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Abstract

Risk-Averse Policy Gradient for Tail Risk Optimization Using Extreme Value

Theory

Parisa Davar

In this work, we develop a risk-averse Policy Gradient algorithm in a tail risk optimization

problem. Our objective is to find the optimal policy that minimizes tail risk, given a risk mea-

sure such as Conditional Value at Risk (CVaR). We employed Extreme Value Theory, along with

the automated threshold method to manage risks associated with extreme events. This paper is

the first to integrate EVT within risk-averse policy gradient RL algorithms for sequential decision

making. To evaluate our approach, we initially test it on simulated data generated from heavy-

tailed distributions, including the Generalized Pareto distribution (GPD) and the Burr distribution.

Subsequently, we applied our method to address a hedging problem, aiming to mitigate exceed-

ingly high risks and finding optimal gamma hedging strategies within a highly volatile market

where options are notably expensive. This involves identifying the optimal proportion of gamma

to hedge, while minimizing costs and risk associated with gamma hedging errors. Also, we utilize

the finite difference method to approximate the gradient of the estimated CVaR. The experimen-

tal results indicate convergence in the policy, CVaR estimation, and the gradient approximation

of estimated CVaR. Moreover, integrating Extreme Value Theory into risk-averse policy gradient

methods significantly improves performance, especially in markets characterized by an underlying

asset following a Normal Inverse Gaussian distribution (NIG), known for its pure-jump semi-heavy

tail distribution.
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Chapter 1

Introduction

Recently, reinforcement learning (RL) has been subject to a lot of attention due to its success

in many real-world problems with high complexity such as board games, healthcare (Yu, Liu,

Nemati, & Yin, 2021), and finance (Hambly, Xu, & Yang, 2023). RL methods are learning through

interactions between an environment, characterized by states, and an agent, defined by actions.

This interaction dynamics enables RL to find optimal solutions for sequential decision-making

problems via an iterative process of trial and error. RL algorithms can be broadly categorized into

two main groups: model-based and model-free approaches. Both categories aim to determine an

optimal policy. Model-based algorithms either require an explicit knowledge of the environment,

represented by transition probabilities, or learning its dynamics. Conversely, model-free methods

do not require such environmental knowledge. For an in-depth exploration of RL algorithms, refer

to Sutton and Barto (2018) for a comprehensive review.

In traditional RL, the primary objective is to maximize rewards. However, risk-aware RL

shifts its focus toward minimizing risk, incorporating a risk measure into the objective function.

Risk-aware RL plays a pivotal role in numerous fields, particularly in finance, where effective risk

management is essential.

Risk management plays a crucial role in the financial industry, particularly when it comes to

assessing rare events that can lead to significant and potentially catastrophic risks. For financial
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institutions, it is essential to identify, measure, and mitigate risks in order to protect their invest-

ments. As financial institutions become more complicated, the use of appropriate risk management

strategies becomes increasingly important. Furthermore, the 2008 global financial crisis and fol-

lowing economic shocks have highlighted the importance of a proactive and comprehensive risk

management strategy.

Advanced risk modeling tools are the key elements of modern risk management in financial

institution. By thoroughly assessing investments in extreme scenarios, financial institutions can

better prepare for economic downturns and protect the interests of their clients and stakeholders.

Extreme Value Theory (EVT) is a well-known statistical risk management methodology to

manage rare and extreme events that can have significant consequences. EVT consists of two

main methods: the block maxima method and the peaks-over-threshold (POT) method or threshold

exceedances method. In the block maxima method, data is divided into equal-sized blocks, and

we focus on identifying and modeling distribution of most significant losses or extreme events of

each block. However, this method has a drawback as it can waste data because of considering only

one data point from each block. On the other hand, the POT method focuses on modeling rare

events that exceed a pre-determined high threshold. EVT provides us with significant insights into

how these rare events behave, allowing us to better prepare to reduce the likelihood of catastrophic

events.

There are two fundamental theorems in EVT: the Fisher-Tippett theorem and the Pickands-

Balkema-de Haan theorem. These theorems establish that the excess distribution converges to a

Generalized Pareto Distribution (GPD) for sufficiently large thresholds. This convergence is highly

useful because EVT suggests that very extreme events follow GPD distributions. Moreover, Maxi-

mum Likelihood Estimation (MLE) and the Method of Moments are two well-known methods for

estimating the GPD parameters of excess data.

In this thesis, we introduce a risk-averse RL approach designed to effectively manage tail risk

and ultimately mitigate catastrophic risk. To quantify the risk associated with the tail distribution,
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we employ CVaR as our risk assessment criterion. CVaR, sometimes referred to as expected short-

fall, allows us to evaluate the potential losses beyond a certain threshold with a focus on the most

severe outcomes. To address rare events characterized by very large observations, we employ the

POT method, a technique within EVT. The POT method, also known as threshold exceedances,

focuses on modeling data beyond a high threshold. This method is particularly useful when deal-

ing with rare events. The selection of an appropriate high threshold is a crucial aspect of the POT

method, and it often poses a challenge. To navigate this issue, we incorporate an automated thresh-

old selection method drawn from the EVT literature. This ensures that we choose a threshold that

optimally represents the tail behavior of our data. Subsequently, by applying the EVT formula for

CVaR estimation, we can effectively compute the CVaR associated with the excesses.

By effectively integrating the EVT method with the risk-averse RL framework, we identify

optimal policies that minimize risk of extreme events. In our optimization process, we utilize the

Adaptive Moment Estimation (ADAM) optimization method, a widely adopted approach known

for its effectiveness in training deep learning models.

We assess our proposed method in two parts: initially, on simulated datasets generated from

heavy-tailed distributions such as GPD and Burr distributions; subsequently, we apply our model

to a hedging portfolio problem, showcasing its application in finance.

In the initial phase, we derived costs from the GPD and Burr distributions, as they hold par-

ticular significance for us due to their propensity to generate extremes. Heavy-tailed distributions,

like these, leading potential catastrophic risks, hence our objective is to find the optimal policy for

risk mitigation.

In the second phase, we suppose the market follows an exponential Normal Inverse Gaussian

(NIG)-LÂevy model, then we consider a problem of gamma hedging for an at-the-money European

call option. Gamma hedging is a method aimed at minimizing potential risks associated with un-

favorable price fluctuations in the market. However, achieving a perfect hedge is unfeasible in

real markets, as the value of the hedging portfolio cannot precisely match the option’s payoff at
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expiration, leading to hedging errors. Moreover, when the market model follows a NIG distri-

bution, characterized by pure jump semi-heavy-tailed behavior, markets become highly volatile,

making options expensive for hedging strategies. An effective approach to reduce hedging costs

and minimize the hedging error is to adjust the proportion of gamma to hedge. In this study, the

RL risk-averse policy specifies the optimal proportion of gamma to hedge to minimize risk in a

highly volatile market. To address our concerns regarding extremely rare events, we incorporate

EVT into the risk-averse policy gradient algorithm as it is a suitable method for this purpose.

The experimental outcomes for both simulated data and addressing hedging problems demon-

strate the convergence of our proposed algorithm, the risk-aware policy gradient method using

EVT with automated threshold selection. Furthermore, we employ the finite difference method to

estimate the gradient of the estimated CVaR during the optimization process. The results indicate

that the approximation of the gradient for the estimated CVaR converges to zero, indicating that

the policy converges to its optimal value.

Additionally, we evaluate the performance of CVaR estimation using EVT and compare it with

the sample averaging (SA) method. The findings reveal that EVT outperforms SA, showing the

efficacy of our approach in accurately estimating CVaR.

1.1 Main contribution

The primary objective of this thesis is to develop a risk-averse RL method specifically designed

to address tail risk optimization problems, with the aim of mitigating catastrophic risks. In this risk-

averse RL approach, we employ the EVT method to model the tail distribution and manage rare

events. Our focus centers on the POT approach, a key component of EVT. To tackle the challenge

of selecting an appropriate threshold in the POT method, we incorporate an automated threshold

selection technique introduced by Bader, Yan, and Zhang (2018) and used in Troop, Godin, and Yu

(2022). Additionally, to quantify the risk associated with the tail distribution, we use CVaR as our

risk criterion. Since there is no closed form formula for the gradient of CVaR for all distributions,
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we utilize the finite difference method to approximate the gradient of the estimated CVaR during

the optimization process.

