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Abstract

Traditional Indicators of Compromise (IOCs) Meet Dynamic App-Device Interactions for
IoT-specific Threat Intelligence

Sofya Smolyakova

While enjoying widespread popularity, IoT faces numerous threats with both traditional (e.g.,

Common Vulnerabilities and Exposures (CVEs) and Common Weakness Enumerations (CWEs))

and IoT-specific (e.g., device-application interactions) attack vectors. Therefore, gathering threat

intelligence for an IoT environment is equally essential if not more (compared to many other IT en-

vironments). However, extracting threat intelligence from an IoT deployment poses several unique

challenges. First, most IoT implementations are not logging threat-related information and even if

they are, their logging mechanisms require significant additional effort to turn those logs to a threat

intelligence. Second, there is no clear definition of IOCs (indicators of compromise), which are the

key inputs to threat intelligence, in the context of IoT; including how to combine IoT-specific IOCs

including that are involved with the dynamic app-device interactions.

In this thesis, we propose IoTINT, a solution to obtain IoT-specific threat intelligence while

addressing the above-mentioned challenges. Specifically, our key ideas are to first enable logging

in IoT devices and apps without requiring any code instrumentation (in contrast to existing ap-

proaches), then iteratively finding dynamic interactions between IoT devices and their apps that

are defined by automation rules and result in various security threats, and finally, combine both

app-device interactions with traditional IOCs (such as, CVEs and CWEs) to build a comprehensive

threat intelligence for IoT. We implement IoTINT for Samsung SmartThings, a major smart home

platform, and evaluate its performance (e.g., 100% coverage in extracting threat intelligence within

11 seconds for 10 realistic IoT attack scenarios).
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Chapter 1

Introduction

This chapter briefly describes the context, motivations, problem statements, related publications

and contributions of this thesis.

1.1 Context

The usage of connected devices in smart environments (e.g., homes/offices, health facilities,

factories and cities) follows an upward trend [1], opening doors for significant security threats and

attacks in IoT, the number of which reached to 112 million in 2022 worldwide and keeps growing

[2], [3]. Smart environments are typically managed by IoT platforms, such as Samsung SmartThings

[4], AWS IoT Core [5], Google IoT Core [6], and openHAB [7]. These IoT platforms support the

interconnection of diverse IoT devices via automations and assist in deploying customized smart

applications that implement a wide range of user requirements. Thus, security attacks in IoT can

follow various attack vectors encompassing traditional methods like vulnerability exploitation and

IoT-specific approaches such as systems events and remote commands based on device-app interac-

tions [8]. Therefore, threat intelligence gathering is critical to keep fresh knowledge about emerging

attacks in IoT, define mitigating mechanisms and enhance security [9].

Existing research studies that gather IoT-specific threat intelligence (e.g., [10–14]) cover com-

promised IoT devices only from the network perspective, missing possible threats rooted in device-

app interactions. These works extensively collect network traffic from compromised IoT devices
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using diverse methodologies such as telescopes, honeypots, machine learning, and deep learning.

Subsequently, the collected traffic undergoes thorough analysis to extract various malware artifacts

and attack patterns specific to these IoT devices, constituting IoT-specific threat intelligence. In

addition, threat intelligence is usually produced from threat-related information or evidence, which

is not always available in IoT. Other works on IoT (e.g., [15–17]) focus on providing raw logs from

smart environments in an unstructured manner, and thus it is tedious to manually identify which log

entries are threat-related. Also, traditional Cyber Threat Intelligence (CTI) studies (e.g., [18–23])

also focus on the network aspect and are not fully helpful for the IoT domain due to the limitations

of IoT device’s resources and the complexity of the smart environment.

Therefore, the IoT-specific challenges to obtain threat intelligence is unaddressed. Specifically,

smart environments involve intricate interactions among IoT devices, applications, platforms, and

users, which the traditional CTI cannot describe. Hence, there is no definition for Indicator of

Compromise (IOCs), which are the major inputs to CTI, specific to the IoT context that could

describe smart environment behavior. Furthermore, obtaining IoT-specific threat intelligence from

the device-app interactions requires uncovering the artifacts that describe the smart environment

behavior and establishing the chronological connectivity among various pieces of attack evidence.

These limitations will be further illustrated in the following motivating example.

1.2 Motivating Example

Figure 1.1 shows our motivating example with a security problem (on the top), challenges to

generate threat intelligence for smart environments using existing solutions (below) and our ideas

to achieve the goal (on the bottom). Note that the scope of our work stays in the smart home while

the problem and solution can be extended to multiple organizations, as mentioned in the motivating

example.

1.2.1 Problem

In a given scenario in an organization (Org A), there are a Smart garage door, Smart lock,

Smart camera, and Smart app1 among others. While exploiting a vulnerability (CVE-2023-1748) in

2



the Smart garage door and another vulnerability (CVE-2023-41898) in the smart application,

Smart app1, an attacker unlocks the door without proper authorization and disables the exterior

camera to remain stealthy [16]. Due to the popularity and cost-effectiveness of those products,

other organizations (Org B and Org C) might use the same products and potentially face simi-

lar security and safety threats. Thus, while vulnerable IoT objects lead to small-scale threats such

as burglary and intrusion within individual organizations, they have the potential to contribute to

elevated crime rates in smart cities and, subsequently, impact the functionality of critical infrastruc-

tures. Therefore, it is essential to obtain intelligence about those emerging threats in Org A, B,

C, etc. As the threat intelligence lifecycle includes many stages (e.g. direction, collection, process-

ing, etc.), it is challenging to cover all these stages in one work. Thus, in this research, by IoT threat

intelligence, we imply a combination of pieces of evidence related to the security incident in an IoT

environment.

1.2.2 Current Challenges

The existing IoT threat intelligence solutions (e.g., [10–14]) focusing mainly on outbound traf-

fic of the smart environment network, and hence the device and application level threats (as de-

picted above) remain undetected. In addition, the employment of traditional CTI approaches (e.g.,

[18–23]) in the IoT domain faces a set of challenges which hinder gathering threat information as

follows.

• Challenge 1: The lack of readiness in IoT logs hinders their utilization in extracting IoT-specific

threat intelligence. The implication of such a challenge is that a large volume of unprocessed

entries requires considerable time and effort to identify incident-related records that could serve

as IOCs manually. Specifically, Figure 1.1 presents log samples of the Garage Controller app,

Smart garage door, and Smart camera that comprise such fields as timestamp, sent command,

device, status, etc., indicating the device’s status or the sent app command at a specific time.

Thus, by observing these logs, it is impossible to identify which entries might be attack evidence

and which device-app communications led to the incident. Furthermore, current methods are

insufficient for addressing this challenge because of the lack of proper logging solutions. While

some prior studies [15–17] propose using code instrumentation to capture the behavior of IoT

3
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Figure 1.1: Our motivating example demonstrates the necessity for IoT-specific threat intelligence
due to the broad spectrum of threats in diverse IoT environments. Traditional solutions face chal-
lenges, prompting the need for a new approach, as hinted in our proposed ideas.
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devices and applications, these approaches fall short due to smart apps running on third-party

servers, which makes their codes inaccessible.

• Challenge 2: The lack of definition for IOCs in the IoT domain brings up questions such as:

1) Considering that existing solutions rely on traditional IOCs for threat intelligence genera-

tion, which of these IOCs remain pertinent and effective for IoT threat intelligence?

2) Given the scarcity of IOCs that characterize interactions among devices, applications, plat-

forms, and users, what novel IoT-specific IOCs need to be introduced to provide insight into

the smart environment behavior?

3) How can traditional IOCs be combined with IoT-specific IOCs to provide holistic threat

intelligence for the IoT domain?

The implication of such a challenge is inaccurate detection of threats targeting IoT devices and

applications behavior. Furthermore, the absence of an IOC definition for the IoT domain can

lead to incomplete threat intelligence reports for security experts. Consequently, analyzing and

understanding threats become challenging, as well as the ability to define effective countermea-

sures and mitigation strategies. The existing approaches [24–29] are insufficient to address this

challenge mainly because they utilize traditional IOCs, as the source of the threat information is

outbound network traffic. However, these works only cover artifacts collected about attacks, such

as backdoors, DDos, injection, scanning, etc., and ignore the attacks emerging from device-app

interactions in the IoT environment.

1.2.3 Our Ideas

To overcome those challenges, we propose:

• Idea 1: Tackling Challenge 1, where we first establish logging capabilities without relying on

code instrumentation requirements. Additionally, we iteratively derive dynamic connectivity be-

tween devices and apps, transforming them into incident-related IOCs. The objective is to com-

prehend, for example, that the garage controller app initiated the garage door opening incident

in response to the unlocked event, and the same app deactivated the camera as a result of the

incident.

5



• Idea 2: To address Challenge 2, we formulate IoT threat intelligence. In this context, we de-

fine that traditional IOCs such as Common Vulnerabilities and Exposures (CVEs) [30], Common

Weakness Enumerations (CWEs) [31], and Common Attack Pattern Enumeration and Classifica-

tion (CAPECs) [32] offer valuable insights for threat intelligence in the IoT domain. Additionally,

we introduce novel IoT-specific IOCs, encompassing elements like device events, app commands,

app subscriptions, etc., to describe device-app behavior in the smart environment. Ultimately, we

combine IoT-specific and traditional IOCs to better understand threats.

1.3 Thesis Contributions

This thesis complements existing IoT threat intelligence solutions as we propose a practical

platform-centric approach for obtaining IoT-specific threat intelligence about threats implemented

based on device-app interactions within a smart environment. First, our work introduces new, tai-

lored, and specific to IoT IOCs. Second, we design our framework, namely, IoTINT, that enables

logging in a smart environment, derives dynamic connectivity between IoT devices and apps from

the logs, combines them with traditional IOCs (e.g., CVEs, CWEs) and generates various usable

reports (e.g., machine-readable, human-readable). Third, we demonstrate the practicality of our

approach to the different security contexts with two use cases. Finally, we evaluate our solution

through extensive experiments based on realistic smart home scenarios and simulated attacks, com-

prising multiple smart applications and IoT devices.

The main contributions of this work are as follows:

• As per our knowledge, we are the first to design a practical framework for an IoT environment that

obtains IoT-specific threat intelligence for various security incidents that allows threat intelligence

extraction from IoT logs by deriving chronological connectivity between devices and apps from

their interactions. Additionally, we combine derived IoT-specific IOCs with traditional IOCs to

provide more insights into a threat.

• Our proposed approach is complementary to the existing IoT threat intelligence works by in-

troducing new IoT-specific Indicators of Compromise (IOCs) that describe devices and apps’

behavior in a smart environment (in contrast to the network-level IOCs from those other works).
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• Using 10 different classes of real smart home attacks [16, 33–36], we show the ability of our tool

to generate critical threat intelligence related to an incident in IoT, including information about

both device and app vulnerabilities. In addition, we demonstrate the practicality of produced

threat intelligence reports in two complementary use cases: (i) incident response for known threats

and (ii) vulnerability assessment for unknown threats.

• We evaluate our solution’s effectiveness on a dataset consisting of logs about smart home behavior

generated using simulated IoT devices of SmartThings [37] (one of the most popular IoT plat-

forms) where IoTINT shows 100% coverage in generating threat intelligence for smart homes. In

addition, the efficiency and usability of IoTINT are evaluated. One of the results shows that the

extraction of all IOCs relevant to the incident, whose number varies from 3 to 403 takes less than

20 seconds and spends not more than 110 MB of memory.

• The result of this thesis work has been accepted for publication at IEEE Internet of Things (IoT)

Journal (with impact factor: 10.6).

1.4 Prior Publications

Journal Paper. Our work about obtaining IoT threat intelligence for various security incidents

in the IoT environment has been accepted for publication in the IEEE Internet of Things Journal.

S. Smolyakova, E. Khodayarseresht and S. Majumdar, ”Traditional IOCs Meet Dynamic

App-Device Interactions for IoT-Specific Threat Intelligence,” in IEEE Internet of Things

Journal, doi: 10.1109/JIOT.2024.3413351. keywords: Internet of Things;Security;Smart

homes;Faces;Cyber threat intelligence;Codes;Smart cameras;IoT security;threat intelli-

gence;indicator of compromises,

Authors Contribution. Sofya Smolyakova contributed to the introduction, motivation, approach,

methodology, implementation, experiments and case studies. Ehsan Khodayarseresh contributed

to the defining mapping rules and obtaining ground truth to evaluate the coverage of IoTINT in

gathering IOCs (i.e manual extraction of IOCs for attack scenarios A1-A10).
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1.5 Organization of the Thesis

The rest of the thesis is organized as follows: Chapter 2 provides the necessary background

knowledge to understand IoTINT and defines the threat model and its scopes. Chapter 3 describes

the methodology and working principles of IoTINT. Chapter 4 describes the implementation details

of IoTINT. Chapter 5 presents experimental results and performance evaluation of IoTINT. Chapter

6 presents the practicality of IoTINT through two case studies. Chapter 7 discusses various aspects

of our approach and demonstrates the applicability, concerns and limitations. Chapter 8 reviews the

existing works in the related domain, and compares them with our work. Chapter 9 concludes the

thesis with the potential future research directions.
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Chapter 2

Preliminaries

This section provides the necessary background, discusses existing challenges in IoT, and de-

fines our threat model.

