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ABSTRACT

Malik Balogoun, Ph.D.
Concordia University, 2024

In this thesis, the first goal is to formulate a generating function and compute its moments
alongside with the corresponding Hankel determinant. When the latter is non zero, we will prove
that for Painleve 5, we can construct a Lax pair whose solution is a combination of the solution of
the Riemann Hilbert Problem (RHP) and the generating function. An ingredient of that solution,
called the Hamiltonian will be used to construct the Tau function which solves the ODE Painleve
V. As such, it will be easy to show that when the Hankel determinant vanishes, the RHP is not
solvable, and its zeroes correspond to the poles of the rational solution of the ODE Painleve V i.e.
the Tau function.
On the other hand, an asymptotic analysis will be conducted to prove that the domain of the
poles of the rational solution of the ODE Painleve V (its domain of non analyticity) defines a well
shaped region with boundaries on the complex plane as the size of the square Hankel matrix goes
to infinity.
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Introduction

The six Painlevé equations were classified by Painlevé and his student Gambier [5] more than
a century ago. This was a result of the search for second order ODEs in the complex plane whose
solutions, roughly speaking, have the property that all movable singularities are isolated poles.
This property has now become known and referred to as the Painlevé property.

While this might have remained a purely mathematical investigation, it was much later recog-
nized that these equations have significant applications in mathematical physics, with the resur-
gence in the ’80s with the works connecting with Ising model and conformal field theory [36, 37].
Another momentous resurgence happened in the ’90s when Tracy and Widom [38]used a special
second Painlevé transcendent (the Hastings-McLeod solution [39]) to describe the fluctuations of
the larges eigenvalue of a large random Hermitean matrix.

Amongst special solutions of the Painlevé equation, a natural interest is devoted in the literature
to the simplest solutions, namely, rational functions; the literature is extensive and seems to start
with [46] who discussed rational solution of the second Painlevé equation and defined a special
sequence of polynomials that are now called Vorob’ev-Yablonskii after their discoverers (it appears
that Yablonskii defined them slightly earlier but the reference is difficult to find [47]). Rational
solutions also appear in semiclassical limits of integrable PDEs; in the one–dimensional sine–Gordon
equation near a separatrix, for example, one finds that a suitable scaling of the solution is expressible
in terms of rational solution of the second Painlevé equation [15]

For all but the first Painlevé equation there exist rational solutions: although there does not
seem to be a full and complete classification in all cases, either the full classification of rational
solutions exist or there are constructions of special families of rational solutions (for the Painlevé
II [46, 47, 28], for the Painlevé III,V, VI [35, 34, 44] Painlevé IV [41]

The literature that investigates the asymptotic behaviour of the rational solutions and the pole
distribution thereof is more recent, probably due to the interest spurred by numerical investigations
and the appearance of well defined patterns; for the zeros of Okamoto polynomials (which are poles
of rational solutions of PIV) see [40], for the zeros of Vorobev–Yablonskii polynomials and Painlevé
II see [16, 17, 8], for the second Painlevé hierarchy see [7].

The approach to asymptotic analysis relies on the formulation of an associated Riemann–Hilbert
problem, which is a boundary value problem for a piecewise analytic matrix valued function matrix.
There are two logical distinct approaches that can be used in the asymptotic analysis. We can
categorize them under the following banners:

1. the isomonodromic approach;

2. the orthogonal polynomial (OP) approach.

The isomonodromic approach relies on the general fact that any Painlevé equation appears as the
compatibility between a 2 × 2 system of ODEs with rational coefficient in the complex plane and
an additional PDE in an auxiliary parameter [25]. The different solutions are parametrized by
(generalized) monodromy data of the ODE, which is the starting point for the Riemann–Hilbert
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analysis. Typically the degree of the rational solution appears explicitly as one of the parameters
in the monodromy data and can be used as large parameter in the asymptotics.

The second approach was used, possibly for the first time, in [8] and then also applied to
the generalized Vorob’ev–Yablonski polynomials in [7], and it is also the approach we follow in
this paper. The main connection between OPs and equations of Painlevé type was established
in [9], where it was shown that Hankel determinants built out of the moments of “semiclassical”
moment functionals are always isomonodromic tau functions in the sense of [25]. It was a remark
(Rem 5.3 ibidem) that special choices of semiclassical moment functionals lead automatically to
tau functions of Painlevé equations (all, except possibly for Painlevé I). In genereal, however, these
solutions correspond to transcendental solutions (like for example the solutions of PII constructed
out of detereminants of derivatives of Airy functions, see [27]).

It is possible to further restrict the setup of orthogonal polynomials in such a way that the
moments of the moment functional become polynomials in a parameter, which then guarantees
that the Hankel determinant (automatically an isomonodromic tau function) is a polynomial tau
function of an equation of Painlevé type. This is what works ”behind the scenes” of [8].

The advantage of this reformulation in terms of associated Orthogonal Polynomials is that
there is a solid and well developed framework for studying their large degree asymptotics, with an
extensive literature that starts with [21].

Before going into any further detail let us still discuss the known literature and results about
the rational solutions of the fifth Painlevé equation.

viii



1 Generalities and motivating results from Painleve II (PII) equa-
tion

1.1 Characteristics of the poles of a particular rational solution of PII

Proposition 1.1 Let us consider the equation Painleve II:

uxx = xu+ 2u3 + α, with α ∈ C

When the parameter α ∈ Z, its solutions can be completely described in terms of the
Vorob’ev–Yablonski monic polynomial Yn(x) as follows (see [2]) :

u(x, n) =
d

dx

{
ln

[
Yn−1(x)

Yn(x)

]}
where n = α ∈ N, (it can be extented to n ∈ Z

by taking u(x,−n) = −u(x, n))

u(x, n) =
d

dx

{
ln

[
Yn−1(x)

Yn(x)

]}
=

Y
′

n−1

Yn−1
− Y

′

n

Yn
=

n−1∑

i=1

1

(x− ai)
−

n∑

i=1

1

(x− bi)
(1.1)

corresponding to the factorization of the Vorob’ev–Yablonski monic polynomials

Yn−1(x) = (x− a1)(x− a2)(x− a3)...(x− an−1), ai ̸= aj ∀ i ̸= j (1.2)

and Yn(x) = (x− b1)(x− b2)(x− b3)...(x− bn), bi ̸= bj ∀ i ̸= j. (1.3)

Therefore, the zeros of the consecutive VY polynomials Yn−1(x) and Yn(x) are the poles of the
solution u(x, n) of the equation Painleve II with residue 1 and −1 respectively.

Proposition 1.2 ([46, 47]) The Vorob’ev–Yablonski polynomials Yn(x) for all n ∈ N can be com-
puted via the differential-difference relation

Yn+1 =
xY 2

n (x)− 4[Y ”
n (x)Yn(x)− (Y

′

n(x)
2]

Yn−1(x)

with intial values Y0(x) = 1, and Y1(x) = 1

In figure 1 below, we can observe the plot of the poles for the solution u(x, n) for n = 10.
As n → ∞ these poles are contained within a region of almost triangular shape on the the

complex plane (see [1]). For ODE Painleve V, we will try to produce similar results for our class
of rational solutions of PV and analyse them asymptotically.

1



Figure 1: Plot of the poles the solution of ODE Painleve II

1.2 Relationship between VY and Orthogonal Polynomials

Proposition 1.3 The VY polynomial Yn(x) in Prop. (1.2) admits the following determinant rep-
resentation (see [1])

Y 2
n−1(x) = (−1)

⌊
n

2

⌋
1

2n−1

n−1∏

k=1

[
(2k)!

k!

]2
det(µa+b−2(x))

n
a,b=1

where the functions µk(x) are the taylor expansion coefficients of the function

f(t, x) = exp

(−t3

3
+ tx

)
=

∞∑

k=0

µk(x)t
k. Namely, µk(x) =

f (k)(t, x)

k!

∣∣∣∣
t=0

Now, by Cauchy differentiation formula, we obtain

µk(x) =
1

2πi

�
f(z, x)

zk+1
dz (1.4)

where the contour of the integral is the unit circle oriented counterclockwise around the origin.

With the change of variable ζ =
1

z
, we define −z3

3
+ zx = − 1

3ζ3
+

x

ζ
:= −θ(ζ, x).

Since z =
1

ζ
and dz = −dζ

ζ2
, we obtain an equivalent formula for (1.4):

µk(x) = −
�

ζk
1

2πi
e−θ(ζ,x)dζ

ζ︸ ︷︷ ︸
=dη(ζ,x)

, dη(ζ, x) being the new measure. (1.5)

2



Definition 1.4 The µk(x)
′s (1.4) or (1.5) are called ”moments functions” and we used them to

build the Hankel determinant Dn as follows:

det(µa+b−2(x))
n
a,b=1 =

∣∣∣∣∣∣∣∣∣

µ0(x) µ1(x) µ2(x) . . . µn−1(x)
µ1(x) µ2(x) µ3(x) . . . µn(x)

...
...

...
. . .

...
µn−1(x) µn(x) µn+1(x) . . . µ2n−2(x)

∣∣∣∣∣∣∣∣∣
= Dn

Proposition 1.5 Given any (possibly complex valued) measure dµ(z, x) depending on a parameter
x, and the corresponding moment functions µk(x) :=

�
γ z

kdµ(z;x), let us consider the polynomial
in z:

Pn(z) =

∣∣∣∣∣∣∣∣∣∣∣

µ0(x) µ1(x) µ2(x) . . . µn(x)
µ1(x) µ2(x) µ3(x) . . . µn+1(x)

...
...

...
. . .

...
µn−1(x) µn(x) µn+1(x) . . . µ2n−1(x)

1 z z2 . . . zn

∣∣∣∣∣∣∣∣∣∣∣
Dn

Notice that Dn is the cofactor of zn. Pn(z) is called a non-hermitian orthogonal polynomial, i.e.
∀n ∈ N, it satisfies

⟨Pn(z), Pk(z)⟩ =
�
γ
Pn(z)Pk(z)dη =

{
hn(x), k = n

0, k < n
(1.6)

where dη is a complex-valued measure, and γ is a closed contour on the complex plane surrounding
the origin.

Proof. We will first show that proving 1.6 is equivalent to proving

⟨Pn(z), z
k⟩ =

�
γ
Pn(z)z

kdη =

{
hn(x), k = n

0, k < n
(1.7)

(=⇒) If 1.6 is true, then {Pn(z)}∞n=0 is an independent set of orthogonal polynomials, hence we
can write for example zk =

∑∞
i=0 aiPi with ai ∈ C

⟨Pn(z), z
k⟩ =

∞∑

i=0

ai⟨Pn(z), Pi(z)⟩ =
{
anh(x) ≡ h̃n, k = n

0, k < n

3



(⇐=) Conversely, (WLOG k ≤ n), if 1.7 is true then

⟨Pn(z), Pk(z)⟩ = ⟨Pn(z), z
k + bk−1z

k−1 + bk−2z
k−2 + ...+ b1z + bo⟩, bi ∈ C i ≤ k − 1

= ⟨Pn(z), z
k⟩+

k−1∑

i=0

bi⟨Pn(z), z
i⟩ = ⟨Pn(z), z

k⟩, since k − 1 < n, ∀k ≤ n

=

{
h̃n, k = n

0, k < n

So, to check if Pn(z) is an orthogonal polynomial, it suffices to verify relation ( 1.7).

Let us write

Pn(z) =

∣∣∣∣∣∣∣∣∣∣∣

µ0(x) µ1(x) µ2(x) . . . µn(x)
µ1(x) µ2(x) µ3(x) . . . µn+1(x)

...
...

...
. . .

...
µn−1(x) µn(x) µn+1(x) . . . µ2n−1(x)

1 z z2 . . . zn

∣∣∣∣∣∣∣∣∣∣∣
Dn

=
1

Dn
(Anz

n +An−1z
n−1 + ...+A1z +A0) =

n∑

i=0

Aiz
i

where Ai is the cofactor of zi. Then�
γ
Pn(z)z

kdη = ⟨Pn, z
k⟩

=
1

Dn

n∑

i=0

Ai⟨zi, zk⟩ =
1

Dn

n∑

i=0

Ai

�
γ
zizkdη =

1

Dn

n∑

i=0

Aiµk+i

=

∣∣∣∣∣∣∣∣∣∣∣

µ0(x) µ1(x) µ2(x) . . . µn(x)
µ1(x) µ2(x) µ3(x) . . . µn+1(x)

...
...

...
. . .

...
µn−1(x) µn(x) µn+1(x) . . . µ2n−1(x)

µk µk+1 µk+2 . . . µk+n

∣∣∣∣∣∣∣∣∣∣∣
Dn

=

{
h̃n, k = n

0, k < n, (since two rows are repeated in the determinant) ■

1.3 The Riemann Hilbert Problem (RHP) and connection with orthogonal
polynomials

1.3.1 Conditions of the Riemann Hilbert Problem

We want to find a 2× 2 matrix valued function Φ(z) satisfying the following conditions :

4



1. the matrices Φ(z) and Φ(z)−1 are defined and holomorphic in C− γ

2. it satisfies the boundary value condition Φ(z+) = Φ(z−)

[
1 e−V (z)

0 1

]
Here e−V (z) ≡ W (z) is

such that the complex-valued measure dη(x, z) can be written e−V (z)dz; W (z) is called the
”weight”.

3. As z → ∞, for some n ∈ N, the matrix Φn(z) has the Taylor series expansion in power of z−1

of the form:

Φ(z) =

[
I2×2 +O(z−1)

] [
zn 0
0 z−n

]

︸ ︷︷ ︸
znσ3

≡ Φn(z) with σ3 =

[
1 0
0 −1

]

=

[
1 O(z−1)

O(z−1) 1

] [
zn 0
0 z−n

]

=

[
zn O(z−n−1)

O(zn−1) z−n

]
=

[
An(z) Bn(z)

]
(†)

where An(z) and Bn(z) denote the columns of Φn(z).

This formulation and the the following explicit formula for its solution is due to Fokas-Its-Kitaev
[23].

1.3.2 Uniqueness of the solution of the Riemann Hilbert Problem

First, let us show that the solution of the RHP is unique.
By condition 3), det(Φn(z+)) = detΦn(z−) which implies that det(Φn(z)) is continuous across γ.
By Morera’s theorem, it is analytic in the neighbourhood of γ. In combination with condition 1),
we conclude that det(Φn(z)) is entire. Moreover, by condition 3) det(Φn(z)) → 1 as z → ∞,
hence, by Louiville’s theorem, det(Φn(z)) ≡ 1 ̸= 0, so Φn(z) is invertible.
Now let us assume that there exists another solution of the RHP Φ̃n(z). Such solution must also
satisfy det(Φ̃n(z)) ≡ 1. Since Φ̃−1

n (z) exists, so let us define κ(z) = Φn(z)Φ̃
−1
n (z).

By Condition 2),

κ(z+) = Φn(z+)Φ̃
−1
n (z+) = Φn(z−)z

nσ3z−nσ3Φ̃−1
n (z−) = Φn(z−)Φ̃

−1
n (z−) = κ(z−)

So, κ is continuous on γ and analytic in its neighbourhood, by Morera’s theorem. Together with
condition 0), we conclude that each entry of κ is entire.
In addition, condition 3) says that as z → ∞, κ = (I2×2 +O(z−1))znσ3z−nσ3(I2×2 + Õ(z−1))−1 →
I2×2. Therefore, by Liouville’s theorem, κ ≡ 1, hence Φn(z) = Φ̃n(z) (uniqueness is proved).

1.3.3 Solution of the Riemann Hilbert Problem

5



Proposition 1.6 The unique solution of the RHP on Φ is

Φn(z) =

[
Pn(z) B

(1)
n (z)

P̃n−1(z) B
(2)
n−1(z)

]
=




Pn(z)
1

2πi

�
γ

Pn(w)e
−V (w)

w − z
dw

P̃n−1(z)
1

2πi

�
γ

P̃n−1(w)e
−V (w)

w − z
dw


 (1.8)

Proof. Following [23] we now write the solution of RHP explicitly in terms of the orthogonal
polynomials. By condition 2),

[
An(z+) Bn(z+)

]
=

[
An(z−) Bn(z−)

] [
1 e−V (z)

0 1

]

=

[
An(z−) An(z−)e

−V (z) +Bn(z−)

]
.

Hence we conclude that

An(z+) = An(z−), and (1.9)

Bn(z+)−Bn(z−) = An(z−)e
−V (z), z ∈ γ. (1.10)

The Sokhotskii Plemelj’s formula suggests that the function

Bn(z) =
1

2πi

�
γ

An(w)e
−V (w)

w − z
dw, z /∈ γ (††)

satisfies relation 1.10. Let us show that no other function satisfies it. Taking Bn(z) as another
solution, we have:

{
Bn(z+)−Bn(z−) = An(z−)e

−V (z)

B̃n(z+)− B̃n(z−) = An(z−)e
−V (z)

⇒ Bn(z+)−Bn(z−) = B̃n(z+)− B̃n(z−)

⇒ Bn(z+)− B̃n(z+)︸ ︷︷ ︸
=βn(z+)

= Bn(z−)− B̃n(z−)︸ ︷︷ ︸
=βn(z−)

⇒ βn(z) = Bn(z)− B̃n(z) has no discontinuity on the contour γ therefore, by Morera’s theorem, it
is an analytic function in the neighbourhood of γ.

Since we were given that Φ(z) =

[
An(z) Bn(z)

]
is analytic in C − γ, we deduce that Bn(z) in

particular, but also B̃n(z) (which is expressed in terms of An(z) in (††) with singularities on γ) are
both analytic in C− γ. Hence βn(z) is also analytic in C− γ
In conclusion, βn(z) is an entire function.
Moreover, we know that from (†) and from (††) that Bn(z) and B̃n(z) both go to zero as z → ∞.
Hence By Liouville theorem βn(z) ≡ 0 ∀z ∈ C, which implies that Bn(z) = B̃n(z)
On the other hand, relation ( 1.9) implies that An(z) has no discontinuity on γ. Again, by Morera’s
Theorem, it is analytic in the neighbourhood of γ. As we were given that Φn(z)(in particular An(z))
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is analytic in C− γ, we conclude that An(z) is entire.

(†) suggests that the first entry (A
(1)
n (z)) and the second entry (A

(2)
n (z)) of An(z) are bounded

respectively by zn and O(zn−1) as z → ∞; by a version of Liouville theorem, they correspond
respectively to a monic polynomial of degree n and a polynomial (not necessarily monic) of degree
n− 1.
Let us denote Pn(z) = A

(1)
n (z) and P̃n−1(z) = A

(2)
n (z). We will now show that Pn(z) and P̃n−1(z)

are in fact Orthogonal Polynomials.

Let us consider B
(1)
n (z) =

1

2πi

�
γ

Pn(w)e
−V (w)

w − z
dw, the first entry of the column Bn(z) of Φn(z).

As z → ∞, w ∈ γ → ∞. Since γ is a contour around z i.e.(w ̸= z), u(w) =
1

w − z
is analytic

and its taylor expansion as w → ∞ can be obtained by writing

u(w) =
1

−z

(
1− w

z

) = −1

z

∞∑

j=0

(
w

z

)j

= −
∞∑

j=0

wi

zj+1

Therefore, we have .

B(1)
n (z) = − 1

2πi

�
γ

∞∑

j=0

wjPn(w)e
−V (w)

zj+1
dw (1.11)

= − 1

2πi

∞∑

j=0

1

zj+1

�
γ
wjPn(w)e

−V (w)dw as z → ∞ (1.12)

The swap of integral and sum in 1.12 above is justified by the fact that w ∈ γ with γ being a compact

set, the sum
∞∑

j=0

wjPn(w)e
−V (w)

zj+1
is also finite as z → ∞. Hence

�
γ

∞∑

j=0

wjPn(w)e
−V (w)

zj+1
dw < ∞.

By Tonelli Fubini, the swap of the contour integral and the sum is possible.

As we know from the condition 3) of the RHP, B
(1)
n (z) behaves near ∞ like O(

1

zn+1
), so for

j + 1 ≥ n+ 1 i.e. j ≥ n, B
(1)
n (z) ̸= 0 and B

(1)
n (z) = 0 for j < n. In other terms:

− 1

2πi

�
γ
wjPn(w) e

−V (w)dw︸ ︷︷ ︸
dη

=





h̃n =⇒
�
γ
wjPn(w) e

−V (w)dw︸ ︷︷ ︸
dη

= hn ∈ C∖ {0}, j = n

0, j < n

(1.13)

This shows that the relation x1.7 is satisfied. This is why Pn(z) is an orthogonal polynomial.

■

Similarly, for B
(2)
n (z) =

1

2πi

�
γ

P̃n−1(w)e
−V (w)

w − z
dw, the second entry of the column Bn(z) of

Φn(z). By the same manipulation, we obtain

B(2)
n (z) = − 1

2πi

∞∑

j=0

1

zj+1

�
γ
wjP̃n−1(w)(w)e

−V (w)dw as z → ∞ (1.14)
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From condition 3) of the RHP, B
(2)
n (z) evolves like

1

zn
, so for j+1 ≥ n i.e. j ≥ n−1, B

(2)
n (z) ̸=

0 and B
(2)
n (z) = 0 for j < n− 1. In other terms:

− 1

2πi

�
γ
wjP̃n−1(w) e

−V (w)dw︸ ︷︷ ︸
dη

=

{
1 j = n− 1

0, j < n− 1
(1.15)

Relation 1.7 is satisfied. This is why P̃n−1(z) is an orthogonal polynomial.

The solution (we proved it is unique) of RHP which features Pn(z) exists if Dn ̸= 0. Conversely,
if Dn ̸= 0 then we can construct an orthogonal polynomial Pn(z) of degree n to build the first
row of the solution Φn(z) which satisfies the condition 1), 1), and 2) of the RHP. Notice that the

orthogonal polynomial, Pn(z) =

∣∣∣∣∣∣∣∣∣∣∣

µ0(x) µ1(x) µ2(x) . . . µn(x)
µ1(x) µ2(x) µ3(x) . . . µn+1(x)

...
...

...
. . .

...
µn−1(x) µn(x) µn+1(x) . . . µ2n−1(x)

1 z z2 . . . zn

∣∣∣∣∣∣∣∣∣∣∣
Dn

is monic of degree n

since the Hankel determinant Dn ̸= 0 and Dn is the cofactor of zn in the ;
On the other hand, we can observe that if Dn = 0, a monic orthogonal polynomial of degree n,
Pn(z) cannot be defined (cannot be found), and hence the RHP does not have a solution by the
fredholm alternative (i.e. the case where we have infinitely many solution when Dn = 0 is not
possible).

2 Lax pair leading to the solution of Painleve V

2.1 Definition and characteristics of a Lax pair

Definition 2.1 The Lax Pair is the pair of matrices

(
A(z; t), B(z; t)

)
of two matrices depending

rationally on z and analytically on t such that the system of two ordinary differential linear equations

{
Ψz = A(z, t)Ψ

Ψt = B(z, t)Ψ,

is compatible. Namely there is a joint solution Ψ(z; t) which satisfies the system. This is equivalent
to the compatibility condition ∂z∂tΨ = ∂t∂zΨ, namely, ∂tA− ∂zB + [A,B] = 0.

The goal is to explain how to find matrices A and B such that the compatibility condition yields
the Painleve V equation. For this we will rely on the results of [26].
Let us reconsider the expression of the moment functions used to build the Hankel determinant in
the solution of Painleve II:

µk(x) = −
�
γ
ζk

1

2πi
e−θ(ζ,x)dζ

ζ︸ ︷︷ ︸
=dη(ζ,x)
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where the contour γ is an enlarged circle (after the change of variable z = 1/ζ) around the origin
traversed clockwise. The (−) sign before the integral makes it back to a counter-clockwise (positive)
direction and we can write

µk(x) =

�
γ
ζk

1

2πi
e−θ(ζ,x)dζ

ζ︸ ︷︷ ︸
=dη(ζ,x)

.