Our work involves integrating the EVT method into the risk-averse RL framework. To the best

of our knowledge this thesis is the first to integrate EVT within risk-averse policy gradient RL

algorithms for sequential decision making. It bridges the gap between RL and the field of EVT.

The proposed algorithm can be applied in the realm of portfolio management, where portfolios are

intricately composed of diverse assets such as options on stocks. Given the stochastic nature of

stock prices, which are subject to constant fluctuation, our aim is to effectively hedge the portfolio

against very extreme potential losses. Specifically, we seek to minimize the worst-case losses while

optimizing the associated costs. This necessitates a strategic approach to risk management that can

navigate the uncertainties inherent in financial markets.

1.2 Related work

RL methods have achieved remarkable results in different areas of finance such as portfolio

optimization (Du, Zhai, & Lv, 2016), option pricing and hedging (Cao, Chen, Hull, & Poulos,

2020), and robo-advising or automated investment (Capponi, Olafsson, & Zariphopoulou, 2022).

A comprehensive survey of recent developments in the application of RL to finance can be found

in Hambly et al. (2023).

In traditional RL, the objective is to maximize the expected value of returns regardless of

the associated risks. This approach is recognized as risk-neutral RL. By contrast, risk-sensitive

RL methods have emerged to incorporate risk within the RL framework. An overview of these

advancements can be found in the survey conducted by Prashanth, Fu, et al. (2022). This survey

classifies risk-sensitive RL techniques into two distinct settings. The first involves the goal of

maximizing returns while taking risk into account as a constraint. The second setting directly

incorporates risk as an objective function within the optimization process. In the latter one, the

agent prefers to minimize the risk which is an inherent risk due to the stochastic nature of the

5



environment. It is referred to as risk-averse RL method.

In the literature, a variety of risk measurement methods have been explored such as mean-

variance, exponential utility formulation (Pratt, 1978), cumulative prospect theory (Tversky &

Kahneman, 1992), percentile performance criteria (Wu & Lin, 1999), Value at Risk (VaR), and co-

herent risk measures like CVaR (Artzner, Delbaen, Eber, & Heath, 1999; Rockafellar, Uryasev, et

al., 2000). These risk criteria are also used in the context of risk-sensitive RL. For example, Borkar

(2001) uses an exponential utility function in risk sensitive RL. More recently, Tamar, Di Cas-

tro, and Mannor (2012) and La and Ghavamzadeh (2013) consider a mean-variance risk measure.

Moreover, Prashanth, Jie, Fu, Marcus, and SzepesvÂari (2016) and Jie, Prashanth, Fu, Marcus, and

SzepesvÂari (2018) present risk-sensitive RL algorithms relying on the Cumulative Prospect Theory

(CPT) and Chow, Ghavamzadeh, Janson, and Pavone (2017) uses percentile performance as a risk

criterion. Two popular risk measures are VaR and CVaR. While VaR is not a coherent risk measure,

it is not commonly used as an objective in risk-sensitive RL (Vijayan & Prashanth, 2023). Tamar,

Glassner, and Mannor (2015) introduces a policy gradient method for any coherent risk measure

and derive a policy gradient theorem. According to Greenberg, Chow, Ghavamzadeh, and Mannor

(2022) study, policy gradient emerges as the most widely adopted approach for CVaR optimization

in RL.

EVT is a well known method in modeling the tail behavior of a distribution, focusing on events

that are rare and more extreme in financial data to avoid the catastrophic risks. Assessing these

risks, commonly referred to as catastrophic risks, holds significant importance in finance, particu-

larly in portfolio management within highly volatile markets. According to Godin, Mayoral, and

Morales (2012), it is widely acknowledged that markets exhibit semi-heavy-tailed distributions.

The Normal Inverse Gaussian (NIG) distribution, belonging to the family of semi-heavy-tailed

distributions, represents a pure jump process contributing to a highly volatile market. Thus, the

implementation of hedging strategies is essential since it enables investors to protect their portfo-

lios from price fluctuations.
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POT is a common method in EVT. The estimation of CVaR using the POT method has been ap-

plied across numerous studies, including Gilli and KÈellezi (2006), Gkillas and Katsiampa (2018),

and Szubzda and Chlebus (2019). A notable challenge within the POT method is the optimal

threshold selection. To address this challenge, Bader et al. (2018) introduced an EVT with an au-

tomated threshold selection method by ordered goodness-of-fit tests. Later Troop et al. (2022) have

further modified the automated threshold selection method within the context of risk-aware multi-

armed bandit problem. Their findings indicate that the EVT approach with automated threshold

outperforms the sample average method in term of RMSE of estimated CVaR.

In this thesis, we focus on tail risk optimization problem, using a risk averse policy gradient

using CVaR as an objective function and EVT with automated threshold selection method for

estimating CVaR. This is a bridge between risk averse policy gradient and EVT with automated

threshold selection method and there is no previous work to combine these two concepts to avoid

the catastrophic risk.

1.3 Thesis structure

This thesis is organized as follows. Chapter 2 gives an overview of the NIG - levy financial

framework and hedging strategy that will be considered in the application section of this thesis.

Moreover, the dynamics of stock price process, the pricing of European Call options as well as

delta gamma hedging formula based on NIG process are presented in this chapter.

Chapter 3 provides a review of two popular risk measures: VaR and CVaR. Also, it delves into

the methods of estimating these measures, focusing on both sample averaging and EVT methods.

Furthermore, we discuss the POT approach with an automated threshold selection method.

Chapter 4 includes an introduction to RL. We begin by presenting a review of Markov decision

processes. Then we introduce models proposed to tackle the sequential decision making problem,

with a specific focus on model-free RL methods.

Chapter 5 contains the details of our proposed algorithm. Our approach involves a risk-averse

7



policy gradient framework for tail risk optimization problem. This chapter introduces the risk-

aware policy gradient method, and then provides a more precise definition of the problem being

addressed.

Chapter 6 describes our experimental findings. This chapter is divided into two parts: the first

shows results derived from simulated data of simple distributions, including the GPD and the Burr

distribution, while the second section highlights outcomes obtained from the application of our

proposed model in finance, specially in hedging portfolio optimization.

Finally, we conclude the thesis by summarizing the contribution of this thesis and highlighting

our main achievements. Additionally, we outline potential works for future research and develop-

ment in this domain.
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Chapter 2

Financial Concepts

In this chapter, I will present definitions of key financial concepts essential for the application

section of the experimental results. Firstly, I will introduce the NIG distribution and delve into the

option pricing formula within the framework of NIG. Then, I will explain the delta and gamma

hedging strategies, along with the formula for delta-gamma hedging under the NIG assumption.

2.1 Normal Inverse Gaussian distribution

The NIG distribution, introduced by Barndorff-Nielsen (1977), is a non-Gaussian distribution

and a subclass of Generalized Hyperbolic distributions. The NIG distribution has four parameters

that allow for both skewness and higher kurtosis than the Normal distribution, making it more flex-

ible in modeling data with asymmetry and heavy tails. This flexibility makes the NIG distribution

particularly applicable in finance, where many financial assets exhibit semi-heavy tails Godin et

al. (2012).

A random variable X follows a NIG distribution, denoted as X ∼ NIG(α, β, µ, δ), where α is

the tail heaviness, β is the skewness, µ is the location and δ is the scale. The Probability Density

Function (PDF) of a NIG distribution is expressed as:

9



ϕNIG(x;α, β, µ, δ) =
αδeδγ

π

K1(α
√

δ2 + (x− µ)2√
δ2 + (x− µ2)

eβ(x−µ), x ∈ R. (1)

Here, Kλ(x) represents the modified Bessel function of the third kind with index λ, defined as:

Kλ(x) =
1

2

∫ ∞

0

uλ−1e−
1
2
x(u−1+u)du, x > 0, (2)

Also, µ ∈ R represents the location, 0 ≤ |β| < α indicates the skewness, α > 0 is the shape and

δ > 0 is the scale parameter.

