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Abstract

Point-based Real-Time Recalibration for Infrared Multi-Camera Systems

Benyamin Mehmandar

This thesis addresses the critical challenge of achieving real-time and precise calibration for

multi-camera systems, particularly crucial for applications demanding high precision. Departing

from conventional methodologies characterized by limited adaptability and incapacity for on-the-

fly recalibrations, this research introduces an innovative neural network-based approach designed to

facilitate dynamic real-time calibration. This work incorporates the camera pose synthesis pipeline

to simulate real-world camera parameters, introducing various levels of perturbation to the cam-

era parameters to enhance model robustness. Also, a differentiable projection model is utilized

to establish a direct correlation between 3D geometries and their 2D image projections, thereby

facilitating concurrent optimization of intrinsic and extrinsic camera parameters. This solution en-

tails a multi-headed deep neural network regression model and is tailored for multi-camera systems

equipped with onboard processing capabilities, leveraging direct 2D projections of 3D fiducials.

A comprehensive series of experiments are conducted to demonstrate the superior efficacy of the

proposed method over traditional calibration techniques. This research contributes significantly to

the advancement of real-time multi-camera system calibration, offering promising implications for

diverse domains reliant on precise temporal synchronization and spatial accuracy.
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Chapter 1

Introduction

Abstract

Camera calibration is a crucial process in computer vision, essential for transforming 3D points

in the world coordinate system into 2D points in the image plane. It involves estimating intrinsic

parameters, such as focal length and lens distortion, and extrinsic parameters, including the cam-

era’s position and orientation. Accurate calibration is fundamental for various applications like

overlaying virtual objects, lane detection, surgical planning, and robotic navigation, where preci-

sion is critical. Traditional calibration methods, while effective, are time-consuming and often fail

to capture the complexities of real-world camera systems. To address these limitations, machine

learning-based approaches have emerged, offering the potential for more efficient calibration by

learning the mapping between image features and camera parameters. However, these methods can

struggle with large data requirements and generalization to new environments, aimed at improv-

ing calibration efficiency and reliability in real-world applications. This thesis proposes a novel

real-time multi-camera calibration methodology that leverages neural networks for continuous re-

calibration, enhancing adaptability to dynamic environments.
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1.1 Importance of Camera Calibration

Camera calibration is a process that involves estimating the intrinsic and extrinsic parameters

of a camera, which are essential for transforming 3D points in the world coordinate system to 2D

points in the image plane [3]. The intrinsic parameters include the focal length, principal point,

and lens distortion coefficients, while the extrinsic parameters describe the camera’s position and

orientation in the world coordinate system [4].

The accuracy of camera calibration directly affects the performance of computer vision systems.

Inaccurate calibration can lead to errors in depth estimation, object localization, and pose estima-

tion, which are critical tasks in many computer vision applications. For example, in augmented

reality applications, accurate camera calibration is essential for overlaying virtual objects onto the

real world in a visually seamless manner [5]. Similarly, in autonomous driving systems, accurate

calibration is crucial for tasks such as lane detection, object detection, and pedestrian tracking [6].

1.2 Challenges in Camera Calibration

Traditional camera calibration methods, such as Zhang’s method [3], require capturing images

of known calibration patterns from multiple viewpoints and solving nonlinear optimization prob-

lems to estimate the camera parameters [3, 4]. While these methods are effective, they can be

time-consuming and labor-intensive, especially when calibrating multiple cameras or cameras with

complex optical systems [7]. Additionally, traditional calibration methods may not fully capture the

complexities of real-world camera systems, such as lens distortions and non-linearities, leading to

inaccuracies in calibration.

Furthermore, traditional calibration methods such as [7] may not be suitable for real-time ap-

plications where calibration needs to be performed quickly and continuously. In dynamic environ-

ments, such as outdoor robotics or surveillance systems, conditions may change rapidly, requiring

the calibration parameters to be updated in real-time to maintain accuracy.
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1.3 Machine Learning-Based Approaches to Camera Calibration

To address the limitations of traditional calibration methods, researchers have explored machine-

learning-based approaches to camera calibration. These methods leverage neural networks to learn

the mapping between image features and camera parameters, offering the potential for faster and

more efficient calibration. By training neural networks on large datasets of images and correspond-

ing camera parameters, these methods can learn complex mappings between image features and

camera parameters, allowing them to generalize to unseen environments or conditions.

However, machine learning-based calibration methods may face challenges such as the need

for large amounts of training data, susceptibility to overfitting, and difficulties in generalization

to unseen environments or conditions [8]. Furthermore, these methods may lack interpretability,

making it challenging to understand the underlying factors influencing calibration accuracy [9].

1.4 Online Recalibration Methods

Online recalibration methods offer another avenue to address the challenges of maintaining ac-

curate calibration in dynamic environments [10]. These methods, such as [11], continuously update

calibration parameters based on feedback from the environment, ensuring that the system remains

accurate and robust over time. By continuously monitoring the environment and adjusting the cali-

bration parameters accordingly, online recalibration methods can adapt to changing conditions and

maintain accuracy in dynamic environments.

However, online recalibration methods may introduce additional computational overhead and

complexity to the system, and they may require careful tuning to balance accuracy with computa-

tional efficiency. Furthermore, online recalibration methods may require sophisticated algorithms

to detect and correct calibration errors in real-time, adding to the complexity of the system.

1.5 Proposed Approach

The necessity for real-time recalibration arises from the dynamic nature of real-world environ-

ments and the desire for computer vision systems to maintain accurate and reliable performance

3



over time. By enabling systems to adapt to changing conditions and continuously update calibra-

tion parameters, online recalibration methods ensure that computer vision applications can meet the

demands of complex and evolving scenarios.

This work proposes a novel real-time multi-camera calibration methodology that leverages neu-

ral networks to enable on-the-fly recalibration. This approach integrates a differentiable projection

model, enabling direct optimization of camera parameters by propagating gradients between 3D ge-

ometries and their 2D projections. Dynamically synthesizing camera poses and introducing pertur-

bations to camera parameters enhances the robustness and adaptability of this method to real-world

operational challenges.

1.6 Contributions

This thesis presents the manuscript under review, ”Neural Real-Time Recalibration for Infrared

Multi-Camera Systems”, Benyamin Mehmandar, Reza Talakoob, Charalambos Poullis. My con-

tributions to this work include conducting background research on camera calibration for infrared

systems, designing a point-based neural model using Transformers, and experimenting with arti-

facts of the point-based method. Additionally, I conducted experiments utilizing different encoders

(Conv-1D, Graph Neural Network, and LSTM) for the point-based method, explored various loss

strategies for the point-based version, implemented Bundle Adjustment, and carried out relevant

experimentation. I also wrote the sections of the manuscript related to the point-based model, as

presented in Chapter 3.

1.7 Thesis Organization

The organizational structure of this thesis is as follows: Section 2 provides a foundational

overview of camera calibration and its significance across various applications, presenting tradi-

tional and deep learning-based methods. Section 3 delineates the proposed methodology, encom-

passing dynamic camera pose synthesis, network architecture, training loss functions and strategies,

and rigorous experimentation. Furthermore, complementary experimental results are presented in

4



Section 4. Finally, ablation studies on various network architectures and loss strategies are summa-

rized in Section 5.

5



Chapter 2

Literature Review

Abstract

This chapter provides an overview of traditional camera calibration methods and recent advance-

ments in deep learning-based approaches. Traditional methods have been instrumental in geometric

parameter estimation, often requiring manual intervention and extensive calibration procedures. On

the other hand, deep learning-based approaches offer automation, efficiency, and adaptability to

diverse imaging scenarios. Intrinsic parameter calibration methods aim to directly estimate param-

eters like focal length from raw image data, while extrinsic parameter calibration methods focus on

estimating camera poses from image observations. Furthermore, joint calibration methods aim to si-

multaneously estimate both intrinsic and extrinsic parameters using deep learning techniques. This

exploration aims to provide a comprehensive understanding of camera calibration methodologies

spanning traditional techniques and recent advancements in deep learning.

2.1 Traditional Camera Calibration Methods

2.1.1 Radial Distortion Model

One of the earliest challenges addressed in camera calibration is lens distortion correction. The

Radial Distortion Model, proposed by Brown in 1971 [12], introduces a mathematical model to ac-

count for radial distortions commonly observed in camera lenses. These distortions, including barrel

6



and pincushion distortions, are characterized by non-linear effects on image geometry, necessitating

corrective measures during calibration.

2.1.2 Direct Linear Transform (DLT) Algorithm

The Direct Linear Transform (DLT) algorithm, first introduced by Abdel-Aziz and Karara [13],

is a cornerstone in camera calibration methodologies. DLT aims to estimate the intrinsic parameters

of a pinhole camera from correspondences between 2D image points and their corresponding 3D

world points. Despite its simplicity, DLT requires at least six point correspondences to determine

the camera parameters accurately.

2.1.3 Tsai’s Method

Tsai’s approach [14] extends the principles of DLT by incorporating non-coplanar points for

calibration. By considering a broader range of geometric configurations, Tsai’s method enhances

the versatility of camera calibration techniques, enabling accurate parameter estimation in more

complex scenarios.

