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Abstract

Machine Learning for Fault Prediction in Clouds

Behshid Shayesteh, Ph.D.

Concordia University, 2024

The vast adoption of cloud computing has increased the size and complexity of data centers,

increasing possibility of faults. Fault can negatively impact the performance, availability, and reli-

ability of cloud services, leading to significant maintenance cost and revenue loss for cloud service

providers. Therefore, fault prediction in clouds is a critical task. Machine Learning (ML) is increas-

ingly used for this purpose due to their pattern recognition capabilities. While predicting faults in

clouds using ML enables a proactive approach to prevent faults, building accurate prediction mod-

els that can maintain their performance in dynamic clouds is challenging. One problem is concept

drift, where changes in data distribution can degrade model performance. Similarly, feature drift,

which is changes in feature relevancy, can also degrade the model performance. Additionally, mod-

els accuracy is influenced by data-related parameters, necessitating selection of these parameters to

achieve a high model performance. Existing ML-based fault prediction solutions do not focus on

adaptability to dynamic conditions like concept or feature drift. Additionally, selecting data-related

parameters to balance model performance and resource consumption is not addressed in current

literature.

This thesis mainly focuses on addressing the challenges of employing ML models for predicting

faults and predicting application performance degradation caused by faults in cloud environments.

We first propose a concept drift adaptation algorithm for fault prediction in clouds using Reinforce-

ment Learning (RL). This algorithm considers the cloud operator’s requirements, and uses RL to

select the most appropriate drift adaptation method as well as data size for adaptation that fulfills
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the requirements. Second, we propose a feature drift adaptation solution for adapting the model to

feature drifts while predicting application performance degradation in clouds. This solution consists

of a feature drift detector that monitors the performance of the prediction model as well as the fea-

ture importance, and a feature drift adaptor that measures the drift severity to adapt the prediction

model. Finally, we propose a multi-objective optimization algorithm to select the training data size,

data sampling interval, input window, and prediction horizon for training an ML model that predicts

application performance degradation in clouds.
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Chapter 1

Introduction

1.1 Overview

The vast adoption of cloud computing has led to a significant increase in the size and complexity

of data centers, resulting in an increased possibility of the occurrence of faults [7]. A fault is an event

that occurs in a system that disrupts the intended normal operation of the system [8]. The occurrence

of fault can negatively impact the performance, availability, and reliability of cloud services and

result in significant maintenance cost and loss of revenue for cloud service providers. Therefore, it

is crucial to recognize the potential faults and predict them before occurrence.

The large-scale cloud environments and the diversity of potential faults that may occur due

to various causes including misconfigurations, hardware malfunctions, or network connectivity is-

sues necessitates an automated approach for fault prediction [8]. Moreover, the diverse and high-

dimensional nature of the data generated in cloud including system logs, performance metrics of

resources, and application data makes it challenging to analyze the data and design proper fault

prediction solutions [9]. Machine Learning (ML) is capable of discovering patterns and automati-

cally extracting insights from such large amount of data of various heterogeneous sources [9]. This

positions ML as an effective solution for analyzing data and predicting faults in complex large-scale

settings such as cloud environments. Additionally, ML can fulfill the vision of zero-touch networks,

where fault prediction is achieved without human intervention [9]. Automated ML-based fault pre-

diction systems can self-sustainably build and maintain models to predict a diverse range of faults
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that occur in cloud environments [2].

While predicting faults in cloud using ML enables a proactive approach to prevent faults in

clouds, building accurate prediction models that can maintain their performance in dynamic cloud

environments is not an easy task. One problem is occurrence of concept drift [10]), where changes

in the data distribution of cloud performance metrics, which are used for training these models, can

cause the models’ performance to degrade over time. Similarly, feature drift [11], which refers to

the changes in the relevance of features used for training the model for fault prediction, can also

degrade model performance over time. Additionally, the accuracy of ML models is influenced by

several data-related parameters, necessitating selection of these parameters to achieve a high model

performance.

This thesis mainly focuses on addressing these challenges of employing ML for predicting faults

as well as predicting application performance degradations caused by these faults in cloud environ-

ments. In the following subsections, we first discuss the challenges of employing ML-based fault

prediction models followed by the main thesis contributions. Next, we provide background infor-

mation about important concepts related to the thesis. Finally, we present the thesis outline.

1.2 Challenges

The challenges of employing ML model for fault prediction in clouds are summarized as fol-

lows:

• Concept drift adaptation in ML-based fault prediction in clouds: When employing ML

models for fault prediction, it is usually assumed that the underlying distribution of the data

used for training the model is stationary. However, the metrics of cloud systems can be af-

fected by unexpected events, such as sudden or gradual changes in the workload within a

certain time period [12], and/or permanent or ephemeral anomalies [13], causing frequent

changes in the distribution of data that is used for training fault prediction models, a phe-

nomenon commonly known as concept drift. To ensure service performance, availability, and

reliability, it is important to prevent the performance degradation of the prediction models

caused by concept drift by means of effective model adaptation. Traditionally, experts analyze
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the severity and type of the drift in data, choose the proper technique (e.g., partial updating,

ensemble learning, or retraining) for drift adaptation [14], and determine the amount of data

to be used for drift adaptation. However, adapting an ML model to the drift in large-scale sys-

tems like clouds is complex due to the diversity of the concept drift impacts, which requires

different adaptation methods. Thus, to minimize the overall model management overhead,

there is a need for an automated concept drift adaptation solution.

• Feature drift adaptation in ML-based fault prediction in clouds: Another challenge when

maintaining the performance of ML models is adapting the model to feature drifts, which

refers to the changing relevance of selected features to the learning task, leading to the model’s

inaccurate predictions. Feature drifts in clouds may occur due to dynamic nature of cloud en-

vironments, where frequent workload changes such as adding, removing or migrating work-

loads may be observed, or hardware infrastructure configurations may change. For example,

when using ML models to predict performance degradation of applications deployed in clouds

caused by infrastructure faults, changes in the type of infrastructure faults leading to applica-

tion performance degradation can significantly affect the performance of the ML model. This

is due to the fact that once the underlying fault causing an application performance degrada-

tion changes, the relevance between the selected features (i.e., performance metrics of a cloud

system, such as CPU or memory usage) and application performance degradation indicators

may change. This highlights the need for a mechanism to detect feature drifts, update the fea-

tures, and adapt the model to the feature drift to maintain the performance of the prediction

model.

• Data-related parameter selection in ML-based fault prediction in clouds: The perfor-

mance of ML models is influenced by several factors, including training data size (i.e., total

number of data samples available for training the prediction model), data sampling interval

(i.e., the time difference between two consecutive collected data samples), input window (i.e.,

the number of data samples the model considers to make a prediction), and prediction hori-

zon (i.e., the number of future data samples the model should predict) [15]. Traditionally,

the process of determining these data-related parameters for training an ML model has relied
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on experimental methods and the analytical skills of human experts. However, this approach

faces significant challenges in cloud environments where multiple ML models may be re-

quired to predict various faults or performance degradation across various applications. The

scale and complexity of these environments make it impractical for human experts to man-

ually test and select the optimal set of parameters for each model. Consequently, there is

a need for an automated solution that can select these parameters. Such a solution should

aim to balance two key objectives, i.e., maximizing the prediction accuracy of the models,

which is the primary indicator of their performance, and minimizing the resources required

for collecting and storing data, with an intent to reduce data collection and storage costs and

computational overhead of processing large datasets for the model training.

1.3 Thesis Contributions

The existing ML-based fault prediction solutions for clouds do not address the challenges de-

scribed in Section 1.2. This thesis aims at tackling the challenges of employing ML models for

fault prediction in clouds. It makes three main contributions presented in this section. Each of the

contributions corresponds to a challenge addressed by this thesis.

1.3.1 Concept Drift Adaptation Algorithm for ML-based Fault Prediction [1][2]

In the first contribution, we tackle the challenge of concept drift adaptation while predicting

faults in clouds using ML models. We train deep learning models to predict infrastructure faults

such as CPU over-utilization faults in cloud environments. To maintain the model performance,

an effective technique (e.g., partial updating, ensemble learning, or retraining) for drift adaptation

should be selected. We propose an algorithm that considers the cloud operator’s requirements (i.e.,

drift adaptation time and resource consumption, and the prediction model’s accuracy after adapta-

tion), and uses Reinforcement Learning (RL) to automatically select a drift adaptation method that

best fulfills the operator’s requirements to update the fault prediction. Moreover, the algorithm uti-

lizes RL to select the amount of data required for adaptation so that the operator’s requirements are

fulfilled. We experimentally validate a proof-of-concept of our algorithm on a Kubernetes-based
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testbed. The results show the proposed algorithm can effectively maintain the ML model perfor-

mance in presence of concept drifts and had superior performance compared to other approaches in

terms of drift adaptation time, adaptation resource, and number of data samples for adaptation.

1.3.2 Feature Drift Adaptation Algorithm for ML-based Fault Prediction [3][4]

In the second contribution, we tackle the challenge of feature drift adaptation while predicting

application performance degradation caused by faults in clouds using ML models. We propose a

feature drift adaptation algorithm to automatically adapt to feature drifts while predicting applica-

tion performance degradation in cloud environments. This algorithm detects feature drifts by mon-

itoring the performance of the prediction model as well as the feature importance. The algorithm

measures the feature drift severity to adapt the prediction model to the drift by performing either

feature re-selection and re-training the model or dropping the irrelevant features and fine-tuning the

prediction model. We experimentally build a proof-of-concept of our algorithm in a Kubernetes-

based testbed, and evaluate and compare the proposed solution to four benchmarks. Our results

demonstrate that the proposed algorithm can effectively detect the feature drift and update the fea-

tures and adapt the prediction model to the drift and can maintain the performance of the prediction

model.

1.3.3 Data-related Parameter Selection Algorithm for ML-based Fault Prediction [5]

In the third contribution, we tackle the challenge of selecting data-related parameters to train

an ML model that predicts application performance degradation in clouds. We propose a surrogate-

assisted multi-objective optimization algorithm based on Non-dominated Sorting Genetic Algorithm-

II (NSGA-II) to automate selection of the training data size, the data sampling interval, the input

window, and the prediction horizon for training an ML model that predicts application performance

degradation in clouds. This algorithm maximizes the performance of the prediction model while

minimizing resource consumption of data collection and storage. To evaluate the effectiveness of

the proposed algorithm, we experiment on a Kubernetes-based cloud testbed, where a 5G core is

deployed. The data-related parameters selected by the algorithm are used for training models that

predict the degradation of the 5G core Key Performance Indicator (KPI)s. The results demonstrated
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that the proposed algorithm can achieve optimal solutions in two scenarios while reducing the solu-

tion search time compared to the considered benchmarks.

1.4 Background Information

In this section, we present brief background information related to this thesis. The background

information covers cloud computing, edge computing, fault prediction, and ML.

1.4.1 Cloud Computing

Cloud computing is most commonly defined as “a model for enabling ubiquitous, convenient,

on-demand network access to a shared pool of configurable computing resources (e.g., networks,

servers, storage, applications, and services) that can be rapidly provisioned and released with min-

imal management effort or service provider interaction [16].” Cloud computing has a distinct set

of characteristics that make this paradigm unique and powerful, such as the appearance of infinite

computing resources available on-demand, elimination of an upfront commitment by users, ability

to pay per use, multiple tenancies, scalability, elasticity, and rapid provisioning of services and ap-

plications [17]. The most important enabling technology behind the unique characteristics of the

cloud is virtualization. This technology provides virtual resources from real physical resources with

the goal of efficient usage of limited physical resources. Each cloud data center is composed of

physical machines, and each physical machine can support a set of Virtual Machine (VM).

1.4.2 Edge Computing

In the cloud computing paradigm, most computations happen in the centralized cloud. However,

such a computing paradigm may suffer from longer latency, which weakens the user experience. To

this end, the edge computing paradigm was introduced, which refers to the enabling technologies

allowing computation to be performed at the edge of the network in the proximity of data sources.

Edge can refer to any computing and network resources along the path between data sources and

cloud data centers. Examples of edge include smartphones, gateways, and micro data center [18].

Edge cloud is an environment that consists of one central cloud and one or multiple edges.
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1.4.3 Fault Prediction

A fault is an event that occurs in a system that disrupts the intended normal operation of the

system [8]. Cloud environments are susceptible to various fault types. At the infrastructure level,

hardware faults (e.g., over-utilization in resources such as CPU, HDD, or memory) and network

faults (e.g., packet loss or network congestion) can occur in both physical and virtual resources.

Moreover, software faults (e.g., unhandled exceptions) can occur at the software level. Such faults,

whether related to infrastructure or software, may result in the failure of jobs or degradation in per-

formance of applications deployed in clouds [6]. These faults can originate from misconfigurations,

human (maintenance) errors, malicious intrusions, and/or excessive load [19].

Since the occurrence of faults can negatively impact the performance, availability, and reliability

of cloud services and result in significant maintenance cost and loss of revenue for cloud service

providers, it is crucial to recognize the potential faults and predict them before occurrence while

system is fully functional [20][6]. Fault prediction is identifying whether a fault will occur in the

near future based on an assessment of the current state of a monitored system.

1.4.4 Machine Learning

ML is a subset of Artificial Intelligence (AI) which provides machines the ability to learn au-

tomatically and improve from experience without being explicitly programmed [21]. ML models

with shallow structures including Artificial Neural Network (ANN) and Extreme Learning Machine

(ELM) are used for training fault prediction models [6]. ANNs are neural networks with one hid-

den layer trained by processing data to iteratively adjust internal parameters (weights) to minimize

the difference between the model’s predictions and the actual fault occurrence status [22]. ELM, a

single-hidden-layer neural network, trains the model by initializing input layer weights randomly

and computing output layer weights analytically, leading to faster training [23].

With advancements in ML algorithms, deep learning algorithms have gained prominence in

data analytics tasks. Deep learning is a class of ML algorithms based on ANN that utilizes multi-

ple hidden layers to capture inter-dependencies between features and can handle high-dimensional
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data [24]. Therefore, deep learning algorithms including Deep Neural Network (DNN), Convo-

lutional Neural Network (CNN), Recursive Neural Network (RNN), Long-Short Term Memory

(LSTM), Bi-directional Long-Short Term Memory (Bi-LSTM), and hybrid CNN-LSTM are also

employed for fault prediction tasks [6]. CNNs were designed to analyze structured, arrayed data

including images, signals or time series. RNNs excel at processing sequential data where the or-

der matters, such as time-dependent metrics. LSTMs improve RNNs by effectively learning long

sequences without losing crucial information, and Bi-LSTMs enhance LSTMs by considering past

and future context [25] [26]. Hybrid models like CNN-LSTM combine CNN’s sequence processing

with LSTM’s long-term memory capabilities. The ability in sequence and pattern analysis makes

CNN, RNN, LSTM, Bi-LSTM, and CNN-LSTM models well-suited for learning from cloud sys-

tem performance metrics with temporal dependencies [6]. Ensemble learning algorithms are also

used for fault prediction in clouds by combining the prediction of multiple models using bagging

or boosting approach. The bagging approach, such as Random Forest (RF), trains multiple models

of the same type, e.g., decision trees, using random subsets of the training data and combines their

predictions [27]. The boosting approach such as AdaBoost, trains multiple models, e.g., decision

trees, sequentially, with each new model correcting its predecessor’s errors. The final prediction

is a combination of all models’ outputs [28]. By combining multiple prediction models, ensemble

learning algorithms can improve the overall performance and generalization of the combined model.

Training an ML model involves several steps: 1) data collection is carried out to gather the nec-

essary data for training the model, 2) the collected data undergoes pre-processing, which includes

transforming the data into a desired format, cleaning it of any inconsistencies, labeling the data

when required, selecting the most relevant features or engineering new features, and dividing the

data into training, validation, and testing sets, 3) the actual training of the ML model is performed,

where the training data is fed to the specific ML model, 4) the model is refined using the valida-

tion dataset, where the performance of the model is evaluated, and measures to further enhance its

performance, such as hyperparameter tuning, are undertaken, 5) the model is evaluated using the

testing data to assess its performance and generalization ability, ensuring it can perform well on

unseen data.

While there are a few types of problems in ML, the four well-known problems are classification,
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regression, clustering, and timeseries forecasting, which are defined in the following.

• Classification: when the output of the ML model is one of a finite set of values, the learning

problem is called classification and is called Boolean or binary classification if there are only

two values [29]. Some well-known classification algorithms are ANN, Logistic Regression,

and Decision Trees.

• Regression: when the output of the ML model is a numerical value, the learning problem is

called regression. ANN and Linear Regression are well-known regression algorithms.

• Clustering: when the ML model aims to group similar examples of data in a cluster, the

learning problem is called clustering. K-means and mean-shift clustering are examples of

clustering algorithms.

• Timeseries forecasting: when the ML model aims to predict a number based on the timeseries

data, it is called a timeseries forecasting problem. Timeseries data is a sequence of numerical

data points that have time dependencies. RNN and LSTM are among well-known timeseries

forecasting algorithms.

The problem of predicting faults can be seen as a timeseries forecasting problem or a classification

problem. In timeseries forecasting, the pattern of the performance metrics of cloud or the occurrence

of faults is predicted. It may or may not need a classification method to map the forecasted output

as fault or no-fault. In classification, the training data is labeled with fault or no-fault. The trained

model can classify whether the upcoming data is predicted to be fault or non-fault.

There are three well-known types of ML algorithms, i.e., supervised learning, unsupervised

learning, and RL, that are defined as follows.

• Supervised Learning: the algorithm observes some example input-output pairs and learns a

function that maps from input to output [29]. It uses labeled data to train the ML model.

• Unsupervised Learning: the algorithm learns patterns in the input, even though no explicit

feedback and guidance are supplied [29]. It uses unlabeled data to train the ML model.
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• RL: the algorithm (agent) interacts with an environment and learns from a series of rein-

forcements, i.e., rewards or punishments [29]. RL is a reward-based algorithm that trains an

agent with no predefined data and no supervision. Q-learning [30] is one of the most widely

known RL algorithm that seeks to find the best action to take given the current state by suc-

cessively updating the evaluation of the long-term reward (the Q-value) of actions at each

state.

Our literature review indicated that fault prediction in cloud is most commonly tackled by su-

pervised learning, which relies on learning from labeled data. Fault prediction algorithms require

labeled historical data that describes the state of the system, enabling the algorithms to predict the

system’s future state based on its current state. The performance of prediction algorithms is sub-

ject to the quality and availability of datasets, which includes the performance metrics, logs, or

alarms of various severities collected from real-world cloud environments. While obtaining realis-

tic datasets for fault prediction can be challenging, in the literature, there are both publicly available

(e.g., [25][31]) and proprietary datasets (e.g., [2][27]) collected from real-world clouds to train fault

prediction models.

1.5 Thesis Outline

The rest of this thesis is organized as follows. Chapter 2 discusses the requirements of ML-based

fault prediction in clouds and provides a critical review of the state-of-the-art. Chapter 3 presents

an algorithm for adaptation concept drift while predicting faults in clouds, and Chapter 4 presents

a feature drift adaptation algorithm for ML-based fault prediction in clouds. Chapter 5 presents an

algorithm for data-related parameters selection for training ML models predicting faults in clouds.

Chapter 6 concludes this thesis and provides future research direction for this research work.
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Chapter 2

Requirements and Related Work

In this chapter, we first describe an illustrative use case. Next, we use the use case to derive a

set of requirements for ML-based fault prediction in clouds. Finally, we review the related work in

light of these requirements.

2.1 Illustrative Use Case

In this section, we present an illustrative use case to derive the general requirements of ML-

based fault prediction in cloud environments. Fig. 2.1 presents an illustrative use case of a web

application is deployed in cloud environment provided as Infrastructure-as-a-Service (IaaS), where

the end-users send requests to access the service provided by the web application. Faults can occur

in different resources (i.e., compute, storage, or network) in data centers, including physical and

virtual resources, potentially leading to performance degradation or service failure of the web appli-

cation deployed in this environment. ML models are trained using the cloud performance metrics to

predict these faults or application performance degradation caused by these faults so that preventive

steps can be taken to avoid fault occurrences.

2.2 Requirements

In this section, considering the illustrative use case, we discuss the general requirements of ML-

based fault prediction in cloud environments. Next, we present the requirements specific to each

11



Figure 2.1: An illustrative use case of an application deployed in cloud environment [6].

solution that address the challenges of employing ML for fault prediction in clouds identified in

Section 1.2 of this thesis.

2.2.1 General Requirements of ML-based Fault Prediction in Clouds

Accuracy: The ML models should achieve a high accuracy in predicting faults, while mini-

mizing false alarms (false positives) and missed faults (false negatives). False alarms can trigger

unnecessary prevention mechanisms, while missed faults can propagate in clouds and result in ser-

vice failures.

Timely prediction: The ML models should be capable of delivering timely prediction of faults

considering the prevention mechanism required to avert those faults. For example, if the ML model

predicts server failures, the prediction horizon should span several days to accommodate the time

required for replacing or repairing a failed server. However, for predicting CPU over-utilization in

virtual resource, the prediction horizon can be within a few minutes. This is because scaling up

a virtual machine and allocating more resources when there are enough resources available in the
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cloud is not a time-consuming prevention mechanism.

Scalability: The ML models should ensure scalability while processing large amount of data

and features. The fault prediction algorithm should not run out of computing resources and can

train models within reasonable time frame without loss of accuracy as the size of the input data and

features grow.

Adaptability: The ML models should have adaptability to the dynamic cloud environment. The

fault prediction model should maintain its performance in dynamic conditions of cloud environment.

For example, the dynamic changes in the workload of an application deployed in clouds can cause

frequent changes in the distribution of the data (i.e., resource usage metrics) used for training the

model. This can result in poor model performance since the data used for training the model and

the data for inferencing have different distributions.

Explainability: The ML model should provide explainability about the decision process behind

the fault predictions. The decisions of the fault prediction model should be explainable to provide

insights into the underlying cause of a fault. In an automated fault prediction system, explainability

can help selecting proper prevention mechanism to avert the fault.

2.2.2 Requirements of Concept Drift Adaptation in ML-based Fault Prediction

While the requirements identified in Section 2.2.1 were general to ML fault prediction models,

in this section, we present the requirements specific to a solution that adapts to concept drifts while

predicting faults in clouds.

Autonomy: The algorithm that adapts the prediction models to concept drift should be an auto-

mated solution with no to limited human intervention. This is because in large-scale cloud systems,

there are diverse ML models with different architectures that may suffer from performance drops

due to concept drifts of various severities. Therefore, an automated solution is required to monitor

and adapt all models to potential concept drifts.