Moreover, the CDF and survival function of a NIG are respectively as follow:

ΦNIG(x;α, β, µ, δ) =

∫ x

−∞
ϕNIG(y;α, β, µ, δ)dy, (3)

ΦNIG(x;α, β, µ, δ) =

∫ ∞

x

ϕNIG(y;α, β, µ, δ)dy. (4)

Additionally, the mean and variance are given by:

E(x) = µ+
δβ√

α2 − β2
, (5)

V ar(x) = µ+
δα2

(α2 − β2)
3
2

. (6)

The NIG is a normal variance-mean mixture distribution. If X has a NIG distribution, then

X ∼ N(µ + βw,w) where w is an Inverse Gaussian distribution. In other words, the NIG can be

constructed by the following formula:

µ+ βw +
√
wZ ∼ NIG, (7)

where Z follows a normal distribution. To simulate an Inverse Gaussian random variable with
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parameters a and b, denoted as IG(a, b), according to Schoutens (2003), we can use the following

algorithm of Michael, Schucany, and Haas (1976):

(1) Generate a standard Normal random number v.

(2) Set y = v2.

(3) Set x = a
b
+ y

2b2
−
√

4aby+y2

2b2
.

(4) Generate a uniform random number u.

(5) If u ≤ a/(a+xb), then return the number x as the IG(a, b) random number, otherwise return

a2

b2x
as the IG(a, b) random number.

This is a useful property of NIG to simulate NIG random variables.

2.2 Option price under NIG assumption

When logarithmic stock returns follow a NIG distribution, the dynamics of both risky asset St

and riskless assets Bt can be expressed as follows:

St = S0e
∑t

k=1 Zk , (8)

Bt = ert, (9)

where Zk is a NIG LÂevy process defined as follows.

Definition 2.1 (NIG LÂevy process) Let us consider a filtered probability space denoted by

(Ω, F, (Ft)t≥0, P ). An adapted cadlag R-valued process X = {X(t)}t≥0 with X(0) = 0 is a NIG

LÂevy process if the increments of X are independent, stationary and distributed as

ϕNIG(α, β, δt, µt). (10)
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C(t, St) = St

(
1− ΦNIG

(
ln

(
K

St

)
; α, β + 1, δ(T − t), [µ+ θ∗](T − t)

))

−Ke−r(T−t)

(
1− ΦNIG

(
ln

(
K

St

)
; α, β, δ(T − t), [µ+ θ∗](T − t)

))
, (12)

where θ∗ is defined as (11) and ΦNIG is the CDF of NIG distribution as expressed in (3).

2.3 Hedging strategy

Hedging in finance is a risk management strategy used to offset potential losses from adverse

price movements in the market. For instance, consider holding a short position (seller) in an

option contract on an underlying asset, with a specified expiration date and strike price. If the

option holder (buyer) decides to exercise the option, you are obliged to fulfill the contract, which

could result in losses if the market moves unfavorably. To mitigate this risk, a hedging approach

involves taking a long position (buyer) in other options and in the same underlying asset, essentially

purchasing the actual asset on which the option is based. This establishes a balancing position that

helps reduce potential losses associated with the short option position.

A replication portfolio is a collection of investments designed to replicate the initial position

and it will be re-balanced through time. Greeks are mathematical metrics representing the sensitiv-

ity of option prices with respect to risk factors, and can be used to construct a replication portfolio.

The most commonly used Greeks are Delta and Gamma.

Definition 2.2 (Delta) Delta is the sensitivity of the option price with respect to the price of the

underlying asset,

∆t =
∂Ct

∂St

. (13)

Definition 2.3 (Gamma) Gamma is the second order sensitivity of the option price with respect
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to the price of the underlying asset,

Γt =
∂2Ct

∂S2
t

=
∂∆t

∂St

. (14)

Delta-hedging is highly effective in the presence of minor fluctuations in the underlying stock

price. Conversely, a Gamma-hedging strategy is better suited to offset large fluctuations of the

underlying asset.

Now, let us consider constructing a replication portfolio using the Delta and Gamma Greeks.

Imagine you are holding a short position in call option C on stock S and intend to hedge your

position by employing a delta-gamma hedging strategy. Delta-gamma hedging requires utilizing

two distinct assets to construct a replicating portfolio: stocks (S) and additional options on the

same underlying stock (S), denoted as D. We will determine the quantities of these two assets

needed to hedge the position on option C over time.

A replicating portfolio consists of (θs) shares of the underlying S, (θD) of option D on the

same underlying stock S, and a certain amount of cash in the money market account at each time

t.

To determine the quantities of both assets, we aim to construct Delta-Gamma neutral portfolios

as follows:





0 = ∆(pf) = θC ∂Ct

∂St
+ θD ∂Dt

∂St
+ θS ∂St

∂St
,

0 = Γ(pf) = θC
∂2Ct

∂S2
t

+ θD
∂2Dt

∂S2
t

+ θS
∂2St

∂S2
t

,

(15)

where ∆(pf) and Γ(pf) represent the delta and gamma of the replication portfolio, respectively.

θC denotes the number of shares of option C.

Since ∂St

∂St
= 1 and

∂2St

∂S2
t

= 0, and by definition of delta and gamma, we have:





0 = ∆(pf) = θC∆C + θD∆D + θS,

0 = Γ(pf) = θCΓC + θDΓD.

(16)
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If we short one call option C, then θC = −1 and the second equation gives

θD =
ΓC

ΓD
. (17)

The first equation then becomes

θS = ∆C − ΓC

ΓD
∆D. (18)

2.4 NIG delta-gamma hedging

The Delta of a European call option Ct based on the mean-correcting risk-neutral measure (see

Eq 12) is provided by Godin (2016) as follows:

∆t =
∂Ct

∂St

= 1− ΦNIG

(
ln

(
K

St

)
; α, β + 1, δ(T − t), [µ+ θ∗](T − t)

)
. (19)

Then, it is straightforward to derive its NIG gamma formula, expressed as follows:

Γt =
∂2Ct

∂S2
t

=
1

St

ϕNIG

(
ln

(
K

St

)
; α, β + 1, δ(T − t), [µ+ θ∗](T − t)

)
. (20)

2.4.1 Hedging error

Consider the previous example in which you hold a short position in a call option with a strike

price K on the underlying stock S at maturity time T . If the stock price rises, resulting in ST >

K at maturity, the option holder may choose to exercise the option, purchasing the stock at the

predetermined strike price K. In this situation, a loss of ST −K is incurred. To offset this potential

loss, a hedging portfolio is constructed as outlined above.

In a complete market, perfect hedging is achievable. This implies that the value of the hedging

portfolio should exactly align with the option’s payoff at the terminal time. However, in reality,

this equivalence is often not achievable, leading to a hedging error. In mathematical terms, if VT
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denotes the value of the hedging portfolio at the terminal time, the hedging error can be defined as:

Hedging Error = max(ST −K, 0)− VT . (21)

Minimizing the hedging error plays an important role in financial risk management, as it di-

rectly impacts the effectiveness of hedging strategies and the overall stability of investment port-

folios. One key metric used to assess and mitigate this error is Conditional Value at Risk (CVaR),

which provides a comprehensive measure of risk by quantifying the expected losses beyond a cer-

tain threshold. In the next chapter, we will provide a detailed explanation of CVaR and estimation

methods for it.
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Chapter 3

Estimating Risk Measures

This chapter provides the necessary background on the main concepts of risk measures. First,

we begin by giving the definition of two well-known risk measures, VaR and CVaR. Then we revisit

the sample average and extreme value theory (EVT) estimation approaches and review some heavy

tail distributions. Finally, we explore sample averaging and extreme value theory (EVT) estimation

approaches.

3.1 Risk measures: VaR and CVaR

Risk management plays a vital role in investment decision-making and two widely used risk

measures for this purpose are VaR and CVaR. VaR represents the maximum loss of a portfolio at

a given confidence level denoted by α (e.g., 0.95, 0.99, or 0.999). By using VaR, investors can

gain insight into the potential downside risks associated with their investments. More formally, the

definition of VaR at confidence level α ∈ (0, 1) is expressed as follows.