2.1.4 Zhang’s Method

Zhang’s method [3] introduces the concept of planar calibration patterns and homography for

camera calibration. This approach simplifies the calibration process by utilizing planar surfaces as

calibration targets, facilitating robust parameter estimation through homographic transformations.

2.1.5 Multi-Camera Calibration

Further to the single-camera calibration methods, several scholars have shifted their research

focus towards multi-camera self-calibration, motivated by the prevalence of multiple-camera se-

tups across diverse scenes and their broad applications. One such method is introduced in [15] by

Svoboda et al., which extends his previous work in [16], enabling it to perform in multiple-camera

designs more conveniently. This method enables simultaneous calibration of multiple cameras lo-

cated in the same environment, only requiring a standard laser pointer with the presence of at least

7



three cameras, utilizing the MATLAB software presented in [17], leading to various applications

such as 3D reconstruction and multi-view analysis. By capturing images with all cameras in the

scene, extracting corresponding feature points, and establishing known 3D world coordinates, this

technique derives intrinsic and extrinsic parameters for all cameras at the same time, allowing for

accurate reconstruction of all cameras’ relative positions and orientations in addition to their inter-

nal characteristics.

Heikkilä et al. [18] present another notable multi-camera calibration technique which adds the

following steps to the classic camera calibration methods: (1) compensating for distortion caused by

circular features and (2) correcting the distorted image coordinates. This method requires capturing

multiple images of a planar calibration object, such as a checkerboard or grid as shown in Figure

2.1, from varied viewpoints using all the cameras. Corresponding 2D points extracted from the

images are paired with the known 3D points, which are then used for estimating the intrinsics and

extrinsics of all the cameras. In order to achieve accurate calibration results, this method utilizes

a nonlinear optimization algorithm, which refines the initial parameter estimates, compensating for

any inaccuracies introduced during the initial parameter estimation process. This optimization uses

the parameters from the DLT method as the initial values to prevent them from sticking in the local

minima. The Heikkilä method is known for its robustness to lens distortion and ability to handle

a wide range of camera models, including pinhole and fish-eye lenses. Since its emergence, it

has become popular for camera calibration in various computer vision applications, including 3D

reconstruction, object tracking, and augmented reality.

2.2 Deep Learning-Based Camera Calibration Methods

Although the aforementioned methods have been widely used since their emergence and can

provide sufficient solutions in various scenarios, they need more labor-intensive, time-consuming,

and sometimes expensive procedures. In light of the exceptional performance exhibited by Artifi-

cial Neural Networks across various tasks, researchers began to think of applying these powerful

networks to tackle the camera calibration problem.
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Figure 2.1: Checkerboard calibration object used for camera calibration. The checkerboard pattern
facilitates the accurate estimation of the camera’s intrinsic and extrinsic parameters by providing
well-defined reference points.

Transformers, as one of these influential architectural paradigms, introduced by Vaswani et al. in

[1], has fundamentally reshaped the landscape of deep learning, transcending the confines of tradi-

tional recurrent and convolutional architectures. Positioned initially for sequence-to-sequence tasks

like machine translation, Transformers stand out for their revolutionary self-attention mechanisms.

These mechanisms endow the model with the remarkable ability to dynamically weigh the signifi-

cance of different elements within a sequence, thus effectively capturing intricate relationships and

dependencies over long ranges. Figure 2.2 shows the architecture of the Transformer network.

The attention mechanism in Transformers allows the model to dynamically focus on differ-

ent parts of the input sequence, capturing complex relationships and dependencies. In the Scaled

Dot-Product Attention, queries (Q), keys (K), and values (V) are used to compute attention scores

through dot products, which are then scaled by the square root of the key dimension. These scores

are normalized via a softmax function to create attention weights, which are used to form a weighted

sum of the values, effectively highlighting the most relevant parts of the input.

Multi-Head Attention extends this concept by applying multiple attention heads in parallel, each

with its own learned linear projections of Q, K, and V. This enables the model to capture diverse

features from different parts of the sequence simultaneously. The outputs of these attention heads
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are concatenated and passed through a final linear layer, enhancing the model’s ability to understand

and process complex data structures effectively. Figure 2.3 depicts the diagram of both mentioned

attention mechanisms, as presented in [1].

Transformers, with their exceptional capacity for attending to relevant parts of the input, offer

unmatched benefits in regression tasks. Their capability extends far beyond sequential data, perme-

ating into diverse domains such as computer vision, finance, and geospatial analysis. In computer

vision, for instance, Transformers have shown promising results in tasks such as object detection,

image regression, and even intricate geometric parameter estimation tasks like camera calibration

[19]. Their adeptness in capturing spatial dependencies and global context contributes significantly

to the advancement of such applications.

Figure 2.2: Transformer architecture, as shown in [1]. The Transformer uses stacked self-attention
and point-wise, fully connected layers in both the encoder (left) and decoder (right), allowing for
efficient processing of input and output sequences.

In the realm of time series forecasting, Transformers have emerged as a game-changer, leverag-

ing their attention mechanisms to capture temporal dependencies and subtle patterns within sequen-

tial data. This fusion of temporal awareness and attentional focus enables accurate predictions in

domains like financial forecasting, where even subtle trends and irregularities can have significant

implications.
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Figure 2.3: The left side illustrates the Scaled Dot-Product Attention mechanism, which computes
attention scores by taking the dot product of queries and keys, scaling them, and applying a softmax
function. The right side shows the Multi-Head Attention mechanism, which runs multiple attention
heads in parallel, allowing the model to capture diverse features and dependencies across different
parts of the input sequence, as introduced in [1].

Complementing the Transformer’s capabilities, Multilayer Perceptron (MLP) stacks function

as the primary tool for regression modeling, adept at approximating complex nonlinear functions.

With multiple layers of densely connected neural units, MLPs offer high flexibility, enabling them

to capture intricate mappings between input features and target variables across diverse domains.

In regression tasks, MLP stacks serve as powerful function approximators, mapping learned

representations from the input space to the target space. Their capacity for modeling complex non-

linear relationships makes them indispensable in domains like healthcare, where predicting patient

outcomes based on diverse clinical variables demands robust and flexible regression models. Addi-

tionally, the utilization of multiheaded MLP regressors offers several distinct advantages in regres-

sion tasks. By employing multiple parallel MLP subnetworks, each focusing on different aspects of

the input data, multihead MLP regressors can effectively capture complex nonlinear relationships

within heterogeneous datasets. This approach facilitates enhanced model flexibility and adaptability,

enabling more robust predictions across diverse domains, which could improve accuracy, efficiency,

and interpretability in various real-world applications.

The integration of Transformers and MLP stack architectures has yielded remarkable advance-

ments in regression modeling. In computer vision tasks such as object detection, image regression,

and pose estimation, this combination enables models to capture both local features and global

context, yielding superior performance in tasks requiring precise geometric parameter estimation,
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particularly in camera calibration [20]. Furthermore, in natural language processing (NLP), Trans-

formers have revolutionized tasks such as text classification, sentiment analysis, scene understand-

ing [21], and language modeling [22]. Their ability to capture contextual information and long-

range dependencies has led to significant improvements in machine translation models, sentiment

analysis systems, and question-answering systems.

Employing these powerful networks for camera calibration is a paradigm shift and marks a piv-

otal advancement in the field, promising to revolutionize the landscape of camera calibration and

beyond. Additionally, a subset of these networks demonstrates calibration independent of camera

models and labels, exhibiting considerable potential for impactful and significant real-world appli-

cations. Learning-based camera calibration problems can be categorized into Intrinsic parameters

calibration (including the focal length and principal point), Extrinsic parameters calibration (includ-

ing the rotation matrix and translation vector), and joint Intrinsic and Extrinsic Calibration.

2.2.1 Intrinsic Parameter Calibration

Deep learning-based approaches for intrinsic parameter calibration aim to directly estimate pa-

rameters such as focal length and principal point from raw image data, bypassing the need for

explicit feature extraction or manual calibration procedures. Workman et al. [23] proposed a deep

neural network trained on natural images to regress focal lengths, demonstrating the feasibility of

learning intrinsic camera parameters from raw pixel intensities. Similarly, Cramariuc et al. [24]

introduced a data-driven approach to detect intrinsic miscalibration in cameras, leveraging deep

learning to assess the degree of calibration errors caused by external disturbances or sensor imper-

fections.

2.2.2 Extrinsic Parameter Calibration

Deep learning-based methods for extrinsic parameter calibration focus on estimating camera

poses, including position and orientation, from image observations. Kendall et al. [25] employed a

deep convolutional neural network to regress 6 degrees of freedom camera poses, enabling accurate

localization of cameras in 3D space. By learning complex spatial relationships directly from image

data, these approaches offer robustness to noise and variability in camera poses, enhancing the
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accuracy of extrinsic parameter estimation.

2.2.3 Joint Intrinsic and Extrinsic Calibration

Some recent works have explored joint calibration of intrinsic and extrinsic parameters using

deep learning techniques. Hold-Geoffroy et al. [26] trained a deep convolutional neural network

to simultaneously estimate both intrinsic and extrinsic parameters from images, leveraging large-

scale panorama datasets for robust calibration. Similarly, Butt et al. [27] proposed a multi-task

learning approach for joint prediction of intrinsic and extrinsic parameters, demonstrating improved

performance through integrated optimization of calibration tasks.

