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Abstract

MRI-Based Brain Age Estimation Using Supervised Contrastive Learning

Simon Joseph Clément Crête

Brain age estimation models aim to accurately assess a subject’s biological brain age based on

neuroanatomical features. Various factors, including neurodegenerative diseases, can cause acceler-

ated brain aging and measuring this phenomena could serve as a biomarker for clinical applications.

While promising results have been achieved in previous works, there is no consensus on an optimal

model for accurate prediction or clinical utility. This thesis proposes using supervised contrastive

learning with Rank-N-Contrast (RNC) loss and Grad-RAM for explainability utilizing structural

T1w MRI data. Results indicate that the supervised contrastive strategy significantly outperformed

ResNet models, achieving a mean absolute error of 4.28 years and an R² of 0.93 with a limited

dataset of aging subjects. Benchmark comparisons with state-of-the-art models demonstrated that

the supervised contrastive approach achieved comparable performance in our test sample, partic-

ularly among older age groups. The Grad-RAM analysis revealed anatomically relevant regions

associated with aging, with the more nuanced capabilities exhibited by the supervised contrastive

learning approach. Analyses of disease populations revealed significantly higher brain age gaps

in Alzheimer’s Disease (AD) patients, correlating strongly with ADAS-cog scores (r = 0.37, p =

0.0098), suggesting its potential as a biomarker for assessing AD severity. However, no significant

correlation was found between brain age gap and UPDRSIII scores in Parkinson’s disease (PD)

patients. The Grad-RAM focuses on regions known to be linked to AD and PD, but with little dif-

ference to the healthy population. Our study demonstrates the potential of supervised contrastive

learning with an RNC loss in brain age prediction, highlighting its ability to outperform other mod-

els in smaller datasets.
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Chapter 1

Introduction

Aging has complex mechanisms and multifaceted impacts on humans, making it a focal point

of scientific research. Despite significant advancements, the mechanisms and impacts of aging re-

main only partially understood. Understanding these mechanisms extends beyond academic inquiry,

bearing important implications for public health, particularly in the context of our currently aging

population.

Age-related diseases, such as cognitive decline and dementia, are on the rise, necessitating more

sophisticated tools and approaches to manage these conditions. Due to large individual variability

and the importance of personalized healthcare, the concept of biological age has gained interest in

research. Biological age is the distinction between chronological age and physiological features

which reflects an individual’s state. It can provide a more nuanced understanding of an individ-

ual’s health status, potentially serving as an important biomarker for various age related conditions.

This is particularly relevant for the brain due to neurodegenerative diseases like Alzheimer’s and

Parkinson’s that are often characterized by changes resembling advanced brain aging. Therefore,

measuring biological brain age could offer valuable insights into overall brain health and treatment

of diseases.

Deep learning (DL) has shown great promise in medical applications, providing new tools for

diagnosis, treatment planning, and analysis of complex biological processes. DL models can an-

alyze neuroimaging data to accurately estimate brain age, but few studies have shown its use as a

biomarker to detect or measure neurodegenerative diseases. These methods not only enhance our
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ability to predict brain age with high precision but also enable the identification of subtle biomarkers

that may signify early signs of neurological disorders.

1.1 Motivation

Understanding brain aging is increasingly important as our population ages and neurodegen-

erative diseases become more prevalent. Accurately assessing brain age can provide insights into

cognitive decline, disease progression, and overall brain health. Traditional methods often fall short

in capturing the complexity of brain aging, prompting the exploration of new techniques. DL, and

in particular Convolutional Neural Networks (CNN), have emerged as a powerful a tool in this do-

main, offering sophisticated approaches to analyze complex patterns in neuroimaging data. Despite

significant progress in this domain, there remains a lack of robust testing of these models as they

have been applied across different datasets and populations without thorough validation. Moreover,

certain cutting edge DL architectures have yet to be applied in the domain of brain aging. Thus,

research is still needed to find optimal methods to measure brain age and understand its utility as

a biomarker. In this thesis, we aim to introducing a novel application of supervised contrastive

learning for brain age estimation with the goal of further advancing the growing body of research.

1.2 Contributions

The primary contributions of this thesis are threefold, focusing on novel application, the integra-

tion of explainability techniques, and analysis of neurodegenerative diseases in brain age estimation:

• We introduce an application of supervised contrastive learning with the Rank-N-Contrast

(RNC) loss for brain age estimation. To the best of our knowledge, this approach has not

previously been applied to brain age prediction using T1-weighted (T1w) structural MRIs.

• When trained on a limited dataset of aging healthy population, the RNC architecture signifi-

cantly outperformed a ResNet trained on the same data and demonstrated better or comparable

results to certain state-of-the-art (SOTA) models on our test set sample.
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• To provide insights into the neuroanatomical regions associated with aging and disease we

integrated Gradient-weighted Regression Activation Mapping (Grad-RAM) into our methods.

• We explored correlations between estimated brain age gap and severity metrics for Alzheimer’s

and Parkinson’s diseases, with further Grad-RAM analyses providing insights into the poten-

tial anatomical regions affected by these diseases.

1.3 Organization

The remainder of this thesis is organized as follows. Chapter 2 offers the foundational knowl-

edge necessary for comprehending the thesis, covering human neuroanatomy and its aging, neu-

rodegenerative diseases of interest, structural magnetic resonance imaging (MRI), brain MRI pre-

processing, DL, and approaches to brain age estimation. In Chapter 3, we present our main body

of research, consisting of a brain age prediction model using supervised contrastive learning with

RNC loss and Grad-RAM for explainability. We assess the method’s performance on healthy sub-

jects, Alzeihmer’s, and Parkinson’s patients. We compare results against our own ResNet and other

SOTA techniques in the literature and use Grad-RAM to understand our DL model’s task-specific

image features. Finally, Chapter 4 concludes the findings of the thesis and discusses future avenues

of research.
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Chapter 2

Background

2.1 Human Neuroanatomy

The brain is considered the most complex organ system in the human body. It is composed of

various tissue types and can be divided into several parts, based on the specific anatomical tissue

structure, or on its function. The following neuroanatomy descriptions are based on the Atlas of

Functional Neuroanatomy [34]. The brain is divided into four main lobes which have distinct func-

tions and characteristics: the frontal, temporal, parietal and occipital lobes. Furthermore, the cortex,

the outer layer of the cerebrum, is divided into several regions or cortical areas that are involved

in various high-level brain function. For example, the frontal lobe is responsible for reasoning and

is the part of the brain which takes longest to fully develop, it houses the motor cortex which han-

dles voluntary movement. The temporal lobe is responsible for auditory processing and houses the

somatosensory cortex, which is a sensory receiver for taste, temperature, touch and other environ-

mental factors. The parietal lobes handle taste, smell, arithmetic and reading tasks. The occipital

lobe processes vision and memories of visual medium. The illustration of the general human brain

anatomy is shown in Figure 2.1.

The inner brain, illustrated in Figure 2.2, contains regions that directly connect to the central

nervous system and contribute to regulation of emotions, perceptions, and, responses. The limbic

system is a complex set of structures in the brain that deal with emotions and memory. The amygdala

is involved in emotion processing, particularly fear and pleasure responses. The hypothalamus is
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Figure 2.1: Diagram of brain lobes (left) and brain divisions (right).

responsible for the control of hormones and chemicals to appropriately respond to any stimulus,

and attempt to keep the body in homeostasis. It helps manage the body temperature, hunger and

thirst, mood, sex drive, blood pressure and sleep. The thalamus processes all sensory and motor

information except smell before it reaches the cerebral cortex. The hippocampus is a embedded

deep into the temporal lobe, it is responsible for memory formation and retrieval. The thalamus

acts as a relay station for sensory information directing it to cerebral cortex. The cingulate gyrus

plays a role in processing emotions and regulating behavior. And finally the parahippocampal gyrus

surrounds the hippocampus and is also also responsible for memory retrieval and encoding.

The basal ganglia are a group of structures near the center of the brain that filters and selects

voluntary motor, cognitive and emotional responses. The caudate is a C-shaped structure that arches

over the thalamus; it is involved in various higher neurological functions, including learning, mem-

ory, and voluntary movement control. The putamen is a round structure located at the base of the

forebrain primarily involved in regulating movements and influencing various types of learning.

The globus pallidus that lies medially to the putamen plays a role in the regulation of voluntary

movement. The substantia nigra is a darkly pigmented structure and contains dopaminergic neurons

that are critical for movement control and reward processing. The subthalamic nucleus is a small

lentil-shaped structure located below the thalamus. It is part of the indirect pathway of the basal

ganglia circuitry and plays a vital role in regulating motor output.

The brain consists of three main tissue types, grey matter, white matter, and cerebrospinal fluid
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Figure 2.2: Diagram of the inner brain, including the limbic system and basal ganglia [78].

(CSF). Grey matter houses neural cell bodies, axon terminals, nerve synapses and dendrites. This

tissue allows for processing and release of information. In contrast, white matter is composed of

groups of axons that process and conduct nerve signals. Cerebrospinal fluid is a watery liquid

that is produced and circulates through the brains ventricles (i.e., hollow cavities), and around the

outer surface of the brain. This liquid acts as a cushion, regulates pressure inside the skull, and

compensates in volume when the brain shrinks.

2.2 Brain Aging

Aging, the time-related deterioration of physiological functions, is an irreversible and not fully

understood phenomena. Functional decline, such as reduced physical fitness and reduced cognitive

abilities, typically accompany aging. Understanding the biological, cognitive and psychological

changes that occur during aging is of great interest for many researchers due to its important im-

pact on human health and its complex mechanisms. Brain aging has been linked to physiological

changes that lead to functional decline, increased susceptibility to certain diseases, and increased

mortality. Understanding brain aging can enhance healthy aging, early detection of neurodegenera-

tive diseases, disease prevention, and quality of life.

Infancy and early childhood are marked by rapid brain growth and development. In an infant’s
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first year, the brain doubles in volume. By age 5 to 6, the brain is roughly ninety percent of adult

size [36]. During this time, there is significant development in areas responsible for basic sensory

processing, cognitive ability, and motor skills. Gray matter has a higher proportion of volume dur-

ing this period. During pre-adolescence the brain continues to develop its cognitive and emotional

capacities, with an increase in myelination of neurons, leading to a steady increase in white matter.

Adolescence brings a notable increase in the dendritic pruning process, where the brain eliminates

weaker synaptic connections and strengthens the more frequently used ones [1]. This is particularly

evident in the frontal lobes, which are responsible for decision making, planning, and social behav-

ior. The pruning causes a decrease in gray matter volume around puberty and a steady increase in

white matter. The brain doesn’t reach full maturity and volume until the mid-20s, particularly in the

frontal areas. Typically the consensus for the end of brain development is around 25 years old [1].

While the brain has reached its peak in size by early adulthood, it continues to change and adapt.

As individuals age, there is a gradual decrease in brain volume and weight, particularly in the later

decades of life. This shrinking with age occurs at a rate of roughly five percent per decade, acceler-

ating around the age of 70 [25]. Decreases of 0.3% per year for individuals in their 40s and of 0.5%

in their 80s were found. There is also an average annual increase in ventricle volume of 1.8%, with

a range of 1.0% per year among individuals in their 40s to 2.5% for individuals in their 80s. Rates

of volume decline are not constant as inter-individual and region specific differences are present

[25]. At the same time, as vasculature ages and blood pressure rises, the risk of stroke, ischaemia,

and white matter lesions all increase. The functional capabilities of the brain decline progressively

during aging, which manifests as decrements in learning and memory, attention, decision-making

speed, sensory perception (vision, hearing, touch, smell, and taste), and motor coordination. Older

adults often have difficulty understanding rapid speech, with reduced comprehension of complex

sentences and difficult word retrieval ability. The time course of the age-related decline in brain

performance roughly parallels the reduced performance of other organ systems with notable accel-

eration to the brain beyond 50 years of age [73].

It has been shown, however, that biological aging of the brain is not strictly tied to chronologi-

cal aging and constant across subjects [72]. Genetics, usage of the brain for complex tasks, healthy

diet, low alcohol intake, and regular exercise may slow aging by a significant factor [58, 56]. This
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individual-specific aging shows the need for personalized aging biomarkers that surpass the gener-

alization of chronological age.

