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Abstract

Improving Model-Based System Architecture Specification to Enable Fault Tree Analysis

Enes Kolip

The aviation industry explores innovative aircraft technologies and concepts aiming to reduce its
emissions and meet environmental targets. The advanced technologies result in high complexity
in aircraft systems, necessitating novel system architecting and safety assessment methods. Model-
Based Systems Engineering (MBSE) presents a promising approach, offering more efficient
systems development than document-centric methods. At the same time, safety assessment is an
integral part of the system development process and can also benefit from a model-based approach.
Model-Based Safety Assessment (MBSA) emerges to enable the analysis of the system
architecture from a safety perspective and automate segments of the process, and by doing so, it
improves efficiency by reducing development time and errors. The objectives of this thesis are to
integrate MBSE and MBSA to construct a system model with an architecture specification that can
help build safety models for fault tree analysis (FTA). This thesis focuses on the transition from
system to safety models and explores various methods to enhance architecture specification in
support of MBSA. The approach presented in this thesis utilizes the Capella workbench and
extends the logical architecture levels of the Architecture Analysis and Design Integrated Approach
(ARCADIA) to represent the system architecture at the appropriate level of granularity to support
MBSA. The presented methodology involves enriching a system specification model by
integrating safety properties into Capella elements with the help of the property values
management tools (PVMT). The flap system is selected as a test case, and a system model of the
flap control and actuation system is developed and used to construct safety models in the AltaRica
3.0 language. Specific failure scenarios are introduced by adding observers to the safety models,
enabling FTA with AltaRica 3.0. The minimal cutsets and failure rates of the FTA are examined to
validate the results of the safety analysis, ensuring the transition between the system and the safety
model is correct. Overall, the presented thesis helps to improve coherence and collaboration
between system and safety engineers designing complex systems, such as advanced flight control
system architectures.
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1. Introduction

The global population has been seeing an increase in the accessibility of aviation with a growing
demand for air traffic [1]. Thus, it results in concerns about the environmental impact of the
industry [2]. CO; emissions from aviation have grown significantly faster in recent years than rail,
road, and shipping industries, accounting for 2% in 2022 [3]. For this reason, the industry is
attempting to reduce carbon emissions by half by 2050 [4]. Consequently, novel aircraft
technologies that can help reduce carbon emissions and increase the efficiency of aircraft are being
developed. These technologies, however, add significant complexity to aircraft systems, resulting
in a need for advanced methods for design, management, system, and safety assessments [5], [6],

[7].
1.1 Background and Motivation

An aircraft development, from the conception phase to the market, takes about 10 years on average
[8]. The efforts to develop more efficient aircraft increase the complexity of aircraft systems and
the development process, causing delays in the aircraft development of industry pioneers, Boeing
[9] and Airbus [10]. Thus, the aerospace industry needs novel methodologies and approaches to
reach environmental goals and bring more efficient solutions to aircraft systems.

SAE Aerospace Recommended Practice ARP4754 [11] is a guideline for developing civil aircraft
and systems. It presents an aircraft development process following a systems engineering approach
to cope with complexity. The process begins by designing and validating artifacts at three levels:
aircraft, system, and item levels. Later in the development, the engineers focus on implementation,
integration, and testing.

Also, ARP4761, a guideline for conducting the safety assessment process on civil aircraft, states
that safety engineers perform safety assessments simultaneously to support the aircraft
development process. Safety engineers work on safety analyses exclusively with the information
available on the system model. These analyses, however, take place late in the system design
process. System designs constantly evolve until they are finalized. Therefore, safety analyses
cannot participate in important design choices [12]. There is often a gap between the system
engineering and safety assessment because of the evolving nature of the system model. If safety
analyses are done based on an outdated system model, it can result in cost increases and time waste.

A model-based approach has the potential to reduce the gap between systems engineering and
safety assessment disciplines and reduce faults caused by this gap. Model-based methods can
increase the capability of system engineering activities by improving traceability in system
development, providing numerous system diagrams and perspectives, and facilitating organization
[13].

Figure 1.1 shows the interaction between safety and development processes. Safety assessment
supports aircraft development by introducing safety requirements at aircraft, system, and item
levels. The safety assessment process consists of Preliminary Aircraft Safety Assessment (PASA),
Common Cause Analysis (CCA), Preliminary System Safety Assessment (PSSA), System Safety
Assessment (SSA), Aircraft Safety Assessment (ASA), and Functional Hazard Assessment (FHA).



|
> |
Aircraft Level | | 4. || Aircraft Function
It CCA FHA/ PASA | T Fudens|]  Development
™ 511512 |
To ASA A | T
Failure Condition, Effects, Y
e Functional | | Classification, Safety Requirements Allocation of
Interacto : "
- menactors] | sysiem || Aircraft Functions
: | Functions 1| to Systems
- System-Level |
~ Fawre | FHA Sections |
Condition 5.1.1
& Effects ‘ | ]
Failure Condition, Effects
ClossMostion, S3rly Ojeaives o Development of
L Architectural, System
! Safety Architecture
Requirements
CCAS Separation | . A
Require PSSAs < System Architecturs
- i
512 H | v
‘ h | Allocation of
e Recuire tem Retlaulremems S‘YStem
Safsty Dbjacﬁ: 5"‘. ' | Requirements to
- Analyses Required Items
|
Y
r |
Resulis - |
514 ~ mplementazon System
S SSAs | Implementation
% 5.1.3 |
i
Y - Separston s | —¢LFIEL4-Z
ASA Results erfestion | ; System fﬂircr;ft
Results | | Level Integration
5.13 i 1 & Verification
| Physical System
| ¥
Development Complete & Ready for Certification
Safety Assessment Process | System Development Process

Figure 1.1 - Safety Assessment Process Model in [11]

At the aircraft level, FHA and PASA provide safety objectives based on the aircraft-level functions.
After aircraft functions are allocated to different systems, they become system functions. System-
level FHAs take system functions as inputs and provide system-level safety objectives for
designing individual aircraft systems. Later in the process, component-level safety requirements
are derived from these system-level safety objectives to support the design or selection of
components that are part of the systems. All safety requirements support meeting the safety
objectives set after system-level FHAs and PSSA, as shown in Figure 1.1. Validation activities are



occurring, starting at the system level, for the previous level to confirm that specifications are
developed as intended. FHA identifies potential hazards associated with functions and defines the
risks related to each hazard identified. After each FHA, an FTA takes place to validate the FHA
results. FTA helps to understand the failure of systems and find ways to reduce risks identified by
FHA.

ARP4754 and ARP4761 define system development and safety assessment as interdependent. In
addition, Figure 1.1 depicts the close relationship between the processes of system development
and safety assessment. ARP4761 describes a detailed safety assessment process occurring
concurrently with the development of the aircraft and its systems. The safety assessment can be
classified into two approaches: Qualitative and quantitative. The qualitative approach detects the
dependencies between component failures and hazards on the system level. On the other hand, the
quantitative method provides probabilities and rates of failure events. Traditional safety analysis
that works with these two approaches consists of techniques such as FTA, FHA, Failure Modes,
and Effect Analysis (FMEA). In addition, independent safety tools, languages, and methods such
as the Unified Language Model (UML) and Matlab-Simulink are often used to conduct these
traditional safety analyses [14]. Also, safety analyses are often performed manually, they are
performed without the aid of automated tools or software, meaning that these analyses can depend
on the skill of the safety analysts [15].

ARP4761 defines MBSA as an analysis method used to model system architecture to show system
behavior if any failures occur. MBSA allows automation by introducing models to traditional
safety assessment. For example, AltaRica, an MBSA language, can enable automated FTA [16].
Thus, MBSA, with the automatic safety analysis, improves efficiency by decreasing the time
needed for development and errors [17].

1.2 Objectives and Scope of the Thesis

This thesis is conducted as part of the project ‘Aile Intelligente et Légeére pour I'Environnement’
(AILE) funded by Bombardier and ‘Natural Sciences and Engineering Research Council of
Canada’ (NSERC) (under the grant number CRDPJ542298-19) to research new methodologies
that will contribute to bringing novel flight control system architectures to fruition in the next
generation of aircraft in Canada by advancing the state-of-the-art of virtual design and virtual
testing in three areas: (1) model-based systems engineering (MBSE), (2) model-based safety
assessment (MBSA) and (3) model-based design (MBD). The following sections present the
background and motivation for the conducted research and exhibit this thesis's objectives and
scope.

The gap between MBSE and MBSA due to separate environments performing safety assessments
can be reduced by incorporating safety analysis and artifacts into an MBSE approach and
workflow. Traditionally, the system architecture specification model does not include the artifacts
and findings of safety analysis. This thesis aims to enhance model-based system architecting by
incorporating safety artifacts into the system model to perform automated model-based safety
analyses. The generated system model with safety information can be used for other safety
analyses and assessment activities with the evolving architecture specification and safety
information embedded into it. For example, if a system model includes FHA results such as failure
conditions, affected functions, and failure rate objectives, then the following FTAs can be



performed based on this system model. If the system model evolution is not only limited to system
architecting but also safety assessment, embedding FTA results into the system model can enable
performing FMEAs. Accommodation of an MBSE model with safety information can make the
model a reference for performing safety analyses. In addition, employing MBSA frameworks to
run these analyses would maximize the power of safety tools, enabling the automatic generation
of safety artifacts.

This thesis presents an approach for MBSE to accommodate model-based FTA. It focuses on
enriching the system architecture with safety artifacts and performing automated FTAs with
standalone safety models. This thesis applies the methodology presented on a flap system test case
as the industrial partner Bombardier addresses advancements in flight control system architectures.
The flap system test case involves components with high technology levels that reflect the
aerospace industry's complexity. However, the methodology applies to other systems as well.

The proposed methodology involves different phases of development: (1) the architecture
specification and then a system model representation of the architecture. (2) with a safety model
that can generate automated FTAs. The research objectives are the following:

e Develop methods to use the MBSE specification model to perform safety assessments. The
thesis specifically focuses on the transition between the Capella, an MBSE tool, system
model and the AltaRica safety model, aiming to maximize the power of safety tools by
utilizing standalone safety models.

e Exploring architecture representations and modeling artifacts in the ARCADIA/Capella
MBSE framework to support the transition between MBSE and MBSA disciplines.

e Exploring modeling methodologies that can capture the aircraft development process in
ARP4754 while accommodating safety analyses in ARP4761.

1.3 Organization of the Thesis

This thesis is structured as follows: Chapter 2 presents the state of the art in MBSE, MBSA, and
their tools. It also introduces the ARCADIA approach and different MBSA techniques in the
literature. Chapter 3 shows a modeling approach extending the ARCADIA/Capella logical level
from one to three. It also involves the enrichment of the Capella system model and the integration
of FTA. Chapter 4 provides the application of the methodology representing a flap system test
case. The last chapter, Chapter 5, concludes the thesis by summarizing the main points and
outlining potential future works.



2. State of the Art

This section introduces Model-Based Systems Engineering (MBSE) and Model-Based Safety
Assessment (MBSA). It covers the previous studies on bridging MBSE to MBSA and presents a
gap analysis.

2.1 Model-Based Systems Engineering

The traditional approach, document-based systems engineering, establishes the development of a
system by managing the documentation of requirements, design, analysis, verification, and
validation activities [18]. On the other hand, MBSE shifts the focus to developing models of the
system of interest (Sol) [19]. Since the introduction of modeling methods to systems engineering,
utilizing MBSE for complex systems engineering has gathered attention from industries building
complex systems because it provides models that can store information on the system’s functions,
requirements, architecture, and behavior [20], [21]. Also, The International Council on Systems
Engineering (INCOSE) decided that MBSE is a central element in the primary vision for 2025
[22].

Model-based approaches to systems engineering ensure better communication by providing all
stakeholders with a systematic examination of the system model [23]. Design teams communicate
using the same modeling language to develop a system model. Thus, productivity increases with
the quality while the risk associated with the development is reduced [24], [25], [26]. Since the
modeling languages follow the traditional document-centric process, they support validation and
verification efforts throughout the lifecycle of a project [21]. Also, MBSE helps the development
process standardized by storing the model and its elements in a common model repository [27].

Since MBSE provides a systematic modeling approach, systems with advanced technologies and
high complexity are the main targets of MBSE. Adopting MBSE is becoming more common due
to its help in the ability to understand problems related to the design process, hence increasing the
efficiency of the development process [28]. The MBSE approach is applied by many companies
developing complex systems, such as NASA on the Europa Project [29], The Jet Propulsion
Laboratory (JPL) [30], and Boeing [31]. In addition, surveys in [32] and [33] indicate that the
usage of MBSE has increased both in government operations and industry. Consequently,
numerous disciplines and domains are adopting MBSE to develop highly complex systems.

Moving to applications of MBSE on the aircraft systems architecture, which is aligned with the
scope of the study, a study by Liscouét-Hanke and Jeyaraj uses MBSE to represent system
architectures in conceptual design [34]. An application of MBSE to a test case study, flight control
systems, similar to the case presented in this thesis, is shown by Jeyaraj [35]. Likewise, Liscouét-
Hanke et al. developed an MBSE approach for test rig architectures of flight control systems [36].
Mathew et al. [37] and Tabesh [38] presented different MBSE approaches for developing and
supporting the system architecture on integrated modular avionics and early aircraft design stages,
respectively.

The study presented in this thesis continues the work done by Tabesh [38] by extending the scope
to FTA from FHA. Tabesh proposes an alternative method that adopts a different approach from
this thesis to capture failure relationships within the system model. Tabesh utilizes the FHA
outcomes by identifying the failure conditions of a function and specifying the impacted functions
in the properties created by a Capella add-on.



Overall, the use of MBSE is increasing to address the challenges faced in system architecting for
complex systems due to its capabilities of storing information and providing different viewpoints
for stakeholders [20], [21]. Compared to the traditional document-centric systems engineering
approach, MBSE offers traceability throughout the development process, easy-to-manage
requirements, and architectures [39]. The system models created with MBSE frameworks provide
a single source of truth for all engineers and, as a result, achieve an increased coherency between
different disciplines [40].

2.1.1 MBSE Methods and Languages

Different MBSE approaches aim to solve the problems that document-based systems engineering
brings. They can be methods, tools, or processes to support systems engineering discipline [12].
There are frameworks designed to address specific problems for particular systems, such as
Modeling and Analysis of Real-time and Embedded (MARTE) for software and hardware systems
or Unified Profile for the USA Department of Defense Architecture Framework and the UK
Ministry of Defence Architecture Framework DoDAF/MODAF (UPDM) [41], [42]. There are also
methodologies for mapping specifications between domains that help make models compatible in
different environments [43].

Numerous modeling frameworks and languages exist to build and share models. MBSE utilizes
two main model types: descriptive and analytical models [44]. While descriptive models describe
a system's logical relationships, interfaces, and functions, analytical models explain mathematical
relationships in a system. On the other hand, a system model that provides a cohesive system
representation can be a hybrid model of descriptive and analytical models [44]. Another method
to implement MBSE is the modeling tools and languages to create the mentioned models.

Modeling languages and methods are considered to be enablers of MBSE [25]. The most common
MBSE enablers are UML, System Modelling Language (SysML), and ARCADIA/Capella [45],
[18]. UML visualizes complex software structures by designing and documenting their elements
with diagrams. It is an object-oriented language focusing primarily on software development, but
its models can address the complexity of the systems for systems engineering. Therefore, SysML
was created by extending UML 2 for system engineering applications [25], [46]. Although these
languages aim to develop complex systems, they can be structured differently. ARCADIA/Capella
supports functional analysis by implementing requirements for functions and functional flows
[47], while SysML and UML are structured with activity diagrams with no functional hierarchy
[48].

The methods, tools, and processes must be collaboratively used to enable MBSE [49]. Therefore,
a great endeavor is required to implement MBSE, especially in the aerospace industry, where novel
technologies bring high complexity to systems. Consequently, ARP4754, a system engineering
recommended practice by the aerospace industry, addresses the complexity of aircraft systems
[11]. Engineers should select which MBSE environment to use for a project, considering the
application of the principles outlined in ARP4754 and the complexity of the system they are
working on. This thesis chooses Thales's ARCADIA approach and the associated Capella tool to
implement the MBSE framework [47]. Therefore, the next section is centered around
ARCADIA/Capella.



2.1.2 ARCADIA/Capella

Functional analysis and safety assessment are essential, as ARP4754 suggests, for developing
complex systems. ARCADIA/Capella helps integrate requirements for functions and functional
exchanges to enable functional analysis, unlike other methods [48], [50]. In addition, creating a
functional structure by defining functions and exchanges is the first activity in ARCADIA/Capella,
followed by allocating them to structural components [51]. On the other hand, in SysML, structural
blocks are utilized to show functions, resulting in no significant difference between the functions
and structural components, unlike ARCADIA/Capella.

Operational Analysis
What the users of
the system need to
accomplish

Functional &

Non Functional Need
What the system has to
accomplish for the users

Need understanding

A: Operational activity
F: Function
C: Component

Logical Architecture
How the system will work
to fulfill expectations

Physical Architecture
How the system will be
developed and built

Solution architectural design

Figure 2.1 - ARCADIA Viewpoint-Driven Approach from [52]

Figure 2.1 shows that the ARCADIA/Capella has four different architectural levels. System
specification is created by following the process along with allocating the requirements to system
elements. Chapter 3 — Methodology section of the thesis presents a more elaborate explanation of
these levels. A brief description of each level is as follows [53]:

e Operational analysis (OA) is the level where outer entities (named as actors in Capella)
that have interactions with the Sol are defined.

e System analysis (SA) defines what the system has to accomplish for the outer entities, such
as users and actors.



e Logical architecture (LA) outlines how the system works to achieve the expected
performance.
e Physical architecture (PA) defines how the system develops and should be built.

By accommodating the four-level ARCADIA approach, the customer needs are kept consistent
with the system specifications since the requirements are shared at each level with specific systems
and components.

2.2 Model-based Safety Assessment

Like MBSE, MBSA has seen interest gradually increase from industry and academia [54], [55],
[56]. The notable languages developed by academia for MBSA are AltaRica [57], [58], [59],
Hierarchically Performed Hazard Origin and Propagation Studies (HiP-HOPS) [60], and the
Architecture Analysis and Design Language (AADL) [61], [62]. T. Prosvirnova et al. present
AltaRica 3.0, the newest version of AltaRica, to express traditional risk modeling methods such as
fault trees and Markov chains [16]. Improvement of Safety Activities on Aeronautical Complex
System (ISAAC) utilized MBSA tools such as AltaRica to support safety assessments [63]. In
addition, the most updated revision of ARP4761, 2023, presents an appendix for MBSA, where an
overview of the concepts and processes associated with performing a safety analysis using MBSA
is presented.

MBSA is an approach that depicts a system's architecture and functional design. Its primary goal
is to define how the system behaves in case of failures [64]. Unlike traditional safety analysis
methods, the MBSA method is based on a common model (an extension of a system model or two
models — a system model and a safety model transformed from it — [65]) in which system
development and safety assessment efforts transpire simultaneously. This is due to the
disadvantages of traditional safety analysis approaches in the following:

First, safety engineers use a system model to obtain safety information. Due to the evolving nature
of the system model, the information exported from the model can become obsolete in time [66].
Second, if the system design is complete before the safety assessments, there is no further
timeframe to change the design with the results of the analyses [67]. These problems can lead to
late design changes with sharp cost increases [68]. Also, the most common safety analysis
methods, such as FTA and FMEA, depend on the experience of the safety engineers and are thus
prone to error and time-consuming [69]. Accommodating a common model, therefore utilizing
MBSA, enabling system and safety engineers to work together on a system model with safety
information, tackles these drawbacks of the traditional safety methods.

