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Abstract 

Optimal Allocation of EVs in Electricity Distribution Network to Maintain 

Uniform Load 

 

Marziehsadat Arabi 

 

An electricity distribution network comprises of parking lots, electric vehicles, distribution grid, 

transformers, charging infrastructure, and customer locations. This thesis presents an optimization 

model for the optimal allocation of parking lots within a distribution system to efficiently supply 

electric vehicle (EV) loads. The model aims to determine the best capacity and size of parking lots 

to meet peak hour demands while considering constraints on the permanent operation of the 

distribution system. Using the Particle Swarm Optimization (PSO) algorithm, the study maximizes 

total benefits, taking into account data and market prices. Results show that installing parking lots 

could be economically profitable for distribution companies (DISCOs) and could improve voltage 

profiles. 

The study also explores the impact of battery capacity and charging power rate variations on 

outcomes, emphasizing the importance of accurately determining these parameters. Additionally, 

the study highlights the advantages of the proposed approach, including improvements in voltage 

profiles, reductions in power flow, and enhancements in equipment lifespan. These benefits 

underscore the potential of the approach to optimize parking lot allocations for EV charging and 

improve overall distribution network performance and efficiency. Further implementation in 

suitable locations with appropriate sizes could yield significant technical and financial benefits. 
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Chapter 1: Introduction 

1.1 Environmental impact 

Over the last ten years, the escalation of air pollution has emerged as a paramount concern for 

environmental health, resulting in approximately 7 million deaths annually (Chung et al., 2020). 

Long-term exposure to contaminated air accounts for 40% of premature deaths globally each year. 

As populations burgeon and societal development accelerates, governments are compelled to 

implement effective strategies to address this issue. Human activities, including construction, 

manufacturing, and transportation, intended to enhance efficiency and modernization, have 

inadvertently escalated pollution levels worldwide. These activities generate substantial waste and 

emit greenhouse gases, precipitating ozone layer depletion, global warming, and increased health 

risks from pollution exposure. However, the magnitude and distribution of dust emissions are 

contingent upon meteorological and topographical factors during activities (Sarpong et al., 2021). 

Transportation systems encompass various modes of transit (e.g., buses, vehicles) and associated 

facilities (e.g., stations), posing significant air pollution exposure risks. For instance, particulate 

matter (PM2.5) concentrations in transportation settings can exceed ambient levels by 10-40%, as 

observed in cities like Delhi, India (Andersen et al., 2018). 

Consequently, transitioning towards sustainable mobility is imperative in combating global 

climate change. Electric vehicles (EVs) represent a promising and environmentally friendly 

solution within the transportation sector. EVs encompass hybrid EVs (HEVs), plug-in hybrid EVs 

(PHEVs), and battery electric vehicles (BEVs). Widespread adoption of electric vehicles hinges 

on technological advancements and governmental support. However, the effectiveness of EVs in 
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reducing greenhouse gas emissions (GHGs) is contentious, particularly if the electricity used to 

charge EVs is derived from traditional fossil fuels (Ghosh, 2020). 

On the other hand, escalating concerns regarding fossil fuel depletion and air pollution have 

prompted increased scrutiny of combustion engine reliance. Electric vehicles offer a viable 

alternative by eliminating the need for gasoline or liquefied gas, relying solely on stored electricity 

for propulsion. Moreover, the escalating cost of gasoline has bolstered the appeal of electric 

vehicles (Cao et al., 2018). Consequently, the automotive industry is undergoing a transformative 

phase, necessitating substantial advancements to align with Sustainable Development Scenario 

(SDS) requirements. Global transportation-related greenhouse gas emissions increased by 0.6% in 

2018 compared to the preceding decade, reaching 1.6%. Notably, the transport sector is a 

significant contributor to CO2 emissions from fuel combustion, accounting for 24% of total CO2 

emissions. Vehicles such as private cars, buses, trucks, and heavy-duty vehicles contribute to 

around three-quarters of CO2 emissions from transportation (Mamun et al., 2022).  

The concept of electric vehicles originated with the Porsche Group, while the introduction of plug-

in hybrid vehicles (PHEVs) can be traced back to General Motors in the late 1960s, marking the 

inception of PHEVs. An electric vehicle is defined as a vehicle utilizing an electric motor to 

provide all or part of the mechanical power required for propulsion. The significant fuel 

consumption by motor vehicles worldwide, coupled with dwindling fossil fuel reserves and 

environmental pollution, has spurred increased attention towards alternative energy sources. 

Studies indicate that if current energy consumption trends persist, carbon dioxide emissions could 

double their 2005 levels by 2050, which is deemed unacceptable from an environmental standpoint 

and existing roadmap perspectives. Global initiatives aim to halve these emissions by 2050 

compared to 2005 levels. One of the most promising methods to achieve this goal, alongside 
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strategies such as distributed energy production and combined heat and power generation, involves 

the adoption of electric grid-powered or battery-driven motor vehicles. This issue has garnered 

significant attention worldwide, particularly in developed nations like the United States and Japan, 

with notable progress also observed in countries like China and India (Kamat and Oren, 2002). 

Consequently, the advancement and proliferation of electric vehicles have gained momentum for 

several reasons. These include the escalating price of fossil fuels, efforts to mitigate environmental 

impact, reduction of noise pollution associated with fossil fuel vehicles, and the comparative cost-

effectiveness of electric vehicle fuel consumption versus traditional vehicles (Guo et al., 2018). 

Reports from Germany indicate that the growth of electric vehicles is not anticipated to 

significantly increase electricity demand until 2030. Instead, it is projected to add approximately 

1% to total energy capacity, necessitating an additional five gigawatts (GW) of generation 

capacity. By 2050, this figure could rise to about 4%, requiring an additional 20 GW of capacity 

(Engle et al., 2018). 

Moreover, many countries, such as Canada, are intensifying efforts to promote electric vehicle 

adoption in line with sustainable development goals. Addressing the concerns of electric vehicle 

owners, particularly regarding charging during peak times, is paramount. Establishing optimal 

charging locations that alleviate distribution network strain during peak periods would represent a 

significant step towards increasing the adoption of clean transportation systems. Therefore, 

focusing on this issue holds considerable importance in achieving sustainable development 

objectives and reducing global energy consumption, underscoring the motivation for conducting 

research in this area (Moradijoz et al., 2013). 

Researchers are increasingly focusing on addressing challenges associated with the expanding 

utilization of electric vehicles (EVs) in advanced societies. One primary concern is the charging 
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infrastructure, with batteries playing a crucial role. Battery depletion fears among EV owners 

highlight the pivotal role of batteries, leading to close collaboration between battery and vehicle 

manufacturers globally. Battery manufacturing aims to reduce the cost of producing electric 

power, with a target of $450 per kilowatt-hour by 2020 (Chen et al., 2021). The impact of EVs on 

distribution networks is a key challenge, with optimization focusing on charge management and 

the strategic placement of charging stations to enhance the travel experience for EV owners. 

All current electric vehicles rely on electric batteries for their energy needs. However, due to the 

large volume, weight, and cost of batteries, as well as their limited energy storage density, vehicles 

often require frequent recharging. This limitation has prompted researchers to explore alternative 

methods for powering electric vehicles. One such approach is the grid-to-vehicle (G2V) method, 

where energy is supplied from the grid to the vehicles (in contrast, vehicle-to-grid, or V2G, refers 

to supplying energy from vehicles back to the grid) (Mao et al., 2018). Implementing this approach 

requires detailed planning for charging and discharging electric vehicles within the network to 

maximize its benefits for all stakeholders. Ideally, charging electric vehicles in a way that not only 

increases the beneficiaries' profits but also reduces the overall energy demand from the grid would 

be the most favorable outcome. 

1.2 Problem statement 

Figure 1.1 represents the electricity distribution network, where load distribution is vital for 

maintaining the proper balance between power generation and consumption, avoiding equipment 

overload, and ensuring efficient delivery of electricity with minimal losses. The distribution of 

load within a power system may be affected by several factors, including the time of day, season, 

and meteorological conditions. Advanced technologies, including smart grids, are increasingly 
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being used to optimise load distribution and enhance the overall efficiency and reliability of power 

systems. 

 

Figure 1.1: An illustration of the electricity distribution network (Effatnejad et al., 2021) 

Electric vehicles (EVs) can serve as controllable loads, storing energy during off-peak periods and 

acting as generation units during peak periods or high electricity prices. They function as 

Distributed Generation (DG) resources within distribution systems, requiring controlled charging 

and discharging of batteries (Kempton et al., 2001). Distribution system planners use technologies 

like DGs and capacitors to provide cost-effective and dependable electricity. Optimal allocation 

of EV parking lots as a new type of DG is crucial, as it can mitigate network losses, improve 

voltage profiles, and yield economic benefits. Parking lots also act as charging station of EVs for 

driving purposes. Incentive mechanisms can encourage EV drivers to contribute to grid stability 

by using their vehicles as storage devices or by charging them during off-peak periods. 

The primary concern in establishing an electric vehicle parking lot is determining the optimal 

location for construction and operation. Locating a parking lot entails considerations from multiple 

perspectives. As these stations connect transportation and electrical networks, their placement 

significantly influences not only vehicle driving patterns but also network performance. Hence, 
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the selection of a parking lot location should encompass both networks. From the perspective of 

the electricity provider, the ideal site for a parking lot minimizes distribution network losses and 

necessitates minimal infrastructure development, such as additional lines, dedicated feeders, or 

transformers. Additionally, the station should facilitate easy network connectivity. Conversely, 

from the station owner's viewpoint, the priority is selecting a location with the lowest costs, 

including land prices, network connection expenses, and charging and maintenance unit costs. 

Thus, the station should ideally be situated where electric vehicle density is highest. Charging 

stations typically vary in size and capacity based on electric vehicle density. While economic 

benefits are important, solving this issue solely based on financial considerations is impractical. 

The primary objective is to determine the optimal location and size of parking lots using various 

optimization methods, aiming to maximize the revenue and minimize total costs while ensuring 

power system security. To achieve this, diverse methods have been employed, and in this study, 

the allocation optimization problem is addressed using the Particle Swarm Optimization (PSO) 

algorithm in Python software. 

1.3 Objectives 

The objectives of this thesis are listed below: 

o To develop a PSO algorithm to determine the optimal location and size of parking lots to 

meet the demand of EV owners at peak time 

o To improve the distribution system voltage profile 

o Increased economic benefit for the distribution system 

Design of each objective is discussed in Chapter 3 and the implementation and results are discussed 

in chapter4. Python software is used as the modeling tool to verify and optimize the objectives. 
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1.4 Thesis outline 

The major research contributions of this study are as follows: 

In Chapter 2, a literature review of electric vehicles, the environmental and economic 

effects of electric vehicles, and the charging of EVs have been discussed. 

In Chapter 3, the mathematical model is presented extensively. 

In Chapter 4, the model simulation with Python software is demonstrated. 

In Chapter 5, simulation model results are discussed in detail. Conclusions and 

recommendations for future works are presented. 
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Chapter 2: Literature review 

2.1 Electric vehicles (EV) 

The increasing focus on clean energy in recent years has led to a widespread embrace of electric 

vehicles as a key solution for reducing reliance on fossil fuels in transportation. This shift has been 

enthusiastically supported by both individuals and governments worldwide, leading to a dramatic 

rise in the number of electric vehicles on the roads. According to reports from the International 

Energy Agency in 2016, the global number of electric vehicles exceeded 1,000,000 in 2015 (Zhang 

et al., 2017). Electric vehicles offer several key advantages, including minimal emissions and a 

significant role in curbing the release of polluting gases. As fossil fuel resources are finite, the 

adoption of electric vehicles is crucial for reducing fossil fuel consumption. Additionally, electric 

vehicles boast higher efficiency compared to diesel and gasoline vehicles. In traditional vehicles, 

75% of energy is lost as heat and friction, with only 25% converted into driving force. In contrast, 

electric vehicles lose only about 20% of their energy. Moreover, electric vehicles have fewer 

components than conventional vehicles, resulting in lower maintenance and repair costs. Some 

countries also incentivize the purchase of electric vehicles by offering tax reductions and other 

facilities. These factors collectively contribute to the growing popularity and adoption of electric 

vehicles globally. 

Electric vehicles offer the advantage of being able to charge from electricity generated by various 

sources, including wind, solar, nuclear, water, and biofuels. This diversity of sources helps reduce 

dependence on oil and gasoline, leading to less imported fuel and lower costs associated with it. 

The adoption of electric vehicles in various transportation sectors, including general and goods 
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transportation, is increasing, prompting numerous studies on their design and performance 

optimization. 

Despite these advantages, electric vehicles face limitations such as their lower battery energy 

compared to fossil fuel vehicles, long recharging times, and limited refueling stations. Unique 

refueling equipment and a scarcity of charging stations further restrict their adoption. Additionally, 

energy consumption in electric vehicles is dependent on the vehicle's load, which poses practical 

limitations. However, due to their positive impact on reducing air pollution, there is a growing 

effort to design and establish more charging stations. It is important to note that the reduced fuel 

consumption of electric vehicles leads to lower service costs and, consequently, higher customer 

satisfaction (Jin et al., 2013). 

2.1.1 Background of electric vehicle 

Before the onset of global warming concerns, the idea of manufacturing electric vehicles on a large 

scale was not widely considered. However, electric vehicles offer several advantages that have 

garnered attention. They are environmentally friendly, with simpler drive systems compared to 

traditional fossil fuel vehicles. Additionally, electric vehicles are highly efficient, with an 

efficiency of around 90%, in contrast to fossil fuel vehicles, which have an efficiency of about 

30% to 35%. This higher efficiency translates to lower energy consumption, making electric 

vehicles a focal point for vehicle manufacturers. 

Electric vehicles operate using electric motors, with the vehicle's battery responsible for supplying 

the necessary electric energy. They represent a significant achievement in the automobile and 

transportation industry, offering a cost-effective mode of transportation. 

Electric vehicles also have disadvantages that make their use problematic, some of the main 

disadvantages of these vehicles can be stated as follows: 
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o Inability to charge batteries in all conditions 

o Dependence on fossil fuel consuming engine (Wong et al., 2021). 

International agencies have given a lot of support to electric vehicles in order to manage energy 

consumption, so that the number of sales and use of these vehicles has become a curve compared 

to other vehicles. In the following curves figure 2.1 (International Energy Agency ,2021), you can 

understand the importance and necessity of using electric vehicles in the future and the sales of 

these vehicles can be seen together.  

International agencies have thrown their support behind electric vehicles to manage energy 

consumption effectively. Consequently, the sales and utilization of electric vehicles have surged, 

as illustrated by the accompanying curves figure 2.1. These curves underscore the increasing 

importance and necessity of electric vehicle adoption in the future, signaling a promising trajectory 

for their sales and utilization compared to conventional vehicles. 

 

Figure 2.1: Forecasting the sales of electric vehicles until 2050  

(International Energy Agency ,2021) 

In this regard, various countries have included the use of electric vehicles in their work plan and, 

relying on this technology, they are trying to take steps to optimize energy management. 
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Indeed, many countries have incorporated the adoption of electric vehicles into their agenda, 

recognizing the potential of this technology to optimize energy management. By embracing 

electric vehicles, these nations aim to mitigate the environmental impact of transportation while 

simultaneously reducing reliance on fossil fuels. Implementing policies and initiatives to 

incentivize electric vehicle adoption, governments worldwide are paving the way for a more 

sustainable and energy-efficient future. 

2.1.2 Effects of electric vehicles charging 

The widespread adoption of electric vehicles introduces challenges to the electric grid, as it 

requires additional power from the distribution network. This increase in demand can have various 

negative effects on the distribution network, which depend on factors such as the penetration level 

of electric vehicles, charging patterns, locations, driving behaviors, charging modes, start times, 

battery state of charge (SOC) during charging, and tariffs. The effects of electric vehicles on the 

distribution network can be categorized into positive and negative effects. Positive effects include 

the benefits of vehicle-to-grid (V2G) technology, while negative effects include voltage instability, 

increased peak demand, power quality issues, increased losses, and equipment overload, 

particularly transformers. These effects are briefly explained below. 

Electric vehicles pose a challenge to the stability of the distribution network's voltage due to their 

non-linear load characteristics. They draw a significant amount of electrical power from the 

network in a short period to charge their batteries, and this power consumption cannot be 

accurately predicted. As a result, electric vehicles exhibit different load characteristics compared 

to traditional loads like industrial and residential loads. To address this issue, it's important to 

consider the impact of electric vehicles on network voltage stability in a comprehensive and 
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relevant manner. This may involve implementing strategies to manage and mitigate voltage 

fluctuations caused by electric vehicle charging. 

The widespread adoption of electric vehicles can lead to an increase in peak demand on the electric 

grid, especially when charging is uncoordinated. Studies have shown that uncoordinated charging 

of electric vehicles can significantly increase peak demand. For example, Wang and Paranjape 

(2014) found that inconsistent charging of electric vehicles with a 30% penetration level could 

increase peak demand by 53%. Therefore, the concept of smart charging, which involves 

coordinated and controlled charging of electric vehicles, is essential to manage peak demand 

effectively. Moreover, the mass penetration of electric vehicles in distribution networks can also 

impact power quality. Large accumulations of electric vehicles can lead to high charging demands, 

causing issues such as unbalance and voltage deviation, particularly in multi-phase systems with 

non-uniform loads (Hadley, 2006). Shahnia et al. (2011) analyzed the sensitivity of voltage 

imbalance in a weak pressure distribution network based on the locations and levels of electric 

vehicle charging and discharging. Their study showed that electric vehicles have a minor effect at 

the beginning of the feeder but a significant effect at its end, highlighting the importance of 

considering electric vehicle impacts on power quality. 

Shahnia et al. (2011) demonstrated that at a penetration level of 34% of electric vehicles, the 

voltage imbalance index exceeds the allowed value in weak voltage networks, which is typically 

2%. This indicates that the presence of electric vehicles can significantly impact voltage balance 

in such networks. Furthermore, single-phase electric vehicle charging can also lead to phase 

imbalances due to the uneven distribution of loads in the three-phase system.Regarding voltage 

drop, studies suggest that controlled charging of electric vehicles can be accommodated up to a 

penetration level of 10% without negatively affecting the distribution network's voltage. However, 
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uncontrolled charging may be sustainable up to a penetration level of 60% before adverse effects 

on voltage become significant (Shahnia et al., 2011). These findings underscore the importance of 

managing electric vehicle charging to mitigate impacts on voltage stability in distribution 

networks. 

