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ABSTRACT

Deformation of Convex Hypersurfaces in Euclidean Space by Powers of Principal

Curvatures

Meraj Hosseini

The results presented in this thesis contribute to the understanding of the evolu-

tion of smooth, strictly convex, closed hypersurfaces in R
n+1 driven by non-symmetric

speeds on the principal curvatures. The preservation of convexity, the occurrence of

singularities, and the asymptotic behavior of the flows are studied. After an intro-

duction to geometric flows, Chapter 3 focuses on the analysis of the short-term and

long-term behavior of a contraction flow governed by a non-symmetric speed for rota-

tionally symmetric hypersurfaces. Our investigation reveals two key findings. Firstly,

we establish that the flow maintains convexity throughout the deformation process.

Secondly, we observe the development of a singularity within a finite time, leading to

the convergence of every such strictly convex hypersurface to a single point. To in-

vestigate the asymptotic behavior of the flow, we employ a proper rescaling technique

of the solutions. Through this rescaling, we demonstrate that the rescaled solutions

converge subsequentially to the boundary of a convex body. In the fourth chapter,

we extend our study to the short-term and long-term behavior of a non-symmetric

expansion flow in R
n+1. We show that, starting with a smooth, strictly convex, rota-

tionally symmetric, closed hypersurface, the flow preserves convexity while expanding

infinitely in all directions. Depending on certain parameters within the speed func-

tion, we establish that the existence time of the flow can be either finite or infinite.
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We also investigate the asymptotic behavior of the flow through a suitable rescal-

ing process and demonstrate the subsequential convergence of the solutions to the

boundary of a convex body in the Hausdorff distance. In the fifth chapter, we intro-

duce the most general version of the flow studied in the Chapter 3. We address the

barriers and challenges encountered when transitioning from a symmetric speed to a

non-symmetric speed, and present our strategies to tackle some of these difficulties.
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Chapter 1

Motivations and Prerequisites

Curvature flows are dynamic processes that drive the evolution of geometric objects

based on a speed function determined by their curvature. Examining the progression

of shapes under curvature flows provides valuable insights into intrinsic geometric

structures and their transformative behaviours. Consequently, these insights find

practical applications in image processing, shape analysis, and surface modeling, en-

hancing our ability to analyze and manipulate geometric data. For well-known cur-

vature flows such as the mean curvature flow or the Gauss curvature flow, the speed

function of a hypersurface is typically a symmetric function of the principal curva-

tures. This symmetry assumption carries over to the natural generalizations of these

flows. However, when attempting to model the deformation of a geometric object

afresh, it becomes natural to consider a non-symmetric speed function. This choice

arises from the recognition that the forces influencing the object’s deformation may

lack global uniformity, resulting in an asymmetric speed function. By incorporating

asymmetry into the speed function, a more adaptable and realistic depiction of the

object’s deformation process can be achieved. This thesis investigates a geometric

flow governed by a non-symmetric speed function, focusing on its short-time exis-

tence and asymptotic behaviour. Our analysis aims to understand how convexity is
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maintained or altered throughout the evolution. Furthermore, we investigate the oc-

currence of singularities in the flow and explore their nature. By employing a proper

rescaling technique, we examine the asymptotic behaviour of the flow, studying how

the surface behaves in the long run. Consider the evolution equation governed by the

equation:

∂X(·, t)
∂t

= −»³1
1 (x, t)»³2

2 (x, t) · · ·»³n
n (x, t)¿(x, t), (1.1)

where X denotes the embedding of a smooth, strictly convex hypersurface within the

ambient space of Rn+1, the quantities »1(x, t) f »2(x, t) f . . . f »n(x, t) represent

the principal curvatures of the hypersurface, ¿(x, t) denotes the outer unit normal

vector to the evolving convex set K(t), whose boundary is the evolving hypersurface,

at the point X(x, t), and ³1, ³2, . . . , ³n are positive real numbers. When n = 1 and

³1 = 1, we have the simplest form of the flow which is known as the curve shortening

flow

∂X(·, t)
∂t

= −»(x, t)¿(x, t). (1.2)

Based on the works of Gage, Hamilton, and Grayson, [23, 20, 19] the curve shortening

flow evolves a smooth, closed, simple curve to a round point. It is a natural question

to inquire whether a generalized version of the curve shortening flow exhibits the

same graceful behaviour as the original curve shortening flow. More precisely, it is

natural to ask

• Do solutions of the generalized flow exist?

• If solutions exist, does the flow preserve their convexity?

• Do the solutions asymptotically converge to a sphere too?
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The Gauss curvature flow is widely recognized as a notable generalization of the curve

shortening flow to higher dimensions:

∂X(·, t)
∂t

= −G(·, t)¿(·, t),

where G(·, t) is the Gauss curvature and ¿(·, t) is the outer normal at K(t). Tso’s

work [55] demonstrated that the Gauss curvature flow exhibits convergence to a point

within a finite time. Additionally, the rescaled solutions of the flow converge to a

convex hypersurface. Chow initially studied a generalization of the Gauss curvature

flow, described by the equation:

∂X(x, t)

∂t
= −G´(x, t)¿(x, t), (1.3)

where G represents the Gaussian curvature, and ´ is a positive number, [13]. Chow’s

research revealed that when ´ = 1
n
, the rescaled solutions of this flow converge to a

sphere. Andrews extended this understanding by demonstrating that for 1
2
f ´ f 2

3
,

the flow in R
3 asymptotically converges to a sphere, [13]. Building upon these insights,

Brendle, Choi, and Daskalopoulos [9] further established that for ´ g 1
n+2

, the flow in

R
n+1 exhibits roundness. The flow we described by equation (1.1) can be regarded as

a generalization of the flow by powers of Gaussian curvature. It can also be considered

as a more challenging generalization of the Gaussian flow due to the asymmetric and

non-homogeneous nature of the speed term in equation (1.1). The outcomes presented

are limited by the technical challenges of the problem that led to some conjectures.

Nonetheless, the value lies in the pioneering approaches employed to substantiate

these assertions. In the first chapter, we focus on the following generalization of the

curve shortening flow in the plane:

∂X(¹, t)

∂t
= −µ(¹)»³(¹, t)N(¹), (1.4)
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where X is the position vector of the curve with respect to ¹, the angle of the outward

normal N(¹) = (cos ¹, sin ¹) to the curve with respect to the horizontal direction,

³ ∈ (0, 1) is an arbitrary real number and µ : [0, 2Ã] −→ (0,∞) is a smooth Ã-

periodic, time independent function. For µ = 1, and ³ = 1, the equation describes

the curve shortening flow. In case ³ = 1, and non-constant µ, Gage, and Gage-Li

have studied the flow, ([19], [21]) and showed, among other things, that the flow

evolves each strictly convex smooth curve to a point with its shape approaching a

Minkowski isoperimetrix determined in a certain sense by µ. Andrews showed [4]

that, asymptotically, solutions converge to a limiting shape when ³ ∈ (1
3
, 1), however

rescaled solutions are not necessarily convergent when ³ ∈ (0, 1
3
) as compactness of

the rescaled solutions may not hold. He states that if the isoperimetric ratio of the

domains bounded by the solutions remains bounded for all time, then the compactness

follows. However, this is not possible to detect in general. When µ is Ã
2
-periodic, we

show, in the first chapter, that rescaled solutions converge to a limiting shape which

have been obtained independently by others, ([4],[11]), in a slightly different context.

However, we choose to present them here as this was the starting point of another

generalization to higher dimensions. More precisely, we show the following:

Theorem 1.0.1. Let ³ ∈ (0, 1) be a real number, and let µ : [0, 2Ã] −→ (0,∞) be a

smooth Ã
2
-periodic function. Then, there exists a planar strictly convex body K̃ such

that

µ(¹) =
h̃(¹)

»̃³(¹)
,

and every smooth, strictly convex, Ã
2
-periodic curve that evolves by equation (2.1),

Xt = µ»³N , shrinks to a point in a finite time. Moreover, if the family of evolv-

ing curves is renormalized to enclose domains of constant area, they will converge

sequentially in the Hausdorff metric to the boundary of a convex body K̃ as above.
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This behaviour is related to the to the Lp-Minkowski problem, [32]. While ma-

jor contributions have been made to the Lp-Minkowski problem, see ([32],[34],[19],

[21],[50], [49], [54]), it is not solved completely. To be more precise, in case p g 0,

while certain conditions are imposed, the problem is not solved for every p g 0. Let

p g 0 be a fixed real number and È : [0, 2Ã] −→ (0,∞) be a Ã-periodic, smooth

function of class C2. The Lp-Minkowski problem, corresponding to this data asks for

h : [0, 2Ã] −→ (0,∞) such that for every ¹ ∈ [0, 2Ã]

h1−p(¹)
(
h′′(¹) + h(¹)

)
= È(¹).

Using the asymptotic behaviour of the flow obtained in the previous theorem, for

Ã
2
-periodic data, we prove

Theorem 1.0.2. Let p ∈ (−∞, 0), and let µ be a Ã
2
-periodic, positive, C2 function.

Then, there exists a Ã
2
-periodic support function h : [0, 2Ã] −→ (0,∞) which is a

solution to the Lp-Minkowski problem on S
1

h1−p(h+ h′′) = È,

where È = µ1−p.

The results for curves have been also obtained by other authors, [16, 54, 11]. For

us, the motivation was to understand the curvature flows techniques in the lowest

dimensional case and to extend this to a nonsymmetric flow on surfaces. In the

pioneering work of Li and Lv ([31]), contraction of convex hypersurfaces by non-

homogeneous speeds was studied. Among their findings, it was demonstrated that

such a flow leads convex hypersurfaces to converge to a single point in finite time.

Notably, in hyperbolic space, the concept of roundness was established for sufficiently

pinched initial hypersurfaces using high powers of the speed. Subsequently, McCoy
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[36] extended these results to Euclidean spaces. Since flows with non-homogeneous

speeds can be intricate, previous works, including the aforementioned ones, often

consider initial hypersurfaces to be surfaces of revolution. To explore the evolution of

a surface under a non-symmetric and non-homogeneous speed, in the second chapter,

we specifically investigate the behaviour of a smooth surface of revolution in R
3, and

then we extend the obtained results to higher dimensions. More precisely, we evolve

a smooth surface of revolution ∂K0 ¢ R
3 using the following equation:

∂X(x, t)

∂t
= −»³1

1 (x, t)»³2
2 (x, t)¿(x, t), (1.5)

where »1 represents the axial curvature, »2 represents the radial curvature, and ³1

and ³2 are positive real numbers. Subsequently, we delve into the inquiries concerning

the generalization of curve shortening flows. One of our objectives lies in substanti-

ating the existence of admissible solutions which, concurrently, means preservation of

convexity throughout the course of the flow. Additionally, we substantiate the emer-

gence of singularities after finite time undertaking a comprehensive analysis of these

singularities. Moreover, throug an appropriate rescaling technique, we assert the con-

vergence of the flow solutions to the boundary of a convex body, thereby adressing

the flow’s long term behaviour. In sum, in the second chapter, we prove:

Theorem 1.0.3. Suppose that a smooth, strictly convex, embedded surface ∂K0 ¢

R
n+1 is axially symmetric with an even profile curve. Then solutions to the equation

(5.1) exist on a maximal time interval [0, É), and they shrink to a point as t → É.

Furthermore, if solutions are rescaled to enclose domains of constant volume, the

rescaled solutions converge sequentially, in the Hausdorff metric, to the boundary of

a convex body.

In the third chapter of this thesis, we introduce and explore the short-term and

long-term behaviour of an expanding flow governed by a non-symmetric speed func-
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tion that depends on the radii of curvatures. Specifically, we consider the expansion

of a strictly convex surface of revolution, denoted as ∂K0 ¢ R
n+1, using the following

equation:

∂X

∂t
(x, t) =

(
1

»1

)³1

(x, t)

(
1

»2

)³2

(x, t) . . .

(
1

»n

)³n

(x, t)¿(x, t),

where »1 = »axi, »2 = · · · = »n = »rad are principal curvatures, ³1, . . . , ³n are

arbitrary positive real numbers, and ¿ is the outer unit normal. Throughout this

chapter, we analyze the behaviour of the flow, both the short term and the long

term. We investigate how the surface expands and evolves under the influence of the

non-symmetric speed function, examining the changes in its geometric properties. By

studying the flow’s dynamics and employing appropriate techniques from the theory

of parabolic partial differential equations, we aim to gain insights into the expansion

process and its asymptotic behaviour over time. In this chapter, we prove:

Theorem 1.0.4. Consider a smooth, strictly convex embedded surface ∂K0 that ex-

hibits axial symmetry in R
n+1. For equation (4.3), there exist solutions within a

maximal time interval [0, T ), where T is finite when ³ + ´ > 1 and infinite when

³ + ´ f 1. As the flow progresses, these solutions will preserve convexity and will

expand to infinity. Furthermore, if the profile curve is even and the solutions are

rescaled to enclose domains of constant volume, they will converge sequentially, in

the Hausdorff, metric towards the boundary of a convex body.

In the fourth chapter of this thesis, the focus is on the most general form of

the flow. While a suitable framework for the comprehensive study has not been

fully developed, the chapter presents partial progress. It is crucial to acknowledge

that a complete study of this problem would require new development of several

theories to reach its full completion. We plan to continue the study of this problem in

further work. Specifically, in this chapter, we consider a strictly convex hypersurface
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∂K0 undergoing curvature flow governed by equation (1.1). We address several key

questions such as existence of solutuons, beginning with the scenario where ∂K0 is

a compact, smoothly embedded, strictly convex hypersurface of dimension n g 2 in

R
n+1 represented by the embedding X0 : Sn −→ R

n+1. Our investigation revolves

around the evolution of the family of maps X(·, t) according to equation (1.1), where

»1(x, t) f · · · f »n(x, t) denote the principal curvatures, ¿(x, t) represents the outer

normal to K(t) at X(x, t), and ³1 f · · · f ³n are positive real numbers. Our long

term objective is to demonstrate the existence of solutions, establish the preservation

of convexity, and investigate the singularities. Here, we prove short time existence of

solutions:

Theorem 1.0.5. The solutions to the flow (1.1) exist on some time interval [0, É)

with É <∞ before developing a singularity.