2.1 Background

This section provides the necessary backgrounds on indicators of compromise (IOCs) and smart

home architecture.

2.1.1 Indicators of Compromise (IOCs)

The Indicator of Compromise (IOC) is a specific artifact, evidence or piece of forensic data that

indicates that a system has faced or is potentially facing an attack or malicious activity [38] and

is a crucial part of threat intelligence. Depending on the complexity and the level of detail in the

data presentation, there are three types of IOCs [39]: atomic, computed and behavioral. The atomic

IOCs are individual data fragments that point to an adversary activity and can not be broken into

smaller parts; e.g., IP addresses, domains, URLs, and email addresses. The computed indicators

are usually derived or calculated from the data involved in an incident; e.g., hash values of known

malicious files. The behavioral indicators combine atomic and computed IOCs, offering a more

comprehensive view of the various stages involved in an attack flow or malicious activity; e.g.,

MITRE tactics, techniques and procedures (TTPs) [40].
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2.1.2 Smart Home Architecture

IoT platforms allow users to efficiently manage IoT devices, including sensors and actuators,

by utilizing trigger-action rules (i.e., automation). SmartThings [37] is one of the most widely used

and ubiquitous IoT platforms, offering support for a diverse array of hub-based and cloud-based

IoT devices. Figure 2.1 shows how devices and apps interact in the SmartThings platform using an

example. In this scenario where the app should turn on the light because of the motion detection,

SmarThings
Devices

Third-party app

Smart
Light

Smart
Motion

Detector

Subscribtions:
"motion

detected" event

Light Controller
 App

State:
motion detected

Event:
motion detected

Command:
turn on the light

Command:
turn on the Light

SmartThings
Cloud

Event:
light is on

Event:
motion is
detected

1
2

3

45

6
7State:

light is on

Figure 2.1: Device-app interactions in SmartThings [41].

the following sequence of interactions ensues.

1) The motion detector sends its state to the platform when the motion is detected.

2) The platform then posts a motion detected event.

3) Given that the smart application has subscribed to the motion detected event and is pro-

grammed to react upon its receipt, the platform transmits the event, signalling the occurrence

of motion to the application.

4) After receiving the event, according to the app logic, it sends the command about turning the

light on to the platform.

5) Subsequently, the platform transfers this command to the smart light device.

6) Further, when the light is on, it sends its state to the platform.

7) Finally, the light is on event is posted on the platform.
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2.2 Challenges in Gathering Threat Intelligence from IoT Environ-

ments

Given that existing IoT threat intelligence and CTI solutions obtain traditional IOCs to pro-

duce threat reports, gathering threat intelligence within an IoT smart environment might face the

following challenges.

• IoT devices often directly communicate with cloud services or gateways. Consequently, first,

collecting the atomic traditional network-based IOCs, such as IP addresses, domains, URLs, etc.,

may be arduous or even infeasible. Second, the computed IOCs, which are typically derived

or calculated through complex algorithms like anomaly detection or behavioral signatures, pose

challenges for IoT devices due to their lightweight nature and limited processing power, storage,

and memory. As a result, implementing complex IOC detection mechanisms may lead to potential

performance issues or device failures. Lastly, the behavioral IOCs, which often present as stages

of an attack flow, cannot be identified as there are no atomic or computed IOCs available that

characterize the behavior of a smart environment. As a result, traditional IOCs mentioned above

are not solely enough for gathering threat information about incidents in a smart environment.

Table 2.1: Smart environment terminologies

IOC type Type Description

Device Event State Shows the IoT device changed state.

App Command Action Aims to change the status of devices or locations.

App Subscription Action Allows a smart app to subscribe for different events.

User Command Action
Aims to change the status of devices or locations

as directed by users.

Mode Event State
Shows a state change in a location mode

(e.g., away or vacation).

• Device-app communication procedures in the IoT environment can be explained using specific
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terminologies presented in Table 2.1. If we can identify which device-app interactions led to

the incident and occurred subsequently, these interactions become potential IOCs as they might

constitute evidence related to the incident. Therefore, new IOCs representing device events, app

commands, app subscriptions, etc., are associated with IoT-specific threats and offer deeper in-

sights into security incidents. However, their extraction is non-trivial due to the absence of a

direct mapping between device and app behavior in platform logs, and manual log analysis de-

mands significant concentration and time. Consequently, retrieving IoT-specific IOCs relevant to

the incident and identifying their chronological connectivity poses a significant challenge.

3 43 83 123 163 203 243 283 323 363 403
Total number of extracted IoCs
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IoT-specific IoCs
Traditional IoCs

Figure 2.2: Distribution between IoT-specific and traditional IOCs in the obtained threat intelligence
for various security incidents

• Furthermore, our preliminary study (as shown in Figure 2.2) identifies that most IoT security

incidents involve both traditional and IoT-specific IOCs. Specifically, the graph depicts the per-

centage distribution between IoT-specific and traditional IOCs in the generated threat intelligence

for various security incidents, with the total number of extracted IOCs ranging from 3 to 403, as

indicated on the X-axis. Overall, IoT-specific IOCs contribute to approximately 50% of the total

count when threat intelligence report size exceeds 150. In contrast, reports with fewer extracted

indicators contain around 20-30% of IoT-specific IOCs. These statistics underscore the substan-

tial role of IoT-specific IOCs in threat intelligence, highlighting that their exclusion may result in
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missing critical threat information.

We address these challenges in Chapter 3.

2.3 Classes of IOCs

Figure 2.3 demonstrates an example of incident-related threat intelligence in a graph format

showcasing newly introduced IOCs and their interconnections. Within this scenario, Smart apps 1

and 2 subscribed and received the undetected smoke event. This triggered Smart app 1 to unlock

the smart lock device. In contrast, Smart app 2 sent siren and strobe commands to the smart alarm.

Moreover, Smart app 3 received the smart alarm siren event, which resulted in the opened window,

which deviates from expected smart home behavior. App command IOCs highlighted with red color

Atomic IOC 2:
Siren CommandAtomic IOC 1:

Unlock Command

Behavioral IOC 2:
Precedent and

Subsequent Events
for Siren Command

Behavioral IOC 1:
Precedent and

Subsequent Events
for Unlock Command

Computed IOC: App-Device Interac�ons for Smart Home 1

Figure 2.3: IoT-specific IOCs classification.

in Figure 2.3 represent malicious activity, as in a normal scenario, when no smoke is detected,

the alarm devices should be in the off state. Thus, we classify individual nodes that point to an
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adversary activity as an atomic IOC. Specifically, in the example scenario, atomic IOC 1 is an unlock

command, while atomic IOC 2 is a siren command. Furthermore, behavioral IOCs usually combine

atomic and computed IOCs and define an attack pattern or various stages of malicious activity. Thus,

we classify atomic IOC, together with its preceding and subsequent events as a behavioral IOC as

it presents a smart home behavior pattern including nodes before and after the malicious activity.

Figure 2.3 illustrates two branches outlined with dashed lines representing the behavioral IOCs 1

and 2. Finally, we categorize the complete graph outlining device-app interactions pertaining to

a specific incident as a computed IOC. This IOC may encompass atomic and behavioral IOCs,

necessitating multiple steps for its generation, as elaborated in Section 3.3.

2.4 Threat Model and Assumptions

In the context of IoT environments, security breaches can occur through various means, such

as taking advantage of vulnerabilities within the IoT platform, smart applications, or the devices

themselves. This research primarily relies on data recorded by the IoT platform for the purpose

of threat intelligence generation. If certain platform logs are incomplete or not present, IoTINT

is not focused to detect them and hence it might lead to inaccurate/incomplete threat intelligence

generation. In this work, we consider, the main threats that lead to the security incidents inside the

smart environment are as follows [42].

i) Malformed/compromised smart apps: Third-party apps can be installed on the IoT platforms,

which can acquire unnecessary extra privileges during the installation time to perform unde-

sired actions. Note that installation of smart apps does not necessarily involve downloading

Android/iOS apps locally (e.g., accessible from a web browser). Instead, they run on third-

party servers and can subscribe to platform events, which allows them to gain control over

connected IoT devices.

ii) Vulnerable/malformed devices: We also include the threats from the devices with hardware

or firmware vulnerabilities that attackers might exploit.

For our experiments in this thesis, due to the availability of a particular dataset, we mainly consider
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the scenarios with the malformed/vulnerable smart apps.
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Chapter 3

Methodology

This chapter first gives an overview of how IoTINT works and then describes the major steps

with a set of running examples.

3.1 Approach Overview

Figure 3.1 illustrates a high-level overview of the IoTINT approach in four major steps. First,

to enable logging without code instrumentation (to overcome the limitations of existing works,

e.g., [17]) and use them for the purpose of obtaining threat intelligence, IoTINT collects raw data

from devices and apps through the platform, categorizes device/app-specific logs from raw data and

constructs the database of logs and mapping rules (detailed in Section 3.2). Second, to identify

interactions between devices and apps during the reported security incident, IoTINT initiates an

iterative connectivity session that utilizes the database of logs and the mapping rules to extract all

relevant IoT-specific IOCs, both preceding and subsequent to the incident (detailed in Section 3.3).

Third, to provide more comprehensive insight into understanding the incident, IoTINT combines

the IoT-related IOCs acquired in the earlier step with the traditional IOCs, including the CVEs,

CWEs, and CAPECs related to the incident (detailed in Section 3.4). Finally, to enable various use

cases, IoTINT produces threat intelligence reports in various formats (detailed in Section 3.5) and

then applies graph-based reports suitable for manual inspection for incident response, and machine-

readable reports for automated vulnerability assessment (Chapter 6).
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4. Producing Threat Intelligence Report

a) machine-readable for
automation 
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IoC4

IoC2 IoC2

...

... ...

 Product
name
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Traditional Unique to IoT

cwe2

{
    type: IoC1 
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    device/app name: 
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}

b) graph-based for manual inspection
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OutputUse Case 1:

Incident Reponse
for known threats 

Use Case 2:
Vulnerability

assessment for
unknown threats 

Machine-
readable 
Output

Other Use Cases
Output

Figure 3.1: An approach overview of IoTINT.

3.2 Enabling Logging and Defining Mapping Rules

This section discusses the logging of smart environment behavior by IoTINT along with defining

mapping rules by authors.

3.2.1 Enabling Logging

This step is to allow the logging of threat-related information, such as device-app interactions

and to prepare raw data to become a future threat intelligence. Specifically, as a first step, we en-

able logging to source raw data from the IoT platform, encompassing interactions among devices,

applications, and users without using code instrumentation. While code instrumentation could cap-

ture smart environment activities and their correlations (e.g., smart app activating light in response

to a motion event), we target to log just raw data of events recorded by the IoT platform and in-

teractions between third-party apps and the platform, as their connectivity is established in further

steps of the methodology. In order to collect data, IoT platforms must employ monitoring and

management solutions, such as Amazon CloudWatch, to capture and store JSON-formatted data for

published device events and the transferred data between the IoT platform and the connected smart
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apps for each user’s account. Within our implementation on the SmartThings platform, we establish

a proxy channel to gather data between the SmartThings cloud platform and the server hosting the

smart apps. This channel intercepts all network traffic between the components and monitors the

exchanged data. Additionally, to capture event logs from the platform, we establish a WebSocket

connection directly with the platform via the user account. Since the raw data is unstructured and

comprises various fields, it necessitates preparation for utilization by other modules within IoTINT.

Thus, as a second step, IoTINT classifies raw logs for each IoT device or smart app based on devi-

ceIds, appIds, eventSources and other attributes. Subsequently, we reduce the size of stored logs by

leveraging predefined lists of fields, as not all the log attributes might be needed to produce threat

intelligence. Lastly, preprocessed potential attack-related evidences are saved in the database.

3.2.2 Defining Mapping Rules

To define mapping rules that are for identifying evidence pertinent to a security incident, we

adopt a manual effort due to the variability of mapping specifics across different platforms. Thus,

we examined log samples from a specific automation scenario within a smart home environment to

define the mapping rules that construe the connectivity of app-device interactions in preceding and

subsequent directions. Note that this manual step of deriving mapping rules only recur if IoTINT is

ported to other IoT platforms (than the SmartThings platform, for instance).