The mass penetration of electric vehicles in distribution networks can lead to an increase in 

network losses. Studies have shown that factors such as the penetration level of electric vehicles, 

charging mode, charging level (charging start time), and the use of uncoordinated charging 

methods can have adverse effects on the voltage profile and losses of the distribution network. 

However, employing a coordinated and pre-planned charging strategy, as well as using uniformly 

distributed charging methods near production sources, can help minimize network losses. 

Additionally, the increase in electric vehicles in the distribution network can increase the load on 

transformers. To mitigate these effects, it is essential to select transformers with appropriate 

capacity, engage in optimal network planning, and implement load management strategies 

(Elnozahy and Salama, 2013). 

2.1.2.1 Environmental effects of electric vehicles 

Even when considering the scenario where electric energy for electric vehicles is solely produced 

using fossil fuels in thermal power plants, it can still be more environmentally and economically 

viable than internal combustion vehicles like gasoline vehicles. This is because the production of 

mechanical energy in internal combustion engines is significantly less efficient than the production 

of electric energy in power plants. Additionally, managing pollutant emissions is much simpler 

when fossil fuels are consumed centrally in power plants and the resulting electrical energy is 

delivered to electric vehicles, compared to when fossil fuels are consumed individually by vehicles 

with internal combustion engines (Zhang et al., 2018). 
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2.1.2.2 Economic effects of electric vehicles 

From the perspective of EV owners, the lower fuel and operational costs of EVs compared to 

vehicles with internal combustion engines are significant advantages. This cost reduction is 

primarily attributed to the higher efficiency of electric engines in contrast to internal combustion 

engines. While internal combustion vehicles typically operate at an efficiency of 15-18%, electric 

vehicles boast efficiencies ranging from 60-70% (Berman et al., 1992). Furthermore, Vehicle-to-

Grid (V2G) technology presents an additional opportunity for EV owners to generate revenue by 

leveraging the energy stored in their batteries to exchange with the grid. However, from the 

standpoint of the power supply network, the presence of EVs can lead to increased losses and costs 

within the entire system. Nevertheless, employing appropriate charging methods can effectively 

mitigate these negative effects. Controlled charging methods, for instance, have been shown to 

reduce system costs and peak demand by over 50% compared to uncontrolled charging (Kuby and 

Lim, 2005). This underscores the importance of implementing smart charging strategies to 

optimize the integration of EVs into the power grid while minimizing adverse impacts. 

2.1.3 Electric vehicles charging (Power Sonic. (n.d.)) 

EV charging is the process of replenishing the energy stored in an EV's battery by connecting it to 

an electric power source. This process is fundamental for the operation of EVs, which solely rely 

on electricity as their energy source. Here are the key aspects of EV charging: 

2.1.3.1 Charging levels (Power Sonic. (n.d.)) 

- Level 1 charging 

This is the slowest and most basic form of charging. It utilizes a standard 120-volt household outlet 

and is typically employed for overnight charging at home. Level 1 charging provides a charging 

rate of approximately 2 to 5 miles of range per hour of charging. 
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- Level 2 charging  

Level 2 chargers operate at 240 volts and are commonly found in residential garages, workplace 

charging stations, and public charging stations. They offer a significantly faster charging rate 

compared to level 1 chargers, typically providing 10 to 30 miles of range per hour of charging. 

- Level 3 charging (DC fast charging) 

Also referred to as fast charging or rapid charging, level 3 chargers utilize high-voltage Direct 

Current (DC) to charge an EV much more rapidly than level 1 or 2 chargers. These chargers are 

frequently located along highways and major routes, enabling EVs to gain up to 100 miles of range 

in as little as 20-30 minutes. The summary comparison of charging levels can be seen in Table 2-

1. 

Table 2-1 Summary comparison of charging levels 

 Level 1 Level 2 Level 3 (Fast charge) 

Voltage 120 V 208 or 240 V 100 to 450 V 

Current Type AC AC AC 

Useful type 1.4 KW 7.2KW 50KW 

Maximum output 1.9KW 19.2KW 150KW 

Charging time 12h 3h 20 min 

Connector J1772 J1772 J1772Combo, 

ChAdeMO and 

supercharger 

 

2.1.3.2 Charging connectors 

Different regions and manufacturers may use different types of connectors for EV 

charging.  
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- Level 1 and 2 connectors 

The SAE J1772 EV plug is indeed the most common connector for EVs in Canada and the US. It 

serves as a standardized interface for level 1 and level 2 charging across various EV models, 

enabling compatibility and interoperability among charging stations and vehicles. While Tesla 

vehicles typically come with their proprietary charging connector for use with Tesla Supercharger 

stations, they also include an adapter that allows them to charge using the SAE J1772 plug, thereby 

ensuring compatibility with the widespread charging infrastructure. 

However, it's important to note that the SAE J1772 connector is primarily used for level 1 and 

level 2 charging, which are slower charging methods suited for overnight charging at home or at 

workplace charging stations. For rapid DC fast charging, which offers much faster charging 

speeds, other connector types such as CCS or CHAdeMO are commonly used. 

- Level 3 connectors 

The CHAdeMO and SAE Combo (also known as CCS for "Combo Charging System") connectors 

are indeed the most commonly used connectors for fast charging among electric vehicle 

manufacturers. It's important to note that these two connectors are not interchangeable, meaning a 

car with a CHAdeMO port cannot charge using an SAE Combo plug, and vice versa. This 

distinction is akin to a gasoline vehicle that cannot fill up at a diesel pump. 

Another key connector is the one used by Tesla vehicles, which is exclusive to Tesla's proprietary 

charging network. This Tesla connector is used for both level 2 and level 3 charging at Tesla 

Supercharger stations and is only compatible with Tesla cars. The SAE J1772 standard specifies 

six charging levels, but only three are currently used for electric vehicles in North America. Level 

1 operates at 120VAC, level 2 operates at 208 or 240VAC, and fast charging operates at 200 to 

450 VDC. While direct current fast-charge stations are often referred to as level 3, this terminology 
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is incorrect and not recommended. The only standards that currently specify fast charging are 

CHAdeMO and SAE J1772 Combo. Concurrently, Tesla has developed its own DC fast-charge 

system, known as the "Supercharger," which is exclusively for Tesla vehicles. (Apata et al., 2023).  

In the problem of electric vehicle routing, it is necessary to pay attention to the importance of 

battery charging stations. First, the warehouse should be equipped to charge vehicle batteries. So 

that the batteries of the vehicles in the warehouse are fully charged at night and start their journey 

with a fully charged battery. This action reduces charging costs. Secondly, in addition to the 

warehouse, public charging stations should also be installed at the desired geographical level. 

Among the most important limitations that distinguish the electric vehicle routing model from 

other vehicle routing models is the limitation of calculating the battery charge level at each node. 

In electric vehicle routing, careful consideration must be given to the availability and placement 

of battery charging stations. Firstly, warehouses need to be outfitted with charging infrastructure 

to ensure that vehicle batteries are fully charged overnight, enabling them to embark on their 

journeys with optimal battery levels. This proactive approach helps minimize charging costs. 

Secondly, beyond warehouses, public charging stations should be strategically installed at key 

geographical locations to support EV operations. 

One of the primary challenges distinguishing electric vehicle routing models from traditional 

vehicle routing models is the need to factor in battery charge levels at each node. Unlike 

conventional vehicles that rely on fuel availability, EVs' range is determined by battery charge, 

requiring precise calculation and management of charging needs throughout the route. This 

necessitates sophisticated algorithms and optimization techniques to efficiently plan routes while 

accounting for charging constraints and optimizing charging station utilization. 
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2.1.4 Fast charging stations and their location 

As the number of electric vehicles grows, access to charging infrastructure becomes a crucial issue. 

The large batteries in these vehicles, with lengths of about 1.7 meters and capacities ranging from 

5 to 30 kilowatt-hours, represent a significant load for the electric network (Rastegarfar et al., 

2013). Charging these vehicles using conventional methods can be time-consuming. For example, 

residential chargers may take around 14 hours to charge an electric vehicle with normal batteries 

(Jia et al., 2014). Additionally, due to the limited capacity of home meters, rapid charging of an 

electric vehicle with a normal battery capacity is not feasible, as the current consumption exceeds 

the capacity of the home meter. 

Fast-charging station deployment is crucial to addressing the issues associated with charging 

electric cars. Public fast-charging stations can significantly reduce the charging time compared to 

conventional methods, making them more practical for electric vehicle owners. However, 

connecting these vehicles to the grid during peak times can lead to increased current flow in 

distribution transformers, potentially reducing their lifespan and affecting other network 

components (Rastegarfar et al., 2013). The establishment of fast-charging stations in cities is 

crucial for the growth of electric vehicles, as it not only provides energy to vehicles but also offers 

convenience and peace of mind to electric vehicle owners. These stations can charge vehicles to 

80-100% of their capacity in approximately 10 to 15 minutes, which is a relatively short time frame 

(Veneri et al., 2013). 

It is essential to choose the best location for electric vehicle fast charging stations while building 

them. Several perspectives can be considered when locating these stations, as they connect 

transportation and electrical networks, impacting both vehicle driving behavior and network 

performance. From the perspective of the electricity company, the ideal location for a fast charging 
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station is where there are minimal losses in the distribution network and minimal development 

needed, such as adding a new line, dedicated feeder, or transformer. This location should also 

facilitate easy connection to the network. Conversely, from the station owner's perspective, the 

best location is where costs are minimized, including land prices, connection costs, and 

maintenance costs. Therefore, the station should be situated where there is a high density of EVs. 

Fast charging stations can have varying numbers of charging units depending on the density of 

EVs in the area. It is essential to use optimization methods to determine the optimal location and 

size of charging stations, ensuring both cost minimization and power system security. Various 

optimization methods are employed for this purpose. 

2.1.5    Types of location models of charging stations 

2.1.5.1    Location based on burgers 

In the charging station location model based on nodal demand, the flow of current through the 

nodes is taken into account. It assumes that electric vehicle charging, known as Plug-in Electric 

Vehicles (PEVs), takes place at specific geographical nodes within the target planning area, and 

charging stations are strategically positioned to meet this demand. However, this approach solely 

considers the straight-line geographical distance between the charging nodes, overlooking 

constraints related to the density of the transportation network (Zhang et al., 2018). 

2.1.5.2    Location based on traffic flow 

In this planning model, which relies on traffic simulation, the aim is to estimate the charging 

requirements for PEVs (Plug-in Electric Vehicles). Typically, these simulations utilize data 

obtained from real-world trips, which can be costly to acquire in certain regions. Recognizing the 

dynamic nature of electric vehicle mobility, some researchers have proposed planning 

methodologies based on traffic flow analysis. In this approach, the flows of vehicles from their 
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origins to destinations are analyzed to gauge the demand for charging, encompassing both the Flow 

Coverage Location Model (FCLM) and the Fuel-Flow Location Model (FRLM). The FCLM 

addresses a fundamental challenge of maximizing route coverage by determining the optimal 

placement of charging stations along flow paths to serve a given number of routes (Berman, et al., 

1992). On the other hand, the FRLM, an adaptation of the FCLM, emphasizes route-based demand 

maximization to ensure that vehicles can be refueled along their journeys (Kuby and Lim, 2005). 

Unlike the FCLM, where a single charging station along the flow path suffices to cover the flow, 

the FRLM considers factors such as route distance and vehicle driving range, often necessitating 

the placement of multiple charging stations to prevent vehicles from running out of fuel mid-

journey. 

2.1.6 Wireless charging of electric vehicles 

An improved version of electric vehicle charging stations is represented by wireless systems. 

Currently, electric vehicles can only travel a certain distance before needing to be recharged, which 

requires connecting the vehicle to an electricity source. This limitation results in the installation of 

electric vehicle charging stations at various locations, similar to gas pumps. However, this can lead 

to time loss both during charging and while waiting in line, as well as energy loss. By doing away 

with the requirement for physical connections between the vehicle and the charging station, 

wireless charging technologies solve these problems. This technology allows for more flexibility 

in terms of charging location and time, as vehicles can be charged while parked or even while in 

motion. This can significantly improve the convenience and efficiency of charging electric 

vehicles, reducing the limitations associated with traditional charging methods. 

The development of wireless charging stations for electric vehicles has been a subject of study, 

with researchers exploring various ideas to improve the technology. One approach involved using 
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transmitter and receiver wires, where the receiver wires were embedded in the vehicle and one or 

more large transmitter wires were installed on the side or under the roads. However, this approach 

required high investment costs. Researchers then proposed modifying the wires of the transmitter 

and receiver to use wires of the same size. The transmitter coil in the station could expand and 

control the field under its radius based on the reactance reflected from the receiver coil. This 

modification greatly reduced power losses and minimized the destructive effects of magnetic 

fields. In this modified system, when an electric vehicle approaches a wireless charging station, 

the transmitter system detects it and increases its output power by up to 400%. As the vehicle 

moves away, the transmitter waves gradually decrease. This approach not only reduces the risk to 

people's health but also minimizes electrical power wastage (Ko and Vaidya, 1998; Kooh and 

Vaidya, 2018). 

A typical EV wireless charging system is shown in Figure 2.2 which includes several steps to 

charge an EV wirelessly (Li et al., 2018). First, the AC electric power is converted into a DC power 

supply by modifying the power factor by an AC to DC converter. 

 

Figure 2.2: A conventional EV wireless charging system (Jain et al., 2024) 

After the AC electric power is converted into a DC power supply, the DC power is converted into 

a high-frequency signal to drive the transmission signal through a compensating network. To 



22 
 

enhance safety and protection by preventing insulation failure of the primary winding, a high-

frequency isolation transformer may be placed between the DC-AC inverter and the primary 

winding. The high-frequency current in the transmitter coil generates an alternating magnetic field, 

inducing an AC voltage in the receiver coil. By resonating the secondary compensator network, 

the transmitted power and efficiency are significantly improved. Finally, the AC power is rectified 

to charge the battery (Zhang et al., 2017). 

Wireless power transmission systems typically consist of several components, including a rectifier, 

power factor corrector, inverter, network compensator on the transmitter side, magnetic coupler 

(transmitter and receiver coil), network compensator on the receiver side, and rectifier for DC 

chargers. Additionally, an additional DC-DC converter may be included on the transmitter side to 

complete the wireless charging system. In the field of wireless power transmission for electric 

vehicles, various topologies have been proposed, defining the connection method as series-series, 

series-parallel, parallel-parallel, or their combinations (Wang et al., 2004; Villa et al., 2013). These 

topologies determine how the transmitter and receiver coils are connected in the system. The 

compensation operation in wireless power transmission systems is typically achieved using a coil 

and either one capacitor or a combination of capacitors with different LCL or LCC (inductor-

capacitor-inductor or inductor-capacitor-capacitor) topologies. In an LCL converter, one or two 

LC network compensators are used on the sides. The advantage of the LCL topology is that at the 

resonance frequency, the current on the primary side can be independent of the load condition, 

acting as an independent current source. On the other hand, the LCC design requires an additional 

coil, which is usually an additional capacitor in series with the coil to reduce the size and cost of 

the additional coil, known as the LCC model. Using LCC, a zero switch current can achieve the 

highest efficiency by adjusting the network compensator parameters. Therefore, when LCC is 
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employed on the secondary side, the reactive power of the secondary side can be compensated to 

some extent, reducing distortion current (Zhang et al., 2017). Figures 2.3 and 2.4 illustrate the 

general LCL and LCC topologies, respectively. 

 

Figure 2.3: LCL compensated topology integrated circuit (Lu et al., 2016) 

 

Figure 2.4: LCC compensated topology integrated circuit (Li et al., 2015) 

2.1.6.1     Static electric vehicle charging (SEVC) 

One of the key challenges facing electric vehicles is their limited maximum range, which is largely 

determined by battery and charger technology. To address this, various solutions have been 

proposed, including fast charging, wireless charging, and even charging vehicles while they are in 

motion. A recent advancement in this field is a new wireless charging system with significantly 

enhanced capabilities. Currently, most electric vehicles are charged using physical connection 

wires, requiring a dedicated charging setup at home or other locations. While some areas offer 

wireless charging services for electric vehicles, these systems typically provide a charging power 
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of around 3.3 kW. While this is sufficient for overnight charging, a more widespread solution is 

needed to address the range limitation of electric vehicles.  

The ideal solution to this challenge would be the ability to wirelessly and rapidly charge electric 

vehicles on public roads. Encouragingly, recent research indicates that this technology is 

progressing rapidly and may become a reality in the near future. The figure 2.5 illustrates a local 

wireless charging station (Manshadi et al., 2017). 

 

Figure 2.5: Static wireless charging station (Manshadi et al., 2017) 

2.1.6.2      Dynamic electric vehicle charging (DEVC) 

Considering the current trajectory, it's evident that the future of transportation belongs to EVs. 

While EVs offer numerous benefits, they also face significant challenges, including: 

o Limited travel distance 

o Few charging stations 

o Relatively long time to recharge the batteries 

One promising solution to address these issues is Dynamic Electric Vehicle Charging (DEVC), a 

technology that has the potential to enable virtually unlimited travel distance for EVs. DEVC 

leverages wireless charging technology to continuously supply power to moving vehicles. 

Qualcomm, a renowned company primarily recognized for its mobile chipsets, has been at the 

forefront of researching this technology. Collaborating with the French company Vedcom, 
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Qualcomm designed a 100-meter test track in Versailles to evaluate its DEVC system. The figure 

2.6 illustrates a vehicle being charged wirelessly while in motion on the test track (Li et al., 2018). 

 

Figure 2.6: A vehicle moving on a wireless charging station (Li et al., 2018) 

2.2 Summary of previous works 

Finding the location and capacity of these stations has been the main subject of several studies that 

have examined the administration and planning of EV charging at charging stations. Tostado et al. 

(2023) introduced a two-stage stochastic IGDT (Information Gap Decision Theory) model for 

optimal scheduling of energy communities with smart parking lots. This framework incorporates 

a stochastic representation of parking lot cost status to address uncertainties. Additionally, it 

examines uncertainties in the upstream energy market using Information Gap Decision Theory 

(IGDT), allowing operators to adopt a risk-averse strategy. The optimization problem is 

formulated as a mixed integer linear programming model, efficiently solvable by average solvers. 

