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Abstract 

 

Improving Model-Based System Architecture Specification to Enable Fault Tree Analysis 

Enes Kolip 

 

The aviation industry explores innovative aircraft technologies and concepts aiming to reduce its 

emissions and meet environmental targets. The advanced technologies result in high complexity 

in aircraft systems, necessitating novel system architecting and safety assessment methods. Model-

Based Systems Engineering (MBSE) presents a promising approach, offering more efficient 

systems development than document-centric methods. At the same time, safety assessment is an 

integral part of the system development process and can also benefit from a model-based approach. 

Model-Based Safety Assessment (MBSA) emerges to enable the analysis of the system 

architecture from a safety perspective and automate segments of the process, and by doing so, it 

improves efficiency by reducing development time and errors. The objectives of this thesis are to 

integrate MBSE and MBSA to construct a system model with an architecture specification that can 

help build safety models for fault tree analysis (FTA). This thesis focuses on the transition from 

system to safety models and explores various methods to enhance architecture specification in 

support of MBSA. The approach presented in this thesis utilizes the Capella workbench and 

extends the logical architecture levels of the Architecture Analysis and Design Integrated Approach 

(ARCADIA) to represent the system architecture at the appropriate level of granularity to support 

MBSA. The presented methodology involves enriching a system specification model by 

integrating safety properties into Capella elements with the help of the property values 

management tools (PVMT). The flap system is selected as a test case, and a system model of the 

flap control and actuation system is developed and used to construct safety models in the AltaRica 

3.0 language. Specific failure scenarios are introduced by adding observers to the safety models, 

enabling FTA with AltaRica 3.0. The minimal cutsets and failure rates of the FTA are examined to 

validate the results of the safety analysis, ensuring the transition between the system and the safety 

model is correct. Overall, the presented thesis helps to improve coherence and collaboration 

between system and safety engineers designing complex systems, such as advanced flight control 

system architectures. 
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1. Introduction 

The global population has been seeing an increase in the accessibility of aviation with a growing 

demand for air traffic [1]. Thus, it results in concerns about the environmental impact of the 

industry [2]. CO2 emissions from aviation have grown significantly faster in recent years than rail, 

road, and shipping industries, accounting for 2% in 2022 [3]. For this reason, the industry is 

attempting to reduce carbon emissions by half by 2050 [4]. Consequently, novel aircraft 

technologies that can help reduce carbon emissions and increase the efficiency of aircraft are being 

developed. These technologies, however, add significant complexity to aircraft systems, resulting 

in a need for advanced methods for design, management, system, and safety assessments [5], [6], 

[7].  

1.1 Background and Motivation 

An aircraft development, from the conception phase to the market, takes about 10 years on average 

[8]. The efforts to develop more efficient aircraft increase the complexity of aircraft systems and 

the development process, causing delays in the aircraft development of industry pioneers, Boeing 

[9] and Airbus [10]. Thus, the aerospace industry needs novel methodologies and approaches to 

reach environmental goals and bring more efficient solutions to aircraft systems. 

SAE Aerospace Recommended Practice ARP4754 [11] is a guideline for developing civil aircraft 

and systems. It presents an aircraft development process following a systems engineering approach 

to cope with complexity. The process begins by designing and validating artifacts at three levels: 

aircraft, system, and item levels. Later in the development, the engineers focus on implementation, 

integration, and testing.  

Also, ARP4761, a guideline for conducting the safety assessment process on civil aircraft, states 

that safety engineers perform safety assessments simultaneously to support the aircraft 

development process. Safety engineers work on safety analyses exclusively with the information 

available on the system model. These analyses, however, take place late in the system design 

process. System designs constantly evolve until they are finalized. Therefore, safety analyses 

cannot participate in important design choices [12]. There is often a gap between the system 

engineering and safety assessment because of the evolving nature of the system model. If safety 

analyses are done based on an outdated system model, it can result in cost increases and time waste.  

A model-based approach has the potential to reduce the gap between systems engineering and 

safety assessment disciplines and reduce faults caused by this gap. Model-based methods can 

increase the capability of system engineering activities by improving traceability in system 

development, providing numerous system diagrams and perspectives, and facilitating organization 

[13]. 

Figure 1.1 shows the interaction between safety and development processes. Safety assessment 

supports aircraft development by introducing safety requirements at aircraft, system, and item 

levels. The safety assessment process consists of Preliminary Aircraft Safety Assessment (PASA), 

Common Cause Analysis (CCA), Preliminary System Safety Assessment (PSSA), System Safety 

Assessment (SSA), Aircraft Safety Assessment (ASA), and Functional Hazard Assessment (FHA). 
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Figure 1.1 - Safety Assessment Process Model in [11] 

At the aircraft level, FHA and PASA provide safety objectives based on the aircraft-level functions. 

After aircraft functions are allocated to different systems, they become system functions. System-

level FHAs take system functions as inputs and provide system-level safety objectives for 

designing individual aircraft systems. Later in the process, component-level safety requirements 

are derived from these system-level safety objectives to support the design or selection of 

components that are part of the systems. All safety requirements support meeting the safety 

objectives set after system-level FHAs and PSSA, as shown in Figure 1.1. Validation activities are 
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occurring, starting at the system level, for the previous level to confirm that specifications are 

developed as intended. FHA identifies potential hazards associated with functions and defines the 

risks related to each hazard identified. After each FHA, an FTA takes place to validate the FHA 

results. FTA helps to understand the failure of systems and find ways to reduce risks identified by 

FHA. 

ARP4754 and ARP4761 define system development and safety assessment as interdependent. In 

addition, Figure 1.1 depicts the close relationship between the processes of system development 

and safety assessment. ARP4761 describes a detailed safety assessment process occurring 

concurrently with the development of the aircraft and its systems. The safety assessment can be 

classified into two approaches: Qualitative and quantitative. The qualitative approach detects the 

dependencies between component failures and hazards on the system level. On the other hand, the 

quantitative method provides probabilities and rates of failure events. Traditional safety analysis 

that works with these two approaches consists of techniques such as FTA, FHA, Failure Modes, 

and Effect Analysis (FMEA). In addition, independent safety tools, languages, and methods such 

as the Unified Language Model (UML) and Matlab-Simulink are often used to conduct these 

traditional safety analyses [14]. Also, safety analyses are often performed manually, they are 

performed without the aid of automated tools or software, meaning that these analyses can depend 

on the skill of the safety analysts [15]. 

ARP4761 defines MBSA as an analysis method used to model system architecture to show system 

behavior if any failures occur. MBSA allows automation by introducing models to traditional 

safety assessment. For example, AltaRica, an MBSA language, can enable automated FTA [16]. 

Thus, MBSA, with the automatic safety analysis, improves efficiency by decreasing the time 

needed for development and errors [17].  

1.2 Objectives and Scope of the Thesis 

This thesis is conducted as part of the project ‘Aile Intelligente et Légère pour l'Environnement’ 

(AILE) funded by Bombardier and ‘Natural Sciences and Engineering Research Council of 

Canada’ (NSERC) (under the grant number CRDPJ542298-19) to research new methodologies 

that will contribute to bringing novel flight control system architectures to fruition in the next 

generation of aircraft in Canada by advancing the state-of-the-art of virtual design and virtual 

testing in three areas: (1) model-based systems engineering (MBSE), (2) model-based safety 

assessment (MBSA) and (3) model-based design (MBD). The following sections present the 

background and motivation for the conducted research and exhibit this thesis's objectives and 

scope. 

The gap between MBSE and MBSA due to separate environments performing safety assessments 

can be reduced by incorporating safety analysis and artifacts into an MBSE approach and 

workflow. Traditionally, the system architecture specification model does not include the artifacts 

and findings of safety analysis. This thesis aims to enhance model-based system architecting by 

incorporating safety artifacts into the system model to perform automated model-based safety 

analyses. The generated system model with safety information can be used for other safety 

analyses and assessment activities with the evolving architecture specification and safety 

information embedded into it. For example, if a system model includes FHA results such as failure 

conditions, affected functions, and failure rate objectives, then the following FTAs can be 
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performed based on this system model. If the system model evolution is not only limited to system 

architecting but also safety assessment, embedding FTA results into the system model can enable 

performing FMEAs. Accommodation of an MBSE model with safety information can make the 

model a reference for performing safety analyses. In addition, employing MBSA frameworks to 

run these analyses would maximize the power of safety tools, enabling the automatic generation 

of safety artifacts. 

This thesis presents an approach for MBSE to accommodate model-based FTA. It focuses on 

enriching the system architecture with safety artifacts and performing automated FTAs with 

standalone safety models. This thesis applies the methodology presented on a flap system test case 

as the industrial partner Bombardier addresses advancements in flight control system architectures. 

The flap system test case involves components with high technology levels that reflect the 

aerospace industry's complexity. However, the methodology applies to other systems as well. 

The proposed methodology involves different phases of development: (1) the architecture 

specification and then a system model representation of the architecture. (2) with a safety model 

that can generate automated FTAs. The research objectives are the following: 

• Develop methods to use the MBSE specification model to perform safety assessments. The 

thesis specifically focuses on the transition between the Capella, an MBSE tool, system 

model and the AltaRica safety model, aiming to maximize the power of safety tools by 

utilizing standalone safety models. 

• Exploring architecture representations and modeling artifacts in the ARCADIA/Capella 

MBSE framework to support the transition between MBSE and MBSA disciplines.  

• Exploring modeling methodologies that can capture the aircraft development process in 

ARP4754 while accommodating safety analyses in ARP4761. 

1.3 Organization of the Thesis 

This thesis is structured as follows: Chapter 2 presents the state of the art in MBSE, MBSA, and 

their tools. It also introduces the ARCADIA approach and different MBSA techniques in the 

literature. Chapter 3 shows a modeling approach extending the ARCADIA/Capella logical level 

from one to three. It also involves the enrichment of the Capella system model and the integration 

of FTA. Chapter 4 provides the application of the methodology representing a flap system test 

case. The last chapter, Chapter 5, concludes the thesis by summarizing the main points and 

outlining potential future works.
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2.  State of the Art 

This section introduces Model-Based Systems Engineering (MBSE) and Model-Based Safety 

Assessment (MBSA). It covers the previous studies on bridging MBSE to MBSA and presents a 

gap analysis. 

2.1 Model-Based Systems Engineering  

The traditional approach, document-based systems engineering, establishes the development of a 

system by managing the documentation of requirements, design, analysis, verification, and 

validation activities [18]. On the other hand, MBSE shifts the focus to developing models of the 

system of interest (SoI) [19]. Since the introduction of modeling methods to systems engineering, 

utilizing MBSE for complex systems engineering has gathered attention from industries building 

complex systems because it provides models that can store information on the system’s functions, 

requirements, architecture, and behavior [20], [21]. Also, The International Council on Systems 

Engineering (INCOSE) decided that MBSE is a central element in the primary vision for 2025 

[22]. 

Model-based approaches to systems engineering ensure better communication by providing all 

stakeholders with a systematic examination of the system model [23]. Design teams communicate 

using the same modeling language to develop a system model. Thus, productivity increases with 

the quality while the risk associated with the development is reduced [24], [25], [26]. Since the 

modeling languages follow the traditional document-centric process, they support validation and 

verification efforts throughout the lifecycle of a project [21]. Also, MBSE helps the development 

process standardized by storing the model and its elements in a common model repository [27]. 

Since MBSE provides a systematic modeling approach, systems with advanced technologies and 

high complexity are the main targets of MBSE. Adopting MBSE is becoming more common due 

to its help in the ability to understand problems related to the design process, hence increasing the 

efficiency of the development process [28]. The MBSE approach is applied by many companies 

developing complex systems, such as NASA on the Europa Project [29], The Jet Propulsion 

Laboratory (JPL) [30], and Boeing [31]. In addition, surveys in [32] and [33] indicate that the 

usage of MBSE has increased both in government operations and industry. Consequently, 

numerous disciplines and domains are adopting MBSE to develop highly complex systems. 

Moving to applications of MBSE on the aircraft systems architecture, which is aligned with the 

scope of the study, a study by Liscouët-Hanke and Jeyaraj uses MBSE to represent system 

architectures in conceptual design [34]. An application of MBSE to a test case study, flight control 

systems, similar to the case presented in this thesis, is shown by Jeyaraj [35]. Likewise, Liscouët-

Hanke et al. developed an MBSE approach for test rig architectures of flight control systems [36]. 

Mathew et al. [37] and Tabesh [38] presented different MBSE approaches for developing and 

supporting the system architecture on integrated modular avionics and early aircraft design stages, 

respectively. 

The study presented in this thesis continues the work done by Tabesh [38] by extending the scope 

to FTA from FHA. Tabesh proposes an alternative method that adopts a different approach from 

this thesis to capture failure relationships within the system model. Tabesh utilizes the FHA 

outcomes by identifying the failure conditions of a function and specifying the impacted functions 

in the properties created by a Capella add-on.  
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Overall, the use of MBSE is increasing to address the challenges faced in system architecting for 

complex systems due to its capabilities of storing information and providing different viewpoints 

for stakeholders [20], [21]. Compared to the traditional document-centric systems engineering 

approach, MBSE offers traceability throughout the development process, easy-to-manage 

requirements, and architectures [39]. The system models created with MBSE frameworks provide 

a single source of truth for all engineers and, as a result, achieve an increased coherency between 

different disciplines [40]. 

2.1.1 MBSE Methods and Languages 

Different MBSE approaches aim to solve the problems that document-based systems engineering 

brings. They can be methods, tools, or processes to support systems engineering discipline [12]. 

There are frameworks designed to address specific problems for particular systems, such as 

Modeling and Analysis of Real-time and Embedded (MARTE) for software and hardware systems 

or Unified Profile for the USA Department of Defense Architecture Framework and the UK 

Ministry of Defence Architecture Framework DoDAF/MODAF (UPDM) [41], [42]. There are also 

methodologies for mapping specifications between domains that help make models compatible in 

different environments [43].  

Numerous modeling frameworks and languages exist to build and share models. MBSE utilizes 

two main model types: descriptive and analytical models [44]. While descriptive models describe 

a system's logical relationships, interfaces, and functions, analytical models explain mathematical 

relationships in a system. On the other hand, a system model that provides a cohesive system 

representation can be a hybrid model of descriptive and analytical models [44]. Another method 

to implement MBSE is the modeling tools and languages to create the mentioned models. 

Modeling languages and methods are considered to be enablers of MBSE [25]. The most common 

MBSE enablers are UML, System Modelling Language (SysML), and ARCADIA/Capella [45], 

[18]. UML visualizes complex software structures by designing and documenting their elements 

with diagrams. It is an object-oriented language focusing primarily on software development, but 

its models can address the complexity of the systems for systems engineering. Therefore, SysML 

was created by extending UML 2 for system engineering applications [25], [46]. Although these 

languages aim to develop complex systems, they can be structured differently. ARCADIA/Capella 

supports functional analysis by implementing requirements for functions and functional flows 

[47], while SysML and UML are structured with activity diagrams with no functional hierarchy 

[48]. 

The methods, tools, and processes must be collaboratively used to enable MBSE [49]. Therefore, 

a great endeavor is required to implement MBSE, especially in the aerospace industry, where novel 

technologies bring high complexity to systems. Consequently, ARP4754, a system engineering 

recommended practice by the aerospace industry, addresses the complexity of aircraft systems 

[11]. Engineers should select which MBSE environment to use for a project, considering the 

application of the principles outlined in ARP4754 and the complexity of the system they are 

working on.  This thesis chooses Thales's ARCADIA approach and the associated Capella tool to 

implement the MBSE framework [47]. Therefore, the next section is centered around 

ARCADIA/Capella. 
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2.1.2 ARCADIA/Capella 

Functional analysis and safety assessment are essential, as ARP4754 suggests, for developing 

complex systems. ARCADIA/Capella helps integrate requirements for functions and functional 

exchanges to enable functional analysis, unlike other methods [48], [50]. In addition, creating a 

functional structure by defining functions and exchanges is the first activity in ARCADIA/Capella, 

followed by allocating them to structural components [51]. On the other hand, in SysML, structural 

blocks are utilized to show functions, resulting in no significant difference between the functions 

and structural components, unlike ARCADIA/Capella. 

 

Figure 2.1 - ARCADIA Viewpoint-Driven Approach from [52] 

Figure 2.1 shows that the ARCADIA/Capella has four different architectural levels. System 

specification is created by following the process along with allocating the requirements to system 

elements. Chapter 3 – Methodology section of the thesis presents a more elaborate explanation of 

these levels. A brief description of each level is as follows [53]:  

• Operational analysis (OA) is the level where outer entities (named as actors in Capella) 

that have interactions with the SoI are defined. 

• System analysis (SA) defines what the system has to accomplish for the outer entities, such 

as users and actors. 
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• Logical architecture (LA) outlines how the system works to achieve the expected 

performance. 

• Physical architecture (PA) defines how the system develops and should be built. 

By accommodating the four-level ARCADIA approach, the customer needs are kept consistent 

with the system specifications since the requirements are shared at each level with specific systems 

and components.  