There are two classifications of MBSA methods. One depends on the system model and the other
on the component interactions [65]. Standalone and extended models differ in system model
[56],[65]. Previously mentioned common models that capture safety and systems engineering
activities are used only to extract system structure or integrate safety artifacts into the system
model. Therefore, standalone models require a transformation of the system model to be used for
the MBSA tools. Thus, utilizing already developed and improved safety languages, methods, and
tools after the transition takes place is one of the key advantages of the standalone models.

Several researchers have studied standalone models. For instance, Yakymets et al. [70] created the
Safety Modelling Framework for Fault Tree Generation (SMF-FTA). The framework transforms
the SysML system model into AltaRica language and then integrates safety information back into
SysML. It provides a verification algorithm to detect any errors in the transformation. After the

8



transformation, AltaRica’s tools can be used for safety analysis. Another study [71] developed an
algorithm for extensible markup language (XML) to analyze the system model and transform the
model into the AltaRica language. Their method creates preliminary FMEA reports automatically
with the help of AltaRica.

Extended models, on the other hand, aim to expand the MBSE environment to accommodate safety
analysis without the need to create a separate model. MBSE tools can enable safety assessment
within themselves via tool extensions for safety by adding safety artifacts into the system model.
An approach named SafeSysE is presented in [72]. The method introduces new attributes to store
several safety artifacts. Then, the system model is exported as XML metadata interchange to a
specific Python tool built for reading this data. Lastly, the tool runs FTAs and FMEAs. Also, Helle
extends the MBSE environment, SysML [73]. The study illustrates failure cases as SysML Use
Cases. It uses IBM Rhapsody, allowing the use of Rhapsody API to construct a program to extract
the failure case data. Then, the program can calculate failure rates for different failure cases.

The other classification of MBS A methods depends on component interaction construction. Failure
logic modeling (FLM), failure effects modeling (FEM), and fault injection modeling (FIM) are the
main examples that fall under this classification. FLM models are written in a traditional FTA
approach where the exchanges between components are defined with failure modes only. In FLM,
if a component has a failure occurring, it generates a specific failure mode for another component
that has interactions with it. On the other hand, the FEM approach involves the construction of a
simplified model of the system where the component exchanges are captured in terms of flow
characteristics (energy and/or information) with boolean values. While standalone models are
constructed with FLM and FEM (e.g., AltaRica [16] and HipHops[74]), FIM supports the extended
models. FIM helps safety analysts determine failures that result in safety requirements not being
met [54]. FIM achieves this by configuring the elements of the extended models for specific
failures so that the components present erroneous exchanges at the concerned areas or interfaces
in the extended models. FIM has been utilized in several safety assessment studies by Bozzano et
al. [75]. This modeling method provides a coherence advantage with the system model compared
to other techniques. However, it relies on the skills of the safety engineer to build extended models.
Also, FIM has limitations on the capability of handling time-dependent faults that are seen in many
aircraft component failures.

While extended models allow system architecting and safety analysis in one unified environment,
MBSE tool add-ons for safety analysis must be built. On the contrary, standalone models require
effort to be transformed from system models, but they use existing safety analysis tools.

2.3 Safety Modelling Tools, Languages and Methods

This section presents several MBSA modeling tools, languages, and methods available developed
by academia and industry.

Safety Architect is an MBSA tool developed by ALLATEC to assess system architectures in
various industries [76]. It can use functional or physical system architectures built in SysML or
Capella to run local Failure Modes, Effects, and Criticality Analysis (FMECA). For the failure
cases identified, it automatically runs FTA [77]. First, the user must import a system model into
the environment to perform a local analysis. The local analysis allows users to link the failure
modes of different blocks of the model with their inputs and outputs. Along with the local analysis,
users are expected to add safety barriers that prevent feared events from occurring. After these



steps, the failure modes for selected feared events must be specified. Finally, the user requests the
tool to run an overall analysis. Safety Architect then runs an automatic analysis that spreads the
failure modes to the system and traces their combinations, resulting in the feared event. This results
in an enriched system model consisting of assumptions made in the local analysis, a summary of
the results attained in the overall analysis, and a fault-tree visualization [78].

AltaRica 3.0 is a constraint automata language designed at the Computer Science Laboratory of
the University of Bordeaux (LaBRI) and used for safety analysis [79], [80]. It is an event-driven
complex systems modeling based on Guarded Transition Systems (GTS). AltaRica models consist
of component hierarchies that capture GTS. The main principle of AltaRica is a set of rules that
translate (flattening in AltaRica) component hierarchies, called boxes, to a GTS [81]. The tool
consists of component notions called nodes. Each node is defined with several flow and state
variables and events. While events trigger transitions between different states on the automata
modeled by the state variables, flow variables are interfaces of the nodes, defining inputs and
outputs [65], [82]. More information on Altarica and its main principles, with an overview of GTS,
is presented in section 3.2.

The Architecture Analysis and Design Language (AADL) is a language extended from MetaH
developed by Binns et al. [83], [84]. SAE standardized AADL as an architectural description
language for analyzing embedded software [85]. AADL is tailored to support architectures and
software patterns for distributed processor platforms with hybrid automata [86]. It consists of
specific structures for designing embedded software. Its syntax includes components such as
software subprograms, hardware processors, memory, bus, etc [85].

HiP-HOPS is a method that enables integrated assessment of complex systems by analyzing the
failure behavior of components through utilizing interface-focused-FMEA (IF-FMEA), a modified
version of classical FMEA [87]. Applying this method results in a table providing a list of failure
modes for components. The failure modes can be observed from the outputs of the components.
The approach then captures the causes of output failures as combinations of internal failures,
component malfunctions, or input deviations. The final stage of the analysis is determining the
structure of the fault propagation process in the system. This is done by examining the functional
failures identified in functional failure analysis and their combinations arising from component
failure modes identified in the [IF-FMEAs. Eventually, analyzing the expressions in the IF-FMEAs
generates an FTA [87], [88].

2.4 Summary and Gap Analysis

According to the literature, MBSE and MBSA are promising solutions to tackle the problems that
complex systems bring and to increase the efficiency of development and safety assessment
processes. However, there are several issues exist due to the separation of environments in which
systems engineers and safety engineers operate. Systems engineers typically work in an MBSE
environment, such as Capella, while safety engineers work in an MBSA environment, such as
AltaRica. This separation results in several challenges: there can be delays between analyses,
leading to the system model being outdated by the time the safety analysis is performed.
Additionally, errors can occur during the transmission of data between these environments,
potentially compromising the integrity of the analyses. Also, the lack of synchronization between
the system models and safety models can create inconsistencies that undermine the effectiveness
of both MBSE and MBSA.
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Several researchers have addressed these challenges by using either so-called extended or
standalone models for MBSA. Extended models have the benefit of accommodating system design
and safety analysis in the same environment. However, standalone model approaches use the
capabilities of the existing tools to the maximum since system architecting and safety assessment
are performed in their own environments.

A third way is integrating safety artifacts into the MBSE environment that can enable MBSA and
reduce the above-mentioned challenges. Few researchers have investigated this option; this thesis
will explore this avenue.

Regarding the scope of MBSA, most of the research focuses on the FHA, fewer work on the
various subsequent stages. As previous work in the Aircraft Systems Lab addressed the FHA [38§],
this thesis will build on this prior work and focus on the FTA.

In summary, the analysis presented in this section identifies several gaps in the current
methodologies for system architecture specification and safety analysis integration:

» Lack of Integration of Safety Properties: The current methodologies lack the capability to
perform safety analyses based on the information stored in an MBSE environment. This
gap highlights the need for developing methods to incorporate safety artifacts directly into
the MBSE framework, enabling the conduction of safety assessments.

» Modeling Methodologies for ARP4754 and ARP4761: Existing modeling methodologies
do not fully capture the aircraft development processes outlined in ARP4754 while also
accommodating the safety analyses specified in ARP4761. This represents a gap in creating
comprehensive models that address both system architecture and safety requirements
effectively.

» The transition between Capella and AltaRica: There is insufficient research on the
transition between the Capella MBSE tool and the AltaRica safety modeling tool. This gap
indicates a need to explore methodologies for the transition between these tools.

To address these gaps, the primary research question guiding this thesis is: How can MBSE be
enhanced to support FTA and enable MBSA in complex system architectures?

The objectives of this research are:

» To develop a system model using ARCADIA/Capella to enable hosting various safety
properties.

» To integrate safety properties into system models using Capella's PVMT add-on.

» To create standalone safety models in AltaRica 3.0 with the information stored in the
Capella system model for performing FTAs.

» Validate the methodology’s effectiveness through a flap system case study.
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3. Methodology

This chapter introduces the methodology that aims to enable MBSA by introducing several
enhancements to the MBSE environment. The methodology is based on an iterative process. This
chapter presents a methodology overview by illustrating a mapping between safety assessment,
aircraft development process, and system architecting in Capella, followed by an introduction to
safety analysis with AltaRica. The next topics discussed in this chapter are system model
development with Capella and safety artifact integration. Finally, the chapter ends with a summary
of the methodology.

3.1 Methodology Overview

This section outlines the iterative approach utilized in this research to incorporate safety analysis
into the system development lifecycle. Each iteration plays a role in improving and enhancing the
system model. The iterative steps aim to reflect the connection between the system and the safety
model. While developing the aircraft, these two models continuously provide input to each other
to finalize system design and reach the safety objectives. The system model provides system
architecture and safety properties to the safety model; the safety model outputs drive the system
design decisions in a safety context.

The process depicted in Figure 3.1 starts with creating a test case architecture. Next, a Capella
system model is developed based on the test case architecture, marking the first stage of
development. However, the initial Capella model is representative of a typical system architecture
specification model, not particularly tailored for safety assessment.

First Iteration
Capella
Model

Test Case Capella

AltaRica Safety
Architecture System Model

Safety Model Analyses

Safety Artifacts

Figure 3.1 - Process to Obtain the Methodology

In the first iteration, an AltaRica safety model is developed alongside the Capella system model
but with limited information, leading to qualitative and quantitative safety analyses that present
failure rates with orders of magnitude only. The system and safety models are built, taking the test
case architecture as a baseline. Hence, the initial process involves identifying safety elements for
integration into the Capella system model, laying the groundwork for future safety integration
efforts.
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The next iteration has a more detailed system model following the development process depicted
in Figure 3.2. Understanding the mapping between safety assessment, development, and
ARCADIA/Capella process is vital for the next steps of the methods, especially additional logical
architecture levels created in Capella.

In the first stage of the development process, which is aircraft function and requirement
development, the functions are developed with the requirements as well as the experience and
knowledge of the engineers on the system developed. The created functions define the capabilities
of the aircraft. Here, the first iteration of AFHA and aircraft FTAs takes place.

In the next step, numbered 4.3 in Figure 3.2, the Development of Aircraft Architecture and
Allocation of Aircraft Functions to Systems, system engineers break down these functions to obtain
parent and subfunctions and define the functional exchanges. This step involves defining actors
that are entities interacting with the Sol and allocating the functions to every system and actor.
Breaking systems into subsystems corresponding to the logical architecture level in Capella is one
of the main activities done here.

The Development of System Requirements stage is the step in which system engineers shape the
architecture of the systems with the matured functions and their allocations. The SFHA is being
done at this level with the system functions provided by the architecture. Also, the interactions and
interfaces between different systems are defined, making early validation and verification possible.
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Figure 3.2 - ARP Safety Assessment Process Model Mapping to ARCADIA adapted from [11]

The Development of System Architecture and Allocation of System Requirements to Items 1is the
stage where system engineers finalize the architecture by capturing and allocating requirements to
the systems, components, and functions. The allocated requirements cover various topics, such as
safety and performance. Safety engineers run system-level FTAs at this level with required inputs
obtained from the matured system architecture. Depending on the results of the FTAs, the process
can be iterative until the safety and reliability requirements are met.

The last stages of the development process do not fall under the scope of this thesis because the
main activities done here are implementation and integration. It is the stage where a transition
occurs from a higher (system) to a lower (item and component) engineering level. Safety engineers
perform FTAs with real test data in the SSA for verification.
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To accommodate system FTAs in the corresponding stage of the development process presented
in Figure 3.2, the logical architecture in the Capella/ARCADIA approach is organized into three
levels - LO, L1, and L2 - representing various stages of aircraft development, adapted from [38].
The three different logical levels are discussed in section 3.3.

3.2 Introduction to Safety Analysis with AltaRica

AltaRica is a modeling language designed for safety, reliability, and performance analysis. It is a
tool for Model-Based Safety Analysis. It allows engineers to represent complex, modular, and
dynamic systems, capturing the interface of components, events, and states. AltaRica is a safety
tool that enables failure propagation modeling (FPM) [89].

The FPM depicts the system architecture with the dysfunctional behavior of the systems and
components. The safety model created with FPM should illustrate both the design of the system
and its failure characteristics from a safety perspective, as well as consider factors such as design
maturity and assumptions about failure independence [64].

The foundation of AltaRica's modeling approach is the concept of Guarded Transition Systems
(GTS) [64]. GTS provides a formal framework for representing system behaviors, transitions, and
states. It captures a system's operation by outlining various transitions, each distinguished by
particular conditions, actions, and events [90]. Thus, GTS enables the modeling of systems'
dysfunctional behavior.

The representation of a repairable component that can take two different states in a guarded
transition system can be indicated in Figure 3.3. Assume that it can be either WORKING or
FAILED. In the initial state, the component works, meaning it prints output as true. When an event
failure occurs, the state of the component changes to FAILED, and the output of the component
becomes false. Similarly, the event repair makes the state variable transition from FAILED to
WORKING. The events of failure and repair are executable with specific rates: A and p.
Components in this thesis, however, have only one event, which is ‘failure’.

- . = 1
cope covered in this thesis

failure (A)

|

|

|

|

|

|

|

|

[ ( state == WORKING ] ( state == FAILED ] output |
|

: L output = true L J

input

\—

output = false

repair (W)

Figure 3.3 - Guarded Transition Systems Representation of a Repairable Component
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A component named /ever is depicted in Figure 3.4. The variable s represents the state of the
component lever. It takes its value, which is WORKING or FAILED, from the domain
ComponentState. The attribute init gives its initial value and is equal to WORKING. Its value is
modified by the transition labeled by the event failure. When the event failure occurs, the state's
value changes to FAILED, and then the flow variable values are updated.

class Lever
ComponentState s (init = WORKING);
parameter Real mu = 0.000002753;
event failure ( delay = exponential ( mu ));
transition
failure : s == WORKING -> s := FAILED;
Boolean input , outputl, output2 ( reset = false );
assertion
outputl := s == WORKING and input;
output2 := s == WORKING and input;

end

Figure 3.4 — An Example of a Component defined in AltaRica 3.0

The flow variables represent the inputs and outputs of a component and are named “input” and
“output” in the examples provided in Figures 3.3 and 3.4. The attribute reset sets the initial value
for the flow variables. Attribute boolean makes the flow variables have true or false values. The
attribute of the flow variables depends on the state variables and can only be edited in the assertion
section. The assertions set the way for how flow variables work in different conditions. Here, the
assertion dictates that the output is true if the state s equals WORKING and an input comes to the
component. The output value becomes false if the state “s” variable equals FAILED or no input
comes to the component.

3.2.1 Fault Tree Analysis with MBSA

A fault tree is a graphical representation used in safety engineering to analyze the potential causes
of system failures. Fault trees provide a structured approach to assess various events that could
lead to a specific undesirable outcome, known as the top event. Events are connected to each other
by gates. While the events connected by an “AND” gate must occur simultaneously, the “OR” gate
states that one of the events would lead to the failure of the event above. The decision to primarily
use “AND” and “OR” gates in this thesis is based on the need for simplicity in modeling the failure
logic. While other types of gates (e.g., XOR, NOT, NAND) exist, they might introduce additional
complexity that is not necessary for the scope of this study.

In the fault tree illustrated in Figure 3.5, the top event, Loss of a Function, represents the
undesirable outcome being analyzed. Connected to this top event is a basic event, Sensor
Malfunction, indicating one potential cause of the system failure with a failure rate of 1.00e-05.
The failure rates for the components in this thesis are modeled using an exponential failure
distribution. This approach assumes a constant failure rate over time, which simplifies the analysis.
Although other distributions, such as the Weibull distribution, can provide more detail by
accounting for varying failure rates over time, they require additional parameters (such as mean,
standard deviation, shape and scale parameters, etc.) that are difficult to access in the literature for
the components presented in the test case.
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The triangles attached below, in Figure 3.5, denote that the fault tree structure continues beyond
the scope of this diagram. All branches must lead to basic events with failure rates to calculate the
probabilities of failures for intermediate events and, ultimately, the top event.
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Figure 3.5 - A Simple Example of a Fault Tree (image extracted from Arbre Analyst)

As described in ARP4761, functions are associated with specific failure conditions after an FHA
process, and their effects are delineated. These identified functions are the cornerstone of FTA,
providing a starting point for analyzing failures since they are the top event functions for FTA.
Once the top event for the FTA is identified, the next task is to establish the intermediate events
that will form the pillars of the fault trees. These intermediate events are the indicators of potential
failure modes or conditions that contribute to the occurrence of the top event. Depending on the
level of detail available in the system model, the intermediate events may vary in complexity and
granularity.

The first step for performing FTAs is to select a failure scenario and the top event for this specific
failure case. System architecture layouts all functions, including the top events with failure
conditions as a result of FHA. However, there needs to be a transition of the top events between
system and safety models. This transformation is achieved through observers, which track the
system's behavior and record specific events or conditions in AltaRica safety models. Observers
operate like flow variables but have some differences: they cannot be employed in transitions and
assertions to define the system's behavior, instead serving as quantities for observation. They are
regularly updated after each transition executed, offering insight into the system's state and
enabling dynamic monitoring of events or conditions. The top events for fault tree analysis are
specified via the observers, allowing for identifying critical failure scenarios within the system.
Additionally, several observers can be defined for the same AltaRica 3.0 model, enabling the
generation of multiple fault trees from a single model. This flexibility ensures that various failure
scenarios and their associated top events can be analyzed within the safety model.
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3.2.2 Inputs and Outputs of MBSA

After presenting the principles of AltaRica, the next step is discussing what elements are needed
to run safety analyses and what is expected for the outcome. By delineating these elements, there
will be a clear picture of what kind of enhancements need to be made to the system model.

ARP4761A states that MBSA utilizes inputs and outputs comparable to conventional safety
analysis methods. The specific inputs and outputs needed depend on the analysis type and the detail
level. Minimal cutsets are one type of output of FTAs and are a group of sets consisting of the
smallest combinations of basic events that result in the occurrence of the top event. They represent
all the ways in which the top event occurs based on the basic events. For example, conducting a
traditional FTA would necessitate FHA failure conditions for analysis and anticipate minimal
cutsets and failure probabilities in return. Therefore, it can be concluded t hat conducting an FTA
in an MBSE environment entails similar components.