Aging and Sex

Sex refers to a set of biological attributes in humans and animals. It is primarily associated with

physical and physiological features, including chromosomes, gene expression, hormone levels and

function, and reproductive/sexual anatomy. Sex is usually categorized in the binary of female or

male, but there are variations of the biological attributes that comprise sex and how these attributes

are expressed. Studies that have found sex differences in brain aging suggest that male and female

brains age in different patterns, though no thorough consensus has been reached [3, 90]. Gender, the

multidimensional construct that encompasses gender identity and expression, as well as social and

cultural expectations associated with certain sex traits, is not extensively explored in brain aging

literature.

2.3 Neurodegenerative Disorders of Interest

2.3.1 Alzheimer’s Disease

Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder and the most common

cause of dementia among older adults [8]. It is currently impacting around 350 thousand Canadians

and is expected to increase to over a million by 2050 [8]. AD is characterized by a gradual decline

in cognitive functions, such as memory, language skills, and the ability to carry out simple tasks.

The exact cause of the disease remains largely unknown, although it is believed to result from a

combination of genetic, lifestyle, and environmental factors that affect the brain over time. AD is

identified by the presence of amyloid-beta plaques and tau protein tangles within the brain, which

disrupt neural function and lead to neuronal death [76]. AD brings about significant anatomical

changes in the brain, most notably atrophy of brain tissue. This atrophy initially affects the hip-

pocampus and entorhinal cortex before spreading to other areas leading to a reduction of cortical

thickness, particularly in the temporal and parietal lobes [81]. The ventricles therefore enlarge as a

result of this loss of brain volume.
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The severity of Alzheimer’s Disease can be assessed using cognitive and functional measures.

The Alzheimer’s Disease Assessment Scale (ADAS) is a comprehensive test battery that evaluates

memory, attention, reasoning, language, orientation, and praxis [79]. The cognitive part (ADAS-

Cog) is the most commonly used section of the scale to assess the severity and progression of

cognitive impairment in AD. The Mini-Mental State Examination (MMSE) is a brief 30-point ques-

tionnaire used extensively in clinical and research settings to measure cognitive impairment. It

assesses various cognitive functions, including arithmetic, memory, orientation, and language abil-

ities. The MMSE score can help in diagnosing AD and monitoring its progression over time [2].

Recent studies have explored the relationship between brain age estimation and AD. These

models have identified that individuals with AD often have a higher brain age compared to their

chronological age, suggesting accelerated brain aging [60, 26]. Some studies have measured the

accelerated aging in brain structures, and used it as a potential biomarker to differentiate healthy

and AD subjects [67].

2.3.2 Parkinson’s Disease

Parkinson’s Disease (PD) is a neurodegenerative disease affecting over 100 thousand Canadians

[75]. It primarily impacts motor control in the central nervous system. The principal symptoms of

PD include tremors at rest, rigidity, bradykinesia (slowness of movement), and postural instability.

The disease further causes a wide range of non-motor symptoms, including cognitive impairment,

mood disorders, depression, and autonomic dysfunction. The most significant pathological feature

of PD is the loss of dopaminergic neurons in the substantia nigra, which is crucial for motor control.

Neuroimaging studies have shown various brain structural changes associated with PD such as

noticeable depigmentation in the substantia nigra, atrophy and shape changes of parts of the basal

ganglia [77], hippocampus, and cortical thinning in the frontal and temporal lobes [74].

The severity and progression of Parkinson’s Disease can be evaluated using various scales. The

Unified Parkinson’s Disease Rating Scale (UPDRS) is a comprehensive tool used to quantify the

severity of PD, encompassing mental, behavioral, and mood assessments, self-evaluation of the

activities of daily life, and a clinical evaluation of motor function [29]. In particular, UPDRS-

III which focuses on the motor disability evaluation is linked with anatomical brain changes [48].
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The Hoehn and Yahr Scale (HY) classifies patients into five stages based on mobility and balance

impairments. It is straightforward and is commonly used to provide a clinical description of PD

progression.

Several studies have investigated whether PD is associated with accelerated brain aging. Studies

looking at more severe PD cases have found a higher brain age discrepancy between healthy and

PD patients [17]. However, other studies have failed to disclose significant morphological changes

between PD and healthy controls [93, 69], potentially due to poor contrast for anatomical structures

related to PD (e.g., the Basal Ganglia) in more commonly seen T1w MRI [67].

2.4 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a non-invasive widely used imaging technique that can

capture 3D images of internal organs allowing complex analysis of structures and functions of the

human body. With MRI, a magnetic field is applied with specific radio frequency (RF) pulses to

excite protons in hydrogen nuclei of water molecules, causing these protons to change alignment.

Turning off the RF pulse returns the atoms to their prior state and releases energy in the form of

radio waves. These radio waves are captured and spatially encoded to form an image. The time

taken for protons to realign with the magnetic field and the amount of energy released is dependent

on the environment and the chemical nature of the molecule. This results in different contrasts in

the image, making it possible to distinguish various tissue types in the images.

T1 and T2 weighted (T1w, T2w) imaging are often the most common modalities to examine

soft tissue in the body. Different MRI contrasts between different tissue types can be obtained by

varying the MR imaging acquisition parameters, including Repetition time (TR), Echo time (TE),

and flip angle (FA). The repetition time is the amount of time between successive pulse sequences

applied to the same slice. The echo time is the time between the delivery of the RF pulse and the

receipt of the echo signal, and the flip angle is the amount of angle the net magnetization is tipped

away during application of a radiofrequency pulse. T1w MRIs typically use shorter TR and TE,

while T2w ones use longer times. This results in tissues with shorter relaxation times to appear

brighter in T1w MRI scans, and ones with longer times to appear brighter in T2w images. T1w
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MRIs are typically preferred for assessing the general anatomy, specifically fatty tissues, and T2w

MRIs are preferred for identifying pathological changes involving fluids, like edema, inflammation,

or infection. Further, due to longer acquisition time (e.g., long TR), T2w scans are often less

commonly found in medical imaging datasets, further contributing to T1w images being the staple

contrast for neuroanatomical analysis. A visual comparison is presented in Fig. 2.3.

(a) T1w head MRI (b) T2w head MRI

Figure 2.3: Axial slice of raw T1w (a) and T2w (b) full head MRI of the same subject.

2.5 MRI Preprocessing

High image quality is desirable for brain images analysis, but limitations in imaging systems

can introduce image noise and artifacts, which often interfere with data analyses. Denoising and

artifact removal methods should be devised based on the specific data characteristics of medical

imaging systems (e.g., hardware, reconstruction algorithms, etc.), and the preprocessing pipelines

should be consistent across all samples to allow correct and reproducible studies. An example of a

raw and preprocessed T1w MRI is presented in Fig. 2.4.

2.5.1 Denoising

MR image noise primarily comes from thermal noise and physiological noise. The noise can

reduce the quality of the image making it harder to clearly differentiate refined anatomical features.

While the statistical characteristics of MRI noise can be complex, often, it is approximated with
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a Gaussian distribution. To best preserve anatomical details, a number of denoising algorithms

have been proposed, including the non-local means algorithm [54], principal component analysis

denoising [55], and DL-based approaches [53]. While MRI denoising is crucial in field applications,

for DL-based analysis, this preprocessing is not often incorporated due to the inherent ability in

focusing on key features from the networks.

2.5.2 Bias Field Correction

Image artifacts are image features that don’t exist in the original object, and can mislead diag-

nosis and analysis. These can be caused by factors, such as patient motion (e.g., motion artifacts),

image reconstruction algorithms (e.g., aliasing artifacts), and limitation of the scanner (e.g., image

distortion). One typical MRI artifact is the presence of a low-frequency intensity non-uniformity

in the image data, also known as bias or inhomogeneity. The artifact is induced by various factors,

such as the non-uniform sensitivity of RF coils and/or the influence of external magnetic fields. The

inhomogeneous brightness of the same tissue class can cause difficulty in robust image recognition

of anatomical structures. N4 Bias Field Correction [87] is an effective method to mitigate this is-

sue. This algorithm employs an iterative process between deconvolving the image histogram by a

Gaussian function, estimating the “corrected” intensities and spatially smoothing the resulting bias

field estimation using a B-spline model.

2.5.3 Skull Stripping

Brain extraction or skull stripping, which involves removing non-brain tissues including skin,

scalp and dura, is an important step in many neuroimaging analyses such as registration, tissue

classification, and segmentation. While it is not inherently required for DL analysis, it allows the

model to focus solely on the physiology of the brain, and not the rest of the head, and has become

the standard procedure. A variety of algorithms with high accuracy have been developed to attain

this goal [70], one commonly used method is ‘BEaST’, which is based on the non-local means

segmentation within a multi-resolution framework for computational efficiency [18].
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2.5.4 Registration

Registration in MRI medical image analysis involves aligning or matching two or more im-

ages. In many cases, all images used in a study are registered to a common template which enables

more accurate comparison of the information contained in these images. Rigid (linear) registration

aligns images using rotation and translation, thus preserving distances and angles. With additional

parameters of scaling and shear, affine registration allows more flexibility in spatial transforma-

tion. In contrast, non-rigid (non-linear) registration allows local deformations to align images for

more refined anatomical matching. Automatic medical image registration requires a well-defined

loss function to optimize. Typically for inter-contrast MRI registration, cross-correlation (CC) is

a popular choice while inter-modal/contrast registration often relies on the optimization of mutual

information between the image pairs. A number of automatic medical image registration algorithm

and software packages (e.g., ANTs, MINC Toolkit, and FSL) have been proposed to facilitate neu-

roimage analysis.

2.5.5 Intensity Normalization

Methods are required to standardize the image contrast and intensity range so that the variation

due to different scanners and imaging protocols is mitigated. One way to solve this contrast dif-

ference is through histogram matching. Using a population-averaged MRI atlas as the histogram

template, individual MRI’s histogram can be transformed to follow the template’s distribution. As

the histogram profile can be influenced by the proportion of tissue types, it is advisable to use MRI

atlases that match the characteristics of the target population. Min-Max and Z-Score normalization

are commonly used and simple solutions. Min-Max scales intensities between 0 and 1 inclusively,

Z-score scales intensities such that the mean is 0 and the standard deviation 1.

Min-Max: M(x) =
x−min(x)

max(x)−min(x)
Z-Score: Z(x) =

x− mean(x)
stddev(x)
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(a) Raw T1w head MRI (b) Preprocessed T1w brain

MRI

Figure 2.4: (a) Axial slice of raw T1w MRI and (b) preprocessed T1w MRI with bias field correc-
tion, skull stripping, intensity normalization, registration to ICBM 152 brain template of (a).

2.6 Deep Learning for Medical Image Analysis

DL has proven a powerful method to analyze real-world images in classical applications such

as image classification, handwriting recognition, and image segmentation. Automated methods to

interpret medical images could enable a shift in clinical application by reducing costs, time, and

human error, and provide analysis beyond human capabilities by compiling huge amounts of data

and perceiving patterns not easily recognizable to humans.

Several major challenges unique to the domain have resulted in very few applications of such

tools to advance clinical adoption. DL models require large amounts of high-quality and varied data

to be effective. Moreover, three-dimensional imaging data is memory intensive and requires mas-

sive computational power to process. Further, acquiring such datasets is challenging due to immense

costs, privacy concerns, governance laws, poor data infrastructure, and variety in acquisition meth-

ods and quality. Moreover, medical datasets for DL algorithm development can unknowingly suffer

from imbalances in training data sampling, with bias towards certain conditions or demographics if

care is not taken. This can be particularly problematic for rare diseases and under-represented pop-

ulations. These models would require precise and robust explainability and uncertainty features,

14



allowing clinicians and patients to confidently use information provided. Furthermore, the deploy-

ment of such models must navigate complex regulatory landscapes while ensuring patient privacy,

data security, and ethics.

2.6.1 Convolutional Neural Networks

Convolutional Neural Networks (CNN), a class of feed-forward neural networks which learns

to extract features through kernel optimization, was one of the first model architectures used on

medical images and are extensively used to this day. In 1993, Lo et al. [50] introduced CNNs for the

analysis of medical images by developing a model for lung nodule detection in chest radiographs.