Post-adaptation performance: The concept drift adaptation algorithm should consider the

model post-adaptation performance while adapting the model to the concept drift. This is to ensure

that the model’s prediction performance after adaptation is comparable to that of the original model.

Adaptation time consumption: The concept drift adaptation algorithm is required to minimize

13



the concept drift adaptation time so that the impact of the concept drift can be minimal, i.e., the

performance of the prediction model recovers fast from the occurrence of drift.

Adaptation resource consumption: The concept drift adaptation algorithm can be required to

constrain the resource consumption for performing concept drift adaptation in case of adapting to

concept drift at resource-constrained edge.

2.2.3 Requirements of Feature Drift Adaptation in ML-based Fault Prediction

In this section, we present the requirements specific to a feature drift adaptation solution while

predicting faults in clouds using ML models.

Feature drift detection: The feature drift adaptation algorithm is required to detect feature

drifts before performing feature drift adaptation to avoid unnecessary adaptations in a high-dimensional

feature space.

Applicable to high-dimensional feature space: The feature drift adaptation algorithm is re-

quired to be applicable to high-dimensional feature space like performance metrics of a cloud system

that can consist of thousands of features.

Post-adaptation performance: The feature drift adaptation algorithm is required to effectively

update the features and adapt the prediction model to the drift so that the model’s post-adaptation

performance is comparable to its original performance.

Resource efficient: The feature drift adaptation algorithm can be required to constrain the

resource consumption for feature drift adaptation in case of adaptation at resource-constrained edge.

2.2.4 Requirements of Data-related Parameter Selection in ML-based Fault Predic-

tion

In this section, we present the requirements specific to a data-related parameter selection algo-

rithm for training ML-based fault prediction models in clouds.

Data-related parameter selection: The algorithm is required to select the data-related param-

eters such as training data size, data sampling interval, input window, and prediction horizon for

training a ML prediction model.
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Autonomy: The data-related parameter selection algorithm is required to be an automated solu-

tion with no human intervention. This is because numerous ML models may be employed in cloud

environments to predict various faults with different characteristics, which makes it impractical for

human experts to manually test and select the optimal set of parameters for each model.

Multi-objective: While selecting the data-related parameters, the algorithm is required to con-

sider performance of the ML model as well as the resource consumption for data collection and

storage as two criteria for parameter selection.

Model performance estimation: Considering that training an ML model to evaluate its per-

formance for every set of data-related parameters is time and resource consuming, the parameter

selection algorithm is required to estimate the performance of the model accurately without fully

training prediction models for each evaluation.

2.3 Related Work

In this section, we present the state-of-the-art for the challenges identified in this thesis. First,

we review the existing ML-based fault prediction solutions in clouds. Next, we review the prior-art

on the three main contributions of this thesis, i.e., concept drift adaptation in ML-based fault pre-

diction, feature drift adaptation for ML-based fault prediction, and data-related parameter selection

for training fault prediction models.

2.3.1 ML-based Fault Prediction in Clouds [6] 1

In this section, we review the most representative works that use ML for predicting faults in

clouds. Based on the type of ML algorithm used by these works, we divide them to three categories

of shallow ML, deep learning, and ensemble learning. While these works predict faults, they did

not address the challenges identified in Section 1.2 tackled in this thesis.
1This sub-section is based on a published paper: [6] B. Shayesteh, A. Ebrahimzadeh, R. Glitho, “Machine Learning

for Predicting Infrastructure Faults and Job Failures in Clouds: a Survey”, in IEEE Communication Magazine, 2024, to
appear
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A) Shallow Machine Learning

An ANN-based algorithm was introduced in [22] to predict job execution failures in cloud data

centers. The authors provided failure analysis of unsuccessful executions, uncovering the pattern

and the inter-dependencies among task and job failures. The evaluation results indicated that the

ANN-based approach exhibited superior predictive performance compared to Linear Discriminant

Analysis (LDA), Expanded Linear Discriminant Analysis (ELDA), Quadratic Discriminant Analy-

sis (QDA), Logistic Regression (LR), and Suport Vector Machine (SVM) for job failure prediction.

An ELM-based algorithm for online job failure prediction in cloud was proposed in [23]. This

work predicted the submitted jobs’ status and updated the prediction model incrementally as new

sequences of jobs arrived. Utilizing an online sequential ELM enhances adaptability in dynamic

cloud environments, enabling the model to adjust to changes such as concept drifts by incremental

model updating.

B) Deep Learning

Deep learning algorithms consume more time and computational resources for training fault pre-

diction models compared to shallow ML. However, deep learning excel at handling large amounts of

data, and can effectively learn complex fault patterns and dependencies between various indicators

of faults in cloud.

The authors of [32] studied using RNNs for assessing the health status and predicting failures

of Hard Disk Drive (HDD)s using Self-Monitoring, Analysis and Reporting Technology (SMART)

data attributes in large-scale storage systems such as cloud data centers. SMART attributes include

power-on hours, spin up time, and temperature. Their findings indicated that the proposed RNN-

based models can outperform previous sequence independent models and short-term sequence de-

pendent models. An algorithm based on multi-layer Bi-LSTM for predicting task and job failures

in cloud data centers was proposed in [25]. The evaluations revealed that the Bi-LSTM-based solu-

tion outperformed RNN and LSTM without increasing training time, since Bi-LSTM’s bidirectional

learning improves recognition of sequence patterns. A DNN-based algorithm proposed in [7] aimed
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to predict probability of task failure in clouds. The failure prediction was used to develop an op-

timized task scheduling strategy to prevent task execution failures and minimize the total energy

consumption. The findings highlighted the superior predictive performance of DNN over SVM

and Naive Bayes models in anticipating task failure probabilities. The authors of [33] proposed

an LSTM-based algorithm to predict HDD health level according to its time to failure in cloud

data centers. The algorithm used SMART attributes and temporal analysis to predict HDD health

level. The results illustrated the superior performance of LSTM-based models compared to DNN

and RF in predicting the health status of HDD. A framework for predicting task failures in cloud is

proposed in [31]. They leveraged on DNN and CNN to predict task failures. The framework opti-

mized remedy actions selection process for a given task. The evaluation results demonstrated that

the proactive failure handling framework reduced resource usage in the cloud. An algorithm based

on Bi-LSTM is proposed in [34] to predict CPU over-utilization fault in virtual resources of edge

clouds realized using Kubernetes. The predictions were used to trigger a service migration mech-

anism for service recovery. The proposed Bi-LSTM algorithm outperformed CNN-LSTM, Gated

Recurrent Unit (GRU), and LSTM models. Moreover, the proposed proactive migration framework

helped avoiding significant Quality-of-Service (QoS) latency violations compared to the default

Kubernetes migration method.

C) Ensemble Learning

Training ensemble learning-based fault prediction models is complex and may require more

time and computational resources compared to shallow ML and deep learning, which train a single

fault prediction model. However, ensemble learning models offer models with better generalization

since they combine multiple models.

A solution to predict node failures in an ultra-large-scale cloud environment is proposed in [27].

The solution consisted of a data analytics pipeline combining a data pre-processing step with train-

ing of an RF-based prediction model. The authors made the RF model explainable through studying

the importance scores of the features that contributed to the prediction output. The evaluation re-

sults demonstrated the superior performance of RF compared to LSTM and a hybrid RF and LSTM
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model in terms of prediction performance and training time. An AdaBoost-based algorithm to pre-

dict HDD failures for large-scale storage systems like cloud data centers was proposed in [28]. The

authors employed transfer learning to predict failures in minority disks, i.e., the new disks that grad-

ually enter data centers, using the knowledge learned from existing (majority) disks. SMART data

attributes were used to train AdaBoost models with Gradient Boosted Regression Tree (GBRT),

Regularized Greedy Forest (RGF), SVM, and RNN as weak classifiers.

Table 2.1 presents a summary of the existing ML-based fault prediction solution for clouds.

The challenges identified in thesis such as concept drift and feature drift adaptation are a subset

of adaptability, which has not been addressed by the current literature. Moreover, selecting data-

related parameters for training models was not studied in the literature of ML-based fault prediction

in clouds.

Table 2.1: Evaluation of the related work on ML-based fault prediction in clouds.

References Requirements

Accuracy Timely
Prediction Scalability Adaptability Explainability

[22][25][28] ✓ ✓ - - -
[23] ✓ - ✓ - -

[32][7][33]
[31]

- ✓ - - -

[34] - - - - -
[27] - ✓ ✓ - ✓

2.3.2 Concept Drift Adaptation in ML-based Fault Prediction

In this section, we review the concept drift adaptation approaches that use ML model for their

learning task, and we categorize these works by the concept drift adaptation techniques they used,

i.e., retraining, ensemble learning, and partial updating. While the reviewed papers aim at solving

the concept drift problem for specific ML models, none has addressed the necessity of automat-

ing the process of selecting the proper drift adaptation method considering the time and resource

consumption as well as post-adaptation performance of the ML model.
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A) Retraining

To adapt the model to the concept drift, retraining method trains a new model from scratch with

the data after the drift, and then discards the obsolete model. The work in [35] presented a data selec-

tion mechanism for business process mining use case to compensate for concept drift by retraining

ML models, including in particular, the Naive Bayes classifier. The authors of [36] proposed a new

detection algorithm for concept drift adaptation while using Naive Bayes classifiers. While they use

both incremental learning (partial updating) and retraining techniques for drift detection, they only

use retraining to adapt the classifier to the drift. In [13], a drift-adaptive ML-based framework for

Internet of Things (IoT) streaming data is proposed and evaluated on intrusion detection use case.

It uses a Light Gradient Boosting Machine model, which is an ML model based on an ensemble of

decision trees, for training a classifier. Furthermore, it performs drift detection and adaptation using

their proposed method, which uses a window-based approach for drift detection, and uses retraining

and hyperparameter optimization for adaptation. The work in [37] studied the effect of concept drift

on the performance of Automated Machine Learning (AutoML) methods. It has defined various

drift adaptation strategies and evaluated them on open-source AutoML libraries while various drift

types occurred. These strategies consist of retraining the AutoML pipeline while imposing a variety

of possible constraints on the AutoML’s search space. In [38], a drift region-based data sample

filtering method that removes obsolete data, i.e., the data before the drift, and uses the new concept

data for retraining the base learner is proposed. This method is not limited to a specific classifier,

but has been evaluated on K-Nearest Neighbor (k-NN), Naive Bayes, decision trees, and SVM ML

classifiers. Retraining is a time- and resource-intensive method since it requires large amount of

data to train a model from scratch. However, it is the most straightforward method.

B) Ensemble learning

The papers in this category, preserve a set of ML models (i.e., an ensemble) for concept drift

adaptation. In [39], an ensemble learning method based on transfer learning [40] was proposed to

tackle the problem of concept drift for ML models in general, and was particularly evaluated for

decision trees. In this method, as new data arrive, it both adapts the historical preserved models to
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the new data, and retrain a new model with the new data and adds the latter to an ensemble set of

preserved models, while keeping the ensemble diverse. Ensemble learning provides a better gener-

alization ability while being a resource-consuming method, since multiple models are preserved for

inference.

C) Partial updating

The papers in this category, instead of discarding the obsolete ML model after the occurrence of

the drift, partially update it to fit the new data distribution. In [41], the authors presented an anomaly

detection and concept drift adaptation method for RNNs by incrementally updating the prediction

model without detecting a drift first. The authors of [42] proposed a concept drift adaptation method

for CNNs using transfer learning to partially update the CNN model after a drift is detected. This

method was proposed for image object detection use case, and it finds the obsolete layers of CNN,

and then retrain those layers with the images after drift. The authors of [43] proposed an online

adaptive RNN for electricity load forecasting use case, that adapts the deep learning model to the

concept drift by re-tuning hyperparameters (learning rate) and incrementally updating the model. In

partial updating, it is challenging to know which part of the model (e.g., branches in decision trees

or layers in a neural network) should be updated to get a well-performing adapted model.

Table 2.2 presents a summary of the works that adapt to concept drifts when using ML models.

Since the focus of these works is not fault prediction in clouds, the general requirements of ML-

based fault prediction models is not included in the table.

Table 2.2: Evaluation of the related work with respect to the requirements of concept drift adaptation
algorithm.

References Requirements

Autonomy Post-adaptation
Performance

Adaptation Time
Consumption

Adaptation Resource
Consumption

[35][36][37][38]
[43][41][42]

- ✓ - -

[13][39] - ✓ - ✓
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2.3.3 Feature Drift Adaptation in ML-based Fault Prediction

In this section, we review the works that adapt ML models to feature drifts. Although concept

drift adaptation is a relatively well-established research area, the literature is quite scarce on feature

drift adaptation. We categorize the feature drift adaptation techniques into two groups of active

or passive adaptation approaches, considering whether they detect a feature drift to trigger adapta-

tion or they continuously update the selected features and/or prediction model to reflect the latest

changes in the feature relevancy. While the reviewed paper aim at solving the feature drift adapta-

tion problem, the passive approaches do not detect a drift and are not applicable to high-dimensional

feature space like metrics of a cloud system, since periodically performing feature selection is very

time and resource consuming and may not be feasible. Moreover, the existing passive approaches

either do not discriminate between concept drift or feature drift and cannot effectively adapt the

model to the drift, or perform evolutionary-based feature selection for adaptation, which has a high

time and resource overhead and is not guaranteed to converge in high-dimensional feature space.

A) Passive Feature Drift Adaptation

The papers in this category implicitly adapt to feature drift by updating the features that are

relevant to the learning task as new data arrives without detecting the occurrence of drifts. In [44],

a feature drift adaptation approach is proposed specifically for k-NN algorithm. The distances in

k-NN were weighted dynamically according to the current discriminative power of each feature

calculated using entropy over a sliding window. Therefore, as features became irrelevant, they

contributed less in distance calculation of k-NN. The authors in [45] proposed a dynamic feature

selection for clustering data streams. It continuously performed feature selection over a sliding

window and stored a score for each feature and defined a threshold to decide selection of the feature.

The changes in features relevancy were reflected in the score enabling feature drift adaptation.

In [46] a dynamic feature selection based on genetic algorithm is proposed to change the selected

features over time as new streaming data arrived. It trained classifiers using different combinations

from an initial set of features, and the features used for top performing classifiers were further used

for cross-over and mutation so that weak features are removed for next iterations.
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B) Active Feature Drift Adaptation

As opposed to passive adaptation approaches that do not detect a feature drift to start the adap-

tation, the papers in this category detect a feature drift to trigger adaptation procedure, which makes

them more suitable for high-dimensional feature spaces, where continuous feature selection is not

feasible. The work in [47] proposed Dynamic Correlation-based Feature Selection (DCFS), an ac-

tive feature drift adaptation solution for data streams. It detected the feature drift using commonly

used concept drift detection algorithms, e.g., Adaptive Windowing (ADWIN) [48]. Upon receiv-

ing a drift warning, i.e., a drop in based learner’s performance, it used feature re-selection using

backward elimination and re-trained the base learner. The authors of [49] proposed a framework

to classify data streams that may contain feature drifts. They detected feature drift by monitoring

the relevance of features and class label using mutual information. For feature drift adaptation, they

updated the selected features using an evolutionary algorithm and retrained the base classifier. The

work was further extended in [50] by introducing a memory mechanism to store the features that

were selected before the occurrence of feature drift to re-use for accelerating feature selection in

case of recurrent feature drifts. The authors in [51] did not detect feature drift over time, but they

proposed a feature selection solution based on degree of feature drift and genetic algorithm for de-

vice identification in IoT. They used an entropy-based metric to identify and discard features that

exhibit a drift across different datasets. They further used genetic algorithms to select features for

the classification task.

Table 2.3 presents a summary of the feature drift adaptation works. Since the focus of these

works is not fault prediction in clouds, the general requirements of ML-based fault prediction mod-

els is not included in the table.

Table 2.3: Evaluation of the related work with respect to the requirements of feature drift adaptation
algorithm.

References Approach Requirements

Feature Drift
Detection

Applicable to
High-dimension
Feature Space

Post-adaptation
Performance

Resource
Efficient

[44][45][46] Passive - - ✓ -
[47][49][50] Active ✓ - ✓ -
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2.3.4 Data-related Parameter Selection in ML-based Fault Prediction

In this section, we review the existing work on selecting data-related parameters (training data

size, data sampling interval, input window, or prediction horizon) while training an ML model,

followed by existing multi-objective optimization techniques adopted for optimizing ML models.

The works that studied selecting the data-related parameters tested these parameters in a limited

scope for a specific model, highlighting the need for an automated and general solution to select

these parameters. Moreover, the existing work only consider one objective, i.e., model performance,

to select the parameters and other objectives such as data storage resource consumption was not

considered while selecting the parameters. On the other hand, the works that optimize multiple

objectives when refining an ML model, focus on optimizing architectures or number of features

rather than tuning data-related parameters.

A) Selecting Data-related Parameters

The works in [15] [52][53] tune parameters such as training data size, data sampling interval,

input window, or prediction horizon while training an ML model. In [15], the authors studied the

impact of training data size, data sampling interval, and prediction horizon on the accuracy of an

ML-based QoS prediction model. They reported Mean Absolute Error (MAE) of the prediction

model when trained using various combinations of the parameters. Ref. [52] studied the effect

of data sampling interval on wearable-based fall detection system on four ML models with the

purpose of finding the minimum data sampling interval that results in the highest performance. The

authors of [53] studied how different sampling intervals, ML models and hyperparameters influence

accuracy of an ML model predicting power consumption of a wind turbine. They evaluated two ML

models, four sampling rates and prediction horizons to tune the parameters.

B) Multi-Objective Optimization for ML models

The works in [54][55][56][57][58] utilized multi-objective optimization for optimizing various

aspects of ML models, such as model hyperparameters, architectures, and model types. The authors

of [54] proposed a multi-objective optimization for AutoML to maximize the performance of the
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ML model while minimizing model size to enable deployment on mobile devices. They proposed a

Genetic Algorithm (GA)-based approach with customized search space sampling. In [55], a frame-

work for DNN Neural Architecture Search (NAS) to maximize the performance of the model while

minimizing model size is proposed. This framework used an evolutionary algorithm to find models

suitable for deployment resource-constrained devices. The authors of [56] proposed a resource-

aware AutoML framework to build ML models while considering multiple objectives such as re-

source consumption, inference time, and performance simultaneously. The platform employed a

combination of Bayesian Optimization and GA to find Pareto optimal candidates. In [57], the au-

thors simultaneously optimized the model hyperparameters and features that will be used for train-

ing, focusing on maximizing predictive performance while minimizing the number of features. They

employed and compared Bayesian Optimization and NSGA-II to solve their optimization problem.

The authors of [58] proposed a multi-objective AutoML approach to find a trade-off between model

performance and computational complexity of the ML algorithm. They utilized an NSGA-II-based

approach with a modified dominance and cross-over definition. While these works optimize two

conflicting objectives, they overlooked the significant costs associated with training ML models to

assess these objectives during optimization. Moreover, these works did not focus on tuning data-

related parameters.

Another group of papers [59][60][61] have adopted surrogate-assisted multi-objective optimiza-

tion for ML models. This method employs surrogate models to estimate the objective functions,

which are expensive to evaluate due to the high cost of training the ML model for each evaluation.

The authors of [59] proposed a surrogate-assisted hardware-aware NAS by predicting the Pareto

front rankings of architectures for multiple objectives, such as accuracy and resource consumption.

They extended the work in [60] by enhancing the inference time of the surrogate model. Ref. [61]

trained an LSTM model offline as a surrogate for multi-objective optimization in a wrapper-based

feature selection problem in air quality forecasting. The objective was to find a trade-off between

model performance and number of features.

Table 2.4 presents a summary of the literature review on data-related parameter selection. Since

the focus of these works is not fault prediction in clouds, the general requirements of ML-based

fault prediction models is not included in the table.
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Table 2.4: Evaluation of the related work with respect to the requirements of data-related parameter
selection algorithm.

References Requirements
Data-related

Parameter Selection Autonomy Multi-objective Model Performance
Estimation

[15][52][53] ✓ - - -
[54][55][56]

[57][58]
- ✓ ✓ -

[59][60][61] - ✓ ✓ ✓

2.4 Conclusion

In this chapter, we first described an illustrative use case and derived the requirements for ML-

based fault prediction in clouds. Then, we reviewed the existing algorithms for ML-based fault

prediction in the literature and evaluated them based on the identified requirements. Our literature

review indicates that the existing fault prediction algorithms do not address the three challenges

discussed in Section 1.2.
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Chapter 3

Concept Drift Adaptation Algorithm for

ML-based Fault Prediction 1

3.1 Introduction

One limitation of ML-based solutions that use cloud performance metrics for fault prediction is

that their predictive performance can be affected by concept drifts. It is important to prevent the per-

formance degradation of the prediction models caused by concept drift by means of effective model

adaptation. It is challenging is to automatically select the best concept drift adaptation technique

and data size for diverse ML models in large-scale clouds, accounting for varying drift types, model

architectures, and cloud operator requirements.

To address this challenge, this chapter proposes an algorithm that considers the cloud opera-

tor’s requirements (i.e., drift adaptation time and resource consumption, and the prediction model’s

accuracy after adaptation), and uses RL to select the most appropriate drift adaptation method to

update the fault prediction model that fulfills the operator’s requirements. Moreover, it utilizes RL

to automatically select the data size for adaptation to fulfill the operator’s requirements.

The rest of this chapter is organized as follows. First, we present an illustrative use case followed
1This chapter is based on two published papers: [1] B. Shayesteh, C. Fu, A. Ebrahimzadeh, R. Glitho, “Auto-adaptive

Fault Prediction System for Edge Cloud Environments in the Presence of Concept Drift”. In Proc. IEEE International
Conference on Cloud Engineering (IC2E), Oct. 2021, pp. 217-223, and [2] B. Shayesteh, C. Fu, A. Ebrahimzadeh,
R. Glitho, “Automated Concept Drift Handling for Fault Prediction in Edge Clouds Using Reinforcement Learning,” in
IEEE Transactions on Network and Service Management, vol. 19, no. 2, pp. 1321-1335, June 2022.
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by the system model and our proposed RL-based automated concept drift adaptation solution. Next,

we describe the lab setup and the implementation results and conclude this chapter.

3.2 Illustrative Use case

In this section, we describe an illustrative use case that highlights the importance of a concept

drift adaptation solution for ML models that predict faults in cloud. Let us consider a cloud envi-

ronment consisting of a central cloud and an edge. An ML model is utilized in this environment to

predict impending infrastructure faults, enabling preemptive actions to prevent faults. The predic-

tion model is trained using infrastructure-level metrics relevant to the occurrence of a specific fault.