A case study validates the proposal, highlighting the benefits of optimally utilizing EVs in 

communities to enhance system efficiency and economy. 
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Ge et al. (2023) utilized a genetic algorithm to determine the optimal location of charging stations 

in a traffic network, aiming to minimize urban transportation costs while considering constraints 

related to traffic density and station capacity. However, this study did not incorporate costs such 

as land, fixed costs, and operation costs in the optimization process, limiting its general 

applicability. Pazouki et al. (2023) addressed the simultaneous planning of optimal charging 

station locations and distributed generation sources, considering financial, technical, reliability, 

and environmental factors. They employed a genetic algorithm to solve the optimization problem, 

applying it to a radial distribution network of 33 tiers. Simulation results demonstrated that optimal 

charging station planning in distribution networks increased total costs by 30%, unsupplied energy 

by 7%, losses by 50%, and voltage deviation by 85%. Conversely, simultaneous planning of 

charging stations and distributed generation sources improved total costs by 28%, losses by 36%, 

supplied energy by 20%, voltage deviation by 63%, and pollution by 28%. Increasing EV 

availability in distribution networks during optimal charging station planning with distributed 

generation sources not only reduced total costs but also provided significant benefits to distribution 

network companies. 

Hussain et al. (2022) delved into optimizing waiting times for EVs using a fuzzy inference system. 

In order to reduce EV waiting times at public EVSE facilities, they formulated waiting time 

optimisation as a fuzzy integer linear programming problem and presented a brand-new Fuzzy 

Inference System Algorithm (FISA). In order to arrive at the best answers, their method comprised 

creating membership functions, expert rules, and formulations for the underlying fuzzy inference 

system (Hussain et al., 2022). FISA automated correlations among uncertain and independent input 

parameters, optimizing waiting times for EVs with urgent service needs at each sampling period. 

Using a Java-based parking lot simulator, they assessed FISA's efficacy and showed that it was 
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more efficient than the most recent scheduling methods. Yan et al. (2022) utilized an improved 

genetic algorithm to solve a multi-objective optimal planning model considering investment costs 

and power losses of feeders. They developed the model based on the IEEE 33-bus distribution 

system, addressing various limitations. Their research highlighted the improved efficiency of the 

genetic algorithm in overcoming challenges faced by blind search algorithms and enhancing the 

performance of basic genetic algorithms. Sausen et al. (2022) explored the economic aspects and 

prioritization of charging and discharging schedules for battery-based EVs in residential buildings. 

They proposed a mixed-integer finite nonlinear formulation to schedule charging and discharging 

of EVs, considering battery degradation, charging prioritization, cost reduction, and power demand 

limits on distribution transformers. Their results indicated a 5.3% reduction in battery degradation 

when EVs were discharged before charging within a specific charge mode range. Additionally, 

scheduling charging during lower tariff prices led to a 16.35% cost reduction and prevented 

overloading of distribution transformers. Baharifard et al. (2022) examined intelligent charging 

planning for commercial EV parking lots and its impact on distribution network imbalance 

indicators. The study proposed a two-stage framework. The first stage involved technical 

parameters such as battery condition, charge/discharge characteristics, and transport parameters 

including daily distance traveled, entry and exit times at the charging parking lot (CPL), and the 

number of EVs. This stage calculated the sales and profitability of the EV charging/discharging 

program for EV users and CPL owners at optimal CPL timing. In the second stage, the effect of 

CPLs on the distribution network was investigated by calculating imbalance indices in an IEEE 

standard unbalanced distribution network. The results indicated a 23% increase in average profit 

for EV users over the total cost of charging the vehicle. Additionally, without changing the 

distribution network structure and connecting the CPL to active commercial loads, the network 
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imbalance during EV charging could be improved by approximately 30%. Yang et al. (2022) 

introduced a real-time energy management strategy for parking lots considering the maximum 

penetration of EVs. The study proposed an intelligent grouping method considering the coupling 

relationship between EV trip information, battery status, and other characteristics. A 

charge/discharge priority model based on the participation index of the charging process was 

developed. Finally, a real-time energy management strategy was formulated to maximize the 

penetration level of EVs in the current situation. The proposed strategy increased the maximum 

penetration level of EVs from 20% to 60% in simulations. This strategy is suitable for the gradual 

growth of the base load, effectively delaying the need for distribution network infrastructure 

upgrades and reducing overall substation operation costs. It also serves as a reference for operating 

and improving parking lot charging stations. Li et al. (2022) introduced a method to minimize the 

cost of demolition in zero net energy architectures with smart parking through EV charging 

management. The study considered the variety of charging types for EVs and how the service life 

of hybrid energy storage systems (HESS) affects the power distribution of net zero energy 

architectures. They proposed a demolition cost minimization method with intelligent parking (IPL) 

for optimal economic power allocation. The compatibility and economic benefits of the method 

were verified in random charging scenarios, and the effect of charging types on optimal timing 

was analyzed. 

Konstantinidis et al. (2021) introduced a simple multi-parameter method for efficient charging 

planning of EVs in their paper. The method focuses on charging EVs at parking lots (PLs), 

including vehicle-to-grid (V2G) operation and considering the lifetime of EV batteries, 

distribution network, and local transformer loading. The main objectives are to minimize the 

charging cost of the total PLs hosting the EVs and to meet all the technical and operational 
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constraints of EVs and PLs. The proposed method utilizes particle swarm optimization (PSO) to 

derive the EVs' charging schedule. It is compared with conventional charging strategies, where 

EVs are charged with the maximum power of the charging power converter or the average power 

required to achieve the state of charge goal, and a conventional charging scheduling method using 

collected behavior data. The study used real-world data series of electricity prices and parking 

activity for plug-in EVs. The results from operational scenarios demonstrate the effectiveness of 

the proposed method, which does not require complex computing, measurement, or 

communication systems for application.  

Nejati et al. (2021) discussed the optimal charging and discharging of EVs in a smart parking lot 

in their article. The paper presents a residential parking scheme involving 200 EVs, where the 

scheduling of EV charging and discharging is based on the initial and final state of charge (SOC) 

values requested by the owners. The proposed plan includes entering the expected time of entry 

and exit to the parking lot a day before. An optimization problem is formulated to maximize the 

Smart Parking-Lot (SPL), considering the stochastic behavior of EV owners and the imposed 

penalty. The goal is achieved by defining stochastic behavior and penalty flexibility. The 

optimization problem is solved using the particle swarm optimization (PSO) algorithm. The 

effectiveness of the method is verified through four scenarios, including random behaviors of EV 

owners in the first scenario and flexibility in fining EV owners in the other three scenarios. 

Simulation results from all scenarios are compared to demonstrate the features of the proposed 

scheduling method. Ahmadi et al. (2021) used hybrid meta-heuristic algorithms to solve the 

optimal location for EV parking lots as well as optimal planning for charging and discharging. In 

order to provide a workable solution, the research focuses on the issues of optimum EV parking 

allocation and optimal EV performance scheduling in the smart distribution network. A variety of 
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technical and financial aspects are taken into account. Technical factors include achieving all 

network requirements and reducing network losses and voltage drop in feeds. The entire cost of 

buying electricity from the upstream network and the overall cost of charging and discharging in 

EV parking lots are examples of economic variables. Demand-side management also takes price-

based demand response programmes (DRP) into account. To get the best answer, hybrid meta-

heuristic algorithms (HMA) are employed. The proposed problem is simulated on the IEEE 

standard 69 bus network, and the results demonstrate improved voltage profiles, reduced network 

losses, and overall efficiency of the proposed approach. Alinejad et al. (2021) focused on optimal 

management for charging and discharging of EVs. The paper first defines the random behavior of 

EV owners and other real situations, presenting a model for EV charging and discharging plans 

aimed at maximizing parking profit and minimizing costs for EV owners. The paper also 

determines fines for owners of defective EVs and the initial entry fee for all vehicles, while 

considering flexibility in determining fines, to present a complete structure for the energy 

management of EVs in parking lots. These fines ensure that the cost of unfulfilled charging rights 

for EVs is covered by fines for owners of faulty EVs, as well as profits for vehicle parks. The 

proposed method's effectiveness is verified through simulation in three different scenarios, 

demonstrating the good performance of this enhanced strategy for EV charging management. 

Rezaei and Golkar (2021) introduced a method to smooth the economic load curve by scheduling 

the charging and discharging of electric vehicles in the smart grid, using machine learning-based 

load predictions. The proposed method not only smoothens the load curve but also reduces the 

cost of purchasing electric energy. Implemented using GAMS software in a commercial building's 

parking lot dedicated to electric vehicles, the method schedules charging and discharging based on 

predicted loads for the next day. Simulation results demonstrate the method's efficiency, showing 
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a 17% decrease in peak load, a 16% increase in minimum load, and a 20% decrease in energy 

purchase costs. 

Zhao et al. (2020) introduced a data-driven optimal allocation strategy for shared parking spaces, 

considering uncertainties in user entry and exit, both from public users and space owners. 

Employing an agent-based approach, the study delineates a management framework encompassing 

temporal and spatial dimensions. This framework categorizes parking space access into four 

temporal phases and two spatial types. Subsequently, an Intelligent Parking Management System 

(IPMS) is developed based on this framework, aiming to simulate shared parking operations 

amidst the uncertainties of public and owner user movements. Through detailed sensitivity 

analyses leveraging real-world data and simulations, the efficacy of the proposed framework and 

IPMS is evaluated, focusing on parking lots in Beijing, China. Results indicate that the IPMS not 

only ensures adequate parking space availability for owner users but also significantly enhances 

space utilization and turnover rates compared to non-collaborative management approaches.  

Mehrabi et al. (2018) explored the planning of charging and discharging for EVs in a shared 

parking setting. Their study introduces an effective scheduling mechanism tailored for multi-house 

shared parking lots. The mechanism prioritizes optimal distance allocation considering real-time 

electric load and vehicle demand patterns. Leveraging vehicle data, they devise a hybrid 

optimization model via centralized scheduling, aimed at maximizing consumer profit. This model 

is subsequently tackled using an efficient algorithm. The optimization outcomes are then 

transmitted to the system controller, dictating time interval patterns and energy exchanges between 

the power grid and the vehicles. The proposed algorithm boasts low complexity while ensuring 

energy satisfaction for all consumers. 
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Rajabi-Ghahnavieh and Sadeghi-Barazani (2017) proposed regional methods for determining the 

optimal location and capacity of fast-charging stations. Their approach considers the development 

cost of the station and the expected costs of charging electric vehicles as the objective function. 

The geographical characteristics of electric stations, such as urban routes and areas, are taken into 

account. The population of electric vehicles is estimated hourly in different areas based on traffic 

information. Driver behavior is also considered to determine the expected charging demand and 

consumer costs. Additionally, the expected cost due to network losses is calculated using load 

spreading and considering network loads in hourly scenarios. Khatiri-Dost and Amirahmadi 

(2017) proposed a model focused on peak correction and minimizing power losses through 

coordinated charging and discharging of Plug-in Electric Vehicles (PEVs) within smart grids. 

Their novel approach enables PEV owners to schedule charging and discharging times based on 

priority selection. Three distinct time slots are provided for domestic PEV owners to select their 

preferred timing, accommodating their individual needs. The method accommodates the random 

plug-in of PEVs and allows for prompt charging and discharging while meeting grid operational 

criteria. They demonstrated the feasibility and efficacy of their approach using a standard test 

system consisting of 1537 smart distribution buses, showcasing its potential in managing PEV 

charging and discharging within smart parking facilities. 

Nezamoddini and Wang (2016) delved into risk management and collaborative planning of EVs 

within smart grids, particularly focusing on the demand response problem (DRP). Their study 

explores the potential of integrating EVs into demand response mechanisms, presenting a 

stochastic model from the perspective of independent system operators. This model addresses risk 

factors stemming from uncertainties in renewable energy sources, load and parking patterns, as 

well as transmission line reliability. The effectiveness of this model was assessed across various 
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settings, including different area types, EV penetration levels, and risk levels. Enang (2016) 

proposed the use of a real-time robust controller for managing the charging of parallel electric 

vehicles, aiming to maximize fuel savings throughout the vehicle lifecycle and real-world driving 

scenarios. Results demonstrated that these controllers achieved significant fuel savings ranging 

from 0.03% to 3.71% without requiring access to route preview information. Moreover, 

incorporating route preview information into real-time controllers led to additional fuel savings of 

2.44% during driving. Additionally, employing a real-time vehicle speed control strategy yielded 

substantial fuel savings compared to Hybrid Electric Vehicle (HEV) technology. Lachhab (2016) 

explored the design and optimization of robust controllers with low order/fixed structure, focusing 

on two classes: correct and fractional order controllers. The research offers three methods to adjust 

these controllers' parameters for real-world control scenarios. The study utilized normal H∞ for 

control problems and implemented the controllers using MATLAB's fractional order controller 

toolbox. Additionally, a robust Proportional–Integral–Derivative (PID) controller based on Model 

Predictive Control (MPC) optimization was employed. By employing this technique, the control 

issue is converted into a Linear Matrix Inequality (LMI), which can be solved for controller 

parameter optimisation using typical LMI solvers. The third approach uses recurrent neural 

networks (RNNs) to optimise linear controllers. This method formulates the control issue as an 

optimised closed-loop RNN. The investigations demonstrate these controllers' high applicability 

and effectiveness in controlling the charging of electric vehicles. 

You and Hsieh (2015) employed a hybrid genetic algorithm to optimize the placement and size of 

public charging stations, aiming to minimize both investment and transportation costs. Notably, 

factors such as charging and operational expenses were disregarded in the optimization process. 

Conversely, Sharma et al. (2015) introduced an intelligent scheduling strategy for EV charging 
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and discharging, focusing on controlled environments such as parking lots. Their approach 

involves formulating the problem as a multi-objective scheduling task, considering factors such as 

maximizing collector profit, minimizing EV charging costs, and achieving target state-of-charge 

levels. To solve this complex problem, a heuristic dynamic optimization method was utilized, and 

extensive simulations across different scenarios were conducted to assess scalability and 

robustness. Hu et al. (2015) introduced the Bipolar Traffic Density Aware Routing (BTDAR) 

method, aimed at enabling reliable and efficient dynamic wireless charging in vehicular networks, 

whether they have dense or sparse traffic. In dense networks, the method employs a routing 

protocol based on link stability, which considers the connectivity of vehicles in the route selection 

policy to maximize communication stability between vehicles. For distributed networks, a 

medium-delay routing protocol is introduced to select an optimal route by analyzing the alternating 

connections of vehicles, thereby minimizing delay. Honarmand et al. (2015) introduced a planning 

model for EVs in a smart parking lot using stochastic optimization. The model proposes a random 

charging and discharging scheduling method for a large number of EVs parked in a smart parking 

lot, where these lots can act as aggregators enabling EVs to interact with companies. The self-

scheduling model, designed for smart parking equipped with a photovoltaic system and distributed 

generators, considers practical limitations, uncertainty in solar radiation, rotating storage 

requirements, and EV owner satisfaction. Results indicate that the proposed parking energy 

management system meets both financial and technical objectives, allowing EV owners to benefit 

by discharging their vehicles and maintaining a favorable state of charge for driving. 

In the Table 2-2, a summary of the research conducted in the field of electric vehicle charging 

management is presented. 
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Table 2-2 Summary of literature reviews 

Method Aim Year Auturs 

MILP Optimum scheduling of energy 

communities with smart parking lots 
2023 Tostado et al. 

Genetic Algorithm 

(GA) 

Optimal location of electric charging 

station and distributed generation 

sources 

2023 Pazouki et al. 

Genetic Algorithm 

(GA) 

The optimal location of the charging 

station 
2023 Ge et al. 

FIS system Optimization of waiting time for 

electric vehicles 
2022 Hussain et al. 

Genetic Algorithm 

(GA) 

multi-objective optimal chatging 

planning and station model 
2022 Yan et al. 

MILP Charging and discharging timing of 

battery-based electric vehicles 
2022 Sausen et al. 

Two stage heuristic 

method 

Smart charging planning for 

commercial parking lots of electric 

vehicles 

2022 Baharifard et al. 

Heuristic method Real-time energy management for 

parking considering the maximum 

penetration of electric vehicles 

2022 Yang et al. 

Allocation of 

optimal economic 

power 

Minimizing demolition cost in net zero 

energy architectures with smart parking 

through electric vehicle charging 

management 

2022 Li et al. 

Particle Swarm 

Optimization (PSO) 

Planning efficient charging of electric 

vehicles 
2021 Konstantinidis et al. 

Particle Swarm 

Optimization (PSO) 

Optimal planning of charging and 

discharging of electric vehicles in a 

smart parking lot 

2021 Nejati et al. 

Hybrid meta-

heuristic algorithm 

Optimal allocation of electric vehicle 

parking lots and optimal charging and 

discharging planning 

2021 Ahmadi et al. 

Heuristic algorithm Optimal management for charging and 

discharging electric vehicles 
2021 Alinejad et al. 

Machine Learning Smoothing the economic load curve by 

scheduling the charging and 

discharging of electric vehicles in the 

smart grid 

2021 Rezaei and Golkar 

Agent-based 

approach 

Optimal allocation of shared parking 

space based on data 
2020 Zhao et al. 

Hybrid meta-

heuristic algorithm 

Electric vehicle charge/discharge 

planning 
2018 Mehrabi et al. 

Heuristic algorithm Correcting the peak and minimizing 

power losses by coordinating the 
2017 

Khatiri-doost and 

Amirahmadi 
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charging and discharging of plug-in 

electric vehicles in smart networks 

Meta-heuristic 

algorithm 

optimal location and capacity of a fast 

charging station 
2017 

Rajabi-Ghahnavieh 

and Sadeghi-Barazani 

Heuristic algorithm Investigating risk management and 

providing collaborative planning of 

electric vehicles in smart networks 

considering the issue of demand 

response 

2016 
Nezamoddini and 

Wang 

Real-time robust 

control 

Parallel electric vehicle charging 

management 
2016 Enang 

Recurrent neural 

network (RNN) 

Electric vehicle charging control 
2016 Lachhab 

Multi objective 

scheduling method 

 

Intelligent planning for charging and 

discharging electric vehicles 2015 Sharma et al. 

Hybrid genetic 

algorithm 

Optimal number and size of public 

charging stations 
2015 You and Hsieh 

Bipolar Traffic 

Congestion Aware 

Routing 

Improved dynamic wireless charging 

approach 2015 Hue et al. 

Stochastic 

optimization 

Scheduling electric vehicles in a smart 

parking lot 
2015 Honarmand et al. 