Various advances to the CNN architecture have enabled the creation of extremely effective models

for medical imaging classification, segmentation, or regression.

CNNs are composed of three types of layers: convolutional layer, pooling layer, and fully con-

nected layer. The convolution layer uses filters that perform convolution operations with a specified

kernel size and stride creating a feature map. The pooling layer performs a downsampling operation.

Max or average pooling are typically used. The fully connected layer, the last layer of the CNN,

performs class scores or regression. It is used after flattening the feature space. A visual illustration

of a 3D binary classification CNN is shown in Fig. 2.5.

Figure 2.5: Diagram of a 3D CNN architecture for binary classification. [35]

As the required tasks become more difficult and nuanced, deeper networks with more trainable

parameters will be required. Deeper networks can capture more complex features as the layers learn

hierarchical features, with early layers capturing low-level features, such as edges and textures, and
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deeper layers capturing high-level features such as object parts and shapes. Issues arise from using

deeper models, as error gradients can accumulate during an update and result in exploding gradients.

These in turn create large updates to the network weights, resulting in an unstable network that

diverges instead of converging. Vanishing gradients can make models harder to train as the large

number of layers with many activation functions can bring the loss function gradient to zero, making

ineffective learning.

Figure 2.6: Comparison of a classic CNN block (left) and a ResNet block with a skip connection
(right). As seen on the skip connection, parts of the input can flow through the model and not be
affected by the convolutional layer

Several advancements have been made to mitigate these issues. One such advance is skip con-

nections (see Fig. 2.6), which are used in residual CNN networks, such as ResNets [32]. Skip

connections allow gradients to flow past certain layers to train the network more easily thus en-

abling the creation of much deeper CNNs without suffering from exploding gradients, but they

remain prone to overfitting with increased depth. Popular ResNet architectures include ResNets-18,

50 and 101, with the number representing its depth and layer configuration, see Fig. 2.7. The resid-

ual blocks in a ResNet-18 consist of two convolutional layers each, with batch normalization and

ReLU activations. The skip connections add the input of each block directly to the output of the

block, helping preserve the gradient flow during backpropagation. The overall architecture consists

of some initial convolutional and maxpooling layers, followed by the residual blocks, and a final

average pooling and fully connected layer. The ResNet-50 and its larger variants use a bottleneck
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architecture for the residual blocks to improve computational efficiency and to better handle net-

work depth. They consist of three convolutional layers instead of two: a 1x1 convolution layer to

reduce the dimensionality, a 3x3 convolution layer to process the data, and another 1x1 convolu-

tion layer to restore the dimensionality. Likewise, each of these convolutional layers is followed by

Batch Normalization and ReLU activation. The skip connection then adds the input of the block to

the output of the third convolutional layer. These models are adaptable to 3D inputs by simply using

the 3D variant of the operations of each layer.

Figure 2.7: Detailed layer information for various 2D ResNet variants with different network depths
[32]

2.6.2 Global-Local Learning

Due to inductive bias in CNN, some CNN-based DL methods have proposed to leverage both

global and local context by using one model for the entire image input and another for its local

patches, with their final outputs combined to improve prediction tasks. Specifically, the global

models take the entire image as input, providing the general spatial relationship of image features

across the field-of-view. The local models take image patches as input to only consider local context

for a better understanding of fine-grained details.
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2.6.3 Transformers

To better model the spatial context of image features across the image, Vision Transformers

(ViTs) are a class of DL models that have gained prominence in medical image analysis due to

impressive results. ViTs are inspired by transformers conceptualized for natural language process-

ing (NLP). Unlike CNNs, ViTs divide images into patches and treat them as sequences of tokens,

similar to words in a sentence in natural language processing. They utilize the self-attention mech-

anism, which learns the importance between all pairs of tokens to understand the global context of

an image. ViTs excel in capturing the global context of images, which is often crucial in medical

imaging for accurate diagnosis.

2.6.4 Contrastive Learning

Contrastive learning (CL) has also been gaining popularity in medical imaging and achieved

promising results in disease classification [37] and segmentation [9]. In its classic form, contrastive

learning was designed as an unsupervised or self-supervised learning method. This creates a data

efficiency advantage in areas, where data with high-quality annotation is sparse, as is the case for

medical image segmentation. Typically, two samples are compared, an anchor and a “positive”

sample are pulled closer in the embedding space, and a negative sample is pushed from the anchor.

For cases with no labels, positive samples consist of an augmentation of the anchor, and negative

samples are other random cases from the same dataset.

The main difference between self-supervised and supervised contrastive learning is the ability

of the latter to use labels on all samples to learn. As seen in Fig. 2.8 with the black and white

dog (bottom), taking class labels into account results is a more accurate embedding space, where

samples from the same class are pulled closer together. Supervised contrastive learning has an

information advantage over its counterpart when the data is labeled in its entirety. This is useful in

areas with larger quantities of well annotated data. This method has achieved top-1 image retrieval

accuracy of 81.4% on the ImageNet dataset, outperforming ResNets trained with cross entropy loss

and unsupervised representation learning [45].
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Figure 2.8: Diagram comparing contrastive losses: Supervised contrastive loss (left), contrasts all
samples from the same class as positives against the negatives from the batch, augmentation of the
anchor is also possible. Self-supervised loss (right) considers an anchor and various augmentations
of the same sample and a set of negatives consisting of the entire remainder of the batch without
class information [45] .

Contrastive learning has often been applied in classification tasks. However, these concepts

can be employed to regression tasks as well. A novel method was presented in “Rank-N-Contrast:

Learning Continuous Representations for Regression” by Zha et al. [91], where continuous valued

labels are handled by introducing a ranking-based contrastive loss. Specifically, a ranking mecha-

nism is used that orders samples, to which a contrastive loss that respects this ordering is applied.

This allows the model to learn representations, such that the distance in the embedding space reflects

the relative differences in the target values. Figure 2.9 shows the learned representations of differ-

ent loss methods, showcasing the continuous representation of RNC. This is achieved by contrasting

pairs of samples according to their rank order, encouraging the model to place samples closer to-

gether or further apart based on the similarity of their continuous target values. This method allows

the model to capture the underlying continuous structure of the data, making it particularly suitable

for tasks like brain age estimation, where the goal is to estimate a continuous age value rather than

to categorize into discrete classes.

The Rank-N-Contrast (RNC) has shown SOTA performance in other image processing domains

such as face age estimation with the AgeDB [62] and IMBD-WIKI datasets [80], containing 16,488

images of celebrities, and temperature prediction with the SkyFinder dataset [59], which contains
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35,417 images captured by 44 outdoor webcam cameras. Training on sub-sampled datasets showed

that RNC was more robust against reduced training data size compared to L1 loss[91]. This can

be particularly useful for medical image DL, where acquiring large datasets can be challenging.

One drawback is the large batch size required to obtain optimal results [91], as it allows a greater

number of pairs per anchor to be contrasted. This can cause memory complexity issues with large

3D medical images.

Figure 2.9: Learned representations of L1 (MAE) loss, SupCon loss [45] and RNC loss on a tem-
perature regression task [91]

2.7 Data Augmentation

Data augmentation can reduce overfitting to training data and help increase the performance of

a model without changing the architecture or adding more data. This widely used technique consists

of generating new training examples by applying various transformations to the existing data. The

goal is to increase the diversity in the data, incorporate random noise, or create synthetic data points,

allowing the model to become less biased towards the training sample. A synthetic dataset can be

created and incorporated with real data, which is particularly useful for small datasets. Another

option is to randomly apply data augmentation to a portion of the training set during each training

epoch to create variety.

A wide range of augmentation techniques can be used, as illustrated in Fig. 2.10. Geometric

transformations include rotating images by random angles, translation, horizontal and vertical flip-

ping, random cropping, and resizing. These transforms help the model generalize to various poses

and scales of the image, which is particularly useful for datasets registered to a template space (e.g.,
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brain MRI in the MNI-ICBM152 space). Intensity transformations aim to make the model invariant

to different contrast conditions and noise. The intensity of the pixels or voxels can be randomly

adjusted altogether with brightness and contrast transforms, or Gaussian noise can be injected to

simulate noisy scans. In natural image datasets, color jittering has a similar effect.

Figure 2.10: Examples of various data augmentation techniques applied to a T2w brain MRI [66]

Some more advanced methods exist to create synthetic data. For example, Generative Adver-

sarial Networks (GANs) can be used to generate images that are nearly indistinguishable from the

real ones. Mix-up involves creating new training samples by taking linear combinations of pairs of

images and their labels. However, these methods can be difficult to apply in radiological settings,

as creating completely synthetic variations to mitigate insufficient data could render the dataset

non-descriptive of medical reality.

Data augmentation has been shown to contribute to significant improvements in various medical

imaging tasks, such as tumor detection [66], disease classification and detection [14], and brain age

prediction [67]. By artificially adding variability to the existing training dataset, data augmentation

helps mitigate the pressing challenges posed by the limited availability of annotated medical images

and possible biases towards the training population.

2.8 Brain Age Estimation

The concept of biological age is an estimation of individual physiological age, based on vari-

ous biomarkers in the entirety of the body, or specific organs [46, 65]. Brain age is a biological

biomarker that estimates the age of the brain based on anatomical or functional features observed
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through neuroimaging techniques. These are traditionally morphological features such as cortical

thickness, brain volume and the integrity of various brain regions. The brain age gap can be defined

as the difference of an estimated brain age and the chronological age of a patient. A positive gap

suggests a less healthy, more aged brain than what is expected for a person of a given chronological

age while a negative one shows a healthier and less aged brain. Several studies have developed

accurate models to estimate brain age due to natural aging and/or neurodegenerative diseases by

examining the brain’s anatomical structures [84]. The computed brain age and brain age gap can

serve as potential biomarkers to assess an individual’s brain development and/or neurodegeneration

state, and thus facilitate personalized treatment.

The vast majority of brain age estimation (also referred to as brain age prediction in the lit-

erature) models are trained on a healthy population to predict their chronological age with high

accuracy [84, 86, 67]. These models can then be tested on other healthy individuals to assess their

performance. Downstream applications include applying the model to classify patients with neu-

rodegenerative diseases [67, 88] or to find correlation between brain age and the severity of their

condition [5, 90]. Ideally, the brain age gap should be positively correlated with the severity and

progression of the disease. Training the model on healthy populations without controlling for patient

demographics and genetics (if applicable) can introduce bias in the model and result in sub-optimal

accuracy in real deployment. In addition, uncertainty can also arise from deep learning models with

limited training samples and variety, and thus such factors should be considered in the interpreta-

tion of performance metrics reported. T1w MRIs are commonly used for structural neuroimaging

analysis, with multiple widely used datasets, such as the Human Connectome Project, UK Biobank,

ABIDE, OASIS, and IXI. Metrics to evaluate MRI-based brain age estimation DL models usually

include the mean absolute error (MAE), which measures the average magnitude of errors in the pre-

dictions, and the coefficient of determination (R2), which measures the proportion of the variance

in the observed data that is explained by the independent variables. DL models have shown success

in this target task, with SOTA MAEs ranging from 2.3 [71] to 4 years and R2 values of 0.90 to 0.97

for aging populations [86], though this is highly dependent on the datasets used and tested.

22



Deep Learning Brain Age Estimation Models

DL approaches to brain age estimation generally use full brain T1w MRIs with minimal pre-

processing. As opposed to ML which used hand picked features, DL approaches allow the model

to extract features through training. Using the whole image, DL models may aim to measure the

morphological properties that match trends of healthy chronological aging considering all potential

factors, with the goal of identifying key common patterns that help achieve an accurate prediction.

CNNs have been foundational for applications of DL in the domain. A pioneering study by

Cole et al. [11] demonstrated that 3D-CNNs could predict brain age of aging healthy subjects with

an MAE of around 4 years and R2 of 0.94, outperforming most traditional machine learning (ML)

methods. Optimized CNNs have drastically improved the current SOTA by reaching MAEs as low

as 3.90 [47] and 2.14 years[71] on healthy subjects.