To obtain solutions of Painlevé V we replace dη by a different complex valued measure

dν =

(
1− 1

ζ

)θ

ζ−me
−
x

ζ dζ. (2.1)

The moment functional corresponds to the generating function g(t, x, θ) = (1− t)θtme−xt where x
is a parameter, and θ is another parameter independent of x.
The moment functions are now given by

µk(x) =

�
γ
ζk
(
1− 1

ζ

)θ

ζ−me
−
x

ζ dζ

︸ ︷︷ ︸
=dν(ζ,x,θ)

(2.2)

where the contour γ is a circle around the origin, large enough to contain the points ζ = 0 and
ζ = 1 .
The measure is given by dν = e−V (ζ)dζ, so that the weight is

W (ζ) ≡ e−V (ζ) =

(
1− 1

ζ

)θ

ζ−me
−
x

ζ dζ (2.3)

i.e. V (ζ) =
x

ζ
− θ ln

(
1− 1

ζ

)
+m ln(ζ) (2.4)

Now, we will prove that by setting some well constructed function as the solution of the Lax
pair, we can derive matrices A and B of the pair such that the compatibility condition of the Lax
pair yields equation Painleve V. More practically, we will simply compare the matrices A and B
with that are found for the equation Painleve V in [26].

Let us define the matrix Ψ as follows:

Ψ̃(z, t) = Ψ(z) := Φ(z)



e
−
V (z)

2 0

0 e

V (z)

2


 = Φ(z)e

−V (z)

2
σ3

(2.5)

where Φ(z) is the solution of the RHP of Prop. 1.6. Our goal is to prove the following Proposition.

Proposition 2.2 The matrix Ψ(z;x) in (2.5) satisfies the pair of first order PDEs

{
∂zΨ(z;x) = A(z;x)Ψ(z;x)
∂xΨ(z;x) = B(z;x)Ψ(z;x).

(2.6)
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where the matrices A,B have the form

A(z;x) :=
x

z2
G0σ3G

−1
0 +G0

(−m− θ

z
σ3 +

x

z

[
G−1

0 G1, σ3

])
G−1

0 +
−m

z − 1
H0σ3H

−1
0 +

n−m

z
σ3

(2.7)

B(z;x) := −1

z
G0σ3G

−1
0 (2.8)

where G0 := Φ(0;x), G1 := Φ′(0;x) and H0 := Φn(1;x). Moreover it satisfies the following
expansions near the points z = 0, 1,∞:

Ψ(z;x) =





O×(1)z
−m−θ

2
σ3e−

x
2z

σ3 , z → 0

O×(1)(z − 1)
θ
2
σ3 , z → 1(

1+O(z−1)
)
z(n−

m
2 )σ3 , z → ∞

(2.9)

where O×(1) denote a locally analytic (near the points z = 0, 1, respectively) and analytically
invertible matrix–valued expression.

Proof. It is simple to verify directly from the jump condition (2) in section 1.3.1 that the matrix
Ψ(z) satisfies also a jump relation for z ∈ γ where the matrix of the jump is independent of z and x.
This means that Ψ′

n(z) also satisfies the same relation and therefore A(z;x) := Ψ′
n(z;x)Ψn(z;x)

−1

extends analytically across γ. Therefore, we can write:

A =

[
Φ′
n(z)e

−V (z)

2
σ3

+Φn(z)

(−V ′(z)

2
σ3

)
e

−V (z)

2
σ3

]
e

V (z)

2
σ3

Φ−1
n (z)

= Φ′
n(z)Φ

−1
n (z)− V ′(z)

2
Φn(z)σ3Φ

−1
n (z)

= Φ′
n(z)Φ

−1
n (z) +

1

2

[
x

z2
+ θ

(
1

z − 1
− 1

z

)
− m

z

]
Φn(z)σ3Φ

−1
n (z)

By studying the analyticity of A on C, we now prove that A is in rational function of z.
First, let us verify that A has indeed no jump on γ, as anticipated above.

In fact, since V (z) =
x

z
− θ ln

(
1− 1

z

)
+m ln(z) has singularities only at 0, 1 enclosed by γ, then

V (z) has no jump on γ (V (z+) = V (z−) = V (z)) and we can write :

A(z+) = Φ′
n(z+)Φ

−1
n (z+)−

V ′(z)

2
Φn(z+)σ3Φ

−1
n (z+)

= Φ′
n(z−)

[
1 e−V (z)

0 1

] [
1 −e−V (z)

0 1

]
Φ−1
n (z−)

+ Φn(z−)

[
0 −V ′(z)e−V (z)

0 0

] [
1 −e−V (z)

0 1

]
Φ−1
n (z−)−

V ′(z)

2
Φn(z+)σ3Φ

−1
n (z+)
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= Φ′
n(z−)Φ

−1
n (z−) + Φn(z−)

[
0 −V ′(z)e−V (z)

0 0

]
Φ−1
n (z−)

− V ′(z)

2
Φn(z−)

[
1 e−V (z)

0 1

] [
1 0
0 −1

] [
1 −e−V (z)

0 1

]

︸ ︷︷ ︸

=


1 −2e−V (z)

0 −1




Φ−1
n (z−)

= Φ′
n(z−)Φ

−1
n (z−)

+ Φn(z−)

([
0 −V ′(z)e−V (z)

0 0

]
+



−V ′(z)

2
V ′(z)e−V (z)

0
V ′(z)

2



)
Φ−1
n (z−)

= Φ′
n(z−)Φ

−1
n (z−) + Φn(z−)



−V ′(z)

2
0

0
V ′(z)

2


Φ−1

n (z−)

= Φ′
n(z−)Φ

−1
n (z−)−

V ′(z)

2
Φn(z−)σ3Φ

−1
n (z−)

= A(z−)

By Morera’s theorem, A is analytic across γ and it may have only isolated singularities at
z = 0, 1.

To ascertain the nature of these singularities, it remains to study

A = Φ′
n(z)Φ

−1
n (z) +

1

2

[
x

z2
+ θ

(
1

z − 1
− 1

z

)
− m

z

]
Φn(z)σ3Φ

−1
n (z) (2.10)

on C \ γ.
It is easy to see that because of condition 1) in section 1.3.1 on Φn(z), Φ′

n(z)Φ
−1
n (z) and

Φn(z)σ3Φ
−1
n (z) are analytic on C \ γ in the expression (2.10) for A. The same expression (2.10)

shows that A(z) has at most a double pole at 0, and a simple pole at 1. Therefore A is rational
and can be written as

A =
A0

z
+

Ã0

z2
+

A1

z − 1
(2.11)

where A0, Ã0 and A1 are constant matrices to be determined and be compared to the ones in [?]
related to Painleve V.

To find them, let us express ( 2.10) in the neighbourhood of ∞ and 0
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As z → ∞ Φn(z) =

(
1 +O(z−1)

)
znσ3 . Hence as z → ∞

( 2.10) =⇒ A −→ O(z−2) znσ3z−nσ3

(
1 +O(z−1)

)−1

︸ ︷︷ ︸
→I2×2︸ ︷︷ ︸

→I2×2

+

(
1 +O(z−1)

)

︸ ︷︷ ︸
→I2×2

nσ3
z

znσ3z−nσ3

(
1 +O(z−1)

)−1

︸ ︷︷ ︸
→I2×2︸ ︷︷ ︸

→I2×2

+
1

2

[
x

z2
+ θ

(
1

z − 1
− 1

z

)
− m

z

]

︸ ︷︷ ︸
→O(z−2) since (z−1)≊z at ∞

(
1 +O(z−1)

)

︸ ︷︷ ︸
→I2×2

znσ3σ3z
−nσ3

(
1 +O(z−1)

)−1

︸ ︷︷ ︸
→I2×2︸ ︷︷ ︸

→σ3

−→ O(z−2) +
nσ3
z

−→ 0 (⋆)

On the other hand, as z → ∞ ( 2.11) =⇒ A =
Ã0

z2
+

A0 +A1

z
=⇒︸︷︷︸
by (⋆)

A0 +A1 = nσ3.

We now investigate the behaviour as z → 0: this is done by taking the Laurent expansion of A and
recalling that Φ(s) is analytic at z = 0 we get

(2.10) =⇒ A −→ Φ′
n(0)Φ

−1
n (0)− (1/2)xΦn(z)σ3Φ

−1
n (z)

z2
+

(1/2)(θ)Φn(z)σ3Φ
−1
n (z)

−1

− (1/2)(θ +m)Φn(z)σ3Φ
−1
n (z)

z

= O(1)− (1/2)xΦn(z)σ3Φ
−1
n (z)

z2
− (1/2)(θ +m)Φn(z)σ3Φ

−1
n (z)

z

= O(1)−
(1/2)x

[
Φn(0) + zΦ′

n(0) +O(z2)

]
σ3

[
Φ−1
n (0)− zΦ−1

n (0)Φ′
n(0)Φ

−1
n (z) +O(z2)

]

z2

−
(1/2)(θ +m)

[
Φn(0) + zΦ′

n(0) +O(z2)

]
σ3

[
Φ−1
n (0)− zΦ−1

n (0)Φ′
n(0)Φ

−1
n (0) +O(z2)

]

z

−
(1/2)(θ +m)

[
Φn(0) + zΦ′

n(0) +O(z2)

]
σ3

[
O(z2)

]

z
=

12



= O(1) +
1

z2

(
− (1/2)xΦn(0)σ3Φ

−1
n (0) +O(z2)

)

+
1

z

(
(1/2)xΦn(0)σ3Φ

−1
n (0)Φ′

n(0)Φ
−1
n (0)− (1/2)xΦ′

n(0)σ3Φ
−1
n (0)

− (1/2)(θ +m)Φn(0)σ3Φ
−1
n (0) +O(z2)

)

= O(1)− (1/2)x

z2
Φn(0)

(
σ3 +O(z2)

)
Φ−1
n (0)

+
(1/2)

z
Φn(0)

(
xσ3Φ

−1
n (0)Φ′

n(0)− xΦ−1
n (0)Φ′

n(0)σ3 − (θ +m)σ3 +O(z2)

)

︸ ︷︷ ︸
→x[σ3,Φ

−1
n (0)Φ′

n(0)−(θ+m)σ3] as z→0

Φ−1
n (0)

(⋆⋆)

Again, as z → 0 , we have

(2.11) =⇒ A =
A0

z
+

Ã0

z2
+

A1

−1

=⇒︸︷︷︸
by (⋆⋆)




A0 = (1/2)xΦn(0)

[
σ3,Φ

−1
n (0)Φ′

n(0)− (θ +m)σ3

]
Φ−1
n (0)

Ã0 = (1/2)xΦn(0)σ3Φ
−1
n (0)

=⇒ A1 = nσ3 − (1/2)xΦn(0)

[
σ3,Φ

−1
n (0)Φ′

n(0)− (θ +m)σ3

]
Φ−1
n (0)

The expression for B(z;x) is found along similar lines.

The expansions near z = 0, 1,∞ follow from the behaviour of the term e

V (z)σ3
2 near those

points and the condition (3) in Section 1.3.1. ■

In the work of the Japanese school [26] the z–component of the Lax pair for Painlevé V has also
two Fuchsian and one second rank singularities, but with the positions reversed. More specifically,
the Lax pair proposed in [26] is as follows1 (see formulas (C.38–C.45) in loc. cit.)

∂wQ(w; t) = A
JMU

(w; t)Q(w; t) , ∂tQ(w; t) = B
JMU

(w; t)Q(w; t)

A
JMU

(w; t) =
t

2
σ3 +

1

w

[
Z + θ0

2 −U(Z + θ0)
Z
U −Z − θ0

2

]
+

1

w − 1


 −Z − θ0+θ∞

2 UY
(
Z + θ0−θ1+θ∞

2

)

−Z+
θ0+θ1+θ∞

2
UY Z + θ0+θ∞

2




B
JMU

(w; t) =
w

2
σ3 +


 0 −U

t

(
Z + θ0 − Y

(
Z + θ0−θ1+θ∞

2

))

1
tUY

(
(Y − 1)Z + θ0+θ1+θ∞

2

)
0


 (2.12)

where Z = Z(t), Y = Y (t), U = U(t) satisfy a nonlinear first order system of ODEs in t (C.40),

1We transcribe the results of [26] but we adapt their notation to our conventions. Note that the paper contains a
couple of small typos: in (C.39) there should be an x in front of the first term of B and the sign of the (1, 2) entry
of the next term should be the opposite.
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which implies the fifth Painlevé equation for Y :

d2Y

dt2
=

(
1

2Y
+

1

Y − 1

)(
dY

dt

)2

− 1

t

dY

dt
+

(Y − 1)2(αY + Y
β )

t2
+

γY

t
+

δY (Y + 1)

Y − 1

α =
1

2

(
θ0 − θ1 + θ∞

2

)2

; β = −1

2

(
θ0 − θ1 − θ∞

2

)2

; γ = 1− θ0 − θ1; δ = −1

2
. (2.13)

The solution Q(w; t) has the following formal expansions near w = 0, 1,∞:

Q(w; t) = O(1)w
θ0σ3

2 , w → 0

Q(w; t) = O(1)(w − 1)
θ1σ3

2 , w → 1

Q(w; t) =

(
1+

Q1

w
+O(w−2)

)
w− θ∞

2
σ3e

t
2
wσ3 , w → ∞. (2.14)

The Hamiltonian function for the Painlevé equation is given by

HV = −1

2
tr (Q1σ3) (2.15)

and the equation admits the so–called sigma-form: indeed, introducing the new function

σ(t) = tHV − t

2
(θ0 + θ∞) +

(θ0 + θ∞)2 − θ21
4

(2.16)

it can be verified that it satisfies ([26] formula (C.45))

(
t
d2σ

dt2

)2

=

(
σ − t

dσ

dt
+ 2

(
dσ

dt

)2

− (θ∞ + 2θ0)
dσ

dt

)2

+

− 4

(
dσ

dt

)(
dσ

dt
− θ0 − θ1 + θ∞

2

)(
dσ

dt
− θ0

)(
dσ

dt
− θ0 + θ1 + θ∞

2

)
(2.17)

If we want to identify our Lax pair (2.6) with the Japanese one (2.12) we see that it suffices to
map w = 1

z and normalize suitably our Ψ(z; t)

Proposition 2.3 The map w = 1
z and

Qn(w; t) = Φn(0; t)
−1Ψ

(
1

w
; t

)
e−iπ

2
ρσ3 Q̂n(z; t) := Qn

(
1

z
; t

)
. (2.18)

transforms the Lax pair (2.6) into (2.12) with parameters

θ0 = −2n+m; θ1 = θ; θ∞ = −m− θ (2.19)

As w → ∞ the expansion of Qn(w) reads as follows:

Qn(w) =

(
1 +

Qn,1(∞)

w
+O(

1

w2
)

)
eT (w) (2.20)
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where,

T (w) =
1

2

[
t 0
0 −t

]
w +

1

2

[
θ∞ 0
0 −θ∞

]
ln

(
1

w

)
. (2.21)

This corresponds to the parameters α, β, γ in (2.13) as follows

α =
(Nθ)2

2
; β = −(N−m)2

2
; γ = 1 + 2N−m− θ. (2.22)

Proof. The map w = 1
z maps z = 0 to w = ∞, z = ∞ to w = 0 and z = 1 to w = 1. Thus

the exponents of (formal) monodromy θ{0,1,∞} are read off by matching the exponents in (2.9) and
(2.14) as we explain in details below.

Finding the expression for θ∞. Since z =
1

w
to find θ∞, we need to expand Q̂n(z;x) :=

Qn

(
1
z ;x
)
near z = 0 as the product of two factors:

� An analytic factor of the form

(
1+Q̂n,1(0)·z+O(z2)

)
equivalent to

(
1+

Qn,1(∞)

w
+O(

1

w2
)

)

in 2.20 such that we can read off the expression of the Halmitonian as minus the (1, 1) entry
of Q̂n,1(0)

� An exponential factor of the form eT̂ (z) where T̂ (z) is equivalent to 2.21 such that we can
read off the expression of β0 .

In the neighbourhood of w → ∞, i.e. z → 0 the expansion of Qn(w) gives:

15



Qn(w) = Qn(
1

z
) = Q̂n(z) = Φ−1

n (0)Ψn(z) = Φ−1
n (0)Φn(z)e

−
V (z)

2
σ3

= Φ−1
n (0)Φn(z)

(
1− 1

z

)θσ3
2 z

−
mσ3
2 e

−
xσ3
2z

= Φ−1
n (0)Φn(z)

(
1− 1

z

)θσ3
2 z

θσ3
2 z

−
θσ3
2︸ ︷︷ ︸

= 1

z
−
mσ3
2 e

−
xσ3
2z

= Φ−1
n (0)Φn(z)(z − 1)

θσ3
2 z

−
θσ3
2 z

−
mσ3
2 e

−
xσ3
2z

= Φ−1
n (0)

[
Φn(0) + Φ′

n(0)z +O(z2)

]

︸ ︷︷ ︸
Taylor expansion of Φn(z) at 0

(z − 1)

(θ)σ3
2

· z
−
(θ +m)σ3

2 e
−
xσ3
2z

=

[
I2×2 +Φ−1

n (0)Φ′
n(0)z +O(z2)

]
(−1)

(θ)σ3
2 (1− z)

(θ)σ3
2

︸ ︷︷ ︸
Analytic as z→0

·

= z

−(θ +m)σ3
2 e

−
xσ3
2z︷ ︸︸ ︷

e

1

2
−(θ+m)σ3 ln(z)−

1

2
xσ3(

1

z
)
= Analytic · eT̂ (z),

Where we have set,

T̂ (z) =
1

2
β0σ3 ln(z)−

1

2
x
σ3
z

(2.23)

Now, let us refine the analytic part of Q̂n(z) to find out the expression of Q̂n,1(0) = Qn,1(∞)
We had:

16



Qn(w) = Qn(
1

z
) = Q̂n(z)

=

[
I2×2 +Φ−1

n (0)Φ′
n(0)z +O(z2)

]
(−1)

θσ3
2 (1− z)

θσ3
2

︸ ︷︷ ︸
Analytic as z→0

eT̂ (z)

= (−1)

θσ3
2︸ ︷︷ ︸

:=C( constant)

[
I2×2 +Φ−1

n (0)Φ′
n(0)z +O(z2)

]

·
(
I2×2 −

(θ)σ3
2

z +O(z2)

)

︸ ︷︷ ︸

=Taylor expansion of (1− z)

(θ)σ3
2

eT̂ (z)

= C

[
I2×2 +

(
Φ−1
n (0)Φ′

n(0)−
θσ3
2

)
z +O(z2)

]
eT̂ (z)

where

T̂ (z) =
1

2
β0σ3 ln(z)− 1

2
xσ3(

1

z
) =

1

2

[
−x 0
0 x

]
1

z
+

1

2

[
β0 0
0 −β0

]
ln(z)

in the neighbourhood of z = 0.
This implies that as w → ∞, , we obtain:

T̂ (z) = T̂ (
1

w
) := T (w) =

1

2

[
−x 0
0 x

]
1

w
+

1

2

[
−(θ +m) 0

0 (θ +m)

]
ln(

1

w
) (2.24)

and

Q̂(z) = Qn(w) = C

[
I2×2 +

(
Φ−1
n (0)Φ′

n(0)−
(θ)σ3
2

)
1

w
+O(

1

w2
)

]
eT (w) (2.25)

So by identification with the expression of the solution at ∞ of the Lax pair in [3] written as

Qn(w) =

[
I2×2 +Qn,1(∞)

1

w
+O(

1

w2
)

]
eT (w)

where T (w) =
1

2

[
t 0
0 −t

]
1

z
+

1

2

[
θ∞ 0
0 −θ∞

]
ln(

1

w
)

we obtain that:

θ∞ : = β0 = −(θ +m) (2.26)

x = −t (2.27)

and, Q̂n,1(0) = Qn,1(∞) = Φ−1
n (0)Φ′

n(0)−
(θ)σ3
2

(2.28)

Finding the expression for θ0. As w → 0 the expansion of Qn(w) reads as follows in [26]:

Qn(w) = O×(1) · eM(w) (2.29)
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where,

M(w) =
1

2

[
t 0
0 −t

]
w +

1

2

[
θ0 0
0 −θ0

]
ln(w) (2.30)

In the neighbourhood of w → 0, i.e. z → ∞ the expansion of Qn(w) gives:

Qn(w) = Qn

(
1

z

)
= Q̂n(z) = Φ−1

n (0)Ψn(z) = Φ−1
n (0)Φn(z)e

−
V (z)

2
σ3

= Φ−1
n (0)Φn(z)

(
1− 1

z

)θσ3
2 z

−
mσ3
2 e

−
xσ3
2z

= Φ−1
n (0)︸ ︷︷ ︸

:=C(constant)

Φn(z)

(
1− 1

z

)θσ3
2

︸ ︷︷ ︸
Analytic as z→∞

z
−
mσ3
2 e

−
xσ3
2z

= Analytic ·
[
I2×2 +O(

1

z
)

]
znσ3

︸ ︷︷ ︸
expansion of Φn(z) as z→∞ (see condition 2) of the RHP on Φ)

· e
−
(m)σ3

2 e
−
xσ3
2z

= Analytic ·
[
I2×2 +O(

1

z
)

]

︸ ︷︷ ︸
Analytic

e
−
xσ3
2z z

(n−
m

2
)σ3

= Analytic · e
−
1

2
xσ3

1

z
+
1

2
(2n−m)σ3 ln(z)

= Analytic · eM̂(z)

where,

M̂(z) =
1

2

[
−x 0
0 x

]
1

z
+

1

2

[
(2n−m) 0

0 −(2n−m)

]
ln(

1

z
) (2.31)

So by identification x = −t and θ0 := −(2n−m).

Finding the expression for θ1. As w → 1 the expansion of Qn(w) reads as follows:

Qn(w) = O×(1) · eN(w) (2.32)

where,

N(w) =
1

2

[
t 0
0 −t

]
(w − 1) +

1

2

[
θ1 0
0 −θ1

]
ln(w − 1) (2.33)

and θ1 is a parameter. To find it, we need to expand Q̂n(z) near 1 as the product of two factors:
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� An analytic factor ;

� An exponential factor of the form eN̂(z) where N̂(z) is equivalent to N(w) such that we can
read off the expression of θ1 .

In the neighbourhood of w → 1, i.e. z → 1 the expansion of Qn(w) gives:

Qn(w) = Qn(
1

z
) = Q̂n(z) = Φ−1

n (0)Ψn(z) = Φ−1
n (0)Φn(z)e

−
V (z)

2
σ3

= Φ−1
n (0)Φn(z)

(
1− 1

z

)θσ3
2 z

−
mσ3
2 e

−
xσ3
2z

= Φ−1
n (0)Φn(z)(−1)

θσ3
2

(
1

z
− 1

)θσ3
2 z

θσ3
2 z

−
θσ3
2︸ ︷︷ ︸

=1

z
−
mσ3
2 e

−
xσ3
2z

=

Analytic︷ ︸︸ ︷

(−1)

θσ3
2 Φ−1

n (0)

[
Φn(1) + Φ′

n(1)(z − 1) +O(z − 1)2
]

︸ ︷︷ ︸
Taylor expansion of Φ(z) at z=1

z
−
θσ3
2 z

−
mσ3
2 e

−
xσ3
2z

· e
xσ3
2

(z−1)
e
−
xσ3
2

(z−1)

︸ ︷︷ ︸
=1

(1− z)

θσ3
2︸ ︷︷ ︸

=

(
1

z
−1

)θσ3
2

z

θσ3
2

= (−1)

θσ3
2 O×(1) ·

Analytic︷ ︸︸ ︷

e

xσ3
2

(z−1)

︸ ︷︷ ︸
Analytic

e
−
xσ3
2

(z−1)
(z − 1)

θσ3
2

= O×(1) · e
−
1

2
xσ3(z−1)+

1

2
θσ3 ln(z−1)

= O×(1) · eN̂(z)

where,

N̂(z) =
1

2

[
−x 0
0 x

]
(z − 1) +

1

2

[
(θ) 0
0 −(θ)

]
ln(z − 1) (2.34)

So by identification x = −t and θ1 := θ. ■

The following definition was given in [26].

Definition 2.4 The expansion of Qn(w) as w → ∞ (as stated in 2.20) exhibits in its second term
a coefficient matrix Qn,1(∞) whose (2, 2) entry is called the Hamiltonian and denoted HV :

HV :=

(
Qn,1(∞)

)

2,2

. (2.35)
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In terms of our original solution of the matrix RHP we can formulate the following Proposition.