2.2 Model-based Safety Assessment 

Like MBSE, MBSA has seen interest gradually increase from industry and academia [54], [55], 

[56]. The notable languages developed by academia for MBSA are AltaRica [57], [58], [59], 

Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS) [60], and the 

Architecture Analysis and Design Language (AADL) [61], [62]. T. Prosvirnova et al. present 

AltaRica 3.0, the newest version of AltaRica, to express traditional risk modeling methods such as 

fault trees and Markov chains [16].  Improvement of Safety Activities on Aeronautical Complex 

System (ISAAC) utilized MBSA tools such as AltaRica to support safety assessments [63]. In 

addition, the most updated revision of ARP4761, 2023, presents an appendix for MBSA, where an 

overview of the concepts and processes associated with performing a safety analysis using MBSA 

is presented. 

MBSA is an approach that depicts a system's architecture and functional design. Its primary goal 

is to define how the system behaves in case of failures [64]. Unlike traditional safety analysis 

methods, the MBSA method is based on a common model (an extension of a system model or two 

models —  a system model and a safety model transformed from it —  [65]) in which system 

development and safety assessment efforts transpire simultaneously. This is due to the 

disadvantages of traditional safety analysis approaches in the following: 

First, safety engineers use a system model to obtain safety information. Due to the evolving nature 

of the system model, the information exported from the model can become obsolete in time [66]. 

Second, if the system design is complete before the safety assessments, there is no further 

timeframe to change the design with the results of the analyses [67]. These problems can lead to 

late design changes with sharp cost increases [68]. Also, the most common safety analysis 

methods, such as FTA and FMEA, depend on the experience of the safety engineers and are thus 

prone to error and time-consuming [69]. Accommodating a common model, therefore utilizing 

MBSA, enabling system and safety engineers to work together on a system model with safety 

information, tackles these drawbacks of the traditional safety methods. 

There are two classifications of MBSA methods. One depends on the system model and the other 

on the component interactions [65]. Standalone and extended models differ in system model 

[56],[65]. Previously mentioned common models that capture safety and systems engineering 

activities are used only to extract system structure or integrate safety artifacts into the system 

model. Therefore, standalone models require a transformation of the system model to be used for 

the MBSA tools. Thus, utilizing already developed and improved safety languages, methods, and 

tools after the transition takes place is one of the key advantages of the standalone models. 

Several researchers have studied standalone models. For instance, Yakymets et al. [70] created the 

Safety Modelling Framework for Fault Tree Generation (SMF-FTA). The framework transforms 

the SysML system model into AltaRica language and then integrates safety information back into 

SysML. It provides a verification algorithm to detect any errors in the transformation. After the 
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transformation, AltaRica’s tools can be used for safety analysis. Another study [71] developed an 

algorithm for extensible markup language (XML) to analyze the system model and transform the 

model into the AltaRica language. Their method creates preliminary FMEA reports automatically 

with the help of AltaRica. 

Extended models, on the other hand, aim to expand the MBSE environment to accommodate safety 

analysis without the need to create a separate model. MBSE tools can enable safety assessment 

within themselves via tool extensions for safety by adding safety artifacts into the system model. 

An approach named SafeSysE is presented in [72]. The method introduces new attributes to store 

several safety artifacts. Then, the system model is exported as XML metadata interchange to a 

specific Python tool built for reading this data. Lastly, the tool runs FTAs and FMEAs. Also, Helle 

extends the MBSE environment, SysML [73]. The study illustrates failure cases as SysML Use 

Cases. It uses IBM Rhapsody, allowing the use of Rhapsody API to construct a program to extract 

the failure case data. Then, the program can calculate failure rates for different failure cases. 

The other classification of MBSA methods depends on component interaction construction. Failure 

logic modeling (FLM), failure effects modeling (FEM), and fault injection modeling (FIM) are the 

main examples that fall under this classification. FLM models are written in a traditional FTA 

approach where the exchanges between components are defined with failure modes only. In FLM, 

if a component has a failure occurring, it generates a specific failure mode for another component 

that has interactions with it. On the other hand, the FEM approach involves the construction of a 

simplified model of the system where the component exchanges are captured in terms of flow 

characteristics (energy and/or information) with boolean values. While standalone models are 

constructed with FLM and FEM (e.g., AltaRica [16] and HipHops[74]), FIM supports the extended 

models. FIM helps safety analysts determine failures that result in safety requirements not being 

met [54]. FIM achieves this by configuring the elements of the extended models for specific 

failures so that the components present erroneous exchanges at the concerned areas or interfaces 

in the extended models. FIM has been utilized in several safety assessment studies by Bozzano et 

al. [75]. This modeling method provides a coherence advantage with the system model compared 

to other techniques. However, it relies on the skills of the safety engineer to build extended models. 

Also, FIM has limitations on the capability of handling time-dependent faults that are seen in many 

aircraft component failures. 

While extended models allow system architecting and safety analysis in one unified environment, 

MBSE tool add-ons for safety analysis must be built. On the contrary, standalone models require 

effort to be transformed from system models, but they use existing safety analysis tools.  

2.3 Safety Modelling Tools, Languages and Methods 

This section presents several MBSA modeling tools, languages, and methods available developed 

by academia and industry.  

Safety Architect is an MBSA tool developed by ALL4TEC to assess system architectures in 

various industries [76]. It can use functional or physical system architectures built in SysML or 

Capella to run local Failure Modes, Effects, and Criticality Analysis (FMECA). For the failure 

cases identified, it automatically runs FTA [77]. First, the user must import a system model into 

the environment to perform a local analysis. The local analysis allows users to link the failure 

modes of different blocks of the model with their inputs and outputs. Along with the local analysis, 

users are expected to add safety barriers that prevent feared events from occurring. After these 
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steps, the failure modes for selected feared events must be specified. Finally, the user requests the 

tool to run an overall analysis. Safety Architect then runs an automatic analysis that spreads the 

failure modes to the system and traces their combinations, resulting in the feared event. This results 

in an enriched system model consisting of assumptions made in the local analysis, a summary of 

the results attained in the overall analysis, and a fault-tree visualization [78]. 

AltaRica 3.0 is a constraint automata language designed at the Computer Science Laboratory of 

the University of Bordeaux (LaBRI) and used for safety analysis [79], [80]. It is an event-driven 

complex systems modeling based on Guarded Transition Systems (GTS). AltaRica models consist 

of component hierarchies that capture GTS. The main principle of AltaRica is a set of rules that 

translate (flattening in AltaRica) component hierarchies, called boxes, to a GTS [81].  The tool 

consists of component notions called nodes. Each node is defined with several flow and state 

variables and events. While events trigger transitions between different states on the automata 

modeled by the state variables, flow variables are interfaces of the nodes, defining inputs and 

outputs [65], [82]. More information on Altarica and its main principles, with an overview of GTS, 

is presented in section 3.2. 

The Architecture Analysis and Design Language (AADL) is a language extended from MetaH 

developed by Binns et al. [83], [84]. SAE standardized AADL as an architectural description 

language for analyzing embedded software [85]. AADL is tailored to support architectures and 

software patterns for distributed processor platforms with hybrid automata [86]. It consists of 

specific structures for designing embedded software. Its syntax includes components such as 

software subprograms, hardware processors, memory, bus, etc [85]. 

HiP-HOPS is a method that enables integrated assessment of complex systems by analyzing the 

failure behavior of components through utilizing interface-focused-FMEA (IF-FMEA), a modified 

version of classical FMEA [87]. Applying this method results in a table providing a list of failure 

modes for components. The failure modes can be observed from the outputs of the components. 

The approach then captures the causes of output failures as combinations of internal failures, 

component malfunctions, or input deviations. The final stage of the analysis is determining the 

structure of the fault propagation process in the system. This is done by examining the functional 

failures identified in functional failure analysis and their combinations arising from component 

failure modes identified in the IF-FMEAs. Eventually, analyzing the expressions in the IF-FMEAs 

generates an FTA [87], [88]. 

2.4 Summary and Gap Analysis 

According to the literature, MBSE and MBSA are promising solutions to tackle the problems that 

complex systems bring and to increase the efficiency of development and safety assessment 

processes. However, there are several issues exist due to the separation of environments in which 

systems engineers and safety engineers operate. Systems engineers typically work in an MBSE 

environment, such as Capella, while safety engineers work in an MBSA environment, such as 

AltaRica. This separation results in several challenges: there can be delays between analyses, 

leading to the system model being outdated by the time the safety analysis is performed. 

Additionally, errors can occur during the transmission of data between these environments, 

potentially compromising the integrity of the analyses. Also, the lack of synchronization between 

the system models and safety models can create inconsistencies that undermine the effectiveness 

of both MBSE and MBSA.  
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Several researchers have addressed these challenges by using either so-called extended or 

standalone models for MBSA. Extended models have the benefit of accommodating system design 

and safety analysis in the same environment. However, standalone model approaches use the 

capabilities of the existing tools to the maximum since system architecting and safety assessment 

are performed in their own environments. 

A third way is integrating safety artifacts into the MBSE environment that can enable MBSA and 

reduce the above-mentioned challenges. Few researchers have investigated this option; this thesis 

will explore this avenue. 

Regarding the scope of MBSA, most of the research focuses on the FHA, fewer work on the 

various subsequent stages. As previous work in the Aircraft Systems Lab addressed the FHA [38], 

this thesis will build on this prior work and focus on the FTA.  

In summary, the analysis presented in this section identifies several gaps in the current 

methodologies for system architecture specification and safety analysis integration: 

➢ Lack of Integration of Safety Properties: The current methodologies lack the capability to 

perform safety analyses based on the information stored in an MBSE environment. This 

gap highlights the need for developing methods to incorporate safety artifacts directly into 

the MBSE framework, enabling the conduction of safety assessments. 

➢ Modeling Methodologies for ARP4754 and ARP4761: Existing modeling methodologies 

do not fully capture the aircraft development processes outlined in ARP4754 while also 

accommodating the safety analyses specified in ARP4761. This represents a gap in creating 

comprehensive models that address both system architecture and safety requirements 

effectively. 

➢ The transition between Capella and AltaRica: There is insufficient research on the 

transition between the Capella MBSE tool and the AltaRica safety modeling tool. This gap 

indicates a need to explore methodologies for the transition between these tools. 

To address these gaps, the primary research question guiding this thesis is: How can MBSE be 

enhanced to support FTA and enable MBSA in complex system architectures? 

The objectives of this research are: 

➢ To develop a system model using ARCADIA/Capella to enable hosting various safety 

properties. 

➢ To integrate safety properties into system models using Capella's PVMT add-on. 

➢ To create standalone safety models in AltaRica 3.0 with the information stored in the 

Capella system model for performing FTAs. 

➢ Validate the methodology’s effectiveness through a flap system case study.
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3. Methodology 

This chapter introduces the methodology that aims to enable MBSA by introducing several 

enhancements to the MBSE environment. The methodology is based on an iterative process. This 

chapter presents a methodology overview by illustrating a mapping between safety assessment, 

aircraft development process, and system architecting in Capella, followed by an introduction to 

safety analysis with AltaRica. The next topics discussed in this chapter are system model 

development with Capella and safety artifact integration. Finally, the chapter ends with a summary 

of the methodology. 

3.1 Methodology Overview 

This section outlines the iterative approach utilized in this research to incorporate safety analysis 

into the system development lifecycle. Each iteration plays a role in improving and enhancing the 

system model. The iterative steps aim to reflect the connection between the system and the safety 

model. While developing the aircraft, these two models continuously provide input to each other 

to finalize system design and reach the safety objectives. The system model provides system 

architecture and safety properties to the safety model; the safety model outputs drive the system 

design decisions in a safety context. 

The process depicted in Figure 3.1 starts with creating a test case architecture. Next, a Capella 

system model is developed based on the test case architecture, marking the first stage of 

development. However, the initial Capella model is representative of a typical system architecture 

specification model, not particularly tailored for safety assessment. 

 

Figure 3.1 - Process to Obtain the Methodology 

In the first iteration, an AltaRica safety model is developed alongside the Capella system model 

but with limited information, leading to qualitative and quantitative safety analyses that present 

failure rates with orders of magnitude only. The system and safety models are built, taking the test 

case architecture as a baseline. Hence, the initial process involves identifying safety elements for 

integration into the Capella system model, laying the groundwork for future safety integration 

efforts.  
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The next iteration has a more detailed system model following the development process depicted 

in Figure 3.2. Understanding the mapping between safety assessment, development, and 

ARCADIA/Capella process is vital for the next steps of the methods, especially additional logical 

architecture levels created in Capella. 

In the first stage of the development process, which is aircraft function and requirement 

development, the functions are developed with the requirements as well as the experience and 

knowledge of the engineers on the system developed. The created functions define the capabilities 

of the aircraft. Here, the first iteration of AFHA and aircraft FTAs takes place.  

 

In the next step, numbered 4.3 in Figure 3.2, the Development of Aircraft Architecture and 

Allocation of Aircraft Functions to Systems, system engineers break down these functions to obtain 

parent and subfunctions and define the functional exchanges. This step involves defining actors 

that are entities interacting with the SoI and allocating the functions to every system and actor. 

Breaking systems into subsystems corresponding to the logical architecture level in Capella is one 

of the main activities done here. 

 

The Development of System Requirements stage is the step in which system engineers shape the 

architecture of the systems with the matured functions and their allocations. The SFHA is being 

done at this level with the system functions provided by the architecture. Also, the interactions and 

interfaces between different systems are defined, making early validation and verification possible.  
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Figure 3.2 - ARP Safety Assessment Process Model Mapping to ARCADIA adapted from [11] 

The Development of System Architecture and Allocation of System Requirements to Items is the 

stage where system engineers finalize the architecture by capturing and allocating requirements to 

the systems, components, and functions. The allocated requirements cover various topics, such as 

safety and performance. Safety engineers run system-level FTAs at this level with required inputs 

obtained from the matured system architecture. Depending on the results of the FTAs, the process 

can be iterative until the safety and reliability requirements are met.  

The last stages of the development process do not fall under the scope of this thesis because the 

main activities done here are implementation and integration. It is the stage where a transition 

occurs from a higher (system) to a lower (item and component) engineering level. Safety engineers 

perform FTAs with real test data in the SSA for verification. 
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To accommodate system FTAs in the corresponding stage of the development process presented 

in Figure 3.2, the logical architecture in the Capella/ARCADIA approach is organized into three 

levels - L0, L1, and L2 - representing various stages of aircraft development, adapted from [38]. 

The three different logical levels are discussed in section 3.3. 

3.2 Introduction to Safety Analysis with AltaRica 

AltaRica is a modeling language designed for safety, reliability, and performance analysis. It is a 

tool for Model-Based Safety Analysis. It allows engineers to represent complex, modular, and 

dynamic systems, capturing the interface of components, events, and states. AltaRica is a safety 

tool that enables failure propagation modeling (FPM) [89]. 

The FPM depicts the system architecture with the dysfunctional behavior of the systems and 

components. The safety model created with FPM should illustrate both the design of the system 

and its failure characteristics from a safety perspective, as well as consider factors such as design 

maturity and assumptions about failure independence [64]. 

The foundation of AltaRica's modeling approach is the concept of Guarded Transition Systems 

(GTS) [64]. GTS provides a formal framework for representing system behaviors, transitions, and 

states. It captures a system's operation by outlining various transitions, each distinguished by 

particular conditions, actions, and events [90]. Thus, GTS enables the modeling of systems' 

dysfunctional behavior. 

The representation of a repairable component that can take two different states in a guarded 

transition system can be indicated in Figure 3.3. Assume that it can be either WORKING or 

FAILED. In the initial state, the component works, meaning it prints output as true. When an event 

failure occurs, the state of the component changes to FAILED, and the output of the component 

becomes false. Similarly, the event repair makes the state variable transition from FAILED to 

WORKING. The events of failure and repair are executable with specific rates: λ and μ. 

Components in this thesis, however, have only one event, which is ‘failure’.  

 

Figure 3.3 - Guarded Transition Systems Representation of a Repairable Component 
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A component named lever is depicted in Figure 3.4. The variable s represents the state of the 

component lever. It takes its value, which is WORKING or FAILED, from the domain 

ComponentState. The attribute init gives its initial value and is equal to WORKING. Its value is 

modified by the transition labeled by the event failure. When the event failure occurs, the state's 

value changes to FAILED, and then the flow variable values are updated. 

The flow variables represent the inputs and outputs of a component and are named “input” and 

“output” in the examples provided in Figures 3.3 and 3.4. The attribute reset sets the initial value 

for the flow variables. Attribute boolean makes the flow variables have true or false values. The 

attribute of the flow variables depends on the state variables and can only be edited in the assertion 

section. The assertions set the way for how flow variables work in different conditions. Here, the 

assertion dictates that the output is true if the state s equals WORKING and an input comes to the 

component. The output value becomes false if the state “s” variable equals FAILED or no input 

comes to the component. 