Example 1. Figure 3.2 illustrates the enabling logging step for a smart home scenario, mirror-

ing our motivating example, in four major steps. In Step 1, as a result of data collection from

Smart light, Smart garage door, Smart camera, and Smart app1, the IoTINT re-

ceives the device and app events as raw inputs. In Step 2, leveraging key details highlighted in blue,

such as event source, device ID, and application ID, IoTINT classifies logs for cor-

responding devices and apps. In Step 3, IoTINT extracts the deviceID, eventID, value and

timestamp for the Smart light and appID, deviceID and command attributes for

the malformed Smart app1, as predefined by the device and app filters to transform logs into a

form of potential IOCs. In Step 4, we show mapping rules for a simple automation rule involving

Smart camera, Smart light, and Smart app1. In this scenario, when the camera detects

motion, the app receives this event and triggers a command to activate the light. We collect the
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logs after the automation is executed and manually inspect each type of log, such as device event

about motion being detected by Smart camera, app subscription about Smart app1 receiving

the event, app command about Smart app1 sending a command to turn on the Smart light,

and device event about Smart light being turned on, to define the rules that connect these logs

chronologically. Specifically, for subsequent direction, we define how to map the device event

to the app subscription, the app subscription to an app command, and the app

command to the device event. Consequently, following the opposite chronological order, we

define the mapping rules for a preceding direction that connects the device event to the app

command or user command, the app command to the app subscription and the app

subscription to the device event.

3.3 Deriving Dynamic Connectivity between IoT-specific IOCs

This step is to derive IoT-specific IOCs related to the incident and establish their connectivity

to offer insights into the smart environment’s behavior. This step addresses the challenge of labo-

rious manual extraction of incident-related artifacts due to many concurrent irrelevant events that

appeared at the time of the incident as well as the dynamic nature of those relevant connectivities

that are mainly defined by the automation rules.

First, we receive the incident description (e.g., garage door was opened at night) as input from

the user or the security expert and aim to pinpoint the log record in the database that closely aligns

with the observed scenario. Thus, the found log record becomes the first IOC related to an incident

and a starting point to find other related IOCs. Further, IoTINT proceeds to retrieve all IoT-specific

IOCs connected to this input IOC in both preceding and subsequent directions. For this step, IoTINT

utilizes the mapping rules (e.g., described below as Rules 1 and 4) and the database of logs that

are identified in the previous step. To provide further elaboration, the preceding direction aims to

identify all pertinent IOCs that occurred chronologically before an identified initial IOC. Conversely,

the subsequent direction seeks to unearth all pertinent IOCs that transpired chronologically after the

initial IOC.

Upon examining the architecture and behavior of the platform, we noted a consistent sequence
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of IOCs appearance in a smart environment: user command → device event → app subscription →

app command → device event → repeat. This sequence serves as a subsequent direction for IOCs

search. Conversely, a reversed sequence of IOCs would be followed if IoTINT is searching for

IOCs in a preceding direction. These sequences are shown in Figure 3.3. Specifically, Figure 3.3a

illustrates the flow chart that IoTINT follows while conducting a preceding direction search. In this

process, the starting IOC is a device event provided as input, which may result from either user

command or app command according to the observed sequence. Thus, by leveraging the initial

IOC data to populate Rule 1, IoTINT constructs and executes a query to the database, retrieving a

new IOC relevant to the incident. Subsequently, if the new IOC was found, IoTINT analogously

uses Rule 2 to identify the relevant app subscription IOC and Rule 3 to identify the device event

IOC. Note that if no IOC is found, IoTINT stops the search, indicating that no more relevant to

the incident IOCs in this direction exist. Similarly, Figure 3.3b presents the flow chart followed by

IoTINT while conducting a subsequent direction search. IoTINT utilizes Rule 4 to retrieve the app

subscription IOC that happened chronologically after the device event IOC. Analogously, Rule 5

and Rule 6 are used to find relevant app command and device event IOCs.

Start

no

yes

user
command/

app command
 exist?

device event user command/
app command app subscription

End

Rule 1 Rule 2 Rule 3
yes

app
 subscription

exist?

yes

device
event
exist?

no End no End

(a) Flow chart of preceding direction

Start

no

yesdevice event app subscription app command

End

Rule 4 Rule 5 Rule 6
yes

app
 command

exist?

yes

device
event
exist?

no End no End

app
 subscription

exist?

(b) Flow chart of subsequent direction

Figure 3.3: Flow charts that IoTINT follows while deriving connectivity between IoT-specific IOCs

In the following, we show how IoTINT represents mapping rules to be used for this step. Due to

the space constraint, we only show two out of six rules. Specifically, Rule 1 corresponds to the rule

that describes the mapping between device event IOC and app command or user command IOC.

Rule 4 corresponds to the rule that maps the app subscription IOC to the device event IOC.

Within Rule 1, the variable IOC1 represents the device event, the variable IOC2 represents app
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command or user command IOCs and IOCi represents a log entry from the log collection, IOCs.

IOC1 = IOC2 ⇐⇒ IOC1{deviceId} = IOC2{deviceId} ∧

(IOC1{value} ⊇ IOC2{command} ∨

IOC1{attribute} = IOC2{command}) ∧

|IOC1{timestamp} − IOC2{timestamp}| ≤ 500ms,

IOCi ∈ Logs

(1)

According to this rule, the IOC2 can be mapped to the IOC1 if their deviceId field values are

identical. Simultaneously, the IOC2 command field should be a subset of the IOC1 value field or

the IOC2 command field should match the IOC1 attribute field. In addition to the above con-

ditions, these IOCs’ timestamp fields must differ by 500 milliseconds or less. According to the

rule, the IoTINT constructs a query utilizing the IOC1 data. Specifically, given the IOCs are clas-

sified into the database tables according to their type, the query should target to search IOC2 in the

app command table, which consists of app command IOCs or the user command table,

consisting of user command IOCs (e.g., SELECT * FROM user command table...). In

addition, IOC2 has to fulfill the conditions described by Rule 1, meaning that the specific col-

umn values in a database table should correspond to the IOC1 field values as specified in the rule.

Thus, the remaining query is structured as follows: “WHERE deviceID=IOC1{deviceID} and

(command = IOC1{value} or ...”. Consequently, query execution on the database of logs

leads to the retrieval of the pertinent IOC in a preceding direction (e.g., user command). Sub-

sequently, with newly acquired IOC IoTINT follows the steps from Figure 3.3a until no further

relevant IOCs are discovered in the preceding direction. Following this, the IoTINT moves on the

subsequent direction search, commencing from the same IOC utilized in the previous phase. As the

starting IOC relates to a device event and we are looking for the following IOC, IoTINT utilizes

Rule 4 that describes the connectivity between the device event IOC and app subscription IOC, ac-

cording to Figure 3.3b. Here, IOC1, IOC3 represent the device event and app subscription IOCs,

respectively and IOCi represents a log entry from the log collection, IOCs. The rule defines that

these IOCs can be mapped if they occur within a specific period of time (e.g., 500ms) and other
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attributes mentioned in the rule are the same

IOC1 = IOC3 ⇐⇒ IOC1{deviceId} = IOC3{deviceId} ∧

IOC1{attribute} = IOC3{attribute} ∧

IOC1{value} = IOC3{value} ∧

IOC1{eventType} = IOC3{eventType} ∧

|IOC1{timestamp} − IOC3{timestamp}| ≤ 500ms,

IOCi ∈ IOCs

(4)

Consequently, IoTINT populates the rule with the IOC data fields to build a query. Execution of

the query retrieves the newly relevant IOC in the subsequent direction, and the mapping process is

being continued. In essence, the IoTINT undertakes a comprehensive IOC extraction procedure by

iteratively pursuing both backward and forward directions until all pertinent IOCs associated with

the user’s input have been revealed. The rest of the mapping rules (Rules 2,3,5,6) that IoTINT uses

to derive IoT-specific IOCs are present in Appendix A.2 to preserve the better readability of the

thesis.

Example 2. First, IoTINT receives the event log most pertinent to the incident, which becomes

an IOC 1. Within this example, this log records the garage door opened device event that happened

at night (2023-09-22T22:03:47), serving as input to IoTINT. Consequently, IoTINT initiates

a search for the relevant IOCs in the preceding and subsequent direction, following the flow charts

from Figure 3.3. Figure 3.4 illustrates an example of deriving dynamic connectivity between IoT-

specific IOCs in subsequent direction leveraging the sequence depicted in Figure 3.3b. Initially,

IoTINT retrieves all attributes associated with IOC 1, such as Device ID, Attribute, Value,

etc., to facilitate further query construction. Then, utilizing Rule 4, which defines the linkage be-

tween device event IOCs and app subscription IOCs and incorporating the data from the garage door

opened IOC, IoTINT constructs Query 1. This query aims to identify any app subscription IOC in

the database which device id = "d61a3c14-..." AND attribute = "door" AND

value = "opened" AND eventType = "device event" AND

timestamp ≤ 2022-09-22T22:03:47.947Z+500ms. IoTINT ceases the search in this

direction if no matching IOC is found. Continuing with the example, IoTINT identifies a new app

subscription IOC 2, along with its associated attributes, as the search progresses. Then, following
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the subsequent flow chart, IoTINT generates Query 2 based on Rule 5 and the attributes of IOC

2, such as authentication token and row number. Execution of Query 2 against the

log database retrieves new app command IOCs. Specifically, IOC 3 represents a command to turn

off the smart camera, while IOC 4 directs the smart exterior light to turn on. Consequently, follow-

ing Rule 6, IoTINT constructs Query 3 and Query 4 from the data associated with IOC 3 and

IOC 4, respectively. Upon executing these queries, IoTINT retrieves two new device event IOCs,

indicating the status of the smart camera and smart exterior light as being off and on, respectively.

Thus, these are all new IOCs that can be extracted for subsequent direction within this example. The

complete result of IoT-specific IOCs extraction for our motivating example is shown in Section 3.5.

3.4 Combining with Traditional Threat Intelligence IOCs

Those newer IOCs from the app-device dynamic connectivity (obtained in the previous step)

need additional insights with the help of traditional IOCs (e.g., CVEs, CWEs, and CAPECs) to gain

more detailed threat intelligence (as explained in Section 2.2). To that end, while finding corre-

sponding CVEs, CWEs, and CAPECs for an IoT product (devices and apps), we utilize Common

Platform Enumeration (CPE) [43] representations (as it includes both product details and their CVE

numbers). However, in this process, we face the following challenges.

3.4.1 Challenges

CPE is a standardized naming format (e.g., cpe:2.3:a: eaton:halo home:1.11.4:*:*:*:*:android:

:*) that comprises fields like vendor, product name, version, update, etc. to help differentiate var-

ious products. Initially, we attempted to map product names with their corresponding CPEs using

the CPE API’s keyword search functionality provided by the NVD. This approach retrieves all CPE

entries in which all the provided keywords are present in their metadata title or reference links.

However, this method often fails to yield results due to keyword discrepancies and the absence

of specific keywords in the actual CPE metadata. For example, the API call with the Fibaro

motion sensor fgms-001 product name does not find any related CPEs only because the
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keywords motion and sensor are not present in the relevant CPE metadata, and the users are not

aware of these details while setting the names for their devices or apps.

3.4.2 Solution

To address this issue, we adopt an Natural language processing (NLP)-based approach as fol-

lows. First, by leveraging a pre-trained transformer model [44], IoTINT computes the embedding of

all existing CPEs and stores them in a database. Next, upon receiving the product name, it calculates

the embedding using the same model and further the similarity scores between the product name

and all existing CPEs and shortlists the CPEs with the highest similarity scores. Then a security

analyst manually chooses the most relevant CPE(s), as the number of CPEs varies, and IoTINT can-

not recognize the case when none of the CPEs in the shortlist are associated with a product name.

After we map traditional IOCs to the product’s CPEs, we obtain all CVEs associated with each CPE

through a CPE API call to the CVE NVD database. Furthermore, the content of each CVE includes

CWE IDs, specifying the weaknesses potentially leading to a particular vulnerability. Addition-

ally, CWE content encompasses Related Attack Patterns, indicated by CAPEC IDs. These attack

patterns serve as valuable insights for security analysts, aiding in understanding how adversaries

exploit weaknesses. Consequently, IoTINT retrieves CVEs, CWEs, and CAPECs associated with

the product names and structures into a hierarchical tree based on their interconnections, facilitating

the expansion of the information about a threat. Finally, it combines the obtained traditional IOCs

with the IoT-specific IOCs to construct a report of incident-related threat intelligence.