Proposition 2.5 Similar to the solution Qn(w) of the Lax pair in [3] (p.443), the solution Q̂n(z)
of our Lax pair exhibits in its second term a coefficient matrix of the form:

Q̂n,1(0) =

[
−HV ∗
∗ HV

]

Proof. Recall from the proposition 1.6 stating the RHP solution, we obtained:

Φn(0) =

[
Pn(0) B

(1)
n (0)

P̃n−1(0) B
(2)
n−1(0)

]

. Setting B
(1)
n (0) = Bn(0) and B

(2)
n−1(0) = B̃n−1(0)

we have

Φ−1
n (0)Φ′

n(0) =

[
P ′
n(0)B̃n−1(0)− P̃ ′

n−1(0)Bn(0) ∗
∗ Pn(0)B̃

′
n−1(0)− P̃n−1(0)B

′
n(0)

]

We will show that:

if

(
Φ−1
n (0)Φ′

n(0)

)

22

= HV = Pn(0)B̃
′
n−1(0)− P̃n−1(0)B

′
n(0),

then

(
Φ−1
n (0)Φ′

n(0)

)

11

= −HV = P ′
n(0)B̃n−1(0)− P̃ ′

n−1(0)Bn(0)

i.e.

(
Φ−1
n (0)Φ′

n(0)

)

11

+

(
Φ−1
n (0)Φ′

n(0)

)

22

= 0, similarly to the solution of the Lax pair in [3]

In fact we know that detΦn(z) = 1 and detΦn(z) = Pn(z)B̃n−1(z)− P̃n−1(z)Bn(z)
we have:

0 =

(
detΦn(z)

)′

=

(
Pn(z)B̃n−1(z)− P̃n−1(z)Bn(z)

)′

⇒ 0 = P ′
n(z)B̃n−1(z) + Pn(z)B̃′

n−1(z)− P̃ ′
n−1(z)Bn(z)− P̃n−1(z)B

′
n(z)

⇒ 0 = P ′
n(0)B̃n−1(0)− P̃ ′

n−1(0)Bn(0)︸ ︷︷ ︸
=−HV

+Pn(0)B̃
′
n−1(0)− P̃n−1(0)B

′
n(0)︸ ︷︷ ︸

=HV

.
■
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Proposition 2.6 In [26] (p.443), the Hamiltonian along with the parameters θ0, θ1 and θ∞ is used
to construct the sigma function as follows:

σ(x) = xHV +
1

2
(θ0 + θ∞) +

1

4
[(θ0 + θ∞)2 − θ1]

2

The constructed sigma function satisfies the sigma-form of the PV equation (2.17).

2.2 Expressions for the Hamiltonian

We will now find the corresponding expressions of the Hamiltonian by using the expansion of the
solution Q̂n(z) (2.18) of our Lax pair ( also related to the PV equation) that we constructed.

2.2.1 Finding the expression of the Hamiltonian in terms of the moment functions

The following proposition is simply a restatement of Prop. 2.5 for convenience.

Proposition 2.7 From (2.28) and from the Proposition 2.5, the expression of the Hamiltonian is
the opposite of the (1, 1) entry of the matrix

Q̂n,1(0) = Qn,1(∞) = Φ−1
n (0)Φ′

n(0)−
θσ3
2

i.e. HV = −
[(

Φ−1
n (0)Φ′

n(0)

)

11

− θ

2

]
(2.36)

With the aid of Prop. 2.7 we now express the HamiltonianHV in terms of the moment functions.
Recall that the solution of the RHP on Φ is (see Prop. 1.6)

Φn(z) =

[
Pn(z) B

(1)
n (z)

P̃n−1(z) B
(2)
n−1(z)

]
=




Pn(z)
1

2πi

�
γ

Pn(w)e
−V (w)

w − z
dw

P̃n−1(z)
1

2πi

�
γ

P̃n−1(w)e
−V (w)

w − z
dw




Proposition 2.8 From relation ( 2.36) and ( 2.40) the expression of the Hamiltonian is:

HV = −
[(

Φ−1
n (0)Φ′

n(0)

)

11

− θ

2

]
= −

[
D′

n

Dn
− θ

2

]
= −

[
∂x ln(Dn)−

θ

2

]
(2.37)
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Proposition 2.9 The expansion at 0, 1 and ∞ of the solution of the constructed Lax Pair provides
as follow the Hamiltonian, and the parameters needed to find the Tau function which solves the ODE
Painleve V

HV = −
[(

Φ−1
n (0)Φ′

n(0)

)

11

− θ

2

]
= −

[
D′

n

Dn
− θ

2

]
= −

[
∂x ln(Dn)−

θ

2

]

θ0 = −(θ +m)

θ1 = θ

θ∞ = −(2n−m)

Proof.

We start with the computation of

(
Φ−1
n (0)Φ′

n(0)

)

11

.x Recall that:

Pn(z) =

∣∣∣∣∣∣∣∣∣∣∣

µ0(x) µ1(x) µ2(x) . . . µn(x)
µ1(x) µ2(x) µ3(x) . . . µn+1(x)

...
...

...
. . .

...
µn−1(x) µn(x) µn+1(x) . . . µ2n−1(x)

1 z z2 . . . zn

∣∣∣∣∣∣∣∣∣∣∣
Dn

(2.38)

Also P ′
n(0) corresponds to the coefficient (cofactor) of z and we have,

P ′
n(0) = (−1)n+2

︸ ︷︷ ︸
=(−1)n

∣∣∣∣∣∣∣∣∣

µ0(x) µ2(x) . . . µn(x)
µ1(x) µ3(x) . . . µn+1(x)

...
...

. . .
...

µn−1(x) µn+1(x) . . . µ2n−1(x)

∣∣∣∣∣∣∣∣∣
Dn

Recall that

�
γ
wiwj e−V (w)dw︸ ︷︷ ︸

dη

= µi+j and,

〈
wn−1,

∣∣∣∣∣∣∣∣∣∣∣

µ0(x) µ1(x) µ2(x) . . . µn−1(x)
µ1(x) µ2(x) µ3(x) . . . µn(x)

...
...

...
. . .

...
µn−2(x) µn−1(x) µn(x) . . . µ2n−3(x)

1 w w2 . . . wn−1

∣∣∣∣∣∣∣∣∣∣∣
Dn−1

〉
=

�
γ
wn−1Pn−1(w) e

−V (w)dw︸ ︷︷ ︸
dη

:= hn−1.
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Since

− 1

2πi

�
γ
wn−1P̃n−1(w) e

−V (w)dw︸ ︷︷ ︸
dη

= 1 =⇒ − 1

2πi

�
γ
wn−1 P̃n−1

Dn−1︸ ︷︷ ︸
=Pn−1

dη =
1

Dn−1

=⇒ hn−1 ≡
�
γ
wn−1Pn−1dη =

−2πi

Dn−1

So, Pn−1 =
P̃n−1

Dn−1
⇒ P̃n−1 = Pn−1Dn−1 =

−2πiPn−1

hn−1
=

−2πiDn−1

Dn
Pn−1

Hence,

P̃n−1(z) = −2πi
Dn−1

Dn
=

∣∣∣∣∣∣∣∣∣∣∣

µ0(x) µ1(x) µ2(x) . . . µn−1(x)
µ1(x) µ2(x) µ3(x) . . . µn(x)

...
...

...
. . .

...
µn−2(x) µn−1(x) µn(x) . . . µ2n−3(x)

1 z z2 . . . zn−1

∣∣∣∣∣∣∣∣∣∣∣
Dn−1︸ ︷︷ ︸
=Pn−1

which gives

P̃n−1(z) = −2πi

∣∣∣∣∣∣∣∣∣∣∣

µ0(x) µ1(x) µ2(x) . . . µn−1(x)
µ1(x) µ2(x) µ3(x) . . . µn(x)

...
...

...
. . .

...
µn−2(x) µn−1(x) µn(x) . . . µ2n−3(x)

1 z z2 . . . zn−1

∣∣∣∣∣∣∣∣∣∣∣
Dn

and P̃ ′
n−1(0) corresponds to the coefficient (cofactor) of z and we have,

P̃ ′
n−1(0) =

(−1)n+1(−2πi)

Dn

∣∣∣∣∣∣∣∣∣

µ0(x) µ2(x) . . . µn−1(x)
µ1(x) µ3(x) . . . µn(x)

...
...

. . .
...

µn−2(x) µn(x) . . . µ2n−3(x)

∣∣∣∣∣∣∣∣∣

Recall that

Bn(0) =
1

2πi

�
γ

Pn(w)e
−V (w)

w − z
dw

∣∣∣∣
z=0

=
1

2πi

�
γ

Pn(w)

=dη︷ ︸︸ ︷
e−V (z)dw

w
=

1

2πi
⟨Pn(w), w

−1⟩

=
1

2πi

�
γ
w−1

n∑

j=0

Ajw
jdη =

1

2πi

n∑

j=0

Aj

�
γ
wj−1dη =

1

2πi

n∑

j=0

µj−1Aj
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where Aj is the cofactor of zj in the determinant in relation 2.38

=
1

2πi

∣∣∣∣∣∣∣∣∣∣∣

µ0(x) µ1(x) µ2(x) . . . µn(x)
µ1(x) µ2(x) µ3(x) . . . µn+1(x)

...
...

...
. . .

...
µn−1(x) µn(x) µn+1(x) . . . µ2n−1(x)
µ−1 µ0 µ1 . . . µn−1

∣∣∣∣∣∣∣∣∣∣∣
Dn

and similarly,

B̃n−1(0) =
1

2πi
⟨P̃n−1(w), w

−1⟩ = −2πi

2πi

∣∣∣∣∣∣∣∣∣∣∣

µ0(x) µ1(x) µ2(x) . . . µn−1(x)
µ1(x) µ2(x) µ3(x) . . . µn(x)

...
...

...
. . .

...
µn−2(x) µn−1(x) µn(x) . . . µ2n−3(x)
µ−1 µ0 µ1 . . . µn−2

∣∣∣∣∣∣∣∣∣∣∣
Dn

Finally

(
Φ−1
n (0)Φ′

n(0)

)

11

= P ′
n(0)B̃n−1(0)− P̃ ′

n−1(0)Bn(0)

=
(−1)n+1

D2
n

∣∣∣∣∣∣∣∣∣

µ0(x) µ2(x) . . . µn(x)
µ1(x) µ3(x) . . . µn+1(x)

...
...

. . .
...

µn−1(x) µn+1(x) . . . µ2n−1(x)

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

µ0(x) µ1(x) µ2(x) . . . µn−1(x)
µ1(x) µ2(x) µ3(x) . . . µn(x)

...
...

...
. . .

...
µn−2(x) µn−1(x) µn(x) . . . µ2n−3(x)
µ−1 µ0 µ1 . . . µn−2

∣∣∣∣∣∣∣∣∣∣∣

− (−1)n+2

D2
n

∣∣∣∣∣∣∣∣∣

µ0(x) µ2(x) . . . µn−1(x)
µ1(x) µ3(x) . . . µn(x)

...
...

. . .
...

µn−2(x) µn(x) . . . µ2n−3(x)

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

µ0(x) µ1(x) µ2(x) . . . µn(x)
µ1(x) µ2(x) µ3(x) . . . µn+1(x)

...
...

...
. . .

...
µn−1(x) µn(x) µn+1(x) . . . µ2n−1(x)
µ−1 µ0 µ1 . . . µn−1

∣∣∣∣∣∣∣∣∣∣∣
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=
(−1)2n

D2
n︸ ︷︷ ︸
1

D2
n

∣∣∣∣∣∣∣∣∣

µ0(x) µ2(x) . . . µn(x)
µ1(x) µ3(x) . . . µn+1(x)

...
...

. . .
...

µn−1(x) µn+1(x) . . . µ2n−1(x)

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

µ−1 µ0 µ1 . . . µn−2

µ0(x) µ1(x) µ2(x) . . . µn−1(x)
µ1(x) µ2(x) µ3(x) . . . µn(x)

...
...

...
. . .

...
µn−2(x) µn−1(x) µn(x) . . . µ2n−3(x)

∣∣∣∣∣∣∣∣∣∣∣
︸ ︷︷ ︸
the last row is moved to the first and produced (−1)n−1

−(−1)2n+2

D2
n︸ ︷︷ ︸

−
1

D2
n

∣∣∣∣∣∣∣∣∣

µ0(x) µ2(x) . . . µn−1(x)
µ1(x) µ3(x) . . . µn(x)

...
...

. . .
...

µn−2(x) µn(x) . . . µ2n−3(x)

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣

µ−1 µ0 µ1 . . . µn−1

µ0(x) µ1(x) µ2(x) . . . µn(x)
µ1(x) µ2(x) µ3(x) . . . µn+1(x)

...
...

...
. . .

...
µn−1(x) µn(x) µn+1(x) . . . µ2n−1(x)

∣∣∣∣∣∣∣∣∣∣∣
︸ ︷︷ ︸
the last row is moved to the first and produced (−1)n

=
1

D2
n

(
∣∣∣∣∣∣∣∣∣

µ0(x) µ2(x) . . . µn(x)
µ1(x) µ3(x) . . . µn+1(x)

...
...

. . .
...

µn−1(x) µn+1(x) . . . µ2n−1(x)

∣∣∣∣∣∣∣∣∣
︸ ︷︷ ︸

=M [1][2]

∣∣∣∣∣∣∣∣∣∣∣

µ−1 µ0 µ1 . . . µn−2

µ0(x) µ1(x) µ2(x) . . . µn−1(x)
µ1(x) µ2(x) µ3(x) . . . µn(x)

...
...

...
. . .

...
µn−2(x) µn−1(x) µn(x) . . . µ2n−3(x)

∣∣∣∣∣∣∣∣∣∣∣
︸ ︷︷ ︸

M [n+1][n+1]

−

∣∣∣∣∣∣∣∣∣

µ0(x) µ2(x) . . . µn−1(x)
µ1(x) µ3(x) . . . µn(x)

...
...

. . .
...

µn−2(x) µn(x) . . . µ2n−3(x)

∣∣∣∣∣∣∣∣∣
︸ ︷︷ ︸

=M [1,n+1][2,n+1]

∣∣∣∣∣∣∣∣∣∣∣

µ−1 µ0 µ1 . . . µn−1

µ0(x) µ1(x) µ2(x) . . . µn(x)
µ1(x) µ2(x) µ3(x) . . . µn+1(x)

...
...

...
. . .

...
µn−1(x) µn(x) µn+1(x) . . . µ2n−1(x)

∣∣∣∣∣∣∣∣∣∣∣
︸ ︷︷ ︸

:=M

)

Where M [a,b][c,d] is the determinant of the matrix M without the rows a,b and the columns c and
d.
The Desnanot identity [6] suggests that :

M [a,b][c,d] ·M = M [a][c] ·M [b][d] −M [a][d] ·M [b][c] (2.39)
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In our case we get

(
Φ−1
n (0)Φ′

n(0)

)

11

=
1

D2
n

(
M [1][2] ·M [n+1][n+1] −M [1,n+1][2,n+1] ·M

)

=
1

D2
n

(
M [1][2] ·M [n+1][n+1] −M [1][2] ·M [n+1][n+1] +M [1][n+1] ·M [n+1][2]

)

=
1

D2
n

M [1][n+1] ·M [n+1][2]

=
1

D2
n

∣∣∣∣∣∣∣∣∣

µ0(x) µ1(x) µ2(x) . . . µn−1(x)
µ1(x) µ2(x) µ3(x) . . . µn(x)

...
...

...
. . .

...
µn−1(x) µn(x) µn+1(x) . . . µ2n−2(x)

∣∣∣∣∣∣∣∣∣
︸ ︷︷ ︸

=Dn

∣∣∣∣∣∣∣∣∣∣∣

µ−1 µ1 . . . µn−1

µ0(x) µ2(x) . . . µn(x)
µ1(x) µ3(x) . . . µn+1(x)

...
...

. . .
...

µn−2(x) µn(x) . . . µ2n−2(x)

∣∣∣∣∣∣∣∣∣∣∣

=⇒
(
Φ−1
n (0)Φ′

n(0)

)

11

=
D′

n

Dn
(2.40)

To prove the relation ( 2.40), let us notice that

µ′
j(x) =

�
γ

d

dx
wj e

−(
x

w
−θ ln(1−

1

w
))
dw︸ ︷︷ ︸

dη

=

�
γ
wj−1 e

−(
x

w
−θ ln(1−

1

w
))
dw︸ ︷︷ ︸

dη

= µj−1 (2.41)

and also,

D′
n =

∣∣∣∣∣∣∣∣∣

µ′
0(x) µ1(x) µ2(x) . . . µn−1(x)

µ′
1(x) µ2(x) µ3(x) . . . µn(x)
...

...
...

. . .
...

µ′
n−1(x) µn(x) µn+1(x) . . . µ2n−2(x)

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

µ0(x) µ′
1(x) µ2(x) . . . µn−1(x)

µ1(x) µ′
2(x) µ3(x) . . . µn(x)

...
...

...
. . .

...
µn−1(x) µ′

n(x) µn+1(x) . . . µ2n−2(x)

∣∣∣∣∣∣∣∣∣

+ ......+

∣∣∣∣∣∣∣∣∣

µ0(x) µ1(x) µ2(x) . . . µ′
n−1(x)

µ1(x) µ2(x) µ3(x) . . . µ′
n(x)

...
...

...
. . .

...
µn−1(x) µn(x) µn+1(x) . . . µ′

2n−2(x)

∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

µ−1 µ1 . . . µn−1

µ0(x) µ2(x) . . . µn(x)
µ1(x) µ3(x) . . . µn+1(x)

...
...

. . .
...

µn−2(x) µn(x) . . . µ2n−2(x)

∣∣∣∣∣∣∣∣∣∣∣

All the terms in the first equality above equal 0 because the corresponding determinants contain
two identical columns, except the first term, which proves relation ( 2.40).

■
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2.3 Solving the ODE Painleve V by exploiting the solution of the constructed
Lax Pair

In [26], App. C, the Hamiltonian HV is used to construct the Tau function, which in turn, solves
the ODE Painleve V. In our case, in order to verify that the Lax Pair that is constructed is a good
alternative to the Lax Pair in [3], we will construct its corresponding Tau function and confirm
that it solve the ODE Painleve V.
Recalling the results in [3]:
The solution of their Lax Pair at ∞ has the following expansion:

Qn(w) =

[
I2×2 +Qn,1(∞)

1

w
+O(

1

w2
)

]
eT̃ (w) (2.42)

Proposition 2.10 The sigma function σ(x) expressed as follows:

σ(x) = xHV +
1

2
(θ0 + θ∞) +

1

4
[(θ0 + θ∞)2 − θ1]

2

solves the ODE Painleve V

Computations with the software Maple confirms that the Tau function satisfies the ODE
Painleve V (see annexe)

(
xσ”(x)

)2

=

[
σ(x)− xσ′(x) +

(
2σ′(x)

)2

+ υ0 + (υ1 + υ2 + υ3)σ
′(x)

]2

− 4

(
υ0 + σ′(x)

)(
υ1 + σ′(x)

)(
υ2 + σ′(x)

)(
υ3 + σ′(x)

)

with υ0 = 0, υ1 = −θ∞ − θ1 + θ0
2

, υ2 = −θ∞ and υ3 = −θ∞ + θ1 + θ0
2

The zeroes of the Hankel determinant are the points of non-analyticity (the poles) of the Tau
function, rational solution of the ODE Painleve V. On the plot below we can observe that these
zeroes seem to form a well shaped region on the complex plane.
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Figure 2: Plot of the Zeroes of Hankel Determinant corresponding to the poles the solution of ODE
PV

The next Chapter we will discuss the asymptotic analysis of the shape of this region (its bound-
aries) as the size the Hankel matrix increases.
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3 Asymptotic analysis of the poles of the σ function and Hamil-
tonian

In this part we adapt the Deift-Zhou steepest descent analysis [22, 21] to the analysis of the
behaviour of the pole positions of σ, which by Prop. 2.9 correspond to the zeros of the polynomials
Dn(x). We are interested in their asymptotic location as n → ∞ in terms of a scaled variable
s = nx, in terms of which the zeros will be seen populating an asymptotically bounded region
which we term “Eye of the Tiger” (EoT) and which is depicted in Fig. 3.

The goal is to explain the pattern of zeros computed numerically and shown as red dots in the
Figures 21, 23, 24.

We will be able also to give an asymptotic estimate of the precise location of the zeros inside
the EoT in terms of an implicit equation involving Jacobi’s theta functions and elliptic integrals,
see Theorem 4.26.

3.1 Construction of the g-function and transformations of the problem

Let us recall that the 2 × 2 matrix valued function Φ(z), solution of the RHPΦ (see Sect. 1.3.1)
must satisfy the following conditions:

0) The matrices Φ(z) and Φ(z)−1 are defined and holomorphic in C \ γ;
1) the matrix Φ(x) satisfies the boundary value condition

Φ(z+) = Φ(z−)

[
1 e−V (z)

0 1

]

where e−V (z) ≡ W (z) is related to the measure of orthogonality by dη(x, z) = e−V (z)dz; W (z) is
called the weight. In our case

e−V (z) =

(
1− 1

z

)θ

z−me
−
x

z =

(
1− 1

z

)θ

z−me
−
x

z (3.1)

Scaling regime. In our analysis we will set x = −ns (the sign is of convenience only), and study
the asymptotic behaviour of the RHP of Sect. 1.3.1 as n → ∞ while s is kept fixed.

This means that we can write the weight function as follows:

dµ

dz
= z−m

(
1− 1

z

)θ

e

ns

z = z−m

(
1− 1

z

)θ

enV (z) (3.2)

where we have defined V (z) = s
z .

So the boundary value condition becomes

Φ(z+) = Φ(z−)


1 z−m

(
1− 1

z

)θ

e

ns

z

0 1


 (3.3)

We will make the following stipulation on the range of parameters m, θ.

Assumption 3.1 We assume that the parameters m, θ satisfy:

1. m ∈ Z ;
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2. θ ∈ C \ Z.

Furthermore, let us define for later convenience

Q(z) = z−m

(
1− 1

z

)θ

. (3.4)

Given our Assumptions 3.1 we see that Q(z) has a branch cut that extends on an arc between 0
and 1. Moreover the fact that θ /∈ Z expresses that we need more than on sheet on the z− plane
to obtain ”one copy” of the function Q(z) on its plane, hence the branch cut. ”Graphically”, that
branch cut does not intersect γ because the latter must enclose the branch points 0 and 1. We will
call the branch cut ε.

2) As z → ∞, for some n ∈ N, the matrix Φ(z) has the Laurent series expansion of z−1 of the

form: Φ(z) =

[
I2×2 +O(z−1)

]
znσ3 ≡ Φn(z)

As n → ∞, this condition stipulates that the solution Φn(z) has a singularity at z = ∞ . In order to
have a version of condition 2) without a singularity as n → ∞. Following the general strategy that
was pioneered in [21] we now set out to transform the original RHP into a sequence of equivalent
RHP’s, the last of which will be amenable to an asymptotic analysis where the error terms can be
estimated.

3.1.1 The g–function.

The first transformation requires the construction of a “normalizing function” which is commonly
referred to as the g–function.

Definition 3.2 (The g–function and its properties) The g–function is a locally bounded an-
alytic function on C \ Γ where Γ is a union of oriented contours (to be determined) extending to
infinity satisfying the properties listed hereafter.

1. The contour Γ can be written as Γ = Γm∪Γc∪Γ∞ (with Γm denoting the “main arc(s)”, and
Γc the “complementary arc(s)”) where each of the components have pairwise disjoint relative

interiors and both Γm,Γc consist of a finite union of compact arcs: Γ{m,c} =
⊔
Γ
(j)
{m,c}. Finally

Γ∞ is a simple contour extending to infinity from a finite point, traversing eventually the
negative real axis and oriented from infinity.

2. the contour γ = {|z| = R,R > 1} can be homotopically retracted to Γm ∪ Γc in C \ [0, 1],
where [0, 1] here denotes a smooth simple arc connecting z = 0, 1 (not necessarily the straight
segment).

3. for each z ∈ Γm ∪ Γc we have

g(z+) + g(z−) = −θ0(z)− ℓ+ iϖj , ϖj ∈ R, z ∈ Γ(j)
m (3.5)

g(z+)− g(z−) = iϖ̂j , ϖ̂j ∈ R, z ∈ Γ(j)
c (3.6)

for some constants ϖj , ϖ̂j (different on each of the connected components2 of Γm, Γc), while

g(z+)− g(z−) = 2iπ, z ∈ Γ∞. (3.7)

2We will use different notation in the specific cases we discuss below.
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4. as z → ∞ in C \ Γ we have
g(z) = ln(z) +O(z−1). (3.8)

5. the g–function satisfies the following inequalities:

(i) for all z ∈ Γc we have

Re
(
g(z+) + g(z−) +

s

z
+ ℓ
)
≤ 0 (3.9)

with the equality holding only at the endpoints of each component of Γc and possibly at
isolated points within the relative interior of Γc;

(ii) for z ∈ Γm we have

Re (g(z+) + g(z−)) = −Re
(s
z
+ ℓ
)
. (3.10)

(iii) the inequality below

Re
(
g(z+) + g(z−) +

s

z
+ ℓ
)
≥ 0 (3.11)

holds in an open neibourhood U of Γm with the equality holding only on Γm itself.

