 and

Shift = 3)

QUEL

range of e is EMPLOYEE
range of d is DUTY_ALLOCATION
replace e (Pay_Rate = 1.05 * Pay_Rate)

where e.Empl_No = d.Empl_No and
 d.Posting_No = 7 and

40

 d.Shift = 3

5.10.

(i) Get Emp# of employees working on project numbered COMP353.

select Emp#
from ASSIGNED_TO
where Project# = 'COMP353'

(ii) Get details of employees(name and number) working on project COMP353.

select EMPLOYEE.Emp#, EmpName
from ASSIGNED_TO, EMPLOYEE
where EMPLOYEE.Emp = ASSIGNED_TO.Emp and

Project# = 'COMP353'

(iii) Get details of employees working on all Database projects"

The following gives employees working on at-least one Database project

select EMPLOYEE.Emp#, EmpName
from ASSIGNED_TO, EMPLOYEE, PROJECT
where Project_Name = 'Database' and

PROJECT.Project# = ASSIGNED_TO.Project# and
EMPLOYEE.Emp = ASSIGNED_TO.Emp

To get details for employees working on all Database projects we use the following query.

select e.Emp#, e.EmpName
from EMPLOYEE e
where e.Emp# in

(select a1.Emp#
 from ASSIGNED_TO a1
 where (select distinct a2.Project#

 from ASSIGNED_TO a2
 where a1.Emp# = a2.Emp#)
 contains

(select p.Project#
from PROJECT p
where p.Project_Name = 'Database')

41

or

select e.Emp#, e.EmpName
from EMPLOYEE e
where e.Emp# in

(select a1.Emp#
 from ASSIGNED_TO a1
 where not exists

(select p.Project#
from PROJECT p
where p.Project_Name = 'Database' and

 not exists
(select *
from ASSIGNED_TO a2
where a2.Project# = p.Project# and

 a1.Emp# = a2.Emp#)))

(iv) Get details of employees working on both COMP353 and COMP354.

select Emp#, EmpName
from EMPLOYEE
where Emp# in

(select a1.Emp#
from ASSIGNED_TO a1
where (select distinct a2.Project#

 from ASSIGNED_TO a2
 where a1.Emp# = a2.Emp#)

contains
(select distinct a3.Project#
from ASSIGNED_TO a3
where a3.Project# = 'COMP353' or

 a3.Project# = 'COMP354'))

(v) Get employee number of employees who work on at least all those projects that employee 107
works on.

select a1.Emp#
from ASSIGNED_TO a1
where (select distinct a2.Project#

from ASSIGNED_TO a2
where a1.Emp# = a2.Emp#)
contains

(select distinct a3.Project#
from ASSIGNED_TO a3
where a3.Emp# = 107)

or

42

select a1.Emp#
from ASSIGNED_TO a1
where not exists

(select *
from ASSIGNED_TO a2
where a2.Emp# = 107 and not exists

(select *
from ASSIGNED_TO a3
where a3.Emp# = a1.Emp# and

 a3.Project# = a1.Project#))

(vi) Get employee number of employees who do not work on project COMP453.

select distinct Emp#
from ASSIGNED_TO a1
minus
(select distinct Emp#
from ASSIGNED_TO
where Project# = a1.'COMP453')

or
select a1.Emp#
from ASSIGNED_TO a1
where not exists

(select *
from ASSIGNED_TO a2
where a2.Project# = 'COMP453'and

 a2.Emp# = a1.Emp#)

(vii) Get employee number of employees who work on all projects.

select a1.Emp#
from ASSIGNED_TO a1
where (select distinct a2.Project#

from ASSIGNED_TO a2
where a1.Emp# = a2.Emp#)
contains

(select p.Project#
from PROJECT p)

or

select a1.Emp#
from ASSIGNED_TO a1
where not exists

(select *
from PROJECT p

43

where not exists
(select *
from ASSIGNED_TO a2
where a2.Project# = p.Project# and

 a1.Emp# = a2.Emp#))

(viii) Get employee number of employees who work on at least one project that employee 107 works
on.

select a1.Emp#
from ASSIGNED_TO a1
where Emp# ¤ 107 and
Project# in

(select distinct a2.Project#
from ASSIGNED_TO a2
where a2.Emp# = 107)

5.11.

(i) Get Emp# of employees working on project number COMP353.

range of a is ASSIGNED_TO
retrieve (a.Emp#)
where a.Project# = 'COMP353'

(ii) Get details of employees(name and number) working on project COMP353.

range of e is EMPLOYEE
range of a is ASSIGNED_TO
retrieve (e.Emp#, e.EmpName)
where e.Emp = a.Emp and

a.Project# = 'COMP353'

(iii) Get details of employees working on all Database projects.

The following query finds employees who are working on any one Database project:

range of a is ASSIGNED_TO
range of e is EMPLOYEE
range of p is PROJECT
retrieve (e.Emp#, e.EmpName)
where p.Project_Name = 'Database' and

p.Project# = a.Project# and
e.Emp# = a.Emp#

To find employees who are working on all Database projects, we use the following:

44

range of a1 is ASSIGNED_TO
range of a2 is ASSIGNED_TO
range of p is PROJECT
retrieve (a1.Emp#)
where any (p.Project# by a1.Emp#
 where p.Project_Name = 'Database' and
 any (a2.Project# by a1.Emp#, p.Project#
 where a1.Emp# = a2.Emp# and
 a2.Project# = p.Project#) = 0) = 0

(iv) Get details of employees working on both COMP353 and COMP354.

range of a1 is ASSIGNED_TO
range of a2 is ASSIGNED_TO
range of a3 is ASSIGNED_TO
range of e is EMPLOYEE
retrieve (e.Emp#, e.EmpName)
where e.Emp# = a1.Emp# and

any (a2.Project# by a1.Emp#
 where (a2.Project# = COMP353 or
 a2.Project# = COMP354) and
 any (a3.Project# by a1.Emp#, a2.Project#
 where a1.Emp# = a3.Emp# and
 a2.Project# = a3.Project#) = 0) = 0)

(v) Get employee number of employees who work on at least all those projects that employee 107
works on.

range of a1 is ASSIGNED_TO
range of a2 is ASSIGNED_TO
range of a3 is ASSIGNED_TO
retrieve (a1.Emp#)
where a1.Emp# ≠ 107 and

any (a2.Project# by a1.Emp#
where a2.Emp# = 107 and

 any (a3.Project# by a1.Emp#, a2.Project#
where a3.Project# and
a1.Emp# = a3.Emp#) = 0) = 0

(vi) Get employee number of employees who do not work on project COMP453.

range of a1 is ASSIGNED_TO
range of a2 is ASSIGNED_TO
retrieve (a1.Emp#)
where any (a2.Emp# by a1.Emp#
 where a1.Emp# = a2.Emp# and
 a2.Project# = COMP453) = 0

45

(vii) Get employee number of employees who work on all projects.

range of a1 is ASSIGNED_TO
range of a2 is ASSIGNED_TO
range of p is PROJECT
retrieve (a1.Emp#)
where any (p.Project# by a1.Emp#
 where any (a2.Project# by a1.Emp#, p.Project#
 where a1.Emp# = a2.Emp# and
 a2.Project# = p.Project#) = 0) = 0

(viii) Get employee number of employees who work on at least one project that employee 107 works
on.

range of a1 is ASSIGNED_TO
range of a2 is ASSIGNED_TO
retrieve (a1.Emp#)
where a1.Emp# ¤ 107 and

a2.Project# = a1.Project# and
a2.Emp# = 107

5.14. Using SQL, get the Empl_No, Skill, and average chef's pay rate for the EMPLOYEE relation
shown in Figure 5.6.

Consider the temporary relation TEMP1(Empl_No, Skill) as follows:

insert into TEMP1
select Empl_No, Skill
from EMPLOYEE

Consider the temporary relation TEMP2(Pay_Rate) as follows:

insert into TEMP2
select avg(Pay_Rate)
from EMPLOYEE
where Skill = 'chef'

Now the required response can be derived as:

select *

from TEMP1, TEMP2

5.17

46

(i) Give the names of the players who played as forwards in 1987 with the franchise "Blades".