Definition 3.1 (VaR) Let X denote a random loss. The VaR at confidence level α is calculated as:

VaRα(X) = inf{x ∈ R|FX(x) ≥ α}, (22)

where FX is the cumulative distribution function (CDF) of X .
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In statistical terms, VaR represents the quantile at level α of the cumulative distribution function

FX . However, VaR has some limitations, including its lack of coherence within the framework of

risk measures proposed by Artzner et al. (1999). Here we review four desirable properties for risk

measures. Those possessing all of them are defined as coherent risk measures. Let ρ be a risk

measure and X be the usual loss random variable. The risk measure ρ is considered coherent if it

satisfies the following four axioms:

(1) Monotonicity: For all X1 and X2, if X1 ≤ X2, then ρ(X2) ≥ ρ(X1).

(2) Convexity: For all X1, X2 and λ ∈ [0, 1], ρ(λX1 + (1− λ)X2) ≤ λρ(X1) + (1− λ)ρ(X2).

(3) Positive homogeneity: For all λ ≥ 0 and all X , ρ(λX) = λρ(X).

(4) Translation invariance: For all X and all real numbers α, ρ(X + α) = ρ(X) + α.

However VaR is non-subadditive, non-convex, and discontinuous, as pointed out by Sarykalin

et al. (2008). Furthermore, it is not responsive to large losses, beyond the specified threshold.

CVaR, also known as expected tail risk, or expected shortfall, is an alternative risk measure, intro-

duced by Acerbi and Tasche (2002). CVaR is coherent and provides a more comprehensive view

of risks by calculating the average of all losses that exceed the VaR threshold; it is widely used in

practice.

Definition 3.2 (CVaR) Assume X is absolutely continuous. The CVaR of X at confidence level α

is

CV aRα(X) = E[X|X ≥ V aRα(X)] =
1

1− α

∫ 1

α

V aRγ(X)dγ. (23)

Moreover, Figure 3.1 shows the relationship between VaR and CVaR.

3.2 Estimation methods for CVaR

In this section, we investigate two significant approaches to estimate the CVaR: sample aver-

aging (SA) and extreme value theory (EVT).
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2006) and the Pickands±Balkema±de Haan theorem (Balkema & De Haan, 1974; Pickands III,

1975). The first theorem focuses on the maximum of a sample, while the second one centers on

the asymptotic tail distribution, above a specific threshold. The Fisher±Tippett±Gnedenko theorem

is as follows.

Theorem 3.1 (Fisher±Tippett±Gnedenko) Consider a sequence of independent and identically

distributed (i.i.d.) random variables X1, X2, ..., Xn with a common CDF denoted by F . The CDF

of the running maximum is given by P (Xmax ≤ x) = F n(x), where Xmax = max(X1, ..., Xn). As

the number n ∈ N of observations increases, there exists a sequence of real-valued constants an >

0 and bn, such that the limiting distribution for the sample maximum evaluated at the sequence

anx + bn converges to a non-degenerate distribution function G(x) for each continuity point x of

G. This is expressed as:

lim
n→∞

F n(anx+ bn) = G(x). (27)

The limiting distribution G must be a generalized extreme value distribution (for some param-

eter ξ) and the class of distributions F that satisfy condition (27) are called the maximum domain

of attraction of G, denoted as F ∈MDA(Gξ).

Definition 3.3 (Generalized Extreme Value Distributions (GEVD)) The generalized extreme value

distribution with shape parameter ξ ∈ R is defined as follows:

Gξ(x) =





exp(−(1 + ξx)
−1
ξ ), if ξ ̸= 0,

exp(−e−x), if ξ = 0,

(28)

with the support being all x such that 1 + ξx > 0, where ξ is known as a shape parameter. The

quantity 1
ξ

is known as the rate of tail decay.

GEVDs include three specific distributions: if ξ > 0, GEVD is a FrÂechet distribution. In this

case, F is a heavy-tailed distribution and its tail decays like a power function. For example the

generalized Pareto distribution (GPD) and the Burr are well-known distributions that are in the
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maximum domain of attraction of the heavy tail FrÂechet distribution (F ∈ MDA(Gξ)), see the

Appendix for more details about GPD and Burr distributions.

If ξ = 0, we have a Gumbel distribution and F is a medium tailed distribution, with an expo-

nential tail decay, such as the normal, exponential, and gamma distributions. If ξ < 0, then GEVD

gives the Weibull family of distribution and F is short-tailed. The right endpoint of Gξ is finite;

this includes the uniform and beta distributions (see McNeil, 1997).

In the risk management area, heavy-tailed distributions (ξ > 0) are of interest since more rare

events occur under such distributions. It is important to note that the expectation is not defined for

ξ > 1, therefore to estimate CVaR we need to assume that ξ ∈ [0, 1).

When the distribution F belongs to the maximum domain of attraction of Gξ, a valuable ap-

proximation of the distribution of sample extremes, above a high threshold, becomes available.

Definition 3.4 (Excess distribution function) The excess distribution function, denoted as Fu,

represents the distribution of values above a high threshold u. Let X be a random variable with

CDF F and let Y represent the magnitude of the exceedance above u, that is Y = X − u. We can

express Fu as follow:

Fu(y) = P (X − u ≤ y|X > u) = P (X ≤ y + u|X > u) =
F (y + u)− F (u)

1− F (u)
. (29)

Based on the Pickands±Balkema±de Haan theorem, the limiting excess distribution converges

to a Generalized Pareto Distribution for large values of u.

Theorem 3.2 (Pickands±Balkema±de Haan theorem) Under the MDA condition in (27), we can

find a positive measurable function σ(u) such that

lim
u→y0

sup
y0∈[0,y0−u]

|Fu(y)−Gξ,σ(u)(y)|, (30)

where y0 = sup{y ∈ R;F (y) < 1} ≤ ∞ and Gξ,σ(u)(y) represents the CDF of the GPD with

parameters (ξ, σ), as detailed in the next definition.
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Definition 3.5 (Generalized Pareto Distribution(GPD)) The GPD has three parameters: a lo-

cation parameter µ, a scale parameter σ, and a shape parameter ξ. If µ = 0, the CDF and PDF

of a GPD are given by, respectively:

Gξ,σ(x) =





1− (1 + ξx
σ
)
−1
ξ , if ξ ̸= 0,

1− e
−x
σ , if ξ = 0,

(31)

where the support is x ≥ 0, for ξ ≥ 0, and 0 ≤ x ≤ −σ
ξ
, for ξ ≤ 0, and the PDF is:

gξ,σ(x) =





1
σ
(1 + ξx

σ
)
−1
ξ
−1, if ξ ̸= 0,

1
σ
e

−x
σ , if ξ = 0.

(32)

It is important to note that if X ∼ GPD(ξ, σ), then the conditional exceedance X − u|X >

u ∼ GPD(ξ, σ + ξu), meaning that the excess distribution of a GPD random variable is a GPD

with the same shape parameter, and a scaling parameter that grows linearly with the threshold u,

please see Proposition A.1 in the Appendix.

Next, consider a key corollary of EVT that provides a practical method for approximating the

tail behavior, especially in estimating VaR and CVaR, see (McNeil, Frey, & Embrechts, 2015,

Section 7.2).

Corollary 3.1 (EVT approximation) If ξ ∈ [0, 1) and σ = σ(u) satisfy the conditions of Theorem

3.2, then the VaR and CVaR of a random variable X ∈MDA(Gξ) can be approximated using EVT,

respectively, as follows:

qu,α =





u+ σ
ξ
(sξu,α − 1), if ξ ̸= 0,

u+ σ log su,α, if ξ = 0,

(33)

and

cu,α =





u+ σ
1−ξ

(1 +
sξu,α−1

ξ
), if ξ ̸= 0,

u+ σ(log su,α + 1), if ξ = 0,

(34)
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where su,α = 1−FX(u)
1−α

. Here qu,α and cu,α represent the approximations of VaR and CVaR, respec-

tively, relying on threshold u.