A useful auxiliary function is the “effective potential”

φ(z) =
s

z
+ 2g(z) + ℓ (3.12)

We will see that Γ is a branch cut of φ(z). The g–function will be constructed later in Prop. 3.6
and in Def. 4.2

3.1.2 First transformation: Φ −→ W

Assuming that a suitable g–function has been constructed according to the Def. 3.2, we proceed
with the first transformation.

Definition 3.3

W (z) := e
n
ℓ

2
σ3

Φ(z)e
−n

(
g(z)+

ℓ

2

)
σ3

where ℓ ∈ C and g have the properties in Def. 3.2.

As a consequence of the properties of g in Def. 3.2 and of the initial RHP satisfied by Φ in Sect.
1.3.1, the 2 × 2 matrix valued function W (z) defined in 3.3 is a solution of the RHPW specified
below.

Proposition 3.4 The 2 × 2 matrix valued function W (z), solution of the RHPW satisfies the
following conditions:
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0) W (z) is defined and holomorphic in C− γ;

1) ∀ z ∈ γ;

W (z+) = W (z−)



e

n

2

(
φ(z−)−φ(z+)

)

Q(z)e

n

2

(
φ(z−)+φ(z+)

)

0 e
−
n

2

(
φ(z−)−φ(z+)

)




2) As z → ∞, W (z) =

[
I2×2 +O(z−1)

]

Proof.
0) W (z) is defined and holomorphic in C−γ, in particular because in condition I), we have that
g is analytic on C− Γ and Γ ⊂ γ

1) Q(z+) = Q(z−) since Q does not have a branch cut on γ as stated before, obviously e

ns

z also
does not, thus

W (z+) = e
n
l

2
σ3

Φ(z−)


1 Q(z)e

ns

z
)

0 1




︸ ︷︷ ︸
Φ+(z)

e
−n

(
g(z+)+

l

2

)
σ3

= e
n
l

2
σ3

Φ(z−)

=I2×2︷ ︸︸ ︷

e
−n

(
g(z−)+

l

2

)
σ3

e
n

(
g(z−)+

l

2

)
σ3


1 Q(z)e

ns

z
)

0 1


 e

−n

(
g(z+)+

l

2

)
σ3

=

e
n

l

2
σ3

Φ(z−)e

−n

(
g(z−)+

l

2

)
σ3

︷ ︸︸ ︷
W (z−) e

n

(
g(z−)+

l

2

)
σ3


1 Q(z)e

ns

z

0 1


 e

−n

(
g(z+)+

l

2

)
σ3

= W (z−)



e
n

(
g(z−)−g(z+)

)

Q(z)e

ns

z e
n

(
g(z−)+g(z+)+l

)

0 e
−n

(
g(z−)−g(z+)

)




= W (z−)



e
n

(
g(z−)−g(z+)

)

Q(z)e

ns

z e
n

(
g(z−)+g(z+)+l

)

0 e
−n

(
g(z−)−g(z+)

)



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On the other hand φ(z) =
s

z
+ 2g(z) + l, so we have:





g(z−)− g(z+) =
1

2

(
φ(z−)− φ(z+)

)

g(z−) + g(z+) =
1

2

(
φ(z−) + φ(z+)

)
− l − s

z

Finally, for condition 1), we obtain

W (z+) = W (z−)



e

n

2

(
φ(z−)−φ(z+)

)

Q(z)e

n

2

(
φ(z−)+φ(z+)

)

0 e
−
n

2

(
φ(z−)−φ(z+)

)




2) W (z) = e
n
l

2
σ3

Φ(z)e
−n

(
g(z)+

l

2

)
σ3

. As z → ∞,

W (z) = e
n
l

2
σ3

=Φ(z) as z→∞︷ ︸︸ ︷([
I2×2 +O(z−1)

]
znσ3

)
e
−n

( =g(z) as z→∞︷ ︸︸ ︷
ln(z) +O(z−1)+

l

2

)
σ3

= e
n
l

2
σ3

(
→I2×2 as z→∞︷ ︸︸ ︷[
I2×2 +O(z−1)

] =znσ3︷ ︸︸ ︷
en ln(z)σ3 e−n ln(z)σ3

→I2×2 as z→∞︷ ︸︸ ︷
e−O(z−1)σ3 e

−n
l

2
σ3

= e
n
l

2
σ3

[
I2×2 +O(z−1)

]
e
−n

l

2
σ3

Thus, as z → ∞, W (z) =

[
I2×2 +O(z−1)

]

■

Notice that after the transformation Φ → W ,the function W as n → ∞ tends to the identity
matrix in condition 2) and thus does not have a singularity .
Now that the function φ is being used as a proxy for the function g, Γ, the branch cut of φ will be
used as a proxy for the branch cut of g .

3.1.3 Derivation of an appropriate g–function

Definition 3.5 We define the following effective potential

φ(z, s) :=

� z

− is
2

2

w2

√
w2 +

s2

4
dw = 2 ln

(
2iz

s
+ i

√
4z2

s2
+ 1

)
− 2

√
1 +

s2

4z2
(3.13)

φ′(z, s) = φ′(z) :=
2

z2

√
z2 +

s2

4
. (3.14)
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Motivation for the definition above
Let us set V (z) := − s

z . From the Definition 3.2 we know that for z ∈ Γm:

g(z+) + g(z−) = V (z)− ℓ

⇒ g′(z+) + g′(z−) = V ′(z)

⇒
(
g′(z+)

)2

−
(
g′(z−)

)2

= V ′(z)

(
g′(z+)− g′(z−)

)

︸ ︷︷ ︸
ρ(z)

⇒
(
g′(z)

)2

=
1

2πi

�
Γ

V ′(ζ)ρ(ζ)

ζ − z
dζ (by the Sokhotski–Plemelj formula)

=
1

2πi

�
Γ

(
V ′(ζ)

=0︷ ︸︸ ︷
−V ′(z) + V ′(z)

)
ρ(ζ)

ζ − z
dζ

=
1

2πi

�
Γm

(
V ′(ζ)− V ′(z)

)
ρ(ζ)

ζ − z
dζ

︸ ︷︷ ︸
:=R(z)

+
1

2πi

�
Γm

V ′(z)

g′(z+)−g′(z−)︷︸︸︷
ρ(ζ)

ζ − z
dζ

︸ ︷︷ ︸
=V ′(z)g′(z)

(with z ∈ Γm)

So

R(z)+V ′(z)g′(z) =

(
g′(z)

)2

⇒ R(z) =

(
g′(z)

)2

− V ′(z)g′(z) +

=0︷ ︸︸ ︷
(
V ′(z)

2

)2

−

[
V ′(z)

]2

4

⇒
[
g′(z)− V ′(z)

2

]2
= R(z) +

[
V ′(z)

]2

4
(3.15)
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Since φ(z) =

=−V (z)︷︸︸︷
s

z
+2g(z) + ℓ, we have

1

2
φ′(z) = g′(z)− V ′(z)

2
,

hence,

( 3.15) ⇒ 1

4

(
φ′(z)

)2

= R(z) +

[
V ′(z)

]2

4
(3.16)

So, in ( 3.16), the term

[
V ′(z)

]2

4
does not have a jump and is a rational function.

Similarly, we will prove that R(z) does not have a jump discontinuity and is itself at most a
rational function

R(z+)−R(z−) =
1

2πi

�
Γm

(
V ′(ζ)− V ′(z+)

)
ρ(ζ)

ζ − z+
dζ − 1

2πi

�
Γm

(
V ′(ζ)− V ′(z−)

)
ρ(ζ)

ζ − z−
dζ

= 0 ,

(Since V ′(z) does not have a jump in particular on Γm, V ′(z+) = V ′(z−) = V ′(z), and similarly
1

ζ − z+
=

1

ζ − z−
=

1

ζ − z
on Γm).

It follows that R(z+) = R(z−). In conclusion, R(z) and

[
V ′(z)

]2

4
are at most rational functions,

therefore ( 3.16) implies that
1

4

(
φ′(z)

)2

is also a rational function of z. Therefore ( 3.16) =⇒

1

4

(
φ′(z)

)2

=
1

2πi

�
Γm

(
s

ζ2
− s

z2

)
ρ(ζ)

ζ − z
dζ +

s2

4z4
=

s

2πi

�
Γm

−(ζ2 − z2)

ζ2z2(ζ − z)︸ ︷︷ ︸
=
−ζ − z

ζ2z2

ρ(ζ)dζ +
s2

4z4

=
s2

4z4
− s

z2

�
Γm

ρ(ζ)

2πiζ
dζ

︸ ︷︷ ︸
:=A

−s

z

�
Γm

ρ(ζ)

2πiζ2
dζ

︸ ︷︷ ︸
:=B

=⇒
(
φ′(z)

)2

=
s2

z4
− 4As

z2
− 4Bs

z
(3.17)
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The expression above can also be seen as the expansion of

(
φ′(z)

)2

as z → ∞ On the other hand,

recall from condition II) that as z → ∞, φ(z) = 2 ln(z) +O(
1

z
)

⇒ as z → ∞,

(
φ′(z)

)2

=
4

z2
+O(

1

z4
)

By identification, we obtain A = −1

s
and B = 0 and we can write

(
φ′(z)

)2

=
s2

z4
+

4

z2
=⇒ φ′(z) =

2

z2

√
z2 +

s2

4
(3.18)

Proposition 3.6 The effective potential given in Def. 4.2 defines a g function by g(z) :=
1
2

(
− s

z − ℓ− φ(z, s)
)
that satisfies all the conditions of Def. 3.2.

Proof. A great simplification is achieved by observing that φ is really a function only of z
s ,

namely

φ(z; s) = φ
(z
s
; 1
)
, (3.19)

and hence it suffices to describe the domain and properties of φ0(z) := φ
(
z
s ; 1
)
which is given by

φ0(z) = 2 ln
(
2iz + i

√
4z2 + 1

)
− 2

√
1 +

1

4z2
, φ′

0(z) =

√
4z2 + 1

z2
. (3.20)

The determination of the root is chosen such that φ′
0(z) ≃ 1

z at z = ∞, with a branch-cut connecting
the branchpoints ± i

2 to be determined below. The language of vertical trajectories of quadratic
differentials of [43] is useful in this discussion: by definition these are the arcs of curves where Reφ0

is constant, which, in the plane of the variable ξ(z) := φ0(z) =
� z

φ′
0(w)dw are (by definition)

vertical segments, whence the terminology. We start by observing that res
z=∞

φ′
0(z)dz = −2iπ and

res
z=0

φ′
0(z)dz = ±2iπ (with the sign depending on whether the branch-cut leaves z = 0 to the left or

to the right) and hence, no matter how we choose the branch-cut Γm (connecting the branchpoints)
we have that

the function Reφ0(z) is single–valued, harmonic in C \ Γ ∪ {0} and continuous in C \ {0};
(3.21)

for |z| sufficiently large Reφ0(z) = ln |z|+ harmonic and bounded.
(3.22)

The observation (3.22) implies that the level-curves of Reφ0 are deformed circles for |z| sufficiently
large. One can verify that changing the determination of both radicals in (3.20) has the effect of
flipping the sign of Reφ0 and hence that Reφ0 is a well–defined harmonic function on the Riemann
surface of the radical

w2 = 1 + 4z2. (3.23)

Furthermore Reφ0 is an odd function under the holomorphic involution that maps (w, z) to (−w, z).
This means that the level sets Reφ0 = 0 are well defined on the z–plane; they consist in vertical
trajectories issuing from the points ± i

2 and forming the pattern illustrated in Fig. 4.
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We choose the branch-cut of the radical as the arc of Fig. 4 joining ± i
2 in the right half–plane.

With this choice we have that

φ′
0(z) ≃ − 1

z2
+O(1), z → 0. (3.24)

and in general φ′(z; s) = 1
sφ

′
0

(
z
s

)
satisfies

φ′(z; s) = − s

z2
+O(1). (3.25)

Verification of the properties of φ and range of validity. It suffices to verify the properties
for s = 1 since changing s ∈ C amounts simply to a complex homotethy z 7→ sz. We choose Γm as
the arc joining ± i

2 in the right plane, and Γc as an arc joining ± i
2 in the left plane, and inside the

region bounded by the imaginary axis and the contour −Γm (see Fig. 4). Finally we choose Γ∞ as
the ray (−i∞,− i

2 ]. We then proceed with the verification of the properties in Corollary ??:

1. on the sole connected component Γm, we have φ0(z+) + φ0(z−) = 0 since the two boundary
values differ by a vanishing period of φ′

0;

2. on Γc we similarly have φ(z+) = φ(z−);

3. on Γ∞ we have φ0(z+) = φ0(z−)− res
w=∞

φ′
0(w)dw = φ0(z−) + 4iπ

4. Since Γm is defined as the zero level set of Reφ0, we have Reφ0 ≡ 0 on Γm by definition;

5. in the unbounded doubly–connected region outside of the “apricot” in Fig. 4 we have Reφ0 =
ln |z|+O(1) near z → ∞; thus inevitably Reφ0 > 0 in the whole region (which, we remind,
is bounded by the zero levelsets of Reφ0);

6. In the right hemi-apricot, the sign must be also positive because Reφ0(z) = Re
(
1
z +O(1)

)
;

7. by the same token, the sign is negative in the left hemi-apricot.

Thus all conditions except possibly the condition no. 2 in Def. 3.2 are verified, namely, we still
need to verify that the union Γm ∪ Γc is homotopic to a circle |z| = R, R > 1 in the cut plane
C \ [0, 1].

Since the levelsets in Fig. 4 are scaled by s, this latter condition is fulfilled as long as the
point z = 1 lies inside the re-scaled apricot. This holds clearly for |s| sufficiently large, and it fails
precisely when the point z = 1 lies on either Γm or Γc, namely when

Reφ(1; s) = 0 = Reφ0

(
1

s

)
. (3.26)

■

The set of points on the s−plane such that Re (φ(1, s)) = 0 i.e. {s ∈ C : Re (φ(z0 = 1, s)) = 0}
form a closed contour of what we will call the ”Eye Of Tiger” (EoT, in short) because of its shape
on the s− plane as shown in Fig. 3 Now, let Ξ0 = {z0 ∈ C : Re (φ(z0, s ∈ EoT )) = 0}. Notice that
z0 = 1 ∈ Ξ0. Ξ0 describes an apricot-looking closed contour shape figure as shown in Fig. 4.

In other words, as s moves on the contour of the Eye Of the Tiger on the s−plane, z moves on
Ξ0 to satisfy Re (φ(z0, s)) = 0
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Figure 3: EoT = {s ∈ C : Re (φ(z0 = 1, s)) = 0}

More generally, let us define Ξ = {z, s ∈ C : Re (φ(z, s)) = 0}. After we plot on the z plane the
curve such that Re (φ(z, s)) = 0, the change of the shape of the curve as s ∈ C varies as follows:

On the picture above:

• As s moves outside of the contour of the Eye Of the Tiger (in the neighbourhood of the
EoT) on the s−plane, for Re (φ(z, s)) = 0 to be satisfied , we simply observe the rotation of Ξ0

which inflates to a generic Ξ.
• As s moves inside of the contour of the Eye Of the Tiger on the s−plane, for Re (φ(z, s)) = 0
to be satisfied , we simply observe the rotation of Ξ0 which deflates (shrinks) to a generic Ξ.

Depending on s ∈ C rotating inside the closed contour of EoT or outside of it, z = 1 will be
outside or inside of Ξ on the z− plane.
FACT: The contour Ξ contains two points a+ and a− which are symmetric with respect to the origin.

FACT : Since φ(z) has branch points at a− = −i
s

2
and a+ = i

s

2
, the contour of Ξ which goes

from a− to a+ can be taken as a branch cut of φ(z, s). Let us call it Γ
a+
a− .

Thus, Γ
a+
a− ⊂ Γ such that Γ = Γ

a+
a−∪Γ(∞). To solve the RHP, the jump on γ is our focus in condition

1). So it is convenient to retract γ on Γm such that, Γ
a+
a− ⊂ Γ ⊂ γ. With this configuration, we call

Γm = Γ the Main Arc. The contour of γ which is not superposed is called the Complementary arc
Γc, and it is located on the region of the z− plane where Re (φ(z, s)) < 0 as pictured below on a
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Figure 4: Apricot-shape, Ξ0 = {z0 ∈ C : Re (φ(z0, s ∈ EoT )) = 0}

couple of the Apricot-shape figures as s ∈ C moves around the EoT :

Figure 6: The Apricot-shape for some s > 0 on the EoT
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Figure 5: Variation of the Apricot-shape as s ∈ C moves around the EoT

Figure 7: The Apricot-shape for some s < 0 on the EoT
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Figure 8: The Apricot-shape for some s < 0 inside the EoT

Figure 9: The Apricot-shape for some s > 0 inside the EoT

Notice that on figures 8 and 9, the branch cut of Q passes through γ and will generate a jump
on it, which forces to redefine the jump condition 1) in the RHPW. This case will be discussed in
the subsection 3.3

3.2 Discussion of the solution of RHPW when s is outside the Eye of the Tiger

From the previous discussion we know that φ has a branch cut, hence a jump discontinuity on
Γm ⊂ γ. When s is outside the EoT, we typically obtain the figures 6 and 7 on the z− plane.

3.2.1 Refining the first transformation: Φ −→ W

Proposition 3.7 The 2 × 2 matrix valued function W (z) defined in Def. 3.3, solution of the
RHPW satisfies the following conditions:
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0) W (z) is defined and holomorphic in C \ γ

1) On γ = Γc ∪ Γm we have:

W (z+) =





W (z−), on Γc

W (z−)



e

n

2

(
φ(z−)−φ(z+)

)

Q(z)e

n

2

(
φ(z−)+φ(z+)

)

0 e
−
n

2

(
φ(z−)−φ(z+)

)



, on Γm

2) As z → ∞ we have the asymptotic behaviour

W (z) =

[
I2×2 +O(z−1)

]

Proof. Recall the conditions of the first transformation RHPW ,Φ −→ W written in Prop.
3.4. We retract γ onto Γ = Γm ∪ Γc in C \ [0, 1] and re-examine the jump conditions on the two
components separately. See Fig. 6 and Fig. 7.

On γ \Γm = Γc. On Γc = γ \Γm, the effective potential φ does has a jump, so φ(z−)−φ(z+) = 0

and hence e
±
n

2

(
φ(z−)−φ(z+)

)

= 1.

Moreover, Γc is contained in a region of the z− plane where Re

(
φ(z)

)
< 0, so

Q(z)e

n

2

(
φ(z−)+φ(z+)

)

= Q(z)enφ(z) = Q(z)e
n

[
Re

(
φ(z)

)
+iIm

(
φ(z)

)]

= Q(z) e
n

[
Re

(
φ(z)

)]

︸ ︷︷ ︸
→0 asn→∞

e
i

[
nIm

(
φ(z)

)]

= 0

because Q̃(z) ̸= ∞ as z ̸= 0,∞ when z ∈ Γc. Hence for z ∈ Γc,

W (z+) = W (z−)

[
1 0
0 1

]
= W (z−)

Therefore we obtain:

W (z+) =





W (z−), on Γc

W (z−)



e

n

2

(
φ(z−)−φ(z+)

)

Q(z)e

n

2

(
φ(z−)+φ(z+)

)

0 e
−
n

2

(
φ(z−)−φ(z+)

)



, on Γm
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■

Proposition 3.8 From Proposition 3.7, relation 3.29, the jump condition for the matrix W on
Γ can be factorized as follows:

W (z+) = W (z−)




1 0

e−nφ(z−)

Q(z)
1


mQ




1 0

e−nφ(z+)

Q(z)
1


 (3.27)

where

mQ :=




0 Q(z)e

n

2

(
φ(z−)+φ(z+)

)

−e
−
n

2

(
φ(z−)+φ(z+)

)

Q(z)
0




(3.28)

Proof.
Let us analyse the jump on Γm

The following equality is used to rewrite condition 1) in Proposition 3.7

[
ea eb

0 e−a

]
=

[
1 0

e−a−b 1

] [
0 e−b

e−b 1

] [
1 0

ea−b 1

]
(3.29)

■

Proposition 3.9 Using that φ(z+)+φ(z−) = 0 on Γ
a+
a− , the jump condition for the transformation

W on Γ
a+
a− can be rewritten as follows:

W (z+) = W (z−)




1 0

e−nφ(z−)

Q(z)
1






0 Q(z)

− 1

Q(z)
0






1 0

e−nφ(z+)

Q(z)
1




=⇒

W (z+)




1 0

−e−nφ(z+)

Q(z)
1




︸ ︷︷ ︸
T (z+)

= W (z−)




1 0

e−nφ(z−)

Q(z)
1




︸ ︷︷ ︸
T (z−)




0 Q(z)

− 1

Q(z)
0




︸ ︷︷ ︸
mQ

(3.30)
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Proof. On Γ
a+
a− with − is

2
= a−, and

is

2
= a+

φ(z+) = 2

�
z+

a−

√
w2
+ +

s2

4
w2

dw = 2

�
z+

a−

√
(w+ − a−)(w+ + a+)

w2
dw

φ(z−) = 2

�
z−

a−

√
w2
− +

s2

4
w2

dw = 2

�
z−

a−

√
(w− − a−)(w− + a+)

w2
dw

Remark: It is important to notice that any main arc branch cut can be equivalently considered as
a segment branch cut. In fact, since the main arc and the segment must have the same branch
points (see figure 11 below), if we denote D the region between the two, it suffices to ”move the
cut” by redefining

φ̃(z) =

{
φ(z) if z /∈ D
−φ(z) if z ∈ D

(3.31)

This redefinition can be used any time the jump discontinuity of a function (in this case φ̃)
around a segment is of the form φ̃(z+) = φ̃(z−)
After the arc branch cut has ”been moved” to a segment branch cut (a−, a+), let | w+ − a− |:=
r− =| w− − a− |, | w+ − a+ |:= r+ =| w− − a+ |.
If arg(w+ − a−) = 0 , then arg(w+ − a+) = π , arg(w− − a−) = 0, arg(w− − a+) = −π.
Let r :=| w− |=| w+ |⇒ w− = w+ = rei0 = r. See figure 10 below.
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i s
2

−i s
2

φ(z+)
∥

φ̃(z+)

∥(⋆)

−φ̃(z
−
)

φ(z+)
∥

−φ̃(z+)

D

φ(z
−
)

∥
φ̃(z

−
)

∥ (⋆⋆)

−φ̃(z+)

Figure 11: The equality (⋆) stems from our computations above. The equality (⋆⋆) is a consequence
of (⋆). The other equalities are obtained from the redefinition φ ↔ φ̃ above in 3.31. Notice the
jump of −φ̃(z+) across the dashed line (new branch cut) labelled by the change of color. −φ̃(z+)
is unchanged across the red cut (old branch cut) labelled by the unchanged yellow color

From the redefinition we made, we can see from fig. 11 above that we can revert back to the
main arc and deduce that:

φ(z+) = −φ(z−) =⇒ φ(z+) + φ(z−) = 0 on Γa+
a− (3.32)

At z = ∞

φ(z+) = φ̃(z+) = 2

�
z+

a−

(r+)

1

2 (r−)

1

2 e
i
0 + 0

2

w2
+

dw = φ̃(z+) = 2

�
z+

a−

(r+)

1

2 (r−)

1

2

r2
dw (3.33)

Similarly,

φ(z−) = φ̃(z−) = 2

�
z+

a−

(r+)

1

2 (r−)

1

2 e
i
0 + 0

2

w2
−

dw = φ̃(z+) = 2

�
z+

a−

(r+)

1

2 (r−)

1

2

r2
dw (3.34)

Thus φ(z−) = φ(z+) on Γ∞. As a consequence, we restrict the branch cut Γ to Γ
a+
a−

■

From the relation ( 3.30) above, we can notice that W (z+) = W (z−)MQ as n → ∞ and with
z ̸= a+, a−. The factorization and rearrangement of matrices in (3.30) is suggestive of the next
step in the analysis which we can term the ”lens opening” technique.