For instance, to predict CPU over-utilization faults, metrics such as CPU load or the time a process

waits for CPU are used to train the model.

Maintaining the performance of the fault prediction model in highly dynamic cloud environ-

ments poses a significant challenge. A particular challenge is the phenomenon of concept drift,

where the distribution of the data used for training the model and the data used for prediction are

different. The concept drift degrades the ML model’s performance. For example, let us assume that

CPU-intensive applications are deployed across the cloud infrastructure, or there is a significant

increase in workload due to seasonal business activities or unexpected events. These events can

change the CPU usage patterns within the cloud environment. The original CPU over-utilization

fault prediction model, which was trained on historical data reflecting a different level of CPU de-

mand, may no longer accurately predict CPU over-utilization under these new conditions. In this

case, a concept drift adaptation solution is required to detect concept drifts, collect new data after

concept drift occurrence, and determine how to adapt the prediction model to the drift to maintain

its performance.

3.3 System Model

Fig. 3.1 illustrates a high-level view of a cloud consisting of one central cloud and one edge, as

a representative of many. As shown in Fig. 3.1, we consider a deep learning time series forecasting

model, which predicts infrastructure faults such as CPU or HDD over-utilization faults. We assume
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that an operator manages several clouds using these fault prediction models. The edge site has

an Edge Site Monitor that collects raw training data, i.e., infrastructure-level performance metrics,

and passes this data to the cloud for pre-processing that cleans the data from inconsistencies (e.g.,

outliers, null values, etc.), and labels them if necessary. The data is further used for feature selection

to select the features or metrics that have the greatest correlation with the occurrence of a fault. The

selected features of the pre-processed data are further used to train the fault prediction models in an

offline mode, and then the trained models are deployed in the edge site for prediction. The Edge

Site Monitor collects online data and feeds them to the trained fault prediction model to generate

online fault predictions. Due to the high dynamicity in configurations and workloads of the cloud,

the distribution of the arriving data is subject to frequent changes over time (i.e., concept drift),

which causes false predictions and results in a degradation of the prediction model’s performance.

To tackle this problem, the Drift Detector in the edge site receives the status of the fault prediction

(i.e., whether the prediction was correct or incorrect) as an input, detects the occurrence time of a

possible concept drift and generates a drift alert if a concept drift was detected. We assume that

the true labels of the arriving data are available using the timestamp-based labeling method defined

in [62], which records the fault injection timestamp and labels each sample as fault or non-fault.

Next, upon receiving a drift alert, some new data after the drift is collected and the Drift Adaptor in

the edge site adapts the fault prediction model to the concept drift using the newly collected data.

In the setting described above, the operator sets various requirements for each edge site speci-

fying that the drift adaptation process should not exceed Tr seconds, consume less than Cr amount

of resources, and achieve a minimum post-adaptation accuracy Ar, given that a maximum amount

Dmax of data is available for adaptation. We aim to solve the problem of automated selection of

the appropriate drift adaptation method among all available methods (i.e., retraining, partial updat-

ing, ensemble learning) as well as the amount of data required for adaptation by minimizing the

gap between the time and resource consumption, and accuracy of the selected adaptation method

and desired Tr, Cr, and Ar (i.e., the requirements of the cloud operator). In retraining, the learned

parameters of the neural network before the drift are discarded and a new model is trained from

scratch using the data collected after the concept drift. In partially updating a neural network, the

learned parameters of the old neural network are further fine-tuned as a starting point for the new
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Figure 3.1: Generic system model of a cloud environment.

model, which is also known as Transfer Learning (TL), since some knowledge is transferred from

a source model to a target model. In ensemble learning, the old and new neural network models

are preserved in a set, and the final inference is a combination of the inferences of both models

following a specific rule, e.g., weighted sum. The new preserved model in the ensemble could have

been adapted using either retraining or the partial updating approach.

3.4 Proposed Concept Drift Adaptation Algorithm

In this section, we present our proposed automated concept drift adaptation solution. Fig. 3.2

illustrates the architecture of our proposed solution, in which it is assumed that a fault prediction

model, specifically, a deep learning time series forecasting model, is previously trained using offline

data. The fault Prediction Model receives pre-processed streaming data from the Edge Site Monitor

component and generates its predictions on the fault status of the system. We assume that the

true labels of the arriving data are available using the timestamp-based labeling method defined

in [62], which records the fault injection timestamp and labels each sample as fault or non-fault.

Using this labeling mechanism, the Drift Detector component receives as input whether the model’s
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prediction is correct or not (prediction status) and detects the occurrence time of a possible concept

drift and generates a drift alert if a concept drift is detected. Error-based concept drift detection

techniques (reviewed in [14]) including Cumulative Sum (CUSUM) [63] and ADWIN [48] can

be used for concept drift detection. Our previous experiments for concept drift detection in [1]

found that CUSUM had a better performance in terms of True Positive ratio and False Positive

ratio compared to other error-based concept drift detections. CUSUM monitors the mean of the

model’s error and alarms a drift when significant deviation is observed in the mean error value.

Upon receiving a drift alert, the Drift Adaptation Method Selector component is initialized and

reads the cloud operator’s requirements from the Drift Adaptation Controller component. The Drift

Adaptation Method Selector uses the previously trained RL agent to infer the proper drift adaptation

method considering the requirements. The Drift Adaptation Method Selector initializes the Data

Collector component that trains an RL agent to learn the amount of data to collect that will result in

the highest model performance. Once the amount of data for collection has been decided, the Drift

Adaptor component performs the drift adaptation process and updates the fault prediction model.

Figure 3.2: Architecture of the proposed automated drift adaptation solution.

Algorithm 1 illustrates the different steps of our proposed automated concept drift adaptation

solution. It starts by loading a fault prediction model (M ). When the new data (X) with a label (Y )

arrives, it is fed to the fault prediction model (M ). The inference of the prediction model (Ŷ ) from

data (X) along with the true label (Y ) of (X) is used to get the prediction status. While new data

arrives, the model’s prediction status is monitored to detect possible drifts (see lines 4-9). In case

of drift detection, the set of operator’s requirements ({Tr, Cr, Ar}), i.e., the adaptation’s time and

resource consumption (Tr and Cr), and the model’s accuracy (Ar) after adaptation, along with the
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Drift Adaptation Method Selector’s Q-table (QDAMS) that was previously trained using the Drift

Adaptation Method Selector Algorithm are used to select the drift adaptation method (see lines 11-

13). Next, a new Data Collector agent is trained and the Q-table returned by the Data Collector

(QDC) is further used to select the data size (see lines 14-15). Finally, the Drift Adaptor receives

the adaptation method and the data size to perform the adaptation process and then substitutes the

adapted model for the old prediction (see lines 16-17).

Algorithm 1 Automated Concept Drift Adaptation
1: Initialize: Drift Detector, Edge Site Monitor (ESM), Drift Adaptation Controller (DAC)
2: M← Load trained fault prediction model
3: while data arrives do
4: X ← Read pre-processed data from ESM
5: Ŷ ←M(X)

6: prediction status← get prediction status(Y, Ŷ )
7: drift alert← drift detector(prediction status)
8: if drift alert then
9: {Tr, Cr, Ar} ← read requirements from DAC

10: QDAMS ← get Q-table returned by DAMS
11: adaptor← get adapt method (QDAMS , {T,C,A})
12: QDC ← train and get Q-table from Data Collector
13: data size← get data size (QDC)
14: new model← perform adapt(adaptor, data size)
15: M← new model
16: end if
17: end while

Q-Learning: Since the Drift Adaptation Method Selector and Data Collector utilize Q-learning,

here we summarize theoretical formulations of Q-learning corresponding to our problems. Q-

learning is an off-policy RL algorithm, which means it can learn the optimal policy by behaving

under a non-optimal policy, e.g., greedy. Moreover, it is a model-free algorithm, which means it

does not need to explicitly understand the dynamics of the environment to learn how to act opti-

mally in it. Q-learning fits our problems because in both Drift Adaptation Method Selector and

Data Collector, we only need to learn a function that optimizes the agent’s behavior and leads the

agent on how to act in a given situation without modeling the environment.

In a general RL problem, an agent continually interacts with an environment, and the environ-

ment accordingly presents new situations to the agent, along with rewards, which the agent tries to

maximize over time [64]. Given that the agent and the environment interact in discrete time steps t,

the agent is presented with a representation of the environment, i.e., state St ∈ S at time t, where

S is the set of all possible states in the environment. Based on this state, the agent takes the action

At ∈ A(St), where A(St) is the set of possible actions in state St. Consequently, the agent receives
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a numerical reward Rt+1 ∈ R ⊂ R in the next time step and ends up in state St+1. The agent’s goal

at each time step t is to maximize the reward it receives over the long run, i.e., the amount of return

Gt, given by:

Gt=

T∑
k=0

γkRt+k+1, (3.1)

where T is the final time step and γ is a parameter called the discount factor, where 0 ≤ γ ≤ 1,

which is the weight given to the immediate rewards over the long-term rewards. The expected return

starting in state s taking an action a is called the Q-value denoted as Q(s, a) and defined as follows:

Q(s, a) = E[Gt | St = s,At = a] , (3.2)

where Q is called the action-value function. The Q-learning algorithm starts by initializing the

Q-value of all possible state and action pairs to a pre-defined value, e.g., zero. Next, it iteratively

updates the Q-values for each state and action pair using the Bellman’s equation given by:

Q(St, At)=(1− α)Q(St, At) + α[Rt + γmax
A′

Q(St+1, A
′)], (3.3)

where α is the learning rate parameter that indicates the importance of the recent information over

the older information. If the state s and action a pair is sampled infinitely, Q(s, a) will converge

to the maximum expected reward Q∗(s, a) [65]. Given that the number of state and action pairs

are finite, the Q-values are preserved in a table called the Q-table. After the action-value function

converges, the agent uses the Q-table to decide what action to take in each time step.

In our algorithm design, the agent follows the ϵ-greedy policy [66] while training. In this policy,

the agent acts randomly with the probability of ϵ, and acts greedy with the probability of 1 −

ϵ. The ϵ value starts from 1 and is gradually decayed to a near-zero value. By reducing the ϵ

value gradually, the agent acts randomly at the beginning and explores many state and action pairs,

gradually exploiting the information it has learned. Using ϵ-greedy policy can improve convergence

as it suggests an approach that avoids the issues of over-exploration and over-exploitation, which

typically results in slow convergence and convergence to local optimum, respectively. Moreover,

in our algorithm, the agent uses the experience replay technique [67], where the explored paths
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and their corresponding rewards are stored. The agent periodically samples from experience replay

to update the Q-values. This, as a result, speeds up the convergence of the action-value function

and increases data efficiency as each sample is used multiple times to update the Q-table, which is

particularly beneficial when the exploration is costly or the state space is large [66].

3.4.1 Drift Adaptation Method Selector

This component is responsible for selecting the proper drift adaptation method considering the

requirements from the Drift Adaptation Controller. The Drift Adaptation Method Selector considers

all the possible methods to adapt a neural network (i.e., retraining, partial updating (using TL), and

ensemble learning) and then makes a selection that meets the operator’s requirements.

Fig. 3.3 illustrates two main steps to train an RL agent to select the proper drift adaptation

method using Q-learning. In the first step, inspired by [68], the agent samples a drift adaptation

method by deciding which drift adaptation approach to use for each layer of the neural network

model, given a pre-defined behavior pattern. Next, the sampled drift adaptation method is applied to

the data after the concept drift and a performance evaluation metric, i.e., the accuracy of a validation

set, as well as time and resource consumption of drift adaptation is saved in the agent’s replay

memory along with the adaptation method. Furthermore, the agent samples from the replay memory

and learns by updating the Q-table. In the following, we elaborate on the state and action spaces

and reward function of the Drift Adaptation Method Selector.

Figure 3.3: Drift Adaptation Method Selector steps.

A) State Space: In this problem, each state is defined in a three-tuple:

(i) The neural network layer depth that represents the position of a layer in a neural network. The
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agent needs to know the layer depth, since some actions are only possible in specific layer

positions.

(ii) The drift adaptation applied to that layer, which can be either Retraining (R), Fine-tuning (F),

Freezing (Z), Preserving (P), or Discarding (D). The first three adaptations indicate that the

parameters in the corresponding layer were retrained from scratch, fine-tuned from the model

before the adaptation, or were frozen, respectively. The last two adaptations indicate that the

old model is preserved as an ensemble with the adapted model, or is discarded, respectively.

(iii) The operator’s adaptation requirements, a set that consists of the drift adaptation method’s

time consumption Tr, resource consumption Cr, and the model’s performance after the adap-

tation, i.e., its accuracy Ar on a validation set. The three requirements can co-exist at the

same time. It is assumed that the operator can define a finite number of requirement sets

{Tr, Cr, Ar} to keep the state space of the problem finite.

The representation of a state that performs an adaptation approach x on the ith layer of a neural

network, while the operator’s requirement equals {Tr, Cr, Ar}, is as follows:

s = S(i, x, {Tr, Cr, Ar}). (3.4)

B) Action Space: In each state s, the agent can take action a ∈ A(s). There are five actions

defined in this problem: Retraining (R), Fine-tuning (F), Freezing (Z), Preserving (P), or Discarding

(D). However, not all actions are available in all states. In the initial state S0, the agent decides

which drift adaptation approach to choose for the first layer, where the action is selected from

A(S0) = {R, F, Z}. Moreover, if the current state’s adaptation approach is R, the agent can only

select R as its future action, since in the retraining adaptation method, all layers are retrained from

scratch. Similarly, if the current state’s adaptation approach is F or Z, the next action is selected

from A(S) = {F, Z}, and any combination of layers can be fine-tuned or frozen. Finally, after the

agent decides what action to select for the last layer, it decides to form an ensemble of this model

and the old model, or to discard the old model. Hence, in the last layer, A(S) = {P, D}. Available
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action(s) in each state s is given by:

A(s) =



{R, F, Z}, s = S0

{R}, s = S({1, . . . , N − 1}, R, ·)

{F, Z}, s = S({1, . . . , N − 1}, {Z ∪ F}, ·)

{P, D}, s = S(N, ·, ·),

(3.5)

where N is the total number of layers and {1, . . . , N − 1} is the set of all the layers, except the last

one.

C) Reward Function: The agent receives a reward after performing the drift adaptation method

it selected. We define the reward of action ai at a given state si as a function of the drift adaptation’s

time consumption Ti, resource consumption Ci, and accuracy of the model after adaptation Ai, as

follows:

R(s, a) = k1
(Ai −Ar)

Ar
− k2

(Ti − Tr)

Tr
− k3

(Ci − Cr)

Cr
, (3.6)

where Ar is the operator’s required accuracy, and Tr and Cr are the maximum time and resources

available for adaptation as specified in operator’s requirements. The k1, k2, and k3 coefficients

reflect how exceeding each requirement (obtaining the target accuracy and remaining under the

time and resource consumption limits) can penalize or promote the reward, respectively. According

to Eq. (3.6), the Drift Adaptation Method Selector considers all three requirements at the same

time in the calculation of the reward, and the actions that meet all requirements are assigned the

highest rewards. Similarly, if all or some of the requirements cannot be met, since performing drift

adaptation is necessary, the action that has the closest adaptation time and resource consumption

and accuracy to those of the requirements will be assigned the highest reward, and consequently

will be selected by the Drift Adaptation Method Selector.

It is assumed that this RL agent is trained offline, and the Drift Adaptation Method Selector

component infers the proper action from the Q-table. The RL agent can be further trained if the

operator needs to find the proper drift adaptation method for a new requirement set not known by

the agent. Algorithm 2 illustrates the steps of our proposed Drift Adaptation Method Selector.
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Algorithm 2 Drift Adaptation Method Selector
1: Inputs: Number of model’s layers (N), Number of explorations for each ϵ (E), Total number of episodes (B)
2: Initialize:
3: replay memory← []
4: Q← 0 for all state-action pairs
5: for (episode = 1 to B) do
6: Visited states S = [S0]
7: Taken actionsA = []
8: for (layer = 1 to N ) do
9: generate random number e ∈ [0, 1]

10: A(S[−1])← get possible actions for S[−1] from Eq. (3.5)
11: if e > ϵ then
12: a← maxa∈A(S[−1]) Q(S[−1], a)
13: else
14: a← random selection inA(S[−1])
15: end if
16: A.append(a)
17: Snew ← perform action a
18: S.append(Snew)
19: end for
20: R← perform adaptation(S) get reward from Eq. (3.6)
21: memory.append(S,A,R)
22: {Sm,Am,Rm} ←M random selections from memory
23: for (S,A,R in Sm,Am,Rm) do
24: for (s, a in S,A) do
25: update Q(s, a) using Eq. 3.3 & reward R
26: end for
27: end for
28: E ← E − 1
29: if E equals 0 then
30: decay ϵ & re-initialize E
31: end if
32: end for
33: return Q

3.4.2 Data Collector

Once the proper drift adaptation method to fulfill the operator’s requirements is selected by the

Drift Adaptation Method Selector, the Data Collector trains a new Q-learning RL agent in a different

environment to learn the amount of data to collect to start the drift adaptation process.

A) State Space: In this problem, the size of the data to be collected is represented as a state.

The possible data sizes are defined within discrete intervals I .

B) Action Space: In this problem, in each state, the agent can take two actions to either decrease

or increase the current data size with an amount of I . Assuming that the initial state is to collect

an amount of d0 data (sDC,0 = d0), and the agent increases the data size, the next state would be

sDC,1 = d0 + I . It is further assumed that the operator specifies the maximum data size available

for data collection Dr as the upper limit.

C) Reward Function: The reward function for Data Collector (RDC) is a function of the gained

36



accuracy using the collected data Ac and the operator’s required accuracy Ar, as follows:

RDC(sDC , aDC) = Ac −Ar, (3.7)

which indicates that the data sizes resulting in closer accuracy to the operator’s required accuracy

get higher rewards. Algorithm 3 illustrates the steps of our proposed Data Collector.

Algorithm 3 Data Collector
1: Inputs: Minimum and Maximum data available (D0, Dr), Total number of episodes (BDC), Episode length (L), Number of

exploration for each ϵ (E), Interval between two consecutive data sizes I
2: Initialize:
3: ADC ← {increase, decrease}
4: QDC ← 0 for all state-action pairs
5: for (episode = 1 to BDC ) do
6: sDC ← start in a random initial state
7: is episode done← False
8: while ! is episode done do
9: generate random number e ∈ [0, 1]

10: if e > ϵ then
11: a← maxa∈ADC

QDC(sDC , a)
12: else
13: a← random selection fromADC

14: end if
15: RDC ← do action a and get reward from Eq. (3.7)
16: update QDC(sDC , a) using Eq. 3.3 & rewardRDC

17: SDC ← perform action a
18: L← L− 1
19: if L equals 0 orRDC ≥ 0 or sDC < D0/I or sDC > (Dr −D0)/I then
20: is episode done← True
21: re-initialize L
22: end if
23: end while
24: E = E − 1
25: if E equals 0 then
26: decay ϵ & re-initialize E
27: end if
28: end for
29: return QDC

3.4.3 Complexity Analysis

In this sub-section, we present a complexity analysis of our proposed concept drift adaptation,

Drift Adaptation Method Selector, and Data Collector algorithms. The time complexity of an ϵ-

greedy Q-learning algorithm is from the order of the number of steps in an episode and the length

of each episode [69]. The space complexity of Q-learning is influenced by the number of states and

actions [69]. Therefore, the time complexity of the Data Collector (Algorithm 3) is O(BDC ·LDC),

and the space complexity is O(|ADC | · SDC), where SDC = (Dr −D0)/I is the number of states.
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For the Drift Adaptation Method Selector (Algorithm 2), since a replay buffer of size M is used,

the time complexity is O(B · N · M). For the space complexity, since each state is a three-tuple,

assuming that there are H requirement sets, the number of states is |A| · N · H , and the space

complexity would be O(|A|2 · N · H · M). As for the complexity of automated concept drift

adaptation (Algorithm 1), assuming that the size of the arriving data is W , the time complexity is

O(W ·BDC · LDC) and the space complexity is O(W · ADC · SDC).

3.5 Performance Evaluation

In this section, we evaluate the performance of our proposed solution in a Kubernetes-based

cloud testbed. In the following, after presenting the experiment settings, i.e., the lab setup and fault

injection specifications, we present the results of our evaluations.

3.5.1 Experiment Settings

A) Lab Setup: Fig. 3.4 depicts our lab setup, which consists of three Kubernetes clusters with

a total of 10 Virtual Machines (VMs) running Ubuntu 18.04. The Kubernetes clusters are deployed

at Ericsson Research’s private cloud. One cluster represents the central site while the other two

clusters are the edge sites. To cause drifts in the data (i.e., the performance metrics of the nodes)

used for training the fault prediction models, we installed Stan’s Robot Shop [70], a CPU-intensive

application. The load generator of Stan’s Robot Shop increases the CPU, memory and network

load causing drifts in the nodes’ performance metrics. We utilized Prometheus [71] to monitor the

VMs in Kubernetes clusters and collect the data. The configurations of the VMs are summarized in

Table 3.1.

B) Fault Injection: The CPU and HDD over-utilization faults were injected to VMs using

the Stress-ng tool [72]. The network congestion and packet loss faults were initiated targeting

VMs using Ping flood and Linux Traffic Control, respectively. The fault injections have a recurrent

pattern, i.e., they are recurrently interrupted with a cool down time. Following [73], we assume

that the duration of an injection follows a Normal distribution (with a mean of 120 s and standard

deviation of 6 s in our experiment), while the inter-arrival time of the fault injections follows an
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Figure 3.4: Lab setup for evaluating the proposed concept drift adaptation solution.

Table 3.1: Lab setup parameters and default values.

