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Abstract: The availability of inspection robots in the construction and operation phases of buildings
has led to expanding the scope of applications and increasing technological challenges. Furthermore,
the building information modeling (BIM)-based approach for robotic inspection is expected to
improve the inspection process as the BIM models contain accurate geometry and relevant information
at different phases of the lifecycle of a building. Several studies have used BIM for navigation
purposes. Also, some studies focused on developing a knowledge-based ontology to perform
activities in a robotic environment (e.g., CRAM). However, the research in this area is still limited
and fragmented, and there is a need to develop an integrated ontology to be used as a first step
towards logic-based inspection. This paper aims to develop an ontology for BIM-based robotic
navigation and inspection tasks (OBRNIT). This ontology can help system engineers involved in
developing robotic inspection systems by identifying the different concepts and relationships between
robotic inspection and navigation tasks based on BIM information. The developed ontology covers
four main types of concepts: (1) robot concepts, (2) building concepts, (3) navigation task concepts,
and (4) inspection task concepts. The ontology is developed using Protégé. The following steps
are taken to reach the objectives: (1) the available literature is reviewed to identify the concepts,
(2) the steps for developing OBRNIT are identified, (3) the basic components of the ontology are
developed, and (4) the evaluation process is performed for the developed ontology. The semantic
representation of OBRNIT was evaluated through a case study and a survey. The evaluation confirms
that OBRNIT covers the domain’s concepts and relationships, and can be applied to develop robotic
inspection systems. In a case study conducted in a building at Concordia University, OBRNIT
was used to support an inspection robot in navigating to identify a ceiling leakage. Survey results
from 33 experts indicate that 28.13% strongly agreed and 65.63% agreed on the usage of OBRNIT
for the development of robotic navigation and inspection systems. This highlights its potential in
enhancing inspection reliability and repeatability, addressing the complexity of interactions within
the inspection environment, and supporting the development of more autonomous and efficient
robotic inspection systems.

Keywords: ontology; BIM; robotics; navigation; inspection

1. Introduction

Inspection is indispensable in the construction industry. Robots are used to automate
the process of inspection during the construction and operation phases. The use of ad-
vanced technologies (e.g., scanners and sensors) has made the inspection process more
accurate and reliable [1]. The complexity of the interactions with the surrounding building
environment is the main challenge for inspection robots [2]. To overcome this challenge, an
ontology can be used as a basis for the robot’s task planning and execution. The robotic
system utilizes and processes the ontology as the robot’s central data store. In this regard,
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there is a need for an interface between the Robot Operating System (ROS) [3] and different
ontologies for robotic inspection [4]. To accomplish the tasks correctly, the autonomous
robot needs to deal with high-level semantic data along with low-level sensory/motor data.
Therefore, a variety of knowledge, including the robot’s low-level data related to perception
and high-level data about the environment, objects, and tasks, needs to be integrated [5].

Building information modeling (BIM) is an approach to model all the information
related to buildings by representing the geometrical and spatial characteristics, and is
supported by the international standard Industry Foundation Classes (IFC) [6]. BIM models
comprise useful information about the building environment, which can help the inspection
robot overcome task complexity. On the other hand, the ROS [3] uses several navigation
methods, such as Lidar Odometry and Mapping (LOAM) and Simultaneous Localization
and Mapping (SLAM), which help the robot build its map based on the collected data
about the environment [7]. Regarding the different lifecycle phases, the BIM models of a
building include as-designed at the design phase, as-built at the construction phase [8], and
as-is at the operation and maintenance (O&M) phase. These models should be considered
in the navigation and inspection processes. It should be noted that each of these models
has several versions and should be continuously updated to reflect design, construction,
renovation, and repair changes in the different phases of the lifecycle. Mismatches between
the as-designed BIM model (or as-built BIM model) and the as-is state of the surrounding
environment can create problems during the building’s navigation and inspection tasks.

In the area of BIM-related ontologies, many minimal ontologies were created for
the linked building data purpose [9]. The purpose of creating minimal ontologies (e.g.,
Building Topology Ontology (BOT) [9] and Damage Topology Ontology (DOT) [10]) is
to solve interoperability issues by creating small, lightweight ontologies that reduce the
complexity of IFC. Minimal ontologies are based on the hypothesis that these ontologies
are easier to understand and use by software developers. However, application-level
integration and developing an interface is difficult because application developers have to
map the different concepts in different ontologies. Furthermore, it is difficult to update and
modify the domain ontology after mapping from distributed heterogeneous ontologies to
the computer software that uses them [11]. On the other hand, many studies focused on
integrating ontologies with BIM information. Therefore, in order to perform the desired
task by a robot in an efficient way (e.g., [12]), the required concepts must be integrated into
an integrated ontology.