(a) SQL

select f.Name
from FORWARD f
where f.Franchise_Name = 'Blades' and
 f.Year = 1987

(b) QUEL

range of f is FORWARD
retrieve (f.Name)
where f.Franchise_Name = 'Blades' and
 f.Year = 1987

(ii) Find the names of all the goalies who played with the forward Ozzy Xavier over the span of his
hockey career.

(a) SQL

select g.Name
from FORWARD f, GOAL g
where f.Name = 'Ozzy Xavier' and
 f.Year = g.Year and

 f.Franchise_Name = g.Franchise_Name

(b) QUEL

range of f is FORWARD
range of g is GOAL
retrieve (g.Name)
where f.Name = 'Ozzy Xavier' and
 f.Year = g.Year and

f.Franchise_Name = g.Franchise_Name

(iii) List forwards and the franchises for those forwards who had at least 50 goals in both of the years
1985 and 1986. A player must have at least 50 goals in both the years, however may be with two
different franchises.

(a) SQL

select f.Name, f.Franchise_Name, f1.Franchise_Name
from FORWARD f, FORWARD f1
where f.Name = f1.Name and

47

f.Year = 1985 and
f1.Year = 1986 and
f.Goals >= 50 and
f1.Goals >= 50

(b) QUEL

range of f is FORWARD
range of f1 is FORWARD
retrieve (f.Name, f.Franchise_Name, f1.Franchise_Name)
where f.Name = f1.Name and
 f.Year = 1985 and

 f1.Year = 1986 and
 f.Goals >= 50 and
 f1.Goals >= 50

(iv) Give the complete details of players who played for the same franchises that Ozzy Xavier did over
his career. However, they may not necessarily have played in the same year or as forwards.

(a) SQL

 select *
 from PLAYER p
 where p.Name in

((select f1.Name
 from FORWARD f1
 where f1.Name ≠ 'Ozzy Xavier' and
 not exists

(select *
from FORWARD f2
where f2.Name = 'Ozzy Xavier' and not exists

 (select *
 from FORWARD f3
 where f3.Name = f1.Name and
 f3.Franchise_Name = f1.Franchise_Name)))
union
(select g.Name
 from GOAL g
 where not exists

(select *
from FORWARD f2
where f2.Name = 'Ozzy Xavier' and not exists

 (select *
 from GOAL g1
 where g.Name = g1.Name and
 g.Franchise_Name = g1.Franchise_Name))))

48

(b) QUEL

range of f1 is FORWARD
range of f2 is FORWARD
range of f3 is FORWARD
retrieve into TEMP(f1.Name)
where f1.Name ≠ 'Ozzy Xavier' and

any (f2.Franchise_Name by f1.Name
where f2.Name = 'Ozzy Xavier' and

 any (f3.Franchise_Name by f1.Name, f2.Franchise_Name
 where f2.Franchise_Name = f3.Franchise_Name and

 f1.Name = f3.Name) = 0) = 0
range of g1 is GOAL
range of f2 is FORWARD
range of g3 is GOAL
retrieve into TEMP(g1.Name)
where any (f2.Franchise_Name by g1.Name
where f2.Name = 'Ozzy Xavier' and
 any (g3.Franchise_Name by g1.Name, f2.Franchise_Name

 where f2.Franchise_Name = g3.Franchise_Name and
 g1.Name = g3.Name) = 0) = 0

range of t is TEMP
range of p is PLAYER
retrieve (p.all)
where p.Name = t.Name

(v) Compile the list of goalies who played, during their career, for franchises in St. Louis, Edmonton
and Paris. A goalie should be listed if and only if he had played in all three cities.

(a) SQL

select g1.Name
from GOAL g1, GOAL g2, GOAL g3, TEAM t1, TEAM t2 ,TEAM t3
where g1.Name = g2.Name and g1.Name = g3.Name and
g1.Franchise_Name = t1.Franchise_Name and
g2.Franchise_Name = t2.Franchise_Name and
g3.Franchise_Name = t3.Franchise_Name and
t1.City = 'St. Louis' and
t2.City = 'Edmonton' and
t3.City = 'Paris' and
g1.Year = t1.Year and
g2.Year = t2.Year and
g3.Year = t3.Year

(b) QUEL

49

range of g1 is GOAL
range of g2 is GOAL
range of g3 is GOAL
range of t1 is TEAM
range of t2 is TEAM
range of t3 is TEAM
retrieve (g1.Name)
where g1.Name = g2.Name and g1.Name = g3.Name and
g1.Franchise_Name = t1.Franchise_Name and
g2.Franchise_Name = t2.Franchise_Name and
g3.Franchise_Name = t3.Franchise_Name and
t1.City = 'St. Louis' and
t2.City = 'Edmonton' and
t3.City = 'Paris' and
g1.Year = t1.Year and
g2.Year = t2.Year and
g3.Year = t3.Year

50

6. Relational Database Design

Objectives: This chapter introduces the student to the following concepts:
Relation scheme
Anomalies in database as a result of bad design and normal forms
Concept of decomposition of a relation scheme
Concept of universal relation
Functional dependency and logical implication
Inference axioms
Concept of closures: of a set of FDs, of a set of attributes under a set of FDs
Membership of a FD in the closure of a set of FDs
Non-redundant and minimum covers
Concept of Full Functional, Partial and Transitive dependencies
Aim of relational database design: content and dependency preservation
Concept of un-normalized relation and the first, second, third normal forms
Concept of lossless and lossy decomposition
Concept of dependency-preserving decomposition
Algorithm to verify if a decomposition is: lossless, dependency-preserving
Algorithm for deriving a lossless and dependency-preserving third normal form relation database
Concept of the Boyce Codd normal form
Algorithm for decomposing into a lossless-join Boyce Codd normal form

51

Solution to Selected Exercises:

6.1.

The FDs in the set F are already left-reduced. In the set of FDs F={A → B, BC → D, D → BC, DE →
∅}, the DE → ∅ is redundant since its RHS is ∅. However, if the FD is included to indicate that there
is some form of non-functional dependency, we may leave it in. Another reason to leave-in this FD is to
include the attribute E which does not appear in any other FD in the set F. Writing the remaining FDs in
the simple form we get:

F'={A → B, BC → D, D → B, D → C}.