Example 3. Figure 3.5 outlines the steps involved in combining IoT-specific IOCs with traditional

IOCs, following our example scenario. In Step 1, IoTINT extracts unique product names (marked

in blue) from earlier retrieved IoT-specific IOCs related to the garage door being opened (GetNexx

garage door opener NXG-100B, Home assistant app, Cellinx Camera, and

Noooie Aurora Light Bulb). In Step 2, for the GetNexx garage door opener

NXG-100B, the keyword-based API call gave no results, leading to the utilization of the NLP-

based approach. Thus, the pre-trained transformer model calculates the embedding of this door

opener and IoTINT calculates individual similarity scores between the door opener name and all

CPEs. Then, the list of N CPEs exhibiting the highest similarity scores with the product name is
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GetNexx NXG-100B
      cpe:2.3:h:getnexx::nxg-100b: -:*:*:*:*:*
               CVE-2023-1748
                   CWE-798
                   CAPEC-191,
                   CAPEC-70
   

IoC: user command, Command: open, Device: Garage Door, Timestamp: ...
     IoC: device event, Device: Garage Door, Product name: GetNexx NXG-100B, Value: opened, Timestamp: ...
           IoC: app subscribtion, Product name: Home assistant android, Subsc.value: opened, Timestamp: ...
                 IoC: app command, Product name: Wink android, Device: Camera, Command: off, Timestamp: ...
                       IoC: device event, Device: Camera, Product name: Cellinx Camera, Value: off, Timestamp: ...
                 IoC: app command, Product name: Wink android, Device: Exterior Light, Command: on, Timestamp: ...
                       IoC: device event, Device: Exterior Light, Product name: Noooie Aurora Light Bulb, Value: on, Timestamp: ...
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 [0.23, -0.32, 0.42, ...]
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[-0.76, 0.02, ...]
2. cpe:2.3:a:apache...:
[0.23, -0.35, ...]

        ...Database of
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0.85-cpe:2.3:h:getne..
0.73-cpe:2.3:h:nexxt..
0.72-cpe:2.3:h:nexxu..
0.71-cpe:2.3:o:nexxu..

Figure 3.5: An example of combining IoT-specific IOCs related to the garage door open
incident with the traditional threat intelligence IOCs
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shown to the security expert, facilitating the manual selection of the most appropriate CPE(s). As

a result, CPE entry: cpe:2.3:h:getnexx:nxg-100b:-:*:*:*:*:* was selected as the

representation of this device. In Step 3, IoTINT searches for the vulnerabilities, weaknesses and at-

tack patterns that are related to the identified CPE. Specifically, IoTINT obtained CVE-2023-1748,

associated with the CPE, through the CVE API call to the NVD database. Within the content of

this CVE, IoTINT identified CWE-798, a weakness potentially leading to the CVE-2023-1748

vulnerability. Furthermore, the CWE content highlighted CAPEC-191 and CAPEC-70, which are

pertinent attack patterns. A procedure similar to the one above for fetching traditional IOCs is repli-

cated for all other product names pertinent to this incident. As a result of Step 4, the traditional IOCs

are identified for the garage door device and the smart application responsible for controlling the

smart camera and exterior light devices. Each retrieved CVE, CWE, and CAPEC IDs are structured

into a tree based on their relationships, as illustrated in Figure 3.5.

3.5 Producing Threat Intelligence Report

The final step of IoTINT focuses on generating threat intelligence reports in two distinct for-

mats: machine-readable and human-readable (i.e., graphical). The snippet of the machine-readable

report is included in Appendix A.1. Among the array of machine-readable formats available, we

select STIX as the most optimal solution for storing and sharing threat intelligence [45]. To rep-

resent the threat intelligence report in the STIX format, we use two types of objects: indicator,

which represents IoT-specific or traditional IOCs and relationship, which specifies the connectiv-

ity (edges) between indicator objects. The machine-readable format of the report can be utilized

for an automated incident response when a previously observed threat is encountered and response

procedures are already defined. In contrast, the human-readable format visually represents derived

artifacts related to the incident, facilitating security professionals in a more efficient and compre-

hensive analysis. Use cases demonstrating the further utilization of these formats are detailed in

Chapter 6 through case studies.

Example 4. Figure 3.6 presents the threat intelligence report in a human-readable format about

the garage door open incident from our motivation example. In this graphical representation,
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GetNexx NXG-100B
User command IoC

Command: open
Device:  Smart Garage Door

TimeStamp: 2023-09-29T00:40:53.884Z

Device event IoC
Device:  Smart Garage Door

Value: opened
Product Name: GetNexx NXG-100B

TimeStamp: 2022-09-29T00:40:54.084Z

App subscribtion IoC
App:  Malicious smart app

Subscription. Value: opened
Product Name: Home assistant android
TimeStamp: 2022-09-29T00:40:54.284Z

App command IoC
Command: on

Device: Smart Exterior Light
Product Name: Home assistant android
TimeStamp: 2022-09-29T00:40:54.484Z

App command IoC
Command: off

Device:  Smart Camera
Product Name: Home assistant android
TimeStamp: 2022-09-29T00:40:54.484Z

Device event IoC
Device:  Smart Camera

Value: off
Product Name: Cellinx Camera

TimeStamp: 2022-09-29T00:40:54.884Z

Device event IoC
Device:  Smart Exterior Light

Value: on
Product Name: Noooie Aurora Light Bulb
TimeStamp: 2022-09-29T00:40:54.884Z

cpe:2.3:h:getnexx:
:nxg-100b:-:*:*:*:*:*:*:*

CVE-2023-1748

Home assistant
android

cpe:2.3:a:home-assistant:
home_assistant_companion:

*:*:*:*:*:android:*:*

CWE-798

CAPEC-191

CVE-2023-41898

CWE-345

CAPEC-111

CAPEC-141

CAPEC-148

CAPEC-218

CAPEC-70

...

CWE-94

CAPEC-35 CAPEC-77

...

...

Figure 3.6: An example of a threat intelligence report in a visual graph representation for the
garage door open incident

the rectangular box with a red border shows the initial log selected by the security analyst as the

one most closely aligned with the observed incident, which becomes the starting IOC - specifically,

the device event IOC, indicating that the garage door was opened. Furthermore, other rectangular

boxes denote incident-related IoT-specific IOCs, while the oval-shaped boxes represent traditional

IOCs, encompassing vulnerabilities, weaknesses, and attack pattern IDs. The middle part of the

graph depicts that the garage door was opened because of the user command. Subsequently, the

commands to turn off the camera and turn on the exterior light were issued from the smart app

Home assistant android. This sequence of events raises suspicions from security analyst

about the smart app’s maliciousness, particularly as the camera should always be in on state for

security reasons. Moreover, the vulnerabilities found in the smart app strengthen the security an-

alyst’s concerns regarding its potential maliciousness. However, a critical question remains: How

was the garage door opened if no authorized smart home users initiated the action? The oval part

of the graph reveals that the garage door device GetNexx NXG-100B has vulnerabilities, and
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consequently, they might be exploited to send the garage door opening command. To validate this

hypothesis, security professionals must check the content of the relevant vulnerabilities. Notably,

within this example, the comprehensive report itself is classified as a computed IOC, aligning with

the taxonomy outlined in Section 2.3. Identified atomic IOCs encompass the device event IOC in-

dicating the door being open and the smart app command IOC for disabling the camera, both of

which are potentially indicative of malicious actions. Lastly, the branch extending from the top to

the bottom left of the IoT-specific graph nodes is designated as a behavioral IOC, encapsulating

smart home behavior intricately linked to the attack.
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Chapter 4

Implementations

This section describes the system architecture of IoTINT and implementation details of some

modules.

We implement IoTINT on the Samsung SmartThings platform due to its support for a wide

range of IoT devices and open-source smart applications [33], along with extensive documentation

for developers [46] as follows.

4.1 System Architecture

The high-level architecture of IoTINT is presented in Figure 4.1. IoTINT consists of three

components: IoTINT Dashboard, IoTINT Engine and Data Sources, which is an input.

The IoTINT Dashboard allows interaction with IoTINT users and produces threat intelligence

reports. It contains two sub-modules, namely Interface and Report Generator. The Interface module

allows IoTINT users to select the log record from the database that closely aligns with the observed

scenario and choose in which format they want the report to be generated. While, the Report Gener-

ator module is responsible for producing threat intelligence reports in graph and machine-readable

formats (implementation details in Section 4.4).

The Data Sources consist of simulated IoT devices, IoT platform and smart apps running on

third-party servers. We collect the communications (e.g., events, commands) between these entities

in the form of raw data and transport it to the IoTINT Engine as an input. Further elaboration on
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data collection implementation from Data Sources is provided below in Section 4.2.

The IoTINT Engine serves as the central module within our solution, comprising four distinct

sub-modules. The Data Processor is a module that takes raw data from the IoT platform as input,

classifies logs for each device or app, applies predefined filters to transform logs into a form of po-

tential IOCs (described in Section 3.2) and stores the essential logs inside an SQLite database. The

IoT-specific IOCs Extractor module utilizes the database of logs and mapping rules implemented

in the form of SQL-based queries to derive IoT-specific IOCs related to the incident and establish

their connectivity (discussed in Section 3.3). This module is implemented in Python language using

datetime, calendar and sqlite3 libraries with the aid of SmartThings Documentation [4]. In addi-
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Figure 4.1: A high-level architecture of IoTINT.

tion, the Traditional IOCs Collector module is responsible for finding corresponding CVEs, CWEs

and CAPECs for IoT products (devices, apps) related to the incident (discussed in Section 3.4). A

detailed explanation of the implementation of Traditional IOCs Collector is provided in Section 4.3

below. Finally, gathered IoT-specific and traditional IOCs related to the incident feed the Integra-

tion module, which combines the IOCs and produces final threat intelligence information about

the security incident. This information then transported to the IoTINT Dashboard for the report

generation.
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4.2 Data Collection

In our setup, we establish a proxy channel to facilitate data collection between the SmartThings

cloud platform and the server hosting the smart apps. This channel is responsible for intercepting

all network traffic exchanged between these components and monitoring the data flow. To create

this channel, we employ a web debugging proxy tool known as Fiddler Classic [47], which func-

tions as both a forward and reverse proxy. To monitor the data flow between the smart apps and

the SmartThings cloud platform comprehensively, we deploy a forward proxy to track commands

and API calls initiated by the smart apps. Simultaneously, we utilize a reverse proxy to monitor

webhook requests originating from the IoT platform. Our monitoring extended to network traf-

fic over the application layer, specifically HTTPS, and for this, we use our server certificates with

Fiddler to decrypt the traffic. In addition to this, to capture event logs from the IoT platform, we

establish a WebSocket connection with the platform via the SmartThings Groovy IDE account [48].

Subsequently, we employ Fiddler Classic to monitor, gather, and decrypt all WebSocket data trans-

mitted from the platform to our server. Following the data collection phase, IoTINT undergoes raw

application and device logs pre-processing by categorizing and extracting specific fields from each

log entry. Subsequently, various log types are stored in an SQLite database, enabling their further

extraction as IOCs.

4.3 Traditional IOC Extraction

To derive traditional IOCs, we leverage accessible CPE Dictionary, CVE NVD, CWE, and

CAPEC data sources. Our approach involves employing the CPE API with the keywordSearch

parameter [49] to identify CPEs associated with product names. Furthermore, we utilize the CVE

API’s cpeName parameter [50] to find the relevant CVEs linked to each identified CPE. The other

relationships between traditional IOCs are extracted from their content.

To implement the proposed alternative solution for mapping product names with CPEs discussed

in Section 3.4, we utilize the jinaai/jina-embeddings-v2-base-en [51] pre-trained transformer model

to generate embeddings for all existing CPE strings in the dictionary. The resulting database file

containing CPEs and their embedding occupies 18 GB. Consequently, the data extraction takes 12
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minutes while calculating cosine similarities between the product name and CPEs to identify the

most relevant matches required an additional three minutes. This considerable time overhead for

each product name → CPE mapping presents a significant optimization challenge that needs to be

addressed.

To address the aforementioned challenge, we turn to the Facebook AI Similarity Search (FAISS)

library [52], leveraging its capabilities for efficient similarity searches. FAISS operates by construct-

ing an index, a RAM-based data structure, from a collection of vectors xi in a specified dimension,

d. Once this structure is established, given a new vector x in dimension d, it efficiently performs the

operation:

j = argmini||x− xi|| (5)

where ||.|| represents the Euclidean distance (L2). Thus, FAISS operates by returning the k nearest

neighbours—essentially, the most pertinent CPEs relevant to the given product name. After imple-

menting this optimization technique, the index data structure size decreased notably to 6.72 GB,

substantially reducing the time required to read the .index file to 7.5 seconds. Moreover, the

extraction of k nearest neighbours is achieved in less than a second. As a result of these improve-

ments, we keep this optimization strategy, as it significantly alleviates both storage constraints and

processing time without compromising accuracy.