Site Parameter Value

Central Site

Number of VMs 4 VMs

CPU
4 cores for each VM

1 core i7-8700 for training

RAM
16G for each VM
16G for training

HDD
100G for each VM

1T for training

Edge Sites

Number of VMs 3 VMs
CPU 4 cores for each VM

RAM
8G for each worker VM

16G for master VM
HDD 100G for each VM

exponentiated Weibull distribution (with a shape parameter 10 and a shifted value of 120 s in our

experiment). The data was collected every 10 seconds, when we collected the node-level VM

metrics (e.g., the CPU, memory, and network metrics). The data for these recurrent faults are

manually labelled in two classes based on the timestamp of the fault injection: 0 as non-fault, and

1 as fault. We used the so-called Recursive Feature Elimination (RFE) classifier [74] for feature

selection. For the building and training of the fault prediction neural network models, we used the

Keras (with a Tensorflow backend) and Scikit-learn libraries, and to realize the environments of our

Q-learning models we used OpenAI Gym [75].
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3.5.2 Evaluation Results

In this section, we initially evaluate and compare the experimental results of our fault prediction

models. Next, to evaluate our proposed automated concept drift adaptation algorithm, we evaluate

the performance of the Drift Adaptation Method Selector and Data Collector RL agents. We illus-

trate the effectiveness of our solution by demonstrating its persistent accuracy on two weeks data in

the presence of multiple drifts during our experiment. Finally, we compare our proposed solution

in terms of end-to-end performance with various approaches that use a combination of adaptation

methods (e.g., retraining) and data collectors (e.g., increasing the data size gradually).

A) Fault Prediction Results

The purpose of this experiment is to compare the accuracy of the trained prediction models to

find the model with the highest prediction accuracy for each type of fault. We trained CNN, LSTM,

and CNN-LSTM models with CPU and HDD over-utilization, network congestion, and packet loss

fault data. The architecture of the CNN model consists of two Convolutional, one Pooling, one

Flatten, and two Dense layers, and the LSTM model has an LSTM and a Dense layer. The CNN-

LSTM model has both CNN and LSTM layers, and consists of a sequence of one Convolution,

one Pooling, two LSTMs, and one Dense layer(s). Based on our findings in [62], we used RFE

to select 10 features out of all the metrics collected by Prometheus to train our models. The fea-

tures selected by RFE are node-level metrics that are different for various faults, and they include

CPU load, available and allocated memory bytes, received and transmitted bytes and packets. We

trained multi-variate multi-step time series forecasting models, and classified the results based on

the forecast values, where the model’s inputs are the selected features and the predicting output is

the fault status of the system. In this experiment, the input window was set to 12 samples, and the

output window (prediction duration) to 6 samples. We used the first two days out of two weeks

data for training and evaluating the models, splitting this dataset into training and testing data with

a ratio of 80% and 20%, respectively. The hyper-parameters of our considered models were opti-

mized using Tree-structured Parzen Estimator (TPE) [76]. The optimizers were selected between
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Adam [77] and Nadam [78] versions of stochastic gradient descent, and the loss function was se-

lected between the MAE and the Root Mean Square Error (RMSE) by the TPE. Table 3.2 presents

the loss functions, optimizers, and the searching space for tuning other hyperparameters. Fig. 3.5

illustrates the accuracy of our trained models for CPU, HDD, network congestion, and packet loss

faults, and Table 3.3 presents the training times for each model.

Table 3.2: Hyper-parameter space of our considered ML models.

Parameter Value Range
Number of neurons in

Convolution, LSTM, Dense layers
[2, 256]

Optimizers [Adam, Nadam]
Loss functions [MAE, RMSE]

Number of batch sizes [8, 128]
Number of epochs [8, 256]
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Figure 3.5: Accuracy of trained prediction models on two days of data.

Table 3.3: Training time of considered ML models on two days of data.

Model CNN LSTM CNN-LSTM
CPU Fault Training Time (s) 15.8 158.9 135.0

Network Fault Training Time (s) 60.2 114.4 362.4
HDD Fault Training Time (s) 58.3 1104.5 456.3

Packet Loss Fault Training Time (s) 44.3 102.8 925.2

As illustrated in Fig. 3.5, for each type of fault, all trained models have very similar prediction

accuracies. For CPU fault, the LSTM model has the highest accuracy of 91.48%, while for packet

loss fault, the CNN model has the highest accuracy, with 89.77%. The CNN-LSTM model has the

highest accuracy of 87.6% and 84.88% for network congestion and HDD faults, respectively. As
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shown in Table 3.3, the training time of different fault prediction models varies. The reason for

this is that each model is associated with a different set of hyperparameters, i.e., number of epochs,

neurons, batch size. For example, the LSTM model that predicts HDD over-utilization fault has a

large number of epochs and neurons in the LSTM layer along with a small batch size, which results

in longer training time compared to other prediction models. The training time of the CNN models

for all faults is noticeably shorter than the LSTM and CNN-LSTM models, due to the recursive

characteristics of LSTM layers. Since the CNN takes a significantly shorter training time to provide

a prediction model with an accuracy close to that of the other models, for all four types of faults, we

chose to use the CNN model to operate as the prediction model in our proposed solution.

B) Drift Adaptation Method Selector Results

In this experiment, we evaluate the performance of the proposed Drift Adaptation Method Se-

lector component. It is assumed that the cloud operator has defined four sets of adaptation re-

quirements, each corresponding to one type of fault, i.e., CPU and HDD over-utilization, network

congestion, and network packet loss. The time and resource consumptions in the requirement sets

have diverse values and are defined in a way that not all adaptation methods can meet them. We

set the accuracy value of the requirement considering the original accuracy of the prediction models

before the drift. The operator’s requirement sets are listed in Table 3.4. The CNN fault prediction

model was selected for all faults based on the results from fault prediction results section, and the

models have four layers with trainable parameters. This experiment was performed twice training

separate RL agents, once with a dataset that contains abrupt drifts [14], and once with a dataset

that contains incremental drifts [14]. Abrupt or sudden concept drift is a type of drift that occurs

when the data distribution changes in a short time, whereas incremental concept drift occurs when

the old data distribution replaces the new distribution over a period of time [14]. A maximum data

size of 7000 samples is available for performing the adaptations. The coefficients of the reward

function were set experimentally using an exhaustive search approach considering the importance

of each requirement. The time and resource consumption have the same priority, while the model’s

accuracy after adaptation has a higher priority. We have experimentally examined various values

that meet the aforementioned criteria for setting the coefficients, and selected the parameters that
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resulted in the most similar choices of the trained agent and a human expert. Training an agent

without tuning the coefficients of the reward function may result in a poor selection of the agent, as

it may neglect some requirements against the others. For example, by assigning larger values of k1

and smaller values of k2 and k3, the agent will get rewarded for selecting the action that meets the

accuracy requirement, while only getting a small negligible penalization for not meeting the time

and resource requirements. The coefficients of the reward function and the operator’s requirement

sets are listed in Table 3.4.

Table 3.4: Experiment parameter settings and default values.

Parameters Value
Coefficient k1, k2, k3 0.8, 0.1, 0.1

Operator’s requirement (Congestion) {50s, 10MB, 86%}
Operator’s requirement (HDD) {25s, 5MB, 83%}

Operator’s requirement (Packet Loss) {15s, 9MB, 89%}
Operator’s requirement (CPU) {10s, 7MB, 90%}

Training and Convergence Evaluation: First, we evaluate the training process and conver-

gence behavior of the RL agent. In this experiment, ϵ is initiated with 1 and the agent continues

exploring for 2000 iterations, and then ϵ is decayed by 0.1 every 200 iterations and holds a minimum

value of 0.1 for the exploitation phase. Fig. 3.6 depicts the moving average (with window size 100)

of the collected reward by the agent over 12000 training iterations when data contains abrupt drifts,

and in each iteration, the agent selects one adaptation method. An RL agent trained with a dataset

that contains incremental drifts exhibits a similar collected reward over the training iteration result.

As illustrated in Fig. 3.6, during the training, as ϵ decreases, the reward collected by the agent

increases and converges to positive rewards. This demonstrates that the agent is learning how to se-

lect drift adaptation methods that have the minimum adaptation time and resource consumption gap

and accuracy gap with the requirements of the operator. Note that according to Eq. (3.6), the drift

adaptation method that fulfills the operator’s requirements gains the reward of 0 or higher, and any

reward value below 0 does not meet the requirements. The reason for the oscillations of the reward

during training (even in the exploitation phase) is that depending on the initial state, the operator’s

requirements are different and a different value of reward will be collected by the agent. The initial
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Figure 3.6: Reward collected by the Drift Adaptation Method Selector agent while training.

state is set randomly at the beginning of each iteration, which explains the changes in rewards col-

lected by the agent during training. The training time of the Drift Adaptation Method Selector with

abrupt drift is 3 hours and 17 minutes for 12000 training iterations. During the training, all state and

action pairs are visited several times, which ensures the convergence of the agent after training.

Regret Evaluation: Once the successful training of the RL agent is demonstrated, we compare

the choices of the agent with two other algorithms, i.e., choosing a drift adaptation method randomly,

and always selecting a specific drift adaptation method (e.g., retraining, partially updating the whole

neural network (called TL-3), its lower layers (called TL-1), or its end layers (called TL-2) [1]). We

find the difference between the sum of rewards collected by the agent and the two other algorithms

for all four types of faults with the sum of rewards collected by the choices of a human expert.

This difference is presented as a sum of regret term, indicating how different an algorithm acts

compared to a human expert. The algorithm that has the lowest regret is the one closest to a human

expert and is the one that performs better than the others. In this experiment, to study the impact

of limited available data size on the Drift Adaptation Method Selector, in addition to the existing

operator’s requirements (i.e., time and resource consumption, and the model’s accuracy), we add a

constraint on the data available for adaptation (3000 data samples), and append it to the operator’s

requirements. The experiment was performed once with the original requirements, and once with

the new one, with both abrupt and incremental drifts.
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Figure 3.7: Regret evaluation of the Drift Adaptation Method Selector.

Fig. 3.7a and Fig. 3.7b illustrate the regret for each drift type, respectively. As illustrated in

Fig. 3.7a and Fig. 3.7b, for both requirement sets and both abrupt and incremental drifts, the regret

of the trained agent is lower compared to other algorithms, which shows that the drift adaptation

methods selected by the agent collected the reward closest to human the expert’s choices and meets

the operator’s requirements. The Drift Adaptation Method Selector agent achieves up to 13× lower

regret compared to other agents. In Fig. 3.7a, the constraint on available data does not affect the

regret term for the trained agent, and has only a minor effect on other algorithms, except for the

random algorithm. However, as shown in Fig. 3.7b, the regret term changes more significantly

for other algorithms while presenting a slight change for the trained agent when the available data

constraint is added. This is because when limited data is available, the incremental drift may still be

in transition from one concept to the other(s). Therefore, the human expert’s choice changes with

more probability compared to when abrupt drifts occur, and so the regret of the other algorithms

against the human expert changes.

C) Data Collector Results

In this experiment, we evaluate the performance of the proposed Data Collector component.

This experiment is performed two times, once with a dataset that contains abrupt drifts, and once

with a dataset that contains incremental drifts. We present the results of the CPU fault, as the other

faults exhibited similar results.

Training and Convergence Evaluation: First, we evaluate the training process and conver-

gence behavior of the RL agent. The result is presented for the CPU over-utilization fault prediction
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model and the TL drift adaptation method. Similar results can be obtained for other prediction mod-

els and drift adaptation methods. In each episode, the agent’s starting state (i.e., the initial data size),

is set randomly to make the agent explore the whole state space. The minimum and the maximum

data size available for selection is 1000 and 7000, respectively, with granularity of 100. Fig. 3.8

illustrates the moving average (with window size of 100) of the reward collected by the agent in

each iteration during the training time with the data that contains abrupt drifts, while ϵ is modified.

The ϵ is initiated with 1 and the agent continues exploring for 2000 iterations. Next, ϵ is decayed by

0.1 every 200 iterations, and holds a minimum value of 0.1 for the exploitation phase.
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Figure 3.8: Reward collected by the Data Collector agent while training.

As illustrated in Fig. 3.8, as more iterations are passed and the value of ϵ decreases, the reward

collected by the agent increases and converges to rewards near 0. This means that the agent learns

what data size to select to realize an adapted model that has the closest accuracy to the operator’s

required accuracy. Note that according to Eq. (3.7), the drift adaptation method that fulfills the

operator’s requirement gains the reward of 0 or higher, and any reward value below 0 does not

meet the requirements. The reason for the oscillations of the reward during training is that the

initial state (i.e., the data size) in each iteration is set randomly so that the agent explores all the

state space. Thus, the agent collects different amounts of rewards, especially during the exploration

phase. As agent moves to the exploitation phase, even with random initialization, the agent learns

which action(s) to select to maximize the reward. The training time of the Data Collector with
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abrupt drift is 2369.6 seconds for 20000 training iterations. Visiting all the state and action pairs

several times during the training, ensures the convergence of the agent.

Regret Evaluation: To evaluate the performance of the trained RL agent, we compare the

decisions of the RL agent with two other algorithms, i.e., randomly selecting a data size, and always

performing one action (decreasing or increasing the initial data size) until one episode is terminated

(called decremental or incremental data collection). The initial data size is set randomly. We find

the difference between the sum of the rewards collected by the agent and the two other algorithms

on all four type of faults with the sum of rewards collected by the choices of a human expert. This

difference is presented as a sum of regret term, indicating how different an algorithm acts compared

to a human expert.
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Figure 3.9: Regret evaluation of the Data Collector in the presence of abrupt and incremental drifts.

Fig. 3.9 illustrates the sum of the regret terms for both drift types. As illustrated in Fig. 3.9,

for both the abrupt and incremental drifts, the regret of the trained agent is lower compared to that

of other algorithms, which shows that the data size that the agent selected resulted in the closest

reward to the human expert’s choices and fulfills the operator’s requirements. The Data Collector

agent achieves up to 30× lower regret compared to other agents. The decremental data collection

has the highest regret since it tends to collect small amount of data that is not enough for training

a model, which leads to lower prediction accuracy and is not selected by the human expert. For

incremental drift, the amounts of data that the trained agent selected were the same as the human

expert’s choices, which resulted in 0 regret value.
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D) Accuracy of the Proposed Solution Over Time

After the superiority of the proposed Drift Adaptation Method Selector and Data Collector com-

ponents were demonstrated, we evaluated the performance of our proposed automated concept drift

adaptation solution and compare it to a system without any drift adaptation entity. We evaluated our

solution on the last twelve days worth of HDD and CPU over-utilization fault data with multiple

abrupt drifts and monitored the accuracy of the HDD and CPU fault prediction models. A similar

prediction accuracy result was exhibited when multiple incremental drifts occurred in the data.
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(a) Accuracy over time (during a twelve-day experi-
ment) of trained HDD fault prediction model.
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Figure 3.10: Accuracy over time of fault prediction models.

Fig. 3.10 depicts the persistent accuracy of our proposed solution over twelve days while three

abrupt drifts occur. As illustrated in Fig. 3.10a, the first drift occurs around data sample 6000,

and the accuracy of the HDD fault prediction model starts to drop. The Drift Adaptation Method

Selector agent selects TL, where the first Dense layer in CNN model is fine-tuned, and the Data

Collector agent selects 5300 data samples for adaptation. Around data sample 11000, the adaptation

process is complete, and the accuracy of the HDD fault prediction model starts increasing to near its

original accuracy. However, the accuracy of the model that was not adapted after the drift decreased

to nearly 65% after the drift occurred. For the two consecutive drifts, the agents selected the same

TL approach and 3900 and 4300 data samples, respectively, and managed to keep the prediction

accuracy of the model close to its original value. After the model is adapted, the accuracy may drop

for a few samples and then start to improve. This behavior is manifested because the accuracy is

calculated in every hundred data samples considering all the model’s predictions so far, and after

the adaptation, the first accuracy is reported on only one hundred data samples, which is not enough

to estimate the true accuracy of the model. However, as more predictions become available, the
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true accuracy of the model can be calculated. Similarly, Fig. 3.10b illustrates the accuracy of the

CPU fault prediction model in the presence of three abrupt drifts. The Drift Adaptation Method

Selector agent selects TL, where the first convolutional layer in CNN model is fine-tuned and the

Data Collector agent selects 3900 data samples for adapting to the first drift, and 4100 samples for

adapting to the second and third drift (see Fig. 3.10b). In summary, Fig. 3.10 shows the effectiveness

of our proposed solution in maintaining a persistent accuracy of up to 40% higher compared to a

system without any drift adaptation entity during our twelve-day experiment while satisfying the

requirements of the operator.

E) Comparative Results

Since there is no similar solution in the literature that automates concept drift adaptation, we

compare the end-to-end performance of our solution to various approaches that use a combination of

adaptation methods including retraining, TL-1, TL-2, TL-3, and data collectors such as incremental

and decremental data collection. The comparison is done in terms of end-to-end time consumption

(i.e., the time from when the drift is detected until the adaptation procedure is finished), adaptation

time and resource use, accuracy, and selected data size. This experiment was performed on all four

fault types (CPU and HDD over-utilization, network congestion, and network packet loss faults),

and the results are the average amounts over the four faults. The initial data size for collecting was

set to 4000, which is the mid value size in the data collection searching range. It is assumed that the

RL agents are trained and that their Q-tables are available for inferencing.

Table 3.5: End-to-end comparison of proposed solution with conventional approaches.

Approach End-to-End
Time (s)

Adaptation
Time (s)

Adaptation
Resource (MB) Accuracy (%) Data Size

RL-based 83.1 13.6 4.7 86.08 4250
Retrain + Inc. 370.1 22.7 6.4 84.23 5825
Retrain + Dec. 235.4 7.3 5.5 75.4 2400

TL-1 + Inc. 140.1 18.0 5.0 86.7 4875
TL-1 + Dec. 120.5 10.8 5.1 78.64 2950
TL-2 + Inc. 291.1 13.4 5.4 82.75 6175
TL-2 + Dec. 123.0 3.9 4.5 79.25 2375
TL-3 + Inc. 373.9 12.4 5.6 84.24 5800
TL-3 + Dec. 183.6 10.7 5.6 84.31 2675
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Table 3.5 presents the end-to-end performance comparison of our solution with several ap-

proaches. As shown in Table 3.5, our proposed solution and the combination of TL-1 drift adap-

tation method and incremental data collection (TL-1 + Inc.) approach have the highest accuracy

after adaptation. However, our proposed solution has a lower end-to-end time and adaptation time,

requires less adaptation resources, and collects fewer data samples for adaptation. Furthermore, our

proposed solution is flexible and can adjust its choices if new drift types occur or if more com-

plex prediction models need to be adapted. Note that if a new type of drift other than abrupt and

incremental drifts occur, it will be necessary to train new RL agents for Drift Adaptation Method Se-

lector and Data Collector. The approaches that use decremental data collection tend to collect small

amount of data for training. Therefore, they have lower accuracy and training time and consume

less resources compared to the incremental approach. Among the approaches that use incremental

data collection, they all have comparable accuracy. However, TL-2 has the lowest accuracy since it

preserves the weights of the lower layers, which should be updated since they extract the basic data

features that have been drifting.

3.6 Conclusion

In this chapter, we proposed a concept drift adaptation algorithm for fault prediction in cloud

environments using RL. This algorithm considers the cloud operator’s requirements (drift adap-

tation time and resource consumption, and the prediction model’s accuracy after adaptation), and

uses RL to select the most appropriate drift adaptation method as well as data size for adaptation

that fulfills the operator’s requirements. To demonstrate the effectiveness of our proposed solution,

we experimentally validated a proof-of-concept on a Kubernetes-based testbed. Our proposed Drift

Adaptation Method Selector and Data Collector trained agents presented up to 13× and 30× less re-

gret, respectively, against a human expert as compared to other algorithms. Moreover, our proposed

solution achieved up to a 40% higher accuracy compared to a system without drift adaptation, and

had superior end-to-end performance compared to other approaches in terms of end-to-end time,

adaptation time, adaptation resource, and collected data samples for adaptation.
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Chapter 4

Feature Drift Adaptation Algorithm for

ML-based Fault Prediction 1

4.1 Introduction

Maintaining the performance of an ML model that can predict application performance degra-

dation caused by infrastructure faults in cloud environments is challenging. One challenge is the

occurrence of feature drifts leading to the model inaccurate predictions. To effectively adapt pre-

diction models to feature drifts, this chapter proposes a feature drift adaptation solution for cloud

environments. This solution detects feature drifts based on the changes in the performance of the

prediction model as well as the changes in the importance of the features used for training the model.

The solution assesses the severity of the feature drift to decide how to adapt the features as well as

the model to the drift. In case of non-severe drifts, it eliminates the drifting features and fine-tunes

the model using TL to adapt to feature drift; otherwise, for the severe feature drifts, the solution

performs a feature re-selection and a model re-training to adapt to feature drifts.

The rest of this chapter is organized as follows. First, we present an illustrative use case followed
1This chapter is based on one published and one submitted paper: [3] B. Shayesteh, C. Fu, A. Ebrahimzadeh, R.

Glitho, “Causal-Temporal Analysis-Based Feature Selection for Predicting Application Performance Degradation in Edge
Clouds,” In Proc. IEEE International Conference on Communications (ICC), May 2023, pp. 5496-5501, and [4] B.
Shayesteh, C. Fu, A. Ebrahimzadeh, R. Glitho, “Adaptive Feature Selection for Predicting Application Performance
Degradation in Edge Cloud Environments,” Submitted to IEEE Transactions on Network and Service Management, under
review.
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by system model and our proposed feature drift adaptation algorithm. Next, we describe the lab

setup and the implementation results and conclude this chapter.

4.2 Illustrative Use Case

In this section, we describe an illustrative use case that highlights the importance of feature drift

adaptation solutions for ML models. Let us consider an online shopping web application comprising

multiple microservices deployed in a cloud environment consisting of a central cloud and an edge to

guarantee low latency and high availability for its users. An ML model is utilized to predict potential

performance degradation of the application, enabling preemptive actions to avoid such degradation

and ensure that a consistent QoS is delivered to end users. The application is declared to experience

a performance degradation if its KPI, i.e., response time, surpasses a given threshold, e.g., the ex-

pected response time from the application. The prediction model is trained using infrastructure-level

metrics relevant to the underlying reason of application performance degradation. It is important

to note that training the ML model on all features associated with every possible underlying fault

type that causes performance degradation introduces a significant amount of noisy input, leading to

inaccurate prediction models. Therefore, the model is specifically trained on features related to the

common faults that may cause performance degradation in the online shopping application, such

as CPU over-utilization or network congestion during high-traffic periods like special sales. Fea-

tures such as the CPU load of VMs, and received/transmitted packets, are used to predict potential

performance degradations, facilitating preemptive actions like resource scaling or load balancing.

Maintaining the performance of the ML model in highly dynamic cloud environments poses a

significant challenge. A particular challenge is the phenomenon of feature drift, where some or all

of the features used for training the model become irrelevant to application performance degrada-

tion over time due to environment changes. This irrelevance degrades the ML model’s performance.