 

In this chapter, research concepts were examined. Therefore, after the introduction of electric 

vehicles, charging stations, the importance of charging stations, and charging methods of EVs, the 

literature review was provided in the field of planning and determining the optimal location of 

EVs. By reviewing the papers, it was found that despite the efforts made in the field of planning 

and determining the location of EVs charging, there is still a gap in comprehensive research in the 

field of locating EV charging stations by considering economic and technical concepts in the 

conditions of load uncertainty. Therefore, the model considered in this research is presented for 

allocating parking lots in a distribution network with voltage drop checks according to the 

mentioned conditions.  
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Chapter 3: Solution approach 

3.1 Introduction 

In recent times, various challenges such as environmental concerns, dwindling fuel resources, 

volatile fuel prices, and the necessity to reduce reliance on fossil fuels have led to the recognition 

of EVs as a valuable asset in both transportation and power systems (Moradijoz et al., 2013). The 

concept of a smart grid, as highlighted by Gellings (2009), revolves around environmental 

conservation and incorporates elements like renewable energy sources (such as wind and solar 

power), demand response systems, and distributed generation technologies like EVs. This 

approach aims to optimize asset utilization, ensure reliable system operation, and offer greater 

choice to consumers. 

The research by Markel and Bennion (2009) demonstrates that vehicles are parked for 

approximately 93-96% of the day, making them available for alternative uses such as serving as 

storage devices for the grid. This availability, combined with the increasing need for cost-effective 

energy storage solutions in the power system, suggests that EVs could be utilized as limited energy 

resources in the power system (Peterson and Whitacr, 2010). In addition to serving as storage 

devices, EVs can also be used as controllable loads. This means they can be operated as batteries 

to store energy during off-peak periods and as generation units during peak periods or high 

electricity price intervals. Despite their limited power output, EVs can still be a valuable resource 

in the distribution system as a distributed generation (DG) resource. 

To utilize EVs as distributed generation (DG) resources in the distribution system, the charging 

and discharging of batteries need to be carefully controlled. Distribution system planners aim to 

provide economical and reliable electricity to their customers and often deploy technologies such 
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as DGs and capacitors to achieve this goal. DG technologies offer many economic and technical 

benefits, as highlighted in the work by Moradi and Abedini (2012) and Aman et al. (2012). 

However, these benefits can only be maximized when the optimal sizes and locations of DG units 

are determined. Therefore, optimal allocation of DG is a crucial issue that must be addressed in 

distribution planning. Sound decision-making in this regard can provide benefits to the distribution 

network, suppliers, and customers alike. 

Optimal allocation of parking lots, as a new type of distributed generation (DG), should be 

prioritized alongside other types of DGs. High penetrations of distribution-connected storage 

devices or plug-in vehicles can have adverse impacts on the grid due to their charging loads, which 

are often randomly located or unmanaged additions. However, optimal allocation of parking lots 

can help mitigate these issues by reducing network losses, improving voltage profiles, and 

consequently bringing economic benefits for the distribution system company (DISCO). 

One of the key distinctions between parking lots and other traditional distributed generators (DGs) 

is the stochastic nature of their output. In the modeling of parking lots, they function as storage 

devices, storing electrical power in the batteries of vehicles during times of low electricity prices 

and delivering power to the distribution system during times of high electricity prices. 

Additionally, parking lots serve as charging stations for EVs for driving purposes. Due to the 

stochastic nature of EV owners' behavior, the output of parking lots is also stochastic. One 

approach to reduce the uncertainty associated with EV owners' behavior is to implement incentive 

mechanisms. Sufficient incentive mechanisms should be considered to encourage EV drivers to 

participate in providing power to the network. 

The most critical aspect in the construction of an electric vehicle charging station is determining 

the optimal location for its installation and operation. Locating a parking lot involves various 
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considerations, particularly because it serves as a bridge between transportation and electrical 

networks. The location and size of the station significantly influence not only the driving patterns 

of vehicles but also the performance of these interconnected networks. Therefore, the selection of 

a parking lot location should take into account the requirements of both networks. From the 

perspective of the electricity company, the ideal location for a parking lot is one that minimizes 

losses in the distribution network and requires minimal development in terms of adding new lines, 

dedicated feeders, or transformers. Simultaneously, the station should be easily connectable to the 

network. 

From the perspective of the station owner, the optimal location should be chosen to minimize costs. 

This includes factors such as the price of land, the cost of connecting to the network, and the cost 

of charging and maintenance units. Therefore, the station should be situated in an area with the 

highest density of EVs. Charging stations typically have varying numbers of charging units 

(capacity) based on EV density. While economic benefits are important, it is not advisable to 

consider them in isolation when addressing this issue. The primary objective is to determine the 

optimal location and size of parking lots using various optimization methods to minimize total 

costs while ensuring power system security. To achieve these goals, various methods have been 

employed to solve the problem of locating parking lots, one of which will be presented in this 

research. 

In this study, the allocation optimization problem is solved using Particle Swarm Optimization 

algorithm (PSO) method with Python software. The power loss as well as the investment cost are 

other objectives that have to be given enough attention. For this reason, a trade-off shall be made 

between these objectives. 
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In order to allocate parking lots, some assumptions are taken-into account as follows: 

(Sioshansi, 2012; Clement et al., 2010; Soares et al., 2012)   

1- This study assumes that the distribution company (DISCO) is responsible for supplying 

customer demand, installing parking lots, and controlling the charging and discharging of 

EV batteries. DISCO aims to fulfill these responsibilities while minimizing costs and 

improving the quality and reliability of customer service. 

2- It is important to note that in calculating profits, the study assumes that DISCO does not 

receive compensation from EV owners for battery charging required for driving purposes. 

Additionally, any vehicle degradation costs due to vehicle-to-grid (V2G) operations are 

covered by DISCO and paid to EV owners. These assumptions are made to incentivize EV 

owners to park their vehicles in the parking lot during days with high-priced peak 

electricity. 

3- All vehicles are assumed to be charged and discharged at their maximum charging rate. It 

is important to note that this assumption is common in several EV studies. 

4- In the modeling of parking lots, it is assumed that the initial state of charge (SOC) of EVs 

has three levels. However, the proposed model can be adapted for use with other SOC 

levels as well. The initial SOC of vehicles can be adjusted using a suitable distribution 

function, and parking lots can be optimally placed considering this function. 

5- Another assumption made in the modeling of parking lots is that all batteries have the same 

size. As a result, the output power of the parking lot is assumed to be constant during the 

discharging state. This assumption is also commonly used in many EV studies. 

6- Under traditional approximations used by utilities, there might be 200 peak hours in a year 

during which an incremental kW h of electricity would be worth 0.5 USD$/kW h (Kempton 
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and Tomic, 2005). Therefore, the maximum hours that vehicles deliver power to the 

network is assumed to be 200 hours in a year. 

In this chapter, the solution approach of electric vehicle discharging has been presented. Figure 

3.1 presents the various steps of the proposed solution approach. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Different phases in the suggested solution approach 

The proposed model includes the number of parking lots, number of cars, car battery capacity, car 

charging cost, investment cost, energy price, electricity price, network characteristics, including 

the number of branches, losses, and income. It consists of multi-objective and multi-constrained 

that are homogenized based on weighted values.  It means that the AHP (Analytic Hierarchy 

Process) method is employed to calculate the optimal weighting coefficient for each index in the 

proposed model. Following this, the backward-forward sweep power flow method used to 

calculate power losses in the distribution network within the context of the optimal parking lot 

placement problem is explained. This method accurately computes losses, aiding in the 
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identification of optimal parking lot locations to minimize these losses and enhance network 

efficiency. The Particle Swarm Optimization (PSO) algorithm, employed to determine the number 

of electric vehicles in each bus and reduce the loss to optimize the proposed model, is then 

described. 

Next step, the revenue is calculated, which is net income minus the required cost, and at the end, 

the total benefit is computed. Figure 3.1 presents the various steps of the proposed solution 

approach. 

3.2 Mathematical modeling (Moradijoz et al., 2013; Shojaabadi et al., 2016) 

To model the problem, we first state the sets, parameters, and variables of the problem. Then we 

provide objective function and constraints. 

3.2.1 Sets 

i Set of parking lots 

j No. of load levels 

n No. of EVs in each parking lot 

b No. of branches in the grid 

3.2.2 Parameters 

w Equal weight factor 

k No. of iteration 

SOCi Initial charging status of the EV (i) 

ESi Battery capacity of the EV (i) 
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Pv The power rate at which the EV is charged 

r(i) 

Prp 

The net income from the parking lot (i) 

The market price at peak times 

CFcap(i) The capital cost of the parking lot (i) 

C𝑎𝑐 The annual capital cost 

PC(i) The capacity of the parking lot (i) 

CFpu.driving(i) The cost of purchased energy to charge EVs for driving 

Proff The power of the electricity market in off-peak times 

t(i) the required time for full charging of an EV(i) 

Pparkch(i, d) The required power to charge vehicles from SOC 0 to SOC1 

μ
conv

 

         Cd 

Inverter efficiency 

Equipment degradation cost 

CFpu.G2V(i) The cost of purchased energy to charge vehicles for V2G power 

Prpe The purchased energy cost  

price(j) The electricity price in load level (j) 

loss(j) The network loss in load level (j) without V2G 

lossV2G(j) The network loss in load level (j) with V2G 
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          Rb Resistance of branch (b) 

Ib(j) The current of the branch (b) at a time interval (j) 

|V|min The minimum allowable voltage in the buses 

|V|max 

S(i j)max 

The maximum allowable voltage in the buses 

The MVA capacity of the line between bus i to bus j. 

3.2.3 Objectives function  

The main objective function of this study consists of 5 cost functions that are homogenized based 

on weighted values as Eq. (3-1): 

 

Max F = ∑ (wi × r(i)) − (w2 × CFcap(i) + w3 × CFPu,driving(i) + w4 ×
NV2G
i=1

CFpu,V2G(i)) + ∑ (w5 × DCloss(j))
J
j=1                                                                        (3-1) 

where NV2G is the number of parking lots, J is the number of load levels, and w1, ..., w5 are 

weighting coefficients. 

In the following, the components of the objective function are examined. 

3.2.3.1 Charging time of an EV 

The charging time of an electric car depends on several factors, including the battery capacity, the 

charging power, and the initial state of charge of the battery. 

The charging time for full charging of an EV as a function of initial SOC can be calculated as Eq.  

 t(i) = (
(1−SOCi)×ESi

Pv
)                                                                                                (3-2) 

where SOCi is the initial SOC of vehicle i, ESi is the battery capacity of Evi, and Pv is the power 

rate with which EV is charged. 
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By considering three levels of State of Charge (SOC) for batteries, as depicted in table 3-1, the 

parking lot's input-output power will exhibit three stages, similar to the illustration in figure 3.2. 

Table 3-1 Initial SOC of available vehicles at the parking lot (Moradijoz et al., 2013) 

Initial SOC SOC1 

(0.3) 

SOC2  

(0.45) 

 

SOC3 

(0.7) 

Number of Vehicles                     n1                                      n2                                     n3 

 

  

Figure 3.2: Input-output power modeling of the parking lots 

(Moradijoz et al., 2013). 

It's worth noting that the charging process doesn't always happen at a constant rate. Typically, 

charging follows a curve where the speed is faster when the battery's State of Charge (SOC) is 

low, and it slows down as the battery approaches full capacity. This adjustment in charging speed 

is managed by the battery management system to ensure the battery's health and safety are 

optimized. Moreover, certain electric vehicles are compatible with different charging speeds, 

including slower AC charging and faster DC fast charging. The charging duration can vary 

significantly based on the type of charging station and the capabilities of the EV. With 

advancements in EV technology, enhancements in charging infrastructure, and progress in battery 

chemistry, it is probable that charging times for electric vehicles will further improve. 
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3.2.3.2 Output power of the EVs 

The output power of the EVs parking lot is equal to: 

 Pparkch = Pv × n                                                                                                      (3-3) 

Where "n" represents the number of available vehicles in the parking lot, it denotes the total 

electrical power that the parking lot can supply to the connected vehicles. This capacity is 

determined by the parking lot’s charging capacity and the number of charging connectors it 

possesses. The charging capacity indicates the maximum power that the charging station can 

deliver at any given moment. This capacity may vary depending on factors such as the type of 

charging station (AC or DC fast charging), the capabilities of the charging infrastructure, and 

constraints within the local electrical grid. 

For example, if you have a DC fast charging station with a charging capacity of 150 kW and it has 

two charging connectors, the total output power of the station would be: 

Output Power = 150 kW × 2 = 300 kW 

This means that the station can deliver a maximum of 300 kilowatts of power to the connected 

electric vehicles simultaneously. 

It is important to consider that although the charging station has a specific output power capacity, 

individual vehicles may not always draw the maximum available power. The charging rate of each 

EV is influenced by factors such as the capabilities of the vehicle's onboard charger, the battery's 

state of charge, and the power supply of the charging station. As a result, the actual charging rate 

of each vehicle may be lower than the station's maximum output power. 
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3.2.3.3 Revenues of EVs: 

The profit made by parking lots from selling charging services to electric vehicles is calculated as: 

 r(i) = Prp × Pparkch(i) × tdisp(i)                                                                          (3-4) 

where r(i) is the total revenue gained from ith parking lot, tdisp(i) is the total time that the V2G 

power is dispatched, Pr is market price of electricity at peak time. 

3.2.3.4 Required cost 

The cost of vehicle-to-grid (V2G) power consists of three components: purchased energy, wear, 

and capital costs. The purchased energy and wear costs for V2G are additional expenses required 

specifically for V2G, not for driving. Similarly, the capital cost represents the expense of additional 

equipment necessary for V2G, distinct from the primary function of vehicles, which is 

transportation. In addition to the cost of V2G power, this section also models the cost of purchased 

energy for driving purposes (Kempton W, 2007). 

     1 - The capital cost of the parking lot 

                  CFcap(i) = Cac ×  PC(i)                                                                                       (3-5) 

 Cac is the annualized capital cost for each vehicle, PC(i) is the capacity of the parking lot (i). 

2- Cost of purchased energy to charge EVs for driving 

 CFpu.driving(i) = ∑
Proff

μconv

tn
d=1 × Pparkch(i, d) × t(d)                                            (3-6) 

Where Proff is the market price of electricity at off-peak times, μconv is the efficiency of the 

inverter, Pparkch(i, d) is the required power to charge vehicles from SOC 0 to SOC1 during 

duration of t(d) (it is calculated by Eq. (3-3)), and t(d) it is calculated by Eq. (3-2)). 

 

 



48 
 

     3- Cost of purchased EVs charging energy to charge vehicles for V2G power 

 CFpu.V2G(i) = Prpe × Ppark(i) × tdisp                                                                (3-7) 

The value of Prpe represents the purchased energy cost and is calculated using the following 

equation: 

 Prpe =
Proff

μconv
+ Cd                                                                                                 (3-8) 

where Cd is the cost of equipment degradation due to the extra use for V2G, and μconv is the 

efficiency of the inverter.  

3.2.3.5    Loss mitigation benefit 

The power loss in the distribution system varies due to the output power of parking lots. Therefore, 

the cost of system loss can be evaluated using the following expression: 

 DCloss(j) = price(j) ∗ (loss(j) −  loss𝑉2𝐺(j))                                                       (3-9) 

Where, 

 loss(j) = ∑ Rb ∗ Ib
2(j) ∗ t(k)B

b=1                                                                              (3-10) 

Where price(j) represents the cost of electricity in load level j, loss(j) is the network loss in load 

level j without V2G, lossV2G(j) is the network loss in load level j with V2G, Rb is the resistance 

of branch b, and Ib(j) is the current of branch b at time interval j.  

This equation is probably employed to estimate the energy losses in a charging system, aiding in 

the quantification of efficiency and energy wastage related to different components. It is 

commonly utilized in engineering and electrical systems analysis to assess the effectiveness of 

power distribution and consumption. 
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3.3 Constraints 

The objective function is maximized subject to three inequality constraints, which are described 

as follows: 

1. Distribution line capacity limit  

The power flow through the lines must be below the maximum permitted power of the lines 

due to the line's thermal capacity. 

S(i j) ≤ S(i j)max                                                                                                  (3-11)        

where Si,j is the MVA in the line connecting bus i to bus j, and S(i j)max is the MVA capacity 

of the line between bus i to bus j.  

2.  Voltage drop limit  

The voltage of each bus should be in the range of minimum and maximum voltages.  

|V|min ≤ |Vnb
| ≤ |V|max                                                                                     (3-12) 

where |V|min, |V|max are minimum and maximum allowable voltages at buses, 

respectively.  

3.  Number of vehicles limit in each parking lot 

The capacity of each parking lot in a specific area is constrained by the number of EVs in 

that area. This constraint can be expressed as follows: 

CP ≤ CPmax                                                                                                                                                             (3-13) 

 where CPmax is the maximum capacity of parking lot, which can be installed. 

3.4 Calculation of weighting factors: (Jeonghwan et al, 2010) 

In this study, AHP is used to calculate the optimal weighting coefficient for each index in Eq. (3-

1). 
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The Analytic Hierarchy Process (AHP) has been utilized to aid decision-making in a variety of 

applications, including selecting bridge designs and determining product pricing strategies. 

3.4.1 Principle of Analytic Hierarchy Process method 

This technique, a part of multi-criteria decision-making methods, adheres to four fundamental 

principles: 

• Principle of reversibility: 

 If criterion C1 is preferred over criterion C2, then C2 has a reciprocal priority of n/1 over 

C1. This principle is consistently applied in forming pairwise comparisons, as evident in 

the pairwise comparison matrices. 

• Principle of homogeneity: 

 Options and criteria must always be comparable, meaning two options cannot be included 

in the decision-making model if one is infinitely more important than the other. 

• Principle of dependence:  

In hierarchical models, each level depends on its higher level. 

• Principle of expectations:  

Any change in the hierarchical model requires repeating all hierarchical steps; for example, 

adding a criterion necessitates repeating the entire process. 

3.4.2 Steps of the Analytic Hierarchy Process method 

3.4.2.1 Creating a hierarchical diagram:  

In this step, the research factors must be extracted from various sources or obtained from experts. 

Once the factors and options are identified, the problem is divided into criteria levels and sub-

criteria, if applicable. The inclusion of criteria is essential in the Analytic Hierarchy Process 

(AHP) model; the hierarchical model cannot be constructed without them. For instance, in the 
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figure 3.3, 4 criteria (Criteria) and three options (Alternative) constitute the hierarchical model. 

