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Abstract 

Three Essays on Examining Financial Markets’ Dynamics and Forecasting by Deep 

Learning and Econometrics Models 

Parisa Foroutan, Ph.D.  

Concordia University, 2024  

Understanding the dynamics of financial markets specially during financial crises and being able 

to forecast these markets are crucial for policymakers and investors.  This dissertation aims to 

explore the dynamics of Crude oil, Gold, Silver, and Cryptocurrency markets from various 

perspectives. 

The first topic of the dissertation involves comparing the dynamics of cryptocurrencies, crude oil, 

and gold markets before and during the COVID-19 pandemic. This topic comprises two research 

studies: First, we investigated the effect of COVID-19 pandemic on the return-volume and return-

volatility relationships of crude oil, gold, and ten-most traded cryptocurrency markets. The findings 

of the first study enable policymakers and investors to better react to the dynamics of digital 

currencies, and commodity markets during financial crisis. Then, using statistical and econometrics 

methods, we examined the interactions between these markets before and after the COVID-19 

pandemic and investigated whether gold or crude oil can play a safe-haven role for cryptocurrency 

markets during the pandemic crisis. This study assists hedge fund managers or individual investors 

to adapt their risk exposure to crude oil, gold, and cryptocurrency markets during the financial crises.  

For the second topic, several deep learning, machine learning, and hybrid models are adapted to 

improve the forecasting of crude oil, gold, and silver markets. For this purpose, I implemented 

sixteen different deep learning and machine learning models on historical price data and compared 

the prediction performance of these models across four different input sequence lengths to find the 

optimal settings in forecasting each market. The findings of this study assist investors, 

policymakers, and governmental agencies to effectively anticipate market trends and make 

informed timely decisions regarding crude oil, gold, and silver markets. 

Lastly, I propose three graph-based neural networks models to predict the direction of price 

movements in crude oil, gold, and silver markets using a comprehensive set of features such as 

historical price data, global macroeconomic factors, supply and demand-related factors, other 

financial markets, and technical indicators. The proposed graph-based models consider the 

relationship among various factors that can affect the direction of price movements in crude oil and 

precious metal markets and can be considered as a feature extraction module for predicting the 

future trend of crude oil, gold, and silver markets. 

Keywords: Crude oil, Precious metals, Cryptocurrency, Forecasting, Deep Learning, Graph 

Neural Networks, COVID-19 
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Chapter 1   
 

 

Introduction 

 

Exploring financial markets and predicting their movements is critical in the fields of economics 

and investments. These markets serve as the lifeblood of global economies, impacting everything 

from personal savings to global trade and political ties. Accurate predictions provide crucial 

insights for investors, businesses, and policymakers, enabling them to make informed decisions, 

manage risks, and navigate the constantly evolving landscape of financial opportunities and 

challenges. In a world where financial markets are intricately interconnected, the ability to foresee 

their dynamics becomes an invaluable tool for achieving financial goals and economic stability. 

This study primarily concentrates on financial markets, with a specific focus on crude oil, precious 

metal, and cryptocurrency markets. Non-renewable commodities that are usually mined in certain 

countries can strongly impact their economies, policies, currencies, and international or political 

issues. Energy and precious metals markets, among other commodities, are well-known 

alternatives to stock markets (Pullen et al., 2014; Hussain Shahzad et al., 2017; Akbar et al., 2019; 

Adekoya et al., 2022; Phan et al., 2016; Sarwar et al., 2019). Crude oil is considered a strategic 

market due to its critical role in powering economies, industries, and transportation systems around 

the world. It serves as a fundamental energy source, making it indispensable for countries' 

economic stability and growth. Fluctuations in crude oil prices have profound implications for a 

country's political and economic security. In this regard, understanding the dynamics of such 

markets and forecasting their evolutions is crucial for portfolio optimization and management. 

Likewise, gold is a commodity asset of certain importance for investment portfolios diversification 

and hedging (ben Khelifa et al., 2021; Reboredo, 2013; Baek, 2019). Gold contributes as a large 

portion of commodity reserves of major economies. As of September 2023, the official US gold 

reserve was 8133.46 tons, approximately 68% of total US reserves 1. In addition, Silver is not only 

valued for its ornamental uses but also serves as a crucial component in industrial manufacturing. 

 

1 https://www.gold.org/goldhub/data/gold-reserves-by-country 
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On the other hand, Cryptocurrencies have emerged as recent financial assets that enable direct, 

transparent, and secure electronic payments through blockchain technology. The decentralized and 

secure nature of cryptocurrencies has attracted investors worldwide but holding these assets for 

longer periods can expose investors to high risks. Therefore, diversification and hedging strategies 

beyond cryptocurrency markets are necessary to safeguard investments, particularly in the event 

of economic uncertainty. Contrary to cryptocurrencies that do not have any tangible values, 

commodity markets are popular for their intrinsic physical value. With the increasing popularity 

of digital cryptocurrencies among governments, companies, and individuals, there is a growing 

interest among traders, investors, and scholars to enhance their understanding of the market 

dynamics and explore methods for forecasting the future potential returns on investments. There 

is limited knowledge about the behavior of cryptocurrencies during the financial crisis since these 

digital currencies were developed after the last global recession in 2008. The most recent global 

distress has been COVID-19 disease, which was declared a global pandemic on March 11, 2020.   

During the COVID-19 pandemic, the extensive shutdown of industrial operations and travel 

restrictions imposed by the lockdown measures had a profound impact on global crude oil demand, 

leading to a sharp decline in prices and increased financial market risk (Qin et al., 2020; Le et al., 

2021). For the first time in history, the price of West Texas Intermediate (WTI) oil dipped below 

-$37 on April 20, 2020 due to significant abnormal market pressures, geopolitical tensions, and 

global concerns about the severity of the COVID-19 pandemic2 (Le et al., 2021). In this research 

we explore cryptocurrency markets and compare the important financial aspects of these markets 

with commodity markets such as crude oil and precious metals. We will consider the effect of 

COVID-19 on these markets and examine whether their behavior varies before and during the 

COVID-19 pandemic. Moreover, we explore whether there is any connection between these 

markets considering the effect of the COVID-19 crisis. 

This research is being conducted to explore and predict financial markets using various 

econometrics methods, and predictive models. The research will conclude in four peer-revied 

papers as follows. 

The first paper explores the relationship between volatility and return of cryptocurrency, crude oil, 

and precious metal markets before and during the COVID-19 crisis. Volatility, in finance 

literature, refers to the extent of price or return fluctuations of a financial asset and is measured by 

the variance of the rate of return (Bhowmik & Wang, 2020). Furthermore, research on stock 

markets show that trading volume is a significant factor in determining the return of a financial 

asset. Therefore, we will also examine the relationship between cryptocurrency returns and trading 

volume, both before and during the COVID-19 pandemic. 

 

2 https://www.investopedia.com/articles/investing/100615/will-oil-prices-go-2017.asp 



 

3 

 

The second paper extends the first paper by investigating the connectedness between the ten most 

traded cryptocurrencies and Gold and crude oil markets in pre-COVID-19 and during the COVID-

19 periods. A safe haven asset refers to an investment that is expected to retain or increase its value 

during times of market turbulence, economic downturns, or uncertainty. These assets are 

considered safe because they have a history of maintaining or appreciating in value when other 

investments, such as stocks or riskier bonds, might experience significant declines (Baur et al., 

2021). The potential safe haven effect of gold and crude oil for these cryptocurrency markets 

during financial crisis are studied using statistical tests and econometrics models.  

Accurate forecasting of crude oil and precious metal prices is critical for informed economic and 

financial decisions, risk management, economic planning, and geopolitical considerations. 

Fluctuations impact energy costs, global trade, consumer budgets, and market stability, making 

reliable forecasts essential for stakeholders ranging from governments to individual investors. 

Consequently, researchers have dedicated their efforts to developing and improving models that 

capture the intrinsic behavior and dynamics of financial market time series. In the third paper a 

predictive analytics approach is employed to forecast the price of crude oil and precious metal 

markets. Using historical price data, we utilized sixteen deep learning, machine learning, and 

ensemble models to predict the price of crude oil, gold, and silver markets. The performance of 

these models is compared across four input sequence lengths to find which window size provides 

more useful data for each market.  

The last paper approaches the prediction of crude oil and precious metals markets from a 

classification perspective. The primary concern for investors revolves around the pivotal decision 

of whether to buy or sell an asset before the next trading period. In this regard, predicting the 

direction-of-price-movement can be more informative than price level forecasting. Predicting the 

direction of price movements in these markets has been a prevailing challenge, necessitating 

innovative approaches for accurate forecasts. Our study addresses this challenge by adapting three 

innovative spatial-temporal graph neural network models to the unique characteristics of crude oil, 

gold, and silver markets. Spatial-Temporal Graph Convolutional Networks (ST-GCNs) are an 

extension of Graph Convolutional Networks (GCNs) tailored to handle data with both spatial and 

temporal characteristics. They address the need to capture intricate dependencies within datasets 

structured as graphs, which may evolve over time.  To accomplish this prediction, we leverage a 

rich dataset of historical, economic, financial, and supply-demand features. These models are 

adaptable to each market because their hyperparameters are tailored to the specific characteristics 

of each market. Moreover, we show the effectiveness of attention mechanisms in improving the 

accuracy of models.  

A summary of our contributions can be outlined as follows: 

Paper 1 makes significant contributions by examining the behavior of cryptocurrencies during the 

COVID-19 pandemic, a novel global crisis. It analyzes and compares cryptocurrency dynamics 
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before and during the pandemic, investigating the effect of volatilities on market returns, and 

compares return-volatility relationships with other markets. Moreover, the relationship between 

return and trading volume of cryptocurrencies is examined. The study evaluates the ten most traded 

cryptocurrency markets, ensuring a comprehensive analysis and unbiased estimation. The results 

provide valuable insights for investors to understand risk-reward dynamics and develop investment 

strategies during the pandemic. 

Paper 2 contributes to the literature by employing various analyses to explore the relationship 

between cryptocurrency and commodity markets, focusing on Gold and Crude Oil. It examines the 

hedging and safe-haven roles of these commodities during the COVID-19 pandemic on 

cryptocurrency dynamics. The comprehensive analysis covers ten cryptocurrency markets, 

enhancing understanding of interconnectedness and contributing to a more nuanced understanding 

of safe-haven effects. 

Paper 3 addresses the gap in literature on deep learning models for commodity market forecasting. 

It implements and compares state-of-the-art deep learning models for predicting crude oil, gold, 

and silver prices. The study is unique in forecasting both gold and silver prices, using advanced 

models such as TCN, Time2Vector embedding module, and hybrid TCN-BiLSTM and TCN-

BiGRU. Each model is meticulously tailored and optimized to provide accurate predictions for its 

respective market. The results provide valuable insights for players and investors in crude oil and 

precious metal markets. 

Paper 4 introduces novel advancements in spatial-temporal graph neural network models for 

predicting price movement directions in crude oil and precious metal markets. It customizes 

Spatial-Temporal Graph Convolutional Network models, examining a comprehensive set of 25 

variables. The study leverages the potential of ST-GCNs in financial time series classification 

tasks, improving predictive performance with attention mechanisms and temporal dilated 

convolution networks. The research is pioneering in utilizing graph neural networks for price 

movement prediction and contributes to the understanding of complex market dynamics. 

The subsequent chapters of this dissertation unfold as follows: Chapter 2 includes the details of our 

first paper, while Chapters 3, 4, and 5 thoroughly explain the content and insights derived from 

Papers 2, 3, and 4, respectively. A conclusive summary of the dissertation is presented in Chapter 6. 
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Chapter 2  
 

 

The effect of COVID-19 pandemic on return-

volume and return-volatility relationships in 

cryptocurrency markets 

 

 

2.1 Introduction and Literature Review 

There is limited knowledge about the behavior of cryptocurrencies during the financial crisis since 

these digital currencies were developed after the last global recession in 2008. The most recent 

global distress has been COVID-19 disease, which was first detected in Wuhan, China, on 

December 31, 2019, and was subsequently declared a global pandemic by the World Health 

Organization (WHO) on March 11, 2020 (Neslihanoglu, 2021). Governments enforced many 

immediate measures such as quarantines, lockdowns, and social distancing to reduce the number 

of confirmed and death cases due to the pandemic. COVID-19 outbreak was a severe threat that 

dramatically affected the world economy as many companies were shut down, sales and 

productions fell, and unemployment rates surged, leading to downward movement in the majority 

of the industries.  

Considering that the COVID-19 pandemic is an unforeseen crisis, many researchers scrutinized the 

effect of this pandemic on financial markets’ properties and relationships (Chaudhary et al., 2020; 

Ozili, 2020; Şenol & Zeren, 2020; Sharif et al., 2020). Among these markets, cryptocurrencies are 

the new digital currencies with many unrecognized characteristics that need to be investigated. For 

instance, the authors in (Naeem et al., 2021) studied the asymmetric efficiency of four 

cryptocurrencies and found that significant amounts of market inefficiency can appear in periods of 

a global health crisis. The implication of COVID-19 confirmed and death cases on cryptocurrency 

market prices are examined in (Sarkodie et al., 2021), showing that the number of daily COVID-19 

confirmed and death cases directly affect these markets’ prices. 
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Volatility is a measure of uncertainty and risk, reflecting the potential for rapid and significant 

price changes (S. Baek et al., 2020). Volatility is a key factor in investment decision-making, risk 

assessment, and financial modeling, as it can influence asset pricing, portfolio management, and 

overall market stability. In finance literature, several studies on the return-volatility relationship 

have been conducted (Black, 1976; Caporale et al., 2016; Christie, 1982) where evidence of a 

negative and asymmetric relationship was reported. In this context, volatility is often considered a 

measure reflecting investor sentiment (Whaley, 2000). A growing body of literature has 

empirically investigated the volatility of cryptocurrencies. An examination of 45 cryptocurrencies 

reveals heightened instability and irregularities during the COVID-19 pandemic compared to 

international stock markets (Lahmiri & Bekiros, 2020). Additionally, findings from an EGARCH 

model highlight that the leverage effect is significant for Litecoin, Ripple, and Ethereum, but not 

for Bitcoin (Yousuf Khan et al., 2021). Other research suggests that Bitcoin's volatility experiences 

notable fluctuations between speculative and stable periods (Kumar & Anandarao, 2019; López-

Cabarcos et al., 2021). Furthermore, the impact of news on predicting return volatility in the 

cryptocurrency market during the COVID-19 pandemic is explored using a GARCH-MIDAS 

framework, revealing increased risk in the return volatility of digital currencies during this period 

(Salisu & Ogbonna, 2021). 

 Besides, understanding the relationship between price and volume of financial markets has been 

a prominent subject of study among researchers. It provides insights into the structure of markets 

and is essential for event studies that use a combination of stock returns and trading volume data 

to make inferences (Karpoff, 1987). Trading volume is linked to investors’ attention and reveals 

how investors react to news about a firm or an asset (Hou et al., 2009). Moreover, trading volume 

describes investors’ learning curve that causes overconfidence and further alters future stock 

returns (W. Liu, 2006; Statman et al., 2006). The Sequential Arrival of Information (SAI) model 

(Copeland, 1976) states that information is spread sequentially, and trading volume is a proxy for 

the information flow rate, implying a positive correlation between volume and the absolute value 

of price changes which is supported by the mixture of distributions model (Epps & Epps, 1976).  

Existing works provide various analyses and findings regarding the dynamic relationship between 

return and trading volume. For instance, a positive correlation between stock market trading 

volume and the absolute value of return was found in (Lee & Rui, 2002; Smirlock & Starks, 1988), 

while it was shown that trading volume does not Granger-cause stock returns (Lee & Rui, 2002). 

In a more recent study (Behrendt & Schmidt, 2021), the information transfer between stock prices 

and trading volume is investigated using Shannon transfer entropy which confirms a significant 

nonlinear information transfer from stock returns to trading volume changes. 

Although the causal relations between trading volume and stock returns have been widely 

investigated in the literature, there is limited empirical research to examine these relationships in 

the cryptocurrency markets. Most recently, cryptocurrency returns are found to significantly 

impact the volume changes before the COVID-19 outbreak (Corbet et al., 2021). However, in 
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(Corbet et al., 2021), only the short-term effect of the outbreak is considered as the sample only 

covers the data up to May 27, 2020. Likewise, Leirvik, 2021 found a significant but time-varying 

correlation between cryptocurrency liquidity volatility and returns (Leirvik, 2021). 

Despite all efforts by scholars, there is still a lack of knowledge about cryptocurrencies’ volatility-

return relationship during the COVID-19 pandemic. In this study, we fill this gap in the literature 

by utilizing an ARMA-EGARCH model to examine the effect of return volatilities on the ten most 

traded cryptocurrency market returns before and during the COVID-19 outbreak. More 

particularly, we will test whether there is a difference in cryptocurrencies’ returns due to their 

return volatility in pre-COVID-19 and during COVID-19 periods. Since cryptocurrency markets 

are highly volatile in essence, this effect will be compared with the return and volatility of crude 

oil and gold commodities for the same periods. The COVID-19 risk is perceived differently over 

the short and the long run and may be regarded as an economic crisis in the early stages of its 

emergence. In this regard, a time frame of one year before the COVID-19 pandemic and one year 

during this pandemic is considered to capture both short and relatively long-term effects. 

In addition, we study the unidirectional and bidirectional Granger causality relationship between 

the ten most traded cryptocurrency returns and trading volume changes and further test the effect 

of COVID-19 pandemic on these relations. This analysis aims to explain these relationships in the 

pre-COVID-19 and during the COVID-19 pandemic periods and provides more comprehensive 

understanding of movements in the digital currency market. To the best of our knowledge, none 

of the preceding studies have undertaken a comparative examination of the relationships between 

returns and volume changes before and during the COVID-19 pandemic. Hence, the current study 

seeks to remedy this situation.  

Given the literature review, our research questions are as follows: 

1. Does the volatility of cryptocurrency, crude oil, and gold markets affect their returns? 

2. Is the relationship between volatility and return of cryptocurrency, crude oil, and gold 

markets affected by COVID-19 crisis? 

3. Which market is less risky during the COVID-19 pandemic?  

4. Do changes in the return of cryptocurrencies cause any changes in their trading volume? 

How about the reverse causal relationship? 

In summary, our study makes the following important contributions to the existing literature on 

the effect of the COVID-19 pandemic on the dynamics of cryptocurrencies and commodity 

markets: 

1. As the COVID-19 pandemic is the first global crisis after the advent of cryptocurrencies, 

it is essential to examine the behavior of digital currencies during this distress. This study 

analyzes and compares cryptocurrency dynamics in the pre-COVID-19 and during 

COVID-19 pandemic periods, which has received limited attention compared to the 

conventional financial markets.  
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2. We examine the effect of return volatilities on the ten most traded cryptocurrency market 

returns before and during the COVID-19 outbreak. Such investigation would help 

understand the risk-reward dynamics in cryptocurrency markets before and during the 

pandemic.  

3. We compare the return and volatility relationship of cryptocurrencies with the same 

relationship in other markets such as Crude oil and Gold for pre-COVID-19 and during-

COVID-19 periods. This comparison will give some insights to investors for distinguishing 

the associated risk with cryptocurrencies and commodity markets. 

4. In contrast to the existing literature that limits its analysis to a few cryptocurrency markets, 

mainly Bitcoin and Ether, our study evaluates the ten most traded cryptocurrency markets 

to have a better and generalized idea of digital currency markets and investigate crude oil 

and gold markets. 

5. We consider almost the same sample size for both the before and during COVID-19 

pandemic periods to ensure that there will not be any estimation bias related to sample size. 

Moreover, our empirical study will cover a more extended period during the COVID-19 

pandemic compared to other similar studies.  

6. The results from our study would assist investors in comparing the potential risk of 

investing in crypto markets with other commodity markets during the COVID-19 pandemic 

and in developing investment strategies by considering the return-volatility and return-

volume relationships. 

2.2 Methodology  

In this study, return and volume change series are defined as follows: 

𝑅𝑡 = 100 × log(
𝑃𝑡+1

𝑃𝑡
) (2-1) 

𝑉𝑡 = log(
𝑣𝑡+1

𝑣𝑡
) (2-2) 

where 𝑃𝑡 and 𝑣𝑡 are, respectively, the price and trading volume of the asset at time t. From now 

on, the volume change series will be called volume series for simplicity. 

2.2.1 Return-Volatility relationships 

Many financial markets exhibit asymmetric responses to positive and negative shocks, with 

negative shocks at time t-1 having a greater effect on variance at time t than positive shocks of 

equal magnitude (Black, 1976; Christie, 1982). Such an asymmetric relationship can be explained 

by the leverage effect. The exponential autoregressive conditional heteroscedasticity (EGARCH) 

model uses logged conditional variances to relax the positiveness restriction of GARCH model 

coefficients and allows for asymmetric impacts between positive and negative asset returns. The 

main advantage of the EGARCH model is that it does not require any parameter constraints 
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because the equation is built on log variance rather than variance itself; hence the nonnegativity is 

irrelevant. In general, the likelihood maximization with no restrictions provides faster and more 

reliable optimizations. Furthermore, the EGARCH-M addresses the potential heteroskedasticity 

problem that would lead to inefficient estimators and possibly incorrect inferences.  

To this end, we employ the Exponential Generalized Autoregressive Conditional 

Heteroskedasticity with Mean (EGARCH-M) model proposed by (Nelson, 1991) to examine the 

impact of the COVID-19 pandemic on the relationship between returns and volatility. The 

estimation of mean returns is carried out using the Autoregressive Moving Average (ARMA) 

model, as outlined by (Box George E.P. et al., 2015). The formulation of the EGARCH(1,1) in 

mean model is: 

𝑟𝑡 = 𝑐 + ∑ 𝜑𝑝𝑟𝑡−𝑝 + ∑ 𝜃𝑞𝜀𝑡−𝑞 +  𝜆𝜎𝑡
2 + 𝜀𝑡        ,𝑞𝑝          𝜀𝑡 = 𝑧𝑡𝜎𝑡, 𝑎𝑛𝑑   (2-3) 

ln(𝜎𝑡
2) = 𝜔 + 𝛼1(|𝑧𝑡−1| − 𝐸(|𝑧𝑡−1|)) + 𝛼2𝑧𝑡−1 + 𝛽 ln(𝜎𝑡−1

2 )  (2-4) 

In Eq. (2-3), 𝑐 is the constant intercept, 𝜀𝑡 is the error term, 𝜎𝑡
2 is the conditional variance, 𝑧𝑡 is the 

standardized shock, and 𝜑𝑝 and 𝜃𝑞 are the parameters of autoregressive and moving average terms, 

respectively.  

The structure of ARMA models for each market are determined according to the Ljung-Box Q-

test for autocorrelations (Ljung & Box, 1978) and the Akaike Information Criterion (AIC) (Akaike, 

1974). Similarly, EGRACH model structure is selected by using Bayesian Information Criterion 

(BIC), also known as Schwarz Information Criterion (SIC) (Schwarz, 1978). EGARCH-in-mean 

parameter (𝜆) captures the impact of return volatility on cryptocurrency returns. Similarly, the 

EGARCH model in Eq.(2-4) estimates the current conditional variance by the sum of these linear 

components: 

• Past logged conditional variances (the GARCH component 𝛽) 

• Magnitudes of past standardized innovations (the ARCH component 𝛼1) 

• Past standardized innovations (the leverage component 𝛼2) 

The maximum likelihood estimation (MLE) routine (Fisher, 1925) is employed to estimate all 

parameters of the EGARCH process.  

2.2.2 Return-Volume relationships 

Causality in time series has been explored through diverse approaches, including Granger causality 

(Granger, 1969), Lasso-Granger (Hlaváčková-Schindler & Pereverzyev, 2015), causal diagrams 

(Shojaie & Michailidis, 2010), neural networks (Rosoł et al., 2022), and network centrality 

methods (Dablander & Hinne, 2019). In this study, linear causality tests are opted for investigating 

the causal relationship between cryptocurrency return and trading volume for the several reasons. 

First, both return and trading volume change are stationary series with a linear relationship. 

Second, the sample size is large enough to allow for robust inferences which makes it irrelevant to 
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use other causality methods such as Restricted variants of the VAR model (CGCI) (Siggiridou & 

Kugiumtzis, 2016), which are more suitable for smaller samples. Lastly, given the bivariate 

causality test is required by the variable setting of this study, Granger causality is considered more 

appropriate compared to high-dimensional methods such as Lasso-Granger, causal diagrams, or 

network centrality methods. 

In order to find the return-volume change relationships, first a vector autoregression (VAR) model 

(Sims, 1980a) is created and then a Granger causality test is performed on the estimated 

coefficients for the VAR model. This model can be expressed as: 

𝑅𝑡 = 𝑎𝑟 + ∑ 𝑏𝑟,𝑖 𝑅𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝑐𝑟,𝑖 𝑉𝑡−𝑖

𝑝
𝑖=1 + 𝑢𝑟,𝑡  (2-5) 

𝑉𝑡 = 𝑎𝑣 + ∑ 𝑏𝑣,𝑖 𝑅𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝑐𝑣,𝑖 𝑉𝑡−𝑖

𝑝
𝑖=1 + 𝑢𝑣,𝑡  (2-6) 

in which 𝑅𝑡  represents returns, 𝑉𝑡 denotes volume, 𝑢𝑟,𝑡, 𝑢𝑣,𝑡 are error terms and p denotes the 

autoregressive lag length. The optimal lag structure in Eq.(2-5) and Eq.(2-6) is chosen according 

to the corresponding AIC. Recall that Eq.(2-5) and Eq.(2-6) have been estimated by using MLE 

method.  

The variables in a VAR model should be stationary so that the VAR estimates are reliable. For 

this, the Augmented Dicky Fuller (ADF) test (Said & Dickey, 1984) is performed in which the 

null hypothesis is that series have a unit root. Rejecting the null hypothesis signifies that series are 

stationary.  

The estimated regression coefficients from Eq.(2-5) and Eq.(2-6) are then used to carry out 

pairwise Granger causality tests to find whether an endogenous variable can be treated as 

exogenous. The Wald Chi-Square test for the joint hypothesis of 𝑐𝑟,𝑖 = 0, (i = 1, . . , p) is used to 

examine the Granger causality effect from volume to return. Similarly, to test the Granger causality 

effect from return to volume, Wald Chi-Square test for the joint hypothesis of 𝑏𝑣,𝑖 =

0, (i = 1, . . , p) is performed. The null hypothesis indicates that there is no Granger causality effect 

between these market series. A bidirectional Granger causality exists between variables if both null 

hypotheses are rejected. 

To get a common understanding of the aforementioned markets' behavior, descriptive analyses of 

return, volatility, and volume series for pre-COVID-19 and during COVID-19 periods are 

performed. Then, results of statistical tests involving simple Pearson correlations between the 

returns and volume for both periods at the 5% significance level will be presented. Additionally, 

Granger causality tests are applied to investigate any lead-lag relation between volume and return 

time-series. The optimal number of lags has been determined by minimizing the AIC. Hence, we 

test whether the cryptocurrency returns "Granger cause" its trading volume and vice-versa. 
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2.3 Data and Empirical Results  

2.3.1 Data Description 

This study seeks to comprehensively explore the interplay between the volatility and returns of 

cryptocurrencies, along with the relationship between their trading volume and returns. A thorough 

examination of the literature revealed a predominant focus on a limited set of cryptocurrencies, 

notably Bitcoin and Ether, given their substantial share of the cryptocurrency market 

capitalization. However, with the emergence of numerous new cryptocurrencies in recent years, 

coupled with increased trading activity, there is a growing interest in understanding their dynamics. 

To address this, we have strategically chosen to analyze the ten most traded cryptocurrencies based 

on their average trading volume in the fourth quarter of 2020. 

This paper studies thirteen markets, including ten cryptocurrencies, Gold, West Texas Intermediate 

(WTI), and BRENT Crude Oil. The cryptocurrencies studied in this paper are Tether, Bitcoin, 

Ethereum, Ripple, Litecoin, Bitcoin Cash, EOS, Chainlink, Cardano, and Monero. Daily closing 

prices of the ten most traded cryptocurrencies (as of Oct-Dec 2020), and daily spot prices of Gold, 

WTI, and BRENT crude oils are collected from January 01, 2019, to December 31, 2020. The 

choice of sample size is mainly affected by our objective to compare the volatility and volume 

dynamics of cryptocurrencies before and during the COVID-19 pandemic. The first reported 

COVID-19 cases on December 31, 2019, followed by WHO’s declaration of a global pandemic in 

March 2020 prompted emergency measures such as quarantines, lockdowns, and business closures 

which dramatically affected the world economy. Although COVID-19 pandemic is still ongoing 

in many countries, the most dramatic financial impacts of this pandemic has occurred in 2020. By 

this virtue, the entire sample is split into two subsamples: daily trading data from January 01, 2019, 

to December 31, 2019, as the pre-COVID-19 sample, and from January 01, 2020, to December 31, 

2020, as the during COVID-19 sample. We have selected one year of daily trading data for each 

period to provide a large amount of data for the robust estimation of econometrics models. Our 

sample selection assures almost equal sample sizes in the two periods, and our comparisons will 

not be biased by sample size. It is worth mentioning that cryptocurrency prices are available seven 

days a week, while the WTI, BRENT, and Gold prices are only available five days a week. The 

sample size and dataset sources are listed in Table 2-1. 

Table 2-1: Sample data 

Market 
2019 sample 

(prior-Covid19) 
2020 sample 

(during-Covid19) 
Data Source 

Cryptocurrencies 365 361 Yahoo Finance 

WTI and BRENT 
Crude Oil 

248 246 
Thomson Reuters from the U.S. Energy 

Information Administration  

Gold 248 246 World Gold Council  

http://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm
http://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm
http://www.gold.org/
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Table 2-2: Descriptive statistics of returns 

Markets 
Mean Std. Dev. Minimum Maximum Skewness Kurtosis 

Pre-COVID-
19 

During 
COVID-19 

Pre-COVID-
19 

During 
COVID-19 

Pre-COVID-
19 

During 
COVID-19 

Pre-COVID-
19 

During 
COVID-19 

Pre-COVID-
19 

During 
COVID-19 

Pre-COVID-
19 

During 
COVID-19 

Tether -0.0017 0.0001 0.172 0.243 -0.619 -2.283 0.653 2.319 0.18 0.29 1.93 46.01 

Bitcoin 0.0777 0.1673 1.532 1.748 -6.593 -20.183 6.951 7.257 0.23 -4.05 4.39 50.29 

Ether -0.0034 0.2086 1.795 2.283 -7.959 -23.918 6.297 7.533 -0.45 -3.17 3.60 34.08 

Ripple -0.0718 0.0157 1.588 2.690 -5.827 -23.908 9.927 14.523 0.51 -1.64 5.82 25.76 

Litecoin 0.0363 0.1324 2.067 2.292 -7.830 -19.502 11.671 8.292 0.68 -1.68 4.86 15.32 

Bitcoin Cash 0.0361 0.0620 2.262 2.497 -11.993 -24.379 14.881 11.703 0.62 -2.33 9.56 26.53 

EOS 0.0006 0.0008 2.178 2.329 -11.670 -21.898 8.052 9.047 -0.27 -2.37 4.28 22.87 

Chainlink 0.2154 0.2221 2.804 2.996 -9.396 -26.691 20.873 10.701 1.64 -1.71 9.19 18.15 

Cardano -0.0266 0.2050 2.003 2.585 -9.037 -21.873 7.377 7.986 -0.05 -1.50 2.11 14.46 

Monero -0.0044 0.1507 1.823 2.118 -8.248 -21.465 6.126 6.115 -0.13 -3.00 2.44 29.05 

Gold 0.067 0.089 0.723 1.282 -2.048 -5.265 2.746 5.133 0.499 -0.59 4.635 6.474 

WTI 0.112 -0.095 2.167 24.27 -8.724 -290.74 14.17 218.71 0.58 -3.99 10.658 111.36 

BRENT 0.091 -0.114 2.082 7.311 -6.337 -64.37 11.07 41.202 0.247 -2.16 6.03 32.57 

 

Table 2-3: Descriptive statistics of volume changes. 

Markets 
Mean Std. Dev. Minimum Maximum Skewness Kurtosis 

Pre-
COVID-19 

During 
COVID-19 

Pre-
COVID-19 

During 
COVID-19 

Pre-
COVID-19 

During 
COVID-19 

Pre-
COVID-19 

During 
COVID-19 

Pre-
COVID-19 

During 
COVID-19 

Pre-
COVID-19 

During 
COVID-19 

Tether 0.0023 0.0011 0.077 0.085 -0.201 -0.313 0.358 0.338 0.59 0.18 1.35 0.76 

Bitcoin 0.0018 0.001 0.072 0.086 -0.305 -0.312 0.322 0.353 0.49 0.26 2.34 1.31 

Ether 0.0016 0.0005 0.069 0.09 -0.207 -0.34 0.329 0.334 0.61 0.21 1.57 1.53 

Ripple 0.001 0.0019 0.119 0.107 -0.852 -0.499 0.507 0.411 -0.09 0.1 8.6 2.74 

Litecoin 0.0025 0.0009 0.074 0.084 -0.205 -0.363 0.422 0.304 1.08 0.28 4.57 2.28 

Bitcoin Cash 0.0027 0.001 0.105 0.118 -0.226 -0.461 0.549 0.69 1.21 0.76 3.7 4.71 

EOS 0.0009 0.0004 0.099 0.11 -0.251 -0.412 0.395 0.542 0.62 0.52 1.36 2.53 

Chainlink 0.0044 0.0036 0.183 0.117 -0.488 -0.465 1.063 0.52 1.3 0.37 4.92 1.71 

Cardano 0.0003 0.0046 0.138 0.131 -0.404 -0.493 0.42 0.501 0.18 0.26 0.05 0.79 

Monero 0.002 0.0035 0.109 0.233 -0.564 -1.999 0.679 2.143 0.93 1.32 9.74 60.27 
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Table 2-2 presents a summary of descriptive statistics for the return time-series in periods of pre-

COVI19 and during COVID-19 pandemic. Before COVID-19, cryptocurrencies average returns 

ranged from -0.0718 to 0.2154 percent, with Ripple having the least and Chainlink having the most 

return. While during COVID-19, the average returns ranged from 0.0001 to 0.2221 percent, with 

Tether having the least and Chainlink having the most return. In both periods, Chainlink has been 

the most volatile cryptocurrency. Furthermore, the standard deviations of all analyzed markets are 

higher during the pandemic, indicating that, in general, returns are more volatile during the 

pandemic, with Chainlink being the most volatile cryptocurrency both before and during COVID-

19. Moreover, except for Tether, all market return distributions are negatively skewed throughout 

the pandemic, indicating that the return series are not normally distributed. When the maximum 

and minimum returns are compared in both periods, it can be inferred that the return range of all 

markets is higher during the pandemic compared to the pre-pandemic period. Table 2-1 also reports 

the kurtosis and skewness of the return distributions in 2019 and 2020. These findings reveal that 

the return distributions are non-normal in both periods, indicating excess kurtosis and negative 

skewness before and during the pandemic. During the pandemic, the excess kurtosis and negative 

skewness of the return distributions are more extreme. This confirms the presence of volatility and 

GARCH structure for return series in both periods. 

The descriptive statistics related to trading volume changes in Table 2-3 show that the average 

trading volumes for all cryptocurrencies during the pandemic are lower than the pre-pandemic 

period, while the standard deviation of trading volume is higher during the pandemic. The evidence 

from Table 2-3 does not confirm any significant skewness in trading volume series in pre-COVID-

19 and during COVID-19 periods. 

Several statistical tests are conducted to test the equality of returns' means, variances, and 

distributions before and during the COVID-19 pandemic, and the findings are reported in Table 

2-4. It is evident that the mean returns of all markets in the pre-COVID-19 period are not 

significantly different from the mean returns during the COVID-19 pandemic. However, except 

for Bitcoin Cash, EOS, and Chainlink, the variances of other markets are significantly different 

between the two periods. The Kolmogorov-Smirnov test (Massey, 1951) examines whether the 

return distributions before and during the COVID-19 pandemic are statistically equal and the 

results demonstrate that only Tether, Ether, Monero, Gold, WTI, and BRENT have statistically 

different return distributions. 
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Table 2-4: Reported p-value of statistical tests for return and volatility  

Market Equality of Means* 
Kolmogorov-Smirnov 

test** 
Equality of 

Variances*** 

 Return Volatility Return Volatility Return 

Tether 0.9097 0.004 0.0039 0.000 0.0000 

Bitcoin 0.4635 0.000 0.2923 0.000 0.0125 

Ether 0.1647 0.000 0.0314 0.000 0.0000 

Ripple 0.5936 0.000 0.0740 0.000 0.0000 

Litecoin 0.5533 0.000 0.3848 0.000 0.0492 

Bitcoin Cash 0.8838 0.000 0.5546 0.000 0.0602 

EOS 0.9992 0.000 0.8267 0.000 0.2012 

Chainlink 0.9752 0.066 0.1225 0.000 0.2091 

Cardano 0.1777 0.000 0.1327 0.000 0.0000 

Monero 0.2907 0.000 0.0217 0.000 0.0044 

Gold 0.8080 0.000 0.0013 0.000 0.0000 

WTI 0.8935 0.315 0.0411 0.000 0.0000 

BRENT 0.6714 0.000 0.0338 0.000 0.0000 

H0: Average return (volatility) in pre-COVID-19 period is equal to the average return 
(volatility) during COVID-19. ** H0: Return (volatility) distributions are equal in pre-COVID-
19 and during COVID-19 periods. *** H0: Returns’ variance in pre-COVID-19 period is equal 
to the variance during COVID-19. Values in bold show that the null hypothesis is rejected at 
the 5% significance level. 

Table 2-4 summarizes the results of statistical tests comparing market volatilities before and 

during the COVID-19. These findings reveal that, except for Chainlink and WTI, the average 

volatility of all other markets differs significantly between the two periods, as does the volatility 

distribution of all assets. Figure 2-1 depicts the volatility of all thirteen markets before and during 

the pandemic. As displayed, there is a large jump in volatility across all markets in March 2020 

due to the market crash following the COVID-19 pandemic declaration by WHO. Moreover, on 

April 20, 2020, the May 2020 contract futures price for WTI plunged to around -$37 per barrel, 

causing even another leap in volatility. The scale of volatility magnitudes in 2020 is considerably 

larger than in 2019. The impact of these volatilities on market returns will be examined in the 

following section. 