For instance, in addition to the common faults, due to some issues causing excessive logging, the

system may experience HDD over-utilization fault, which also has impact on the application per-

formance. The initial prediction model would suffer from inaccurate predictions since the features

it was trained on do not fully represent all conditions and can partially lose their relevance, while

52



HDD-related features will become relevant to the learning task. In another scenario, in the consid-

ered application, resource optimization techniques can be incorporated in the cloud environment to

effectively adjust the resources according to the load, which can avert CPU over-utilization faults

and deprecate the relevancy of CPU-related features used for training the ML model. In both cases,

a feature drift adaptation solution is required to continuously monitor the performance of the model

and relevance of the features to adapt the features and the model to feature drift.

4.3 System Model

Fig. 4.1 presents a high-level view of a cloud environment consisting of one central cloud and

one edge, as a representative of many. As illustrated in Fig. 4.1, an application is deployed in this

environment, and the end users of this application can send requests to use the functionalities pro-

vided by the application. We consider a time series forecasting model deployed in this environment,

which predicts possible performance degradation of the deployed application ahead of time. Appli-

cation performance degradation can be manifested through various application KPIs, e.g., response

time. The underlying cause of application performance degradation are diverse and can include

infrastructure faults such as CPU or HDD over-utilization. The edge site is equipped with an Edge

Site Monitor, which collects raw training data, i.e., infrastructure-level and application-level per-

formance metrics. Infrastructure-level performance metrics can include resource utilization such as

CPU, memory, disk, and network metrics, while application-level performance metrics can include

various application KPIs such as response time or throughout. The raw training data is passed to

the ML pipeline in the cloud site, where the Data Pre-processing cleans the data from inconsisten-

cies (e.g., outliers, null values, etc.), and normalizes the data. The normalization is necessary to

ensure all features used for training the model are within the same scale. Each feature is normalized

separately using its mean and standard deviation. Next, the pre-processed data is used by Feature

Selection to choose the features, i.e., infrastructure-level and application-level performance metrics

that have the highest correlation with the occurrence of degradation in the application KPI. The fea-

ture space can consist of thousands of features considering the diversity of performance metrics of

various resources in the edge site. The selected features of the pre-processed data are further used to
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train the application performance degradation models in an offline mode, and then the trained model

is deployed in the edge site for prediction. The Edge Site Monitor collects online data and feeds

them to the Online Prediction component to perform the same pre-processing procedure. The On-

line Prediction executes the prediction model to produce KPI predictions. Due to the high diversity

of underlying causes of an application performance degradation deployed in cloud, the relevancy

between the selected features used for training the prediction model and application KPI is subject

to changes over time (i.e., feature drift). The Feature Drift Adaptation tackles the problem of feature

drift by receiving the features used for training the prediction model along with the prediction status

as inputs, and updates the feature set and adapts the prediction model to the feature drift. The pre-

diction status indicates whether the model’s prediction about application performance degradation

was correct or incorrect. The prediction model predicts the value of the application kpi. For exam-

ple for response time, a performance degradation is identified if the kpi value exceeds a predefined

threshold that represents the application’s expected performance level.

Figure 4.1: Generic system model of an ML model predicting application performance degradation
by monitoring application KPIs in a cloud environment.

In the setting described above, let the data that will be used for training the prediction model

be S = {(x1, y1), (x2, y2)..., (xn, yn)}, where n is the total number of data samples. Each xi (i
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ranging from 1 to n) is a vector of features belonging to feature set D with size |D|, and yi ∈

{Cdegrade, Cno−degrade} is the class label denoting whether application performance will degrade

or not for vector xi. Cdegrade indicates the class label for occurrence of application performance

degradation, while Cno−degrade indicates the class label for normal application performance. Let

the set of features selected for training a prediction model at time tj be D∗tj ⊆ D, and the prediction

model Ftj : xi → yi be trained to predict performance degradation using data characterized by

feature set D∗tj . The model Ftj can predict performance degradation of a given vector xi as ŷi =

Ftj (xi) with the accuracy of Atj percent. A feature drift can occur at any time instance tj , where

tk = tj + ∆, when D∗tj ̸= D∗tk [11], which means that the set of most relevant features that are

selected are not equal in time the reference time tj and tk. To define feature drift for each feature

di ∈ D, let r(di, tj) ∈ 0, 1 define the relevancy of feature di in time tj , with r(di, tj) = 1 stating

that di ∈ D∗tj and r(di, tj) = 0 stating di /∈ D∗tj , then feature di drifts between time tj and tk as

follows [11]:

∃tj∃tk, tj < tk, r(di, tj) ̸= r(di, tk). (4.1)

The problem of feature drift adaptation can include detecting feature drift, i.e., finding the time

tk when the feature drift occurs, selecting the new set of features D∗tk ⊆ D, and adapting the

prediction model to Ftk(xi) so that the post-adaptation accuracy of the prediction model Atk ≈ Atj .

We aim to solve the problem of feature drift adaptation while predicting application perfor-

mance degradation in cloud by detecting a feature drift, and updating the features and adapting the

prediction model to the drift to maintain the prediction model’s performance.

4.4 Proposed Feature Drift Adaptation Algorithm

In this section, we present our proposed feature drift adaptation algorithm and its main com-

ponents. Fig. 4.2 illustrates the architecture of our proposed solution. A deep learning time series

forecasting model for predicting application performance degradation is trained offline using train-

ing data characterized with an initial set of features selected offline, i.e., a selected set of cloud
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performance metrics, using techniques described in [3]. The prediction model receives the pre-

processed online data consisting of the selected features as its input and makes a prediction about

future status of the application, i.e., whether the performance of the application will degrade or

not. The Feature Drift Detector component receives the online data and prediction model as inputs

and detects the occurrence time of a feature drift and generates a feature drift alert. The feature

drifts are detected with the help of two components, i.e., Model Performance Analysis and Fea-

ture Importance Analysis. In Model Performance Analysis, the prediction status of the prediction

model is received as an input, and in case of consistent drop in the model performance, the output,

a performance drop notification, is sent to the Feature Importance Analysis to further analyze the

changes in feature importance of the data used for inferencing. A feature drift alert is generated if

both the prediction model’s performance and the importance of features used for prediction have

degraded. Upon receiving a feature drift alert, the Feature Drift Adaptor component updates the

set of features that are relevant to the application performance degradation after drift and adapts the

model to the feature drift. The Feature Drift Adaptor consists of two components, i.e., Drift Severity

Analysis and Adaptation Method Selection. Upon receiving a feature drift detection alert, the Drift

Severity Analysis component finds the severity of the detected feature drift, and sends its finding

to the following component, i.e., Adaptation Method Selection, to select the appropriate approach

for updating the set of relevant features as well as the proper method for adapting the prediction

model to the feature drift. Based on this decision, the Feature Drift Adaptor updates the features

and adapts the prediction model. By focusing on the indicators of feature drift such as change in

model performance and feature importance rather than specific scenarios causing the feature drift,

e.g., change in fault type, the proposed solution can be applicable to detect feature drifts and adapt

to them in various settings.

Algorithm 4 illustrates the different steps of our proposed feature drift adaptation solution. The

inputs of the algorithm are the set of training data ({(Xtrain, Ytrain)} ∈ S) that will be used to

train the application performance degradation prediction model, list of selected features (D∗), and

amount of data (L) that will be used for feature drift adaptation. Algorithm 4 starts by loading

the performance degradation prediction model (F ) that was trained offline using {(Xtrain, Ytrain)}.

When the new online data (X) with prediction result (Y ) arrives, the data along with the prediction
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Figure 4.2: Architecture of the proposed feature drift adaptation solution.

model (F ) are passed to the drift detector function to detect possible drifts. The feature drift detector

returns a binary value indicating occurrence of a drift as well as the list of feature importance (FI)

after the drift, if applicable (see lines 2-5). The detailed description on how feature drift detector

works is provided in Section 4.4.1 and Algorithm 5. In case of feature drift detection, the feature

drift adaptor is initialized by receiving the feature importance (FI) after drift as input and returns the

proper approach to update the selected features (i.e., feature selector), and the proper approach to

adapt the prediction model to the drift (i.e., drift adaptor) (see lines 6-7). The detailed description

on how feature drift adaptor works is provided in Section 4.4.2 and Algorithm 6. A pre-defined

amount of data (L) is collected to perform feature update as well as prediction model adaptation.

Following the adaptation, the set of selected features and prediction model are replaced with the new

set of features and adapted prediction model, respectively (see lines 8-11). The process of feature

drift adaptation, i.e., detecting feature drift and adapting to the feature drift, continues as long as

online data is received.

Algorithm 4 Feature Drift Adaptation
1: Inputs: Training data (Xtrain, Ytrain) ∈ S, Set of selected features (D∗), Amount of data required for adaptation L
2: F ← Load trained prediction model
3: while data arrives do
4: (X,Y )← Receive data with features from D∗

5: is drift, F I ← drift detector(F,X, Y )
6: if is drift then
7: model adapt, feature selector← drift adaptor(FI)
8: Xadapt, Yadapt ← collect data of size L
9: D∗ ← feature selector(Xadapt, Yadapt)

10: new model← model adapt(F,Xadapt, Yadapt, D
∗)

11: F ← new model
12: end if
13: end while
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4.4.1 Feature Drift Detector

This component is responsible for detecting the feature drifts while an ML model is predicting

application performance degradation. As illustrated in Fig. 4.2, Feature Drift Detector consists of

two main components, i.e., Model Performance Analysis and Feature Importance Analysis.

Feature drift occurs when the features used for training the prediction model cease to be relevant

to the learning task. Therefore, one of the main indicators of feature drift occurrence is a drop in

the performance of the prediction model. The responsibility of the Model Performance Analysis

component is to raise an alert if there is noticeable constant drop in the performance of the pre-

diction model. Therefore, this component needs to monitor the prediction model’s error to detect

changes. Error-based concept drift detection techniques (reviewed in [14]) including CUSUM [63]

and ADWIN [48] monitor the prediction’s model error to detect drifts. Our previous experiments for

concept drift detection in [1] showed that CUSUM had a better performance in terms of True Pos-

itive ratio and False Positive ratio compared to other error-based concept drift detections. CUSUM

monitors the mean of the model’s error and alarms a drift when significant deviation is observed in

the mean error value.

Although the Model Performance Analysis component can detect degradation in model’s per-

formance, which is one of the main indications of the feature drift, there could be other reasons why

model’s performance is degrading, such as concept drift, i.e., changes in distribution of data. There-

fore, to detect feature drifts it is important to also monitor the changes in the relevancy of the feature

to the learning task. In the Feature Drift Detector component, we propose using Feature Importance

Analysis to measure the effect and contribution of each feature to the performance of the prediction

model. We use a lightweight perturbation-based method, where an importance score is assigned to

each feature based on the difference in model’s prediction when that particular feature is replaced

with random samples drawn from the feature’s distribution of data [79]. A drop in features’ impor-

tance score is an indicator that the performance drop notification raised by the Model Performance

Analysis component is due to changes in the feature relevancy. Therefore, if the changes in feature

importance after occurrence of a performance drop is greater than a given threshold α, the Drift De-

tector can detect that a feature drift has occurred. The reason for adopting this feature importance
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analysis method instead of only monitoring feature relevance over time is that perturbation-based

feature importance monitors the direct impact of each feature on model performance. Therefore, if a

previously relevant feature is experiencing a decrease in its importance score, it does not only show

a decline in relevance to the target KPI, but it also manifests an impact on the model performance.

Algorithm 5 illustrates the steps of our proposed Feature Drift Detector component.

Algorithm 5 Feature Drift Detector
1: Inputs: Prediction model (F ), Online data ((X,Y )), List of selected features (D∗), Threshold indicating feature importance change

(α)
2: performance drop← False
3: FIbase ← load initial feature importance of each feature in the training data calculated offline using lines 9-16 of this algorithm
4: FI ← []
5: Ŷ ← F (X)

6: pred status← get prediction status(Y, Ŷ )
7: performance drop← CUSUM(pred status)
8: if performance drop then
9: base error ← calculate pred error(Y, Ŷ )

10: for (i = 0 to |D∗|) do
11: X′ ← make a copy of X
12: X′[i]← draw random samples from P (X′[i])

13: Ŷ ′ ← F (X′)

14: error ← calculate pred error(Y, Ŷ ′)
15: FI[i]← error − base error
16: end for
17: for (i = 0 to |D∗|) do
18: if FIbase[i]− FI[i] ≥ α then
19: return True, FI
20: end if
21: end for
22: end if
23: return False, FI

4.4.2 Feature Drift Adaptor

This component is responsible for updating the set of selected features after feature drift occur-

rence and adapt the prediction model to the feature drifts. As illustrated in Fig. 4.2, Feature Drift

Adaptor consists of two main components, i.e., Drift Severity Analysis and Adaptation Method

Selection.

To make a decision on how to update the set of features used for training the ML model (e.g.,

re-use a subset of features or re-select new features), and how to adapt the prediction model to

the feature drift (e.g., fine-tune the model or re-train a model from scratch), we are required to

know the severity of the feature drift. In severe feature drifts, the majority of the features with

high contribution to the prediction model’s performance become irrelevant to the prediction task,
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resulting in significant degradation in performance of the prediction model. On the other hand, in

non-severe feature drifts, the features that do not have high contribution to the prediction model’s

performance or a minority of the high contributing features become irrelevant to the prediction

task. In this case, the degradation in performance of the model is not significant since the majority

of high contributing features are still relevant to the prediction task. The degree of contribution of

each feature is determined using feature importance scores. The Drift Severity Analysis receives the

feature importance scores of all features before and after drift as input and it calculates a binary value

indicating whether the feature drift was severe or not as an output. The severity analysis is performed

by considering which feature has experienced a decrease in feature importance. If the majority of

the features with the high contribution to model’s performance have lost their importance, the drift

is considered a severe feature drift. Otherwise, the drift is considered as a non-severe feature drift.

Threshold β is used to determine if the feature has a great or small contribution to the model’s

performance.

The Adaptation Method Selection component decides on how to update the feature set and

adapt the prediction model while receiving the decision of the Drift Severity Analysis component

as an input. In case of severe feature drift, the adaptation solution is to update the features by

re-selecting the entire feature set and adapt the prediction model by re-training a new model from

scratch using the re-selected feature set. Otherwise, for the non-severe feature drifts, where the

majority of features with high contribution to the learning task before the drift are still relevant to

the learning task after the drift, the decision is to eliminate the drifting features and fine-tune the

prediction model using TL [40]. TL uses a pre-trained model as a starting point and fine-tunes it

on a new task with new data. Fine-tuning involves updating the weights of a pre-trained model

during training with new data. This can be done by either updating the weights of all the layers

or by freezing the weights in certain layer(s) of the model so that they are not updated during the

training, while updating the weights of the rest of layer(s) [1]. Therefore, to adapt the prediction

model to non-severe feature drifts, first the drifting features are eliminated from the feature set.

Next, the input shape of the first layer of the prediction model is adjusted according to the new size

of the feature set. Finally, the model is fine-tuned using the data collected after drift occurrence.

Algorithm 6 illustrates the steps of our proposed Feature Drift Adaptor component.
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Algorithm 6 Feature Drift Adaptor
1: Inputs: List of selected features before drift (D∗), Prediction model before drift (F ), Feature importance of each feature after

drift (FI), Amount of data required for adaptation (L), Threshold indicating feature importance change (α), Threshold indicating
features with high contribution (β)

2: FIbase ← load initial feature importance of each feature in the training data calculated offline using lines 9-16 of Algorithm 5
3: is severe← False
4: drifting features← []
5: high contrib features← []
6: counter = 0
7: for (i = 0 to |D∗|) do
8: if FIbase[i]− FI[i] ≥ α then
9: drifting features.append(i)

10: end if
11: if FIbase[i] ≥ β then
12: high contrib features.append(i)
13: if i in drifting features then
14: counter = counter + 1
15: end if
16: end if
17: end for
18: if counter ≥ size(high contrib features) / 2 then
19: is severe← True
20: end if
21: (Xadapt, Yadapt)← collect new data of size L
22: if is severe then
23: D∗ ← select features(Xadapt, Yadapt)
24: F ← retrain(Xadapt, Yadapt, D

∗)
25: else
26: D∗ ← drop features(drifting features)
27: F ← fine tune(F,Xadapt, Yadapt, D

∗)
28: end if
29: return D∗, F

4.4.3 Complexity Analysis

In the following, we present the complexity analysis of our proposed feature drift adaptation,

Feature Drift Detector, and Feature Drift Adaptor algorithms. The time complexity of the Feature

Drift Detector (shown in Algorithm 5) is O(|D∗|), where |D∗| is the size of the selected features

that the algorithm iterates over to calculate feature importance. Similarly, the time complexity of

the Feature Drift Adaptor (shown in Algorithm 6) is O(|D∗|) since the algorithm iterates over all

features to identify drift severity. As for the complexity of feature drift adaptation (shown in Algo-

rithm 4), assuming that the arriving data includes W samples, which are needed to be processed for

detection and adaptation purposes, the time complexity is O(W · |D∗|), since feature drift detection

and adaptation are performed periodically on the arriving data.
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4.5 Performance Evaluation

In this section, we evaluate the performance of our proposed feature drift adaptation solution in

a real-world testbed. We deployed a microservice-based web application on Kubernetes and trained

a prediction model to predict the performance degradation of the application while automatically

adapt to feature drifts. In the following, we present the experiment settings and evaluation results.

4.5.1 Experiment Settings

We describe the details of our lab setup, fault injection specification, and datasets of the experi-

ments in the following sub-sections.

A) Lab Setup: Figure 4.3 depicts our lab setup, which consists of three Kubernetes clusters with

a total of 10 VMs running Ubuntu 18.04. The clusters are deployed in a private cloud managed by

the Infrastructure-as-a-Service OpenStack. In each cluster, one of the VMs is the master node while

the other VMs in the cluster are worker nodes. The configurations of the VMs are summarized

in Table 3.1. We deployed an open-source microservice-based online shopping web application

called Sock Shop [80] in the edge site clusters. The performance degradation is manifested in the

application KPI, i.e., the amount of time in seconds spent serving HTTP requests. Moreover, we

deployed a Locust [81] load generator in the cloud site to impose a constant load of 100 requests per

second on the applications deployed in both edge sites. We deployed Prometheus [71] in the edge

sites to monitor the clusters and to collect data from edge sites every 10 seconds to reflect the latest

changes in the metrics. We collected the node- and container-level metrics (i.e., VM and container

metrics such as the CPU, memory, and network metrics), as well as application-level metrics (i.e.,

Sock Shop application performance metrics).

B) Fault Injection Specifications: We initiated node-level CPU over-utilization, HDD over-

utilization, and packet loss faults, which were injected to the VM hosting the Sock Shop application.

The node-level CPU over-utilization and HDD over-utilization faults were injected using the Stress-

ng [72] tool. The packet loss fault was injected using Linux Traffic Control [82], which allows us

to drop a certain portion of the packets (e.g., 10%). The fault injections are recurrent, meaning
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Figure 4.3: Lab setup for evaluating the proposed feature drift adaptation algorithm.

that the injections are recurrently interrupted with a cool-down time [62]. The duration and inter-

arrival of faults follows a Normal distribution and exponentiated Weibull distribution, respectively,

as described in Section 3.5.1.

C) Datasets: We have examined multiple scenarios that often occur in cloud systems that may

cause feature drifts including changes in software and hardware configuration, load modification,

scaling the services, migrating the fault injection target, and changing the underlying fault type.

Among these scenarios, migrating the fault injection target and changing the underlying fault type

caused feature drifts. Therefore, we considered these two scenarios to collect datasets that include

feature drift. In the first scenario, we started the experiment by injecting node-level CPU over-

utilization fault to the VM that hosts the microservice whose response time was the KPI of interest.

To cause a feature drift, we migrated that specific microservice to another VM and also changed

the node-level CPU over-utilization fault injection target to the migration destination VM. Since

the application VM is the response time of that particular microservice, the migration scenario

described above can result in the metrics of the migration destination VM become more relevant

to the KPI degradation after migration compared to the metrics of the source VM. We refer to this

dataset as the migration dataset. The duration of the migration dataset is 40 hours. In the second

scenario, we changed the type of underlying infrastructure-level fault that caused an application

performance degradation. Specifically, we collected two separate datasets in this scenario. For the

first dataset, we started the experiment by injecting node-level CPU over-utilization fault to the

VM that hosts the microservice whose response time was the KPI of interest. Toward the middle
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of the experiment, we changed the injected fault type to packet loss on the same VM. Similarly,

for the second dataset, we started by injecting HDD over-utilization fault to the VM hosting the

microservice of interest, and we changed the injected fault type to CPU over-utilization on the same

VM. The change in the underlying fault type can also cause a feature drift since metrics relevant to

application performance degradation can change depending on the underlying fault type. We refer

to these datasets as Changed-Fault-Type-1 (CFT-1) and CFT-2 datasets. The duration of the CFT-1

and CFT-2 datasets is 54 hours.

We collected all datasets from Prometheus. Each timeseries metric scraped by Prometheus is

uniquely identified by the name of the metric and a series of tags [83]. The metric’s name indicates

the function of that metric. For instance, http request duration seconds count is the total number

of HTTP requests. The series of tags associated with this metric can clarify more details about the

metric, e.g., the tag name=front-end can specify the total number of HTTP requests reported by this

metric is made to the front-end microservice of the application. Similarly, Prometheus collects many

other metrics with the same name but different tags, which makes each metric unique. The metrics

collected by Prometheus composed the feature space of the collected datasets for evaluations.

4.5.2 Evaluation Results

In this section, we first evaluate the performance of feature selection and prediction models

that predict application performance degradation in terms of MAE, F1-score, model training time,

and feature selection time. Next, to evaluate our proposed feature drift adaptation solution, we

first evaluate the performance of the Feature Drift Detector component in terms of drift detec-

tion delay and accuracy and then evaluate the Feature Drift Adaptor component in terms of post-

adaptation F1-score and MAE. Finally, we compare our proposed solution to four benchmarks,

namely, DCFS [47], Modified DCFS [47], retraining the model with new data and without feature

re-selection (a common solution for concept drift adaptation), and no feature drift adaptation.

A) Feature Selection and Prediction Results

The purpose of this experiment is to present the features selected for training the prediction

models and the performance of the models trained using these features. In [3], we proposed a
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causal-temporal analysis feature selection system, consisted of two phases, namely, similarity anal-

ysis and causal-temporal analysis. In the similarity analysis phase, the feature space is reduced by

evaluating the correlation between infrastructure-level performance metrics and application KPI.

Subsequently, in the causal-temporal analysis phase, causal-temporal relationships between the ap-

plication KPI and the most correlated infrastructure metrics from the initial phase is determined.