None of these FDs are redundant hence this set forms a canonical cover.

Fc={A → B, BC → D, D → B, D → C}.

Using Fc we get the following decompositions

R1 = (E)
R2 = (AB)
R3 = (BCD)
R4 = (BD)
R5 = (CD)

Since ADE is a key of R, we modify R1 to (ADE) and in this way keep the attributes DE together. R4
and R5 may be combined into a single relation scheme (BCD) which already exists as R3!

6.2.

Given: R{ABCDE} F={AB → CD, ABC → E, C → A }
ABC+ = ABCDE

Candidate keys: AB, BC

The relation is in the 1NF since there is a partial dependency in F.

6.3.

Given R{ABCDEF} F={ABC → DE, AB → D, DE → ABCF, E → C }

R is in 1NF. The key of this relation are: ABC and DE. However, the FDs AB → D, E → C are partial
dependencies and hence R is not in 3NF.

A lossless and dependency preserving decomposition of R is:

52

R1{ABCE}, R2{ABD}, R3{ADE}, R4{BDE}, R5{DEF}, R6{CE}.

6.4.

R{T, C, Y, G, D, V} FD's{T → C, TY → G, TY → D, CG → V}

The decomposition of R into R1{TCD} and R2{TGDVY} is lossless but not dependency preserving. It
is lossless since, the common attributes TD forms a superkey of the first relation. It is not dependency
preserving since the FD CG → V is not preserved in the decomposition.

The decomposition of R into R1{TC}, R2{TGDY} and R3{CGV} is a lossless and dependency
preserving 3NF decomposition. This decomposition is also in BCNF since each FDs in each relation
involve only the superkeys of the decomposed relation.

6.7.
Left-reduced Right-reduced Non-redundant covers

A → BCD A → BCD A → D A → D │A → BCD
CD → E D → E D → E E → D │E → CD
E → CD E → CD E → D D → ABCEH │D → AEH
D → AH D → AH D → AH
ABH → BD AH → BD AH → Ý
DH → BC D → BC D → BC

6.8.

 R{ABCDEFGH}
 │
 ┌─────┴──────┐
R{CEH} R{ABCDEFG}
 ┌────────┴─────┐
 │ R{ABCDEG}
 R{BCEF} ┌───────────┴─────┐
 │ R{ABCDE}
 R{BCEG} ┌────────┴─────┐
 │ R{ABDE}
 R{AC} ┌─────┴────────┐
 │ R{ABD}
 R{AE} ┌───────┴───────┐
 │ │
 R{AB} R{AD}

This decomposition is not dependency preserving since among others the FD BCD → E is not
preserved.

6.9.

53

Given FD set Left-reduced Right-reduced Canonical cover
I → K I → K I → K I → BCDEFGJK
AI → BFG I → BFG I → BFG K → AH
IC → ADE I → ADE I → DE
BIG → CJ I → CJ I → CJ
K → AH K → AH K → AH

The decomposition of R into R1<{BCDEFGIJK}, {I → BCDEFGJK }>, and R2<{AHK}, {K → AH}>
is both lossless and dependency preserving. Furthermore, this decomposition is also in BCNF.

6.10.

Given set Left-reduced Right-reduced Canonical cover
A → BCDE A → BCDE A → C A → C
B → ACDE B → ACDE B → C B → C
C → ABDE C → ABDE C → ABDE C → ABDE

The decomposition of R into R1{AC}, R2{BC}, R3{CDE} is lossless. To preserve dependeny we may
decomose R into R1{AC}, R2{BC}, R3{ABCDE}. However, this requires some duplication.

6.13.

BCD+ = ABCDEF.

6.17.

Under the modified assumption TEACHES is not in 2NF, since Room_Cap, a non-prime attribute is not
dependent on the key of the relation. Its decomposition into COURSE_DETAILS and
ROOM_DETAILS is a 3NF decomposition which is both lossless and dependency preserving.

6.18.

The decomposition is lossy since the final version of the TABLE_LOSSY shown below, does not have
any row with all ⍺'s.

 A B C D E

R1 ⍺A ⍺B ⍺C ⍺D ß1E

R2 ß2A ⍺B ⍺C ⍺D ß2E

R3 ß3A ß3B ⍺C ⍺D ⍺E

54

6.22.

With only two atomic attributes, we can say that the relation is in BCNF form and, therefore in 3NF
form.

6.23.

Since A is a candidate key, we can deduce that the FD A → BCD is satisfied. This means that the
relation is at least in the 2NF. However, it may have a transitive dependency such as B → C and hence
may not be in any higher normal form.

55

56

7. Synthesis Approach and Higher Order Normal
Form

Objectives: This is an optional chapter for a first course in database systems. The chapter introduces the
student to the synthesis approach to 3NF relational database design. We then turn our attention to the
higher order normal forms. The concept of multi-valued dependency and axioms which involve both
functional and multi-valued dependencies are examined. The fourth normal form and a lossless
decomposition algorithm for it is given. The concept of join dependency and a normal form for it is
introduced. Finally, we introduce a scheme whereby all general constraints could be enforced via
domain and key constraint, and the associated normal form, known as domain key normal form.

57

Solution to selected exercises
7.1.

R1 = {AB}, R2 = {BCD}, R3 = {DE}, R4 = {ADE}

7.3.

*[ACE, BD, CE], *[ABC, BCD, CDE], *[AB, BC, CD, ADE]

R1 = {ABC}, R2 = {BCD}, R3 = {CDE}

7.4.

(A) (E) (F)

58

8. The Network Model

Objectives: This chapter as well as the next have a slightly different style than the rest of the text. This
has been done to allow these chapters to be studied either with very little help from the instructor or
their coverage could be entrusted to a tutor or a T.A. It is expected that the instructor has covered the
basic concept of these models in Chapter 2. The chapters at hand use the same database example.
The chapter introduces the student to the following concepts of the network data model:

The use of the DBTG set to express a one-to-many relationship

The restriction of the DBTG set construct

Implementation of the DBTG set

Expressing a many-to-many relationship in the network model

Data definition facility in the network model and different types of set memberships

Data manipulation facility

Concept of currency indicators, status registers, record templates and navigating through the network
database.