3.2.1 Fault Tree Analysis with MBSA 

A fault tree is a graphical representation used in safety engineering to analyze the potential causes 

of system failures. Fault trees provide a structured approach to assess various events that could 

lead to a specific undesirable outcome, known as the top event. Events are connected to each other 

by gates. While the events connected by an “AND” gate must occur simultaneously, the “OR” gate 

states that one of the events would lead to the failure of the event above. The decision to primarily 

use “AND” and “OR” gates in this thesis is based on the need for simplicity in modeling the failure 

logic. While other types of gates (e.g., XOR, NOT, NAND) exist, they might introduce additional 

complexity that is not necessary for the scope of this study.  

In the fault tree illustrated in Figure 3.5, the top event, Loss of a Function, represents the 

undesirable outcome being analyzed. Connected to this top event is a basic event, Sensor 

Malfunction, indicating one potential cause of the system failure with a failure rate of 1.00e-05. 

The failure rates for the components in this thesis are modeled using an exponential failure 

distribution. This approach assumes a constant failure rate over time, which simplifies the analysis. 

Although other distributions, such as the Weibull distribution, can provide more detail by 

accounting for varying failure rates over time, they require additional parameters (such as mean, 

standard deviation, shape and scale parameters, etc.) that are difficult to access in the literature for 

the components presented in the test case. 

class Lever 

 ComponentState s (init = WORKING); 

 parameter Real mu = 0.000002753; 

 event failure ( delay = exponential ( mu )); 

 transition 

  failure : s == WORKING -> s := FAILED; 

 Boolean input , output1, output2 ( reset = false ); 

 assertion 

  output1 := s == WORKING and input; 

  output2 := s == WORKING and input; 

end 

Figure 3.4 – An Example of a Component defined in AltaRica 3.0 
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The triangles attached below, in Figure 3.5, denote that the fault tree structure continues beyond 

the scope of this diagram. All branches must lead to basic events with failure rates to calculate the 

probabilities of failures for intermediate events and, ultimately, the top event. 

 

Figure 3.5 - A Simple Example of a Fault Tree (image extracted from Arbre Analyst) 

As described in ARP4761, functions are associated with specific failure conditions after an FHA 

process, and their effects are delineated. These identified functions are the cornerstone of FTA, 

providing a starting point for analyzing failures since they are the top event functions for FTA. 

Once the top event for the FTA is identified, the next task is to establish the intermediate events 

that will form the pillars of the fault trees. These intermediate events are the indicators of potential 

failure modes or conditions that contribute to the occurrence of the top event. Depending on the 

level of detail available in the system model, the intermediate events may vary in complexity and 

granularity.  

The first step for performing FTAs is to select a failure scenario and the top event for this specific 

failure case. System architecture layouts all functions, including the top events with failure 

conditions as a result of FHA. However, there needs to be a transition of the top events between 

system and safety models. This transformation is achieved through observers, which track the 

system's behavior and record specific events or conditions in AltaRica safety models. Observers 

operate like flow variables but have some differences: they cannot be employed in transitions and 

assertions to define the system's behavior, instead serving as quantities for observation. They are 

regularly updated after each transition executed, offering insight into the system's state and 

enabling dynamic monitoring of events or conditions. The top events for fault tree analysis are 

specified via the observers, allowing for identifying critical failure scenarios within the system. 

Additionally, several observers can be defined for the same AltaRica 3.0 model, enabling the 

generation of multiple fault trees from a single model. This flexibility ensures that various failure 

scenarios and their associated top events can be analyzed within the safety model. 



18 

 

3.2.2 Inputs and Outputs of MBSA 

After presenting the principles of AltaRica, the next step is discussing what elements are needed 

to run safety analyses and what is expected for the outcome. By delineating these elements, there 

will be a clear picture of what kind of enhancements need to be made to the system model. 

ARP4761A states that MBSA utilizes inputs and outputs comparable to conventional safety 

analysis methods. The specific inputs and outputs needed depend on the analysis type and the detail 

level. Minimal cutsets are one type of output of FTAs and are a group of sets consisting of the 

smallest combinations of basic events that result in the occurrence of the top event. They represent 

all the ways in which the top event occurs based on the basic events. For example, conducting a 

traditional FTA would necessitate FHA failure conditions for analysis and anticipate minimal 

cutsets and failure probabilities in return. Therefore, it can be concluded t hat conducting an FTA 

in an MBSE environment entails similar components. 

Also, the type of analysis performed with FPM sets the boundaries of the FPM and the inputs and 

outputs of MBSA [64]. Figure 3.6 shows the inputs and outputs of the safety models created in this 

thesis. Capella, as an MBSE tool, provides the system requirements and architecture. However, 

the Capella system model is enhanced to provide other input elements as well. An FPM block 

consists of events, states, and transfer functions. The FPM drives failure condition observers with 

its flow and state variables and outputs minimal cutsets and failure probabilities for FTA with the 

assumptions presented in this thesis, as seen in Figure 3.6. 

 

Figure 3.6 - Safety Model Inputs and Outputs Tailored for the Test Case FTA adapted from 

ARP4761  

On the other hand, safety model elements have defined objects to work. The components in an 

MBSA environment need the information of inputs, outputs, events, states, and transfer functions. 

[64]. GTS's quintuple notation (V, E, T, A, I) illustrates a system’s dynamics and what needs to be 

defined to create components in an AltaRica safety model. 

• V (Variables): Variables are categorized into state variables (S) and flow variables (F). State 

variables encapsulate the system's current state, while flow variables represent dynamic 

interactions or events. 
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• E (Events): Events are symbols denoting occurrences that trigger transitions within the 

system. These events define the dynamics and state changes of the system. 

• T (Transitions): Transitions represent the system's evolution. Each transition is a triplet 

comprising an event, a guard, and an action. 

• A (Assertions): Assertions are instructions built on variables of V. They are actions that 

occur after a transition. They express the consequences of the transition. 

• I (Initial Assignment): The initial assignment defines the system's starting state, providing 

a foundation for subsequent transitions. 

Capturing the elements of the GTS notation for each component in a system enables building a 

safety model. The class presented in Figure 3.4 has all quintuple notations defined. Thus, the 

relevancy and importance of each element can be understood by referring to the explanation of the 

figure. Transfer functions defined in the ARP4761 share the same functionality with the assertion 

section of AltaRica, determining the output based on a component's inputs and states.  Table 3.1 

depicts the namings of MBSA elements stated in ARP4761 and GTS of AltaRica. This thesis 

denominates MBSA artifacts using both sources interchangeably.  

Table 3.1 - Matching Elements of GTS and an ARP4761 MBSA Model 

ARP4761 GTS 

Inputs, outputs Flow variables 

States State variables 

Events Events 

Transfer functions Assertions 

 

3.3 System Model Development with Capella 

This section provides information on the selection of the MBSE environment, explains different 

levels of ARCADIA in subsections, and emphasizes the extended logical levels of Capella. 

This thesis utilizes ARCADIA/Capella for the following reasons: 

1. While ARCADIA is the method to define system architecture, Capella is the language to 

apply the ARCADIA approach. Many languages and tools for modeling come without a 

method of modeling, unlike Capella.  

2. ARCADIA/Capella is that it shifts the focus from the modeling languages to the method 

and its procedure. Therefore, systems engineers are not expected to be experts in the 

modeling language. 

3. ARCADIA/Capella is an open-source solution used in aerospace domains by Thales and is 

being evaluated by Bombardier, the industrial partner of the thesis. 

Capella/ARCADIA has four different levels of system development: Operational Analysis, System 

Analysis, Logical Architecture, and Physical Architecture. Since the Operational Analysis level 

defines high-level interactions among entities and actors and captures the operational needs of 

stakeholders [91], it does not fall under the scope of this thesis. Instead, this thesis focuses on the 

Logical Architecture level more because this stage covers the system and system architecture 

development, as Figure 3.2 shows.  
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The modeling in the thesis follows a top-down approach in compliance with the ARP4754. The 

following subsections explain each Capella stage in order. 

3.3.1 System Analysis 

SA is the starting phase involving the decomposition and analysis of the system architecture to 

ensure that it meets the specified requirements [53]. The SA level is fundamental for understanding 

the system's structure, behavior, and interactions. Breaking down the system into manageable 

components for in-depth analysis helps engineers to understand and create logic. The main 

activities at this level are identifying and defining system functions, allocating functions to systems 

and components, identifying systems interacting with the system of interest, and defining 

interactions between systems and actors [47]. 

Figure 3.7 captures the main activities of the SA process by illustrating the structural organization 

and functional relationships within the system architecture. The system of interest, which 

represents the focus of the development, is located at the center of the design. System actors 

represent external entities interacting with the system of interest and among themselves. Each 

function in the design captures a distinct aspect of system functionality, contributing to the overall 

capabilities and objectives of the system. Moreover, functional exchanges between functions 

signify the flow of information and interactions within the system architecture. These exchanges 

represent the relationships between different systems, subsystems, and actors. 

 

Figure 3.7 - Sample of a System Architecture Diagram in Capella 

In the safety assessment process, SA-level functions correspond to aircraft-level functions 

analyzed in AFHA. The outputs of AFHA (failure conditions, effects, and classifications) support 

generating functions and requirements for the next steps of development. 

3.3.2 Logical Architecture 

Following a top-down approach, the next analysis step is the logical architecture level, where how 

the system works to fulfill expectations is defined, and a more detailed exploration of the system's 

architectural elements takes place [47], [52]. Continuing the development from the system analysis 

drives system engineers to refine the system elements. The refinement not only includes the 

components, functions, and their exchanges but also defines logical subsystems and components. 

Therefore, this stage must establish the system's internal organization, interfaces, and interactions 

and develop its logical structure. Like the system analysis stage, the logical architecture level helps 

comprehend and form the system's design. However, here, the focus switches to outlining the 

logical parts and subsystems of the system architecture. 
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The level of detail of the system elements is more refined in the logical architecture diagram 

compared to the system analysis level. The refinement that takes place in Figure 3.8 achieves the 

objectives of the logical architecture level. Function 5 in SA 3 has been decomposed into 

SubFunction 5.1 and SubFunction 5.2. Similarly, Function 1 now becomes a parent function, 

meaning a combination of its subfunctions achieves the same functionality.  The decomposition of 

Function 1 is done by three subfunctions, SubFunction 1.1, SubFunction 1.2, and SubFunction 1.3,  

and they are allocated to a newly defined Logical Subsystem 1. This decomposition reflects a more 

granular architecture. 

 

Figure 3.8 - Sample of a Logical Architecture Diagram in Capella 

Furthermore, Function 2 and Function 3, located in the system of interest in the system analysis, 

have now been allocated to a newly defined Logical Subsystem 2. The allocation signifies the 

establishment of logical subsystems for capturing related functions and components. Thus 

enhancing modularity within the system architecture. 

A similar refinement takes place in functional exchanges. The exchange from Function 4 to 

Function 3, previously labeled FunctionalExchange 2, has been elaborated into 

DetailedFunctionalExchange, reflecting a more detailed exchange specification. Additionally, the 

functional exchange from Function 1 to Function 2 is broken down into two different exchanges 

to reflect the decomposition of Function 1 into its subfunctions. FunctionalExchange 4 and 

FunctionalExchange 3 together in the logical architecture satisfy the interaction between Function 

1 and Function 2 in the system analysis. 

3.3.3 Physical Architecture 

In the context of aircraft development, the physical architecture level represents the stage where 

the system's logical design transforms into physical components. The level defines how the system 

should be built and developed. The emphasis on the physical architecture level is limited in the 

thesis. This is due to aircraft manufacturers outsourcing physical components' design and 

development efforts to specialized supplier companies.  Supplier companies are tasked with 

translating the functional and performance requirements outlined by the aircraft manufacturer into 

viable design solutions based on the physical architecture. In this way, aircraft manufacturers 

leverage the expertise of external suppliers in component design. 

Therefore, the physical architecture level in this thesis corresponds to the implementation efforts 

in the development process and the System Safety Assessment (SSA) in the safety assessment 
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process. The physical architecture phase should capture SEE, FMEA, and FMES that are out of 

the scope of the thesis.  

Figure 3.9 illustrates the PA-level architecture diagram that is the continuation of the LA in Figure 

3.8. The System of Interest in Figure 3.8 goes under a physical implementation phase in PA. As a 

result, physical components form the system by carrying the functions from LA to PA. 

SubFunction 1.3 in Figure 3.8 becomes a parent function with two subfunctions in the PA level, 

which are Physical Function 1 and Physical Function 2. FunctionalExchange 3 is captured in the 

PA level by allocating it between Physical Function 2 and Function 2. Component 1 and 

Component 2 form Logical Subsystem 1 and carry the same functional capacities as the logical 

subsystem. The physical implementation of Logical Subsystem 2 is done with Component 3 and 

Component 4. Actors go through a transition from LA to PA and become physical actors in this 

stage.  

In addition, logical components that are transferred from LA to PA become behaviour physical 

components (named Behavior PC in Figure 3.9). While these Behavior PCs are allocated to the 

physical nodes, yellow boxes, that represent the physical implementation of the logical 

components, physical functions are appointed to the Behavior PCs.  

 

Figure 3.9 - Sample of a Physical Architecture Diagram in Capella 

3.3.4 LA and Safety Process Alignment 

This thesis refines the system architecture by extending the LA level to three phases in Figure 3.10 

—L0, L1, and L2. Table 3.2 summarizes the key activities done at each level. The utilization of 

three logical levels helps to facilitate a gradual refinement and specification of the system 

architecture. The three-level approach is a representation of the development in system 

architecture. It also enables capturing essential information necessary for conducting thorough 

safety analyses. The method starts with L0 and ends with L2. Phase L1 captures iterations between 

the other two levels. As the methodology advances to L2, the level of detail achieved approaches 
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that of the physical architecture, reducing the need for extensive focus on the physical architecture 

level in Capella.  

This thesis builds on the method presented by Tabesh [38]. Tabesh proposes an MBSE approach 

for early aircraft design aimed at unconventional architectures such as hybrid aircraft. Therefore, 

it describes a multi-leveling approach to accommodate different technological choices an 

architecture can capture. As the method of Tabesh progresses to L0, it shows a system for SoI and 

other systems interacting with the SoI. Once the level L1 is reached, aircraft-level model 

propagation starts. There are multiple derivative models are created at L1 and they are called as 

System-Logical (Sys-L1).  

While the multi-leveling methodology that Tabesh proposes aims to manage the model variants 

for better accessibility and traceability, in this thesis, the goals are to reflect refinement in the 

aircraft development process and allow performing various safety assessments at each logical level 

to influence the system design. Also, Tabesh integrated FHA artifacts into a Capella system model 

by utilizing PVMT, whereas the methodology of this thesis uses PVMT to integrate safety 

properties for FTA. 

 

Figure 3.10 - Capella Logical Architecture and Safety Analyses Relationship 

At the LA level, systems and functions are decomposed into sub-systems and subfunctions. SFHA 

is being done at this stage, as Figure 3.10 shows. The SFHA focuses on identifying hazards and 

assessing risks precisely with the details available. Each identified hazard and associated function 

is then mapped onto a fault tree, forming the basis for subsequent FTAs. These fault trees begin 

with top-level events derived from the SFHA results. They help to facilitate running different safety 

analyses for various failure scenarios. 

From a safety point of view, each logical level—L0, L1, and L2—serves a distinct purpose in 

enhancing the system architecture while facilitating different types of safety analyses. Beginning 

with L0, this level represents the initial stage where fundamental functions are identified and 

classified as top-level events through the FHAs. L0 is particularly suited for qualitative analysis 
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because it identifies critical functions without going into detailed quantitative data. Also, L0 and 

L1 levels offer quantitative analysis involving component/subsystem failure rates with their orders 

of magnitude instead of precise failure rates. 

Moving to L1, a higher level of refinement is achieved, characterized by increased redundancy 

and availability of failure rate information to some extent. At this stage, the interactions between 

systems are delineated with greater detail. However, the system does not yet have the full 

redundancy information, and there might be missing information on specific component-level 

elements. Thus, L1 remains suitable for qualitative analysis and, at the same time, might be 

offering quantitative analysis for certain failure scenarios. 

Finally, at L2, the system architecture reaches its most detailed and refined state. It encompasses 

all levels of redundancy. All subsystems, functions, functional exchanges, and interfaces are fully 

defined. Due to constant logical subsystem breakdowns along the process, component-level 

information is reached, allowing the storage of failure rate data for each component. L2 is 

particularly well-suited for quantitative analysis because it has detailed information on component-

level system engineering elements. 

Table 3.2 - Key Activities to be done at each Logical Architecture Level 

Logical 

Architecture 

Level 

Key Activities for System Development 

Adapted from [38] 

Key Activities for Safety 

Assessment 

L0 (starting 

point) 

Define logical systems, making a 

transition from system functions to logical 

functions, allocate the functions to logical 

systems. 

Identification of the FTA's top 

events through FHA, 

qualitative FTA to form a fault 

tree structure 

L1 (several 

iterations) 

Define logical subsystems and 

components, breakdown of logical 

functions, allocating the detailed logical 

functions to logical subsystems and 

components. 