This is not trivial as all known results assume the symmetry of the speed function.
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Chapter 2

Planar curvature flows and their

applications in convex geometry

2.1 Introduction

We consider the following flow described by the partial differential equation:

∂X(¹, t)

∂t
= µ(¹)»³(¹, t)N, (2.1)

where X is the position vector of the curve with respect to ¹, the angle of the inward

normal N = −(cos ¹, sin ¹) to the curve with respect to the horizontal direction,

³ ∈ (0, 1) is an arbitrary real number and µ : [0, 2Ã] −→ (0,∞) is a smooth Ã-

periodic function.

Equation (2.1) can be interpreted as a generalization to the flow known as the

curve shortening flow. Indeed, for µ = 1, and ³ = 1, the equation describes the

curve shortening flow on which there is an extensive literature, see [12]. In case

³ = 1, and non-constant µ, Gage, and Gage-Li have studied the flow in a couple of

papers ([19], [21]) and showed, among other things, that the flow evolves each strictly

convex smooth curve to a point with its shape approaching a Minkowski isoperimetrix
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determined in a certain sense by µ.

In [4], Andrews showed that, asymptotically, solutions converge to a limiting shape

when ³ ∈ (1
3
, 1), however rescaled solutions are not necessarily convergent when

³ ∈ (0, 1
3
) as compactness of the rescaled solutions may not hold. He states that if the

isoperimetric ratio of the domains bounded by the solutions remains bounded for all

time, then the compactness follows. However, in general, this is not possible to detect

from the initial data. We prove that rescaled solutions converge to a limiting shape

when µ is Ã
2
-periodic and we will comment shortly why this is a worth considering in

connection to a class of Minkowski problems. Other authors [4, 16], have used similar

conditions to study the flow for some specific intervals ³, our result applies for all

³ ∈ (0, 1). More precisely, we prove:

Theorem 2.1.1. Let ³ ∈ (0, 1) be a real number, and let µ : [0, 2Ã] −→ (0,∞) be a

smooth Ã
2
-periodic function. Then, there exists a planar strictly convex body K̃ such

that

µ(¹) =
h̃(¹)

»̃³(¹)
,

and every smooth, strictly convex, Ã
2
-periodic curve that evolves by equation (2.1),

Xt = µ»³N , shrinks to a point in a finite time. Moreover, if the family of evolv-

ing curves is renormalized to enclose domains of constant area, they will converge

sequentially in the Hausdorff metric to the boundary of a convex body K̃ as above.

The classical Minkowski problem asks for a closed convex hypersurface whose

Gauss curvature has been given. In the discrete setting, Minkowski himself solved

the problem ([39], [40]), and, later, Bonnesen and Fenchel found that the given proof

by Minkowski can be extended to the case of convex hypersurfaces in Euclidean spaces

of any dimension [17], followed later by Alexandrov who proved the problem in an

innovative way ([1], [2], [3]). Finally, by Nirenberg’s [41] and A. V. Pogorelov’s ([42],

[43]) contributions addressing the regularity of the problem, the Minkowski problem

10



was solved completely.

A generalization of Minkowski problem, known as the Lp-Minkowski problem,

asks under what conditions on a given measure µ on S
n, there exists a convex body

K whose Lp surface area measure is µ. For p = 1, the problem is equivalent to the

classical Minkowski problems which is already solved. Major contributions have been

made to the Lp-Minkowski problem. Lutwak solved the even Lp-Minkowski problem

in R
n for all p g 1 except for p = n [32]. In [34], the generalized problem was studied

and solved for p = n by Lutwak, Yang and Zhang. Even in the plane, there is an

extensive literature on this problem. The case p = 0 has been studied in the plane

by Gage in [19] and by Gage and Li in [21], and for an atomic measure by Stancu in

([50], [49], [48]). For p ̸= 0 the problem has been studied in the plane by Umanskiy

[54], for −2 < p < 0 when the measure is not necessarily positive by Chen [11], and

for p < −2 and Ã
k
-periodic data (k > 1) which is positive at one point by Dou and

Zhu [16]. So, in case p < 0, while certain conditions are imposed on the measure, the

problem is solved partially, not for every p < 0. However, we impose some conditions

on data, we solve the problem for every p < 0 when solvable. To be more precise,

when data is Ã
2
-periodic, we solve the smooth planar problem for every p < 0. In this

regard, using the asymptotic behaviour of the flow obtained in the previous theorems,

we prove:

Theorem 2.1.2. Let p ∈ (−∞, 0), and let µ be a Ã
2
-periodic, smooth, positive, C2

function. Then, there exists a Ã
2
-periodic support function h : [0, 2Ã] −→ (0,∞) which

is a solution to the Lp-Minkowski problem on S
1

h1−p(h+ h′′) = È,

where È = µ1−p.

To see the connection between the solutions to the flow and the solutions to the

11



Lp-Minkowski problem in the plane for p < 0, note the following with ³ = 1/(1− p).

We remark that solutions to the Lp-Minkowski problem are obtained as asymptotic

shapes to corresponding curvature flows.

Let È : [0, 2Ã] −→ (0,∞) be a Ã-periodic smooth function, and p < 0. The

Lp-Minkowski problem associated to this data is equivalent to the study of positive

solutions to the following ordinary differential equation

h1−p(h′′(¹) + h(¹)) = È, ¹ ∈ [0, 2Ã]. (2.2)

So, if h is a C2 positive, periodic solution to this equation, h is the support function

for a convex body whose p-surface area measure is Èd¹.

Let K be a compact, strictly convex body and symmetric with respect to the

origin, and let x : S1 −→ R
2 be the Gauss parametrization of its boundary, ∂K. The

support function of ∂K is defined by

h(N) = −
〈
x(N), N

〉
for every N = −(cos ¹, sin ¹) ∈ S

1. (2.3)

The curvature and support function are related by

1

»(¹)
= Ä [h] = h¹¹(¹) + h(¹),

where h¹¹ = ∂2h
∂¹2

, and S is the radius of curvature. We described the vector valued

form of the flow by Xt = µ(¹)»³(¹, t)N , therefore the scalar form of the flow is

ht(¹, t) = −µ(¹)»³(¹, t), (2.4)

where Xt(¹, t) = ∂X(¹,t)
∂t

, and ht(¹, t) = ∂h(¹,t)
∂t

. We call a family of closed, simple,
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smooth, and strictly convex curves, {∂K(., t)}, parametrized by time, a solution to

the flow (2.4) (to the flow (2.1)) if their support function (vector position) satisfies

the scalar form of the flow (the vector valued form of the flow). Every solution to

the flow (2.4) corresponds to a solution to the vector valued form of the flow (2.1),

and vice versa. Also, if a centrally symmetric curve is evolved by the flow, solutions

remain symmetric with respect to the origin as long as they exist because the points

of the opposite normal have the same curvature, and therefore they are contracted

with the same speed.

In Section 2, we consider the basic properties of the flow and show that the total

time of existence of the flow, T , is finite, during the interval of existence, the curvature

is finite, and the area enclosed by curves goes to zero as t→ T . In Sections 3 and 4,

we show that, when data is Ã
2
-periodic, if we renormalize solutions to enclose domains

of constant area, th normalized solutions converges to a limiting shape which solves

the Lp-Minkowski problem for p ∈ (−∞,−2) ∪ (−2, 0).

We end the introduction by commenting that many of the techniques detailed here

are standard in the literature, but we choose to include them here for completion.

2.2 Short time behaviour of the flow

In this section, we show a solution to (2.1) exists for a short time and conclude that

the solution exists as long as the area enclosed by the curve is not zero.

Lemma 2.2.1. Suppose that ∂K0 is a closed, simple, smooth, and strictly convex

curve, which is the boundary of a convex body K0. Then, there exists a family of

smooth, simple, closed curves ∂K(., t), t ∈ [0, T ), with T > 0 and ∂K0 = ∂K(., 0)

whose support functions satisfy

ht(¹, t) = −µ(¹)»³(¹, t).
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Proof. We consider the linearization of the equation above. Suppose that ϵ > 0 is a

small real number, and that ¶ ∈ (−ϵ, ϵ). Let ϕ : [0, 2Ã)× [0, T ) −→ R be an arbitrary

smooth positive function, and let

h̄(¹, t, ¶) = h(¹, t) + ¶ϕ(¹, t).

The linearization of the scalar equation of the flow is thus

ϕt(¹, t) = ³µ(¹)»³+1(¹, t)ϕ¹¹(¹, t) + ³µ(¹)»³+1ϕ(¹, t), (2.5)

which for a strictly convex smooth initial conditions is strictly parabolic and, in turn,

by the theory of parabolic equations, the short time existence of solutions follows.

Lemma 2.2.2. Assuming that the initial condition is the same as in previous lemma,

then the solution ∂K(., t) remains strictly convex on [0, T ).

Proof. Let u = µ»³. For every t ∈ [0, T ), let

umin(t) = min
¹
u(¹, t).

By taking derivative with respect to t of both sides of 1
»
= h¹¹ + h, we get

»t = »2((µ»³)¹¹ + µ»³).

The evolution of u is then

ut = ³µ»³−1»t = ³µ»³+1(µ»³ + (µ»³)¹¹)

= ³»u(u+ u¹¹).

Now, let t ∈ [0, T ) be arbitrary, and ¹o = ¹o(t) be such that min¹ u(¹, t) = u(¹0, t).
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Since u¹¹(¹0, t) > 0, we infer the time evolution of the minimum, in the sense of

forward differences when needed:

(umin)t(¹0, t) = ³»(¹0, t)u(¹0, t)(u(¹0, t) + u¹¹(¹0, t)) g 0

and

min
¹
u(¹, t) g min

¹
u(¹, 0) > 0.

As a result, there exists c > 0 such that min¹ »(¹, t) g c for every t ∈ [0, T ). So, the

solution remains convex as long as it exists and the curvature of the evolving curves

has a uniform lower bound for all time of existence of the flow.

Lemma 2.2.3. If the area enclosed by the curve, ∂K(., t), is not zero, then

max
¹
»(¹, t) <∞.

Proof. Suppose that the area enclosed by the curve is not zero at some time t. Let

the origin be in the interior of the domain bounded by ∂K( . , t). Then, by our

considerations, there exists a Ä > 0 such that the circle centered at the origin and

radius 2Ä is included in the domain bounded by ∂K( . , t). For simplicity, in what

follows, we will drop the arguments ¹ and t when there is not risk of confusion.

Following a standard technique in curvature flows, let

Φ(¹, t) =
−ht
h− Ä

=
µ»³

h− Ä

and note that, since the support function is now greater than 2Ä, there exists some

time interval [t, t′ := t + ¶) during which the area enclosed by the curve remains

strictly positive. Assume that this ¶ is the time it takes the support function to

decrease by at most half, thus remains larger than Ä/2.
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Consider

Φmax(t) = max
¹

{Φ(¹, t)}.

For fixed t0 ∈ [0, t′), at the point (¹0, t0) where Φmax is reached, we have

Φ¹(¹0, t0) =
−ht¹
h− Ä

+
hth¹

(h− Ä)2
= 0, (2.6)

Φ¹¹(¹0, t0) =
−h¹¹t
h− Ä

+
ht¹h¹

(h− Ä)2
+
h¹th¹ + hth¹¹

(h− Ä)2
+

−2(h¹)
2ht

(h− Ä)3
f 0, (2.7)

and

Φt(¹0, t0) =
−htt
h− Ä

+
h2t

(h− Ä)2
g 0. (2.8)

By (5.1), we have
ht¹h¹

(h− Ä)2
=

ht(h¹)
2

(h− Ä)3
, thus

Φ¹¹ =
−h¹¹t
h− Ä

+
hth¹¹

(h− Ä)2
f 0. (2.9)

Also, recall that

htt = (−µ»³)t = −µ³»t»³−1

and

»t = −»2(ht + h¹¹t).
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Applying the previous equations, in particular (2.9), we have

0 f Φt =
−htt
h− Ä

+
h2t

(h− Ä)2
=
µ³»t»

³−1

h− Ä
+

µ2»2³

(h− Ä)2

=
−(µ³»³+1)(ht + h¹¹t)

h− Ä
+

µ2»2³

(h− Ä)2

=
−(µ³»³+1)(ht)

h− Ä
− µ³»³+1(h¹¹t)

h− Ä
+

µ2»2³

(h− Ä)2

=
µ2³»2³+1

h− Ä
− µ³»³+1(h¹¹t)

h− Ä
+

µ2»2³

(h− Ä)2

f µ2³»2³+1

h− Ä
− µ³»³+1(h¹¹ht)

(h− Ä)2
+

µ2»2³

(h− Ä)2

=
µ2³»2³+1

h− Ä
+
µ2³»2³+1h¹¹
(h− Ä)2

+
µ2»2³

(h− Ä)2

=
µ2³»2³+1

(h− Ä)2
(h− Ä+ h¹¹) +

µ2»2³

(h− Ä)2

=
µ2³»2³+1

(h− Ä)2
(h− Ä+ h¹¹) +

µ2»2³

(h− Ä)2

=
µ2³»2³

(h− Ä)2
− Ä

µ2³»2³+1

(h− Ä)2
+

µ2»2³

(h− Ä)2

=
µ2»2³

(h− Ä)2
(³ + 1− Ä³»).

Therefore,

» f 1 + ³

Ä³
, (2.10)

concluding the proof.

Proposition 2.2.1. Let [0, T ) be the maximal time interval on which the solution of

equation (2.4) exists. Then, the area enclosed by the convex curve at time t, A(t)

satisfies

A(t) → 0 as t→ T.

Proof. Suppose by contradiction that limt→T A(t) > 0. Then, by Lemma 2.2.3 and
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Lemma 2.2.2,

0 < min
¹
»(¹, 0) f min

¹
»(¹, T ) f max

¹
»(¹, T ) <∞.

Therefore, the flow equation, the equation (2.4), is strictly parabolic at time T , and

in turn can be extended for a short time beyond T . This contradicts the assumption

that [0, T ) is the maximal time interval on which the solution exists. So,

A(t) → 0 as t→ T.

Lemma 2.2.4. The total time of existence of the flow is finite.

Proof. Let Γ0 be a circle centred at the origin with radius Ä0 containing the initial

curve ∂K0 in its interior. Evolve Γ0 by the flow

ht = −[min
¹
µ(¹)]»³

to get the evolving circle Γ(., t), more precisely to get the solution

Γ(t) =

{
(x(t), y(t)) ∈ R

2 | x2(t) + y2(t) = (Ä(t))2 :=
(
Ä³+1
0 − [min

¹
µ(¹)](³ + 1)t

) 2
α+1

}
.