In order to explore potential linear associations between return and volume, we conducted Pearson 

correlation analyses for each cryptocurrency, and the outcomes are detailed in Table 2-5. Prior to 

the COVID-19 pandemic, all cryptocurrencies, except for Tether, demonstrated a significant 

correlation between return and trading volume at the 5% significance level.  In contrast, during the 

pandemic, Tether, EOS, and Monero did not support a significant correlation. Consequently, the 

likelihood of a causal association between return and trading volume for Tether, EOS, and Monero 

appears improbable during the pandemic period. 
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Table 2-5: Pearson correlation between returns and volume changes 

 
Pre-COVID-19 (2019) 

2019/01/01-2019/12/31  

 During COVID-19 (2020) 
2020/01/01-2020/12/31 

 Correlation p-value  Correlation p-value 

Tether 0.007 0.8929  0.000 0.9988 
Bitcoin 0.212 0.0001  0.141 0.0072 
Ether 0.195 0.0002  0.124 0.0180 
Ripple 0.164 0.0017  0.135 0.0098 
Litecoin 0.360 0.0001  0.198 0.0001 
Bitcoin Cash 0.284 0.0001  0.200 0.0001 
EOS 0.124 0.0177  0.058 0.2639 
Chainlink 0.465 0.0001  0.185 0.0004 
Cardano 0.217 0.0001  0.201 0.0001 
Monero 0.199 0.0001  0.036 0.4871 

 

2.3.2 Return and volatility of return relationships (EGARCH-M) 

This section presents the outcomes of the Return-Volatility relationship analysis. The stationarity 

of all return series is scrutinized using the Augmented Dickey-Fuller test, confirming their 

stationary nature. Considering the kurtosis and skewness of the return distributions in Table 2-2, 

the possibility of a GARCH effect influencing the volatility of returns is acknowledged. To assess 

the presence of GARCH effects, the Jarque-Bera normality test (Jarque & Bera, 1980) is conducted 

on the return series. As detailed in Table 2-6, the GARCH structure is evident across all thirteen 

markets, both before and during the COVID-19 pandemic. 

For each sample, the selection of the ARMA model structure in each market is guided by the 

Ljung-Box Q-test for autocorrelations and the AIC method. Subsequently, an EGARCH-M model 

is employed on the return series to investigate the effect of the pandemic on the return-volatility 

relationship.  
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Figure 2-1: Market volatilities in Pre-COVID-19 and during COVID-19 pandemic periods 
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Table 2-6: Statistical tests for return series’ stationarity and normality of return distributions 

 Pre-COVID-19 (2019) 
 

During COVID-19 (2020) 

 Return* 
Volume 

Changes* 
Jarque-
Bera** 

 
Return* 

Volume 
Changes* 

Jarque-
Bera** 

Tether 
-13.049 
(0.0000) 

-13.049 
(0.0000) 

58.882 
(0.0000) 

 -8.725 
(0.0000) 

-8.725 
(0.0000) 

31941 
(0.0000) 

Bitcoin 
-19.699 
(0.0000) 

-7.854 
(0.0000) 

296.45 
(0.0000) 

 -21.486 
(0.0000) 

-9.242 
(0.0000) 

39136 
(0.0000) 

Ether 
-20.232 
(0.0000) 

-13.304 
(0.0000) 

208.99 
(0.0000) 

 -8.642 
(0.0000) 

-15.322 
(0.0000) 

18120 
(0.0000) 

Ripple 
-15.154 
(0.0000) 

-13.2957 
(0.0000) 

531.24 
(0.0000) 

 -12.700 
(0.0000) 

-7.871 
 (0.0000) 

10174 
(0.0000) 

Litecoin 
-18.459 
(0.0000) 

-11.362 
(0.0000) 

386.60 
(0.0000) 

 -21.095 
(0.0000) 

-17.789 
(0.0000) 

3708 
(0.0000) 

Bitcoin Cash 
-19.362 
(0.0000) 

-15.775 
(0.0000) 

1413 
(0.0000) 

 -9.020 
(0.0000) 

-11.574 
(0.0000) 

10947 
(0.0000) 

EOS 
-20.761 
(0.0000) 

-13.472 
(0.0000) 

283.51 
(0.0000) 

 -8.952 
(0.0000) 

-15.001 
(0.0000) 

8227 
(0.0000) 

Chainlink 
-20.086 
(0.0000) 

-8.220  
(0.0000) 

1448 
(0.0000) 

 -20.565 
(0.0000) 

-11.168 
(0.0000) 

5145 
(0.0000) 

Cardano 
-20.655 
(0.0000) 

-14.285 
(0.0000) 

67.772 
(0.0000) 

 -13.017 
(0.0000) 

-7.893 
(0.0000) 

3288 
(0.0000) 

Monero 
-20.535 
(0.0000) 

-14.054 
(0.0000) 

91.624 
(0.0000) 

 -7.207 
(0.0000) 

-10.512 
(0.0000) 

13274 
(0.0000) 

Gold 
-15.568 
(0.0000) 

 
38.047 

(0.0000) 

 -16.249 
(0.0000) 

 138.12 
(0.0000) 

WTI 
-17.027 
(0.0000) 

 
622.33 

(0.0000) 

 -22.794 
(0.0000) 

 121006 
(0.0000) 

BRENT 
-16.497 
(0.0000) 

 
97.797 

(0.0000) 

 -16.450 
(0.0000) 

 9151 
(0.0000) 

*Augmented Dicky Fuller Unit Root Test (H0: Series have a unit root; maximum lag =20, Intercept 
Only). The first value in each cell is the t-statistics and the second value in the parentheses is the 
associated p-value. All Series are stationary as they are significant at the 1% level. ** The null 
hypothesis is that return distributions are normal. 

 

Table 2-7 presents the magnitude and the direction of the volatility effect on cryptocurrencies, 

Gold, WTI, and BRENT crude oil returns in both pre-COVID-19 and during COVID-19 periods. 

The EGARCH-M effects are investigated by three different error distribution assumptions: Normal 

Distribution, Student’s t Distribution, and Generalized Error Distribution (GED).  

According to the observed skewness and kurtosis values for return series in Table 2-2, all of our 

studied markets, excluding Tether, show excess kurtosis before and during the COVID-19 

pandemic, with higher values during the pandemic. Besides, throughout the pandemic, these 

Leptokurtic return distributions are negatively skewed, indicating that the return series are not 

normally distributed. Additionally, prior to the COVID-19 pandemic, we can observe negative 

skewness in the return distributions of Ether, EOS, Cardano, and Monero and positive skewness 
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in Tether, Bitcoin, Ripple, Litecoin, Bitcoin Cash, Chainlink, Gold, WTI, and BRENT return 

distributions. 

This evidence suggests that return series do not exhibit a Gaussian distribution, and therefore the 

EGARCH model's general assumption of normality does not apply to the return series investigated 

in this paper. In order to represent leptokurtosis more accurately, student's t-distribution and 

Generalized Error Distribution (GED) are adopted as heavy tail alternative distributions (H. Chen 

et al., 2019). The parameters of the GED distribution are estimated by the maximum likelihood 

estimation method (MLE) (Purczyński & Bednarz-Okrzyńska, 2014). 

Our empirical results show that EGARCH-M estimations for cryptocurrencies are more 

statistically significant and robust with the postulated GED distribution for errors. 

Table 2-7: EGARCH in Mean effects with three different residual distribution assumptions 

Market 
Pre-COVID-19 During COVID-19 

Normal t-student GED Normal t-student GED 

Tether 
0.1818 
(0.46) 

-0.0185 
(0.92) 

-0.0150 
(0.94) 

-0.0504 
(0.54) 

-0.0445* 
(0.06) 

-0.0792 
(0.016) 

Bitcoin 
0.0295 
(0.27) 

0.0310 
(0.25) 

0.0102 
(0.51) 

0.0253 
(0.38) 

0.0130 
(0.45) 

-0.0022 
(0.88) 

Ether 
0.0115 
(0.84) 

0.9684 
(0.88) 

-0.3721 
(0.44) 

0.0079 
(0.75) 

-0.1122 
(0.54) 

0.1160 
(0.00) 

Ripple 
0.0175 
(0.56) 

-0.0073 
(0.49) 

0.0162 
(0.20) 

-0.0036 
(0.68) 

-0.0050 
(0.44) 

-0.0136 
(0.03) 

Litecoin 
-0.0140 
(0.83) 

0.3650 
(0.34) 

0.0355 
(0.23) 

-0.0081 
(0.37) 

0.0100 
(0.47) 

0.023 
(0.11) 

Bitcoin Cash 
0.0770 
(0.47) 

0.1809 
(0.64) 

0.1368* 
(0.08) 

-0.1047 
(0.015) 

0.0059 
(0.61) 

0.036 
(0.020) 

EOS 
0.0268 
(0.72) 

0.0435 
(0.69) 

0.4931 
(0.62) 

0.0705 
(0.52) 

0.0000 
(0.96) 

0.0272 
(0.002) 

Chainlink 
0.0284 
(0.45) 

0.0113 
(0.45) 

0.0094 
(0.48) 

0.0006 
(0.96) 

0.0134 
(0.46) 

-0.7572 
(0.24) 

Cardano 
0.0360 
(0.37) 

0.0508 
(0.13) 

0.0538 
(0.13) 

0.0177 
(0.54) 

0.3054 
(0.11) 

0.0920 
(0.12) 

Monero 
-0.0056 
(0.81) 

-0.0044 
(0.85) 

0.0075 
(0.75) 

0.0196 
(0.44) 

0.0585 
(0.53) 

0.8008 
(0.001) 

GOLD 
-0.1281 
(0.11) 

-0.3429 
(0.24) 

-0.4773 
(0.17) 

-0.0412 
(0.63) 

- 0.0621 
(0.36) 

-0.0532 
(0.42) 

WTI 
-0.7605 
(0.00) 

-4.311 
(0.00) 

-1.492 
(0.12) 

0.0000 
(0.99) 

0.0019 
(0.45) 

0.0022 
(0.14) 

BRENT 
0.0772 
(0.41) 

-0.2990 
(0.0003) 

-0.3002 
(0.0002) 

-0.0059 
(0.14) 

0.0072 
(0.32) 

0.0036 
(0.62) 

This table presents the value of 𝜆 from Eq.(2-3). Values in the parentheses are associated p-values. 

Significant coefficients at the 5% level are in bold. Values with (*) are significant at the 10% level. 
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Referring to the results in Table 2-7, there are no significant relationships between volatilities and 

returns of all cryptocurrencies prior to the COVID-19 pandemic with any of the error distributions 

considered. During the COVID-19, this relationship is significant for Tether, Ether, Ripple, Bitcoin 

Cash, EOS, and Monero with GED error distribution. However, there is no significant return-

volatility relationship for Bitcoin, Litecoin, Chainlink, and Cardano in this period.  

By considering volatility as a proxy for market risk, these results suggest that investors’ returns on 

cryptocurrencies are not significantly affected by the risk of these markets during stable economic 

conditions. However, due to COVID-related economic hassles, the escalated risks of investing in 

Tether, Ether, Ripple, Bitcoin Cash, EOS, and Monero have significantly affected the return on these 

assets. Ceteris paribus, the higher risk of investing in Bitcoin Cash, EOS, and Monero is associated 

with higher capital returns during financially stable periods, while higher risk of investing in Tether, 

Ether, and Ripple is resulted in lower average return on these assets. To mitigate the risk of investing 

in cryptocurrencies during a financial crisis, cryptocurrency market agents can direct their capitals 

towards safer assets such as Bitcoin, Litecoin, Chainlink, and Cardano. 

Regarding the effect of COVID-19 on commodity markets such as Gold, WTI, and BRENT crude 

oil, it can be concluded that Gold is a less volatile asset than cryptocurrencies, and the effect of 

Gold volatility on its return is not significant in both pre-CVOID-19 and during the COVID-19 

periods. Hence, our results suggest that Gold is resilient to the corresponding risks of financial 

recession related to the COVID-19 pandemic, and it could be a potential candidate instrument for 

hedging cryptocurrency portfolios. However, a thorough study of safe-haven or hedging properties 

of Gold and crude oil for cryptocurrency assets is considered for our future studies. 

In the pre-COVID-19 period, the return-volatility relationship for WTI and BRENT crude oil 

appears significant, and market volatilities have decreased crude oil returns. However, from Table 

2-7, it can be inferred that the return-volatility relationships for these oil markets are not significant 

during the COVID-19 pandemic. These results indicate that crude oil markets do not behave in the 

same way as the majority of the cryptocurrency markets examined here. Furthermore, the effect of 

risk on crude oil return seems to be only significant during the stable economic conditions 

compared to the financial distress of COVID-19. Thus, investors in crude oil markets may not 

expect any impact from COVID-19 pandemic on their long-term returns. 
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(a) Normal Distribution 

 
(b) Student t Distribution 

 
(c) GED Distribution 

Figure 2-2: Distribution of p-values for the significance of EGARCH-M parameter under three different residual 

distribution assumptions.  

 

Figure 2-2 presents boxplots of the p-values for the significance of EGARCH-M parameter across 

pre-COVID-19 and during the COVID-19 periods. The analysis suggests that the median p-value 

of EGARCH-M parameters in cryptocurrency markets differs only under the GED distribution 

assumption between pre-COVID-19 and during the COVID-19 periods. 

2.3.3 Return and volume change relationships by Granger causality tests 

This section examines the unidirectional Granger causality from return to trading volume and from 

trading volume to return for all cryptocurrencies. The ADF unit root test is applied to return and 

trading volume time series to verify these markets' stationarity before applying the VAR model 

and Granger causality tests. As presented in Table 2-6, the null hypothesis of having a unit root in 

the ADF test for all return and trading volume time series is rejected at a 1% significant level, 

confirming the stationarity of these time series. 

Results from Table 2-8 indicate that only returns of Chainlink and Monero Granger cause 

their volume prior to the COVID-19 pandemic. However, during the COVID-19, there is a 
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significant Granger causality relationship from the return to the trading volume in Tether, Ether, 

Ripple, Litecoin, EOS, and Cardano at the 5% level. This analysis could not find any significant 

causal relationship from return to the trading volume in Bitcoin, Bitcoin Cash, Chainlink, and 

Monero cryptocurrencies during the COVID-19 pandemic.  It can be concluded that fluctuation in 

the price of these cryptocurrencies is a significant drive for changes in their trading volume. We 

could not find an overall effect of COVID-19 pandemic on all cryptocurrencies. However, in 

comparison to the pre-pandemic period, this crisis has forced the return of more cryptocurrencies 

to have predictive power for their trading volume. Interestingly, neither Bitcoin's return nor its 

trading volume has any predictive power for one another. Therefore, Bitcoin investors may not rely 

on trading volume changes to forecast their return in any of the time periods examined in this paper. 

Similarly, the Granger causal relationship from trading volume to each cryptocurrency's return is 

explored. The results confirm that, except for Litecoin, there is no significant evidence of causal 

relations from trading volume to the return in the pre-COVID-19 period, indicating that volume 

does not contain predictive power for cryptocurrency return. The Granger causality relations from 

volume to returns are only present in Tether and Chainlink during the pandemic. Our analyses 

could not discover any significant unidirectional or bidirectional return-volume relationships for 

Bitcoin or Bitcoin Cash in the pre-COVID-19 or during the COVID-19 periods. In general, our 

findings are consistent with the efficient market hypothesis, which argues that returns should not 

be forecast by publicly available information, like trading volume. Our conclusions regarding 

cryptocurrencies extend previous research on stock markets, such as studies of Jarque & Bera, 

1980; and Lee & Rui, 2002, that state trading volume cannot forecast the return. Our results are 

consistent with those studies and the efficient markets hypothesis (Fama, 1970), which states that 

returns should not be predicted by publicly available information, like trading volume. 

Table 2-8: Return-volume Granger causality tests (p-values) 

 
H0: Changes in cryptocurrency 
price (Return) Granger causes 

changes in the volume 

 H0: Changes in the cryptocurrency 
volume Granger cause changes in the 

price (return) 

 
Pre-COVID-19 

(2019) 
During COVID-19 

(2020) 
 Pre-COVID-19 

(2019) 
During COVID-19 

(2020) 

Tether 0.9478 0.0005  0.8425 0.033 

Bitcoin 0.1816 0.3675  0.3006 0.6024 

Ether 0.052* 0.0083  0.3021 0.5428 

Ripple 0.1246 0.0272  0.4859 0.3998 

Litecoin 0.2531 0.0005  0.0355 0.2865 

Bitcoin Cash 0.2561 0.4694  0.1154 0.0574* 

EOS 0.3051 0.0033  0.0654* 0.9452 

Chainlink 0.008 0.2939  0.2979 0.0142 

Cardano 0.0935* 0.0007  0.4047 0.3489 

Monero 0.0155 0.6966  0.211 0.9402 

Values in bold are significant at the 5% level and values with (*) are significant at the 10% level. 
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Table 2-9 and Table 2-10 present the estimated parameters and p-values for the VAR models used 

to carry out the Granger causality tests between cryptocurrencies’ return and trading volume in pre-

COVID-19 and during COVID-19 periods, respectively. 

Table 2-9: VAR model estimations for Return-Volume relationships in the pre-COVID-19 period 

Markets 

R
es

p
o

n
se

 

Features 

𝑅𝑡−1 𝑅𝑡−2 𝑅𝑡−3 𝑅𝑡−4 𝑅𝑡−5  ΔVt−1 ΔVt−2 ΔVt−3 ΔVt−4 ΔVt−5 

Tether 

𝑅𝑡 
-0.526 
(0.000) 

-0.398 
(0.000) 

-0.248 
(0.000) 

-0.158 
(0.003) 

  
0.075 

(0.492) 
0.088 

(0.422) 
0.001 

(0.990) 
-0.042 
(0.695) 

 

ΔV𝑡 
0.005 

(0.841) 

-0.001 
(0.953) 

0.005 
(0.866) 

-0.016 
(0.521)   

-0.209 
(0.000) 

-0.259 
(0.000) 

-0.182 
(0.000) 

-0.098 
(0.063) 

 

Bitcoin 

𝑅𝑡 
-0.028 
(0.603) 

-0.026 
(0.634) 

0.035 
(0.519) 

-0.049 
(0.366) 

  
-0.171 
(0.888) 

1.752 
(0.155) 

0.337 
(0.785) 

2.250 
(0.064) 

 

ΔV𝑡 
0.005 

(0.056) 
0.004 

(0.101) 
0.001 

(0.586) 
0.000 

(0.847) 
  

-0.255 
(0.000) 

-0.276 
(0.000) 

-0.187 
(0.000) 

-0.131 
(0.015) 

 

Ether 

𝑅𝑡 
-0.055 
(0.308) 

0.019 
(0.721) 

0.039 
(0.468) 

-0.049 
(0.365) 

0.084 
(0.110) 

 
-0.775 
(0.608) 

1.837 
(0.328) 

0.081 
(0.965) 

1.985 
(0.286) 

-3.337 
(0.025) 

ΔV𝑡 
0.003 

(0.122) 
0.005 

(0.010) 
0.001 

(0.605) 
0.001 

(0.490) 
0.002 

(0.213) 
 

0.719 
(0.000) 

-0.089 
(0.181) 

0.164 
(0.013) 

0.029 
(0.659) 

0.130 
(0.015) 

Ripple 

𝑅𝑡 
-0.039 
(0.471) 

-0.116 
(0.033) 

-0.018 
(0.745) 

-0.052 
(0.337) 

0.077 
(0.151) 

 
0.302 

(0.694) 
0.790 

(0.318) 
0.715 

(0.383) 
1.428 

(0.071) 
-0.231 
(0.764) 

ΔV𝑡 
0.009 

(0.016) 
0.005 

(0.218) 
0.005 

(0.220) 
-0.001 
(0.815) 

0.004 
(0.294) 

 
-0.313 
(0.000) 

-0.337 
(0.000) 

-0.189 
(0.001) 

-0.178 
(0.001) 

-0.108 
(0.048) 

Litecoin 

𝑅𝑡 
-0.001 
(0.979) 

-0.081 
(0.159) 

-0.032 
(0.566) 

-0.017 
(0.761) 

  
2.126 

(0.200) 
3.375 

(0.045) 
1.634 

(0.332) 
4.693 

(0.005) 

 

ΔV𝑡 
0.004 

(0.044) 
0.002 

(0.439) 
-0.001 
(0.518) 

0.001 
(0.679) 

  
-0.212 
(0.000) 

-0.274 
(0.000) 

-0.126 
(0.031) 

-0.120 
(0.036) 

 

Bitcoin 
Cash 

𝑅𝑡 
-0.005 
(0.927) 

-0.016 
(0.766) 

0.079 
(0.151) 

   
-0.297 
(0.808) 

1.404 
(0.245) 

-1.743 
(0.154) 

  

ΔV𝑡 
0.006 

(0.024) 
0.000 

(0.953) 
0.002 

(0.343) 
   

-0.211 
(0.000) 

-0.228 
(0.000) 

-0.242 
(0.000) 

  

EOS 

𝑅𝑡 
-0.065 
(0.223) 

0.036 
(0.503) 

0.024 
(0.653) 

-0.042 
(0.427) 

  
0.293 

(0.809) 
1.564 

(0.202) 
-1.676 
(0.172) 

2.438 
(0.045) 

 

ΔV𝑡 
0.003 

(0.219) 
0.002 

(0.277) 
0.003 

(0.226) 
0.002 

(0.299) 
  

-0.244 
(0.000) 

-0.283 
(0.000) 

-0.203 
(0.000) 

-0.145 
(0.007) 

 

Chainlink 

𝑅𝑡 
-0.132 
(0.030) 

-0.054 
(0.386) 

0.088 
(0.150) 

0.048 
(0.425) 

0.109 
(0.067) 

 
1.932 

(0.067) 
0.865 

(0.394) 
1.035 

(0.309) 
0.259 

(0.790) 
-0.973 
(0.305) 

ΔV𝑡 
0.008 

(0.023) 
-0.002 
(0.540) 

0.010 
(0.006) 

-0.001 
(0.740) 

0.000 
(0.908) 

 
-0.213 
(0.000) 

-0.280 
(0.000) 

-0.189 
(0.002) 

-0.111 
(0.062) 

-0.155 
(0.007) 

Cardano 

𝑅𝑡 
-0.098 
(0.069) 

-0.038 
(0.485) 

    
0.671 

(0.400) 
0.946 

(0.234) 

   

ΔV𝑡 
0.008 

(0.035) 
0.003 

(0.454) 
    

-0.224 
(0.000) 

-0.219 
(0.000) 

   

Monero 

𝑅𝑡 
-0.060 
(0.270) 

-0.024 
(0.653) 

0.027 
(0.621) 

0.019 
(0.724) 

  
-1.535 
(0.117) 

-0.385 
(0.694) 

-1.317 
(0.174) 

0.794 
(0.408) 

 

ΔV𝑡 
0.003 

(0.282) 
-0.003 
(0.278) 

0.009 
(0.002) 

0.000 
(0.855) 

  
-0.279 
(0.000) 

-0.231 
(0.000) 

-0.268 
(0.000) 

-0.144 
(0.006) 

 

Values in the parentheses are associated probabilities. Significant coefficients at the 0.05 level are in bold. 
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Table 2-10: VAR model estimations for Return-Volume relationships during the COVID-19 period 

Markets 

R
es

p
o

n
se

 

Features 

𝑅𝑡−1 𝑅𝑡−2 𝑅𝑡−3 𝑅𝑡−4 𝑅𝑡−5 𝑅𝑡−6 𝑅𝑡−7 ΔVt−1 ΔVt−2 ΔVt−3 ΔVt−4 ΔVt−5 ΔVt−6 ΔVt−7 

Tether 

𝑅𝑡 
-0.658 
(0.000) 

-0.446 
(0.000) 

-0.261 
(0.000) 

-0.028 
(0.833) 

  
 -0.028 

(0.833) 

0.166 
(0.212) 

0.350 
(0.008) 

    

ΔV𝑡 
0.041 

(0.039) 

-0.034 
(0.122) 

-0.048 
(0.016) 

 
  

 -0.279 
(0.000) 

-0.300 
(0.000) 

-0.160 
(0.002) 

    

Bitcoin 

𝑅𝑡 
-0.106 
(0.048) 

0.076 
(0.162) 

-0.036 
(0.510) 

0.140 
(0.010) 

0.055 
(0.313) 

-0.003 
(0.961) 

-0.116 
(0.032) 

0.354 
(0.768) 

-1.007 
(0.429) 

-1.269 
(0.347) 

-1.798 
(0.197) 

-1.198 
(0.377) 

-0.690 
(0.590) 

1.298 
(0.283) 

ΔV𝑡 
0.003 

(0.179) 
0.005 

(0.026) 
0.001 

(0.777) 
0.000 

(0.959) 
0.000 

(0.967) 
0.002 

(0.449) 

0.001 
(0.725) 

-0.350 
(0.000) 

-0.422 
(0.000) 

-0.314 
(0.000) 

-0.147 
(0.019) 

-0.198 
(0.001) 

-0.080 
(0.164) 

0.096 
(0.077) 

Ether 

𝑅𝑡 
-0.110 
(0.040) 

0.053 
(0.331) 

-0.063 
(0.248) 

0.128 
(0.017) 

  
 2.166 

(0.137) 
0.934 

(0.539) 
-0.365 
(0.810) 

-0.098 
(0.946) 

   

ΔV𝑡 
0.004 

(0.036) 
0.006 

(0.001) 
0.002 

(0.223) 
0.000 

(0.809) 
  

 -0.313 
(0.000) 

-0.379 
(0.000) 

-0.174 
(0.002) 

-0.059 
(0.274) 

   

Ripple 

𝑅𝑡 
-0.078 
(0.145) 

0.069 
(0.197) 

0.004 
(0.937) 

   
 1.154 

(0.413) 
1.914 

(0.170) 
2.528 

(0.076) 
    

ΔV𝑡 
0.005 

(0.013) 
0.004 

(0.070) 
0.004 

(0.027)    
 -0.240 

(0.000) 
-0.309 
(0.000) 

-0.164 
(0.002) 

    

Litecoin 

𝑅𝑡 
-0.115 
(0.033) 

0.058 
(0.278) 

    
 -1.920 

(0.200) 
1.786 

(0.235) 

     

ΔV𝑡 
0.003 

(0.065) 
0.007 

(0.000) 
    

 -0.271 
(0.000) 

-0.240 
(0.000) 

     

Bitcoin 
Cash 

𝑅𝑡 
-0.128 
(0.019) 

0.019 
(0.728) 

-0.064 
(0.243) 

0.102 
(0.065) 

-0.029 
(0.594) 

 
 -0.115 

(0.923) 
-0.234 
(0.848) 

2.241 
(0.074) 

-0.051 
(0.966) 

-0.311 
(0.794) 

  

ΔV𝑡 
0.005 

(0.039) 
0.006 

(0.013) 
0.003 

(0.220) 
0.000 

(0.896) 
-0.002 
(0.347) 

 
 -0.246 

(0.000) 
-0.319 
(0.000) 

-0.182 
(0.000) 

-0.096 
(0.085) 

-0.133 
(0.015) 

  

EOS 

𝑅𝑡 
-0.1634 
(0.002) 

0.036 
(0.502) 

-0.032 
(0.558) 

0.110 
(0.041) 

  
 -0.565 

(0.639) 
0.110 

(0.929) 
0.571 

(0.643) 
-0.177 
(0.882) 

   

ΔV𝑡 
0.003 

(0.178) 
0.007 

(0.002) 
0.006 

(0.011) 
-0.001 
(0.585) 

  
 -0.288 

(0.000) 
-0.331 
(0.000) 

-0.097 
(0.075) 

0.024 
(0.650) 

   

Chainlink 

𝑅𝑡 
-0.127 
(0.021) 

0.019 
(0.737) 

0.013 
(0.811) 

0.137 
(0.013) 

0.045 
(0.402) 

 
 4.849 

(0.001) 
1.941 

(0.198) 
0.529 

(0.737) 
0.127 

(0.933) 
-1.857 
(0.206) 

  

ΔV𝑡 
0.005 

(0.030) 
0.003 

(0.200) 
0.001 

(0.645) 
0.000 

(0.917) 
0.001 

(0.769) 
 

 -0.209 
(0.000) 

-0.337 
(0.000) 

-0.145 
(0.015) 

-0.099 
(0.082) 

-0.111 
(0.046) 

  



 

26 

 

Markets 

R
es

p
o

n
se

 

Features 

𝑅𝑡−1 𝑅𝑡−2 𝑅𝑡−3 𝑅𝑡−4 𝑅𝑡−5 𝑅𝑡−6 𝑅𝑡−7 ΔVt−1 ΔVt−2 ΔVt−3 ΔVt−4 ΔVt−5 ΔVt−6 ΔVt−7 

Cardano 
𝑅𝑡 

-0.136 
(0.013) 

0.063 
(0.255) 

-0.033 
(0.550) 

   
 1.906 

(0.086) 
1.097 

(0.328) 
0.665 

(0.548) 

    

ΔV𝑡 
0.008 

(0.004) 
0.009 

(0.001) 
0.004 

(0.147) 
   

 -0.268 
(0.000) 

-0.258 
(0.000) 

-0.155 
(0.004) 

    

Monero 

𝑅𝑡 
-0.168 
(0.002) 

0.054 
(0.324) 

-0.026 
(0.625) 

0.160 
(0.003) 

0.082 
(0.134) 

-0.040 
(0.468) 

 0.291 
(0.619) 

0.190 
(0.783) 

0.048 
(0.947) 

-0.035 
(0.961) 

-0.651 
(0.344) 

-0.292 
(0.617) 

 

ΔV𝑡 
0.002 

(0.621) 
0.007 

(0.180) 
0.000 

(0.977) 
0.001 

(0.912) 
-0.006 
(0.199) 

0.000 
(0.956) 

 -0.628 
(0.000) 

-0.397 
(0.000) 

-0.021 
(0.746) 

-0.150 
(0.022) 

-0.116 
(0.064) 

-0.116 
(0.029) 

 

Values in the parentheses are associated probabilities. Significant coefficients at the 0.05 level are in bold. 
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Another important motivation of this research is to investigate the causality effect between 

absolute returns and trading volume changes. As presented in Table 2-11, with the exception of 

Monero and Tether, absolute returns have a significant causal impact on the volume of all 

cryptocurrencies both before and during the COVID-19 pandemic periods. The significant χ2 

statistic indicates that, except for Monero, absolute cryptocurrency return provides useful 

predictive information for trading volume in both periods. Conversely, a significant predictive 

power of trading volume for absolute returns could not be found for most of the cryptocurrencies 

in this research. However, Bitcoin's volume Granger causes its absolute return prior to the COVID-

19 period (p-value is 0.0228), while Litecoin shows a similar effect during the COVID-19 period 

(p-value is 0.0141). These results comply with the sequential arrival of information theory, 

confirming that as the price values change more extremely, more investors will buy or sell their 

cryptocurrency assets. 

Table 2-11: Absolute return-volume Granger causality tests (p-values) 

 
H0: Absolute changes in 

cryptocurrency price (absolute return) 
Granger cause changes in the volume 

 H0: Changes in the cryptocurrency 
volume Granger cause absolute 

changes in the price (absolute return) 

 Pre-COVID-19  During COVID-19  Pre-COVID-19 During COVID-19 

Tether 0.2068 0.0044  0.2262 0.1372 

Bitcoin 0.0491 0.0086  0.0228 0.4515 

Ether 0.0013 0.0038  0.1625 0.0563* 

Ripple 0.0004 0.0000  0.6997 0.7871 

Litecoin 0.0033 0.0006  0.7548 0.0141 

Bitcoin Cash 0.0008 0.0274  0.1916 0.5929 

EOS 0.0002 0.0001  0.2654 0.0868* 

Chainlink 0.0223 0.0000  0.2299 0.1365 

Cardano 0.0202 0.0001  0.2024 0.3196 

Monero 0.6797 0.5347  0.3831 0.5219 

Values in bold are significant at the 5% level of significance and values with (*) are significant at the 
10% level of significance. 

Table 2-12 and Table 2-13 present the estimated parameters and p-values for the VAR models 

used to carry out the Granger causality tests between cryptocurrencies’ absolute return and trading 

volume in pre-COVID-19 and during COVID-19 periods, respectively. 
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Table 2-12: VAR model estimations for absolute Return-Volume relationships in the pre-COVID-19 period 

Markets 

R
es

p
o

n
se

 

Features 

|𝑅𝑡−1| |𝑅𝑡−2| |𝑅𝑡−3| |𝑅𝑡−4| |𝑅𝑡−5|  ΔVt−1 ΔVt−2 ΔVt−3 ΔVt−4 ΔVt−5 

Tether 

|𝑅𝑡| 
0.247 

(0.000) 
0.008 

(0.885) 
-0.047 
(0.389) 

0.134 
(0.012) 

  
0.076 

(0.360) 
0.166 

(0.046) 
0.030 

(0.721) 
-0.051 
(0.533) 

 

ΔV𝑡  
-0.037 
(0.285) 

-0.045 
(0.953) 

-0.035 
(0.333) 

0.0316 
(0.363)   

-0.212 
(0.000) 

-0.247 
(0.000) 

-0.159 
(0.003) 

-0.086 
(0.103) 

 

Bitcoin 

|𝑅𝑡| 
0.139 

(0.036) 
0.204 

(0.000) 
0.147 

(0.021) 
0.069 

(0.295) 
  

0.065 
(0.951) 

-1.376 
(0.199) 

-3.01 
(0.002) 

-1.480 
(0.118) 

 

ΔV𝑡  
0.006 

(0.135) 
-0.006 
(0.139) 

-0.009 
(0.029) 

0.001 
(0.756) 

  
-0.291 
(0.000) 

-0.224 
(0.001) 

-0.101 
(0.100) 

-0.077 
(0.189) 

 

Ether 

|𝑅𝑡| 
0.061 

(0.344) 
0.118 

(0.068) 
0.158 

(0.015) 
0.017 

(0.790) 
-0.067 
(0.258) 

 
0.446 

(0.737) 
-2.807 
(0.080) 

-0.181 
(0.909) 

1.486 
(0.347) 

1.324 
(0.278) 

ΔV𝑡  
0.004 

(0.193) 
-0.006 
(0.054) 

-0.004 
(0.163) 

-0.002 
(0.491) 

-0.006 
(0.031) 

 
0.679 

(0.000) 
0.007 

(0.923) 
0.139 

(0.069) 
0.044 

(0.565) 
0.102 

(0.084) 

Ripple 

|𝑅𝑡| 
0.220 

(0.001) 
0.011 

(0.872) 
0.163 

(0.014) 
0.012 

(0.860) 
0.002 

(0.972) 
 

0.774 
(0.266) 

-0.029 
(0.969) 

0.132 
(0.856) 

-0.383 
(0.562) 

0.447 
(0.440) 

ΔV𝑡  
0.010 

(0.114) 
-0.011 
(0.087) 

0.005 
(0.437) 

-0.015 
(0.021) 

-0.011 
(0.073) 

 
-0.386 
(0.000) 

-0.337 
(0.000) 

-0.177 
(0.011) 

-0.108 
(0.090) 

0.005 
(0.932) 

Litecoin 

|𝑅𝑡| 
0.098 

(0.158) 
0.063 

(0.355) 
0.101 

(0.142) 
0.012 

(0.859) 
  

0.495 
(0.738) 

-0.949 
(0.518) 

-1.597 
(0.245) 

-0.061 
(0.963) 

 

ΔV𝑡  
0.002 

(0.641) 
-0.007 
(0.027) 

-0.006 
(0.049) 

-0.005 
(0.123) 

  
-0.221 
(0.001) 

-0.192 
(0.005) 

-0.043 
(0.507) 

-0.021 
(0.736) 

 

Bitcoin 
Cash 

|𝑅𝑡| 
0.138 

(0.051) 
0.042 

(0.543) 
0.064 

(0.362) 
   

0.338 
(0.782) 

-1.570 
(0.181) 

-2.024 
(0.072) 

  

ΔV𝑡  
0.009 

(0.018) 
-0.011 
(0.004) 

-0.008 
(0.052) 

   
-0.290 
(0.000) 

-0.131 
(0.049) 

-0.115 
(0.072) 

  

EOS 

|𝑅𝑡| 
-0.038 
(0.581) 

0.008 
(0.902) 

0.119 
(0.080) 

0.125 
(0.075) 

  
2.574 

(0.035) 
0.242 

(0.844) 
-0.558 
(0.621) 

-0.472 
(0.653) 

 

ΔV𝑡  
-0.003 
(0.430) 

-0.013 
(0.001) 

-0.008 
(0.052) 

-0.005 
(0.258) 

  
-0.244 
(0.000) 

-0.169 
(0.015) 

-0.089 
(0.164) 

-0.063 
(0.290) 

 

Chainlink 

|𝑅𝑡| 
0.086 

(0.178) 
0.104 

(0.097) 
0.052 

(0.421) 
0.141 

(0.025) 
0.095 

(0.130) 
 

0.298 
(0.688) 

-0.858 
(0.254) 

0.123 
(0.867) 

0.089 
(0.896) 

-1.423 
(0.033) 

ΔV𝑡  
0.013 

(0.021) 
-0.013 
(0.016) 

0.000 
(0.934) 

0.002 
(0.695) 

-0.008 
(0.126) 

 
-0.238 
(0.000) 

-0.211 
(0.001) 

-0.112 
(0.076) 

-0.104 
(0.074) 

-0.101 
(0.076) 

Cardano 

|𝑅𝑡| 
0.151 

(0.013) 
0.079 

(0.189) 
    

0.344 
(0.569) 

-0.929 
(0.108) 

   

ΔV𝑡  
-0.006 
(0.286) 

-0.013 
(0.023) 

    
-0.179 
(0.003) 

-0.137 
(0.016) 

   

Monero 

|𝑅𝑡| 
0.136 

(0.010) 
0.094 
(0.08) 

0.057 
(0.291) 

0.137 
(0.01) 

  
0.264 

(0.684) 
-0.302 
(0.647) 

-1.164 
(0.074) 

0.108 
(0.866) 

 

ΔV𝑡  
0.001 

(0.816) 
-0.004 
(0.398) 

0.004 
(0.329) 

-0.004 
(0.348) 

  
-0.281 
(0.000) 