Quantitative FTA with both 

precise failure rates and orders 

of magnitude, qualitative FTA 

for fault tree structure and 

minimal cutsets 

L2 (endpoint) 

Define logical components, allocate 

logical components to logical subsystems, 

breakdown of the logical functions, 

allocate the detailed logical functions to 

logical components. 

Quantitative FTA with precise 

failure rates, qualitative FTA for 

minimal cutsets 

 

3.4 Safety Artifact Integration 

This thesis facilitates integrating safety artifacts into the Capella system model by utilizing the 

capabilities of the PVMT addon. PVMT is an extension designed to define specific properties of 

the different system model elements in Capella [92]. Refer to Appendix B to examine a guide on 

how to use PVMT. This thesis uses the PVMT as a bridge to introduce the essential elements of 

the GTS quintuple and the defined inputs of an MBSA model in the ARP4761A document into the 

Capella modeling environment. In the methodology presented, this add-on allows engineers to 

create additional features for the system model components, customize safety properties, and 

attribute values to these properties for individual system elements. 
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Figure 3.11 below shows different safety artifacts embedded into the Capella system model.  The 

SFHA results provide information about the top events of FTA, as previously mentioned. 

Therefore, each logical level, starting with L0, accommodates FTA. The L2 phase involves 

quantitative FTAs that must validate the SFHA. AltaRica helps perform automated FTAs with 

components. Therefore, the logical components of the system model must encompass the safety 

properties. However, the same properties can be added to other system model elements, such as 

functions, exchanges, etc. Hence, the system model can accommodate different safety analyses.  

There are five safety features integrated into Capella by PVMT: Failure rates, state variables, 

transfer functions, flow variables, and functional failure chains. While functional failure chains 

support the safety assessment activities, the other safety properties integrated are necessary to 

perform FTAs according to the latest version of ARP4761A. Also, the safety artifacts integrated, 

except the functional failure chains, fulfill the GTS quintuple that forms the framework of 

AltaRica. The rationales for choosing these safety artifacts to embed into the system model can 

also be examined by referring to sections 3.2 and 3.2.2. 

 

Figure 3.11 - Additional Properties added to a Logical Component in Capella by PVMT 

1. Failure Rates: 

Embedding failure rates is a key objective because it integrates quantitative reliability information 

directly into the system architecture. This integration enables engineers to assess the likelihood of 

component failure by assessing different failure scenarios with FTA to validate FHA. The failure 

rates used in this thesis are expressed in failures per hour (fph). This unit indicates the likelihood 

of a component failing during a one-hour period. For example, a failure rate of 1.00E-05 fph means 

that there is a 0.00001 probability of failure per hour for that component. 

2. State Variables: 

The state variables should indicate all the states a component can take triggered by different events. 

Nominal represents the working state (indicated as WORKING in AltaRica), while loss (indicated 

as FAILED in AltaRica) shows the failed state in the work presented. The event failure triggers the 

change between these states.  

3. Transfer Functions: 
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Integrating assertions, referred to as transfer functions, into the Capella model enhances the 

system's analytical capabilities. By integrating them using AltaRica syntax, engineers can 

effectively define the behavior of components within the system. When engineers specify a 

component's possible states, the system model automatically prompts for corresponding transfer 

functions for each state. For instance, the component in Figure 3.11 has two states, nominal and 

loss, so engineers must define transfer functions for both states in AltaRica syntax. Using the 

AltaRica syntax provides traceability between the safety model and the system architecture since 

there would be uniformity in the language used in both models. The transfer functions of the Flap 

Lever component shown in Figure 3.11 dictate that the component loses its outputs when its state 

variable is loss. Nominal transfer functions state that the outputs are provided by this component 

while there are inputs coming from other components and the state variable is nominal. 

4. Flow Variables: 

Figure 3.12 shows a component exchange in red edited by PVMT to make it a command flow 

variable. Component exchanges are selected to map flow variables in the system model because 

their ports indicate the flow of information between components.  

 

Figure 3.12 - Representation of a Flow Variable, colored in red, in Capella with an edited 

Component Exchange 

Flow variables define the connections between different components in a safety model. Thus, two 

elements are required for definition. To emphasize this, component exchanges are edited by the 

PVMT to show the notion of flow variables. Engineers can modify component exchanges with 

PVMT to change the definition and make them applicable to address the failure connections 

between components. These edited exchanges are colored red, green, and blue to indicate 

command, power, and data connections, respectively. Giving them different color codes 

distinguishes them from the original component exchanges that show interactions between two 

components 

5. Functional Failure Chains: 

The last method to enhance the system model is incorporating functional chains in Capella to 

articulate the failure relationships across different system components. It aims to understand the 

potential impact of component failures on system functionalities by investigating the system 

model's different types of functional exchanges. Regardless of the specific failure mode of a 

selected component to be inspected, the focus remains on understanding which functionality is 
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affected. It is done by investigating the top event function for a particular failure case and its 

associated functional exchanges. 

Figure 3.13 depicts a simple example of a functional chain in Capella. Function 4 has two outgoing 

functional exchanges. The functional chain follows the functions connected to Function 4 and their 

exchanges. The chain ends with reaching functions with no outgoing or incoming exchanges. In 

Figure 3.13, Function 3 and SubFunction 1.1 connects the chain to SubFunction 5.1 and 

SubFunction 5.2. The chain ends with SubFunction 5.1 and SubFunction 5.2 because there is no 

other functional exchange to follow. By creating functional chains in Capella, the exchanges 

among specific functions can be highlighted. Functional chains are used to identify failure 

relationships among functions in this thesis. 

 

Figure 3.13 - Example of a Functional Chain 

For instance, if a control unit fails due to a command-related issue- assuming it is an intermediate 

event in an FTA -the focus shifts to examining the top event function within the system model, 

specifically focusing on the functional exchanges that present command connections. After 

identifying the functions that have command-related functional exchanges with the top event 

function, the same identification must be done for each function. It continues until there are no 

other functional exchanges to inspect. Finally, there is a map of functions with their exchanges to 

represent failure relationships between them for certain failure scenarios. The map identifies the 

functions that might be affected by the control unit failure, including those allocated to the control 

unit component, to understand which functions are lost depending on the failure mode. This 

particular method is built since there is not enough FHA information present for the test case 

presented in the thesis. 

3.5 Methodology Summary 

This chapter has introduced a methodology to enhance model-based system architecting by 

incorporating safety artifacts into the system development lifecycle to run model-based safety 

analyses. The methodology consists of iterative phases, each contributing to the refinement of the 

system model. 

Initially, the methodology focuses on establishing a test case architecture and developing a simple 

Capella system model. Subsequent iterations involve enhancing the system model's specificity and 

detail, integrating safety elements, refining the architecture through logical levels (L0, L1, and 
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L2), and performing safety analysis in AltaRica 3.0, as Figure 3.14 depicts. Overall, the process 

includes creating AltaRica safety models after each logical level and performing FTAs before the 

creation of the next level in the Capella system model. The main steps of the methodology 

implementation are in the following: 

➢ Step 1: The system model development progresses through three levels: System Analysis, 

Logical Architecture, and Physical Architecture. The thesis focuses on the logical 

architecture levels (L0, L1, and L2), which involve defining logical systems, subsystems, 

and components, breakdown and allocation of functions, and refining the architecture to 

facilitate safety analyses. After the development of each level, safety elements are added 

to system components by utilizing PVMT, which is the second step. 

➢ Step 2: The thesis introduces various enhancements to the Capella system model, including 

embedding safety properties, defining functional chains to express failure relationships 

between functions, and modifying component exchanges to show flow variables. The 

integration of safety analysis into the Capella system model is facilitated using the PVMT 

addon. This Capella extension enables engineers to embed essential safety properties into 

system model elements, including failure rates, state variables, assertions, and flow 

variables. This step constitutes the main contribution of the thesis. 

➢ Step 3: AltaRica, a modeling language for MBSA, is utilized to build three safety models 

to run FTAs. The language's guarded transition systems framework enables the formal 

representation of system dynamics and state changes, facilitating safety analysis. The 

creation of the safety models in this environment is possible with the safety information 

stored in Capella using PVMT. The transitions from Capella to AltaRica and from AltaRica 

to automated FTA are manual. The safety properties of Capella are put into classes and 

blocks of the AltaRica safety model; then, to perform automated FTAs, parameters such as 

flight hour and the observers to inspect are selected manually.  

➢ Step 4: FTAs are conducted for each logical level to assess potential safety issues associated 

with the system architecture. For each failure scenario, an observer is defined, enabling 

quantitative and qualitative fault tree analysis in AltaRica 3.0. The fault trees are visualized 

using Arbre Analyst to ease the qualitative analysis. The quantitative assessment at L2 

validates the FHA results. 
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Figure 3.14 - Methodology Implementation Process 

It is important to note that initial assignments, events, and transitions are not integrated into the 

system model due to the scope of the thesis is limited to FTA. The decision to exclude events and 

transitions is based on their dynamic nature, which varies depending on the specific failure 

scenario being analyzed. Different failure cases may trigger different events and transitions within 

the system, making embedding them into the system model impractical. Additionally, since only 

nominal and loss states are considered in the test case analysis, setting every component's initial 

assignment as nominal in the safety model is sufficient. 

The next chapter presents the application of the proposed methodology on a Capella system model 

built on a test case. The process illustrated in Figure 3.1 is followed by a test case integration, 

including different safety models created and conducted FTAs with selected failure scenarios in 

the MBSA environment AltaRica. 
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4. Modeling and Integration 

Building on the foundation established in the previous chapter, the following section takes a 

practical approach by presenting a test case: modeling and integrating a conventional flap system. 

This chapter explains in detail the process of representing a system architecture within the MBSE 

framework, Capella, and creating model-based AltaRica safety models in line with the system 

architecture. The chapter explains the flap system architecture and every enhancement made to the 

system model in detail. 

4.1 Test Case: Flap System 

A flap system is selected as the SoI to build a system model and run safety analyses. Figure 4.1 

illustrates a simple architectural view of the selected flap system. A comprehensive understanding 

of the flap system in aviation is essential before a detailed description. Flaps, which are 

aerodynamic components installed on an aircraft's wings, modify the lift and drag properties of the 

aircraft, especially during takeoff and landing. The test case adapts the flap system of Global 5000, 

an aircraft of the industry partner Bombardier. The selected flap system is an architecture to model 

the system architecture and analyze safety aspects in this thesis. The technological choices of the 

flap system and the components used for these choices to form an architecture are taken from 

Global 5000 [93],[94],[95]. 

For this test case, three failure scenarios were selected to perform FTAs: Annunciated loss of flap 

extension/retraction, unannunciated loss of flap extension/retraction, and flap panel disconnection. 

To develop a complete set of failure scenarios, a comprehensive FHA needs to be conducted. Since 

the FHA is out of the scope of this thesis these failure scenarios were derived by expert 

consultations from Bombardier. Each selected failure scenario is described as follows: 

➢ Annunciated loss of flap extension/retraction: Involves a failure in the flap system that is 

detected and indicated to the flight crew. The annunciation allows the pilots to take 

corrective actions, mitigating potential risks. 

➢ Unannunciated loss of flap extension/retraction: The flap system fails without any 

indication to the pilots. This can lead to a more dangerous situation as the pilots are 

unaware of the malfunction and unable to respond promptly. 

➢ Flap panel disconnection: Involves the physical separation of the flap panel from the wing. 

Such a failure can cause significant aerodynamic issues and pose a severe safety risk due 

to the potential for further structural damage. 

Safety models must include failure rates for each component to perform FTAs. Table 4.1 lists each 

component with failure rates adapted from [96] and [97]. In the case that a precise rate for a 

component cannot be found, the failure rate magnitude of similar components is selected. 

Table 4.1 - Failure Rates for Each Component in the Flap System (per Flight Hour) 

Component Failure Rate 

Flap Lever 2.75E-6 

Control Units 5E-5 

DC Power Source 1E-5 

DC Motor 7.31E-6 

Air Data Computer 5E-7 
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EICAS 1E-5 

Torque Tube 1E-7 

Speed Summing Gear 1.47E-5 

Branch Gear 1.47E-5 

Bevel Gear 1E-7 

Flap Panel 1E-9 

Flap Ballscrew Actuator 1E-5 

Flap Position Sensor 5E-7 

Position Transducer 5E-7 

Wing Tip Brake 5E-5 

 

The redundancy defined for the SoI aims to reduce the risk of single-point failures by incorporating 

multiple components that can take over in case one fails. The system configuration includes a 

Power Drive Unit (PDU) featuring two DC motors powered by electrical sources placed inside it 

[94]. These motors are powered by separate electrical sources within the unit. This means that if 

one motor or its power source fails, the other motor can still operate, ensuring continuous 

functionality of the power drive unit. The system mitigates the risk of a single-point failure because 

the failure of one motor does not lead to the total loss of function.  

The primary components of the test case include Flight Control Units (FCUs), a PDU, a flap lever, 

driveline components, wing tip brakes, flap panels, actuators, flap position sensors and position 

transducers. The primary components of the flap system are described in the following: 

• Flight Control Units (FCUs): The FCUs serve as the central controllers responsible for 

translating commands from the flap lever into physical flap movement. The system 

architecture includes two FCUs. While the presence of two FCUs reduces the risk of total 

system failure, it does not guarantee uninterrupted operation in all scenarios. If one FCU 

fails, the other can take over the control, thereby maintaining system functionality in the 

event of a single FCU failure. However, other factors, such as simultaneous failures or 

failures in interconnected components, can still impact the operation of the system. 

• Power Drive Unit (PDU): The PDU is a distribution hub for the flap system. The DC 

motors, housed within the PDU, are responsible for actuating the flaps by converting 

electrical power into mechanical motion. The PDU integrates a speed summing gear 

mechanism to aggregate the rotational speeds of the individual DC motors, ensuring 

continued system operation even in the event of a single motor or FCU malfunction.  

• Flap Lever: A flap lever is an interface for flight crew members. The flap lever enables 

pilots to adjust the position of the flaps. Commands from the flap lever are relayed to the 

FCUs, initiating flap movement based on pilot inputs. Flap position indicators placed next 

to the lever, as seen in Figure 4.1, provide real-time feedback to flight crew members 

regarding flap angle and deployment status. The flap angle indicator displays the angular 

orientation of the flaps relative to their neutral position, while the position indicators 

announce whether the flaps are retracted or deployed, shown as IN and OUT. 
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Figure 4.1 - Flap System Architecture adapted from publicly available Global 5000 

documentation [94] 

• Driveline: The driveline transmits the power the PDU generates to the actuators to move 

the flap panels. It consists of multiple torque tubes and bevel gears located before the first 

inboard and after the second actuators. The bevel gears adjust the angle of the driveline 

while transmitting power. The driveline includes two types of brakes to ensure safety: 

wing-tip brakes and an asymmetry brake integrated into the PDU. 

o Wing Tip Brakes: Positioned between the middle and outboard panels, wing tip 

brakes serve as a safety measure to halt the driveline's operation. They can interrupt 

the transmission of power from the PDU to the actuators in case of an emergency, 

such as the asymmetric deployment of flaps, or during maintenance work on the 

system. 

o Asymmetry Brake Integrated into the PDU: This brake is designed to arrest the 

complete driveline system in case of a shaft failure or asymmetry, working in 

conjunction with the wing tip brakes to provide safety.  

Two position transducers (sensors) are located at the end of each driveline to monitor the 

alignment of the driveline components. The transducers provide feedback to the flap 

control units on skewing encountered during operation. 

• Flap Actuators: The flap system's architecture includes eight ball-screw actuators, each 

connected to one for outboard or two for inboard flap panels. These actuators are 

responsible for deploying or retracting the flap panels in response to commands from the 

FCUs. The distribution of actuators per flap panel reflects a standard configuration 

employed in many aircraft, including Global 5000, with the inboard flap panels typically 

actuated by two actuators due to their higher load requirements than the outboard panels. 

Also, flap position sensors are located next to the actuators for each actuator. They provide 

position feedback on the flaps. 
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• Flap Panels: Flap panels are positioned along the trailing edge of the aircraft's wings and 

can be deployed or retracted to alter the wing's shape and lift characteristics. There are six 

flap panels, three panels for each side, positioned on the wings in the architecture. 

Figure 4.2 depicts that the command chain begins with the flap lever in the system. It is the 

interface for flight crew members to change the position of the flaps. It sends commands received 

from the pilots to the FCUs that activate the PDU afterward. The PDU executes the commands of 

applying the desired changes in the flap position by running the driveline. Driveline components 

are the physical means to transform these commands to change the flap panel angles. 

In addition, as shown in Figure 4.2, the accommodation of two FCUs and DC motors combined 

with a speed summing gear located in the PDU provides continued system operation in the event 

of a DC motor failure or FCU malfunction. The primary function of speed summing gear is to sum 

the rotational speeds of the individual DC motors driven by each FCU. In the event of an FCU or 

DC motor failure, the speed summing gear compensates by adjusting the output speed, thus 

deploying the flaps at half speed, ensuring continued operation. Additionally, the FCUs also 

manage the flap sensors and brakes. The flap sensors provide position data to the FCUs, which use 

this information for monitoring and control. The FCUs also control the brakes to ensure the flaps 

can be stopped or held in position after deployment. 