As t → É :=
Äα+1
0

min
θ

µ(³+1)
, we have that Ä(t) → 0 and therefore the circle solution to

the flow defined above exists only for a finite time É when the circle becomes a single

point. We now claim that for every t, ∂K(t) ¢ Int(Γ(t)) and, thus, the total existence

time T of the flow for ∂K(t) satisfies an upper bound É, T f É. By contradiction,

suppose that this is not true, so ∂K(t) lags behind. Then, there exists a time t0 when

at some ¹0, Γ(¹0, t0) touches from outside ∂K(¹0, t0) for the first time. Because the

curves will have the same normal at that point, they will be tangent at ¹0 and thus,
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the containment implies

»(¹0, t0) g
1

Ä(t0)
,

and so the curves’ speeds by their corresponding flows at (¹0, t0) are in the relation

−µ»(¹0, t0)³ f −min
¹
µ(¹)

[
1

Ä(t0)

]³
.

Therefore, the flow of ∂K(t) at ¹0 moves faster toward the origin than the circle. So,

the circle cannot pass the convex body at any time, the so-called avoidance principle,

and we conclude that the solution for our original flow would become singular at most

at time É.

2.3 Normalized evolution equations and compact-

ness of normalized solutions

Using a standard technique in homogeneous curvature flows, we rescale the support

function of the flow by

h̃(¹, t) =
h(¹, t)√
A(t)

,

creating a normalized support function, and define the new time variable by

Ä = −1

2
ln
A(t)

A(0)
.

By direct calculations, at every time Ä ∈ (0,∞), we get »̃(¹, Ä) =
√
A(Ä)»(¹, Ä), and

Ã(Ä) =
1

2

2Ã∫

0

h̃(¹, Ä)

»̃(¹, Ä)
d¹ = 1.
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By differentiating both sides of A(t) = 1
2

2Ã∫
0

h
»
d¹, the area enclosed by the solution to

the flow at time t, with respect to t, we get

dA(t)

dt
=

1

2

2Ã∫

0

(
ht
»

− h

»2
»2(µ»³ + (µ»³)¹¹)

)
d¹

=
1

2

2Ã∫

0

(
ht
»

− h(µ»³ + (µ»³)¹¹)

)
d¹ .

(2.11)

Using integration by parts, we infer from equation (2.11) that

dA(t)

dt
=

1

2

2Ã∫

0

(
ht
»

− hµ»³ − h¹¹(µ»
³)

)
d¹

=
1

2

2Ã∫

0

(
ht
»

− (h+ h¹¹)(µ»
³)

)
d¹

= −
2Ã∫

0

(µ»³−1) d¹ .

Now by chain rule, we get the evolution equations of the normalized flow:

h̃Ä = h̃− µ»̃³

1
2

2Ã∫
0

µ»̃³−1 d¹

,

and

»̃Ä = »̃2
µ»̃³ + (µ»̃³)¹¹

1
2

2Ã∫
0

µ»̃³−1d¹

− »̃.

For the rest of this section, we assume µ : [0, 2Ã] −→ (0,∞) and ∂K̃0 are Ã
2
-periodic.

Proposition 2.3.1. The normalized evolving curves, ∂K̃( . , Ä), remain in a compact

annulus for all time Ä , 0 f Ä <∞.

Proof. First, we reproduce a technique used in Lemma 4.2 of [27] to show {h̃(¹, Ä)}Ä
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is uniformly bounded from above. Let Ä ∈ (0,∞) be arbitrary, h̃ := h̃(Ä), and

h̃ = h̃0 +
∑∞

n=1 h̃n cos (4n¹) be the cosine series of h̃. Then,

1

»̃
= h̃¹¹ + h̃ = h̃0 +

∞∑

n=1

(1− 16n2)h̃n cos (4n¹).

We infer from

0 f
∫ 2Ã

0

1± cos (4n¹)

»̃
d¹ = 2Ãh̃0 ± Ãh̃n(1− 16n2)

that for every n ∈ N,

|h̃n| f
2h̃0

16n2 − 1
.

This implies

2 =

∫ 2Ã

0

h̃

»̃
d¹ = 2Ãh̃20 − Ã

∞∑

n=1

(16n2 − 1)h̃2n

g 2Ã(1− 2
∞∑

n=1

1

16n2 − 1
)h̃20 := 2Ch̃20.

Thus, h̃0 f
√
C. We have that

h̃(Ä, ¹) =
1

2
(h̃(Ä, ¹) + h̃(Ä, ¹ + Ã)) f 1

4
L(∂K̃(Ä)) =

Ã

2
h̃0 f

Ã

2

√
C.

Since Ä ∈ (0,∞) is arbitrary and C is independent of Ä and ¹, {h̃(¹, Ä)} is uniformly

bounded from above. We claim that the support function is uniformly bounded from

below. To see this, let Ä ∈ (0,+∞), and let Ẽ(Ä) be the John’s ellipsoid of K̃(Ä).

If Ä = Ä(Ä), and ¸ = ¸(Ä) are respectively the shortest and the longest semi-axis

of Ẽ(Ä), then, from Ẽ(Ä) ¢ K̃(Ä) ¢
√
2Ẽ(Ä), John’s Theorem (see [22], Theorem
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4.2.12), we have

C g max
¹
h̃(¹, Ä) g ¸ and min

¹
h̃(¹, Ä) g Ä. (2.12)

Since area of K̃(Ä) is 1 and Ẽ(Ä) ¢ K̃(Ä) ¢
√
2Ẽ(Ä), we infer that

ÃÄ¸ f 1 f 2ÃÄ¸ f 2ÃÄC. (2.13)

From here, Ä g 1/(2ÃC), and so h̃K(¹, Ä) g min¹ h̃(¹, Ä) g Ä g 1/(2ÃC), thus we

obtain a uniform lower bound on h̃K concluding the proof.

Corollary 2.3.1. The normalized curvature function is uniformly bounded from above

and below for all time Ä .

Proof. The normalized solution remains in a fixed annulus, so the normalized support

function is bounded from both sides. We apply the technique from Stancu-Vikram

[52], Proposition 3.4, to show the curvature is bounded from above. Let t ∈ (0, T ),

and let E(t) be the John’s ellipsoid of K(t). If Ä, and ¸ are respectively the shortest

and the longest semi-axis of E(t), then

max
¹
h̃(¹, t) f

√
2¸ and min

¹
h̃(¹, t) g Ä.

Since h̃(¹, t) = h(¹,t)√
A(t)

, we have that h(¹, t) g Ä
√
A(t). We infer from Lemma 2.2.3,

equation (2.10), that

»(¹, t) f 2(1 + ³)

Ä³
√
A(t)

.

Since »̃(¹, t) = »(¹, t)
√
A(t), we infer that

»̃(¹, t) f 2(1 + ³)

Ä³
.

Since area of K̃(t) is 1, we infer from Ẽ(t) ¢ K̃(t) ¢
√
2Ẽ(t) John’s Theorem (see
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[22], Theorem 4.2.12) that

ÃÄ¸ f 1 f
√
2ÃÄ¸.

Thus

»̃(¹, t) f 2(1 + ³)

Ä³
f 2

√
2(1 + ³)

³
Ãmax

¹
h̃(¹, t).

Since support function is bounded from above, the curvature is bounded from above

on (0, T ). There is a one-to-one correspondence between 0 < t < T , and 0 < Ä <∞,

so the curvature is bounded from above on 0 < Ä <∞.

2.4 Asymptotic behaviour of the flow

In this section, we study the asymptotic behaviour of the flow. We suppose the data

is Ã
2
-periodic and show the curves converge to a limiting shape which solves the Lp

Minkowski problem. Define the entropy of the (un-normalized) flow by

E(t) := A(³−1)/2(t)

∫ 2Ã

0

µ(¹)k³−1(¹, t) d¹.

Proposition 2.4.1. The entropy satisfies the following inequality along the flow

d

dt
(E(t)) g 0. (2.14)

Furthermore, the entropy is constant if and only if the evolving curve is the boundary

of a convex body solution to a Lp-Minkowski problem with p < 0 .
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Proof. To see this, note that

dE(t)
dt

=
(³− 1)

2
A

α−3
2 (t)At(t)

2Ã∫

0

µ(¹)»³−1(¹, t) d¹+

(³− 1)A
α−1
2 (t)

2Ã∫

0

µ(¹)»³(¹, t)[µ(¹)»³(¹, t) + (µ(¹)»³(¹, t))¹¹] d¹

=
(1− ³)

2
A

α−3
2 (t)(At(t))

2−

(1− ³)A
α−1
2 (t)

2Ã∫

0

µ(¹)»³(¹, t)[µ(¹)»³(¹, t) + (µ(¹)»³(¹, t))¹¹] d¹ g 0.

The last inequality holds because it is equivalent to a Minkowski’s inequality.

Indeed,

(1− ³)

2
A

α−3
2 (t)(At(t))

2−(1−³)Aα−1
2 (t)

2Ã∫

0

µ(¹)»³(¹, t)[µ(¹)»³(¹, t)+(µ(¹)»³(¹, t))¹¹] d¹ g 0

holds if

(1− ³)

2
(At(t))

2−(1− ³)

2

2Ã∫

0

h(¹, t)

»(¹, t)
d¹

2Ã∫

0

µ(¹)»³(¹, t)[µ(¹)»³(¹, t)+(µ(¹)»³(¹, t))¹¹] d¹ g 0.

This is the same as




2Ã∫

0

µ(¹)»³(¹, t)s[h(¹, t)]d¹




2

g
2Ã∫

0

h(¹, t)s[h(¹, t)]d¹

2Ã∫

0

µ(¹)»³(¹, t)s[µ(¹)»³(¹, t)]d¹.

This inequality is derived from the Minkowski’s inequality ([46], Theorem 6.2.1) that
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states for two convex bodies with support functions h1 and h2




2Ã∫

0

h1(¹, t)s[h2(¹, t)]d¹




2

g
2Ã∫

0

h1(¹, t)s[h1(¹, t)]d¹

2Ã∫

0

h2(¹, t)s[h2(¹, t)]d¹.

If we replace one of the support functions by an arbitrary smooth function, the

inequality still holds. For an elaboration on this, see [4], proof of the lemma I1.5.

The equality holds if there is a constant ¼ > 0 such that ¼µ»³ = h. We have

α
√
¼µ =

h
1
α

»
= h

1
α (h¹¹ + h) = h1−p(h¹¹ + h),

where p = ³−1
³

. So, the equality holds if K, up to rescaling, is a solution to a

Lp-Minkowski problem. We note that since ³ ∈ (0, 1), p = ³−1
³

∈ (−∞, 0).

Corollary 2.4.1. The entropy of the normalized flow is non-decreasing and is con-

stant if and only if the evolving curve is, up to normalization, a solution to the

corresponding Lp-Minkowski problem.

Proof. We have, strictly from the normalization and the fact Ä = Ä(t), that

Ẽ(t) = Ã
α−1
2

2Ã∫

0

µ(¹)»̃³−1(¹, t)d¹

=

2Ã∫

0

µ(¹)(
√
A»)³−1(¹, t)d¹

= A
α−1
2

2Ã∫

0

µ(¹)»³−1(¹, t)d¹

= E(t).

Therefore

dẼ(t)
dt

=
dE(t)
dt

.
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Since dt
dÄ

= −2A(t)
At

> 0 and dE(t)
dt

g 0, we infer

dẼ(Ä)
dÄ

=
dẼ(t)
dt

×
dt

dÄ
g 0.

Proposition 2.4.2. The entropy of the normalized flow is bounded from above and

below.

Proof. Since the entropy is increasing, it is bounded from below by its value at time

zero. Now, we want to show the entropy is bounded from above. Suppose by contra-

diction that there is {Än} · ∞ such that Ẽ(Än) · ∞. Since

Ẽ(Ä) f max
[0,2Ã]

µ(¹)

2Ã∫

0

1

»̃1−³(¹, Ä)
d¹,

we infer that

lim
n→∞

2Ã∫

0

1

»̃1−³(¹, Än)
d¹ = ∞.

Jensen’s inequality implies that

lim
n→∞

2Ã∫

0

1

»̃(¹, Än)
d¹ = ∞.

By Proposition 2, the support function of the normalized solutions is bounded from

below. Let C > 0 be such that for every Ä > 0 and every ¹ ∈ [0, 2Ã],

h̃(¹, Ä) g C.

Therefore

C

2Ã∫

0

1

»̃(¹, Än)
d¹ f

2Ã∫

0

h̃(¹, Ä)

»̃(¹, Än)
d¹ = 2.
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As n→ ∞, the left hand side goes to infinity while the right hand side is fixed. This

is a contradiction. So, the entropy is bounded from above.

Lemma 2.4.1. There exists a constant Ẽ > 0 such that as Ä → ∞, we have

Ẽ(Ä) → Ẽ .

This is a direct consequence of the monotonicity and the upper bound of the

normalized entropy.

Lemma 2.4.2. There exists a sequence of times, {Än} · ∞, such that limn→∞ ẼÄ (Än) =

0. In other words,

lim inf
Ä→∞

ẼÄ = 0.

Proof. By Corollary 2.4.1, ẼÄ (Ä) g 0. Therefore, lim infÄ→∞ ẼÄ g 0. Suppose that

lim infÄ→∞ ẼÄ > 0. So, there exists an ϵ > 0, such that lim infÄ→∞ ẼÄ (Ä) g ϵ. Thus,

there is Ä0 ∈ (0,∞) such that for every Ä g Ä0

ẼÄ (Ä) g ϵ,

By taking integral, from Ä0 to Ä , Ä0 f Ä , from both sides of this equation, we get

1

2
(Ẽ(Ä)− Ẽ(Ä0)) g ϵ(Ä − Ä0).

This is a contradiction because the left hand side is bounded from above, due to the

boundedness of the normalized entropy, Proposition 2.4.2, while the right hand side

goes to ∞ as Ä tends to ∞.

Lemma 2.4.3. For any solution to the flow, the gradient of the normalized curvature

function is uniformly bounded from above and below.

Proof. Let Φ = (µ»̃³)2 + (µ»̃³)2¹, and let Ä ∈ [0,∞) be arbitrary. The idea of the
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proof is inspired by Gage-Hamilton [20]. In order to show that the gradient of the

normalized curvature is bounded from above and below, it is enough to show that

Φ is bounded from above. Let (¹0, Ä0) ∈ [0, 2Ã] × [0, Ä ] be such that Φ(¹0, Ä0) =

sup[0,2Ã]×[0,Ä ] Φ(¹, Ä). Without loss of generality suppose that Ä0 > 0. We claim that

(µ»̃³)¹(¹0, Ä0) = 0. To see this, suppose on the contrary that (µ»̃³)¹(¹0, Ä0) ̸= 0. At

(¹0, Ä0), we have

Φ¹ = 2(µ»̃³)(µ»̃³)¹ + 2(µ»̃³)¹(µ»̃
³)¹¹

= 2(µ»̃³)¹[(µ»̃
³) + (µ»̃³)¹¹] = 0.