Also, the type of analysis performed with FPM sets the boundaries of the FPM and the inputs and
outputs of MBSA [64]. Figure 3.6 shows the inputs and outputs of the safety models created in this
thesis. Capella, as an MBSE tool, provides the system requirements and architecture. However,
the Capella system model is enhanced to provide other input elements as well. An FPM block
consists of events, states, and transfer functions. The FPM drives failure condition observers with
its flow and state variables and outputs minimal cutsets and failure probabilities for FTA with the
assumptions presented in this thesis, as seen in Figure 3.6.
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Figure 3.6 - Safety Model Inputs and Outputs Tailored for the Test Case FTA adapted from
ARP4761

On the other hand, safety model elements have defined objects to work. The components in an
MBSA environment need the information of inputs, outputs, events, states, and transfer functions.
[64]. GTS's quintuple notation (V, E, T, A, 1) illustrates a system’s dynamics and what needs to be
defined to create components in an AltaRica safety model.

e V (Variables): Variables are categorized into state variables (S) and flow variables (F). State
variables encapsulate the system's current state, while flow variables represent dynamic
interactions or events.
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e E (Events): Events are symbols denoting occurrences that trigger transitions within the
system. These events define the dynamics and state changes of the system.

e T (Transitions): Transitions represent the system's evolution. Each transition is a triplet
comprising an event, a guard, and an action.

e A (Assertions): Assertions are instructions built on variables of V. They are actions that
occur after a transition. They express the consequences of the transition.

e [ (Initial Assignment): The initial assignment defines the system's starting state, providing
a foundation for subsequent transitions.

Capturing the elements of the GTS notation for each component in a system enables building a
safety model. The class presented in Figure 3.4 has all quintuple notations defined. Thus, the
relevancy and importance of each element can be understood by referring to the explanation of the
figure. Transfer functions defined in the ARP4761 share the same functionality with the assertion
section of AltaRica, determining the output based on a component's inputs and states. Table 3.1
depicts the namings of MBSA elements stated in ARP4761 and GTS of AltaRica. This thesis
denominates MBSA artifacts using both sources interchangeably.

Table 3.1 - Matching Elements of GTS and an ARP4761 MBSA Model

ARP4761 GTS
Inputs, outputs Flow variables
States State variables
Events Events
Transfer functions Assertions

3.3 System Model Development with Capella

This section provides information on the selection of the MBSE environment, explains different
levels of ARCADIA in subsections, and emphasizes the extended logical levels of Capella.

This thesis utilizes ARCADIA/Capella for the following reasons:

1. While ARCADIA is the method to define system architecture, Capella is the language to
apply the ARCADIA approach. Many languages and tools for modeling come without a
method of modeling, unlike Capella.

2. ARCADIA/Capella is that it shifts the focus from the modeling languages to the method
and its procedure. Therefore, systems engineers are not expected to be experts in the
modeling language.

3. ARCADIA/Capella is an open-source solution used in aerospace domains by Thales and is
being evaluated by Bombardier, the industrial partner of the thesis.

Capella/ARCADIA has four different levels of system development: Operational Analysis, System
Analysis, Logical Architecture, and Physical Architecture. Since the Operational Analysis level
defines high-level interactions among entities and actors and captures the operational needs of
stakeholders [91], it does not fall under the scope of this thesis. Instead, this thesis focuses on the
Logical Architecture level more because this stage covers the system and system architecture
development, as Figure 3.2 shows.
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The modeling in the thesis follows a top-down approach in compliance with the ARP4754. The
following subsections explain each Capella stage in order.

3.3.1 System Analysis

SA is the starting phase involving the decomposition and analysis of the system architecture to
ensure that it meets the specified requirements [53]. The SA level is fundamental for understanding
the system's structure, behavior, and interactions. Breaking down the system into manageable
components for in-depth analysis helps engineers to understand and create logic. The main
activities at this level are identifying and defining system functions, allocating functions to systems
and components, identifying systems interacting with the system of interest, and defining
interactions between systems and actors [47].

Figure 3.7 captures the main activities of the SA process by illustrating the structural organization
and functional relationships within the system architecture. The system of interest, which
represents the focus of the development, is located at the center of the design. System actors
represent external entities interacting with the system of interest and among themselves. Each
function in the design captures a distinct aspect of system functionality, contributing to the overall
capabilities and objectives of the system. Moreover, functional exchanges between functions
signify the flow of information and interactions within the system architecture. These exchanges
represent the relationships between different systems, subsystems, and actors.
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Figure 3.7 - Sample of a System Architecture Diagram in Capella

In the safety assessment process, SA-level functions correspond to aircraft-level functions
analyzed in AFHA. The outputs of AFHA (failure conditions, effects, and classifications) support
generating functions and requirements for the next steps of development.

3.3.2 Logical Architecture

Following a top-down approach, the next analysis step is the logical architecture level, where how
the system works to fulfill expectations is defined, and a more detailed exploration of the system's
architectural elements takes place [47], [52]. Continuing the development from the system analysis
drives system engineers to refine the system elements. The refinement not only includes the
components, functions, and their exchanges but also defines logical subsystems and components.
Therefore, this stage must establish the system's internal organization, interfaces, and interactions
and develop its logical structure. Like the system analysis stage, the logical architecture level helps
comprehend and form the system's design. However, here, the focus switches to outlining the
logical parts and subsystems of the system architecture.
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The level of detail of the system elements is more refined in the logical architecture diagram
compared to the system analysis level. The refinement that takes place in Figure 3.8 achieves the
objectives of the logical architecture level. Function 5 in SA 3 has been decomposed into
SubFunction 5.1 and SubFunction 5.2. Similarly, Function 1 now becomes a parent function,
meaning a combination of its subfunctions achieves the same functionality. The decomposition of
Function 1 is done by three subfunctions, SubFunction 1.1, SubFunction 1.2, and SubFunction 1.3,
and they are allocated to a newly defined Logical Subsystem 1. This decomposition reflects a more
granular architecture.
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Figure 3.8 - Sample of a Logical Architecture Diagram in Capella

Furthermore, Function 2 and Function 3, located in the system of interest in the system analysis,
have now been allocated to a newly defined Logical Subsystem 2. The allocation signifies the
establishment of logical subsystems for capturing related functions and components. Thus
enhancing modularity within the system architecture.

A similar refinement takes place in functional exchanges. The exchange from Function 4 to
Function 3, previously labeled FunctionalExchange 2, has been elaborated into
DetailedFunctional Exchange, reflecting a more detailed exchange specification. Additionally, the
functional exchange from Function I to Function 2 is broken down into two different exchanges
to reflect the decomposition of Function 1 into its subfunctions. FunctionalExchange 4 and
FunctionalExchange 3 together in the logical architecture satisfy the interaction between Function
I and Function 2 in the system analysis.

3.3.3 Physical Architecture

In the context of aircraft development, the physical architecture level represents the stage where
the system's logical design transforms into physical components. The level defines how the system
should be built and developed. The emphasis on the physical architecture level is limited in the
thesis. This is due to aircraft manufacturers outsourcing physical components' design and
development efforts to specialized supplier companies. Supplier companies are tasked with
translating the functional and performance requirements outlined by the aircraft manufacturer into
viable design solutions based on the physical architecture. In this way, aircraft manufacturers
leverage the expertise of external suppliers in component design.

Therefore, the physical architecture level in this thesis corresponds to the implementation efforts
in the development process and the System Safety Assessment (SSA) in the safety assessment
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process. The physical architecture phase should capture SEE, FMEA, and FMES that are out of
the scope of the thesis.

Figure 3.9 illustrates the PA-level architecture diagram that is the continuation of the LA in Figure
3.8. The System of Interest in Figure 3.8 goes under a physical implementation phase in PA. As a
result, physical components form the system by carrying the functions from LA to PA.
SubFunction 1.3 in Figure 3.8 becomes a parent function with two subfunctions in the PA level,
which are Physical Function 1 and Physical Function 2. FunctionalExchange 3 is captured in the
PA level by allocating it between Physical Function 2 and Function 2. Component 1 and
Component 2 form Logical Subsystem I and carry the same functional capacities as the logical
subsystem. The physical implementation of Logical Subsystem 2 is done with Component 3 and
Component 4. Actors go through a transition from LA to PA and become physical actors in this
stage.

In addition, logical components that are transferred from LA to PA become behaviour physical
components (named Behavior PC in Figure 3.9). While these Behavior PCs are allocated to the
physical nodes, yellow boxes, that represent the physical implementation of the logical
components, physical functions are appointed to the Behavior PCs.
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Figure 3.9 - Sample of a Physical Architecture Diagram in Capella

3.3.4 LA and Safety Process Alignment

This thesis refines the system architecture by extending the LA level to three phases in Figure 3.10
—L0, L1, and L2. Table 3.2 summarizes the key activities done at each level. The utilization of
three logical levels helps to facilitate a gradual refinement and specification of the system
architecture. The three-level approach is a representation of the development in system
architecture. It also enables capturing essential information necessary for conducting thorough
safety analyses. The method starts with LO and ends with L2. Phase L1 captures iterations between
the other two levels. As the methodology advances to L2, the level of detail achieved approaches
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that of the physical architecture, reducing the need for extensive focus on the physical architecture
level in Capella.

This thesis builds on the method presented by Tabesh [38]. Tabesh proposes an MBSE approach
for early aircraft design aimed at unconventional architectures such as hybrid aircraft. Therefore,
it describes a multi-leveling approach to accommodate different technological choices an
architecture can capture. As the method of Tabesh progresses to L0, it shows a system for Sol and
other systems interacting with the Sol. Once the level L1 is reached, aircraft-level model
propagation starts. There are multiple derivative models are created at L1 and they are called as
System-Logical (Sys-L1).

While the multi-leveling methodology that Tabesh proposes aims to manage the model variants
for better accessibility and traceability, in this thesis, the goals are to reflect refinement in the
aircraft development process and allow performing various safety assessments at each logical level
to influence the system design. Also, Tabesh integrated FHA artifacts into a Capella system model
by utilizing PVMT, whereas the methodology of this thesis uses PVMT to integrate safety
properties for FTA.
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Figure 3.10 - Capella Logical Architecture and Safety Analyses Relationship

At the LA level, systems and functions are decomposed into sub-systems and subfunctions. SFHA
is being done at this stage, as Figure 3.10 shows. The SFHA focuses on identifying hazards and
assessing risks precisely with the details available. Each identified hazard and associated function
is then mapped onto a fault tree, forming the basis for subsequent FTAs. These fault trees begin
with top-level events derived from the SFHA results. They help to facilitate running different safety
analyses for various failure scenarios.

From a safety point of view, each logical level—L0, L1, and L2—serves a distinct purpose in
enhancing the system architecture while facilitating different types of safety analyses. Beginning
with L0, this level represents the initial stage where fundamental functions are identified and
classified as top-level events through the FHAs. L0 is particularly suited for qualitative analysis
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because it identifies critical functions without going into detailed quantitative data. Also, LO and
L1 levels offer quantitative analysis involving component/subsystem failure rates with their orders
of magnitude instead of precise failure rates.

Moving to L1, a higher level of refinement is achieved, characterized by increased redundancy
and availability of failure rate information to some extent. At this stage, the interactions between
systems are delineated with greater detail. However, the system does not yet have the full
redundancy information, and there might be missing information on specific component-level
elements. Thus, L1 remains suitable for qualitative analysis and, at the same time, might be
offering quantitative analysis for certain failure scenarios.

Finally, at L2, the system architecture reaches its most detailed and refined state. It encompasses
all levels of redundancy. All subsystems, functions, functional exchanges, and interfaces are fully
defined. Due to constant logical subsystem breakdowns along the process, component-level
information is reached, allowing the storage of failure rate data for each component. L2 is
particularly well-suited for quantitative analysis because it has detailed information on component-
level system engineering elements.

Table 3.2 - Key Activities to be done at each Logical Architecture Level

Logical
Architecture
Level

Key Activities for System Development
Adapted from [38]

Key Activities for Safety
Assessment

L0 (starting
point)

Define logical systems, making a
transition from system functions to logical
functions, allocate the functions to logical

Identification of the FTA's top
events through FHA,
qualitative FTA to form a fault

L1 (several
iterations)

systems. tree structure
Define logical subsystems and | Quantitative FTA with both
components, breakdown of logical | precise failure rates and orders

functions, allocating the detailed logical

of magnitude, qualitative FTA

functions to logical subsystems and | for fault tree structure and
components. minimal cutsets
Define logical components, allocate | Quantitative FTA with precise

logical components to logical subsystems,

failure rates, qualitative FTA for

L2 (endpoint) | breakdown of the logical functions, | minimal cutsets
allocate the detailed logical functions to

logical components.

3.4 Safety Artifact Integration

This thesis facilitates integrating safety artifacts into the Capella system model by utilizing the
capabilities of the PVMT addon. PVMT is an extension designed to define specific properties of
the different system model elements in Capella [92]. Refer to Appendix B to examine a guide on
how to use PVMT. This thesis uses the PVMT as a bridge to introduce the essential elements of
the GTS quintuple and the defined inputs of an MBSA model in the ARP4761A document into the
Capella modeling environment. In the methodology presented, this add-on allows engineers to
create additional features for the system model components, customize safety properties, and
attribute values to these properties for individual system elements.
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Figure 3.11 below shows different safety artifacts embedded into the Capella system model. The
SFHA results provide information about the top events of FTA, as previously mentioned.
Therefore, each logical level, starting with LO, accommodates FTA. The L2 phase involves
quantitative FTAs that must validate the SFHA. AltaRica helps perform automated FTAs with
components. Therefore, the logical components of the system model must encompass the safety
properties. However, the same properties can be added to other system model elements, such as
functions, exchanges, etc. Hence, the system model can accommodate different safety analyses.
There are five safety features integrated into Capella by PVMT: Failure rates, state variables,
transfer functions, flow variables, and functional failure chains. While functional failure chains
support the safety assessment activities, the other safety properties integrated are necessary to
perform FTAs according to the latest version of ARP4761A. Also, the safety artifacts integrated,
except the functional failure chains, fulfill the GTS quintuple that forms the framework of
AltaRica. The rationales for choosing these safety artifacts to embed into the system model can
also be examined by referring to sections 3.2 and 3.2.2.
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Figure 3.11 - Additional Properties added to a Logical Component in Capella by PVMT

1. Failure Rates:

Embedding failure rates is a key objective because it integrates quantitative reliability information
directly into the system architecture. This integration enables engineers to assess the likelihood of
component failure by assessing different failure scenarios with FTA to validate FHA. The failure
rates used in this thesis are expressed in failures per hour (fph). This unit indicates the likelihood
of'a component failing during a one-hour period. For example, a failure rate of 1.00E-05 fph means
that there is a 0.00001 probability of failure per hour for that component.

2. State Variables:

The state variables should indicate all the states a component can take triggered by different events.
Nominal represents the working state (indicated as WORKING in AltaRica), while loss (indicated
as FAILED in AltaRica) shows the failed state in the work presented. The event failure triggers the
change between these states.

3. Transfer Functions:
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Integrating assertions, referred to as transfer functions, into the Capella model enhances the
system's analytical capabilities. By integrating them using AltaRica syntax, engineers can
effectively define the behavior of components within the system. When engineers specify a
component's possible states, the system model automatically prompts for corresponding transfer
functions for each state. For instance, the component in Figure 3.11 has two states, nominal and
loss, so engineers must define transfer functions for both states in AltaRica syntax. Using the
AltaRica syntax provides traceability between the safety model and the system architecture since
there would be uniformity in the language used in both models. The transfer functions of the Flap
Lever component shown in Figure 3.11 dictate that the component loses its outputs when its state
variable is /oss. Nominal transfer functions state that the outputs are provided by this component
while there are inputs coming from other components and the state variable is nominal.

4. Flow Variables:

Figure 3.12 shows a component exchange in red edited by PVMT to make it a command flow
variable. Component exchanges are selected to map flow variables in the system model because
their ports indicate the flow of information between components.
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Figure 3.12 - Representation of a Flow Variable, colored in red, in Capella with an edited
Component Exchange

Flow variables define the connections between different components in a safety model. Thus, two
elements are required for definition. To emphasize this, component exchanges are edited by the
PVMT to show the notion of flow variables. Engineers can modify component exchanges with
PVMT to change the definition and make them applicable to address the failure connections
between components. These edited exchanges are colored red, green, and blue to indicate
command, power, and data connections, respectively. Giving them different color codes
distinguishes them from the original component exchanges that show interactions between two
components

5. Functional Failure Chains:

The last method to enhance the system model is incorporating functional chains in Capella to
articulate the failure relationships across different system components. It aims to understand the
potential impact of component failures on system functionalities by investigating the system
model's different types of functional exchanges. Regardless of the specific failure mode of a
selected component to be inspected, the focus remains on understanding which functionality is
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affected. It is done by investigating the top event function for a particular failure case and its
associated functional exchanges.

Figure 3.13 depicts a simple example of a functional chain in Capella. Function 4 has two outgoing
functional exchanges. The functional chain follows the functions connected to Function 4 and their
exchanges. The chain ends with reaching functions with no outgoing or incoming exchanges. In
Figure 3.13, Function 3 and SubFunction 1.1 connects the chain to SubFunction 5.1 and
SubFunction 5.2. The chain ends with SubFunction 5.1 and SubFunction 5.2 because there is no
other functional exchange to follow. By creating functional chains in Capella, the exchanges
among specific functions can be highlighted. Functional chains are used to identify failure
relationships among functions in this thesis.
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Figure 3.13 - Example of a Functional Chain

For instance, if a control unit fails due to a command-related issue- assuming it is an intermediate
event in an FTA -the focus shifts to examining the top event function within the system model,
specifically focusing on the functional exchanges that present command connections. After
identifying the functions that have command-related functional exchanges with the top event
function, the same identification must be done for each function. It continues until there are no
other functional exchanges to inspect. Finally, there is a map of functions with their exchanges to
represent failure relationships between them for certain failure scenarios. The map identifies the
functions that might be affected by the control unit failure, including those allocated to the control
unit component, to understand which functions are lost depending on the failure mode. This
particular method is built since there is not enough FHA information present for the test case
presented in the thesis.

3.5 Methodology Summary

This chapter has introduced a methodology to enhance model-based system architecting by
incorporating safety artifacts into the system development lifecycle to run model-based safety
analyses. The methodology consists of iterative phases, each contributing to the refinement of the
system model.

Initially, the methodology focuses on establishing a test case architecture and developing a simple
Capella system model. Subsequent iterations involve enhancing the system model's specificity and
detail, integrating safety elements, refining the architecture through logical levels (LO, L1, and
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L2), and performing safety analysis in AltaRica 3.0, as Figure 3.14 depicts. Overall, the process
includes creating AltaRica safety models after each logical level and performing FTAs before the
creation of the next level in the Capella system model. The main steps of the methodology
implementation are in the following:

» Step 1: The system model development progresses through three levels: System Analysis,
Logical Architecture, and Physical Architecture. The thesis focuses on the logical
architecture levels (LO, L1, and L2), which involve defining logical systems, subsystems,
and components, breakdown and allocation of functions, and refining the architecture to
facilitate safety analyses. After the development of each level, safety elements are added
to system components by utilizing PVMT, which is the second step.

» Step 2: The thesis introduces various enhancements to the Capella system model, including
embedding safety properties, defining functional chains to express failure relationships
between functions, and modifying component exchanges to show flow variables. The
integration of safety analysis into the Capella system model is facilitated using the PVMT
addon. This Capella extension enables engineers to embed essential safety properties into
system model elements, including failure rates, state variables, assertions, and flow
variables. This step constitutes the main contribution of the thesis.

» Step 3: AltaRica, a modeling language for MBSA, is utilized to build three safety models
to run FTAs. The language's guarded transition systems framework enables the formal
representation of system dynamics and state changes, facilitating safety analysis. The
creation of the safety models in this environment is possible with the safety information
stored in Capella using PVMT. The transitions from Capella to AltaRica and from AltaRica
to automated FTA are manual. The safety properties of Capella are put into classes and
blocks of the AltaRica safety model; then, to perform automated FTAs, parameters such as
flight hour and the observers to inspect are selected manually.