3.3 EVT estimation of CVaR with automated threshold

Consider now the POT estimation of CVaR using Corollary 3.1. Let X1, ..., Xn represent the

sample set composed of i.i.d. observations. To approximate CVaR through POT, the initial step

involves defining an appropriate threshold denoted as u. Subsequently, identify the excess sample

values Y1, ..., Yk, where Yi = Xi − u;Xi > u. Based on EVT, we know that the exceedances over

a high threshold follow the GPD with parameters (ξ, σ), asymptotically, and are independent.

Maximum likelihood estimation (MLE) is one approach to estimate the parameter values of an

assumed probability distribution, based on available data. This method involves maximizing the

log-likelihood function with respect to the parameters. Hence, by using MLE we can find an

approximation of GPD parameters as follow:

(ξ̂(n)u , σ̂(n)
u ) = argmax

ξ,σ

n∑

i=1

log gξ,σ(Yi). (35)

In the above equation, gξ,σ denotes the PDF of the GPD, as defined in Equation (32), where

(ξ, σ) lie within the range (−∞,∞) × (0,∞). For deeper insights, see Haan and Ferreira (2006,

Section 3.4). It is important to note that a closed-form solution to the optimization problem (35) is

not available. As a result, one common approach to estimate these parameters is through numerical

methods using standard software packages such as scipy.stats.genpareto in Python.

Choosing an appropriate threshold is a crucial step in the POT method. It greatly influences

the accuracy of the EVT estimation. A recent study by Troop et al. (2022), introduces a novel

approach to threshold selection within the context of CVaR estimation with EVT. They use an

automated method based on the paper of Bader et al. (2018) to select the threshold for the POT

method, as follows. Consider a fixed set of u1 < ... < uk as a candidate threshold where each ui

is the quantile of percentiles q1, ..., qk, that is ui = F−1
n (qi) where F−1

n is the empirical quantile
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function. Then there are ki excess samples over each threshold ui, i = 1, ..., k. We want to measure

how closely the exceedances follows a GPD. To do so, the Anderson-Darling (AD) statistic can

help us. The null hypotheses for the AD test for each respective test i = 1, ..., k is as follows:

H
(i)
0 : The distribution of the ni exceedances above ui follows a GPD.

Let θ̂i = (ξ̂
(n)
ui , σ̂

(n)
ui ) be the estimated MLE parameters for each threshold. Then the AD test

statistic is used to compare the empirical distribution over each threshold with the GPD. Assume

that y(1) < ... < y(ki) are the ordered threshold excesses for test i. Apply the transformation

z(j) = Gθ̂i
(y(j)), for j = 1, ..., ki where G represents the CDF of the GPD. The AD statistic is

given by:

A2
n = −n− 1

n

n∑

i=1

(2i− 1)[log(z(i)) + log(1− z(n+1−i))]. (36)

Then we should use the corresponding p-value for each test i if the exceedances come from

GPD, where i = 1, ..., l. Refer to Choulakian and Stephens (2001) to find the lookup table for

p-values, or also it can be computed. Then apply the Forward-Stop rule of Troop et al. (2022),

which is a modification version of G’Sell, Wager, Chouldechova, and Tibshirani (2016) to choose

the threshold. Let p1, ..., pl be the p-values for each test. Then the Forward-Stop rule calculates ŵF

as follow:

ŵF = max{w ∈ I| − 1

w

w∑

i=1

log(1− pi) ≤ γ}, (37)

where γ is a specific level and I ⊂ {1, ..., l}, I ̸= ∅.

Since CVaR is not defined for ξ ≥ 1, we set a cutoff value ξmax, where ξmax < 1. This ensures

reliable CVaR estimation within reasonable bounds. To determine the CVaR estimate, we compare

the estimated ξ for each test with ξmax. If ξ exceeds ξmax, the estimation and its corresponding

threshold are discarded. In this scenario, the SA method in Equation (24) above is employed to

provide a fallback solution. However, if the estimated ξ is within the acceptable range (ξ < ξmax),

further steps are taken. The process involves the AD statistic as defined by Equation (36), along

with the corresponding p-values for each test. Then if there is no existing ŵF , no rejection occurs

25



and the threshold corresponding to umin(I) is selected. But if ŵF = max(I) then umax(I) is selected

(see Troop et al., 2022, for more details).

Now we have estimates of the GPD parameters and we have selected the threshold u. Then we

have the following definition for the CVaR estimate which stems from (34).

Definition 3.6 (POT CVaR estimator) The CVaR estimator based on the POT method is

ĉ(n)u,α =





u+ σ̂
(n)
u

1−ξ̂
(n)
u

(
1 + 1

ξ̂
(n)
u

[(
1−F̂n(u)

1−α

)ξ̂(n)
u

− 1

])
, if ξ ̸= 0,

u+ σ̂
(n)
u

[
log
(

1−F̂n(u)
1−α

)
+ 1
]
, if ξ = 0,

(38)

where (ξ̂, σ̂) represents the MLE parameter estimates, and α denotes the confidence level, satisfy-

ing the condition α > F̂n(u).
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Chapter 4

Reinforcement Learning

This section begins by examining the concept of Markov decision processes, a fundamental

framework in sequential decision-making problems. Subsequently, we dive into reinforcement

learning techniques employed for addressing Markov decision problems, including methods like

value approximation and policy approximation. Additionally, we compare reinforcement learning

and dynamic programming in this chapter (for more details see Sutton & Barto, 2018).

4.1 Markov decision processes

Sequential decision making problems are modelled within the formulation of Markov decision

processes (MDP). This framework originates from the pioneering research conducted by Bellman

(1954). In the MDP framework, an agent makes a sequence of decisions to maximize (minimize)

its performance measure. The definiton of MDP refers to Puterman (2014) as follows.

Definition 4.1 (Markov Decision Process (MDP)) MDP involves a tuple (S, A, R, P, γ) where

(1) S is a state space,

(2) A is an action space,

(3) R is the set of rewards,
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they are not affected by the history of states and actions. This feature is known as the Markov

property. Next, we explain another important concept which is Policy.

4.2 Policy

At each time step, the agent chooses its actions based on a specific strategy known as a policy,

denoted as π. A policy indicates the probability of choosing action a when the system is in the

state s. There exist two categories of policies: stochastic and deterministic. In a stochastic policy,

represented as π(a|s), the agent selects actions based on a probability distribution over the action

space for a given state. This means that the same state could lead to different actions in different

instances of interaction. On the other hand, deterministic policies select a specific action for a

given state, which can be expressed as π(s) = a, where π(s) illustrates the action chosen in state

s, and a is a deterministic action.

4.3 Reinforcement learning problem

The previous section provides an overview of the MDP. This section is dedicated to examining

the methods applied to solve MDP.

We can identify two primary approaches for tackling a MDP: reinforcement learning and dy-

namic programming (DP) methods. However, DP methods come with some limitations. They

require precise knowledge of the environment, specifically involving transition probabilities in

their calculations, which are often unavailable in practical scenarios. Additionally, if the number

of states and rewards is extensive, solving the MDP becomes computationally impractical.

RL, a significant branch of machine learning, has emerged as a set of learning methods that

confront these issues. In contrast to DP, RL is a model-free approach that relies on experimentation

rather than requiring a complete model. Furthermore, RL algorithms can be applied to large-scale

problems effectively. RL involves a dynamic interplay between an agent and its environment and

learns through trial and error.

29



The agent selects actions, which in turn result in receiving rewards or penalties based on a

performance metric. This mechanism serves as a way to obtain feedback from the environment,

allowing the agent to assess the efficacy of its chosen actions. In terms of action selection, there

is an exploration and exploitation trade-off. Exploration entails selecting greedily actions that

maximize discounted rewards or minimize penalties. On the other hand, exploitation involves

selecting actions that have been chosen before re-evaluating them. The next section discusses the

RL algorithms.

4.4 Model-free RL methods

This section focuses on model-free RL algorithms. The main goal of RL is to find the op-

timal policy that optimizes the objective function of the problem. In the cases where a perfect

environment model is unknown, it becomes necessary to interact with the environment, obtain-

ing experiences from the MDP in order to gather statistical insights about the unknown model.

Model-free RL methods can be categorized into two classes:

(1) Value approximation,

(2) Policy approximation.

It is worth noting that there are also hybrid models, which combine the above-mentioned method-

ologies. In the following sections we discuss these two classes of algorithm.