Since (µ»̃³)¹(¹0, Ä0) ̸= 0, at (¹0, Ä0) we have

(µ»̃³) + (µ»̃³)¹¹ = 0. (2.15)

Using equation (2.15), at (¹0, Ä0), we get

Φ¹¹ = 2(µ»̃³)¹¹[(µ»̃
³) + (µ»̃³)¹¹] + 2(µ»̃³)¹[(µ»̃

³)¹ + (µ»̃³)¹¹¹]

= 2(µ»̃³)¹[(µ»̃
³)¹ + (µ»̃³)¹¹¹] f 0,

(2.16)
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and

0 f ΦÄ = 2(µ»̃³)(µ»̃³)Ä + 2(µ»̃³)¹(µ»̃
³)¹Ä

= 2(µ»̃³)(³µ»̃³−1»̃Ä ) + 2(µ»̃³)¹(³µ»̃
³−1»̃Ä )¹

= 2(µ»̃³)(³µ»̃³−1[»̃2
µ»̃³ + (µ»̃³)¹¹

1
2

∫
µ»̃³−1

− »̃])+

2(µ»̃³)¹(³µ»̃
³−1[»̃2

µ»̃³ + (µ»̃³)¹¹
1
2

∫
µ»̃³−1

− »̃])¹ =

− 2³(µ»̃³)2 + 2(µ»̃³)¹(³µ»̃
³+1µ»̃

³ + (µ»̃³)¹¹
1
2

∫
µ»̃³−1

− ³µ»̃³)¹ = −2³(µ»̃³)2+

2(µ»̃³)¹[(³µ»̃
³+1)¹

µ»̃³ + (µ»̃³)¹¹
1
2

∫
µ»̃³−1

+ (³µ»̃³+1)
(µ»̃³)¹ + (µ»̃³)¹¹¹

1
2

∫
µ»̃³−1

− ³(µ»̃³)¹]

= −2³(µ»̃³)2 + 2(µ»̃³)¹[(³µ»̃
³+1)

(µ»̃³)¹ + (µ»̃³)¹¹¹
1
2

∫
µ»̃³−1

− ³(µ»̃³)¹]

= −2³(µ»̃³)2 − 2³(µ»̃³)2¹ + (³µ»̃³+1)[2³(µ»̃³)¹
(µ»̃³)¹ + (µ»̃³)¹¹¹

1
2

∫
µ»̃³−1

].

At (¹0, Ä0), we have that

−2³(µ»̃³)2 − 2³(µ»̃³)2¹ < 0,

and by equation (2.16),

2(µ»̃³)¹[(µ»̃
³)¹ + (µ»̃³)¹¹¹] f 0,

therefore

0 f ΦÄ = −2³(µ»̃³)2 − 2³(µ»̃³)2¹ + (³µ»̃³+1)[2³(µ»̃³)¹
(µ»̃³)¹ + (µ»̃³)¹¹¹

1
2

∫
µ»̃³−1

] < 0.

This is a contradiction. So, (µ»̃³)¹(¹0, Ä0) = 0. Consequently,

sup
[0,2Ã]×[0,Ä ]

Φ(¹, Ä) f max{ sup
[0,2Ã]

Φ(¹, 0), sup
[0,2Ã]×[0,Ä ]

(µ»̃³)2}.
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The normalized curvature function is uniformly bounded from above and below on

[0, 2Ã] × [0,∞), therefore Φ is uniformly bounded from above, and in turn, »̃¹ is

uniformly bounded from above and below.

Now, we are ready to give a proof of Theorems 2.1.1 and 2.1.2.

Proof. Let ³ = 1
1−p

. By Lemma 2.4.2, there exists a sequence of time {Än} · ∞ such

that

lim
n→∞

ẼÄn = 0.

We infer from

ẼÄ = (³− 1)

2Ã∫

0

µ»̃³−2»̃Äd¹

= (³− 1)

2Ã∫

0

µ»̃³−2[»̃2
µ»̃³ + (µ»̃³)¹¹

1
2

∫
µ»̃³−1

− »̃]d¹

= (³− 1)

2Ã∫

0

[
µ»̃³

µ»̃³ + (µ»̃³)¹¹
1
2

∫
µ»̃³−1

− µ»̃³−1
]
d¹

= 2(³− 1)
1

Ẽ

2Ã∫

0

[µ»̃³(µ»̃³ + (µ»̃³)¹¹)− µ»̃³−11

2

2Ã∫

0

µ»̃³−1]d¹

= 2(³− 1)
1

Ẽ

[ 2Ã∫

0

(µ»̃³(µ»̃³ + (µ»̃³)¹¹)d¹ −
1

2
(

2Ã∫

0

µ»̃³−1d¹)2

]
g 0

that

lim
n→∞




2Ã∫

0

µ(¹)»̃³(¹, Än)s[h̃(¹, Än)]d¹




2

(2.17)

= lim
n→∞

2Ã∫

0

h̃(¹, Än)s[h̃(¹, Än)]d¹

2Ã∫

0

µ(¹)»̃³(¹, Än)s[µ(¹)»̃
³(¹, Än)]d¹.
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Since h̃(¹, Än), »̃(¹, Än), h̃¹(¹, Än), and »̃¹(¹, Än) are uniformly bounded, we infer from

1
»̃
= h̃ + h̃¹¹ that h̃¹¹(¹, Än) and h̃¹¹¹(¹, Än) are uniformly bounded. Let ¹1 ∈ [0, 2Ã]

and ¹2 ∈ [0, 2Ã] be arbitrary. For every n ∈ N, there exist ¹n0 ∈ [0, 2Ã] such that

|h̃¹¹(¹1, Än)− h̃¹¹(¹2, Än)| = |h̃¹¹¹(¹n0 , Än)||¹2 − ¹1|.

Let M > 0 be such that |h̃¹¹¹(¹, Än)| f M for every n ∈ N and every ¹ ∈ [0, 2Ã].

Then

|h̃¹¹(¹1, Än)− h̃¹¹(¹2, Än)| fM |¹2 − ¹1| n ∈ N.

So, the sequence {h̃¹¹(¹, Än)} is uniformly bounded and equicontinous. So, it pos-

sesses a uniformaly convergent subsequence, say {h̃¹¹(¹, Änj
)}. The same way, we

can show {h̃¹(¹, Änj
)} has a uniformly convergent subsequence, say {h̃¹(¹, Änjk

)}. Fi-

nally {h̃(¹, Änjk
)} possesses a uniformly convergent subsequences, say {h̃(¹, Änjkl

)}.

So, there exist a subsequence of {Än}, for simplicity we denote it by {Än} · ∞ again,

such that {h̃¹¹(¹, Än)}, {h̃¹(¹, Än)} and {h̃(¹, Än)} are uniformly convergent. Suppose

that

h̃(¹, Än) → h̃(¹),

then

h̃¹¹(¹, Än) → h̃¹¹(¹),

and therefore

»̃(¹, Än) → »̃(¹) uniformly,

where »̃ = 1

h̃θθ+h̃
> 0. Therefore h̃ is the support function of a strictly convex body,

say K̃. Uniform convergence of the support functions and curvature functions, along
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with the fact that

lim
n−→∞




2Ã∫

0

µ(¹)»̃³(¹, Än)s[h̃(¹, Än)]d¹




2

=

lim
n−→∞

2Ã∫

0

h̃(¹, Än)s[h̃(¹, Än)]d¹

2Ã∫

0

µ(¹)»̃³(¹, Än)s[µ(¹)»̃
³(¹, Än)]d¹,

implies




2Ã∫

0

µ(¹)»̃³(¹)s[h̃(¹)]d¹




2

=

2Ã∫

0

h̃(¹)s[h̃(¹)]d¹

2Ã∫

0

µ(¹)»̃³(¹)s[µ(¹)»̃³(¹)]d¹.

So, for the strictly convex body K̃, the Minkowski type inequality becomes equality.

Therefore, there exists a ¼ > 0 such that µ»̃³ = ¼h̃. Rearranging the terms, we get

È = α
√
µ =

(¼h̃)
1
α

»̃
.

If we rescale the limit body, K̃, by ¼, then

È =
h̃

1
α

»̃
= h̃

1
α (h̃¹¹ + h̃) = h̃1−

α−1
α (h̃¹¹ + h̃) = h̃1−p(h̃¹¹ + h̃).

Therefore, we get a non-degenerate convex body satisfying

È = h̃1−p(h̃′′ + h̃).

This concludes the proof.
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Chapter 3

Contraction of strictly convex

hypersurfaces of revolution in

R
n+1, n g 2

3.1 Introduction

The first study of the ”curve shortening” flow dates back to Mullins [38]. Within

decades different generalizations of the curve shortening in the plane were studied by

many authors, most notably Gage and Hamilton [20], [19], [21], Andrews [4], [6], [7],

as well as many others [10], [19], [21], [45], [48], [53]. We refer the reader to [12] for

a more comprehensive account and list of references. The mean curvature flow is a

well-known generalization of the curve shortening flow to higher dimensions. Huisken

showed that the mean curvature flow converges to a round point in finite time [24].

The Gaussian curvature flow, another generalization of the curve shortening flow

to higher dimensions, described by the following partial differential equation was
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considered by Tso [55]

∂X(x, t)

∂t
= −K(x, t)¿(x, t), (3.1)

where X is an embedding of a smooth, strictly convex hypersurface in R
n and K is

its Gaussian curvature. Starting from a convex hypersurface, Tso [55] showed that

Gaussian curvature flow converges to a point in finite time, and rescaled solutions

converge to a convex hypersurface. The following generalization of the Gaussian

curvature flow was first studied by Chow, [13],

∂X(x, t)

∂t
= −K´(x, t)¿(x, t), (3.2)

where K is the Gaussian curvature, and ´ > 0. Chow showed when ´ = 1
n
rescaled

solutions, as in the case of the mean curvature flow, converge to a sphere. When

´ ̸= 1
n
, there is extensive literature studying the asymptotic behaviour of the flow

(see [9] and references therein).

In this chapter, after undertaking an exhaustive examination of a variant of the

flow occurring within the three-dimensional space R
3, we generalize the obtained

results to include the higher-dimensional settings. Consider in R
3 the following gen-

eralization of the flow studied by Chow, equation (3.2):

∂X(x, t)

∂t
= −»³1

1 (x, t)»³2
2 (x, t) · · ·»³n

n (x, t)¿(x, t) (3.3)

where »1(x, t) f »2(x, t) f . . . f »n(x, t) are the principal curvatures and ¿(x, t) is the

outer normal toK(t) atX(x, t) and ³1, ³2, . . . , ³n are positive real numbers. Contrary

to the speed in the flow considered by Chow, Gaussian curvature, the speed in the

evolution equation (3.3) is non-homogeneous and non-symmetric. Therefore, equation

(3.3) can be interpreted as a more challenging generalization of the Gaussian flow. In

34



the paper by Li and Lv [31] contraction of convex hypersurfaces by non-homogeneous

speeds was studied for the first time. In their paper, the speed functions, in addition to

other properties, are essentially required to be symmetric and homogeneous of degree

one. Among other things, it was shown that such a flow evolves convex hypersurfaces

to a point in finite time, and in fact, in hyperbolic space roundness was proved

for sufficiently pinched initial hypersurfaces by high powers of the speed. McCoy

extended these results to hypersurfaces in Euclidean space. He showed that, with

sufficient initial curvature pinching, the flow converges in finite time to points that

are asymptotically spherical [36]. For a review of the studied non-homogeneous flows

in Euclidean space see [35] and the references therein. In all these works, in addition

to other properties, the speed function is required to be symmetric and homogeneous

of degree 1, while in this paper the speed, f(»1, . . . , »n) = »³1
1 . . . »³n

n , is neither

symmetric nor necessarily homogeneous of degree 1.

We restrict our attention to the case in which the initial surface, ∂K0, viewed as

the boundary of a smooth convex body K0, is an axially symmetric surface smoothly

embedded in R
3. So, there exists a function u0 : [0, 1] → R, meeting the x-axis

orthogonally, strictly positive and smooth on (0, 1), with u(0, 0) = u(1, 0) = 0, such

that X0 : (0, 1) × S
1 → R

3, defined by X0(x, v) = (x, u0(x)v), parametrize ∂K0.

We show that there exist strictly positive, smooth functions u(·, t) : (at, bt) → R
g0,

meeting the x-axis orthogonally, with u(at, t) = u(bt, t) = 0 satisfying the following

equation, the scalar form of the equation (5.1):

∂u(x, t)

∂t
= − (−uxx)³2

u³1(1 + u2x)
α1+3α2−1

2

on (at, bt)× [0, É). (3.4)

We show that, in finite time, solutions degenerate into a point, time at which hy-

persurfaces develop a singularity, and, under suitable initial conditions, the blow-up

of the solutions converge to a convex hypersurface. More precisely, suppose that the
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profile curve of the initial surface is even, that is, u0(x + p) = u0(p − x) for every

x ∈ (c, b0), where p is the midpoint of the interval (a0, b0). Then, we have the following

result:

Theorem 3.1.1. Suppose that a smooth strictly convex embedded closed surface

∂K0 ¢ R
3 is axially symmetric with an even profile curve. Then, solutions of the

equation (5.1) exist on a maximal time interval [0, É), and they shrink to a point as

t → É. Furthermore, if solutions are rescaled to have fixed axial length and enclose

domains of constant volume, they will converge sequentially in the Hausdorff metric

to the boundary of a convex body.