The key distinction between hierarchical analysis and the Analytic Network Process (ANP) 

method lies in the hierarchical and network model itself. 

 

Figure 3.3: A simple model of the Analytic Hierarchy Process (Jeonghwan et al, 2010) 

3.4.2.2 Forming the matrix of paired comparisons: 

In this step, the elements of each level are compared pairwise with other related elements at a 

higher level, and matrices of paired comparisons are created. To assess the importance and 

preference in these pairwise comparisons, a scale of 1 to 9 is commonly used, as it can be seen in 

the table 3-2:   

Table 3-2 Preference values for pairwise comparisons  

 

 

 

 

 

 

 

Numerical values Preferences 

               9 

            7               

              5 

  3               

              1 

         2,4,6,8 

Completely more vital or completely more  

desired Very strong preference or importance 

Strong preference or importance  

A little more important 

Equal preference or importance 

Preferences between the above intervals 
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                                                                              (3-14) 

Where m is the number of objectives. 

The next step is to compute the eigenvalues and eigenvectors of the reciprocal matrix A. 

Let γmax is the maximum eigenvalue of matrix A and s be the corresponding eigenvector such that 

As = γmax s                                                                                                                             (3-15) 

Mathematically, w can be obtained by normalizing the principle eigenvector of s. (normalize the 

principle eigenvector s to ensure that the sum of its elements equal1) 

w=
s

∑ si
m
i=1

                                                                                                              (3-16) 

3.4.3 Calculating the inconsistency rate: 

The inconsistency rate serves as an indicator of the stability of comparisons. In software dedicated 

to the AHP method, this rate is automatically computed. A rate below 0.1 suggests matrix 

consistency, while a rate exceeding 0.1 indicates a need to reassess pairwise comparisons. When 

dealing with a large number of factors in a decision-making problem, inconsistency rates tend to 

be high, often necessitating extensive adjustments to the pairwise comparison matrix. In such 

cases, it is advisable to consider using an improved AHP method. 

The consistency index of matrix A is calculated as below: 

ICR = 
(γmax− m)

(m−1)∗ IRI
                                                                                                                      (3-17) 

where γmax is maximum eigenvalue of matrix A. If ICR < 0.1 the consistency of each weighting 

coefficient is acceptable. IRI denotes the random index. 
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3.5 Load flow: (Deosaria et al., 2022) 

To solve the optimal parking lot placement problem for a typical radial distribution network, a 

straightforward power flow method called the backward-forward sweep power flow is employed 

to calculate power losses. 

Load-flow studies are essential for ensuring stable, reliable, and economical transmission of 

electrical power from generators to consumers through the grid system. With the increasing 

integration of distributed alternative energy sources, often located in remote areas, load flow 

studies have become more complex and have sparked renewed interest in the field. Different 

network buses and branches carry active and reactive power from the producing station to the load 

in a three-phase AC power system. We refer to the movement of both reactive and active power 

as "flow" or "load flow." A methodical mathematical technique for determining distinct bus 

voltages, their phase angles, and the flow of reactive and active power across various branches, 

generators, and loads in a steady-state setting is provided by power flow studies (Deosaria et al., 

2022). 

Distributed loads and generation, high R/X ratios, multi-phase and unbalanced operation, radial or 

poorly meshed networks, and other special issues are faced by distribution systems. These factors 

make traditional transmission grid load flow methods like the Jacobian-based methods (Newton-

Raphson, Gauss-Seidel, and fast decoupled methods) unsuitable for distribution systems. To 

address these problems, a number of distribution system load flow analysis techniques have been 

developed. Because of their accuracy in solving problems and computing efficiency, the ladder 

network theory and the backward/forward sweep methods are the most often utilised among them. 

The typical backward/forward sweep method is used to evaluate load flow in radial distribution.  
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First, a computation is made to arrange the data on the radial distribution from the big dataset into 

a main line and its derivatives. Once the new nodes are placed into a workable model, their voltages 

are all adjusted to the nominal voltage. Next comes an iterative procedure where Kirchhoff's 

Current Law (KCL) is used to compute the branch current in the main line in a backward sweep 

after currents in derivative lines have been determined. Next, node voltages are calculated using 

Kirchhoff's Voltage Law (KVL) in a forward sweep. Until the voltage magnitudes at each node in 

the current iteration and the previous iterations are lower than the tolerance limit, this backward 

and forward sweep approach is repeated (Deosaria et al., 2022). 

3.5.1 Backward sweep:  

The procedure for updating branch currents and load flows in the Backward/Forward Sweep 

technique for load flow analysis is as follows. This update moves towards the branches that are 

related to the source node from the branches that are the farthest away from it. During the backward 

propagation phase, the updated load flows in each branch are computed while taking the node 

voltages from the previous iteration into account. The voltage levels determined in the forward 

propagation phase are maintained throughout this procedure. Next, using the backward 

propagation method, the modified power loads in each branch are propagated backward along the 

feeder. This indicates that the backward propagation proceeds in the direction of the source node, 

beginning at the node that is farthest away from it (Deosaria et al., 2022). 

3.5.2 Forward sweep:  

The forward sweep in the Backward/Forward Sweep technique entails updating nodal voltages 

from first-layer branches to last-layer branches. Computing the voltages at each node, starting 

with the feeder source node, is the aim of forward propagation. At the feeder substation, the 

voltage is adjusted to reflect its true value. The effective power in each branch is maintained 
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constant during the forward propagation phase at the value determined during the backward 

propagation step (Deosaria et al., 2022). The main steps of the suggested method, together with 

the relevant equations, are listed below. 

Step 1: Initialization of voltages (Assume initial voltage at all nodes) 

Vnode
0  = Vline <0          for node = 2, 3,…..,N                                                                                    

(3-18) 

N: number of nodes 

Step 2: Iteration count initialization, K = 1 

            convergence_ threshold = tolerance ( ε ) = 10-5 

Step 3: Load current computation. 

Inode
k =

Snode
k−1

vnode
k−1                  for node = 2, 3, …., N                                                                       (3-19) 

(s = p + j Q (In the simulation the parking lot is modeled as a bus Q=0))                              

Step 4: Backward sweep: update current starting from the end nodes 

Ibranch = Inode
k  + Σ   I branch, downstream

   

Step 5: Forward sweep (start from the substation and move towards the end nodes) 

Vnode
k  = Vprevious node 

k – Zbranch * Ibranch
k                         for all node= 2, 3…., N                    (3-20) 

 (Zbranch = Rbranch + jXbranch = √R2 + X2  )                                                     

Step 6: Error  

Enode
k  = |Vnode

k – Vnode
k−1  |/ Vline <= tolerance                  for node = 2, 3…., N                          (3-

21) 

Step 7: Maximum error 

emax = max (E2
k, E3

k, E4
k,…..., Enode

k )                                                                                          (3-22) 
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Step 8: The load flow is converging if emax is less than or equal to tolerance (ε). If not, proceed 

to step 3 and repeat the process after updating the iteration count to K=K+1. The operation of the 

load flow computation utilising the backward and forward sweep approach is shown in figure 3.4. 

 

 

 

 

 

 

 

 

 

                                              No 

                                                

                                                                              Yes 

 

Figure 3.4: Operation of the load flow calculation using the backward/forward sweep method 

(Deosaria et al., 2022) 

3.6 Solving method: 

The primary aim of the proposed model is to identify suitable locations and optimal sizes for 

parking lots by maximizing the objective function. The following section outlines the Particle 

Swarm Optimization (PSO) algorithm, which is used to solve objective optimization problem are 

described. 

Read line data and load data 

Initialize node voltage and tolerance criteria 

Using Backward sweep, compute nodal current using KCL 

Calculate node voltage using KVL in forward sweep 

Converged 

load flow 

Stop 

Start 
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 3.6.1 Particle Swarm Optimization (PSO): (Zhao et al., 2023) 

The objective function stated in Eq. (3-1), is maximized with PSO. PSO (Particle Swarm 

Optimization Algorithm) is a nature-inspired optimization technique used to tackle a variety of 

optimization challenges. It draws inspiration from the collective behavior of groups in nature, like 

the flocking of birds or the schooling of fish. Originally developed by James Kennedy and Russell 

Eberhart in 1995, PSO has grown in popularity and is widely used in computational intelligence 

and optimization. PSO works by simulating the movement of a swarm of particles through a multi-

dimensional search space, aiming to find the best solution for a given problem. It is particularly 

effective for solving optimization problems with numerous variables and complex, non-linear 

objective functions. 

Each member of the group in PSO is characterized by a velocity vector and a position vector in 

the search space. With each iteration, the particles' new positions are determined based on their 

velocity and current position in the search space. 

In the problem's dimensional space, solutions are represented by matrices with corresponding 

dimensions. Therefore, the position and velocity of PSO can be denoted by matrices of size Xi = [ 

xi,1, xi,2, · · ·, xi,D ] and [Vi = vi,1, vi,2, · · · , vi,D ], respectively, where xi,j represents the value of 

position xi in dimension j, and Vi,j represents the value of velocity Vi in dimension j. The operations 

of the algorithm are also conducted as matrix operations, and the velocity and position update 

models of the standard PSO are represented as follows: 

  Vi,j
t+1 = w * ( Vmaxi,j

t ) + c1 * r1 * (gBestj
t − xi,j

t ) + c2 * r2 * ( pBesti,j
t  − xi,j

t )                        (3-23)               

  xi,j
t+1 = xi,j

t  + Vi,j
t+1                                                                                                                                                                              (3-24) 

  w = wMax – 1 * ((wMax – wMin) / iters)                                                                                     (3-25) 
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where j = 1, 2, · · ·, D and c1 and c2 are constants representing the acceleration coefficients that 

control the particle's movement. Parameters r1 and r2 are random numbers following a Gaussian 

distribution and taking values between 0 and 1, and t represents the current iteration number.  

gBestj
t represents the value of the jth dimension of the globally optimal particle in the previous t 

iterations, and pBesti,j
t  represents the value of the jth dimension of the optimal position of particle 

i in the previous t iterations. 

The inertia weight parameter, or "w," is a term used in optimisation methods like PSO. The inertia 

weight ('w') in PSO maintains a balance between the local and global search space exploration. 

Throughout the optimisation process, Eq 3-25 modifies 'w' to progressively lower its value over 

iterations, a popular strategy to balance exploration and exploitation. (wMax is the maximum 

inertia weight, wMin is the minimum inertia weight, and t is the number of iterations)  

The process of performing this algorithm is as follows: 

- Initialization:  

Initialize a population of particles with random positions and velocities in D dimensions in 

the search space. 

- Estimation:  

Estimate the fitness of each particle in this population.  

- Update:  

Calculate the speed of each particle and move to the next position.  

- Termination:  

Stop the algorithm if it reaches a certain stop criterion; otherwise, go back to the estimation 

stage. 
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The PSO algorithm relies on the interplay between particles' individual experiences (pBest) and 

the collective best experience of the swarm (gBest) to navigate the search space effectively and 

converge towards promising regions. PSO is valued for its simplicity, ease of implementation, and 

its effectiveness in handling non-convex and multi-modal optimization challenges. However, it 

can sometimes face issues with premature convergence, where particles settle on a suboptimal 

solution without thoroughly exploring the full search space. 

The parameters of PSO that are used in this thesis are as follows: 

Vmax= 4 

wMax= 0.9 

wMin= 0.2 

c1= c2= 2 

dim=2 

PopSize=5 

In this thesis the Python software was used for calculating all above sections which is 

presented in the next capture. 
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Chapter 4: Results analysis 

4.1 Case study: 

Figure 4.1 shows the case study's test arrangement (Khalesi et al., 2011). Dispersed generations 

with power factors of 0.9 lag and ranging from 1 to 5 MW have been regarded as negative loads 

in order to assess the suggested method. Eight load points are powered by a high-voltage 

distribution substation with a rating of 132–33 kV that is part of the distribution test network. The 

network's isolator switches, which have a maximum capacity of 25 MVA, isolate each branch. 

Every load point in the network has a power factor of 0.9 latency, making them all suitable sites 

for parking lot installations. The test network's technical specifications are shown in Table 4-1, 

which loads data in three stages (Khalesi et al., 2011). 

Table 4-1: Technical characteristics of branches and load date 

 

Section 

From     To 

 

R (𝛀) X (𝛀) L (Km) Load Low 

Level 1 

(MW) 

Load Medium 

Level 2 

(MW) 

Load High 

Level 3 

(MW) 

1-3 1.4 1.5 1.5 5 6 8 

3-7 2.78 1.5 1.5 7.5 8.8 9.2 

1-2 2 4 4 8.3 11.2 9 

2-6 2.8 5.5 5.5 4 5 7 

1-5 1.7 1.7 1.7 7.5 8.8 9.2 

5-9 2.1 4 4 7.3 10.2 8 

1-4 2.26 4.5 4.5 6 7 9 

4-8 2.4 5 5 7.5 8.7 9.2 
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Figure 4.1: Studied test network. 

 

Table 4-2 provides a summary of the system's further technical and financial specifications 

(Moradijozetal, 2013). 

Table 4-2 Technical/Cost parameters 

15,50 Pv(Kw) 

50,100 ES(Kwh) 

200 tdisp (hours/year) 

0.5 Prp (Peak Price) USD$/kW h 

304   Cac USD$/year for each vehicle 

100% Car Availability 

0.3, 0.45, 0.7 SOC levels 

0.25, 0.25, 0.50 Number of Vehicle per SOC 

3 Number of Parking Lots 

 0.05  Proff USD$/kW h  

0.85 µconv 

0.225 Cd 

3 Number of load levels 

33 kv Vline 

0.9 pu Vmin 

1.1 pu Vmax 

Light load         0.035 

Medium load    0.049 

Peak load          0.07 

Price (per load level) USD$/kW h 
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Light load         2190 

Medium load    4745 

Peak load          1825 

tk (Time duration) h/year 

 

The following presumptions are made to maximise parking lot planning: (Kenton and Tomic, 

2005; Morijoz et al., 2013)  

• The highest billing rate is applied to each vehicle.  

• Three degrees of load conditions—light, medium, and peak load—are taken into 

consideration in this thesis.  

• The parking lot is represented in the simulation as a bus (Q = 0).  

• It is considered that there are always vehicles available.  

• Three degrees of the initial state of charge (SOC) for electric vehicles (EVs) are assumed 

in parking lot modeling.  

•  An additional supposition used in the modeling of the parking lot is that every battery has 

an identical dimension. As a consequence, the output power of the parking lot is 

continuously in a flat discharging condition.  

• According to estimates by traditional utilities, there may be 200 or so peak hours annually 

during which an extra kWh of power is worth 0.5 USD$/kWh. As a result, it is believed 

that automobiles provide the network with electricity for no more than 200 hours annually. 

4.2 Results: 

The AHP approach is used in every scenario to determine the ideal weighting factors. After 

determining the power loss through a backward-forward sweep, the maximum objective function 

using the PSO algorithm is used to determine the optimal size (number of EVs in each parking lot) 

to solve the optimal parking lot placement problem for a radial distribution network.  
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Additionally, to see the voltage enhancement in the presence of V2G, the voltage profile is 

examined for each scenario both with and without V2G power. 

4.2.1 Scenario 1:  

 Pv:15 kw and ES :50 Kwh 

Based on chapter 3, at first the vector weighting coefficient will be calculated. In all scenarios, all 

arrays of matrix A equal 1. So, the vector of weighting coefficients is the same in all scenarios. 

A=  

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

 

Thus, the vector of weighting coefficients is calculated using Eq. (3-15) and Eq. (3-16) with the 

result as below. (The Python code is attached in appendices) 

s =      

5
5
5
5
5

                  w= 

5
5
5
5
5

     

5+5+5+5+5
 =   

0.2
0.2
0.2
0.2
0.2

 

 

w = [ 0.2, 0.2, 0.2, 0.2, 0.2] 

In the next step, the location of the parking lot will be determined using load flow, and with the 

PSO algorithm, the number of EVs in each parking lot will be discovered. 

For calculating load flow in this case study, there are 4 lines (1-3-7, 1-5-9, 1-4-8, and 1-2-6). 

Although the complete steps of all lines are coded in Python and attached to the appendices, one 

line (1-3-7) is selected as an example to show all the steps mentioned in chapter 3. 

Step 1: Initialization of voltages in 8 nodes  

V2
0 = V3

0 = V4
0 = V5

0 = V6
0 = V7

0= V8
0 = V9

0 = Vline= 33 Kv 
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Step 2: Iteration count initialization, k = 1, ε = 10-5 

Step 3: Load Current computation.  

I7
1 = 

S7
0

v7
1 =  

9.2 (MW)

33 (KV)
  = 278.78 

I3
1 = 

S3
0

v3
0 = 

8 (MW)

33 (KV)
  = 242.42 

Step 4: Update current starting from the end nodes (Backward Sweep) –  

I3−7
1  = I7

1 + Σ   I branch, downstream   = 278.78 + 0  = 278.78 

I1−3
1  = I3

1 + Σ   I branch, downstream   =  I3
1 + I3−7

1  = 242.42 + 278.78 = 524.21 

Step 5: Forward Sweep 

V3
1 =Vline

1 – Z1-3 * I1−3
1  = 33000 - 2.051 * 524.21 = 31930.56 

V7
1 =V3

1– Z3-7 * I3−7
1  = 31930.56 - 6.16 * 278.78 = 30212.48  

Step 6: Error 

E3
1 = |V3

1– V3
0 |/ Vline <= tolerance              E3

1 = |31930.56– 33000 |/ 33000   = 0.0324 > 10-5 

E7
1 = |V7

1– 77
0 |/ Vline <= tolerance              E7

1 = |30212.48– 33000 |/ 33000   = 0.0844 > 10-5 

Step 7: Maximum Error 

emax = max (E3
1, E7

1) = 0.0844 >10-5 

 Step 8: emax is more than tolerance (ε), then update the iteration count to k=k+1 and go to step 3 

and repeat the steps. 