Several techniques have used CNN models as backbones for feature extraction, with more ad-

vanced methodologies used to analyze the features. An example of this approach is the Global-Local

Transformer for Brain Age Estimation by He et al. [33], which processes brain images through two

parallel pathways: one focusing on the entire brain and the other zooming into specific regions. The

information extracted is then processed with a transformer for brain age estimation. The authors

achieved a mean absolute error (MAE) of 2.7 years on a dataset population spanning from infants

to elderly (0-97 years old). While the application of ViTs in medical imaging has shown promise,

no dedicated studies exist specifically for brain age prediction using ViTs.

One study used a supervised contrastive learning model with a custom Y-aware regression loss

(different from the RNC loss) [4]. This model achieved an MAE of 2.55 years on a dataset biased

towards younger individuals (mostly around 20 years old), using gray matter volumes from voxel-

based morphometry MRIs.

2.9 Explainability for Deep Learning Models

DL explainability refers to the ability to understand, interpret, and trust the decisions made by

DL models. Given the usual ‘black box’ nature of these models, explainability is crucial in ensur-

ing that model predictions and decisions are justifiable in risk-sensitive deployment (e.g., clinical
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diagnosis). In addition, the ability to explain the automatic decisions from different angles will al-

low further improvement of model architecture and explore novel insights into the target task. For

example, localizing key brain structures in MRI-based brain age estimation. Typically, explanation

for DL models can be achieved through techniques like feature importance, layer-wise relevance

propagation, and visualization of neural network activations.

2.9.1 Gradient-weighted Class Activation Mapping

Gradient-weighted Class Activation Mapping (Grad-CAM) [82] is a technique used to provide

visual explanations for CNN decisions. Grad-CAM uses gradients of a target concept flowing into

the final convolutional layer to generate a localization map, highlighting important regions in the

image for prediction. This method offers insights into the decision-making process of the model

by indicating which parts of the input image are influential in terms of the model prediction. Grad-

CAM is tailored to each class and subject, showcasing different activation patterns for different

concepts. It is commonly implemented in classification tasks, using backpropagation through the

correct class output dimension to visualize relevant activations. Figure 2.11 shows the Grad-CAM

activation for the class “West Highland white terrier” of a 2D CNN (VGG-16) trained on the Im-

ageNet dataset, with the heatmap correctly focusing on the dog itself rather than the background

objects.

Figure 2.11: Visual explanation of an image classified as “West Highland white terrier” by a VGG16
CNN model trained on the ImageNet dataset.

In natural image processing, challenges arise in creating averaged Grad-CAM heatmaps across

diverse scenes to probe any consensus in image patterns of a specified image class. However,
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in medical scans such as brain MRIs, where registration towards a common anatomical atlas can

be achieved, we can perform group-wise averaging to reveal common patterns of the GradCAM

insights derived from DL models. This may offer unique insights for medical image analysis besides

the more classic voxel-based and deformation-based morphometric analyses.

The following steps are followed to achieve these results:

1. Forward Pass: Compute the score for a target class yc before the softmax layer by propagating

an input image through the CNN..

2. Gradients of the Target Class: Calculate the gradients of the score for class c with respect to

the feature maps Ak of a chosen convolutional layer (typically the last one):

∂yc

∂Ak

3. Global Average Pooling of Gradients: Perform global average pooling on the gradients to

obtain the weights αc
k:

αc
k =

1

Z

∑
i

∑
j

∂yc

∂Ak
ij

where Z is the number of pixels in the feature map Ak, and i and j are the spatial dimensions.

4. Weighted Combination of Feature Maps: Compute the weighted combination of the feature

maps using the gradients as weights:

Lc
Grad-CAM = ReLU

(∑
k

αc
kA

k

)

The ReLU activation applied ensures that only positive influences on the class score are considered,

effectively filtering out non-contributory features.

2.9.2 Gradient-weighted Regression Activation Mapping

Gradient-weighted Regression Activation Mapping (Grad-RAM) is an adaptation of Grad-CAM

for regression tasks. While Grad-CAM is traditionally used for classification, Grad-RAM extends
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this approach to handle continuous outputs, adapting it to brain age estimation tasks. By computing

the gradients of the output with respect to the final convolutional layer, Grad-RAM generates a

similar heatmap that highlights the areas of the input that most influence the regression output. This

technique enables researchers to visualize which brain regions are contributing to the predicted age,

offering valuable insights into the biological processes associated with aging.

1. Forward Pass: Compute the regression output y by performing a forward pass through the

network.

2. Gradients of the Regression Output: Calculate the gradients of the regression output with

respect to the feature maps Ak:
∂y

∂Ak

3. Global Average Pooling of Gradients: Perform global average pooling on the gradients to

obtain the weights αk:

αk =
1

Z

∑
i

∑
j

∂y

∂Ak
ij

where Z is the number of pixels in the feature map Ak, and i and j are the spatial dimensions.

4. Weighted Combination of Feature Maps: Compute the weighted combination of the feature

maps using the gradients as weights:

LGrad-RAM = ReLU

(∑
k

αkA
k

)

or:

LGrad-RAM =
∑
k

αkA
k

The method with the ReLU operation will limit the visualization of features with a negative influ-

ence on the regression output. The appropriate method will therefore depend on the application and

the purpose of the visualization.
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2.9.3 Explainable DL Applications in Brain Age Estimation

Grad-CAM and Grad-RAM have been implemented in brain age models to visualize the regions

most related to aging, with findings fairly consistent with classic morphometric analysis [92, 43, 90].

Other explainability methods have been utilized with similar success. U-Net-based approaches have

demonstrated comparable outcomes [67, 27]. Patch-based models can compute a brain age estimate

for each local region, identifying those that show greater or lesser aging effects and employing patch

weighting to determine their significance in overall age prediction [33].

2.10 Summary

Understanding the intricate connections between neuroanatomy and aging is important for ad-

vancing our knowledge of the brain and neurodegenerative diseases. Alzheimer’s disease (AD) and

Parkinson’s disease (PD) pose unique challenges in terms of diagnosis and treatment. Personalized

anatomical brain biomarkers offer an opportunity to enhance current diagnostic methods, severity

metrics, and treatment plans. Brain age estimation can also shed light on how factors such as sex,

genetics, and environmental conditions influence brain aging.

Deep learning, particularly CNNs, consistently achieve SOTA results in estimating brain age

using MRI data. However, many advanced DL techniques widely applied in other domains have yet

to be fully explored in this field. Further studies are needed across diverse datasets to determine the

optimal model types, preprocessing steps, data augmentation strategies, and training methods.

Explainability of DL models is also important for interpreting model decisions and identifying

anatomical features critical for understanding aging processes in healthy and diseased populations.

In summary, the intersection of neuroanatomy, neurodegenerative disease research, and ad-

vanced DL techniques holds great promise for enhancing our understanding and clinical manage-

ment of brain aging and related diseases. In the following chapter, we present using supervised

contrastive learning with Rank-N-Contrast (RNC) loss and Grad-RAM for explainability utilizing

structural T1w MRI data to further explore the use of DL on brain age prediction and its association

with AD and PD.
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Chapter 3

Brain Age Estimation With

Data-Efficient Supervised Contrastive

Learning and Grad-RAM-based Visual

Explanation

3.1 Introduction

Chronological age is commonly used to describe patients or define health patterns in popula-

tions, however, it does not take into account individual deviations from the normal aging progression

that could be due to disease, genetics, or external factors [21, 22]. In contrast, measuring biological

aging offers a more precise metric for clinical applications [46]. This approach is particularly use-

ful for studying the human brain, which undergoes significant anatomical and functional changes

due to aging [73, 25]. Further, most neurodegenerative diseases are characterized by anatomical

changes similar to advanced or accelerated brain aging [15, 41, 12]. Thus, the difference between

an estimated brain age and chronological age (brain age gap) can provide a valuable biomarker and

enable better management and understanding of neurological diseases [11].

A growing body of research has shown that deep learning (DL) models can accurately predict
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the age of healthy patients using structural MRIs [86, 71, 47], with many methods employing CNN-

style architectures [44, 68, 90]. However, several challenges and open questions remain. First, there

is a lack of comparative studies between various DL models due to the diversity of datasets used.

Additionally, the inherent black-box nature of CNNs hinders straightforward interpretability, result-

ing in no consensus on brain region saliency concerning aging. Moreover, there is no agreement

on the utility of brain age as a biomarker for neurodegenerative diseases [21, 42], nor on whether

DL models can accurately associate aging and age-related decline with relevant neuroanatomical

regions.

Motivated by these knowledge gaps, we aim to advance the field by applying recent advance-

ments in CNN models from other domains to brain age estimation. Supervised contrastive learning,

for example, has been shown to be more accurate than traditional cross-entropy in many applications

[45, 91, 37, 9]. In this paper, we investigate the application of supervised contrastive learning with

Rank-N-Contrast (RNC) loss [91] for brain age estimation, using a dataset of 1,618 T1w MRIs. We

compare this approach to a commonly used ResNet model and assess the impact of various param-

eters on performance, using cohorts with neurodegenerative conditions to evaluate correlation with

disease severity and employing Grad-RAM for anatomical feature analysis.

3.2 Related Work

3.2.1 Aging-Related Anatomical Changes

Studies have shown statistical correlations between certain regions and natural aging, but dif-

ferences exist across studies and the methods used. For example, Fjell et al. [20] used cortical grey

matter (GM) thickness measures to reveal that the superior and inferior frontal gyri and the superior

parts of the temporal lobe are subject to aging-related cortical thinning. Later, further evidence was

found for atrophy in subcortical regions with a similar method [19]. Mu et al. [63] found that the

hippocampal formation, the amygdala, and the temporal horn all had significant volume decreases

with older age. The hippocampus loss in volume was further reinforced by Convit et al. [13]. A

review by Gunning-Dixon et al. showed that prefrontal cortical white matter (WM) thinned with

age [30]. A more recent study by Fujita et al. on a 653-patient longitudinal dataset confirmed that
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each brain structure showed characteristic age-dependent volume and atrophy changes. In particu-

lar, cortical GM showed consistent volume loss, WM showed an accelerated atrophy rate with age,

and volume increased in the lateral ventricle [25]. Another recent study by Dima et al. [16] on

a dataset with 18,605 subjects found significant association between aging and the volumes of the

basal ganglia, thalamus, amygdala and the hippocampus for subjects over 60 years old (yo), while

the lateral ventricles showed continuous enlargement throughout the lifespan.

3.2.2 Brain Age Estimation Methods

Over the last decade, significant work has been produced to create accurate brain age models

using neuroimaging data [21]. Structural T1w MRI data are the main modality and contrast used

[61], with machine learning (ML) and deep learning (DL) approaches able to produce accurate

predictors of brain ages [84]. Typically, a brain age estimation model will be trained on healthy

subjects and aim to be as accurate as possible at predicting the subjects chronological ages. Initially,

more traditional ML regression algorithms used engineered features extracted from MRIs, such as

cortical thickness and volumetric measurements. For instance, Franke et al [23] used relevance

vector regression on segmented GM data and achieved a mean absolute error (MAE) of 5 years.

Liem et al. [49] used linear support vector regression models on multimodal data, including cortical

thickness, cortical surface area, and subcortical volume measurements to achieve an MAE of 4.29

years. A more recent approach by Han et al. [31] used regularized linear regression on extracted

morphometric features and achieved an MAE of 3.7 years.

The introduction of DL has enabled the use of entire structural T1w MRIs, leading to significant

performance improvements in models within this domain [84]. A model developed in 2016 by Cole

et al. [11] demonstrated that 3D-convolutional neural networks (CNNs) trained on brain structural

MRIs could predict brain age with an MAE of around 4 years with an R² of 0.94, outperforming

most traditional ML methods at the time. Advancements to CNN architectures have also drastically

improved the current state-of-the-art (SOTA) accuracy; Yin et al. [90] achieved an MAE of 2.3

years with a customized 3D CNN, Leonardsen et al.[47] and Peng et al. [71] achieved 3.90 years

and 2.14 years respectively with SFCN architectures (VGG-like). MAEs of 3.39 [44] to 2.7 [68]

have also been achieved with residual CNNs (ResNet). Techniques using CNN backbones as feature
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extractors have proven to be more or equally accurate. He et al. [33] presented a global-local

approach with ResNet backbones, coupled to a transformer to reach an MAE of 2.7 years for a

population with an age range of 0-97 yo. A U-Net style approach proposed by Nguyen et al. [67]

achieved an MAE of 3.83 years on an aging cohort and 1.91 years on a young one. Lastly, one

study that used a supervised contrastive learning method with a custom Y-aware regression loss

achieved an MAE of 2.55 years on a mostly young dataset using gray matter volumes from voxel-

based morphometry (VBM) [4]. To the best of our knowledge, no supervised contrastive approach

has been used directly on T1w structural MRIs.