-0.237 
(0.000) 

-0.239 
(0.000) 

-0.154 
(0.003) 

 

Values in the parentheses are associated probabilities. Significant coefficients at the 0.05 level are in bold. 
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Table 2-13: VAR model estimations for absolute Return-Volume relationships during the COVID-19 period 

Markets 

R
es

p
o

n
se

 

Features 

|𝑅𝑡−1| |𝑅𝑡−2| |𝑅𝑡−3| |𝑅𝑡−4| |𝑅𝑡−5| |𝑅𝑡−6| |𝑅𝑡−7| ΔVt−1 ΔVt−2 ΔVt−3 ΔVt−4 ΔVt−5 ΔVt−6 ΔVt−7 

Tether 
|𝑅𝑡| 

0.478 
(0.000) 

-0.129 
(0.028) 

0.11 
(0.041) 

0.015 
(0.906) 

  
 -0.287 

(0.026) 

-0.024 
(0.853) 

0.062 
(0.000) 

    

ΔV𝑡 
0.014 

(0.521) 
-0.081 
(0.000) 

0.051 
(0.02) 

 
  

 -0.277 
(0.000) 

-0.297 
(0.000) 

-0.138 
(0.008) 

    

Bitcoin 
|𝑅𝑡| 

0.112 
(0.057) 

0.031 
(0.604) 

-0.049 
(0.408) 

0.163 
(0.006) 

0.073 
(0.222) 

-0.021 
(0.728) 

0.147 
(0.014) 

-0.634 
(0.555) 

-1.031 
(0.367) 

0.990 
(0.399) 

-0.391 
(0.745) 

-1.736 
(0.136) 

0.503 
(0.639) 

0.414 
(0.681) 

ΔV𝑡 
0.007 

(0.031) 
-0.01 

(0.002) 
-0.006 
(0.082) 

0.004 
(0.268) 

-0.002 
(0.507) 

-0.003 
(0.3) 

0.001 
(0.741) 

-0.382 
(0.000) 

-0.325 
(0.000) 

-0.256 
(0.000) 

-0.158 
(0.016) 

-0.162 
(0.011) 

-0.026 
(0.651) 

0.084 
(0.129) 

Ether 
|𝑅𝑡| 

0.158 
(0.006) 

0.041 
(0.474) 

-0.081 
(0.169) 

0.217 
(0.000) 

  
 -1.490 

(0.223) 
-1.49 

(0.236) 
2.495 

(0.037) 
0.04 

(0.972) 

   

ΔV𝑡 
0.003 

(0.328) 
-0.01 

(0.000) 
-0.003 
(0.299) 

0.000 
(0.87) 

  
 -0.304 

(0.000) 
-0.254 
(0.000) 

-0.096 
(0.096) 

-0.034 
(0.545) 

   

Ripple 
|𝑅𝑡| 

0.303 
(0.000) 

0.152 
(0.009) 

0.046 
(0.431) 

   
 -1.217 

(0.315) 
-0.298 
(0.795) 

-0.471 
(0.68) 

    

ΔV𝑡 
0.011 

(0.000) 
-0.008 
(0.003) 

-0.007 
(0.013) 

   
 -0.297 

(0.000) 
-0.234 
(0.000) 

-0.099 
(0.068) 

    

Litecoin 
|𝑅𝑡| 

0.252 
(0.000) 

0.068 
(0.243) 

    
 -2.756 

(0.021) 
-2.513 
(0.034) 

     

ΔV𝑡 
0.005 

(0.099) 
-0.01 

(0.000) 
    

 -0.276 
(0.000) 

-0.111 
(0.047) 

     

Bitcoin 
Cash 

|𝑅𝑡| 
0.15 

(0.037) 
0.071 

(0.325) 
0.108 

(0.136) 
0.063 

(0.386) 
-0.197 
(0.006) 

 
 0.041 

(0.974) 
-2.245 
(0.088) 

-3.28 
(0.011) 

-1.643 
(0.164) 

1.809 
(0.111) 

  

ΔV𝑡 
0.011 

(0.008) 
-0.009 
(0.021) 

-0.006 
(0.177) 

-0.001 
(0.759) 

-0.013 
(0.002) 

 
 -0.308 

(0.000) 
-0.175 
(0.019) 

-0.18 
(0.013) 

0.015 
(0.822) 

0.124 
(0.054) 

  

EOS 
|𝑅𝑡| 

0.167 
(0.008) 

0.026 
(0.676) 

-0.067 
(0.296) 

0.169 
(0.008) 

  
 -0.453 

(0.695) 
-0.542 
(0.649) 

2.654 
(0.016) 

1.116 
(0.283) 

   

ΔV𝑡 
0.006 

(0.074) 
-0.012 
(0.001) 

-0.009 
(0.007) 

0.000 
(0.942) 

  
 -0.342 

(0.000) 
-0.223 
(0.001) 

0.014 
(0.817) 

0.048 
(0.409) 

   

Chainlink 
|𝑅𝑡| 

0.18 
(0.002) 

0.024 
(0.675) 

0.032 
(0.594) 

0.046 
(0.438) 

-0.006 
(0.925) 

 
 -1.845 

(0.118) 
-0.856 
(0.473) 

-0.251 
(0.835) 

2.157 
(0.055) 

-1.146 
(0.308) 

  

ΔV𝑡 
0.008 

(0.004) 
-0.013 
(0.000) 

-0.002 
(0.519) 

0.003 
(0.312) 

-0.004 
(0.159) 

 
 -0.22 

(0.000) 
-0.19 

(0.001) 
-0.115 
(0.051) 

-0.093 
(0.089) 

-0.087 
(0.112) 

  

Cardano 
|𝑅𝑡| 

0.166 
(0.005) 

0.036 
(0.537) 

-0.005 
(0.932) 

   
 -1.4 

(0.118) 
-0.275 
(0.752) 

0.768 
(0.365) 

    

ΔV𝑡 
0.004 

(0.362) 
-0.015 
(0.000) 

-0.006 
(0.147) 

   
 -0.247 

(0.000) 
-0.106 
(0.064) 

-0.07 
(0.21) 
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Markets 

R
es

p
o

n
se

 

Features 

|𝑅𝑡−1| |𝑅𝑡−2| |𝑅𝑡−3| |𝑅𝑡−4| |𝑅𝑡−5| |𝑅𝑡−6| |𝑅𝑡−7| ΔVt−1 ΔVt−2 ΔVt−3 ΔVt−4 ΔVt−5 ΔVt−6 ΔVt−7 

Monero 
|𝑅𝑡| 

0.112 
(0.039) 

-0.059 
(0.278) 

0.05 
(0.354) 

0.216 
(0.000) 

0.01 
(0.855) 

0.001 
(0.988) 

 0.06 
(0.888) 

0.053 
(0.917) 

0.371 
(0.481) 

0.375 
(0.475) 

-0.215 
(0.668) 

0.455 
(0.286) 

 

ΔV𝑡 
0.003 

(0.622) 
-0.008 
(0.217) 

-0.01 
(0.148) 

0.000 
(0.96) 

0.005 
(0.441) 

0.003 
(0.679) 

 -0.634 
(0.000) 

-0.38 
(0.000) 

0.001 
(0.991) 

-0.138 
(0.036) 

-0.121 
(0.054) 

-0.115 
(0.031) 

 

Values in the parentheses are associated probabilities. Significant coefficients at the 0.05 level are in bold. 
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To further investigate the general return-volume relationships for the cryptocurrency market, 

Student t-tests are applied to the sample of resulting p-values from Granger causality tests. Table 

2-14 provides the associated probabilities for testing the significance of bidirectional and 

unidirectional relationships between cryptocurrency returns and their trading volume changes for 

both pre-COVID-19 and during COVID-19 periods. 

Table 2-14: Statistical t-tests for the causality between cryptocurrency returns (or absolute 

returns) and changes in volume 

Pre-COVID-19 Period p-value 

H0: The mean of probabilities for bidirectional Granger causality tests between return 
and change in volume = 0 

0.0002 

H0: The mean of probabilities for unidirectional Granger causality tests from returns to 
changes in volume = 0 

0.0301* 

H0: The mean of probabilities for unidirectional Granger causality tests from changes in 
volume to returns = 0 

0.0028 

H0: The mean of probabilities for bidirectional Granger causality tests between absolute 
return and volume changes = 0 

0.0013 

H0: The mean of probabilities for unidirectional Granger causality tests from absolute 
returns to volume changes= 0 

0.1794 

H0: The mean of probabilities for unidirectional Granger causality tests from volume 
changes to absolute returns = 0 

0.0023 

During the COVID-19 Period p-value 

H0: The mean of probabilities for bidirectional Granger causality tests between returns 
and volume changes = 0 

0.0004 

H0: The mean of probabilities for unidirectional Granger causality tests from returns to 
volume changes = 0 

0.0448* 

H0: The mean of probabilities for unidirectional Granger causality tests from volume 
changes to returns = 0 

0.0040 

H0: The mean of probabilities for bidirectional Granger causality tests between absolute 
returns and volume changes = 0 

0.0040 

H0: The mean of probabilities for unidirectional Granger causality tests from absolute 
returns to volume changes = 0 

0.3028 

H0: The mean of probabilities for unidirectional Granger causality tests from volume 
changes to absolute returns = 0 

0.0049 

*The null hypothesis is not rejected at the 1% significant level.  The null hypothesis is not rejected at 
the 5% significant level for values in bold. 

As indicated in Table 2-14, the average p-value for bidirectional Granger causality tests between 

returns (or absolute returns) and volume changes of all ten cryptocurrencies significantly differs 

from zero at the 1% level. Hence, the bidirectional return (or absolute return)-volume relationship 

is not supported in cryptocurrency markets for the pre-COVID-19 and during COVID-19 periods. 

Similarly, the results of these tests do not confirm any Granger causality effect from 

cryptocurrencies’ trading volume to their returns (or absolute returns). However, in both pre-

COVID19 and during COVID19 periods, the average p-value for the unidirectional Granger 

causality effect from returns to trading volume changes of all ten cryptocurrencies is not 
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significantly different from zero at the 1% level. Thus, cryptocurrency returns show a predictive 

power for trading volume. Besides, the average p-value for Granger causality tests from absolute 

returns to volume changes of all ten cryptocurrencies is not significant at the 5% level. This denotes 

the existence of a significant causality relation from cryptocurrency absolute returns to volume 

changes for both periods. Therefore, a general significant predictive power of cryptocurrency returns 

for trading volume changes is confirmed by this study. 

2.4 Conclusion 

Causal relationships between returns and the trading volume of financial markets have been a 

popular subject among researchers for a long time. Moreover, since investors need to evaluate the 

associated risk with any investment strategy before making decisions, it is crucial to understand the 

effect of price volatility on financial asset returns. These relationships have not been adequately 

investigated for the recently emerged cryptocurrency markets. In this study, the effect of the 

COVID-19 pandemic on the return-volatility and return-volume relationships for the ten most traded 

cryptocurrencies, namely Tether, Bitcoin, Ether, Ripple, Litecoin, Bitcoin Cash, EOS, Chainlink, 

Cardano, and Monero, is investigated. 

This effect is also investigated for Gold, WTI, and BRENT crude oil markets to compare the 

behaviour of cryptocurrencies with less volatile markets such as commodity markets. Evidence from 

the EGARCH-M model suggests that the return-volatility relationships for Tether, Ether, Ripple, 

Bitcoin Cash, EOS, and Monero are significant during the COVID-19 pandemic. Although, the 

same relationship is not significant, for any of the studied cryptocurrencies, in the pre-pandemic 

period. Moreover, it is concluded that the COVID-19 pandemic does not play an essential role in 

the relationship between returns and volatilities of GOLD, WTI, and BRENT crude oil markets. 

Our findings of the return-volume relationship support the availability of causal relations from the 

return to trading volume for Chainlink and Monero in the pre-COVID-19 period and for Ether, 

Ripple, Litecoin, EOS, and Cardano during the COVID-19 period. Except for Litecoin, there is no 

significant evidence of causal effects from trading volume to the return of cryptocurrencies prior to 

the COVID-19, while during the COVID-19 period, trading volume of Tether and Chainlink 

Granger cause their returns.  

As a further investigation, the general return-volume relation for cryptocurrency markets is tested, 

and the results did not show any significant relationship. However, considering the absolute return 

values, we found a significant causal effect from cryptocurrencies' absolute returns to trading 

volume for both the prior and during COVID-19 periods. 

Our analyses have several implications for policymakers. Even though cryptocurrencies are not yet 

effectively backed by all governments, understanding the effect of financial crisis, such as the one 

followed by the COVID-19, on these markets is essential. Our findings enable policymakers to 

better react to the dynamics of digital currencies, and the potential effects of these markets on other 
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financial and commodity markets. Accordingly, they can adjust their monetary policy decisions 

promptly. Additionally, this study will provide investors with practical insights to distinguish the 

associated risk with cryptocurrencies and commodity markets, allowing them to make more 

effective decisions about their trading positions during the COVID-19 pandemic.  In this regard, 

Gold can be considered a suitable asset for portfolio hedging during the pandemic period. Besides, 

it was found that cryptocurrency traders tend to trade in high volumes while prices vary extremely 

and this behaviour is not significantly affected by the COVID-19 crisis. Our findings about the 

trading volume can help traders and investors identify the effect of momentum and potential trend 

in cryptocurrencies on their investments. 

  



 

34 

 

 

 

Chapter 3  

 
Connectedness Between Cryptocurrency, Crude Oil 

and Gold Markets: An Analysis of the Effect of 

COVID-19 Pandemic 

 

3.1 Introduction and Literature Review 

The COVID-19 crisis had far-reaching effects on various financial markets, including stocks, 

commodities, exchange rates, and cryptocurrency markets (Ozili, 2020; Naeem et al., 2021; Le et 

al., 2021; Drake, 2022). The changes in economic and financial market dynamics due to the COVID-

19 pandemic are expected to have significant implications for hedge fund managers, cryptocurrency 

market investors, and policymakers (Khelifa et al., 2021; Corbet et al., 2021). Financial market 

players and investors need to account for the changes in market dynamics due to the COVID-19 

pandemic and diversify their investment portfolios with suitable hedge and safe-haven assets to 

reduce risk. 

The common notion that investors shift to gold during economic market crises remains unverified 

for many cryptocurrency markets. This paper investigates the connectedness between the ten most 

traded cryptocurrencies and Gold and crude oil markets in pre-COVID-19 and during the COVID-

19 periods. 

A safe haven asset is either uncorrelated or negatively correlated with another asset, specially during 

negative market conditions. A hedge asset demonstrates no correlation or a negative correlation with 

another asset, and a diversifier displays a positive but not perfect correlation with another asset 

(Nedved & Kristoufek, 2023). A safe haven investment is an asset that investors turn to during times 

of economic and financial uncertainty or market turbulence (Baur & Lucey, 2010; Baur & 

McDermott, 2010). The primary purpose of a safe haven is to preserve capital and reduce risk exposure 

during periods of market stress. Baur & McDermott (2010) define a strong safe haven as an asset that 

is negatively correlated with equities, whereas a weak safe haven asset is uncorrelated with equities 

during corresponding periods. 
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Due to the intrinsic value of commodities, they are less vulnerable to inflations or financial crises. 

Thus, they are considered a potential hedging candidate for other markets (Disli et al., 2021). Crude 

oil is one of the key commodities traded internationally which holds significant influence over 

macroeconomic factors such as inflation, exchange rates, and economic growth. Research by Bashiri 

Behmiri and Pires Manso (2013) demonstrates that crude oil prices are influenced by various 

economic, political, environmental, financial, and technological factors. On the other hand, Gold 

has historically been attractive as a financial asset due to its tangible ability to maintain its value, 

particularly in periods of financial, political, and economic uncertainty (Baur & Lucey, 2010). Thus, 

numerous financial researchers have suggested that gold can serve as a reliable safe-haven asset for 

other markets, including stock and bond markets, as well as for investors holding U.S. dollars, 

providing protection against macroeconomic risks during financial crises (Baur & Lucey, 2010; 

Reboredo, 2013; Junttila et al., 2018; Baek, 2019). For instance, Akhtaruzzaman et al. (2021) 

examine the role of gold as a hedge or safe-haven asset during the COVID-19 crisis and find 

evidence that gold initially served as a safe haven for stock markets at the onset of the pandemic. 

However, during the second phase of the crisis (March 17 to April 24, 2020), there was no clear 

evidence of gold's safe-haven properties. Additionally,  Nkrumah-Boadu et al. (2022) discover that 

both gold and cryptocurrency markets provide safe haven characteristics for investors in the African 

stock market. 

The literature extensively examines crude oil's hedging and safe-haven properties for stock markets 

(Park and Ratti’s, 2008; Creti et al., 2013; Śmiech & Papież, 2017; Junttila et al., 2018). However, 

there are limited studies on the safe-haven effect of crude oil on cryptocurrency markets. Elie et al. 

(2019) study the potential safe-haven roles of gold and crude oil against extreme downward trends 

in clean energy stock indices. Their analysis, using daily price data, demonstrated that both crude 

oil and gold exhibited weak safe-haven characteristics for clean energy indices. Building upon this 

body of evidence, we aim to investigate whether the hedging or safe-haven effects of gold and crude 

oil is also evident in cryptocurrency markets. 

Recognizing hedge assets that are uncorrelated with cryptocurrencies or safe-haven assets that 

exhibit negative correlation during cryptocurrency downturns is a plausible approach to mitigate 

risks and maintain profits (Nedved & Kristoufek, 2023). This has led to a growing interest in 

exploring the interactions between cryptocurrencies and traditional financial assets, such as gold 

and crude oil (Khelifa et al., 2021; Lahmiri & Bekiros, 2020; Conlon & McGee, 2020; Mnif et al., 

2020; Corbet et al., 2020; Goodell & Goutte, 2021). 

In recent studies, the relationship between commodities, such as gold and crude oil, and 

cryptocurrency markets has gained significant attention. For instance, Owusu Junior et al. (2020) 

employed an EEMD-based quantile-on-quantile regression model with the data on gold and eight 

cryptocurrencies (Bitcoin, Ethereum, Dash, Litecoin, Ripple, Stellar, NEM, and Monero) from April 

2013 to April 2019. Their findings show that cryptocurrencies and gold can serve as both hedge and 

diversification assets for each other across various conditional distributions of their returns. 

González et al. (2021) examined the relationship between gold and cryptocurrency returns, 
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highlighting an asymmetric connectedness of cryptocurrencies to gold returns during economic 

disturbances.  Similarly, Barson et al. (2022) conducted a causality analysis to study the relationship 

between gold and cryptocurrencies during the COVID-19 pandemic. Their empirical results suggest 

that gold exhibits weak safe haven characteristics during the COVID-19 pandemic while acting as 

a hedge at normal cryptocurrency market conditions.  

Several recent studies have examined the interdependence between crude oil and cryptocurrencies. 

Selmi et al. (2018) compared the hedging and safe haven properties of Bitcoin and Gold for oil 

markets and concluded that both Gold and Bitcoin could serve as hedges, safe havens, and 

diversifiers against crude oil. Okorie and Lin (2020) explored the volatility connectedness between 

crude oil and cryptocurrencies, finding a unidirectional volatility spillover from Ethereum, XRP, 

and ReddCoin to the crude oil markets. The assessment of the potential safe haven role of gold, 

crude oil, and cryptocurrency during the COVID-19 pandemic by Disli et al. (2021) rejects the safe 

haven characteristics of gold, oil, and Bitcoin for the stock market. On the other hand, the study of 

the hedging effect of cryptocurrencies for Brent crude oil price movements during the COVID-19 

pandemic shows that only stablecoins protect against plunging oil price movements. Still, they do 

not reduce investment volatility (Będowska-Sójka & Kliber, 

2022)https://doi.org/10.1016/j.resourpol.2020.101731. The study by Wang et al. (2023) reveals 

that Bitcoin has a limited safe-haven effect on the crude oil market, whereas gold demonstrates a 

strong safe-haven ability for crude oil, before and after the COVID-19 pandemic. This finding 

supports the results from the study of Wen et al. (2022), which concluded that Bitcoin does not serve 

as a safe haven for oil markets. Nedved and Kristoufek (2023) investigated the safe-haven role of 

gold, crude oil, and stock markets for Bitcoin and concluded that while Bitcoin movements were 

positively correlated with that of the stock market, oil and gold demonstrated safe haven 

characteristics, with gold being a strong safe haven for Bitcoin. 

As shown in this section, most research studies on the connectedness between cryptocurrencies and 

other financial markets are limited to one or two cryptocurrencies, namely Bitcoin and Ether 

(Katsiampa, 2019; Conlon & McGee, 2020; Goodell & Goutte, 2021). Thus, it is crucial for crypto 

literature to extend its attention to other prominent cryptocurrencies that have gained traction in 

recent years. This broader examination will enhance our overall comprehension of the relationship 

between cryptocurrency markets and various domains, such as commodities. Currently, there exists 

limited knowledge regarding the safe haven effect of gold or crude oil for cryptocurrency markets 

during financial crises. In the current study, an attempt has been made to fill this gap in the literature. 

In this context, our study will examine dynamic short-term and long-term relationships and potential 

hedging effects of gold and crude oil markets for the ten most traded cryptocurrencies. Specifically, 

we aim to investigate whether the safe haven potential of gold or crude oil for cryptocurrency 

remains consistent before and during the COVID-19 pandemic. We find that during the COVID-19 

pandemic, Gold plays a significant safe haven role for Bitcoin, Litecoin, and Monero, while crude 

oil is a weak safe haven for Ether, Bitcoin Cash, EOS, and Monero. Among the crude oil assets, 

Brent can be a strong safe haven for Bitcoin during the COVID-19 pandemic. Our causality analyses 

https://doi.org/10.1016/j.resourpol.2020.101731
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indicate that a bidirectional relationship exists between Gold and cryptocurrencies such as Bitcoin 

and Monero during the pandemic.. Indeed, knowing this relationship holds profound implications 

for hedge fund managers and investors for altering their risk exposure and modifying a 

cryptocurrency portfolio's return. Our findings are intended to serve as a basis for future discussions 

about safe havens for cryptocurrencies, as these assets are becoming increasingly popular in 

individual and institutional investors’ portfolios. This study is crucial in foreseeing the behavior of 

cryptocurrency markets and protecting investors against extreme price movements, especially 

during global pandemics. 

Following the literature review, the following research questions is examined in this paper: 

1. Is gold or crude oil suitable a safe haven asset for cryptocurrency markets during the 

COVID-19 crisis?  

2. Can cryptocurrency markets be considered as safe haven assets for gold or crude oil markets 

during the COVID-19 crisis? If yes, which cryptocurrencies? 

3. Does the hedging ability of gold and crude oil markets differ before and during the COVID-

19 pandemic? 

4. Is there any Granger causality effect between gold, crude oil, and cryptocurrency markets? 

If yes, what is the direction of causal effect? 

Subsequently, this study makes the following important contributions to the existing literature on 

the connectedness of cryptocurrencies with other markets: 

1. This study employs VAR, VECM, ARDL, and Granger causality analyses to examine the 

relationship between ten cryptocurrency markets with commodity markets such as Gold and 

Crude Oil and finds whether a hedging or safe-haven role exists among these markets. 

2. Examination of the COVID-19 Pandemic: We analyze the effect of the COVID-19 pandemic 

as the first economic distress after the emergence of cryptocurrencies on the hedging 

opportunity of Gold and Crude Oil for cryptocurrency markets dynamics prior to and during 

the COVID-19 pandemic periods, which has received limited attention compared to the 

conventional financial markets. 

3. Comprehensive Analysis of Cryptocurrency Markets: Contrary to the existing literature that 

restricts their analysis to a limited number of cryptocurrency markets, mainly Bitcoin and 

Ether, our study seeks to find the hedging effect of Gold and Crude Oil on the ten most 

traded cryptocurrency markets. Our findings will contribute to a comprehensive 

understanding of the interconnectedness between Gold and Crude Oil markets and digital 

currencies. 

4. Exploration of Safe Haven Effects on cryptocurrencies: while prior literature primarily 

investigates the safe haven effect of Bitcoin on the crude oil market, in this study, we aim to 

examine the contrary safe haven effect of crude oil for cryptocurrency markets. To enhance 

the robustness of our findings, we investigate the safe haven effect of two widely traded oils, 

specifically WTI and Brent, on cryptocurrencies. By incorporating the analysis of these oils, 

we aim to strengthen the validity and reliability of our results. 
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3.2 Methodology 

Our empirical analysis begins by conducting preliminary tests to confirm the presence of 

nonlinearities and the stationarity properties in the variables used in this study. The Augmented 

Dickey-Fuller (ADF) test (Cheung & Lai, 1995) is employed on each series in levels to determine 

whether a series has a unit root. In order to examine the co-movement between cryptocurrency 

markets and Oil and Gold markets, the Johansen and Bounds cointegration tests are conducted. These 

tests help identify the appropriate econometric model for analyzing these markets' short-term and long-

term relationships. Following the results of the ADF test, one of the following three cases may apply: 

(i) Series are integrated of order 0 (stationary in level): cointegration test is unnecessary; (ii) Series 

are integrated of order 1 (stationary after first difference): a cointegration test is necessary to 

establish a long-run relationship. Johansen cointegration test (Johansen, 1991) can be performed on 

the level. If any cointegration equation is found, we estimate both VAR (Sims, 1980b) for short-

term relationships and VECM (Engle & Granger, 1987) for long-term relationships. If no 

cointegration equation is found, only the VAR (for first difference) model should be estimated; and 

(iii) Series are integrated of different orders: in this case, the Bounds test (Pesaran et al., 2001) for 

cointegration can be performed on the level. After conducting the Bounds cointegration test, we 

determine the applicable model based on the results. If there is no cointegration, we estimate the 

short-term relationships using the ARDL (Pesaran & Shin, 1995) model. If cointegration exists, we 

estimate the long-term VECM model. 

This rigorous methodology enhances the reliability and validity of our analysis. Following the 

cointegration tests, one of the below models is applicable. 

The equations for VAR(p) model for the first difference of series in this study are: 

∆Pt = a0,p + ∑ bp,i ∆Pt−i
p
i=1 + ∑ cp ∆xt−i

p
i=1 + up,t  (3-1)  

∆xt = a0,x + ∑ bx,i ∆Pt−i
p
i=1 + ∑ cx ∆xt−i

p
i=1 + ux,t  (3-2) 

Where, a0,p and a0,x are constants, Pt is the log of cryptocurrency price at time t, Pt−i is the ith lag of 

cryptocurrency price, xt−j is the jth lag of the log of Gold, WTI, or Brent price, and up,t and ux,t are 

the error terms for the cryptocurrency and crude oil or gold markets, respectively. 

The equation for the long-term VECM(p, q) model in this study is expressed as: 

∆Pt = α0 + ∑ φi∆Pt−i
p
i=1 + ∑ βj∆xt−j

q
j=1 + λ ECTt−1 + εt,vecm  (3-3-a) 

ECTt−1 = c + γPt−1 + θxt−1  (3-3-b) 

Where, α0  is a constant, Pt  is the log of cryptocurrency price at time t, Pt−i  is the ith lag of 

cryptocurrency log price, xt−j is the jth lag of the log of Gold, WTI, or Brent price, and εt,vecm is the 

error term in the VECM model. The long-term effect between markets is captured by the ECTt−1 

term in equation (3-a), and λ is the adjustment coefficient. This cointegrating term represents the 

long-run equilibrium relationship between cryptocurrency and other markets, while λ shows the 

speed of convergence towards the long-run equilibrium. The lag structures of VAR(p)  and 
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VECM(p, q) models for each market are determined according to the Akaike Information Criterion 

(AIC) (Akaike, 1974). 

ARDL model is an ordinary least square (OLS) based model which is applicable for both non-

stationary time series and times series with mixed order of integration. An ARDL(p, q) model is 

shown below: 

Pt = α0 + ∑ φiPt−i
p
i=1 + ∑ βjxt−j

q
j=0 + εt,ardl  (3-4) 

Where, α0  is a constant, Pt  is the log of cryptocurrency price at time t, Pt−i  is the ith lag of 

cryptocurrency log price, xt−j is the jth lag of the log of Gold, WTI, or Brent price, and εt,ardl is the 

error term in the ARDL model. The proper lag structure in ARDL model is selected by Schwarz 

criterion (SIC) (Schwarz, 1978).  

The estimated regression coefficients from Eq.(3-1) to Eq.(3-4) are then used to carry out pairwise 

Granger causality tests (Granger, 1969) to find whether an endogenous variable can be treated as 

exogenous. The Wald Chi-Square test for the null hypothesis that Gold, WTI or Gold does not Granger 

cause the cryptocurrency market is examined. A bidirectional Granger causality exists between variables 

if both null hypotheses are rejected. Recall that Granger causality analysis adopted in the current work 

was successful in various financial problems, including the studying causality between stock prices 

and economic activity (Yilanci et al., 2021), insurance market density and economic growth 

(Pradhan et al., 2017), dynamic price changes in securities (Virgilio, 2022), banking activities and 

economic growth (Mushtaq, 2016), Bitcoin market and internet attention (Zhang et al., 2021), 

pricing dynamics of cryptocurrencies (Kristoufek, 2022), and foreign direct investment and 

economic growth (Sarker, 2020).  

3.3 Data Description 

In line with the previous discussions, gold and crude oil are popular hedges and safe haven assets 

for many financial markets. This study looks into the connections between the ten most traded 

cryptocurrency markets and the markets for Gold, WTI, and Brent Crude Oil. For this study, we 

have used the same dataset as in section Data2.3.1. However, since cryptocurrency prices are 

available seven days a week, while the WTI, Brent, and Gold spot prices are only available five 

days a week, we have matched the trading days of cryptocurrencies in accordance with the trading 

days of Gold and Crude oil markets. This resulted in a sample size of 248 and 246 daily prices for 

the pre-COVID-19 and during the COVID-19 periods, respectively. 

3.4 Empirical Results 

We first employ the ADF test to ascertain the presence of a unit root in the price time series. The p-

values presented in Table 3-1 indicate that the logarithmic price series of Tether during both pre-

COVID-19 and during COVID-19 periods, as well as WTI and Brent in pre-COVID-19 period are 

stationary. Conversely, for all other markets, only the return series, represented by the first difference 

of the logarithmic price series, demonstrate stationarity. To assess short-term and long-term 
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relationships between cryptocurrency markets and crude oil and gold markets, we employ the Johansen 

and Bounds Cointegration Tests. Cointegration implies a long-term equilibrium relationship between 

variables, indicating their tendency to move together despite short-term deviations (Jansen et al., 1993). 

Table 3-2 shows the F-values of Bounds test and the p-values of Johansen test for the null hypothesis 

of no cointegration between market pairs. The F-value for Tether-Gold market pairs in the pre-

COVID-19 period and for Tether-Gold, Tether-WTI, and Tether-Brent pairs during the COVID-19 

period exceed the I(1) critical value. Consequently, we infer the existence of a cointegration 

equation between these markets. Accordingly, we will estimate both ARDL for the short-term and 

VECM for the long-term relationships among Tether and gold, WTI, and Brent crude oil markets. 

The p-values from the Johansen test verify that cointegration equation only exists among Bitcoin 

cash-WTI, Bitcoin cash-Brent, and Chainlink-Gold market pairs during COVID-19. Table 3-3 

summarizes the suitable models following the results of cointegration tests for each market. 

 

Table 3-1: ADF test results (p-values) 

Markets 
Pre-COVID-19 (2019) 

2019/01/01-2019/12/31  

 During COVID-19 (2020) 
2020/01/01-2020/12/31 

 Return Log Price  Return Log Price 

Tether 0.000 0.007  0.000 0.000 
Bitcoin 0.000 0.574  0.000 0.994 
Ether 0.000 0.626  0.000 0.837 
Ripple 0.000 0.686  0.000 0.169 
Litecoin 0.000 0.537  0.000 0.805 
Bitcoin Cash 0.000 0.607  0.000 0.116 
EOS 0.000 0.609  0.000 0.091 
Chainlink 0.000 0.427  0.000 0.455 
Cardano 0.000 0.743  0.000 0.729 
Monero 0.000 0.765  0.000 0.739 
Gold 0.000 0.819  0.000 0.397 
WTI 0.000 0.008  0.000 0.181 
Brent 0.000 0.032  0.000 0.133 
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Table 3-2: Bounds or Johansen cointegration test 

Market pairs Pre-COVID-19 (2019) During COVID-19 (2020) 

 Bounds Test Johansen Test Bounds Test Johansen Test 

Tether-Gold 
Tether-WTI 
Tether-Brent 

6.56 
 
 

 
60.09 
56.97 
56.71 

 

Bitcoin-Gold 
Bitcoin-WTI 
Bitcoin-Brent 

 
1.12 
1.52 

0.502 
 
 

 
0.710 
0.393 
0.568 

Ether-Gold 
Ether-WTI 
Ether-Brent 

 
0.91 
1.70 

0.664 
 

 
0.725 
0.440 
0.514 

Ripple-Gold 
Ripple-WTI 
Ripple-Brent 

 
0.78 
1.08 

0.763 
 
 

 
0.231 
0.079 
0.107 

Litecoin-Gold 
Litecoin-WTI 
Litecoin-Brent 

 
0.76 
1.36 

0.254 
 
 

 
0.735 
0.430 
0.637 

Bitcoin cash-Gold 
Bitcoin cash-WTI 
Bitcoin cash-Brent 

 
1.61 
1.89 

0.725 
 
 

 
0.193 
0.029 
0.040 

EOS-Gold 
EOS-WTI 
EOS-Brent 

 
0.84 
1.84 

0.594 
 
 

 
0.174 
0.068 
0.117 

Chainlink-Gold 
Chainlink-WTI 
Chainlink-Brent 

 
2.04 
1.65 

0.207 
 
 

 
0.029 
0.274 
0.289 

Cardano-Gold 
Cardano-WTI 
Cardano-Brent 

 
0.42 
0.99 

0.630 
 
 

 
0.552 
0.233 
0.210 

Monero -Gold 
Monero -WTI 
Monero -Brent 

 
0.63 
0.85 

0.420 
 
 

 
0.707 
0.259 
0.274 

Values in bold are significant at a 5% significance level. Values for the Bounds test are F-
statistic for the null hypothesis that there is no cointegration in levels. F- critical values for 
lower and upper bounds are I(0)=3.62, I(1)= 4.16 at a 5% significance level. Values for the 
Johansen Unrestricted Cointegration Rank Test (Trace) are p-values for the null hypothesis 
that there is no Cointegration equation. 
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Table 3-3: Selected econometrics models to investigate market co-movement 

Markets 
Models 

Pre-COVID-19 (2019) During COVID-19 (2020) 

Tether-Gold VECM VECM 

Bitcoin-Gold 
Ether-Gold 
Ripple-Gold 
Litecoin-Gold 
Bitcoin Cash-Gold 
EOS-Gold 
Cardano-Gold 
Monero-Gold 

VAR-first D VAR-first D 

Chainlink-Gold VAR-first D VECM 

Tether-WTI/ Brent VAR- level VECM 

Bitcoin cash-WTI/Brent ARDL VECM 

Bitcoin-WTI/Brent 
Ether-WTI/Brent 
Ripple-WTI/Brent 
Litecoin-WTI/Brent 
EOS-WTI/Brent/Brent 
Chainlink-WTI/Brent 
Cardano-WTI/Brent 
Monero-WTI/Brent  

ARDL VAR-first D 

Following the cointegration tests, the VECM model can only analyze the potential long-term 

relationship between Tether-Gold, Tether-WTI, Tether-Brent, chainlink-Gold, Bitcoin Cash-WTI, and 

Bitcoin Cash-Brent market pairs. Moreover, short-term relationships between cryptocurrency markets 

and crude oil and gold will be explored by utilizing the ARDL or VAR-in-first-difference models. 

According to the results of VECM models in Table 3-4, during the COVID-19 period, 𝜆𝐺𝑜𝑙𝑑 , 

𝜆𝑊𝑇𝐼, and 𝜆𝐵𝑟𝑒𝑛𝑡 coefficients for Tether market are significantly negative. Thus, during COVID-19, 

there is a significant long-term negative relationship between Tether market and Gold, WTI, and Brent 

markets at a 5% level. The Negative long-term λ  coefficient in Eq.(3-3-a) shows that series are 

convergent in the long run to their long-term equilibrium relationship when deviations occur in the 

short term. Baur & McDermott (2010) define a strong safe haven as an asset that is negatively 

correlated with equities, whereas a weak safe haven asset is uncorrelated with equities during 

corresponding periods. Here, we consider an asset with a significant negative relationship as a strong 

safe haven and an asset with an insignificant negative coefficient as a weak safe haven. The coefficient 

of lagged Gold, 𝛽1,𝐺𝑜𝑙𝑑, for Tether is negative but not statistically significant, indicating that Gold can 

be a weak safe haven for Tether during the stable markets before the pandemic. However, the short-

term effects of Gold, WTI, and Brent crude oil on Tether, 𝛽1,𝐺𝑜𝑙𝑑, 𝛽1,𝑊𝑇𝐼 , and 𝛽1,𝐵𝑟𝑒𝑛𝑡, are positive and 

insignificant, showing that Gold, WTI, and Brent do not show any safe haven properties for Tether 

during the pandemic. Similarly, significant long-term negative relationships between Bitcoin Cash and 

WTI and Bitcoin Cash and Brent crude oil markets are found. This indicates that Bitcoin cash will 

converge to the long-run equilibrium with WTI and Brent crude oil when deviations occur in the short 

term. Regarding the safe haven effects, the insignificant negative coefficients of crude oil lag for 
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Bitcoin Cash, 𝛽1,𝑊𝑇𝐼, and 𝛽1,𝐵𝑟𝑒𝑛𝑡, show a weak safe haven property during the COVID-19 pandemic. 

Our results also show a significant long-term negative relationship, 𝜆𝐺𝑜𝑙𝑑, between the Chainlink and 

Gold markets and a weak safe haven characteristic of Gold, 𝛽1,𝐺𝑜𝑙𝑑, for Chainlink market during the 

COVID-19 pandemic.  

Comparing the results of the VECM model in the pre-COVID-19 period shows that the long-term 

relationship, 𝜆𝐺𝑜𝑙𝑑, is only available between Tether and Gold markets. Our results suggest that Gold 

can have a weak safe-haven effect for Tether in the pre-COVID-19 period and for Chainlink during the 

COVID-19 period. Besides, during the COVID-19 period, crude oil markets such as WTI and Brent 

can play an investment hedging role for Bitcoin Cash market. Thus, our findings suggest diversifying 

the Bitcoin Cash portfolios with crude oil assets during COVID-19 to minimize the risk of investment. 