2.3 Conclusion

In conclusion, this chapter has explored traditional camera calibration methods alongside re-

cent advances in deep learning-based approaches. While traditional techniques lay the groundwork

for geometric parameter estimation, deep learning offers automation and adaptability to diverse

scenarios. This section discussed intrinsic and extrinsic parameter calibration methods, as well

as joint calibration approaches, showcasing the potential of deep learning in addressing complex

challenges. This chapter serves as a comprehensive overview, bridging traditional methods with

innovative deep-learning solutions.
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Chapter 3

Neural Real-Time Recalibration for

Infrared Multi-Camera Systems

The following is a verbatim copy of the manuscript currently under review, titled ”Neural

Real-Time Recalibration for Infrared Multi-Camera Systems”, authored by Benyamin Mehman-

dar1, Reza Talakoob2, and Charalambos Poullis. My contributions include conducting experiments

utilizing different encoders (Transformer, Conv-1D) for the point-based method, exploring vari-

ous loss strategies for the point-based version, making comparisons with Bundle Adjustment, and

carrying out relevant experimentation.

Abstract

In this paper, we address the challenge of real-time, highly-accurate calibration of multi-camera

infrared systems, a critical task for time-sensitive applications. Unlike traditional calibration tech-

niques that lack adaptability and struggle with on-the-fly recalibrations, we propose a neural network-

based method capable of dynamic real-time calibration. The proposed method integrates a differ-

entiable projection model that directly correlates 3D geometries with their 2D image projections

and facilitates the direct optimization of both intrinsic and extrinsic camera parameters. Key to our

approach is the dynamic camera pose synthesis with perturbations in camera parameters, emulating
1equal contribution
2equal contribution

14



realistic operational challenges to enhance model robustness. We introduce two model variants: one

designed for multi-camera systems with onboard processing of 2D points, utilizing the direct 2D

projections of 3D fiducials, and another for image-based systems, employing color-coded projected

points for implicitly establishing correspondence. Through rigorous experimentation, we demon-

strate our method is more accurate than traditional calibration techniques with or without perturba-

tions while also being real-time, marking a significant leap in the field of real-time multi-camera

system calibration.

3.1 Introduction

Camera calibration is the fundamental process of estimating the camera’s intrinsic and extrin-

sic parameters and is an essential part of many computer vision systems. Accurate calibration is

important in various applications, ranging from 3D reconstruction to augmented reality, especially

in settings demanding high accuracy, like surgical environments. Traditional calibration methods

provide analytical frameworks for addressing camera calibration. However, they require captur-

ing an object of known geometry from multiple viewpoints, then extracting points and establishing

correspondences. The inherent computational complexity of these conventional methods tends to

increase dramatically with the number of cameras, images, and correspondences, making them im-

practical for real-time applications.

In time-critical applications requiring high accuracy, standard commercial multi-camera sys-

tems have a fixed camera configuration and come pre-calibrated from manufacturers. However, the

calibration of these systems deteriorates over time because of wear and tear and, more commonly,

because of the buildup of debris on critical components like the fiducials or lenses. In the field of

vision-based computer-assisted surgery, calibration problems frequently prevent multi-camera sys-

tems from meeting the exact specifications and stringent accuracy standards required for surgical

procedures. Such discrepancies can compromise the effectiveness and safety of medical procedures.

This deterioration in calibration emphasizes the need for sophisticated calibration methods. Co-

ordinate Measuring Machines (CMM) are commonly used to improve calibration accuracy, offering

a potential solution to this problem. Nonetheless, CMMs are expensive, and manufacturers typically
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calibrate the multi-camera system before delivery, failing to account for potential discrepancies after

deployment. Traditional methods for detecting calibration errors, such as those based on epipolar

geometry, face significant computational challenges in multi-camera setups and do not support on-

the-fly recalibration, making them ineffective in dynamic environments.

System Context and Problem Statement. This work addresses the calibration challenges in-

herent in infrared multi-camera systems designed for time-critical applications, specifically vision-

based computer-assisted surgery. These systems function exclusively within a fixed distance from

a central point of interest, allowing rotation while maintaining a constant radius to ensure compre-

hensive visual coverage. This operational design is very important for three main reasons: first,

to comply with the manufacturer’s operating specifications and maintain system integrity and per-

formance; second, to ensure that the area of interest is in-focus across all cameras for accurate

tracking of medical instruments; and third, to minimize occlusions and reduce instances where

tracked markers are not visible in all camera views. By customizing our approach to accommodate

these multi-camera configurations and optimizing calibration for a fixed range of motion, we are

able to significantly improve the accuracy and achieve the real-time calibration required for such

time-critical applications.

In this paper, we introduce a novel real-time multi-camera calibration method that leverages

neural networks to provide on-the-fly recalibration. Our model is trained on synthesized camera

poses resulting from OEM calibration parameters, with perturbations applied to the intrinsic and

extrinsic parameters. The perturbations emulate real-world operational challenges, thereby enhanc-

ing the model’s practical applicability. We demonstrate, through rigorous experimentation, that

our method not only adapts to alterations in calibration parameters in real time but also surpasses

conventional calibration techniques in accuracy. Our key technical contributions are threefold:

• First, we introduce a real-time neural calibration method for multi-camera systems, marking

a departure from traditional offline calibration methods. Our method employs a differentiable

projection model to flow gradients between 3D geometries and their 2D projections, allowing

for direct optimization of camera parameters.

16



• Second, we enhance the robustness and applicability of our method by dynamically synthe-

sizing camera poses at each epoch and incorporating perturbations to the OEM calibration

intrinsic and extrinsic parameters to simulate realistic operational challenges.

• Finally, we introduce two variants of our model: the first is designed for multi-camera systems

equipped with onboard processing, directly outputting the 2D projections of the 3D fiducials;

the second variant is designed for image-based multi-camera systems.

The paper is structured as follows: Section 3.3 provides a brief overview of the pinhole camera

model. Section 3.4 discusses our methodology, including the dynamic camera pose synthesis for

multi-camera systems and details on the loss functions and training strategy. Finally, Section 3.5

reports on our experimental results.

3.2 Related Work

Camera calibration is fundamental in computer vision for determining geometric parameters

essential for image capture, playing a vital role in applications that require accurate scene mea-

surements. Despite the development of various methods to calculate camera parameters, tradi-

tional techniques like the Radial Distortion Model [12], Direct Linear Transform (DLT) [13], Tsai’s

method [14], Zhang’s approach [3], and [28] rely heavily on handcrafted features and model as-

sumptions. These methods, while effective, are often labor-intensive and not suited for real-time

or multi-camera calibration due to their complexity and the static nature of their required setup.

The perspective-n-point (PnP) problem has seen advancements with [29], [30], [31], and further

improvements in [32] through direct optimization methods. However, these solutions still face chal-

lenges in terms of real-time execution.

The advent of artificial neural networks has prompted a significant shift in camera calibration

research. Techniques like [33], [34], and PoseNet [25] for extrinsic calibration and others [23],

[24], [35], [36] for intrinsic parameter estimation leverage deep learning for more adaptable and

potentially real-time calibration. Yet, these neural network approaches require extensive datasets

for training, have low accuracy, and cannot generalize well across varying conditions.
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In multi-camera calibration, research has extended towards self-calibration methods for setups

in shared environments, as seen in the works of Svoboda et al.. [15], Heikkilä and Silvén [18],

and also [37], [38], [39]. These methods facilitate 3D reconstruction and multi-view analysis but

remain challenged by the demands of real-time processing and dynamic scenes. Recent develop-

ments have also explored joint estimation of intrinsic and extrinsic parameters, as demonstrated by

[26], [27], [40], [41]. These approaches promise more integrated calibration processes through deep

learning, highlighting the potential for efficient real-time calibration. Nonetheless, achieving a bal-

ance between computational efficiency and accuracy remains a critical challenge for these advanced

methods.

In contrast to the aforementioned techniques, our method enables real-time recalibration, effec-

tively predicting camera parameters in the presence of perturbations to the OEM intrinsic calibration

parameters. Additionally, a streamlined procedure for dynamic camera pose synthesis facilitates its

generalization to arbitrary configurations of multi-camera systems and arbitrary calibration objects.

3.3 Camera Model

For the sake of completeness, this section provides an overview of the classic pinhole camera

model, incorporating lens distortion to establish the relationship between the 3D world coordinates

of a point P and its 2D image projection p = [x, y]. Consider P = [X,Y, Z]T as a point in

world coordinates, with R and t representing the camera’s rotation matrix and translation vector,

respectively. The transformation of the 3D point into camera coordinates PC = [XC , Y C , ZC ]T is

given by PC = RP+ t. The projection from 3D to 2D coordinates is given by:

⎡⎢⎢⎢⎢⎣
x

y

1

⎤⎥⎥⎥⎥⎦ =
1

ZC

⎡⎢⎢⎢⎢⎣
fx 0 cx

0 fy cy

0 0 1

⎤⎥⎥⎥⎥⎦PC , (1)

where ZC is the third component of PC , fx and fy the focal lengths, and cx, cy the principal point

coordinates.