 

Figure 4.2 - Flap System Test Case Schematic 

Overall, the chosen components and their arrangement within the architecture are designed to 

represent a traditional configuration and demonstrate the practical application of the methodology. 

Each component fulfills a specific function to facilitate the operation of the flap system. 
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4.2 Capella System Model 

This section presents different levels of system development in Capella / ARCADIA: System 

analysis, logical architecture, and physical architecture. The operational analysis level is omitted, 

as discussed in the previous chapter. 

This thesis utilizes the Capella 5.1.0 with the addon PVMT 50.5.1 versions. The Diagram Styler 

feature helps to apply the safety viewpoints created by PVMT on the Capella diagrams. Functional 

chains and color-coded component exchanges are only visible if activated on the selected diagram 

with the diagram styler. Table 4.2 lists different diagrams and viewpoints that each Capella level 

accommodates. While SA and PA levels only display the architectural diagrams, LA levels (L0, 

L1, L2) consist of three different architectural diagrams, a functional breakdown diagram to help 

engineers understand the refinement, and safety viewpoints that show the enhancements made on 

the system level. 

Table 4.2 - Diagrams and Viewpoints used in each Capella Level 

Level Diagrams & Viewpoints 

System Analysis System Analysis Breakdown (SAB) 

Logical Architecture 

Logical Architecture Breakdown (PAB) (L0, L1, L2) 

Logical Functional Breakdown Diagram (L0) 

Safety Viewpoints with Diagram Styler (L0, L1, L2) 

Physical Architecture Physical Architecture Breakdown (PAB) 

 

The first step is developing an SA level from the test case architecture. Next, L0 is built with the 

help of automated transitions for functions and actors in Capella. L1 architecture is shaped by 

introducing more redundancy information. L2 is reached with great detail of specifications and 

redundancy, representing an architecture that can accommodate quantitative analyses with the 

enhancements. Finally, a transition is made from L2 to PA, keeping the same structure and layout 

as L2. The system model development progression is described in detail in the following sections 

labelled after each development level of Capella. 

While developing the system model, requirements provided by the industry partners help shape 

the architecture. The functions from a requirements document for a slat flap control system in [98] 

are carefully examined to design the architecture so the FTA failure scenarios can be 

accommodated with the system model. The requirements were derived from publicly available 

maintenance manuals of several Bombardier aircraft, including the Global 5000 [98]. Table 4.3 

illustrates which requirements document functions are satisfied by the system model. The 

functional requirements are not satisfied at one specific level. Different logical architecture levels 

introduce certain components and logical functions to capture the requirements. While introducing 

new elements to the model to satisfy the functions, the functions are tailored to the scope of the 

thesis. For instance, not all safety functions are introduced for the flap system, but the ones needed 

for selected failure scenarios. In addition, only the parts related to the flap system are considered 

in this thesis. Requirement number 5 can be an example of this consideration because the system 

model has functional exchanges that provide flap system status, data, and interface to EICAS while 

excluding any other aircraft systems. 
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Table 4.3 - Functional Requirements Document adapted from [98] 

1) The Flight Control System (FCS) shall respond to pilot commands for a change in High 

Lift configuration 

2) The FCS shall move the High lift Surfaces to the selected configuration at a controlled 

rate of motion. 

3) The FCS shall hold the high lift surfaces at all selected positions. 

4) The FCS shall provide safety functions. 

5) The FCS shall provide the required system status, system data, and interface to EICAS 

and other aircraft systems. 

6) The FCS shall provide means to aid installation and trouble-shooting problems for the 

maintenance crew. 

4.2.1 System Analysis 

The goal at the system analysis level is to define the system's contributions to satisfy users’ and 

stakeholders’ needs [47]. The purpose of the SA stage is achieved by defining high-level functions 

with their exchanges and allocating them to different system elements that are system actors and 

the SoI. 

Figure 4.3 shows system-level functions attributed to both the SoI and system actors. These 

functions define the system's operational scope, and their exchanges define the interactions 

between the SoI and its surrounding actors. 

The systems interacting with the flap system are presented as actors and will stay as actors 

throughout development. However, more actors can be introduced with the advancement of each 

level in Capella. The actors defined in the SA are the Flight Crew, Engine Indicating and Crew 

Alerting System (EICAS), Air Data Computer, and Maintenance Crew.  

The Maintenance Crew is incorporated into all phases of Capella to recognize its role in system 

maintenance and safety. While it is not directly part of the test case for FTA, it emphasizes the 

importance of considering the system's operational environment. The Maintenance Crew 

represents a stakeholder whose actions may impact system reliability and maintenance procedures. 

Their inclusion in the SA phase ensures that all system stakeholders are accounted for, even if they 

do not have direct involvement in specific test cases for FTA. Incorporation of the Maintenance 

Crew for LA and PA levels supports the efforts of presenting a top-down development approach 

since this actor is getting more detailed going through the system model levels. 

For the SoI, functions on this level are high-level generic functions. They will be broken down 

into more detailed sub-functions at the next levels of development, along with the system 

components. Thus, every component and actor has at least one function allocated to them at SA to 

represent the overall capabilities of the flap system. Flight Crew sends commands to move the flap 

surfaces, starting with selecting a flap position. The flap system is responsible for accepting the 

commands from the flight crew and operating the actuation according to these commands. It has 

sensors to monitor and control units to control itself. Air Data Computer feeds the flap system with 

flight information to inform whether the selected position falls under a suitable range for the flight 

phase. Otherwise, flaps can face structural damage due to too much load. EICAS provides the 

status and position information of the flaps for pilots to check. 
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Figure 4.3 - System Architecture Diagram [SAB] 

Functional exchanges represent the interactions between different functions. These interactions 

can be the flow of information, signals, or data [53]. The flight crew selects a flap position by 

getting all the information needed from different components. Before choosing a new flap position, 

they must check the EICAS for warnings and the flap lever. The flight crew's select a flap position 

function receives flap position information, and flap failure information exchanges while it sends 

selected flap position information by the pilots to the flap system. Another example of functional 

exchanges is the control the flap system function in the flap system, in Figure 4.3. Flight 

information and selected flap position are needed to start controlling the system. An activation 

signal/information is expected from the control the flap system function to operate the driveline 

and actuation. 

Component exchanges in SA are utilized to represent the flow of data, signals, energy, etc., 

between the components. Hence, the component exchanges in Figure 4.3 show data interactions 

between components and their direction of flows (indicated by arrows). If an interaction between 

two components is both ways, the component exchange ports have no arrows inside them, e.g., 

Flap System and Maintenance Crew component exchange. Facilitating component exchanges at 

the SA level is done by providing a visual representation of the interaction patterns within a system. 

The next stages of the development present component exchanges edited by PVMT to address 

failure exchanges.  

Since the architectural diagrams at SA must represent the high-level capabilities of the system, the 

flap lever has not been introduced yet. However, the flap system should capture the functionality 

of the flap lever since it is the component creating the interface between the flight crew and the 

SoI.  Provide means for position selection function in flap system describes the interaction. Thus, 
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it is defined and allocated at SA. In later stages of the development, it can be allocated to the lever 

once it is introduced. 

4.2.2  Logical Architecture – L0 

The level of detail and key activities in this level of system architecture development are explained 

in Chapter 3. While the objective of SA is defining what the flap system has to accomplish for the 

stakeholders and entities (actors in Capella), LA aims to unfold how the system has to perform to 

fulfill the expectations defined at SA by defining subsystems/components and their functions [53], 

[91]. L0 has its components, actors, and functions transitioned from SA with the help of Capella's 

automated transition, meaning that the system elements at the SA level become logical elements 

at the LA level. In addition to SA, high-level logical subsystems are introduced at L0.   

Figure 4.4 depicts the architectural view of L0. The high-level logical subsystems defined at this 

level are the flap lever, monitoring system, control system, actuation system, LHS (left-hand side) 

flap, and RHS (right-hand side) flap. The distinction between LHS and RHS flaps aligns with the 

progressive nature of the aircraft development process, where early stages focus on defining 

subsystems before specifying detailed components, such as the number of panels.  

The subsystems mentioned in the previous paragraph are created inside the flap system logical box 

based on their critical roles in the functionality of the flap system. The flap lever is essential as it 

serves as the primary interface for pilot input. The monitoring system provides feedback on the 

flap system's status. The control system is responsible for processing commands within the system. 

The actuation system translates control commands into the mechanical movement of the flaps. By 

defining these subsystems at L0, a structured foundation is established that can host more 

subsystems and components for further development in subsequent logical levels.  

 

Figure 4.4 - Logical Architecture Diagram [LAB] of L0 
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Also, a new actor, an electrical power source, is introduced. The newly defined logical subsystems 

and some of their functions will face a breakdown in the following stages. The intention is here to 

reflect the gradual improvement of the flap system discussed in Chapter 3. In creating the logical 

subsystem, the engineers already have an understanding of what possible components would be 

appointed to which logical subsystems in the next steps of development. Therefore, the allocated 

functions need to capture the functionalities of those components, which will be associated with 

the logical sub-system in later stages. For example, the Monitoring System in Figure 4.4 will 

involve sensors late in development; the Monitor flap system function should capture the 

functionalities of sensors. 

Regarding functions, engineers must allocate the system functions defined at SA to the logical 

subsystems at L0. The first step for functions is using the automated transition of system functions 

in Capella to convert them into logical functions. Next, some of these functions can be converted 

to parent functions, meaning they have subfunctions. The last step is the allocation of these 

subfunctions to the related systems. Table 4.4 lists the transition of functions between SA and L0 

and their allocations to logical systems. Some functions are kept the same since no detail about 

their corresponding system exists yet at this level such as the monitoring system.  

Table 4.4 - Functional Transitions from SA to L0 

System Analysis Logical Architecture – L0 

Flight Crew Actor  

Select a flap position Select new position 

View status* 

View position information* 

EICAS Actor  

Provide flap status 

Provide flap position information 

Provide flap status 

Provide flap position information 

Air Data Computer Actor  

Provide flight info/status Provide flight info/status 

Maintenance Crew Actor  

Perform maintenance actions Perform maintenance 

Check maintenance status* 

Check maintenance history* 

Flap System Subsystems of the Flap System 

Provide means for position selection 

Provide means for position display 

➢ Allocated to Flap Lever 

Acquire flight crew commands* 

Show current flap position* 

Monitor the flap system ➢ Allocated to Monitoring System 

Monitor the flap system 

Control the flap system ➢ Allocated to Control System 

Control flap deployment* 

Operate the driveline and actuation ➢ Allocated to Actuation System 

Provide symmetrical actuation* 

Extend flap surfaces* 

Retract flap surfaces* 

*indicates the function is created at L0 
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Figure 4.5 depicts the Control flap deployment function allocated to the Control System logical 

system at L0 as a parent function and the functions at L1, which are allocated to Control Unit 1 

and Control Unit 2 as subfunctions of the Control flap deployment function. Since Control Unit 1 

and Control Unit 2 have the same functionalities, they share subfunctions with the same names, 

except the Start DC Motor 1 and Start DC Motor 2 functions. This is because Control Unit 1 

activates DC Motor 1, and Control Unit 2 activates DC Motor 2. Functional Breakdown diagrams 

can help engineers understand the hierarchy of functions. Since the LA phase with three levels has 

the most number of functions, a functional breakdown diagram is used in the LA. Although 

component and function breakdown diagrams support users to see the hierarchy of system 

elements, architecture diagrams are the most informative.  Architecture diagrams can also be used 

to see hierarchy information. For example, the Control System has Control Unit 1 and Control Unit 

2 as subsystems in Figure 4.6, showing a component hierarchy. Likewise, the function allocated 

to the Control System, which is control flap deployment, has subfunctions distributed to these 

subsystems: Control Unit 1 and Control Unit 2. Therefore, this thesis puts emphasis on the 

architectural diagrams, which give the most information about the system and facilitate safety 

viewpoints. 

 

Figure 4.5 - Control Flap Deployment Function in the Logical Functional Breakdown Diagram 

Moving on to functional exchanges, they do not change from SA to L0 if they have the same level 

of detail on their functions that can be seen from EICAS. However, if the function is broken down 

into several subfunctions, the subfunctions inherit the functional exchanges from their parent 

function. Select a flap position function allocated to the Flight Crew actor at SA in Figure 4.3 has 

both incoming and outgoing exchanges; at L0, in Figure 4.4, the exchanges are allocated to their 

new subfunctions: View status, View position information, and Select new position. New functional 

exchanges are defined with the introduction of new logical functions. These exchanges are 

expected to have more details in the following stages of the development. This is due to the 

refinement of the functions in different phases of the aircraft development. For instance, EICAS 

has more detailed functions at L1. Therefore, the functional exchanges between the Flight Crew 

and EICAS functions also become more detailed. 

4.2.3  Logical Architecture – L1 

At this stage of the development, high-level redundancy information, new power sources, and 

system technologies are introduced. Including the electrical power sources is vital since they power 

the most critical components in the flap system, the PDU and flap control units. They are defined 
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as actors and kept generic because the thesis focuses solely on the flap system. Also, introducing 

more details to other entities would make the safety model more intricate. The redundancy 

information included aims to design a safe system by preventing a failure of a subsystem, resulting 

in a failure of the whole system and, ultimately, the aircraft.  

Figure 4.6 displays the L1 logical architecture with all Capella elements included, while Figure 

4.7 represents the L1 without actors. In both figures, most of the functional exchanges are hidden 

to provide a clear view of the architectures. The refinement process of the functions, functional 

exchanges, and components is identical to the previous levels and continues at this level before it 

takes its final shape in the next stage. There are two control units appointed under the control 

system. The Actuation System at L1 houses a PDU consisting of two DC motors and a speed-

summing gear. Control Unit 1 drives the DC Motor 1, and Control Unit 2 drives the DC Motor 2. 

In case of a control unit failure, the flap system does not fail. The system works, but the deployment 

takes place at half-speed due to only one operating DC Motor. This condition is possible with a 

speed-summing gear that sums the motion received from both motors. The transmit motion to both 

wings function is associated with the PDU, but no logical components have been created for it yet. 

It is because the component that should inherit the transmit motion to both wings function must 

connect to the components in the driveline, but there is not enough detail to capture that yet. 

Therefore, the function is defined and allocated to the PDU. Later in the development, a branch 

gear should be placed inside the PDU, and the function must be allocated to that gear. 

 

Figure 4.6 - Logical Architecture Diagram [LAB] of L1 
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Figure 4.7 - Logical Architecture Diagram [LAB] of L1 – Simple View 

Left and right-wing drivelines are placed between the PDU and the flaps. These drivelines 

represent every component between the PDU and flaps. The main functionalities of the driveline 

and actuation are allocated to these components. The differentiation between the right and left 

wings is to capture the symmetric/asymmetric deployment cases and to reflect a layout of the 

system with clarity. The Monitoring System now has Position Transducers and Flap Position 

Sensors. The Position Transducers convert physical displacement into electrical signals, providing 

a measurement of flap positions to detect skewing. Skewing means the unequal movement of the 

flaps, where one side moves differently than the other, leading to asymmetry in the flap positions. 

The Position Transducers detect such skewing by comparing the positions of the flaps on both 

sides. The Flap Position Sensors, on the other hand, directly measure the position of the flaps and 

provide feedback for the control system. However, the architectural layout still needs to be 

completed where these sensors are placed. Therefore, the number of sensors still needs to be 

determined. 

Like functional transition Table 4.4, high-level functions appointed to the logical subsystems at L0 

cannot be seen in the L1-level diagrams. Instead, the diagrams display subfunctions of the 

functions at L0. For example, the control flap deployment function associated with the control 

system at L0 is satisfied with the combination of eight subfunctions allocated to control units under 

the control system at L1. In addition, these subfunctions can host sub-logical functions themselves 

in the next stage, which is L2. Realizations (connecting system elements at different levels by 

selecting the corresponding parent element for the sub-element in the Capella environment) and 

utilizing the parent functions are key factors for enabling traceability. 

Like functions, functional exchanges are refined through the L0, L1, and L2 levels. Figure 4.8, as 

an example of the refinements, shows that the functional exchanges of EICAS are now more 

numerous, and they specify what kind of flap information is available to display. 
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Figure 4.8 - Logical Architecture L1 EICAS and Its Functions & Functional Exchanges 

4.2.4  Logical Architecture – L2 

Refer to Appendix A to see a readable version of the L2 architectural diagram. The layout of the 

logical components is presented in L2, as seen in Figure 4.9. This includes components' location, 

connections, and any physical constraints that impact their placement. For example, the PDU is 

placed between the two wings. Also, every logical component in the system is fully specified with 

detailed descriptions of its functionality, internal structure, and any dependencies it may have on 

other components at this stage. L2 is a reference for the flap system's detailed design and 

implementation phases. The information at L2 guides engineers in translating the logical 

architecture into a physical realization. 