3.2.2 Second transformation: lens opening

We can define a region (or lens) around Γ
a+
a− bordered on the left and on the right respectively

by two curves L+ and L− that can be arbitrarily chosen as long as they stay in the region where
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Re

(
φ(z) > 0

)
as shown in Fig. 12.

Figure 12: One branch cut lens opening

Definition 3.10 Let T be a transformation on that region such that, as suggested in relation
( 3.30):

T (z) :=





W (z), outside of the regions (lenses)

W (z)




1 0

−e−nφ(z)

Q(z)
1


 , on R+

W (z)




1 0

e−nφ(z)

Q(z)
1


 , on R−

where R+ and R− are respectively the region on the left and the right of Γ
a+
a− , such that relation

( 3.30) gives T (z+) = T (z−)




0 Q(z)

− 1

Q(z)
0


 on Γ

a+
a− , see Fig. 13.
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Proposition 3.11 The transformation T satisfies the jump conditions on the lenses L± as follows

T (z+) = T (z−)




1 0

e−nφ(z)

Q(z)
1


 (3.35)

Proof.
⊙ On L+

T (z+) = W (z), since that W (z) defined in 3.3 does not have a jump on the lens L+

T (z−) = W (z)




1 0

−e−nφ(z)

Q(z)
1


 since that W (z) and φ(z) do not have a jump on the L+

Hence T (z+) = T (z−)




1 0

e−nφ(z)

Q(z)
1


.

Similarly,
⊙ On L−

T (z+) = W (z)




1 0

e−nφ(z)

Q(z)
1


 since that W (z) and φ(z) do not have a jump on the lens L−

T (z−) = W (z) since that W (z) does not have a jump on the lens L−.

Hence T (z+) = T (z−)




1 0

e−nφ(z)

Q(z)
1


.

■

3.2.3 Model problem and approximation

Let us leave the scheme of the lens opening. The rationale behind the next construction is that the
jump conditions on the lenses will be shown to be exponentially close to the identity jump, and
hence, in first approximation, can be heuristically neglected (the full justification of this heuristics
to be delayed to further analysis later on). The result of this is the RHP described hereafter.

Definition 3.12 We define MQ(z) as the solution of the following RHP, that does not depend on
n. The matrix has a jump discontinuity only on the branch cut Γ

a+
a− , such that:

0) MQ(z) defined and holomorphic in CP
1 \ γ.
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1) On γ

MQ(z+) :=





MQ(z−), on γ \ Γa+
a−

MQ(z−)




0 Q(z)

− 1

Q(z)
0




on Γ
a+
a−

2) As z → ∞

MQ(z) =

[
I2×2 +O(z−1)

]

3) All entries are bounded by |z − a±|−
1
4 as z → a± (respectively).

3.2.4 Error analysis

The goal of this section is to conclude the approximation analysis. We will prove that for s varying
in closed subsets not intersecting the EoT region, the RHP for Φ is solvable for n sufficiently large,
which implies that Dn(ns) is non-zero. Thus, by exclusion, all zeros of Dn(ns) must eventually fall
within a neighbourhood of the EoT region.

The logic of the proof is to show that there exists a well defined transformation

E(z) = T (z)MQ(z)
−1 (3.36)

that connects T (z) and MQ(z) and that E(z) tends to the identity pointwise. The logic is quite
common in the literature, see e.g. [7, 8, 11, 16, 17], and hence we can be a bit cursory in the
details.

Proposition 3.13 There exists a well defined transformation
E(z) = T (z)MQ(z)

−1 that connects T (z) and MQ(z). The Riemann Hilbert Problem for E, i.e.
RHPE is as follows:

0) E(z) defined and holomorphic in C \ (γ ∪ L+ ∪ L−)
1)

E(z+) =




E(z−), on γ

E(z−)

(
I2×2 +G(z)

)
, on L− ∪ L+

where G(z) = MQ(z−)




0 0

e−nφ(z)

Q(z)
0


 (MQ(z−))

−1
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2)

As z → ∞, E(z) =

[
I2×2 +O(z−1)

]

Proof. The Riemann Hilbert Problem for E, i.e. RHPE is as follows:

0) E(z) defined and holomorphic in C − (γ ∪ L+ ∪ L−), this is justified from the definitions of
T (z) and MQ(z) (note that ∞ ∈ γ).

1) On γ ∪ L+ ∪ L−

� On γ − Γ
a+
a−

E(z+) = T (z+)(MQ(z+))
−1 = T (z−)(MQ(z−))

−1 since T and MQ don’t have a jump on
γ − Γ

a+
a− . Finally E(z+) = E(z−)

� On Γ
a+
a−

E(z+) = T (z+)(MQ(z+))
−1 = T (z−)




0 Q(z)

− 1

Q(z)
0






0 Q(z)

− 1

Q(z)
0



−1

(MQ(z−))
−1

= T (z−)(MQ(z−))
−1 = E(z−)

� On L− ∪ L+

E(z+) = T (z+)(MQ(z+))
−1 = T (z−)




1 0

e−nφ(z)

Q(z)
1




=(MQ(z+))−1

︷ ︸︸ ︷
(MQ(z−))

−1

= T (z−) (MQ(z−))
−1MQ(z−)︸ ︷︷ ︸

=I2×2

(
I2×2 +




0 0

e−nφ(z)

Q(z)
0



)
(MQ(z−))

−1

= T (z−)

(
(MQ(z−))

−1MQ(z−)︸ ︷︷ ︸
=I2×2

I2×2(MQ(z−))
−1

+ (MQ(z−))
−1MQ(z−)




0 0

e−nφ(z)

Q(z)
0


 (MQ(z−))

−1

︸ ︷︷ ︸
:=G(z)

)

= T (z−)(MQ(z−))
−1

︸ ︷︷ ︸
=E(z−)

+T (z−)(MQ(z−))
−1

︸ ︷︷ ︸
=E(z−)

G(z)

= E(z−)

(
I2×2 +G(z)

)
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2)

As z → ∞, E(z) =

[
I2×2 +O(z−1)

]

■

The following theorem will allow us to suppress the function G(z)

Theorem 3.14 Small Norm Theorem for RHP’s:

Let E be a transformation (function) satisfying the following RHP:





E(z) =

[
I2×2 +O(z−1)

]
As z → ∞

E(z+) = E(z−)

(
I2×2 +G(z)

)
, on a contour

∑

Let N(z) =
√∑

(Gi,j(z))2. Suppose that N(z) ∈ Lp

(∑
, |dz|

)
with 1 ⩽ p ⩽ ∞. If ∥N(z)∥∞ is

small enough, then the RHP has a solution.

In our case,∑
= L− ∪ L+. We have

G(z) = MQ(z−)




0 0

e−nφ(z)

Q(z)
0


 (MQ(z−))

−1 (3.37)

Since
∑

is compact and
e−nφ(z)

Q(z)
is bounded on it, N(z) ∈ Lp

(∑
, |dz|

)
with 1 ⩽ p ⩽ ∞.

∀z ∈∑, Q(z) ̸= 0.
In addition

∀z ∈∑−{a±}, Re (φ(z)) > 0 ⇒ as n → ∞,
e−nφ(z)

Q(z)
→ 0.

Hence ∥N(z)∥∞ is small enough.
However, for z = a±, e

−nφ(z) = 1 and ∥N(z)∥∞ can not be made small enough.

Therefore we need to apply the small norm theorem to a contour that excludes the points z = a+
and z = a−. To achieve that, let us redefine T (z) in the neighbourhood of those points: let us D+

and D− be two disks with radius δ, ∀δ > 0 in the neighbourhoods. If T̃ (z) is the redefinition of
T (z), we will have E(z) := T̃ (z)(MQ(z))

−1
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Figure 13: Disks opening around the branch points, and configuration of the jumps of the trans-
formation T on the arcs and lenses

Let us start the procedure by first considering only the disks D+ and D−.

Definition 3.15 Let’s define a P (z, n) as follows:

P (z, n) =

{
PD±

(z, n), inside D±

T (z), on ∂D±

where PD±
(z, n) is some transformation which has the same jump as T (z) on the main arc Γ

a+
a−

and the lenses L± as T (z) inside D±

Now, let us define :

T̃ (z) :=

{
T (z), on C−D±

P (z, n)(T (z))−1MQ(z), on D±

The existence of appropriate parametrices is a delicate but standard construction and can be
found in [7, 8, 11, 16, 17]. We will not report their construction here.
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Figure 14: Configuration of the jumps of the transformation T̃ on the arcs, lenses and the disks

It follows from the definition that:

E(z) = T̃ (z)(MQ(z))
−1 =





T (z)(MQ(z))
−1, on C−D±

P (z, n)(T (z))−1 =





PD±
(z, n)(T (z))−1 := P̃D±

(z, n),

inside D±

I2×2 +O(
1

n
), on ∂D±

(3.38)
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Figure 15: Configuration of the jumps of the transformation E on the arcs, lenses and the disks

Notice that:
⊙ P̃D±

(z, n) as defined above, does not have a jump on both the main arc and the lenses inside
D±

⊙ since a± /∈ (C−D±), and E(z) = T (z)(MQ(z))
−1 on C−D± the RHP for E has a solution (as

we derived before)

In particular, E(z) =

[
I2×2 +O(z−1)

]
As z → ∞.

⊙ inside D± and on ∂D±, the RHP for E is:

E(z+) = E(z−)(

(
I2×2 + 02×2︸︷︷︸

=G(z)

)

G(z) = 02×2 thus the RHP for E = T̃ (z)(MQ(z))
−1 has a solution (i.e. exists) by the small norm

theorem.

Comments:
◦ Since the Riemann Hilbert Problem for the transformation E has a solution (i.e. E exists), we
can know consider the RHP of transformation MQ(z) = (E(z))−1T̃ (z) which satisfies the conditions
as defined in Def. 3.12 and solve it. Notice that the expressions of MQ(z) inside and outside the
disks are different, although they both have the same jump matrix on Γ

a+
a− .

◦ Finding a solution to the RHPMQ is equivalent to finding a solution to the RHPΦ. In order to
find an explicit solution to the RHPMQ, we will need a further transformation MQ −→ M to the
Model problem, which is easier to solve explicitly.
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3.2.5 Solution of the RHP for M
Q

of Def. 3.12

In order to obtain a Riemann Hilbert Problem of Def. 3.12 we define a new matrix M(z), with a
constant jump matrix on Γ

a+
a− and no jump at ∞. Let us consider:

Definition 3.16 Let us define

M(z) := e−S(∞)σ3MQ(z)e
S(z)σ3

The function S(z) is the Szegö function and its properties are derived below, in particular (3.41)
and given in Prop. 3.18 below.

We will solve for S(z), called the Szego function, such that M(z), if it exists, satisfies all the
conditions above, in particular, has a constant jump on Γ

a+
a− .

Proposition 3.17 The function S(z) defined in Def. 3.16 has the properties:
⊙ S(z) is analytic and bounded on CP

1 − Γ
a+
a−

⊙ S(z) has finite boundary values along Γ
a+
a− which satisfy

S(z+) + S(z−) = ln(Q(z))

Proposition 3.18 The Szegö function is given by the expression

S(z) :=
J(z)

2πi

�
Γ
a+
a−

ln(Q(w))

J(w+)(w − z)
dw, z /∈ Γa+

a− , (3.39)

where J(z) is as in (3.42). It is analytic and bounded on CP1 \ Γ
a+
a− and satisfies the boundary

relation
S(z+) + S(z−) = ln(Q(z)), z ∈ Γa+

a− . (3.40)

Proposition 3.19 Let’s consider the transformation M(z) = eS(∞)σ3MQ(z)e
−S(z)σ3 as defined in

Def. 3.16. Then

0) M is defined and holomorphic in CP
1 − γ, (note that ∞ ∈ γ)
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1) On γ

M(z+) =





M(z−), on γ − Γ
a+
a−

M(z−)

[
0 1

−1 0

]
,

on Γ
a+
a−

2) As z −→ ∞, M(z) =

[
I2×2 +O(z−1)

]

3) All entries are bounded by |z − a±|−
1
4 as z → a± (respectively).

Proof.

Analyticity condition on C\γ. We need to impose that S(z) is bounded and analytic on C\γ.
This condition leads us to conclude that M(z) = e−S(∞)σ3MQ(z)e

S(z)σ3 is analytic on C\γ because
MQ is.

Jump Condition on γ.

� on γΓ
a+
a− ,

M(z+) = e−S(∞)σ3MQ(z+)e
S(z+)σ3

= e−S(∞)σ3MQ(z−)e
S(z+)σ3 = M(z−)

� on Γ
a+
a− ,

M(z+) = e−S(∞)σ3MQ(z+)e
S(z+)σ3

= e−S(∞)σ3 T̃−(z)

=I2×2︷ ︸︸ ︷
eS(z−)σ3e−S(z−)σ3




0 Q(z)

− 1

Q(z)
0


 eS(z+)σ3

= M(z−)e
−S(z−)σ3




0 Q(z)

− 1

Q(z)
0


 eS(z+)σ3

=⇒ M(z+) = M(z−)




0 Q(z)e
−

(
S(z+)+S(z−)

)

−e

(
S(z+)+S(z−)

)

Q(z)
0




Therefore, for the jump condition with a constant matrix to be satisfied, we must impose to have
S(z) bounded on Γ

a+
a− ,
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and

S(z+) + S(z−) = ln(Q(z)) i.e. M(z+) = M(z−)

[
0 1
−1 0

]
(3.41)

Construction of the Szegö function S(z). Let us define for convenience

J(z) := φ′(z) =

√
z2 +

s2

4
. (3.42)

We previously established in relation (3.32), namely that φ(z+) = −φ(z−) on Γ
a+
a− .

This implies that φ′(z+) = −φ′(z−) i.e. J(z+) = −J(z−).
So diviting both sides of (3.41) by J(z+) we obtain the following

S(z+)

J(z+)
+

S(z−)

J(z+)
=

ln(Q(z))

J(z+)
(3.43)

⇒ S(z+)

J(z+)
− S(z−)

J(z−)
=

ln(Q(z))

J(z+)
(3.44)

=⇒ (by Sokhotski–Plemelj theorem on
S(z)

J(z)
) (3.45)

S(z) =
J(z)

2πi

�
Γ
a+
a−

ln(Q(w))

J(w+)(w − z)
dw, z /∈ Γa+

a− (3.46)

Notice that the expression of S(z) provided by Sokhotski–Plemelj is indeed bounded on Γ
a+
a− −

{a+, a−} as we want: in fact, as z /∈ Γ
a+
a− , S(z) is bounded because the contour of integration Γ

a+
a−

is compact, and the integrand of S(z) is bounded on it. It is also bounded at the endpoints as a
consequence of the expansions of Cauchy integrals, see [24], Ch. V.

Expansion at ∞. The function S(z) is bounded at infinity because J(z) = O(z) and the Cauchy
integral is O(z−1), as |z| → ∞. In particular it has a limiting value

S(∞) = −

�
Γ
a+
a−

ln(Q(w))

J(w+)
dw. (3.47)

Consequently we see that M(z) is also bounded at infinity and correctly normalized:

M(z) = eS(∞)σ3MQ(z)e
−S(z)σ3 =⇒ M(∞) = e−S(∞)σ3

[
I2×2 +O(z−1)

]

︸ ︷︷ ︸
MQ(∞)

eS(∞)σ3

=⇒ as z → ∞,M(z) =

[
I2×2 +O(z−1)

]

■

We give the explicit construction of M in the next section.
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3.2.6 Solution of the Model Problem (RHPM) in Prop. 3.19

A further diagonalization in condition 1) gives:

M(z+) = M(z−)

[
0 1
−1 0

]
= M(z−)P

[
i 0
−0 −i

]
P−1 after diagonalization, where P is the matrix

of eigenvectors of

[
0 1
−1 0

]
.

Proposition 3.20 A solution of the RHPM is :

M(z) =

(
z − a+
z − a−

)σ2
4 =

1

2




ϱ+
1

ϱ
−i

(
ϱ− 1

ϱ

)

i

(
ϱ− 1

ϱ

)
ϱ+

1

ϱ


 (3.48)

where σ2 =

[
0 −i
i 0

]
and ϱ =

(
z − a+
z − a−

)1

4 .

let us verify that M(z) as given above solves the RHPM:

¶1) It easy to see that ϱ is analytic and locally bounded on CP
1 −Γ

a+
a− , so is M(z). Near the two

points a± we see that all the entries are indeed bounded by |z − a±|−
1
4 as required by the

Prop. 3.19.

¶2) � From previous discussion on the jump of
√
(z − a−)(z − a+) on Γ

a+
a− similar computations

show that





ϱ+ =

(
z+ − a+
z+ − a−

)1

4 = (
r+
r−

)

1

4 e
i
π

4

ϱ− =

(
z− − a+
z− − a−

)1

4 = (
r+
r−

)

1

4 e
−i
π

4

(3.49)

Thus ϱ has a jump discontinuity only on Γ
a+
a− and ϱ+ = iϱ− ⇒ ϱ− = −iϱ+.
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� Now, let us verify the jump condition,

M(z−)

[
0 1
−1 0

]
=

1

2




ϱ− +
1

ϱ−
−i

(
ϱ− − 1

ϱ−

)

i

(
ϱ− − 1

ϱ−

)
ϱ− +

1

ϱ−



[
0 1
−1 0

]

=
1

2



−i

(
ϱ+ − 1

ϱ+

)
−
(
ϱ+ +

1

ϱ+

)

(
ϱ+ +

1

ϱ+

)
−i

(
ϱ+ − 1

ϱ+



[
0 1
−1 0

]

=
1

2




ϱ+ +
1

ϱ+
−i

(
ϱ+ − 1

ϱ+

)

i

(
ϱ+ − 1

ϱ+

)
ϱ+ +

1

ϱ+




= M(z+)

¶3) It is easy to see that as z → ∞ ϱ → 1 and M(z) =
1

2

[
2 0
0 2

]
, hence M(z) =

[
I2×2 +O(z−1)

]

All the 3 conditions of RHPM are satisfied for M(z) and this proves Prop. 3.19.

Short discussion of uniqueness. Another solution of the RHPM could be

M̃(z) =

(
I2×2 +

[
a b
c d

]

(z − a±)k

)

︸ ︷︷ ︸
:=L(z)

M(z), where k is an integer and

[
a b
c d

]
is a constant matrix. In fact

M̃(z) satisfies all the first three (0, 1, 2) conditions of the RHPM in Prop. 3.19 because:

¶¶1 L(z) (as defined in the expression of M̃(z) above) is analytic and bounded on CP
1−Γ

a+
a− , so is

M̃(z), (note that L(z) has only a singularity at a±, because k is an integer, and a± /∈ CP
1−Γ

a+
a−

.

¶¶2 The singularities of L(z), a± ∈ Γ
a+
a− , so M̃(z) has only a jump on Γ

a+
a− coming from M(z)

¶¶3 As z → ∞, L(z) → I2×2, hence M̃(z) =

[
I2×2 +O(z−1)

]

The uniqueness of the solution thus depends crucially on the condition 3) of Prop. 3.19. We now
prove that with condition 3), the solution M(z) to the RHPM is unique.
Let M̂(z) be another solution satisfying conditions 0), 1), 2) and 3) of the RHPM.
Notice that det(M(z)) = det(M̂(z)) = 1:

In fact, from condition 1) det(M(z+)) = det(M(z−)) det(

[
0 1
−1 0

]
)

︸ ︷︷ ︸
=1

on γ.

So det(M(z+)) = det(M(z−) on γ. In addition, condition 0) ⇒ det(M(z)) and det(M̂(z)) are
analytic on C \ γ.
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It follows that they both are analytic on C. Moreover as z → ∞, condition 2) =⇒ det(M(z)) =
1 = det(M̂(z)). Thus, det(M(z)) and det(M̂(z)) are analytic and bounded, by Liouville’s theorem,
det(M(z)) and det(M̂(z)) are constant ∀z ∈ CP

1.
Hence det(M(z)) = det(M̂(z)) = 1 ̸= 0 ⇒ M̂(z) is invertible ∀z ∈ CP

1. Let us consider
X(z) = M(z)M̂−1(z).

X(z+) = M(z+)M̂
−1(z+) = M(z−)

[
0 1
−1 0

](
M̂(z−)

[
0 1
−1 0

])−1

= X(z−) on γ

� It follows that X(z) has no branch cut. It follows that X(z) has at most poles ad a±.

� Moreover, by condition 1), M(z) and M̂−1(z) have a jump discontinuity on Γ
a+
a− .

The two statements above imply that X(z) = M(z)M̂−1(z), has at most poles at a±.
However, with condition 3), each entry of X(z) is bounded by

O
(

1

(z − a±)1/4

)
.O
(

1

(z − a±)1/4

)
= O

(
1√

z − a±

)
at a+ and a− which implies a branch cut be-

tween a+ and a−. In other words, if X(z) ever has singularities at a+ and a−, they must be branch
points. This contradicts the fact that X(z) has at most poles, therefore X(z) has either no poles
or removable poles at a+ and a−.
Hence X(z) is analytic on CP

1.
Furthermore, as z → ∞ condition 2) ⇒ M̂(z) → I2×2, so is M̂

−1(z), thereforeX(z) = M(z)M̂−1(z) →
I2×2. Therefore X(z) is analytic and bounded on CP

1. By Liouville’s theorem X(z) is constant
equal to I2×2. It follows that M(z) = M̂−1(z), thus M(z) is unique under condition 3).
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4 Discussion of the solution of RHPW inside the Eye of the Tiger

The boundary of EoT is described precisely by the condition that z = 1 belongs to the two sub-arcs
of the zero-level set of Reφ(z; s) forming the “rind” of the apricot. As we move s inside the EoT we
cannot use the same effective potential described in the previous section because the fifth condition
in Def. 3.2 ceases to be verified.

The idea is to treat z = 1 as a “hard–edge” in the terminology that has come to pass in the
literature about random matrix theory [11, 14]. We thus postulate the following form for φ′(z; s)

φ′(z; s) =
2

z2

√
z2 +

s2

4
+

Az2

z − 1
=

2
√

z2(z − 1 +A) + s2

4 (z − 1)

z2
√
z − 1

(4.1)

The parameter A = A(s) is chosen by the condition that all periods of φ′(z; s)dz on the Riemann
surface of the radical are purely imaginary, which is necessary so that Reφ is continuous across
the cuts; the Riemann surface of φ′(z; s) is an elliptic curve branched at z = 1 and the other three
roots of the radical in the numerator:

µ2 = (z − 1)

(
z2(z − 1 +A) +

s2

4
(z − 1)

)
. (4.2)

We denote these roots as b, a+, a− with b the closest root to z = 1; an expression in terms of
Cardano’s formulæ is possible but not necessary.

Now the complex parameter A(s) is determined implicitly by the two real equations

Re

� 1

b
φ′(z; s)dz = 0 Re

� a+

b
φ′(z; s)dz = 0. (4.3)

Under these conditions it then follows that the real part of

φ(z; s) =

� z

a−

φ′(w; s)dw (4.4)

is a well defined (single valued) harmonic function on the Riemann surface minus the preimages of
the points z = 0 on the two sheets.

Determination of Γm and Γc. By the same argument already used in the genus zero case,
the level sets Reφ(z; s) are well defined; they consists of the vertical trajectories of the quadratic
differential Q = φ′(z; s)2dz2 [43]

Q = 4
z2(z − 1 +A) + s2

4 (z − 1)

z4(z − 1)
. (4.5)

The main arcs Γm are sub-arcs of the zero levelset of Reφ and we need to discuss their qualitative
topology before proceeding.

The critical points are the three simple zeros (generically) and the simple pole z = 1; from each
simple zero issue three vertical trajectories, while from the simple pole only one. The union of the
trajectories is a connected planar graph and the unbounded region is conformally equivalent to the
unit punctured disk (with the puncture at infinity) by the map

ζ = e−
ϕ(z;s)
4iπ (4.6)

which maps the exterior region into the disk |ζ| < 1, with z = ∞ mapped to ζ = 0. Some
observations are in order
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1. the level sets of Reφ depend only on s2 and they are conjugated if we conjugate s;

2. one of the zeros of φ′ is connected by a vertical trajectory to z = 1; we denote this zero by
z = b; the other two zeros are one in the upper and one in the lower half plane. We denote
them by a±, respectively.

While the level sets of Reφ depend on s2 alone, we must choose the branch-cuts Γm differently
according to Re s > 0 or Re s < 0; the reason is that the sign distribution of Reφ differs according
to the two cases.