Lens Distortion. In order to accurately represent lens distortion, which commonly occurs in real
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camera systems, we include both the radial and tangential distortion. The distortion is represented

using a polynomial model, where the radial distortion is captured by a sixth-order polynomial and

the tangential distortion is addressed through first-order terms. The equations for the distorted

coordinates xdist and ydist are given as follows:

xdist = x(1 + k1r
2 + k2r

4 + k3r
6) + 2p1xy + p2(r

2 + 2x2),

ydist = y(1 + k1r
2 + k2r

4 + k3r
6) + p1(r

2 + 2y2) + 2p2xy,

(2)

where r2 = x2+y2, and k1, k2, k3 are the radial distortion coefficients, and p1, p2 are the tangential

distortion coefficients.

6D Rotation Parameterization. In line with the approach proposed in Zhou et al.. [2], our

work adopts a 6D parameterization for the representation of 3D rotations, diverging from traditional

quaternion and Euler angle representations. The latter are known to introduce parameter space dis-

continuities, as depicted in Figure 3.1, complicating the learning process for neural networks due

to the inherent discontinuities. Furthermore, a critical limitation of these traditional approaches is

their inability to guarantee that the network outputs are orthogonal rotation matrices, which is often

a desirable property for ensuring the physical plausibility of rotations in 3D space. These limita-

tions are particularly pronounced in tasks requiring the learning of continuous and smooth rotation

spaces. For the purpose of training, a 3D rotation matrix R is parameterized by a 6D vector r6D,

which encapsulates the elements of R’s first two columns. This parameterization provides a direct

mapping to a rotation matrix without the need for complex conversions or the risk of introducing

discontinuities. Specifically, during loss computation, the r6D vector is seamlessly transformed

back into an orthogonal rotation matrix R. This approach not only aligns with the findings from [2]

that direct regression on 3x3 rotation matrices can lead to larger errors, but also addresses the need

for generating orthogonal matrices directly from the network.

Differentiable Projection. The image formation process with the pinhole camera model is

designed to be differentiable, facilitating the backpropagation of gradients from the loss -a function

of the difference between the observed and projected points- to the camera parameters.
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Figure 3.1: Discontinuities introduced by quaternions and Euler angle representations hinder net-
work learning efficiency as shown in [2].

3.4 Methodology

Our methodology employs a neural network designed to estimate the intrinsic and extrinsic pa-

rameters of a multi-camera system, leveraging a known calibration object in the scene. This tailored

approach ensures that, once trained, the model is specifically attuned to the multi-camera system

and calibration object utilized during its training phase. We invert the traditional image formation

process, enabling our model to deduce camera parameters—such as rotations (R), translations (t),

focal lengths (fx, fy), principal points (cx, cy), and distortion coefficients (k1,2,3, p1,2)—from 2D

projections of 3D fiducial points on the calibration object.

At the core of our methodology is the dynamic camera pose synthesis, imperative for simulating

realistic conditions that a multi-camera system might encounter. We introduce controlled perturba-

tions into the OEM camera parameters, dynamically synthesizing diverse training samples. Given

the synthesized camera parameters, the process starts with projecting the 3D fiducials of the cali-

bration object onto the image plane. These 2D projected points serve as input to our model, which

then predicts the intrinsics and extrinsics of the multi-camera system. Utilizing these predicted

camera parameters, we project the known 3D fiducials back onto the image plane through a differ-

entiable process. The deviation between the projections from the synthesized and predicted camera

parameters is quantified using a loss function. Figure 3.2 provides an overview of our method.

3.4.1 Dynamic Camera Pose Synthesis

Dynamic camera pose synthesis begins with the OEM calibration parameters of a multi-camera

setup, typically determined by the manufacturing process. We represent a multi-camera setup of

NC cameras as Ci, 0 ≤ i < NC , where COEM
i denotes the initial calibration of each camera.

20



Figure 3.2: Technical overview. Our methodology begins with the synthesis of dynamic camera
poses (see top fig.). Given spherical angles ϕ (azimuth), θ (elevation), along with the intrinsic ro-
tation angle α, the OEM calibration parameters, the maximum perturbation limit κ, and known
3D fiducials (e.g. a cube calibration object), this module performs two primary functions: (i) it
synthesizes poses for the multi-camera system, and (ii) it computes the projected 2D points. Sub-
sequently, it employs point splatting to render images of these points. During training (see bottom
fig.), the synthesizes poses and projected points (alternatively rendered images) are used to train the
neural network. A differentiable projection ensures the propagation of gradients from the loss L
back to the predicted camera parameters.

Perturbations

To create a robust model capable of handling changes in calibration, we introduce perturbations

to the OEM camera parameters, generating perturbed parameters Cpert
i = COEM

i × (1 + δ), where

δ represents the perturbation defined as δ = κ × U(0, 1), with κ controlling the maximum desired

perturbation.

Camera Pose Synthesis

For the synthesis of camera poses, we employ a two-step process, ensuring both focus towards

the fiducial points and variability in camera orientation to prevent model overfitting. The procedure
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is as follows.

The centroid of the camera system is dynamically positioned on a hemisphere’s surface, en-

suring varied perspectives. The radius of the hemisphere is determined in advance based on the

application requirements and the range of motion of the multi-camera system. Specifically, the

centroid’s position Pcentroid on the hemisphere is determined by:

Pcentroid = (xc, yc, zc) = ρ · (sin(ϕ) · cos(θ), sin(ϕ) · sin(θ), cos(ϕ)), (3)

where ρ denotes the hemisphere radius, and θ ∼ U(0, 2π), ϕ ∼ U(0, π/2) are angles sampled from

a uniform distribution, ensuring the centroid is randomly positioned over the hemisphere.

Next, a rotation Rfocus is applied to align the camera’s viewing direction towards the fiducials’

centroid, ensuring that the camera is oriented towards the area of interest. This alignment is critical

for simulating realistic camera setups where the fiducials are within the camera’s field of view. To

introduce additional randomness and prevent the network from overfitting to specific camera loca-

tions, a secondary random rotation Rrandom is applied by an intrinsic rotation angle α ∼ U(0, 2π)

around the centroid point. The combination of Rfocus and Rrandom ensures that each camera is

not only oriented towards the fiducials but also positioned and rotated in a manner that provides a

diverse set of viewing angles and positions. This diversity is imperative for training a robust model

capable of generalizing across various camera orientations and positions.

As a final validation step, we conduct a visibility check to ensure all fiducials are within the

field of view of all cameras. This step is essential, since the random placement of cameras on the

hemisphere might result in scenarios where not all fiducials are visible from all cameras.

The dynamic camera pose synthesis for each training epoch diversifies the dataset, improving

model generalization. Figure 3.3 illustrates synthesized camera poses for various multi-camera

systems e.g. T-shape (NC = 4 ), U-shape (NC = 7 ), O-shape (NC = 10 ), and different

calibration objects e.g. cube (Nfid. = 8), cube (Nfid. = 27), sphere (Nfid. = 64).
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(a) T; cube(8) (b) O; cube(27)

(c) U; sphere(64) (d) T; sphere(64)
Figure 3.3: Dynamic Camera Pose Synthesis. Our framework supports arbitrary configurations
of multiple cameras as well as a wide range of calibration objects. To synthesize camera poses,
we employ a random uniform sampling strategy across three dimensions to ensure a comprehensive
exploration of the pose space: azimuth (θ), elevation (ϕ), and roll (α), where θ ∼ U(0, 2π), ϕ ∼
U(0, π2 ), and α ∼ U(0, 2π). Additionally, Original Equipment Manufacturer (OEM) calibration
parameters and a predefined maximum perturbation limit (κ) are incorporated.

3.4.2 Network Architecture

We introduce two variants: the first one, known as the point-based model (Pt), is intended for

multi-camera systems with onboard processing that directly outputs the 2D projections of the 3D

fiducials, which is the typical case for IR multi-camera systems; the second one is the image-based

model (Img), designed for multi-camera systems that output images for subsequent processing,

rather than the point coordinates. The architecture of both variants is detailed in the supplementary

material along with an ablation study on the components.

23



3.4.3 Loss

Our loss function is crafted to encapsulate multiple facets of camera parameter estimation. The

primary term Lϵ is incorporated to enforce geometric consistency. It measures the RMSE between

2D points x, x′ obtained by projecting the 3D points using the predicted and ground-truth param-

eters, respectively, and is given by Lϵ = RMSE(x, x′). For rotation, we use geodesic loss Lgeo,

computed from the predicted and ground-truth rotation matrices, to penalize deviations in the ori-

entation. Additionally, Ldiff is the root mean square error (RMSE) that quantifies the difference

between the predicted and ground-truth parameters. We also employ a scaling value for the rotation

and distortion coefficients since their values are very small compared to other camera parameters,

as illustrated by the experiments in the ablations in the supplementary material.

3.4.4 Training

In the initial phase of 10,000 epochs, we utilize a simplified loss function focused on Ldiff and

Lgeo to establish a robust baseline, formulated as L = λ1 × Ldiff + λ1 × Lgeo. Subsequently, we

introduce the full compound loss, expressed as L = λ1 × Ldiff + λ1 × Lgeo + λ2 × Lϵ. In all

experiments, the coefficients are set to λ1 = 100, λ2 = 0.01, with the batch size of 512 and 8 for Pt

and Img variants, respectively.