4.4 Report Generation

When IoTINT retrieves all the IoT-specific and traditional IOCs and their connectivity, we uti-

lize anytree Python library [53] to store the gathered threat intelligence in a tree data structure

format. Subsequently, IoTINT produces reports in visual and machine-readable formats. To visu-

ally represent IoT threat intelligence for a specific incident, we employ the graphviz Python library

to create a graph. In addition, to generate a machine-readable report in STIX format, we leverage

the cti-python-stix2 library.

34



Chapter 5

Performance Evaluation

This chapter presents the experimental setup and our evaluation results to measure IoTINT’s per-

formance (in terms of accuracy, overhead, and feasibility) along with the validation of the obtained

distribution of different IOC types during our experiments with the similar results from existing

works [17, 54].

5.1 Experimental Setup

This section describes the IoTINT experimental setup and two types of datasets that we used to

evaluate the performance of IoTINT.

5.1.1 Testbed Configuration

We deploy IoTINT on a desktop machine on Windows 10 Enterprise OS equipped with an Intel

Core i7-10700 2.90 GHz processor and 32 GB of RAM. The implementation of IoTINT in Python

leverages Graphviz [55], Node.js [56], FAISS [57] libraries and jinaai/jina-embeddings-v2-base-en

[44] pre-trained transformers model. SQLite is used as a database, and real accumulated data is

utilized in the threat intelligence generation process. To mimic the behavior of actual IoT devices in

a smart home, we employ SmartThings IDE [48] that facilitates the simulation of device actuators

and sensors as similar to prior studies [16, 17, 58, 59]. Note that all devices used in this work were

simulated. We also install ten distinct smart applications, each offering various functionalities, and
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simulate malicious scenarios within our setup.

5.1.2 Dataset Description

In this work, we evaluate the performance of IoTINT using two types of datasets: a normal

behavior dataset and an attack dataset.

The normal behavior dataset represents everyday normal interactions between smart home de-

vices, apps, the IoT platform, and users. The purpose of this dataset is to assess the overhead (e.g.,

runtime, storage, and memory) on a relatively large volume of data. This dataset encompasses 50

IoT devices and sensors, totalling approximately 20 MB logs and containing over 3,400 events. To

replicate a smart home environment, we employ simulated IoT devices, which are originally free

from vulnerabilities or misconfiguration. Thus, to enable the extraction of traditional IOCs, we

assign real product names to each device, with an emphasis on including a majority of vulnerable

devices to enhance realism. Consequently, out of the 50 IoT devices in the typical dataset, 36 are

labelled with the names of vulnerable products, while the remaining 14 IoT device names do not

indicate any vulnerabilities. Furthermore, these devices and sensors are managed by four smart apps

with varying automation logic, to which we also assigned actual names of vulnerable apps. While

developing these smart apps with the Node.js language, we leverage the logic of 181 open-source

SmartThings apps [37].

In contrast, the attack dataset incorporates both malicious behaviors and regular activities for

10 different attacks. The purpose of this dataset is to evaluate the capability of IoTINT to generate

threat intelligence about a particular security incident. In contrast with the normal dataset, each

attack dataset is smaller, featuring fewer than 23 IoT devices and sensors, with a size of less than 4

MB and containing around 400 events. We develop 10 smart apps capable of carrying out the attacks

documented in recent attack papers [16, 33–36] and also assign real names of vulnerable smart apps

to them. Each of these applications performs the specified attack concurrently with the regular smart

home behavior, resulting in ten distinct attack datasets, which are summarized in Table 5.1.
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Table 5.1: Description of the attack datasets

Attack Datasets Incident

Number

of Incident

Occurrences

Average

Size of

Reports

A1: System Events [16]
Camera footage is black as

exterior light was turned off
7 90

A2: Undesired Unlocking [34]
The door was unlocked during

the night without any reason
3 46

A3: Side Channel [16]

Burglary. Neighbours noticed

that the light was strobing

for 1 min in the evening

6 142

A4: PinCode Injection [33]
The lock PINcode was changed

without the user’s knowledge
4 17

A5: Adware Notification [16]

Notification with suspicious

advertisement to download

malicious app

5 22

A6: App Update [16]

The lock device got uncharged

but user didn’t receive

any notification.

3 6

A7: Remote Command [16]

Users accidentally found out

about the fire in the kitchen.

The fire alarm didn’t work.

6 44

A8: Remote Control [16, 35]
The alarms are launching

siren without any reason
4 50

A9: Spoof Mode Event [33, 36]

The location mode is

randomly changed

during the day

7 320

A10: Spoof Mode Event and

System Events [33, 35]

Locks are unexpectedly

unlocking during the day

without user awareness

8 11

37



5.2 Evaluation Objectives

This section describes research questions whose answer is used to evaluate the performance of

IoTINT in various aspects. The research questions (RQX) are as follows:

• RQ1: Does the distribution of various types of IoT-specific and traditional IOCs in the threat

intelligence reports align with the trends from existing works?

• RQ2: What is the accuracy of IoTINT in the following scenarios: identifying IOCs, compar-

ing with the ML-based approach and mapping CPEs to product names?

• RQ3: What is the performance overhead (in terms of time, storage and memory) of IoTINT

in generating IoT-specific threat intelligence?

• RQ4: How feasible is human intervention required by IoTINT (i.e., mapping CPEs to the

products from Section 3.4)?

5.3 Validation with Existing Works

In Figure 5.1, we provide the distribution of different types of IOCs within both IoT-specific

and traditional categories. The graphs show the quantity of various IOC types relative to the overall

number of IOCs in the threat intelligence reports produced by IoTINT from the typical dataset. We

share these findings not only to contribute to our own research but also to offer insights for future

works in this domain. Researchers in the field can leverage the distribution of various IOC types

to customize their threat intelligence solutions in IoT. The results are further validated with state-

of-the-art works. Here, by “validation” we mean confirming that the observed distribution trends in

IOC types are correlating with the existing works.

5.3.1 IoT-specific IOC Validation

Figure 5.1a illustrates that the most prevalent IoT-specific IOC types are application command

and device event, with slightly less popularity attributed to application subscription IOCs. On the

other hand, the least common IOC types, each appearing either once or not at all in the output, are
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Figure 5.1: Distribution of various IOCs

user command and mode event IOCs. To validate such distribution of IoT-specific IOCs, we com-

pare the outputs of a state-of-the-art work, ProvThings [17], with the IoTINT outputs. To make a

comparison, we extracted all five reported use cases by ProvThings and derived the only device/app

behavior nodes from their graphs as they additionally detect smart app function calls. Consequently,

we analyze the quantity of nodes describing smart environment behavior (e.g., app command, de-

vice event) produced by ProvThings in comparison to the number of various IOCs extracted by

IoTINT. The validation results are presented in Table 5.2. The blue-coloured numbers denote the

number of nodes extracted from ProvThings graphs, while the green-coloured numbers represent

the IoTINT IOCs from similar use cases. Note that the numbers in the table indicate the numbers

of similar IOC types that are extracted by both of these works. As a result, in most use cases, both

solutions exhibit equal trends. However, there are instances where IoTINT extracts more IOCs,

such as in UC5. While this could potentially be considered a false positive, it is noteworthy that

ProvThings provides only preceding information to the input incident. Thus, if the open command

for the window is considered an incident, the tool will show that it happened because of the detected

smoke event. In contrast, IoTINT also reveals the smart home activity following the initiated com-

mand, such as an opened window event. In summary, our results align with the trends observed in

ProvThings regarding the prevalence of IoT-specific IOCs.
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Table 5.2: Validating IoT-specific IOCs extraction with ProvThings work [17]. Blue-coloured num-
bers denote the number of nodes of extracted from ProvThings graphs, while the green-coloured
numbers represent the IoTINT IOCs from similar use cases

Incident
(Use Cases)

Number of IOCs of a particular type
App

command
Device
event

App
subscription

Mode
event

User
command

Kitchen light was turned on
by Apple HomeKit app (UC1)

1 1 2 2 1 1 0 0 0 0

Unintended unlock door
event for a front door (UC2)

2 2 2 2 1 2 1 1 0 0

PIN code leakage (UC3) 3 3 6 6 2 2 0 0 0 0
Fake smoke event (UC4) 4 4 4 4 1 1 0 0 0 0

Window opened by
SmokeMonitor (UC5)

1 1 1 2 1 1 0 0 0 0

5.3.2 Traditional IOC Validation

Figure 5.1b shows that CAPEC IOCs constitute the largest share of traditional IOC types, with

individual reports containing as many as 150 CAPEC IOCs. Conversely, the number of CVE and

CWE IOCs in the report exhibits a lower but more consistent trend, with counts reaching up to 38.

In comparison, the report typically contains a maximum of 18 extracted CPE IOCs, particularly in

those with a significant number of nodes.

Table 5.3: Validating traditional IOCs extraction with BRON’s graph work [54]. The cells provide
an average number of IOCs of one type (e.g., CVEs) connected to one IOC of another type (e.g.,
CPE).

CPE → CVE CVE → CWE CWE → CAPEC

BRON [54] 1-2 0-1 8

IoTINT 1-2 1 4

To verify the distribution of traditional IOCs, we reference the work by Hemberg et al. [54],

which produces the BRON’s graph. Specifically, this work links MITRE TTPs, CWEs, CVEs,

CPEs, and CAPECs, presenting all entities and relationships as a graph. To compare traditional
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IOCs produced by IoTINT with the BRON’s graph, we calculate the average number of IOCs con-

nected to one IOC type (e.g., CPE, CVE) directionally, from CPE to CAPEC. The comparison

results are outlined in Table 5.3. The column CPE→CVE displays the average number of vulnera-

bilities relevant to one CPE. The column CVE→CWE illustrates the average number of weaknesses

associated with one CVE. Finally, the column CWE→CAPECs presents the average number of

CAPECs connected to one weakness. In addition, some results are depicted as a range (e.g., from 0

to 1) since the number of connected IOCs cannot be fractional. The table indicates that the amount

of CPEs, CVEs and CWEs should be similar, varying a maximum of two times, while the number

of CAPECs exceeds several times. Note that the number of connected CAPECs to a single CWE

differs between BRON’s graph and IoTINT due to our utilization of a limited number of devices

and apps, resulting in a slightly less accurate result. In summary, our findings corroborate the trends

observed in BRON’s graph regarding the prevalence of traditional IOCs.

5.4 Accuracy

In this section, we provide the results of experiments on the coverage and accuracy of IoTINT,

along with ML-based approach comparison.

5.4.1 Coverage of IoTINT in Identifying IOCs

The experimental results of IoTINT coverage in identifying IOCs are present in Table 5.4. To

evaluate the ability of IoTINT to produce accurate threat intelligence, the authors of this research

collaborated to establish ground truth for 10 distinct attack scenarios. First, they independently

examined each attack implementation, and one of them covered a coding part. Another person

was tasked with manually constructing reports illustrating IOCs and their interconnections based on

data collected from the IoT platform. Finally, the coder and report constructor met to validate the

accuracy of the outputs generated by IoTINT using the manually constructed reports of IOCs. We

evaluate IOC coverage by measuring the percentage of all nodes and edges in the IoTINT report in

comparison with the ground truth (similarly, as other related works, e.g., [17]). The ground truth is

divided into two parts: nodes representing IoT-specific IOCs and traditional IOCs.
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Table 5.4: Coverage of IoTINT approach in comparison with LSTM approach in IoT-specific IOCs
identification. Traditional IOCs coverage by IoTINT.

Attack
Datasets

Ground Truth IoT-specific IOCs

Traditional
IOCsIoT-specific

IOCs
Traditional

IOCs
IoTINT

Approach

LSTM-based
approach

Attack-specific
Training

Accumulated
Training

A1 40 1 40 (100%) 28 (70%) 5 (12.5%) 1 (100%)
A2 29 9 29 (100%) 10 (34.5%) 7 (24.1%) 9 (100%)
A3 141 1 141 (100%) 113 (80.1%) 54 (38.3%) 1 (100%)
A4 8 9 8 (100%) 6 (75%) 4 (50%) 9 (100%)
A5 6 9 6 (100%) 4 (66.7%) 3 (50%) 9 (100%)
A6 4 1 4 (100%) 3 (75%) 2 (50%) 1 (100%)
A7 3 0 3 (100%) 3 (100%) 2 (66.7%) 0 (100%)
A8 394 9 394 (100%) 157 (39.8%) 62 (15.7%) 9 (100%)
A9 35 42 35 (100%) 22 (62.9%) 11 (31.4%) 42 (100%)

A10 24 1 24 (100%) 11 (45.8%) 3 (12.5%) 1 (100%)

Table 5.4 shows the IOC coverage of our work based on different attack classes. The “IoTINT

Approach” under the “IoT-specific IOCs” header and “Traditional IOCs” columns reflect the number

of IOCs in the reports generated by IoTINT for various incidents and coverage percentage. When

the number of traditional IOCs equals zero, it indicates the absence of vulnerable devices or apps

relevant to the incident. The comprehensive ground truth metrics demonstrated that the IoTINT

consistently recovered 100% of the relevant IOCs related to each incident. This robust performance

underscores the effectiveness of the tool in accurately identifying and extracting IOCs in diverse

attack scenarios we have implemented for this work.