Only those features that have a causal relationship with the application KPI are selected for train-

ing models for predicting application performance degradation. Therefore, the number of features

used for training the prediction model is not predetermined, but rather it depends on the number

of infrastructure-level metrics that have a causal relationship with application KPI as identified by

the feature selection system. In this experiment, we explored the performance of an approach that

previously showed promising results in [3], i.e., Pearson Correlation Coefficient combined with

Time-Lagged Cross Correlation (TLCC) (Pearson + TLCC). The Pearson Correlation Coefficient

identifies the infrastructure-level metrics most significantly correlated to the application KPI. The

subsequent use of TLCC helps in finding the causal relationships between these metrics and the

application KPI to selected features for training the prediction model.

For training the prediction model, we trained hybrid CNN-LSTM prediction models using the

selected features for each dataset to predict application performance degradation. The architecture

of the CNN-LSTM model consists of a sequence of one Convolution, one Pooling, two LSTMs,

and one Dense layer(s). The prediction models are multi-variate multi-step time series prediction

models, where the model’s inputs are the data with selected features and the prediction output is

the value of the application KPI (i.e., response time). The datasets are chronologically divided into

training and testing sets at a ratio of 80% and 20%, respectively, ensuring that the training data

precedes the testing data to prevent any potential data leakage. In the migration and CFT datasets,

the portion of data used for training the prediction models does not include any feature drifts. The

hyperparameters of our prediction models were optimized using TPE [76], with the same search

space described in Section 3.5.2.

The evaluation metrics for this experiment are MAE and F1-score of the prediction model,

model training time, and the feature selection time to show the duration of resource occupation

for feature selection. MAE is the difference of the actual and predicted values of the KPI. To
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calculate the F1-score of the prediction model, the KPI values, i.e., response times, above 1 second

are assigned a class label of performance degradation, while response times under 1 second are

assigned the normal performance class label. The 1 second threshold is set considering the response

time of the application when it receives a normal load of 100 requests per second. Tables 4.1 present

the features size and feature selection time of Pearson + TLCC approach, as well as the MAE, F1-

score, and training time of a model trained using these features for all considered datasets.

Table 4.1: Evaluation of the feature selection approach and prediction model using the considered
datasets.

Dataset Feature
Size

F1score
(%) MAE Training

Time (s)

Feature
Selection
Time (s)

Migration 4 81.2 0.231 44.3 90.5
CFT-1 4 77.49 0.491 57.1 112.1
CFT-2 8 81.17 0.231 39.6 136.7

According to Table 4.1, in the migration dataset, the F1-score of the prediction model trained

using the features selected by Pearson + TLCC feature selection approach is 81.2% and its MAE

is 0.231. The migration datasets consists of 2890 features, which the feature selection approach

spends 81.2 seconds to select the most relevant features from. Pearson + TLCC selects the fol-

lowing features of the VM experiencing the CPU over-utilization fault for training the prediction

model: node cpu seconds total: the average amount of CPU time spent in user mode, which was

selected for two different CPU cores (core 2 and 3), node schedstat runinng seconds total: number

of seconds CPU spent running a process, node schedstat waiting seconds total: number of seconds

a process spent waiting for this CPU.

Similarly, for the CFT-1 dataset, top 4 features from total of 3057 features are selected in

57.1 seconds. The prediction model trained using these features achieves an F1-score of 77.49%

and MAE of 0.491. The list of features selected by Pearson + TLCC for training the predic-

tion model is as follows (all features belong to the VM experiencing CPU over-utilization fault):

node netstat Icmp OutMsgs: number of sent Internet Control Message Protocol (ICMP) messages,

container cpu usage seconds total: amount of CPU time, node memory Slab bytes: the amount

of slab memory allocated in bytes, node memory SUnreclaim bytes: the amount of unreclaimable
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memory allocated in bytes.

The CFT-2 dataset consists of 3257 dataset, and the Pearson + TLCC select the top 8 relevant

features for training the prediction model with F1-score of 81.17% and MAE of 0.231. Pearson +

TLCC selects the following features for training the prediction model. Note that all features are from

the VM experiencing HDD over-utilization fault: node schedstat waiting seconds total: number of

seconds a process spent waiting for one CPU core, node cpu seconds total: the average amount

of CPU time spent in system mode for one CPU core, node disk io time seconds total: number of

seconds I/O operations have been in progress on a virtual disk, node disk writes completed total:

number of write operations completed successfully on a virtual disk, node disk written bytes total:

number of bytes written to a virtual disk, node vmstat pgpgout: number of pages that have been

paged out from the memory, node memory Cached bytes: number of bytes used in the memory

used for caching purposes, node memory Dirty bytes: number of bytes in the memory used to store

modified data that has not been written to the disk.

It can be observed from the list of the features that although the type of underlying fault causing

application performance degradation is the same in the migration and CFT-1 datasets, i.e., CPU

over-utilization fault, the features selected in the two datasets are different. This is due to the fact that

these datasets are collected from different clusters with different settings (e.g., Kubernetes version).

Moreover, the monitored application KPIs indicating application performance degradation belong

to different services in the two datasets. In the migration dataset, since we migrated the Catalogue

service of the application to another VM, the KPI that we monitored is the response time of the

Catalogue service of the application. However, in the CFT-1 and CFT-2 datasets, the KPI that we

monitored is the response time of the Front-end service, which is the main service that receives

all the requests. It can also be observed that in the CFT-2 dataset, in addition to the disk-related

features, some features related to CPU are also selected. This is due to the fact that stressing the

disk can also affect the CPU, e.g., by increasing wait times for data to be read or written to the disk.

B) Feature Drift Detection Results

In this experiment, we evaluate the performance of the proposed feature drift detector in terms

of feature drift detection delay and accuracy of drift detection. In the migration dataset, there is
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one feature drift that occurs once we migrated an specific microservice (i.e., catalogue service) to

another VM and also changed the node-level CPU over-utilization fault injection target to the mi-

gration destination VM. For feature drift detection purpose in the migration dataset, we consider the

last 27 hours out of 40 hours worth of data, which consists of the testing data used for evaluating the

prediction model and the data after the occurrence of feature drift. The feature drift occurs around

the data sample 1200 of the dataset. The model performance analysis component periodically cal-

culates the performance of the prediction model in terms of F1-score after receiving predictions on

100 data samples, and passes the performance to CUSUM to detect consistent performance drops.

CUSUM detects a consistent drop in the prediction model’s performance around the data sample

1600, which means that it had received 16 inputs (predictions) when a drift was detected. Once a

performance drop is detected, to detect feature drift, the Feature Importance Analysis component

finds if the importance of any features have dropped compared to its initial importance. It is impor-

tant for the Feature Importance Analysis component not to be too sensitive to normal fluctuations

in feature importance scores. Therefore, threshold α is set considering the fluctuations of the fea-

ture importance on the historical data used for training the prediction model. To set the threshold,

importance score of each feature is calculated repeatedly using the subsets of the training data. The

threshold is set equal to the standard deviation of the calculated feature importance scores for each

feature, which shows the range of typical changes feature importance scores. Although it is possible

to set a single threshold for all features, e.g., average of standard deviations among all features, if

the threshold is smaller than normal changes of feature importance for a given feature, it can in-

crease number of false feature drift detection. On the other hand, if the threshold is too large, the

feature drift detector would miss the performance drops due to feature drifts. Similarly, the initial

importance for each feature is set to average among the calculated feature importance scores for

each feature in the subsets of the training data. In this experiment, to set the threshold, we calcu-

lated the feature importance scores offline for every 100 data sample in the training data, which

shows 0.06, 0.06, 0.02, and 0.05 standard deviation for each feature, respectively. The amount of

feature importance drop at the time CUSUM detected a performance drop is 0.19, 0.12, 0.06, and

0.18 for each feature, respectively. Therefore, for all features, the feature importance drop is above

the determined thresholds, which confirms that there is a change in feature importance and a feature
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drift has been detected. The amount of time spent performing feature importance analysis is 0.17

seconds. Knowing the ground truth that the drift occurrence time is after receiving predictions on

1200 data samples, the drift detector has a delay of 4 updates or 400 data samples. Considering

that the time spent for performing feature importance analysis is short (0.17 seconds) compared to

CUSUM , we report the feature drift detection delay only considering the delay of CUSUM.

Similarly, for the CFT-1 dataset, one feature drift occurs when the underlying fault type is

changed from node-level CPU over-utilization fault to packet loss fault. We analyzed the last 30

hours out of 54 hours worth of data for detecting feature drifts. The feature drift occurs around

data sample 4000. The CUSUM detects a consistent drop in performance of the prediction model

occurs around data sample 4700, which means 47 predictions have been made by the model. The

Feature Importance Analysis component finds feature importance drops of 0.16, 0.24, 0.38, and

0.31 for each feature, respectively. Threshold α with values 0.08, 0.1, 0.08, and 0.07 were set using

historical training data, which confirms occurrence of a feature drift since the feature importance

drop is greater than the determined thresholds for all features. The amount of time spent performing

feature importance analysis is 0.15 seconds. Consulting the ground truth of drift occurrence time,

i.e., drift occurrence after receiving predictions on 4000 data samples, the drift detector has a delay

of 7 updates or 700 data samples.

Similar to CFT-1 dataset, in CFT-2 one feature drift occurs due to changing the underlying fault

type from HDD over-utilization to CPU over-utilization. The last 30 hours out of 54 hours worth

of data is analyzed for feature drift detection purposes. The CUSUM detects a consistent drop

in performance of the prediction model around data sample 4400, while the feature drift occurs

around sample 4000. Therefore, feature drift detector has a delay of 4 updates or 400 data samples.

Upon feature drift detection, the Feature Importance Analysis component finds feature importance

decrease of 0.01, 0.004, 0.02, 0.03, 0.06, 0.04, 0.003, and 0.18 for each of the 8 features of the

CFT-2 datasets, respectively. Threshold α is set offline using the training data for each feature with

values 0.09, 0.06, 0.01, 0.01, 0.01, 0.01, 0.02, and 0.04, respectively. The feature importance drop

is higher than the corresponding α for 5 features out of 8 features, which shows that 5 features

experience a feature drift while three other features are not drifting.

Table 4.2 summarizes the feature drift detection delay and accuracy of the proposed solution
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Table 4.2: Evaluation of the proposed feature drift detector on migration, CFT-1, and CFT-2
datasets.

Dataset Drift Detection
Delay (Data Samples)

Drift Detection
Accuracy (%)

Migration 400 100
CFT-1 700 100
CFT-2 400 100

across the three studied datasets. As shown in Table 4.2, the feature drift detection accuracy is 100%

for all datasets. However, the average feature drift detection delay is 500 data samples. Knowing an

average feature drift detection delay, a buffer can be considered to store the data to be used for drift

adaptation purposes in addition to the data that will be collected after feature drift detection.

C) Feature Drift Adaptation Results

Next, we evaluate the performance of the proposed feature drift adaptor in terms of the pre-

diction model’s post-adaptation F1-score and MAE. After feature drift detection, the Drift Severity

Analysis component determines whether the feature drift is severe or not by verifying whether the

features with high contribution to the prediction model’s performance experienced a drift. Thresh-

old β specifies whether the feature has a high contribution or not. We set threshold β to the average

initial feature importance across all features. Therefore, if a feature’s importance is greater than the

average initial importance, it is considered as a high-contributing feature, whose drift may result in

a significant degradation in model’s performance. Recall from Section 4.5.2 that in the migration

dataset, all features experienced a feature drift. Therefore, all the features including the ones with

high contribution experienced a feature drift, which makes this a severe drift. To perform feature

drift adaptation for a severe drift, new features are selected and a new prediction model is trained

using the newly selected features. Similarly, for the CFT-1 dataset, the feature importance drop

is severe since all the features experience a feature drift. Therefore, new features are selected for

training a new prediction model. For the CFT-2 dataset, Feature Drift Detector component showed

that five features out of eight features drifted. Therefore, the Drift Severity Analysis component

should find whether the majority of the high-contributing features are drifting in order decide if

the detected feature drift is severe or non-severe. In CFT-2 dataset, threshold β, i.e., the average
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initial feature importance across all features, is 0.08, where the initial feature importance for each

feature were 0.22, 0.11, 0.02, 0.01, 0.03, 0.02, 0.02, and 0.17, respectively. This shows that the

first, second, and last feature are the high-contributing features. Considering the findings of the

Feature Drift Detector discussed in Section 4.5.2, only the last feature among the high-contributing

features has experienced a drift. Therefore, the majority of the high-contributing features are still

relevant to the learning task, and the Drift Severity Analysis declares this drift a non-severe feature

drift. Therefore, to adapt to this drift, the drifting features should be eliminated (without performing

feature re-selection) and the model should be fine-tuned.

To perform feature drift adaptation, we need to collect some new data after the drift. To set

the amount of data required for adaptation, we considered the evaluation results in [1] and [2] that

studied determining the suitable amount of data to learn a new task from scratch for concept drift

adaptation. The evaluations of these work showed that 3900 to 5400 data samples were required for

adaptation to various drifts. If the size of collected data for adaptation is too small, the performance

of the prediction model will not recover after adaptation. On the other hand, if a large amount of data

is collected for adaptation, although the performance of the model after adaptation would recover,

it would take a longer time to perform drift adaptation. Based on these findings, we have collected

4000 data samples to perform the adaptations in all datasets. As discussed in Section 4.5.2, we

use Pearson + TLCC approach for feature selection. The features selected to perform feature drift

adaptation for the migration dataset are as follows: node schedstat waiting seconds total: num-

ber of seconds a process spent waiting for this CPU, which is for one CPU core of the VM that

was the destination of the service migration and is experiencing the CPU over-utilization fault,

node softnet processed total: number of processed packets, which is for one CPU core of the VM

that was the destination of the service migration and is experiencing the CPU over-utilization fault,

container cpu usage seconds total: amount of CPU time spent in a pod scheduled on the VM that

was the destination of the service migration.

We observe from the feature list above that the features selected after a feature drift are different

from the features selected before the drift. More specifically, the features selected after the drift are

the features related to the CPU cores of the VM that was the destination of the service migration

and was experiencing the CPU over-utilization fault. This indicates that the proposed solution can
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effectively detect a drift and update the set of features accordingly. The features selected for feature

drift adaptation for the CFT-1 dataset are as follows: node netstat Tcp RetransSegs: total number of

segments re-transmitted in the VM experiencing packet loss, node network receive packets total:

network statistics indicating amount of received packets in the VM that is experiencing packet

loss, node network receive bytes total: network statistics indicating amount of received bytes on

the VM that is experiencing packet loss, node nf conntrack entries: number of currently allocated

flow entries for connection tracking of the VM experiencing packet loss.

It can be observed from the above-mentioned list of selected features that after occurrence of

the feature drift, the selected features are network statistics of the applications deployed on the

VM experiencing packet loss. However, before the drift, when the underlying fault causing ap-

plication performance degradation was CPU over-utilization fault, the features were related to the

CPU time of the VM. For the CFT-2 dataset, since the feature drift was non-severe, the drifting

features are eliminated from the list of features and feature re-selection is not performed. The fea-

tures that did not drift and are used for adaptation are as follows (as described in Section 4.5.2):

node schedstat waiting seconds total, node cpu seconds total, node memory Cached bytes.

The above list of feature shows that most of the remaining relevant features after occurrence

of feature drift are the features related to CPU. Considering that in CFT-2 dataset the underlying

fault type is changed from HDD to CPU over-utilization, this indicates that the proposed solu-

tion can effectively locate the drifting features based on the changes in their feature importance.

We have also performed a feature re-selection just to realize whether the re-selected features are

similar to the above-mentioned feature list. We observed that although the first two features, i.e.,

node schedstat waiting seconds total and node cpu seconds total are re-selected, two additional

CPU-related features, i.e., node schedstat running seconds total and node schedstat timeslices total,

are also selected.

Table 4.3 presents the post-adaptation F1-score of the prediction model adapted using the pro-

posed feature drift adaptor for the migration, CFT-1, and CFT-2 datasets. Recall from Sections 4.5.2

and 4.5.2 that for the migration dataset, the prediction F1-score before the occurrence of the drift

is 81.2%. A feature drift is detected around the sample 1600, and 4000 data samples are collected

for adaptation. Once the drift adaptation is performed by selecting 3 new features and retraining the
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Table 4.3: Feature drift adaptation evaluation of the proposed solution on migration, CFT-1, and
CFT-2 datasets.

Dataset Feature
Size

Post-Adaptation
F1score (%)

Post-Adaptation
MAE

Migration 3 81.73 0.2384
CFT-1 4 79.23 0.3462
CFT-2 3 83.09 0.265

prediction model, as shown in Table 4.3, the model’s F1-score recovers to 81.73%. For the CFT-1

dataset, it is observed in Table 4.1 that the original F1-score of the prediction model before occur-

rence of drift is 77.49%. The feature drift is detected around sample 4700 and 4000 data samples is

then collected for adaptation purposes. After the adaptation is performed by selecting 4 new features

and retraining the model, the prediction model recovers and shows an initial F1-score of 79.23%.

For the CFT-2 dataset, the original F1-score of the prediction model was 81.17% (as indicated in

Table 4.1). A non-severe feature drift was detected at sample 4400, and 4000 data samples were

collected for adaptation. Once the model is adapted to the feature drift through feature elimination

and fine-tuning, the the model shows an F1-score of 83.09%.

The F1-score values reported in Table 4.3 show the post-adaptation F1-score when 4000 data

samples are collected to perform the adaptation. However, in time-sensitive use-cases where collect-

ing 4000 data samples can be time-consuming, collecting a smaller amount of data while sacrificing

the post-adaptation performance of the model can be considered. Although the number of data

samples required for adaptation should be set prior to performing adaptation, we have conducted an

experiment to show the trend of changes in post-adaptation F1-score when various number of data

samples are collected for adaptation. In this experiment, we modified the data size to be collected

after feature drift from 500 to 7000 within 100 intervals, adapted the model using this data, and

measured the F1-score of the adapted model on the remaining portion of the data. The experiment

is repeated across all datasets.

Fig. 4.4 depicts post-adaptation F1-score vs. number of data samples used for adaptation for

migration, CFT-1, and CFT-2 datasets. Given that there are fluctuations in F1-score while changing

the data size with 100 intervals, Fig. 4.4 shows a moving average of the F1-scores with a window

size of 10. As illustrated in Fig. 4.4, for all datasets, it can be observed as a general trend that as
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Figure 4.4: Post-adaptation F1-score vs. number of data samples used for adaptation for migration,
CFT-1, and CFT-2 datasets.

the number of data samples used for adaptation increases, the post-adaptation F1-score is improved,

although some fluctuations in F1-score is observed due to change in the training data size. It can also

be observed that changing the number of data samples does not affect the post-adaptation F1-score

as much in CFT-2 dataset compared to CFT-1 and migration datasets. This is because there was a

non-severe feature drift in CFT-2 dataset, and the model was fine-tuned for adaptation. Therefore,

even adapting with fewer data samples can result in an F1-score close to that of the original model.

Another observation is that using as few as 500 data samples for adaptation is feasible and results in

a slight reduction in the post-adaptation F1-score: approximately 1% for CFT-2 and around 2% for

the migration and CFT-1 datasets. This is specifically helpful for time-sensitive scenarios, where

the objective is to minimize the number of data samples for adaptation or when the resources for

gathering a large volume of data are limited.

D) Comparative Results

In this experiment, we evaluate our proposed feature drift adaptation algorithm against four

benchmarks to assess its performance. These benchmarks include the DCFS [47] and its modified

version, alongside a common strategy for concept drift adaptation which involves retraining the

model without re-selecting features, and a scenario where no drift adaptation is implemented. DCFS
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leverages ADWIN for detecting feature drifts, and adapts by re-selecting features and retraining

the model. It employs a backward feature elimination technique based on a merit score to assess

feature relevance. Given the time-consuming nature of applying backward feature elimination in

scenarios with high-dimensional feature spaces like metrics of a cloud system, we eliminate features

in batches, e.g., 10 at a time, to improve feasibility. However, due to the time-consuming nature of

even batch-wise feature elimination in high-dimensional feature spaces, we also evaluate a modified

DCFS approach. This variation simplifies the process by calculating the merit score for all features

once, and then selecting the top features based on this score.

(a) F1-score of the trained model for predicting application per-
formance degradation over time for the migration dataset.

(b) F1-score of the trained model for predicting application per-
formance degradation over time for the CFT-1 dataset.

(c) F1-score of the trained model for predicting application per-
formance degradation over time for the CFT-2 dataset.

Figure 4.5: F1-score over time of application performance degradation prediction model.

Fig. 4.5a illustrates the post-adaptation F1-scores of the prediction model over time using the
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proposed feature drift adaptation solution in comparison with DCFS, modified DCFS, no drift adap-

tation mechanism, and retraining without feature re-selection for the migration dataset. As illus-

trated in Fig. 4.5a, the prediction F1-score before the occurrence of the drift is 81.2%. The feature

drift is detected around the sample 1600 and amount of 4000 data samples are collected for adapta-

tion. Once the drift adaptation is performed, the model’s F1-score recovers to its original F1-score.

However, the F1-score of retraining without any feature re-selection is almost zero, which shows

that the initially selected feature cannot represent any valuable information for learning application

performance degradation after occurrence of the drift. When no feature drift adaptation mechanism

is applied, the F1-score is around 32.35%. This shows that the knowledge learned by relevant fea-

tures before the drift is more useful than training a new model with the same set of features. This is

due to the fact that pattern of fault injection does not change after the drift and the old model can still

perform better than retraining a model with irrelevant features. DCFS and modified DCFS use AD-

WIN and detect feature drift around the sample 1400. For fair comparison, we use the same amount

of data, i.e., 4000 data samples, for feature re-selection and model re-training. DCFS takes around

14 hours to select features using backward feature elimination, while modified DCFS performs fea-

ture re-selection in 57.7 seconds. It can be observed that DCFS achieves F1-score of 77.94% while

F1-score of modified DCFS is 74.4%. This shows that for the migration dataset, DCFS can select

features resulting in slightly better performance compared to modified DCFS in significantly longer

time. However, neither of these approach can achieve the original F1-score of the model, due to

their feature selection approach. Another shortcoming of DCFS and modified DCFS is the feature

drift detection approach, where they only monitor model performance and not feature importance

or correlation. Therefore, if a concept drift occurs, DCFS approaches perform unnecessary feature

re-selection while only re-training the model would have adapt the model.

The same behaviour is exhibited in Fig. 4.5b for the CFT-1 dataset. The original F1-score of the

prediction model before occurrence of drift is 77.49%. It can be observed that after the adaptation,

the prediction model recovers and shows an F1-score of 77.9% after receiving the last data sample.