 

Figure 4.9 - Logical Architecture Diagram [LAB] of L2 

L2 provides detailed information on the types of components required for the flap system. This 

includes specifying the technology and functionality of each component, such as the type of 

motors, sensors, and control units that must be used. PA is the level where the solutions are 

outsourced to supplier companies at the item level. For example, actuator types are defined as ball-

screw actuators at L2 with certain functionalities. At PA, supplier companies must define the 

solutions to capture the functions allocated to the actuators. 

The driveline at L2 has logical components; contrary to L1, it is not represented with a logical 

system. Left and right-wing drivelines from L1 become torque tubes, bevel gears, actuators, and 

wing-tip brakes. The functions transmit motion, apply brake, release brake, and extend/retract 

flaps from L1 are allocated to these logical components in L2, as seen in Figure 4.10.  
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Figure 4.10 -  Right-Hand Side of the Outboard Driveline at L2 

As an example, flap ball-screw actuators are introduced at this stage. Their functionalities are 

represented by the driveline logical subsystems at L1. Now, extend/retract flaps functions are 

allocated to the actuators, and new functions are defined inside the Flap Ballscrew Actuator_1 and 

outside the Flap Position Sensor for safety purposes to reflect how a ball-screw actuator works. 

Later, at the physical architecture level, more components that are parts of the actuators are 

defined, and the functions at L2 are appointed to those components. It indicates that refinement 

still takes place going from L2 to physical architecture. However, the flap position sensors are 

placed into the actuators at this stage, as Figure 4.11 shows, since they are components that can 

potentially appear in some of the fault tree failure cases examined in the thesis. Also, the aircraft 

manufacturer can require component or item-level elements from the supplier companies. 

 

Figure 4.11 - Flap Ballscrew Actuator at L2 

Apart from allocating existing functions to newly defined logical components, new functionalities 

can also be introduced at different levels of Capella. Since L2 has many detailed components, 

functions, and exchanges, it has introduced new functions. Flap lever and control units have more 

functions with more detailed functional exchanges at this level. Defining new functions at different 

logical levels occurs in the thesis for two reasons: 

The first reason is that new lower-level functions often represent specialized tasks or detailed 

functionalities inherent to specific components. These functions provide a more detailed 

breakdown of the overall system behavior and address particular requirements at a finer level of 

detail. The second reason for introducing new functions at lower levels is to allow adaptability for 

changes in design. If alterations or enhancements are needed, introducing new functions at a lower 

level can be a practical way to address these changes without affecting the overall system 
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architecture. For example, if a new type of sensor needs to be integrated into the flap system for 

better performance, this can be achieved by adding a new function at the component level that 

handles the sensor data. This approach minimizes the impact on the higher-level system design 

and is important to this thesis as it demonstrates the flexibility of the methodology presented. 

Following the same logic, new logical components can be introduced, and the functions allocated 

to logical systems or subsystems can now be allocated to these newly created components. Figure 

4.12 shows that the logical components of the Asymmetry brake and Branch gear are defined and 

appointed to the PDU at L2. These logical components inherit Transmit motion to both wings, 

Apply brake, and Release the brake functions from the PDU at L1. 

 

Figure 4.12 - Power Drive Unit at L2 

4.2.5  Physical Architecture 

Engineers define how the system is built and developed at the PA level. At this stage, software and 

hardware allocation, interface specification, and deployment configurations are described [53]. 

The primary activities that drive the development process at the PA level are identifying, defining, 

and decomposing physical components and subsystems. 
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Figure 4.13 - Flap Ballscrew Actuator at PA 

The only refinement designated at PA is, as Figure 4.13 illustrates, on the flap ball-screw actuators 

to show decomposition progress. This distinction is made between the two levels to illustrate the 

ongoing development process in aircraft systems, which often involves work conducted by 

suppliers. This thesis highlights how certain components, such as actuators, continue to evolve 

even at the PA stage by showing this additional detail. However, typically, aircraft manufacturers 

appoint these duties to their suppliers and use the PA to capture design decisions at the detailed 

level.  After the decomposition is done to the equipment level, the suppliers run FMEA. However, 

the FMEA is out of the scope of this thesis. Therefore, the physical layer carries the same level of 

detail as the L2 except for the actuators. Similar to L2, PA has the layout of the system depicted, 

centered with the PDU, as Figure 4.14 shows. 

 

Figure 4.14 - Physical Architecture Diagram [PAB] 

4.3 Enhancements in System Architecture Specification 

Section 3.4 explains the safety artifacts that need to be integrated into the system model in detail. 

This section presents the enhanced system model for the flap system test case with the proposed 

methodologies. The safety artifacts embedded in the Capella system model are state variables, flow 
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variables, transfer functions, and failure rates. In addition, functional chains are created to capture 

the failure relationships across different system components. While the failure rates are integrated 

at L1 and L2  and functional chains at L0, the rest are embedded throughout all logical levels. 

Failure rates for different components are taken from [96] and [97].  The maintenance crew actor 

is left out from the safety perspectives at all levels because the failure scenarios inspected do not 

involve it. 

Figure 4.15 shows the component exchanges edited with PVMT to represent flow variables at L0. 

The blue lines correspond to data lines, while the red ones are for command, and the green ones 

are for electrical power exchanges. The naming of exchanges is numbered to separate different 

command, power, and data lines. The test case involves one command line numbered with 1 at all 

levels. The component exchange ports are crucial since they are the means to represent the flow, 

and the coloring and naming show the type of flow. The flap system command line starts with the 

flight crew sending commands to the control system via the lever. Then, the actuation system 

transfers these commands to move the flaps. The control system lies in the center of the SoI, getting 

critical data from the air data computer, such as airspeed and altitude and power from the electrical 

power source and sending data to EICAS for display.  

 

Figure 4.15 - Logical Architecture Diagram [LAB] of L0 – Safety Viewpoint 

The annunciated loss of flap extension failure case is mapped with a functional chain in Figure 

4.16. The top event function for this particular case is the extend flap surfaces, which is examined 

by focusing on the functional exchanges that present command, power, and data connections. The 

functions that have exchanges with the top event function are also examined similarly until there 

is no exchange to capture. This method provides to identify the potential cause-and-effect 

connections between the functions. Later, with the FTA, failure event combinations that are 

causing a failure condition are identified. Therefore, it stands as a bridge between FHA and FTA. 
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Figure 4.16 - Logical Architecture Diagram [LAB] of L0 with a Failure Chain 

Figure 4.6 in Section 4.2.3 shows the L1 with most of the system and safety artifacts, while the 

presented safety viewpoints of the diagrams in this chapter exclude functional exchanges and ports 

for clarity. Figure 4.17 illustrates the edited component exchanges allocated to sublogical systems 

created at L1. At L0 control system has the most incoming and outgoing flow variables. Defining 

control units under the control system at L1, the flow variables are connected to control units. 

Comparing the command connection between the control and actuation systems at two levels, L0 

and L1, the flow variables defined are between the DC motors and control units. It means that the 

pathways of the component exchanges at L0 stay the same at L1 and L2, but since new components 

are introduced, they need to be allocated to the new components under the high-level logical 

systems. Also, to capture the connections at L0, more component exchanges are created at L1 and 

L2.  

The architecture is at its most detailed version at L2. Here, the PVMT component exchanges 

representing commands start from the flap lever and end with connecting flap panels with 

actuators. Failure rates are given to each component for quantitative analysis.  
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Figure 4.17 - Logical Architecture Diagram [LAB] of L1 - Safety Viewpoint 

The same efforts are made to refine and allocate the edited component exchanges for the transfer 

functions throughout the logical levels. Transfer functions carry information on the component's 

behavior according to the state and flow variables. Since more detail is introduced at each logical 

level, the assertions must also be adjusted for the detail.  

At L0, the change in the inputs and outputs of the actuation system is defined. The transfer 

functions for the logical components under the actuation system at L1 should match the 

information presented at the previous level. Therefore, if the incoming command exchanges are 

not lost and the state is nominal for the components, they should transfer the command to the 

drivelines at L1 since the behavior defined for the actuation system represents the same logic at 

L0.  

Figure 4.18 shows the progression of safety properties added by PVMT for the Control System 

through the logical levels.  Although no failure rate is available at the L0 level for the Control 

System, the magnitude of the failure rate can be embedded if needed. L1 and L2 levels involve 

failure rate information. However, the transfer functions of the Control System at L0 need to be 

transitioned to the Control Units according to the other components that interact with the Control 

Units at L1. At the L2 stage, every component with its redundancy information is present. 

Therefore, the transfer functions must be edited accordingly (e.g., L1 includes one position 

transducer and flap position sensor while L2 has the complete numbers). 
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Figure 4.18 - Progression of Safety Artifacts for a Component through L0, L1, and L2 

4.4 AltaRica Safety Model 

AltaRica is a modeling language to build safety models for analyzing potential safety hazards 

within complex systems. The proposed method in this thesis involves systematical construction of 

safety models tailored to each logical level - L0, L1, and L2, meaning that the safety models are 

created independently using the Capella logical level diagrams as a reference. 

To demonstrate the effects of the enhancements made to the Capella system model, this thesis 

formulates a test case to demonstrate the safety model's capabilities in the FTA context. Three 

scenarios are presented: the annunciated loss of flaps extension/retraction, unannunciated loss of 

flaps extension/retraction, and flap panel disconnection. These failure scenarios represent critical 

safety aspects within the system architecture. 
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Several assumptions are made during the development of the safety model to simplify the 

modeling process and focus on the practical analysis and representation of critical failure scenarios 

within the system. Below are the key assumptions: 

➢ Assumption 1: Only failures causing loss of function are modeled; failures causing 

erroneous behavior of sensors, control units, and displays are not considered. 

Rationale: The available literature lacks specific information regarding failure modes and 

corresponding failure rates for individual components within the flap system. Therefore, 

modeling only the failures that lead to a loss of function prioritizes critical failures over 

those causing erroneous behavior of components. 

➢ Assumption 2: Position transducers and flap position sensors are not used to close the loop 

on flap control 

Rationale: Building safety models that represent FPM with control loops may cause 

problems [89]. The typical construction of a fault tree is to follow input and output 

dependencies. If a control loop is attached to the system, with the typical fault tree logic, a 

circular logic appears. Solving circular equations is possible in numerous ways but is often 

left to the strategic choices of safety analysts [89]. Therefore, in this thesis, the sensors are 

not used to close the control loop.  

➢ Assumption 3: Flaps are stopped, and flap fail annunciation is posted in case of loss of 

output from flap lever position sensors, detected by the flap control unit 

Rationale: This assumption aligns with the approach taken in assumption 2 to avoid circular 

logic and potential complications in safety modeling. This prevents the system from relying 

on sensor input to maintain control, which could otherwise lead to circular dependencies 

and complex fault tree logic. The control unit can safely halt operations without the need 

for continuous feedback from position sensors, thus simplifying the fault tree analysis and 

avoiding potential modeling issues associated with circular logic. 

➢ Assumption 4: If both flap control units fail, the flap surfaces are stopped due to command 

loss to motors and brake release command. Flap fail annunciation is posted due to loss of 

communication detected by EICAS. 

Rationale: If both flap control units were to fail simultaneously, it would result in a loss of 

command signals to the motors responsible for controlling the flap surfaces. Additionally, 

the assumption is that a failure of both control units would lead to a loss of communication, 

as detected by the EICAS. In such a scenario, it is assumed that the flap surfaces would be 

stopped to prevent unintended movement.  

➢ Assumption 5: Regarding the flap panel disconnection failure case, the flap panel's failure 

rate is set to a value that reflects an aggregate of potential failure modes and rates, 

incorporating elements such as hinges and connection arms, which are not explicitly 

modeled but are components affecting the flap panel's failure behavior. 

Rationale: The scope of the system model does not capture all components necessary to 

calculate the failure scenario. Therefore, an average failure rate with an order of magnitude 

is given to each flap panel. Consequently, each minimal cut set corresponds to the failure 

of a specific flap panel 

➢ Assumption 6: Only ‘AND’ and ‘OR’ gates are used in the fault tree analysis. 

Rationale: This decision is based on the need for simplicity in modeling the failure logic. 

While there are other types of gates (e.g., XOR, NOT, NAND), they might introduce 

additional complexity that is not necessary for the scope of this study. ‘AND’ and ‘OR’ 

gates are sufficient to capture the primary failure modes and their interactions. 
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4.4.1 Elements of Safety Model 

This section of the thesis explains AltaRica safety model elements and how they are mapped to 

FTA. Refer to Appendix D to see classes and blocks of different levels of AltaRica safety models. 

The use cases for AltaRica elements, observers, classes, blocks, and assertions and their refinement 

throughout the development process are shown.  

Once the identification of the top event for the FTA is complete, which in this case is the three 

different failure scenarios presented, the next task is to establish the intermediate events forming 

the pillars of the fault trees. The intermediate events are the indicators of potential failure 

conditions that contribute to the occurrence of the top event. Depending on the level of detail 

available in the system model (L0, L1, L2), the intermediate events may vary in complexity and 

granularity. For instance, at the L0 level, where the system model provides a broader overview, the 

intermediate events may represent general failure categories such as loss of flap components with 

specifying left or right-hand side distinctions. However,  as safety engineers examine the levels 

where the modeling ascends to more detail, such as L2, the intermediate events must be the loss 

of each flap instead of left and right-hand side distinctions. 

The logical framework described with the selection of intermediate events lays the foundation for 

FTAs. The next essential step is translating this logical framework into a representation within the 

AltaRica safety model. The translation occurs with the help of observers. The observers monitor 

the system's behavior and capture the occurrence of specific events or conditions defined within 

the logical framework. Observers function similarly to flow variables, albeit with some 

distinctions. While observers cannot be used in transitions and assertions to describe the system's 

behavior, they serve as quantities to be observed. They are updated after each system action or 

event, providing feedback on the system's state and facilitating the dynamic monitoring of critical 

conditions [79].  

The top events for FTA are specified via the observers, allowing for identifying critical failure 

scenarios within the system. Additionally, several observers can be defined for the same AltaRica 

safety model, enabling the generation of multiple fault trees from a single model [82]. This 

flexibility ensures that various failure scenarios and their associated top events can be analyzed 

within the same safety model. 

Furthermore, in alignment with the flexibility offered by observers, the thesis has developed three 

distinct safety models, each corresponding to a different system level: L0, L1, and L2. Within each 

safety model, multiple observers have been defined to capture failure scenarios and their associated 

intermediate events. Observers listed in Table 4.5 highlight the refinement across different levels 

for the annunciated loss of flap extension failure scenario. In the L0 and L1 safety models, the 

elements LHSFlap and RHSFlap represent the left-hand and right-hand side flaps, respectively. 

Conversely, in the L2 safety model, observers from FlapPanel1 to FlapPanel6 are showcased, 

indicating a higher level of detail in both the system and safety models. 
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Table 4.5 - 'Annunciated Loss of Flap Extension' Failure Case Observers at L0, L1, L2 

observer Boolean AnnunciatedLossOfFlapExtension = 

L0 L1 L2 

EICAS.output and (not 

LHSFlap.output or not 

RHSFlap.output); 

EICAS.output and (not 

LHSFlap.output or not 

RHSFlap.output); 

EICAS.output and (not 

FlapPanel1.output or not 

FlapPanel2.output or not 

FlapPanel3.output or not 

FlapPanel4.output or not 

FlapPanel5.output or not 

FlapPanel6.output); 

 

A single block named flap system in Figures 4.19 and 4.20 represents the SoI. Within this block, 

various classes are instantiated to capture the components displayed in the Capella system model. 

Different classes represent distinct components in the system, and each class is dedicated to 

defining its respective component's unique attributes. For instance, their shared characteristics and 

functionalities drive the decision to instantiate power sources under the same classes. Power 

sources, whether powering the PDU or the control units, exhibit consistent attributes across 

different instances, including identical inputs and outputs, uniform operational states, and the same 

failure rates. The model consolidates these shared attributes within a single class. Compared to 

having numerous blocks, this approach facilitates more straightforward modification and updates, 

as changes to the class properties propagate uniformly across all components that fall under the 

same class. 

 

Figure 4.19 - Components Initiated from Classes under the Flap System block at L0 

Figures 4.19 and 4.20 outline the instantiation of various components within the safety model. 

Each component corresponds to specific elements observed within the system model developed in 

Capella. The elements are named the same between the safety and system models. The instantiation 

of components occurs by placing component names after class names (e.g., Control for the class 

name and ControlUnit1 and ControlUnit2 for the component names in Figure 4.20). Also, it is 

expected to facilitate more components as the logical levels progress because subsystems transition 

to components, and this refinement can be seen by examining Figures 4.19 and 4.20. 

block FlapSystem 

StartingPoint FlightCrew; 

Lever FlapLever; 

EPWER ElectricalPowerSource; 

Control ControlSystem; 

Actuation ActuationSystem; 

Flaps LHSFlap, RHSFlap; 

Sources AirDataComputer, MonitoringSystem; 

Endings EICAS; 
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Figure 4.20 - Components Initiated from Classes under the Flap System block at L1 

In the assertion section in Figure 4.21, the information on connections between various 

components is transferred from Capella to AltaRica. The figure outlines assertions that dictate how 

components are interconnected. These connections ensure that the system functions as intended, 

with data or signals flowing appropriately between components to fulfill the system's operational 

objectives. While classes carry information on the types of inputs and outputs, assertions can give 

insights into where certain connections begin and end. For instance, the pathway of the command 

type flow at L0 is below, and this pathway can be indicated in Figure 4.21 by following the inputs 

and outputs of components. 