However, during the stable markets (pre-COVID-19 period), it is suggested that investors in Tether 

diversify their portfolios with Gold assets. 

Table 3-4: Estimated coefficients in VECM models 

 Tether Bitcoin Cash Chainlink 

 Pre-COVID-19 During COVID-19 During COVID-19 

𝜆𝐺𝑜𝑙𝑑  
-0.2623 
(-5.365) 

-0.8122 
(-9.742) 

 
-0.0574 
(-2.917) 

𝜃𝐺𝑜𝑙𝑑  
0.0173 
(1.343) 

-0.002 
(-0.467) 

 
-8.1508 
(-9.257) 

𝛽1,𝐺𝑜𝑙𝑑  
-0.0179 
(-0.551) 

0.0027 
(0.107) 

 
-0.3408 
(-0.800) 

𝜆𝑊𝑇𝐼  
-0.8187 
(-9.923) 

-0.0331 
(-1.919) 

 

𝜃𝑊𝑇𝐼  
0.0011 
(1.108) 

-0.693 
(-4.716) 

 

𝛽1,𝑊𝑇𝐼  
0.0002 
(0.125) 

-0.0144 
(-0.764) 

 

𝜆𝐵𝑟𝑒𝑛𝑡   
-0.8241 

(-10.046) 
-0.0718 
(-2.967) 

 

𝜃𝐵𝑟𝑒𝑛𝑡   
0.0016 
(1.470) 

-0.465 
(-3.265) 

 

𝛽1,𝐵𝑟𝑒𝑛𝑡   
0.0063 
(1.475) 

-0.0145 
(-0.246) 

 

This table presents the coefficients in Eq.(3-3-a) and Eq.(3-3-b). Values in 
parentheses are t-statistics. Significant coefficients at a 0.05 level are in 
bold. 

The results of the estimated short-term relationships between cryptocurrency markets and crude oil and 

gold markets with ARDL and VAR models are presented in Table 3-5 and Table 3-6, respectively. As 

indicated in Table 3-5, our findings did not suggest any short-term relationship between cryptocurrency 

markets and crude oil markets before the COVID-19 pandemic at a 5% level of significance. However, 

considering a 10% level, a significant positive effect of Brent price, represented by 𝛽0 coefficient, on 

the price of Ether, Bitcoin Cash and EOS is evident before the pandemic. Likewise, WTI price has a 

significant positive effect on Bitcoin Cash price with a 10% level. These finding show that crude oil 
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price movements are similar to the price movements of Ether, Bitcoin Cash, and EOS and that crude 

oil is not a safe haven for these cryptocurrencies during the stable markets. However, the negative 

insignificant WTI and Brent crude oil coefficients for other assets in Table 3-5 indicate that crude oil 

can be a weak safe haven asset for Ripple, and Chainlink in short-term. 

Table 3-5: Estimated coefficients in ARDL models 

 Bitcoin Ether Ripple Litecoin Bitcoin Cash EOS Chainlink Cardano Monero 

Pre-COVID-19 (2019) 

WTI 
0.0302 
(0.722) 

0.0481 
(0.977) 

-0.0073 
(-0.169) 

0.0003 
(0.005) 

0.1069 
(1.727) 

0.0533 
(0.839) 

-0.0885 
(-1.132) 

0.0158 
(0.272) 

0.0003 
(0.006) 

Brent 
0.0529 
(1.312) 

0.0848 
(1.821) 

0.0400 
(0.970) 

0.0737 
(1.335) 

0.1129 
(1.950) 

0.1209 
(1.918) 

-0.0271 
(-0.348) 

0.0782 
(1.332) 

0.0380 
(0.797) 

This table presents the 𝛽0 coefficients in ARDL model (Eq.(3-4)). Values in the parentheses are associated t-statistic. 
Significant coefficients at 0.1 level are in bold. 

 

Besides, the findings presented in Table 3-6 provide evidence that there is no statistically significant 

short-term connectedness between cryptocurrencies and WTI, Brent, and Gold markets in the pre-

COVID-19 period, as their coefficients are not significant at a 5% level. However, with a 10% 

significance level, we observe a negative relationship between lagged Gold returns have and  Litecoin 

and Monero before the COVID-19 pandemic. Moreover, the first lag of Gold has an insignificant 

negative relationship with all cryptocurrency markets before the COVID-19 pandemic. These results 

confirm weak safe haven properties of Gold for all ten cryptocurrencies in the periods of financial 

stability. Likewise, the insignificant negative lagged WTI and Brent coefficients for Tether market in 

Table 3-6 suggest that crude oil can serve as a weak safe haven for Tether in stable periods.  

On the other hand, during the COVID-19 pandemic, lagged Gold returns have a significant negative 

relationship with Bitcoin, Litecoin, and Monero at a 5% level. Thus, Gold is a strong safe haven asset 

for Bitcoin, Litecoin, and Monero during financial crisis during the COVID-19. Meanwhile, the lagged 

WTI has a significant direct association with Bitcoin return while the lagged Brent crude oil returns 

have a significant negative relationship with Bitcoin returns, at the 5% level. Therefore, during the 

COVID-19 pandemic, Brent crude oil can be considered as a strong safe haven for Bitcoin, whereas 

WTI is not a safe haven for Bitcoin in this period. This study did not find any significant relationship 

between WTI and Brent crude oil markets and Ripple, Litecoin, Bitcoin Cash, EOS, Chainlink, and 

Cardano during the COVID-19 pandemic. We neither found any significant relationship between Gold 

and Ether, Ripple, Bitcoin Cash, EOS, Chainlink, and Cardano markets in any of our sub-sample 

periods. However, due to insignificant negative coefficients, WTI is a weak safe haven for Ether, 

Ripple, EOS, Chainlink, and Monero; Brent is a weak safe haven for Ether, Cardano, and Monero; and 

Gold is a weak safe haven for Bitcoin Cash, EOS, and Cardano during the COVID-19 crisis. Overall, 

the findings of our study indicate that Gold exhibits stronger safe haven characteristics for 

cryptocurrencies compared to the crude oil markets, particularly during the COVID-19 pandemic. In 

addition, the safe haven characteristics of both Gold and Crude oil markets for most of cryptocurrencies 
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have improved during the COVID-19 pandemic when we compare it with the prior to the COVID-19 

pandemic. 

Table 3-6: Estimated coefficients in VAR-in-first-difference models 

  Bitcoin Ether Ripple Litecoin Bitcoin Cash EOS Chainlink Cardano Monero 

Pre-COVID-19 (2019) 

DGold (-1)#  
-0.018 

(-0.048) 
-0.241 

(-0.550) 
-0.466 

(-1.215) 
-0.928* 
(-1.862) 

-0.72- 
(-1.342) 

-0.594 
(-1.118) 

-0.839 
(-1.215) 

-0.611 
(-1.259) 

-0.146 
(-0.326) 

DGold (-2)  
0.2184 
(0.579) 

 
 

  
   -0.336 

(-0.758) 

DGold (-3)  
-0.453 

(-1.188) 
 

 
  

   -0.762* 
(-1.697) 

DGold (-4)  
-0.053 

(-0.138) 
 

 
  

   -0.214 
(-0.475) 

Tether in level                    

 WTI (-1) 
0.001 

(0.066) 
Brent (-1) 

0.003 
(0.273) 

  
   

 

 WTI (-2) 
0.003 

(0.177) 
Brent (-2) 

-0.002 
(-0.12) 

  
   

 

 WTI (-3) 
-0.007 

(-0.670) 
Brent (-3) 

-0.003 
(-0.261) 

  
   

 

During COVID-19 (2020) 

DGold (-1)  
-0.196 

(-0.822) 
0.069 

(0.220) 
0.125 

(0.313) 
0.024 

(0.078) 
-0.235 

(-0.689) 
-0.084 

(-0.268) 
 

-0.107 
(-0.298) 

0.122 
(0.417) 

DGold (-2)  
0.206 

(0.864) 
0.367 

(1.162) 
0.286 

(0.718) 
0.230 

(0.756) 
    

0.283 
(0.969) 

DGold (-3)  
-0.657 

(-2.813) 
  

-0.936 
(-3.087) 

    
-0.731 

(-2.552) 

DGold (-4)  
-0.491 

(-2.078) 
       

-0.539* 
(-1.865) 

DWTI (-1)  
0.014 

(1.005) 
-0.001 

(-0.029) 
0.002 

(0.086) 
0.011 

(0.633) 
 

-0.000 
(-0.024) 

0.001 
(0.021) 

0.011 
(0.611) 

0.007 
(0.402) 

DWTI (-2)  
0.005 

(0.317) 
-0.005 

(-0.256) 
-0.005 

(-0.222) 
0.007 

(0.357) 
  

-0.004 
(-0.149) 

 
-0.000 

(-0.016) 

DWTI (-3)  
0.014 

(0.919) 
  

0.001 
(0.077) 

  
0.005 

(0.197) 
 

0.002 
(0.098) 

DWTI (-4)  
0.021 

(1.356) 
     

0.005 
(0.203) 

 
0.004 

(0.230) 

DWTI (-5)  
0.027 

(1.977) 
        

DBrent (-1)  
0.008 

(0.204) 
0.021 

(0.374) 
0.009 

(0.122) 
0.017 

(0.315) 
 

0.003 
(0.045) 

0.002 
(0.025) 

-0.019 
(-0.308) 

0.031 
(0.620) 

DBrent (-2)  
0.004 

(0.096) 
0.058 

(1.056) 
0.036 

(0.509) 
0.028 

(0.519) 
  

0.084 
(1.148) 

 
-0.020 

(-0.406) 

DBrent (-3)  
0.051 

(1.231) 
0.035 

(0.621) 
 

0.049 
(0.911) 

  
0.105 

(1.423) 
 

0.044 
(0.880) 

DBrent (-4)  
0.029 

(0.708) 
0.008 

(0.152) 
    

0.075 
(1.023) 

 
0.012 

(0.246) 

DBrent (-5)  
-0.085 

(-2.077) 
-0.104* 
(-1.898) 

      
-0.085* 
(-1.723) 

This table presents the coefficients in VAR model (equation (1)). Values in the parentheses are associated t-statistic. Significant 
coefficients at a 0.05 level are in bold and values with (*) are significant at the 10% level. # DGold (-1) shows the first difference 
of gold at the first lag. 
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Table 3-7 presents the p-values for unidirectional Granger causality tests, examining the causal effect 

of Gold, WTI, and Brent return series towards cryptocurrency returns. The results reveal that during 

the COVID-19 pandemic, Gold returns significantly Granger caused Bitcoin, Litecoin, and Monero 

returns at a 5% significance level. However, no significant Granger causality effect of WTI and Brent 

crude oil returns on cryptocurrency returns was found in the same period. In the pre-COVID-19 period, 

Gold returns Granger caused Litecoin returns at a 10% significant level. Similarly, WTI and Brent 

crude oil prices show a significant causal effect on Bitcoin Cash at a 10% level in this period. This 

study could not find any significant causality relationship from Gold, WTI, and Brent crude oil towards 

other cryptocurrencies in pre-COVID-19 and during COVID-19 periods. These results from the 

Granger causality test also confirm our findings about safe haven effects discussed previously. More 

specifically, the significant Granger causality from Gold towards Bitcoin, Litecoin, and Monero and 

the observed negative effects from Table 3-6 confirm that Gold can serve as a strong safe haven asset 

for these markets during the COVID-19 crisis. 

Table 3-7: Granger causality from Gold, WTI, and Brent towards cryptocurrencies (p-values) 

Markets 
H0: Gold Granger causes 

Cryptocurrency  

 H0: WTI Granger causes 
Cryptocurrency 

 H0: Brent Granger 
causes Cryptocurrency 

 
Pre-

COVID-19 
During 

COVID-19 
 Pre-

COVID-19 
During 

COVID-19  
 Pre-

COVID-19  
During 

COVID-19  

Tether 0.5819 0.9146  0.7183 0.9008  0.942 0.1403 

Bitcoin 0.7788 0.008  0.2475 0.4312  0.166 0.2192 

Ether 0.5819 0.5017  0.3141 0.9655  0.1389 0.3732 

Ripple 0.2244 0.7421  0.8814 0.96  0.384 0.8745 

Litecoin 0.0626* 0.0152  0.7477 0.9351  0.2312 0.7816 

Bitcoin Cash 0.1795 0.4904  0.0616* 0.4446  0.0771* 0.8053 

EOS 0.2636 0.7883  0.3327 0.9806  0.1424 0.9639 

Chainlink 0.2245 0.4236  0.6113 0.9976  0.871 0.4251 

Cardano 0.208 0.7656  0.7163 0.541  0.3177 0.758 

Monero 0.4355 0.0313  0.6177 0.9924  0.3675 0.4436 

Values in bold are significant at the 5% level and values with (*) are significant at the 10% level. 

 

The analyses in this study suggest that, in general, Gold is a better safe haven asset than crude oil for 

cryptocurrencies in both periods of pre-COVID-19 and during COVID-19. Even though crude oil is 

generally found to be a weak safe haven for cryptocurrencies, the safe haven properties of crude oil for 

Bitcoin, Ether, Bitcoin Cash, EOS, and Monero have risen during the COVID-19 pandemic. During 

the COVID-19 crisis, hedge fund managers can reduce the risk of investing in Bitcoin, Litecoin, and 

Monero by assigning a portion of their portfolio investments to the Gold market. Besides, Bitcoin 

investors can also reduce their investment risks during the COVID-19 pandemic by investing in Brent 

crude oil. However, as the absolute value of the coefficients for the effect of Gold on Bitcoin is larger 

than the effect of Brent crude oil on Bitcoin, gold would be a better hedging asset for Bitcoin during 

the COVID-19 pandemic. These results are consistent with prior literature (Owusu Junior et al., 2020; 

González et al., 2021; Barson et al., 2022; Nedved & Kristoufek, 2023), which provide evidence of 
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Gold's safe haven properties for cryptocurrency markets.  Our results corroborate the findings of 

Nedved & Kristoufek (2023) regarding the strong safe haven nature of Gold and the weaker safe 

haven role of crude oil for the Bitcoin market. However, we were unable to compare our results on 

crude oil's safe haven properties for other cryptocurrencies with prior studies, as we did not find any 

existing research on this specific topic. Table 3-8 summarizes the existence and the intensity of safe 

haven properties of Gold, WTI, and Brent crude oil for ten cryptocurrencies that are analyzed in this 

study. 
 

Table 3-8: Safe haven properties of Gold, WTI, and Brent crude oil 

 Gold  WTI  Brent 

 
Pre-

COVID-19 
During 

COVID-19 
Pre-

COVID-19 
During 

COVID-19  
Pre-

COVID-19  
During  

COVID-19  

Tether Weak None  Weak None  Weak None 

Bitcoin Weak Strong  None None  None Weak 

Ether Weak None  None Weak  None Weak 

Ripple Weak None  Weak Weak  None Weak 

Litecoin Strong Strong  None None  None None 

Bitcoin 
Cash 

Weak Weak  None Weak  None 
Weak 

EOS Weak Weak  None Weak  None None 

Chainlink Weak Weak  Weak Weak  Weak None 

Cardano Weak Weak  None None  None Weak 

Monero Strong Strong  None Weak  None Weak 

To investigate the possible causal relationships from cryptocurrency markets toward the Gold, WTI, 

and Brent crude oil markets, Table 3-9 presents the p-values of Granger causality tests. These tests 

consider the cryptocurrency returns as exogenous variables to estimate Gold, WTI, and Brent market 

returns. Our findings suggest that before the COVID-19 pandemic, only Bitcoin and Chainlink prices 

have a significant causal effect on Brent crude oil price at 0.1 level. However, during the COVID-19 

period, Tether, Bitcoin, and Ether returns significantly Granger caused the Brent returns. Likewise, 

Bitcoin return Granger causes the WTI return at this period. 

Table 3-9: Granger causality effect from cryptocurrencies towards Gold, WTI, and Brent (p-values) 

 Tether Bitcoin Ether Ripple Litecoin 
Bitcoin 
Cash 

EOS Chainlink Cardano Monero 

Pre-COVID-19 (2019) 

Gold 0.979 0.213 0.349 0.330 0.967 0.213 0.605 0.597 0.354 0.351 

WTI 0.303 0.357 0.395 0.862 0.868 0.703 0.771 0.335 0.497 0.799 

Brent 0.472 0.084* 0.181 0.963 0.48 0.406 0.918 0.059* 0.543 0.419 

During COVID-19 (2020) 

Gold 0.011 0.015 0.003 0.391 0.173 0.646 0.593 0.968 0.970 0.027 

WTI 0.963 0.074* 0.419 0.927 0.508 0.264 0.474 0.511 0.629 0.113 

Brent 0.077* 0.040 0.052* 0.538 0.523 0.488 0.373 0.453 0.181 0.140 

Values in bold are significant at the 5% level and values with (*) are significant at the 10% level. 
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It is evident from our empirical studies that Tether, Bitcoin, Ether, and Monero returns have a 

significant causal effect on Gold market return, at a 5% level, during the COVID-19 period. Referring 

to Table 3-7, it can be concluded that the Granger causality relationship between Bitcoin-Gold and 

Monero-Gold markets are bi-directional. A summary of discovered significant long-term and short-

term relationships between the cryptocurrency markets and Gold, and Crude oil markets is presented 

in Table 3-10. Finally, Table 3-11 summarizes our findings about significant Granger causal effects 

between the cryptocurrency markets and Gold, WTI, and Brent crude oil markets. 

Table 3-10: Summary of significant long-term and short-term relationships 

 Pre-COVID-19 (2019)  During COVID-19 (2020) 

 Gold Crude Oil  Gold Crude Oil 

Tether Long-term  -  Long-term Long-term 
Bitcoin - -  Short-term Short-term 
Ether - -  - - 
Ripple - -  - - 
Litecoin - -  Short-term - 
Bitcoin Cash - Short-term  - Long-term 
EOS - -  - - 
Chainlink - -  Long-term - 
Cardano - -  - - 
Monero - -  Short-term - 

 

Table 3-11: Summary of significant Granger causality effects 

 Pre-COVID-19 (2019) During COVID-19 (2020) 

 Gold WTI Brent Gold WTI Brent 

Tether - - - Tether GC Gold  Tether GC Brent* 

Bitcoin - - - Bidirectional GC Bitcoin GC WTI* Bitcoin GC Brent 

Ether - - - Ether GC Gold - Ether GC Brent* 

Ripple - - - - - - 

Litecoin Gold GC Litecoin* - - Gold GC Litecoin - - 

Bitcoin 
Cash 

- 
WTI GC 

Bitcoin Cash* 
Brent GC Bitcoin 

Cash* - - - 

EOS - - - - - - 

Chainlink - - Chainlink GC Brent* - - - 

Cardano - - - - - - 

Monero - - - Bidirectional GC - - 

This table shows the significance at the 5% level. Rows with * are significant at the 10% level. 

 

Robustness of empirical findings 

The robustness of our findings was assessed through several methods to ensure the reliability and 

validity of the results. Firstly, the analysis was conducted using different statistical models, including 

cointegration tests, VAR, VECM, and ARDL models, and Granger causality tests which provided 

consistent and converging outcomes. This cross-validation approach strengthened the confidence in the 

findings, as they were not reliant on a single model. Additionally, to enhance the generalizability of the 
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findings, this study employed a large and diverse dataset, encompassing ten cryptocurrency markets, 

two crude oil markets, and gold market in a sample of 494 daily instances covering the pre-COVID-19 

and during COVID-19 periods. The inclusion of this comprehensive dataset allowed for a more 

comprehensive analysis, reducing potential biases and increasing the reliability of our findings. 

3.5 Conclusion 

Numerous studies have highlighted the lower volatility of gold markets compared to high-frequency 

traded markets such as stocks and digital currencies (Klein et al., 2018; Dyhrberg, 2016; Maghyereh 

& Abdoh, 2022). By employing various statistical and econometrics models, this study investigated 

the connectedness between ten most traded cryptocurrencies and gold and crude oil markets. Our 

findings suggest that, during the COVID-19 pandemic, Gold acts as a superior safe haven asset 

compared to WTI, and Brent crude oil for minimizing the risk of cryptocurrency investments. 

Similarly, the significant long-term negative relationships between Bitcoin Cash and WTI, as well as 

Bitcoin Cash and Brent crude oil markets during the COVID-19 period, indicate that crude oil can be 

a safe haven for Bitcoin Cash investments. Prior to the COVID-19 pandemic, we did not find any 

significant short-term connectedness between any of the cryptocurrency markets and Crude Oil and 

Gold markets. However, during the COVID-19 pandemic, lagged WTI and Brent crude oil returns 

demonstrate a significant relationship with Bitcoin returns. Overall, our findings suggest that the 

emergence of the COVID-19 pandemic has strengthened the safe haven effect of Gold and Crude Oil 

markets for portfolios primarily invested in Bitcoin, Litecoin, Monero, Chainlink, and Bitcoin Cash. 

However, the magnitude of the effect of Gold on these markets is more prominent than the effect of 

Crude Oil. We did not find any significant connection between Gold and Crude Oil markets with Ether, 

Ripple, EOS, and Cardano, at a 5% level of significance, during any of the study periods. Moreover, 

Granger causality tests are conducted on cryptocurrency, Gold, and WTI, and Brent crude oil to 

determine the direction of causal relationships between these markets. Our empirical results show that 

the direction of significant causal relations is predominantly from cryptocurrencies toward Gold or 

crude oil markets. However, during the COVID-19 pandemic, Gold significantly Granger caused 

Bitcoin, Litecoin, and Monero. Results from this study shed some light on the availability of the safe 

haven effect of gold and crude oil markets for cryptocurrency markets prior to and during the 

financial crisis due to the COVID-19 pandemic. This will help hedge fund managers and investors 

in digital currencies balance their risk exposures and maximize their returns in the event of a 

financial crisis. More specifically, the results indicate that incorporating Gold as a safe haven asset 

in Bitcoin, Litecoin, Monero, Bitcoin cash, Chainlink, EOS, and Cardano portfolios can provide 

risk mitigation benefits, particularly during periods of market turbulence such as the COVID-19 

pandemic.  

Gold provides diversification benefits in investment portfolios due to its low correlation with stocks, 

bonds, and other financial assets. This diversification helps reduce overall portfolio risk and 

enhances stability during turbulent market conditions. Unlike crude oil, which is consumed and has 

a finite lifespan as an asset, gold retains its value over extended periods. Its enduring appeal as a 

wealth-preserving asset makes it attractive for long-term investment strategies, particularly in 
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uncertain economic environments. In contrast, crude oil’s price volatility and its dependence on 

global economic growth, geopolitical factors, and supply-demand dynamics make it less suitable as 

a safe haven asset. While oil can provide opportunities for profit during periods of economic 

expansion and rising demand, its price fluctuations can be unpredictable and subject to sudden shifts 

based on geopolitical tensions or supply disruptions. 

Therefore, from an economic perspective, gold’s stability, historical role as a store of value, 

liquidity, and perceived safety during economic turmoil make it a preferred safe haven asset 

compared to crude oil, which is more closely tied to industrial demand, geopolitical factors, and 

global economic conditions. The findings of this study indicate that policymakers, investors, and 

portfolio managers could enhance portfolio resilience by diversifying their cryptocurrency holdings 

to include gold. Additionally, this study shows that the safe haven characteristics of both Gold and 

Crude oil markets have improved during the COVID-19 pandemic compared to the period before 

the pandemic. This suggests that market participants should take a long-term perspective when 

evaluating the safe haven potential of these assets.  
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Chapter 4  

 

 

Deep Learning Approaches for Forecasting the 

Crude Oil and Precious Metals Prices 

 

4.1 Introduction and Literature Review 

Non-renewable commodities that are usually mined in certain countries can strongly impact their 

economies, policies, currencies, and international or political issues. Energy and precious metals 

markets, among other commodities, are not only critical indicators of economic health but also 

crucial determinants for financial planning and decision-making. Given the multifaceted nature of 

these markets, forecasting the trajectories of these commodities is crucial in financial markets, 

serving as an essential tool for investors, policymakers, and analysts. For investors, the ability to 

anticipate price movements in crude oil and precious metals provides a strategic advantage in 

optimizing portfolio performance and risk management. A comprehensive understanding of 

potential price fluctuations allows investors to make informed decisions, allocate resources 

optimally, and, ultimately, enhance their overall financial returns (Bhowmik & Wang, 2020). 

Policymakers, on the other hand, rely on accurate market forecasts to formulate effective economic 

policies and mitigate the potential impact of market volatility on national economies. Fluctuations 

in crude oil prices, for instance, can have cascading effects on inflation, trade balances, and overall 

economic stability (Uzo-Peters et al., 2018; Xiuzhen et al., 2022; Periwal, 2023). Similarly, the 

prices of precious metals are often indicative of broader economic sentiments and can influence 

monetary policies and international trade relationships. 

In this context, accurate forecasting of financial markets is a critical guide in determining economic 

policies. Consequently, researchers have dedicated their efforts to developing and improving models 

that capture the intrinsic behavior and dynamics of financial market time series. The prediction 

methods used in these studies are generally comprised of statistical or econometrics, machine 

learning, and deep learning methods. Recently, several forecasting modeling approaches have been 

applied to crude oil and precious metal commodities. For instance, Szarek et al. (2020) propose a 

new stochastic distribution, skewed Student’s t-distribution, for silver, copper, and gold time series 
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estimation, which accounts for the time-dependent parameters and the non-Gaussian behavior of 

time series data. Drachal (2022) employs Bayesian Symbolic Regression method to address variable 

uncertainty in monthly crude oil price forecasting. A recent review paper (Mohamed & Messaadia, 

2023) highlights that artificial neural networks (ANN) and support vector machines (SVMs) are the 

most popular Artificial Intelligence techniques to forecast the crude oil price 

By virtue of ongoing improvements in Natural Language Processing (NLP) tasks, some recent 

studies have incorporated news text and google trends features as inputs to their forecasting models 

(X. Li et al., 2019; Salisu et al., 2020; Tang et al., 2020; Bai et al., 2022; Kertlly de Medeiros et al., 

2022; Fang et al., 2023). These approaches leverage the valuable information contained in textual 

data to enhance the accuracy of predictions.  

Considering the non-linear, non-stationary, noisy, and heteroscedastic structure of crude oil and 

precious metals markets, capturing their behavior precisely remains significantly challenging and 

leads to difficulties in forecasting (Dutta et al., 2019). Traditional statistical forecasting models like 

vector autoregressive (VAR), ARIMA, ARDL, etc., encounter challenges in achieving robust 

performance in forecasting tasks. This is primarily due to their reliance on assumptions about the 

normality and stationarity of price data, assumptions that frequently do not align with the 

characteristics of many commodity market time series data. As a result, the inclination of recent 

studies is towards using machine-learning and deep-learning models, which excel in handling non-

linear data and do not rely on the normality assumption for accurate price predictions. In the 

literature, three main types of deep neural networks are used for sequence modeling, and they can 

be applied for time series forecasting (Lim & Zohren, 2021): (i). recurrent neural networks (RNNs) 

and their variants such as long short-term memory (LSTM) (Hochreiter & Schmidhuber, 1997) and 

gated recurrent units (GRUs) (Cho et al., 2014); (ii). Convolutional Neural Networks (CNN) (Lecun 

et al., 1998) and their recent variant, temporal convolutional networks (TCN) (Lea et al., 2016) , 

and (iii). Transformer (Vaswani et al., 2017) and its variants (Devlin et al., 2018; P. He et al., 2020; 

Y. Liu et al., 2019).  

Considering the importance of gold price forecasting, several studies utilized statistical, machine 

learning and deep learning models. Alameer et al. (2019) use a Multi-Layer Perceptron model with 

a whale optimization algorithm (WOA) for gold next-month price forecasting. Using lagged gold 

prices, gold demand, and treasury bills rates as predictors, Madziwa et al. (2022) employ an ARDL 

model to forecast annual gold price. In another study, P. Zhang & Ci (2020) use U.S. Consumer 

Price Index (CPI), Crude oil price, exchange rate, Dow Jones Industrial Price Index in a deep belief 

network to predict monthly gold price. Risse (2019) predicts gold excess returns to risk free rate of 

return by a SVR model. SVR finds the non-linear relationship in the data by mapping a linear 

function into a high dimensional feature space. Tree-based ensemble models have demonstrated 

promising performance in forecasting gold prices. Yuan (2023) leverages XGBoost (T. Chen & 

Guestrin, 2016) and LightGBM (Ke et al., 2017) models for gold and bitcoin price forecasting. 

Additionally, there is an increasing trend of using deep learning methods for gold price prediction. 



 

53 

 

For instance, using the association rules and LSTM mode, Boongasame et al. (2022) predict the 

gold price. Vidal & Kristjanpoller (2020) develop a hybrid of convolutional neural networks and long 

short-term memory models (CNN-LSTM) which incorporates historical log-return series and time 

series data in an image format to predict the volatility of gold spot prices. Likewise, deep learning 

models are used for crude oil price forecasting in various studies. Orojo et al. (2019) employ a Multi-

recurrent Network (MRN) to forecast a one-month ahead WTI crude oil price.  Lin et al. (2022) 

forecast crude oil futures prices by utilizing a BiLSTM-Attention-CNN model with Wavelet 

transform. Swamy & Lagesh (2023) explore the effectiveness of investor sentiments from Twitter in 

predicting the daily gold price by a wavelet analysis method and unveil a strong correlation between 

Twitter sentiments and gold price.  

However, the literature on forecasting other precious metal markets is relatively limited. Sroka (2022) 

utilizes block bootstrap methods to forecast daily silver prices, while Salisu et al. (2020) test the impact 

of Google Trends on forecasting the prices of four precious metal markets using an ARDL model. Y. 

Zhang et al. (2022) introduce a new objective function to forecast commodity markets including the 

silver price. To the best of our knowledge, there exists no precedent study to forecast the silver price 

by machine learning and deep learning models. We will attempt to fill this void in literature. 

Some studies achieve improved forecasting performances by developing ensemble models. Zhao et 

al. (2017) combine the advantages of stacked denoising autoencoders (SDAE) and bootstrap 

aggregation (bagging) techniques to model the nonlinear and complex relationships of oil price 

factors. J. Wang et al. (2020) propose an ensemble of five linear and non-linear submodels to 

produce the prediction intervals of crude oil spot price. S. Zhang et al. (2021) developed an ensemble 

deep-learning model for electricity price series prediction. Jiang et al. (2022) combine a 

decomposition-ensemble approach, optimized by the seagull algorithm, with a sentiment analysis to 

forecast crude oil future prices. Su et al. (2022) propose a hybrid forecasting model using support 

vector machines (SVM), Extreme learning machines (ELM), XGBoost, and LSTM models to 

prediction of the crude oil futures series. Sun et al. (2022) propose a secondary decomposition-

reconstruction-ensemble approach for crude oil price forecasting. 

The gradient boosting methods are powerful predicting models for many tasks. Borisov et al. (2021) 

compare the performance of tree-based ensembles such as XGBoost, LightGBM, and CatBoost 

(Prokhorenkova et al., 2018) with some deep learning models, including but not limited to 

multilayer perceptron (MLP), regularization learning networks, Neural oblivious decision 

ensembles, and transformers. They assert that machine learning tree-based models outperform deep 

learning models in several prediction tasks with tabular data. However, their study does not include 

the deep learning models for sequential data and is silent about forecasting the financial market 

price. To address this shortfall, in the current study, we will use tree-based ensemble models such 

as Random Forest and LightGBM in comparison with twelve deep learning models and two other 

machine learning models (KNN and SVR) to forecast daily crude oil and precious metals market 

prices. 
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Recently Temporal Convolutional Networks (Lea et al., 2016) draw more attention from scholars 

and are applied to a wide range of time series data. For instance, Lara-Benítez et al. (2020) utilize a 

TCN model to forecast the electricity demand and price in Spain. In environmental milieu, Yan et 

al. (2020) predict the El Niño-Southern Oscillation (ENSO), which is an index to measure the earth’s 

climate variability, by applying an ensemble empirical mode decomposition-temporal convolutional 

network (EEMD-TCN) model. This model shows improved prediction performance compared to a 

LSTM model. 

Considering temporal patterns in predicting a time series data is a significant challenge for many 

models. Some recent works tried to introduce learnable time representations to account for the 

temporal patterns in sequential data (Xu et al., 2019; Xu et al., 2021; Y. Li et al., 2017). Among 

these studies, Kazemi et al. (2019) introduced the Time2Vector method to represent sequential data 

as periodic and non-periodic vectors that can capture complex temporal patterns in data. M. Yang 

et al. (2021) improve the performance of an attention neural network for nonintrusive load 

monitoring by applying the Time2Vector method. In the current study, we will apply Time2Vector 

embedding to input series and incorporate the resulted periodic and non-periodic features to several 

deep learning models to forecast the crude oil, gold, and silver prices. 

 Given the recent innovations in deep learning models for time series forecasting, the forecasting 

literature about crude oil and precious metals has not sufficiently utilized the deep learning models 

for price prediction. In this study, we attempt to fill this gap in forecasting literature by applying 

several deep learning and machine learning models to predict the daily closing price of crude oil, 

gold, and silver prices. Firstly, the time series data of daily spot prices of two prominent crude oils, 

WTI and Brent, and two precious metal markets, Gold, and Silver are gathered and normalized. 

Then, several input sequences are prepared by the sliding window method with four different 

window lengths. Next, the dataset is split into training, validation and test sets with a time-based 

splitting approach. Finally, a comprehensive set of sixteen forecasting models, consisting of twelve 

deep learning models, two baseline ensemble models, and two baseline machine learning models 

are implemented to predict the next-day market price. The deep learning models in the current study 

include long short-term memory (LSTM), bidirectional LSTM (BiLSTM), gated recurrent units 

(GRU), bidirectional GRU (BiGRU), time2vector BiLSTM (T2V-BiLSTM), time2vector BiGRU 

(T2V-BiGRU), convolutional neural networks (CNN), hybrid CNN-BiLSTM, hybrid CNN-

BiGRU, temporal convolutional networks (TCN), hybrid TCN-BiLSTM, and hybrid TCN-BiGRU 

models. Two baseline ensemble models are Random Forest and LightGBM gradient boosting 

models, and two baseline machine learning models are support vector regression (SVR) and k-

nearest neighborhood (KNN) models.  

Each of the employed models has its own strengths and limitations. LSTM models are a type of 

RNNs that are popular for their ability to capture long-term dependencies, overcoming the gradient 

vanishing problem, and handle variable-length sequences. However, LSTMs can be 

computationally expensive and prone to overfitting, requiring regularization techniques (Y. Yu et 

al., 2019). GRU models, another type of RNN, have a simpler architecture, resulting in faster 
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training and inference times. However, they may have limitations in capturing complex patterns 

compared to LSTM models. Bidirectional models, such as BiLSTM or BiGRU, consider both 

forward and backward information, making them more robust to variations in input sequence order. 

However, they are computationally complex and require more memory resources (Khan et al., 

2021). CNNs are effective at capturing local patterns and features within time series data. They learn 

filters to detect specific temporal patterns and are translation invariant, meaning they can detect 

patterns regardless of their position in the input sequence. CNNs, however, have limitations such as 

the requirement for fixed-length inputs, limited consideration of temporal ordering, and the ability 

to capture long-term dependencies. Hybrid CNN-LSTM models combine the strengths of both 

CNNs and LSTMs, capturing both spatial and temporal features. They are suitable for tasks that 

require capturing complex patterns in time series data. However, they can be less interpretable 

compared to standalone models (Gharghory, 2021). TCNs are designed to capture long-term 

dependencies efficiently. They use dilated convolutions to capture information from a wide range 

of past time steps. TCNs are adaptable to different time series lengths without the need for padding 

or truncation. However, they can be complex to design and tune, and they are sensitive to input 

scaling (Gopali et al., 2021). Ensemble machine learning models like Random Forest and 

LightGBM are also used in time series analysis. Random Forest combines multiple decision trees 

and offers high prediction accuracy and robustness to outliers. LightGBM is an efficient gradient 

boosting framework that handles large datasets effectively. Both models have their strengths in 

terms of accuracy and generalization, but they lack the ability to explicitly capture temporal 

dependencies (Ke et al., 2017). SVR is a flexible model that can capture linear and nonlinear 

relationships. It focuses on support vectors, which have the most influence on the model's decision 

boundary. SVR can handle high-dimensional datasets and complex relationships between variables. 

However, SVR's performance depends on selecting appropriate hyperparameters, and it does not 

explicitly model temporal dependencies. KNN is an instance-based algorithm that makes 

predictions based on the similarity of training instances. It requires no training phase but suffers 

from the curse of dimensionality and lacks the ability to capture temporal dependencies. 

Our paper compares the forecasting performance of these models by mean absolute error (MAE), 

mean absolute percentage error (MAPE), and root mean squared error (RMSE) error functions. 

Mainly, the objectives of this paper are to answer the following questions through empirical 

experiments: (1) What is the best deep learning model that can reliably and precisely predict the 

crude oil, gold, and silver spot prices? (2) Supposing the response to the first question, whether there 

exists a particular model that outperforms other models for both crude oil and precious metals 

prices? (3) Which input sequence length is more informative for each market’s price prediction? (4) 

Are hybrid models effective in crude oil, gold, and silver spot price forecasting? (5) what 

conclusions about the properties of each deep learning model can be drawn in the context of crude 

oil and precious metals time series forecasting? 