5.4.2 Comparison with ML-based Approach

In addition to these experiments, we compare the IoTINT rule-based approach with an ML-

based approach where an LSTM model is utilized in identifying incident-related IoT-specific IoCs.

We use LSTM for this experiment, as it can capture long-term sequential dependencies that is what

we need for our context in smart home. Smart home behavior consists of command and event

sequences that trigger smart applications and change device states. In future work, we plan to

explore other sequence-based approaches (e.g., Transformer). To conduct these experiments, we
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first converted the logs from ten attack datasets and the normal behaviour dataset into a “word”

format. For instance, the device event log about the smart light being in an off state was converted

to de sl1 off word, where de specifies the log type (e.g., device event, app command, app

subscription, etc.), sl1 depicts the smart IoT device (e.g., smart camera, smart lock, etc.) and

off represents the device state. Analogously, the word ac sa5 lock slo2 describes the app

command (ac ) log about smart app 5 (sa5 ) sending a lock command to the smart lock (slo2).

Similarly, other log types were converted into corresponding word formats. Subsequently, we sorted

all words in each dataset based on their timestamps to generate sequences of smart home activities.

Then, we trained individual LSTM models for each attack dataset (A1-A10). Additionally, we

conducted accumulated LSTM training on the data that included the normal behavior logs sequence

along with the sequences from the ten attack datasets. To compare the coverage of the IoTINT

approach with the LSTM approach, we input a word representing the incident-related IOC (specific

to each attack) into the model and request it to predict the next N words. From the predicted words,

we count only those that match the IOCs detected as incident-related by the IoTINT.

Table 5.4 illustrates the outcomes of the experiments conducted using the LSTM-based ap-

proach. The “Attack-specific training” column under the “LSTM-based approach” header de-

picts the number of incident-related IoT-specific IOCs correctly predicted by the models separately

trained on each attack dataset and the percentage according to the IOCs detected by IoTINT. In con-

trast, the “Accumulated training” column presents the number and percentage of incident-related

IoT-specific IOCs correctly predicted by the model trained on the accumulated data, including nor-

mal behavior and attack dataset logs according to the IoTINT. Overall, the LSTM-based approach

shows lower coverage compared to the IoTINT. Specifically, the coverage achieved through attack-

specific training varies from 34.5% to 75%, with one instance reaching 100%, while the accumu-

lated training coverage drops to a range of 12.5% - 66.7%. Such statistics can be explained by

considering the density of attack behaviors. The model trained on a specific attack dataset can

capture more attack-related evidence, while the model trained on the accumulated data is over-

whelmed with the variety of different automation, hindering its ability to learn dependencies related

to attack-specific IOCs. In summary, the LSTM-based approach shows lower coverage than the

IoTINT rule-based approach in extracting related to the incident IOCs. Furthermore, the LSTM
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model struggles to learn complicated dependencies to predict parallel sequences (e.g., a tree for-

mat). Thus, the experiments underscore the significance and necessity of the IoTINT rule-based

approach.

5.4.3 Measuring the Accuracy of Mapping CPEs to Products

Table 5.5 illustrates the accuracy of IoTINT in identifying CPEs representing specific product

names using our approach in Section 3.4. To evaluate the accuracy of this approach, we conduct ex-

periments on 19 real IoT products with varying threshold values from 0.01 to 0.034 with step 0.002

and calculate F1 scores. For each product name, we manually define the ground truth by checking

each CPE option and the product it represents from the Internet. In evaluating the threshold, we aim

to minimize FP and FN to mitigate the costs associated with additional or missing incident-related

data. While including irrelevant CPEs is considered non-critical, the omission of CPEs representing

the product name is deemed crucial, as it potentially results in the loss of vital information about

devices or applications and incomplete threat intelligence. The F1 score is selected as the evaluation

metric for its balanced consideration of both FPs and FNs, in contrast to accuracy metrics that treat

the identification of one extra CPE and the loss of one CPE equivalently.

Table 5.5 presents the F1 scores corresponding to 13 threshold values ranging from 0.01 to

0.034 for 19 device names, where F1 scores reaching 1.00 are highlighted in green. Additionally,

the device name rows for which F1 scores never reach 1.00 are highlighted in yellow, indicating that

the threshold approach fails to map these device names with CPEs accurately. Unfortunately, no

single threshold universally ensures the highest accuracy for all device names due to their variation

and different amounts of relevant CPEs. However, we highlight the threshold 0.016 column with a

darker green colour as it achieves 100% accuracy for the majority of devices (13). Hence, within

these experiments, 0.016 emerges as the threshold that provides the most accurate results among

these 19 device names.
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Table 5.5: The F1 score values with different threshold values for 19 IoT products.

Threshold 0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028 0.03 0.032 0.034
Agshome smart alarm 0.67 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Atomtech smart
life android app

1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Cellinx IP camera 0.50 0.50 0.50 0.50 0.50 1.00 1.00 1.00 0.75 0.75 0.75 0.75 0.75
Eaton halo home app 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Fibaro Motion Sensor

FGMS-001
0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Glue Smart door Lock 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 1.00 0.57 0.57 0.57
Ismartgate garage

door opener
0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.57 0.57 0.57 0.57 0.57

Magic Home Pro app 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.33 0.33 0.33 0.33 0.33 0.33
Meross garage door opener

MSG100
0.80 0.80 0.80 1.00 1.00 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75

Mi xiaomi LED Desk Lamp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.57
Nightowl smart doorbell 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

OpenHAB 2.5.11 app 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33
Sengled e1e-g7f

Light switch
0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33

Syska Smart Bulb 0.67 0.67 0.67 0.67 0.67 0.67 0.67 1.00 1.00 1.00 1.00 1.00 1.00
TaoLight Smart light Bulb 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Vivint SkyControl panel 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

WAFU Smart Lock 0.67 0.67 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Wemo Insight Smart Plug 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Wemo switch 28b 1.00 1.00 1.00 1.00 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57

5.4.4 Statistics for IOC Classes in the Attack Datasets

Figure 5.2 illustrates the number of IOCs detected across attack datasets A1-A10, categorized

into classes, such as atomic, computed, and behavioral. As previously discussed, we defined atomic

IoT-specific IOCs as single graph nodes that present malicious activity. Behavioral IOC is one or

more branches of the graph that includes the atomic IOC and preceding and subsequent IOCs to

the incident. Lastly, computed IOC constitutes a full threat intelligence report produced by IoTINT

about the incident. These statistics were collected only from the incident reports, the quantity of

which varies depending on the nature of the attack, and are presented in Table 5.1.

Thus, the number of computed IOCs for each attack equals the number of processed incident

occurrences by IoTINT and stays in the range from three to eight. The number of behavioral IOCs

ranges from one to eight, while the count of atomic IOCs may vary from modest numbers under 10

to higher figures like 45 or 70. Such fluctuations are tightly related to the specifics of each attack
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Figure 5.2: Number of different IOC types detected while generating threat intelligence for the
attack datasets

scenario. For instance, while some attacks may involve only a single malicious command, others

may feature a multitude of malicious commands executed by a compromised application, such as

altering the brightness of a light to convey a message via strobe patterns.

5.5 Performance Overhead

In this section, we present the results of experiments on measuring the performance overhead of

IoTINT, such as time, storage and memory overhead.

5.5.1 Time Overhead

For this experiment, we consider that each device event in a typical dataset with more than 3400

events is potentially a security incident, and we intend to generate threat intelligence for each of

these incidents. IoTINT requires around four hours to complete the threat generation for 3,400 inci-

dents. While this may seem lengthy, it’s important to note that in practical situations, the percentage

of incidents amongst all observed events is much less, as we took the most extreme case. For in-

stance, if incidents constitute only 1% of all events in a typical dataset, IoTINT would be required

to generate threat intelligence for 34 incidents, which will take around 2.5 minutes.
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Figure 5.3: Time overhead of IoTINT in threat intelligence generation

Figure 5.3a illustrates the time required for extracting IOCs for the reports consisting of 3 to

403 IOCs. The figure demonstrates that IoT-specific IOCs can be extracted more quickly than

traditional IOCs. Specifically, the extraction time for IoT-specific IOCs varies from 1 to 6 seconds,

while traditional IOCs take from 3 to 13 seconds, depending on the report size. Overall, the total

time to generate threat intelligence for a single smart home incident ranges from 3 to 18 seconds.

In Figure 5.3b, we provide a breakdown of the time IoTINT requires to produce attack-related

threat intelligence for ten different attack datasets labelled as A1-A10. Each attack dataset contains

an observed incident, whose description and a number of occurrences are provided in Table 5.1. To

ensure comprehensive threat intelligence generation for each attack, IoTINT must generate reports

for every instance of an incident within a dataset.

In addition, security professionals may be interested in understanding only the cause of the

incident, meaning attack evidence that appeared before the incident. Alternatively, they might be

concerned with only the consequences of the attack, meaning the attack-related behavior happened

after the incident. Thus, Figure 5.3b displays the time IoTINT takes to produce the preceding and

subsequent to the incident threat intelligence with yellow and green colours, respectively. The

blue bar illustrates the overall time spent producing complete threat intelligence for attack datasets

ranging from A1 to A10. Note that for certain attack datasets, IoTINT exclusively generated either

preceding or subsequent threat intelligence, indicating the absence of attack evidence in the opposite
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Figure 5.4: Resource overhead of IoTINT in threat intelligence generation

direction. Additionally, the time spent to produce preceding, subsequent and full threat intelligence

varies from 2 to 32 seconds, 2 to 26 seconds and 3 to 37 seconds, respectively. Notably, the summary

of time spent to produce preceding and subsequent threat intelligence does not equal the time of full

threat intelligence due to the separate extraction of traditional IOCs, which requires more time, as

depicted in Figure 5.3a. Attack datasets A1, A3, and A9 show longer processing times for extracting

threat information compared to other datasets due to the larger report sizes detailed in Table 5.1.

Specifically, for the datasets A1, A3, and A9, IoTINT generated reports with an average of 90-142,

and 320 recovered nodes, while other datasets’ report sizes are smaller.

5.5.2 Storage Overhead

Figure 5.4a provides an overview of the storage cost incurred by IoTINT’s report based on the

number of processed incidents. When the tool generates a machine-readable report as a .txt file, it

consumes approximately 120 MB of storage for 3,400 incidents. On the other hand, the graph report

presented as a .pdf file requires 260 MB of storage for the same number of incidents. Combining

both report types, namely the machine-readable and visual formats, results in a total storage usage

of 360 MB for 3,400 incidents.
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5.5.3 Memory Overhead

Figure 5.4b illustrates the typical runtime memory consumption of IoTINT depending on the

produced report size. The memory overhead of IoTINT is displayed for incidents with varying

final report sizes. Notably, our tool demonstrates memory efficiency, utilizing less than 105 MiB of

memory for various reports consisting of 3 to 403 nodes. Specifically, the algorithms that separately

extract only IoT-specific IOCs, traditional IOCs or both use a very similar amount of memory,

maintaining a consistent memory footprint.

5.6 Feasibility of Manual Efforts Required by IoTINT

To assess the practicality of the manual effort needed for our approach in Section 3.4, a study

is conducted involving nine participants comprising Master’s and PhD students from diverse cy-

bersecurity research backgrounds within our lab. The study involves four sets of questions, each

containing 20 questions. Each question presents a unique product name (e.g., Cellinx IP camera)

and requires participants to select the most relevant CPEs corresponding to that product. In addition,

we assume that the product name consists of a vendor (e.g., Cellinx), name (e.g., IP camera), and

any additional information such as version, update, edition, etc. Moreover, each question presents

five CPE options and a None of them choice, indicating that none of the given CPEs might match the

product name. We manually establish ground truth by individually verifying and cross-referencing

each CPE option against online sources to ensure its alignment with the represented product. In

addition, before completing the tasks, participants receive brief instruction on CPE functionality

and structure due to their limited prior knowledge in this domain. Note that all questions vary from

each other by the unique product name, and accordingly, the CPE options that are provided by the

NLP approach are different from question to question.