4.4.1 Value approximation

Value approximation, often referred to as value learning algorithms, is a class of reinforcement

learning methods that estimate value functions (either state values or action values) to optimize a

policy in a reinforcement learning setting. These algorithms can be categorized into on-policy and

off-policy methods based on whether the policy being evaluated or improved on is the same as the

one used to generate the data.
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On-policy methods involve the evaluation or improvement of the policy that is currently in use

for decision-making during data generation. In other words, in these methods, the agent interacts

with the environment, collects data, and then uses this data to evaluate or improve the same policy.

An example of an on-policy method is SARSA, which stands for State-action-reward-state-action.

Off-policy methods, on the other hand, involve the evaluation or improvement of a policy that

is different from the one used to generate the data. In these methods, the agent collects experiences

using one policy, often referred to as the behavior policy, and then leverages this data to enhance

a different policy, known as the target policy. A well-known example of an off-policy method is

Q-learning,

4.4.2 Policy approximation

The main goal of policy approximation methods is to learn directly from various policies in

order to maximize a performance measure, with the ultimate aim of reaching the optimal policy.

In other words, this method can select actions without consulting a value function.

In some cases, these methods have advantages over value approximation methods. One ad-

vantage is that, in many applications, the policy function might be simpler, compared to the value

function, then it is easier to approximate the policy function. Another advantage is that these meth-

ods make it easy to incorporate prior knowledge about the shape of the optimal policy. In addition

to the practical advantages, these methods also have the theoretical advantage that they are guar-

anteed to converge, at least to a local optimum, which may be good enough in practice. One of

the extensively studied methods for policy approximation is the policy gradient algorithm, which

is explored in the next chapter.
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Chapter 5

Risk-Aware Policy Gradient Method

This chapter presents the Risk-Aware Policy Gradient algorithm, the fundamental algorithm

employed to address the risk-aware Markov decision problem. To begin, we provide an overview of

the policy gradient method. Subsequently, we dive into the Risk-Aware Policy Gradient algorithm,

followed by an exploration of policy optimization techniques. Finally, we provide a comprehensive

explanation of the gradient estimation method utilized for optimizing the objective function.

5.1 Policy gradient methods

As mentioned in the previous chapter, policy gradient methods directly learn policies to find

the optimal policy θ∗. In these methods, the optimal policy is approximated using a parameterized

policy.

A parameterized policy refers to a policy that is defined by a vector of parameters θ ∈ Rd′ .

These parameters determine the behavior of the policy, influencing how the agent selects actions

based on the observed states and the goal is to optimize the policy parameters which maximize or

minimize a certain objective function J : θ → R such that

θ∗ = argmax
θ∈Θ

J(θ). (40)
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ADAM adjusts the learning rate at each iteration by computing the gradient of the objective func-

tion, along with the first and second moment estimates of the gradient and updates the parameters.

The algorithm for ADAM is provided in Algorithm 1.

Algorithm 1: ADAM algorithm from paper Kingma and Ba (2014).

g2t indicates the elementwise square gt ⊙ gt. Good default settings for the tested machine

learning problems are α = 0.001, β1 = 0.9, β2 = 0.999, and ϵ = 10−8. All operations on

vectors are elementwise. With βt
1 and βt

2 we denote β1 and β2 to the power t.

Require: α: stepsize

Require: β1, β2 ∈ [0, 1): Exponential decay rates for the moment estimates

Require: f(θ): Stochastic objective function with parameters θ

Require: θ0: Initial parameter vector

m0 ← 0 (Initialize 1st moment vector)

v0 ← 0 (Initialize 2nd moment vector)

t← 0 (Initialize timestep)

while θt not converged do

t← t+ 1

gt ← ∇θft(θt−1) Get gradients w.r.t. stochastic objective at timestep t,

mt ← β1.mt−1 + (1− β1).gt (Update biased first moment estimate)

vt ← β2.vt−1 + (1− β2).g
2
t (Update biased second raw moment estimate)

m̂t ← mt

1−βt
1

(Compute bias-corrected first moment estimate)

v̂t ← vt
1−βt

2
(Compute bias-corrected second raw moment estimate)

θt ← θt−1 − α. m̂t√
v̂t+ϵ

(Update parameters)

end

Return: θt (Resulting parameters)

The ADAM algorithm utilizes the gradient of the objective function at each iteration. However,

computing the gradient directly is not always feasible for all functions. Therefore, it becomes

necessary to approximate it, a topic that will be discussed in the next section.
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5.3 Estimating the gradient of the objective function

Finite differences is one of the common approaches to compute the gradient of the objective

function. It involves approximating the gradient by computing the function’s values at nearby

points and taking their differences. There are three different types of methods in finite difference

approximation such as forward differences, backward differences, and central differences. For

example, forward difference approximation method for Equation (40) is as follow:

∇̂J(θ) ≈ Ĵ(θ + ϵ)− Ĵ(θ)

ϵ
, (41)

where ϵ > 0 is a small step size and θ is the parameter. This is a useful approximation method

when the gradient of a function does not exist.
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Chapter 6

Experimental Results

This chapter introduces our proposed algorithm designed to address a risk-aware Markov deci-

sion problem using the risk aware policy gradient algorithm discussed in Chapter 5. This chapter is

divided into two main parts. In the first part, the algorithm is implemented on a simulated dataset

generated from GPD and Burr, which are two heavy-tailed distributions. This allows us to observe

how EVT enhances the accuracy of a policy gradient algorithm. Once the behavior of the algorithm

is confirmed within this controlled environment, in the second part we explore the application of

the risk-aware policy gradient algorithm integrated by EVT in finance, specifically focusing on the

NIG LÂevy process. We define a numerical example of a hedging problem with the objective of

identifying optimal hedging solutions in a highly volatile market.

6.1 Simulation analysis

In this section, the focus is on identifying the optimal policy within a Markov decision process,

aimed at minimizing a risk measure, specifically CVaR. We start by defining the key elements of

the core of the problem.

For simplicity, we consider the special case with no state and one-dimension action. Here the

policy is θ, and actions are defined by a = ã(θ), where ã(θ) = θ. In this case, the action taken

is directly determined by the parameter θ. So, for each possible value of θ, there corresponds a
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unique action a. The cost, denoted as R, is associated with the chosen action and is a function of

θ, generated from a distribution.

At each time step, the agent following the policy, selects an action that incurs a cost, subse-

quently contributing to the overall risk. We consider CVaR as the risk measure and the goal of

algorithm is to minimize this risk. To achieve this objective, we need to identify the optimal pol-

icy that guides the agent towards actions leading to minimized costs. In mathematical terms, the

optimization problem can be formulated as:

min
θ

J(θ) = min
θ

CVaRα(R). (42)

where θ represents the policy that needs to be learned.

We employ a deterministic policy gradient, utilizing a sequence of policies {θ(n)}n≥1 that are

updated iteratively via ADAM Algorithm 1. The Monte Carlo algorithm is employed to estimate

the CVaR for the objective function. Thus, to obtain an estimate of a single point of the objective

function CVaR, we simulate a substantial number of independent and identically distributed (i.i.d.)

data points from GPD and Burr heavy-tailed distributions, which are of particular interest to us.

Heavy-tailed distributions often produce extreme values, which can lead to potentially catastrophic

risks, a significant concern in financial institutions.

In this case, since there is no closed form of the derivative of CVaR for all distributions, then

we need to compute an approximation of derivative of CVaR with respect to the policy, i.e.

∇̂J(θ(n)) = ̂∇CV aR(θ(n)). (43)

This approximation is obtained through a finite-difference method. We begin with an initial

policy denoted as θ(0). Then, at each iterations, we have a new policy and for each policy, first we

estimates CVaR function derived from Monte-Carlo simulations and EVT or SA methods. After
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6.1.3 Experimental setup

The experiments consist of performing N = 50 independent runs to ensure the reliability and

robustness of the results. Each run consists of sampling with size n = 2000 independent costs R,

from GPD and Burr distribution. We employed two methods to estimate the CVaRα(R), the first

one being the EVT with automated threshold selection and the other being sample average method.