Our training strategy is based on introducing a random perturbation to the camera parameters

in every epoch, to simulate a wide spectrum of deviations that may occur due to buildup of debris

on critical components like the fiducials or lenses. This methodical addition of perturbation aids in

better exploration of the parameter space and enhances the robustness and accuracy of the estimated

camera parameters. We employ an Adam optimizer with parameter-specific learning rates. The rates

are adaptively adjusted via a ReduceLROnPlateau scheduler based on the compound loss function.

Furthermore, the backpropagation step employs gradient clipping for stability.

3.5 Experimental Results

There are no learning-free or neural techniques for real-time recalibration of infrared multi-

camera systems. In the supplementary material, we adopt standard calibration and optimization
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Table 3.1: Experimental results. RE20K
avg is the average RMSE reprojection error on 3 different

trials (synthetic test sets, each comprising 20,000 data samples). Training on all models includes
adding a Max Perturb. κ ∈ [min%,max%] to the OEM camera intrinsic and extrinsic parameters
respectively. Nfid. and NC are the number of 3D fiducials and the number of cameras, respec-
tively. The rotation angle α remains the same in all experiments i.e., α ∼ U(0, 2π). The parameters
for Pt and Img models are ∼33m and ∼86m, respectively.
Row
#

Variant θ ϕ Nfid.

(object)
NC

(config.)
Max Perturb.
κint., κext. ∈ [min%,max%]

RE20K
avg

(pixels)

1 Pt ∼ U(0, 2π) ∼ U(0, π/2) 8 10 ±2.5,±2.5 9.93± 1.4× 10−4

2 Pt ∼ U(0, 2π) ∼ U(0, π/2) 8 10 ±5,±5 11.53± 1.5× 10−4

3 Pt ∼ U(0, 2π) ∼ U(0, π/2) 8 10 ±10,±10 14.21± 1.8× 10−4

4 Pt ∼ U(0, 2π) ∼ U(0, π/2) 8 7 ±2.5,±2.5 14.67± 3.5× 10−4

5 Pt ∼ U(0, 2π) ∼ U(0, π/2) 8 4 ±2.5,±2.5 12.89± 2.1× 10−4

6 Pt ∼ U(0, 2π) ∼ U(0, π/2) 64 10 ±2.5,±2.5 14.92± 7.3× 10−5

7 Pt 0 0 8 6 0, 0 1.12± 5× 10−7

8 Pt 0 0 8 6 ±2.5, 0 3.08± 9.5× 10−6

9 Pt 0 0 8 6 ±10, 0 8.04± 7.2× 10−4

10 Img 0 0 8 6 ±2.5, 0 4.55± 1.8× 10−4

11 Img 0 0 8 10 ±2.5,±2.5 4.12± 2.4× 10−6

12 Img 0 0 8 10 ±5,±5 6.01± 1.6× 10−5

13 Img 0 0 8 10 ±10,±10 6.97± 1.1× 10−5

techniques for infrared cameras and demonstrate the impracticality of using traditional methods

for on-the-fly calibration. Below, we provide a comprehensive evaluation of our method’s accuracy

across various scenarios, demonstrating its suitability for time-sensitive, high-accuracy applications.

We conclude with an assessment of the generalizability of our approach to diverse multi-camera

system configurations and calibration objects.

In Table 3.1, we detail the performance of our model under various conditions, reporting the

average RMSE reprojection error RE20K
avg across three trials on synthetic test sets, each comprising

20,000 data samples. Our model demonstrates robust adaptability to different levels of perturba-

tions, where performance gracefully degrades as perturbations reach extreme values. For example,

with an O-shape camera system comprising 10 cameras (NC = 10 ), and a calibration object

with 8 fiducials (Nfid. = 8), our method achieves a RE20K
avg of 9.93± 1.4×10−4, 11.53± 1.5×10−4,

and 14.21± 1.8 × 10−4, for perturbations of up to 5%, 10%, 20%, respectively, as shown in rows

1-3. As we explain in the subsequent section, the range of motion is often constrained in real-world

scenarios due to operational limitations. Nevertheless, our approach demonstrates robust perfor-

mance and effectively predicts camera poses across a wide range of motion, i.e., θ ∼ U(0, 2π),

ϕ ∼ U(0, π/2), and α ∼ U(0, 2π).
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3.5.1 Generalization to Arbitrary Configurations & Calibration Objects

We conducted comprehensive experiments with various camera configurations and calibration

objects to evaluate the generalization of our method. Cameras were positioned in geometric config-

urations common to real-world scenarios, such as the O-shaped (NC = 10 ), U-shaped (NC = 7

) and T-shaped (NC = 4 ) arrangements. As shown in Table 3.1 (in rows 1, 4, and 5),

even with a small number of fiducials i.e., Nfid. = 8, the reprojection errors RE20K
avg are low with

9.93± 1.4× 10−4, 14.67± 3.5× 10−4, 12.89± 2.1× 10−4, for the O-shape, U-shape, and T-shape

configurations, respectively.

The versatility of our approach is further demonstrated through tests involving calibration ob-

jects with different shapes and numbers of fiducials. Specifically, we evaluated our model using a

calibration cube with Nfid. = 8 and a calibration sphere with Nfid. = 64 fiducials. As shown in

Table 3.1(rows 1, 6), our method maintains a consistent error profile for both calibration objects.

3.5.2 Comparison with CMM-calibrated multi-camera system.

As previously stated, it is important to recognize that regressing camera poses under the con-

ditions that θ ∼ U(0, 2π), ϕ ∼ U(0, π/2) is more challenging than in typical real-world scenarios

where multi-camera systems have predefined operational ranges for θ and ϕ. Our method, when

practically tested in a surgical setting using a multi-camera system with a predefined operational

range of motion (specifically, an overhead fixed O-shaped system (NC = 6 ) where θ = ϕ = 0,

and a calibration object with Nfid. = 8), demonstrated superior performance. This system was

previously calibrated (offline) using a high-end CMM. Our approach surpassed the CMM calibra-

tion in terms of reprojection error within this motion range. CMM calibration parameters without

perturbations led to an average reprojection error of 1.80 pixels. In contrast, our method led to

an average reprojection error of 1.12± 5 × 10−7 on a model trained without perturbations (Table

3.1; row 7), and an average reprojection error of 3.08±9.5 × 10−6 (Table 3.1; row 8) and 8.04±

7.2 × 10−4 (Table 3.1; row 9) for perturbations of up to 5% and 20%, respectively. Additionally,

with an average inference time of 0.0026 seconds on a system equipped with a Nvidia RTX 4090

GPU, our method proves capable of supporting real-time applications.
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3.6 Conclusion

Our work presents a neural calibration method tailored for the real-time and adaptive calibration

of multi-camera systems. Central to our approach is the combination of dynamic camera pose

synthesis with a differentiable projection model, which facilitates the direct optimization of camera

parameters from image data. Comprehensive experimental analysis demonstrated the robustness

of the method and its capacity to accurately predict calibration parameters while accommodating

random perturbations.

We further elaborated on the practicality of our method, contrasting the impracticality of recal-

ibrating or optimizing camera parameters at each step in real-time applications. Our evaluations

revealed our method’s superior accuracy and generalizability across different scenarios. The intro-

duction of two variants—catering to systems with either direct 2D projections of 3D fiducials or

color-coded 2D projected points—proves our method’s flexibility and broad applicability in diverse

operational contexts. Future research directions include the integration of perturbations into the

extrinsic parameters of the camera models. This holds the potential to significantly broaden the

applicability of our approach in more dynamically varied environments.
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Chapter 4

Additional Experimental Results

The following is a verbatim copy of the manuscript submitted as supplementary material for the

paper titled ”Neural Real-Time Recalibration for Infrared Multi-Camera Systems”.

Abstract

In the supplementary material, we present details on the network architectures and an ablation

on their components, comparisons with standard calibration and optimization techniques, qualitative

results and training nuances of the real-time neural multi-camera system calibration method. Ad-

ditionally, through a series of visualizations, we illustrate the precision of our model in predicting

camera poses against ground truth, with an emphasis on robustness in the presence of perturbations.

Lastly, we address the limitations and discussions.

4.1 Network Architecture

We introduce two variants: the first one, known as the point-based model (Pt), is intended for

multi-camera systems with onboard processing that directly outputs the 2D projections of the 3D

fiducials, which is the typical case for IR multi-camera systems; the second one is the image-based

model (Img), designed for multi-camera systems that output images for subsequent processing,

rather than the point coordinates. The architecture of both variants is summarized in the supplemen-

tary material.
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4.1.1 Point-based variant.

Given an input tensor X ∈ RNC×Nfid.×2, where NC is the number of cameras, and Nfid. is the

number of fiducials, the point-based model performs the following operations:

(1) Embedding Layer fembed: Maps input fiducial points to a higher-dimensional space: Xenc =

fembed(X), where Xenc ∈ RNC×512.

(2) Camera Identity Encoding CIE: Incorporates camera-specific information: X
′
enc = Xenc+

CIE(NC , 512), where X
′
enc ∈ RNC×512.

(3) Transformer Encoder fTE: Processes embeddings through a transformer encoder to model

complex relationships: X
′′
enc = fTE(X

′
enc), X

′′
enc ∈ RNC×512.