3.2.3 Applications to Neurodegenerative Diseases

Several papers[61] have suggested that brain age estimation techniques could be used to detect

or quantify the severity of certain neurological diseases. One observation is that the mean brain

age gap between the biological and chronological ages of a disease population is typically higher

compared to a healthy one. Sendi et al. [83] found a mean age gap of +3.3 years in their AD sample

using support vector regression. Similarly, Eickhoff et al. [17] found a mean age gap of +2.8 years

in their PD sample using an ensemble of linear support vector regression models. Nguyen et al. [67]

used a U-net and showed an increased brain age gap for neurodegenerative patients with means of

+3.3 years for AD and a more modest +1.3 years for PD. They then computed the brain age gap

of specific brain structures to classify patients with neurodegenerative diseases. ML approaches

using morphological data found that brain age could help predict mild cognitive impairment (MCI),

conversion to AD with an accuracy of 86% [26] and classify healthy and AD patients with an

accuracy of around 90% [88].

Investigations into correlations between brain age and neurodegenerative disease cognitive as-

sessments have yielded varied results. Studies using ML on processed MRIs have found correlations

between brain age gap and ADAS-cog 11 scores of 0.25 to 0.56 by Lowe et al. [51] and 0.26 by

Beheshti et al. [5]. Yin et al. [90] found that their CNN produced brain age gaps for their MCI and

AD sample that correlated with neurocognitive measures such as ADAS, CDRSB, or FAQ. For PD,

[17] found a weak correlation (0.14-0.17) between a predicted brain age gap and UPDRSIII, using

a model based on gray and white matter features [17]. Others have found no correlation between
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PD and UPDRSIII [10]. While these findings are promising, more studies are required to truly

understand the potential clinical use of brain age as a biomarker, especially with DL approaches.

3.2.4 Explainability Methods

Due to their black-box nature, explainability techniques must be applied to CNN-based models

to understand and map the regions with the strongest relation to aging. Grad-CAM/Grad-RAM has

been implemented on DL CNN models with findings mostly consistent with anatomical regions

known to alter with age [43]. Joo et al [43] found that the corpus callosum, internal capsule, and

brain regions adjacent to the lateral ventricle were most important in predicting age for all healthy

subjects. Yin et al. [90] used a similar saliency map method and found the ventricles, frontal,

temporal, and hippocampal cortices to be most salient in CN aging, with a shift to cerebral WM

for cognitively impaired patients. He et al. [33] estimated patch saliency by weighing the model’s

patches based on accuracy and found a shift in brain region over age.

Previous methods produced relatively blurry heatmaps, but recent advancements have attempted

to address this issue by estimating saliency at the voxel level. Occlusion-map based techniques by

Bintsi et al. [6] had findings consistent with the existing literature, highlighting that the hippocam-

pus and the ventricles are the most relevant regions. Certain methods (U-Net style) perform brain

age estimation at the voxel level which directly creates the saliency maps, this is particularly useful

to see which regions contribute to an older or younger brain age. Using this approach, Gianchandani

et al. [28] found higher brain age gaps in the caudate nuclei which resonates with lower caudate

nuclei volumes in AD compared to healthy control subjects [52]. Nguyen et al. [67] found that

in their AD group regions surrounding the hippocampus show the most accelerated aging, a region

well-known to be related to AD [38, 24, 64]. For their PD cohort, all regions seem to be similar

to the healthy populations. Explainability features are essential for model confidence, especially in

future clinical applications, to provide insights and to understand areas associated with aging for

neurodegenerative patients. However, no consensus exists on which method is most accurate or

brain regions are most salient.
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3.3 Methods and Materials

3.3.1 Dataset

We collected a total of 1,618 healthy subjects’ 3T T1w brain MRIs with the corresponding

chronological age and sex (age=52.8±18.5 yo, range=20-100yo, 872 females) for the development

and testing of the proposed method from five publicly available data sets, including the Human

Connectome Project Aging (HCP) [7], Alzheimer’s Disease Neuroimaging Initiative (ADNI) [40],

IXI Dataset3.1, OpenNeuro (Neurocognitive aging data release with behavioral structural and multi-

echo functional MRI measures [85]), and Parkinson’s Progressive Markers Initiative (PPMI) [57].

The details for each dataset and totals are provided in Table 3.1.

We used a train/validation/test split with 80%/10%/10% of the full data respectively. More

specifically, the test dataset (149 subjects with 79 females, age=51.26±19.32 yo) have 41, 46, 47,

and 15 subjects in the 20-40 yo, 40-60 yo, and 60-80 yo, and 80+yo age groups, respectively.

To further explore the application of the proposed method in gauging progression of neurodegen-

erative conditions, we have also collected 61 Alzheimer’s disease patients (age=78.1±7.3yo, 22

female) with ADAS-cog 11 score of 25.56±9.46 from the ADNI database, and 80 Parkinson’s dis-

ease patients (age=66.8±9.1yo, 24 female) with the UPDRSIII and H&Y scores of 27.91±13.88 and

2.28±0.58, respectively. Specifically, for the AD patients, we selected those that were scanned 24

months after their baseline visits, and PD patients’s data 48 months after baseline were selected.

For both patient cohorts, we ensure a variety of mild and severe disease cases, and a variety of age

ranges.

Table 3.1: Statistics of data sets used for cognitively normal, AD, and PD.

Dataset Nsamples Mean Age ±Std.Dev. Age range Sex(F/M)

♢ IXI 562 48.7 ±16.5 20-86.32 311/251
♢ HCP 635 59.8 ±15.5 20-100 355/280

♢ OpenNeuro 223 41.0 ±23.3 20-89 129/94
♢ ADNI NC 136 78.0 ±6.5 69-93 55/81
♢ PPMI NC 62 61.4 ±9.8 40.2-81.1 22/40

CN Totals 1618 52.8 ±18.5 20-100 872/746

△ ADNI AD 61 78.1 ±7.3 59-91 22/39
△ PPMI PD 80 66.8 ±9.1 43-86 24/56
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Figure 3.1: Visualization of relative age distribution of cognitively normal patients per dataset (n =
1618)

3.3.2 Preprocessing

All collected T1w MRIs were preprocessed with the MINC Toolkit (https://bic-mni.github.io/)

to ensure data quality and facilitate image analysis. Specifically, we obtained the brain mask with

the BEaST algorithm [18] and performed non-uniformity correction within the constraints of the

brain mask using the N4 inhomogeneity correction algorithm [87] for each scan. Afterwards, the

skull-stripped MRIs were registered and resampled to the MNI ICBM space with a 12-parameter

affine transformation using normalized cross-correlation as the cost function. The final images are

of dimension 193x229x193 voxels with 1x1x1 mm3 resolution. To help with data efficiency, we

also generated a downsampled version of the same dataset at 2x2x2 mm3 resolution and size of

96x114x96 voxels. A visual quality control is performed on each sample. An example of the

images can be seen in Fig. 3.2
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(a) Raw T1w (b) Preprocessed 1x1x1 mm3

T1w

(c) Preprocessed 2x2x2 mm3

T1w

Figure 3.2: Axial slice of raw, preprocessed, and resized data for comparison

Data Augmentation

To improve learning efficiency and mitigate overfitting, we adopted four data augmentation

techniques for the training dataset, each with a 50% probability of being applied, including 1)

random affine translation of ±10 voxels in each direction, 2) random rotation transformation of 0.1

to 0.5 radians in any direction, 3) random Gaussian noise addition with 0 mean and 0.025 standard

deviation, and 4) random image cropping with the size no smaller than 70% of the original image

(and is resized to the original image dimensions).

3.3.3 Deep Learning Models and Experimental Setup

Overview of experimental setup

We propose to use the ResNet models [32] as the backbone to build our proposed DL algorithm

for MRI-based brain age estimation, with the RNC contrastive learning technique. To optimize the

target method, we inspected the performance of ResNet depth, data augmentation, and image reso-

lution for different variants of the ResNet architecture, which are compared against our contrastive

learning approach, together with two other SOTA techniques. In addition, we implemented the

Grad-RAM technique to provide visual saliency maps for the DL-based age estimation results to

reveal insights regarding brain aging. Finally, an AD and PD cohort was used to assess the model’s

abilities on subjects with neurodegenerative conditions, where correlations between brain age gaps
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and disease severity were evaluated. All models were trained on the AllianceCan Narval cluster

with 4 Nvidia A100-40gb GPUs.

Backbone Model

We evaluated ResNets [32] of varying depths, specifically 18, 50, and 101, to determine the

optimal backbone architecture for our intended contrastive learning approach. Figure 3.3 shows

the architecture for the basic ResNet-50 model used in the study. Each version of the ResNet

architecture underwent training for 300 epochs with early stopping to regress age estimates based

on preprocessed T1-weighted MRI scans. MAE) was used as the loss function with Adam optimizer

and a learning rate of 0.001. For images with resolutions of 2x2x2 mm³, a batch size of 8 was used,

while for 1x1x1 mm³ resolution images, a batch size of 4 was employed. We conducted experiments

with both augmented and unaugmented datasets to assess the impact on accuracy improvement.

Figure 3.3: Overview of the 3D ResNet-50 architecture used for brain age estimation.
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Contrastive Learning with Rank-N-Contrast

Contrastive learning has recently emerged as a powerful technique for learning representations,

especially in image classification tasks, but its application in regression tasks has yet to be fully ex-

plored. This approach learns data feature embeddings by comparing the similarity and dissimilarity.

A recent variation, Rank-N-Contrast, proposed by Zha et al. [91] is designed to handle continuous

labels (e.g., brain age) by allowing the image encoder to learn representations, such that the distance

in the embedding space reflects the relative differences in the target values. So far, it has provided

excellent results in various regression tasks with natural images. We leverage this technique for

MRI-based brain age estimation for the first time.

Specifically, for our application, the original Rank-N-Contrast [91] model architecture and loss

function were modified to process 3D brain imaging data. The implementation of this method

uses the same data, same split of 80%/10%/10%, and the same augmentation techniques described

previously. To obtain the optimal backbone encoder, multiple architectures and hyperparameters

were tested. Due to the memory intensive 3D data used, batch sizes, a crucial factor in contrastive

learning had to be maximized to increase performance while not creating GPU memory issues.

Thus, for the 2x2x2 mm3 resolution data, a ResNet-50 backbone with batchsize of 48 was used

and we name the resulting model RNC-lowRez while for 1x1x1 mm3 resolution data, a ResNet-

18 backbone with a batch size of 24 was employed and we name the model RNC-highRez. Note

that ResNet-101 was omitted due to computational and memory complexity requirements. Model

training hyperparameters included a learning rate of 0.5, decay rate of 0.1, and momentum of 0.9

with stochastic gradient descent (SGD) optimizer. The backbone encoders were trained for 1,000

epochs with the RNC loss. Afterwards, a regression head is added to the last layer of the backbone

model, consisting of a fully connected (FC) to estimate the age from the encoded image features.

In the last step, the backbone encoder weights were frozen and an MAE (L1) loss was used to train

the FC layer, with the same training data for 100 epochs using the SGD optimizer (learning rate =

0.05, decay rate = 0.2, and momentum = 0.9). Figure 3.4 shows an overview of the training steps.
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Figure 3.4: Overview of the training process for the RNC model supervised contrastive learning
model, with the first step (left) training the ResNet backbone with the RNC loss (contrastive), and
the second step (right) training a FC regression layer with MAE/L1 loss.

Comparison to the State-of-the-Art Methods

We compared our contrastive learning technique for MRI-based brain age estimation against

two popular pre-trained public DL models, including the Simple Fully Convolutional Network with

regression output (SFCN-reg) [47] and BrainStructureAges (BSA) [67], on the same test dataset.

Note that to best reflect the accuracy of these models, we decided not to train these models from

scratch based on our curated dataset, but directly used their pretrained weights. Furthermore, to

mitigate the impact of domain shift that can degrade performance, we reprocessed our test data as

instructed by each algorithm.