59

Solution to selected Exercises

8.4
 ┌────────────┐ ┌──────────────┐
 │ STUDENT │ │ COURSE │
 └─────┬──────┘ └───────┬──────┘
 ENROLLED_IN └───────────┐ ┌───────┘ CLASS_LIST
 ┌──┴────────┴───┐
 │ ENROLLMENT │
 └───────────────┘

 Schema name is SCHOOL

 type STUDENT = record
 Student_No: string;
 Name: string;
 Address: string;
 end

 type COURSE = record
 Course_No: string;
 Course_Name: string;
 end;

 type ENROLLMENT = record
 Course_No: string;
 Student_No: string;
 end;

 set is ENROLLED_IN
 owner is STUDENT
 member is ENROLLMENT optional manual
 end

 set is CLASS_LIST
 owner is COURSE
 member is ENROLLMENT manual optional
 end

8.7

60

┌──────────┐ ┌─────────┐ ┌───────────┐
│ SUPPLIER │ │ PARTS │ │ PROJECTS │
└┬┬─┬──────┘ └─┬──┬─┬──┘ └─────┬─────┘
 ││ │LOCATEDIN┌───────┐ │ │ │ │
 ││ └─────────┤ LOCAL │ │ │ │ │
 ││ └───────┘ │ │ │ │
 ││ │ │ │WHERE_USED USES│
 ││CAN_SUPPLY SOURCE │ │ │ ┌──────────────┐ │
 ││ │ │ └──┤ QUANTITY ├───┘
 ││ ┌────────────────┐ │ │ └──────────────┘
 │└───┤ SUPPLY_PARTS ├───┘ │
 │ └────────────────┘ │
 │ │
 │SUPPLYING ORDERED │
 │ ┌─────────────┐ │
 └────┤ ORDER ├─────────┘
 └─────────────┘

 Schema name is SUPPLIER_PARTS-PROJECTS

 type SUPPLIER = record
 Supplier#: string;
 Company-Name: string;
 end

 type LOCAL = record
 City: string;
 end

 type PARTS = record
 Part#: string;
 Weight: integer;
 end;

 type PROJECTS = record
 Project#: string;
 end;

 type QUANTITY = record
 Project#: string;
 Part#: string;
 Quant: integer;
 end;

 type SUPPLY_PARTS = record
 Supplier#: string;
 Part#: string;
 end;

61

 type ORDER = record
 Supplier#: string;
 Part#: string;
 Date_of_Delivery: string;
 end;

 set is LOCATEDIN
 owner is SUPPLIER
 member is LOCAL automatic fixed
 end

 set is WHERE_USED
 owner is PARTS
 member is QUANTITY automatic fixed
 end

 set is USES
 owner is PROJECTS
 member is QUANTITY automatic fixed
 end

 set is CAN_SUPPLY
 owner is SUPPLIER
 member is SUPPLY_PARTS automatic fixed
 end

 set is SOURCE
 owner is PARTS
 member is SUPPLY_PARTS automatic fixed
 end

 set is SUPPLYING
 owner is SUPPLIER
 member is ORDER automatic fixed
 end

 set is ORDERED
 owner is PARTS
 member is ORDER automatic fixed
 end
8.7 i.

SUPPLIER.Supplier# := supplier1;
find any SUPPLIER using SUPPLIER.Supplier#;
find first SUPPLY_PARTS within CAN_SUPPLY;
while DB_Status = 0 do
 begin

62

 get SUPPLY_PARTS;
 display ('Supplier', supplier1 'supplies part# ',
 SUPPLY_PARTS.Part#)
 find next SUPPLY_PARTS within CAN_SUPPLY;
 end

8.7 ii.

SUPPLIER.Supplier# := supplier1;
find any SUPPLIER using SUPPLIER.Supplier#;
if DB_Status = 0 then get SUPPLIER
if DB_Status = 0 then find first LOCAL within LOCATEDIN;
while DB_Status = 0 do
 begin
 get LOCAL;
 display (' Supplier''s ', SUPPLIER.Supplier#,
 'city is', LOCAL.City);
 find next LOCAL within LOCATEDIN;
 end;

8.7 iii.

We assume that there is an array parts_list as given below where we will first store the list of all parts
supplied by supplier1.

parts_list = array [1..max_no_parts] of string;
n := 1;
SUPPLIER.Supplier# := supplier1;
find any SUPPLIER using SUPPLIER.Supplier#;
find first SUPPLY_PARTS within CAN_SUPPLY;
while DB_Status = 0 do
 begin
 get SUPPLY_PARTS;
 parts_list[n] := SUPPLY_PARTS.Part#
 n := n + 1;
 find next SUPPLY_PARTS within CAN_SUPPLY;
 end

Now we use the set SOURCE to find at least another supplier who supplies each of these parts as
follows:

for i := 1 to n do
 begin;
 PARTS.Part# := parts_list[i];
 find any PARTS using PARTS.Part#;
 find first SUPPLY_PARTS within SOURCE;
 found := false;

63

 while DB_Status = 0 and not found do
 begin
 get SUPPLY_PARTS;
 if SUPPLY_PARTS.Supplier# <> supplier1 then
 found := true;
 else find next SUPPLY_PARTS within SOURCE;
 end
 if found then
 display (' Another supplier for part ' PARTS.Part#,
 ' is ' , SUPPLY_PARTS.Supplier#)
 else display (' No other supplier supplies the part ',
 PARTS.Part#);
 end;

8.7 iv.

We assume that there is an array parts_list where we will first store the list of all parts supplied by
supplier1 (as in the previous example). Now for each such part, we find the set of projects where it is
used. The union of all these sets gives the projects where supplier1 may supply. These projects are
created in the array projects_list as shown below:

projects_list = array[1..max_no_of_projects] of string;
m := 0;
for i := 1 to n do
 begin
 PARTS.Part# = parts_list[i];
 find any PARTS using PARTS.Part#;
 find first QUANTITY within WHERE_USED;
 while DB_Status = 0 do
 begin
 get QUANTITY;
 found := false;
 j := 1;
 while not found and j < m do
 if projects_list[j] = QUANTITY.Project# then
 found := true
 else j := j+1;
 if not found then
 begin
 m := m+1;
 projects_list[m] := QUANTITY.Project#;
 end;
 find next QUANTITY within WHERE_USED
 end { while }
 end {for i }

64

8.7 v.

PARTS.Part# := part1;
find any PARTS using PARTS.Part#;
find first SUPPLY_PARTS within SOURCE;
while DB_Status = 0 do
 begin
 get SUPPLY_PARTS;
 display (' Supplier is ', SUPPLY_PARTS.Supplier#)
 find next SUPPLY_PARTS within CAN_SUPPLY;
 end

8.7 vi.

PARTS.Part# := part1;
find any PARTS using PARTS.Part#;
find first QUANTITY within WHERE_USED;
while DB_Status = 0 do
 begin
 get QUANTITY;
 display (' Project is ', QUANTITY.Project#)
 find next QUANTITY within WHERE_USED;
 end

8.8 i. True

8.8 ii. False

8.8 iii. False

8.8 iv. True

8.8 v. False

8.8 vi. True

8.8 vii. True

65

66

9. The Hierarchical Data Model

Objectives: As mentioned before, this and the previous chapter have a slightly different style than the
rest of the text. This is to allow these chapters to be studied either with very little help from the
instructor or their coverage be entrusted to a tutor or a T.A.