The F1-score of retraining without any feature re-selection approach is near zero, which is even

lower than when no feature drift adaptation is applied, i.e., F1-score of 48.78%. DCFS has a slightly

higher F1-score compared to modified DCFS, i.e., 68.8% compared to 65.98%. However, DCFS
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takes around 12 hours to re-select features while modified DCFS takes 69.4 seconds. Similar to

the results from migration dataset, DCFS approaches cannot select features that reach the original

F1-score of the model.

For the CFT-2 dataset, as illustrated in Fig. 4.5c the F1-score of the prediction model before

occurrence of feature drift was 81.17%. After occurrence of the feature drift and adapting the

prediction model through feature elimination and model fine-tuning, the F1-score of the model re-

covers to 81.53% after receiving the last data sample. The F1-score of retraining without any feature

re-selection approach is 79.98%, which is significantly higher compared to migration and CFT-1

datasets. This is because in CFT-2 a non-severe feature drift was observed, which means that some

features are still relevant to the learning task. Therefore, retraining the model using the same set

of features can also offer a good performance with 1.5% smaller F1-score. When no feature drift

adaptation is applied, the F1-score of the model is 69.09%, which shows smaller loss of F1-score

compared to the migration and CFT-1 dataset since the feature drift is non-severe. We also consid-

ered an additional adaptation approach for comparison in Fig. 4.5c to compare feature elimination

and fine-tuning approach to feature re-selection and retraining approach. It can be observed that

re-selecting features and re-training the model shows almost the same performance (F1-score of

81.46%) as the feature elimination and fine-tuning approach suggested by the proposed feature drift

adaptation solution. Similar to CFT-1 dataset, DCFS results in higher F1-score compared to modi-

fied DCFS while taking a significantly longer time for feature re-selection. The F1-core of DCFS is

78.7%, which is around 2.37% smaller that the original model.

4.6 Conclusion

In this chapter, we proposed a feature drift adaptation solution for adapting to feature drifts

while predicting application performance degradation in cloud environments. This solution consists

of a feature drift detector that detects feature drifts by monitoring the performance of the prediction

model as well as the feature importance, and a feature drift adaptor that measures the drift severity

to adapt the prediction model by performing either feature re-selection and re-training the model or
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dropping the irrelevant features and fine-tuning the prediction model. To demonstrate the effective-

ness of our proposed solution, we experimentally built a proof-of-concept of our solution on a cloud

testbed using Kubernetes, and evaluated and compared the proposed solution to four benchmarks.

Our results demonstrate that the proposed Feature Drift Detector and Feature Drift Adaptor can ef-

fectively detect the feature drift and update the features and adapt the prediction model to the drift,

respectively. Moreover, the proposed feature drift adaptation solution can maintain the performance

of the prediction model close to its original F1-score.
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Chapter 5

Data-related Parameter Selection

Algorithm for ML-based Fault

Prediction 1

5.1 Introduction

The performance of ML models, i.e., their accuracy in predicting faults or application perfor-

mance degradation caused by faults, is influenced by several factors, including training data size,

data sampling interval, input window, and prediction horizon [15]. A longer prediction horizon

can provide lead time for proactive measures but may reduce performance due to the increasing

uncertainty over extended periods, while a shorter prediction horizon might yield higher predic-

tion performance but offer limited foresight for preemptive actions [15]. On the other hand, larger

training data sizes typically enhance model performance due to the richer information available for

learning [15]. Additionally, increasing the data sampling interval can lead to more granular data,

potentially improving the model’s ability to predict subtle performance changes [52]. This can also

result in a larger volume of data, which needs more storage and network resources for data col-

lection. Cloud service providers prefer building models that minimize resource consumption while
1This chapter is based on a submitted paper: [5] B. Shayesteh, C. Fu, A. Ebrahimzadeh, R. Glitho, “Data-related

Parameter Selection for Predicting Application Performance Degradation in Clouds using Deep Learning Models,” Sub-
mitted to IEEE Transactions on Cloud Computing, under review.
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expecting the models to accurately predict application performance degradation. In many cases, the

performance and resource consumption requirements are conflicting.

To address this challenge, in this chapter, we propose an NSGA-II-based multi-objective opti-

mization algorithm to automate selection of the data-related parameters for training an ML model

that predicts application performance degradation in clouds, with the objective of maximizing the

performance of the model while minimizing resource consumption of data collection and storage.

The algorithm uses surrogates to estimate the model performance for each set of data-related pa-

rameters instead of testing the performance of each model trained by the set of the parameters, to

accelerate the optimization time.

The rest of this chapter is organized as follows. First, we present an illustrative use case followed

by the system model and the problem formulation. Next, we describe the proposed data-related

parameter selection algorithm. Finally, we describe the lab setup and the implementation results

and conclude this chapter.

5.2 Illustrative Use case

This section presents the motivation for selecting data-related parameters for training models

predicting application performance degradation in clouds, through an illustrative use case of a 5G

mobile network. In this scenario, a 5G mobile network provider rents cloud services from a cloud

service provider with the objective of minimizing rental costs while ensuring the availability of the

5G services. To achieve these objectives, the mobile network provider needs to optimize resource

usage for proactive service assurance while ensuring the effectiveness of this service assurance

scheme. Such a scheme can be based on ML models and would require accurate predictions of

performance degradations for timely prevention to maintain service availability.

The 5G mobile network system consists of three components: User Equipment (UE), Radio

Access Network (RAN), and the 5G Core [84], where the 5G Core services are hosted in cloud

as visualized in Fig. 5.1. The 5G system connects the UEs to the Data Network or other UEs by

using the services of 5G Core. According to The Third Generation Partnership Project (3GPP),

5G core architecture consists of several network functions or services depicted in Fig. 5.1. To
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register a UE in 5G networks, several steps involving different services are carried: 1) the UE

begins the process by sending a registration request to RAN, which is forwarded to the Access and

Mobility Management Function (AMF), 2) the AMF initiates the verification process by requesting

the UE to confirm its identity by sending its International Mobile Subscriber Identity (IMSI), with

the RAN acting as the intermediary, 3) the AMF checks if the UE is allowed to join the network

by sending a request to the Authentication Server Function (AUSF), 4) the AUSF exchange request

and responses with the Unified Data Management (UDM) to retrieve authentication information

and authenticates the UE, 5) upon authentication completion, the AMF exchange messages with

the UDM to register this UE in the network, 6) the AMF works with the Policy Control Function

(PCF) to establish network usage policies for the UE’s session, 7) the AMF communicates with

the Session Management Function (SMF) to set up the session for the UE, 8) the AMF sends a

message to the RAN to signal registration acceptance, and 9) the UE confirms the registration by

sending a registration completion message to the AMF. The UE registration time and the number

of UE registration requests per minute are two example KPIs that may be impacted by 5G network

and core failures. The 5G mobile network provider may want to predict these KPIs to proactively

handle the potential failures that will have impact on UE registrations.

Figure 5.1: Illustrative use case with 5G core services deployed in cloud.

Given that the 5G mobile network provider wants to use ML models to predict these KPIs

in order to take prevention actions that prevent KPI degradations, it needs to collect training data

that includes KPIs and other 5G core services as well as cloud infrastructure performance metrics

like computing resource and network usage, to learn to predict patterns that indicate impending
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degradations in KPIs. However, collecting and processing this high-dimensional data is resource-

intensive. The provider aims to ensure that the ML model can predict KPI degradations with the

highest possible performance while minimizing the resource usage for data collection, processing,

and storage. To achieve this, the cloud service provider needs to select data-related parameters that

influence model’s performance, so that the model can predict KPIs with the highest performance

while minimizing resource usage.

5.3 System Model

Fig. 5.2 presents a high-level view of a cloud environment hosting 5G core services. As illus-

trated in Fig. 5.2, Cloud Infrastructure provides computational resources, storage, and networking

capabilities to facilitates the deployment and scaling of Virtual Network Functions (VNF)s, e.g.,

5G core services. The The Operation/Business Support System (OSS/BSS) interfaces with both

the ML Pipeline and the 5G Core VNFs to monitor the 5G core services and provide operational

support and business management. The ML Pipeline performs the life cycle management of ML

models trained for management tasks. We consider a time series forecasting ML model deployed

in OSS/BSS, which predicts degrdations in KPI(s) of 5G core. The UE registration time is an ex-

ample KPI that can be impacted by the failures in 5G core. The prediction model will predict the

value of the KPI, and KPI values above a given threshold are determined as degradation in the KPI.

The underlying cause of performance degradations in 5G core services are diverse and can include

infrastructure faults such as CPU or HDD over-utilization, network congestion, or network packet

loss. The ML Pipeline would receive the data it requires for training such prediction model from

infrastructure monitoring that monitors the infrastructure and OSS/BSS that monitors the 5G core

services. Infrastructure-level performance metrics can include resource utilization such as CPU,

memory, disk, and network metrics, while 5G core performance metrics can include various KPIs.

Before training the prediction model, the Prediction Optimizer is responsible for selecting data-

related parameters such as training data size, data sampling interval, input window, and prediction

horizon of the model, so that this model would achieve the highest possible prediction performance

while minimizing the resources required for data collection and storage. The Prediction Optimizer
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Figure 5.2: Generic system model of a prediction optimizer in clouds environments.

obtains the search space, i.e., upper and lower boundaries of each parameter, from the OSS/BSS

to perform parameter selection in the ML Pipeline. When these parameters are selected, the raw

training data is collected according to the training data size and sampling interval and passed to the

ML Pipeline, where the Data Pre-processing cleans the data from inconsistencies (e.g., outliers, null

values, etc.), and normalizes the data. Next, the pre-processed data is used to select the features,

i.e., infrastructure-level and 5G core performance metrics that have the highest correlation with KPI

degradation. Finally, these features are used for training the prediction model with a prediction

horizon defined by Prediction Optimizer.

In the cloud environment described above, let all the data available for training the prediction

model be D = {(x1, y1), (x2, y2), . . . , (xn, yn)}, where n is the total number of data samples avail-

able for training a prediction model. Let us further assume every sth sample in D is selected to

form a subset of data that will be used for training the prediction model, ensuring n > s for fea-

sible sub-sampling. We define a sub-sampled dataset D′ = {(xs, ys), (x2s, y2s), . . . , (xms, yms)},

where m =
⌊
n
s

⌋
represents the total number of selected samples for training the model. In this

sub-sampled dataset D′, each xis (for i = 1, 2, . . . ,m) is a vector of features from the feature set

R with r size, and yis ∈ {Cdegrade, Cno-degrade} is the class label denoting whether application per-

formance will degrade or not for vector xis. Cdegrade indicates the class label for the occurrence of
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application performance degradation, while Cno-degrade indicates the class label for normal appli-

cation performance. For training the prediction model, given that this is a time series forecasting

task, we define an input window size w and a prediction horizon h. This means that for every set

of w consecutive samples in D′, the model will predict the outcomes for the next h samples. Let

the prediction model trained for predicting application performance degradation using the training

dataset D′ be F : (xis, x(i+1)s, . . . , x(i+w−1)s) → (y(i+w)s, . . . , y(i+w+h−1)s). The model F can

predict performance degradation of a given input window. Table 5.1 presents a summary of the key

notations used in this chapter.

Table 5.1: Summary of key notations.

Notation Description
D Full dataset comprising all available data samples
n Total number of data samples available in D
s Data sampling interval to sample from dataset D
D′ Training dataset by selecting every sth sample of D
r Feature size of training dataset D′

m Total number of selected samples for training the model
w Input window (number of samples used for a prediction)
h Prediction horizon (number of future samples to predict)
F Prediction model
A Performance of the prediction model F
C Resource consumption of data collection and storage

5.4 Problem Formulation

To formulate the problem of optimizing data-related parameters, we define four decision vari-

ables as follows:

• h: An integer variable, indicating the prediction horizon, i.e., the number of future data sam-

ples the prediction model F is expected to predict.

• w: An integer variable, indicating the input window size, i.e., the number of data samples the

prediction model F should consider to make a prediction.

• s: An integer variable, indicating the sampling interval for selecting every sth sample from

the dataset of all available data for training.
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• m: An integer variable, indicating the number of training data samples that will be used for

training the prediction model F .

Next, we describe the constraints on the decision variables that should be considered to ensure

the feasibility of the solution.

Constraint (1): the number of data samples the prediction model F uses as input to make a

prediction (i.e., the input window size, w) shall be equal to or greater than the number of future

data samples the prediction model F is expected to predict (i.e., the prediction horizon, h). This

constraints can ensure that the model F has enough historical context to generate predictions for the

specified horizon.

w ≥ h (5.1)

Constraint (2): the available dataset D, with n total data samples, shall be large enough to allow

for the selection of every sth sample and still obtain m data samples for training the prediction model

F . This condition ensures that the sub-sampling strategy does not exceed the bounds of the dataset,

preserving the integrity of the training process.

m · s ≤ n (5.2)

Constraint (3): the training data size m shall be large enough to allow splitting into one or

more of the input window w number of data samples and the prediction horizon h number of data

samples.

m ≥ w + h (5.3)

The first objective of our problem is to maximize the performance of model F . Note that

performance of a prediction model can be evaluated using various metrics such as accuracy, pre-

cision, recall, or F1-score. Here, we define the first objective as a general performance function

A of the model F . Assuming a testing dataset is available for evaluating the model defined as

T = {(x′1, y′1), (x′2, y′2), . . . , (x′q, y′q)}, where q is the number of samples in the testing dataset, the
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performance of the model F over the testing data is then given by:

A =

q−w∑
i=1

L(y′i, ŷ
′
i) (5.4)

Where L(y′i, ŷ
′
i) is a loss function measuring the difference between the actual value y′i and

predicted value ŷ′i for the ith data.

The second objective of our problem is to minimize resource consumption of data collection

and storage for training model F . The resource consumption for storing the data is given by:

C = α ·m · r (5.5)

Where α is a coefficients reflecting the unit of storage for one data sample and r is the feature

size.

Consequently, our multi-objective optimization problem can be formulated as follows:

Minimize C

Maximize A

subject to constraints (1)-(3).

(5.6)

In multi-objective optimization problems, the goal is to find a trade-off between the two objec-

tive as it is often not possible to optimize one objective without making the other objective worse.

Instead, the multi-objective optimization aims at finding a set of non-dominated solutions called the

Pareto front. A solution is said to be non-dominated by other solutions if there is no other solution

that improves some objectives without worsening the other objective [85].

5.5 Proposed Data-related Parameter Selection Algorithm

In this section, we present our proposed surrogate-assisted multi-objective optimization algo-

rithm to select data-related parameters for training an application performance degradation pre-

diction model, while balancing the model performance and resource consumption for data collec-

tion and storage. The proposed approach is based on the evolutionary multi-objective algorithm,
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NSGA-II. Fig. 5.3 illustrates the flowchart of the proposed data-related parameter selection algo-

rithm, which consists of the following steps.

Figure 5.3: Steps of the proposed data-related parameter selection algorithm.

1) Define Search Space: To start selecting the parameters, we need to define the search space

for the solutions, i.e., lower bound and upper bound for each decision variable. Each solution in the

search space is a set of our four decision variables. One solution (individual) in the search space

can be defined as Ii = {hi, wi, si,mi} for i = 1, . . . , z, where z is the number of solutions in the

search space.

2) Initial Population: In context of an evolutionary algorithm, initial population is the first set

of potential solutions, on which the objective functions will be evaluated. The initial population is

generated randomly within the search space.

3) Fitness Function Evaluation: The optimization algorithm starts by evaluating the fitness

of the current population, which involves quantifying how well each solution in the population

meets the optimization objectives. In our problem, fitness evaluation consists of evaluating resource

consumption as well as model performance for the solutions within the population.

4) Evaluate Resource Consumption: As demonstrated in Eq. 5.5, to evaluate the resource con-

sumption for collecting and storing the training data, we consider the data dimension, i.e., the num-

ber of data samples that will be used for training (m) and the feature size (r). Since r is constant for

all the solutions in the population, resource consumption is a linear function of m. Therefore, the

less data we use for training, the lower the resource consumption.

5) Surrogate-Assisted Performance Evaluation: To evaluate the performance of a prediction

87



model for each solution, we need to train separate model for each solution, characterized by a spe-

cific set of parameters including the prediction horizon, input window, data sampling interval, and

training data size (hi, wi, si,mi). This process, while thorough, demands substantial computational

resources and time due to the necessity of training a separate model for each configuration to obtain

its performance. To avoid this, we propose employing a surrogate model that can approximate the

model performance for each solution. The surrogate models commonly used in the literature include

Multi-Layer Perceptron (MLP), RF, and Kriging regression models [86]. The surrogate model is

trained offline using a limited number of solutions and their observed model performance. In our

problem, since we have discrete values for our decision variables, i.e., the data-related parameters,

we use a RF surrogate [86].

6) Get New Generation: To evolve the solutions from one generation to the next, evolutionary

algorithms perform variations through selection, crossover, and mutation. The selection identifies

solutions with lower prediction error and resource consumption, guiding the algorithm toward opti-

mal solution. Crossover combines the decision variables from pairs of selected solutions (parents)

to create new solutions (offspring) that may perform better in fulfilling the objectives. Mutation

randomly changes the value of the decision variables in a solution, e.g., changing the prediction

horizon h, to explore potentially better values not presented in the current population. The NSGA-

II algorithm performs selection using a non-dominated sorting approach to classify the population

into different fronts based on Pareto dominance and selecting solutions based on their rankings.

Crossover in NSGA-II is performed using Simulated Binary Crossover (SBX) while mutation is

performed using Polynomial Mutation (PM).

7) Select Solution: Upon reaching the predefined maximum number of generations, the evolu-

tionary algorithm concludes in a final generation from which the optimal solution, situated on the

Pareto front, must be identified. To select this optimal solution, we use a weighted sum method

that assigns a score to each candidate solution on the Pareto front to compare the solutions. This

approach does not only account for the primary objectives of our problem but also incorporates the

prediction horizon (h) as a decision-making factor. This is because a model with larger prediction

horizon can provide a longer lead time for implementing preventative actions. The score V to select

the optimal solution is given by:
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V = ω1 ·A+ ω2 · C + ω3 · h (5.7)

Where ω1, ω2, ω3 are coefficients of A, C, and h, respectively. The coefficients indicate the

importance of each objective and ω3 should be smaller than ω1 and ω2 to avoid assigning more

importance to prediction horizon than the two objectives of the problem.

Algorithm 7 NSGA-II-based Data-related Parameter Selection
1: Inputs: Dataset (D), Population size (L), Maximum generations (Gmax), Trained performance surrogate model (H), Prediction

Model (F ), Resource Function (C)
2: Initialize: Random initial population (P0), Generate off-springs (Q0), t = 0
3: while t < Gmax do
4: Bt = Pt ∪Qt

5: for each solution I in Bt do
6: ranks← rank solution using H(I) and C(I)
7: end for
8: F1,2...← fast-non-dominated-sort(Bt, ranks)
9: Pt+1 = ∅

10: i = 0
11: while |Pt+1|+ |Fi| ≤ L do
12: Fi ← sort solutions in Fi using crowding distance
13: Pt+1 = Pt+1 ∪ Fi

14: i = i+ 1
15: end while
16: Pt+1 = Pt+1 ∪ Fi[0 : (L− |Pt+1|)]
17: Qt+1 ← make-new-population(Pt+1)
18: t = t+ 1
19: end while
20: return Solution I in F1 with the highest score based on Eq. 5.7

Algorithm 7 illustrates the steps of our proposed data-related parameter selection algorithm. The

time complexity of the NSGA-II algorithm for each generation is O(L2), where L is the population

size [85]. This is because time complexity of performing fast-non-dominated-sorting to sort the

combined population (Bt) with size 2L is O((2L)2). Considering that the algorithm is repeated for

Gmax generations, the overall time complexity of the algorithm is O(Gmax.L
2).

5.6 Performance Evaluation

In this section, we evaluate the performance of the proposed surrogate-assisted NSGA-II op-

timization algorithm for selecting the data-related parameters while predicting application perfor-

mance degradation in a real-world testbed. We deployed 5G core on Kubernetes with the objective

of predicting two of its KPIs. In the following, we present the experiment settings and evaluation

results.
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5.6.1 Experiment Settings

We describe the details of our lab setup, fault injection specification, datasets, and algorithm

search space for the experiments in the following sub-sections.

A) Lab Setup: Figure 5.4 depicts our lab setup, which consists of a Kubernetes cluster with

a total of 3 VMs running Ubuntu 20.04. The cluster is hosted in a private cloud, managed by

the Infrastructure-as-a-Service OpenStack. The configurations of the VMs are summarized in Ta-

ble 5.2. We deployed an open-source 5G core called Open5GS [87] in this cluster using the helm

charts generated and maintained by [88], which includes microservices of 5G core. We also de-

ployed UEs and a RAN using UERANSIM [89], which is connected to the 5G core. Moreover,

we deployed Prometheus [71] to monitor the cluster and to collect data every 5 seconds to reflect

the latest changes in the metrics. We collected the node-level and container-level metrics (i.e., VM

and container metrics such as the CPU, memory, and network metrics), as well as application-level

metrics (i.e., 5G core performance metrics).

Figure 5.4: Lab setup for evaluating the proposed surrogate-assisted NSGA-II multi-objective opti-
mization algorithm.

Table 5.2: Lab setup parameters and default values.

Site Parameter Value

Cloud Site

Number of VMs 3 VMs
CPU 4 cores for each VM

RAM
8G for each worker VM

16G for master VM
HDD 100G for each VM
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B) Fault Injection Specifications: We initiated node-level CPU over-utilization faults, where

the faults were injected to the VM hosting AMF 5G core microservice, which is responsible for

handling UE registration requests. The node-level CPU over-utilization faults were injected using

the Stress-ng [72] tool. The fault injections are recurrent, and the duration and inter-arrival of faults

follows a Normal distribution and exponentiated Weibull distribution, respectively, as described in

Section 3.5.1.

C) Datasets: We evaluate the performance of the proposed algorithm for selecting the data-

related parameters using two datasets explained in the following.

UE Registration Time (UERT) Dataset: Using this dataset, the objective is to predict the UE

registration time of the 5G core, i.e., the amount of time in seconds between UE sending a regis-

tration request until it is registered. We use UERANSIM to create 6 UEs where UE de-registration

and registration requests are sent to the 5G core every 0.2 seconds. While this traffic is introduced

to the 5G core, we inject CPU over-utilization faults to the VM where the AMF service that handles

registrations requests is hosted on to cause degradations of the KPI. We collect 1 day of data to train

a prediction model. The original data consists of 2320 features including node-level, container-level

and application-level metrics from the monitored VMs. To find the most relevant features to the tar-

get KPI, we used a feature selection mechanism proposed in [3]. The feature selection uses Pearson

Correlation Coefficient [90] to find highly correlated features and uses TLCC [91] to find features

with causal relationships to the KPI among the highly correlated features. A total of 8 features are

selected using this feature selection approach.