The SFCN-reg model [47] was trained on a large and diverse neuroimaging dataset consisting

of 42,829 T1-weighted MRI scans from 21 public datasets, covering ages from 3 to 95. HCP is the

only dataset used in both our method and SFCN-reg. In short, the model’s architecture consists of

a VGG-like structure with five repeated convolutional blocks, each including a three-dimensional

convolutional layer, batch normalization, ReLU activation, and max-pooling followed by a global
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average pooling layer and a single output predicting age. It achieved an MAE of 2.47 years on an in-

domain test set and 3.90 years on an external dataset, making it one of the best-performing models

in the literature. Our raw test dataset was preprocessed using the preprocessing script published by

the authors on GitHub [47], and the images were subsequently ran on their trained model through

their publicly available docker.

The BSA model [67] predicts a 3D aging map at the voxel level and subsequently computes

specific brain structure ages using a 3D segmentation mask. The brain age of the structures is then

used as a biomarker for various downstream applications such as disease classification. The model

was trained on 2,887 T1w brain MRIs from various sources. ADNI is the only overlapping dataset

with our study. The BSA model achieved an MAE of 1.88 years on a young population (14.8±9.3

yo) and 3.83 years on an older population (64.2±7.9 yo), achieving great accuracy. The trained

model is hosted on the volBrain website, our raw test dataset was processed as per the instructions.

3.3.4 Evaluation metrics

To evaluate the accuracy for MRI-based brain age estimation, we used the mean absolute error

(MAE), coefficient of determination, and Spearman correlation. When comparing the absolute

errors between DL models based on the test set, two-sided paired-sample t-tests were conducted,

and a difference with p-value below 0.05 is considered statistically significant.

3.3.5 Grad-RAM for Aging Bias Analysis

Grad-RAM visualization

Gradient-weighted Regression Activation Mapping (Grad-RAM) is an adaptation of Grad-CAM

for regression tasks. While Grad-CAM is traditionally used for classification, Grad-RAM extends

this approach to handle continuous outputs, adapting it to brain age estimation tasks. Grad-RAM

generates a heatmap that highlights the areas of the input that most influences the regression output.

In this implementation, a ReLU operation on the gradient activations allows the heatmap to solely

represent areas that contribute to increasing the age values. The heatmaps are dependent on the

input and output and vary per individuals; averaging the heatmaps of specific populations can reveal

39



the most important regions to their aging.

To reveal the insights provided by the DL models, Grad-RAM is performed on all test dataset

subjects to obtain relevant saliency maps (with the normalized value range of [0,1] for each MRI).

Averaged saliency maps were computed for different age groups to visualize the relevant anatomical

regions that are closely related to aging at different stages of the lifespan. To facilitate the analysis,

The Automated Anatomical Labeling (AAL)-16 atlas was used to help compute the mean Grad-

RAM heatmap scores within each of the brain parcellations. Averaged Grad-RAM heatmaps and

the associated parcellation-based quantitative values were obtained for the following four subgroups

of our testing data: 20-40 yo, 40-60 yo, 60-80 yo, and above 80 yo. To further inspect the potential

sex-based differences in brain aging, we performed a similar analysis by regrouping and averaging

the Grad-RAM heatmaps with respect to sex. Note that the Grad-RAM results of both the RNC and

best performing ResNet model are produced for comparison as well.

3.3.6 Analysis of Brain Age for Neurodegenerative Conditions

In neurodegenerative disorders, the patient’s brain age gap between biological and chronological

aging and disease severity could be correlated [17, 51, 5], and may serve as an indicator for disease

progression. To explore the application of our proposed method in this domain, the T1w MRIs

of the selected AD and PD patients from the respective ADNI and PPMI datasets were used in

two different experiments. Note that for both experiments, we compared the proposed contrastive

learning method and the best ResNet variant that were trained with the 1x1x1 mm3 images.

In the first experiment, we estimated the biological brain age using the two designated DL mod-

els, and then we computed the correlation between the brain age gap, representing the difference

between biological and chronological aging and the associated disease severity metrics. Specifically,

for AD, we used the ADAS-cog 11 [79] score, which evaluates memory, language, praxis, and ori-

entation, and is widely regarded as a gold standard for assessing cognitive function in Alzheimer’s

disease patients. On the other hand, for PD, we used the UPDRSIII [29] score that focuses specifi-

cally on motor symptoms, the primary clinical manifestations of Parkinson’s disease, and is a more

objective metric compared to other sub-evaluations of the UPDRS assessment. In the second exper-

iment, population-averaged Grad-RAM heatmaps based on DL-based age estimation were obtained
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to reveal the relevant anatomical patterns that are associated with aging under the influence of neu-

rodegenerative conditions in comparison to healthy aging. The Grad-RAM heatmaps of the ADNI

AD and PPMI PD patients were evaluated as a whole.

3.4 Results

3.4.1 Evaluation of Deep Learning Models

Brain Age Estimation Accuracy

The results of the proposed contrastive learning method and the variants of the ResNets models

for MRI-based age estimation are shown in Table 3.2, where results from both the high-resolution

(1x1x1 mm3) and lower-resolution (2x2x2 mm3) are compared. In addition, we also compared

the performance of the ResNet50 model with and without data augmentation during training. First,

when examining the difference between the ResNet50 variants with and without data augmenta-

tion, we have observed an evident performance boost from data augmentation, particularly at the

1x1x1 mm3 resolution. Secondly, with the incorporation of data augmentation, the depth of 50 for

the ResNets has shown better performance compared to both the deeper 101-layer and shallower

18-layer versions. Notably, increasing the data resolution from 2x2x2 mm3 to 1x1x1 mm3 signifi-

cantly enhanced model performance across all ResNet models (p < 0.05). Lastly, the RNC models

exhibited the best performance across both resolutions, with the 1x1x1 mm3 version outperforming

all other models across all metrics with an MAE of 4.28 years, Std. Dev of 3.34, and R² of 0.93.

As the sizes of the backbone ResNets for RNC models at different resolutions differ, the MAE and

R² improvements are limited at the higher resolution. In addition, as shown in Fig. 3.5, the batch

size had an important impact on the RNC model. The results with the largest possible batch size

without a computational memory issue are presented in Table 3.2, with 48 for 2x2x2 mm3 and 24

for 1x1x1 mm3. Based on this investigation, we used ResNet50-highRez and RNC-highRez for the

rest of our experiments and analysis.
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Table 3.2: Accuracy assessments of MRI-based brain age estimation of ResNet and RNC models
with different image resolutions and data augmentation conditions. (* indictates p < 0.01)

Model MAE ± Std. Dev. R² Correlation
1x1x1 mm3

ResNet50 w/o Data Augmentation 6.2 ±5.25 0.74 0.86*
ResNet18-highRez 5.10 ±4.19 0.87 0.93*
ResNet50-highRez 4.93 ±3.90 0.90 0.94*
ResNet101-highRez 5.92 ±5.14 0.84 0.92*
RNC-highRez 4.28 ±3.34 0.93 0.96*

2x2x2 mm3

ResNet50 w/o Data Augmentation 6.4 ±6.11 0.79 0.84*
ResNet18-lowRez 6.03 ±5.09 0.79 0.88*
ResNet50-lowRez 5.45 ±4.94 0.82 0.89*
ResNet101-lowRez 6.62 ±5.82 0.74 0.87*
RNC-lowRez 4.68 ±3.88 0.90 0.92*

(a) (b)

Figure 3.5: (a) Predictions of the ResNet 50 w. Data Aug and the RNC model brain ages vs chrono-
logical ages (b) Batch size vs. MAE for RNC models trained on 1x1x1 resolution data and 2x2x2
mm3 resolution.

Comparison with State-of-the-art methods

Table 3.3 compares the performance of the best performing ResNet50-highRez and RNC-highRez

against the two benchmarking models. The SFCN-reg model had a significantly higher MAE of

5.26±3.89 years (p = 0.002) but a lower R² of 0.85 than the proposed RNC-highRez, despite

being trained on a much larger dataset. On the other hand, the BSA model [67] obtained a sig-

nificantly better MAE at 4.08±3.23 years (p < 0.01), but had a lower R² and correlation than

RNC-highRez. However, when inspecting the estimation accuracy for the older population group
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over 60 yo (N=62), RNC-highRez offered an MAE of 4.30±3.23 years and R² of 0.77 while BSA

resulted in slightly inferior MAE of 4.36±3.44 years and R² of 0.74.

Table 3.3: Results of the best performing ResNet, proposed RNC and benchmark models, with
addition of male (M) and female (F) subgroup performance. Our methods are highlighted in gray.
(* indictates p < 0.01).

Model Train Data MAE ± Std. Dev. M/F MAE Mean M/F Mean R² Correlation
ResNet50-highRez 1294 4.93 ±3.90 4.97/4.89 -0.36 -0.86/+0.11 0.90 0.94*
RNC-highRez 1294 4.28 ±3.34 4.38/4.19 -0.60 -1.0/-0.17 0.93 0.96*
BSA 2887 4.08 ±3.23 4.06/4.09 -0.61 -0.40/-0.88 0.89 0.94*
SFCN-reg 42 829 5.46 ±3.89 5.13/5.76 -2.50 -2.47/-2.52 0.85 0.92*

3.4.2 Grad-RAM Analysis of Healthy Population

As an exploratory study, we computed the mean values from the population-averaged Grad-

RAM heatmaps for 116 brain parcellations based on the AAL116 atlas. A visualization of the

numerical results for different DL models’ Grad-RAM heatmaps across different age groups and

sexes is presented in Appendix A.

Upon inspecting the population-averaged Grad-RAM results across different age groups, the

ResNet50-highRez model presented fairly consistent areas of interest across the age groups, with

virtually no differences across sexes. Specifically, for all age groups, the main areas the model fo-

cuses on are in the left hemisphere (in order of decreasing magnitude): pallidum, amygdala, and

putamen. The younger population (20-40 yo) has a high concentration on the left hippocampus and

left pallidum. As the population ages, several other areas become more prominent, especially for the

population above 80 yo, and these include the right pallidum, thalamus, caudate, left parahippocam-

pal gyrus, left hippocampus, and posterior cingulum, vermis, left frontal orbital gyrus. Based on the

observation, as we age, the ResNet50-highRez model focuses on wider and more diverse regions of

interest while the primary focus is still on subcortical regions. A visual inspection of the averaged

Grad-RAMs (see Fig. 3.6) further confirms our results, showing the younger population (20-40 yo)

having a more concentrated activation area, and the older population expanding the activation area

in the subcortical regions, ventricles, and the cortex.
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Figure 3.6: Averaged Grad-RAM heatmaps produced from the ResNet 50-highRez model based on
the healthy control test set for the age groups of 20-40 yo (left) and 80+ yo (right).

In contrast to ResNet50-highRez, the RNC-highRez model showed more distinct Grad-RAM

activation patterns across different age groups. For the 20-40 yo group, the activated areas from

the DL model are on the right parietal and lateral frontal lobe, including (in the order of decreasing

magnitude) inferior parietal, right postcentral, precentral, supramarginal, and angular gyrus, and

right paracentral lobule. For the 40-60 yo group, the model shifts the attention with a focus towards

the left lateral frontal lobe, particularly the frontal inferior operculum, frontal inferior triangularis,

rolandic operculum, and with a broader and weaker focus on areas around it, such as the left insula.

Finally, the 60-80 yo group and the 80+ yo group have nearly identical activation patterns, focusing

on subcortical regions and to a lesser extent, the left lateral frontal lobe. The main regions of interest

remain on the left hemisphere, including (in the order of decreasing magnitude) the thalamus, pal-

lidum, putamen, hippocampus, amygdala, caudate, and vermis. A visual inspection (see Fig. 3.7)

confirms these findings from the parcellation-wise mean Grad-RAM values and suggests that the

younger population (20-40 yo) has more activation in the lateral frontal and parietal lobes, shifting

towards the left hemisphere’s subcortical regions and lateral ventricles along with the aging process.