A summary of the literature on crude oil and precious metal forecasting is presented in Table 4-1. 
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Table 4-1: Literature review of crude oil and precious metal forecasting 

Method type Author(s) Method(s) 

Features Data 

Financial 
market 

Google 
trend or 
sentiment 

WTI Brent Gold Silver 

Statistical 
and 
Econometric 
methods 

L. T. Zhao et al. (2018) VTFM ü   ü   

Szarek et al. (2020) SGT ü    ü ü 

Drachal (2022) BSR ü  ü ü   

Kertlly de Medeiros et al. 
(2022) 

MIDAS ü ü  ü   

Salisu et al. (2020) ARDL ü ü   ü ü 

Tang et al. (2020) MEMD ü ü  ü   

Madziwa et al. (2022) ARDL ü    ü  

Swamy & Lagesh (2023) wavelet analysis method ü ü   ü  

Sroka (2022) block bootstrap-ARIMA ü     ü 

Machine 
Learning 
methods 

Zhao et al. (2017) Ensemble (SDAE-
bagging) 

ü  ü    

Bai et al. (2022) AdaBoost.RT ü ü ü    

Risse (2019) SVR ü    ü  

Yuan (2023) XGBoost & LightGBM ü    ü  

J. Wang et al. (2020) EPPA ü   ü   

Su et al. (2022) ensemble ü  OPEC crude oil   

Sun et al. (2022) ensemble ü  ü ü   

Deep 
Learning 
methods 

X. Li et al. (2019) CNN ü ü ü    

Fang et al. (2023) FineBERT-VMD-Att-
BiGRU 

ü ü ü    

Fang et al. (2023) ISBN-EMD-FNN ü   ü   

Liang et al. (2023) Deepreinforcement 
learning 

ü  ü ü   

Alameer et al. (2019) MLP ü    ü  

P. Zhang & Ci (2020) Deep belief network ü    ü  

Boongasame et al. (2022) LSTM ü    ü  

Vidal & Kristjanpoller 
(2020) 

CNN-LSTM ü    ü  

Orojo et al. (2019) MRN ü  ü    

Lin et al. (2022) BiLSTM-Attention-CNN ü  ü ü   

In this chapter, the following research questions are answered through empirical experiments. 
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1. What is the best deep learning model that can reliably and precisely predict the crude oil, 

gold, and silver spot prices? 

2. Supposing the response to the first question, whether there exists a particular model that 

outperforms other models for both crude oil and precious metals prices? 

3. Which input sequence length is more informative for each market’s price prediction? 

4. Are hybrid models effective in crude oil, gold, and silver spot price forecasting? 

5. What conclusions about the properties of each deep learning model can be drawn in the 

context of crude oil and precious metals time series forecasting? 

This study makes the following important contributions to the existing literature on the forecasting 

of commodity markets prices: 

- Considering that there is limited literature on the use of deep learning models to forecast the 

price of commodity markets, this study implements and compares various types of the state-

of-the-art deep learning models for crude oil and precious metal spot price forecasting. 

Hence, our study will encompass a wide range of forecasting results that provides 

comprehensive insights for crude oil, gold, and silver market players and investors.    

- Most of the studies on precious metals, only focus on gold price predictions. However, in 

this study we forecast the price of both gold and silver to maintain a more general 

understanding of the precious metal markets. 

- To the best of our knowledge, this study is the first in forecasting literature that applies the 

TCN model, Time2Vector embedding module, and the hybrid TCN-BiLSTM, and TCN-

BiGRU models to forecast the spot price of WTI, Brent, Gold, and Silver time series. 

4.2 Methodology 

4.2.1 LSTM and BiLSTM 

LSTM and BiLSTM are structural variants of RNN models that can remember the important 

information from the time series sequences (Y. Lin et al., 2022). Particularly, BiLSTM concatenates 

two LSTM layers in opposite direction. The interior structure of a common LSTM cell is shown in 

Figure 4-1-a. An LSTM unit consists of an input gate, a forget gate, and an output gate. These gates 

facilitate the information flow and help the cell to forget unnecessary information. Firstly, the 

forgetting gate decides what information from the inputs and previous hidden states to discard. 

Secondly, the input gate decides what information from the inputs and previous cell states to keep 

and updates the cell state. Finally, the output gate obtains the output ℎ𝑡 by multiplying the 𝑜𝑡 of the 

input information processed by the sigmoid activation function and the cell state vector transformed 

by the tanh activation function. The equations of a forward pass in an LSTM unit are as follows: 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) (4-1) 

𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) (4-2) 
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𝑐𝑡
′ = tanh(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐) (4-3) 

𝑐𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 + 𝑖𝑡 ⊙ 𝑐𝑡
′ (4-4) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) (4-5) 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh(𝑐𝑡) , (4-6) 

where, 𝑥𝑡 ∈ ℝ𝑑 is the input vector, ℎ𝑡 ∈ ℝℎ hidden state vector, 𝑓𝑡 forget gate vector, 𝑖𝑡 input gate 

vector, 𝑜𝑡  output gate vector, 𝑐𝑡
′  temporary cell state vector, 𝑐𝑡 ∈ ℝℎ  cell state vector, 𝑊 ∈

ℝℎ×𝑑 , 𝑈 ∈ ℝℎ×ℎ, 𝑏 ∈ ℝℎ parameter matrices and vectors. 

In a BiLSTM model, ℎ𝑡  from opposite directions are concatenated to construct the bidirectional 

hidden state. The formula of bidirectional ℎ𝑡 are as following: 

ℎ⃗ 𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡, ℎ⃗ 𝑡−1) 4-7) 

ℎ⃗⃖𝑡 = 𝐿𝑆𝑇𝑀(𝑥𝑡, ℎ⃗⃖𝑡+1) 4-8) 

ℎ𝑡 = [ℎ⃗ 𝑡, ℎ⃗⃖𝑡]  4-9) 

     

 

(a) 

 

(b) 

 

(c) 

Figure 4-1: (a) LSTM internal cell structure, (b) GRU internal cell structure, (c) A single layer BiLSTM or BiGRU 

model. 
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4.2.2 GRU and BiGRU 

Like the LSTM, gated recurrent unit (GRU) is a variant of RNN cells that can forget the insignificant 

information and help the model to utilize longer sequences of data. GRU has fewer parameters than 

LSTM, as it eliminates the output gate. 

𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) 4-10) 

𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) 4-11) 

ℎ̂𝑡 = tanh(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ⊙ ℎ𝑡−1) + 𝑏ℎ) 4-12) 

ℎ𝑡 = 𝑧𝑡 ⊙ ℎ̂𝑡 + (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 (4-13) 

where, 𝑥𝑡 ∈ ℝ𝑑 is the input vector, ℎ𝑡 ∈ ℝℎ hidden state vector, 𝑧𝑡 forget gate vector, 𝑟𝑡 reset gate 

vector, ℎ̂𝑡  candidate activation vector, 𝑊 ∈ ℝℎ×𝑑, 𝑈 ∈ ℝℎ×ℎ, 𝑏 ∈ ℝℎ  parameter matrices and 

vectors, and 𝜎  is the sigmoid activation function. For certain sequential datasets, GRUs have 

outperform LSTM models (Chung et al., 2014; Gruber & Jockisch, 2020).  The internal structure of 

a GRU cell is depicted in Figure 4-1-b.  

For a bidirectional GRU model, hidden state vectors from two opposite direction are concatenated 

as follows: 

ℎ⃗ 𝑡 = 𝐺𝑅𝑈(𝑥𝑡 , ℎ⃗ 𝑡−1) 4-14) 

ℎ⃗⃖𝑡 = 𝐺𝑅𝑈(𝑥𝑡 , ℎ⃗⃖𝑡+1) 4-15) 

ℎ𝑡 = [ℎ⃗ 𝑡 , ℎ⃗⃖𝑡] 4-16) 

Figure 4-1-c shows the architecture of a single layer bi-directional LSTM (BiLSTM) or bi-

directional GRU (BiGRU) model. 

4.2.3 CNN 

Convolutional neural network is a kind of feedforward neural network model proposed by Lecun et 

al. (1998). CNNs are very popular in computer vision applications such as Facial recognition 

systems, Object Localization, Object Detection, Semantic Segmentation, etc. CNNS are effective at 

capturing local patterns and features within a time series. The convolutional layers learn filters that 

can detect specific temporal patterns. This makes CNNs well-suited for capturing local 

dependencies and short-term patterns in time series data. CNNs are inherently translation invariant, 

meaning they can detect patterns regardless of their position in the input sequence. This property is 

useful for time series analysis since the same patterns may occur at different time steps. The local 

perception and weight sharing of CNN can greatly reduce the number of parameters, thus improving 

the efficiency of model learning (W. Lu et al., 2020). They, however, suffer from limitations such 

as requirement for fixed-length inputs, lack of considering the temporal ordering, and limited ability 

to catch long-term temporal dependencies. 
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The architecture of this model is generally constructed from two layers, namely convolution layer 

and pooling layer. The convolution layer will extract the useful features from the input series by 

applying several convolution kernels on inputs, as indicated in Eq. 4-17), which will downsample 

the input for final forecasting. Then, a pooling layer will apply to the output of convolution layer to 

further reduce the dimensionality of the model. 

𝑙𝑡 =  𝜎(𝑥𝑡 ∗ 𝑘𝑡 + 𝑏𝑡) 4-17) 

where 𝑙𝑡  is the output of convolution layer, 𝜎  is the activation function, 𝑥𝑡 ∈ ℝ𝑑  is the input 

vector, 𝑘𝑡 ∈ ℝ𝑑  is the parameter vector of the convolution kernel, and 𝑏𝑡 is the bias term. 

4.2.4 TCN 

The intrinsic weaknesses of CNN, including the fixed-size inputs and mismatched input and output 

dimensions, restrict its application in time-series forecasting. The Temporal Convolutional 

Networks (Lea et al., 2016) are variants of the CNN models that, employ casual convolutions and 

dilations to predict sequential data with temporality and large receptive fields. Causal means there 

is no information leakage from future to past and the receptive field means the set of sample 

elements of the original input that affects a specific element of the output. By setting a proper dilated 

factor and kernel size, a TCN model can show a full coverage of input history.  A simple convolution 

is only able to look-back at a fixed timing window, whereas TCN uses dilated convolutions to 

achieve a large receptive field with fewer convolutional layers. TCNs capture long-term patterns 

using a hierarchy of temporal convolutional filters and in that manner, they tend to outperform 

Bidirectional LSTM models and are over a magnitude faster to train (J. Yan et al., 2020). TCN was 

first developed for action detection in video data settings to account for both spatial and temporal 

features of input (Lea et al., 2016). However, recently TCNs draw more attention from scholars and 

are applied to a wide range of time series data. Figure 4-2 shows a general representation of our 

TCN model with dilated causal convolutions. The architecture of this model consists of the 

following: 

Dilated convolution layer: The dilated convolution architecture modifies Kronecker-factored 

convolutional filters, it allows to achieve larger receptive field with fewer parameters and fewer 

layers (Zhou et al., 2015). For a sequence of 𝑥𝑡 ∈ ℝ𝑑 and a filter 𝑓: {0, … , 𝑘 − 1} →  ℝ, the dilated 

convolution operation ∗𝐷 on entries 𝑠 of the sequence is defined as follows: 

Ϝ(𝑠) = (𝑥𝑡 ∗𝐷 𝑓)(𝑠) = ∑ 𝑓(𝑖). 𝑥𝑠−𝐷.𝑖

𝑘−1

𝑖=1

 4-18) 

where, 𝐷  is the dilation factor, 𝑘  is the filter size, and 𝑠 − 𝐷. 𝑖  assures that only past data are 

convoluted. The output of dilated causal convolution layer is transformed by a tanh function. 

Dropout layer: a dropout layer with the probability of 0.2 is applied after each dilated convolution 

layer to regularize the model and eliminate the overfitting problem. 
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Residual block: We have used a stack of two dilated causal convolution layers together, and the 

results from the final convolution are added back to the inputs to obtain the outputs of the block. The 

residual connection avoids the vanishing and/or exploding gradient problem in deep learning 

models. 

Fully connected layer: the output of residual block is then inputted into a fully connected layer to 

predict the next day price. 

In Figure 4-2, the TCN model has a stack of two layers, a residual connection, and a fully connected 

layer. Each layer in the stack has a dilated causal convolution, tanh activation function, and a dropout 

for regularization. The dilation factors for the dilated convolution layer are 𝐷 =  1, 2, 4 and a filter 

size of 𝑘 =  2. It is evident that when 𝐷 = 1, the dilated convolution becomes a basic convolution. 

In recurrent-type neural networks, operations apply sequentially while in a TCN model all sequences 

are convolved at the same time in each dilated convolutional layer; hence, the training of TCN is 

much faster than LSTM or GRU models (Lea et al., 2016). 

 

Figure 4-2: (left) The architecture of a TCN model with a stack of two dilated causal convolutional layers 

and a residual connection. (right) a dilated causal convolution layer with dilated factors D = {1, 2, 4} and 

kernel size k = 2. 

 

4.2.5 Time2Vector (T2V-BiLSTM and T2V-BiGRU) 

Time series input can be considered as a sequence where, rather than being identically and 

independently distributed (i.i.d), a dependency across time exists among the sample data. For this, 
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it is important to account for time features while developing a time series forecasting model. Vector 

embedding has been formerly successfully utilized in many natural language processing tasks 

(Pennington et al., 2014; Mikolov et al., 2013; Almeida & Xexéo, 2019). Similarly, Time2Vector 

(Kazemi et al., 2019) is a learnable vector embedding for time which can be easily combined with 

many deep learning models. Time2Vector is a decomposition technique that encodes a temporal 

signal into a set of periodic and non-periodic patterns, allowing the model to better understand and 

learn from the time-dependent patterns. Time2Vector eliminates the need for explicit feature 

engineering when dealing with time-related features. By incorporating temporal information in a 

meaningful way, Time2Vector can improve the performance of time series models.  

For a given scalar notion of time 𝜏, Time2Vec of 𝜏 is a vector of size k + 1 defined as follows: 

𝑇2𝑉(𝜏)[𝑖] = {
𝑤𝑖𝜏 + 𝑏𝑖 ,         𝑖𝑓 𝑖 = 0.

ℱ(𝑤𝑖𝜏 + 𝑏𝑖),         𝑖𝑓 1 ≤ 𝑖 ≤ 𝑘.
 4-19) 

where 𝑇2𝑉(𝜏)[𝑖] is the ith element of 𝑇2𝑉(𝜏), ℱ is a periodic activation function, and 𝑤 and 𝑏 are 

learnable weight and bias parameters. Following the suggested activation function in the original 

T2V paper (Kazemi et al., 2019), we use sine function as ℱ. Time2Vector (T2V) assures that the 

learned periodic and nonperiodic time features will not be affected by the time scale (M. Yang et 

al., 2021). 

To construct the T2V-BiLSTM and T2V-BiGRU models, firstly, the input sequences are 

transformed by Time2Vector embeddings, then the embedded input vectors are entered a single 

layer BiLSTM or BiGRU models, and finally the output is predicted through a fully connected layer. 

Figure 4-3 presents a schematic of T2V-BiLSTM or T2V-BiGRU model. 

 

Figure 4-3: T2V-BiLSTM or T2V-BiGRU models. 𝒔 is the input sequence length, 𝒌 is the T2V output size, 𝒉 is 

the recurrent hidden size. 

 

Figure 4-4 summarizes the full process of data preprocessing, model training, and predicting for the 

test set in this study.  
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Figure 4-4: The price time-series forecasting flow chart 

 

4.2.6 Hybrid Models 

To verify the applicability of hybrid models in forecasting the crude oil, gold, and Silver daily prices, 

we have used CNN-BiLSTM, CNN-BiGRU, TCN-BiLSTM, and TCN-BiGRU models. CNNs in 

the initial layers of the hybrid model can learn low-level spatial features, such as local patterns, 

while the BiLSTM layers can learn high-level temporal dependencies. This hierarchical 

representation learning allows the model to capture both local and global dependencies in the time 

series data. CNNs and TCNs are well-suited for feature extraction from raw data, including time 

series. They can automatically learn relevant features and reduce the dimensionality of the input, 

which can be beneficial for downstream BiLSTM or BiGRU layers to learn more meaningful 

representations. 

The explanation of each model structure is as follows: 

CNN-BiLSTM and CNN-BiGRU models: Firstly, in the CNN module, a one-dimensional 

convolution layer is applied to input sequences and then a max pooling layer is applied to the output 
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of convolution layer to extract the important features. Next, the output of pooling layer is entered 

into a single layer BiLSTM or BiGRU module, and then the final output is predicted through a fully 

connected layer.  

TCN-BiLSTM, and TCN-BiGRU models: Firstly, a TCN module will receive the input sequences, 

next the output of the TCN is introduced into a single layer BiLSTM or BiGRU module, and then 

the final output is predicted through a fully connected layer. 

4.2.7 Ensemble and Machine Learning Models 

Among the ensemble machine learning models, Random Forest and LightGBM, which is a type of 

gradient boosting technique, are utilized in this study. Random Forest generally provides high 

prediction accuracy due to the aggregation of multiple decision trees. It is less prone to overfitting 

compared to individual decision trees. By combining multiple trees and using techniques such as 

bagging and random feature selection, Random Forest reduces the variance and improves the 

model's ability to generalize. It is also robust to outliers and missing values. However, since Random 

Forest treats each data point independently and do not explicitly consider the temporal dependencies 

between consecutive observations in the time series, it lacks autocorrelation modeling. Random 

Forest is not well-suited for extrapolation, especially for long-term forecasts. It may struggle to 

capture and project future trends that extend beyond the range of the observed data. While Random 

Forest is generally robust to overfitting, it can still be sensitive to noisy data. If the dataset contains 

a substantial amount of noise or irrelevant features, Random Forest may still overfit to the noise, 

leading to degraded performance. 

LightGBM is a powerful and efficient gradient boosting framework that offers excellent 

performance in various machine learning tasks. LightGBM is designed to be highly efficient and 

can handle large datasets with millions of instances and features. It uses a histogram-based algorithm 

to achieve faster training and prediction times compared to traditional gradient boosting 

implementations. The main advantage of LightGBM is low memory usage due to using a compact 

data structure for representing the dataset during training. Like other gradient boosting algorithms, 

LightGBM can be prone to overfitting if not properly regularized or tuned. LightGBM may struggle 

to capture complex feature interactions compared to deep learning models. 

SVR is a machine learning model that can capture both linear and nonlinear relationships between 

variables and it can handle high-dimensional datasets and capture complex relationships between 

variables. The algorithm focuses on the support vectors, which are the data points that have the most 

influence on the model's decision boundary. Outliers have less impact on this model due to the use 

of a margin. SVR allows the use of different kernel functions, such as linear, polynomial, radial 

basis function (RBF), and sigmoid. This flexibility enables modeling various types of relationships 

between the input variables and the target variable. However, SVR performance is highly dependent 

on selecting appropriate hyperparameters, such as the kernel type, regularization parameter, and 

kernel-specific parameters. Training an SVR model can be computationally expensive, especially 
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when dealing with large datasets or complex kernel functions. For time series datasets, SVR lacks 

to account for the temporal dependencies among observations. 

KNN is an instance-based, non-parametric algorithm that uses different distance metrics, such as 

Euclidean distance, Manhattan distance, or cosine similarity to make predictions. KNN does not 

explicitly learn a model from the training data. Instead, it stores the entire training dataset and uses 

it during the prediction phase. This eliminates the need for a time-consuming training phase. As the 

number of training instances increases, the algorithm's prediction time can be significant since it 

requires calculating distances to all training samples. Some limitations of KNN models are curse of 

dimensionality, sensitivity to the scale of features, intensive memory requirement, time-consuming 

predictions with large datasets, and lack of capturing temporal dependencies. 

4.2.8 Evaluation Criteria 

To evaluate the prediction performance, this paper adopts the following three metrics to calculate 

the forecasting error: mean absolute error (MAE), mean absolute percentage error (MAPE), and 

root mean square error (RMSE). MAE is a measure of the magnitude of difference between two 

continuous variables and treats all errors equally without emphasizing outliers. MAE is particularly 

useful for a clear understanding of the average magnitude of errors in our predictions. MAPE is a 

scaleless error value that measures the relative forecasting error and provides insights into how well 

the model predicts in percentage terms. RMSE represents the standard deviation of the residual error 

between the predicted value and the observed value which is important when we want to penalize 

larger errors more significantly. The prediction performance of the models increases with the 

decrease of these error measures. The formula of the above evaluation criteria is as follows: 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑛

𝑖=1 𝑦̂𝑖 − 𝑦𝑖|  4-20) 

𝑀𝐴𝑃𝐸 = 
100

𝑛
∑ |

𝑦̂𝑖−𝑦𝑖

𝑦𝑖
|𝑛

𝑖=1    4-21) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦̂𝑖 − 𝑦𝑖)2𝑛

𝑖=1    4-22) 

Where, 𝑛 is the sample size, and 𝑦𝑖 and 𝑦̂𝑖 are the true value and the predicted value for sample 𝑖, 

respectively. 

4.3 Empirical Analysis and Results 

4.3.1 Data description and preprocessing 

The daily closing prices of West Texas Intermediate (WTI) and Brent crude oil, Gold, and Silver 

are collected from 2000-01-04 to 2022-03-25. The original spot price data of WTI and Brent crude 

oil are derived from the U.S. Energy Information Administration (https://www.eia.gov), while the 

spot price of Gold and Silver are derived from KITCO (https://www.kitco.com). We have used data 

from the same trading days across all four markets to have identical sample size for all time-series.  

https://www.eia.gov/
https://www.kitco.com/
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To find the best hyperparameters and evaluate the models’ real-world performances, it is essential 

to evaluate them on a separate validation set and a test set that represents future unseen data. 

Splitting the time series datasets is challenging due to temporal dependencies, and the existence of 

seasonality and trends. If we split the data randomly, it breaks the temporal order, and the model 

may be trained on future data, leading to data leakage and overfitting. Moreover, if the training set 

does not capture the full range of seasonality or fails to include representative trend patterns, the 

model's ability to generalize to unseen data may be compromised. It is crucial to ensure that the 

training set contains consecutive past observations to predict future observations, includes multiple 

seasonal cycles, and captures the underlying trends adequately. To address these challenges, time-

based splitting and rolling window approaches can be used in time series analysis. In time-based 

splitting, we split the data based on a specific date or time point, ensuring that the training set only 

contains past observations, and the test set contains future observations, and in rolling window 

approach, a sliding window is used to create samples in training, validation, and test sets, where 

each sample includes past observations, and the corresponding future target observation. Thus, for 

each market, the whole dataset is split in three parts: 65% training data (from 2000-01-04 to 2014-

06-15), 25% validation data (from 2014-06-16 to 2020-01-02), and 10% test data (from 2020-01-

03 to 2022-03-25).  It is worth mentioning that the test data period includes the financial crisis due 

to the COVID-19 pandemic and the sharp decline in crude oil prices in April 2020. Therefore, test 

data includes highly volatile price data that make the forecasting even more challenging.  

Since deep learning models are sensitive to the scale of data, we have normalized each dataset into 

[0,1] interval to limit the effect of noise, speed up the updating of neural network parameters and 

enhance the training performance of the model. The formula to standardize data is as follows: 

𝑥𝑡
′ =

𝑥𝑡 − min(𝑥𝑡)

max(𝑥𝑡) − min(𝑥𝑡)
 (4-23) 

 

where, 𝑥𝑡 and 𝑥𝑡
′ denote the data before and after standardization, respectively. Table 4-2 presents 

a summary of descriptive statistics and statistical tests for WTI and Brent crude oil, Gold, and Silver 

in the whole sample. The total sample size for all markets is 5426. All four market spot prices show 

the significant characteristics of skewness, while WTI, Brent, and Gold also represent significant 

leptokurtic properties at a 5% significance level. Besides, the significant Jarque-Bera test statistics 

at a 1% significance level show the WTI, Brent, Gold, and Silver price time-series do not comply 

with the normal distribution. Hence, these markets can be treated as non-stationary signals. 

 

 

 

 



 

67 

 

Table 4-2: Descriptive statistics 

Index WTI Brent Gold Silver 

Count 5426 5426 5426 5426 

Mean 61.47 64.27 1020.98 15.73 

Standard deviation 25.79 29.33 510.85 8.51 

Min -36.98 9.12 255.95 4.07 

Max 145.31 143.95 2067.15 48.7 

Skewness1 0.39* 0.41* -0.07** 0.61* 

Kurtosis2 -0.598* -0.817* -1.249* 0.084 

Jarque-Bera3 218.903* 301.375* 357.452* 342.924* 

1 null hypothesis is that the series are skewed. 2 null hypothesis is that the series 
show normal kurtosis. 3 null hypothesis is that the series are normally distributed. * 
, ** denote the rejection of the null hypothesis at the 1% and 5% significance level, 
respectively. 

 

For these forecasting tasks, 𝑥𝑡 = {𝑥1, 𝑥2, … , 𝑥𝑠} is the input vector, where 𝑥𝑖 is the price data at day 

𝑖 and 𝑠 is the sequence length (sliding window length), and 𝑦𝑡 = {𝑥𝑠+1} is the target. Before sending 

series into the model, we have created inputs of different sequences. In this study, we train sixteen 

deep learning and machine learning models with four different sliding window lengths of 5, 30, 60, 

and 90 days to predict the next day WTI, Brent, Gold, and Silver prices. We have considered 5 as a 

relatively short sliding window length and 30, 60, and 90 as relatively long sliding window lengths 

to capture any seasonality or trend in data. We will compare various deep learning and machine 

learning models to find how they perform on forecasting commodity price time-series with longer 

input sequences. 

4.3.2 Empirical Results 

Crude oil and precious metals are highly important commodities in financial markets. The purpose 

of this study is to forecast the daily price of WTI and Brent crude oil, Gold, and Silver through deep 

learning models and compare the prediction performance of deep learning models with Random 

Forest, LightGBM, SVR, and KNN models as the baseline machine learning models. Hence, our 

results will suggest the best deep learning model to forecast crude oil, gold, and silver daily prices. 

We will experiment the performance of all models across four sliding window lengths of 5, 30, 60, 

90 days to suggest the suitable input length for a superior performance with each model. The deep 

learning models used in this study are LSTM, BiLSTM, GRU, BiGRU, T2V-BiLSTM, T2V-

BiGRU, CNN, CNN-BiLSTM, CNN-BiGRU, TCN, TCN-BiLSTM, TCN-BiGRU models. 

We have used Grid Search on the validation dataset to tune and select the optimal hyperparameters 

of each model. The common hyperparameters among all models are number of epochs, batch size, 

dropout rate, and learning rate which are equal to 50, 32, 0.2, and 0.001, respectively. Table 4-3 

presents the selected hyperparameters of four best performing models in this study. Due to the large 

scale of the study and space limitations we only presented the selected hyperparameters of BiGRU, 
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T2-BiGRU, TCN, and TCN-BiGRU models for each market. The hyperparameters of other models 

are available upon request from the corresponding author.   

 

Table 4-3: Selected hyperparameters of models 

models markets 
Hidden size  T2V size  Num. filters  Kernel size 

5 30 60 90  5 30 60 90  5 30 60 90  5 30 60 90 

BiGRU 

WTI 64 128 128 128                

Brent 64 128 128 128                

Gold 128 128 128 128                

Silver 64 128 128 128                

T2V-

BiGRU 

WTI 64 128 128 128  32 90 32 128           

Brent 64 128 150 128  64 128 128 128           

Gold 128 150 128 128  90 64 128 128           

Silver 256 256 256 128  128 128 128 32           

TCN 

WTI           32 16 16 16  2 4 2 4 

Brent           32 16 16 16  2 4 2 4 

Gold           64 64 64 32  2 16 4 4 

Silver           32 64 64 64  2 4 2 4 

TCN-

BiGRU 

WTI 64 64 64 64       32 16 16 16  2 4 2 4 

Brent 64 64 64 64       32 16 16 16  2 4 2 4 

Gold 128 128 128 128       64 64 64 32  2 16 16 4 

Silver 64 128 64 128       32 64 64 32  2 16 4 4 

Other common hyperparameters among all models and all four markets are: epochs=50, batch size=32, dropout 
rate=0.2, and initial learning rate=0.001. 

After each training step, the weights of models are updated by Adam optimizer with a scheduled 

learning rate (lr) as follows: 

𝑙𝑟 =  {
𝑙𝑟0                  𝑖𝑓 𝑒𝑝𝑜𝑐ℎ𝑠 < 5

𝑙𝑟 ∗ 𝑒(−0.1)        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (4-24) 

the initial learning rate (𝑙𝑟0) is 0.001 which is applied on epoch one through epoch five and then is 

exponentially decreased for each epoch after epoch five. In this study, the models are trained to 

minimize the mean squared error (MSE) loss function. The objective function of training process is 

as follows: 

Objective function =  Minimize 𝑀𝑆𝐸 =  Minimize 
1

𝑛
∑ (𝑦̂𝑖 − 𝑦𝑖)

2𝑛
𝑖=1   (4-25) 

Where 𝑦̂𝑖 is the predicted price and 𝑦𝑖 is the true target price for sample 𝑖. 

Overfitting in financial market price forecasting experiments can lead to misleading and unreliable 

results. Overfitting occurs when a model is too complex, and it is able to capture the noise in the 

data, rather than the underlying patterns. The consequences of overfitting in financial market price 

forecasting can be severe. Traders who rely on the overfitted model may make poor investment 
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decisions, leading to significant losses. In addition, the overfitted model may be highly sensitive to 

changes in the market, making it difficult to use in real-world situations. To mitigate the risk of 

overfitting in crude oil and precious metals market price forecasting, in this study, techniques such 

as cross-validation, dropout, early stopping, and pruning (for Random Forest and LightGBM) are 

employed. Cross-validation involves partitioning the data into training and validation sets and 

evaluating the model on the validation set to assess its generalization performance. Model 

regularization in this study is achieved through dropout layer in models’ architectures and early 

stopping after ten epochs during the training. Early stopping will end the training process if there is 

no improvement in validation error. To further assure the robustness of forecasting results, all 

reported errors and predicted values are the average outputs from ten runs of each model.  

 All deep learning models are implemented by using Tensorflow Keras and machine learning models 

are created using Sklearn. The experiments are conducted by using Python 3.8 and run on a 

computing system with a 70 W Tesla T4 NVIDIA-SMI GPU, CUDA version 11.2, and 16GB RAM.  

4.3.2.1 WTI price forecasting 

To show the computational performance of our deep learning models for WTI next-day spot price 

forecasting, we draw the forecasting performance of LSTM, BiLSTM, GRU, BiGRU, T2V-

BiLSTM, T2V-BiGRU, CNN, CNN-BiLSTM, CNN-BiGRU, TCN, TCN-BiLSTM, TCN-BiGRU 

models and compared them with the baseline models, i.e., Random Forest, LightGBM, KNN and 

SVR models. Each model was executed 10 times to reduce randomness and improve robustness in 

results. Table 4-4 presents the MAE, MAPE, and RMSE values for the forecasted next-day WTI 

prices in the test dataset across all models. It is observed that among the evaluated models and 

considering two out of three performance criteria, the TCN model consistently achieves the lowest 

MAE and MAPE for WTI price forecasting across all input sliding window sizes. However, when 

considering the RMSE metric, the BiGRU model outperforms other models for input sequences of 

length 5 and 30. On the other hand, for input sequences of length 60 and 90, the TCN-BiGRU and 

T2V-BiGRU models demonstrate superior performance, respectively. In addition to the superior 

prediction performance, the forecasting error of TCN model is not significantly affected by the input 

sequence length as we get the MAE of 1.510, 1.455, 1.444, and 1.472 with sequence lengths of 5, 

30, 60, and 90, respectively. Comparing this with other models, we can see that the performance of 

most of the models is more sensitive to the input sequence length. Using bidirectional models was 

proved effective in natural language processing tasks (Arbane et al., 2023; Y. Huang et al., 2023; 

G. Liu & Guo, 2019; Raza & Schwartz, 2023). However, little attention has been given to using 

these models for price time series forecasting. In this study, all three performance criteria from Table 

4-4 show that bidirectional recurrent models such as BiLSTM and BiGRU perform better than 

unidirectional models such as LSTM and GRU for all sequence lengths. Bidirectional RNNs exploit 

the network memory used in processing the information from both backward and forward directions. 

So, interdependency among data samples is learned better compared to unidirectional models that 
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only use the forward direction information processing. Our findings are in compliance with the 

studies of M. Yang & Wang (2022) and Siami-Namini et al. (2019) which found BiLSTM model 

outperforming the LSTM model for time series prediction. Besides, it is evident from Table 4-4 that 

GRU-type models such as GRU, BiGRU, T2V-BiGRU, CNN-BiGRU, and TCN-BiGRU perform 

better than LSTM-type models such as LSTM, Bi LSTM, T2V-Bi LSTM, CNN-Bi LSTM, and 

TCN-Bi LSTM in WTI price forecasting. 

To evaluate the effectiveness of Time2Vector embedding in WTI price forecasting, we compare the 

MAE, MAPE, and RMSE of BiLSTM and BiGRU models with T2V-BiLSTM and T2V-BiGRU 

models, respectively. Using the T2V input embedding, the MAE of BiLSTM and BiGRU models 

with input sequence 5 increases from 1.821 and 1.570 to 1.985 and 1.889, respectively. On the 

contrary, the MAE of BiLSTM and BiGRU models with input sequence 90 decreases from 1.904 

and 1.699 to 1.670 and 1.523, respectively. It can be argued that Time2Vector embedding does not 

have an improving effect on forecasting with smaller input sequences, 5 and 30, while it has 

improved the WTI price forecasting performance for longer sequences of 60 and 90. To study the 

impact of using hybrid models such as CNN-BiLSTM and CNN-BiGRU we compare their 

performance with a single BiLSTM and BiGRU models, respectively. It can be seen that the 

combination of the CNN model with recurrent-type models has a detrimental effect on the 

forecasting performance of WTI prices, as evidenced by an increase in the MAE across all sequence 

lengths. The reason for this would be that CNN module downsamples the input sequence and some 

information that might be useful for BiLSTM or BiGRU models will be lost, hence resulting in 

higher forecasting errors. Similarly, a single TCN model outperforms the hybrid TCN-BiLSTM and 

TCN-BiGRU models. TCN model is able to see the full sequence in its receptive field and use the 

best temporal features to forecast WTI price. Therefore, combining it with a recurrent-type model 

will only increase the complexity of model and causes overfitting problem without any significant 

improvements in forecasting performance.  

Upon examining the forecasting errors of ensemble tree-based models, i.e., Random Forest and 

LightGBM, it becomes apparent that Random Forest performs poorly in predicting WTI prices, 

whereas LightGBM demonstrates exceptional forecasting capabilities. The MAPE and RMSE 

values of LightGBM across sequence lengths of 5, 30, and 90 days are consistently the lowest among 

all sixteen forecasting models. Consequently, LightGBM can be considered on par with the TCN 

model as the top-performing method for WTI price forecasting. Moreover, it is worth noting that 

the performance of LightGBM exhibits a slight decline as the input sequence lengths increase. 

However, this decrease in performance is not significant, indicating that LightGBM is relatively 

insensitive to variations in input sequence length. On the other hand, using SVR and KNN models, 

it becomes apparent that the performance of conventional machine learning models tends to 

deteriorate as the input sequences grow larger. In contrast, deep learning models are less affected 

by larger input sequences, showcasing their robustness. For larger input sequences, all deep learning 

models outperform the SVR and KNN models. However, for smaller sequences, such as those with 
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a length of 5, it is observed that the KNN model performs better than the deep learning models, 

except for the BiGRU and TCN models. This discrepancy can be attributed to the fact that the data 

within each sequence serves as input features for the KNN model. As the sequence length increases, 

the KNN model faces greater challenges in identifying the nearest neighbors required for predicting 

the target price accurately. 

 

 

To find the best sliding window length for each forecasting model, Figure 4-5 presents the RMSE of 

WTI next-day spot price forecasting models. RMSE is particularly selected for comparing models 

because it effectively highlights accurate predictions and mitigates the influence of large errors. Our 

experiments with WTI price forecasting show that using only recurrent-type models such as LSTM, 

GRU, BiLSTM, BiGRU, T2V-BiLSTM, and T2V-BiGRU, we get better prediction performance 

compared to using only CNN or a hybrid of CNN with Recurrent-type models such as CNN-

BiLSTM, and CNN-BiGRU. It can be noted that recurrent-type models, are not very sensitive to the 

input sequence length and they even perform slightly better with relatively longer input sequences as 

longer sequences enable the model to learn more upward, downward, and complex patterns and 

generalize better in predicting the unseen data. However, since the CNN models are not able to 

memorize the important information from the past data points, the forecasting error of CNN-type 

models such as a single CNN, CNN-BiLSTM, and CNN-BiGRU increases by the input sequence 

length. As in general the RMSE of TCN-BiLSTM and TCN-BiGRU is smaller than the RMSE of 

CNN-BiLSTM and CNN-BiGRU models, it can be concluded that among the hybrid models, TCN 

module performs better than CNN module in extracting the important temporal features. From Figure 

Table 4-4: WTI price forecasting performance 

Models 
MAE MAPE RMSE 

5 30 60 90 5 30 60 90 5 30 60 90 

LSTM 1.950 1.872 1.875 1.873 7.190 8.005 8.605 8.284 3.787 3.719 3.720 3.720 

GRU 1.893 1.787 1.765 1.631 8.300 6.092 5.672 4.965 3.682 3.584 3.580 3.539 

BiLSTM 1.821 1.654 1.679 1.904 7.532 5.966 5.720 5.286 3.588 3.511 3.496 3.747 

BiGRU 1.570 1.559 1.575 1.699 6.868 5.094 5.230 6.725 3.415 3.432 3.439 3.488 

T2V-BiLSTM 1.985 2.196 1.668 1.670 5.594 5.033 6.274 6.204 3.770 3.986 3.461 3.458 

T2V-BiGRU 1.889 1.606 1.511 1.523 5.107 5.987 3.853 5.060 3.691 3.451 3.392 3.405 

CNN 1.887 2.068 3.201 3.201 7.277 8.213 8.957 9.357 4.000 6.064 5.085 5.071 

CNN-BiLSTM 1.972 2.581 2.563 3.650 6.733 6.158 6.566 8.207 4.496 4.845 4.444 5.695 

CNN-BiGRU 1.851 2.406 2.244 2.885 8.133 5.850 7.793 7.196 4.243 4.650 4.161 4.815 

TCN 1.510 1.455 1.444 1.472 3.829 3.663 3.530 3.882 3.550 3.495 3.559 3.552 

TCN-BiLSTM 2.063 2.354 1.704 2.494 5.374 5.566 4.301 5.377 3.857 4.267 3.419 4.456 

TCN-BiGRU 1.787 2.015 1.672 1.911 5.437 5.471 7.023 5.033 3.520 3.872 3.372 3.720 

Random Forest 3.209 3.151 1.887 1.868 7.209 7.131 4.307 4.286 4.869 4.801 3.574 3.569 

LightGBM 1.487 1.551 1.554 1.558 3.490 3.622 3.624 3.643 3.213 3.338 3.392 3.386 

SVR 2.231 4.199 3.861 5.586 5.591 9.224 8.560 16.12 4.947 5.733 5.687 7.821 

KNN 1.772 3.358 5.049 6.559 4.075 7.599 10.68 12.83 3.440 5.586 7.792 10.03 
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4-5, in general, input sequence of 60 days of lagged data points is better than other sliding window 

lengths such as 5, 30, or 90 days for WTI daily price forecasting. However, CNN, CNN-BiLSTM, 

and CNN-BiGRU models perform better with input sequence of 5 days compare to the other 

sequence lengths for WTI price prediction. Among the machine learning models, Ensemble tree-

based models emerge as the leading models for forecasting WTI prices. Notably, the Random Forest 

model exhibits subpar performance with shorter input sequences. Conversely, LightGBM 

consistently performs well across all input sequences, showcasing its robust forecasting capabilities. 