(4) Downstream Heads hM∗ : Process the encoder output through separate prediction heads for

different outputs X∗
out ∈ RM (rotation r6D, translation t, focal lengths fc = (fx, fy), princi-

pal point pp = (cx, cy), and distortion coefficients kc = (kc1,2,3, p1,2)):

Xr6D
out = h6R(X

′′
enc), Xt

out = h3t (X
′′
enc),

Xfc
out = h2fc(X

′′
enc), Xpp

out =h2pp(X
′′
enc), Xkc

out = h5kc(X
′′
enc)

(5) In a final step, the outputs X∗
out are combined to form the output tensor X̂out representing the

combined camera parameters:

X̂out = (γ(Xr6D
out ), X

t
out, X

fc
out, X

pp
out, X

kc
out)

where X̂out ∈ RNC×21, γ(.) is a function that expands the 6D parameterized rotation to a

rotation matrix as described in Section 3 in the main paper, and 21 is the number of calibration

parameters per camera.

Incorporating camera identity encoding CIE into our architecture significantly improves perfor-

mance by disambiguating camera perspectives, as shown in the ablations in Section 4.1.3. The

CIE applies a simple one-hot encoding strategy where each camera is assigned a unique identifier
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in this embedding space. To accommodate scenarios where the number of cameras exceeds the

embedding dimension, it introduces a small amount of noise to each encoding, ensuring that each

camera’s encoding remains distinct. This enhances robustness and accuracy for spatially-aware

tasks and supports generalization to new configurations and arbitrary camera setups.

4.1.2 Image-based variant.

The image-based variant utilizes a Vision Transformer (ViT) to process the input image tensor

Xin ∈ RNC×Ch×H×W and predict camera parameters.

(1) Encoder fencoder. The input image tensor is resized to 224× 224 pixels and passed through

a ViT encoder. The ViT model is adapted by replacing its classification head with an identity

layer, allowing the model to output a feature representation directly Xenc = fencoder(Xin),

where Xin ∈ RN×3×224×224, and Xenc ∈ RNC×768.

(2) Bottleneck Layer fbottleneck. The encoded features are further processed through a bottle-

neck layer to reduce dimensionality and focus on relevant features for parameter prediction:

Xbottleneck = fbottleneck(Xenc), and comprises a linear layer, reducing features to RNC×128.

(3) Downstream Heads: Similar to the point-based model variant, separate heads are used for

predicting the camera parameters from the bottleneck features Xbottleneck, and combined to

form the output tensor X̂out ∈ RNC×21.

4.1.3 Ablation Study

We conducted an ablation study to demonstrate the impact and significance of individual com-

ponents of our network. All models have been trained following the training strategy in Section 4.4

in the main paper, given the conditions explained in Table 4.1.
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Figure 4.1: Visualization of predicted vs ground truth camera poses. The calibration object
is a sphere with 64 fiducials. The multi-camera system configuration is O-shaped comprising 10
cameras. For closer inspection please refer to the interactive visualization in the cameras.html file.

Impact of Value Scaling

We highlight the significant role of scaling rotation and distortion coefficients prior to RMSE

loss calculation. Given the inherently small magnitudes of these coefficients—elements of the rota-

tion matrix (0 < ri < 1) and distortion parameters (kc1,2,3, p1,2 ≲ 0.1)—their contribution to the

overall loss is minimal. Introducing a scaling factor, λscale, amplified their effect, as evidenced by

the increased prediction errors observed when omitting this factor, detailed in Table 4.1.

Camera Identity Encoding CIE

We showcase the significance of Camera Identity Encoding (CIE). The results in Table 4.1

clearly indicate that incorporating CIE leads to notable performance improvements. By integrating

CIE, our model distinctly differentiates between camera perspectives, leading to marked improve-

ments in accuracy for spatially-aware tasks.
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Table 4.1: Ablation study results. Training on all models includes a perturbation of Max Perturb.
κ ∈ [-2.5%,+2.5%] of the OEM intrinsic parameters, utilizing 10 cameras (NC = 10) and a cali-
bration object with 8 fiducials (Nfid. = 8). Pt models have been trained for 300k epochs and Img
models for 150k epochs.

Row
#

Variant #
Params

θ ϕ Encoder Scaled
λscale = 1000

Camera
Identity
Encoding
CIE

RE20K
avg

(pixels)

1 Pt ∼ 33m ∼ U(0, 2π) ∼ U(0, π/2) Transformer ✓ ✓ 12.47± 6× 10−4

2 Pt ∼ 33m ∼ U(0, 2π) ∼ U(0, π/2) Transformer ✓ 421.26± 9.6× 10−3

3 Pt ∼ 33m ∼ U(0, 2π) ∼ U(0, π/2) Transformer ✓ 25.49± 2× 10−2

4 Pt ∼ 8m ∼ U(0, 2π) ∼ U(0, π/2) CNN-1D ✓ ✓ 96.93± 3.9× 10−2

5 Img ∼ 86m 0 0 ViT ✓ - 6.89± 5.8× 10−5

6 Img ∼ 24m 0 0 CNN-2D ✓ - 20.62± 2.8× 10−5

Impact of Encoder

We contrast the performance impact between utilizing a transformer encoder and a 1D con-

volutional (CNN-1D) encoder within our model. As detailed in Table 4.1, the integration of a

transformer encoder significantly enhances model accuracy. Similarly, for the image-based model,

the ViT encoder results in increased precision when compared with CNN-2D.

4.2 Comparison with Standard Calibration and Optimization Tech-

niques

In this section, we explore the differences between recalibrating and optimizing infrared cam-

eras at every step in real-time applications. We start our discussion in Section 4.2.1, examining the

drawbacks of recalibrating at each step using standard methods. Through experiments, we demon-

strate the significant time required for this process, thereby illustrating the impracticality of using

traditional methods for on-the-fly calibration in multi-camera systems. Following this, Section 4.2.2

presents experiments that emphasize the difficulties in minimizing reprojection errors using Bundle

Adjustment (BA).

4.2.1 Inference vs. Recalibration

In this section, we address the limitations of traditional calibration methods. Traditional cal-

ibration methods require a large number of images, especially for applications demanding high
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accuracy. In such scenarios, the requirement can escalate to thousands of images, leading to a pro-

hibitive increase in execution time (i.e., > 1000 images for vision-based computer-assisted surgical

multi-camera systems). Even in the hypothetical scenario where capturing thousands of images

instantaneously were possible, the calibration process itself remains time-consuming and scales

poorly as image quantity increases. As depicted in Figure 4.2 for a single camera, this execu-

tion time grows exponentially with the number of images, rendering a recalibration at every step

impractical within real-time applications. Additionally, increasing the number of iterations in the

Levenberg-Marquardt refinement step leads to a linear time increase, as illustrated by the blue curve

in Figure 4.2.

Figure 4.2: Runtime for traditional camera calibration. Exponential growth in calibration time
with increasing number of images (red; 1 camera). Linear increase w.r.t. LM iterations on 100
images (blue; 1 camera). Ours; real-time (τ i=1

min = 0.0026s, τ i=10
max = 0.012s) for increasing number

of cameras 2i, 1 ≤ i ≤ 10 (black).

In contrast, our method operates on a fixed number of cameras, NC , which inherently caps the

inference time to τ i=1
min = 0.0026s, τ i=10

max = 0.012s for increasing number of cameras 2i, 1 ≤ i ≤ 10

on an Nvidia RTX 4090, as shown in Figure 4.2 by the black curve. This translates to ∼ 387

inferences per second, demonstrating a significant advantage in the context of real-time applications.
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4.2.2 Inference vs. Minimizing Reprojection Errors

We now pivot our experiments to investigate the feasibility of minimizing reprojection error

at every step using Bundle Adjustment (BA) as an alternative to recalibrating at every step, in the

context of real-time optimization amidst decalibration.

We conducted 1000 trials, each applying random perturbations within a range of κ ∈ [−10%, 10%]

to the OEM intrinsic parameters. For every trial, our objective was to minimize the reprojection er-

ror with BA, utilizing data from Nfid. = 8 points and NC = 6 cameras.

Our findings highlight a significant constraint: the time taken for a single BA iteration, averaging

0.0385 seconds, substantially exceeds our execution time of 0.0026 seconds for a single inference,

and proves that optimizing camera parameters by minimizing reprojection errors at every step is not

a viable choice for real-time applications.

Figure 4.3: Effect of decalibration on reprojection error (RMSE). OEM intrinsic parameters are
perturbed by 20%, i.e., κ ∈ [−10%, 10%], simulating potential decalibration. Reprojection error
without intervention (red), with 1 iteration of Bundle Adjustment (green), with 25 iterations (blue);
1000 trials.

Furthermore, a single iteration of BA resulted in minimal improvement in reprojection error, as

illustrated in Figure 4.3 in green vs red. Subsequent experiments showed that achieving a noticeable

reduction in reprojection error required an average of 25 BA iterations per system’s capture, culmi-

nating in an untenable average execution time of 1.2892 seconds for real-time processing. Despite
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these efforts, the reprojection error remained significantly high (Figure 4.3; blue), compared to our

method (Table 1 in the main paper; rows 9, 10).