The chapter introduces the student to the following concepts of the hierarchical data model:

Concept of ordered tree

Representation of data and relationship using the ordered tree

Representation of a many-to-many relationship in the hierarchical model

Data definition facilities

Data manipulation in the hierarchical model

Concept of currency indicators, status registers, record templates and navigating through the
hierarchical database

67

Solution to selected exercises

9.3

 ┌──────────┐ ┌────────────┐
 │ BOOK ├<┐ ┌----->┤ CLIENT │
 └────┬─────┘ └-+-┐ └─────┬──────┘
 │ | | │
 ┌─────┴──────┐ | | ┌──────┴──────┐
 │ RESERVED_BY├--┘ └---┤BOOK_RESERVED│
 └────────────┘ └─────────────┘

The paired bi-directional logical relationship, with its associated symmetrical virtual records, is
used in the hierarchical model to implement a many-to-many relationship. The many-to-many
relationship between clients and the books they reserve may be implemented as shown above:

 type BOOK = record
 Author: string;
 Title: string;
 Call_No: string;
 end

 type CLIENT = record
 Client_No: integer;
 Name: string;
 Address: string;
 end

 type RESERVED_BY = record
 {Client_No: integer;
 Name: string;
 Address: string;}
 (* virtual of logical parent
 CLIENT in CLIENT_BOOK_TREE; *)
 end

 type BOOK_RESERVED = record
 {Author: string;
 Title: string;
 Call_No: string;}
 (* virtual of logical parent
 BOOK in BOOK_CLIENT_TREE; *)
 end

68

 tree is CLIENT_BOOK_TREE
 CLIENT is parent
 BOOK_RESERVED is child
 end

 tree is BOOK_CLIENT_TREE
 BOOK is parent
 RESERVED_BY is child
 end

9.6

Since the child records are linked directly to the parent record by hierarchical pointers, there is no need
for foreign keys.

9.7

 ┌───────────┐
 │ HOSPITAL │
 └────┬──────┘
 │
 ┌───────┬──────────────┴──────┬───────────────────────┐
┌──┴──┐ ┌──┴───┐ ┌───┴────┐ ┌────┴────┐
│ LAB │ │ WARD │ │ DOCTOR │ │ PATIENT │
└─────┘ └──┬───┘ └───┬────┘ └────┬────┘
 │ │ │
 ┌─────┴───┐ ┌────────┴┬──────────┐ │
┌────┴───┐┌────┴────┐┌──┴───┐┌────┴─────┐┌───┴─────┐┌────┴───┐
│W_DOCTOR││W_PATIENT││D_WARD││SPECIALITY││D_PATIENT││P_DOCTOR│
└────────┘└─────────┘└──────┘└──────────┘└─────────┘└────────┘

 tree is HOSPITAL_TREE
 HOSPITAL is parent
 LAB is child
 WARD is child
 DOCTOR is child
 PATIENT is child
 end

 tree is WARD_TREE
 WARD is parent
 W_DOCTOR is child
 W_PATIENT is child
 end

 tree is DOCTOR_TREE

69

 DOCTOR is parent
 D_WARD is child
 SPECIALITY is child
 D_PATIENT is child
 end

 tree is PATIENT_TREE
 PATIENT is parent
 P_DOCTOR is child
 end

 type HOSPITAL = record
 Hospital_Name: string;
 Address: string;
 Phone_No: string;
 end

 type LAB = record
 Lab_Name: string;
 Room_No: integer;
 Phone_No: string;
 end

 type WARD = record
 Ward_Name: string;
 Capacity: integer;
 end

 type DOCTOR = record
 D_Name: string;
 Current_Status: string;
 end

 type PATIENT = record
 P_Name: string;
 Address: string;
 Phone: string;
 end

 type W_DOCTOR = record
 {D_Name: string;}
 (* virtual of logical parent
 DOCTOR in DOCTOR_TREE *)
 end

 type W_PATIENT = record
 {P_Name: string;}

70

 (* virtual of logical parent
 PATIENT in PATIENT_TREE *)
 end

 type D_WARD = record
 {Ward_Name: string;}
 (* virtual of logical parent
 WARD in WARD_TREE *)
 end

 type SPECIALITY = record
 Speciality_Name : string;
 end

 type D_PATIENT = record
 {P_Name: string;}
 (* virtual of logical parent
 PATIENT in PATIENT_TREE *)
 end

 type P_DOCTOR = record
 {D_Name: string;}
 (* virtual of logical parent
 DOCTOR in DOCTOR_TREE *)
 end

9.8 a)

get first HOSPITAL;
while DB-Status = 0 do
 begin
 get next within parent LAB where Lab_Name = 'haematology';
 if DB-Status = 0 then display (HOSPITAL.Hospital_Name);
 get next HOSPITAL;
 end

9.8 b)

get first HOSPITAL;
while DB-Status = 0 do
 begin
 get next within parent WARD where WARD.Capacity > 4;
 while DB-Status = 0 do
 begin
 display (HOSPITAL.Hospital_Name, WARD.Ward_Name);

 get next within parent WARD where WARD.Capacity > 4;
 end

71

 get next HOSPITAL
 end

9.8 c)

get first PATIENT where PATIENT.P_Name = ' given ';
if DB-Status = 0
then get next within parent P_DOCTOR;
while DB-Status = 0 do
 begin
 display (PATIENT.P_Name, P_DOCTOR.D_Name);
 get next within parent P_DOCTOR;
 end;

9.8 d)

get first DOCTOR;
while DB-Status = 0 do
 begin
 get next within parent SPECIALITY where Speciality_Name =

 'pediatrics';
 if DB-Status = 0
 then display (DOCTOR.D_Name);
 get next DOCTOR;
 end

9.8 e)

no_of_doctors := 0;
get first PATIENT where PATIENT.P_Name = ' given ';
if DB-Status = 0
then get next within parent P_DOCTOR;
while DB-Status = 0 do
 begin
 no_of_doctors := no_of_doctors + 1;
 display (PATIENT.P_Name, P_DOCTOR.D_Name);
 get next within parent P_DOCTOR;
 end;
display (PATIENT.P_Name, 'Number of Doctors = ', no_of_doctors);

9.8 f)

DOCTOR.D_Name := ' given ';
DOCTOR.Current_Status' given ';
insert (DOCTOR) where (HOSPITAL.Hospital_Name = ' given ');
for i := 1 to no_of _speciality do

72

 begin
 get (speciality);
 SPECIALITY.Speciality_Name := speciality;
 insert (SPECIALITY) where (DOCTOR.D_Name = ' given ');
 end

9.3
 ┌──────────┐ ┌────────────┐
 │ BOOK ├<┐ ┌----->┤ CLIENT │
 └────┬─────┘ └-+-┐ └─────┬──────┘
 │ | | │
 ┌─────┴──────┐ | | ┌──────┴──────┐
 │ RESERVED_BY├--┘ └---┤BOOK_RESERVED│
 └────────────┘ └─────────────┘

The paired bi-directional logical relationship, with its associated symmetrical virtual records, is
used in the hierarchical model to implement a many-to-many relationship. The many-to-many
relationship between clients and the books they reserve may be implemented as shown above:

 type BOOK = record
 Author: string;
 Title: string;
 Call_No: string;
 end

 type CLIENT = record
 Client_No: integer;
 Name: string;
 Address: string;
 end

 type RESERVED_BY = record
 {Client_No: integer;
 Name: string;
 Address: string;}
 (* virtual of logical parent
 CLIENT in CLIENT_BOOK_TREE; *)
 end

 type BOOK_RESERVED = record
 {Author: string;
 Title: string;
 Call_No: string;}
 (* virtual of logical parent
 BOOK in BOOK_CLIENT_TREE; *)
 end

73

 tree is CLIENT_BOOK_TREE
 CLIENT is parent
 BOOK_RESERVED is child
 end

 tree is BOOK_CLIENT_TREE
 BOOK is parent
 RESERVED_BY is child
 end

9.6

Since the child records are linked directly to the parent record by hierarchical pointers, there is no need
for foreign keys.