This is seen by the following reasoning

� In the outside region Reφ ≃ 2 ln |z|+O(1) and hence Reφ > 0;

� near the origin we must have φ(z; s) = − s
z +O(1) and hence for Re s > 0 the right “lobe” is

where Reφ < 0; viceversa it is the left one if Re s < 0.

The branch-cut Γm is then singled out by the fact that Reφ is not differentiable, namely, Reφ has
the same sign (positive) on both sides.

Collecting these observations, we thus have determined that

1. For Re s > 0 the branch-cut Γm consists of the three arcs of the vertical trajectories connecting
z = b, 1 and z = b, a+ and z = b, a−.

2. For Re s < 0 the branch-cut Γm consists of the two arcs of the vertical trajectories connecting
z = b, 1 and z = a+, a− (passing to the left of the origin).

See Fig. 5.

Proposition 4.1 The 2× 2 matrix valued function Φ(z), solution of the RHPΦ must satisfy the
following conditions:

0) Φ(z) defined and holomorphic in CP
1 \ γ

1) The jump condition gives:

Φ(z+) =





Φ(z−)


1 Q(z)e

ns

z

0 1


 if z ∈ γ \ γ1b

= Φ(z−)


1

:=ς︷ ︸︸ ︷
(1− e2iπθ)Q(z−)e

ns

z

0 1


 if z ∈ b1

:= Φ(z−)


1 Q̃(z)e

ns

z

0 1




where Q̃(z)e

ns

z is defined as the generic final expression of the (1, 2)-entry of the matrix above
∀z ∈ γ.

2) As z → ∞, for some n ∈ N, the matrix Φ(z) has the Laurent series expansion of z−1 of the

form: Φ(z) =

[
I2×2 +O(z−1)

]
znσ3 ≡ Φn(z)
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Proof.
We define b ∈ C such that the path from z = b to z = 1 (let us call it b1) is ε ∩ Γ = b1. The

steepest descent method is also applied to this case to find the solution of the RHPΦ. The only

difference with the previous case is that the function Q(z) = z−m

(
1− 1

z

)θ

as defined in relation

(3.4) ”technically” has now a jump on b1 as shown on Figure 16 below. Since m is an integer z−m

does not have a jump on b1 ⇒ (z+)
−m = (z−)

−m.
However θ is not an integer and hence,





Q(z+) = z−m

(
1− 1

z+

)θ

= z−m (z+ − 1)θ

(z+)θ
= z−m

(
r1
r2

)θ

eiπθ

Q(z−) = z−m

(
1− 1

z−

)θ

= z−m (z− − 1)θ

(z−)θ
= z−m

(
r1
r2

)θ

e−iπθ

⇒ Q(z+) = e2iπθQ(z−) (4.7)

where r1 = |z+ − 1| = |z− − 1| and r2 = |z+| = |z−|
Let us recall that the 2 × 2 matrix valued function Φ(z), solution of the RHPΦ must satisfy

the following conditions specified in Sec. 1.3.1. In the present situation they read as follows

0) Φ(z) is defined and holomorphic in CP
1 \ γ

1) on γ, it satisfies the boundary value condition (see figure 16)

Φ(z+) =





Φ(z−)


1 Q(z)e

ns

z

0 1


 if z ∈ γ \ b1

Φ(z−)


1 Q(z−)e

ns

z

0 1




1 Q(z+)e

ns

z

0 1



−1

if z ∈ b1

The arc b1 is the subset of γ that will be superposed (flattened) on b1. (See figure 16)

To ”make a jump” on b1, Φ has to jump on

(
γ1b

)−

and

(
γ1b

)+

successively, hence the product

of the two jump matrices for the jump condition on b1. The two matrices are inverse of each
other because they have opposite domains of definition (with respect to the sides of γ1b ) as
shown on the figure 16 above.
Recall that with respect to b1, Q(z+) = e2iπθQ(z−), hence, the jump gives:

Φ(z+) =





Φ(z−)


1 Q(z)e

ns

z

0 1


 if z ∈ γ \ γ1b

= Φ(z−)


1

:=ς︷ ︸︸ ︷
(1− e2iπθ)Q(z−)e

ns

z

0 1


 if z ∈ b1

(4.8)

:= Φ(z−)


1 Q̃(z)e

ns

z

0 1


 (4.9)
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b1+

-

(

γ1
b

)

−

+

-

(

γ1
b

)+

+

-

b 1

a+

a
−

Figure 16: Decomposition of the jump of the transformation Φ on the branch cut Γ1
b

where Q̃(z)e

ns

z is defined as the generic final expression of the (1, 2)-entry of the matrix above
∀z ∈ γ.

2) As z → ∞, for some n ∈ N, the matrix Φ(z) has the Laurent series expansion of z−1 of the

form: Φ(z) =

[
I2×2 +O(z−1)

]
znσ3 ≡ Φn(z)

■

4.1 First transformation Φ −→ W

Similarly to the previous case (outside the EoT), and under the same conditions as defined in Def.
3.3 for the functions g and φ, we proceed to the first transformation as Φ −→ W .

W (z) = e
n
ℓ

2
σ3

Φ(z)e
−

(
g(z)+

ℓ

2

)
σ3

(4.10)

On the s− plane, when s ∈ C is inside the EoT (as described at the end of the Section 3.1),
we typically obtain on the z− plane the figures 17 and 18 below (see pictures on the left), where
z = 1 is outside Ξ on the z− plane. Recall that Ξ = {z ∈ C : Re (φ(z, s)) = 0}.

Note that in this case ε, the branch cut of Q(z) (between 0 and 1) is partly outside of Ξ.
However ε must be inside the contour γ. This forces a subset of the closed contour γ (near z = 1)
to be outside of Ξ as well.
Moreover, similarly to the previous case (i.e. when s is outside the EoT ), for the jump of g (or φ)
on γ to make sense, γ is deformed and passes through the branch cut Γ of φ.
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Definition 4.2 We define:

φ′(z) =
2

z

√
(z − a+)(z − a−)(z − b)

z − 1
(4.11)

as a function with the branch cuts along Γm as discussed in Section 4.1.

Since Γm has branch points at a−, a+, b, and 1, this implies that γ along with Γm passes through
those branch points as well (in particular the two superposed contours cannot cross ε as γ encloses
ε).

Let us call ”temporarily ” Ξ̂, the contour of Ξ which goes from a− to a+ such that Re (φ(z)) > 0
on its left and on its right( recall that Re (φ(z)) = 0 as z ∈ Ξ). We can choose to deform (superpose)
once again γ along with Γ towards Ξ̂ as pictured on figures 17 and 18, such that Γ = Ξ̂ ∪ Γ(∞).
Let us rename Ξ̂ = Γ

a+
a− such that Γ = Γ

a+
a− ∪ Γ(∞) now.

As a result, γ passes through the arcs Γb
a− , Γ

a+
b and Γ1

b ≡ b1 on figure 17 (see picture on the

right). On figure 18 (see picture on the right), γ passes through the arcs Γ
a+
a− and Γ1

b . These arcs
in each figure are called the Main arcs noted Γm.
The contour of γ which is not superposed is called the complementary arc Γc, and it is located on
the region of the z− plane where Re (φ(z, s)) < 0.

Figure 17: The retraction of the contour of integration (left pane) onto Γ when s is inside the EoT.
Case for Re (s) > 0.
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Figure 18: The retraction of the contour of integration (left pane) onto Γ when s is inside the EoT.
Case for Re (s) < 0.

Proposition 4.3 Let us consider the transformation from Φ(z) to W (z) as defined in Def. 3.3.
The 2× 2 matrix valued function W (z) defined in 3.3 and solution of the RHPW must satisfy the
following conditions:

0) W (z) defined and holomorphic in CP
1 − γ , (note that ∞ ∈ γ)

1) Jump condition

W (z+) =





= W (z−), on γ − Γ

W (z−)



e

n

2

(
φ(z−)−φ(z+)

)

Q̃(z)e

n

2

(
φ(z−)+φ(z+)

)

0 e
−
n

2

(
φ(z−)−φ(z+)

)



, on Γ

2) As z → ∞ we have the limiting behaviour

W (z) =

[
I2×2 +O(z−1)

]
.

Proof.
The RHPW from proposition 3.7 is now adapted with Q̃(z) as follows:

0) W (z) defined and holomorphic in CP
1 − γ , (note that ∞ ∈ γ)
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1) Jump condition on γ

W (z+) = W (z−)



e

n

2

(
φ(z−)−φ(z+)

)

Q̃(z)e

n

2

(
φ(z−)+φ(z+)

)

0 e
−
n

2

(
φ(z−)−φ(z+)

)




On γ − Γ
On γ − Γ, φ does not have a jump, so φ(z−)− φ(z+) = 0

⇒ e
±
n

2

(
φ(z−)−φ(z+)

)

= 1.

FACT: Moreover, γ − Γ is contained in a region of the z− plane where Re

(
φ(z)

)
< 0, so

Q̃(z)e

n

2

(
φ(z−)+φ(z+)

)

= Q̃(z)enφ(z) = Q̃(z)e
n

[
Re

(
φ(z)

)
+iIm

(
φ(z)

)]

= Q̃(z) e
n

[
Re

(
φ(z)

)]

︸ ︷︷ ︸
→0 asn→∞

e
i

[
nIm

(
φ(z)

)]

= 0

(because Q̃(z) ̸= ∞ as z ̸= 0,∞ when z ∈ γ − Γ)

Hence on γ − Γ,

W (z+) = W (z−)

[
1 0
0 1

]
= W (z−)

Therefore we obtain:

W (z+) =





= W (z−), on γ − Γ

W (z−)



e

n

2

(
φ(z−)−φ(z+)

)

Q̃(z)e

n

2

(
φ(z−)+φ(z+)

)

0 e
−
n

2

(
φ(z−)−φ(z+)

)



, on Γ

2)

As z → ∞, W (z) =

[
I2×2 +O(z−1)

]

■

Let us analyse the jump on Γ. We will use again the following equality to rewrite condition 1):
[
ea eb

0 e−a

]
=

[
1 0

e−a−b 1

] [
0 e−b

e−b 1

] [
1 0

ea−b 1

]

67



Thus we have th jump condition on Γ =⇒ taking the form

W (z+) = (4.12)

= W (z−)




1 0

e−nφ(z−)

Q̃(z)
1




:=m
Q̃︷ ︸︸ ︷



0 Q̃(z)e

n

2

(
φ(z−)+φ(z+)

)

−e
−
n

2

(
φ(z−)+φ(z+)

)

Q̃
0







1 0

e−nφ(z+)

Q̃(z)
1


 (4.13)

The main arc Γ = Γ
a+
a− ∪ b1 as a union of branch cuts is where φ has a jump discontinuity

The result from relation 3.32 obtained on Γ
a+
a− can be generalized as follows on any branch cut:

φ(z+) + φ(z−) =

�
z+

l

φ′(w+)dz +

�
z−

l

φ′(w−)dz = 0 (4.14)

where l and z belong to the same branch cut In particular, for z ∈ Γ
a+
b :

φ(z+) + φ(z−) = 0

Proposition 4.4 In order compute φ(z+) + φ(z−) on Γ1
b and Γ

a+
b (i.e with the additional branch

cut b1) we will need the following the Boutroux conditions defined as follows:





Ω1 :=

�
a+

b

φ′(z+)dz ∈ iR−

Ω2 :=

�
1

b

φ′(z−)dz ∈ iR+

(4.15)

Proposition 4.5

mQ̃ =




0 Q̃(z)e

n

2

(
φ(z−)+φ(z+)

)

−e
−
n

2

(
φ(z−)+φ(z+)

)

Q̃
0




(4.16)
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⇒ mQ̃ =








0 Q̃(z)

− 1

Q̃
0


 0n Γb

a−




0 Q̃(z)enΩ1

−e−nΩ1

Q̃
0


 0n Γ1

b




0 Q̃(z)enΩ2

−e−nΩ2

Q̃
0


 0n Γ

a+
b

(4.17)

Irrespectively of the branch cut, relation (4.13) is written as:

W (z+) = W (z−)




1 0

e−nφ(z−)

Q̃(z)
1


mQ̃




1 0

e−nφ(z+)

Q̃(z)
1




Proof.(of the above proposition ( 4.5))

Recalling that φ(z) =

�
z

a−

φ′(w)dw, we obtain:

For z ∈ Γ1
b

φ(z+) + φ(z−) =

[
�

b

a−

φ′(w+)dw +

�
a+

b

φ′(w+)dw

+

�
b

a+

φ′(w−)dw +

�
z+

b

φ′(w−)dw

]
+

[
�

b

a−

φ′(w−)dw +

�
z−

b

φ′(w+)dw

]

=

�
a+

b

φ′(w+)dw +

�
b

a+

φ′(w−)dw

(
By using relation 3.32 , see Remark below

)
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= 2

�
a+

b

φ′(w+)dw = 2Ω1,

(
since on Γb

a+ φ(w+) + φ(w−) = 0

⇒ φ′(w−) = −φ′(w+) ⇒

�
b

a+

φ′(w−)dw =

�
a+

b

φ′(w+)dw

)

Remark
• By using relation 3.32, notice that the sum of the integrals of the same color cancel out.
• Around an arc which is not a branch cut, the contour integral is zero by Cauchy theorem.
So we obtained φ(z+) + φ(z−) = 2Ω1 on Γ1

b

For z ∈ Γ
a+
b :

φ(z+) + φ(z−) =

[� b

a−

φ′(w+)dw +

� z+

b
φ′(w+)dw

]
+

[� b

a−

φ′(w−)dw

+

� 1

b
φ′(w−)dw +

� b

1
φ′(w+)dw +

� z−

b
φ′(w−)dw

]

=

� 1

b
φ′(w−)dw +

� b

1
φ′(w+)dw

(
The sum of the integrals

of the same color cancel out for the same reason as the previous computation

)

= 2

� b

1
φ′(w+)dw = 2Ω2

(
For the same reason as the previous computation

)

So φ(z+) + φ(z−) = 2Ω2 on Γ
a+
b

■

The above proposition ( 4.5) implies that:

W (z+)




1 0

−e−nφ(z+)

Q̃(z)
1




︸ ︷︷ ︸
T (z+)

= W (z−)




1 0

e−nφ(z−)

Q̃(z)
1




︸ ︷︷ ︸
T (z−)

mQ̃ (4.18)

From the relation ( 4.18) above, we can notice that W (z+) = W (z−)mQ̃ as n → ∞ and with
z ̸= a+, a−, 1, b. More details will be given in the following lines with the Lens opening technique.
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4.2 Second transformation: lens opening

We can define a region (or lens) around Γ
a+
a− and b1 bordered on the left and on the right respectively

by two curves L+ and L−(to be arbitrarily chosen so that so that they stay in the region where

Re

(
φ(z) > 0

)
) as follows:

Figure 19: The lenses around Γ when s is inside the EoT according to the sign of Re (s).

Definition 4.6 Let T be a transformation on that region such that,as suggested in relation ( 3.30):

T (z) :=





W (z), outside of the regions (lenses)

W (z)




1 0

−e−nφ(z)

Q̃(z)
1


 , on R+

W (z)




1 0

e−nφ(z)

Q̃(z)
1


 , on R−

where R+ and R− are respectively the region on the left and the right of each branch cut, such
that relation ( 3.30) gives

T (z+) = T (z−)




0 Q̃(z)

− 1

Q̃(z)
0


 on Γb

a− ∪ Γ1
b ∪ Γ

a+
b
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Proposition 4.7 The transformation T has the jump conditions on the lenses L± as T (z+) =

T (z−)




1 0

e−nφ(z)

Q̃(z)
1




Proof. See proof of Prop. 3.11 ■

4.2.1 Model problem and approximation

Let us leave the scheme of the lens opening. The rationale behind the next construction is analogous
to the one used in Sec. 3.2.3, namely, that the jump conditions on the lenses will be shown to be
exponentially close to the identity jump, and hence, in first approximation, can be heuristically
neglected. The result of this is the RHP described hereafter.

Definition 4.8 We define MQ̃(z) as a transformation not depending on n and that has a jump

discontinuity only on the branch cut Γb
a− ∪ Γ1

b ∪ Γ
a+
b , such that:

0) MQ̃(z) defined and holomorphic in CP
1 − γ, (note that ∞ ∈ γ).

1) On γ

MQ̃(z+) :=





MQ̃(z−), on γ −
(
Γb
a− ∪ Γ1

b ∪ Γ
a+
b

)

MQ̃(z−)




0 Q̃(z)

− 1

Q̃(z)
0




on Γb
a− ∪ Γ1

b ∪ Γ
a+
b

2)

As z → ∞, MQ̃(z) =

[
I2×2 +O(z−1)

]

3) All entries of M
Q̃
(z) are bounded by |z − c|− 1

4 as z → c and c is any of 1, b, a+, a−.

The conclusion of the approximation is given by defining a final transformation

E(z) = T (z)(MQ̃(z))
−1 (4.19)

that connects T (z) and MQ̃(z).
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Proposition 4.9 There exists a well defined transformation
E(z) = T (z)MQ̃(z)

−1 that connects T (z) and MQ̃(z). The Riemann Hilbert Problem for E, i.e.
RHPE is as follows:

0) E(z) defined and holomorphic in C− (γ ∪ L+ ∪ L−)
1)

E(z+) =




E(z−), on γ

E(z−)

(
I2×2 +G(z)

)
, on L− ∪ L+

where G(z) = MQ̃(z−)




0 0

e−nφ(z)

Q̃(z)
0


 (MQ̃(z−))

−1

2)

As z → ∞, E(z) =

[
I2×2 +O(z−1)

]

Proof.
The Riemann Hilbert Problem for E, i.e. RHPE is as follows:

0) E(z) defined and analytic in C− (γ ∪ L+ ∪ L−), this is justified from the definitions of T (z)
and MQ̃(z) (note that ∞ ∈ γ).

1) On γ ∪ L+ ∪ L−

• On γ −
(
Γb
a− ∪ Γ1

b ∪ Γ
a+
b

)

E(z+) = T (z+)(MQ̃(z+))
−1 = T (z−)(MQ̃(z−))

−1 since T and MQ̃ don’t have a jump on

γ −
(
Γb
a− ∪ Γ1

b ∪ Γ
a+
b

)
. Finally E(z+) = E(z−)

• On Γb
a− ∪ Γ1

b ∪ Γ
a+
b

E(z+) = T (z+)(MQ̃(z+))
−1 = T (z−)




0 Q̃(z)

− 1

Q̃(z)
0






0 Q̃(z)

− 1

Q̃(z)
0



−1

(MQ̃(z−))
−1

= T (z−)(MQ̃(z−))
−1 = E(z−)
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• On L− ∪ L+

E(z+) = T (z+)(MQ̃(z+))
−1 = T (z−)




1 0

e−nφ(z)

Q̃(z)
1




=(M
Q̃
(z+))−1

︷ ︸︸ ︷
(MQ̃(z−))

−1

= T (z−) (MQ̃(z−))
−1MQ̃(z−)︸ ︷︷ ︸

=I2×2

(
I2×2 +




0 0

e−nφ(z)

Q̃(z)
0



)
(MQ̃(z−))

−1

= T (z−)

(
(MQ̃(z−))

−1MQ̃(z−)︸ ︷︷ ︸
=I2×2

I2×2(MQ̃(z−))
−1

+ (MQ̃(z−))
−1MQ̃(z−)




0 0

e−nφ(z)

Q̃(z)
0


 (MQ̃(z−))

−1

︸ ︷︷ ︸
:=G(z)

)

= T (z−)(MQ̃(z−))
−1

︸ ︷︷ ︸
=E(z−)

+T (z−)(MQ̃(z−))
−1

︸ ︷︷ ︸
=E(z−)

G(z)

= E(z−)

(
I2×2 +G(z)

)

2)

As z → ∞, E(z) =

[
I2×2 +O(z−1)

]

■

The following theorem will allow us to estimate the function G(z) and the discrepancy between
E(z) and the identity matrix.

Theorem 4.10 (Small Norm Theorem for RHP’s:) Let E be a matrix satisfying the follow-
ing RHP:





E(z) =

[
I2×2 +O(z−1)

]
As z → ∞

E(z+) = E(z−)

(
I2×2 +G(z)

)
, on a contour

∑

Let N(z) =
√∑

(Gi,j(z))2. Suppose that N(z) ∈ Lp

(∑
, |dz|

)
with 1 ⩽ p ⩽ ∞. If ∥N(z)∥∞ is

small enough, then the RHP has a solution.
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In our case,∑
= L− ∪ L+. We have

G(z) = MQ̃(z−)




0 0

e−nφ(z)

Q̃(z)
0


 (MQ̃(z−))

−1 (4.20)

Since
∑

is compact and
e−nφ(z)

Q̃(z)
is bounded on it, N(z) ∈ Lp

(∑
, |dz|

)
with 1 ⩽ p ⩽ ∞.

∀z ∈∑, Q̃(z) ̸= 0.
In addition,

∀z ∈∑−{a±, b, 1}, Re (φ(z)) > 0 ⇒ as n → ∞,
e−nφ(z)

Q̃(z)
→ 0.

Hence ∥N(z)∥∞ is small enough. However, for z = a±, b, 1, e
−nφ(z) ↛ 0 as n → ∞ and ∥N(z)∥∞

can not be made small enough.

Therefore we need to apply the small norm theorem to a contour that excludes the points
z = a+, z = a−, z = b and z = 1. To achieve that, let us redefine T (z) in the neighbourhood of
those points: let us D+, D−, Db and D1 be four disks with radius δ, ∀δ > 0 in the neighbourhoods.
If T̃ (z) is the redefinition of T (z), we will have E(z) := T̃ (z)(MQ̃(z))

−1

Let us start the procedure by first considering only the disks D+, D−, Db and D1.

Definition 4.11 (Local Parametrices) Let’s define a P (z, n) as follows:

P (z, n) =

{
PD±,b,1(z, n), inside D±,b,1

T (z), on ∂D±,b,1

where PD±,b,1(z, n) is some transformation which has the same jump as T (z)on the main arcs Γb
a− ,

Γ1
b , Γ

a+
b and the lenses L± as T (z) inside D±

Now, let us define :

T̃ (z) :=

{
T (z), on C−D±,b,1

P (z, n)(T (z))−1MQ̃(z), on D±,b,1

The existence of appropriate parametrices is a delicate but standard construction and can be
found in [7, 8, 11, 16, 17]. We will not report their construction here.

It follows from the definition that:

E(z) = T̃ (z)(MQ̃(z))
−1 =





T (z)(MQ̃(z))
−1, on C−D±,b,1

P (z, n)(T (z))−1 =





PD±,b,1
(z, n)(T (z))−1 := P̃D±,b,1

(z, n),

inside D±,b,1

I2×2 +O(
1

n
), on ∂D±,b,1

(4.21)
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Notice that:
⊙ P̃D±,b,1

(z, n) as defined above, does not have a jump on both the main arc and the lenses inside
D±,b,1

⊙ since a±, b, 1 /∈ (C − D±,b,1), and E(z) = T (z)(MQ̃(z))
−1 on C − D±,b,1 the RHP for E has a

solution (as we derived before).

In particular, E(z) =

[
I2×2 +O(z−1)

]
As z → ∞.

⊙ inside D±,b,1 and on ∂D±,b,1, the RHP for E is:

E(z+) = E(z−)(

(
I2×2 + 02×2︸︷︷︸

=G(z)

)

G(z) = 02×2 thus the RHP for E = T̃ (z)(MQ̃(z))
−1 has a solution (i.e. exists) by the small norm

theorem.

Comments:
◦ Since the Riemann Hilbert Problem for the transformation E has a solution (i.e. E exists), we
can know consider the RHP of transformation MQ̃(z) = (E(z))−1T̃ (z) which satisfies the conditions
as defined in Def. 4.8 and solve it. Notice that the expressions of MQ̃(z) inside and outside the

disks are different, although they both have the same jump matrix on Γb
a− , Γ

1
b , and Γ

a+
b .

◦ Finding a solution to the RHPMQ̃ is equivalent to finding a solution to the RHPΦ. In order to
find an explicit solution to the RHPMQ̃, we will need a further transformation MQ̃ −→ M to the
Model problem, which is easier to solve explicitly.

4.3 Third transformation:MQ̃ −→ M

In order to obtain a Riemann Hilbert Problem of Def. 4.8 we define a new matrix M(z), with a
constant jump matrix on Γm and no jump at ∞. Let us consider the following definition.