3.2 Preliminaries

Consider a smooth, strictly convex, axially symmetric surface ∂K0 ¢ R
3, boundary of

a convex bodyK0, generated by revolving a strictly positive, smooth, concave function

u : [0, a] −→ R with u(a) = u(0) = 0 about x-axis. Consider the parametrization

X : (0, a)× [0, 2Ã] −→ R
3 defined by

X(x, ¹) =
(
x, u(x) cos ¹, u(x) sin ¹

)
. (3.5)

Then, for every x ∈ (0, a) at
(
x, u(x)

)
∈ ∂K, the principal curvatures are equal to

»1(x) = »rad(x) =
1

u(x)
√

1 + u2x(x)
, »2(x) = »axi(x) = − uxx(x)

(1 + u2x(x))
3
2

. (3.6)

We note that since K is smooth, »min, »max are continuous and poles are umbilical

points, then at poles we still have »rad and »axi defined by

»1 = »rad(p) = lim
x→p

»rad(x), and »2 = »axi(p) = lim
x→p

»axi(x), (3.7)
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for p ∈ {0, a}. In this paper, for ³1, ³2 > 0 fixed, we consider the following flow

∂X

∂t
(p, t) = −»³1

1 (p, t)»³2
2 (p, t)¿(p, t), p ∈ ∂K. (3.8)

We infer from equation (3.5) that for every x ∈ (0, a),

∂X

∂t
(x, ¹) = (0, ut cos ¹, ut sin ¹).

If follows from

¿(x, ¹, t) =
(−ux, cos ¹, sin ¹)√

1 + u2x

that

−»³1
rad(x, t)»

³2
axi(x, t) =

〈∂X
∂t

(x, ¹), ¿(x, ¹, t)
〉

(3.9)

=
〈
(0, ut cos ¹, ut sin ¹),

(−ux, cos ¹, sin ¹)√
1 + u2x

〉
=

ut√
1 + u2x

.

Thus, the scalar evolution equation for the graph function u is

ut = −
√

1 + u2x»
³1
rad(p, t)»

³2
axi(x, t)

= − (−uxx)³2

u³1(1 + u2x)
3α2+α1−1

2

. (3.10)

Since the behaviour of the flow around the poles is governed by similar equations, it is

sufficient to study the behaviour of the flow around one of the poles. More precisely,

let umax = u(x0), and define w :
(
− u(x0), u(x0)

)
→ [0, x0) as follows:

y 7→





u−1(y) 0 f y f umax

u−1(−y) −umax f y < 0.
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About 0 = (0, 0, 0) ∈ ∂K, consider the parametrization X̄ : B(0, umax) −→ R
3 defined

by

(y, z) 7→
(
v(y, z), y, z

)
(3.11)

where v(y, z) = w(
√
y2 + z2) = (u−1)(

√
y2 + z2). It follows from

gij = ¶ij − vivj
1 + |∇v|2 , and hij =

v2ij√
1 + |∇v|2

(3.12)

that

(gij) =




1+v2z
1+v2y+v2z

− vyvz
1+v2y+v2z

− vyvz
1+v2y+v2z

1+v2y
1+v2y+v2z


 , and (hij) =




vyy√
1+v2y+v2z

vyz√
1+v2y+v2z

vyz√
1+v2y+v2z

vzz√
1+v2y+v2z


 . (3.13)

When z = 0, we have that

(gij) =




1
1+v2y

0

0 1


 , and (hij) =




vyy√
1+v2y

0

0 vzz√
1+v2y


 . (3.14)

As a result, along the curve

µ =
{(
y, v(y, 0)

)
: y ∈

(
− umax, umax

)}
, (3.15)

the principal curvatures are

»rad(y, 0) =
vzz

(1 + v2y)
1
2

, and »axi(y, 0) =
vyy

(1 + v2y)
3
2

, (3.16)

and the normal is

¿(y, 0) =
(vy, 0,−1)√

v2y + 1
.
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By direct calculations, we get

(0, 0, vt(y, t)) =
∂µ

∂t
(y, 0, t) = −»³1

rad(y, 0, t)»
³2
axi(y, 0, t)¿(y, 0, t).

Therefore,

− »³1
rad(y, t)»

³2
axi(y, t) =

〈∂µ
∂t

(y, 0, t), ¿(y, ¹, t)
〉

=
〈
(0, 0, vt(y, t)),

(vy, 0,−1)√
v2y + 1

〉
=

−vt√
1 + v2y

.
(3.17)

So, the scalar evolution equation of the graph function v is

vt =
√

1 + v2y»
³1
rad(y, 0, t)»

³2
axi(y, 0, t) =

1

(1 + v2y)
α1+3α2−1

2

v³1
zz v

³2
yy . (3.18)

We say smooth solutions for the equation (3.8) exists if there exist smooth, strictly

positive, concave functions u(·, t) : (at, bt) −→ R with u(at, t) = u(bt, t) = 0 satisfying

equation (3.10) such that for every t the curve µ(t), defined by equation (3.49), is

smooth.

3.3 The free boundary problem

If we consider the inside and the outside of the closed surface, we can regard the

surface as the interface separating two phases that are transforming, and the defor-

mation of a surface according to equation (3.8) can be viewed as a free boundary

problem. Solutions of equation (3.4) correspond to strictly convex hypersurfaces, the

free boundaries, moving according to the equation (3.8). In this section, we show

that solutions of equation (3.4) exist, their convexity is preserved, and after a finite

time, the surfaces of revolution described by the solutions converge to a point. We

show that curvatures develop a singularity when the volume enclosed by the solu-
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tion becomes zero. Starting from a strictly convex, smooth surface of revolution the

solutions always exist. We have

Lemma 3.3.1. Suppose that the initial conditions are the same as in Theorem 3.1.1.

Then, there exists T > 0 such that smooth solutions to the flow exist on [0, T ).

Proof. We consider a linearization of the equation (3.10). Suppose that ϵ > 0 is

a small real number and ũ = u + ϵϕ is a solution of the equation (3.10) where

ϕ : [0, a]× [0, É) −→ R is a smooth function. Since

∂ũ

∂ϵ

∣∣∣
ϵ=0

=
³2(−uxx)³2−1

u³1(1 + u2x)
´
ϕxx +

2´ux
u³1(1 + u2x)

´+1
ϕx +

³1

u(1 + u2x)
´
ϕ

we infer from ũt = ut + ϵϕt that

ϕt =
³2(−uxx)³2−1

u³1(1 + u2x)
´
ϕxx +

2´ux
u³1(1 + u2x)

´+1
ϕx +

³1

u(1 + u2x)
´
ϕ.

Since ³2(−uxx)α2−1

uα1 (1+u2
x)

β > 0 at time t = 0 the equation is parabolic and it follows from

classical theory of parabolic equations that solutions of equation (3.10) exist. Now,

we consider the evolution equation of v0 :
(
−max u(0),max u(0)

)
→ R :

vt =
1

(1 + v2y)
α1+3α2−1

2

v³1
zz v

³2
yy . (3.19)

Suppose that ϵ > 0 is a small real number and ṽ = v+ ϵϕ is a solution of the equation

(3.19) where ϕ is a smooth function. Since

∂ṽt
∂ϵ

= −
(3³2 + ³1 − 1

2

) 4(vy + ϵϕy)

(1 + 2(vy + ϵϕy)2)
3α2+α1+1

2

(vyy + ϵϕyy)
³2(y, t)v³1

zz (y, t)ϕy

+ ³2
1

(1 + 2(vy + ϵϕy)2)
3α2+α1−1

2

(vyy + ϵϕyy)
³2−1(y, t)v³1

zz (y, t)ϕyy,
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it follows from ṽt = vt + ϵϕt that

ϕt =
³2(vyy)

³2−1v³1
zz

(1 + 2(vy)2)
3α2+α1−1

2

ϕyy −
(3³2 + ³1 − 1

2

) 4vy(vyy)
³2v³1

zz

(1 + 2(vy)2)
3α2+α1+1

2

ϕy. (3.20)

Since equation (3.20) is parabolic, smooth solutions to the equation (3.19) exist for

some time interval. Since the solution of equation (3.20) satisfies equation (3.10) on

its domain, we infer from the uniqueness of solutions that the solutions of equation

(3.10) and equation (3.19) are the same on their common domain. We infer that

smooth solutions of equation (3.8) exist for some time interval.

Lemma 3.3.2. Under the initial conditions specified in the Theorem 3.1.1, the flow

preserves the convexity of the evolving surfaces as long as the solutions exist.

Proof. We set H = ut and differentiate equation (3.10) with respect to time to get

the evolution equation of the speed:

Ht =
³2(−uxx)³2−1u³1(1 + u2x)

´

u2³1(1 + u2x)
2´

Hxx +
2´uxu

³1(−uxx)³2(1 + u2x)
´−1

u2³1(1 + u2x)
2´

Hx

+
³1u

³1−1(−uxx)³2(1 + u2x)
´

u2³1(1 + u2x)
2´

H.

(3.21)

We choose r > 0 to be big enough such that

»³1
1 »

³2
2 (x, 0) >

(1
r

)³1+³2 . (3.22)

Suppose that the maximum of u(·, 0) happens at q and consider the sphere generated

by revolving (x− q)2 + y2 = r2 around x-axis. By direct calculation, we get

yx =
−(x− q)√
r2 − (x− q)2

.

Since maximum of u happens at q, ux(q) = 0. Since ux and yx are continuous and

ux(q) = yx(q) = 0 we infer from equation (3.22) that there exist ϵ > 0 such that for
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every x ∈ (q − ϵ, q + ϵ) we have

√
1 + u2x»

³1
1 »

³2
2 >

√
1 + y2x

(
1

r

)³1+³2

. (3.23)

Now, let small ¶ > 0 be arbitrary, and let

0 < e = min
x∈[q+ϵ,a−¶]

√
1 + u2x.

For every x ∈ [q + ϵ, a− ¶], since x f a− ¶ we infer that

(a− ¶ − q)2

r2 − (a− ¶ − q)2
g (x− q)2

r2 − (a− ¶ − q)2
g y2x =

(x− q)2

r2 − (x− q)2
. (3.24)

If we choose r > 0 to be big enough, then for every x ∈ [q + ϵ, a− ¶]

u2x g (a− ¶ − q)2

r2 − (a− ¶ − q)2
g (x− q)2

r2 − (a− ¶ − q)2
g y2x =

(x− q)2

r2 − (x− q)2
. (3.25)

Since u is an even function, we infer from equations (3.22) and (3.25) that for every

¶ > 0 small enough there exist r > 0 big enough such that for every x ∈ [¶, a− ¶] we

have

−H(x, 0) =
√
1 + u2x»

³1
rad»

³2
axi(x, 0) g −yt(x, 0) =

√
1 + y2x

(
1

r

)³2+³1

. (3.26)

Let u(·, t) : (at, bt) −→ R and y(·, t) : (ct, dt) −→ R be the solutions corresponding,

respectively, to evolving surfaces and shrinking balls. Since supersolutions dominate

subsolutions, the equation (3.26) will be preserved on [0, t] for every t ∈ [0, É). There-

fore, for every t ∈ [0, É), and every x ∈ (at, bt), we have

»axi(x, t), »rad(x, t) > 0.
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We apply the same argument to the poles. Namely, consider the curve v0. As we

have seen the principal curvatures along v(y, 0) = v0 are

»1 = »rad(y, 0) =
vzz

(1 + v2y)
1
2

, and »2 = »axi(y, 0) =
vyy

(1 + v2y)
3
2

. (3.27)

Since minimum of v0 happens at 0, vy(0, 0) = 0. Let r > 0 be big enough that equation

(3.22) holds, and consider the sphere generated by revolving (x−c)2+y2 = r2 around

x-axis. We note that

xy =
−y√
r2 − y2

.

Since vy, xy are continuous and vy(0, 0) = xy(0, 0) = 0 we infer, from equation (3.22),

that there exist ϵ > 0 such that for every y ∈ (−ϵ, ϵ) we have

√
1 + v2y»

³1
1 »

³2
2 >

√
1 + x2y

(
1

r

)³1+³2

. (3.28)

Let t ∈ [0, É) be arbitrary, and let ϵ > 0 be small enough. As we have seen, equation

(3.18) gives the evolution equation of v0. We find the evolution equation of the speed

vt. Consider ¸ : [−ϵ, ϵ]× [0, t] −→ R defined by

¸ := vt =
1

(1 + v2y)
α1+3α2−1

2

v³1
zz v

³2
yy . (3.29)

We set ³1+3³2−1
2

= µ, and differentiate ¸ with respect to time to get the evolution

equation for the speed of the evolving curves v(y, t):

¸t(y, t) =
[−2µvyv

³1
zz v

³2
yy

(1 + v2y)
µ+1

]
¸y +

[³1v
³2
yy v

³1−1
zz

(1 + v2y)
µ

]
¸zz +

[³2v
³2−1
yy v³1

zz

(1 + v2y)
µ

]
¸yy

=
[³2v

³2−1
yy v³1

zz

(1 + v2y)
µ

]
¸yy +

[−2µvyv
³1
zz v

³2
yy

(1 + v2y)
µ+1

]
¸y +

³1¸zz
vzz

¸.

(3.30)

So, the evolution equation of ¸ is parabolic with uniformly bounded continuous coef-

ficients on [−ϵ, ϵ]× [0, t]. Since supersolutions dominate subsolutions equation (3.28)
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holds on [−ϵ, ϵ]× [0, t]. In turn, the principal curvatures remain positive.

3.4 Singularity

In this section, we first show that É is the first time when the volume enclosed by

K(t) is zero. Then, we show that as t goes to É, the solutions shrink to a single point.

We will then infer from Blaschke’s selection theorem that the solutions approach a

certain shape as t→ É which we will study under a constant volume normalization.

Proposition 3.4.1. Suppose that the initial conditions are the same as in Theorem

3.1.1, and suppose that [0, É) is the maximal time interval on which the solutions

exist. Then

V (t) → 0 as t→ É.

Proof. Suppose for contradiction that V (É) ̸= 0. Therefore, there exist [a, b] with a <

b such that [a, b] ¢ (at, bt) for every t ∈ [0, É). Suppose that [a, b] is the longest interval

with this property, and suppose K(É) is the convex body with the profile curve

u(x, É) = inf
t∈[0,É)

u(x, t). Since u(x, É) is concave, is differentiable almost everywhere

and, from the convexity of the surface, is twice differentiable almost everywhere.

Therefore, there exist x0 ∈ (a, b) such that

»axi(x0, É) := sup
t∈[0,É)

»axi(x0, t) = sup
t∈[0,É)

(−uxx)
(1 + u2x)

3
2

<∞. (3.31)

Since u(x0, t) is bounded from below

sup
t∈[0,É)

»rad(x0, t) =
1

u(1 + u2x)
1
2

<
1

u
f 1

ϵ
<∞, (3.32)

for some ϵ > 0. Since u2x(x0, É) exists, we infer from the last two inequalities that, for
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some C > 0,

sup
t∈[0,É)

−ut(x0, t) = sup
t∈[0,É)

√
1 + u2x»

³
axi(x0, t)»

´
rad(x0, t) < C. (3.33)

We distinguish two cases:

Case 1: Since u(·, É) is even, there exist two points, say x0 and x1, with the same speed,

around the midpoint of (a, b) such that the equation (3.33) holds at these points.