We refer to the estimates obtained from these methods as CVaR-EVT and CVaR-SA respectively,

following Troop et al. (2022) and keeping same setting of setup for CVaR-EVT. The confidence

level was set to α = 0.998, indicating an extreme risk level.

We utilize the ADAM optimization algorithm with a step size of 0.01, determining the magni-

tude of parameter updates in each iterations to optimize the policy. The ADAM algorithm executes

for 500 iterations to find the optimal policy and at each iterations, we have 2000 independent out-

comes and we employ the finite-difference approximation method (44) to estimate the derivative

of CVaR during optimization. iterations means the number of times that ADAM algorithm updates

the parameter (policy in this case). Moreover, after selecting a threshold u in each iterations, we

use MLE for estimating the GPD parameters using the threshold excesses above u. The procedure

of the algorithm is summarized in Algorithm 2.

Remark 1 In each iterations, we employ the same seed for generating costs from policy θ(n) and

θ(n) + ϵ in equation (44) to ensure stability.

Remark 2 Additionally, in the CVaR-EVT estimation method, we utilize the same threshold u

selected for policy θ(n), also for policy θ(n) + ϵ in equation (44).
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Algorithm 2: Risk-Averse Policy Gradient using CVaR-EVT, cost generated from GPD

Require: ϵ, ξ, ϑ, a, Number of paths , Number of iterations , Initial theta

for j in (number of paths) do

θ ← Initial theta :

Starting seed← j * Number of iterations

for i in (number of iterations) do

Seed value← starting seed + i

σ ← (θ − ϑ)2 + b (Define policy σ)

R1 ← GPD(ξ, σ) (Generate cost from GPD with policy σ)

Select threshold u using threshold selection procedure of Troop et al. (2022),

Compute (ξ̂, ς̂) of exceedances over threshold u,

Compute ĈV aR
(θ)

u,α(R1) (CVaR estimation by EVT using automated threshold

selection,

Fix same seed value and same threshold,

σ′ ← ((θ + ϵ)− ϑ)2 + b (Define policy σ′)

R2 ← GPD(ξ, σ′) (Generate cost from GPD with policy σ′)

Estimate (ξ̂, ς̂ ′) of exceedances over the threshold u,

Compute CVaR estimates ĈV aR
(θ+ϵ)

u,α (R2) by EVT using the threshold u,

Compute ̂∇CV aR(θ(n)) ≈ ĈV aR(θ(n)+ϵ)−ĈV aR(θ(n))
ϵ ,

Update θ by ADAM algorithm 1.

end

end

6.1.4 Experimental results

This section reports the results of the simulation study. We use the Root Mean Square Error

(RMSE) as a metric to assess the performance of the algorithm. Our analysis involves evaluating

the convergence of policy θ to solve equation minθ CVaRα(R), where R is the cost generated from

either the GPD or the Burr distributions. Additionally, we evaluate the accuracy of CVaR and CVaR

gradient estimates by using the EVT and SA methods. We fix ϑ = 0.4 and b = 2 in assumption
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6.2 Application in finance

In this section, we present the application of our proposed algorithm in finance. Suppose you

hold a short position in a call option with a strike price K. If the market price of the stock rises,

the option holder may exercise the option, and due to the absence of a perfect hedge in reality, a

hedging error occurs. To mitigate this risk, our objective is to minimize a suitable risk measure

of hedging error and enhance our hedging position. In this thesis, we consider CVaR as a risk

measure as follows:

min
θ

CVaRα(CT − V θ
T ), (48)

where VT is the value at maturity of the self-financing portfolio invested in the hedging assets. In

high-risk volatile market, gamma hedging is useful to mitigate the impact of large underlying asset

variations. But when the variance risk premium is very high, using options for gamma hedging

becomes considerably expensive. Trying to fully hedge gamma in these situations is not practical.

To overcome this, instead of hedging fully gamma, we focus on hedging a proportion of it. This

thesis aims to find the best proportion of gamma to hedge, minimizing the risk associated with

gamma hedging errors.

6.2.1 Market set-up and numerical example

We consider the exponential Normal Inverse Gaussian (NIG)-Levy model as described in Chap-

ter 2:

St = S0e
∑t

k=1 Zk , (49)

Bt = ert. (50)

We consider a problem of hedging an at-the-money European call option (C) with strike K =

1000 and maturity T = 0.5× 52 = 26. The option underlying asset is a non-dividend paying stock

whose initial price is S0 = 1000. Also, the risk-free rate is r = 0.02/52.
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Parameters considered are taken from Godin (2016), namely a
P = 35.7, βP = −10.8, δP =

2.04× 10−2 and µP = 6.7× 10−3.

We consider a market with high volatility risk premium where options are costly; as such we

assume risk-neutral parameters and identical to the physical ones, except for the delta parameter

driving the returns variance, which is inflated by a factor of 4: aQ = a
P, βQ = βP, δQ = 4δP and

µQ = µP. In such market, fully neutralizing the gamma of the option being hedged is most likely

sub-optimal due to high option cost, and thus determining the best hedge ratio yield the optimal

cost versus risk reduction tradeoff is a non-trivial endeavor. In this case, we refine the formula of

Delta-Gamma neutral portfolios provided in Chapter 2 as follows, so as to only hedge a portion of

the gamma risk:





0 = ∆(pf) = θC∆C + θD∆D + θS,

0 = Γ(pf) = θCkΓC + θDΓD,

(51)

where k ∈ (0, 1). Then, the second equation gives

θD
′

= k
ΓC

ΓD
. (52)

By substituting it into the first equation we have

θS = ∆C − θD
′

∆D. (53)

We utilize a rolling-over strategy on an ATM European call option position with maturity T =

0.1×52 on the same underlying asset St, which allows for the flexibility to open and close positions

at the start and end of each period. In this case, at the beginning of each period i, the hedger buys

an option whose strike is exactly the same as the current value of the underlying asset, and at the

end of the period i+1, the hedger sells that option and buys a new option. Following this strategy,

at time i, the value of the portfolio Vi is as follow:
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Cashi = Vi − (θsiSi + θDi D
b
i ),

Vi+1 = θsiSi+1 + θDi D
e
i+1 + Cashi e

rdt,

(54)

where Db
i and De

i represent the prices of option D at the beginning and end of the period, respec-

tively, and Si is the stock price at time i. Additionally, cash refers to the amount invested in the

risk-free asset within the portfolio. The initial value of the hedging portfolio is equal to the price

of option C, V0 = C0. At each time step, the number of stock shares, θsi , is calculated using

formula (53) and the number of option shares, θDi , is determined from formula (52). Moreover,

I use weekly time-steps denoted by dt = 1 and the hedger rebalances the self-financing hedging

portfolio at every discrete time step i for i = 0, ..., N − 1 where N = T/dt.

Algorithm 3: K % of Γ Hedging error using

Require: eps = 0.05, NIG parameters, Number of iterations

Simulate St ( NIG levy stock path)

for i in (Number of iterations) do

E1 = (ST − strike)+ − VT (Hedging error by considering K % of Γ in VT ),

Select threshold u using threshold selection procedure of Troop et al. (2022),

Compute (ξ̂, ς̂) of exceedances over threshold u,

Compute ĈV aR
(k)

u,α(E1) (CVaR estimation by EVT using automated threshold selection,

E2 = (ST − strike)+ − VT (Hedging error by considering (K + ϵ) % of Γ in VT ),

Estimate (ξ̂, ς̂ ′) of exceedances over the same threshold u,

Compute ĈV aR
(k+ϵ)

u,α (E2) (CVaR estimation by EVT using automated threshold

selection,

Compute ̂∇CV aR(k(n)) ≈ ĈV aR(k(n)+ϵ)−ĈV aR(k(n))
ϵ ,

Update k by ADAM Algorithm 1.

end
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simulated paths of weekly stock returns. R = 100 independent runs are conducted, each comprised

of M = 500 iterations for the case n = 1,000, or M = 150 iterations when n = 10,000. In each

run, the initial policy is set to θ(0) = 0. The finite difference shock is ϵ = 0.05. The method

of moments is used instead to estimate tail parameters ξ, σ in the CVaR-EVT algorithm since

such method exhibited (in unreported tests) greater stability than maximum likelihood estimates

in the presented framework. Thus, we replace MLE in the previous section (simulated data from

GPD and Burr) with the method to estimate the parameters. First we calculate the sample mean

and sample variance of the data, then we substitute them into the equations (63) and (64) of the

appendix.