Definition 4.12 Let us define

M(z) := e−S(∞)σ3MQ̃(z)e
S(z)σ3

The function S(z) is the Szegö function defined in Def. 4.14.

Analyticity of M(z) on C \ γ. We need to impose that S(z) is bounded and analytic on C \ γ.
This condition leads us obtain the desired conclusion that M(z) = e−S(∞)σ3MQ̃(z)e

S(z)σ3 is analytic
on C− γ because MQ̃ is.

Jump Condition of M(z) on γ.
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� On γ −
=Γ̃︷ ︸︸ ︷

(Γb
a− ∪ b1 ∪ Γ

a+
b ) (We define Γ̃ := Γb

a− ∪ b1 ∪ Γ
a+
b )

M(z+) = e−S(∞)σ3MQ̃(z+)e
S(z+)σ3

= e−S(∞)σ3MQ̃(z−)e
S(z+)σ3 = M(z−)

� On Γ̃

M(z+) = e−S(∞)σ3MQ̃(z+)e
S(z+)σ3

= e−S(∞)σ3 T̃−(z)

=I2×2︷ ︸︸ ︷
eS(z−)σ3e−S(z−)σ3




0 Q̃(z)

− 1

Q̃(z)
0


 eS(z+)σ3

= M(z−)e
−S(z−)σ3




0 Q̃(z)

− 1

Q̃(z)
0


 eS(z+)σ3

⇒ M(z+) =





M(z−)




0 Q̃(z)e
−

(
S(z+)+S(z−)

)

−e

(
S(z+)+S(z−)

)

Q̃
0



, 0n Γb

a−

M(z−)




0 Q̃(z)e
−

(
S(z+)+S(z−)

)

enΩ1

−e

(
S(z+)+S(z−)

)

Q̃
e−nΩ1 0



, 0n Γ1

b

M(z−)




0 Q̃(ze
−

(
S(z+)+S(z−)

)

)enΩ2

−e

(
S(z+)+S(z−)

)

Q̃
e−nΩ2 0



, 0n Γ

a+
b

Therefore, for the jump condition with a constant matrix to be satisfied, we must impose the
condition to have S(z) bounded on Γ̃,
and

S(z+) + S(z−) =

{
ln(Q̃(z)) , on Γb

a− ∪ Γ
a+
b

ln(Q̃(z))− ν , on Γ1
b

(4.22)
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for some constant ν that will be found below. The jump conditions for M(z) above become thus

M(z+) =





M(z−)

[
0 1

−1 0

]
, 0n Γb

a−

M(z−)

[
0 enΩ1+ν

−e−nΩ1−ν 0

]
, 0n Γ1

b

M(z−)

[
0 enΩ2

−e−nΩ2 0

]
, 0n Γ

a+
b

(4.23)

Proposition 4.13 The function S(z) defined in Definition has the properties:
⊙ S(z) is analytic and bounded on CP

1 − Γ̃
⊙ S(z) has finite boundary values along Γ̃ which satisfy

S(z+) + S(z−) =

{
ln(Q̃(z)) , on Γb

a− ∪ Γ
a+
b

ln(Q̃(z))− ν , on Γ1
b

(4.24)

with ν given in (4.30).

Definition 4.14 We define

S(z) :=
J(z)

2πi




�
Γ̃\b1

ln(Q(w))

J(w+)(w − z)
dw +

�
1

b

ln(Q(w))− ν

J(w+)(w − z)
dw


 , (4.25)

for z /∈ Γ̃, where J(z) :=
√

(z − a+)(z − a−)(z − b)(z − 1). All integrations are along the arcs in Γ̃
(depending on the case Re (s) > 0 or Re (s) < 0). The constant ν is defined in (4.30).

Proposition 4.15 Let’s consider the transformation
M(z) = e−S(∞)σ3MQ̃(z)e

S(z)σ3 as defined in Def. 4.12. The 2 × 2 matrix valued function W(z)
solution of the RHPM must satisfy the following conditions:
0) M is defined and holomorphic in CP

1 − γ
1) On γ

• On γ \ Γ̃ : M is defined and holomorphic.

• On Γ̃ :
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M(z+) =





M(z−)

[
0 1

−1 0

]
, 0n Γb

a−

M(z−)

[
0 enΩ1+ν

−e−nΩ1−ν 0

]
, 0n Γ1

b

M(z−)

[
0 enΩ2

−e−nΩ2 0

]
, 0n Γ

a+
b

with ν = 2πi

(
θ +

�
0

b

1

J(w+)
dw�

1+

b+

1

J(w+)
dw

)

2) As z −→ ∞ M(z) =

[
I2×2 +O(z−1)

]

Proof. of the propositions 4.13, 4.15 and motivation for the definition 4.14 above

Construction of the Szegö function S(z). Let us define for convenience

J(z) :=
√
(z − a+)(z − a−)(z − b)(z − 1) (4.26)

with the branch-cuts on Γm; thus J(z+) = −J(z−) on each sub-branch of Γ̃ (i.e. Γb
a− , Γ

1
b and Γ

a+
b ).

We will use (impose) the condition of analyticity and boundedness of S(z) on CP
1− Γ̃ (in particular

at ∞) to find ν.

Let us compute S(z). We know that:

S(z+) + S(z−) = ln(Q̃(z)) + νχb1 , z ∈ Γ̃, (4.27)
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where χb1 denotes the characteristic function of the arc b1. Therefore for each sub-branch of Γ̃

S(z+)

J(z+)
+

S(z−)

J(z+)
=

ln(Q̃(z)) + νχb1

J(z+)

⇒ S(z+)

J(z+)
− S(z−)

J(z−)
=

ln(Q̃(z)) + νχb1

J(z+)

=⇒ (by Sokhotski–Plemelj theorem on
S(z)

J(z)
) we obtain

S(z) =
J(z)

2πi

[
�

Γb
a−

ln(Q̃(w))

J(w+)(w − z)
dw

︸ ︷︷ ︸
:=I1

+

�
Γ1
b

ln(Q̃(w)) + ν

J(w+)(w − z)
dw

︸ ︷︷ ︸
:=I2

+

�
Γ
a+
b

ln(Q̃(w))

J(w+)(w − z)
dw

︸ ︷︷ ︸
:=I3

]
, z /∈ Γ̃

Notice that the expression of S(z) provided by Sokhotski–Plemelj is indeed bounded on Γ̃ −
{a±, b, 1} as we want: in fact, as z /∈ Γ̃, S(z) is bounded because the contour of integration Γ̃ is
compact, and the integrand of S(z) is bounded on it.

Back to the computation of S(z), first let us focus on the expression of Q̃(z) on Γ1
b . Recall the

jump relation 1)that we obtained in Prop. 4.1. We have:

Q̃(z−) := ςQ(z−) =⇒ ln(Q̃(z−)) = ln(

=e−2πiθQ(z+)︷ ︸︸ ︷
Q(z−) ) + ln(ς) = −2iπθ + ln(Q(z+) + ln(ς) (4.28)

By arbitrarily taking (the direction) Γ1
b = Γ

1−
b−

we can write:

80



I2 =
1

2

[
�

1−

b−

ln(Q̃(w−)) + ν

J(w+)(w − z)
dw +

�
1−

b−

ln(Q̃(w−)) + ν

J(w+)(w − z)
dw

]

=
1

2

[
�

1−

b−

ln(Q(w−)) + ln(ς) + ν

J(w+)(w − z)
dw +

�
1+

b+

−2iπθ + ln(Q(w+)) + ln(ς) + ν

J(w+)(w − z)
dw

]

=
1

2

[
�

1−

b−

ln(Q(w−)) + ln(ς) + ν

J(w+)(w − z)
dw −

�
b+

1+

ln(Q(w+)) + ln(ς) + ν

J(w+)(w − z)
dw

+

�
1+

b+

−2iπθ + ν

J(w+)(w − z)
dw

]

=
1

2

[
�

Γ1
b

=−2iπθ︷ ︸︸ ︷
ln(Q(w−))− ln(Q(w+))

J(w+)(w − z)
dw +

�
1+

b+

−2iπθ + ν

J(w+)(w − z)
dw

]

=
1

2

[
�

Γ1
b

−2iπθ

J(w+)(w − z)
dw +

�
1+

b+

−2iπθ + ν

J(w+)(w − z)
dw

]
,

Γb
a− ∪ Γ

a+
b ⊂ γ − γ1b . So, on Γb

a− ∪ Γ
a+
b we have Q̃(w)) = Q(w), hence:

I1 =
1

2

�
Γb
a−

ln(Q(w))

J(w+)(w − z)
dw and I3 =

1

2

�
Γ
a+
b

ln(Q(w))

J(w+)(w − z)
dw

On the other hand, we know that :
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=I1︷ ︸︸ ︷

1

2

�
Γb
a−

ln(Q(w))

J(w+)(w − z)
dw+

=

(
I2−

1

2

�
1+

b+

−2πiθ + ν

J(w+)(w − z)
dw

)

︷ ︸︸ ︷

1

2

�
Γ1
b

ln(Q(w))

J(w+)(w − z)
dw

+
1

2

�
Γ
a+
b

ln(Q(w))

J(w+)(w − z)
dw

︸ ︷︷ ︸
=I3

+
1

2

�
ε0
b

ln(Q(w))

J(w+)(w − z)
dw

=
1

2

�
w≫1

ln(Q(w))

J(w+)(w − z)
dw (4.29)

Let us discuss the behaviour of the integrand at ∞.

For the denominator, as w → ∞
J(w+) =

√
(w − a−)(w − a+)(w − b)(w − 1) ∼ w2 and w − z ∼ w

so J(w+)(w − z) ∼ w3 and,

lim
w→∞

ln(Q(w))

J(w+)(w − z)
= lim

w→∞

ln

(
(z−m)(1− 1

z
)θ
)

w3
= lim

w→∞

ln(z−m)

w3

l′Hop︷︸︸︷
= lim

w→∞

α

w4
= 0

Therefore, as w → ∞ the integrand
ln(Q(w))

J(w+)(w − z)
∼ 1

w3−b
→ 0 with b < 1 .

So we obtain that
1

2

�
w≫1

ln(Q(w))

J(w+)(w − z)
dw = 0 and with relation ( 4.29) this implies that:

I1 + I2 + I3 =
1

2

�
1+

b+

−2πiθ + ν

J(w+)(w − z)
dw − 1

2

�
ε0
b

ln(Q(w))

J(w+)(w − z)
dw

Hence,

82



S(z) =
J(z)

2πi
(I1 + I2 + I3)

=
J(z)

πi

[
�

1+

b+

−2πiθ + ν

J(w+)(w − z)
dw −

�
ε0
b

ln(Q(w))

J(w+)(w − z)
dw

]

As z → ∞, J(z) ∼ z2 and
1

w − z
∼ −1

z
, hence as z → ∞:

S(z) = −c.z

πi

[
�

1+

b+

−2πiθ + ν

J(w+)
dw −

�
ε0
b

ln(Q(w))

J(w+)
dw

]
+O(1), where c ∈ C is a constant

Since M(z) is S(z) bounded everywhere in particular on Γ(∞) (i.e. at ∞), we must set the

coefficient of z to 0 i.e.

�
1+

b+

−2πiθ + ν

J(w+)
dw −

�
ε0
b

ln(Q(w))

J(w+)
dw = 0 and find ν accordingly.

It implies that:�
1+

b+

−2πiθ + ν

J(w+)
dw −

(
�

0+

b+

ln(Q(w+))

J(w+)
dw +

�
b−

0−

ln(Q(w−))

J(w+)
dw

︸ ︷︷ ︸

−

�
0−

b−

=−2iπθ+ln(Q(w+))︷ ︸︸ ︷
ln(Q(w−))

J(w+)
dw

)
= 0

⇒− 2πi

(
�

1+

b+

θ

J(w+)
dw +

�
0

b

1

J(w+)
dw

)
= −

�
1

b+

ν

J(w+)
dw
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⇒ν = 2πi

(
θ +

�
0

b

1

J(w+)
dw�

1+

b+

1

J(w+)
dw

)
(4.30)

Expansion of M(z) at ∞:

M(z) = eS(∞)σ3MQ(z)e
−S(z)σ3 =⇒ M(∞) = e−S(∞)σ3

[
I2×2 +O(z−1)

]

︸ ︷︷ ︸
MQ(∞)

eS(∞)σ3

=⇒ as z → ∞,M(z) =

[
I2×2 +O(z−1)

]
, Since S(z) is bounded at ∞

■

4.4 Solution of the Model Problem (RHPM)

The Riemann surface defined by ξ2 = (z− a−)(z− a+)(z− b)(z− 1) is an elliptic curve of genus 1.
Let ω1 and ω2 be the two periods associated to it.
For all (z, ξ) on the elliptic curve, let us define the Abel map:

u(z, ξ) = u(z) :=

�
z

a−

1

2J(w)ω1
dw (4.31)

where J(w) is defined in relation 4.26

and ω1 :=

�
1

b

1

J(w+)
dw , ω2 :=

�
a+

b

1

J(w−)
dw. Let us define τ :=

ω2

ω1
(4.32)

Let us consider Θ(u(z), τ) the Riemann Θ− function. It satisfies the properties:





Θ(u(z), τ) = 0 for u(z) =
τ + 1

2
+ k + lτ with ∀k, l ∈ Z

Θ(u(z) + k + lτ, τ) = exp

(
− 2πilu(z)− iπl2τ

)
Θ(u(z), τ)

(4.33)
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Proposition 4.16 Let M(z) =

[
A(z)
B(z)

]
where A(z) and B(z) are row vectors forming the matrix.

Up to scalar normalization, the solution M(z) of the Model Problem when s ∈ EoT is such that :

A(z) :=
[
A1(z) A2(z)

]

=



iΘ

(
u(z)− u(∞)− τ + 1

2
+G

)
h(z)

Θ

(
u(z)− u(∞)− τ + 1

2

)
e−iπKu(z)

Θ

(
− u(z)− u(∞)− τ + 1

2
+G

)
h(z)

Θ

(
− u(z)− u(∞)− τ + 1

2

)
eiπKu(z)


 (4.34)

and,

B(z) :=
[
B1(z) B2(z)

]

=



iΘ

(
u(z) + u(∞)− τ + 1

2
+G

)
h(z)

Θ

(
u(z) + u(∞)− τ + 1

2

)
e−iπKu(z)

Θ

(
− u(z) + u(∞)− τ + 1

2
+G

)
h(z)

Θ

(
− u(z) + u(∞)− τ + 1

2

)
eiπKu(z)


 (4.35)

where h(z) =
1

(
(z − a−)(z − a+)(z − b)(z − 1)

)1/4
and G,K are constants to be determined so

that M(z) as stated above satisfies the conditions 0), 1) and 2) of the RHPM in Proposition 4.15.

Finding G and K so that condition 2) is verified. We now set out to find the actual expres-
sions for G,K; the results are contained in Prop. 4.23.

Proposition 4.17 As z → ∞ we have:

M(z) −→




−iΘ

(
− τ + 1

2
+G

)

2ω1Θ′

(
− τ + 1

2

)
e−iπKu(∞)

0

0

Θ

(
− τ + 1

2
+G

)

2ω1Θ′

(
− τ + 1

2

)
eiπKu(∞)




(4.36)
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Note that Θ′

(
− τ + 1

2

)
̸= 0 because the zeroes of Θ are all simple.

Proof.

We know that as z −→ ∞ M(z) =

[
I2×2 +O(z−1)

]
. So we should have limz→∞A1(z) = 1.

Clearly limz→∞ h(z) = 0.

Therefore, we have,

• limz→∞A1(z) =

iΘ

(
− τ + 1

2
+G

)
.0

Θ

(
− τ + 1

2

)
e−iπKu(∞)

. By relation ( 4.33) of the Riemann Θ− function,

Θ

(
− τ + 1

2

)
= Θ

(
τ + 1

2
−1− τ

)
= 0 by taking k = l = 1. So limz→∞A1(z) =

0

0
and by l’hopital

rule, we have:

lim
z→∞

A1(z) =

= lim
z→∞

i

u′(z)Θ′

(
u(z)− u(∞)− τ + 1

2
+G

)
h(z) + Θ

(
u(z)− u(∞)− τ + 1

2
+G

)
h′(z)

e−iπKu(z)

[
u′(z)Θ′

(
u(z)− u(∞)− τ + 1

2

)
− iπKu′(z)Θ

(
u(z)− u(∞)− τ + 1

2

)]

= i

Θ′

(
− τ + 1

2
+G

) =0︷ ︸︸ ︷
h(∞)+Θ

(
− τ + 1

2
+G

)
limz→∞

h′(z)

u′(z)

e−iπKu(∞)

[
Θ′

(
− τ + 1

2

)
− iπK Θ

(
− τ + 1

2

)

︸ ︷︷ ︸
=0

]

As z → ∞, h(z) ∼ 1

z
⇒ h′(z) ∼ − 1

z2
. Also, z → ∞, u′(z) ∼ 1

2ω1z2
hence

h′(z)

u′(z)
∼ − 1

2ω1
as

z → ∞

Therefore, limz→∞A1(z) = −i

Θ

(
− τ + 1

2
+G

)

2ω1Θ′

(
− τ + 1

2

)
e−iπKu(∞)

.

• limz→∞A2(z) =

<∞ TO BE PROVED︷ ︸︸ ︷
Θ

(
− 2u(∞)− τ + 1

2
+G

)
.0

Θ

(
− 2u(∞)− τ + 1

2

)

︸ ︷︷ ︸
̸=0 TO BE PROVED

eiπKu(∞)

= 0
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Similarly, we have:

• limz→∞B1(z) = i

<∞ TO BE PROVED︷ ︸︸ ︷
Θ

(
2u(∞)− τ + 1

2
+G

)
.0

Θ

(
2u(∞)− τ + 1

2

)

︸ ︷︷ ︸
̸=0 TO BE PROVED

e−iπKu(∞)

= 0

• limz→∞B2(z) =

Θ

(
− τ + 1

2
+G

)
.0

Θ

(
− τ + 1

2

)
eiπKu(∞)

. By relation ( 4.33) of the Riemann Θ− function,

Θ

(
− τ + 1

2

)
= Θ

(
τ + 1

2
−1− τ

)
= 0 by taking k = l = 1. So limz→∞B2(z) =

0

0
and by l’hopital

rule, we have:

lim
z→∞

B2(z) =

= lim
z→∞

−Θ′

(
u(∞)− u(z))− τ + 1

2
+G

)
h(z) + Θ

(
u(∞)− u(z)− τ + 1

2
+G

)
h′(z)

u′(z)

eiπKu(z)

[
−Θ′

(
u(∞)− u(z)− τ + 1

2

)
+ iπKΘ

(
u(∞)− u(z)− τ + 1

2

)]

=

−Θ′

(
− τ + 1

2
+G

) =0︷ ︸︸ ︷
h(∞)+Θ

(
− τ + 1

2
+G

)
limz→∞

h′(z)

u′(z)

eiπKu(∞)

[
−Θ′

(
− τ + 1

2

)
+ iπK Θ

(
− τ + 1

2

)

︸ ︷︷ ︸
=0

]

As z → ∞, h(z) ∼ 1

z
⇒ h′(z) ∼ − 1

z2
. Also, z → ∞, u′(z) ∼ 1

2ω1z2
hence

h′(z)

u′(z)
∼ − 1

2ω1
as

z → ∞

Therefore, limz→∞B2(z) =

Θ

(
− τ + 1

2
+G

)

2ω1Θ′

(
− τ + 1

2

)
eiπKu(∞)

.

■

The above matrix (in proposition 4.17) is invertible if and only if the Θ in the numerator is
nonzero (all other terms are automatically different from zero).

Θ

(
− τ + 1

2
+G

)
̸= 0 (4.37)
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Summarizing we have proved the following proposition.

Proposition 4.18 The model problem solution M(z) is solvable if and only if

Θ

(
− τ + 1

2
+G

)
̸= 0 ⇔ G ̸= 0 mod (Z+ Zτ). (4.38)

Finding G and K so that the jump condition 1) is verified. Recall that:
1) On γ

• On γ \ Γ̃ : M is defined and holomorphic.

• On Γ̃ = Γb
a− ∪ Γ1

b ∪ Γ
a+
b :

We will need to use the following properties of the Abel map u which are and the function h(z)
on Γ̃:

Proposition 4.19 On Γ̃ = Γb
a− ∪ Γ1

b ∪ Γ
a+
b , the Abel map function satisfies:

u(z+) = −u(z−) +





0 on Γb
a−

−τ on Γ1
b

−1 on Γ
a+
b

(4.39)

and the function h(z) satisfies:

{
h(z+) = ih(z−) on Γb

a−

h(z+) = −ih(z−) on Γ1
b ∪ Γ

a+
b

(4.40)

Proposition 4.20 On Γb
a− it is verified that M(z+) = M(z−)

[
0 1
−1 0

]

Proof. of proposition 4.20
▷ On Γb

a−
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A1(z+) =

iΘ

(
u(z+)− u(∞)− τ + 1

2
+G

)
h(z+)

Θ

(
u(z+)− u(∞)− τ + 1

2

)
e−iπKu(z+)

=

−Θ

(
− u(z−)− u(∞)− τ + 1

2
+G

)
h(z−)

Θ

(
− u(z−)− u(∞)− τ + 1

2

)
eiπKu(z−)

= −A2(z−) = 0.A1(z−)−A2(z−)

A2(z+) =

Θ

(
− u(z+)− u(∞)− τ + 1

2
+G

)
h(z+)

Θ

(
− u(z+)− u(∞)− τ + 1

2

)
eiπKu(z+)

=

iΘ

(
u(z−)− u(∞)− τ + 1

2
+G

)
h(z−)

Θ

(
u(z−)− u(∞)− τ + 1

2

)
e−iπKu(z−)

= A1(z−) = A1(z−) + 0.A2(z−)

B1(z+) =

iΘ

(
u(z+) + u(∞)− τ + 1

2
+G

)
h(z+)

Θ

(
u(z+) + u(∞)− τ + 1

2

)
e−iπKu(z+)

=

−Θ

(
− u(z−) + u(∞)− τ + 1

2
+G

)
h(z−)

Θ

(
− u(z−) + u(∞)− τ + 1

2

)
eiπKu(z−)

= −B2(z−) = 0.B1(z−)−B2(z−)

B2(z+) =

Θ

(
− u(z+) + u(∞)− τ + 1

2
+G

)
h(z+)

Θ

(
− u(z+) + u(∞)− τ + 1

2

)
eiπKu(z+)

=

iΘ

(
u(z−) + u(∞)− τ + 1

2
+G

)
h(z−)

Θ

(
u(z−) + u(∞)− τ + 1

2

)
e−iπKu(z−)

= B1(z−) = B1(z−) + 0.B2(z−)

In summary, on Γb
a− ,

M(z+) =

[
A1(z+) A2(z+)
B1(z+) B2(z+)

]
=

[
A1(z−) A2(z−)
B1(z−) B2(z−)

] [
0 1
−1 0

]
(4.41)

■
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Proposition 4.21 On Γ1
b it is verified that

M(z+) = M(z−)




0 −e
−2iπ

(
G−

Kτ

2

)

e
2iπ

(
G−

Kτ

2

)

0


 (4.42)

Proof.
▷ On Γ1

b

A1(z+) =

iΘ

(
u(z+)− u(∞)− τ + 1

2
+G

)
h(z+)

Θ

(
u(z+)− u(∞)− τ + 1

2

)
e−iπKu(z+)

=

Θ

(
− u(z−)− τ − u(∞)− τ + 1

2
+G

)
h(z−)

Θ

(
− u(z−)− τ − u(∞)− τ + 1

2

)
eiπKu(z−)eiπKτ

By letting




Un(z−) := −u(z−)− u(∞)− τ + 1

2
+G in the numerator

Ud(z−) := −u(z−)− u(∞)− τ + 1

2
in the denominator

(4.43)

and by relation ( 4.33) of the Riemann Θ− function, we have:

Θ

(
Un,d(z−)− τ

)
= e−2iπlUn,d(z−)+iπl2τΘ

(
Un,d(z−)

)
(4.44)

with l = −1
Thus

A1(z+) =

Θ

(
Un(z−)

)
h(z−)

Θ

(
Ud(z−)

)
e
−2iπl

=−G︷ ︸︸ ︷(
Ud(z−)− Un(z−)

)

eiπKu(z−)+iπKτ

=⇒
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↪→ A1(z+) =

Θ

(
− u(z−)− u(∞)− τ + 1

2
+G

)
h(z−)