Similar to the case of ResNet50-highRez, the RNC-highRez model also did not demonstrate

drastic Grad-RAM pattern differences between male and female aging (see Fig. 3.8) although some

nuanced distinctions in the strengths of activation were present for the overall population and within
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the same age groups. The more pronounced differences are for the youngest group of 20-40 yo. On

average, the right parietal inferior lobe, right angular gyrus, right paracentral lobule, right parietal

superior lobe, and left frontal superior lobe, are about 40% more activated for males, with the

contribution coming mainly from the 20-40 group.

Figure 3.7: Averaged Grad-RAM heatmaps produced from the RNC-highRez model based on the
healthy control test set for the age groups of 20-40 yo (top left), 40-60 yo (bottom left), 60-80 yo
(top right), and 80+ yo (bottom right).
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Figure 3.8: Group-averaged Grad-RAM intensities produced from the RNC-highRez model of male
(left) and female healthy subjects (right) of the entire test dataset.

3.4.3 Brain Age Estimation for Alzheimer’s and Parkinson’s Disease Patients

In Table 3.4, we list the age estimation errors in terms of the MAE and mean age gap (“predic-

tion - ground truth”) and “age gap vs. disease severity” correlations for AD and PD patient groups.

In both disease groups and across all models, the MAE and standard deviation exhibit an increase,

as anticipated in diseased patients. Notably, the mean error between the healthy and diseased pop-

ulations also increases, as illustrated in Fig. 3.9. As expected, the healthy control group exhibits a

mean error closest to 0, with the ResNet50-highRez showing an error of -0.36 years and the RNC-

highRez model of -0.60 years. In contrast, the AD group shows a substantial increase in mean error

to +0.70 years for the ResNet50-highRez (p < 0.01) and +2.10 years for the RNC-highRez model,

which is significantly higher than that of the ResNet50-highRez (p < 0.01). These errors are con-

sistent with those reported by Nguyen et al. [67], who found a discrepancy of +3.4 years, and Sendi

et al. [83], who reported a difference of +3.3 years.

We observed that the brain age gaps between the prediction and ground truths are correlated

to ADAS-cog 11 scores, with the RNC-highRez model achieving the highest correlation of 0.37

(p = 0.0098). In addition, the RNC-highRez model tends to predict older ages than the ResNet50-

highRez counterpart, and shows a stronger correlation between brain age gap and disease severity.
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In the PD group the ResNet50-highRez model exhibits a modest increase in mean error without

a statistically significant difference, whereas the RNC-highRez model shows a significantly higher

mean error of +0.47 (p < 0.01). These findings are consistent with Nguyen et al. [67], who reported

a brain age gap of +1.0 years for PD, but differ from Eickhoff et al. [17], who found a larger gap

of +2.8 years. In our tested PD cohort, no correlation was found between the brain age gap and

UPDRSIII scores.

Table 3.4: Metrics of interest for a disease population for each model, including the correlation
between brain age (BA) and disease severity metrics: ADAS-cog 11 for AD, UPDRSIII for PD.

Population Model MAE ± Std. Dev. Mean Error ± Std. Dev. Corr. BA vs. Disease

AD (n=80)
ResNet50-highRez 5.49 ±4.42 0.70 ±7.05 0.25 (p = 0.032)

RNC-highRez 5.61 ±4.40 2.10 ±6.70 0.37 (p = 0.0098)

PD (n=61)
ResNet50-highRez 6.01 ±5.35 0.24 ±8.07 0.03 (p = 0.80)

RNC-highRez 5.85 ±5.21 0.47 ±7.84 0.043 (p = 0.63)

Figure 3.9: Violin plot of differences between the estimated brain age and the ground truths for the
ResNet50-highRez and RNC-highRez models on healthy and diseased populations.

3.4.4 Grad-RAM Analysis for Alzheimer’s and Parkinson’s Disease Patients

Similar to the Grad-RAM analysis for healthy aging, a visualization of the numerical results for

different DL models’ Grad-RAM heatmaps for the AD and PD groups is presented in Appendix

A Fig.A.3. The ResNet50-highRez model produced almost no difference compared to the healthy
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cohort of the same age range. The RNC-highRez model presented some changes, the Grad-RAM

outputs are shown in Fig. 3.10.

For AD patients, the RNC-highRez revealed similar activation patterns to the healthy controls of

the same age range, which are concentrated on the left hemisphere (in the order of decreasing mean

grad-RAM values): thalamus, pallidum, putamen, hippocampus, amygdala, and caudate. Compared

to HC activations with the same model there are slight increases in intensity to the left temporal and

lateral frontal lobe, caudate and putamen. Noticeably, the model intensities are consistent with

the RNC-highRez model on the left side of the brain, but intensities slightly increased towards

the longitudinal fissure and right hemisphere of the brain. Visually, the hippocampus, left lateral

ventricle and midbrain are more activated.

For PD patients, with the RNC-highRez model, the main activation patterns remain similar to

those of the HC group for the same age range, once again on the left hemisphere (in the order of

decreasing mean grad-RAM values): thalamus, pallidum, putamen, hippocampus, amygdala, and

caudate. There are some increases in intensity to the left temporal and lateral frontal lobe compared

to the HC cohort. Visually, the left lateral ventricle, basal ganglia, and midbrain are more activated.

Figure 3.10: Averaged Grad-RAM heatmaps produced from the RNC-highRez model for the AD
(left) and PD (right) patients.
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3.5 Discussion

3.5.1 Deep Learning Model Performance

The absence of a standardized dataset for brain age estimation introduces significant variability

in accuracy results across studies, as outcomes can depend on dataset size, origin (e.g., scanner

types and imaging protocols), and age distribution. Studies with older cohorts (over 25yo) reported

higher MAEs compared to those with younger populations (0-18yo) [67, 86]. Consequently, it is

important to consider how training or testing datasets influence the accuracy of models.

When applying models trained on significantly larger datasets to our testing set, we observe

an underperformance compared to their expected out-of-domain accuracy using the same data pre-

processing procedures. BSA [67] trained on roughly 2,887 subjects achieved an MAE of 4.08 years

compared to their out-of-domain results of 3.83 years, although they provided an improvement in R²

of 0.89 compared to 0.62. Similarly, SFCN-reg [47] trained on 42,829 T1w MRIs achieved an MAE

of 5.46 years compared to their test set’s MAE of 3.90 years, and R² of 0.89 instead of 0.94. When

applying the same ResNet model to a much larger dataset, performance can improve significantly.

For instance, Peng et al. [71] utilized a ResNet-50 trained on 12,949 subjects (44-80 yo) using

similar data augmentation methods to ours, and achieved an MAE of 2.32 years on their test set.

Therefore, the comparatively smaller training dataset and demographic differences may contribute

to the lower MAEs observed with our proposed method compared to the best SOTA DL model. The

RNC-highRez model significantly outperformed all our ResNet variants and the SFCN-reg model,

and had comparable performance to the BSA model. This performance relative to our ResNet vari-

ants and two SOTA benchmarking techniques trained on much more data show potential for the

RNC approach to achieve superior performance if trained on a larger dataset. This observation is

supported by the findings from other brain age estimation studies, which have demonstrated that

increasing dataset size substantially enhances model performance [86, 67, 71]. This was also high-

lighted by the authors of RNC [91]. Our results also confirmed the benefit of contrastive learning in

data efficient DL training, which is particularly significant in medical image analysis. Additionally,

we observed a positive impact of finer brain MRI resolution on the age estimation, suggesting that

structural changes related to aging can be more nuanced.
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The main limitation of our model development and accuracy evaluation is the lack of an indepen-

dent out-of-domain test set for evaluating accuracy to provide more rigorous comparisons between

our models and the benchmark models. Another approach would be to train the benchmark mod-

els from scratch with our dataset for a more fair comparison. However, this is often challenging

due to many models not being publicly available and the difficulty to exactly replicate the original

studies. On the other hand, curation and management of large brain MRI datasets can be highly

resource-demanding.

Several other parameters were found to significantly impact performance. The combination

of random affine translation and rotation, random Gaussian noise, and random crop resize as data

augmentation techniques improved the performance of our ResNet models. Additionally, increasing

the batch size for the RNC model improved performance, consistent with the original supervised

contrastive loss study [45]. Finally, a higher image resolution resulted in increased performance

across all models, suggesting that reducing resolution to save computational and memory resources

may severely reduce performance.

3.5.2 Analysis of Grad-RAM results

Our Grad-RAM analyses provided insights into the brain regions that are most associated with

healthy aging by the selected DL models across different age groups and sexes. The saliency map

results revealed similarity to existing literature, as well as notable differences between the two

models: ResNet50-highRez and RNC-highRez.

The ResNet50-highRez model presented consistent areas of interest in the Grad-RAM result

across different age groups, focusing primarily on the limbic system, basal ganglia, cortices and

ventricles. For MRI-based age estimation, the model mainly focuses on subcortical regions, which

are known to have significant volume and morphological changes through aging [19, 25, 13, 39].

The saliency of the orbital cortex also resonates with known aging-related cortical thinning and

ventricular enlargement [73, 20, 25]. On the other hand, the RNC-highRez model’s saliency maps

showed a more dynamic pattern with regions of interest varying significantly with age. For younger

populations (20-40 yo), the model focused on the right parietal and lateral frontal lobes, shifting

towards the left lateral frontal lobe in the 40-60 yo age group. For older groups (60+ yo), the focus
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transitioned to subcortical regions similar to those identified by the ResNet50-highRez counterpart,

showing once again influence on the limbic system and basal ganglia from aging, but with the

notable addition of the cerebellum. These observations echo with existing literature, which reported

volume reduction to the limbic system and basal ganglia [63, 39] and ventricle enlargement [25, 73].

Other studies using CNN based explainability methods [90, 43] also find similar activation pat-

terns in the subcortical regions, but reported greater activations on the cortices compared to our

study. Aging results in substantial thinning of cortical structures [30, 73] which is often the focus of

most existing studies using the popular VBM [31, 49]. In contrast, our DL-based analysis revealed

heavier weights on the sub-cortical regions in aging. The RNC-highRez model also showed slight

sex-based differences, particularly in younger populations, similar to Yin et al [90]. However, the

impact of sex is not strong in our analysis and may be a result of data sampling.

The Grad-RAMs gradient activations are a 7x8x7 voxel heatmap, which is interpolated back

to the 193x229x193 voxel MRI. This results in a blurry activation heatmap reducing the precision

of our explainability analysis. Consequently, regions unrelated to aging located near ones of true

anatomical interest may be false positives and small structures of interest in the brain may be difficult

to precisely visualize. Lastly, Grad-RAM only highlights regions of saliency for age estimation and

does not provide regional differences in age, unlike some voxel-based methods [67, 28]. This can

limit the specificity and precision in identifying relevant regions in aging.

3.5.3 Alzheimer’s and Parkinson’s Disease

Brain Age Estimation for Alzheimer’s and Parkinson’s Disease Patients

Our findings show an increased MAE and mean age gap in both disease groups compared to

healthy controls, which aligns with the expected impacts of neurodegenerative conditions on the

brain aging processes.

The AD cohort has a mean gap of +0.70 years for the ResNet50-highRez and a larger +2.10 years

for the RNC-highRez model. These results are similar to other significant deviations reported by

Nguyen et al. of +3.4 years [67] and Sendi et al. of +3.3 years [83]. The significant differences (p <

0.01) between the ResNet50-highRez and RNC-highRez models suggest that the RNC-highRez
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model may be more sensitive to nuanced anatomical changes due to the disease. For the PD cohort,

the ResNet50-highRez model shows a modest, non-significant increase in mean error, whereas the

RNC-highRez model displays a significant mean error of +0.47 years (p < 0.01). These findings are

similar to Nguyen et al. of +1.0 years [67], but are weaker than the larger gap reported by Eickhoff

et al. of +2.8 years [17]. A similar significant difference between the two models was also found,

confirming the robustness of the employed contrastive learning strategy.