For every t ∈ [0, É), consider H : [x0, x1]× [0, t] → R defined in previous lemma,

H = ut. Since the evolution equation of H, the equation (3.21), is parabolic

with uniformly bounded coefficients, it follows from maximum principle that

max
[x0,x1]×[0,t]

−ut f max
{
max
t∈[0,É)

−ut(x0, t), max
[x0,x1]

−ut(x, 0)
}
<∞. (3.34)

So, the speed ut : [x0, x1] × [0, É) −→ R is bounded on [x0, x1]. We claim that

the principal curvatures remain bounded from above on [x0, x1]. To see this, we

note that the lower bound on u implies an upper bound on the radial curvature.

If the axial curvature becomes infinite at a certain point, the boundedness of

the product of curvatures implies the radial curvature tends toward zero at that

point. The only way for the radial curvature to approach zero is if the derivative

at that point becomes infinite. However, this is impossible as u(·, É) is concave,

and even if the derivative does not exist, it cannot be infinite.

Case 2: For every t ∈ [0, É), consider ¸ : [−c, c] × [0, t] → R defined by equation (3.29)

where

0 < c = u(x0, É).

Since for every t ∈ [0, É), the evolution equation of ¸, the equation (3.30), is

parabolic with uniformly bounded coefficients on [−c, c] × [0, t], we conclude
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that

max
[−c,c]×[0,t]

¸ f
{
max
t∈[0,É)

¸(c, t), max
y∈[−c,c]

¸(y, 0)
}
<∞. (3.35)

So, the speed ¸ : [−c, c] × [0, É) → R is bounded on [−c, c]. Consequently, the

product of curvatures at y = 0, which is an umbilic point and corresponds to

x = a, remains bounded.

Since the choice of x0 and x1 is flexible, we infer from cases 1 and 2 that the principal

curvatures of K(É) are bounded from above, and in turn, the flow can be continued

beyond É. This is impossible as [0, É) is the maximal time interval on which solutions

exist. So, as the final time is approached, the volume of the domain enclosed by the

solutions tends to zero.

Proposition 3.4.2. The flow converges to a point.

Proof. To see this, suppose that it is not true, so u(x, t) will degenerate into a segment.

Since K(t) is symmetric with respect to the x-axis, this segment will either lie on the

x-axis or be parallel to the y-axis. Consider the first case where the flow degenerates

into a segment on the x-axis, say to [a, b] with a < b. By direct calculation, we find

the evolution equation of uxx:

uxt =
³2(−uxx)³2−1uxxx
u³1(1 + u2x)

´
+

[
³1uxu

³1−1(1 + u2x)
´ + 2´uxuxxu

³1(1 + u2x)
´−1

]
(−uxx)³2

u2³1(1 + u2x)
2´

,

=
³2(−uxx)³2−1

u³1(1 + u2x)
´
uxxx +

2´ux(−uxx)³2

u³1(1 + u2x)
´+1

uxx +
³1(−uxx)³2

u³1+1(1 + u2x)
´
ux

(3.36)
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and, in turn,

uxxt =
³2(−uxx)³2−1

u³1(1 + u2x)
´
uxxxx +

2´ux(−uxx)³2

u³1(1 + u2x)
´+1

uxxx +
³1(−uxx)³2

u³1+1(1 + u2x)
´
uxx

− (³2 − 1)³2(−uxx)³2−2

u³1(1 + u2x)
´

u2xxx −
³1³2ux(−uxx)³2−1

u³1+1(1 + u2x)
´

uxxx +
2³2´ux(−uxx)³2

u³1(1 + u2x)
´+1

uxxx

− 2´(−uxx)³2+1

u³1+1(1 + u2x)
´
uxx −

2´³2uxuxxx(−uxx)³2−1

u³1+1(1 + u2x)
´

uxx +
2´ux(−uxx)³2

u³1+1(1 + u2x)
´
uxx

+
2´(³1 + 1)u2x(−uxx)³2

u³1+2(1 + u2x)
´

uxx −
4´2u2x(−uxx)³2+1

u³1+1(1 + u2x)
´+1

uxx +
³1³2(−uxx)³2−1uxxx
u³1(1 + u2x)

´+1
ux

− ³2
1(−uxx)³2

u³1+1(1 + u2x)
´+1

u2x +
2³1(´ + 1)(−uxx)³2+1

u³1(1 + u2x)
´+2

u2x.

(3.37)

Moreover, let v = uxx. Then

vt =
³2(−uxx)³2−1

u³1(1 + u2x)
´
vxx +

2´ux(−uxx)³2

u³1(1 + u2x)
´+1

vx +
³1(−uxx)³2

u³1+1(1 + u2x)
´
v

+
[
− (³2 − 1)³2(−uxx)³2−2uxxx

u³1(1 + u2x)
´

− ³1³2ux(−uxx)³2−1

u³1+1(1 + u2x)
´

+
2³2´ux(−uxx)³2

u³1(1 + u2x)
´+1

]
vx

+
[
− 2´(−uxx)³2+1

u³1+1(1 + u2x)
´
− 2´³2uxuxxx(−uxx)³2−1

u³1+1(1 + u2x)
´

+
2´ux(−uxx)³2

u³1+1(1 + u2x)
´

]
v

+
2´(³1 + 1)u2x(−uxx)³2

u³1+2(1 + u2x)
´

v − 4´2u2x(−uxx)³2+1

u³1+1(1 + u2x)
´+1

v +
³1³2(−uxx)³2−1ux
u³1(1 + u2x)

´+1
vx

+
³2
1u

2
x(−uxx)³2−1

u³1+1(1 + u2x)
´+1

v − 2³1(´ + 1)u2x(−uxx)³2

u³1(1 + u2x)
´+2

v.

(3.38)

Since u(x, t) degenerates into a segment, at every point of (a, b), say at x0 ∈ (a, b),

uxx tends to zero, and at endpoints uxx tends to negative infinity. For every t ∈ [0, É),

consider uxx : Ωt := [a, b] × [0, t] → R, and let Γt be the parabolic boundary of Ωt.

We have

uxx(x0, t) f max
Γt

uxx(x, t). (3.39)

As t→ É, the right-hand side of the equation (3.39) tends to either a negative number

or negative infinity while the left-hand side tends to zero. So, this case cannot occur.
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Consider the case where the flow degenerates into a segment parallel to the y-axis,

say to [−c, c]× {x̄}. We define the function ¸ : Σt := [−c, c]× [t0, t] −→ R by

¸ = vt =
1

(1 + v2y)
α1+3α2−1

2

v³1
zz v

³2
yy . (3.40)

The evolution equation of ¸, equation (3.30), is parabolic with uniformly bounded

continuous coefficients on Σt:

¸t(y, t) =
[−2µvyv

³1
zz v

³2
yy

(1 + v2y)
µ+1

]
¸y +

[³1v
³2
yy v

³1−1
zz

(1 + v2y)
µ

]
¸zz +

[³2v
³2−1
yy v³1

zz

(1 + v2y)
µ

]
¸yy

=
[³2v

³2−1
yy v³1

zz

(1 + v2y)
µ

]
¸yy +

[−2µvyv
³1
zz v

³2
yy

(1 + v2y)
µ+1

]
¸y +

³1¸zz
vzz

¸.

At y = 0, solutions are umbilic, so both principal curvatures and, in turn, the speed

tends to zero at this point. Since at the endpoints, the speed tends to infinity an

argument similar to the one in the previous part shows this is impossible. Therefore,

the solutions cannot degenerate into segments. Consequently, they shrink to a point

as t→ É.

3.5 Asymptotic behaviour of the flow

While it seems plausible to prove the previous results even when relaxing the condition

that the initial profile curve is even, when studying the asymptotic behaviour of the

flow, this condition plays a crucial role. We demonstrate that by properly rescaling

the solutions, starting from an even initial data, rescaled solutions converge to a

convex hypersurface.

Proposition 3.5.1. Suppose the initial conditions are the same as specified in Theo-

rem 3.1.1. Then, for every sequence of times {tn} · É, the properly rescaled solutions

possess a subsequence that converges to a convex shape.
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Proof. Since the profile curve of the initial surface is contracting with the same speed

at points x equally distanced from the midpoint of (a0, b0), for every t ∈ [0, É), the

profile curve corresponding to the solution at time t is even. We note that for every

t ∈ [0, É), there exist xt ∈ (at, bt) such that

V (t) = Ã

bt∫

at

u2(x, t)dx = Ã(bt − at)u
2(xt, t).

Let p be the point on the x-axis to which solutions converge. Consider

It = (ct, dt) :=

(
Ã(at − p)u2(xt, t)

V (t)
,
Ã(bt − p)u2(xt, t)

V (t)

)
= (

at − p

bt − at
,
bt − p

bt − at
),

and define T : (at, bt) −→ It by

x 7→ Ã(x− p)u2(xt, t)

V (t)
=

x− p

bt − at
.

Since solutions are even, the speed at the endpoints are the same, but of the opposite

signs, 0 ̸= ∂at
∂t

= −∂bt
∂t
. In turn,

lim
t−→É

at − p

bt − at
= −1

2
, and lim

t−→T

bt − p

bt − at
=

1

2
. (3.41)

As a result It −→ (−1
2
, 1
2
) as t −→ É. Consider the rescaling ũ : It −→ R

g0 defined

by

y 7→
√
Ã(bt − at)

V (t)
u

(
yV (t)

Ãu2(xt, t)
+ p, t

)
. (3.42)

We note that rescaled solutions enclose a domain of constant volume. More precisely,

Ṽ (t) = Ã

dt∫

ct

Ã(bt − at)

V (t)
u2(

yV (t)

Ãu2(xt, t)
+ p, t)dy =

Ã(bt − at)

V (t)
Ã

bt∫

at

u2(x, t)
Ãu2(xt, t)

V (t)
dx
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=
Ãu2(xt, t)(bt − at)

V (t)
Ã = Ã.

If the rescaled solutions degenerate, then since It → (−1
2
, 1
2
), they will degenerate into

the segment (−1
2
, 1
2
). However, this contradicts the fact that the rescaled solutions

enclose constant volume Ã. In addition, since It → (−1
2
, 1
2
) and volume is constant,

the rescaled solutions are bounded from above. Therefore, rescaled solutions are

included in a compact annulus, and it follows from Blaschke selection theorem that

{K̃(tn)}n is subsequentially convergent to a convex body K̃.

3.6 Extension to R
n+1

To delve into the analysis of flow in higher dimensions, we establish the appropriate

framework. Let ∂K0 ¢ R
n+1 denote a smooth, strictly convex, axially symmetric

hypersurface that serves as the boundary of a convex body K0. This surface is

generated by rotating a strictly positive, smooth, and concave function u : [0, a] −→

R, satisfying u(a) = u(0) = 0, around the x-axis. Consider the parametrization

X : (0, a)× S
n−1 −→ R

n+1 defined as follows:

X(x, É) = (x, u(x)É), (3.43)

where É belongs to the (n − 1)-dimensional unit sphere, S
n−1. Through explicit

computations, the matrices representing the metric, second fundamental form, and

Weingarten map of ∂K0 can be derived as follows:

(gij) =



1 + u2x 0

0 u2ḡij


 , (hij) =




−uxx√
1+u2

x

0

0 u√
1+u2

x

ḡij


 , (hji ) =




−uxx

(1+u2
x)

3
2

0

0 1

u
√

1+u2
x

¶̄ij


 .
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The principal curvatures are given by

»1(x) = − uxx(x)

(1 + u2x(x))
3
2

, »j(x) =
1

u(x)
√
1 + u2x(x)

, j = 2, 3, . . . , n. (3.44)

We note that since ∂K0 is smooth, »min, »max are continuous and , at poles, are the

principal curvatures are all equal, so we still have »rad and »axi defined by

»1 = »axi(p) = lim
x→p

»axi(x), and »j = »rad(p) = limx→p »rad(x), j = 2, 3, . . . , n,

for p ∈ {0, a}. For ³1, ³2, . . . , ³n > 0, consider the following flow

∂X

∂t
(x, É, t) = −»³1

1 (x, t)»³2
2 (x, t) . . . »³n

n (x, t)¿ = −»³1
1 (x, t)»´2 (x, t)¿ (3.45)

where ´ =
n∑

i=2

³i. By taking the derivative with respect to t of both sides of equation

(3.43), we obtain:

ut(x) =
〈
(0, ut(x)É),

(−ux, É)
1 + u2x

〉
=

〈∂X
∂t

(x, É, t), ¿
〉
= −»³1

1 (x, t)»´2 (x, t). (3.46)

By employing a comparable analysis to that conducted in R
3, we can investigate

the behaviour of the flow around poles. Specifically, due to the governing equations’

similarity, it suffices to examine the flow behaviour around a single pole. Let umax =

u(x0), and introduce the function w :
(
− u(x0), u(x0)

)
→ [0, x0) with the following

definition:

y 7→





u−1(y) 0 f y f umax

u−1(−y) −umax f y < 0.

About 0 = (0, 0, 0) ∈ ∂K, consider the parametrization X̄ : B(0, umax) → R
n+1

defined by

(y = x1, . . . , xn) 7→
(
v(x1, . . . , xn), x1, . . . , xn

)
(3.47)
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where v(x1, . . . , xn) = w(
√
x21 + · · ·+ x2n). We have that

gij = ¶ij − vivj
1 + |∇v|2 , and hij =

∂2v
∂xi∂xj√
1 + |∇v|2

(3.48)

and, when z = 0, we have

(gij) =




1
1+v2y

0 . . . 0

0 1 0 . . . 0

...
. . . . . .

0 . . . 0 1




and (hij) =




∂2v
∂y2√
1+v2y

0 . . . 0

0
∂2v

∂x22√
1+v2y

0 . . . 0

...
. . . . . .

0 . . . 0
∂2v

∂x2n√
1+v2y




.

As a result, along the curve

µ =
{(
y, 0, . . . , 0, v(y, 0)

)
: y ∈

(
− umax, umax

)}
, (3.49)

the principal curvatures are

»1 = »axi(y, 0) =
vyy

(1 + v2y)
3
2

, »j = »rad(y, 0) =
vzz

(1 + v2y)
1
2

, j = 2, . . . , n, (3.50)

where vzz =
∂2v
∂x2

j

for j = 2, . . . , n and vyy =
∂2v
∂x2

1
. The outer normal along the graph of

v is given by

¿(y, 0) =
(vy, 0, . . . , 0,−1)√

v2y + 1
.