UE Registration Requests (UERR) Dataset: In this dataset, we followed the same scenario

for sending UE registration requests and injecting CPU over-utilization faults. However, the KPI

under study is the number of UE registration requests per minute. Similar to UERT dataset, we

collected 1 day of data and used the same feature selection technique to select the most relevant

features. A total of 9 features are selected using this feature selection approach.

D) Search Space: The search space for parameter selection is defined by setting the lower

and upper bounds for each decision variable, considering the 5G network operator requirements

such as resource constraints or minimal prediction horizon. In this experiment, we defined the

search space tailored to the characteristics of the two considered datasets. However, the proposed
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algorithm can support different value ranges based on the use case. The prediction horizon ranges

from 6 to 15, where a minimum of 6 samples (corresponding to a 30-second forecast window,

given our dataset’s 5-second sampling interval) is selected to ensure the model is capable of taking

preventive actions at least 30 seconds before predicted performance degradation. The input window

size is adjustable up to twice the size of the prediction horizon, varying from 6 to 30, to provide

context for accurate predictions. The data sampling interval is set between 1 and 10, allowing

for a range from sampling every 5 seconds to every 50 seconds. This range is chosen to balance

detail with computational efficiency, noting that wider sampling intervals might miss performance

degradations, which typically last about 3 minutes on average. Lastly, the size of the training dataset

is varied from a minimum of 500 samples to a maximum of 13, 800, considering the total dataset

length for a day is 17, 280 samples, with 80% allocated for training while 20% reserved for testing.

5.6.2 Evaluation Results

In this section, we present the evaluation of our proposed Surrogate-Assisted NSGA-II (SA-

NSGA-II) algorithm aimed at selecting data-related parameters. The effectiveness of our algorithm

is benchmarked against four approaches: Random Search (RS), NSGA-II with a Limited Epoch

Training (LET) surrogate model, NSGA-II without surrogates, and a comprehensive brute-force

search to obtain the true Pareto front. The proposed algorithm uses a RF model trained using 120 ob-

servations to approximate the model performance (i.e., F1-scores). All NSGA-II-based approaches

are executed with population size 50 for 25 generations. The RS approach randomly samples 50

sets of decision variables, which is equal to the population size of the NSGA-II-based benchmarks,

to identify a Pareto front among them, serving as a baseline for comparison. NSGA-II with LET

surrogate employs a surrogate model based on the performance of the model when only trained for

limited epochs (4 epochs). This method assumes that if models have high performance over a few

initial training epochs, they will likely approach a high performance if they are trained fully. Thus,

it can significantly reduce the resource and time required for model evaluation. NSGA-II without

Surrogates relies on complete model training for performance evaluation. This approach ensures

accurate fitness assessments at the expense of higher computational costs. Brute-force search in-

volves exhaustively exploring all potential solutions within the search space to identify the true
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Pareto front. Although this method guarantees the discovery of the optimal set of solutions, it is

resource-intensive and is conducted solely for comparative analysis. The criteria for comparison to

benchmarks include the time required to identify an approximate Pareto front and the optimality gap

between the true Pareto front and those produced by each method. To quantify the optimality gap,

we visualize the Pareto fronts and employ the normalized hypervolume metric, which calculates the

space between the Pareto front and a designated reference point, chosen as the most distant point

from the true Pareto front within the search space. Additionally, we examine the data-related pa-

rameters resulting from each approach, comparing them to those obtained by the true Pareto front,

to highlight the performance and decision-making provided by each method.

A) Pareto Front Analysis and Search Time Results

In this section, we compare the Pareto front approximations obtained by our proposed algorithm

and various benchmarks to the true Pareto front. The prediction model is a hybrid CNN-LSTM

model designed for predicting application performance degradation. This model architecture in-

cludes a convolutional layer, a pooling layer, two LSTM layers, and a dense layer, used for multi-

variate multi-step time series prediction. The model predicts KPIs, specifically UE registration time

for the UERT dataset and the number of UE registration requests per minute for the UERR dataset,

using selected features as inputs. For the model performance objective, we utilize the F1-score,

which is derived from precision and recall measurements. In the UERT dataset, KPI values exceed-

ing a specific threshold (measured in seconds) are labeled as performance degradation, while those

below are considered normal. This threshold is determined based on the registration time under

typical request loads. Similarly, for the UERR dataset, a threshold for the number of UE registra-

tion requests per minute distinguishes normal operation from performance degradation. A higher

F1-score indicates the model’s effectiveness in accurately predicting both degradation and normal

performance, thus minimizing false alarms that could trigger unnecessary preventative actions. The

F1-score values are calculated separately for each prediction horizon of the model and then aver-

aged across all the data samples in the testing data. For evaluating the data collection and storage

resource consumption, we measure resource usage by using built-in methods of Pandas library stor-

ing the training data. This library allocates 8 bytes (i.e., α in Eq. 5.5) for storing a float number. To
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measure the total resource consumption, it multiplies 8 bytes by the total number of samples and

features size. We observed a fixed overhead of 128 bytes used for creating the dataset regardless of

its size.
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(a) Pareto front approximations of the considered op-
timization algorithms on UERT dataset.
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(b) Pareto front approximations of the considered op-
timization algorithms on UERR dataset.

Figure 5.5: Pareto front approximations of the considered optimization algorithms.

Fig. 5.5a and Fig. 5.5b illustrate the Pareto fronts approximation of the proposed algorithm,

the considered benchmarks, and the true Pareto front for the UERT and UERR datasets, respec-

tively. The dominated solutions illustrate all sets of decision variables dominated by the solutions

in the true Pareto front. It can be observed that the NSGA-II approach operating without surrogates

achieves the most accurate approximation to the actual Pareto front. In contrast, the RS benchmark

exhibits the least accurate approximation. The LET surrogate and our proposed algorithm, both of

which leverage surrogates to approximate the Pareto front, demonstrate close approximations to the

true front. This is achieved without fully training prediction models for performance evaluation,

with our algorithm showing marginally superior performance to the LET surrogate. However, the

surrogate-assisted Pareto front approximation falls short of the NSGA-II with no surrogates. This

is because the surrogate-assisted methods do not fully train models to obtain the F1-score, thereby

introducing approximation errors relative to the NSGA-II’s full-training approach. We note that to

illustrate the Pareto fronts approximated by the proposed algorithm and the LET surrogate, we fully

trained prediction models using the final decision variables they selected and used their F1-score to

find the Pareto front.
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Figure 5.6: Normalized hypervolume obtained by the considered optimization algorithms on UERT
and UERR datasets.
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Figure 5.7: Search time of the considered optimization algorithms to obtain the Pareto front approx-
imation on UERT and UERR datasets.

Fig. 5.6 illustrates the normalized hypervolume obtained by the considered algorithms on UERT

and UERR datasets. To calculate the normalized hypervolume for each algorithm, we divided its

hypervolume by that of the true Pareto front, which was determined using a brute-force approach.

Consequently, a normalized hypervolume nearing 100% indicates a closer approximation to the true

Pareto front. Consistent with previous observations on Pareto front approximations, the NSGA-II

algorithm operating without surrogate assistance, achieved the highest normalized hypervolume val-

ues of 99.89% for UERT and 100% for UERR datasets. This underscores its superior approximation

capability. Similarly, the proposed algorithm and the LET surrogate demonstrated comparable per-

formance, with the proposed algorithm reaching normalized hypervolumes of 99.12% for UERT
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and 99.41% for UERR. On the other hand, the RS algorithm showed the lowest performance, with

normalized hypervolumes of 91.48% for UERT and 81.22% for UERR, indicating the least accu-

rate approximation of the true Pareto front. It is important to note, however, that while the NSGA-II

without surrogates excels in approximation accuracy, it requires significantly more time to reach

the Pareto front approximation compared to surrogate-assisted methods. Fig. 5.7 further illustrates

the search time required by each optimization algorithm to achieve their respective Pareto front

approximations on the UERT and UERR datasets.

As illustrated in Fig. 5.7, the NSGA-II algorithm operating without surrogate assistance, re-

quires 3.78 hours for UERT and 4.19 hours for UERR, to achieve Pareto front approximations. In

contrast, the proposed algorithm significantly reduces approximation time to 0.67 hours for UERT

and 0.61 hours for UERR. This efficiency is achieved by employing a RF surrogate model trained

on 120 observations, which necessitates full training of the prediction model to obtain F1-scores.

The LET surrogate, which approximates the F1-score of the prediction model by limiting training to

4 epochs, also demonstrates reduced approximation times of 1.15 hours for UERT and 0.82 hours

for UERR. Meanwhile, the RS algorithm, which derives a Pareto front from 50 randomly sampled

solutions, exhibits the shortest search times of 0.09 hours for UERT and 0.1 hours for UERR. We

note that obtaining the true Pareto front using a brute-force approach requires 88.38 hours for UERT

and 86.06 hours for UERR dataset.

B) Comparison of Optimal Data-related Parameters Results

In this section, we present the data-related parameters obtained by our proposed algorithm and

the considered benchmarks and compare them to those obtained by the true Pareto front, to highlight

the objective fulfillment status and the decision variables provided by each algorithm. As discussed

in Equation 5.7, a weighted sum approach is used to select the set of parameters that find a trade-

off between the two objectives. We allocated the weights as ω1 and ω2 both at 0.4, and ω3 at

0.2, to reflect our prioritization that both model performance and resource consumption are treated

equally as main objectives, while longer prediction is treated as the secondary objective. Table 5.3

shows a comparison of the objective fulfillment status and the decision variables obtained from the

benchmarks and our proposed algorithm on UERT and UERR datasets.
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Table 5.3: Comparison of the optimal data-related parameters obtained in the Pareto front approxi-
mation of the considered algorithms on UERT and UERR datasets.

Dataset
Optimization

Algorithm
Objectives Decision Variables

F1-Score
(%)

Resource
(Bytes)

Sampl-
ing

Interval

Prediction
Horizon

Input
Window

Training
Data
Size

UERT

True
Pareto Front

76.04 108,128 1 6 29 1500

RS 72.26 216,128 1 9 26 3000
NSGA-II

No Surrogate
76.04 108,128 1 6 29 1500

NSGA-II
LET Surrogate

72.85 36,128 3 7 30 500

Proposed
SA-NSGA-II

76.04 108,128 1 6 29 1500

UERR

True
Pareto Front

85.11 160,128 1 6 15 2000

RS 76.23 240,128 1 9 26 3000
NSGA-II

No Surrogate
85.11 160,128 1 6 15 2000

NSGA-II
LET Surrogate

81.39 40,128 1 6 6 500

Proposed
SA-NSGA-II

85.11 160,128 1 6 15 2000

As shown in Table 5.3, for the UERT dataset, the highest F1-score achieved is 76.04%, with re-

source consumption of 108, 128 bytes. It can be observed that while no method reached a 100% nor-

malized hypervolume, both the NSGA-II algorithm without surrogates and our proposed algorithm

successfully identified the optimal combination of decision variables. This optimal combination

matches the performance and resource consumption of the true Pareto front, highlighting their ef-

fectiveness in finding the best solution in the true front. However, the LET surrogate’s performance,

despite being close to the actual front, shows a different pattern. Its solutions were not evenly

distributed across the entire front, with a noticeable focus on minimizing resource consumption.

Specifically, the LET surrogate opted for a solution that reduces resource use to 36, 128 bytes at the

expense of achieving a lower F1-score of 72.85%. The table further shows that the optimal decision

variables, NSGA-II without surrogates and the proposed algorithm output a data sampling interval
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of 1, a prediction horizon of 6, an input window of 29, and a dataset size of 1500 samples. The sam-

pling interval and prediction horizon are the smallest values in the search space, which contribute

to higher performance of the model, while small training data size 1500 is selected to minimize

the resource consumption. The LET surrogate favors resource consumption over performance by

selecting only 500 data samples for training.

A similar trend can be observed in the UERR dataset. The true Pareto front identifies an opti-

mal solution characterized by an F1-score of 85.11% and resource consumption of 160, 128 bytes.

Both the NSGA-II algorithm without surrogates and the proposed algorithm identify this optimal

solution. Conversely, the LET surrogate opts for a solution that prioritizes minimal resource usage,

consuming only 40, 128 bytes, at the cost of reducing the F1-score by 3.72%. The decision-making

trend regarding the selection of decision variables remains consistent with that observed in the

UERT dataset, where a small data sampling interval, prediction horizon, and training data size are

favored against other possible values for decision variables.

5.7 Conclusion

In this chapter, we proposed a surrogate-assisted multi-objective optimization algorithm based

on NSGA-II to automate selection of the training data size, the data sampling interval, the input

window, and the prediction horizon for training an ML model that predicts application performance

degradation caused by infrastructure faults in clouds. This algorithm maximizes the performance

of the prediction model while minimizing resource consumption of data collection and storage. To

evaluate the effectiveness of the proposed solution, we conducted experiments on a Kubernetes-

based cloud testbed, where a 5G core was deployed. The proposed algorithm was compared to the

true Pareto front, RS, NSGA-II without surrogates, and NSGA-II with LET surrogates benchmarks.

The results demonstrated that the proposed algorithm can achieve a normalized hypervolume of

99.41% relative to the true Pareto front and reduce search time by 0.48 hours compared to other

surrogates and by 3.58 hours compared to NSGA-II using no surrogates.
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Chapter 6

Conclusion, Discussion, and Future

Work

6.1 Conclusion

Although predicting faults in cloud environments using ML enables a proactive approach to

prevent faults in clouds, building accurate prediction models that can maintain their performance

in dynamic cloud environments is not an easy task. Occurrence of concept drifts and feature drifts

can degrade the accuracy of fault prediction models over time, requiring effective adaptation of

prediction models to the drifts. Additionally, the accuracy of ML models is influenced by several

data-related parameters, necessitating selection of these parameters to achieve a high model perfor-

mance. In this thesis, we studied and addressed these challenges by proposing algorithms to adapt

prediction models effectively and optimizing data-related parameters selection for enhanced model

performance.

In Chapter 3, we introduced a concept drift adaptation algorithm for fault prediction in cloud en-

vironments using RL. This algorithm considers the cloud operator’s requirements of drift adaptation

time and resource consumption, and the prediction model’s accuracy after adaptation, and uses RL

to select the most appropriate drift adaptation method as well as data size for adaptation that fulfills

the operator’s requirements. The evaluation results showed the proposed algorithm can effectively

maintain the ML model performance in presence of concept drifts and had superior performance
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compared to other approaches in terms of drift adaptation time, adaptation resource, and number of

data samples for adaptation.

Chapter 4 studied the problem of feature drift adaptation and proposed a feature drift adaptation

algorithm to adapt models to feature drifts while predicting application performance degradation in

cloud environments. This solution consisted of a feature drift detector that detected feature drifts

by monitoring the performance of the prediction model as well as the feature importance, and a

feature drift adaptor that measured the drift severity to adapt the prediction model by performing

either feature re-selection and re-training the model or dropping the irrelevant features and fine-

tuning the prediction model. Our results demonstrated that the proposed Feature Drift Detector and

Feature Drift Adaptor can effectively detect the feature drift and update the features and adapt the

prediction model to the drift, respectively. Moreover, the proposed feature drift adaptation solution

can maintain the performance of the prediction model close to its original F1-score.

Finally, in Chapter 5, we proposed a multi-objective optimization algorithm based on NSGA-II

to automate selection of the training data size, the data sampling interval, the input window, and

the prediction horizon for training an ML model that predicts application performance degradation

caused by infrastructure faults in clouds. This algorithm maximizes the performance of the predic-

tion model while minimizing resource consumption of data collection and storage. The data-related

parameters selected by the algorithm are used for training models that predict the degradation of 5G

core KPIs. The results demonstrated that the proposed algorithm can achieve optimal solutions in

two scenarios while reducing the solution search time compared to the considered benchmarks.

6.2 Impact of Proposed Algorithms on Fault Management in Clouds

ML-based fault prediction solutions can work as a key component of fault management systems

and work alongside detection, localization, and mitigation of faults. By predicting faults before

they occur, fault prediction enables fault management systems to not only respond to faults as they

occur, but also to take preventive actions to avoid potential faults [25] [19]. The proposed algo-

rithms ensure that the fault prediction model accurately predicts impending faults and maintains its

accuracy in dynamic cloud environments, despite challenges like concept drift and feature drift that
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can otherwise degrade model performance. Accurate fault prediction models ensure that the fault

management system can effectively trigger fault prevention mechanisms, since failing to predict

faults can result in service failure and false prediction can trigger unnecessary preventive measures

that increase the operational costs of the fault management system. Regardless of the type of deep

learning model used for fault prediction, the proposed algorithms ensure an accurate model that

can maintain its performance in dynamic cloud environments. This is achieved by focusing on the

symptoms of concept drift or feature drift and taking model-agnostic adaptation solutions.

While the proposed ML-based fault prediction solutions do not focus on localizing and iden-

tifying the root causes of impending faults, the causal-temporal analysis-based feature selection

approach used for training the model can provide insights into the underlying cause of faults or

application performance degradation caused by faults. These insights can be leveraged to localize

impending faults and trigger appropriate prevention mechanisms to avert them.

6.3 Future Work

This thesis presented three contributions on addressing the challenges of employing ML for

fault prediction in clouds. However, there still exists several research directions for the future.

6.3.1 Concept Drift and Feature Drift Adaptation

To enhance the concept drift adaptation and feature drift adaptation solutions introduced in

Chapters 3 and 4, an interesting research direction involves reducing the amount of data required

for drift adaptation. This reduction could decrease the time it takes for the prediction model to regain

its pre-drift performance. Currently, our solutions necessitate collecting sufficient data after drift to

effectively regain the prediction model performance prior to the drift. An interesting alternative

to avoid extensive data collection is the exploration of Generative Adversarial Network (GAN)s to

create synthetic data following a drift.
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6.3.2 Integration of Fault Prediction and Prevention Solutions

In addition to the challenges studied in this thesis, other challenges of employing ML models

for fault prediction should be tackled. While the primary objective of fault prediction models in

cloud is preventing faults, limited works in the literature integrate prediction models with prevention

mechanisms. Current studies focus on triggering prevention mechanisms for a given fault type, but

a system that can trigger various mechanisms based on the type of predicted fault and its underlying

cause is needed. Creating such a systems requires identification of the impending fault’s cause(s),

and a mapping solution designed by domain experts linking the impending faults to a prevention

action, considering factors including fault cause, remaining time to failure, and available resources

for prevention.

6.3.3 Multi-fault Prediction

Current fault prediction models in clouds, including the solutions proposed in this thesis, are

developed to predict specific fault types. However, training and maintaining individual models

for each fault type can be challenging given the multitude of fault types with diverse underlying

causes. Future research can aim at developing prediction models that can predict multiple fault

types. This can be achieved by identifying faults with common symptoms and using multi-task

learning techniques to train models that can predict these faults.

6.3.4 Explainability of Fault Prediction Models

While deep learning models are popular for predicting faults in clouds and have been used

in this thesis, they are often black-boxes lacking clear decision-making process. Therefore, they

cannot provide the rationale behind fault predictions to guide prevention actions. Developing new

approaches to improve the explainability of fault prediction models is essential [27] and can be

achieved through integrating Explainable AI methods with fault prediction solutions. Adapting

Explainable AI techniques to suit characteristics of fault prediction solutions, especially in RNN-

based models, remains a challenge that future research can tackle [9].
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[22] Andrea Rosà, Lydia Y Chen, and Walter Binder. Failure analysis and prediction for big-data

systems. IEEE Transactions on Services Computing, 10(6):984–998, Mar. 2016.
[23] Chunhong Liu, Jingjing Han, Yanlei Shang, Chuanchang Liu, Bo Cheng, and Junliang Chen.

Predicting of job failure in compute cloud based on online extreme learning machine: a com-
parative study. IEEE Access, 5:9359–9368, May 2017.

[24] Li Deng and Dong Yu. Deep learning: methods and applications. Foundations and trends in
signal processing, 7(3–4):197–387, Jun. 2014.

[25] Jiechao Gao, Haoyu Wang, and Haiying Shen. Task failure prediction in cloud data centers
using deep learning. IEEE Transactions on Services Computing, May 2020.

[26] Chaoyun Zhang, Paul Patras, and Hamed Haddadi. Deep learning in mobile and wireless
networking: A survey. IEEE Communications surveys & tutorials, 21(3):2224–2287, Mar.
2019.

[27] Yangguang Li, Zhen Ming Jiang, Heng Li, Ahmed E Hassan, Cheng He, Ruirui Huang,
Zhengda Zeng, Mian Wang, and Pinan Chen. Predicting node failures in an ultra-large-scale
cloud computing platform: an AIOps solution. ACM Transactions on Software Engineering
and Methodology (TOSEM), 29(2):1–24, Apr. 2020.

[28] Ji Zhang, Ke Zhou, Ping Huang, Xubin He, Ming Xie, Bin Cheng, Yongguang Ji, and Yinhu
Wang. Minority disk failure prediction based on transfer learning in large data centers of
heterogeneous disk systems. IEEE Transactions on Parallel and Distributed Systems, 31(9):
2155–2169, Apr. 2020.

[29] Stuart Russell and Peter Norvig. Artificial intelligence: a modern approach, 2002.

104



[30] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292,
May 1992.

[31] Yanal Alahmad, Tariq Daradkeh, and Anjali Agarwal. Proactive failure-aware task scheduling
framework for cloud computing. IEEE Access, 9:106152–106168, Jul. 2021.

[32] Chang Xu, Gang Wang, Xiaoguang Liu, Dongdong Guo, and Tie-Yan Liu. Health status
assessment and failure prediction for hard drives with recurrent neural networks. IEEE Trans-
actions on Computers, 65(11):3502–3508, Mar. 2016.

[33] Aniello De Santo, Antonio Galli, Michela Gravina, Vincenzo Moscato, and Giancarlo Sperlı̀.
Deep learning for HDD health assessment: An application based on lstm. IEEE Transactions
on Computers, 71(1):69–80, Dec. 2020.

[34] Minh-Ngoc Tran, Xuan Tuong Vu, and Younghan Kim. Proactive stateful fault-tolerant system
for kubernetes containerized services. IEEE Access, 10:102181–102194, 2022.
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