In contrast, the forecasting performance of the SVR and KNN models deteriorates as the input 

sequence length increases. This suggests that these models struggle to effectively capture the 

complex patterns and relationships within longer sequences of data. 

 

Figure 4-5: RMSE of WTI crude oil next-day price forecasting models 

Our observations regarding WTI forecasting align with the outcomes presented in the study by Qin 

et al. (2023), where the GRU model demonstrated superior performance compared to random forest, 

SVR, and LSTM models, achieving a lower MAPE value. Similarly, our results corroborate the 

conclusions drawn by J. Yuan et al. (2023), highlighting that LightGBM exhibited significantly 

better performance than LSTM and SVR models. 

Figure 4-6 compares the line chart of predicted WTI prices in the test dataset with the actual WTI 

price value in the period from 2020-01-03 to 2022-03-25. Upon looking at the predicted values at 

the end of April 2020, it becomes apparent that the TCN model surpasses the LightGBM model in 

accurately capturing sharp changes in WTI price. The TCN model demonstrates superior 

performance in detecting and predicting abrupt fluctuations in price, showcasing its ability to 

capture and respond to sudden market dynamics with greater precision than the LightGBM model. 

0

1

2

3

4

5

6

7

8

9

10

R
o

o
t 

M
ea

n
 S

q
u

ar
e 

Er
ro

r 
(W

TI
)

RMSE-5

RMSE-30

RMSE-60

RMSE-90



 

73 

 

 

Figure 4-6: Comparison of WTI crude oil price forecasting models on the test dataset 

4.3.2.2 Brent price forecasting  

Table 4-5 shows the errors, MAE, MAPE, and RMSE, of our forecasting models for Brent next-day 

spot price forecasting. We compare the forecasting performance of LSTM, BiLSTM, GRU, BiGRU, 

T2V-BiLSTM, T2V-BiGRU, CNN, CNN-BiLSTM, CNN-BiGRU, TCN, TCN-BiLSTM, TCN-

BiGRU models with the baseline models, Random Forest, LightGBM, KNN and SVR models. 

According to the lowest values of the MAE and RMSE measures for all input sequence lengths, 5, 

30, 60, and 90, the TCN is the best performing model in predicting the Brent crude oil price in the 

test dataset. Considering the MAPE, although, for input sequences with 5 lagged data points the 

TCN model has the best Brent price prediction performance, for input sequences of length 30, 60 

and 90, the T2V-BiGRU model outperforms other models. Additionally, the TCN model is not 

particularly sensitive to the input sequence length. The TCN achieves a robust and stable forecasting 

performance for all input sequence lengths as the MAE with sequence lengths of 5, 30, 60, and 90 

are 1.295, 1.353, 1.315, and 1.301, respectively. Evidently, the performance of the majority of the 

other models exhibits higher sensitivity to changes in the input sequence length for Brent crude oil. 

For instance, the MAEs of the CNN model grows with increasing the sequence length as it gets the 

MAE of 1.542, 1.879, 2.818, and 5.194 with sequence lengths of 5, 30, 60, and 90, respectively. 

Similar to our findings for the WTI crude oil price forecasting, we found that, in general, BiLSTM 

and BiGRU models outperform the unidirectional LSTM and GRU models in forecasting the Brent 

crude oil price. By juxtaposing the MAE, MAPE, and RMSE of the GRU-type models such as GRU, 

BiGRU, T2V-BiGRU, CNN-BiGRU, and TCN-BiGRU with those of the LSTM-type models such 

as LSTM, BiLSTM, T2V-BiLSTM, CNN-BiLSTM, and TCN-BiLSTM, we found that a GRU unit 

is a more appropriate recurrent unit for Brent crude oil price forecasting. 
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The impact of Time2Vector embedding in Brent crude oil price forecasting is assessed through the 

comparison of MAE, MAPE, and RMSE of T2V-BiLSTM and T2V-BiGRU models with BiLSTM 

and BiGRU models, respectively. Table 4-5 shows that the T2V embedding is improving the 

forecasting performance of BiLSTM model for input sequences of 60 and 90, while it stimulates the 

performance of BiGRU model for input sequences of 30, 60, and 90. The results of Brent crude oil 

price forecasting confirms that T2V embedding has a favorable influence on forecasting with longer 

input sequences. For the hybrid models, our results suggest that combining the CNN model with 

recurrent-type models has an adverse effect on the performance of BiLSTM and BiGRU models for 

the Brent crude oil price forecasting. The same pattern is visible in comparing the forecasting 

performance of a single TCN model with the TCN-BiLSTM and TCN-BiGRU hybrid models in 

predicting the Brent daily prices. The TCN model outperforms the hybrid models.  

By comparing the forecasting errors of Random Forest, LightGBN, SVR and KNN models with our 

deep learning models, we conclude that basically the forecasting performance of deep learning 

models is superior to that of machine learning models. However, it is worth noting that the ensemble 

LightGBM model stands as an exception, demonstrating remarkable performance as the second-

best model among all sixteen models for forecasting Brent crude oil price across all input sequence 

lengths. This exceptional performance sets LightGBM apart from the other models, emphasizing its 

robustness and effectiveness in accurately predicting Brent crude oil price, regardless of the length 

of the input sequence. Yet, for the short sequence length of 5, the KNN performs better than the 

deep learning models, with the exception of the BiGRU, CNN, and TCN models. 

 

Table 4-5: Brent price forecasting performance 

Models 
MAE MAPE RMSE 

5 30 60 90 5 30 60 90 5 30 60 90 

LSTM 1.856 1.806 1.789 1.821 3.689 3.563 3.509 3.630 2.860 2.826 2.800 2.830 

GRU 1.760 1.721 1.436 1.412 3.343 3.277 2.752 2.715 2.760 2.670 2.289 2.257 

BiLSTM 1.703 1.492 1.556 1.562 3.328 2.895 2.974 3.013 2.643 2.364 2.446 2.449 

BiGRU 1.421 1.428 1.439 1.425 2.888 2.861 2.895 2.833 2.222 2.217 2.237 2.228 

T2V-BiLSTM 1.893 1.503 1.417 1.403 3.738 2.922 2.788 2.683 2.922 2.371 2.211 2.200 

T2V-BiGRU 1.721 1.386 1.372 1.403 3.345 2.669 2.641 2.671 2.671 2.189 2.171 2.204 

CNN 1.542 1.879 2.818 5.194 2.653 3.679 5.773 5.150 2.459 2.934 4.335 4.032 

CNN-BiLSTM 1.857 2.456 2.680 2.641 3.618 4.887 5.241 5.121 2.844 3.807 4.126 4.096 

CNN-BiGRU 1.769 2.414 2.265 2.279 2.136 5.026 4.684 4.233 2.747 3.694 3.478 3.248 

TCN 1.295 1.353 1.315 1.301 2.637 2.905 2.658 2.697 2.035 2.059 2.052 2.045 

TCN-BiLSTM 2.063 2.320 1.653 1.879 4.062 4.620 3.215 3.592 3.171 3.658 2.467 2.923 

TCN-BiGRU 1.768 2.035 1.363 2.061 3.440 4.061 2.639 4.121 2.746 3.236 2.129 3.217 

Random Forest 1.989 2.681 2.717 2.667 3.811 5.425 5.475 5.275 2.909 3.585 3.565 3.501 

LightGBM 1.375 1.426 1.452 1.478 2.719 2.910 2.963 3.063 2.130 2.174 2.190 2.210 

SVR 2.130 2.787 4.480 4.530 4.685 5.192 9.343 8.417 3.284 4.102 6.284 6.448 

KNN 1.594 3.224 5.440 6.421 3.197 6.737 10.72 12.94 2.483 4.984 8.379 10.14 

To assure the robustness of models’ performances, the average of errors in ten runs of the models are reported 
here. 
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Figure 4-7 represents the RMSE of the forecasting models that are implemented in this study to 

predict the next-day Brent crude oil price in the test dataset. Our results denote that the recurrent-

type models such as LSTM, GRU, BiLSTM, BiGRU, T2V-BiLSTM, and T2V-BiGRU, outperform 

the CNN and hybrid models such as CNN-BiLSTM, CNN-BiGRU, TCN-BiLSTM, and TCN-

BiGRU in term of Brent price forecasting. From Figure 4-7,  we realize that, in general, the efficacity 

of recurrent-type models in predicting the Brent price enhances with relatively longer input 

sequences. However, the CNN and hybrid models do not perform well with longer input sequences. 

As the RMSE of TCN-BiLSTM and TCN-BiGRU are mainly lower than the RMSE of CNN-

BiLSTM and CNN-BiGRU models, it can be inferred that the TCN module performs better than 

CNN module in extracting the important temporal features of Brent crude oil price. When examining 

the ensemble and conventional machine learning models, namely Random Forest, LightGBM, SVR, 

and KNN, it becomes evident that the optimal forecasting input sequence for Brent price prediction 

is 5 days. LightGBM model achieve a superior forecasting across all input sequences and thus is not 

significantly affected by the changes is the input sequence length. As a general observation, the 

forecasting performance of these baseline models declines as the input sequence length increases. 

This suggests that shorter input sequences provide more accurate and reliable predictions compared 

to longer sequences when utilizing these models for forecasting Brent price. Regardless of machine 

learning-type models, CNN, CNN-BiLSTM, and CNN-BiGRU models that perform better with 

shorter input sequences, our experiments suggest that, in general, the best input sequence length for 

Brent crude oil forecasting is 60 days of past data. Hence, the lowest RMSE values across most of 

the deep learning models in this study, are achieved for input sequence length of 60 for Brent crude 

oil price forecasting.  

 

Figure 4-7: RMSE of Brent next-day price forecasting models 
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Our results validate the conclusions drawn by Y. Zhao et al. (2017), indicating that deep learning 

models outperform machine learning models, such as SVR, in forecasting crude oil prices. 

Figure 4-8 compares the line chart of predicted Brent crude oil prices in the test dataset with the 

actual Brent price values in the period from 2020-01-03 to 2022-03-25. Upon analyzing the 

predicted value during the abrupt Brent price change periods, it becomes apparent that the TCN 

model outperform the LightGBM model in accurately capturing sharp changes in Brent price. Thus, 

TCN is a more reliable model for predicting the sudden changes in Brent price.  

 

Figure 4-8: Comparison of Brent crude oil price forecasting models on the test dataset 

4.3.2.3 Gold price forecasting  

The forecasting errors of Gold price prediction with sixteen deep learning and machine learning 

models are presented in Table 4-6. Considering the resulted MAE, MAPE, and RMSE of the models, 

the TCN model has the best Gold price prediction performance for input sequences of 5 and 90 day. 

Meanwhile, for Gold price predictions with input sequences of 30 and 60, the BiGRU and GRU 

models show the superior performance among all models. Our results show that in most of the cases, 

the deep learning models performed remarkably better than the baseline Random Forest, 

LightGBM, SVR and KNN models in predicting the price of Gold market. Compared to the CNN-

BiLSTM, TCN-BiLSTM, and TCN-BiGRU, the SVR model achieved lower MAE, MAPE, and 

RMSE values. The prediction with Gold price data show that bidirectional LSTM models perform 

better than the unidirectional LSTM models for all input sequences. In the meantime, the BiGRU 

model outperformed the GRU model exclusively for input sequences of 5, and 60 days. Comparing 
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the Gold price forecasting errors of the GRU-type models such as GRU, BiGRU, T2V-BiGRU, 

CNN-BiGRU, and TCN-BiGRU with those of the LSTM-type models such as LSTM, Bi LSTM, 

T2V-Bi LSTM, CNN-Bi LSTM, and TCN-Bi LSTM, we found that GRU-type models are more 

proper than the LSTM-type models for Gold price forecasting. 

Our deep learning models were able to predict the gold price for the test data relatively well. In 

contrast to its performance in WTI and Brent price forecasting, the LightGBM model surprisingly 

did not exhibit strong generalization capabilities when predicting the Gold price during the test data 

period. Despite its success in other forecasting tasks, the LightGBM model failed to provide accurate 

and reliable predictions for Gold price, indicating that the underlying dynamics and patterns of Gold 

price data might differ significantly from those of WTI and Brent. Table 4-8 shows the coefficient 

of variation for the resulted MAEs of all forecasting models. The coefficient of variation is a 

scaleless value calculated via dividing the standard deviation of model MAEs through various input 

sequence lengths by the mean of those MAEs. Comparing the forecasting results of Gold market 

with the results of WTI and Brent crude oil markets, from Table 4-8, we notice that the models are 

more sensitive to the input sequence lengths of Gold market as the MAE forecasting error of each 

model vary markedly across the sequence lengths.  

Table 4-6: Gold price forecasting performance 

Models 
MAE MAPE RMSE 

5 30 60 90 5 30 60 90 5 30 60 90 

LSTM 26.92 29.53 33.95 35.39 1.52 1.67 1.92 2.00 33.26 35.91 40.37 41.67 

GRU 18.21 17.17 21.50 24.50 1.01 0.95 1.20 1.35 25.26 23.36 28.57 32.88 

BiLSTM 22.33 26.17 32.76 36.39 1.25 1.48 1.85 2.05 29.26 33.66 42.27 42.41 

BiGRU 19.07 15.19 27.64 22.15 1.05 0.85 1.56 1.22 26.13 20.85 35.12 28.84 

T2V-BiLSTM 25.08 33.58 36.57 32.41 1.41 1.89 2.05 1.81 31.37 42.02 45.55 69.55 

T2V-BiGRU 19.93 24.35 24.49 35.06 1.11 1.36 1.38 2.00 28.05 30.96 31.43 60.80 

CNN 23.28 34.05 53.34 64.35 1.30 1.91 2.99 3.70 31.05 45.08 65.78 81.94 

CNN-BiLSTM 30.39 68.59 68.62 66.56 1.71 3.98 4.01 3.84 36.97 79.67 85.07 77.20 

CNN-BiGRU 24.44 36.16 46.48 42.36 1.37 2.05 2.67 2.31 31.48 47.93 58.03 53.65 

TCN 15.56 17.21 27.86 19.89 0.87 0.96 1.57 1.12 20.83 22.58 33.73 24.82 

TCN-BiLSTM 35.67 96.56 81.28 59.71 2.01 5.66 4.69 3.40 43.68 112.97 94.1 39.86 

TCN-BiGRU 42.83 78.34 66.33 55.97 2.42 4.55 3.83 3.20 51.53 93.99 81.01 42.96 

Random Forest 96.26 73.14 156.5 73.43 5.61 4.19 9.48 4.209 121.33 97.42 177.28 97.52 

LightGBM 43.41 69.40 70.27 79.67 2.43 3.97 4.02 4.58 64.39 94.06 95.05 104.55 

SVR 87.02 49.64 69.90 48.11 5.07 2.83 4.01 2.76 92.06 60.12 80.39 63.037 

KNN 45.45 96.48 109.76 135.61 2.55 5.62 6.45 8.10 65.26 116.41 131.78 156.72 

To assure the robustness of models’ performances, the average of errors in ten runs of the models are reported 
here. 

Figure 4-9 depicts the RMSE of our forecasting models to predict the Gold next-day price in the test 

dataset. It can be seen that the recurrent-type models such as LSTM, GRU, BiLSTM, BiGRU, T2V-

BiLSTM, and T2V-BiGRU, in general, have lower RMSE values compared to the CNN and hybrid 

models such as CNN-BiLSTM, CNN-BiGRU, TCN-BiLSTM, and TCN-BiGRU. This result aligns 

with the research conducted by Z. He et al. (2019) on gold price prediction, demonstrating that a 
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hybrid CNN-LSTM model did not exhibit superior performance compared to the individual CNN or 

LSTM models.  

We notice that, in general, shorter input sequence of 5 days price data is more useful in Gold price 

predictions with both deep leaning and machine learning models. Besides, in general, the Gold price 

forecasting performance deteriorates by increasing the input sequence length. The best prediction 

performance across all models and all sequences is achieve through the BiGRU model using 30 days 

of Gold price data. Based on the findings presented in Table 4-8, it is evident that LightGBM exhibits 

a higher coefficient of variation for MAE in Gold price forecasting compared to WTI and Brent crude 

oil. This indicates that LightGBM is considerably sensitive to changes in the input sequence length 

when predicting Gold price. The higher coefficient of variation suggests that the performance of 

LightGBM may vary significantly when the input sequence length is altered, underscoring the need 

for careful consideration and optimization of the input sequence length specifically for Gold price 

forecasting with LightGBM. Figure 4-10 compares the line chart of predicted Gold prices in the test 

dataset with the actual Gold price values in the period from 2020-01-03 to 2022-03-25. These results 

suggest that Random Forest and LightGBM models do not generalize well in forecasting the Gold 

price. 

 

Figure 4-9: RMSE of Gold next-day price forecasting models 

Comparing the performance of LightGBM and KNN models in predicting gold prices, our results 

demonstrate the superiority of LightGBM, a conclusion also supported by the study conducted by Z. 

Yuan (2023). 
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Figure 4-10: Comparison of Gold price forecasting models on the test dataset 

4.3.2.4 Silver price forecasting  

As a kind of precious metal, the daily spot price of Silver is forecasted through the deep learning 

models in this study and compared with the Random Forest, LightGBM, SVR and KNN forecasts. 

Table 4-7 shows the MAE, MAPE, and RMSE of Silver price predictions. The TCN model is the 

best performing model across all input sequence lengths to forecast the daily silver price as it scores 

the lowest MAE, MAPE, and RMSE amidst all models. Besides the TCN’s superior ability in 

forecasting the Silver price, this model is the least susceptible to the input sequence length as the 

MAE coefficient of variation from Table 4-8 shows. The coefficient of MAE variation across all 

sequence lengths is 0.015 for the TCN model which is the lowest value amongst all models. Results 

of this study suggest that, except for the TCN-BiLSTM and TCN-BiGRU models with input 

sequence of 5 days, our deep learning models are superior to the SVR and KNN models in predicting 

the price of Silver market. For Silver price forecasting, providing the bidirectional information 

seems promising with the BiLSTM model as it reached lower MAE, MAPE, and RMSE values 

compared to the unidirectional LSTM. However, the bidirectional information did not improve the 

forecasting performance of the GRU model for Silver price prediction. Furthermore, the results from 

Table 4-7 propose that GRU-type models have a relatively better forecasting performance than the 

LSTM-type models, for Silver price prediction. 

Using the ensemble (Random Forest, and LightGBM) or conventional (SVR, and KNN) machine 

learning models, only LightGBM could outperform some of the deep learning models, namely, 

CNN, CNN-BiLSTM, CNN-BiGRU, TCN-BiLSTM, and TCN-BiGRU in Silver price forecasting. 

LightGBM is found to be the best machine learning model in Silver price forecasting across all 

sequence lengths. 
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Upon comparing the MAE coefficient of variations between the Silver and Gold markets in Table 

4-8, it can be concluded that the performance of our forecasting models is relatively less affected 

by changes in the input sequence length when predicting the Silver market. This suggests that the 

forecasting models exhibit greater stability and consistency in their predictions for the Silver market, 

regardless of variations in the input sequence length. In contrast to the Gold market, where the 

models show higher sensitivity to changes in the input sequence length, the Silver market 

demonstrates a more robust and reliable forecasting performance across different input sequence 

lengths.  

Table 4-7: Silver price forecasting performance 

Models 
MAE MAPE RMSE 

5 30 60 90 5 30 60 90 5 30 60 90 

LSTM 0.490 0.463 0.497 0.491 2.186 2.086 2.239 2.221 0.721 0.694 0.741 0.710 

GRU 0.440 0.394 0.381 0.385 1.967 1.753 1.667 1.684 0.658 0.590 0.549 0.556 

BiLSTM 0.471 0.387 0.499 0.476 2.095 1.716 2.237 2.137 0.702 0.575 0.733 0.710 

BiGRU 0.425 0.442 0.388 0.364 1.897 1.973 1.721 1.609 0.639 0.649 0.571 0.543 

T2V-BiLSTM 0.478 0.589 0.491 0.434 2.138 2.666 2.206 1.933 0.717 0.850 0.730 0.653 

T2V-BiGRU 0.472 0.548 0.462 0.370 2.125 2.483 2.065 1.641 0.703 0.794 0.679 0.553 

CNN 0.551 0.730 0.752 0.768 2.454 3.273 3.400 3.468 0.786 1.030 1.090 1.140 

CNN-BiLSTM 0.571 0.747 0.670 0.775 2.538 3.307 3.022 3.478 0.800 1.103 0.980 1.108 

CNN-BiGRU 0.528 0.611 0.656 0.635 2.358 2.737 2.952 2.843 0.779 0.926 0.953 0.893 

TCN 0.355 0.349 0.346 0.357 1.573 1.547 1.525 1.575 0.529 0.520 0.513 0.525 

TCN-BiLSTM 0.647 0.942 0.746 0.603 2.881 4.269 3.345 2.668 0.960 1.327 1.013 0.867 

TCN-BiGRU 0.714 0.928 0.553 0.467 3.186 4.155 2.476 2.086 1.058 1.307 0.780 0.651 

Random Forest 1.831 0.831 0.848 2.476 8.076 3.562 3.646 11.30 2.149 1.059 1.075 2.764 

LightGBM 0.509 0.475 0.486 0.475 2.154 2.047 2.070 2.061 0.710 0.665 0.684 0.646 

SVR 0.602 1.164 1.077 1.130 2.656 5.006 4.609 5.034 0.775 1.321 1.359 1.513 

KNN 0.667 1.170 1.847 2.686 2.805 5.078 8.022 11.47 0.913 1.501 2.295 3.300 

To assure the robustness of models’ performances, the average of errors in ten runs of the models are reported 
here. 

Figure 4-11 presents the RMSE of our deep learning models to forecast the Silver next-day price in 

the test dataset. Similar to the results of WTI, Brent, and Gold markets, it can be observed that the 

Silver price forecasting error of the recurrent-type models such as LSTM, GRU, BiLSTM, BiGRU, 

T2V-BiLSTM, and T2V-BiGRU are in general lower than the forecasting error of the CNN and 

hybrid models such as CNN-BiLSTM, CNN-BiGRU, TCN-BiLSTM, and TCN-BiGRU. The best 

performing model to predict the Silver price is the TCN model which demonstrates a robust 

forecasting performance across all input sequence lengths. Our results show that the recurrent-type 

models generally perform better with longer input sequence of 90 days to predict the next-day Silver 

price. The best prediction performance across all models and all sequences is achieve through the 

TCN model using 60 days of past Silver price data. Moreover, in the hybrid models such as CNN-

BiLSTm, CNN-BiGRU, TCN-BiLSTM, and TCN-BiGRU, the TCN module performs better than 

the CNN module in extracting the temporal features of Silver market price. 
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Figure 4-12 illustrates the line chart of the best predicted Silver prices in the test dataset with the 

actual Silver price values from 2020-01-03 to 2022-03-25. It shows that the TCN and Random 

Forest models are best and least generalizing models in Silver price forecasting. 

 

 

Figure 4-11: RMSE of Silver next-day price forecasting models 

 

Using MAPE as the metric, our silver price prediction results surpass those of a comparable study 

conducted by Gono et al., (2023), which employed Random Forest and XGBoost methods. Our best 

MAPE for silver price prediction, 1.52%, significantly outperforms the best MAPE of 5.98% 

achieved in the study of Gono et al., (2023). 
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Figure 4-12: Comparison of Silver price forecasting models on the test dataset 

 

Table 4-8: Coefficient of variation (CoV) for the MAE of forecasting 

models 

 WTI Brent Gold Silver 

LSTM 0.020 0.016 0.124 0.031 
GRU 0.061 0.116 0.164 0.068 
BiLSTM 0.067 0.056 0.216 0.107 
BiGRU 0.041 0.005 0.250 0.087 
T2V-BiLSTM 0.137 0.148 0.153 0.131 
T2V-BiGRU 0.108 0.114 0.248 0.158 
CNN 0.274 0.577 0.423 0.144 
CNN-BiLSTM 0.260 0.158 0.321 0.132 
CNN-BiGRU 0.182 0.130 0.257 0.092 
TCN 0.020 0.020 0.271 0.015 
TCN-BiLSTM 0.162 0.143 0.388 0.205 
TCN-BiGRU 0.081 0.179 0.248 0.305 
Random Forest 0.258 0.121 0.341 0.465 
LightGBM 0.019 0.027 0.201 0.028 
SVR 0.301 0.301 0.251 0.229 
KNN 0.429 0.452 0.339 0.476 

H0: the mean CoV of Gold and Silver markets are equal (p-value = 0.0074) 
H0: the mean CoV of WTI and Brent markets are equal (p-value = 0.7142) 

The coefficient of variation is calculated by 
𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝑀𝐴𝐸𝑖)

𝑚𝑒𝑎𝑛(𝑀𝐴𝐸𝑖)
 , 

𝑖 = 𝑠5, 𝑠30, 𝑠60, 𝑠90. Models with values in bold are least sensitive to the input 
sequence lengths for each market’s price predictions. 
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4.4 Conclusion 

Crude oil, in particular WTI and Brent, perform a crucial role in the global financial markets and 

market economics. In recent years, the price of crude oil has been more vulnerable to geopolitical 

and macroeconomic factors. Thus, understanding the dynamics of crude oil markets seems 

inevitable. Besides, precious metals such as gold and silver are key commodities that are mined in 

particular countries which make the economics of these countries highly rely on precious metal 

markets. Moreover, gold is a substitute asset for stock markets and plays an indispensable role in 

financial investment portfolios. Therefore, developing an accurate forecasting model for crude oil, 

gold and silver price movements is a vital key for policymakers, business owners, investors, and 

other stakeholders to mobilize timely political movements, foresee the market trends and properly 

design their investment strategies to mitigate investment risks. In this study, we implement 12 deep 

learning models, namely, LSTM, BiLSTM, GRU, BiGRU, T2V-BiLSTM, T2V-BiGRU, CNN, 

CNN-BiLSTM, CNN-BiGRU, TCN, TCN-BiLSTM, and TCN-BiGRU, to forecast the WTI, Brent, 

Gold, and Silver markets prices, and compare their forecasting performance with four baseline 

models, namely, Random Forest, LightGBM, SVR and KNN models. For this, we use each market’s 

historical price information and apply 4 different sliding window lengths of 5, 30, 60, and 90 days. 

To assess the forecasting power of each model, the MAE, MAPE, and RMSE evaluation metrics 

are employed. Specifically, we chose RMSE for comparing models because it effectively highlights 

accurate predictions and mitigates the influence of large errors, which could otherwise substantially 

impact returns in our markets. We compared the forecasting performance of these models across 

various input sequence lengths and found that the TCN model is the best performing model to 

forecast the price of Brent, Gold, and Silver. LightGBM exhibits comparable forecasting 

performance to the TCN model in accurately predicting WTI and Brent crude oil prices, while it 

outperforms TCN in predicting the WTI prices. Additionally, our results indicate that the BiGRU 

and GRU models are the best models to predict the Gold spot prices with input sequence of 30 and 

60, respectively. The best forecasting performance for each market is WTI through a LigthtGBM 

model with input sequence 5, RMSE 3.213, Brent through a TCN model with input sequence 5, 

RMSE 2.035, Gold through a TCN model with input sequence 5, RMSE 20.83, and Silver through 

a TCN model with input sequence 60, RMSE 0.513. Eventually, our study suggests utilizing the 

TCN model for superior financial time series price predictions. From the empirical results, we figure 

out that the bidirectional LSTM and GRU models outperform the unidirectional LSTM and GRU 

models, respectively. Moreover, in general, the GRU-type models such as GRU, BiGRU, T2V-

BiGRU, CNN-BiGRU, and TCN-BiGRU outperformed their LSTM-type peers in predicting the 

WTI, Brent, Gold, and Silver prices.  

Our study has a number of implications for policymakers and investors. First, the results of this 

paper can assist investors and decision makers to promptly anticipate crude oil, gold, and silver 

market prices and adjust their investment portfolios. Additionally, stakeholders can execute risk 

hedging methods and lowering their losses with timely predictions. Particularly, gold is considered 
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a suitable safe-haven asset for the stock and cryptocurrencies markets (Junttila et al., 2018a). 

Therefore, timely prediction of gold market price will help stock market investors to hedge their 

portfolios. In terms of the organizational-level and country level relationships, organizations such 

as Organization of the Petroleum Exporting Countries (OPEC), World Petroleum Council (WPC) 

and International Energy Agency (IEA), and government agencies can further apply the suggested 

method, i.e., the TCN model, to devise profitable policies related to global crude oil price. Finally, 

our study would be particularly valuable to forecast crude oil, gold, and silver prices in case of some 

extreme events such as the COVID-19 pandemic and the recent conflict between Russia and Ukraine 

which were covered in the time period that was considered in this study. 

In our research focusing on the forecasting of crude oil and precious metal prices, several limitations 

need to be acknowledged. Firstly, the volatile and non-linear nature of these markets poses 

difficulties in capturing all the intricate patterns and sudden changes in prices. Additionally, external 

factors such as natural disasters, geopolitical events and supply-demand dynamics can significantly 

influence commodity prices, and accurately incorporating these factors into forecasting models 

remains a complex task. Finally, it is essential to acknowledge the inherent uncertainty in forecasting 

and implement appropriate risk management strategies. Addressing these limitations will enhance 

the robustness and reliability of our research findings. 

For future improvement of the crude oil and precious metals price forecasting, there are some 

possible directions. Firstly, rather than only using the historical price data, other features such as 

technical indicators, macroeconomic features, supply and demand data, production rate, and the 

interconnections with other financial markets can be utilized to predict the crude oil and precious 

metals prices. Secondly, incorporating the stakeholders’ sentiments which can be derived from the 

news articles and social media platforms, might improve the forecasting performance of our 

suggested method. Finally, as an alternative to using the sequential data, other data structure and 

learning methods such as temporal graph neural networks can be implemented to forecast price time 

series data.  
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Chapter 5  

 

 

Spatial-Temporal Graph Neural Networks for Price 

Movement Classification in Crude Oil and Precious 

Metals Markets 

 

5.1 Introduction 

Crude oil, gold and silver markets are considerably attractive for individuals, institutional investors, 

and governments both domestically and internationally. Drawing upon the precision of price trend 

predictions in these markets, stakeholders such as suppliers, producers, and consumers along the 

entire supply chain can adjust their strategies, ensuring optimal resource allocation, enhanced 

operational efficiency and resource utilization. 

Investors face a crucial decision-making point centered on whether to buy or sell an asset ahead of 

the upcoming trading periods. In this context, forecasting the direction of price movement holds 

significant. As financial time series are characterized by inherent volatility, non-linearity and non-

stationarity, forecasting price movement directions within such markets is a complex and 

challenging task. This paper investigates the direction-of-price-movement predictability in crude oil 

and precious metals, utilizing diverse analytical approaches. 

Many researchers have dedicated their studies to find the variables that affect crude oil or precious 

metal markets. For instance, Y.-J. Zhang (2013) found that speculators’ positions significantly 

impact WTI crude oil futures returns. Shin et al. (2013) utilized supply and demand related variables, 

and economic indicators such as producer price indices and US exchange rates to predict the 

direction of crude oil price movements. Kia et al. (2018) predicted the Brent crude oil price by 

employing various stock markets and gold market as features. P. Zhang & Ci (2020) used inflation 

rate, exchange rates, and stock markets indices to forecast gold price. Deng et al. (2023) employed 

the Japanese technical indicator Ichimoku Kinko Hyo to extract features from high-frequency crude 

oil price data. With the exponential growth of web-based information, accessing data about financial 

markets from various sources has become increasingly convenient. Notably, researchers pay more 

attention to unstructured data such as textual content from news articles, Google Trends, and 

Twitter, to enhance their predictions for the crude oil and precious metal market (X. Zhang et al., 



 

86 

 

2012; X. Li et al., 2015; J. Wang et al., 2018; Y. Yang et al., 2021; B. Wu et al., 2021; Qin et al., 

2023). 

In forecasting literature, many studies on crude oil and precious metals markets have predominantly 

focused on price level or return predictions, often neglecting the critical aspect of classifying price 

trends. Our study seeks to address this notable gap in the existing literature by specifically focusing 

on predicting the direction of price movement in the crude oil, gold, and silver markets. The methods 

employed for forecasting in the crude oil and precious metals markets can be broadly classified into 

three main categories: traditional statistical models (J. Wang et al., 2020; Mittal, 2023; Kumar et 

al., 2023), machine learning models, and deep learning models. Machine learning approaches such 

as support vector machines (SVM), random forest (RF), linear regression (LR), decision tree (DT) 

have been widely used to forecast crude oil and precious metals markets (Abdullah Ahmed & Bin 

Shabri, 2014; Abraham et al., 2022; Das et al., 2022; Ongsritrakul & Soonthornphisaj, 2003; 

Pierdzioch & Risse, 2017; Weng et al., 2020; J. Yang et al., 2022; L. Zhao et al., 2015). More 

recently, deep learning methods such as LSTM, GRU, and CNN models for crude oil and precious 

metals forecasting have drawn researchers’ interest (Z. He et al., 2019; Livieris et al., 2020; Q. Lu 

et al., 2021; Y.-X. Wu et al., 2019; K. Zhang & Hong, 2022).  In a study of Fang et al. (2023), 

textual information with historical price data is employed in a hybrid FinBERT-VMD-Att-BiGRU 

model which combines integrates FinBERT, variational mode decomposition (VMD), an attention 

mechanism, and the BiGRU deep-learning model to predict WTI crude oil price. Yuan et al. (2023) 

forecast WTI price by constructing an ensemble model of statistical, machine learning and deep 

learning models. To forecast the future price of gold market, P. Zhang & Ci (2020) proposed a deep 

belief network (DBN) model that utilized a restricted Boltzmann machines (RBM) for pre-training 

and a layer of supervised back-propagation (BP) for fine-tuning. 

The studies on predicting the direction of crude oil price movements are getting more popular in 

recent years. Deng et al. (2019) proposed a hybrid method to predict the one-week ahead direction 

changes of crude oil price using Multiple Dynamic Time Wrapping (MDTW) optimized by genetic 

algorithms. J. Liu et al. (2021) explored the predictability of price direction changes in commodity 

futures markets by employing binary probabilistic techniques, including Variable Length Markov 

Chain (VLMC). Nayak et al. (2023) proposed an Artificial Electric Field Algorithm-based Artificial 

Neural Networks (AEFA-ANN) model to optimize the parameters of a neural network for modeling 

and predicting crude oil price movements. Deng et al. (2023) forecast the crude oil futures in the 

Chinese market by a hybrid model of Fuzzy Rough Set (FRS), Non-dominated Sorting Genetic 

Algorithm-II (NSGA-II) and Sliding Window (SW) approaches. To the best of our knowledge, prior 

research has not focused on predicting price trends in precious metals markets. This study aims to 

fill this gap in the existing literature. 

In this study, we approach the challenge of forecasting crude oil and precious metals prices by 

framing it as a Multivariate Time Series (MTS) classification task aimed at predicting one-day ahead 

movement direction in timeseries. Particularly, we are interested in classifying the direction of price 
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movements in WTI, Brent, Gold, and Silver markets. Investment decisions based solely on historical 

trends from a few predictors are more prone to risk. Thus, using a wide range of economic, financial, 

and supply and demand related predictors leads to more informed and resilient investment strategies. 

Achieving precise forecasts in MTS is a complex task as it demands simultaneous attention to 

temporal patterns within each variable and the interplay among various variables. To address this 

complexity, traditional methods such as vector autoregression (VAR), Vector Error Correction 

Model (VECM), vector auto-regression moving average (VARMA), and gaussian process (GP), 

often rely on the strict stationary assumption and suffer to capture the non-linearity among variables. 

Deep neural networks have shown better performance than traditional econometrics models on 

modeling non-stationary and non-linear dependencies. However, they still struggle in effectively 

capturing the interdependencies among predictors, particularly in cases involving a large number of 

variables. Recently, spatial-temporal graph neural networks (ST-GNNs) have gained significant 

attention as a powerful framework for modeling and analyzing data with both spatial and temporal 

dependencies. ST-GNNs are mainly examined in traffic speed forecasting (L. Bai et al., 2020; Y. 

Li, Yu, et al., 2017), skeleton-based forecasting, synthetic video prediction task (Y. Seo et al., 2018), 

and sign language recognition (Parelli et al., 2022) applications. In this study we adapt three state-

of-the-art spatial-temporal graph neural networks, namely Spatial-Temporal Graph Attention 

Networks (ST-GAT) (Song et al., 2022), Multivariate Time-series Graph Neural Networks 

(MTGNN) (Z. Wu et al., 2020), and Attention Spatial-Temporal Graph Convolutional Networks 

(ASTGCN) (S. Guo et al., 2019), to predict the next-day direction of price movements in crude oil 

and precious metals’ markets. We construct a graph of multivariate time series where each variable 

is a node, and the edges show the connection between each pair of variables.  

The introduction of attention mechanism (Vaswani et al., 2017) has significantly improved the 

performance of deep learning models across many different domains and tasks (Brauwers & 

Frasincar, 2023). Attention mechanisms are particularly useful in tasks involving sequential data 

modeling such as neural machine translation (Peng et al., 2019), natural language processing 

(Galassi et al., 2021), and financial timeseries forecasting (Jiali, 2021; Uddin et al., 2021). At its 

core, an attention mechanism allows a model to selectively focus on specific parts of its input data 

while ignoring irrelevant information. Veličković et al. (2017) integrated the attention mechanism 

with graph neural networks which showed significant improvements on Citation network, and 

Protein interaction benchmark datasets. In this study, we examine the effectiveness of spatial and 

temporal attention incorporation in spatial-temporal neural networks for multivariate timeseries 

trends classification tasks. 