9.7

 ┌───────────┐
 │ HOSPITAL │
 └────┬──────┘
 │
 ┌───────┬──────────────┴──────┬───────────────────────┐
┌──┴──┐ ┌──┴───┐ ┌───┴────┐ ┌────┴────┐
│ LAB │ │ WARD │ │ DOCTOR │ │ PATIENT │
└─────┘ └──┬───┘ └───┬────┘ └────┬────┘
 │ │ │
 ┌─────┴───┐ ┌────────┴┬──────────┐ │
┌────┴───┐┌────┴────┐┌──┴───┐┌────┴─────┐┌───┴─────┐┌────┴───┐
│W_DOCTOR││W_PATIENT││D_WARD││SPECIALITY││D_PATIENT││P_DOCTOR│
└────────┘└─────────┘└──────┘└──────────┘└─────────┘└────────┘

 tree is HOSPITAL_TREE
 HOSPITAL is parent
 LAB is child
 WARD is child
 DOCTOR is child
 PATIENT is child
 end

 tree is WARD_TREE
 WARD is parent
 W_DOCTOR is child
 W_PATIENT is child
 end

 tree is DOCTOR_TREE
 DOCTOR is parent
 D_WARD is child

74

 SPECIALITY is child
 D_PATIENT is child
 end

 tree is PATIENT_TREE
 PATIENT is parent
 P_DOCTOR is child
 end

 type HOSPITAL = record
 Hospital_Name: string;
 Address: string;
 Phone_No: string;
 end

 type LAB = record
 Lab_Name: string;
 Room_No: integer;
 Phone_No: string;
 end

 type WARD = record
 Ward_Name: string;
 Capacity: integer;
 end

 type DOCTOR = record
 D_Name: string;
 Current_Status: string;
 end

 type PATIENT = record
 P_Name: string;
 Address: string;
 Phone: string;
 end

 type W_DOCTOR = record
 {D_Name: string;}
 (* virtual of logical parent
 DOCTOR in DOCTOR_TREE *)
 end

 type W_PATIENT = record
 {P_Name: string;}
 (* virtual of logical parent
 PATIENT in PATIENT_TREE *)

75

 end

 type D_WARD = record
 {Ward_Name: string;}
 (* virtual of logical parent
 WARD in WARD_TREE *)
 end

 type SPECIALITY = record
 Speciality_Name : string;
 end

 type D_PATIENT = record
 {P_Name: string;}
 (* virtual of logical parent
 PATIENT in PATIENT_TREE *)
 end

 type P_DOCTOR = record
 {D_Name: string;}
 (* virtual of logical parent
 DOCTOR in DOCTOR_TREE *)
 end

9.8 a)

get first HOSPITAL;
while DB-Status = 0 do
 begin
 get next within parent LAB where Lab_Name = 'haematology';
 if DB-Status = 0 then display (HOSPITAL.Hospital_Name);
 get next HOSPITAL;
 end

9.8 b)

get first HOSPITAL;
while DB-Status = 0 do
 begin
 get next within parent WARD where WARD.Capacity > 4;
 while DB-Status = 0 do
 begin
 display (HOSPITAL.Hospital_Name, WARD.Ward_Name);

 get next within parent WARD where WARD.Capacity > 4;
 end
 get next HOSPITAL
 end

76

9.8 c)

get first PATIENT where PATIENT.P_Name = ' given ';
if DB-Status = 0
then get next within parent P_DOCTOR;
while DB-Status = 0 do
 begin
 display (PATIENT.P_Name, P_DOCTOR.D_Name);
 get next within parent P_DOCTOR;
 end;

9.8 d)

get first DOCTOR;
while DB-Status = 0 do
 begin
 get next within parent SPECIALITY where Speciality_Name =

 'pediatrics';
 if DB-Status = 0
 then display (DOCTOR.D_Name);
 get next DOCTOR;
 end

9.8 e)

no_of_doctors := 0;
get first PATIENT where PATIENT.P_Name = ' given ';
if DB-Status = 0
then get next within parent P_DOCTOR;
while DB-Status = 0 do
 begin
 no_of_doctors := no_of_doctors + 1;
 display (PATIENT.P_Name, P_DOCTOR.D_Name);
 get next within parent P_DOCTOR;
 end;
display (PATIENT.P_Name, 'Number of Doctors = ', no_of_doctors);

9.8 f)

DOCTOR.D_Name := ' given ';
DOCTOR.Current_Status' given ';
insert (DOCTOR) where (HOSPITAL.Hospital_Name = ' given ');
for i := 1 to no_of _speciality do
 begin
 get (speciality);
 SPECIALITY.Speciality_Name := speciality;
 insert (SPECIALITY) where (DOCTOR.D_Name = ' given ');
 end

77

78

10. Query Processing

Objectives: This chapter introduces the student to the following concepts:

In this chapter we focus on different aspects of converting a user's query into a standard form and
thence into a plan to be executed against the database to generate a response.

79

Solution to selected exercises

10.2.

(a) Let X = πPARTS.P#(σPARTS.Name=bolt(PARTS)) and

 Y = π(SUPPLY.S#,SUPPLY.Price)X

The required response is given as: Y ⨝ SUPPLIER

The query tree is given as:

 required response

 │

 ┌────── ⨝ ───────────┐
 │ │
 SUPPLIER π(SUPPLY.S#,SUPPLY.Price)

 │
 ┌─────── ⨝ ──────┐
 │ │
 │ πPARTS.N#

 SUPPLY │
 │
 σPARTS.Name=bolt
 │
 PARTS

(b) Let
X = πPARTS.P#(σPARTS.Name=bolt(PARTS)),

Y = πSUPPLY.S#(X ⨝ πSUPPLY.P#,SUPPLY.S#(σSUPPLY.Price<.01(SUPPLY)))

Z = Y ⨝ (πS#,P#(σCAN_SUPPLY.Quality>xCAN_SUPPLY))

The required response is obtained as: Z ⨝ PARTS

 required response
 │
 ┌─────── ⨝ ────┐
 │ │
PARTS │
 ┌────── ⨝ ────────────────────┐
 πS#,P# πSUPPLY.S#

 │ │
 σCAN_SUPPLY.Quality>x ┌────────── ⨝ ─────────┐
 │ πPARTS.P# πSUPPLY.P#,SUPPLY.S#

 CAN_SUPPLY │ │
 σPARTS.Name=bolt σSUPPLY.Price<.01

 │ │
 PARTS SUPPLY

80

10.3. Repeat exercise 4 from Chapter 4, presenting both an efficient relational algebraic expression and
the corresponding query tree.