Figure 5.5 illustrates the results of this feasibility study. For each question in a set, we measure

the correctness of the answer and the time spent, from the moment the participant saw the question

for the first time to the switching to the next question. The green line depicts the first attempt,

where participants encountered unfamiliar questions. Mistakes were made in half of the questions,

and completion times ranged between 25 to 50 seconds per question. The purple line reflects the
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Figure 5.5: Average time and accuracy achieved by the participants across four attempts in mapping
the CPEs to product names while the tasks are varied among those attempts

second attempt, indicating reduced completion times (15-30 seconds) as participants became more

acquainted with the question patterns. However, the average accuracy remained at 10 out of 20

questions with errors. After the second attempt, we trained participants to identify relevant CPEs

correctly and pointed out details to pay attention to. Following training on CPE identification, the

blue graphs represent the third attempt, showing substantial accuracy improvement with errors in

only two questions. Participants also became more efficient, spending 10 to 20 seconds per ques-

tion. Finally, in the fourth set of questions, we used the product names from previous threshold

experiments and correct CPE options were highlighted based on a threshold of 0.016. Additionally,

participants were advised about the limitations of threshold results, emphasizing that they should

rely on them only to a certain extent. Thus, the orange graphs show that accuracy remained con-

sistent with the third attempt, and completion time decreased to around 10 seconds. As a result,

participants noted that the highlighted options aided them in identifying correct answers efficiently.

Further, students rated the task complexity at an average of 2 on a 1 to 5 scale. Totally the accuracy

in completing such tasks is expected to be higher, but we are showing extreme cases where par-

ticipants are not familiar with the topic. Overall, iterative training significantly improved accuracy

and reduced effort, demonstrating the feasibility of mapping CPEs to product names for security

professionals.
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Chapter 6

Case Studies

This chapter presents the usability of IoTINT through two case studies.

Our proposed solution might be useful for various contexts, including vulnerability assessment,

incident response and mitigation, security risk management, etc. To illustrate its practicality, we

present two case studies involving distinct smart home scenarios and their corresponding incidents.

6.1 Case Study 1

In this scenario, the smart home was robbed while the homeowners were on vacation. During

the video check from camera footage, security experts discovered that the backyard smart camera

had been switched off. Consequently, they reported the incident about the camera’s unexpected

power-off state to our tool. Our solution generated output in the STIX format, a snippet of which

is shown in Figure 6.1. This output includes IoT-specific IOCs detailing the smart home’s behavior

and traditional IOCs that outline known vulnerabilities, weaknesses and attack patterns of the IoT

products. According to information provided by our solution, the homeowners had set the house

to vacation mode after leaving. Notably, the “blink for home” smart app received this event and

maliciously powered down the smart camera precisely 15 minutes after the users left. Our solution

also pinpointed a vulnerability in this smart app, identified as CVE-2018-20161.

Given the wealth of threat intelligence platforms and feeds containing previously observed threat

information and response procedures, it is prudent to check if a similar scenario has already been
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documented. Our solution facilitates this process by providing output in STIX, the most used threat

intelligence feed format. In this particular case study, such suspicious smart home behavior has

Threat A

{"id": "indicator-5",
 "name": "Device Event Indicator",
“device": "Smart Camera",
“value": “off",
“timestamp": "2022-09-29T00:55:54.084Z",
 ...}

{..., 
"name": “App Subscribtion Indicator",
“product_name": "blink for home", ...}

{..., "name": "Device Event Indicator",
“device": "Smart Camera",
“value": “off",
“timestamp": "2022-09-29T00:55:54.084Z", ...}

"cpe:2.3:a:blinkforhome:sync_module:
*2.10.4:*:*:*:*:*:*"

"CVE-2018-20161"

Delay 15 mins between receiving
an event and sending a command

...
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Output of our tool in STIX format for incident:
 backyard smart camera was turned off

{"id": "indicator-3", 
"name": “App Subscribtion Indicator",
"subscribed value": "vacation"
“product_name": "blink for home"
“timestamp": "2022-09-29T00:40:54.284Z",
 ...}

{"id": "indicator-4", 
"name": “App
Command
Indicator", ...}

...

match

match

match

match

match

1) manually turn on the cameras
2) stop using the malicious app "Blink for Home"

{"id":"cpe:2.3:a:blinkforhome:
sync_module:*2.10.4:*:*:*:*:*:*",}

{"id": "vulnerability-1",
  "name": "CVE-2018-20161",
  "description": "...allows attackers
to disable cameras...", ...}

Delay 15
mins 

Figure 6.1: Incident response for known threats

been observed repeatedly as a Threat A in the figure. Specifically, the malicious command to turn

off the camera always occurs 15 minutes after switching the home to vacation mode. Furthermore,

the app “blink for home” responsible for this command is identified as misconfigured because of

the exploited vulnerability. Thus, if all the indicators extracted by our tool match the documented

indicators about threat A, we assume that this is a known attack. It is important to note that or-

ganizations have the flexibility to establish their own criteria for matching the STIX output of our

tool with previously observed attack data. For instance, they may employ a similarity score with a

specific threshold to determine which threats are considered matches. Considering Threat A, it has

associated Response Procedures A, including 1) manually turn on the cameras, 2) stop using the

misconfigured app “blink for home” they serve as a fixing option. Thus, these response procedures

are sent to the homeowner as soon as the threat match is found to assist with getting the smart en-

vironment back into the secured state. Thus, this scenario exemplifies the real-world application of

our solution in the context of incident response and mitigation.
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6.2 Case Study 2

In the second scenario, a smart home user sets a PIN for the smart lock to “4356.” However,

s/he encounters an issue when attempting to access the house because the smart lock device gives

an error due to the incorrect PIN. Such an incident prevents the owner from accessing the house and

gives the potential access to the attackers. The initial suspicion is that the PIN may have been mali-

ciously altered. Consequently, a security expert reports the incident of the PIN being changed to an

unexpected value to our tool. Similar to the previous scenario, our tool generates an output in STIX

format, providing information on relevant smart home events tied to the incident, along with poten-

tially involved device/app vulnerabilities. Subsequently, a check is conducted to determine whether

a similar attack scenario has been documented in the available threat intelligence platforms/feeds.

In this use case, no matching threat records are found, indicating the possibility of a new threat that

requires manual investigation by the security expert. Our tool offers a visual graph representation

of the IoT-specific and traditional IOCs related to the incident to support the security professional.

CVE-2019-12944
Description:
Glue Smart Lock 2.7.8
devices do not properly
block guest access in
certain situations where
the network connection
is unavailable.
Base Score: 7.5
High, ...

Output of our tool in STIX format for incident: smart lock pincode was changed

No match found
Output of our tool in a graph format for incident: smart

lock pincode was changed

Analysis

User command IoC
Command: setPinCode 4356

Device:  Smart Lock
TimeStamp: 2023-09-29T00:40:53.884Z

Device event IoC
Device:  Smart Lock

Value: 4356
Product Name: Glue smart lock

TimeStamp: 2022-09-29T00:40:54.084Z

App subscribtion IoC
App:  Smart app

Subscription. Value: 4356
Product Name: "Eaton halo home"

TimeStamp: 2022-09-29T00:40:54.284Z

App command IoC
Command: setPinCode 2222

Device:  Smart Lock
Product Name: "Eaton halo home"

TimeStamp: 2022-09-29T00:40:54.484Z

Device event IoC
Device:  Smart Lock

Value: 2222
Product Name: Glue smart lock

TimeStamp: 2022-09-29T00:40:54.884Z

Glue smart lock

cpe:2.3:h:gluehome:
glue_smart_lock:

-:*:*:*:*:*:*:*

CVE-2019-12944

1. Stop using the malicious app
2. Firmware/Software Update, (firmware

2.7.8 to the newer version, Glue smart
lock)

3. Configuration Review = block-guest
access for smart lock

Possible patches, mitigation
recomendations, updates

The smart lock's PinCode can
be changed only if the old

PinCode is correctly confirmed

a.   Smart app Eaton halo home is 
      malicious as it unexpectedly     
      changed the PinCode value
b.  By exploiting vulnerability of     
     Glue smart lock attackers         
     learned the old PinCode value

a

b

Conclusions

{CVE-2018-20161, ...}

{cpe:2.3:h:gluehome:glue_smart_lock:-
:*:*:*:*:*:*:*}

...

Threat evidences

Threat B
... Response Procedures B...

Threat A Response Procedures A

Known threats and relevant response procedures

New Threat New Response
Procedures

Security
expert

3

1

2

4

5.1 5.2

{..., "name": "Device Event Indicator",
"value": "2222",
"product_name": Glue smart lock, ...}

Figure 6.2: Vulnerability assessment for unknown threats

Figure 6.2 illustrates the graph, showing that after the user initially sets the PIN to “4356,” the
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smart app subscribed to this event subsequently sends a “setPinCode” command with a value of

“2222”. Note that the security expert is aware that to define a new PIN, the attackers must correctly

insert the value of the old one. Thus, analyzing the part of the graph with the traditional indicators,

the specialist learns that the Glue smart lock device is vulnerable through guest access, indicated by

the grey oval.

In the outcome of the graph inspection, the security professional concludes that (a): smart

app Eaton Halo Home is misconfigured as it unexpectedly changed the PinCode value and (b):

the attackers learned the old PinCode value by exploiting the vulnerability of the Glue smart lock

device. Using this detailed knowledge about the attack, the security expert can now define the

crucial evidence that identifies the presence of the attack and add it to the observed threats database.

Likewise, s/he produces and publishes possible patches, mitigation recommendations or updates as

response procedures for this attack. Consequently, the second scenario underscores our solution’s

practicality in the Vulnerability Assessment context. Overall, by introducing these use cases, we

illustrate the applicability of our solution across various contexts. Moreover, we underscore the

value of graphical representations and machine-readable formats as essential outputs for further

dealing with security threats in IoT environments.
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Chapter 7

Discussion

This chapter discusses some of IoTINTs’ considerations.

Applicability of IoTINT to Other IoT ecosystems. IoTINT needs some adaptation to work in

practice with other IoT platforms, such as openHAB, Home Assistant, and AWS IoT Core. IoTINT

operates on the uniform database of potential attack-related evidence using the mapping rules to

identify connectivity between IOCs. Furthermore, IoTINT utilizes predefined device and app filters

to transform raw logs into potential IOCs. Thus, IOC mapping rules and predefined filters are

specific to each platform and require manual analysis based on corresponding documentation and

log formats. Nevertheless, this is a one-time task, and afterwards, IoTINT will produce IoT-specific

threat intelligence like the current SmartThings prototype.

Integration of Traditional and IoT-specific IOCs. Combining IoT-specific and traditional IOCs

allows to provide the smart environment behavior related to the incident along with the knowledge

about devices/apps vulnerabilities participating in it. Such a combination gives critical information

to security analysts. When IoT-specific IOCs indicate malicious activity, but traditional IOCs re-

veal no vulnerabilities, it suggests the potential presence of a zero-day vulnerability. Conversely, if

no malicious behavior is evident in IoT-specific IOCs but vulnerabilities exist in devices or apps,

it prompts security analysts to consider device or app updates or implement additional protective

measures. Furthermore, the coexistence of both malicious activity and vulnerabilities in collected

IOCs indicates that attacks could have been achieved by exploiting vulnerabilities. In summary,
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by combining IoT-specific and traditional IOCs, threat intelligence reports become more compre-

hensive and insightful, providing a deeper understanding and aiding in effective decision-making.

However, the gathered IoT-specific and traditional IOCs information is not leveraged for any further

intelligence generation. We consider it as a limitation and plan to address it in future work. In

addition, as of now, IoTINT gathers traditional IOCs, such as CPEs, CVEs, CWEs, and CAPECs.

This list can potentially be extended to TTPs as future work to provide more information for the

security experts.
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Chapter 8

Related Work

This chapter reviews both IoT-specific and traditional threat intelligence generation solutions

and compares them with ours.

8.1 IoT-specific Solutions

Most existing works focus on collecting IoT-related attack artifacts and threat intelligence on

a large scale. For instance, Pour et al. [10] and Shaikh et al. [24] leverage internet-scale network

telescope data to capture traffic from compromised IoT devices engaged in malicious activities. Fur-

thermore, the authors extract threat intelligence about malformed devices such as geolocation, as-

sociated domain names, organizational affiliations, and hosting environments, together with unique

attack patterns and traffic captured from compromised devices. On the other hand, Khoury et al.

[25] propose an innovative solution that combines telescope and honeypot methodologies to collect

a diverse range of malware artifacts from IoT devices. These artifacts encompass system commands,

evidence of file-less attacks, URLs housing payloads, executable and linkable format (ELF) bina-

ries, and harvested login credentials. Works that implement honeypot systems [14, 26, 28, 60] focus

on the analysis of communication exchanges between the honeypots and compromised IoT devices.