» Step 4: FTAs are conducted for each logical level to assess potential safety issues associated
with the system architecture. For each failure scenario, an observer is defined, enabling
quantitative and qualitative fault tree analysis in AltaRica 3.0. The fault trees are visualized
using Arbre Analyst to ease the qualitative analysis. The quantitative assessment at L2
validates the FHA results.
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Figure 3.14 - Methodology Implementation Process

It is important to note that initial assignments, events, and transitions are not integrated into the
system model due to the scope of the thesis is limited to FTA. The decision to exclude events and
transitions is based on their dynamic nature, which varies depending on the specific failure
scenario being analyzed. Different failure cases may trigger different events and transitions within
the system, making embedding them into the system model impractical. Additionally, since only
nominal and loss states are considered in the test case analysis, setting every component's initial
assignment as nominal in the safety model is sufficient.

The next chapter presents the application of the proposed methodology on a Capella system model
built on a test case. The process illustrated in Figure 3.1 is followed by a test case integration,
including different safety models created and conducted FTAs with selected failure scenarios in
the MBSA environment AltaRica.
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4. Modeling and Integration

Building on the foundation established in the previous chapter, the following section takes a
practical approach by presenting a test case: modeling and integrating a conventional flap system.
This chapter explains in detail the process of representing a system architecture within the MBSE
framework, Capella, and creating model-based AltaRica safety models in line with the system
architecture. The chapter explains the flap system architecture and every enhancement made to the
system model in detail.

4.1 Test Case: Flap System

A flap system is selected as the Sol to build a system model and run safety analyses. Figure 4.1
illustrates a simple architectural view of the selected flap system. A comprehensive understanding
of the flap system in aviation is essential before a detailed description. Flaps, which are
aerodynamic components installed on an aircraft's wings, modify the lift and drag properties of the
aircraft, especially during takeoff and landing. The test case adapts the flap system of Global 5000,
an aircraft of the industry partner Bombardier. The selected flap system is an architecture to model
the system architecture and analyze safety aspects in this thesis. The technological choices of the

flap system and the components used for these choices to form an architecture are taken from
Global 5000 [93],[94],[95].

For this test case, three failure scenarios were selected to perform FTAs: Annunciated loss of flap
extension/retraction, unannunciated loss of flap extension/retraction, and flap panel disconnection.
To develop a complete set of failure scenarios, a comprehensive FHA needs to be conducted. Since
the FHA is out of the scope of this thesis these failure scenarios were derived by expert
consultations from Bombardier. Each selected failure scenario is described as follows:

» Annunciated loss of flap extension/retraction: Involves a failure in the flap system that is
detected and indicated to the flight crew. The annunciation allows the pilots to take
corrective actions, mitigating potential risks.

» Unannunciated loss of flap extension/retraction: The flap system fails without any
indication to the pilots. This can lead to a more dangerous situation as the pilots are
unaware of the malfunction and unable to respond promptly.

» Flap panel disconnection: Involves the physical separation of the flap panel from the wing.
Such a failure can cause significant aerodynamic issues and pose a severe safety risk due
to the potential for further structural damage.

Safety models must include failure rates for each component to perform FTAs. Table 4.1 lists each
component with failure rates adapted from [96] and [97]. In the case that a precise rate for a
component cannot be found, the failure rate magnitude of similar components is selected.

Table 4.1 - Failure Rates for Each Component in the Flap System (per Flight Hour)

Component Failure Rate
Flap Lever 2.75E-6
Control Units SE-5

DC Power Source 1E-5

DC Motor 7.31E-6

Air Data Computer S5E-7
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EICAS 1E-5
Torque Tube 1E-7
Speed Summing Gear 1.47E-5
Branch Gear 1.47E-5
Bevel Gear 1E-7
Flap Panel 1E-9
Flap Ballscrew Actuator | 1E-5
Flap Position Sensor SE-7
Position Transducer SE-7
Wing Tip Brake 5E-5

The redundancy defined for the Sol aims to reduce the risk of single-point failures by incorporating
multiple components that can take over in case one fails. The system configuration includes a
Power Drive Unit (PDU) featuring two DC motors powered by electrical sources placed inside it
[94]. These motors are powered by separate electrical sources within the unit. This means that if
one motor or its power source fails, the other motor can still operate, ensuring continuous
functionality of the power drive unit. The system mitigates the risk of a single-point failure because
the failure of one motor does not lead to the total loss of function.

The primary components of the test case include Flight Control Units (FCUs), a PDU, a flap lever,
driveline components, wing tip brakes, flap panels, actuators, flap position sensors and position
transducers. The primary components of the flap system are described in the following:

Flight Control Units (FCUs): The FCUs serve as the central controllers responsible for
translating commands from the flap lever into physical flap movement. The system
architecture includes two FCUs. While the presence of two FCUs reduces the risk of total
system failure, it does not guarantee uninterrupted operation in all scenarios. If one FCU
fails, the other can take over the control, thereby maintaining system functionality in the
event of a single FCU failure. However, other factors, such as simultaneous failures or
failures in interconnected components, can still impact the operation of the system.

Power Drive Unit (PDU): The PDU is a distribution hub for the flap system. The DC
motors, housed within the PDU, are responsible for actuating the flaps by converting
electrical power into mechanical motion. The PDU integrates a speed summing gear
mechanism to aggregate the rotational speeds of the individual DC motors, ensuring
continued system operation even in the event of a single motor or FCU malfunction.

Flap Lever: A flap lever is an interface for flight crew members. The flap lever enables
pilots to adjust the position of the flaps. Commands from the flap lever are relayed to the
FCUs, initiating flap movement based on pilot inputs. Flap position indicators placed next
to the lever, as seen in Figure 4.1, provide real-time feedback to flight crew members
regarding flap angle and deployment status. The flap angle indicator displays the angular
orientation of the flaps relative to their neutral position, while the position indicators
announce whether the flaps are retracted or deployed, shown as /N and OUT.
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Figure 4.1 - Flap System Architecture adapted from publicly available Global 5000
documentation [94]

Driveline: The driveline transmits the power the PDU generates to the actuators to move
the flap panels. It consists of multiple torque tubes and bevel gears located before the first
inboard and after the second actuators. The bevel gears adjust the angle of the driveline
while transmitting power. The driveline includes two types of brakes to ensure safety:
wing-tip brakes and an asymmetry brake integrated into the PDU.

o Wing Tip Brakes: Positioned between the middle and outboard panels, wing tip
brakes serve as a safety measure to halt the driveline's operation. They can interrupt
the transmission of power from the PDU to the actuators in case of an emergency,
such as the asymmetric deployment of flaps, or during maintenance work on the
system.

o Asymmetry Brake Integrated into the PDU: This brake is designed to arrest the
complete driveline system in case of a shaft failure or asymmetry, working in
conjunction with the wing tip brakes to provide safety.

Two position transducers (sensors) are located at the end of each driveline to monitor the
alignment of the driveline components. The transducers provide feedback to the flap
control units on skewing encountered during operation.

Flap Actuators: The flap system's architecture includes eight ball-screw actuators, each
connected to one for outboard or two for inboard flap panels. These actuators are
responsible for deploying or retracting the flap panels in response to commands from the
FCUs. The distribution of actuators per flap panel reflects a standard configuration
employed in many aircraft, including Global 5000, with the inboard flap panels typically
actuated by two actuators due to their higher load requirements than the outboard panels.
Also, flap position sensors are located next to the actuators for each actuator. They provide
position feedback on the flaps.
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e Flap Panels: Flap panels are positioned along the trailing edge of the aircraft's wings and
can be deployed or retracted to alter the wing's shape and lift characteristics. There are six
flap panels, three panels for each side, positioned on the wings in the architecture.

Figure 4.2 depicts that the command chain begins with the flap lever in the system. It is the
interface for flight crew members to change the position of the flaps. It sends commands received
from the pilots to the FCUs that activate the PDU afterward. The PDU executes the commands of
applying the desired changes in the flap position by running the driveline. Driveline components
are the physical means to transform these commands to change the flap panel angles.

In addition, as shown in Figure 4.2, the accommodation of two FCUs and DC motors combined
with a speed summing gear located in the PDU provides continued system operation in the event
of'a DC motor failure or FCU malfunction. The primary function of speed summing gear is to sum
the rotational speeds of the individual DC motors driven by each FCU. In the event of an FCU or
DC motor failure, the speed summing gear compensates by adjusting the output speed, thus
deploying the flaps at half speed, ensuring continued operation. Additionally, the FCUs also
manage the flap sensors and brakes. The flap sensors provide position data to the FCUs, which use
this information for monitoring and control. The FCUs also control the brakes to ensure the flaps
can be stopped or held in position after deployment.

Flap
Lever

FCU 1 FCU 2

PDU

DC DC
MOTOR MOTOR

— =

Speed Summing Gear

k4

Driveline

Flap Sensors and
Brakes

Legend:
El Monitoring and Braking Lines El Command Lines

Figure 4.2 - Flap System Test Case Schematic

Overall, the chosen components and their arrangement within the architecture are designed to
represent a traditional configuration and demonstrate the practical application of the methodology.
Each component fulfills a specific function to facilitate the operation of the flap system.
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4.2 Capella System Model

This section presents different levels of system development in Capella / ARCADIA: System
analysis, logical architecture, and physical architecture. The operational analysis level is omitted,
as discussed in the previous chapter.

This thesis utilizes the Capella 5.1.0 with the addon PVMT 50.5.1 versions. The Diagram Styler
feature helps to apply the safety viewpoints created by PVMT on the Capella diagrams. Functional
chains and color-coded component exchanges are only visible if activated on the selected diagram
with the diagram styler. Table 4.2 lists different diagrams and viewpoints that each Capella level
accommodates. While SA and PA levels only display the architectural diagrams, LA levels (LO,
L1, L2) consist of three different architectural diagrams, a functional breakdown diagram to help
engineers understand the refinement, and safety viewpoints that show the enhancements made on
the system level.

Table 4.2 - Diagrams and Viewpoints used in each Capella Level

Level Diagrams & Viewpoints
System Analysis System Analysis Breakdown (SAB)
Logical Architecture Breakdown (PAB) (LO, L1, L2)
Logical Architecture Logical  Functional = Breakdown Diagram  (LO)
Safety Viewpoints with Diagram Styler (L0, L1, L2)
Physical Architecture Physical Architecture Breakdown (PAB)

The first step is developing an SA level from the test case architecture. Next, L0 is built with the
help of automated transitions for functions and actors in Capella. L1 architecture is shaped by
introducing more redundancy information. L2 is reached with great detail of specifications and
redundancy, representing an architecture that can accommodate quantitative analyses with the
enhancements. Finally, a transition is made from L2 to PA, keeping the same structure and layout
as L2. The system model development progression is described in detail in the following sections
labelled after each development level of Capella.

While developing the system model, requirements provided by the industry partners help shape
the architecture. The functions from a requirements document for a slat flap control system in [98]
are carefully examined to design the architecture so the FTA failure scenarios can be
accommodated with the system model. The requirements were derived from publicly available
maintenance manuals of several Bombardier aircraft, including the Global 5000 [98]. Table 4.3
illustrates which requirements document functions are satisfied by the system model. The
functional requirements are not satisfied at one specific level. Different logical architecture levels
introduce certain components and logical functions to capture the requirements. While introducing
new elements to the model to satisfy the functions, the functions are tailored to the scope of the
thesis. For instance, not all safety functions are introduced for the flap system, but the ones needed
for selected failure scenarios. In addition, only the parts related to the flap system are considered
in this thesis. Requirement number 5 can be an example of this consideration because the system
model has functional exchanges that provide flap system status, data, and interface to EICAS while
excluding any other aircraft systems.
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Table 4.3 - Functional Requirements Document adapted from [98]

1) The Flight Control System (FCS) shall respond to pilot commands for a change in High
Lift configuration

2) The FCS shall move the High lift Surfaces to the selected configuration at a controlled
rate of motion.

3) The FCS shall hold the high lift surfaces at all selected positions.

4) The FCS shall provide safety functions.

5) The FCS shall provide the required system status, system data, and interface to EICAS
and other aircraft systems.

6) The FCS shall provide means to aid installation and trouble-shooting problems for the
maintenance crew.

4.2.1 System Analysis

The goal at the system analysis level is to define the system's contributions to satisfy users’ and
stakeholders’ needs [47]. The purpose of the SA stage is achieved by defining high-level functions
with their exchanges and allocating them to different system elements that are system actors and
the Sol.

Figure 4.3 shows system-level functions attributed to both the Sol and system actors. These
functions define the system's operational scope, and their exchanges define the interactions
between the Sol and its surrounding actors.

The systems interacting with the flap system are presented as actors and will stay as actors
throughout development. However, more actors can be introduced with the advancement of each
level in Capella. The actors defined in the SA are the Flight Crew, Engine Indicating and Crew
Alerting System (EICAS), Air Data Computer, and Maintenance Crew.

The Maintenance Crew is incorporated into all phases of Capella to recognize its role in system
maintenance and safety. While it is not directly part of the test case for FTA, it emphasizes the
importance of considering the system's operational environment. The Maintenance Crew
represents a stakeholder whose actions may impact system reliability and maintenance procedures.
Their inclusion in the SA phase ensures that all system stakeholders are accounted for, even if they
do not have direct involvement in specific test cases for FTA. Incorporation of the Maintenance
Crew for LA and PA levels supports the efforts of presenting a top-down development approach
since this actor is getting more detailed going through the system model levels.

For the Sol, functions on this level are high-level generic functions. They will be broken down
into more detailed sub-functions at the next levels of development, along with the system
components. Thus, every component and actor has at least one function allocated to them at SA to
represent the overall capabilities of the flap system. Flight Crew sends commands to move the flap
surfaces, starting with selecting a flap position. The flap system is responsible for accepting the
commands from the flight crew and operating the actuation according to these commands. It has
sensors to monitor and control units to control itself. Air Data Computer feeds the flap system with
flight information to inform whether the selected position falls under a suitable range for the flight
phase. Otherwise, flaps can face structural damage due to too much load. EICAS provides the
status and position information of the flaps for pilots to check.
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Figure 4.3 - System Architecture Diagram [SAB]

Functional exchanges represent the interactions between different functions. These interactions
can be the flow of information, signals, or data [53]. The flight crew selects a flap position by
getting all the information needed from different components. Before choosing a new flap position,
they must check the EICAS for warnings and the flap lever. The flight crew's select a flap position
function receives flap position information, and flap failure information exchanges while it sends
selected flap position information by the pilots to the flap system. Another example of functional
exchanges is the control the flap system function in the flap system, in Figure 4.3. Flight
information and selected flap position are needed to start controlling the system. An activation
signal/information is expected from the control the flap system function to operate the driveline
and actuation.

Component exchanges in SA are utilized to represent the flow of data, signals, energy, etc.,
between the components. Hence, the component exchanges in Figure 4.3 show data interactions
between components and their direction of flows (indicated by arrows). If an interaction between
two components is both ways, the component exchange ports have no arrows inside them, e.g.,
Flap System and Maintenance Crew component exchange. Facilitating component exchanges at
the SA level is done by providing a visual representation of the interaction patterns within a system.
The next stages of the development present component exchanges edited by PVMT to address
failure exchanges.

Since the architectural diagrams at SA must represent the high-level capabilities of the system, the
flap lever has not been introduced yet. However, the flap system should capture the functionality
of the flap lever since it is the component creating the interface between the flight crew and the
Sol. Provide means for position selection function in flap system describes the interaction. Thus,
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it is defined and allocated at SA. In later stages of the development, it can be allocated to the lever
once it is introduced.

4.2.2 Logical Architecture — L0

The level of detail and key activities in this level of system architecture development are explained
in Chapter 3. While the objective of SA is defining what the flap system has to accomplish for the
stakeholders and entities (actors in Capella), LA aims to unfold how the system has to perform to
fulfill the expectations defined at SA by defining subsystems/components and their functions [53],
[91]. LO has its components, actors, and functions transitioned from SA with the help of Capella's
automated transition, meaning that the system elements at the SA level become logical elements
at the LA level. In addition to SA, high-level logical subsystems are introduced at LO.

Figure 4.4 depicts the architectural view of LO. The high-level logical subsystems defined at this
level are the flap lever, monitoring system, control system, actuation system, LHS (left-hand side)
flap, and RHS (right-hand side) flap. The distinction between LHS and RHS flaps aligns with the
progressive nature of the aircraft development process, where early stages focus on defining
subsystems before specifying detailed components, such as the number of panels.

The subsystems mentioned in the previous paragraph are created inside the flap system logical box
based on their critical roles in the functionality of the flap system. The flap lever is essential as it
serves as the primary interface for pilot input. The monitoring system provides feedback on the
flap system's status. The control system is responsible for processing commands within the system.
The actuation system translates control commands into the mechanical movement of the flaps. By
defining these subsystems at L0, a structured foundation is established that can host more
subsystems and components for further development in subsequent logical levels.
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Also, a new actor, an electrical power source, is introduced. The newly defined logical subsystems
and some of their functions will face a breakdown in the following stages. The intention is here to
reflect the gradual improvement of the flap system discussed in Chapter 3. In creating the logical
subsystem, the engineers already have an understanding of what possible components would be
appointed to which logical subsystems in the next steps of development. Therefore, the allocated
functions need to capture the functionalities of those components, which will be associated with
the logical sub-system in later stages. For example, the Monitoring System in Figure 4.4 will
involve sensors late in development; the Monitor flap system function should capture the
functionalities of sensors.

Regarding functions, engineers must allocate the system functions defined at SA to the logical
subsystems at L0. The first step for functions is using the automated transition of system functions
in Capella to convert them into logical functions. Next, some of these functions can be converted
to parent functions, meaning they have subfunctions. The last step is the allocation of these
subfunctions to the related systems. Table 4.4 lists the transition of functions between SA and LO
and their allocations to logical systems. Some functions are kept the same since no detail about
their corresponding system exists yet at this level such as the monitoring system.

Table 4.4 - Functional Transitions from SA to L0

System Analysis
Flight Crew Actor
Select a flap position

Logical Architecture — L0

Select new position
View status*
View position information*

EICAS Actor

Provide flap status

Provide flap position information
Air Data Computer Actor
Provide flight info/status
Maintenance Crew Actor
Perform maintenance actions

Provide flap status
Provide flap position information

Provide flight info/status

Perform maintenance
Check maintenance status*
Check maintenance history*

Flap System

Subsystems of the Flap System

Provide means for position selection
Provide means for position display

» Allocated to Flap Lever
Acquire flight crew commands*
Show current flap position*

Monitor the flap system

» Allocated to Monitoring System
Monitor the flap system

Control the flap system

» Allocated to Control System
Control flap deployment*

Operate the driveline and actuation

» Allocated to Actuation System
Provide symmetrical actuation*®
Extend flap surfaces*

Retract flap surfaces™

*indicates the function is created at L0
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Figure 4.5 depicts the Control flap deployment function allocated to the Control System logical
system at L0 as a parent function and the functions at L1, which are allocated to Control Unit 1
and Control Unit 2 as subfunctions of the Control flap deployment tunction. Since Control Unit 1
and Control Unit 2 have the same functionalities, they share subfunctions with the same names,
except the Start DC Motor 1 and Start DC Motor 2 functions. This is because Control Unit 1
activates DC Motor 1, and Control Unit 2 activates DC Motor 2. Functional Breakdown diagrams
can help engineers understand the hierarchy of functions. Since the LA phase with three levels has
the most number of functions, a functional breakdown diagram is used in the LA. Although
component and function breakdown diagrams support users to see the hierarchy of system
elements, architecture diagrams are the most informative. Architecture diagrams can also be used
to see hierarchy information. For example, the Control System has Control Unit I and Control Unit
2 as subsystems in Figure 4.6, showing a component hierarchy. Likewise, the function allocated
to the Control System, which is control flap deployment, has subfunctions distributed to these
subsystems: Control Unit 1 and Control Unit 2. Therefore, this thesis puts emphasis on the
architectural diagrams, which give the most information about the system and facilitate safety
viewpoints.