Figure 6.10 reports the performance of the EVT and SA policy gradient algorithms for the

hedging problem, by displaying the evolution of the RMSE (across runs) of the estimate of the

optimal policy parameter and the corresponding objective function versus the number of itera-

tion conducted. The CVaR-EVT algorithm exhibits materially superior performance by exhibiting

much lower errors on estimates for the optimal policy parameter and objective function. The gap in

performance between the CVaR-EVT and the benchmark (CVaR-SA) is greater for the lower sam-

ple size n = 1,000, which highlights that our method has more added value in the context of more

severe distribution tail data scarcity. Note that none of the two methods have the estimated policy

parameter converge to the true optimal value (i.e. RMSE of policy does not converge to zero),

which can be explained by the fact that both methods are biased in finite sample n. Nevertheless,

we see that higher sample size n increases the precision, with lower RMSEs for the estimates of

the policy parameter θ∗ and of the objective function.
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Conclusion

We have integrated risk-aware reinforcement learning and Extreme Value Theory for tail risk

optimization to mitigate catastrophic risks. EVT is a well-known method for modeling highly

rare risk events. In our approach, we leverage EVT and risk-aware RL to manage extremely rare

events. This is the first work to combine EVT into risk-aware RL for a Markov decision problem.

We utilize CVaR as our risk measure, employing EVT to estimate CVaR.

Based on EVT, the excess data over a threshold follows the GPD. Therefore, selecting a suit-

able threshold is crucial in EVT. To tackle this challenge, we employ an automated threshold

selection method proposed by Troop et al. (2022) and Bader et al. (2018). Subsequently, we utilize

Maximum Likelihood Estimation or the Method of Moments to estimate the GPD parameters of

the excess data over the selected threshold. Finally, we apply the EVT formula to estimate CVaR.

Heavy tail distributions or semi heavy tail distributions are interested for us in this case, since these

distributions lead to more extremely events and EVT concern about extreme events.

The risk-aware policy gradient algorithm aims to find an optimal policy to minimize an objec-

tive function, such as CVaR in our case. The algorithm begins by initializing a policy and then

generating costs from a heavy-tailed distribution. Subsequently, it estimates CVaR using EVT for

the excess data over a selected threshold. The ADAM algorithm is then employed to update the

policy. During the optimization process, the algorithm requires the gradient of the estimated CVaR.

Since there is no closed form of CVaR for all distributions, we utilize the finite difference method

to estimate the derivative of the estimated CVaR.

We assess our proposed algorithm using both simulated data from heavy tail distributions such
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as GPD and Burr distributions and semi-heavy tails distributions like the NIG distribution in finan-

cial applications.

We also applied our algorithm in numerical experiments within a hedging strategy, presenting

its application in finance. We consider the NIG LÂevy model as our market setup and address

the problem of gamma hedging for an at-the-money European call option. To raise the option

price, we adjusted the estimated parameters derived from Godin (2016). Thus, utilizing options

for gamma hedging strategies can become prohibitively expensive. To address this challenge, our

algorithm introduce a proportion of gamma, denoted as k, to hedge, aiming to minimize extreme

risks, such as when α = 0.999, while also minimizing costs. We consider k as the policy to be

optimized through our proposed algorithm, the risk-aware policy gradient algorithm using EVT

with an automated threshold selection method. Experimental results allow analyzing the evolution

of the policy parameter and of the estimated CVaR.

Furthermore, we compare the estimated CVaR using EVT and SA methods, and our results

demonstrate that EVT outperforms SA. This results is observed in both simulation data from GPD

and Burr distributions, as well as in a numerical example for a hedging strategy.
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Appendix A

Heavy tailed distributions

A.1 Generalized Pareto Distribution (GPD)

This section recalls the closed form of VaR and CVaR formula for GPD proposed by McNeil

et al. (2015). First, we derive the formula for the derivative of CVaR with respect to policy. Then,

we present the Burr distribution and its closed form for CVaR.

A.1.1 VaR and excess distribution of GPD:

To further analyze the risk associated with the generalized Pareto distribution (GPD), we can

consider two additional concepts: Value at Risk (VaR) and the excess distribution.

For the GPD, the VaR at a confidence level 1 − α can be calculated as the α-quantile of the

distribution. Denoting the α-quantile as qα, the VaR is given by:

V aR(α) =





σ((1−α)−ξ−1)
ξ

, if ξ ̸= 0

−σ ln (1− α), if ξ = 0

(55)
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A.1.2 Excess distribution of GPD

The excess distribution represents the distribution of the values above a certain threshold, called

the threshold excess. In the context of the GPD, the excess distribution is used to model extreme

events above a specified threshold u. To accomplish this, we consider a random variable X with

cumulative distribution function (CDF) F . We define a new random variable Y = X−u, and then

use the conditional probability to find the distribution of Y given X > u. That is:

P (Y ≤ y|X > u) = P (X − u ≤ y|X > u) = P (X ≤ y + u|X > u) =
F (y + u)− F (u)

1− F (u)
.

Proposition A.1 If X ∼ GPD(ξ, σ), then X − v|X > v ∼ GPD(ξ, σ + ξu), meaning that the

excess distribution of a GPD random variable is also a GPD with the same shape parameter and

scaling parameter that grows linearly with the threshold u. The excess distribution allows us to

estimate the probability of extreme events occurring above a given threshold.

A.1.3 CVaR of GPD and derivative of CVaR with respect to policy θ

We can calculate the CVaR as the expected value of the tail distribution, beyond VaR. Denoting

the CVaR as CV aRα, it can be expressed as follows.

Proposition A.2 Let X ∼ GPD(ξ, σ) with −1 < ξ < 1. If σ = (θ − ϑ)2 + a, then we have

CV aR(α) =





((θ − ϑ)2 + a).
[
(1−α)−ξ

1−ξ
+ (1−α)−ξ−1

ξ

]
, if ξ ̸= 0

((θ − ϑ)2 + a).[1− ln(1− α)], if ξ = 0

. (56)

Moreover, the derivative of the CVaR with respect to θ is given by:

∂CV aR(α)

∂θ
=





2.(θ − ϑ).
[
(1−α)−ξ

1−ξ
+ (1−α)−ξ−1

ξ

]
, if ξ ̸= 0

2.(θ − ϑ).
[
1− ln(1− α)

]
, if ξ = 0

. (57)
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So, to easily find the minimum point of CVaR, we set Equation (57) to 0, leading θ = ϑ.

A.2 Burr distribution

The CVaR formula for the Burr distribution is as follows:

CV aRα(x) =
d[(1/(qα)

c)]d−1/c

(1− α)(d− 1/c)
2F1(d−

1

c
, 1 + d, d− 1

c
+ 1,

−1
qα

). (58)

In this formula α represents the α quantile of the Burr distribution, and 2F1 is the hypergeo-

metric function.

A.3 Method of moments

Consider formulas for σ and ξ based on the first moment (sample mean) and second moment

(sample variance) of the GPD distribution. Given that X follows a GPD distribution with parame-

ters ξ and σ, the expectation and variance of X express as:





E(x) = σ
1−ξ

, if ξ < 1

var(x) = σ2

(1−ξ)2(1−2ξ)
. if ξ < 1

2

(59)

Let the first sample moment be as x̄ and the second moment as s2. So we have:

x̄ =
σ

1− ξ
−→ σ = x̄(1− ξ) (60)

s2 =
σ2

(1− ξ)2(1− 2ξ)
(61)

By substituting Equation (60) into equation (61), we can solve for ξ as follows:

ξ =
s2 − x̄2

2s2
(62)

59



Now, we substitute Equation (62) into Equation (60) and simplify to obtain the expressions for

σ and ξ:

σ = x̄(
s2 + x̄2

2s2
) (63)

ξ =
s2 − x̄2

2s2
(64)

Now we replace MLE with the above method to estimate the parameters. First we calculate the

sample mean and sample variance of the simulated data, then we substitute them into the equations

(63) and (64).
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