- K=2 

Step 3: Load Current computation. (line 1-3-7) 

I7
2 = 

S7
1

v7
1 =  

9.2 (MW)

30212.48
  = 304.51 

I3
2 = 

S3
2

v3
2 = 

8 (MW)

31930.56
  = 250.54 

Step 4: Update current starting from the end nodes (Backward Sweep)  
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I3−7
2  = I7

2 + Σ   I branch, downstream   = 304.051 +0 = 304.051                                                                   

I1−3
2  = I3

2 + Σ   I branch, downstream   = I3
2 + I3−7

2   =  250.54 + 304.51 =555.05                                                                 

Step 5: Forward Sweep 

V3
2 =Vline

2 – Z1-3 * I1−3
2  = 33000 - 2.051 * 555.05 = 31861.12 

V7
2 = V3

2– Z3-7 * I3−7
2  = 31861.12 - 6.16 * 304.052 = 29984.53  

Step 6: Error 

E3
2 = |V3

2– V3
1 |/ Vline <= tolerance               E3

2 = |31861.12 – 31930.56|/ 33000   = 0.0021 > 

10-5 

E7
2 = |V7

2– 77
1  |/ Vline <= tolerance               E7

2 = |29984.53 –30212.48 |/ 33000   = 0.0069 > 

10-5 

Step 7: Maximum Error 

emax = max (E3
2, E7

2) = 0.0069 >10-5 

 Step 8: emax is greater than tolerance (ε), so update the iteration count to k=k+1 and go to step 3. 

These steps are repeated, and in K=6, the emax becomes less than tolerance (ε), so the load flow is 

Converged at iteration 6.  

emax = max (E3
6, E7

6) = 4.28* 10-7 < 10-5 

Then the location of parking lots, the number of EVS, and the benefit of loss reduction (Eq. (3-9) 

and (3-10)) are obtained using the PSO algorithm. At the end, the benefit of providing peak 

power (net income – required cost) and total benefit is calculated using Eq. (3-1). 

This scenario's outcomes are presented in Table 4-3. It is considered that there are vehicles 

available in full. Put otherwise, all EV owners respect the agreement. The overall yearly benefit is 

188089.803 USD$, as the table show. 
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Table 4-3 Simulation results of scenario 1 

Bus number 

Optimum number of EVs 

6                          8 

249                     302 

Benefit of loss reduction $ 62266.4 

Benefit of providing peak power $ 125823.403 

 

Total benefit $ 188089.803 

 

Figure 4.2 displays the voltage profile of load locations during peak hours, when parking lots 

provide electricity to the distribution system. As previously stated, a total of six iterations are 

needed, with a tolerance of 10-5 p.u.  

There is a voltage decrease on buses 6 and 8, as seen in figure 4.2 and table 4-4 (without V2G). 

Therefore, since the voltage on buses 6 and 8 is less than 0.9 p.u., the optimisation constraint is 

not in the required range in this scenario. Nonetheless, when V2G power is present, the voltage 

profile of the buses improves.  

It is important to remember that the voltage in every bus is the same as the voltage in every node 

determined by the load flow technique. (after convergence) 

Table 4-4 Voltage magnitude of 9-bus system (15 Kw) 

Bus Number Bus Voltages 

without V2G (p.u.) 

Bus Voltages 

with V2G (p.u.) 

1 1 1 

2 0.9343 0.9496 

3 0.9676 0.9676 

4 0.9158 0.9368 

5 0.9620 0.9620 

6 0.8946 0.9311 



67 
 

7 0.9155 0.9155 

8 0.8689 0.9130 

9 0.9288 0.9288 

 

 

Figure 4.2: Voltage profile in peak load (scenario 1) 

4.2.2 Scenario 2:      

 Pv:50 kw and ES :100 Kwh 

The vector of weighting coefficients is calculated like scenario 1. 

w = [ 0.2, 0.2, 0.2, 0.2, 0.2] 

Table 4-5 displays the outcome of this case. Vehicle availability is taken for granted to be 100%. 

Or to put it another way, every EV owner honours the agreement. The statistics show that the 

overall yearly benefit is 185731.7176 USD$.  

Table 4-5 Simulation results of scenario 2 

Bus number 

Optimum number of EVs 

6                          8 

58                       74 

Benefit of loss reduction $ 66483.2 

Benefit of providing peak power $ 119248.5176 

 

Total benefit $ 185731.7176 
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Figure 4.3 displays the voltage profile of load points, or parking lots that provide electricity to the 

distribution system, during peak hours. The needed total number of iterations is six, and the 

tolerance is 10-5 p.u. Bus numbers 6 and 8 experience a voltage loss when there is no V2G in the 

network, as shown in figures 4.3 and Table 4-6, since their voltage is less than 0.9 p.u. But when 

V2G is present, this problem is resolved. 

Table 4-6 Voltage magnitude of 9-bus system (50 Kw) 

Bus Number Bus Voltages 

without V2G (p.u.) 

Bus Voltages 

with V2G (p.u.) 

1 1 1 

2 0.9343 0.9462 

3 0.9676 0.9676 

4 0.9158 0.9329 

5 0.9620 0.9620 

6 0.8946 0.9229 

7 0.9155 0.9155 

8 0.8689 0.9049 

9 0.9288 0.9288 

 

 

Figure 4.3: Voltage profile in peak load (scenario 2) 
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4.2.3 Scenario 3:  

Pv:100 kw and ES :100 Kwh 

w = [ 0.2, 0.2, 0.2, 0.2, 0.2] 

Table 4-7 displays what happened in this particular case. As the statistics show, the benefit's total 

yearly value is $176902.4823. The availability of vehicles is taken for granted to be 100%. Stated 

differently, every owner of an EV abides by the agreement. 

Table 4-7 Simulation results of scenario 3 

Bus number 

Optimum number of EVs 

6                         8 

26                      32 

Benefit of loss reduction $ 68552.4 

Benefit of providing peak power $ 108350.0823 

 

Total benefit $ 176902.4823 

 

Figure 4.4 displays the voltage profile of load sites during peak hours when parking lots provide 

electricity to the distribution system. The total number of iterations needed is six, and the tolerance 

is 10-5 p.u. Table 4-8 and Figure 4.4 show that there is a voltage reduction at bus numbers 6 and 

8, where the voltage is less than 0.9 p.u. (without V2G). In the presence of V2G power, the voltage 

profile of the buses improves, but the optimization constraints are still within a reasonable range. 

Table 4-8 Voltage magnitude of 9-bus system (100 Kw) 

Bus Number Bus Voltages 

without V2G (p.u.) 

Bus Voltages 

with V2G (p.u.) 

1 1 1 

2 0.9343 0.9449 

3 0.9676 0.9676 
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4 0.9158 0.9306 

5 0.9620 0.9620 

6 0.8946 0.9200 

7 0.9155 0.9155 

8 0.8689 0.9001 

9 0.9288 0.9288 

 

 

Figure 4.4: Voltage profile in peak load (scenario 3)  

4.3 Comparison of results: 

In this thesis, an optimisation model is effectively used to calculate the optimal parking lot size 

and capacity to meet demand during peak hours. This method is compared with another study's 

total capacity parking lots on the network and loss reduction percentage in this part.  
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Table 4-9 Results comparison 

Methodology Network condition Bus 

number 

Optimum 

number of 

EVs in 

each bus 

Voltage 

Drop 

points 

(with 

V2G) 

Total 

capacity of 

network 

(W) 

Benefit of 

loss 

reduction 

($) 

Proposed 

approach 

(PSO) 

Peak load (200h) Pv: 15kw  

ES: 50 kwh 

6 

8 

249 

302 

- 8265 KW 62266.4 

  Pv: 50 kw  

ES:100 kwh 

6 

8 

58 

74 

- 6600 KW 66483.2 

  Pv: 100 kw 

ES:100 kwh 

6 

8 

26 

32 

- 5800 KW 68552.4 

Competition 
over resource 
optimization 
algorithm 

(Fathy and 

Almoataz 

2020) 

Peak load (200h) Pv: 15kw  

ES: 50 kwh 

2 

3 

6 

100 

300 

200 

8 14625KW 33010 

 

Grey wolf 
optimizer 

(Fathy and 

Almoataz 

2020) 

Peak load (200h) Pv: 15kw  

ES: 50 kwh 

2 

3 

6 

107 

350 

230 

8 14625KW 34110.3800 

Water cycle 

algorithm  

(Fathy and 

Almoataz 

2020) 

Peak load (200h) Pv: 15kw  

ES: 50 kwh 

2 

3 

6 

115 

370 

250 

8 14625KW 38664.450 

Whale 

optimization 

algorithm  

(Fathy and 

Almoataz 

2020) 

Peak load (200h) Pv: 15kw  

ES: 50 kwh 

2 

3 

6 

112 

360 

240 

8 14625KW 38436.1490 
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Genetic 

Algorithm 

(Moradijoz et 

al., 2013) 

 

Peak load (200h) Pv: 15kw  

ES: 50 kwh 

2 

3 

6 

375 

375 

225 

8 14625KW 38705 

Dynamic 

Programming 

(Khalesi et 

al.,2011) 

Light load (2190h) 

Medium load (4745h) 

Peak load (1825h) 

- 

- 

- 

6, 7, 8 

6, 7, 8 

6, 8 

- 

- 

- 

- 

- 

- 

5MW 

5MW 

5MW 

1685881 

2792897 

679784 

 

Table 4-9 compares the total numbers of EVs, voltage drop points (with V2G), the total capacity 

of the EV to the network, and the total benefit of loss reduction. 

The authors in Moradijoz et al. (2013) estimated and located 975 EVs in the network with a total 

capacity of 14,625 kW. In contrast, Fathy and Almoataz (2020) explored four methods (COR, 

GWO, WCA, and WOA approaches), resulting in the location of 600, 687, 735, and 712 EVs in 

the network, respectively, with the same total capacity of 14,625 kW. On the other hand, Khalesi 

et al. (2011) did not consider EVs in the distribution network; instead, they estimated and located 

about 5 MW of DGs in the network, distributed across three load types (light, medium, peak). 

Consequently, their approach demonstrates the potential for significantly reducing losses and 

increasing benefits compared to others. 

This study achieves a higher benefit in loss reduction with a smaller number of EVs compared to 

Moradijoz et al. (2013) and Fathy and Almoataz (2020). 

In addition, the results in Moradijoz et al. (2013) and Fathy and Almoataz (2020) are based on 

specific parameters, such as Pv = 15 kW and ES = 50 kWh, without considering other network 

conditions. Furthermore, the optimization constraint for bus number 8 in Moradijoz et al. (2013) 

and Fathy and Almoataz (2020) is not within the appropriate range (voltage drop occurs at bus 
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number 8 during peak hours). This thesis, by considering various situations, demonstrates that 

utilizing fast charging stations and vehicles with higher battery capacities can significantly reduce 

the total number of EVs while improving voltage drop during peak times. 

It is worth mentioning that in this thesis, the benefit of loss reduction is examined, and the benefit 

of reliability improvement is not checked. While the authors in Moradijoz et al. (2013) and Fathy 

and Almoataz (2020) also checked the benefit of reliability improvement. 
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Chapter 5: Conclusion and future works 

This Chapter discusses the conclusions derived from implementing the optimization problem for 

allocating parking lots in a distribution network with checking voltage drop using PSO algorithm. 

The chapter also proposes future work in the area of optimization for allocation problems using 

the PSO method. 

5.1 Conclusion 

The thesis aimed to address the optimal allocation of parking lots within a distribution system to 

efficiently supply loads. It proposed an optimization model that determines the best capacity and 

size of parking lots to meet peak hour demands (200h in a year based on Kempton et al. (2005)) 

and the problem has been optimized considering existed constrains on permanent operation of the 

distribution system. This model focused on maximizing total benefits, considering data and market 

prices. Results from the study showed that installing parking lots could be economically profitable 

for the distribution company (DISCO) and could improve the voltage profile. To optimize the 

allocation of parking lots, the study utilized the Particle Swarm Optimization (PSO) algorithm, 

which is a heuristic optimization technique inspired by the social behavior of bird flocking or fish 

schooling. This algorithm iteratively improves a candidate solution by moving towards the best 

solution found so far, considering both the candidate solution's own best position and the best 

position found by other particles in the swarm. 

The simulation results indicate that changes in the battery capacity of EVs in parking lots and the 

power rate at which the EVs are charged (Pv) result in variations in the outcomes. To achieve more 

accurate results, it is essential to precisely determine the size of the batteries and the power rate at 

which the EVs are charged. This would involve careful consideration of factors such as the 

expected usage patterns of the EVs, the charging infrastructure available, and the overall objectives 
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of the optimization process. Fine-tuning these parameters can lead to more precise and effective 

outcomes in the optimization of parking lot allocations for EV charging. 

In addition to the benefits already mentioned, this approach offers several other advantages that 

should not be overlooked. These advantages include: 

1- Improvement in Voltage profile: 

 By strategically locating parking lot charging stations at peak time, the voltage profile at 

load points can be improved, ensuring that they remain within acceptable limits. 

2- Reduction in power Flow: 

The approach helps to reduce power flow in feeders by compensating for losses and 

supplying part of the required power to load points in the network. This can alleviate stress 

on feeders, particularly those near high-voltage distribution substations. 

3- Enhanced Equipment Lifespan: 

By reducing stress on feeders and improving voltage profiles, the approach can contribute 

to prolonging the lifespan of equipment in the distribution network. This can lead to cost 

savings and improved reliability of the network. 

Overall, these additional advantages highlight the potential of the approach to not only optimize 

parking lot allocations for electric vehicle charging but also to improve the overall performance 

and efficiency of the distribution network.  

Therefore, this method can provide technical and financial benefits, as indicated by the simulation 

results, if implemented in suitable locations with appropriate sizes. 
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5.2 Future works 

While the results achieved are well defined and practical and reflects a general trend towards the 

determination the appropriate size and site of parking lots in different scenarios, several avenues 

for future research and development can be pursued based on the findings and limitations of this 

thesis. 

These directions include: 

1- A simple system with 9 bus was considered in this thesis. The proposed method can be 

used for a complex system like 33 bus or 69 bus. 

2- The weighting coefficient can lead to variations in the results. In this study, the weighting 

coefficient was equal and all arrays in matrix A were 1. The same approach can be used 

to examine the effects of various weighting coefficients. 

3- It was assumed that all EV owners respected the contract, and the availability of vehicles 

was 100 percent. If the availability of vehicles is 80 percent or less, it can have an have 

an effect on the result. 

4- Reliability improvement has not been investigated in this thesis, so it can also be 

investigated in future works. 

5- In the modeling of parking lots, it is assumed that the initial state of charge (SOC) of EVs 

has three levels. The proposed model can be used for other SOC levels. 
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Appendices 

Python code 

Analytic hierarchy process 

# Importing necessary packages 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

import seaborn as sns 

%matplotlib inline 

 

 

# Reading the file 

ahp_df = pd.read_csv('/content/all 1.csv') 

ahp_df.set_index('Unnamed: 0', inplace=True) 

ahp_df 

 

# We will introduce a function to find the priority index. 

# Then we provide the attributes data to this function. 

def ahp_attributes(ahp_df): 

    # Creating an array of sum of values in each column 

    sum_array = np.array(ahp_df.sum(numeric_only=True)) 

    # Creating a normalized pairwise comparison matrix. 

    # By dividing each column cell value with the sum of the respective 

column. 

    cell_by_sum = ahp_df.div(sum_array,axis=1) 

    # Creating Priority index by taking avg of each row 

    priority_df = pd.DataFrame(cell_by_sum.mean(axis=1), 

                               index=ahp_df.index,columns=['priority 

index']) 

    priority_df = priority_df.transpose() 

    return priority_df 

 

# Calling the ahp_attributes function, 

# To return a table with the priority index for each attribute. 

priority_index_attr = ahp_attributes(ahp_df) 

priority_index_attr 
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def consistency_ratio(priority_index,ahp_df): 

    random_matrix = {1:0,2:0,3:0.58,4:0.9,5:1.12,6:1.24,7:1.32, 

                     8:1.14,9:1.45,10:1.49,11:1.51,12:1.48,13:1.56, 

                     14:1.57,15:1.59,16:1.605,17:1.61,18:1.615,19:1.62,20:

1.625} 

    # Check for consistency 

    consistency_df = ahp_df.multiply(np.array(priority_index.loc['priority 

index']),axis=1) 

    consistency_df['sum_of_col'] = consistency_df.sum(axis=1) 

    # To find lambda max 

    lambda_max_df = 

consistency_df['sum_of_col'].div(np.array(priority_index.transpose() 

                                                              ['priority 

index']),axis=0) 

    lambda_max = lambda_max_df.mean() 

    # To find the consistency index 

    consistency_index = round((lambda_max-

len(ahp_df.index))/(len(ahp_df.index)-1),3) 

    print(f'The Consistency Index is: {consistency_index}') 

    # To find the consistency ratio 

    consistency_ratio = 

round(consistency_index/random_matrix[len(ahp_df.index)],3) 

    print(f'The Consistency Ratio is: {consistency_ratio}') 

    if consistency_ratio<0.1: 

        print('The model is consistent') 

    else: 

        print('The model is not consistent') 

 

consistency_ratio(priority_index_attr,ahp_df) 
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import numpy as np 

import matplotlib.pyplot as plt 

import math 

 

Network data 

grid9 = { 

    "1-3":{"R": 1.4, "X": 1.5, "L":1.500, "Load1":5, "Load2":6, "Load3":8, 

"FR":0.05, "t_rep":15, "t_res":1, "Isolations": ["1-3"], "S_max":25}, 

    "3-7":{"R": 2.78, "X": 5.5, "L":5.500, "Load1":7.5, "Load2":8.5, 

"Load3":9.2, "FR":0.046 * 5.5, "t_rep":8, "t_res":1, "Isolations": ["3-

7"], "S_max":25}, 

    "1-2":{"R": 2, "X": 4, "L":4.000, "Load1":8.3, "Load2":11.2, 

"Load3":9, "FR":0.05, "t_rep":15, "t_res":1, "Isolations": ["1-2"], 

"S_max":25}, 

    "2-6":{"R": 2.8, "X": 5.5, "L": 5.500, "Load1": 4, "Load2":5, 

"Load3":7, "FR":0.046 * 5.5, "t_rep":8, "t_res":1, "Isolations": ["2-6"], 

"S_max":25}, 

    "1-5":{"R": 1.7, "X": 1.7, "L": 1.700, "Load1": 7.5, "Load2":8.8, 

"Load3":9.2, "FR":0.05, "t_rep":15, "t_res":1, "Isolations": ["1-5"], 

"S_max":25}, 

    "5-9":{"R": 2.1, "X": 4, "L": 4.000, "Load1": 7.3, "Load2":10.2, 

"Load3":8, "FR":0.046 * 4, "t_rep":8, "t_res":1, "Isolations": [ "5-9"], 

"S_max":25}, 

    "1-4":{"R": 2.26, "X": 4.5, "L": 4.500, "Load1": 6, "Load2":7, 

"Load3":9, "FR":0.05, "t_rep":15, "t_res":1, "Isolations": ["1-4"], 

"S_max":25}, 

    "4-8":{"R": 2.4, "X": 5, "L": 5.000, "Load1": 7.5,"Load2":8.7, 

"Load3":9.2, "FR":0.046 * 5, "t_rep":8, "t_res":1, "Isolations": ["4-8"], 

"S_max":25}, 

} 

 