(a)

ΠS#ENROLL⨝ (σ(TEACH.Prof='Smith'⋁TEACH.Prof='Jones')TEACH)

 required response

 πS#

 │
 ┌────────── ⨝ ───────────────┐
 ENROLL σ(TEACH.Prof='Smith'⋁ TEACH.Prof='Jones')

 │
 TEACH
(b)

ΠS#(ENROLL ⨝ (σ S#,C#,Section(TEACH ⨝ ADVISE)))

 required response
 πS#
 │
 ┌─────────── ⨝ ──────────────┐
 │ σS#,C#,Section
 │ │
 ENROLL ┌──────── ⨝ ────────┐
 │ │
 TEACH ADVISE

(c)

Let TEACH1 and TEACH2 be copies of the relation TEACH.
Let R = TEACH1 x TEACH2, then
S=σ(TEACH1.Prof#=TEACH2.Prof#∧TEACH1.C#=TEACH2.C#∧ TEACH1.Section╪TEACH2.Section)(R)

The required response is given by ΠTEACH1.Prof#S

 required response
 πTEACH1.Prof#

 │

 ⨝TEACH1.Prof#=TEACH2.Prof#∧TEACH1.C#=TEACH2.C#∧TEACH1.Section╪TEACH2.Section

 │
 ┌───── ────┐
 │ │
 TEACH1 TEACH2

81

(d)

PASS(C#)= πC#(σGRADES.Grade╪'F'GRADES⨝(σ(STUDENT.Sname='John Doe') STUDENT))
HAS_PRE_REQ(C#, Pre_C#)=(σTEACH.C#TEACH) x PASS[Pre_C#]
CANNOTDO(C#) = πC#(PRE_REQ - HAS_PRE_REQ)
CANDO(C#) = (πC#TEACH) - CANNOTDO
CAN_ENROLL(C#) = CANDO(C#) - PASS(C#).
 required response
 CAN_ENROLL
 │
 ┌────────── - ──────────────────────┐
 CANDO │
 │ │
 ┌─────── - ─────┐ │
 │ CANNOTDO │
 │ πC# │
 │ │ │
 │ ┌─────── - ──────┐ │
 │ │ │ │
 │ PRE_REQ HAS_PRE_REQ │
 │ │ │
 └─────────────┬──────── x ───┐ │
 │ πPre_C# │
 │ └────┬──────────┘
 │ PASS
 σTEACH.C# │
 │ πC#

 TEACH │
 ┌───── ⨝ ───────┐

 σGRADES.Grade≠'F σ(STUDENT.Sname='John Doe')

 │ │
 GRADES STUDENT

10.5.
With S in the outer loop and R in the inner loop, the number of disc accesses is 1700. If only one buffer
is used for R, and the number of buffers for S is increased to 6, then the number of disc accesses can be
trimmed down to 1417.

10.7. Given R(A,B,C), S(B,C,D) and T(C,D,E).

(i) σB=b(πABC(R⨝S) ∩ πABC(R⨝T))

 σB=b

 │
 ┌──────────── ∩ ─────────────┐
 │ │
 πABC πABC
 │ │
 ┌───── ⨝ ─────┐ ┌───── ⨝ ─────┐
 │ │ │ │
 R S R T

82

Optimized version required response

 │
 ┌──────────── ∩ ─────────────┐
 │ │
 ┌───── ⨝ ─────┐ ┌───── ⨝ ─────┐
 │ σB=b │ │
 │ │ │ │
 │ πBC │ πC

 R S R T

(ii) πABC(σB=b(πABR)⨝πABS) - πABC(σD=d(R⨝T)))

 required response │
 ⨝ABC

 │
 ┌──────────── - ─────────────┐
 │ ÒABC

 │ │
 σB=b σD=d

 │ │
 ┌───── ⨝ ─────┐ ┌───── ⨝ ──────┐
 │ │ │ │
 πAB πAB │ │
 │ │ │ │
 R S R T

Optimized version required response

 │
 │
 ┌──────────── - ─────────────┐
 │ │
 │ │
 ┌───── ⨝ ─────┐ ┌───── ⨝ ─────┐
 │ │ │ │
 │ σB=b │ πC

 │ │ │ │
 πAB πB │ σD=d

 │ │ │ │
 R S R T

(iii) πC(σA=aσD=dσE=e(R⨝S⨝T)

83

 required response

 πC

 │
 πA=a

 │
 πD=d

 │
 πE=e

 │
 ┌────────── ⨝ ────────┐
 ┌───── ⨝ ─────┐ │
 R S T

Optimized version required response

 │
 πC

 │
 ┌────────── ⨝ ────────┐
 ┌───── ⨝ ─────┐ │
 │ │ │
 σA=a σD=d σE=e

 │ │ │
 R S T

10.9. (i)

 required response

 │
 πEmp#
 │
 σProject# = 'COMP353'

 │
 ASSIGNED_TO

(ii) required response

 │
 ┌─────────.⨝ ─────────┐
 │ πEmp#
 │ │
 │ σProject# = 'COMP353'

 │ │
 EMPLOYEE ASSIGNED_TO

(iii)

84

 required response

 │
 ┌───────── ⨝ ────────────┐
 │ │
 │ ┌───────── ÷ ─────────┐
 │ │ πProject#

 │ │ │
 │ │ σProject_Name='Database'

 │ │ │
 EMPLOYEE ASSIGNED_TO PROJECT

(iv) required response
 │
 ┌───────── ⨝ ───────────┐
 │ │
 │ ┌───────── ÷ ─────────┐
 │ │ πProject#

 │ │ │
 │ │ σ(Project#='COMP353'⋁ Project#='COMP354')

 │ │ │
 EMPLOYEE ASSIGNED_TO PROJECT

(v) required response
 │
 ┌─────────── - ───────────┐
 │ │
 ┌────────── ÷ ──────────┐ πEmp#
 │ πProject# │
 │ ├────────────┘
 │ │
 │ σEmp#=107

 │ │
 ASSIGNED_TO ASSIGNED_TO

(vi) required response

 │
 ┌────────── - ───────────┐
 πEmp# πEmp#
 │ │
 │ σProject# = 'COMP453'

 │ │
 ASSIGNED_TO ASSIGNED_TO

85

(vii) required response
 │
 ┌────────── ÷ ───────────┐
 │ πProject#

 │ │
 ASSIGNED PROJECT

(viii) required response
 │
 ┌─────────── - ───────────┐
 πEmp# │
 │ │
 ┌────────── ⨝ ──────────┐ πEmp#

 │ πProject# │
 │ │ │
 │ ├────────────┘
 │ σEmp#=107

 │ │
 ASSIGNED_TO ASSIGNED_TO

86

11. Recovery

A computer system is an electro-mechanical device subject to failures of various types. The
reliability problem of the database system is linked to the reliability of the computer system on which
it runs. In this chapter we will discuss the recovery of the data contained in a database system following
failures of various types. We will include the type of failures that have to be considered from the point
of view of providing a reliable system and present the different approaches to database recovery. The
types of failures that the computer system is likely to be subjected to include failures of components or
subsystems, software failures, power outages, accidents, unforeseen situations, and natural or man-
made disasters. Database recovery techniques are methods of making the database fault-tolerant. The
aim of the recovery scheme is to allow database operations to be resumed after a failure, with minimum
loss of information, at an economically justifiable cost. We will concentrate on the recovery of
centralized database systems in this chapter; the recovery issues in a distributed system are presented in
chapter 13.