Θ

(
− u(z−)− u(∞)− τ + 1

2

)
eiπKu(z−)

e
−2iπl

(
G+

Kτ

2l

)

= A2(z−)e
−2iπl

(
G+

Kτ

2l

)

= 0.A1(z−) +A2(z−)e
−2iπl

(
G+

Kτ

2l

)

= 0 ·A1(z−) +A2(z−)e
2iπ

(
G−

Kτ

2

)

since l = −1

A2(z+) =

Θ

(
− u(z+)− u(∞)− τ + 1

2
+G

)
h(z+)

Θ

(
− u(z+)− u(∞)− τ + 1

2

)
eiπKu(z+)

=

−iΘ

(
u(z−) + τ − u(∞)− τ + 1

2
+G

)
h(z−)

Θ

(
u(z−) + τ − u(∞)− τ + 1

2

)
e−iπKu(z−)e−iπKτ

, notice that l = 1

=

−iΘ

(
u(z−)− u(∞)− τ + 1

2
+G

)
h(z−)

Θ

(
u(z−)− u(∞)− τ + 1

2

)
e2iπlGe−iπKu(z−)e−iπKτ

by appropriately using a

Θ− function property (as before)

=⇒

↪→ A2(z+) =

−iΘ

(
u(z−)− u(∞)− τ + 1

2
+G

)
h(z−)

Θ

(
u(z−)− u(∞)− τ + 1

2

)
e−iπKu(z−)

e
−2iπl

(
G−

Kτ

2l

)

= −A1(z)e
−2iπl

(
G−

Kτ

2l

)

= −A1(z−)e
−2iπl

(
G−

Kτ

2l

)

+ 0 ·A2(z−)

= −A1(z−)e
−2iπ

(
G−

Kτ

2

)

+ 0 ·A2(z−), since l = 1
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B1(z+) =

iΘ

(
u(z+) + u(∞)− τ + 1

2
+G

)
h(z+)

Θ

(
u(z+) + u(∞)− τ + 1

2

)
e−iπKu(z+)

=

Θ

(
− u(z−)− τ + u(∞)− τ + 1

2
+G

)
h(z−)

Θ

(
− u(z−)− τ + u(∞)− τ + 1

2

)
eiπKu(z−)eiπKτ

, notice that l = −1

=⇒

↪→ B1(z+) =

Θ

(
− u(z−) + u(∞)− τ + 1

2
+G

)
h(z−)

Θ

(
− u(z−) + u(∞)− τ + 1

2

)
eiπKu(z−)

e
−2πi

(
lG+

Kτ

2

)

= B2(z−)e
−2πi

(
lG+

Kτ

2

)

= 0 ·B1(z−) +B2(z−)e
−2πi

(
lG+

Kτ

2

)

= 0B1(z−) +B2(z−)e
2πi

(
G−

Kτ

2

)

, since l = −1

B2(z+) =

Θ

(
− u(z+) + u(∞)− τ + 1

2
+G

)
h(z+)

Θ

(
− u(z+) + u(∞)− τ + 1

2

)
eiπKu(z+)

=

−iΘ

(
− u(z−) + τ + u(∞)− τ + 1

2
+G

)
h(z−)

Θ

(
− u(z−) + τ + u(∞)− τ + 1

2

)
e−iπKu(z−)e−iπKτ

, notice that l = 1

=⇒

↪→ B2(z+) =

−iΘ

(
− u(z−) + u(∞)− τ + 1

2
+G

)
h(z−)

Θ

(
− u(z−) + u(∞)− τ + 1

2

)
e−iπKu(z−)

e
−2πi

(
lG−

Kτ

2

)

= −B1(z−)e
−2πi

(
lG−

Kτ

2

)

= −B1(z−)e
−2πi

(
lG−

Kτ

2

)

+ 0 ·B2(z−)

= −B1(z−)e
−2πi

(
G−

Kτ

2

)

+ 0 ·B2(z−), since l = 1

In summary, on Γ1
b ,
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M(z+) =

[
A1(z+) A2(z+)
B1(z+) B2(z+)

]

=

[
A1(z−) A2(z−)
B1(z−) B2(z−)

]



0 −e
−2iπ

(
G−

Kτ

2

)

e
2iπ

(
G−

Kτ

2

)

0




■

On the other hand the jump condition 1) on Γ1
b in the RPHM suggests that

M(z+) = M(z−)

[
0 enΩ1+ν

−e−nΩ1−ν 0

]
, (4.45)

setting W1 = nΩ1 + ν and knowing that −1 = eiπ, l = −1
we can deduce that





W1 = iπ − 2πi

(
G− Kτ

2

)

iπ −W1 = 2πi

(
G− Kτ

2

)

=⇒ G =
1

2
− 1

2πi
(nΩ1 + ν) +

Kτ

2
(4.46)

Proposition 4.22 On Γ
a+
b it is verified that

M(z+) = M(z−)

[
0 −eiπK

e−iπK 0

]
(4.47)

Proof.
▷ On Γ

a+
b

A1(z+) =

iΘ

(
u(z+)− u(∞)− τ + 1

2
+G

)
h(z+)

Θ

(
u(z+)− u(∞)− τ + 1

2

)
e−iπKu(z+)

=

Θ

(
− u(z−)− 1− u(∞)− τ + 1

2
+G

)
h(z−)

Θ

(
− u(z−)− 1− u(∞)− τ + 1

2

)
eiπKu(z−)eiπKτ
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By letting



Un(z−) := −u(z−)− u(∞)− τ + 1

2
+G in the numerator

Ud(z−) := −u(z−)− u(∞)− τ + 1

2
in the denominator

(4.48)

and by relation ( 4.33) of the Riemann Θ− function, we have:

Θ

(
Un,d(z−)− 1

)
= Θ

(
Un,d(z−)

)
(4.49)

Thus

A1(z+) =

Θ

(
Un(z−)

)
h(z−)

Θ

(
Ud(z−)

)
eiπKu(z−)+iπK

=⇒

↪→ A1(z+) =

Θ

(
− u(z−)− u(∞)− τ + 1

2
+G

)
h(z−)

Θ

(
− u(z−)− u(∞)− τ + 1

2

)
eiπKu(z−)

e−iπK

= A2(z−)e
−iπK = 0 ·A1(z−) +A2(z−)e

−iπK

A2(z+) =

Θ

(
− u(z+)− u(∞)− τ + 1

2
+G

)
h(z+)

Θ

(
− u(z+)− u(∞)− τ + 1

2

)
eiπKu(z+)

=

−iΘ

(
u(z−)− 1− u(∞)− τ + 1

2
+G

)
h(z−)

Θ

(
u(z−)− 1− u(∞)− τ + 1

2

)
e−iπKu(z−)e−iπK

=

−iΘ

(
u(z−)− u(∞)− τ + 1

2
+G

)
h(z−)

Θ

(
u(z−)− u(∞)− τ + 1

2

)
e−iπKu(z−)e−iπK

by appropriately using a

Θ− function property (as before)

=⇒

↪→ A2(z+) =

−iΘ

(
u(z−)− u(∞)− τ + 1

2
+G

)
h(z−)

Θ

(
u(z−)− u(∞)− τ + 1

2

)
e−iπKu(z−)

eiπK

= −A1(z)e
iπK = −A1(z−)e

iπK + 0 ·A2(z−)
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B1(z+) =

iΘ

(
u(z+) + u(∞)− τ + 1

2
+G

)
h(z+)

Θ

(
u(z+) + u(∞)− τ + 1

2

)
e−iπKu(z+)

=

Θ

(
− u(z−)− 1 + u(∞)− τ + 1

2
+G

)
h(z−)

Θ

(
− u(z−)− 1 + u(∞)− τ + 1

2

)
eiπKu(z−)eiπK

=⇒

↪→ B1(z+) =

Θ

(
− u(z−) + u(∞)− τ + 1

2
+G

)
h(z−)

Θ

(
− u(z−) + u(∞)− τ + 1

2

)
eiπKu(z−)

e−iπK

= B2(z−)e
−iπK = 0 ·B1(z−) +B2(z−)e

−iπK

B2(z+) =

Θ

(
− u(z+) + u(∞)− τ + 1

2
+G

)
h(z+)

Θ

(
− u(z+) + u(∞)− τ + 1

2

)
eiπKu(z+)

=

−iΘ

(
u(z−)− 1 + u(∞)− τ + 1

2
+G

)
h(z−)

Θ

(
u(z−)− 1 + u(∞)− τ + 1

2

)
e−iπKu(z−)e−iπK

=⇒

↪→ B2(z+) =

−iΘ

(
u(z−) + u(∞)− τ + 1

2
+G

)
h(z−)

Θ

(
u(z−) + u(∞)− τ + 1

2

)
e−iπKu(z−)

eiπK

= −B1(z−)e
iπK = −B1(z−)e

iπK + 0 ·B2(z−)

In summary, on Γ
a+
b ,

M(z+) =

[
A1(z+) A2(z+)
B1(z+) B2(z+)

]

=

[
A1(z−) A2(z−)
B1(z−) B2(z−)

] [
0 −eiπK

e−iπK 0

]

■
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Proposition 4.23 The expressions for K and G in the solution of the Model Problem stated in
proposition 4.16 are as follow




K =

W2

iπ
− 1 =

nΩ2

iπ
− 1

G =
1

2
− 1

2πi
(nΩ1 + ν) +

Kτ

2

=⇒ G = − 1

2πi

(
nΩ1 + ν − nΩ2τ

)
− τ +

1

2
(4.50)

where

Ω1 =

� a+

b
φ′(z+)dz ∈ iR−, and Ω2 =

� 1

b
φ′(z−)dz ∈ iR+ (4.51)





(
nΩ2

2iπ
− 1

)
+

Im

(
− ν

2πi

)

Im (τ)
= l ∈ Z

Re (τ)

(
nΩ2

2iπ
− 1− l

)
+Re

(
− ν

2πi

)
− nΩ1

2iπ
+

1

2
= k ∈ Z

(4.52)

and ν is given by (4.30).

Proof.

On the other hand the jump condition 1) on Γ1
b in the RPHM suggests thatM(z+) = M(z−)

[
0 enΩ2

−e−nΩ2 0

]
,

setting W2 = nΩ2 and knowing that −1 = eiπ

we can deduce that

W2 = iπ + iπK

=⇒ K =
W2

iπ
− 1 (4.53)

From relations 4.46 and 4.53 we have:



K =

W2

iπ
− 1 =

nΩ2

iπ
− 1

G =
1

2
− 1

2πi
(nΩ1 + ν) +

Kτ

2

=⇒ G = − 1

2πi

(
nΩ1 + ν − nΩ2τ

)
− τ +

1

2
(4.54)

Recall that the Boutroux conditions implies that Ω1,Ω2 ∈ iR,

Let Ω1 = ia, and Ω2 = ib a, b ∈ R (4.55)

Let us find a and b.
We establish before that the RHPM is not solvable if G = 0 + k + lτ ,with k, l ∈ Z. so to find not
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possible values for a and b, let us assume that G = 0 + k + lτ . 4.54 implies that

0 + k + lτ = − 1

2πi

(
nΩ1 + ν − nΩ2τ

)
− τ +

1

2

⇒− an

2π
+

bnτ

2π
− ν

2πi
= τ − 1

2
+ k + lτ

⇒τ

(
bn

2π
− 1− l

)
− ν

2πi
=

an

2π
− 1

2
+ k

⇒Re (τ)

(
bn

2π
− 1− l

)
+Re

(
− ν

2πi

)

+ i

[
Im (τ)

(
bn

2π
− 1− l

)
+ Im

(
− ν

2πi

)]
=

an

2π
− 1

2
+ k

=⇒





Im (τ)

(
bn

2π
− 1− l

)
+ Im

(
− ν

2πi

)
= 0

Re (τ)

(
bn

2π
− 1− l

)
+Re

(
− ν

2πi

)
=

an

2π
− 1

2
+ k

=⇒





(
bn

2π
− 1

)
+

Im

(
− ν

2πi

)

Im (τ)
= l ∈ Z

Re (τ)

(
bn

2π
− 1− l

)
+Re

(
− ν

2πi

)
− an

2π
+

1

2
= k ∈ Z

∀k, l ∈ Z, the values of a and b which satisfy the above equations correspond to values of Ω1 = ia
and Ω2 = ib such that the RHPM with the following jump condition is not solvable.

■

M(z+) =





M(z−)

[
0 1

−1 0

]
, 0n Γb

a−

M(z−)

[
0 enΩ1+ν

−e−nΩ1−ν 0

]
, 0n Γ1

b

M(z−)

[
0 enΩ2

−e−nΩ2 0

]
, 0n Γ

a+
b

Notice that in the case where the branch cut of φ is superposed to b1 such that Γ
a+
a− ∩ Γ1

b = ∅
as shown on figure 20, the jump condition of M in the RHPM is reduced to that on Γb

a− in the
previous case. In this current case we have:
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Γ
1
b

Γ
a+

a
−

b

a
−

a+

Figure 20: The contour Γ.

M(z+) = M(z−)

[
0 1
−1 0

]
, on Γa+

a− ∪ Γ1
b (4.56)

The solution can be found by a simple diagonalization of the jump matrix (similarly to the case
where s is outside of the Eye Of the Tiger)

4.5 Conditions on non solvability of the RHP inside the EoT

While it’s logical to conclude that the initial Riemann Hilbert Problem RHPΦ is solvable when
the RHPM is solvable, it’s not correct to assume that the non solvability of the RHPM for some
values of s ∈ EoT implies that of the initial RHPΦ.
Therefore, we need to consider directly the conditions on s ∈ EoT for non solvability of the initial
RHPΦ.

Proposition 4.24 The Hamiltonian in the asymptotic case is written as

HV,∞ = −
[(

Φ−1
∞ (0)Φ′

∞(0)

)

11

− θ

2
+

k

2

]
= −

[
D′

∞

D∞
− θ

2
+

k

2

]
(4.57)

= −
[
∂x ln(D∞)− θ

2
+

k

2

]
(4.58)

where, n → ∞ and HV,∞, D∞ and Φ(∞) are computed when n is very large (n ̸= ∞).
The initial RHPΦ is non solvable at the points of the C where the Hamiltonian HV,∞ has a pole.

Proof.
Recall that by the Fredholm alternative, the RHPΦ is not solvable if and only if the associated

Hankel determinant Dn(s) = 0. In the non-asymptotic scheme, recall from 2.9 that

HV,n = −
[(

Φ−1
n (0)Φ′

n(0)

)

11

− θ

2
+

k

2

]
= −

[
D′

n

Dn
− θ

2
+

k

2

]
= −

[
∂x ln(Dn)−

θ

2
+

k

2

]
(4.59)
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So, in the non-asymptotic scheme, the initial RHPΦ is non solvable at the points of the C where
the Hamiltonian HV,n has a pole.

■

Proposition 4.25 Let

M̂(z) =




izΘ

(
u(z)− u(0)− τ + 1

2
+G

)
h(z)

Θ

(
u(z)− u(0)− τ + 1

2

)
e−iπKu(z)

zΘ

(
− u(z)− u(0)− τ + 1

2
+G

)
h(z)

Θ

(
− u(z)− u(0)− τ + 1

2

)
eiπKu(z)

izΘ

(
u(z) + u(0)− τ + 1

2
+G

)
h(z)

Θ

(
u(z) + u(0)− τ + 1

2

)
e−iπKu(z)

zΘ

(
− u(z) + u(0)− τ + 1

2
+G

)
h(z)

Θ

(
− u(z) + u(0)− τ + 1

2

)
eiπKu(z)




Given that in the expression of M̂(z) above, τ and G are function of s,

(
M−1(0)M ′(0)

)

11

must

also be a function of s.

Poles of HV,∞ = Poles of

(
Φ−1
∞ (0)Φ′

∞(0)

)

11

= ”Poles” of

(
M−1(0)M ′(0)

)

11

(4.60)

= ”Poles” of

(
M̂−1(0)M̂ ′(0)

)

11

(4.61)

Proof.
So, let’s compute HV,∞. To achieve that, we need to compute Φ−1

∞ (0)Φ′
∞(0) from (in terms of)

the solution M(z) of the Model problem for the asymptotic case where s ∈ EoT

Recall from 4.12 that

M(z) = e−S(∞)σ3MQ̃(z)e
S(z)σ3 (4.62)

Where MQ̃(z) is defined in 4.8. We are interested in computing Φ−1
∞ (0)Φ′

∞(0) and notice that
z = 0 is outside of the lenses and the disks.
Since MQ̃(z) = T (z) outside of the disks (by the condition 1) in the proposition 4.9 and the small
norm theorem) and T (z) = W (z) outside of region R± of the lenses (see relation 4.6), where the
transformation W (z) is defined in 4.3, at z = 0, the relation 4.62 becomes:

M(z) = e−S(∞)σ3W (z)eS(z)σ3

=⇒ W (z) = eS(∞)σ3M(z)e−S(z)σ3 (4.63)
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Furthermore, from definition 3.3

W (z) := e
n
ℓ

2
σ3

Φ(z)e
−n

(
g(z)+

ℓ

2

)
σ3

=⇒ Φ(z) = e
−n

l

2
σ3

W (z)e
n

(
g(z)+

l

2

)
σ3

(4.64)

Relations 4.63 and 4.64 imply that:

Φ(z) ≃ e
−n

l

2
σ3

eS(∞)σ3M(z)e−S(z)σ3

︸ ︷︷ ︸
≃W (z)

e
n

(
g(z)+

l

2

)
σ3

= e

(
S(∞)−n

ℓ

2

)
σ3

M(z)e

(
n

[
g(z)+

ℓ

2

]
−S(z)

)
σ3

⇒Φ−1(z)Φ′(z) = e
−

(
n

[
g(z)+

l

2

]
−S(z)

)
σ3

M−1(z)

·
(
M ′(z)e

(
n

[
g(z)+

l

2

]
−S(z)

)
σ3

+M(z)

(
ng′(z)− S′(z)

)
σ3 e

(
n

[
g(z)+

l

2

]
−S(z)

)
σ3

)

⇒ Φ−1(z)Φ′(z) = e
−

(
n

[
g(z)+

l

2

]
−S(z)

)
σ3
(
M−1(z)M ′(z) + (ng′(z)− S′(z))σ3

)

· e

(
n

[
g(z)+

l

2

]
−S(z)

)
σ3

From proposition 3.17, S(z) is analytic at z = 0. Moreover, from definition 3.3, g(z) is also
analytic at z = 0.
Therefore, only M(z) contributes in the expression Φ(z) written in ?? to find the poles of

HV,∞ = −
[(

Φ−1
∞ (0)Φ′

∞(0)

)

11

− θ

2
+

k

2

]

In other words,

Poles of HV,∞ = Poles of

(
Φ−1
∞ (0)Φ′

∞(0)

)

11

= ”Poles” of

(
M−1(0)M ′(0)

)

11

(4.65)

Given that in the expression of M(z) below (see relation 4.66), τ and G are function of s,(
M−1(0)M ′(0)

)

11

must also be a function of s.
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Hence, in relation ?? above, ”Poles” of

(
M−1(0)M ′(0)

)

11

means the values of s in the s-plane

( i.e. EoT plane) such that

(
M−1(0)M ′(0)

)

11

is not defined.

At z = 0, the

(
M(0)

)

11

= ∞. To avoid this, let us consider the following expression M̂(z) at

z = 0

M̂(z) =




izΘ

(
u(z)− u(0)− τ + 1

2
+G

)
h(z)

Θ

(
u(z)− u(0)− τ + 1

2

)
e−iπKu(z)

zΘ

(
− u(z)− u(0)− τ + 1

2
+G

)
h(z)

Θ

(
− u(z)− u(0)− τ + 1

2

)
eiπKu(z)

izΘ

(
u(z) + u(0)− τ + 1

2
+G

)
h(z)

Θ

(
u(z) + u(0)− τ + 1

2

)
e−iπKu(z)

zΘ

(
− u(z) + u(0)− τ + 1

2
+G

)
h(z)

Θ

(
− u(z) + u(0)− τ + 1

2

)
eiπKu(z)




(4.66)

It can be proved that

M−1(0)M ′(0) = M̂−1(0)M̂ ′(0) (4.67)

■

In conclusion we can state

Theorem 4.26 The points of non solvability of the ODE Painleve5 inside the EoT are found in

the neighbourhood where

(
M̂−1(0)M̂ ′(0)

)

11

has poles i.e. when

Θ

(
− τ(s) + 1

2
+G(s)

)
= 0, (4.68)

where G(s) is the expression in Prop. 4.23.

Proof.
Let us compute M̂−1(0)M̂ ′(0) instead.

While the entries

(
M̂(0)

)

12

=

(
M̂(0)

)

12

= 0, we use l’Hopital rule to compute

(
M̂(0)

)

11

and

(
M̂(0)

)

22

. Given that Θ

(
− τ + 1

2

)
= 0, we obtain:
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M̂(0) =




iΘ

(
− τ + 1

2
+G

)
h(0)

u′(0)Θ′

(
− τ + 1

2

)
e−iπKu(0)

0

0

Θ

(
− τ + 1

2
+G

)
h(0)

−u′(0)Θ′

(
− τ + 1

2

)
eiπKu(0)




(4.69)

From relations 4.31, it can be verified that u′(0) ̸= 0 and h(0) ̸= 0. Hence

(
M̂(0)

)

11

and
(
M̂(0)

)

22

in the above relation 4.69) are finite and not zero. Thus, we can compute M̂−1(0) as

follows:

M̂−1(0) =

−u′(0)Θ′

(
− τ + 1

2

)

Θ

(
− τ + 1

2
+G

)
h(0)




i

eiπKu(0)
0

0
1

e−iπKu(0)




Moreover,

M̂ ′(0) =
d

ds
M̂(0)

=




∗
[
u′(0)Θ′

(
− τ(s) + 1

2

)
e−iπKu(0)

]2 0

0
∗

[
− u′(0)Θ′

(
− τ(s) + 1

2

)
eiπKu(0)

]2




Finally,

M̂−1(0)M̂ ′(0) =
−1

Θ

(
− τ(s) + 1

2
+G(s)

)
h(0)u′(0)Θ′

(
− τ(s) + 1

2

)

·




i

eiπKu(0)
0

0
1

e−iπKu(0)







∗
e−2iπKu(0)

0

0
∗

e2iπKu(0)



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=⇒

M̂−1(0)M̂ ′(0) =
−1

Θ

(
− τ(s) + 1

2
+G(s)

)
h(0)u′(0)Θ′

(
− τ(s) + 1

2

) ·




∗
e−iπKu(0)

∗

∗ ∗


 (4.70)

where Θ′

(
− τ(s) + 1

2

)
̸= 0 (4.71)

■

As n → ∞, the shape of the EoT gets more precise and bigger on the x− plane (recall that

x = ns). Thus, on the s−plane , the poles of the Hamiltonian are rescaled by
1

n
so that they get

closer to the origin s = 0 as n → ∞, and enclosed by the limiting shape of the EoT.

4.6 Pictures and numerical validation

The following pictures show the plot of the poles of the Hamiltonian in the s−plane as n → ∞

Figure 21: The zeroes for (n, β) = (17, 3 + 1i)

Notice that the figure above shows some roots outside of the limiting shape. This is explained
by the fact that the value of θ is still too large relative to n; if we plotted the zeroes for the
same value of theta but much larger n the zeroes would eventually fall within the EoT. The grid
of green and blue lines in the figure and the figures below represents the levelsets determined by
the quantization conditions expressed by the equations (4.52), plotted numerically. The zeroes
are located approximately at the intersection of the grid. We did not provide a full justification
or estimate of rate of approximation. However the approximation appears quite strict even for
relatively small values of n. This appears to be a common phenomenon in this type of computations,
see [7, 8, 11, 16, 17].

As n gets bigger, we get the following plots for the zeros of Dn(ns)
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Figure 22: The zeroes for (n, β) =
(
16, 3

100 + 13i
100

)
,
(
16, 101100 + 13i

100

)

Figure 23: The zeroes for (n, β) =
(
26, 101100

)
,
(
17, 12 + i

2

)
.

For n very large, we get a plot for the zeros of Dn(ns) as follows
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Figure 24: The zeroes for (n, β) =
(
40, 3

100

)
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Painlevé V equation”, Nagoya Math. J., 168 (2002), 1–25.

[35] Masatoshi Noumi and Yasuhiko Yamada. Umemura polynomials for the Painlevé V equation.
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