Within this research, we attempt to highlight the capabilities of ST-GNN models, enhanced by 

attention mechanisms, for modeling multivariate time series data in the context of financial market 

predictions. More specifically, the following research questions will be explored. 

1. Do spatial-temporal graph neural networks outperform deep learning models in predicting 

the direction of price movements in crude oil and precious metal markets? 
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2. How the interaction between various variables affecting the price of crude oil and precious 

metal markets can be modeled? 

3. Does an attention mechanism improve the accuracy of ST-GNN models in predicting the 

market trends? 

4. What is the best performing model in accurately predicting the trend in each market? 

5. Since each market has its own unique specifications and price dynamics, how can we make 

our predictive models adaptive to each market? 

In summary, our study offers the following important contributions to the existing literature on 

predicting the price trend in crude oil and precious metal markets: 

- We customize and enhance advanced spatial-temporal graph neural network models, 

including MTGNN (Z. Wu et al., 2020), ST-GAT (Song et al., 2022), and ASTGCN (S. Guo 

et al., 2019), for the purpose of classifying price movement directions in crude oil and 

precious metal markets. 

- To the best of our knowledge, this study marks the pioneering attempt within the crude oil 

and precious metals literature to utilize the potential of graph neural networks for predicting 

price movement directions in these markets. 

- Considering the complex interplay of factors influencing crude oil and precious metal 

markets, this study examines the impact of a comprehensive set of 25 variables spanning 

commodity markets, prominent stock indices, exchange rates, global macroeconomic 

factors, as well as supply and demand dynamics. We aim to leverage the predictive potential 

of these variables in determining the directional shifts in prices within WTI, Brent, Gold, 

and Silver markets. 

- The majority of spatial-temporal graph neural network models have been predominantly 

tailored for applications such as traffic flow forecasting or tasks centered around skeleton-

based data, where the dataset inherently assumes a graph-like structure. However, this study 

endeavors to unveil the power of ST-GNNs in financial time series classification tasks. 

- We improve the predictive performance of MTGNN model by incorporating an attention 

mechanism in the temporal module of this model. We call the new architecture multivariate 

timeseries graph neural networks with temporal attention and learnable adjacency matrix 

(MTGNN-TAttLA). Furthermore, we revamp the temporal module of ST-GAT by 

implementing temporal dilated convolution networks, constructing a new model named 

spatial attention graph with temporal convolutional networks (SAG-TCN). 

5.2 Related Works 

In this section, we present an overview of related works to crude oil and precious metals price trend 

predictions, and spatial-temporal graph neural networks. Given the scarcity of studies focused on 

predicting price movement directions in our target markets, namely, WTI, Brent, Gold, and Silver, 

we conducted a thorough literature review within the broader domain of financial markets. 
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5.2.1 Price trend classification in financial markets 

In recent years, many methods have been developed to address financial markets’ trend prediction 

problem. Initially traditional statistical approaches were used (Lauren & Harlili, 2014; Xiao et al., 

2022), but with the rapid advancement of artificial intelligence technology, deep learning techniques 

have gained popularity in this domain. Deng et al. (2023) forecast the crude oil futures in the Chinese 

market by a hybrid model of Fuzzy Rough Set (FRS), Non-dominated Sorting Genetic Algorithm-

II (NSGA-II) and Sliding Window (SW) approaches. Various deep learning methods have been 

employed for predicting market trends, including RNN, RBM, LSTM and CNN (Buczkowski, 2017; 

Haq et al., 2021; Ma et al., 2022; Thakkar & Chaudhari, 2021). The capacity of these models to 

capture spatial dependencies among multiple variables that influence financial market trends is 

constrained. The intricate relationships that exist between financial markets and other factors, 

whether economic, financial, geopolitical, or supply and demand-related, can be effectively 

represented as a graph structure. Traditional deep learning models struggle to handle such graph-

structured data. Consequently, there is a growing trend among researchers to turn to spatial-temporal 

neural networks to better capture the interdependencies among variables across various time steps. 

Remarkably, the application of ST-GNN methods to address the prediction of trends in crude oil 

and precious metals markets remains relatively unexplored in the existing literature. 

Shin et al. (2013) proposed a graph network representation that connected WTI crude oil with a 

range of global and domestic economic factors, including variables associated with global supply 

and demand, producer price indices, and US dollar exchange rates. Within this graph representation, 

the nodes represent variables, and their connections are determined by their similarities, which are 

computed using a weighted K-Nearest Neighbors method. By utilizing a semi-supervised learning 

(SSL) algorithm which combines Nonlinear Principal Component Analysis (NLPCA) with an Auto-

Associative Neural Network (AANN), the authors predicted the next month’s upward or downward 

changes oil prices. Notably, this SSL model did not process the data sequentially but rather 

leveraged technical indicators to transform the time-series data into a vector-based format. In a 

similar manner, Kia et al. (2018) designed a hybrid supervised semi-supervised (HyS3) graph-based 

model to predict one-day ahead movement of global stock markets, Brent crude oil and gold prices. 

This hybrid model combined a supervised Support Vector Machine (SVM) component with a graph-

based semi-supervised learning (GSSL) component, which involved iterative label spreading. To 

construct the graph structure, the authors utilized the maximum spanning tree derived from the 

correlation network of markets as its base structure. They further enhanced this structure by adding 

supplementary edges that contributed to the overall prediction accuracy of the model. The label 

propagation method was then employed to forecast the unknown labels for markets. 

Most of the direction of price trend prediction literature focus on stock market movements. M. Kim 

& Sayama (2017) predicted the future movements of Standard & Poor's 500 Index (S&P 500) by 

constructing a network of S&P 500 constituent companies. Each pair of companies within this 

network is linked by weighted mutual information. The authors add network centrality 
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measurements to an Autoregressive Integrated Moving Average (ARIMA) model to enhance the 

prediction accuracy. In another study, Y. Chen et al. (2018) constructed a network of companies 

based on knowledge graphs to predict stock prices using a graph convolutional network (GCN). In 

finance, a knowledge graph serves as a tool for uncovering intricate connections between entities 

such as companies, management, news events, and user preferences. These knowledge graphs 

essentially function as databases that facilitate semantic search by preserving intricate relationships 

among multiple entities (Q. Wang et al., 2017). Y. Liu et al. (2018) extracted features from financial 

news using a hybrid knowledge graph embedding and a Convolutional Neural Network (CNN) 

model. These extracted features, in conjunction with daily S&P500 price data and various technical 

indicators, are then integrated into a Long Short-term Memory (LSTM) model to predict Apple’s 

stock price movement. In a separate research investigation focused on the FOREX market, Rundo 

(2019) introduced a joint deep learning and reinforcement learning (RL) algorithm to predict the 

short-term trend in the EUR/USD exchange rate. In their proposed pipeline, first, a block of LSTM 

layers predicts the market trend. Then, these predicted market signals undergo a verification or 

correction process through a reinforcement learning (RL) module, designed to maximize the return 

on investment. More recently, researchers noticed the importance of modeling the interconnection 

between stock market predictors and employed graph neural networks for capturing a representation 

that shows these relationships. For instance, Matsunaga et al. (2019) extracted a representation of a 

company knowledge graph using a graph convolutional network (GCN) and integrated this graph 

representation into a recurrent neural network (RNN) model to predict stock prices in the Japanese 

Nikkei 225 market. W. Li et al. (2020) introduced a LSTM Relational Graph Convolutional Network 

(LSTM-RGCN) model to predict the overnight stock price movement in Tokyo Stock Exchange. 

To achieve this, the model leveraged input features like news vectors and historical price 

embeddings of companies in a GCN layer to find the relationship among various stocks. The 

connection among stocks (i.e. edge weights) are determined by a correlation matrix. W. Chen et al. 

(2021) used a model which combined graph convolutional networks with convolutional neural 

network (GC–CNN) to predict Chinese stock market trends. They created a network representation 

of the stock market, where each market is represented as a node, and the correlations between 

markets are edge weights.  Using daily trading data and technical indicators as node features, the 

stock network then transformed into images that were further processed by a CNN model to make 

final trend predictions. 

 

5.2.2 Spatial-Temporal Graph Neural Networks 

Graph Neural Networks (GNNs) have emerged as a powerful paradigm in machine learning, 

revolutionizing how we analyze and interpret data with complex relationships. In the past decade, a 

growing body of literature focused on the utilization of Graph Convolutional Networks (GCNs)  

(Bruna et al., 2013; Kipf & Welling, 2016) to operate convolutional filters on data structured as 

graphs. Graph data is formed by a collection of nodes interconnected by edges, and the relationships 
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among these edges are defined within an adjacency matrix. GCNs are typically categorized in two 

key paradigms: the spatial and spectral approaches. Spatial techniques directly execute convolution 

operations on graph vertices and their adjacent nodes. The convolution operation enables the central 

node to assimilate information from its neighbors, thereby capturing and encoding local patterns 

and relationships within the graph. In contrast, spectral perspective methods leverage graph 

Laplacian matrix eigenvalues and eigenvectors. They conduct convolution operations in the 

frequency domain through graph Fourier transforms, eliminating the necessity to extract locally 

connected regions from graphs during each convolutional step (Shi et al., 2018). Kipf & Welling 

(2016)  introduced a first approximation of Chebyshev spectral filter (Defferrard et al., 2016). 

Spatial-Temporal Graph Convolutional Networks (ST-GCNs) can handle data with both spatial 

(inter-variable relationships) and temporal characteristics. Current research on spatial-temporal 

graph modeling can be broadly categorized into two main directions. One approach integrates graph 

convolution networks (GCN) within recurrent neural networks (RNN) such as LSTM and Gated 

Recurrent Units (GRU) (Andreoletti et al., 2019; Jain et al., 2016; C. Li et al., 2022; Y. Seo et al., 

2018), while the other incorporates them into convolution neural networks (CNN) (S. Yan et al., 

2018; B. Yu et al., 2018). RNN-based approaches suffer from time-consuming iterative propagation 

and gradient explosion or vanishing problems when capturing long-term sequences (M. Seo et al., 

2017; X. Zhang et al., 2018). In contrast, CNN-based approaches offer benefits such as efficient 

parallel computing, and low memory demands. However, CNNs require multiple layers to 

effectively capture extended sequences due to their use of standard 1D convolution, where the 

receptive field size increases linearly with the number of hidden layers. To address this challenge, 

Z. Wu et al. (2019) introduced the Graph WaveNet model which combined GCNs with stacked 

dilated casual convolution networks to capture temporal dependencies. Since the receptive field size 

of stacked dilated casual convolution networks grows exponentially with an increase in the number 

of hidden layers, Graph WaveNet is capable of handling very long sequences. 

The majority of ST-GCN models are utilized in multivariate timeseries tasks involving traffic flow 

forecasting (L. Bai et al., 2020; S. Guo et al., 2019; Z. Wu et al., 2019; B. Yu et al., 2018; Zheng et 

al., 2019), and body movement estimation (Jain et al., 2016; Parelli et al., 2022; Shi et al., 2018). 

More recently, researchers have started unveiling the potential of ST-GCN model for stock market 

forecasting. For instance, Feng et al. (2018) developed a Relational Stock Ranking (RSR) method 

including a Temporal Graph Convolution (TGC) for stock ranking prediction. The TGC model 

combines a LSTM and a GCN with Chebyshev polynomials filters for capturing the temporal and 

spatial relationships, respectively, in stock market. The stock market graph was constructed by 

sector-industry relations and Wikidata company-based relations. Z. Wu et al. (2020) leveraged the 

advantage of dilated convolutional filters in a ST-GCN model to enhance prediction tasks involving 

diverse datasets, including solar energy, traffic, electricity, and exchange rate data. Their approach 

integrates a GCN featuring a mix-hop propagation method, effectively capturing spatial 

relationships among variables. Additionally, a temporal graph convolution module was employed 

to identify intra-variable temporal dependencies. Since for most multivariate timeseries the 
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relationship among variables is not predefined, they proposed a graph learning module to extract 

the unidirectional relations among variables. In another study, Xiao et al. (2022) introduced the 

Adaptive Fused Spatial-Temporal Graph Convolutional (AFSTGC) model to fuse disordered 

temporal, spatial, and spatial-temporal dependencies into structured data. By constructing an 

adaptive fused adjacency matrix that dynamically and concurrently captured potential temporal, 

spatial, and spatial-temporal relations, a GCN module forecast the NASDAQ100 index value 

without requiring any separate temporal module. L. Chen et al. (2022) developed a multi-scale 

adaptive graph neural network (MAGNN) to capture inter-variable and temporal dependencies at 

different time scales. Within the MAGNN framework, they incorporated an adaptive graph learning 

module capable of automatically deducing scale-specific graph structures. The model's effectiveness 

was demonstrated through its application to diverse forecasting tasks, encompassing datasets related 

to solar energy, traffic, electricity, exchange rates, and NASDAQ. 

Attention Mechanisms have gained widespread popularity across various domains due to their high 

efficiency, flexibility, and adaptability in capturing dependencies within variable-length sequences 

(M.-H. Guo et al., 2022; J. Lin et al., 2022; Vaswani et al., 2017). The core idea of attention 

mechanisms is to adaptively focus on the most relevant features according to the input data. 

Recently, researchers applied attention mechanisms to graph-structured data (Brody et al., 2021; 

Veličković et al., 2017) to model spatial correlations. They introduce graph multi-head attention 

networks to ascertain how much attention should be allocated to neighboring node 𝑗 in order to 

determine the representation of each central node 𝑖 . J. Zhang et al. (2018) constructed Gated 

Attention Networks (GaAN) by using gated attention aggregators to collect crucial information from 

neighboring nodes for a central node in a traffic network graph. They replaced the fully connected 

layer within GRU units with GaAN modules to form graph gated recurrent units (Graph GRU), 

allowing them to capture both spatial and temporal dependencies. Later, studies of J. Bai et al. 

(2021), Song et al. (2022), and Zheng et al. (2019) extended the attention mechanism to spatial-

temporal graph data for traffic prediction. They employed the temporal attention mechanism to 

modulate the significance of various time points and gather comprehensive temporal information, 

ultimately enhancing prediction accuracy. S. Guo et al. (2019) employed the attention mechanism 

in both the spatial and temporal component of their proposed attention based spatial-temporal graph 

convolutional network (ASTGCN) model to predict traffic speed. The spatial module of ASTGCN 

is constructed of a spectral GCN while the temporal module is a standard convolutional neural 

network.  The graph attention network is also used for stock movement prediction. R. Kim et al. 

(2019) used an LSTM model to extract temporal representations for each company listed in the 

S&P500 market index. These temporal representations were then employed as node features within 

a graph representing the relationships among companies. To identify spatial dependencies among 

these companies, the authors introduced a hierarchical graph attention network that selectively 

aggregates information from neighboring companies. 

To construct the graph network and define the adjacency matrix, various approaches have been 

proposed in prior literature. One common approach is to use domain-specific knowledge or pre-
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existing relationships to directly define the edges and weights between nodes. This method is useful 

when the graph structure is well-defined and known in advance. Examples of pre-defined graph 

structures are road networks for traffic flow forecasting and joint connections in skeleton-based 

tasks (Zheng et al., 2019). In financial time series analysis, knowledge graphs such as sector-

industry relations and corporate relations data are used to find the relationship among entities (Feng 

et al., 2018; R. Kim et al., 2019; Y. Yang et al., 2019). Moreover, Correlation analysis is used to 

find the existence of relationship among nodes and connect them together (W.-Q. Huang et al., 

2009; Namaki et al., 2011). M. Kim & Sayama (2017) constructed a stock market graph with non-

linear correlation among variables measured by mutual information. In financial domains, it's often 

challenging to have predefined relationships between factors that affect a financial market as ground 

truth. Additionally, the spatial correlations between variables can be dynamic and evolve over time. 

Graph neural networks can employ unsupervised learning techniques to automatically learn the 

adjacency matrix from the data itself. This can involve methods like k-nearest neighbors (KNN) to 

establish connections based on proximity or similarity measures (Jain et al., 2016; Y. Seo et al., 

2018). Lately, supervised graph learning approaches are proposed to tackle this issue within the 

Spatial-temporal graph convolutional networks that learns the adjacency matrix of graphs in an end-

to-end manner (L. Bai et al., 2020; L. Chen et al., 2022; K. Guo et al., 2022; Shi et al., 2018; Z. Wu 

et al., 2019, 2020; Xiao et al., 2022). 

In this study, we utilize a KNN approach, and the graph learning module proposed in the study of 

Z. Wu et al. (2020) to construct the multivariate graph network for predicting the trend of crude oil 

and precious metals markets. 

5.3 Methodology 

5.3.1 Constructing the Markets’ Graph 

Unlike conventional price prediction models that estimate future price levels, models for predicting 

the direction of price movement predominantly center around evaluating the likelihood of an event 

(i.e. occurrence of upward or downward price movements). In the subsequent section, we delve into 

diverse methodologies employed for classifying movements in multivariate time series data. Despite 

variations in their architectural aspects, these approaches share a common objective: estimating the 

probability of a positive price movement in the next period. Relying on this predicted probability, 

we are able to predict the future class for the direction-of-price-movement. 

Definition 2.1 (Problem): Let 𝑥𝑡𝜖𝑹
𝑁 denote the value of a multivariate variable of dimension N at 

time step t, where 𝑥𝑡[𝑖]𝜖𝑹 denote the value of the 𝑖𝑡ℎ variable at time step t. Given a sequence of 

historical S time steps of multivariate observations, 𝐗 =  {𝑥𝑡−𝑆+1, 𝑥𝑡−𝑆+2, … , 𝑥𝑡 }, our goal is to 

predict the direction of price movements in one-day-ahead future, denoted by 𝐘 =  {𝐶𝑡+1 }, where 

𝐶𝑡 𝜖 {0,1}
𝑁 is the binary class of 1 or 0 for the future  𝑥 value moving up or down, respectively.  

We aim to build a mapping f (·) from 𝐗 to 𝐘 by minimizing the binary cross entropy loss with 𝑳𝟐 

regularization as follows.  
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(5-1) 

Where, 𝑛 represents the batch size, 𝑦𝑖 is the actual class, 𝜎(𝑦̂𝑖) is the predicted probability of that 

class,  𝑦̂𝑖 is the model output, 𝜎(. ) is the sigmoid function, 𝜆 is the regularization parameter, and 𝑤 

is the model parameter. 

In this study, we use three different spatial-temporal graph neural networks as the mapping function 

f (·) to predict the direction of crude oil and precious metals price movements. The relationship 

among our features is conceptualized as a graph network defined below.  

Definition 2.2 (Graph). A graph is denoted by 𝐺 = (𝑉, 𝐸) where 𝑉 is the set of nodes, 𝐸 is the set 

of edges, and |𝑉| = 𝑁 (number of nodes is 𝑁). 

Definition 2.3 (Edges). Let 𝑣𝑖 ∈ 𝑉, and 𝑣𝑗 ∈ 𝑉 to denote two connected nodes in graph. An edge 

pointing from 𝑣𝑗  to 𝑣𝑖 is defined as 𝑒 =  (𝑣𝑖, 𝑣𝑗)  ∈  𝐸. 

Definition 2.4 (Adjacency Matrix). The adjacency matrix is a mathematical representation that 

indicates whether pairs of nodes are adjacent or not. It is denoted as 𝐴 ∈ 𝑹𝑁×𝑁 with 𝐴𝑖𝑗 = 𝑟 > 0 if 

(𝑣𝑖, 𝑣𝑗) ∈ 𝐸 and 𝐴𝑖𝑗 = 0 if (𝑣𝑖, 𝑣𝑗) ∉ 𝐸. 

To construct the graph neural networks, we consider the variables present in our multivariate time 

series dataset as nodes, outlining connections between these nodes through the utilization of a graph 

adjacency matrix. Figure 5-1-a presents a schematic of our features graph. The collaboration of a 

graph convolutional module with a temporal module in a ST-GNN model is demonstrated in Figure 

5-1-b.  A temporal module filters the inputs by sliding a 1D window over the time and node axes, 

as denoted by the green. A graph convolution module filters the inputs at each step, denoted by the 

red. 

 

 

Figure 5-1: (a) Schematic of features graph (b)  Representation of spatial and temporal module 

collaboration 

Construct Graph Adjacency Matrix: Unlike road traffic or skeleton movement time series data, 

multivariate financial time series data are not inherently structured in a graph format. Therefore, it 
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becomes necessary to construct a graph that captures the potential relationships among variables 

within our dataset. In SGA-TCN and ASTGCN graph neural networks, the adjacency matrices need 

to be predefined. For this purpose, we have utilized the KNN graph from the PyTorch Geometric 

library to identify the k-nearest nodes (representing features in our dataset) to a given node. To 

assess the similarities between nodes, we have employed the Euclidean distance metric across all 

time steps. The KNN method keeps the K largest weights in the network and eliminates the rest. 

The justification of filtering a network and eliminating some edges with smaller weights is noise 

reduction (Kia et al., 2018).  

5.3.2 Spatial Graph Attention -Temporal Convolution Network (SGA-TCN) 

Spatial Graph Attention -Temporal Convolution Network (SGA-TCN) is designed to effectively 

capture the complex interplay between spatial and temporal dependencies in graph-structured data. 

We created the SGA-TCN model for our classification task by adapting the ST-GAT (Song et al., 

2022) model. Specifically, in this study we utilize blocks of temporal dilated convolutional networks 

as the temporal module while in ST-GAT, LSTM layers are employed. Several studies have proven 

that TCNs are more powerful than LSTM models in timeseries forecasting. Figure 5-2 depicts the 

architecture of SGA-TCN model. 

Spatial Graph Attention: Graph attention is an extension of GCN that applies an explicit attention 

mechanism (Vaswani et al., 2017) to learn the hidden state of each node by iteratively using node 

feature for similarity computation. The fundamental distinction between GAT and GCN lies in their 

approach to gathering and aggregating feature representations from neighboring nodes. 

Let ℎ𝑙  denote the input features of layer 𝑙  in the spatial graph attention module: ℎ𝑙 =

{ℎ1
𝑙 , ℎ2

𝑙 , … , ℎ𝑁
𝑙 ), ℎ𝑖

𝑙 ∈ 𝑅𝑆, where 𝑆 is the historical window size for each node. The attention score 

between Nodes 𝑖 and 𝑗 is calculated using Eq. (5-2) and Eq. (5-3).  

𝑒𝑖𝑗 = 𝑆𝑒𝑙𝑓𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝛷ℎ𝑖
𝑙 , 𝛷ℎ𝑗

𝑙) (5-2) 

Where Φ ∈ RS×S′
is the weight matrix that transforms node features into higher-level states. 

𝛼𝑖𝑗 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑒𝑖𝑗)) (5-3) 

 These attention coefficients, 𝛼𝑖𝑗, are used to update node representations for the next layer:  

       ℎ𝑖
𝑙+1 = 𝐶𝑜𝑛𝑐𝑎𝑡𝐾(𝜎(∑ 𝛼𝑖𝑗𝛷

𝑙ℎ𝑗
𝑙)𝑗∈𝑁(𝑖) )   (5-4) 

Where ℎ𝑖
𝑙+1 represents the updated hidden states of node 𝑖, 𝑁(𝑖) is the set of immediate neighbor 

nodes of node 𝑖, σ is a non-linear activation function, and 𝐾 is number of attention heads. 

Temporal TCN module: The updated node representations will be utilized as inputs of a TCN 

module. The TCN module includes B number of TCN blocks. Each block is constructed of two 

Dilated Convolution layers followed by batch normalization, ReLU activation, and dropout layers. 

A dilated convolution layer is a type of convolutional layer for processing input sequences, with an 

expanded receptive field. Unlike traditional convolution where a filter is applied directly to adjacent 

elements, dilated convolution introduces gaps in the filter, allowing it to capture information from 
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a wider range without increasing the number of parameters (L. Chen et al., 2014). Batch 

normalization is applied to improve training stability, convergence speed, and generalization 

performance. The purpose of dropout layer is to regularize the model for reducing the potential 

overfitting problem. In each block, a residual connection is used to address the vanishing gradient 

problem, improve gradient flow, and help in training deeper networks more effectively. 

The output of TCN layer 𝑖, 𝐻𝑖 ∈ 𝑅𝐶𝑡𝑐𝑛𝑖
×𝑁×𝑆𝑛𝑒𝑤 , is: 

 𝐻𝑖 = 𝑑𝑟𝑜𝑝𝑜𝑢𝑡(𝑅𝑒𝐿𝑈(𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝐻𝑖−1 ∗𝐷 𝑊𝑖 + 𝑏𝑖)))      (5-5) 

Where, 𝐶𝑡𝑐𝑛𝑖
 represents output channels of the TCN layer 𝑖, 𝑆𝑛𝑒𝑤 is a new sequence number,  ∗𝐷 is 

the dilated convolution operation.  

The final predictions are generated through a fully connected convolutional neural network in the 

output layer. 

 

Figure 5-2: SAG-TCN framework 

 

5.3.3 Multivariate Timeseries Graph Neural Network with Temporal Attention and 

Learnable Adjacency Matrix (MTGNN-TAttLA) 

The second graph neural network for the classifying the direction-of-price-movement of our target 

markets is Multivariate Timeseries Graph Neural Network with Temporal Attention and Learnable 

Adjacency Matrix (MTGNN -TAttLA). The attention mechanism is argued to improve prediction 

performance in many prior studies (Peng et al., 2019; Galassi et al., 2021; Jiali, 2021; Uddin et al., 

2021). In this work, MTGNN -TAttLA is adapted from the MTGNN (Z. Wu et al., 2020) model by 

incorporating a temporal attention mechanism to the TCN modules of MTGNN. According to our 

knowledge gained during the literature review process, we found MTGNN to be the most suitable 

graph neural networks for multivariate time series forecasting. The reason for this is the existence 

of a graph learning layer in MTGNN that learns the adjacency matrix. In MTGNN, the graph 
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captures the relationships and interactions between different variables (nodes) over time. Figure 5-3-

(a) illustrates the MTGNN-TAttLA framework.  

The four core components of MTGNN-TAttLA model are: graph construction module, graph 

convolution networks, attention-based temporal convolution networks, and an output module. The 

graph construction module finds the relationship between variables in an adjacency matrix, which 

then is utilized as inputs to graph convolution modules. This module also acts as a feature 

importance approach that determines which variables in our dataset are most useful in the 

classification of WTI, Brent, Gold, and Silver’s direction-of-price-movement. Each spatial-temporal 

layer (ST-layer) includes a graph convolution and an attention-based temporal convolution module. 

Graph convolution and temporal convolution modules work together to unveil the spatial and 

temporal dependencies in our dataset. To bypass the potential gradient vanishing problem, residual 

connections are applied from the inputs to the outputs of each ST-layer. Following each temporal 

convolution module, skip connections are added to help maintain the original information in the 

data throughout the network layers. The detailed explanation of each module of our MTGNN-

TAttLA model follows: 

Graph Construction Module: This module is responsible for constructing the graph representation 

of the data. We have used the proposed method in (Z. Wu et al., 2020) to extract uni-directional 

connections between nodes as follows: 

𝑀1 = tanh (𝛼𝐸1𝜃1) (5-6) 

𝑀2 = tanh (𝛼𝐸2𝜃2) (5-7) 

𝐴 = 𝑅𝑒𝐿𝑈(tanh(𝛼(𝑀1𝑀2
𝑇 − 𝑀2𝑀1

𝑇)) (5-8) 

where 𝐸1 ∈ 𝑅𝑁×𝐷, 𝐸2 ∈ 𝑅𝑁×𝐷 represent randomly initialized node embeddings, which are learnable 

during training, 𝜃1, 𝜃2 are model parameters, α is a hyper-parameter for controlling the saturation 

rate of the activation function. For every individual node, we opt for its nearest k nodes to serve as 

its neighboring nodes. While maintaining the weights for linked nodes, we assign a weight of zero 

to nodes that are not connected as below. 

𝑖𝑛𝑑𝑒𝑥 = 𝑎𝑟𝑔𝑡𝑜𝑝𝑘(𝐴[𝑖, : ]), 𝑓𝑜𝑟 𝑖 = 1,2, … ,𝑁 (5-9) 

𝐴[𝑖, −𝑖𝑛𝑒𝑥] = 0  (5-10) 

Graph Convolution Module: The graph convolution module is designed to blend the information of 

a node with that of its neighbors, effectively managing spatial interdependencies within a graph. As 

shown in Figure 5-3-(b), this module includes two mix-hop propagation layers to process the flow 

of information across nodes with spatial dependencies. This mix-hop propagation layer operates 

through information propagation and information selection steps as follows: 

The information propagation step is defined as: 
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𝐻𝑘 =  𝛽𝐻𝑖𝑛 + (1 − 𝛽)𝐴̃𝐻𝑘−1, (5-11) 

 where 𝛽 serves as a hyperparameter that regulates the ratio of maintaining the root node’s original 

states. A fraction of nodes' initial states is conserved throughout the propagation process, allowing 

the node states to uphold locality while also exploring a broader neighborhood. The output of the 

information selection step is defined as: 

𝐻𝑜𝑢𝑡 = ∑ 𝐻𝑘𝑊𝑘𝐾
𝑘=0         (5-12) 

where 𝐾 represents the depth of propagation, 𝐻𝑖𝑛 is the input hidden states outputted by the previous 

layer, 𝐻0 = 𝐻𝑖𝑛, 𝐴̃ = 𝐷̃−1(𝐴 + 𝐼), and  𝐷̃𝑖𝑖 = 1 + ∑ 𝐴𝑖𝑗𝑗 . Figure 5-3-(c) illustrates that first, the 

information is propagated horizontally to depth of 𝐾 and then is selected vertically. The parameter 

𝑊𝑘 functions as a feature selection matrix. 

Attention Temporal Convolution Module: This module comprises two dilated convolution layers, 

each followed by a temporal attention mechanism.  

The dilated convolution layer captures temporal patterns within timeseries data through a set of 

dilated 1D convolution filters. We employ diverse dilated filter sizes of 1 × 2, 1 × 3, 1 × 6, 1 × 7 as 

outlined in (Z. Wu et al., 2020). The incorporation of these various filter sizes enables the model to 

recognize temporal patterns across different ranges, while the utilization of dilated convolution 

filters empowers the model to handle very long sequences effectively. 

The output of each dilated convolution layer is then processed through a batch normalization layer, 

a ReLU activation function, and a masked k-head self-attention mechanism (Vaswani et al., 2017). 

The masked attention layer is used to find the attention weights of the temporal hidden states as 

follows:  

𝐻𝑙 =  𝑅𝑒𝐿𝑈(𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚(𝐻𝐷𝐶
𝑙 )) (5-13) 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑖 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝐻𝑙𝑊1(𝐻

𝑙𝑊2) 
𝑇

√𝑑
)𝐻𝑙𝑊3 

(5-14) 

𝐻𝑙𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡𝑘(𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛𝑖) (5-15) 

Where 𝐻𝐷𝐶
𝑙 ∈ 𝑹𝑆𝑙×𝑁×𝐶𝑙  denotes the output of 𝑙𝑡ℎ  dilated convolution layer, 𝐻𝑙 ∈ 𝑹𝑁×𝑆𝑙×𝑑  is the 

input of self-attention layer, 𝐻𝑙𝑡 ∈ 𝑹𝑁×𝑆𝑙×𝐶𝑙  is the output of attention layer, 𝐶𝑙  is the number of 

channels in the 𝑙𝑡ℎ temporal convolution output, 𝑆𝑙  is the number of sequences in the temporal 

convolution output, 𝑑 is equal to 
𝐶𝑙

𝑘
, and 𝑊1,𝑊2, and 𝑊3 are the query, key, and value weights in 

the attention mechanism, respectively. 

 We used the 𝑡𝑎𝑛ℎ activation function on the output of one attention dilated convolution layer and 

𝑠𝑖𝑔𝑚𝑜𝑖𝑑 activation on the other layer. These functions act as a filter and a gate, respectively. The 

gate controls the amount of information that the filter can transmit to the subsequent module. Figure 

5-3-(d) and Figure 5-3-(e) demonstrate the mechanics of the attention temporal convolution module 

and the dilated convolution layer. 
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Output module: The output layer of MTGNN-TAttLA comprises of two 1 × 1  standard 

convolutional layers, which effectively reshape the channel dimension of the input data to match 

the desired output dimension. In this study the output dimension is 1 as we predict the price direction 

class for one-day ahead. 

 

 

(a) 

 

 

(b) 

 

 

(d) 

 

 

 

(c) 

 

 

 

(e) 

Figure 5-3: (a) MTGNN-TAttLA framework, (b) Graph convolution module, (c) a mix-hop propagation layer, (d) a dilated convolution 

layer with different kernel sizes, (e) a gated attention-based temporal module 

 

5.3.4 Attention-based Spatial and Temporal Graph Convolution Networks 

(ASTGCN) 

The attention-based spatial and temporal graph convolution networks (ASTGCN) (S. Guo et al., 

2019) was first introduced for traffic flow forecasting. Similar to MTGNN, ASTGCN employs 

graph convolutional layers to capture spatial dependencies within a graph structure and temporal 

convolutional layers to uncover sequential patterns over time. However, this model differs with 

MTGNN in following aspects: (a) the adjacency matrix is predetermined and not learnable, (b) the 

temporal module utilizes standard convolution operations instead of dilated convolution operations 

and filters, (c) in the graph convolution module, it does not include the information selection step, 



 

100 

 

(d) there is no skip connection in the ASTGCN model architecture. In addition, ASTGN applies 

self-attention mechanisms to spatial and temporal dimensions of the input features to dynamically 

weigh the importance of information from different nodes and time steps, enhancing the model's 

ability to focus on relevant data. Figure 5-4 Shows the ASTGCN model framework. 

Spatial attention: 

𝑆 = 𝑉𝑠 𝜎((𝐻𝑙−1𝑊1)𝑊2(𝑊3𝐻
𝑙−1)

𝑇
+ 𝑏𝑠) (5-16-a) 

𝑆𝑖𝑗
′ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑆𝑖𝑗) , 𝑆′ ∈ 𝑹𝑁×𝑁 (5-16-b) 

Where 𝐻𝑙−1 ∈ 𝑹𝑁×𝐶𝑙−1×𝑆𝑙−1 is the input of 𝑙𝑡ℎ spatial-temporal layer, 𝐶𝑙−1 is the number of input 

channels, and  𝑆𝑙−1 is the length of temporal dimension in 𝑙𝑡ℎ layer, respectively. 𝑉𝑠, 𝑏𝑠 ∈ 𝑹𝑁×𝑁, 

𝑊1 ∈ 𝑹𝑆𝑙−1 ,𝑊2 ∈ 𝑹𝐶𝑙−1×𝑆𝑙−1 ,𝑊3 ∈ 𝑹𝐶𝑙−1  are learnable parameters and 𝜎  is sigmoid activation 

function. 

Temporal attention: 

𝐸 = 𝑉𝑒 𝜎((𝐻𝑙−1𝑈1)𝑈2(𝑈3𝐻
𝑙−1)𝑇 + 𝑏𝑒) (5-17-a) 

𝐸𝑖𝑗
′ = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝐸𝑖𝑗)  ,  𝐸

′ ∈ 𝑹𝑁×𝐶𝑙−1×𝑆𝑙−1 (5-17-b) 

Where 𝑉𝑒 , 𝑏𝑒 ∈ 𝑹𝑆𝑙−1×𝑆𝑙−1, 𝑈1 ∈ 𝑹𝑁 , 𝑈2 ∈ 𝑹𝐶𝑙−1×𝑁 , 𝑈3 ∈ 𝑹𝐶𝑙−1 are learnable parameters. The value 

of an element 𝐸𝑖𝑗 indicates the strength of relationship between time instances i and j. 

Graph convolution module: 

𝑔𝜃 ∗𝐺 𝑥 =  𝑔𝜃(𝑳)𝑥                 (5-18) 

where ∗𝐺  represents a graph convolution operation, 𝑳 is the normalized graph Laplacian matrix, 

𝑳 = 𝐼𝑁 − 𝐷−
1

2𝐴𝐷−
1

2 ∈ 𝑹𝑁×𝑁 , 𝐷  is the graph degree matrix with 𝐷𝑖𝑖 = ∑ 𝐴𝑖𝑗𝑗 . Chebyshev 

polynomials of the graph Laplacian matrix are adopted to approximate the spectral filters 𝑔𝜃:  

𝑔𝜃 ∗𝐺 𝑥 =  𝑔𝜃(𝑳)𝑥 = ∑ 𝜃𝑘𝑇𝑘(𝑳̃)𝑥𝐾−1
𝑘=0     (5-19) 

where 𝑳̃ =
2

𝜆𝑚𝑎𝑥 
𝑳 − 𝑰𝑵 , 𝜆𝑚𝑎𝑥 is the maximum eigenvalue of the Laplacian matrix. 

Temporal convolution module: 

𝐻𝑙 = 𝑅𝑒𝐿𝑈(𝛷 ∗ 𝑅𝑒𝐿𝑈(𝑔𝜃 ∗𝐺 𝐻𝑙−1))) ∈ 𝑹𝐶𝑙×𝑁×𝑆𝑙     (5-20) 

where ∗ is a standard convolution operation, 𝛷  is the parameters of the temporal dimension 

convolution kernel. 

The ASTGCN is composed of several spatial-temporal blocks (ST-blocks) aimed at capturing a 

broader spectrum of dynamic spatial-temporal interdependencies. To avoid gradient vanishing 

problem, a residual connection is applied from the input to the output of each ST-block. A fully 
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connected layer is added after the last ST-block to ensure the output dimension matches the target 

dimensions. 

 

Figure 5-4: The ASTGCN framework 

 

5.3.5 Baseline Models 

In order to compare the efficiency and performance of graph neural networks in the classification 

of price movement directions, following non-graph deep learning models are utilized as baselines: 

- Long Short-term Memory Networks (LSTM) Model: LSTM is a modified form of RNN 

architectures designed to retain crucial details from time series sequences (Lin et al., 2022). 

An LSTM unit is composed of an input gate, a forget gate, and an output gate, which regulate 

the flow of information and aid in discarding redundant data. 