By direct calculations, we get

(0, 0, vt(y, t)) =
∂µ

∂t
(y, 0, t) = −»³1

rad(y, 0, t)»
³2
axi(y, 0, t)¿(y, 0, t).
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Therefore, the scalar evolution equation of the graph function v is

vt =
√

1 + v2y»
³1
1 (y, 0, t)»´2 (y, 0, t) =

1

(1 + v2y)
β+3α1−1

2

v³1
yy v

´
zz. (3.51)

where ´ =
n∑
2

³j. The existence of smooth solutions for equation (5.1) is established

when a set of smooth, strictly positive, and concave functions u(·, t) : (at, bt) → R

is found, satisfying the conditions u(at, t) = u(bt, t) = 0 and equation (3.10), while

ensuring the smoothness of the curve µ(t) defined by equation (3.49) for every value of

t. The observation can be made that the dynamics of flow in both R
n+1 and R

3 can be

effectively examined using identical equations, as they are governed by the same scalar

form of evolution equations. We also note that the volume of a axially symmetric

surface of revolution in R
n+1 with profile curve u is given by V = wn

b∫
a

un(x)dx where

wn is the volume of the unit n-sphere. Therefore, by applying the same techniques

and arguments presented in the previous sections, the following theorem follows:

Theorem 3.6.1. Assume a smooth, strictly convex embedded surface ∂K0 ¢ R
n+1

exhibits axial symmetry with an even profile curve. Solutions for equation (3.45)

exist within a maximal time interval [0, É). The solutions will shrink to a point as

t approaches É. Moreover, if solutions are rescaled to enclose domains of constant

volume, they will converge in a sequential manner, in the Hausdorff metric, towards

the boundary of a convex body.
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Chapter 4

Expansion of strictly convex

hypersurfaces of revolution in R
n+1

by positive powers of the radii of

curvature

4.1 Introduction

In this chapter of the thesis, building upon the established framework introduced in

Chapter 3 for studying a flow in higher dimensions, we undertake an exploration of

the dynamic characteristics exhibited by an expanding flow. The evolution of this

flow is governed by a non-symmetric speed function that relies on the axial and radial

curvatures, denoted as »axi and »rad respectively. Our focus lies specifically on the

expansion process of a strictly convex surface of revolution, denoted as ∂K0 ¢ R
n+1

evolving by the following equation:

∂X

∂t
(x, t) =

(
1

»1

)³1

(x, t)

(
1

»2

)³2

(x, t) . . .

(
1

»n

)³n

(x, t) ¿(x, t), (4.1)
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where »1 = »axi, »2 = · · · = »n = »rad are principal curvatures, ³1, . . . , ³n are

arbitrary positive real numbers, and ¿ is the outer unit normal. To scrutinize the

short-term and long-term behaviour of the flow, we rely on the evolution equation

governing the scalar forms associated with the flow. More precisely, let ∂K0 ¢ R
n+1

be a smooth surface of revolution generated by a strictly positive smooth curve u :

[0, 1] → R with u(0) = u(1) = 0. Consider a parameterization of ∂K0, X : [0, 1] ×

S
n−1 → R

n+1 given by

X(x, É) =
(
x, u(x)É

)
. (4.2)

At every (x, É) ∈ (0, 1)×S
n−1, the outer normal, axial and radial curvatures are given

by

v(x, t) =
(−ux, É)√
1 + u2x

, »rad(x) =
1

u(x)
√

1 + u2x(x)
, »axi(x) = − uxx(x)

(1 + u2x(x))
3
2

.

Since »axi = »1, »rad = »2 = · · · = »n, if we assume ³ = ³1 and ´ =
n∑

i=2

³i, then,

equation(4.1) can be simplified to:

∂X

∂t
(x, t) =

(
1

»axi

)³

(x, t)

(
1

»rad

)´

(x, t)¿(x, t). (4.3)

We have that

(
1

»axi
)³(

1

»rad
)´ =

〈∂X
∂t

, ¿
〉
=

〈(
0, utÉ

)
,

(
− ux, É

)
√

1 + u2x

〉

=
ut√
1 + u2x

The evolution equation of u is:

ut =
√

1 + u2x(
1

»axi
)³(

1

»rad
)´ =

(
1 + u2x

) 3α+β+1
2 u´

(−uxx)³

=
(
1 + u2x

)µ u´

(−uxx)³
,

(4.4)
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where µ = 3³+´+1
2

. Due to the analogous nature of the evolution equations governing

the flow around poles, it suffices to investigate the flow dynamics in the vicinity of

a single pole. Let umax = u(x0), and introduce the function w :
(
− u(x0), u(x0)

)
→

[0, x0) with the following definition:

y 7→





u−1(y) 0 f y f umax

u−1(−y) −umax f y < 0.

About 0 ∈ ∂K, consider the parametrization X̄ : B(0, umax) → R
n+1 defined by

(y = x1, . . . , xn) 7→
(
v(x1, . . . , xn), x1, . . . , xn

)
, (4.5)

where v(x1, . . . , xn) = w(
√
x21 + · · ·+ x2n). When z = 0, it follows from

gij = ¶ij − vivj
1 + |∇v|2 , and hij =

∂2v
∂xi∂xj√
1 + |∇v|2

, (4.6)

that

(gij) =




1
1+v2y

0 . . . 0

0 1 0 . . . 0

...
. . . . . .

0 . . . 0 1




, and (hij) =




∂2v
∂y2√
1+v2y

0 . . . 0

0
∂2v

∂x22√
1+v2y

0 . . . 0

...
. . . . . .

0 . . . 0
∂2v

∂x2n√
1+v2y




. (4.7)

As a result, along the curve

µ =
{(
y, 0, . . . , 0, v(y, 0)

)
: y ∈

(
− umax, umax

)}
, (4.8)

56



the principal curvatures are

»axi(y, 0) =
vyy

(1 + v2y)
3
2

, »rad(y, 0) =
vzz

(1 + v2y)
1
2

(4.9)

where vzz =
∂2v
∂x2

j

for j = 2, . . . , n and vyy =
∂2v
∂x2

1
. The outer normal along the graph of

v is

¿(y, 0) =
(vy, 0, . . . , 0,−1)√

v2y + 1
.

By direct calculations, we get

(0, . . . , 0, vt(y, t)) =
∂µ

∂t
(y, 0, t).

We infer from

−vt =
〈∂µ
∂t
, ¿(y)

〉

that the scalar evolution equation of the graph function v is

vt = −
√
1 + v2y(

1

»axi
)³(

1

»rad
)´ = −

(
1 + v2y

) 3α+β+1
2 v−´

zz v
−³
yy (4.10)

where ´ =
n∑
2

³j. The existence of smooth solutions for equation (4.3) is established

when a set of smooth, strictly positive, and concave functions u(·, t) : (at, bt) −→ R

is found, satisfying the conditions u(at, t) = u(bt, t) = 0 and equation (4.4), while

ensuring the smoothness of the curve µ(t) defined by equation (4.8) for every value

of t. In this chapter, we prove the following theorem :

Theorem 4.1.1. Consider a smooth, strictly convex embedded surface ∂K0 that ex-

hibits axial symmetry in R
n+1. For equation (4.3), there exist solutions within a

maximal time interval [0, T ), where T is finite when ³ + ´ > 1 and infinite when

³+´ f 1. As the flow progresses, these solutions will preserve convexity and will ex-

pand to infinity. Furthermore, if the profile curve is even and the solutions are rescaled

57



to enclose domains of constant volume, rescaled solutions will converge sequentially

in the Hausdorff metric towards the boundary of a convex body.

4.2 Existence of solutions and preservation of con-

vexity

Lemma 4.2.1. There exists É > 0 such that solutions to the flow exist on [0, É).

Proof. We consider a linearization of the equation (4.4). Suppose that ϵ > 0 is a small

real number, ũ = u+ϵϕ is a solution of the equation (4.4), where ϕ : [0, a]× [0, T ) −→

R is an arbitrary smooth function. We have

ũx = ux + ϵϕx,

ũxx = uxx + ϵϕxx

and

ũt = ut + ϵϕt. (4.11)

Therefore

ũt =
(
1 +

(
ux + ϵϕx

)2)µ
(
u+ ϵϕ

)´

(−uxx − ϵϕxx)³
(4.12)

and

∂ũt
∂ϵ

= 2µ
(
1 +

(
ux + ϵϕx

)2)µ−1(
ux + ϵϕx

)
(
u+ ϵϕ

)´

(−uxx − ϵϕxx)³
ϕx

+ ´
(
1 +

(
ux + ϵϕx

)2)µ
(
u+ ϵϕ

)´−1

(−uxx − ϵϕxx)³
ϕ

+ ³
(
1 +

(
ux + ϵϕx

)2)µ
(
u+ ϵϕ

)´

(−uxx − ϵϕxx)³+1
ϕxx.

(4.13)
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By evaluating derivatives, with respect to ϵ, of both sides of equation (4.11) at ϵ = 0

we get

ϕt =
³
(
1 + u2x

)µ

u´

(−uxx)³+1
ϕxx +

uxu
´

(−uxx)³+1
ϕx + ´

(
1 +

(
ux
)2)µ u´−1

(−uxx)³
ϕ. (4.14)

Since
³

(
1+u2

x

)µ

uβ

(−uxx)α+1 > 0 at time zero, we infer that smooth solutions to this equation

exist for some time interval. Likewise, through the linearization of equation (4.8), we

obtain a parabolic equation that guarantees the existence of solutions. Specifically,

let us assume that ϵ > 0 is a small real number, ṽ = v + ϵϕ is a solution of the

equation (3.30), where, for some ¶ > 0, ϕ : (−¶, ¶) × [0, T ) −→ R is an arbitrary

smooth function. We have

ṽy = vy + ϵϕy,

ṽyy = vyy + ϵϕyy,

ṽzz = vzz

and

ṽt = vt + ϵϕt. (4.15)

By differentiating both sides of equation (4.15) with respect to ϵ and evaluating it at

ϵ = 0, we obtain the following expression:

ϕt = ³
(
1 + v2y

)µ
v−´
zz v

−³−1
yy ϕyy − 2µ

(
1 + (vy)

2
)µ−1

v−´
zz v

−³
yy vyϕy.

Since the coefficient of ϕyy is positive, the existence of solutions can be inferred from

the theory of parabolic equations. Therefore, smooth solutions to the flow exist for

some time interval.

Lemma 4.2.2. Convexity is preserved throughout the time interval of existence of
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the flow.

Proof. We set

H = ut =
(
1 + u2x

)µ u´

(−uxx)³
(4.16)

and

Z = vt = −
(
1 + v2y

)µ

v´zz

1

v³yy
. (4.17)

By taking derivatives of both sides of these two equations, we obtain the following

expressions:

Ht =
³
(
1 + u2x

)µ

u´

(−uxx)³+1
Hxx +

2µux

(
1 + u2x

)µ−1

u´

(−uxx)³
Hx +

´
(
1 + u2x

)µ

u´−1

(−uxx)³
H, (4.18)

and

Zt = ³

(
1 + v2y

)µ

v´zzv³+1
yy

Zyy −
2µ

(
1 + v2y

)µ−1

v´zz

vy
v³yy

Zy + ´
Zzz

(
1 + v2y

)µ

v´+1
zz v³−1

yy

Z. (4.19)

Based on the initial conditions H(0) < ∞ and Z(0) > −∞, and considering that

equations (4.18) and (4.19) represent parabolic equations with bounded and continu-

ous coefficients, we can deduce, through the application of the maximal principle, that

throughout the existence of the flow, it holds that H(t) < ∞ and Z(t) > −∞. This

guarantees that the surfaces remain strictly convex throughout the entire duration of

the flow.
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4.3 Asymptotic behaviour of an expansion curva-

ture flow

Lemma 4.3.1. The expanding flow is characterized by unbounded growth of the vol-

ume enclosed by the evolving hypersurface.

Lemma 4.3.2. The expanding flow exhibits unbounded growth of the magnitude of

the position vector of the evolving hypersurface in all directions.

Proof. Consider the interval [0, T ) as the maximal time interval for the existence of

solutions. Without loss of generality, we assume that T is finite (T < ∞). This

assumption is justified by the fact that if T were infinite, we can introduce a new

time variable Ä <∞ defined as

Ä(t) =
V (0)

eV (0)
− V (0)

eV (t)
.

Suppose, for the purpose of contradiction, that there exist directions along which

the solution to the flow remains bounded. As a consequence, there exists an interval

(a, b) such that u(x, t) is smooth and bounded on [a, b] × [0, T ). If the curvatures

remain bounded on the interval [a, b] × [0, T ), this contradicts the maximality of

the time interval [0, T ), as all conditions are met to extend the flow beyond time T .

Therefore it must be the case that the curvatures become unbounded on (a, b)×[0, T ).

However, the evolution equation is strictly parabolic, with coefficients that remain

uniformly bounded, and is subject to boundary conditions insuring boundedness on

the parabolic boundary, so the curvatures must remain bounded as well, concluding

the proof.

Proposition 4.3.1. The expanding curvature flow exhibits distinct expansion proper-

ties based on the sum of powers ³ and ´. When ³+´ f 1, the flow expands infinitely
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over an unbounded time interval. However, when ³+´ > 1, the flow expands infinitely

within a finite time.

Proof. Let B be an arbitrary sphere with radius r0. Starting from this initial surface,

B0, the solutions of the expanding curvature flow defined by the equation

yt =
√

1 + y2xr
³+´

are equivalent to the solutions of the simplified flow equation

rt = r³+´.

We infer from
r(t)∫

r0

r−(³+´)dr = t

that

r(t) =





r(0)et, ³ + ´ = 1

1−(α+β)
√
r1−(³+´)(0) + [1− (³ + ´)]t, ³ + ´ < 1

1−(α+β)
√
r1−(³+´)(0)− [(³ + ´)− 1]t, ³ + ´ > 1

.