Parent Function that is
11l
© ono®: | allocated to Control
System at LO
A
Accept Accept Start the Start the 2“: e ;e‘: ve Release Release
@ selected @ selected @ DC @ DC @ Sn af @ Sn 3:’ @ the @ the

position position Motor 1 Motor 2 “inf;’ “’mig brakes brakes

Subfunctions that are allocated to Control Unit 1 and Control Unit 2
Figure 4.5 - Control Flap Deployment Function in the Logical Functional Breakdown Diagram

Moving on to functional exchanges, they do not change from SA to L0 if they have the same level
of detail on their functions that can be seen from EICAS. However, if the function is broken down
into several subfunctions, the subfunctions inherit the functional exchanges from their parent
function. Select a flap position function allocated to the Flight Crew actor at SA in Figure 4.3 has
both incoming and outgoing exchanges; at L0, in Figure 4.4, the exchanges are allocated to their
new subfunctions: View status, View position information, and Select new position. New functional
exchanges are defined with the introduction of new logical functions. These exchanges are
expected to have more details in the following stages of the development. This is due to the
refinement of the functions in different phases of the aircraft development. For instance, EICAS
has more detailed functions at L1. Therefore, the functional exchanges between the Flight Crew
and EICAS functions also become more detailed.

4.2.3 Logical Architecture — L1

At this stage of the development, high-level redundancy information, new power sources, and
system technologies are introduced. Including the electrical power sources is vital since they power
the most critical components in the flap system, the PDU and flap control units. They are defined
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as actors and kept generic because the thesis focuses solely on the flap system. Also, introducing
more details to other entities would make the safety model more intricate. The redundancy
information included aims to design a safe system by preventing a failure of a subsystem, resulting
in a failure of the whole system and, ultimately, the aircraft.

Figure 4.6 displays the L1 logical architecture with all Capella elements included, while Figure
4.7 represents the L1 without actors. In both figures, most of the functional exchanges are hidden
to provide a clear view of the architectures. The refinement process of the functions, functional
exchanges, and components is identical to the previous levels and continues at this level before it
takes its final shape in the next stage. There are two control units appointed under the control
system. The Actuation System at L1 houses a PDU consisting of two DC motors and a speed-
summing gear. Control Unit 1 drives the DC Motor 1, and Control Unit 2 drives the DC Motor 2.
In case of a control unit failure, the flap system does not fail. The system works, but the deployment
takes place at half-speed due to only one operating DC Motor. This condition is possible with a
speed-summing gear that sums the motion received from both motors. The transmit motion to both
wings function is associated with the PDU, but no logical components have been created for it yet.
It is because the component that should inherit the transmit motion to both wings function must
connect to the components in the driveline, but there is not enough detail to capture that yet.
Therefore, the function is defined and allocated to the PDU. Later in the development, a branch
gear should be placed inside the PDU, and the function must be allocated to that gear.
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Figure 4.6 - Logical Architecture Diagram [LAB] of L1
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Figure 4.7 - Logical Architecture Diagram [LAB] of L1 — Simple View

Left and right-wing drivelines are placed between the PDU and the flaps. These drivelines
represent every component between the PDU and flaps. The main functionalities of the driveline
and actuation are allocated to these components. The differentiation between the right and left
wings is to capture the symmetric/asymmetric deployment cases and to reflect a layout of the
system with clarity. The Monitoring System now has Position Transducers and Flap Position
Sensors. The Position Transducers convert physical displacement into electrical signals, providing
a measurement of flap positions to detect skewing. Skewing means the unequal movement of the
flaps, where one side moves differently than the other, leading to asymmetry in the flap positions.
The Position Transducers detect such skewing by comparing the positions of the flaps on both
sides. The Flap Position Sensors, on the other hand, directly measure the position of the flaps and
provide feedback for the control system. However, the architectural layout still needs to be
completed where these sensors are placed. Therefore, the number of sensors still needs to be
determined.

Like functional transition Table 4.4, high-level functions appointed to the logical subsystems at LO
cannot be seen in the Ll1-level diagrams. Instead, the diagrams display subfunctions of the
functions at LO. For example, the control flap deployment function associated with the control
system at LO is satisfied with the combination of eight subfunctions allocated to control units under
the control system at L1. In addition, these subfunctions can host sub-logical functions themselves
in the next stage, which is L2. Realizations (connecting system elements at different levels by
selecting the corresponding parent element for the sub-element in the Capella environment) and
utilizing the parent functions are key factors for enabling traceability.

Like functions, functional exchanges are refined through the L0, L1, and L2 levels. Figure 4.8, as
an example of the refinements, shows that the functional exchanges of EICAS are now more
numerous, and they specify what kind of flap information is available to display.
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4.2.4 Logical Architecture — L2

Refer to Appendix A to see a readable version of the L2 architectural diagram. The layout of the
logical components is presented in L2, as seen in Figure 4.9. This includes components' location,
connections, and any physical constraints that impact their placement. For example, the PDU is
placed between the two wings. Also, every logical component in the system is fully specified with
detailed descriptions of its functionality, internal structure, and any dependencies it may have on
other components at this stage. L2 is a reference for the flap system's detailed design and
implementation phases. The information at L2 guides engineers in translating the logical
architecture into a physical realization.

M Driveline B Actuators [ Flap Panels B Control Units
Figure 4.9 - Logical Architecture Diagram [LAB] of L2

L2 provides detailed information on the types of components required for the flap system. This
includes specifying the technology and functionality of each component, such as the type of
motors, sensors, and control units that must be used. PA is the level where the solutions are
outsourced to supplier companies at the item level. For example, actuator types are defined as ball-
screw actuators at L2 with certain functionalities. At PA, supplier companies must define the
solutions to capture the functions allocated to the actuators.

The driveline at L2 has logical components; contrary to L1, it is not represented with a logical
system. Left and right-wing drivelines from L1 become torque tubes, bevel gears, actuators, and
wing-tip brakes. The functions transmit motion, apply brake, release brake, and extend/retract
flaps from L1 are allocated to these logical components in L2, as seen in Figure 4.10.
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As an example, flap ball-screw actuators are introduced at this stage. Their functionalities are
represented by the driveline logical subsystems at L1. Now, extend/retract flaps functions are
allocated to the actuators, and new functions are defined inside the Flap Ballscrew Actuator 1 and
outside the Flap Position Sensor for safety purposes to reflect how a ball-screw actuator works.
Later, at the physical architecture level, more components that are parts of the actuators are
defined, and the functions at L2 are appointed to those components. It indicates that refinement
still takes place going from L2 to physical architecture. However, the flap position sensors are
placed into the actuators at this stage, as Figure 4.11 shows, since they are components that can
potentially appear in some of the fault tree failure cases examined in the thesis. Also, the aircraft
manufacturer can require component or item-level elements from the supplier companies.
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Figure 4.11 - Flap Ballscrew Actuator at L2

Apart from allocating existing functions to newly defined logical components, new functionalities
can also be introduced at different levels of Capella. Since L2 has many detailed components,
functions, and exchanges, it has introduced new functions. Flap lever and control units have more
functions with more detailed functional exchanges at this level. Defining new functions at different
logical levels occurs in the thesis for two reasons:

The first reason is that new lower-level functions often represent specialized tasks or detailed
functionalities inherent to specific components. These functions provide a more detailed
breakdown of the overall system behavior and address particular requirements at a finer level of
detail. The second reason for introducing new functions at lower levels is to allow adaptability for
changes in design. If alterations or enhancements are needed, introducing new functions at a lower
level can be a practical way to address these changes without affecting the overall system
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architecture. For example, if a new type of sensor needs to be integrated into the flap system for
better performance, this can be achieved by adding a new function at the component level that
handles the sensor data. This approach minimizes the impact on the higher-level system design
and is important to this thesis as it demonstrates the flexibility of the methodology presented.

Following the same logic, new logical components can be introduced, and the functions allocated
to logical systems or subsystems can now be allocated to these newly created components. Figure
4.12 shows that the logical components of the Asymmetry brake and Branch gear are defined and
appointed to the PDU at L2. These logical components inherit Transmit motion to both wings,
Apply brake, and Release the brake functions from the PDU at L1.
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Figure 4.12 - Power Drive Unit at L2

4.2.5 Physical Architecture

Engineers define how the system is built and developed at the PA level. At this stage, software and
hardware allocation, interface specification, and deployment configurations are described [53].
The primary activities that drive the development process at the PA level are identifying, defining,
and decomposing physical components and subsystems.
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Figure 4.13 - Flap Ballscrew Actuator at PA

The only refinement designated at PA is, as Figure 4.13 illustrates, on the flap ball-screw actuators
to show decomposition progress. This distinction is made between the two levels to illustrate the
ongoing development process in aircraft systems, which often involves work conducted by
suppliers. This thesis highlights how certain components, such as actuators, continue to evolve
even at the PA stage by showing this additional detail. However, typically, aircraft manufacturers
appoint these duties to their suppliers and use the PA to capture design decisions at the detailed
level. After the decomposition is done to the equipment level, the suppliers run FMEA. However,
the FMEA is out of the scope of this thesis. Therefore, the physical layer carries the same level of
detail as the L2 except for the actuators. Similar to L2, PA has the layout of the system depicted,
centered with the PDU, as Figure 4.14 shows.

Figure 4.14 - Physical Architecture Diagram [PAB]

4.3 Enhancements in System Architecture Specification

Section 3.4 explains the safety artifacts that need to be integrated into the system model in detail.
This section presents the enhanced system model for the flap system test case with the proposed
methodologies. The safety artifacts embedded in the Capella system model are state variables, flow
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variables, transfer functions, and failure rates. In addition, functional chains are created to capture
the failure relationships across different system components. While the failure rates are integrated
at L1 and L2 and functional chains at L0, the rest are embedded throughout all logical levels.
Failure rates for different components are taken from [96] and [97]. The maintenance crew actor
is left out from the safety perspectives at all levels because the failure scenarios inspected do not
involve it.

Figure 4.15 shows the component exchanges edited with PVMT to represent flow variables at LO.
The blue lines correspond to data lines, while the red ones are for command, and the green ones
are for electrical power exchanges. The naming of exchanges is numbered to separate different
command, power, and data lines. The test case involves one command line numbered with 1 at all
levels. The component exchange ports are crucial since they are the means to represent the flow,
and the coloring and naming show the type of flow. The flap system command line starts with the
flight crew sending commands to the control system via the lever. Then, the actuation system
transfers these commands to move the flaps. The control system lies in the center of the Sol, getting
critical data from the air data computer, such as airspeed and altitude and power from the electrical
power source and sending data to EICAS for display.
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Figure 4.15 - Logical Architecture Diagram [LAB] of L0 — Safety Viewpoint

The annunciated loss of flap extension failure case is mapped with a functional chain in Figure
4.16. The top event function for this particular case is the extend flap surfaces, which is examined
by focusing on the functional exchanges that present command, power, and data connections. The
functions that have exchanges with the top event function are also examined similarly until there
is no exchange to capture. This method provides to identify the potential cause-and-effect
connections between the functions. Later, with the FTA, failure event combinations that are
causing a failure condition are identified. Therefore, it stands as a bridge between FHA and FTA.
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Figure 4.16 - Logical Architecture Diagram [LAB] of L0 with a Failure Chain

Figure 4.6 in Section 4.2.3 shows the L1 with most of the system and safety artifacts, while the
presented safety viewpoints of the diagrams in this chapter exclude functional exchanges and ports
for clarity. Figure 4.17 illustrates the edited component exchanges allocated to sublogical systems
created at L1. At LO control system has the most incoming and outgoing flow variables. Defining
control units under the control system at L1, the flow variables are connected to control units.
Comparing the command connection between the control and actuation systems at two levels, LO
and L1, the flow variables defined are between the DC motors and control units. It means that the
pathways of the component exchanges at L0 stay the same at L1 and L2, but since new components
are introduced, they need to be allocated to the new components under the high-level logical
systems. Also, to capture the connections at L0, more component exchanges are created at L1 and
L2.

The architecture is at its most detailed version at L2. Here, the PVMT component exchanges
representing commands start from the flap lever and end with connecting flap panels with
actuators. Failure rates are given to each component for quantitative analysis.
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Figure 4.17 - Logical Architecture Diagram [LAB] of L1 - Safety Viewpoint

The same efforts are made to refine and allocate the edited component exchanges for the transfer
functions throughout the logical levels. Transfer functions carry information on the component's
behavior according to the state and flow variables. Since more detail is introduced at each logical
level, the assertions must also be adjusted for the detail.

At L0, the change in the inputs and outputs of the actuation system is defined. The transfer
functions for the logical components under the actuation system at L1 should match the
information presented at the previous level. Therefore, if the incoming command exchanges are
not lost and the state is nominal for the components, they should transfer the command to the

drivelines at L1 since the behavior defined for the actuation system represents the same logic at
LO.

Figure 4.18 shows the progression of safety properties added by PVMT for the Control System
through the logical levels. Although no failure rate is available at the LO level for the Control
System, the magnitude of the failure rate can be embedded if needed. L1 and L2 levels involve
failure rate information. However, the transfer functions of the Control System at L0 need to be
transitioned to the Control Units according to the other components that interact with the Control
Units at L1. At the L2 stage, every component with its redundancy information is present.
Therefore, the transfer functions must be edited accordingly (e.g., L1 includes one position
transducer and flap position sensor while L2 has the complete numbers).
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Figure 4.18 - Progression of Safety Artifacts for a Component through L0, L1, and L2
4.4 AltaRica Safety Model

AltaRica is a modeling language to build safety models for analyzing potential safety hazards
within complex systems. The proposed method in this thesis involves systematical construction of
safety models tailored to each logical level - LO, L1, and L2, meaning that the safety models are
created independently using the Capella logical level diagrams as a reference.

To demonstrate the effects of the enhancements made to the Capella system model, this thesis
formulates a test case to demonstrate the safety model's capabilities in the FTA context. Three
scenarios are presented: the annunciated loss of flaps extension/retraction, unannunciated loss of
flaps extension/retraction, and flap panel disconnection. These failure scenarios represent critical
safety aspects within the system architecture.
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Several assumptions are made during the development of the safety model to simplify the
modeling process and focus on the practical analysis and representation of critical failure scenarios
within the system. Below are the key assumptions:

>

Assumption 1: Only failures causing loss of function are modeled; failures causing
erroneous behavior of sensors, control units, and displays are not considered.
Rationale: The available literature lacks specific information regarding failure modes and
corresponding failure rates for individual components within the flap system. Therefore,
modeling only the failures that lead to a loss of function prioritizes critical failures over
those causing erroneous behavior of components.

Assumption 2: Position transducers and flap position sensors are not used to close the loop
on flap control

Rationale: Building safety models that represent FPM with control loops may cause
problems [89]. The typical construction of a fault tree is to follow input and output
dependencies. If a control loop is attached to the system, with the typical fault tree logic, a
circular logic appears. Solving circular equations is possible in numerous ways but is often
left to the strategic choices of safety analysts [89]. Therefore, in this thesis, the sensors are
not used to close the control loop.

Assumption 3: Flaps are stopped, and flap fail annunciation is posted in case of loss of
output from flap lever position sensors, detected by the flap control unit

Rationale: This assumption aligns with the approach taken in assumption 2 to avoid circular
logic and potential complications in safety modeling. This prevents the system from relying
on sensor input to maintain control, which could otherwise lead to circular dependencies
and complex fault tree logic. The control unit can safely halt operations without the need
for continuous feedback from position sensors, thus simplifying the fault tree analysis and
avoiding potential modeling issues associated with circular logic.

Assumption 4: If both flap control units fail, the flap surfaces are stopped due to command
loss to motors and brake release command. Flap fail annunciation is posted due to loss of
communication detected by EICAS.

Rationale: If both flap control units were to fail simultaneously, it would result in a loss of
command signals to the motors responsible for controlling the flap surfaces. Additionally,
the assumption is that a failure of both control units would lead to a loss of communication,
as detected by the EICAS. In such a scenario, it is assumed that the flap surfaces would be
stopped to prevent unintended movement.

Assumption 5: Regarding the flap panel disconnection failure case, the flap panel's failure
rate is set to a value that reflects an aggregate of potential failure modes and rates,
incorporating elements such as hinges and connection arms, which are not explicitly
modeled but are components affecting the flap panel's failure behavior.

Rationale: The scope of the system model does not capture all components necessary to
calculate the failure scenario. Therefore, an average failure rate with an order of magnitude
is given to each flap panel. Consequently, each minimal cut set corresponds to the failure
of a specific flap panel

Assumption 6: Only ‘AND’ and ‘OR’ gates are used in the fault tree analysis.

Rationale: This decision is based on the need for simplicity in modeling the failure logic.
While there are other types of gates (e.g., XOR, NOT, NAND), they might introduce
additional complexity that is not necessary for the scope of this study. ‘AND’ and ‘OR’
gates are sufficient to capture the primary failure modes and their interactions.
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4.4.1 Elements of Safety Model

This section of the thesis explains AltaRica safety model elements and how they are mapped to
FTA. Refer to Appendix D to see classes and blocks of different levels of AltaRica safety models.
The use cases for AltaRica elements, observers, classes, blocks, and assertions and their refinement
throughout the development process are shown.

Once the identification of the top event for the FTA is complete, which in this case is the three
different failure scenarios presented, the next task is to establish the intermediate events forming
the pillars of the fault trees. The intermediate events are the indicators of potential failure
conditions that contribute to the occurrence of the top event. Depending on the level of detail
available in the system model (LO, L1, L2), the intermediate events may vary in complexity and
granularity. For instance, at the L0 level, where the system model provides a broader overview, the
intermediate events may represent general failure categories such as loss of flap components with
specifying left or right-hand side distinctions. However, as safety engineers examine the levels
where the modeling ascends to more detail, such as L2, the intermediate events must be the loss
of each flap instead of left and right-hand side distinctions.

The logical framework described with the selection of intermediate events lays the foundation for
FTAs. The next essential step is translating this logical framework into a representation within the
AltaRica safety model. The translation occurs with the help of observers. The observers monitor
the system's behavior and capture the occurrence of specific events or conditions defined within
the logical framework. Observers function similarly to flow variables, albeit with some
distinctions. While observers cannot be used in transitions and assertions to describe the system's
behavior, they serve as quantities to be observed. They are updated after each system action or
event, providing feedback on the system's state and facilitating the dynamic monitoring of critical
conditions [79].

The top events for FTA are specified via the observers, allowing for identifying critical failure
scenarios within the system. Additionally, several observers can be defined for the same AltaRica
safety model, enabling the generation of multiple fault trees from a single model [82]. This
flexibility ensures that various failure scenarios and their associated top events can be analyzed
within the same safety model.