- Convolutional Neural Network (CNN) Model: The convolutional neural network (CNN) is 

a type of feedforward neural network architecture introduced by Lecun et al. (1998). CNNS 

excel at capturing localized patterns and characteristics within time series data. The 

convolutional layers are adept at acquiring filters that can identify distinct temporal patterns. 

The local perspective and parameter sharing in CNN contribute to parameter reduction, 

thereby enhancing the model's learning efficiency (Lu et al., 2020). However, they encounter 

challenges like the need for inputs of fixed lengths, disregard for temporal sequencing, and 

a restricted capability to capture long-term temporal relationships. 

- Temporal Convolutional Network (TCN) Model: The temporal convolutional network 

(TCN) (Lea et al., 2016) represents an adaptation of the CNN architecture. TCN utilizes 

causal and dilated convolutions, which are well-suited for sequential data containing 

temporal patterns and requiring extensive receptive fields. The term "causal" implies that no 

data flows from the future to the past. 
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5.3.6 Evaluation Criteria 

To evaluate the classification performance, this paper adopts the following two metrics to calculate 

the prediction error: accuracy and F1 score. Accuracy is a metric in classification tasks to measure 

the effectiveness of a model in correctly predicting the classes of a dataset. It measures the 

proportion of correctly predicted instances among the total instances in the dataset. The F1 score 

combines both precision and recall into a single value and provides a balanced measure of a model's 

performance. Precision represents how many of the predicted positive instances were actually 

positive. Recall indicates the proportion of correctly predicted actual positive instances. The formula 

of the above evaluation criteria is as follows: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
       (5-21) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
,         𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃+𝐹𝑁
      (5-22), (5-23) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙+𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
        (5-24) 

Where, 𝑇𝑃 is the number of true positive (𝑦 = 1) predictions, TN is the number of true negative 

(𝑦 = 0) predictions, 𝐹𝑃 is the number of False positive predictions, and FN is the number of False 

negative predictions. 

5.4 Data Description  

The dataset used in this study encompasses a comprehensive range of financial and economic 

variables spanning multiple markets and sectors. The data covers a period from July 12, 2001, to 

December 28, 2022, allowing for a thorough investigation of trends and patterns over more than 

two decades. The dataset includes a diverse set of variables, consisting of commodity markets 

prices, stock indices, exchange rates, global macroeconomic indicators, supply and demand metrics, 

and a variety of technical indicators. We have eliminated dates from our dataset where certain 

variables lacked values, retaining only those dates where all variables had recorded values. The 

description of each feature in dataset is as following: 

Commodity markets: the daily spot price of five prominent commodity markets, namely WTI, Brent, 

Natural Gas, Gold, and Silver, are included in the dataset. These crude oil, natural gas, and precious 

metal markets are particularly important for governments, economies, and industries due to their 

intrinsic value and their impact on other markets, trade, and global relations. In this study, we aim 

to predict the direction of future price movements of our target markets, WTI, Brent, Gold, and 

Silver.  

Global stock indices: The dataset encompasses the daily closing price data from nine key global stock 

indices, reflecting the performance of diverse segments of the stock market. These indices include 

Standard and Poor's 500 (S&P500), Dow Jones Industrial Average (DJIA), National Association of 

Securities Dealers Automated Quotations (NASDAQ), S&P Energy, Standard and Poor's Goldman 
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Sachs Commodity Index (S&P GSCI), NYSE Arca Oil and Gas Index (XOI), London stock exchange 

index (FTSE100), Barrick Gold Corporation stock, and Tadawul All Shares Index. 

Exchange rates: Five major daily exchange rates are incorporated into the dataset, tracking the 

fluctuations between USD and other currencies: USD/EUR, USD/CNY, USD/JPY, USD/SAR, and 

USD/QAR. 

Global macroeconomics: The dataset features three critical global macroeconomic indicators: US 

Federal Funds Effective Rate, US unemployment rate, and US Consumer Price Index (CPI). Given 

that the initial frequency of US unemployment rate and Consumer Price Index was on a monthly 

basis, we employed linear interpolation techniques to generate daily data points. These indicators 

offer insights into the broader economic conditions that impact financial markets. 

Supply and demand factors: Three indicators related to crude oil, gold, and silver supply and demand 

dynamics are included: world petroleum production rate, world petroleum consumption rate, and 

US Gold and Silver Mining Index. These indicators shed light on the availability and utilization of 

key resources. 

Technical Indicators: To investigate the effectiveness of technical indicators in predicting the 

direction of price movements, this study defines some technical indicators related to our target 

markets. Our choices of technical indicators are based on prior studies on the effect of technical 

indicators in predicting the crude oil or precious metals prices (Shin et al., 2013).We define seven 

momentum and trend technical indicators for WTI, Brent, Gold, and Silver markets. These 

comprehensive set of 28 technical indicators, distributed across the four target markets represent 

various aspects of price movements and trading patterns. The technical indicators in this study are 

Rate of Change (ROC), Relative Strength Index (RSI), three Exponential Moving Averages (EMA), 

Moving Average Convergence/Divergence (MACD), and Triple Exponential Moving Average 

(TEMA). ROC is Calculated over a 5-day look-back period and provides historical performance 

context that aids in target labeling. RSI is computed over a 14-day period, RSI gauges the speed and 

magnitude of recent price changes. Three EMAs are incorporated with look-back periods of 5 days, 

50 days, and 100 days, offering insights into varying degrees of short-term, medium-term, and long-

term trends. MACD is derived from the 26-period and 12-period EMAs, MACD facilitates the 

identification of potential trend changes. TEMA is computed over a 20-day period, TEMA enhances 

trend analysis by providing a smoothed moving average. 

Table 5-1 presents the origins of data for each feature in our dataset. 

Table 5-1: Data Sources 

Feature Data Source 

Daily price index of S&P500, DJIA, NASDAQ, S&P Energy, S&P GSCI, FTSE100, 
XOI, Barrick Gold Corporation stock, Tadawul All Shares Index 

Yahoo Finance 

Daily spot price of WTI, Brent, and Natural Gas; monthly world petroleum 
production and consumption rates 

http://www.eia.gov 

Daily spot price of Gold, and Silver https://www.kitco.com 

https://finance.yahoo.com/
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Federal Funds Effective Rate, US unemployment rate, and US Consumer Price 
Index, USD/EUR, USD/CNY, USD/JPY, USD/SAR, and USD/QAR, US Gold and 
Silver Mining Index 

Federal Reserve Bank of St. 
Louis 

 

Data Partitioning 

To ensure a robust evaluation of model performance, the dataset is divided into three distinct sets: 

training, validation, and test. The training data which includes the first 65% of the dataset, covering 

the period from July 12, 2001, to February 4, 2016, is allocated for model training, enabling the 

models to learn patterns and relationships present in the historical data. The validation data contains 

15% of the dataset from February 5, 2016, January 17, 2019, and is reserved for validation, enabling 

model tuning and hyperparameter optimization. The test data is the remaining 20% of the dataset, 

covering the period from January 18, 2019, to December 28, 2022, serves as the test set. This subset 

is utilized to assess the models' generalization capabilities and predictive accuracy on unseen data.  

Utilizing the collected data and applying the methodologies outlined in Section 3, we conduct an 

empirical analysis aimed at addressing the issue outlined in Definition 3.1. This analysis is 

elaborated upon in Section 5. 

5.5 Empirical Analysis and Results 

In this section, we delve into data preprocessing techniques, the experimental setup, and the 

presentation of the achieved results. By meticulously analyzing the outcomes, we aim to provide 

valuable insights into the model's performance and its potential implications for the classification 

of the direction-of-price-movement in WTI, Brent, Gold, and Silver markets. 

Data Preprocessing: Input normalization in time series prediction tasks is a vital preprocessing step 

that involves scaling the input data to a common range. By normalizing the data, the model can 

better capture patterns and relationships, mitigate the effects of varying scales, and ensure stable 

convergence during training. In this study, the input data is normalized into [0,1] using Eq. (4-23).  

where, 𝑥𝑡 is the original-scale sample and 𝑥𝑡
′ denote the scaled data. 

For each target market, the label is determined according to Eq. (5-25(5-25), where 𝑌𝑡+1 is the actual 

label at time t+1, 𝑋𝑡+1 is the closing price at time t+1, 𝐸𝑀𝐴𝑡  is the 9-day exponential moving 

average trend, label 1 indicates the up trend and label 0 represents the down trend. The labeling 

method applied here is similar to the approach utilized in prior studies, such as (Shin et al., 2013) 

and (Kia et al., 2018). 

𝑌𝑡+1 = {
1(𝑢𝑝),            𝑖𝑓 𝑋𝑡+1 ≥ 𝐸𝑀𝐴𝑡  ,

0 (𝑑𝑜𝑤𝑛)                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (5-25) 

𝐸𝑀𝐴𝑡 = 𝛼𝑋𝑡 + (1 − 𝛼)𝐸𝑀𝐴𝑡−1 (5-26) 

𝛼 = 2/(𝑠𝑝𝑎𝑛 + 1),  for 𝑠𝑝𝑎𝑛 ≥ 1 (5-27) 

 

https://fred.stlouisfed.org/
https://fred.stlouisfed.org/
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This labeling method based on the Exponential Moving Average (EMA) relates to the EMA 

Crossover trading strategy which is a type of trend-following strategy used in technical analysis. It 

suggests buying when the price of an asset is above the EMA and selling when the price is below 

the EMA. By employing this labeling approach, we have successfully generated an almost balanced 

dataset, as illustrated in Table 5-2. 

 

Table 5-2: Balanced training set 

 WTI Brent Gold Silver 

Class 0 (down-trend) 
in training samples 

1059 
(45.5%) 

1071 
(46%) 

1027 
(44.1%) 

1087 
(46.7%) 

Class 1 (up-trend) 
in training samples 

1270 
(54.5%) 

1258 
(54%) 

1302 
(55.9%) 

1242 
(53.3%) 

The final preprocessing step is to create input sequences using a specific window size. Given the 

inherent reliance of time series data on past observations, capturing this interdependency is 

important for precise predictions. Furthermore, the input sequences should properly reflect temporal 

trends and patterns present within the data. Hence, the selection of an appropriate input sequence 

length requires careful consideration. This is accomplished through the hyperparameter tuning 

process.  

Experimental setup: The hyperparameters of our classification graph neural networks is optimized 

throughout three stages: graph construction, model architecture creation, and the training stage. In 

this study, we have used the Neural Network Intelligence (NNI) toolkit3 from Microsoft with Tree-

structured Parzen Estimator (TPE) tuning algorithm to optimize the hyperparameters of our GNN 

models on the validation dataset. The TPE tuner belongs to the Bayesian optimization family and is 

particularly effective for optimizing hyperparameters when the search space is complex and 

nonlinear. TPE works by modeling the relationship between hyperparameters and the model’s 

performance using probability distributions. It divides the search space into two parts: one for 

exploring (trying out new parameter values) and the other for exploiting (focusing on regions that 

have shown promising results). This division allows TPE to iteratively refine its search to converge 

towards optimal hyperparameters efficiently (Bergstra et al., 2011). 

Since we utilize the KNN technique to construct the adjacency matrix of SGA-TCN and ASTGCN 

models, it becomes crucial to ascertain the optimal value of number of neighbors (𝑘). To achieve 

this, we conducted a hyperparameter tuning process and found that the most suitable value for 𝑘 is 

18 when N=25 (i.e. when technical indicators are not included in input features). In the case of N=53 

(i.e. when 28 technical indicators of our target markets are integrated to the input features), the 

optimal value of 𝑘 = 30. For neighboring nodes, the adjacency value 𝐴𝑖𝑗 is set to one, while non-

neighbor nodes are assigned a value of 𝐴𝑖𝑗 equal to 0. 

 

3 https://github.com/microsoft/nni 
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In model construction stage, we have used NNI toolkit to find the best hyperparameters for each 

ST-GNN architecture and baseline models. Moreover, we found the input sequence window size is 

a significant factor in the classification performance of SGA-TCN, MTGNN-TAttLA, and 

ASTGCN models. Thus, we included input sequence length as a hyperparameter of our models and 

search for an optimal window size. Table 5-3 present the value of optimal hyperparameters in our 

search space for each ST-GNN model. 

For the other hyperparameters of MTGNN-TAttLA and MTGNN-LA models, we have used the 

values of 𝛼 = 3, and 𝛽 = 0.05, and 𝑘 = 18 (subgraph size) in Eq.(5-8) and Eq.(5-11), respectively, 

same as the original MTGNN paper. 

Table 5-3: ST-GNNs hyperparameters 

Models 
Window 

size 
layers 

attention 

heads 

Node embedding 

size 

Output layer 

channel size 

Convolutional 

channel size 

GCN 

depth 

Dilation 

factor 

MTGNN-TAttLA 20 2 4 32 64 64 2 2 

MTGNN-LA 10 2 - 16 128 32 1 2 

SGA-TCN 

Window 

size 

TCN 

layers 

attention 

heads 
[𝐶𝑡𝑐𝑛1

, 𝐶𝑡𝑐𝑛2
, 𝐶𝑡𝑐𝑛3

] TCN blocks 
TCN kernel 

size 

GATConv 

layers 

Dilation 

factor 

20 3 8 [16, 64, 64] 4 5 1 2 

ASTGCN 

Window 

size 
blocks 

Temp. conv. 

channels 

Graph conv. 

channels 
GCN depth    

30 2 64 16 5    

All ST-GNN models in this study are implemented using Pytorch. The experiments are conducted 

by using Python 3.10.12 and run on a computing system with a 70 W Tesla T4 NVIDIA-SMI GPU, 

CUDA version 12.0, and 16GB RAM.  

We have trained all ST-GNN models for 40 epochs and using a batch size of 32. We have utilized 

Adam optimizer (Kingma & Ba, 2014) for minimizing the loss function in Eq. (5-1), with a learning 

rate equal to 0.005, and a regularization penalty equal to 0.0001. To avoid any potential gradient 

exploding, we have clipped the gradient values to 5. 

This study incorporates model regularization through the integration of dropout layers within the 

models' architectures and the implementation of 𝑳𝟐 regularization. Using a validation dataset also 

enhances regularization by allowing us to fine-tune model parameters and hyperparameters based 

on its performance. This helps in preventing overfitting, as the model's generalization ability is 

assessed on data it hasn't seen during training. Regularization techniques such as dropout layers and 

𝑳𝟐 regularization work in conjunction with the validation dataset to ensure the model doesn't 

become overly specialized to the training data. To further enhance the reliability of the classification 

outcomes, we repeat the experiments 10 times and report the average value of accuracies and F1 

scores for each model.  

Results and Discussions: using the above experimental setups, we predicted the one-day ahead up 

and down price trends by SAG-TCN, MTGNN-TAttLA, and ASTGCN models and compared their 
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classification ability with non-graph deep learning models for sequential data such as TCN, CNN, 

and LSTM models. To find the effectiveness of the temporal attention mechanism in enhancing the 

accuracy of classification, we also compare the MTGNN-TAttLA model with the MTGNN-LA 

model which does not include any attention layer. Table 5-4 presents the accuracy and F1 score of 

each model in classification of one-day ahead price movements in WTI, Brent, Gold, and Silver 

markets. 

Table 5-4: Classification performance using 25 features (N=25) 

Models 
WTI Brent Silver Gold 

Acc F1 Acc F1 Acc F1 Acc F1 

MTGNN-LA  0.8317 0.8642 0.8022 0.8307 0.7924 0.7944 0.7727 0.7923 

SGA-TCN 0.8081 0.8473 0.8052 0.8405 0.7621 0.7764 0.7607 0.7937 

ASTGCN 0.8368 0.8712 0.8089 0.8431 0.7838 0.803 0.7922 0.8265 

MTGNN-TAttLA 0.8492 0.8798 0.8179 0.8479 0.7837 0.794 0.7439 0.7619 

TCN 0.7858 0.8242 0.7719 0.8066 0.7454 0.7601 0.7315 0.7643 

CNN 0.6764 0.7149 0.615 0.6123 0.5495 0.5405 0.5844 0.6534 

LSTM 0.6073 0.7444 0.4993 0.5452 0.5718 0.6446 0.5619 0.705 

         

Results from Table 5-4 show that MTGNN-TAttLA is the best performing model in classifying the 

price movement direction of WTI and Brent Crude oil with an accuracy of 84.92% and 81.79% on 

the test set, respectively. However, this model does not outperform other models in precious metal 

markets. One reason for this could be that, as shown in Figure 5-5, the training set of WTI and Brent 

markets demonstrate more dynamics and complex patterns compared to the training set of Silver 

and Gold. Thus, adding an attention mechanism to the model assists the model to focus more on 

learning from important time steps, while for the Silver and Gold markets adding attention 

mechanism does not make any significant improvement and rather increases the complexity and 

number of parameters in model. 

For classification of price movement direction in Silver and Gold markets, the MTGNN-LA and the 

ASTGCN are the best ones with accuracies of 79.24% and 79.22%, respectively. 

Table 5-5 summarizes whether the ST-GNN models are able to learn the adjacency matrix or they 

require a predefined adjacency matrix and whether the ST-GNN model uses temporal or spatial 

attention mechanism in its architecture. 

Table 5-5: ST-GNN architecture properties 

Models Learns matrix A Has Spatial Attention Has Temporal Attention Graph model 

MTGNN-TAttLA ü û ü ü 

MTGNN-LA ü û û ü 

SGA-TCN û ü û ü 

ASTGCN û ü ü ü 
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To understand the effectiveness of adding a temporal attention module to a ST-GNN model, we 

compare the accuracy of SGA-TCN and ASTGCN. Both these models use graph convolutional 

networks with spatial attention as their spatial module and temporal convolutional networks as their 

temporal module. However, the ASTGCN model also incorporates a temporal attention mechanism 

to its architecture. As the accuracies of predicted direction-of-price-movement from Table 5-4 show, 

ASTGCN is outperforming the SGA-TCN model across all four target markets (i.e., WTI, Brent, 

Silver, and Gold). This demonstrates that a temporal attention mechanism can improve the 

classification performance of a spatial-temporal graph neural network. 

Comparing the accuracies of non-graph TCN, CNN, and LSTM models with those of graph-type, 

MATGNN-LA, SGA-TCN, MTGNN-TAttLA, and ASTGCN, our results show that spatial-

temporal graph neural networks significantly outperform traditional deep learning models in 

classification of WTI, Brent, Gold, and Silver price movement directions. This showcases the 

importance of finding the spatial relationship between features that can affect the crude oil and 

precious metals price dynamics. The advantages of defining a multivariate time series input in a 

graph-structured data is that we can include large number of variables that can affect the target 

markets and let the graph convolution networks to find the significant relationship and patterns 

among variables. However, while non-graph TCN, CNN, and LSTM models can extract the 

interdependencies among variables to some extent, they are not very powerful in discovering the 

complex relationship among multivariate timeseries. TCN is the best non-graph model for the 

classification task in hand reaching an accuracy of 78.58%, 77.19%, 74.54%, and 73.15% on WTI, 

Brent, Silver, and Gold, respectively. The TCN is outperforming the CNN model due to the fact that 

it uses dilated convolutions, which have a larger receptive field than traditional convolutions. This 

allows TCNs to capture information over longer spans of time, making them better equipped to 

model sequences with varying temporal patterns, while CNNs are only able to extract local patterns 

and dependencies. Similarly, the ability of TCN to capture long-term dependencies in sequences 

requires less iterative training process and effectively overcomes the vanishing gradient problem 

often encountered in LSTMs. This makes TCN better at capturing relationships over extended time 

spans. Moreover, TCN’s convolutional filters can capture interactions between variables at different 

time steps, allowing it to capture complex temporal patterns and relationships. 
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Figure 5-5: WTI, Brent, Gold and Silver price movements from 2001-04-07 to 2022-12- 28. 

 

To investigate whether adding technical indicators of our target markets will improve the 

classification performance of our ST-GNNs, we repeated our experiments by including seven 

technical indicators for each target market into our input feature set represented as a graph. The 

technical indicators are ROC, RSI, MACD, TEMA, 5-day EMA, 50-day EMA, 100-day EMA. 

Thus, 28 new features have been added to our data se, totaling to 53 features. Since each feature is 

a node in our markets’ graph, the number of nodes in the new graph will equal to 53. Table 5-6 

shows the performance of ST-GNN and non-graph deep learning models in predicting the direction-

of-price-movement using 53 features. 

Upon comparing the results from Table 5-5 and Table 5-6, it becomes evident that incorporating 

technical indicator features into our input data significantly enhances the accuracy and F1 scores of 

nearly all ST-GNN models, particularly in predicting trends for WTI and Brent crude oil markets. 

Similarly, we arrive at a similar inference regarding the favorable impact of incorporating technical 

indicators on the classification of Gold price trends, though ASTGCN's performance gain appears 

more nuanced. Thus, our results suggest that technical indicators perform an important role in 

predicting the direction-of-price-movement within WTI, Brent, and Gold markets. Moreover, in a 

broader context, we infer that graph-oriented models exhibit remarkable performance in scenarios 

with high-dimensional inputs, setting them apart from traditional deep learning models. 

Nevertheless, even though these models exhibited favorable results for crude oil and gold markets, 

their effectiveness in predicting Silver price trends did not consistently improve upon the inclusion 

of technical indicators in our feature dimension. This discrepancy can be attributed to the intricate 

dynamics of the Silver market, which is influenced by a complex interplay of economic indicators, 
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industrial demand, and technological advancements. Consequently, the relationship between 

technical indicators and Silver prices becomes less straightforward, potentially introducing noise 

and reducing data quality upon integration. Moreover, our observations indicate that the addition of 

technical indicators to our features set didn't consistently improve the accuracy of CNN and LSTM 

models. This implies deep learning models’ limitations in comprehending complex relationships 

between variables, especially in cases characterized by a high input dimension. 

As highlighted in Table 5-6, using comprehensive set of 53 input features, MTGNN-TAttLA is the 

top-performing model for classifying the WTI, Brent, and Silver price movement directions. 

Meanwhile, ASTGCN maintains its superiority in predicting Gold price trend directions among 

other models. These results confirm that the temporal attention comes handy in classification of 

timeseries trends even when the input feature size is large. 

Table 5-6: Classification performance using 53 features (N = 53) 

Models 
WTI Brent Silver Gold 

Acc F1 Acc F1 Acc F1 Acc F1 

MTGNN-LA -TI  0.8387 0.8697 0.8078 0.8355 0.7798 0.7792 0.784 0.8094 

SGA-TCN -TI 0.8122 0.8505 0.8081 0.8435 0.7719 0.7859 0.7608 0.7908 

ASTGCN-TI 0.8396 0.8718 0.8131 0.8498 0.7755 0.7873 0.7922 0.822 

MTGNN-TAttLA-TI 0.852 0.8844 0.8165 0.8455 0.7838 0.7895 0.7738 0.8 

TCN-TI 0.7899 0.8278 0.7774 0.8126 0.7399 0.7581 0.7343 0.7696 

CNN-TI 0.6248 0.6258 0.6192 0.6245 0.537 0.4924 0.5941 0.6643 

LSTM-TI 0.6401 0.6903 0.6216 0.6624 0.5358 0.5154 0.5064 0.4718 

 

Figure 5-6 presents the heatmap of the adjacency matrix learned by MTGNN-TAttLA using 25 

features in the model. The matrix values signify the level of spatial connections among variables, 

and the importance of each variable for the classification tasks undertaken in this study. For a 

variable in row 𝑖 , 𝐴𝑖𝑗  shows the importance of the 𝑗𝑡ℎ  column’s variable in classifying the 

movement direction of the 𝑖𝑡ℎ  variable. In this context, the most relevant variables for our 

designated targets – WTI, Brent, Silver, and Gold – are detailed in Table 5-7. 

 

Table 5-7: Connected variables to target markets 

Market Connected variables 

WTI Brent, DJIA, FTSE100, Gas, NASDAQ, S&P500, Silver, Tadawul, US CPI, USDJPY, WPetCons, WPetPro, XOI 

Brent DJIA, Gold, GS mining, S&P Energy, S&P GSCI, S&P500, Silver, Tadawul, UnempRate, US CPI, USDCNY, 

USDJPY, USDQAR 

Silver DJIA, Gold, GS mining, S&P Energy, S&P GSCI, S&P500, Tadawul, UnempRate, US CPI, USDCNY, USDJPY, 

USDQAR 

Gold Barrick, FTSE100, Gas, GS mining, NASDAQ, S&P Energy, S&P GSCI, USDCNY, USDEUR, USDQAR, USDSAR, 

WTI 
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These relationships suggest that these markets are interconnected and influenced by diverse 

economic, supply and demand, financial, and commodity-related factors. As an example, the 

relationship between NASDAQ, which represents technology and growth-oriented companies, and 

WTI and Gold could indicate that during periods of market uncertainty or economic instability, 

investors might allocate funds to WTI or Gold as a protective measure against potential losses in 

the equity markets. Likewise, London Stock Exchange index (FTSE100) demonstrates stronger 

correlations with WTI and Gold markets in comparison to Brent or Silver markets. The relationship 

among the variables in Table 5-7 are complicated and cannot be interpreted within the scope of the 

current study. One needs more through analysis for this purpose which we leave for future studies. 

The variables in Table 5-7 offer valuable insights into the potential factors that could influence the 

price dynamics of WTI, Brent, Silver, and Gold markets. Hence, these relationships should be 

carefully taken into account when conducting analyses or formulating predictions regarding these 

markets. 

 

Figure 5-6: Heat map of the learned adjacency matrix 

 

Figure 5-7 illustrates box plots for the distribution of accuracies across all spatial-temporal neural 

networks employed for classifying the short-term price trend directions in WTI, Brent, Silver and 

Gold markets. On the x-axis of the plots, we have denoted the classification performance of models 

incorporating technical indicators alongside 25 other features as "Market-TI". For example, in the 

box plot for Gold, the "Gold-TI" notation signifies the accuracy of predictions for Gold price 

movement direction using 53 factors, including 28 technical indicators in addition to other 25 inputs. 

As it is evident from Figure 5-7, the inclusion of technical indicators for the respective targets led 

to higher accuracies in the case of Brent, Gold, and WTI. Additionally, the dispersion of accuracy 

values across all markets becomes narrower with the incorporation of technical indicators. This 

highlights the enhancing influence of technical indicators on the precision of price movement 

direction classification through ST-GNNs. In general, we have achieved higher accuracies for crude 

oil markets compared to the precious metals markets. This divergence might be attributed to various 

underlying factors. The set of features used for prediction might have a stronger predictive power 
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for crude oil markets compared to precious metals markets. Given that the ST-GNN models are 

fine-tuned to classify labels across all multivariate features, the model complexities might be better 

suited to capturing the underlying patterns of crude oil rather than precious metals markets. Finally, 

as presented in Figure 5-5, the training dataset within the crude oil markets encompasses numerous 

diverse temporal patterns, making the predictive models more equipped to learn and generalize from 

historical data. In contrast, the temporal patterns in precious metals typically adhere to long-term 

trends, which might deviate from the trends present in the test set. This characteristic make them 

less suitable for effectively classifying short-term, one-day ahead price movements in precious 

metals markets. 

 

Figure 5-7: Accuracy distributions 

 

Figure 5-8 shows the training and validation losses for all four spatial-temporal neural networks 

across forty epochs. Notably, MTGNN-LA, MTGNN-TAttLA, and ASTGCN exhibit quicker loss 

convergence and achieve lower training losses compared to SGA-TCN. Moreover, MTGNN-LA 

and MTGNN-TAttLA have reached the lowest validation error, underscoring their superior 

performance in time series classification tasks. 
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Figure 5-8:Training and validation losses 

5.6 Conclusion 

The crude oil market has historically been susceptible to the influence of geopolitical and 

macroeconomic factors. Precious metals, on the other hand, are investment assets that have 

significant implications in various industries. Additionally, gold serves as a substitute asset for 

traditional stock markets and is a fundamental component of financial investment portfolios. Given 

these factors, the development of accurate predictive models for determining the future direction of 

crude oil, gold, and silver prices is important. This study addressed the formidable challenge of 

predicting price movement directions in the crude oil, gold, and silver markets. To tackle this 

challenge, we employ three spatial-temporal graph neural network models, namely MTGNN-

TAttLA, SAG-TCN, and ASTGCN. These models use several variables such as historical prices of 

crude oil, silver, and gold markets, global stock market indices, exchange rates, supply and demand-

related factors, global macroeconomic factors, and technical indicators as predictors. Our findings 

underscore the efficacy of these models in capturing the intricate interplay of spatial and temporal 

dependencies inherent in market data. The incorporation of an attention mechanism, particularly in 

the MTGNN-TAttLA model, yielded exceptional prediction accuracy. Notably, all three models 

surpassed conventional deep learning approaches like TCN, LSTM and CNN in forecasting 

accuracy. Particularly, MTGNN-TAttLA demonstrated outstanding performance in predicting price 

movement directions for WTI, Brent, and silver markets, while ASTGCN excelled in forecasting 

gold market trends. These results carry substantial implications for investors, financial institutions, 

and policymakers, as they empower informed decision-making, effective risk management, and 

portfolio optimization. 

In this research, several limitations need to be acknowledged. First, our analysis relies on historical 

data, and market conditions are subject to change. Future research should consider incorporating 

real-time data and exploring the adaptability of these models to evolving market dynamics. 

Additionally, further investigation into the generalization of these models to other commodities and 
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financial assets is warranted. Future research can explore additional optimization techniques for 

refining the network structure and parameter settings. Finally, other variables that might affect the 

direction of crude oil and precious metals market movements ought to be considered in the graph 

network construction. For example, investors’ sentiments from social media or geopolitical events 

can be incorporated into the predictors’ set.  
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Chapter 6  

 

 

Conclusion  

Crude oil, in particular WTI and Brent, perform a crucial role in the global financial markets and 

market economics. In recent years, the price of crude oil has been more vulnerable to geopolitical 

and macroeconomic factors. Thus, understanding the dynamics of crude oil markets seems 

inevitable. Besides, precious metals such as gold and silver are key commodities that are mined in 

particular countries which make the economy of these countries highly rely on precious metal 

markets. Moreover, gold is a substitute asset for stock markets and plays an indispensable role in 

financial investment portfolios. On the other hand, cryptocurrencies are modern digital assets that 

have been traded for approximately fifteen years to date and still need more investigation under 

various circumstances. 

This research has examined the characteristics and dynamics of cryptocurrency, crude oil, and 

precious metal markets and developed several timeseries prediction models to forecast the price 

level, and the direction-of-price-movement in crude oil and precious metal markets. Our study is 

concluded into four peer-reviewed research articles, three of which are published in prestigious Q1 

business journals, and the last one is accepted for publication in Financial Innovation journal. 

Our first paper explored the return-volatility relationships in cryptocurrencies, crude oil, and gold 

markets before and during the COVID-19 pandemic. Moreover, the cryptocurrencies return-volume 

relations are investigated across both periods. For this, we have implemented econometrics and 

statistical models such as EGRACH-in-Mean, VAR, and Granger causality tests. Our empirical 

analysis indicates no significant return-volatility relationship in any of the cryptocurrencies prior to 

the COVID-19 pandemic. However, during the pandemic, this relationship became significant for 

Tether, Ether, Ripple, Bitcoin Cash, EOS, and Monero. The effect of volatility on returns of Bitcoin, 

Litecoin, Chainlink, and Cardano is negligible during the pandemic. Thus, traditional risk-return 

relationships (i.e. higher risks are associated with higher returns) may not hold for these markets. In 

this situation, investors may need to reassess how they evaluate and manage risk in Bitcoin, Litecoin, 

Chainlink, and Cardano during financial crisis and adjust their investment strategies, considering 

other factors that influence returns, such as investment sentiments, or external events. In addition, 

the return-volatility relationship for WTI and Brent crude oil was significantly negative before the 
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pandemic but became non-significant during the crisis. Our results from the granger causality tests 

on return-volume relationships suggest the absolute returns of cryptocurrencies significantly 

influence their trading volumes, indicating that traders engage in higher volumes during periods of 

significant price fluctuations, a behavior unaffected by the COVID-19 crisis. 

The second paper approaches these markets from a different angle and studies the relationship 

among cryptocurrencies and commodity markets including crude oil and gold. This study searches 

for the potential safe haven effects of gold or crude oil on cryptocurrency markets under stable and 

crisis financial market conditions, especially before and during the COVID-19 pandemic. Our 

results show that, during the COVID-19 pandemic, Gold demonstrated stronger safe haven 

characteristics compared to crude oil, offering a more effective risk mitigation for cryptocurrency 

investments. However, crude oil emerged as a robust safe haven for Bitcoin Cash. This study could not 

find any significant relationship between gold and crude oil markets and Ether, Ripple, EOS, and 

Cardano across the examined periods. Unlike crude oil, which is a commodity with significant price 

volatility influenced by geopolitical factors, supply disruptions, and demand fluctuations, gold’s 

price movements are relatively more stable and less influenced by short-term supply-demand 

dynamics. This stability enhances its attractiveness as a safe haven during uncertain times. The 

findings from Granger causality tests affirm that, overall, causal relationships predominantly exist from 

cryptocurrencies toward gold and crude oil markets in both periods. The implications of our findings 

extend to hedge fund managers and digital currency investors, providing valuable insights to help them 

strategically balance risk exposures and optimize returns during financial crises. 

In the third essay, we approach crude oil and precious metal markets from a predictive perspective. 

More specifically, we tailor various deep learning models to improve the prediction of the future daily 

price of these markets and compare the performance of deep learning models with ensemble, and 

individual machine learning models. Following an extensive literature review, it became evident that 

proposing a universally applicable model capable of effectively forecasting all markets is impractical 

due to the unique characteristics of each market. Thus, we examined sixteen deep learning, hybrid, 

ensemble, and machine learning models with various hyperparameter settings and input lengths to 

forecast the price of each market. In addition, we implemented a novel Time2Vector embedding to 

enhance forecasting performance with longer input sequences. Our results indicate that the 

Temporal Convolutional Networks are the best model among the sixteen models in generalizing and 

forecasting the commodity market prices. LightGBM is the best machine learning type model in 

forecasting the commodity market prices. However, compared to the TCN model, it performs poorly 

in capturing and responding to sharp market dynamics. Regarding the type of deep learning models 

to forecast crude oil and precious metal prices, our results show that GRU-type RNNs perform better 

than LSTM-types, and bidirectional RNNS are superior to unidirectional ones. Furthermore, among 

WTI, Brent, Gold, and Silver, Gold exhibits the highest sensitivity to the input sequence length in 

price forecasting. Consequently, investors and analysts should exercise greater caution and precision 

in selecting the appropriate input sequence window when forecasting gold prices. Our findings 
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provide valuable insights for analysts seeking to improve the accuracy of commodity market price 

forecasts. It offers guidance for selecting the most suitable models and input parameters for 

forecasting commodity market prices. This knowledge equips governments, energy sector 

managers, and crude oil and precious metals investors to make sensible decisions. In a governmental 

context, crude oil and precious metal price forecasting helps governments in fiscal planning, 

economic policy decisions, resource allocation, revenue management, international trade 

negotiations, socioeconomic development, environmental policies, and geopolitical considerations. 

Accurate forecasts can provide a competitive advantage by enabling managers to make timely and 

informed decisions. They can anticipate market trends, respond quickly to price fluctuations, and 

maintain a competitive advantage in terms of pricing, supply chain management, and customer 

satisfaction. 

Lastly, the fourth paper expands the forecasting scope to predict future direction-of-price-

movements in crude oil, gold, and silver markets, framing it as a multivariable timeseries 

classification problem. To address this challenge comprehensively, we incorporate a wide array of 

historical, economic, financial, supply and demand factors known to influence movements in crude 

oil and precious metal markets. We establish a feature graph to model relationships among these 

factors and introduce three innovative spatial-temporal graph neural networks, namely MATGNN-

TAttLA, ASTGCN, and SGA-TCN, to classify price movements in the mentioned markets. 

Moreover, we show the effectiveness of the attention mechanism in improving the accuracy of these 

models. Our research presents significant empirical findings that provide crucial insights into robust 

models and influential factors shaping short-term price trend classification in commodity markets. 

MATGNN-TAttLA emerges as the top-performing model for accurately classifying the direction of 

one-day ahead price movement in WTI, Brent, and Gold markets, while ASTGCN outperforms 

other ST-GNNs in the Silver market. The incorporation of technical indicators and a diverse set of 

features enhances classification accuracy across all ST-GNN models for WTI, Brent, and Gold 

markets. The inclusion of a temporal attention mechanism further proves advantageous, enhancing 

classification performance by emphasizing critical patterns and significant input sequences. 

Notably, spatial-temporal graph neural networks consistently outperform non-graph deep learning 

models such as TCN, CNN, and LSTM in classifying the direction-of-price-movement across 

diverse commodity markets. The ability of ST-GNNs to learn spatial relationships among variables 

makes them particularly well-suited for timeseries prediction applications involving a substantial 

number of input features. Our findings with improved accuracy of price movement forecasts 

empower investors, financial institutions, and policymakers to make informed decisions, and 

optimize their portfolios. Beyond practical applications, these models contribute to a deeper 

understanding of the dynamics in crude oil and precious metals markets and provide insights into 

the factors influencing price trends. 

A summary of research papers in this work is presented in Table 6-1. 
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Table 6-1: Summary of four papers    

Paper Methodology Input data Data period 
Evaluation 

metrics 

Return-Volume, 
Return-Volatility 
relationships 

ARMA, EGARCH in 
Mean, Granger 
Causality 

Daily Historical 
returns, volumes, and 
volatilities  

2019-01-01 
to 
2020-12-31 

Statistical  
analysis 

Connectedness 
between 
cryptocurrency, 
crude oil, and gold 

VAR, VECM, ARDL, 
Franger Causality 

Daily Historical Prices 
2019-01-01 
to 
2020-12-31 

Statistical  
analysis 

Forecasting Crude 
oil and precious 
metals prices 

Sixteen deep learning 
and machine learning 
models 

Historical spot prices 
2021-01-01 
to  
2021-12-31 

MSE, MAE, 
RMSE 

Price movement 
prediction in Crude 
oil and precious 
metals markets 
 

Three Spatial-
Temporal Graph 
Neural Networks, and 
Deep learning models 
such as LSTM, CNN, 
and TCN 

Historical spot prices, 
global economic 
factors, supply-
demand factors, other 
financial markets, 
technical indicators 

2001-07-12 
to 
2022-12-28 

Accuracy, 
F1-score 
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