4.3 Qualitative Results

In Figure 4.1, we show a qualitative result of the calibration from the multi-camera system

calibration. The blue-shaded spheres represent the ground truth values. The red-shaded spheres

represent the predicted values. The single yellow sphere per multi-camera system represents the

first camera, and is singled out for visualization purposes only, to demonstrate the in place rotation

Rrandom i.e. that the multi-camera system does not always have the same vertical orientation. For

closer inspection please refer to the interactive visualization in the supplementary material.

Figure 4.5 illustrates the reprojection accuracy of 3D fiducials using predicted camera poses

(white dots) contrasted against the ground-truth projections (color-coded). In this example, a point-

based model was trained with 5% perturbation, and the input points to the model were generated

with no perturbation to the camera parameters. The multi-camera system is arranged in an O-shape,

consisting of 10 cameras, with a cube with 8 fiducials as the calibration object.

Figure 4.4: Reprojection of 3D Fiducials with Predicted Camera Poses (With 5% Perturba-
tion). This figure illustrates the resilience and accuracy of our pose estimation model during decal-
ibration of the camera parameters of up to 5% perturbation. The calibration cube and the O-shaped
arrangement of 10 cameras remain constant as in Figure 4.5, allowing for a direct comparison across
different testing conditions. Note: The reprojected points are shown in white. For optimal visibility,
please zoom in.

Figure 4.4 shows the same model as Figure 4.5, i.e., trained with a 5% perturbation. However,
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in this example we simulate a decalibration by generating the test data from perturbed camera

parameters of up to 5%. Beyond the quantitative evaluation presented in the previous section, these

figures facilitate a direct qualitative comparison of model performance and clearly demonstrate the

robustness of our pose estimation technique under conditions of uncertainty.

4.4 Training: Less Effective Strategies

In this section, we describe our exploration of various loss and regularization terms intended to

improve model performance. Despite their theoretical potential, these methods did not enhance our

results in practice.

4.4.1 Regularization terms

• A regularization term, denoted as Lκc , was introduced to encourage minimal distortion coef-

ficients (k1, k2, k3, k4, k5) by minimizing the sum of the absolute values of these coefficients.

• A regularization term, Lfc, was designed to ensure consistency in the focal lengths fx and fy

by minimizing the squared difference between these focal lengths.

Figure 4.5: Reprojection of 3D Fiducials with Predicted Camera Poses (Test Data Generated
Without Perturbation). This figure demonstrates the reprojection accuracy in a O-shaped multi-
camera setup comprising 10 cameras, with the calibration object being a cube with 8 fiducials. The
comparison between the predicted (in white) and ground-truth (color-coded; enlarged for visualiza-
tion purposes) projections demonstrates the precision of our model in the absence of perturbation.
Note: The reprojected points are shown in white. For optimal visibility, please zoom in.
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• The regularization term Lpp aimed to align the principal points (cx, cy) with the image center

by minimizing the squared Euclidean distance between the principal points and the center of

the image.

• A regularization term, Llargefc, is formulated to discourage small focal lengths by imposing

a penalty on the inverse of the sum of the focal lengths along both the x and y axes.

• Applying an L1 norm regularization to our model’s parameters aimed to encourage sparsity

and reduce overfitting by penalizing large weights, thus simplifying the model. This tech-

nique, intended to improve generalization, unfortunately did not yield the expected perfor-

mance enhancements in our camera parameter prediction task.

4.4.2 Losses

We investigated the log-cosh loss function, attracted by its theoretical benefits such as smooth

gradients, outlier robustness, and balanced error sensitivity. These characteristics suggested that

log-cosh could enhance prediction precision and stability. The log-cosh loss is given by,

Llogcosh =
1

N

N∑︂
i=1

((yi − ŷi) tanh(yi − ŷi)−

log(2) + log
(︂
1 + e−2|yi−ŷi|

)︂
)

where yi represents the target values, and ŷi represents the predicted values. However, contrary to

our expectations, empirical testing revealed that log-cosh loss did not outperform our existing loss

function described in Section 4.3 in the main paper.

Figure 4.6 illustrates a key observation: minimizing our proposed final loss also reduces the

auxiliary losses we initially investigated-except from the L1 norm which relates to the network

weights rather than the calibration error, and whose purpose is to enforce sparsity. However, this

effect is not reciprocal; directly incorporating these auxiliary terms into our model did not further

enhance performance beyond the improvements achieved with the final loss alone described earlier.

This indicates that while our final loss effectively captures the essence of the auxiliary losses, adding

them explicitly does not provide additional benefits. In the figure, we present the training loss
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Figure 4.6: Illustration of the proposed loss compared to auxiliary regularization and loss
terms. This figure demonstrates that minimizing the proposed loss leads to a reduction in auxiliary
losses. However, this is a non-reciprocal relationship where the inclusion of auxiliary losses does
not further improve model performance beyond the capabilities of the proposed loss which is a
combination of the reprojection error, the RMSE error of the parameters, and the geodesic error.
Here, we present the training loss graphs for the point-based variant. As previously described, the
distortion coefficients are scaled by scaling factor λscale = 1000.

patterns for the point-based variant. Comparable trends are observed with the image-based variant.

4.5 Limitations & Discussion

4.5.1 Adhering to Operational Specifications

Our camera pose synthesis methodology is specifically designed to meet the manufacturer’s

usage requirements, prioritizing high-accuracy predictions in real-world applications, particularly

in time-critical contexts such as surgical applications. An important component of our methodology

involves simulating a field of view that ensures comprehensive coverage of the area of interest,

closely mimicking the actual setup. This is accomplished by ensuring a constant radius for the

hemisphere, in accordance with the operational guidelines of the multi-camera system. Unlike some

multi-camera systems that are statically affixed with no or limited range of motion, our methodology

introduces a significant enhancement by allowing an extended range of motion—albeit at a fixed

distance—over the entire hemisphere. The decision to adhere to the specified fixed radius is a

deliberate design choice aimed at ensuring that our synthesized camera poses accurately reflect the

real-world configuration.
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4.5.2 Limited Range of Motion for Image-based

Our assessment of the image-based variant shows promising results in multi-camera setups hav-

ing a limited range of motion. However, to achieve broader generalization across diverse vantage

points -especially at glazing angles-, a more advanced architecture is imperative. This is based

on the observation that accuracy drops when using the full range of motion on the hemisphere,

attributed to the complexity of input images. Specifically, the challenge arises as only a fraction,

Nfid. pixels, are relevant to the task amidst the backdrop of the remaining H ×W −Nfid. pixels,

which significantly narrows the dataset’s utility for network learning.

4.5.3 Model Customization

Our methodology demonstrates a tailored approach, achieving high accuracy in predicting cam-

era parameters when applied to the particular multi-camera system, calibration object, and operating

distance utilized during its training phase. This high level of accuracy reflects how well the method

is customized to fit its specific training conditions, including the perturbations, up to the extent the

model has been trained to withstand. However, it is important to note that the model’s performance

is finely tuned to this particular setup. Any deviation from the original camera setup, use of a dif-

ferent calibration object, or change in the desired maximum perturbation level requires the training

of a new model tailored to those new conditions.

4.5.4 Decalibration Detection

Our method also extends beyond real-time calibration to effectively identify decalibration. By

continuously comparing the predicted calibration parameters in real-time with those of the OEM,

one can swiftly identify any deviations indicative of decalibration. This dual functionality positions

our method as both a calibration tool and an operational integrity monitor, ensuring continuous

accuracy and reliability of multi-camera systems through early detection and prompt recalibration

response.
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4.6 Model Training Progression Animation

Included in the supplementary materials is a fast-forward animation, which illustrates the evo-

lution of our network’s learning process throughout the training phase. This animation presents

key stages of the network’s training progression at intervals of every 20 epochs, for a total of 50K

epochs.
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Chapter 5

Ablation Studies

Abstract

This chapter presents the experimentation, which was not documented in previous chapters. Pri-

marily, it outlines the outcomes of experiments conducted utilizing various proportions of each loss

in the compound loss function. Subsequently, it presents findings from experiments employing other

encoder networks and comparing their performance with the Transformer encoder. In addition to the

Convolutional encoder that was evaluated in Chapter 4, this section employs Graph Neural network

and LSTM models as encoders and compares their performance against the Transformer encoder.

Finally, the effectiveness of Bundle Adjustment optimization is further evaluated in the presence of

simultaneous extrinsic and intrinsic perturbations. This experiment confirms the findings of Section

4.2.2 and extends the results to a more general case involving full parameter perturbation.

5.1 Impact of Loss Term Weights

In this section, the impact of different weights (λ1 and λ2 ) assigned to various components of

the loss function on the performance of the camera calibration regression model is explored and

reported in Table 5.1. The overall loss function, expressed as L = λ1×Ldiff +λ1×Lgeo+λ2×Lϵ

in Section 3, was altered in the following ways:

• λ1 × Lgeo and λ2 × Lϵ were excluded from the loss function, and L = λ1 × Ldiff with
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Table 5.1: Experimental results for various loss strategies. RE20K
avg is the average RMSE repro-

jection error on 3 different trials (synthetic test sets, each comprising 20,000 data samples). Training
on all models includes a Max Perturb. κ ∈ [-2.5%,+2.5%] of the intrinsic and extrinsic parame-
ters. Nfid. and NC are the number of 3D fiducials and the number of cameras, respectively. The
intrinsic rotation angle α remains the same in all experiments i.e., α ∼ U(0, 2π). Also, λ1, λ2

determine the contribution of loss components to the total loss after the first 100 epochs.