ENS = { 

    "2":[0.053, 0.073, 0.105], 

    "3":[0.053, 0.073, 0.105], 

    "6":[0.053, 0.073, 0.105], 

    "4":[2, 3.8, 3.6], 

    "7":[2, 3.8, 3.6], 

    "8":[2, 3.8, 3.6], 

    "9":[2, 3.8, 3.6], 

    "5":[6, 8.4, 11.050], 

} 
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Pv = 15 # kW h 

Pv_loss = 13.5 #kwh 

Pbattery = 50 

ES = 50 # Kw 

t_disp = 200 # hours/year 

Pr_p = 0.5 #USD$/kW h 

Cac = 304 # (USD$/year for each vehicle) 

availability = 1.0 

SOC = [0.3, 0.45, 0.7] 

n_vehic_soc = [0.25, 0.25, 0.50] 

Nstations = 2 

Pr_off = 0.05 #USD$/KW h 

mu_conv = 0.85 

Cd = 0.2 #  (USD$/kW h) 

num_load_levels = 3 # light medium high 

V_line = 33 #kv 

Price = [0.035, 0.049, 0.07]  # per load level price 

tk_ = [2190, 4745, 1825] 

Parking_nodes = [6, 8] 
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Load flow 

def objFunc(n, w=[0.2, 0.2, 0.2, 0.2, 0.2], grid=grid9, availability=1.0): 

    """ 

    n: Number of vehicles in each parking_node 

    w: weighting factors 

    grid: input grid 

    """ 

 

    Nv2g = len(n) 

# load flow: 

 

    # Initialize Z values 

    Z2 = Z3 = Z4 = Z5 = Z6 = Z7 = Z8 = Z9 = 0 

 

    # Initialize lists for voltage profiles and modified nodes 

    voltage_profiles = [] 

    Active_power = [] 

    modified_nodes = [] 

    I_values = [] 

    Z_values = [] 

    P_value = [] 

    Rb_value=[] 

    current_values = {} 

    impedance_values = {} 

    power_values = {} 

    V_values = {} 

    real_Rb_values = {} 

 

    for j in range(num_load_levels): 

        if j == 2: 

           for b in grid.keys(): 

               node = int(b.split("-")[-1]) 

               Rb, Xb, L = grid[b]["R"], grid[b]["X"], grid[b]["L"] 

               Z = math.sqrt(((Rb)**2+ +( Xb)**2 )) 

               P = grid[b][f"Load{j+1}"] * 1000  # KW 

               I_j = P / V_line 

               #print(I_j) 

               if node in [2, 3, 4, 5, 6, 7, 8, 9]: 

                  globals()[f"Z{node}"] = Z 

                  globals()[f"I{node}"] = I_j 

                  globals()[f"P{node}"] = P 

                  globals()[f"Rb{node}"] = Rb 

                  modified_nodes.append(node) 
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                  I_values.append(I_j) 

                  Z_values.append(Z) 

                  P_value.append(P) 

                  Rb_value.append(Rb) 

 

    # Sort I and Z based on the number of nodes 

    sorted_data = sorted(zip(modified_nodes, I_values, Z_values, P_value, 

Rb_value), key=lambda x: x[0]) 

    sorted_nodes, sorted_I_values, sorted_Z_values, sorted_P_values, 

sorted_Rb_value = zip(*sorted_data) 

 

    # Print the sorted data 

    for node, I_value, Z_value, P_value, Rb_value in zip(sorted_nodes, 

sorted_I_values, sorted_Z_values, sorted_P_values, sorted_Rb_value): 

 

        # Store values in dictionaries 

        current_values[node] = I_value 

        impedance_values[node] = Z_value 

        power_values[node] = P_value 

        real_Rb_values[node] = Rb_value 

 

# Load flow analysis for selected nodes 

    convergence_threshold=0.00001 

    convergence= False 

    K = 1 

    if node in [3, 7, 2, 6, 5, 9, 4, 8]: 

       globals()[f"V{3}_K0"] = V_line * 1000 

       globals()[f"V{7}_K0"] = V_line * 1000 

       globals()[f"V{2}_K0"] = V_line * 1000 

       globals()[f"V{6}_K0"] = V_line * 1000 

       globals()[f"V{5}_K0"] = V_line * 1000 

       globals()[f"V{9}_K0"] = V_line * 1000 

       globals()[f"V{4}_K0"] = V_line * 1000 

       globals()[f"V{8}_K0"] = V_line * 1000 

 

       while True: 

            I_3_7 = I_7 = power_values[7] * 1000 / globals()[f"V{7}_K{K - 

1}"] 

            I_3 = power_values[3] * 1000 / globals()[f"V{3}_K{K - 1}"] 

            I_1_3 = I_3 + I_3_7 

 

            V_3_K = V_line * 1000 - impedance_values[3] * I_1_3 

           # print(V_3_K) 

            V_3_PU_K = V_3_K / globals()[f"V{node}_K0"] 
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            E_3_K = np.abs((np.abs(V_3_K) - np.abs(globals()[f"V{3}_K{K - 

1}"])) / np.abs(V_line*1000)) 

 

            V_7_K = V_3_K -  impedance_values[7] * I_7 

            #print(V_7_K) 

            V_7_PU_K = V_7_K / globals()[f"V{node}_K0"] 

            E_7_K=  np.abs((np.abs(V_7_K) - np.abs(globals()[f"V{7}_K{K - 

1}"])) / np.abs(V_line*1000)) 

 

            globals()[f"V{3}_K{K}"] = V_3_K 

            globals()[f"V{7}_K{K}"] = V_7_K 

            emax_3_7 = max(E_3_K , E_7_K) 

           # print(emax_3_7) 

 

            I_2_6 = I_6 = power_values[6] * 1000 / globals()[f"V{6}_K{K - 

1}"] 

            I_2 = power_values[2] * 1000 / globals()[f"V{2}_K{K - 1}"] 

            I_1_2 = I_2 + I_2_6 

 

            V_2_K = V_line * 1000 - impedance_values[2] * I_1_2 

            V_2_PU_K = V_2_K / globals()[f"V{node}_K0"] 

            E_2_K = np.abs((np.abs(V_2_K) - np.abs(globals()[f"V{2}_K{K - 

1}"])) / np.abs(V_line*1000)) 

 

            V_6_K = V_2_K -  impedance_values[6] * I_6 

            V_6_PU_K = V_6_K / globals()[f"V{node}_K0"] 

            E_6_K=  np.abs((np.abs(V_6_K) - np.abs(globals()[f"V{6}_K{K - 

1}"])) / np.abs(V_line*1000)) 

 

            globals()[f"V{2}_K{K}"] = V_2_K 

            globals()[f"V{6}_K{K}"] = V_6_K 

            emax_2_6 = max(E_2_K, E_6_K) 

           # print(emax_2_6) 

 

            I_5_9 = I_9 = power_values[9] * 1000 / globals()[f"V{9}_K{K - 

1}"] 

            I_5 = power_values[5] * 1000 / globals()[f"V{5}_K{K - 1}"] 

            I_1_5 = I_5 + I_5_9 

 

            V_5_K = V_line * 1000 - impedance_values[5] * I_1_5 

            V_5_PU_K = V_5_K / globals()[f"V{node}_K0"] 

            E_5_K = np.abs((np.abs(V_5_K) - np.abs(globals()[f"V{5}_K{K - 

1}"])) / np.abs(V_line*1000)) 

 

            V_9_K = V_5_K -  impedance_values[9] * I_9 
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            V_9_PU_K = V_9_K / globals()[f"V{node}_K0"] 

            E_9_K=  np.abs((np.abs(V_9_K) - np.abs(globals()[f"V{9}_K{K - 

1}"])) / np.abs(V_line*1000)) 

 

            globals()[f"V{5}_K{K}"] = V_5_K 

            globals()[f"V{9}_K{K}"] = V_9_K 

            emax_5_9 = max(E_5_K, E_9_K) 

           # print(emax_5_9) 

 

            I_4_8 = I_8 = power_values[8] * 1000 / globals()[f"V{8}_K{K - 

1}"] 

            I_4 = power_values[4] * 1000 / globals()[f"V{4}_K{K - 1}"] 

            I_1_4 = I_4 + I_4_8 

 

            V_4_K = V_line * 1000 - impedance_values[4] * I_1_4 

            V_4_PU_K = V_4_K / globals()[f"V{node}_K0"] 

            E_4_K = np.abs((np.abs(V_4_K) - np.abs(globals()[f"V{4}_K{K - 

1}"])) / np.abs(V_line*1000)) 

 

            V_8_K = V_4_K -  impedance_values[8] * I_8 

            V_8_PU_K = V_8_K / globals()[f"V{node}_K0"] 

            E_8_K=  np.abs((np.abs(V_8_K) - np.abs(globals()[f"V{8}_K{K - 

1}"])) / np.abs(V_line*1000)) 

 

            globals()[f"V{4}_K{K}"] = V_4_K 

            globals()[f"V{8}_K{K}"] = V_8_K 

            emax_4_8 = max(E_4_K, E_8_K) 

            #print(emax_4_8) 

            emax = max(E_2_K, E_3_K, E_4_K, E_5_K, E_6_K, E_7_K, E_8_K, 

E_9_K) 

 

        # Check convergence 

            if emax <= convergence_thereshold : 

                 convergence = True 

                 print("Converged at iteration:", K) 

                 break 

            else: 

                 K += 1 

            #print(V_2_PU_K, V_3_PU_K, V_4_PU_K, V_5_PU_K, V_6_PU_K, 

V_7_PU_K, V_8_PU_K, V_9_PU_K) 

            voltage_profiles.extend([V_2_PU_K, V_3_PU_K, V_4_PU_K, 

V_5_PU_K, V_6_PU_K, V_7_PU_K, V_8_PU_K, V_9_PU_K]) 

            voltage_profiles_first_iteration = voltage_profiles[:8] 

            #print(voltage_profiles_first_iteration) 
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            S=[] 

            S3= V_3_K *  I_1_3/1000000 #MVA 

            S7= V_7_K *  I_3_7/1000000 

            S2= V_2_K *  I_1_2/1000000 

            S6= V_6_K *  I_2_6/1000000 

            S5= V_5_K *  I_1_5/1000000 

            S9= V_9_K *  I_5_9/1000000 

            S4= V_4_K *  I_1_4/1000000 

            S8= V_8_K *  I_4_8/1000000 

            Active_power.extend([S2, S3, S4, S5, S6, S7, S8, S9]) 

            Active_power_first_iteration = Active_power[:8] 

            #print(Active_power) 

 

    # Constraint 1: Distribution line capacity limit 

    S_max = 25 #MVA 

    for j in range(num_load_levels): 

        if j == 2: 

           for node in [3, 7, 2, 6, 5, 9, 4, 8]: 

              if Active_power[node] <= S_max: 

                   #print(Active_power[3]) 

                   print(True) 

              else: 

                   print(False) 

 

    # Constraints2: Voltage drop limit 

 

    V_min = 0.9 #Pu 

    V_max = 1.1 #Pu 

    if j == 2: 

       for node in [2, 3, 4, 5, 6, 7, 8, 9]: 

        # Check if the node index is within the range of 

voltage_profiles_first_iteration 

          if 0 <= node-2  < len(voltage_profiles_first_iteration): 

             voltage_node = voltage_profiles_first_iteration[node-2 ] 

             if V_min <= voltage_node <= V_max: 

                print(True) 

             else: 

                print(f"Node index {node} is out of range.") 

                print(False) 

 

    # Constraint 3: Number of vehicles limit in each parking lot 

    PC_max = 1000 

    PC= n 

    for j in range(num_load_levels): 
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        if j == 2: 

           for node in [3, 7, 2, 6, 5, 9, 4, 8]: 

              if np.sum(PC <= PC_max): 

                   print(True) 

              else: 

                   print(False) 

 

 

    # Calculate losses : 

    loss = np.array([0] *num_load_levels) 

    loss_v2g = np.array([0]*num_load_levels) 

    DC_loss = np.array([0]*num_load_levels) 

 

    for node in [3, 7, 2, 6, 5, 9, 4, 8]: 

        Loss_3 = real_Rb_values[3] * (I_1_3)**2 *tk_[j]/1000 

        Loss_7 = real_Rb_values[7] * (I_3_7)**2 *tk_[j]/1000 

        Loss_2 = real_Rb_values[2] * (I_1_2)**2 *tk_[j]/1000 

        Loss_6 = real_Rb_values[6] * (I_2_6)**2 *tk_[j]/1000 

        Loss_5 = real_Rb_values[5] * (I_1_5)**2 *tk_[j]/1000 

        Loss_9 = real_Rb_values[9] * (I_5_9)**2 *tk_[j]/1000 

        Loss_4 = real_Rb_values[4] * (I_1_4)**2 *tk_[j]/1000 

        Loss_8 = real_Rb_values[8] * (I_4_8)**2 *tk_[j]/1000 

 

    loss += int(np.sum([Loss_2, Loss_3, Loss_4, Loss_5, Loss_6, Loss_7, 

Loss_8, Loss_9])) 

 

    for node in Parking_nodes: 

        loss_v2g += (int(Pv_loss*(n[Parking_nodes.index(node)] * 

availability))) * t_disp 

 

    DC_loss[j] = (loss[j] - loss_v2g[j]) * Price[j] 

    F = np.sum(w[4]*DC_loss) 

    return np.sum(F),(np.sum(w[4]*DC_loss)) 
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Particle swarm optimization 

from itertools import combinations 

import numpy as np 

import random 

import time 

 

class solution: 

    def __init__(self): 

        self.best = 0 

        self.bestIndividual = [] 

        self.convergence = [] 

        self.optimizer = "" 

        self.objfname = "" 

        self.startTime = 0 

        self.endTime = 0 

        self.executionTime = 0 

        self.lb = 0 

        self.ub = 0 

        self.dim = 0 

        self.popnum = 0 

        self.maxiers = 0 

 

def PSO(objf, weighting_factors, grid, lb, ub, dim, PopSize, iters): 

 

    # PSO parameters 

 

    Vmax = 4 

    wMax = 0.9 

    wMin = 0.2 

    c1 = 2 

    c2 = 2 

 

    s = solution() 

    if not isinstance(lb, list): 

        lb = [lb] * dim 

    if not isinstance(ub, list): 

        ub = [ub] * dim 

 

    ######################## Initializations 

 

    vel = np.zeros((PopSize, dim)) 

 

    pBestScore = np.zeros(PopSize) 

    pBestScore.fill(-float("inf")) 
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    pBest = np.zeros((PopSize, dim)) 

    gBest = np.zeros(dim) 

 

    gBestScore = -float("inf") 

 

    pos = np.zeros((PopSize, dim)) 

    for i in range(dim): 

        np.random.seed(0)  # Set seed to 0 for reproducibility 

        pos[:, i] = np.random.uniform(0, 1, PopSize) * (ub[i] - lb[i]) + 

lb[i] 

 

    convergence_curve = np.zeros(iters) 

 

    ############################################ 

    print('PSO is optimizing  "' + objf.__name__ + '"') 

 

    timerStart = time.time() 

    s.startTime = time.strftime("%Y-%m-%d-%H-%M-%S") 

 

    for l in range(0, iters): 

        for i in range(0, PopSize): 

            # pos[i,:]=checkBounds(pos[i,:],lb,ub) 

            for j in range(dim): 

                pos[i, j] = np.clip(pos[i, j], lb[j], ub[j]) 

            # Calculate objective function for each particle 

            # n, w, grid, availability=1.0 

            fitness, DC_loss = objf(pos[i, :], w=weighting_factors, 

grid=grid, availability=availability) 

            if pBestScore[i] < fitness: 

                pBestScore[i] = fitness 

                pBest[i, :] = pos[i, :].copy() 

 

            if gBestScore < fitness: 

                gBestScore = fitness 

                s.best = gBestScore 

                s.bestIndividual = pos[i, :].copy() 

                gBest = pos[i, :].copy() 

 

        # Update the W of PSO 

        w = wMax - l * ((wMax - wMin) / iters) 

 

        for i in range(0, PopSize): 

            for j in range(0, dim): 

                r1 = np.random.random() 
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                r2 = np.random.random() 

                vel[i, j] = ( 

                    w * vel[i, j] 

                    + c1 * r1 * (pBest[i, j] - pos[i, j]) 

                    + c2 * r2 * (gBest[j] - pos[i, j]) 

                ) 

 

                if vel[i, j] > Vmax: 

                    vel[i, j] = Vmax 

 

                if vel[i, j] < -Vmax: 

                    vel[i, j] = -Vmax 

 

                pos[i, j] = pos[i, j] + vel[i, j] 

 

        convergence_curve[l] = gBestScore 

 

        if l % 1 == 0: 

            fitness, DC_loss = objf(gBest, w=weighting_factors, grid=grid, 

availability=availability) 

            print(["iteration: " + str(l)+ ", best PC: "+ 

                   str(gBest)+ ", Fitness: "+ str(gBestScore)], "data->", 

DC_loss) 

    timerEnd = time.time() 

    s.endTime = time.strftime("%Y-%m-%d-%H-%M-%S") 

    s.executionTime = timerEnd - timerStart 

    s.convergence = convergence_curve 

    s.optimizer = "PSO" 

    s.objfname = objf.__name__ 

    return s 

 

s = PSO( 

    objFunc, 

    weighting_factors=[0.2, 0.2, 0.2, 0.2, 0.2], 

    grid=grid9, 

    lb=0, 

    ub=1000, 

    dim=2, 

    PopSize=5, 

    iters=275) 

s.bestIndividual = np.round(s.bestIndividual).astype(int) 

print("Best Position:", s.bestIndividual) 

print("Best Value:", s.best) 
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Calculate revenue 

def objFunc(n, w, grid, availability=1.0): 

    """ 

    n: Number of vehicles in each parking_node 

    w: weighting factors 

    grid: input grid 

    """ 

 

    Nv2g = len(n) 

 

    # calculate r -> revenue 

    P_park = 0 

    for i in range (Nstations): 