When associating the brain age gaps between the estimated and ground truth values with the

ADAS-cog 11 scores in AD, we found a weak-to-moderate correlation, with the RNC-highRez

model obtaining the highest correlation of 0.37 (p = 0.0098). Our result is comparable to that

of Lowe et Al [51] ranging between 0.25 to 0.56, and slightly higher than the correlation of 0.26

obtained by Behesheti et al. [5]. Conversely, there is no significant correlation between the brain

age gap and UPDRSIII scores in our tested PD cohort. This is similar to the conclusion of Cheng

et al. [10], but Eickhoff et al. found a significant yet weak correlation of 0.14 to 0.17 [17]. This

potentially implies that anatomical alterations due to PD can be masked by natural aging [67, 60]. It

is also possible that 3 Tesla T1w MRIs do not provide adequate details of small subcortical regions

and that 7 Tesla MRIs are required [89]. However, 7T scans have drawbacks such as high cost, less

accessibility, and can tend to have large distortions in some brain regions. Alternatively, it is also

possible that T1w MRIs are not the optimal contrasts for the task due to weaker visualization of the

subcortical structures.

Grad-RAM Analysis for Alzheimer’s and Parkinson’s Disease Patients

The Grad-RAM result of the RNC-highRez model on the AD cohort showed similar regions of

interest in aging as those on healthy controls in the same age groups, focusing on the left hemi-

sphere’s limbic system, lateral ventricle, and basal ganglia. However, higher saliency values in AD

than in HC are seen in the left temporal and lateral frontal lobe, the hippocampus, the caudate and

putamen. The hippocampus and surrounding areas present themselves as the most relevant region

for aging. This mirrors the common concept of significant hippocampal atrophy during AD progres-

sion [81] [24, 64]. Additionally, Yin et al. [90], who also used saliency maps from a CNN found

similar dependence on the limbic system for MCI and AD cohorts. In the voxel-based brain age
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estimation by Nguyen et al. [67], they found more advanced brain aging in the hippocampus and

amygdala than the rest of the brain while Gianchandani et al.[28] reported the caudate, insula and

putamen to be the most prominent in brain aging. These findings further reinforce the importance of

the limbic system, basal ganglia, and specifically the hippocampus on potential disease progression

of AD that can introduce accelerated biological aging.

In terms of the PD cohort, the population-averaged saliency map from Grad-RAM demonstrated

similar patterns with respect to age estimation to the healthy population in the same age groups,

highlighting the left hemispheres’ thalamus, pallidum, putamen, hippocampus, amygdala, and cau-

date. Although the basal ganglia and limbic system are known to undergo atrophy and morpho-

logical changes in PD [77, 10, 74], the prominence of frontal and temporal cortices also noted in

previous studies [10, 74] was not observed in our saliency maps. Conversely, some studies also

reported no significant areas associated with PD in terms of accelerated aging patterns [67].

In general, the Grad-RAM results from the RNC-highRez model demonstrated greater saliency

values in areas impacted by AD and PD compared to those of the ResNet50-highRez counter-

part. This observation suggests that RNC-highRez may be more adapted at identifying disease-

specific features within our sample cohort. However, strong similarities are still present in Grad-

RAM saliency patterns between AD/PD and HC, and the distinct aging-related and disease-induced

changes may be entangled in the saliency patterns that were produced. This warrants further in-

vestigation to determine whether Grad-RAM can reliably identify regions of accelerated aging for

neurodegenerative disease samples with high specificity.

3.6 Conclusion

We have proposed the RNC-HighRez model, which adapts the Rank-N-Contrast loss function

in a contrastive learning strategy for brain age estimation based on 3D MRI for the first time. The

proposed method has significantly outperformed multiple ResNet variants in brain age estimation

across multiple metrics, and has shown better or similar performance against existing DL models

trained with much larger datasets. By using Grad-RAM on the proposed technique, which visually

explains the decision-making process of the algorithm, we highlighted anatomical regions that are
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known to be associated with brain aging, and the proposed RNC-highRez model did so with more

nuance than the ResNet counterpart. For neurodegenerative diseases, we demonstrated that our DL

techniques can detect accelerated aging in diseased brains that is associated with disease severity,

with the model trained using contrastive learning offering more robust detection.
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Chapter 4

Conclusion

In this thesis, we have implemented a new approach to brain age estimation using supervised

contrastive learning with Rank-And-Contrast loss on a limited aging dataset with the addition of

Grad-RAM for explainability. Our approach aimed to accurately estimate brain age while providing

insights into the neuroanatomical regions associated with aging and neurodegenerative diseases.

Our results demonstrate that a supervised contrastive learning strategy can significantly outper-

form traditional ResNet training in brain age estimation across multiple metrics. This performance

on a small training sample (1,618 subjects) shows its benefit on data efficient deep learning (DL)

training and potential for achieving state-of-the-art results on larger, more diverse datasets. We ad-

ditionally found that data augmentation, batch size, and image resolution all had a significant impact

on model performance.

Grad-RAM effectively highlighted neuroanatomical regions known to be associated with brain

aging, with the supervised contrastive learning approach demonstrating greater nuance across differ-

ent ages and diseases compared to a ResNet approach. Our models identified subcortical structures

as having greater significance to healthy aging compared to more classic voxel-based morphology

and similar DL studies. This suggests that these regions play a more critical role in the aging pro-

cess than previously estimated, particularly in older age groups. The Grad-RAM for both AD and

PD focused on areas known to undergo disease-related anatomical changes. However, as there were

only a few variations from the healthy cohort, it is challenging to assess its ability to differentiate

areas of accelerated aging in AD or PD patients.
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Disease cohort analyses revealed that AD brain age gaps are significantly higher compared to

healthy controls and showed significant correlation to ADAS-cog scores. In contrast, PD patients

exhibit a significant but less pronounced brain age gap and no significant correlation between brain

age gap and UPDRSIII scores was found. The supervised contrastive learning approach produced

higher brain age gaps for AD and PD and stronger correlation between AD brain age gaps and sever-

ity scores than the ResNet approach. This suggests that a supervised contrastive learning approach

has superior performance in discrimination of healthy and disease patients. The observed increase

in brain age gaps and their correlations to disease severity metrics, particularly in AD, highlight the

potential biomarker and clinical applications of these models. However, the variability in prediction

errors across different diseases and models requires further investigation and refinement to enhance

clinical relevance.

4.0.1 Future Works

Despite the promising results, our study has limitations and areas for potential improvement.

The relatively small dataset should be expanded to match the scale of larger studies for a more accu-

rate assessment of this model’s performance, including the use of a larger and out-of-domain test set.

Benchmarking models should be trained from scratch to truly compare the models. Additionally,

using a finer-grained saliency map method could offer more precise anatomical demarcation and

certainty. This avenue of future work could serve as an additional biomarker by using the saliency

output to identify regions with higher brain age and using it to discriminate neurodegenerative dis-

eases. Additionally, we could quantify divergences in aging trajectories between healthy and dis-

eased populations using longitudinal data furthering our understanding of brain age as a biomarker

throughout disease progression. Finally, a sex-based exploration of the AD and PD cohorts should

be pursued as the diseases affect each sex differently.

4.1 Summary

In summary, this work contributes to the field by offering a new approach to brain age esti-

mation that leverages advanced DL techniques and emphasizes the importance of explainability in
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model predictions. We demonstrate the effectiveness of deep learning models, particularly ResNet

architectures and supervised contrastive learning strategies, in MRI-based brain age estimation. The

integration of explainability tools, such as Grad-RAM, provides additional insights into the specific

neuroanatomical changes associated with aging and neurodegenerative diseases. Finally, by iden-

tifying relationships between brain age gaps and neurodegenerative diseases, our approach offers

insights for future clinical applications. We aimed to not only enhance the understanding of brain

aging but also underscore the utility of deep learning in medical imaging for precise assessments.
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Appendix A

Parcellation ID Legend

Region Left ID Right ID

Lateral frontal Precentral L 2001 Precentral R 2002

Lateral frontal Frontal Sup L 2101 Frontal Sup R 2102

Lateral frontal Frontal Sup Orb L 2111 Frontal Sup Orb R 2112

Lateral frontal Frontal Mid L 2201 Frontal Mid R 2202

Lateral frontal Frontal Mid Orb L 2211 Frontal Mid Orb R 2212

Lateral frontal Frontal Inf Oper L 2301 Frontal Inf Oper R 2302

Lateral frontal Frontal Inf Tri L 2311 Frontal Inf Tri R 2312

Lateral frontal Frontal Inf Orb L 2321 Frontal Inf Orb R 2322

Lateral frontal Rolandic Oper L 2331 Rolandic Oper R 2332

Lateral frontal Supp Motor Area L 2401 Supp Motor Area R 2402

Medial frontal Olfactory L 2501 Olfactory R 2502

Medial frontal Frontal Sup Medial L 2601 Frontal Sup Medial R 2602

Medial frontal Frontal Med Orb L 2611 Frontal Med Orb R 2612

Medial frontal Rectus L 2701 Rectus R 2702

Insula Insula L 3001 Insula R 3002

Cingulum Ant + Mid Cingulum Ant L 4001 Cingulum Ant R 4002

Cingulum Ant + Mid Cingulum Mid L 4011 Cingulum Mid R 4012
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Cingulum Post Cingulum Post L 4021 Cingulum Post R 4022

Hippocampus + amyg. Hippocampus L 4101 Hippocampus R 4102

Hippocampus + Amyg. ParaHippocampal L 4111 ParaHippocampal R 4112

Hippocampus + Amyg. Amygdala L 4201 Amygdala R 4202

Calcarine Calcarine L 5001 Calcarine R 5002

Occipital Cuneus L 5011 Cuneus R 5012

Occipital Lingual L 5021 Lingual R 5022

Occipital Occipital Sup L 5101 Occipital Sup R 5102

Occipital Occipital Mid L 5201 Occipital Mid R 5202

Occipital Occipital Inf L 5301 Occipital Inf R 5302

Parietal Fusiform L 5401 Fusiform R 5402

Parietal Postcentral L 6001 Postcentral R 6002

Parietal Parietal Sup L 6101 Parietal Sup R 6102

Parietal Parietal Inf L 6201 Parietal Inf R 6202

Parietal SupraMarginal L 6211 SupraMarginal R 6212

Parietal Angular L 6221 Angular R 6222

Parietal Paracentral Lobule L 6401 Paracentral Lobule R 6402

Precuneus Precuneus L 6301 Precuneus R 6302

Caudate + Putamen Caudate L 7001 Caudate R 7002

Caudate + Putamen Putamen L 7011 Putamen R 7012

Globus Pallidus Pallidum L 7021 Pallidum R 7022

Thalamus Thalamus L 7101 Thalamus R 7102

Temporal Heschl L 8101 Heschl R 8102

Temporal Temporal Sup L 8111 Temporal Sup R 8112

Temporal Temporal Pole Sup L 8121 Temporal Pole Sup R 8122

Temporal Temporal Mid L 8201 Temporal Mid R 8202

Temporal Temporal Pole Mid L 8211 Temporal Pole Mid R 8212
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Temporal Temporal Inf L 8301 Temporal Inf R 8302

Cerebellum Superior Cerebellum Crus1 L 9001 Cerebellum Crus1 R 9002

Cerebellum Superior Cerebellum 3 L 9021 Cerebellum 3 R 9022

Cerebellum Superior Cerebellum 4 5 L 9031 Cerebellum 4 5 R 9032

Cerebellum Superior Cerebellum 6 L 9041 Cerebellum 6 R 9042

Cerebellum Inferior Cerebelum Crus2 L 9011 Cerebellum Crus2 R 9012

Cerebellum Inferior Cerebellum 7b L 9051 Cerebellum 7b R 9052

Cerebellum Inferior Cerebellum 8 L 9061 Cerebellum 8 R 9062

Cerebellum Inferior Cblm Tonsil 9 L 9071 Cblm Tonsil 9 R 9072

Cerebellum Inferior Cerebelum 10 L 9081 Cerebelum 10 R 9082

Vermis Vermis 1 9100

Vermis Vermis 2 9110

Vermis Vermis 3 9120

Table A.1: AAL atlas brain regions and corresponding IDs
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Figure A.1: Normalized average Grad-RAM heatmap intensities per AAL atlas parcellation for each
sub-population for the ResNet50-highRez model.61



Figure A.2: Normalized average Grad-RAM heatmap intensities per AAL atlas parcellation for each
sub-population for the contrastive model. 62



Figure A.3: Normalized average Grad-RAM heatmap intensities per AAL atlas parcellation for a
sub-populations and model, and difference of parcellation intensities for AD vs CN (60-100), PD
vs CN (60 to 100), and male vs. female.
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