Pathway of ‘command’ at L0: Flight Crew > Flap Lever > Control System > Actuation System > 

LHSFlap and RHSFlap 

 

Figure 4.21 - Block Assertions at L0 

4.4.2 FTA Results 

This section summarises the output of safety models and FTA results in Figures 4.22, 4.23, and 

4.24. The elements displayed in the fault tree figures are explained in section 3.2.1. All the figures 

in this section show fault trees for the annunciated loss of flap extension failure case. Fault tree 

diagrams for other specified failure scenarios are available in Appendix E. 

At level L0 of the safety model, conducting both quantitative and qualitative FTAs is possible. 

Firstly, at level L0, the system model provides a broad overview of the system architecture, 

block FlapSystem 

StartingPoint FlightCrew; 

Lever FlapLever; 

PowerSource DCPowerSource1, DCPowerSource2, mainBUS1, mainBUS2; 

Control ControlUnit1, ControlUnit2; 

Motors DCMotor1, DCMotor2; 

Data AirDataComputer1, AirDataComputer2, PositionTransducer, 

FlapPositionSensor; 

Endings EICAS; 

Drivelines LeftWingDriveline, RightWingDriveline; 

Gear SpeedSumGear; 

Flaps LHSFlap, RHSFlap; 

assertion 

FlapLever.input := FlightCrew.output; 

ControlSystem.input1 := FlapLever.output; 

ControlSystem.input2 := ElectricalPowerSource.output1; 

ControlSystem.input3 := AirDataComputer.output; 

ControlSystem.input4 := MonitoringSystem.output; 

EICAS.input := ControlSystem.output2; 

ActuationSystem.input1 := ControlSystem.output1; 

ActuationSystem.input2 := ElectricalPowerSource.output2; 

LHSFlap.input := ActuationSystem.output1; 

RHSFlap.input := ActuationSystem.output2; 
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capturing high-level functionalities and their interfaces. Due to this level's lack of detail for the 

system components, obtaining precise quantitative data such as failure rates and probabilities may 

be challenging. That is why the rates are on the orders of magnitude level at L0. Qualitative FTA, 

however, allows for a preliminary exploration of potential failure scenarios without the need for 

detailed quantitative information. Furthermore, with qualitative assessments, engineers can assess 

the overall system safety and prioritize critical areas for further analysis and refinement. Therefore, 

the qualitative approach guides the development and refinement of the system design for the 

following stages.  

Figure 4.22 depicts the fault tree of the Annunciated Loss of Flap Extension failure scenario and 

the activities done at the L0 stage. Here, the qualitative analysis focuses on identifying possible 

events that can lead to a system failure, defining gates, and eventually constructing a fault tree 

with the basic event and gate information. Figure 4.22 shows that the Annunciated Loss of Flap 

Extension top event can only occur if one of the flap panels fails to execute their functions while 

EICAS is working (e.g., unannunciated loss of flap extension/retraction occurs if one of the flap 

panels fails to execute their functions while EICAS is not working). Defining the “AND” and other 

gates depicted in Figure 4.22 is a part of qualitative analysis and constructing fault trees. The fault 

tree structure created at this stage is used in the following stages for the same failure cases.  

 

Figure 4.22 - Fault Tree of Annunciated Loss of Flap Extension at L0 
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Level L1 of the system model offers a more detailed representation of the system architecture than 

level L0. However, the structure at L1 is not yet in its final shape, with specific details still 

undergoing refinement. For instance, while the overall layout and types of sensors may be defined, 

specifics such as the exact number and placement of sensors remain uncertain at this stage. 

Redundancy contributes by influencing the calculation of failure probabilities in quantitative 

analysis. Complete redundancy can significantly reduce the likelihood of the top event failure. The 

lack of complete redundancy information poses a challenge for conducting a full quantitative 

analysis at level L1. Therefore, instead of precise failure rates, orders of magnitude can be used at 

this level; the safety model can help to specify the required number of components and more 

accurate failure rates. 

Leveraging quantitative analysis at level L1, even with incomplete redundancy information, can 

guide decisions regarding redundancy enhancements. While the quantitative analysis may not 

yield precise failure rates for top events, it can highlight areas of potential vulnerability and 

indicate where additional redundancy measures may be warranted.  Also, the level of detail in 

system architectures is not uniformly distributed. The system model development might be close 

to complete for certain points of the architecture, while the other sections are still in early 

development. Hence, engineers can run quantitative analyses on the sections where enough 

information is stored at L1.  Therefore, a hybrid approach is adopted, wherein qualitative analysis 

is complemented by quantitative elements tailored to the available level of detail. 

Figure 4.23 shows that the calculated probability of the top event is higher than the expected 

probability. This means that the architecture is not safe, and redundancy must be increased in the 

critical areas of the architecture. The contribution indicates how much each minimal cutset 

contributes to the overall probability of the top event occurring. For the LHSFlap, RHSFlap, 

LeftWingDriveline, and RightWingDriveline events, the contribution is high. This is expected at 

the levels of L0 and L1 since the redundancy information for the architecture is not finalized. Each 

flap panel and driveline element must be introduced to lower the contributions of these events and 

lower the calculated probability of the top event. 
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Figure 4.23 - Fault Tree of Annunciated Loss of Flap Extension at L1 

The system model at L2 has all relevant details and specifications, including complete information 

on the parameters necessary for quantitative analysis, redundancy, dependencies, system 

configurations, and component failure rates. Therefore, the emphasis switches to quantitative 

analyses. Figure 4.24 shows after introducing each flap panel and driveline element, their 

contributions are lowered. As a result, the calculated probability of the top event indicates that the 

system architecture is considered to be safe for this particular failure scenario. 



57 

 

 

Figure 4.24 - Fault Tree of Annunciated Loss of Flap Extension at L2 

By introducing the new flap panel event redundancies (FlapPanel1.failure to FlapPanel6.failure) 

with contributions lower than the original LHSFlap.failure and RHSFlap.failure, the top event 

probability is expected to drop. This is because the system now requires multiple independent 

failures to occur simultaneously for the top event to happen, which is less likely than a single 

failure of LHSFlap.failure or RHSFlap.failure. The same logic applies to introducing torque tube 

and bevel gear events for LeftWingDriveline.failure and RightWingDriveline.failure. 
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Table 4.6 shows the results of quantitative analyses done at L2 per flight hour. The number of 

minimal cutsets is consistent for the failure scenarios of annunciated loss of flaps 

extension/retraction and unannunciated loss of flaps extension/retraction, with both scenarios 

yielding 47. In the case of the annunciated failure scenario, the minimal cutsets represent failures 

directly causing loss of the flap extension/retraction. Conversely, for the unannunciated scenario, 

the minimal cutsets encompass failures in the flap extension/retraction mechanism and the EICAS 

display system. Considering the assumptions made, the results expected match the results obtained. 

Table 4.6 - Quantitative Probabilities per Flight Hour and Minimal Cutsets for L2 

Failure Scenario Gravity 

Quantitative 

Probability 

Expected (per 

FH) 

Quantitative 

Probability 

Calculated (per 

FH) 

Number of 

Minimal Cutsets 

Unannunciated loss 

of flaps 

extension/retraction 

Catastrophic 1E-9 2.14E-9 47 

Annunciated loss 

of flaps 

extension/retraction 

Minor 1E-4 2.14E-4 47 

Flap panel 

disconnection 
Catastrophic 1E-9 6E-9 6 

 

4.5 Implementation 

In this section, the implementation of the thesis’ methodology is detailed using a specific example: 

the flap ball-screw actuator 4, located at the tip of the right-wing driveline. The implementation 

shown in Figure 4.25 comprises four steps. Each step represents a stage in the methodology 

process: 

➢ Step 1: Capella Model 

The process begins with systems engineers constructing a Capella model. Figure 4.25 

captures the entire L2-level logical architecture of the system. Within this model, flap ball-

screw actuator 4 is highlighted and shown separately. The figure depicts the command 

connections of the actuator between Torque Tube 8 and Flap Panel 3 by illustrating red-

colored component exchanges that capture the flow variables of the actuator. 

➢ Step 2: PVMT Integration 

PVMT integration is the second step of the implementation process, where the 

incorporation of safety artifacts into the flap ball-screw actuator 4 takes place. Both system 

engineers and safety analysts should work in the Capella environment for system 

development and tracing of safety properties. This step involves several integration points 

that help to build a safety model in AltaRica:  
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• Failure Rate: A generic flap actuator failure rate, 1.0E-5 per flight hour [97], is 

added as a safety artifact into the flap ball-screw actuator 4 logical component of 

L2. 

• State Variables Specification: Within PVMT, nominal and loss state variables for 

the actuator are entered.  

• Transfer Functions: Each state variable is accompanied by a corresponding transfer 

function that details the components’ behavior in response to varying inputs. 

Therefore, a transfer function for the nominal and another one for the loss state are 

embedded in the component. 

• Flow Variables: Component exchanges edited by PVMT give information on flow 

variables with their direction, as explained in the previous step. 

For the embedding process of the additional safety properties into the Capella system 

model and PVMT user guide, refer to Appendix B. 

 

Figure 4.25 - Flap Ballscrew Actuator Example of Methodology Implementation 

➢ Step 3: AltaRica Model 

In this step, the figure highlights the actuator class and its assertions within the AltaRica 

model. The parts of the coding depicted in the figure can be coded with the system 

architecture specification by safety analysts since PVMT helps to add the additional safety 

properties mentioned above. 
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➢ Step 4: FTA 

The final step is safety analysts performing FTAs depending on the failure case inspected 

with the FTA tool available in AltaRica 3.0 and the generation of fault tree diagrams with 

the Arbre Analyst software. The fault tree provides a visual representation of potential 

failure scenarios and their associated causes. Figure 4.25 shows the annunciated loss of the 

flap extension failure case and highlights the flap ball-screw actuator 4 failure as an 

intermediate event. The actuator appears on the fault tree since it is connected to flap panel 

3, and loss of flap panels is required for the failure case to occur. The actuator continues 

the tree by sending its output to torque tube 8. Eventually, the tree ends with basic events. 

4.6 Modeling and Integration Summary 

The presented flap system test case validates the methodology introduced in Chapter 3. This test 

case focused on enhancing the system architecture specification process to support automated FTA 

through the integration of MBSE and MBSA. The selected test case is developed using the Capella 

workbench and analyzed with AltaRica 3.0. 

The key outcomes of the case study can be listed as follows: 

➢ System Model Development Methodology: Extending ARCADIA’s logical architecture 

levels proved effective in representing the system architecture with the required granularity 

for MBSA to perform automated FTAs.  

➢ Enhanced System Specification: Using Capella's PVMT add-on allowed for the integration 

of safety properties into the system model. This facilitated an architecture specification that 

can be used as a source to create safety models.  

➢ Automated FTA Implementation: The case study successfully demonstrated the use of 

AltaRica 3.0 to create safety models. These models enabled automated FTA, identifying 

minimal cutsets and calculating failure rates. 

Each logical level is enriched by integrating safety artifacts with the help of PVMT. L0 has its 

failure chains, which are unique to this level, to support safety assessment by displaying potential 

failure connections but lacks precise failure rates since it provides a high-level architecture with 

no logical systems other than the flap system. L1 implements precise failure rates for the parts of 

the flap system that have seen enough breakdowns, while L2 has all the failure rates for each 

component. All levels include component exchanges edited with PVMT to show flow variables 

and their directions, state variables for defining different states a component takes, and transfer 

functions for the behavior of the components. 

AltaRica 3.0 is used for safety analyses. Three distinct failure scenarios are inspected through 

FTAs: Annunciated loss of flaps extension/retraction, unannunciated loss of flaps 

extension/retraction, and flap panel disconnection. To confirm the validity of the safety models, 

minimal cutsets of each level are examined by the industry partners. Also, a quantitative FTA 

validates if the architecture developed satisfies the expected failure rates of the failure cases 

presented. AltaRica safety models with fault tree images for three failure scenarios are presented 

in Appendix C. 

The test case study presented several challenges and limitations. The flap system involves many 

components and sensors, making the safety assessment difficult since the AltaRica language does 

not give detailed error messages, especially when closing the feedback loops in the safety models. 

Also, at the levels that involve many system model elements, L2 and PA, Capella diagrams make 



61 

 

the individual elements difficult to distinguish from others. Refer to Appendix A for Capella system 

model diagrams at each logical level. 

In addition to the flap system test case, the methodology introduced in Chapter 3 can potentially 

be applied to more complex systems. In more complex contexts, the methodology offers, in 

principle, scalability and adaptability to accommodate larger systems. The extension of 

ARCADIA’s logical architecture levels, as demonstrated in the test case, can effectively capture 

the system architecture with the required granularity for MBSA. This enables the integration of 

safety properties into the different phases of the system model using PVMT, facilitating an 

architecture specification that serves as a foundation for creating safety models. Since the safety 

artifacts integrated into the system model are aligned with the MBSA inputs specified by 

ARP4761, using different MBSA languages to create safety models is also possible by changing 

the syntax of transfer functions according to the language used.
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5. Conclusion 

This thesis outlines an approach to improve model-based system architecture by integrating safety 

elements into the system development process, thereby supporting model-based safety 

assessments. The method consists of successive stages, each playing a role in refining and 

improving the system's model. 

MBSE brings various benefits to the aircraft development process. A major advantage is that the 

utilization of model elements is possible in every stage of the development process. Therefore, the 

presented framework and specifications can continue to later stages of development, where 

manufacturer suppliers and subcontractors create systems that align with aircraft and system 

requirements. Moreover, MBSE tools such as Capella and their add-ons feature various viewpoints 

that can be tailored depending on the engineering discipline for system architecture, making it 

suitable for various domains, including model-based safety assessment. Also, the three-stage 

logical level approach presented in this thesis ensures that the different levels of detail are 

displayed for system elements. Capella diagrams that show a breakdown of components and 

functions can support the presented approach for further emphasis on granularity levels. 

5.1 Summary of Contributions 

This thesis contributes to the integration of safety analysis in MBSE in the following ways: (1) 

methodology development, (2) implementation in Capella, and (3) test case application. 

This thesis presents a systematic methodology that maps the ARP4761 safety process to three 

stages of system model development: System Analysis, Logical Architecture, and Physical 

Architecture. Using the extended logical architecture levels (L0, L1, and L2) from Tabesh [38], 

this thesis adds the appropriate safety analysis steps. At L0, system functions are tagged with FHA 

results to identify top-level events for FTAs. L1 introduces partial redundancy information and a 

breakdown of system elements, representing a top-down aircraft development approach. The final 

logical phase, L2, includes all redundancy information, detailed architecture, and system elements, 

allowing for quantitative FTAs to validate FHA results.  

The main contribution of this thesis is to integrate artifacts required for safety analysis into the 

Capella system model using the PVMT add-on. This integration incorporates safety properties 

needed for analyses into system model elements. The following properties have been identified as 

essential: failure rates, state variables, and transfer functions  In addition, component exchanges 

edited with PVMT represent flow variables addressing failure connections between system 

components. Also, functional chains have been proposed to identify failure relationships across 

functions, supporting comprehensive safety assessments and helping engineers understand the 

potential impacts of component failures on other functions. 

The methodology presented in this thesis is validated using a flap system as a test case. Through 

iterative processes, the application of the methodology is demonstrated in improving system 

models, incorporating safety features, and performing FTAs for different failure scenarios. The 

integration of fault tree analyses with the development process allows for the evaluation of 

potential safety concerns related to the system architecture. The use of AltaRica for safety analysis 

provides a formal representation of system dynamics and state changes, facilitating the automated 

creation of safety artifacts, increasing efficiency, and reducing development time. 
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5.2 Discussion of Limitations 

Several challenges and drawbacks have been faced while creating different viewpoints and 

diagrams for the proposed method. One challenge is the representation of complex architectures. 

At L2 and PA levels, the architectural diagrams have many elements that make the diagrams big 

in size, and consequently, individual elements become very difficult to read. Although this 

comprehensive representation allows suppliers to examine the architecture with every component 

and their interconnections in detail, it is not ideal for high-level stakeholders and system 

development teams. Also, the test case architecture layout illustrates the real-life placement of 

system components (right and left wings), but there is no means in Capella to show the location of 

systems and their components referencing the aircraft. Furthermore, Capella diagrams do not 

support encapsulation. In order to reach a subsystem from a main architectural diagram, another 

diagram needs to be created in Capella, unlike SysML diagrams. Another challenge has occurred 

while performing FTAs with AltaRica regarding errors. Many errors, whether they are syntax-

related or not, do not have a detailed description of them. Thus, developing safety models with 

Altarica, especially for new users, can become time-consuming. Also, a challenge for safety 

modeling is feedback loops. Although the AltaRica 3.0 version addresses the issues of feedback 

loops in safety models, the complexity of the test case resulted in not closing the loop in this thesis.. 