This approach enables identifying and retrieving significant malware artifacts, such as unique attack

vectors, command and control (C&C) methods, issued commands, login attempts, and downloading

malware binaries utilized by compromised IoT devices. Meanwhile, Koloveas et al. [12] employ
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machine learning techniques to systematically gather IoT-centric Cyber Threat Intelligence (CTI)

from various web domains, including the clear, social, and dark web. Similarly, Al-Hawawrch et

al. [13] and Kumar et al. [27] leverage deep learning algorithms to extract IoT threat patterns and

their types, ranging from backdoors, Distributed Denial-of-Service (DDoS) attacks, ransomware,

scanning activities, injection attempts, etc. Moreover, MUDscope [11] introduces an approach tai-

lored to monitoring malicious network activities impacting IoT systems within real-world consumer

settings. This work identifies attack signatures associated with different devices and derives insights

into emerging attack patterns by analyzing these signatures.

8.2 Traditional Solutions

In contrast, CTI is the traditional solution for collecting, processing and analyzing information

about threat actors’ motives, targets, and attack behaviors, which is not specializing in IoT. Many

studies delve into CTI mining, targeting diverse threat information types with specific objectives.

Some research focuses on cybersecurity-related entities and events sourced from hacker forums,

Twitter, or cybersecurity articles, encapsulating impacted organizations, locations, vulnerabilities,

and attack categories like phishing, DDoS, and hijacking [61–66]. Others leverage machine learn-

ing to extract tactics, techniques, and procedures (TTPs) and hacker profiles from forums and CTI

reports [67–73]. Many studies involve extracting Indicators of Compromise (IOCs), such as IPs, sig-

natures, hashes, or malware evidence, aiming to detect malicious or potentially harmful activities

[21–23, 74]. Some of these studies delve further, employing Natural Language Processing (NLP) to

establish relationships between extracted IOCs. Another category of works concentrates on discov-

ering product/service vulnerabilities, predicting exploits, and unearthing malware details [75–78].

Further studies emphasize CTI for threat hunting, aiding in identifying unknown or ongoing threats

within organizational networks [79–82]. These investigations source CTI data from various outlets

like hacker forums, the dark web, CTI reports, audit logs, and intrusion alerts. Despite the efficacy

of CTI in traditional cybersecurity, its application to IoT environments still remains limited.
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8.3 Comparison between Related Works

Table 8.1 summarizes the comparison between existing works and IoTINT. The first and sec-

ond columns enlist existing works and methodologies employed to harvest IoT threat intelligence.

Note that presented approaches (e.g., telescope, honeypot) highlight the gathering of the network

traffic-related IOCs instead of the data collection technique. The next two columns compare these

works according to the threat scope. The scope of malformed IoT devices is checked when a so-

lution collects threat intelligence artifacts about malware-infected IoT devices. When a solution

gathers threat evidence about malicious smart apps, we check the scope of malformed smart apps.

In addition, we use a dash symbol on the threat scope if the work is not applicable to that category.

The next three columns compare the presented works according to the IOC coverage. Depending on

the types of IOCs present in the extracted threat information (e.g., atomic, computed, behavioral),

we mark those types in the table. In the last three columns of the table, we compare the works

based on the sources of threat intelligence (sources of TI). Specifically, the presented works extract

attack-related artifacts from such sources as network traffic, smart device/app interactions or OS.

In summary, IoTINT mainly differs from the state-of-the-art works as follows. Firstly, it stands

out as one of the few approaches that gather threat intelligence about both malformed IoT devices

and smart apps, along with two other works that used deep learning methods. Secondly, IoTINT is

the only solution that incorporates all three classes of IOCs within the produced threat intelligence.

Finally, unlike alternative solutions, IoTINT is the only solution to extract threat-related information

from the device-app interactions inside the smart environment; which provides a new perspective

to this literature. Thus, we consider IoTINT complementary to the other state-of-the-art solutions

(that gather threat intelligence from the outbound to the smart environment network traffic). How-

ever, IoTINT still has some limitations. It needs one-time adaptation effort when applied to other

IoT platforms (as discussed in Chapter 7). IoTINT mainly addresses attacks arising from device-

app communication, and relying on existing works for the network-related threats like scanning,

flooding, DDoS, and botnet activities.
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Chapter 9

Conclusion

In this dissertation, we proposed IoTINT, a practical framework designed to obtain IoT-specific

threat intelligence about threats arising from device-app interactions within a smart environment.

It iteratively extracted IoT-specific IOCs and their chronological connectivity before and after the

security incident. Furthermore, it combined traditional IOCs with IoT-specific to provide enhanced

insights into threats. We designed a prototype of IoTINT for the Samsung SmartThings platform

and evaluated its performance on 10 realistic IoT attack scenarios and typical smart environment

behaviors. The findings demonstrate that IoTINT provides comprehensive coverage in extracting

IoT threat intelligence with minimal overhead.

However, IoTINT has some limitations. First, IoTINT needs some adaptation while applying it

to another IoT platform. In future work, we potentially target to automate this process while mini-

mizing manual efforts by utilizing machine learning and other modern approaches. Second, IoTINT

exclusively addresses attacks arising from device-app communication, overlooking network-related

threats like scanning, flooding, DDoS, and botnet activities. However, existing state-of-the-art

works cover network-related threats, and we may combine their approaches with our work to de-

velop a more universal solution in terms of threat coverage. Finally, this work mainly focuses

on a rule-based approach to retrieve and connect incident-related IoT-specific IOCs. As shown in

Table 5.4, the rule-based approach is needed, and only an ML-based approach might not be suffi-

cient. At the same time, we acknowledge that an additional ML-based approach might complement

the current version of IoTINT in terms of automation and coverage; which will be explored in future.
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Appendix

A.1 Machine-readable Output

{

t y p e : bundle ,

i d : bundle − −12345678 −XXX,

s p e c v e r s i o n : 2 . 1 ,

o b j e c t s : [

{ t y p e : i n d i c a t o r ,

i d : i n d i c a t o r −−8 e74baaa −XXX,

c r e a t e d : 2023 −08 −15T14 : 3 0 : 0 0 Z ,

m o d i f i e d : 2023 −08 −15T14 : 3 0 : 0 0 Z ,

name : Device Event I n d i c a t o r ,

d e s c r i p t i o n : Smart Garage Door i s

opened ,

d e v i c e : Smart Garage Door ,

v a l u e : opened ,

t imes t amp : 2022 −09 −29T00 : 4 0 : 5 4 . 0 8 4 Z ,

p ro du c t nam e : GetNexx NXG−100B ,

l a b e l s : [ i o t , dev i ce − e v e n t ] ,

} ,

{
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t y p e : i n d i c a t o r ,

i d : i n d i c a t o r −−8e744bbb −XXX,

c r e a t e d : 2023 −08 −15T14 : 3 0 : 0 0 Z ,

m o d i f i e d : 2023 −08 −15T14 : 3 0 : 0 0 Z ,

name : App S u b s c r i b t i o n I n d i c a t o r ,

d e s c r i p t i o n : Smart App r e c e i v e d d e v i c e

e v e n t Garage Door i s opened ,

app : M a l i c i o u s s m a r t app ,

s u b s c r i b t i o n v a l u e : opened ,

t imes t amp : 2022 −09 −29T00 : 4 0 : 5 4 . 2 8 4 Z ,

p ro du c t nam e : Home a s s i s t a n t a n d r o i d ,

l a b e l s : [ i o t , app − s u b s c r i b t i o n ] ,

} ,

{

t y p e : i n d i c a t o r ,

i d : i n d i c a t o r −−8 e744ccc −XXX,

c r e a t e d : 2023 −08 −15T14 : 3 0 : 0 0 Z ,

m o d i f i e d : 2023 −08 −15T14 : 3 0 : 0 0 Z ,

name : App Command I n d i c a t o r ,

d e s c r i p t i o n : Smart App s e n t t u r n o f f

command t o t h e Smart Camera ,

app : M a l i c i o u s s m a r t app ,

d e v i c e : Smart Camera ,

command : o f f ,

t imes t amp : 2022 −09 −29T00 : 4 0 : 5 4 . 4 8 4 Z ,

p ro du c t nam e : Home a s s i s t a n t a n d r o i d ,

l a b e l s : [ i o t , app −command ] ,

} ,
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{

t y p e : r e l a t i o n s h i p ,

i d : r e l a t i o n s h i p − −98765411 −XXX,

c r e a t e d : 2023 −08 −02T10 : 0 0 : 0 0 Z ,

r e l a t i o n s h i p t y p e : w a s r e c e i v e d b y ,

s o u r c e r e f : i n d i c a t o r −−8 e74baaa −XXX,

t a r g e t r e f : i n d i c a t o r −−8e744bbb −XXX

} ,

{

t y p e : r e l a t i o n s h i p ,

i d : r e l a t i o n s h i p − −98765422 −XXX,

c r e a t e d : 2023 −08 −02T10 : 0 0 : 0 0 Z ,

r e l a t i o n s h i p t y p e : c a u s i n g ,

s o u r c e r e f : i n d i c a t o r −−8e744bbb −XXX,

t a r g e t r e f : i n d i c a t o r −−8 e744ccc −XXX

}

]

}

Listing 1: An example of IoT-specific IOCs in STIX format

64



A.2 Mapping Rules

In this section, we provide the rest of the four mapping rules (Rules 2,3,5,6) used in Step 2 of

our methodology (in Section 3.3) to derive the connectivity between apps and devices related to a

security incident.

Rule 5: app subscription →app command (subsequent direction):

IOC3 = IOC4 ⇐⇒ IOC3{authToken} = IOC4{authToken} ∧

IOC3{rowNumber} < IOC4{rowNumber} ∧

IOCi ∈ IOCs

(5)

where IOC3, and IOC4 represent the app subscription IOCs, app command IOCs, re-

spectively, and IOCi represents a log entry from the log collection, IOCs. IOC4 illustrates a set

of sent commands by the smart app after receiving a device event. According to this rule, the IOC4

can be mapped to the IOC3 if their authToken fields are equal and the rowNumber field value

of IOC4 is more than IOC3.

Rule 6: app command →device event (subsequent direction):

IOC4 = IOC5 ⇐⇒ IOC4{deviceId} = IOC5{deviceId} ∧

IOC4{capability} = IOC5{attribute} ∧

IOC4{command} ⊆ IOC5{value} ∧

|IOC4{timestamp} − IOC5{timestamp}| ≤ 500ms,

IOCi ∈ logs

(6)

where IOC4, and IOC5 represent the app command, and device event IOCs, respectively,

and IOCi represents a log entry from the log collection, IOCs. Specifically, IOC5 shows the

device event(s) that were published by the IoT platform as a result of the app command. According

to this rule, the IOC5 can be mapped to the IOC4, if their deviceId field values are identical.

Simultaneously, the IOC4 capability field should match IOC5 attribute field and IOC4

command field should be a subset of the IOC5 value field. In addition to the above conditions,

these IOCs’ timestamps (e.g., timestamp field) must differ by 500ms or less.
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Rule 2: app command →app subscription (preceding direction):

IOC4 = IOC3 ⇐⇒ IOC4{appId} = IOC3{appId} ∧

IOC4{authToken} = IOC3{authToken} ∧

|IOC4{timestamp} − IOC3{timestamp}| ≤ 5000ms,

IOCi ∈ logs

(2)

where IOC4, and IOC3 represent the app command, app subscription IOCs, respectively,

and IOCi represents a log entry from the log collection, IOCs. Specifically, IOC3 shows a relevant

app subscription because of which the command was sent to the platform. According to this rule,

the IOC3 can be mapped to the IOC4 if their appId and authToken fields match and they occur

within a specific period of time (e.g., 500ms).

Rule 3: app subscription →device event (preceding direction):

IOC3 = IOC1 ⇐⇒ IOC3{order} = IOC1{order} ∧

IOC3{deviceId} = IOC1{deviceId} ∧

IOC3{capability} = IOC1{capability} ∧

IOC3{value} = IOC1{value} ∧

IOC3{timestamp} − IOC1{timestamp} ≤ 5000ms,

IOCi ∈ logs

(3)

where IOC3, and IOC1 represent the app subscription, device event IOCs, respec-

tively, and IOCi represents a log entry from the log collection, IOCs. Specifically, IOC1 shows

an original device event published by the IoT platform that the app received because of its subscrip-

tion. The rule defines that IOC1 can be mapped to IOC3 if they occur within a specific period of

time (e.g., 500ms) and other attributes mentioned in the rule are the same.
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