Furthermore, in alignment with the flexibility offered by observers, the thesis has developed three
distinct safety models, each corresponding to a different system level: L0, L1, and L2. Within each
safety model, multiple observers have been defined to capture failure scenarios and their associated
intermediate events. Observers listed in Table 4.5 highlight the refinement across different levels
for the annunciated loss of flap extension failure scenario. In the LO and L1 safety models, the
elements LHSFlap and RHSFlap represent the left-hand and right-hand side flaps, respectively.
Conversely, in the L2 safety model, observers from FlapPanell to FlapPanel6 are showcased,
indicating a higher level of detail in both the system and safety models.
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Table 4.5 - 'Annunciated Loss of Flap Extension' Failure Case Observers at L0, L1, L2

observer Boolean AnnunciatedLossOfFlapExtension =

L0 L1 L2
EICAS.output and (not EICAS.output and (not EICAS.output and (not
LHSFlap.output or not LHSFlap.output or not FlapPanell.output or not
RHSFlap.output); RHSFlap.output); FlapPanel2.output or not

FlapPanel3.output or not
FlapPanel4.output or not
FlapPanel5.output or not
FlapPanel6.output);

A single block named flap system in Figures 4.19 and 4.20 represents the Sol. Within this block,
various classes are instantiated to capture the components displayed in the Capella system model.
Different classes represent distinct components in the system, and each class is dedicated to
defining its respective component's unique attributes. For instance, their shared characteristics and
functionalities drive the decision to instantiate power sources under the same classes. Power
sources, whether powering the PDU or the control units, exhibit consistent attributes across
different instances, including identical inputs and outputs, uniform operational states, and the same
failure rates. The model consolidates these shared attributes within a single class. Compared to
having numerous blocks, this approach facilitates more straightforward modification and updates,
as changes to the class properties propagate uniformly across all components that fall under the
same class.

block FlapSystem
StartingPoint FlightCrew;
Lever FlapLever;
EPWER ElectricalPowerSource;
Control ControlSystem;
Actuation ActuationSystem;
Flaps LHSFlap, RHSFlap;
Sources AirDataComputer, MonitoringSystem;
Endings EICAS;

Figure 4.19 - Components Initiated from Classes under the Flap System block at L0

Figures 4.19 and 4.20 outline the instantiation of various components within the safety model.
Each component corresponds to specific elements observed within the system model developed in
Capella. The elements are named the same between the safety and system models. The instantiation
of components occurs by placing component names after class names (e.g., Control for the class
name and ControlUnitl and ControlUnit2 for the component names in Figure 4.20). Also, it is
expected to facilitate more components as the logical levels progress because subsystems transition
to components, and this refinement can be seen by examining Figures 4.19 and 4.20.
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block FlapSystem

StartingPoint FlightCrew;

Lever FlapLever;

PowerSource DCPowerSourcel, DCPowerSource2, mainBUS1, mainBUS2;

Control ControlUnitl, ControlUnit2;

Motors DCMotorl, DCMotor2;

Data AirDataComputer1, AirDataComputer2, PositionTransducer,
FlapPositionSensor;

Endings EICAS;

Drivelines LeftWingDriveline, RightWingDriveline;

Gear SpeedSumGear;

Flaps LHSFlap, RHSFlap;

Figure 4.20 - Components Initiated from Classes under the Flap System block at L1

In the assertion section in Figure 4.21, the information on connections between various
components is transferred from Capella to AltaRica. The figure outlines assertions that dictate how
components are interconnected. These connections ensure that the system functions as intended,
with data or signals flowing appropriately between components to fulfill the system's operational
objectives. While classes carry information on the types of inputs and outputs, assertions can give
insights into where certain connections begin and end. For instance, the pathway of the command
type flow at L0 is below, and this pathway can be indicated in Figure 4.21 by following the inputs
and outputs of components.

Pathway of ‘command’ at LO: Flight Crew > Flap Lever > Control System > Actuation System >
LHSFlap and RHSFlap

assertion
FlapLever.input := FlightCrew.output;
ControlSystem.inputl := FlapLever.output;
ControlSystem.input2 := ElectricalPowerSource.outputl;
ControlSystem.input3 := AirDataComputer.output;
ControlSystem.input4 := MonitoringSystem.output;
EICAS.input := ControlSystem.output2;
ActuationSystem.inputl := ControlSystem.outputl;
ActuationSystem.input2 := ElectricalPowerSource.output2;
LHSFlap.input := ActuationSystem.outputl;
RHSFlap.input := ActuationSystem.output2;

Figure 4.21 - Block Assertions at L0
4.4.2 FTA Results

This section summarises the output of safety models and FTA results in Figures 4.22, 4.23, and
4.24. The elements displayed in the fault tree figures are explained in section 3.2.1. All the figures
in this section show fault trees for the annunciated loss of flap extension failure case. Fault tree
diagrams for other specified failure scenarios are available in Appendix E.

At level LO of the safety model, conducting both quantitative and qualitative FTAs is possible.
Firstly, at level L0, the system model provides a broad overview of the system architecture,
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capturing high-level functionalities and their interfaces. Due to this level's lack of detail for the
system components, obtaining precise quantitative data such as failure rates and probabilities may
be challenging. That is why the rates are on the orders of magnitude level at L0. Qualitative FTA,
however, allows for a preliminary exploration of potential failure scenarios without the need for
detailed quantitative information. Furthermore, with qualitative assessments, engineers can assess
the overall system safety and prioritize critical areas for further analysis and refinement. Therefore,
the qualitative approach guides the development and refinement of the system design for the
following stages.

Figure 4.22 depicts the fault tree of the Annunciated Loss of Flap Extension failure scenario and
the activities done at the LO stage. Here, the qualitative analysis focuses on identifying possible
events that can lead to a system failure, defining gates, and eventually constructing a fault tree
with the basic event and gate information. Figure 4.22 shows that the Annunciated Loss of Flap
Extension top event can only occur if one of the flap panels fails to execute their functions while
EICAS is working (e.g., unannunciated loss of flap extension/retraction occurs if one of the flap
panels fails to execute their functions while EICAS is not working). Defining the “AND” and other
gates depicted in Figure 4.22 is a part of qualitative analysis and constructing fault trees. The fault
tree structure created at this stage is used in the following stages for the same failure cases.
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Level L1 of the system model offers a more detailed representation of the system architecture than
level LO. However, the structure at L1 is not yet in its final shape, with specific details still
undergoing refinement. For instance, while the overall layout and types of sensors may be defined,
specifics such as the exact number and placement of sensors remain uncertain at this stage.

Redundancy contributes by influencing the calculation of failure probabilities in quantitative
analysis. Complete redundancy can significantly reduce the likelihood of the top event failure. The
lack of complete redundancy information poses a challenge for conducting a full quantitative
analysis at level L1. Therefore, instead of precise failure rates, orders of magnitude can be used at
this level; the safety model can help to specify the required number of components and more
accurate failure rates.

Leveraging quantitative analysis at level L1, even with incomplete redundancy information, can
guide decisions regarding redundancy enhancements. While the quantitative analysis may not
yield precise failure rates for top events, it can highlight areas of potential vulnerability and
indicate where additional redundancy measures may be warranted. Also, the level of detail in
system architectures is not uniformly distributed. The system model development might be close
to complete for certain points of the architecture, while the other sections are still in early
development. Hence, engineers can run quantitative analyses on the sections where enough
information is stored at L1. Therefore, a hybrid approach is adopted, wherein qualitative analysis
is complemented by quantitative elements tailored to the available level of detail.

Figure 4.23 shows that the calculated probability of the top event is higher than the expected
probability. This means that the architecture is not safe, and redundancy must be increased in the
critical areas of the architecture. The contribution indicates how much each minimal cutset
contributes to the overall probability of the top event occurring. For the LHSFlap, RHSFlap,
LeftWingDriveline, and RightWingDriveline events, the contribution is high. This is expected at
the levels of LO and L1 since the redundancy information for the architecture is not finalized. Each
flap panel and driveline element must be introduced to lower the contributions of these events and
lower the calculated probability of the top event.
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The system model at L2 has all relevant details and specifications, including complete information
on the parameters necessary for quantitative analysis, redundancy, dependencies, system
configurations, and component failure rates. Therefore, the emphasis switches to quantitative
analyses. Figure 4.24 shows after introducing each flap panel and driveline element, their
contributions are lowered. As a result, the calculated probability of the top event indicates that the
system architecture is considered to be safe for this particular failure scenario.
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and bevel gear events for LeftWingDriveline.failure and RightWingDriveline.failure.
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Table 4.6 shows the results of quantitative analyses done at L2 per flight hour. The number of
minimal cutsets is consistent for the failure scenarios of annunciated loss of flaps
extension/retraction and unannunciated loss of flaps extension/retraction, with both scenarios
yielding 47. In the case of the annunciated failure scenario, the minimal cutsets represent failures
directly causing loss of the flap extension/retraction. Conversely, for the unannunciated scenario,
the minimal cutsets encompass failures in the flap extension/retraction mechanism and the EICAS
display system. Considering the assumptions made, the results expected match the results obtained.

Table 4.6 - Quantitative Probabilities per Flight Hour and Minimal Cutsets for L2

Quantitative Quantitative
Failure Scenario Gravit Probability Probability Number of
u vty Expected (per Calculated (per | Minimal Cutsets
FH) FH)
Unannunciated loss
of flaps Catastrophic 1E-9 2.14E-9 47
extension/retraction
Annunciated loss
of flaps Minor 1E-4 2.14E-4 47
extension/retraction
.Flap P ane.I Catastrophic 1E-9 6E-9 6
disconnection

4.5 Implementation

In this section, the implementation of the thesis’ methodology is detailed using a specific example:
the flap ball-screw actuator 4, located at the tip of the right-wing driveline. The implementation
shown in Figure 4.25 comprises four steps. Each step represents a stage in the methodology
process:

» Step 1: Capella Model
The process begins with systems engineers constructing a Capella model. Figure 4.25
captures the entire L2-level logical architecture of the system. Within this model, flap ball-
screw actuator 4 is highlighted and shown separately. The figure depicts the command
connections of the actuator between Torque Tube 8 and Flap Panel 3 by illustrating red-
colored component exchanges that capture the flow variables of the actuator.

» Step 2: PVMT Integration
PVMT integration is the second step of the implementation process, where the
incorporation of safety artifacts into the flap ball-screw actuator 4 takes place. Both system
engineers and safety analysts should work in the Capella environment for system
development and tracing of safety properties. This step involves several integration points
that help to build a safety model in AltaRica:
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Failure Rate: A generic flap actuator failure rate, 1.0E-5 per flight hour [97], is
added as a safety artifact into the flap ball-screw actuator 4 logical component of
L2.

State Variables Specification: Within PVMT, nominal and loss state variables for
the actuator are entered.

Transfer Functions: Each state variable is accompanied by a corresponding transfer
function that details the components’ behavior in response to varying inputs.
Therefore, a transfer function for the nominal and another one for the loss state are
embedded in the component.

Flow Variables: Component exchanges edited by PVMT give information on flow

variables with their direction, as explained in the previous step.

For the embedding process of the additional safety properties into the Capella system
model and PVMT user guide, refer to Appendix B.
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Figure 4.25 - Flap Ballscrew Actuator Example of Methodology Implementation

» Step 3: AltaRica Model
In this step, the figure highlights the actuator class and its assertions within the AltaRica
model. The parts of the coding depicted in the figure can be coded with the system
architecture specification by safety analysts since PVMT helps to add the additional safety
properties mentioned above.
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» Step 4: FTA
The final step is safety analysts performing FTAs depending on the failure case inspected
with the FTA tool available in AltaRica 3.0 and the generation of fault tree diagrams with
the Arbre Analyst software. The fault tree provides a visual representation of potential
failure scenarios and their associated causes. Figure 4.25 shows the annunciated loss of the
flap extension failure case and highlights the flap ball-screw actuator 4 failure as an
intermediate event. The actuator appears on the fault tree since it is connected to flap panel
3, and loss of flap panels is required for the failure case to occur. The actuator continues
the tree by sending its output to forque tube 8. Eventually, the tree ends with basic events.

4.6 Modeling and Integration Summary

The presented flap system test case validates the methodology introduced in Chapter 3. This test
case focused on enhancing the system architecture specification process to support automated FTA
through the integration of MBSE and MBSA. The selected test case is developed using the Capella
workbench and analyzed with AltaRica 3.0.

The key outcomes of the case study can be listed as follows:

» System Model Development Methodology: Extending ARCADIA’s logical architecture
levels proved effective in representing the system architecture with the required granularity
for MBSA to perform automated FTAs.

» Enhanced System Specification: Using Capella's PVMT add-on allowed for the integration
of safety properties into the system model. This facilitated an architecture specification that
can be used as a source to create safety models.

» Automated FTA Implementation: The case study successfully demonstrated the use of
AltaRica 3.0 to create safety models. These models enabled automated FTA, identifying
minimal cutsets and calculating failure rates.

Each logical level is enriched by integrating safety artifacts with the help of PVMT. LO has its
failure chains, which are unique to this level, to support safety assessment by displaying potential
failure connections but lacks precise failure rates since it provides a high-level architecture with
no logical systems other than the flap system. L1 implements precise failure rates for the parts of
the flap system that have seen enough breakdowns, while L2 has all the failure rates for each
component. All levels include component exchanges edited with PVMT to show flow variables
and their directions, state variables for defining different states a component takes, and transfer
functions for the behavior of the components.

AltaRica 3.0 is used for safety analyses. Three distinct failure scenarios are inspected through
FTAs: Annunciated loss of flaps extension/retraction, unannunciated loss of flaps
extension/retraction, and flap panel disconnection. To confirm the validity of the safety models,
minimal cutsets of each level are examined by the industry partners. Also, a quantitative FTA
validates if the architecture developed satisfies the expected failure rates of the failure cases
presented. AltaRica safety models with fault tree images for three failure scenarios are presented
in Appendix C.

The test case study presented several challenges and limitations. The flap system involves many
components and sensors, making the safety assessment difficult since the AltaRica language does
not give detailed error messages, especially when closing the feedback loops in the safety models.
Also, at the levels that involve many system model elements, L2 and PA, Capella diagrams make
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the individual elements difficult to distinguish from others. Refer to Appendix A for Capella system
model diagrams at each logical level.

In addition to the flap system test case, the methodology introduced in Chapter 3 can potentially
be applied to more complex systems. In more complex contexts, the methodology offers, in
principle, scalability and adaptability to accommodate larger systems. The extension of
ARCADIA’s logical architecture levels, as demonstrated in the test case, can effectively capture
the system architecture with the required granularity for MBSA. This enables the integration of
safety properties into the different phases of the system model using PVMT, facilitating an
architecture specification that serves as a foundation for creating safety models. Since the safety
artifacts integrated into the system model are aligned with the MBSA inputs specified by
ARP4761, using different MBSA languages to create safety models is also possible by changing
the syntax of transfer functions according to the language used.
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5. Conclusion

This thesis outlines an approach to improve model-based system architecture by integrating safety
elements into the system development process, thereby supporting model-based safety
assessments. The method consists of successive stages, each playing a role in refining and
improving the system's model.

MBSE brings various benefits to the aircraft development process. A major advantage is that the
utilization of model elements is possible in every stage of the development process. Therefore, the
presented framework and specifications can continue to later stages of development, where
manufacturer suppliers and subcontractors create systems that align with aircraft and system
requirements. Moreover, MBSE tools such as Capella and their add-ons feature various viewpoints
that can be tailored depending on the engineering discipline for system architecture, making it
suitable for various domains, including model-based safety assessment. Also, the three-stage
logical level approach presented in this thesis ensures that the different levels of detail are
displayed for system elements. Capella diagrams that show a breakdown of components and
functions can support the presented approach for further emphasis on granularity levels.

5.1 Summary of Contributions

This thesis contributes to the integration of safety analysis in MBSE in the following ways: (1)
methodology development, (2) implementation in Capella, and (3) test case application.

This thesis presents a systematic methodology that maps the ARP4761 safety process to three
stages of system model development: System Analysis, Logical Architecture, and Physical
Architecture. Using the extended logical architecture levels (LO, L1, and L2) from Tabesh [38],
this thesis adds the appropriate safety analysis steps. At LO, system functions are tagged with FHA
results to identify top-level events for FTAs. L1 introduces partial redundancy information and a
breakdown of system elements, representing a top-down aircraft development approach. The final
logical phase, L2, includes all redundancy information, detailed architecture, and system elements,
allowing for quantitative FTAs to validate FHA results.

The main contribution of this thesis is to integrate artifacts required for safety analysis into the
Capella system model using the PVMT add-on. This integration incorporates safety properties
needed for analyses into system model elements. The following properties have been identified as
essential: failure rates, state variables, and transfer functions In addition, component exchanges
edited with PVMT represent flow variables addressing failure connections between system
components. Also, functional chains have been proposed to identify failure relationships across
functions, supporting comprehensive safety assessments and helping engineers understand the
potential impacts of component failures on other functions.

The methodology presented in this thesis is validated using a flap system as a test case. Through
iterative processes, the application of the methodology is demonstrated in improving system
models, incorporating safety features, and performing FTAs for different failure scenarios. The
integration of fault tree analyses with the development process allows for the evaluation of
potential safety concerns related to the system architecture. The use of AltaRica for safety analysis
provides a formal representation of system dynamics and state changes, facilitating the automated
creation of safety artifacts, increasing efficiency, and reducing development time.
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5.2 Discussion of Limitations

Several challenges and drawbacks have been faced while creating different viewpoints and
diagrams for the proposed method. One challenge is the representation of complex architectures.
At L2 and PA levels, the architectural diagrams have many elements that make the diagrams big
in size, and consequently, individual elements become very difficult to read. Although this
comprehensive representation allows suppliers to examine the architecture with every component
and their interconnections in detail, it is not ideal for high-level stakeholders and system
development teams. Also, the test case architecture layout illustrates the real-life placement of
system components (right and left wings), but there is no means in Capella to show the location of
systems and their components referencing the aircraft. Furthermore, Capella diagrams do not
support encapsulation. In order to reach a subsystem from a main architectural diagram, another
diagram needs to be created in Capella, unlike SysML diagrams. Another challenge has occurred
while performing FTAs with AltaRica regarding errors. Many errors, whether they are syntax-
related or not, do not have a detailed description of them. Thus, developing safety models with
Altarica, especially for new users, can become time-consuming. Also, a challenge for safety
modeling is feedback loops. Although the AltaRica 3.0 version addresses the issues of feedback
loops in safety models, the complexity of the test case resulted in not closing the loop in this thesis..

5.3 Future Work

An important area for further development is the automation of the transition between Capella and
AltaRica. Safety properties added using the PVMT add-on in Capella can be extracted and utilized
to enable the automatic creation of safety models within AltaRica. This automation would facilitate
the creation of safety models and could be combined with the already automated FTA, thus
significantly reducing the gap between MBSE and MBSA.

Following the automation improvements, reducing the number of assumptions required in
performing FTAs. The current models include several simplifying assumptions to define the scope
of this thesis. Future work should aim to increase the level of detail in MBSA by closing the loop
on control of aircraft systems, thereby refining the safety models without compromising the
overarching goal of enhancing MBSE.

Another important step is integrating other types of safety analyses into Capella. This would
provide a more holistic safety assessment process. The current work can be extended by
incorporating FMEA at the PA stage. Therefore, future efforts should aim to capture FHA, FTA,
and FMEA within a single system model.

63



Bibliography
[1] International Civil Aviation Organization, “Future of Aviation”, Apr. 22, 2024.
https://www.icao.int/Meetings/FutureOfAviation/Pages/default.aspx (accessed Apr. 22, 2024).