        P_park += Pv * int(n[i])  * availability 

        r = Pr_p * P_park * t_disp 

 

    # calculate CF_cap 

    CF_cap = Cac * n 

 

    # calculating CF_pu_driving 

    P_parkch = 0 

    CF_pu_driving=0 

    for i in range(Nstations): 

        for d in range(3): 

            P_parkch = int(n_vehic_soc[d]*n[i]) * Pv * SOC[d] 

            td = (1 - SOC[d])* ES / Pv 

            CF_pu_driving += Pr_off / mu_conv * P_parkch * td 

 

    # calulating CF_pu_v2g 

    P_park = 0 

    for i in range (Nstations): 

        P_park += Pv * int(n[i])  * availability 

        Pr_pe = Pr_off / mu_conv + Cd 

        CF_pu_v2g = P_park * Pr_pe * t_disp 

        #print(CF_pu_v2g) 

 

    print("r:",np.sum(r), ",CFcap:",np.sum(CF_cap), ",CF_pu_driving:", 

np.sum(CF_pu_driving),  ",CF_pu_v2g:",np.sum(CF_pu_v2g)) 

    # print(np.sum(r)-np.sum(CF_cap)-CF_pu_driving-np.sum(CF_pu_v2g)) 

    F1 =(w[0]*r - (w[1]*CF_cap + w[2]*CF_pu_driving + w[3]*CF_pu_v2g)) 

 

    F = F1 

    return np.sum(F), np.sum(F1) 
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objFunc(np.array([249, 302]), w=[0.2, 0.2, 0.2, 0.2, 0.2], grid=grid9, 

availability=availability) 
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Check voltage drop with EV 

n_parking_node6 = 249 

n_parking_node8 = 302 

P_node6_v2g = n_parking_node6 * Pv 

P_node8_v2g = n_parking_node8 * Pv 

def objFunc(n, w=[0.2, 0.2, 0.2, 0.2, 0.2], grid=grid9, availability=1.0): 

    """ 

    n: Number of vehicles in each parking_node 

    w: weighting factors 

    grid: input grid 

    """ 

 

    Nv2g = len(n) 

    # load flow: 

 

    # Initialize Z values 

    Z2 = Z3 = Z4 = Z5 = Z6 = Z7 = Z8 = Z9 = 0 

 

    # Initialize lists for voltage profiles and modified nodes 

    voltage_profiles = [] 

    voltage_profiles_v2g = [] 

    Active_power = [] 

    modified_nodes = [] 

    I_values = [] 

    Z_values = [] 

    P_value = [] 

    Rb_value=[] 

    current_values = {} 

    impedance_values = {} 

    power_values = {} 

    V_values = {} 

    real_Rb_values = {} 

 

    for j in range(num_load_levels): 

        if j == 2: 

           for b in grid.keys(): 

               node = int(b.split("-")[-1]) 

               Rb, Xb, L = grid[b]["R"], grid[b]["X"], grid[b]["L"] 

               Z = math.sqrt(((Rb)**2+ +( Xb)**2 )) 

               P = grid[b][f"Load{j+1}"] * 1000  # KW 

               I_j = P / V_line 

               #print(I_j) 

               if node in [2, 3, 4, 5, 6, 7, 8, 9]: 
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                  globals()[f"Z{node}"] = Z 

                  globals()[f"I{node}"] = I_j 

                  globals()[f"P{node}"] = P 

                  globals()[f"Rb{node}"] = Rb 

                  modified_nodes.append(node) 

                  I_values.append(I_j) 

                  Z_values.append(Z) 

                  P_value.append(P) 

                  Rb_value.append(Rb) 

 

    # Sort I and Z based on the number of nodes 

    sorted_data = sorted(zip(modified_nodes, I_values, Z_values, P_value, 

Rb_value), key=lambda x: x[0]) 

    sorted_nodes, sorted_I_values, sorted_Z_values, sorted_P_values, 

sorted_Rb_value = zip(*sorted_data) 

 

    # Print the sorted data 

    for node, I_value, Z_value, P_value, Rb_value in zip(sorted_nodes, 

sorted_I_values, sorted_Z_values, sorted_P_values, sorted_Rb_value): 

 

        # Store values in dictionaries 

        current_values[node] = I_value 

        impedance_values[node] = Z_value 

        power_values[node] = P_value 

        real_Rb_values[node] = Rb_value 

 

    # Load flow analysis for selected nodes 

    convergence_threshold=0.00001 

    convergence= False 

    K = 1 

    if node in [3, 7, 2, 6, 5, 9, 4, 8]: 

       globals()[f"V{3}_K0"] = V_line * 1000 

       globals()[f"V{7}_K0"] = V_line * 1000 

       globals()[f"V{2}_K0"] = V_line * 1000 

       globals()[f"V{6}_K0"] = V_line * 1000 

       globals()[f"V{5}_K0"] = V_line * 1000 

       globals()[f"V{9}_K0"] = V_line * 1000 

       globals()[f"V{4}_K0"] = V_line * 1000 

       globals()[f"V{8}_K0"] = V_line * 1000 

 

       while True: 

            I_3_7 = I_7 = power_values[7] * 1000 / globals()[f"V{7}_K{K - 

1}"] 

            I_3 = power_values[3] * 1000 / globals()[f"V{3}_K{K - 1}"] 

            I_1_3 = I_3 + I_3_7 
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            V_3_K = V_line * 1000 - impedance_values[3] * I_1_3 

            V_3_PU_K = V_3_K / globals()[f"V{node}_K0"] 

            E_3_K = np.abs((np.abs(V_3_K) - np.abs(globals()[f"V{3}_K{K - 

1}"])) / np.abs(V_line*1000)) 

 

            V_7_K = V_3_K -  impedance_values[7] * I_7 

            V_7_PU_K = V_7_K / globals()[f"V{node}_K0"] 

            E_7_K=  np.abs((np.abs(V_7_K) - np.abs(globals()[f"V{7}_K{K - 

1}"])) / np.abs(V_line*1000)) 

 

            globals()[f"V{3}_K{K}"] = V_3_K 

            globals()[f"V{7}_K{K}"] = V_7_K 

            emax_3_7 = max(E_3_K , E_7_K) 

 

            I_2_6 = I_6 = power_values[6] * 1000 / globals()[f"V{6}_K{K - 

1}"] 

            I_2 = power_values[2] * 1000 / globals()[f"V{2}_K{K - 1}"] 

            I_1_2 = I_2 + I_2_6 

 

            V_2_K = V_line * 1000 - impedance_values[2] * I_1_2 

            V_2_PU_K = V_2_K / globals()[f"V{node}_K0"] 

            E_2_K = np.abs((np.abs(V_2_K) - np.abs(globals()[f"V{2}_K{K - 

1}"])) / np.abs(V_line*1000)) 

 

            V_6_K = V_2_K -  impedance_values[6] * I_6 

            V_6_PU_K = V_6_K / globals()[f"V{node}_K0"] 

            E_6_K=  np.abs((np.abs(V_6_K) - np.abs(globals()[f"V{6}_K{K - 

1}"])) / np.abs(V_line*1000)) 

 

            globals()[f"V{2}_K{K}"] = V_2_K 

            globals()[f"V{6}_K{K}"] = V_6_K 

            emax_2_6 = max(E_2_K, E_6_K) 

 

            I_5_9 = I_9 = power_values[9] * 1000 / globals()[f"V{9}_K{K - 

1}"] 

            I_5 = power_values[5] * 1000 / globals()[f"V{5}_K{K - 1}"] 

            I_1_5 = I_5 + I_5_9 

 

            V_5_K = V_line * 1000 - impedance_values[5] * I_1_5 

            V_5_PU_K = V_5_K / globals()[f"V{node}_K0"] 

            E_5_K = np.abs((np.abs(V_5_K) - np.abs(globals()[f"V{5}_K{K - 

1}"])) / np.abs(V_line*1000)) 

 

            V_9_K = V_5_K -  impedance_values[9] * I_9 
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            V_9_PU_K = V_9_K / globals()[f"V{node}_K0"] 

            E_9_K=  np.abs((np.abs(V_9_K) - np.abs(globals()[f"V{9}_K{K - 

1}"])) / np.abs(V_line*1000)) 

 

            globals()[f"V{5}_K{K}"] = V_5_K 

            globals()[f"V{9}_K{K}"] = V_9_K 

            emax_5_9 = max(E_5_K, E_9_K) 

 

            I_4_8 = I_8 = power_values[8] * 1000 / globals()[f"V{8}_K{K - 

1}"] 

            I_4 = power_values[4] * 1000 / globals()[f"V{4}_K{K - 1}"] 

            I_1_4 = I_4 + I_4_8 

 

            V_4_K = V_line * 1000 - impedance_values[4] * I_1_4 

            V_4_PU_K = V_4_K / globals()[f"V{node}_K0"] 

            E_4_K = np.abs((np.abs(V_4_K) - np.abs(globals()[f"V{4}_K{K - 

1}"])) / np.abs(V_line*1000)) 

 

            V_8_K = V_4_K -  impedance_values[8] * I_8 

            V_8_PU_K = V_8_K / globals()[f"V{node}_K0"] 

            E_8_K=  np.abs((np.abs(V_8_K) - np.abs(globals()[f"V{8}_K{K - 

1}"])) / np.abs(V_line*1000)) 

 

            globals()[f"V{4}_K{K}"] = V_4_K 

            globals()[f"V{8}_K{K}"] = V_8_K 

            emax_4_8 = max(E_4_K, E_8_K) 

 

            emax = max(E_2_K, E_3_K, E_4_K, E_5_K, E_6_K, E_7_K, E_8_K, 

E_9_K) 

 

            # Check convergence 

            if emax <= convergence_thereshold : 

                 convergence = True 

                 print("Converged at iteration:", K) 

                 break 

            else: 

                 K += 1 

 

            voltage_profiles.extend([V_2_PU_K, V_3_PU_K, V_4_PU_K, 

V_5_PU_K, V_6_PU_K, V_7_PU_K, V_8_PU_K, V_9_PU_K]) 

            voltage_profiles_first_iteration = voltage_profiles[:8] 

            #print(voltage_profiles_first_iteration) 

 

# Load flow analysis for selected nodes with V2g: 

    convergence_thereshold=0.00001 
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    convergence= False 

    K = 1 

    if node in [3, 7, 2, 6, 5, 9, 4, 8]: 

       globals()[f"V{3}_K0"] = V_line * 1000 

       globals()[f"V{7}_K0"] = V_line * 1000 

       globals()[f"V{2}_K0"] = V_line * 1000 

       globals()[f"V{6}_K0"] = V_line * 1000 

       globals()[f"V{5}_K0"] = V_line * 1000 

       globals()[f"V{9}_K0"] = V_line * 1000 

       globals()[f"V{4}_K0"] = V_line * 1000 

       globals()[f"V{8}_K0"] = V_line * 1000 

 

       while True: 

            I_3_7 = I_7 = power_values[7] * 1000 / globals()[f"V{7}_K{K - 

1}"] 

            I_3 = power_values[3] * 1000 / globals()[f"V{3}_K{K - 1}"] 

            I_1_3 = I_3 + I_3_7 

 

            V_3_K_v2g = V_line * 1000 - impedance_values[3] * I_1_3 

            V_3_PU_K_v2g = V_3_K_v2g / globals()[f"V{node}_K0"] 

            E_3_K_v2g = np.abs((np.abs(V_3_K_v2g) - 

np.abs(globals()[f"V{3}_K{K - 1}"])) / np.abs(V_line*1000)) 

 

            V_7_K_v2g = V_3_K_v2g -  impedance_values[7] * I_7 

            V_7_PU_K_v2g = V_7_K_v2g / globals()[f"V{node}_K0"] 

            E_7_K_v2g =  np.abs((np.abs(V_7_K_v2g) - 

np.abs(globals()[f"V{7}_K{K - 1}"])) / np.abs(V_line*1000)) 

 

            globals()[f"V{3}_K{K}"] = V_3_K_v2g 

            globals()[f"V{7}_K{K}"] = V_7_K_v2g 

            emax_3_7_v2g = max(E_3_K_v2g , E_7_K_v2g) 

 

            I_2_6_v2g = I_6_v2g = (power_values[6] - P_node6_v2g) * 1000 / 

globals()[f"V{6}_K{K - 1}"] 

            I_2_v2g = power_values[2] * 1000 / globals()[f"V{2}_K{K - 1}"] 

            I_1_2_v2g = I_2_v2g + I_2_6_v2g 

 

            V_2_K_v2g = V_line * 1000 - impedance_values[2] * I_1_2_v2g 

            V_2_PU_K_v2g = V_2_K_v2g / globals()[f"V{node}_K0"] 

            E_2_K_v2g = np.abs((np.abs(V_2_K_v2g) - 

np.abs(globals()[f"V{2}_K{K - 1}"])) / np.abs(V_line*1000)) 

 

            V_6_K_v2g = V_2_K_v2g -  impedance_values[6] * I_6_v2g 

            V_6_PU_K_v2g = V_6_K_v2g / globals()[f"V{node}_K0"] 
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            E_6_K_v2g =  np.abs((np.abs(V_6_K_v2g) - 

np.abs(globals()[f"V{6}_K{K - 1}"])) / np.abs(V_line*1000)) 

 

            globals()[f"V{2}_K{K}"] = V_2_K_v2g 

            globals()[f"V{6}_K{K}"] = V_6_K_v2g 

            emax_2_6 = max(E_2_K_v2g, E_6_K_v2g) 

 

            I_5_9_v2g = I_9_v2g = power_values[9] * 1000 / 

globals()[f"V{9}_K{K - 1}"] 

            I_5_v2g = power_values[5] * 1000 / globals()[f"V{5}_K{K - 1}"] 

            I_1_5_v2g = I_5_v2g + I_5_9_v2g 

 

            V_5_K_v2g = V_line * 1000 - impedance_values[5] * I_1_5_v2g 

            V_5_PU_K_v2g = V_5_K_v2g / globals()[f"V{node}_K0"] 

            E_5_K_v2g = np.abs((np.abs(V_5_K_v2g) - 

np.abs(globals()[f"V{5}_K{K - 1}"])) / np.abs(V_line*1000)) 

 

            V_9_K_v2g = V_5_K_v2g -  impedance_values[9] * I_9_v2g 

            V_9_PU_K_v2g = V_9_K_v2g / globals()[f"V{node}_K0"] 

            E_9_K_v2g =  np.abs((np.abs(V_9_K_v2g) - 

np.abs(globals()[f"V{9}_K{K - 1}"])) / np.abs(V_line*1000)) 

 

            globals()[f"V{5}_K{K}"] = V_5_K_v2g 

            globals()[f"V{9}_K{K}"] = V_9_K_v2g 

            emax_5_9 = max(E_5_K_v2g, E_9_K_v2g) 

 

            I_4_8_v2g = I_8_v2g = (power_values[8]-P_node8_v2g) *1000 / 

globals()[f"V{4}_K{K - 1}"] 

            I_4_v2g = power_values[4] * 1000 / globals()[f"V{4}_K{K - 1}"] 

            I_1_4_v2g = I_4_v2g + I_4_8_v2g 

 

            V_4_K_v2g = V_line * 1000 - impedance_values[4] * I_1_4_v2g 

            V_4_PU_K_v2g = V_4_K_v2g / globals()[f"V{node}_K0"] 

            E_4_K_v2g = np.abs((np.abs(V_4_K_v2g) - 

np.abs(globals()[f"V{4}_K{K - 1}"])) / np.abs(V_line*1000)) 

 

            V_8_K_v2g = V_4_K_v2g -  impedance_values[8] * I_8_v2g 

            V_8_PU_K_v2g = V_8_K_v2g / globals()[f"V{node}_K0"] 

            E_8_K_v2g =  np.abs((np.abs(V_8_K_v2g) - 

np.abs(globals()[f"V{8}_K{K - 1}"])) / np.abs(V_line*1000)) 

 

            globals()[f"V{4}_K{K}"] = V_4_K_v2g 

            globals()[f"V{8}_K{K}"] = V_8_K_v2g 

            emax_4_8 = max(E_4_K_v2g, E_8_K_v2g) 
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            emax = max(E_2_K_v2g, E_3_K_v2g, E_4_K_v2g, E_5_K_v2g, 

E_6_K_v2g, E_7_K_v2g, E_8_K_v2g, E_9_K_v2g) 

 

            # Check convergence 

            if emax <= convergence_thereshold : 

                 convergence = True 

                 print("Converged at iteration:", K) 

                 break 

            else: 

                 K += 1 

 

            voltage_profiles_v2g.extend([V_2_PU_K_v2g, V_3_PU_K_v2g, 

V_4_PU_K_v2g, V_5_PU_K_v2g, V_6_PU_K_v2g, V_7_PU_K_v2g, V_8_PU_K_v2g, 

V_9_PU_K_v2g]) 

            voltage_profiles_v2g_first_iteration = 

voltage_profiles_v2g[:8] 

            print(voltage_profiles_v2g_first_iteration) 

 

 

    # Assuming nodes are keys in the grid dictionary 

    x_axis_nodes = sorted(list(modified_nodes)) 

 

    # Zip the node numbers and voltage profiles 

    zipped_data = list(zip(x_axis_nodes, 

voltage_profiles_first_iteration)) 

    zipped_data_v2g = list(zip(x_axis_nodes, 

voltage_profiles_v2g_first_iteration)) 

 

    # Sort the zipped data by node number 

    sorted_data = sorted(zipped_data, key=lambda x: x[0]) 

    sorted_data_v2g = sorted(zipped_data_v2g, key=lambda x: x[0]) 

 

    # Extract sorted node numbers and voltage profiles 

    sorted_nodes, sorted_voltage_profiles_first_iteration = 

zip(*sorted_data) 

    sorted_nodes, sorted_voltage_profiles_v2g = zip(*sorted_data_v2g) 

 

    # Plotting the voltage profiles for each node 

    plt.plot(sorted_nodes, sorted_voltage_profiles_first_iteration, 

marker='o', label='Node Voltages') 

    plt.plot(sorted_nodes, voltage_profiles_v2g_first_iteration, 

marker='x', label='V2G Voltages')  # Assuming sorted_voltage_profiles_v2g 

contains V2G data 
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    plt.xlabel('Node') 

    plt.ylabel('Voltage (PU)') 

    plt.title('Voltage Profile for Each Node') 

    plt.xticks(rotation=45) 

    plt.grid(True) 

    plt.show() 

 

 

 