87

Solution to selected exercises

88

12. Concurrency Management

Concurrent execution of a number of transactions implies that the operations from these
transactions may be interleaved. This is not the same as serial execution of the transactions where each
transaction is run to completion before the next transaction is started. Concurrent access to a database
by a number of transactions requires some type of concurrency control to preserve the consistency of
the database, to ensure that the modifications made by the transactions are not lost, and to guard against
transaction reading data that is inconsistent. The serializability criterion is used to test whether an
interleaved execution of the operations from a number of concurrent transactions is correct or not. The
serializability test consists of generating a precedence graph from a interleaved execution schedule. If
the precedence graph is acyclic, then the schedule is serializable, which means that the database will
have the same state at the end of the schedule as some serial execution of the transactions. In this
chapter, we introduce a number of concurrency control schemes.

89

Solution to selected exercises

90

13. Database Security, Integrity & Control

Security in database involves both policies and mechanisms to protect the data in the database
and ensure that the data is not accessed, altered or deleted without proper authorization. Integrity
implies that any properly authorized access, alteration or deletion of the data in the database does not
change the validity of the data. Security and integrity concepts, though distinct, are related. The
implementation of both the security and integrity requires that certain controls in the form of
constraints must be built into the system. The DBA, in consultation with the security administrators,
specifies these controls. The system enforces the controls by monitoring the actions of the users of the
database and limiting their actions within the constraints specified for them.

91

Solution to selected exercises

92

14. Database Design

Database design process is an iterative process. A number of design methodologies have been
developed for use in the process. This chapter offers an informal discussion of the steps involved in
designing a database.

93

Solution to selected exercises

94

15. Distributed Databases

In this chapter we present distributed database systems. A distributed database can be defined as
consisting of a collection of data with different parts of it being under control of a separate DBMS,
running on an independent computer system. All such computers are interconnected and each system
has autonomous processing capability, serving local applications. Each system participates, as well, in
the execution of one or more global applications. Such applications require data from more than one
site.

95

Solution to selected exercises

96

16. Current Topics in Database Research

In this chapter we present some highlights of the recent advances in database system. The
approach used is informal and intuitive. We discuss knowledgebase systems, logic databases, expert
systems and the object oriented approach.

97

Solution to selected exercises

98

17. Database Machines

In this chapter we discuss a number of approaches used to relieve the main computer system of
the burden of running the database management system and handling the superfluous data not required
for deriving the response of a user's query.

99

Solution to selected exercises

100

Appendix: CopyForward

This document in electronic form, bearing a CopyForward permission, could be used for personal use
and/or study, free of charge. Anyone could use it to derive updated versions. The derived version must
be published under CopyForward. All authors of the version used to derive the new version must be
included in the updated version in the existing order, followed by name(s) of author(s) producing the
derived work.

Such derived version must be made available free of charge in electronic form under CopyForward.
Any other means of reproduction requires that annual profits(income minus the actual production costs)
should be shared with established charitable organizations for children. This annual share must be at
least 25% of the profits and the organization being supported must have a very modest administrative
charges(20-30% of their annual budget). The 25% of the profits is the minimum and the original
creator of the digital content may increase it to up to 40%. The derived contents would be governed
by the term of the original creator of contents.
Readers who found a CopyForward content or any derived work useful are encouraged to also make a
donation to their favourite children charity. Make sure to choose charity which has very modest
administrative charges or some deserving children in your community.
This children’s charity contribution requirement of CopyForward is civil and moral! It would be
judged in the court of public opinion.

Why yet another intellectual rights protection?

There are number of other copy permission other than the traditional copyright. With electronic
contents it and software has become difficult to enforce copyright. Software has been opened up under
some version of the copyleft (GNU GPL1). Another licensing arrangement is the open source licence2 3.
Yet another version of copyright is the Creative Commons(CC) license. As in CopyForward, CC
allows the creator to share, use, and building upon the CCed work but does not allow
commercialization.

The document outlining copyleft is over a hundred page long as opposed to CopyForward which is just
the para given above.

To the knowledge of the author, there have been no monetary claim litigations regrading the above new
forms of copy protection licences. However, looking at the tech-giants that have emerged over the last

1 https://copyleft.org/
2 https://opensource.org/licenses
3 https://en.wikipedia.org/wiki/Open-source_license

101

few decades, they have taken something that was considered open4 and have created monopolies,
concentration of market shares and deter the creation of alternatives. The types of mobile phones and
the number of operating systems is an example5. These new tech-barons do not pay a fair percent of
their income and none on the accumulated wealth; in this way they keep enriching themselves.
While there is a move to limit the wealth as outlined in Limitarianism 6 the success of even timid moves
to impose a minimum income and wealth tax rate is hardly sufficient.

How will CopyForward change?

The author’s intent to publish this and other works under CopyForward is to allow the sharing of his
effort and with the hope that even if there is commercialization, there is a moral and civic obligation
that an appreciable part of the earnings would go to charitable causes for the next generation. It is
hoped that if this charitable sharing of profits is not honoured, the public would boycott such
commercialization. This is the only effective remedy for greed that exploits others’ labour for obscene
personal enrichment7.

4 https://arstechnica.com/gadgets/2019/08/unix-at-50-it-starts-with-a-mainframe-a-gator-and-three-dedicated-researchers/

5 Richard Jensen, Unix at 50: How the OS that powered smartphones started from failurehttps://arstechnica.com/gadgets/2019/08/unix-
at-50-it-starts-with-a-mainframe-a-gator-and-three-dedicated-researchers/
6 Ingrid Robeyns, Why Limitarianism? https://onlinelibrary.wiley.com/doi/full/10.1111/jopp.12275

7 Bipin C. Desai. Colonization of the Internet, IDEAS '21: Proceedings of the 25th International Database Engineering & Applications
Symposium, https://doi.org/10.1145/3472163.3472179

102

103

104

	Preface
	1. Basic Concepts
	Solution to selected exercises

	2. Data Models
	Solution to selected exercises

	3. FILE ORGANIZATION
	Solution to selected exercises

	4. The Relational Model
	Solution to selected exercises

	5. Relational Database Manipulation
	Solution to selected exercises

	6. Relational Database Design
	Solution to Selected Exercises:

	7. Synthesis Approach and Higher Order Normal Form
	Solution to selected exercises

	8. The Network Model
	Solution to selected Exercises
	8.8 vii. True

	9. The Hierarchical Data Model
	Solution to selected exercises

	10. Query Processing
	Solution to selected exercises

	11. Recovery
	Solution to selected exercises

	12. Concurrency Management
	Solution to selected exercises

	13. Database Security, Integrity & Control
	Solution to selected exercises

	14. Database Design
	Solution to selected exercises

	15. Distributed Databases
	Solution to selected exercises

	16. Current Topics in Database Research
	Solution to selected exercises

	17. Database Machines
	Solution to selected exercises

	Appendix: CopyForward