[2] A. Macintosh and L. Wallace, “International aviation emissions to 2025: Can emissions be
stabilised without restricting demand?”, vol. 37, no. 1, Jan. 2009, doi:
10.1016/J.ENPOL.2008.08.029.

[3] International Energy Agency, “Aviation”, 2022. https://www.iea.org/energy-
system/transport/aviation.

[4] European Commission. Directorate General for Research and Innovation. and European
Commission. Directorate General for Mobility and Transport., Flightpath 2050 :Europe’s vision
for aviation : maintaining global leadership and serving society’s needs. LU: Publications Office,
2012. doi: 10.2777/15458.

[5] H.-H. Altfeld, Commercial Aircraft Projects: Managing the Development of Highly Complex
Products. Routledge, 2010. doi: 10.4324/9781315572833.

[6] S. Gradel, B. Aigner, and E. Stumpf, “Model-based safety assessment for conceptual aircraft
systems design,” CEAS Aeronautical Journal, vol. 13, no. 1. Springer Science and Business
Media LLC, pp. 281-294, Nov. 23, 2021. doi: 10.1007/s13272-021-00562-2.

[7]1 A. K. Jeyaraj, N. Tabesh, and S. Liscouét-Hanke, “Connecting Model-based Systems
Engineering and Multidisciplinary Design Analysis and Optimization for Aircraft Systems
Architecting,” AIAA AVIATION 2021 FORUM. American Institute of Aeronautics and
Astronautics, Jul. 28, 2021. doi: 10.2514/6.2021-3077.

[8] L. R. Jenkinson, P. Simpkin, and D. Rhodes, Civil Jet Aircraft Design. Oxford England:
Butterworth-Heinemann, 2003.

[9] C. S. Tang, J. D. Zimmerman, and J. I. Nelson, “Managing New Product Development and
Supply Chain Risks: The Boeing 787 Case,” Supply Chain Forum: An International Journal, vol.
10, no. 2. Informa UK Limited, pp. 74—86, Jan. 2009. doi: 10.1080/16258312.2009.11517219.

[10] I. Dorfler and O. Baumann, “Learning from a Drastic Failure: The Case of the Airbus A380
Program,” Industry and Innovation, vol. 21, no. 3. Informa UK Limited, pp. 197-214, Apr. 03,
2014. doi: 10.1080/13662716.2014.910891.

[11] SAE International, “ARP4754A: Development of Civil Aircraft and Systems,” 2011.

[12] J. Estefan, "Survey of model-based systems engineering (MBSE) methodologies," Int.
Council Syst. Eng., San Diego, CA, USA, Jan. 2008.

[13] A. L. Ramos, J. V. Ferreira, and J. Barcelo, “Model-Based Systems Engineering: An
Emerging Approach for Modern Systems,” IEEE Transactions on Systems, Man, and

64



Cybernetics, Part C (Applications and Reviews), vol. 42, no. 1. Institute of Electrical and
Electronics Engineers (IEEE), pp. 101-111, Jan. 2012. doi: 10.1109/tsmcc.2011.2106495.

[14] L. Grunske and B. Kaiser, “Automatic generation of analyzable failure propagation models
from component-level failure annotations,” Fifth International Conference on Quality Software
(QSIC’05). IEEE, 2005. doi: 10.1109/gsic.2005.16.

[15] A. Joshi, S. Vestaland P. Binns, “Automatic Generation of Static Fault Trees from AADL
Models”, Apr. 2007. [Online]. Available: https://hdl.handle.net/11299/217313

[16] T. Prosvirnova et al., “The AltaRica 3.0 Project for Model-Based Safety Assessment,” IFAC
Proceedings Volumes, vol. 46, no. 22. Elsevier BV, pp. 127-132, 2013. doi: 10.3182/20130904-
3-uk-4041.00028.

[17] F. Mhenni, “Safety analysis integration in a systems engineering approach for mechatronic
systems design”, 2014.

[18] INCOSE Systems engineering handbook: a guide for system life cycle processes and
activities, 4th Edition, John Wiley & Sons, 1., Hoboken., 2015.

[19] A. M. Madni and M. Sievers, “Model-based systems engineering: Motivation, current status,
and research opportunities,” Systems Engineering, vol. 21, no. 3. Wiley, pp. 172—-190, May 2018.
doi: 10.1002/sys.21438.

[20] INCOSE, "Systems Engineering Vision 2020," San Diego, CA, USA, Sep. 2007.

[21] K. A. Odukoya, R. 1. Whitfield, L. Hay, N. Harrison, and M. Robb, “An Architectural
Description For The Application Of Mbse In Complex Systems,” 2021 IEEE International
Symposium on Systems Engineering (ISSE). IEEE, Sep. 13, 2021. doi:
10.1109/1sse51541.2021.9582510.

[22] B. Beihoff et al., "A World in Motion — Systems Engineering Vision 2025," 2014.

[23] N. A. Tepper, “Exploring the use of Model-Based Systems Engineering (MBSE) to develop
systems architectures in naval ship design”, 2010.

[24] J. M. Borky and T. H. Bradley, Effective Model-Based Systems Engineering. Springer
International Publishing, 2019. doi: 10.1007/978-3-319-95669-5.

[25] S. Friedenthal, A. Moore, R. Steiner, A Practical Guide to SysML: The Systems Modeling
Language. 2008.

[26] F. Patou, M. Dimaki, A. Maier, W. E. Svendsen, and J. Madsen, “Model-based systems
engineering for life-sciences instrumentation development,” Systems Engineering, vol. 22, no. 2.
Wiley, pp. 98—113, Mar. 14, 2018. doi: 10.1002/sys.21429.

[27] A. Fisher et al., “3.1.1 Model Lifecycle Management for MBSE,” INCOSE International
Symposium, vol. 24, no. 1. Wiley, pp. 207-229, Jul. 2014. doi: 10.1002/j.2334-
5837.2014.tb03145 x.

65


https://hdl.handle.net/11299/217313

[28] B. A. Morris, D. Harvey, K. P. Robinson, and S. C. Cook, “Issues in Conceptual Design and
MBSE Successes: Insights from the Model-Based Conceptual Design Surveys,” INCOSE
International Symposium, vol. 26, no. 1. Wiley, pp. 269-282, Jul. 2016. doi: 10.1002/j.2334-
5837.2016.00159.x.

[29] G. F. Dubos, D. P. Coren, A. Kerzhner, S. H. Chung, and J.-F. Castet, “Modeling of the
flight system design in the early formulation of the Europa Project,” 2016 IEEE Aerospace
Conference. IEEE, Mar. 2016. doi: 10.1109/aer0.2016.7500604.

[30] P. A. Jansma and R. M. Jones, “Advancing the Practice of Systems Engineering at JPL,”
2006 IEEE Aerospace Conference. IEEE. doi: 10.1109/aero0.2006.1656171.

[31] R. Malone, B. Friedland, J. Herrold, and D. Fogarty, “Insights from Large Scale Model
Based Systems Engineering at Boeing,” INCOSE International Symposium, vol. 26, no. 1.
Wiley, pp. 542-555, Jul. 2016. doi: 10.1002/j.2334-5837.2016.00177..x.

[32] R. Cloutier, "Model Based Systems Engineering Survey," Presented at the University of
South Alabama, AL, USA, Dec. 2018; 2019.

[33] E. T. McDermott, N. Hutchison, A. Salado, K. Henderson, and M. Clifford, "Benchmarking
the Benefits and Current Maturity of Model-Based Systems Engineering across the Enterprise:
Results of the MBSE Maturity Survey," Systems Engineering Research Center (SERC),
Hoboken, NJ, USA, 2020.

[34] S. Liscouét-Hanke, A. K. Jeyaraj. “A Model-Based Systems Engineering Approach for
Efficient Flight Control System Architecture Variants Modelling in Conceptual Design.”In
Proceedings of the International Conference on Recent Advances in Aerospace Actuation
Systems and Components, Toulouse, France, 30 May—1 June 2018; pp. 3441.

[35] A. K. Jeyaraj, “A Model-Based Systems Engineering Approach for Efficient System
Architecture Representation in Conceptual Design: A Case Study for Flight Control Systems,”
Master’s Thesis, Concordia University, Montreal, QC, Canada, 2019.

[36] S. Liscouét-Hanke, H. Jahanara, and J.-L. Bauduin, “A Model-Based Systems Engineering
Approach for the Efficient Specification of Test Rig Architectures for Flight Control
Computers,” IEEE Systems Journal, vol. 14, no. 4. Institute of Electrical and Electronics
Engineers (IEEE), pp. 5441-5450, Dec. 2020. doi: 10.1109/jsyst.2020.2970545.

[37] P. George Mathew, S. Liscouét-Hanke, and Y. Le Masson, “Model-Based Systems
Engineering Methodology for Implementing Networked Aircraft Control System on Integrated
Modular Avionics — Environmental Control System Case Study,” SAE Technical Paper Series.
SAE International, Oct. 30, 2018. doi: 10.4271/2018-01-1943.

[38] N. Tabesh, "A Model-Based System Engineering Approach to Support System Architecting
Activities in Early Aircraft Design," Master's Thesis, Concordia University, Montreal, QC,
Canada, 2023.

66



[39] J. Ma, G. Wang, J. Lu, H. Vangheluwe, D. Kiritsis, and Y. Yan, “Systematic Literature
Review of MBSE Tool-Chains,” Applied Sciences, vol. 12, no. 7. MDPI AG, p. 3431, Mar. 28,
2022. doi: 10.3390/app12073431.

[40] J. D’ Ambrosio and G. Soremekun, “Systems engineering challenges and MBSE
opportunities for automotive system design,” 2017 IEEE International Conference on Systems,
Man, and Cybernetics (SMC). IEEE, Oct. 2017. doi: 10.1109/smc.2017.8122925.

[41] S. Gérard and B. Selic, “The UML — MARTE Standardized Profile,” IFAC Proceedings
Volumes, vol. 41, no. 2. Elsevier BV, pp. 6909—6913, 2008. doi: 10.3182/20080706-5-kr-
1001.01171.

[42] M. Hause, “4.5.2 Model- Based System of Systems Engineering with UPDM,” INCOSE
International Symposium, vol. 20, no. 1. Wiley, pp. 580-594, Jul. 2010. doi: 10.1002/j.2334-
5837.2010.tb01090.x.

[43] A. T. Morris and J. C. Breidenthal, “The necessity of functional analysis for space
exploration programs,” 2011 IEEE/AIAA 30th Digital Avionics Systems Conference. IEEE, Oct.
2011. doi: 10.1109/dasc.2011.6096136.

[44] “Types of Models - SEBoK.” Accessed: Apr. 25, 2024. [Online]. Available:
https://www.sebokwiki.org/wiki/Types_of Models#Model Classification

[45] “What is UML | Unified Modeling Language.” https://www.uml.org/what-is-uml.htm
(accessed Apr 25, 2024).

[46] “SysML Open Source Project - What is SysML? Who created SysML?.” Eclipse
Foundation, [Online], Available: https://sysml.org/

[47] J.-L. Voirin, “Motivations, Background and Introduction to Arcadia,” Model-Based System
and Architecture Engineering with the Arcadia Method. Elsevier, pp. 3—14, 2018. doi:
10.1016/b978-1-78548-169-7.50001-9.

[48] J.-L. Voirin, “Modelling Languages for Functional Analysis Put to the Test of Real Life,”
Complex Systems Design & Management. Springer Berlin Heidelberg, pp. 139-150, 2013. doi:
10.1007/978-3-642-34404-6 9.

[49] S. Bonnet, J. Voirin, V. Normand, and D. Exertier, “Implementing the MBSE Cultural
Change: Organization, Coaching and Lessons Learned,” INCOSE International Symposium, vol.
25, no. 1. Wiley, pp. 508-523, Oct. 2015. doi: 10.1002/j.2334-5837.2015.00078.x.

[50] J. Voirin, S. Bonnet, D. Exertier, and V. Normand, “Simplifying (and enriching) SysML to
perform functional analysis and model instances,” INCOSE International Symposium, vol. 26,
no. 1. Wiley, pp. 253-268, Jul. 2016. doi: 10.1002/1.2334-5837.2016.00158.x.

[51] J. Voirin, “9.1.1 Method and Tools for constrained System Architecting,” INCOSE
International Symposium, vol. 18, no. 1. Wiley, pp. 981-995, Jun. 2008. doi: 10.1002/7.2334-
5837.2008.tb00857 .x.

67


https://www.sebokwiki.org/wiki/Types_of_Models#Model_Classification

[52] “Capella MBSE Tool - Arcadia,” Apr. 29, 2024. https://mbse-capella.org/arcadia.html
(accessed Apr. 29, 2024).

[53] P. Roques, “Systems Architecture Modeling with the Arcadia Method: A Practical Guide to
Capella,” London: ISTE Press, 2018.

[54] O. Lisagor, J. A. McDermid, and D. J. Pumfrey, "Towards a Practical Process for Automated
Safety Analysis," 2006.

[55] A. A. Abdellatif and F. Holzapfel, “Model Based Safety Analysis (MBSA) Tool for Avionics
Systems Evaluation,” 2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC).
IEEE, Oct. 11, 2020. doi: 10.1109/dasc50938.2020.9256578.

[56] O. Lisagor, T. Kelly, and R. Niu, “Model-based safety assessment: Review of the discipline
and its challenges,” The Proceedings of 2011 9th International Conference on Reliability,
Maintainability and Safety. IEEE, Jun. 2011. doi: 10.1109/icrms.2011.5979344.

[57] M. Machin, E. Saez, P. Virelizier, and X. de Bossoreille, “Modeling Functional Allocation in
AltaRica to Support MBSE/MBSA Consistency,” Model-Based Safety and Assessment. Springer
International Publishing, pp. 3—17, 2019. doi: 10.1007/978-3-030-32872-6 1.

[58] H. Mortada, T. Prosvirnova, and A. Rauzy, “Safety Assessment of an Electrical System with
AltaRica 3.0,” Model-Based Safety and Assessment. Springer International Publishing, pp. 181—
194, 2014. doi: 10.1007/978-3-319-12214-4 14.

[59] P. Bieber, C. Bougnol, C. Castel, J.-P. H. Christophe Kehren, S. Metge, and C. Seguin,
“Safety Assessment with Altarica,” Building the Information Society. Springer US, pp. 505-510.
doi: 10.1007/978-1-4020-8157-6_45.

[60] S. Kabir, K. Aslansefat, I. Sorokos, Y. Papadopoulos, and Y. Gheraibia, “A Conceptual
Framework to Incorporate Complex Basic Events in HiP-HOPS,” Model-Based Safety and
Assessment. Springer International Publishing, pp. 109-124, 2019. doi: 10.1007/978-3-030-
32872-6 8.

[61] P. H. Feiler and A. Rugina, “Dependability Modeling with the Architecture Analysis &
Design Language (AADL),” Carnegie Mellon University, 2007, doi: 10.1184/R1/6572996.V 1.

[62] P. H. Feiler and D. P. Gluch, “Model-Based Engineering with AADL: An Introduction to the
SAE Architecture Analysis & Design Language.” Addison-Wesley Professional, 2012.

[63] O. Akerlund et al., "ISAAC, a framework for integrated safety analysis of functional,
geometrical and human aspects," 2007.

[64] SAE International, “ARP4761A: Guidelines for Conducting the Safety Assessment Process
on Civil Aircraft, Systems, and Equipment,” 2023.

[65] O. Lisagor, “Failure logic modelling: a pragmatic approach,” Ph.D. Thesis, 2010.

68



[66] A. Baklouti, N. Nguyen, F. Mhenni, J.-Y. Choley, and A. Mlika, “Improved Safety Analysis
Integration in a Systems Engineering Approach,” Applied Sciences, vol. 9, no. 6. MDPI AG, p.
1246, Mar. 25, 2019. doi: 10.3390/app9061246.

[67] N. G. Leveson, “Safety Analysis in Early Concept Development and Requirements
Generation,” INCOSE International Symposium, vol. 28, no. 1. Wiley, pp. 441-455, Jul. 2018.
doi: 10.1002/j.2334-5837.2018.00492 x.

[68] E. Trangy and G. Muller, “7.1.1 Reduction of Late Design Changes Through Early Phase
Need Analysis,” INCOSE International Symposium, vol. 24, no. 1. Wiley, pp. 570-582, Jul.
2014. doi: 10.1002/7.2334-5837.2014.tb03168 ..

[69] J. F. W. Peeters, R. J. I. Basten, and T. Tinga, “Improving failure analysis efficiency by
combining FTA and FMEA in a recursive manner,” Reliability Engineering &amp; System
Safety, vol. 172. Elsevier BV, pp. 3644, Apr. 2018. doi: 10.1016/j.ress.2017.11.024.

[70] N. Yakymets, H. Jaber, and A. Lanusse, "Model-Based System Engineering for Fault Tree
Generation and Analysis," in MODELSWARD 2013 - Proceedings of the 1st International
Conference on Model-Driven Engineering and Software Development.

[71] P. David, V. Idasiak, and F. Kratz, “Reliability study of complex physical systems using
SysML,” Reliability Engineering &amp; System Safety, vol. 95, no. 4. Elsevier BV, pp. 431—
450, Apr. 2010. doi: 10.1016/j.ress.2009.11.015.

[72] F. Mhenni, N. Nguyen, and J.-Y. Choley, “SafeSysE: A Safety Analysis Integration in
Systems Engineering Approach,” IEEE Systems Journal, vol. 12, no. 1. IEEE, pp. 161-172, Mar.
2018. doi: 10.1109/jsyst.2016.2547460.

[73] P. Helle, “Automatic SysML-based safety analysis,” Proceedings of the 5th International
Workshop on Model Based Architecting and Construction of Embedded Systems. ACM, Sep. 30,
2012. doi: 10.1145/2432631.2432635.

[74] Y. Papadopoulos and J. A. McDermid, “Hierarchically Performed Hazard Origin and
Propagation Studies,” Computer Safety, Reliability and Security. Springer Berlin Heidelberg, pp.
139-152, 1999. doi: 10.1007/3-540-48249-0 13.

[75] B. M, Bozzano, Villafiorita, A, Akerlund, O, Akerlund, P, "ESACS: an integrated
methodology for design and safety analysis of complex systems," in ESREL, Edinburgh, Scotland,
2000.

[76] “FMECA and FTA software - Safety Architect”, Apr. 29, 2024.
https://www.all4tec.com/en/safety-architect-fmeca-fta-sofware/ (accessed Apr. 29, 2024).

[77] M. Sango, F. Vallée, A.-C. Vié, J.-L. Voirin, X. Leroux, and V. Normand, “MBSE and
MBSA with Capella and Safety Architect Tools,” Complex Systems Design &amp; Management.
Springer International Publishing, pp. 239-239, Dec. 09, 2016. doi: 10.1007/978-3-319-49103-

5 22.

69



[78] J. Dumont, F. Sadmi, and F. Vallée, "CONSISTENT SAFETY ANALYSES IN MODEL-
BASED SYSTEM ENGINEERING: CONCEPTS AND TOOLS," Embedded Real-Time
Software and Systems (ERTS2012), Toulouse, France, Feb. 2012.

[79] G. Point and A.B. Rauzy, "AltaRica: Constraint automata as a description language," 1999.

[80] A. Arnold, G. Point, A. Griffault, and A. Rauzy, “The AltaRica Formalism for Describing
Concurrent Systems,” Fundamenta Informaticae, vol. 40, no. 2,3. IOS Press, pp. 109-124, 1999.
doi: 10.3233/11-1999-402302.