Row
#

Variant θ ϕ Nfid.

(object)
NC

(config.)
λ1, λ2

(epoch > 100)
RE20K

avg

(pixels)

1 Pt ∼ U(0, 2π) ∼ U(0, π/2) 8 10 100, 0.01 9.93± 1.4× 10−4

2 Pt ∼ U(0, 2π) ∼ U(0, π/2) 8 10 100, 0.1 13.98± 1.1× 10−4

3 Pt ∼ U(0, 2π) ∼ U(0, π/2) 8 10 0, 1 Inf loss
4 Pt ∼ U(0, 2π) ∼ U(0, π/2) 8 10 1, 0 13.35± 1.5× 10−4

λ1 = 100 was crafted as the loss for the whole training process. Excluding the Lϵ from

the total loss has led the model to have worse performance with a RE20K
avg average RMSE

reprojection error of 13.35 (Table 5.1; row 4). The reason might stem from the fact that only

minimizing Ldiff will try to regress parameters close to the ground truth. However, the nature

of the task cannot be fully represented by this loss, since small changes in parameters such

as the rotation angles could lead to large reprojection errors, which is not fully reflected in

Ldiff .

• After the first 100 epochs, the loss function was adjusted to include only the reprojection error,

defined as L = λ2×Lϵ with λ2 = 1. While this strategy was expected to significantly reduce

the reprojection error, it led to Lϵ increasing infinitely and the model becoming unstable, as

the loss became so large that NaN values were encountered, despite clipping the gradients.

• Finally, the value of λ2 which was 0.01 in all the experiments presented in Section 3 and

Section 4, was changed to 0.1. This strategy led to RE20K
avg average RMSE reprojection error

of 13.98 (Table 5.1; row 2). Although this strategy has resulted in a comparative result to the

main approach, it shows that λ2 = 0.01 is a better choice.
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5.2 Graph Neural Network Encoder

In the quest to enhance camera calibration through innovative machine learning approaches, a

Graph Neural Network (GNN) encoder was tested within the regression pipeline. The GNN encoder

employs a two-layer Graph Convolutional Network (GCN) [42] architecture, and input features are

processed through successive GCN layers, each followed by ReLU activations, to learn meaningful

representations from graph-structured data. The features extracted by this GNN encoder are then

fed into multi-layer perceptron (MLP) heads to predict camera calibration parameters.

Despite the theoretical strengths of GNNs in capturing spatial relationships and their poten-

tial in handling non-Euclidean data structures, the GNN encoder underperformed compared to the

transformer-based model, with the RE20K
avg average RMSE reprojection error of 249.93 (Table 5.2;

row 2). This discrepancy in performance can be attributed to several factors. Firstly, GNNs might

struggle with the specific characteristics of the camera calibration task, where the ability to model

long-range dependencies and global context, as Transformers do, is crucial. Additionally, GNNs are

typically more sensitive to the quality of the graph structure and edge information, which might not

be as effectively leveraged in this application compared to the self-attention mechanism of Trans-

formers. The comparative analysis underscores the importance of selecting model architectures

that align well with the nature of the task, illustrating why the Transformer-based approach yielded

superior results in this scenario.

5.3 LSTM Encoder

Given that the input to the camera calibration task consists of point coordinates, utilizing an

LSTM [43] encoder was considered a promising approach. The sequential nature of object points

can be effectively captured by LSTMs, which are designed to handle temporal dependencies and

sequential data. This capability makes LSTMs a potentially suitable choice for modeling the ordered

structure of point coordinates, allowing the network to learn the inherent relationships between

successive points.

The RNNEncoder was constructed using PyTorch, implementing an LSTM with two layers to

process the sequential input data. The LSTM layers aim to capture the temporal dependencies in
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Table 5.2: Experiment Results with Various Encoders. Training on all models includes a per-
turbation of Max Perturb. κ ∈ [-2.5%,+2.5%] of the OEM intrinsic and extrinsic parameters,
utilizing 10 cameras (NC = 10) and a calibration object with 8 fiducials (Nfid. = 8).

Row
#

Variant #
Params

θ ϕ Encoder Scaled
λscale = 1000

Camera
Identity
Encoding
CIE

RE20K
avg

(pixels)

1 Pt ∼ 33m ∼ U(0, 2π) ∼ U(0, π/2) Transformer ✓ ✓ 9.93± 1.4× 10−4

2 Pt ∼ 13m ∼ U(0, 2π) ∼ U(0, π/2) GNN ✓ ✓ 249.93± 1.7× 10−4

3 Pt ∼ 9m ∼ U(0, 2π) ∼ U(0, π/2) LSTM ✓ ✓ 14.11± 1× 10−4

the point coordinates, transforming these into meaningful feature representations. These features

are then used by multi-layer perceptron (MLP) heads to predict camera calibration parameters.

Despite the theoretical suitability of LSTMs for this task, the LSTM encoder did not perform

as well as the transformer-based model, resulting in a higher reprojection error of 14.11 compared

to 9.93 (Table 5.2; row 3) with the transformer encoder. This underperformance could be attributed

to several factors. LSTMs, while effective in capturing local sequential dependencies, may struggle

with the long-range dependencies and global context that are crucial for accurate camera calibration.

Transformers, with their self-attention mechanisms, excel at capturing such long-range dependen-

cies, leading to more robust feature representations. Additionally, LSTMs are more prone to issues

like vanishing gradients, which can hinder the learning process for deeper dependencies. This com-

parison underscores the necessity of selecting model architectures that are well-aligned with the

task’s requirements, highlighting the superior performance of the Transformer-based approach in

this scenario.

5.4 Inference vs. Minimizing Reprojection Errors with Presence of

Extrinsic and Intrinsic Parameters Perturbation

As part of this thesis, Bundle Adjustment (BA) was employed to optimize the calibration of a

multi-camera setup. This approach was chosen to evaluate its capability for online calibration and

to compare its performance with a deep-learning model. This method optimizes camera parameters

and the 3D scene structure by minimizing the discrepancy between observed image points and their

projections. Implementing this approach requires capturing multiple images of a planar calibration
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object, such as a checkerboard or grid, from varied viewpoints using all the cameras. Correspond-

ing 2D points extracted from the images are paired with known 3D points, which are then used to

estimate the intrinsics and extrinsics of all the cameras. To achieve accurate calibration results, this

method utilizes a nonlinear optimization algorithm that refines the initial parameter estimates, com-

pensating for any inaccuracies introduced during the initial parameter estimation process. Leverag-

ing iterative optimization techniques, BA is crucial for refining camera calibration and enhancing

accuracy in applications such as augmented reality and 3D mapping. In this section, as an extension

to the experiment done in 4.2.2, after perturbing all the camera parameters, the effectiveness of BA

to refine the camera parameters is evaluated. Figure 5.1 shows how intrinsic and extrinsic parameter

perturbation degrades the reprojection error and highlights the limited effectiveness of performing

BA with 1 and 25 iterations in improving the reprojection error. Therefore, this experiment con-

firms the findings of 4.2.2 and underlines the fact that optimizing camera parameters by minimizing

reprojection errors at every step is not a viable choice for real-time applications.

Figure 5.1: Effect of all parameters’ decalibration on reprojection error (RMSE). OEM in-
trinsic and extrinsic parameters are perturbed by 20%, i.e., κ ∈ [−10%, 10%], simulating potential
decalibration. Reprojection error without intervention (red), with 1 iteration of Bundle Adjustment
(green), with 25 iterations (blue); 1000 trials.
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Chapter 6

Conclusion

In this thesis, critical challenges in the calibration and real-time optimization of vision-based

computer-assisted surgical systems with multi-camera setups have been addressed. Traditional cal-

ibration methods, although effective, are hindered by the exponential increase in execution time as

the number of images grows, making them impractical for real-time applications. By leveraging

an Nvidia RTX 4090, a novel approach has been developed that maintains a consistent inference

time, achieving approximately 387 inferences per second, representing a significant improvement

for real-time scenarios.

Experiments have demonstrated that minimizing reprojection errors through Bundle Adjustment

is not feasible for real-time applications due to the substantial time required for each iteration. In

contrast, the proposed point-based model has shown robustness and accuracy, maintaining high per-

formance even with up to 20% perturbation in camera parameters. Various regularization terms and

loss functions were explored, revealing that while theoretical enhancements did not yield practical

improvements, the proposed loss function effectively reduced calibration errors.

The method has been designed to adhere to operational specifications crucial for surgical appli-

cations, ensuring high accuracy and real-time performance. The customization of the methodology

to specific setups has highlighted its high accuracy, though retraining is necessary for different con-

figurations. The regression accuracy achieved by the point-based model further underscores its

effectiveness in real-world applications.

Additionally, the approach effectively detects decalibration, ensuring continuous accuracy and
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reliability of multi-camera systems. This dual functionality enhances the operational integrity of

these systems.

In summary, a robust, efficient, and scalable solution for real-time calibration of multi-camera

systems has been presented in this thesis. The significant reduction in execution time, coupled

with high accuracy and resilience under perturbation, makes the proposed method a valuable tool

for advancing computer-assisted surgical systems and other real-time applications requiring precise

multi-camera calibration.
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