Given the positivity of real values ³ and ´, satisfying ³ + ´ f 1, we assert the

perpetual existence of the flow over an infinite time horizon. To substantiate this,

consider a sufficiently expansive sphere B0 that encompasses ∂K0. If ∂K0 were to

expand infinitely within a finite temporal interval, it would necessitate same expansion

for B0, thereby contradicting the infinite temporal existence of the flow initiated from

B0. Consequently, we conclude that the flow exists indefinitely over an infinite span

of time. Now, let us suppose that ³ + ´ > 1 and B0 is sufficiently small to reside

entirely within ∂K0. In this case, the expanding spheres corresponding to the flow
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solutions originating from B0 would reach infinity within a finite time, denoted as

T . We assert that the flow initiated from ∂K0 expands to infinity in finite time.

To demonstrate this, suppose, for contradiction, that the flow expands to infinity

within an infinite time interval. Thus, the flow would exist on the interval [0, T ),

which represents the duration of existence for the flow initiated from B0. However,

this leads to a contradiction because ∂K(T ) encompasses the expanding balls and is

a convex body, while the balls themselves expand to infinity as time approaches T .

Therefore, the flow initiated from ∂K0 would expand to infinity within a finite time

interval. This completes the proof.

In the next proposition, we propose a renormalization technique for the flow, which

leads to sequential convergence of solutions towards the boundary of a convex body.

Specifically, we perform a renormalization of the profile curve such that it encompasses

regions of constant area. Subsequently, we demonstrate sequential convergence of

the renormalized profile curves, and consequently convergence of the renormalized

solutions to the boundary of a convex body.

Proposition 4.3.2. Suppose that the initial profile curve is even. Then, the properly

rescaled solutions converge to a convex hypersurface as time progresses.

Proof. Let consider the function y : (at, bt) → ( at
bt−at

, bt
bt−at

) defined as

y(x) =
x

bt − at
.

On ( at
bt−at

, bt
bt−at

) consider the renormalization ũ(·, t) of u(·, t) defined as

ũ(y, t) =
bt − at
A(t)

u((bt − at)y),
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where A(t) is the enclosed area by the profile curve:

A(t) = 2

bt∫

at

u(x, t)dx.

We have that

Ã(t) = 2

bt
bt−at∫

at
bt−at

ũ(y, t)dy = 2

bt
bt−at∫

at
bt−at

bt − at
A(t)

u((bt − at)y)dy =
1

A(t)
2

bt∫

at

u(x, t)dx = 1.

Suppose that [0, T ) is the maximal time interval on which solutions exist. Since

solutions are even, the speed at the endpoints is the same, but of opposite signs,

0 ̸= ∂at
∂t

= −∂bt
∂t
. Therefore

lim
t→T

at
bt − at

= −1

2
and lim

t→T

bt
bt − at

=
1

2
. (4.20)

If the rescaled solutions degenerate, the limiting interval of the profile curves, It,

converges to (−1
2
, 1
2
), indicating their collapse into the segment (−1

2
, 1
2
). However,

this contradicts the invariance of the enclosed area, which remains constant at 1 for

the profile curves of the rescaled solutions. Moreover, as It approaches (−1
2
, 1
2
) while

preserving the constant enclosed area, the rescaled solutions remain bounded from

above. Consequently, they exist within a confined annular region. By applying the

Blaschke selection theorem, it follows that subsequential convergence of the rescaled

solutions to a convex body.
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Chapter 5

Conclusion and future directions of

study

5.1 Prologue

The preceding chapters have focused on understanding the contraction and expanding

flows characterized by non-symmetric speed on the principal curvatures represented,

respectively, by equations (3.45) and (4.1) for rotationally symmetric initial data.

The convergence to a single point in the contraction flow, the convergence of rescaled

solutions to a convex hypersurface when the initial hypersurface possesses even pro-

file curves, the preservation of convexity, the phenomenon of infinite expansion in the

expanding flow, and the convergence to the boundary of a convex body through appro-

priate rescaling collectively demonstrate the dynamics inherent of these deformations.

The natural progression from these findings is to explore whether the properties of

the flows remain valid when considering more general data than examined in the pre-

vious sections, or more general non-symmetric speed functions. This chapter briefly

addresses the challenges that arise when dealing with such variations of the contrac-

tion flow previously studied in Chapter 3. Additionally, we present the strategies and
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approaches we have adopted to tackle some of these difficulties, opening avenues for

further investigation and analysis.

5.2 A Contraction of strictly convex hypersurafces

in R
3

Let ∂K0 be a compact, strictly convex hypersurface wihtout boundary that is smoothly

embedded in R
3 by the diffeomorphism X0 : S

2 → R
3. We consider the family of maps

X(·, t) evolving according to

∂X(·, t)
∂t

= −»³1
1 (x, t)»³2

2 (x, t)¿(x, t), (5.1)

where »1(x, t) f »2(x, t) are the principal curvatures, ¿(x, t) is the outer normal to

K(t) at X(x, t), and ³1 f ³2 are positive real numbers. Suppose that f(»1, »2) =

»³1
1 »

³2
2 , and suppose S+ ¢ T ∗M ¹ T ∗M is the set of symmetric positive transforma-

tions. We define F : S+ ¢ T ∗M ¹ T ∗M → R by

F (W(x)) = f(¼(x)),

where ¼(x) is the vector of eigenvalues of W(x) in increasing order. Let ∂K be a

smooth, closed, and strictly convex surface in R
3. We define the curvature function

» : ∂K −→ R
2 as »(x) = (»1(x), »2(x)), where »1 f »2 represent the principal

curvatures. If one considers the closed cone Γf
+ := {(¼1, ¼2) : 0 < ¼1 f ¼2}, then the

flow for f ◦» on Γf
+ is not always differentiable due to the presence of umbilical points,

as suggested by the Caratheodory Conjecture (see [26]). One possible approach is to

define a smooth function f on Γ+ := {(¼1, ¼2) : 0 < ¼1 < ¼2}, and to do analysis

related to the smoothness of f on Γ+. Then by employing a limit argument and

leveraging the continuity of principal curvatures, we can extend the obtained results
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concerning the boundedness of curvature ratios and curvature convexity to encompass

umbilical points. We note that while f may not exhibit smoothness at umbilical

points, f is still defined at these points, ensuring the global well-definedness of the

flow. The existence of solutions to the flow defined by equation (5.1) is established

when there are smooth, strictly convex hypersurfaces ∂K(t) that satisfy the flow

equation (5.1).

5.2.1 Properties of non-symmetric speed functions

The first challenge encountered when working with a non-symmetric speed pertains

to the transition from the smooth speed function denoted as f : Γ+ −→ R to a

corresponding smooth function denoted as F : S+ −→ R where Γ+ = {(¼1, ¼2) : ¼i >

0, i = 1, 2} and S+ stands for the set of positive definite symmetric matrices. In the

case where the speed function f is symmetric, it is recognized that the existence of F

can be ensured due to the capability of expressing f in terms of elementary symmetric

functions. However, this desirable property does not necessarily hold true for a non-

symmetric speed function. Hence, within this section, we present our strategies for

addressing this specific challenge.

Lemma 5.2.1. Let f and F be defined as above. Then

(1) F is smooth.

(2) At any X ∈ S2
+, the tensor Ḟ defined by Ḟ (B) = DBF is positive definite.

Proof. (1) First, we show that for every v = (v1, v2) ∈ R
2 with v1 < v2, F is

differentiable (smooth) at Diag(v). To see this let ¼ : S2
+ −→ R

2 be the

eigenvalue function defined by

A 7→
(
¼1(A), ¼2(A)

)
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where ¼1(A) < ¼2(A). If i ̸= j, we have that ¼(Diag(v) + teij) = ¼(Diag(v)).

Therefore

lim
t−→0

F (Diag(v) + teij)− F (Diag(v))

t
= 0.

If i = j, we have

lim
t−→0

F (Diag(v) + teij)− F (Diag(v))

t
= ³iv

³j

j v
³i−1
i .

The same way it can be shown that F is actually smooth in this case. Now,

suppose that X ∈ Sn
+ and U unitary is such that U−1XU = Diag(¼(X)). We

have that

F (X) = (f ◦ ¼)(X) = (f ◦ ¼)(U−1XU).

Since X is invertible there exist an neighborhood of X ∈ GLn(R) on which for

function G defined by Z 7→ UZU−1 we have that G(X +Z) = U(X +Z)U−1 −

UXU−1 = UXU−1. Therefore G is differentiable at X and dG(X) = UXU−1;

indeed, G is smooth. Since f ◦¼ is differentiable at G(X) and G is differentiable

at X, F = f ◦ ¼ ◦G is differentiable at X. The same way it can be shown F is

twice differentiable (smooth) since f is smooth.

(2) Suppose that ¼ is the eigenvalue function defined in the first part of the proof,

and X ∈ S2
+. We note that the claim is true at Diag(¼(X)) since

Ḟ = Diag
(∂f(¼1(X), ¼2(X))

∂¼1
,
∂f(¼1(X), ¼2(X))

∂¼2

)
.

Let X = U−1Diag(¼(X))U . The function G, defined in the first part of the

proof, preserves the positive definiteness since it is just a change of basis trans-

formation. Therefore at X ∈ S2
+, the tensor

Ḟ = Diag
(∂f(¼1(X), ¼2(X))

∂¼1
,
∂f(¼1(X), ¼2(X))

∂¼2

)(
G(X)

)
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is positive definite.

5.2.2 Convexity preservation and bounds on the ratio of cur-

vatures

Our approach to studying the preservation of convexity and the asymptotic behavior

of the flow involves applying the maximum principle to the evolution equation of W

F
,

where W represents the Weingarten map and F is as defined in the previous section.

Proposition 5.2.1. Suppose that for every i, ³i g 1. Then, as long as the flow

exists, hypersurfaces evolving by the equation (5.1) remain convex with
»max

»min

bounded

from above.

Proof. In order to prove the proposition, we employ the same approaches in the

Andrews’ work [4]. Let d¿ := W : TK −→ TK be the Weingarten map. By taking

covariant derivative of

hij =
〈
DXi

¿,Xj

〉
=

〈
Xi,W(Xj)

〉
,

we get

〈
Xi,

∂W(Xj)

∂t

〉
=
∂hij
∂t

− ∂

∂t

〈
Xi,W(Xj)

〉
=
∂hij
∂t

+ 2F
〈
W(Xi),W(Xj)

〉

= ∇i∇jF + F
〈
W(Xi),W(Xj)

〉
.

On the other hand,

(
Hess∇ F (W)

)
(u, v) = ∇2

u,v

[
F (W)

]

= F̈
(
∇u(W),∇v(W)

)
+ Ḟ

(
Hess∇ W

)
.
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Therefore

∇2
i,jF = F̈

(
∇i(W),∇j(W)

)
+ Ḟ

(
∇2

i,jW
)
.

In turn,

〈
Xi,

∂W(Xj)

∂t

〉
= ∇2

i,jF + F
〈
W(Xi),W(Xj)

〉

= Ḟ
(
∇2

i,jW
)
+ F̈

(
∇i(W),∇j(W)

)
+ F

〈
W(Xi),W(Xj)

〉

=
∂F

∂W l
k

〈
Xi, g

∗ Hess∇ W l
k(Xj)

〉
+

〈
Xi, g

∗F̈
(
∇(W),∇(W)

)
(Xj)

〉
+ F

〈
Xi,W2(Xj)

〉

=
〈
Xi,

(
g∗ Hess∇ W

)
(Xj, Ḟ ) + g∗F̈

(
∇(W),∇(W)

)
(Xj) + FW2(Xj)

〉
.

Therefore

∂W(Xj)

∂t
=

(
g∗ Hess∇ W

)
(Xj, Ḟ ) + g∗F̈

(
∇(W),∇(W)

)
(Xj) + FW2(Xj).

It follows from a form of Simons’ identity and applying the correspondence g∗ (see

[5] proof of Lemma 3.13) that

(
g∗ Hess∇ W

)
(Xj, Ḟ ) =

(
g∗ Hess∇ W

)
(Ḟ , Xj) +W(u)Ḟ (W2)− Ḟ (W)W2(u).

Therefore,

∂W(Xj)

∂t
=

(
g∗ Hess∇ W

)
(Ḟ , Xj) +W(u)Ḟ (W2) + g∗F̈

(
∇(W),∇(W)

)
(Xj)

+
(
F (W)− Ḟ (W)

)
W2(Xj).
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Since Ḟ (W) =
n∑

i=1

»i
∂f
∂»i

=
( n∑

i=1

³i

)
f =

( n∑

i=1

³i

)

︸ ︷︷ ︸
³

F (W) = ³F (W), we infer that

∂W
∂t

= Ḟ
(
g∗ Hess∇ W

)
+WḞ (W2) +

(1− ³

³

)
W2Ḟ (W) + g∗F̈

(
∇(W),∇(W)

)
.

We note that g∗F̈
(
∇(W),∇(W)

)
is positive definite. In other words, for every u,

0 f ∂2F

∂xrs∂xkl
∇uWs

r∇uW l
k = F̈

(
∇u(W),∇u(W)

)
=

〈
u, g∗F̈

(
∇(W),∇(W)

)
(u)

〉
.

To see this suppose that W : TM −→ TM is diagonal. Then ∇uWs
r ̸= 0 only if r = s.

F (W) = F






W1

1 0

0 W2
2





 =

(
W1

1

)³1
(
W2

2

)³2

.

Since for each i, ³i g 1, then f and in turn F is convex. Since ∇uWs
r ̸= 0 if and only

if r = s, and since F is convex we infer that

0 f ∂2F

∂xrr∂xkk
∇uWr

r∇uWk
k .

Therefore g∗F̈
(
∇(W),∇(W)

)
is positive definite. We infer from parabolic maximum

principle that infimum of F is increasing. It follows from evolution equations of W

F
,

obtained from evolution equations for W and F , and parabolic maximum principle

that the infimum over the unit ball in TM of W

F
is increasing. Therefore there exists

C > 0 such that »min(x) g CF (x). We claim »max

»min
is bounded from above. Consider

an arbitrary sequence of time tn · T . If »max(tn) is bounded from above, then

»max

»min
(tn) is bounded from above. Suppose that »max(tn) is not bounded from above,

and »max(tn) g 1 for every n. Since ³i g 1, if »max = »i for some i, then »³i−1
max g 1.
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Let »max = »1. Then
n∏

i=2

»³i

i g (CF )´

where ´ =
n∑

i=2

³i. Therefore

»³1−1
max

n∏

i=2

»³i

i g (CF )´.

In turn,

1

C´
F 1−´ g »max.

Since »min g CF we infer that

»max

»min

f 1

C´+1F ´
.

Since F is increasing and ´ > 0 we infer that »max

»min
(tn) is bounded from above. There-

fore »max

»min
is bounded.
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