[81] M. Bozzano et al., “Safety assessment of AltaRica models via symbolic model checking,”
Science of Computer Programming, vol. 98. Elsevier BV, pp. 464—483, Feb. 2015. doi:
10.1016/j.s¢ic0.2014.06.003.

[82] M. Batteux, T. Prosvirnova, and A. Rauzy, "AltaRica 3.0: language specification," AltaRica
Association, 2017.

[83] Binns, P., Englehart, M., Jackson, M., Vestal, S., “Domain-specific software architectures
for guidance, navigation and control,” International Journal of Software Engineering and
Knowledge Engineering, vol. 06, no. 02. World Scientific Pub Co Pte Lt, pp. 201-227, Jun.
1996. doi: 10.1142/s0218194096000107.

[84] S. Vestal, "MetaH Support for Real-Time Multi-Processor Avionics," in Proceedings of the
1997 Joint Workshop on Parallel and Distributed Real-Time Systems (WPDRTS / OORTS '97)
(WPDRTS '97), IEEE Computer Society, USA, 1997, pp. 11.

[85] P. H. Feiler, B. A. Lewis, and S. Vestal, “The SAE Architecture Analysis & Design
Language (AADL) a standard for engineering performance critical systems,” 2006 IEEE
Conference on Computer Aided Control System Design, 2006 IEEE International Conference on
Control Applications, 2006 IEEE International Symposium on Intelligent Control. IEEE, Oct.
2006. doi: 10.1109/cacsd-cca-isic.2006.4776814.

[86] B. A. Lewis and P. H. Feiler, "Multi-Dimensional Model Based Engineering for
Performance Critical Computer Systems Using the AADL," 2009.

[87] Y. Papadopoulos, "Safety-Directed System Monitoring Using Safety Cases," Ph.D. thesis,
Dept. Computer Science, The University of York, 2000.

[88] Y. Papadopoulos, J. McDermid, R. Sasse, and G. Heiner, “Analysis and synthesis of the
behaviour of complex programmable electronic systems in conditions of failure,” Reliability
Engineering &amp; System Safety, vol. 71, no. 3. Elsevier BV, pp. 229-247, Mar. 2001. doi:
10.1016/s0951-8320(00)00076-4.

[89] T. Prosvirnova et al., “Strategies for Modelling Failure Propagation in Dynamic Systems
with AltaRica,” Model-Based Safety and Assessment. Springer International Publishing, pp.
101-115, 2022. doi: 10.1007/978-3-031-15842-1 8.

[90] A. B. Rauzy, “Guarded transition systems: A new states/events formalism for reliability
studies,” Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and

70



Reliability, vol. 222, no. 4. SAGE Publications, pp. 495-505, Dec. 01, 2008. doi:
10.1243/1748006xjrr177.

[91] P. Roques, "MBSE with the ARCADIA Method and the Capella Tool," in 8th European
Congress on Embedded Real Time Software and Systems (ERTS), Jan. 2016, Toulouse, France.

[92] “Capella MBSE Tool - Add-Ons,” mbse-capella.org. https://mbse-capella.org/addons.html
(accessed May 05, 2024).

[93] Bombardier Inc., “Bombardier Global 5000 Flight Crew Operating Manual Vol. 2, Rev. 12
(Airplane General),” 2006. [Online]. Available: https://www.smartcockpit.com/my-
aircraft/bombardier-global-5000/

[94] Bombardier Inc., “Bombardier Global 5000 Flight Crew Operating Manual Vol. 2, Rev. 2A
(Flight Controls),” 2005. [Online]. Available: https://www.smartcockpit.com/my-
aircraft/bombardier-global-5000/

[95] Bombardier Inc., “Bombardier Global 5000 Flight Crew Operating Manual Vol. 2, Rev. 2A
(Automatic Flight Control System),” 2005. [Online]. Available:
https://www.smartcockpit.com/my-aircraft/bombardier-global-5000/

[96] W. Denson, G. Chandler, W. Crowell, and R. Wanner, “Nonelectronic Parts Reliability Data
1991,” Defense Technical Information Center, May 1991. doi: 10.21236/ada242083.

[97] J.-C. Mar¢, Aerospace Actuators 1: Needs, Reliability and Hydraulic power solutions. 2016.
[Online]. Available: https://hal.archives-ouvertes.fr/hal-02055655

[98] S. Liscouét-Hanke, B. R. Mohan, P. Jeyarajan Nelson, C. Lavoie, and S. Dufresne,
“Evaluating a Model-Based Systems Engineering approach for the conceptual design of
advanced aircraft high-lift system architectures,” Canadian Aeronautics and Space Institute
AERO 2017, 2017.

71


https://hal.archives-ouvertes.fr/hal-02055655

Appendix A

This section of the Appendix provides an overview of L2-level Capella diagrams.

Figure A.1 illustrates the logical architecture diagram of the L2 phase with section numbers. In the following figures, sections are
displayed separately to show a clear picture of the architectural diagram. Chapter 3 details the differences between L2 and PA-level
diagrams. Since the layouts of these two levels are the same, the PA level is not shown in the Appendix.

Figure A.1 - Logical Architecture Diagram [LAB] of L2
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Figure A.2 - Section 1 of Logical Architecture Diagram [LAB] of L2
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Appendix B

Appendix B presents a guide on how to enrich the system model with the PVMT add-on. Figure B.1 shows the first step, which is how
to add a PVMT viewpoint to a Capella Project.
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Figure B.2 depicts how to activate the definition editor, where additional properties are defined.
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Figure B.6 displays different property types (string, integer, float, boolean, and enumeration) and how to define them. It also shows how
to set a default value and descriptions for the enumeration properties.
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Appendix C

This section of the Appendix shows a guide on how to create safety models and perform FTAs
with AltaRica 3.0.

2" AltaRicaWizard Editer
File Edit Project Tool Window Help

Mew File or Project P[] MewfFile Ctrl+N
Open File or Project » g New Project
[ SavefFile Ctrl+S
Sawve File As...
29 AltaRicaWizard ? e
Close File
New project
’, - —— ———————————— o . :
Project name: |
[ 5 . —_
! Ste:p 1 — Click on Nn:aw ! | re—
i Project’ and enter project I e e
I : . I
name and directory in the
I I
. : Cancel
s resulting window ; e
~ -

Figure C.1 - AltaRica 3.0 Starting a New Project
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2" AltaRicaWizard Editor
File Edit Project Tool Window Help

B DXxB

Projects g X

v ﬁ SimpleTest l
Mew Project

fa SimpleTest.alt
Open Project
Close “SimpleTest"

Add new file to "SimpleTest”
*  Add existing file to "SimpleTest"
| Set “SimpleTest" as current project

Step 2 — Add a file with the
extension of ‘.alt’ to the
project to code a safety

model

.
T ———

Figure C.2 - Adding ".alt' AltaRica file to the Existing Project

After the second step, displayed in Figure C.2, the user should code the safety model into the .alt’
file. Figure C.3 shows how to start the flattening process, which is the first step of all AltaRica
analysis tools. Flattening compiles the AltaRica model into a guarded transition system.
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Figure C.3 - Flattening Process of AltaRica 3.0

AltaRica safety models

Cancel

Browse...

Next

(R ———

mrpucl

can be utilized to assess different safety objectives or generate different

fault trees with several observers. Hence, the AltaRica language allows users to code a safety
model and compile it into fault trees rather than designing fault trees directly. The compilation
process is explained in Figure C.4.

This thesis uses the Arbre Analyst tool to visualize fault trees. Importing AltaRica safety models
into the Arbre Analyst tool is explained in Figure C.5.
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Appendix D

Appendix D shows parts of AltaRica safety model ‘.alt’ files, which present coding in AltaRica
syntax. Figures in this section of Appendix D show the flap system block of L0, L1, and L2 levels
in AltaRica safety models. The displayed blocks involve class names with initiated components
out of them. The blocks also contain observers for each level and assertions between components.

block FlapSystem
StartingPoint FlightCrew;
Lever FlapLever;
EPWER ElectricalPowerSource;
Control ControlSystem;
Actuation ActuationSystem;
Flaps LHSFlap, RHSFlap;
Sources AirDataComputer, MonitoringSystem;
Endings EICAS;
observer Boolean AnnunciatedLossOfFlapExtension = EICAS.output and (not LHSFlap.output or not
RHSFlap.output);
observer Boolean UnannunciatedLossOfFlapExtension = EICAS.s == FAILED and (not
LHSFlap.output or not RHSFlap.output);
observer Boolean AnyFlapDisconnection = LHSFlap.s == FAILED or RHSFlap.s == FAILED;
assertion
FlapLever.input := FlightCrew.output;
ControlSystem.inputl := FlapLever.output;
ControlSystem.input2 := ElectricalPowerSource.outputl;
ControlSystem.input3 := AirDataComputer.output;
ControlSystem.input4 := MonitoringSystem.output;
EICAS.input := ControlSystem.output2;
ActuationSystem.inputl := ControlSystem.outputl;
ActuationSystem.input2 := ElectricalPowerSource.output2;
LHSFlap.input := ActuationSystem.outputl;
RHSFlap.input := ActuationSystem.output2;
end

Figure D.1 - Flap System Block of L0 in AltaRica Safety Model
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block FlapSystem
StartingPoint FlightCrew;
Lever FlapLever;
PowerSource DCPowerSourcel, DCPowerSource2, mainBUS1, mainBUS2;
Control ControlUnitl, ControlUnit2;
Motors DCMotorl, DCMotor2;
Data AirDataComputerl, AirDataComputer2, PositionTransducer, FlapPositionSensor;
Endings EICAS;
Drivelines LeftWingDriveline, RightWingDriveline;
Gear SpeedSumGear;

Flaps LHSFlap, RHSFlap;

observer Boolean AnnunciatedLossOfFlapExtension = EICAS.output and (not LHSFlap.output or not

RHSFlap.output);

observer Boolean UnannunciatedLossOfFlapExtension = EICAS.s == FAILED and (not
LHSFlap.output or not RHSFlap.output);

observer Boolean AnyFlapDisconnection = LHSFlap.s == FAILED or RHSFlap.s == FAILED;

assertion

FlapLever.input := FlightCrew.output;

ControlUnit].inputl
ControlUnit].input2
ControlUnitl.input3
ControlUnit].input4
ControlUnitl1.input5
ControlUnit]1.input6
ControlUnit].input7
ControlUnit2.inputl
ControlUnit2.input2
ControlUnit2.input3
ControlUnit2.input4
ControlUnit2.input5
ControlUnit2.input6
ControlUnit2.input7

:= FlapLever.outputl;

:= DCPowerSourcel.outputl;
:= DCPowerSource2.outputl;
:= AirDataComputerl.outputl;
:= AirDataComputer2.outputl;
:= PositionTransducer.outputl;
:= FlapPositionSensor.outputl;
:= FlapLever.output2;

:= DCPowerSourcel.output2;
:= DCPowerSource2.output2;
:= AirDataComputer1.output2;
:= AirDataComputer2.output2;
:= PositionTransducer.output2;
:= FlapPositionSensor.output2;

EICAS.inputl := ControlUnitl.output2;
EICAS.input2 := ControlUnit2.output2;
DCMotorl.inputl := ControlUnit1.outputl;
DCMotorl.input2 := mainBUS1.outputl;
DCMotorl.input3 := mainBUS2.outputl;
DCMotor2.inputl := ControlUnit2.outputl;
DCMotor2.input2 := mainBUS1.output2;
DCMotor2.input3 := mainBUS2.output2;
SpeedSumGear.inputl := DCMotorl.output;
SpeedSumGear.input2 := DCMotor2.output;
LeftWingDriveline.input := SpeedSumGear.outputl;
RightWingDriveline.input := SpeedSumGear.output?2;
LHSFlap.input := LeftWingDriveline.output;
RHSFlap.input := RightWingDriveline.output;

Figure D.2 - Flap System Block of L1 in AltaRica Safety Model
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block FlapSystem

StartingPoint FlightCrew;

Lever FlapLever;

PowerSource DCPowerSourcel, DCPowerSource2, mainBUS1, mainBUS2;

Control ControlUnitl, ControlUnit2;

Motors DCMotorl, DCMotor2;

Data AirDataComputerl, AirDataComputer2;

Endings EICAS;

Gear SpeedSumGear;

PduExit BranchGear;

Actuators FlapActuatorl, FlapActuator2, FlapActuator3, FlapActuator4, FlapActuators5,
FlapActuator6, FlapActuator7, FlapActuators;

Flaps FlapPanel2, FlapPanel3, FlapPanel5, FlapPanel6;

InboardFlaps FlapPanell, FlapPanel4;

Drivelines TorqueTubel, TorqueTube2, TorqueTube3, TorqueTube4, TorqueTube5, TorqueTube6,
TorqueTube7, TorqueTube8, TorqueTube9, TorqueTubel0, TorqueTubel 1, TorqueTubel2, TorqueTubel3,
TorqueTubel4, TorqueTubels, TorqueTubel6, TorqueTubel7, TorqueTubel8, BevelGearl, BevelGear2,
BevelGear3, BevelGear4, BevelGear5, BevelGearo6;

Brakes WingTipBrakeL, WingTipBrakeR;

Sensors FlapPositionSensorl, FlapPositionSensor2, FlapPositionSensor3, FlapPositionSensor4,
FlapPositionSensor5, FlapPositionSensor6, FlapPositionSensor7, FlapPositionSensor8, PositionTransducerl,
PositionTransducer2;

observer Boolean AnnunciatedLossOfFlapExtension = EICAS.output and (not FlapPanell.output or
not FlapPanel2.output or not FlapPanel3.output or not FlapPanel4.output or not FlapPanel5.output or not
FlapPanel6.output);

observer Boolean UnannunciatedLossOfFlapExtension = EICAS.s == FAILED and (not
FlapPanell.output or not FlapPanel2.output or not FlapPanel3.output or not FlapPanel4.output or not
FlapPanel5.output or not FlapPanel6.output);

observer Boolean AnyFlapDisconnection = FlapPanell.s == FAILED or FlapPanel2.s == FAILED or
FlapPanel3.s == FAILED or FlapPanel4.s == FAILED or FlapPanel5.s == FAILED or FlapPanel6.s ==
FAILED;

assertion

FlapLever.input := FlightCrew.output;

Figure D.3 - Flap System Block of L2 in AltaRica Safety Model - Part [
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ControlUnitl1.inputl := FlapLever.outputl;
ControlUnitl.input2 := DCPowerSourcel.outputl;
ControlUnitl.input3 := DCPowerSource2.output1;
ControlUnitl.input4 := AirDataComputer].outputl;
ControlUnitl.input5 := AirDataComputer2.outputl;
ControlUnit1.input6 := PositionTransducer2.output;
ControlUnitl.input7 := FlapPositionSensor5.output;
ControlUnitl.input8 := FlapPositionSensor6.output;
ControlUnit1.input9 := FlapPositionSensor7.output;
ControlUnit1.input10 := FlapPositionSensor8.output;
ControlUnit2.inputl := FlapLever.output2;
ControlUnit2.input2 := DCPowerSourcel.output2;
ControlUnit2.input3 := DCPowerSource2.output2;
ControlUnit2.input4 := AirDataComputer]1.output2;
ControlUnit2.input5 := AirDataComputer2.output2;
ControlUnit2.input6 := PositionTransducer1.output;
ControlUnit2.input7 := FlapPositionSensor1.output;
ControlUnit2.input8 := FlapPositionSensor2.output;
ControlUnit2.input9 := FlapPositionSensor3.output;
ControlUnit2.input10 := FlapPositionSensor4.output;
EICAS.inputl := ControlUnitl.output2;
EICAS.input2 := ControlUnit2.output2;
DCMotorl.inputl := ControlUnit1.outputl;
DCMotorl.input2 := mainBUS1.outputl;
DCMotorl.input3 := mainBUS2.outputl;
DCMotor2.inputl := ControlUnit2.outputl;
DCMotor2.input2 := mainBUS1.output2;
DCMotor2.input3 := mainBUS2.output2;
SpeedSumGear.inputl := DCMotorl.output;
SpeedSumGear.input2 := DCMotor2.output;
BranchGear.input := SpeedSumGear.output;
TorqueTubel.input := BranchGear.outputl;
TorqueTubel0.input := BranchGear.output2;

// For Position Transducers
TorqueTube9.input := FlapActuator4.output3;
TorqueTubel8.input := FlapActuator8.output3;
PositionTransducerl.input := TorqueTube9.output;
PositionTransducer2.input := TorqueTube18.output;

// For Flap Position Sensors
FlapPositionSensor1.input := FlapActuatorl.output3;
FlapPositionSensor2.input := FlapActuator2.output3;
FlapPositionSensor3.input := FlapActuator3.output3;
FlapPositionSensor4.input := FlapActuator4.output2;
FlapPositionSensor5.input := FlapActuator5.output3;
FlapPositionSensor6.input := FlapActuator6.output3;
FlapPositionSensor7.input := FlapActuator7.output3;
FlapPositionSensor8.input := FlapActuator§.output2;

Figure D.4 - Flap System Block of L2 in AltaRica Safety Model - Part I1
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// Right hand side
BevelGearl.input := TorqueTubel.output;
TorqueTube2.input := BevelGearl.output;
TorqueTube3.input := TorqueTube2.output;
BevelGear2.input := TorqueTube3.output;
FlapActuator].input := BevelGear2.output;
TorqueTube4.input := FlapActuatorl.outputl;
FlapPanell.inputl := FlapActuator].output2;
FlapActuator2.input := TorqueTube4.output;
TorqueTube5.input := FlapActuator2.outputl;
FlapPanell.input2 := FlapActuator2.output2;
BevelGear3.input := TorqueTube5.output;
TorqueTube6.input := BevelGear3.output;
FlapActuator3.input := TorqueTube6.output;
TorqueTube7.input := FlapActuator3.outputl;
FlapPanel2.input := FlapActuator3.output2;
WingTipBrakeR.input := TorqueTube7.output;
TorqueTube8.input ;= WingTipBrakeR.output;
FlapActuator4.input := TorqueTubeS8.output;
FlapPanel3.input := FlapActuator4.outputl;

// Left hand side
BevelGear4.input := TorqueTubel0.output;
TorqueTubel 1.input := BevelGear4.output;
TorqueTubel2.input := TorqueTubel 1.output;
BevelGear5.input := TorqueTubel2.output;
FlapActuator5.input := BevelGear5.output;
TorqueTubel3.input := FlapActuator5.outputl;
FlapPanel4.inputl := FlapActuator5.output2;
FlapActuator6.input := TorqueTubel3.output;
TorqueTubel4.input := FlapActuator6.outputl;
FlapPanel4.input2 := FlapActuator6.output2;
BevelGear6.input := TorqueTubel4.output;
TorqueTubel5.input := BevelGear6.output;
FlapActuator7.input := TorqueTubel5.output;
TorqueTubel6.input := FlapActuator7.outputl;
FlapPanel5.input := FlapActuator7.output2;
WingTipBrakeL.input := TorqueTubel6.output;
TorqueTubel7.input := WingTipBrakeL.output;
FlapActuator8.input := TorqueTubel7.output;
FlapPanel6.input := FlapActuator8.outputl;

Figure D.5 - Flap System Block of L2 in AltaRica Safety Model - Part 111
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Appendix E

Appendix E presents the following figures that are visualized fault trees used for FTA in AltaRica.
Unannunciated loss of flap extension and flap panel disconnection failure scenarios are depicted
in the figures. Annunciated/Unannunciated loss of flap retraction cases resemble the same fault
tree structure as the extension cases. Therefore, they are not shown in this section.
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