5.3 Future Work 

An important area for further development is the automation of the transition between Capella and 

AltaRica. Safety properties added using the PVMT add-on in Capella can be extracted and utilized 

to enable the automatic creation of safety models within AltaRica. This automation would facilitate 

the creation of safety models and could be combined with the already automated FTA, thus 

significantly reducing the gap between MBSE and MBSA. 

Following the automation improvements, reducing the number of assumptions required in 

performing FTAs. The current models include several simplifying assumptions to define the scope 

of this thesis. Future work should aim to increase the level of detail in MBSA by closing the loop 

on control of aircraft systems, thereby refining the safety models without compromising the 

overarching goal of enhancing MBSE.  

Another important step is integrating other types of safety analyses into Capella. This would 

provide a more holistic safety assessment process. The current work can be extended by 

incorporating FMEA at the PA stage. Therefore, future efforts should aim to capture FHA, FTA, 

and FMEA within a single system model.
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Appendix A 

This section of the Appendix provides an overview of L2-level Capella diagrams. 

Figure A.1 illustrates the logical architecture diagram of the L2 phase with section numbers. In the following figures, sections are 

displayed separately to show a clear picture of the architectural diagram. Chapter 3 details the differences between L2 and PA-level 

diagrams. Since the layouts of these two levels are the same, the PA level is not shown in the Appendix. 

 

Figure A.1 - Logical Architecture Diagram [LAB] of L2 
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Figure A.2 - Section 1 of Logical Architecture Diagram [LAB] of L2 
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Figure A.3 - Section 2 of Logical Architecture Diagram [LAB] of L2 
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Figure A.4 - Section 3 of Logical Architecture Diagram [LAB] of L2 

 

Figure A.5 - Section 4 of Logical Architecture Diagram [LAB] of L2 
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Figure A.6 - Section 5 of Logical Architecture Diagram [LAB] of L2
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Appendix B 

Appendix B presents a guide on how to enrich the system model with the PVMT add-on. Figure B.1 shows the first step, which is how 

to add a PVMT viewpoint to a Capella Project. 

 

Figure B.1 - Adding PVMT Viewpoint to a Capella Project 
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Figure B.2 depicts how to activate the definition editor, where additional properties are defined. 

 

Figure B.2 - Activating PVMT and Definition Editor View 
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Figure B.3 - Creating Property Domains and Enumeration Definitions 
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Figure B.4 - Creating Enumeration Literals 
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Figure B.5 - Adding Scope to the Property Extension 
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Figure B.6 displays different property types (string, integer, float, boolean, and enumeration) and how to define them. It also shows how 

to set a default value and descriptions for the enumeration properties. 

 

Figure B.6 - Creation of Different Property Types 
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Figure B.7 - The FTA Viewpoint Created using PVMT to Enhance the Capella System Model 
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Appendix C 

This section of the Appendix shows a guide on how to create safety models and perform FTAs 

with AltaRica 3.0. 

 

Figure C.1 - AltaRica 3.0 Starting a New Project 
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Figure C.2 - Adding '.alt' AltaRica file to the Existing Project 

  

 

After the second step, displayed in Figure C.2, the user should code the safety model into the ‘.alt’ 

file. Figure C.3 shows how to start the flattening process, which is the first step of all AltaRica 

analysis tools. Flattening compiles the AltaRica model into a guarded transition system. 
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Figure C.3 - Flattening Process of AltaRica 3.0 

AltaRica safety models can be utilized to assess different safety objectives or generate different 

fault trees with several observers. Hence, the AltaRica language allows users to code a safety 

model and compile it into fault trees rather than designing fault trees directly. The compilation 

process is explained in Figure C.4. 

This thesis uses the Arbre Analyst tool to visualize fault trees. Importing AltaRica safety models 

into the Arbre Analyst tool is explained in Figure C.5. 
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Figure C.4 - Compilation into Fault Tree 

 

Figure C.5 - Importing '.opsa' Files to Arbre Analyst to Visualize Fault Trees 
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Appendix D 

Appendix D shows parts of AltaRica safety model ‘.alt’ files, which present coding in AltaRica 

syntax. Figures in this section of Appendix D show the flap system block of L0, L1, and L2 levels 

in AltaRica safety models. The displayed blocks involve class names with initiated components 

out of them. The blocks also contain observers for each level and assertions between components. 

 

Figure D.1 - Flap System Block of L0 in AltaRica Safety Model 

  

 

block FlapSystem 

StartingPoint FlightCrew; 

Lever FlapLever; 

EPWER ElectricalPowerSource; 

Control ControlSystem; 

Actuation ActuationSystem; 

Flaps LHSFlap, RHSFlap; 

Sources AirDataComputer, MonitoringSystem; 

Endings EICAS; 

observer Boolean AnnunciatedLossOfFlapExtension = EICAS.output and (not LHSFlap.output or not 

RHSFlap.output);  

observer Boolean UnannunciatedLossOfFlapExtension = EICAS.s == FAILED and (not 

LHSFlap.output or not RHSFlap.output);  

observer Boolean AnyFlapDisconnection = LHSFlap.s == FAILED or RHSFlap.s == FAILED; 

assertion 

FlapLever.input := FlightCrew.output; 

ControlSystem.input1 := FlapLever.output; 

ControlSystem.input2 := ElectricalPowerSource.output1; 

ControlSystem.input3 := AirDataComputer.output; 

ControlSystem.input4 := MonitoringSystem.output; 

EICAS.input := ControlSystem.output2; 

ActuationSystem.input1 := ControlSystem.output1; 

ActuationSystem.input2 := ElectricalPowerSource.output2; 

LHSFlap.input := ActuationSystem.output1; 

RHSFlap.input := ActuationSystem.output2; 

end 
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Figure D.2 - Flap System Block of L1 in AltaRica Safety Model  

block FlapSystem 

StartingPoint FlightCrew; 

Lever FlapLever; 

PowerSource DCPowerSource1, DCPowerSource2, mainBUS1, mainBUS2; 

Control ControlUnit1, ControlUnit2; 

Motors DCMotor1, DCMotor2; 

Data AirDataComputer1, AirDataComputer2, PositionTransducer, FlapPositionSensor; 

Endings EICAS; 

Drivelines LeftWingDriveline, RightWingDriveline; 

Gear SpeedSumGear; 

Flaps LHSFlap, RHSFlap; 

observer Boolean AnnunciatedLossOfFlapExtension = EICAS.output and (not LHSFlap.output or not 

RHSFlap.output); 

observer Boolean UnannunciatedLossOfFlapExtension = EICAS.s == FAILED and (not 

LHSFlap.output or not RHSFlap.output); 

observer Boolean AnyFlapDisconnection = LHSFlap.s == FAILED or RHSFlap.s == FAILED; 

assertion 

FlapLever.input := FlightCrew.output; 

ControlUnit1.input1 := FlapLever.output1; 

ControlUnit1.input2 := DCPowerSource1.output1; 

ControlUnit1.input3 := DCPowerSource2.output1; 

ControlUnit1.input4 := AirDataComputer1.output1; 

ControlUnit1.input5 := AirDataComputer2.output1; 

ControlUnit1.input6 := PositionTransducer.output1; 

ControlUnit1.input7 := FlapPositionSensor.output1; 

ControlUnit2.input1 := FlapLever.output2; 

ControlUnit2.input2 := DCPowerSource1.output2; 

ControlUnit2.input3 := DCPowerSource2.output2; 

ControlUnit2.input4 := AirDataComputer1.output2; 

ControlUnit2.input5 := AirDataComputer2.output2; 

ControlUnit2.input6 := PositionTransducer.output2; 

ControlUnit2.input7 := FlapPositionSensor.output2; 

EICAS.input1 := ControlUnit1.output2; 

EICAS.input2 := ControlUnit2.output2; 

DCMotor1.input1 := ControlUnit1.output1; 

DCMotor1.input2 := mainBUS1.output1; 

DCMotor1.input3 := mainBUS2.output1; 

DCMotor2.input1 := ControlUnit2.output1; 

DCMotor2.input2 := mainBUS1.output2; 

DCMotor2.input3 := mainBUS2.output2; 

SpeedSumGear.input1 := DCMotor1.output; 

SpeedSumGear.input2 := DCMotor2.output;  

LeftWingDriveline.input := SpeedSumGear.output1; 

RightWingDriveline.input := SpeedSumGear.output2; 

LHSFlap.input := LeftWingDriveline.output; 

RHSFlap.input := RightWingDriveline.output; 



90 

 

 

Figure D.3 - Flap System Block of L2 in AltaRica Safety Model - Part I 

  

 

 

block FlapSystem 

StartingPoint FlightCrew; 

Lever FlapLever; 

PowerSource DCPowerSource1, DCPowerSource2, mainBUS1, mainBUS2; 

Control ControlUnit1, ControlUnit2; 

Motors DCMotor1, DCMotor2; 

Data AirDataComputer1, AirDataComputer2; 

Endings EICAS; 

Gear SpeedSumGear; 

PduExit BranchGear; 

Actuators FlapActuator1, FlapActuator2, FlapActuator3, FlapActuator4, FlapActuator5, 

FlapActuator6, FlapActuator7, FlapActuator8; 

Flaps FlapPanel2, FlapPanel3, FlapPanel5, FlapPanel6; 

InboardFlaps FlapPanel1, FlapPanel4; 

Drivelines TorqueTube1, TorqueTube2, TorqueTube3, TorqueTube4, TorqueTube5, TorqueTube6, 

TorqueTube7, TorqueTube8, TorqueTube9, TorqueTube10, TorqueTube11, TorqueTube12, TorqueTube13, 

TorqueTube14, TorqueTube15, TorqueTube16, TorqueTube17, TorqueTube18, BevelGear1, BevelGear2, 

BevelGear3, BevelGear4, BevelGear5, BevelGear6; 

Brakes WingTipBrakeL, WingTipBrakeR; 

Sensors FlapPositionSensor1, FlapPositionSensor2, FlapPositionSensor3, FlapPositionSensor4, 

FlapPositionSensor5, FlapPositionSensor6, FlapPositionSensor7, FlapPositionSensor8, PositionTransducer1, 

PositionTransducer2; 

 

observer Boolean AnnunciatedLossOfFlapExtension = EICAS.output and (not FlapPanel1.output or 

not FlapPanel2.output or not FlapPanel3.output or not FlapPanel4.output or not FlapPanel5.output or not 

FlapPanel6.output);  

observer Boolean UnannunciatedLossOfFlapExtension = EICAS.s == FAILED and (not 

FlapPanel1.output or not FlapPanel2.output or not FlapPanel3.output or not FlapPanel4.output or not 

FlapPanel5.output or not FlapPanel6.output); 

observer Boolean AnyFlapDisconnection = FlapPanel1.s == FAILED or FlapPanel2.s == FAILED or 

FlapPanel3.s == FAILED or FlapPanel4.s == FAILED or FlapPanel5.s == FAILED or FlapPanel6.s == 

FAILED; 

assertion 

FlapLever.input := FlightCrew.output; 
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Figure D.4 - Flap System Block of L2 in AltaRica Safety Model - Part II 

ControlUnit1.input1 := FlapLever.output1; 

ControlUnit1.input2 := DCPowerSource1.output1; 

ControlUnit1.input3 := DCPowerSource2.output1; 

ControlUnit1.input4 := AirDataComputer1.output1; 

ControlUnit1.input5 := AirDataComputer2.output1; 

ControlUnit1.input6 := PositionTransducer2.output; 

ControlUnit1.input7 := FlapPositionSensor5.output; 

ControlUnit1.input8 := FlapPositionSensor6.output; 

ControlUnit1.input9 := FlapPositionSensor7.output; 

ControlUnit1.input10 := FlapPositionSensor8.output; 

ControlUnit2.input1 := FlapLever.output2; 

ControlUnit2.input2 := DCPowerSource1.output2; 

ControlUnit2.input3 := DCPowerSource2.output2; 

ControlUnit2.input4 := AirDataComputer1.output2; 

ControlUnit2.input5 := AirDataComputer2.output2; 

ControlUnit2.input6 := PositionTransducer1.output; 

ControlUnit2.input7 := FlapPositionSensor1.output; 

ControlUnit2.input8 := FlapPositionSensor2.output; 

ControlUnit2.input9 := FlapPositionSensor3.output; 

ControlUnit2.input10 := FlapPositionSensor4.output; 

EICAS.input1 := ControlUnit1.output2; 

EICAS.input2 := ControlUnit2.output2; 

DCMotor1.input1 := ControlUnit1.output1; 

DCMotor1.input2 := mainBUS1.output1; 

DCMotor1.input3 := mainBUS2.output1; 

DCMotor2.input1 := ControlUnit2.output1; 

DCMotor2.input2 := mainBUS1.output2; 

DCMotor2.input3 := mainBUS2.output2; 

SpeedSumGear.input1 := DCMotor1.output; 

SpeedSumGear.input2 := DCMotor2.output;  

BranchGear.input := SpeedSumGear.output; 

TorqueTube1.input := BranchGear.output1;  

TorqueTube10.input := BranchGear.output2; 

// For Position Transducers 

TorqueTube9.input := FlapActuator4.output3; 

TorqueTube18.input := FlapActuator8.output3; 

PositionTransducer1.input := TorqueTube9.output; 

PositionTransducer2.input := TorqueTube18.output; 

// For Flap Position Sensors 

FlapPositionSensor1.input := FlapActuator1.output3; 

FlapPositionSensor2.input := FlapActuator2.output3; 

FlapPositionSensor3.input := FlapActuator3.output3; 

FlapPositionSensor4.input := FlapActuator4.output2; 

FlapPositionSensor5.input := FlapActuator5.output3; 

FlapPositionSensor6.input := FlapActuator6.output3; 

FlapPositionSensor7.input := FlapActuator7.output3; 

FlapPositionSensor8.input := FlapActuator8.output2; 
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Figure D.5 - Flap System Block of L2 in AltaRica Safety Model - Part III 

  

// Right hand side 

BevelGear1.input := TorqueTube1.output; 

TorqueTube2.input := BevelGear1.output; 

TorqueTube3.input := TorqueTube2.output; 

BevelGear2.input := TorqueTube3.output;  

FlapActuator1.input := BevelGear2.output; 

TorqueTube4.input := FlapActuator1.output1; 

FlapPanel1.input1 := FlapActuator1.output2; 

FlapActuator2.input := TorqueTube4.output; 

TorqueTube5.input := FlapActuator2.output1; 

FlapPanel1.input2 := FlapActuator2.output2; 

BevelGear3.input := TorqueTube5.output; 

TorqueTube6.input := BevelGear3.output; 

FlapActuator3.input := TorqueTube6.output; 

TorqueTube7.input := FlapActuator3.output1; 

FlapPanel2.input := FlapActuator3.output2; 

WingTipBrakeR.input := TorqueTube7.output; 

TorqueTube8.input := WingTipBrakeR.output; 

FlapActuator4.input := TorqueTube8.output; 

FlapPanel3.input := FlapActuator4.output1; 

// Left hand side 

BevelGear4.input := TorqueTube10.output; 

TorqueTube11.input := BevelGear4.output; 

TorqueTube12.input := TorqueTube11.output; 

BevelGear5.input := TorqueTube12.output;  

FlapActuator5.input := BevelGear5.output; 

TorqueTube13.input := FlapActuator5.output1; 

FlapPanel4.input1 := FlapActuator5.output2; 

FlapActuator6.input := TorqueTube13.output; 

TorqueTube14.input := FlapActuator6.output1; 

FlapPanel4.input2 := FlapActuator6.output2; 

BevelGear6.input := TorqueTube14.output; 

TorqueTube15.input := BevelGear6.output; 

FlapActuator7.input := TorqueTube15.output; 

TorqueTube16.input := FlapActuator7.output1; 

FlapPanel5.input := FlapActuator7.output2; 

WingTipBrakeL.input := TorqueTube16.output; 

TorqueTube17.input := WingTipBrakeL.output; 

FlapActuator8.input := TorqueTube17.output; 

FlapPanel6.input := FlapActuator8.output1; 
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Appendix E 

Appendix E presents the following figures that are visualized fault trees used for FTA in AltaRica. 

Unannunciated loss of flap extension and flap panel disconnection failure scenarios are depicted 

in the figures. Annunciated/Unannunciated loss of flap retraction cases resemble the same fault 

tree structure as the extension cases. Therefore, they are not shown in this section. 

 

Figure E.1 - Fault Tree of Unannunciated Loss of Flap Extension at L0 
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Figure E.2 - Fault Tree of Flap Panel Disconnection at L0 
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Figure E.3 - Fault Tree of Unannunciated Loss of Flap Extension at L1 
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Figure E.4 - Fault Tree of Flap Panel Disconnection at L1 
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Figure E.5 - Fault Tree of Unannunciated Loss of Flap Extension at L2 
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Figure E.6 - Fault Tree of Flap Panel Disconnection at L2 

  