The navigation concepts in this paper are based on using the semantic knowledge of
the BIM concepts for navigation tasks. The BIM-based approach is also expected to improve
the inspection process. The robotic task must be performed in such a way that the process
considers reliability, repeatability, and safety. Therefore, it is necessary to enhance opera-
tional consistency in the inspection environment [13]. Robotic systems’ capabilities have
progressed over time, and these systems have become dependent on multiple components
with diverse functions. In most developed systems, the modules are created independently
by different individuals with different technical expertise. Thus, a clear definition of the
relationships between the system’s various components is needed. The system’s structure
and related components must have a straightforward design and documentation to solve
this problem [4]. A clear and accurate description of the environment and the task can help
the robot to achieve the tasks more autonomously [14]. The robot’s declarative knowledge
represents the task’s objects, properties, and objects’ relationships in a semantic model [15].
The robot can use this declarative knowledge to perform the task more accurately. However,
the research in this area is still limited and fragmented, and there is a need to develop an
integrated ontology to be used as a knowledge model for the logic-based inspection of
building defects. The objective of this paper is to develop a BIM-based ontology to cover
the different types of information and concepts related to robot navigation and inspection
tasks. The aim of this ontology is to help system engineers involved in developing robotic
inspection systems by identifying the different concepts and relationships between robotic
inspection and navigation tasks based on BIM information. This paper is an extension of
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our previous work [16]. The ontology is called OBRNIT (ontology for BIM-based robotic
navigation and inspection tasks). OBRNIT covers the high-level knowledge of the robot
comprising robotic and building concepts, and navigation and inspection information.
Unlike previous studies, OBRNIT integrates comprehensive robot characteristics, building
features, and specific inspection and navigation tasks, enhancing robotic inspection pro-
cesses. Leveraging BIM data improves inspection accuracy, repeatability, and efficiency in
complex environments, providing a foundational model for future advancements in robotic
inspection systems.

The use case context is an inspection robot that is navigating in a building with partial
knowledge of the environment because of changes in the available information due to
construction and renovation scheduling issues, unexpected obstacles in the building, etc.
As shown in Figure 1, to define the requirements of OBRNIT, a UML (Unified Modeling
Language) use case diagram is presented. The actor is a robot, and the associations between
the actor and the use cases are shown with solid lines. The dependency relationships are
shown with dotted lines. Includes relationships indicate that the involved use case is a
part of the base use case. Extends relationships indicate that the base use case does not
depend on the extending use case, and specific criteria are needed for the occurrence of the
extending use case.
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Figure 1. Use case diagram of OBRNIT.

The rest of the paper is organized as follows: The next section provides the related
literature. Then, OBRNIT development is discussed. The following section focuses on the
evaluation of OBRNIT using a case study and a survey. Finally, the final section presents
the conclusions and future work.
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2. Literature Review
2.1. Inspection Tasks during the Construction and Operation Phases
2.1.1. Construction Inspection

Inspection during the construction phase is an important task in the construction
industry. A lack of proper inspection will increase the cost of maintenance in the operation
phase [17]. Based on [18], the causes of construction defects include the misinterpretation of
design and inaccurate measurement. Kim et al. proposed a framework for the dimensional
and surface quality assessment of precast concrete elements using BIM and 3D laser
scanning [19]. Park et al. proposed a framework for construction defect management using
BIM and an ontology-based data collection template to represent the inspected defects
during the construction phase [20]. Tekin et al. identified that concrete works, reinforcement
works, and HVAC are the top three areas where problems are frequently observed during
inspections, emphasizing the critical need for rigorous quality control in these areas [21].

Recent technologies (e.g., light detection and ranging (LiDAR) scanner) are integrated
with BIM to enhance the capabilities of construction inspection [22]. These technologies can
capture real-time data from the site [23]. The use of computer vision techniques can help to
inspect most of the surface defects [24]. Bolourian and Hammad considered the potential
locations of the defects on the inspected surfaces and proposed a path-planning method
for LiDAR-equipped unmanned aerial vehicles (UAVs) [25]. Lundeen et al. developed an
adaptive inspection framework for construction robots to detect the location and geometry
of joints and fill these joints [26]. Freimuth et al. used BIM for UAV flight path planning for
construction inspection [27]. Bahreini and Hammad introduced a semi-automated process
for as-inspected modeling, integrating the results of defect semantic segmentation with
BIM, enhancing the efficiency of managing and visualizing detected defects [28].

2.1.2. Inspection during Operation Phase

The other area of inspection is inspection during the operation phase. Facilities need
regular inspections to satisfy their predetermined functions. Imperfections in the facilities
are described as defects, errors, faults, failures, quality deviations, nonconformances,
anomalies, snags, reworks, etc. [29]. Valença et al. introduced ‘Feeling-BIM’ integrating
automated facade inspection with residents’ sentiments, enhancing maintenance decision
making by combining technical assessments with user feedback [30]. Metni and Hamel
used the visual inspection of the structures in the operation phase and discussed the
challenges of considering the orientation limits for UAVs to make sure that the inspected
object is within the field of view of the sensor [31].

To reflect the changes in the BIM model related to inspection during the operation
phase, Chen et al. focused on defect modeling [32]. Motamedi et al. proposed a de-
fect/degradation model that includes various defect types, relationships between elements
and defects, and the processes related to the inspection, evaluation, and repair of defects [33].
Hammad et al. developed an inspection ontology using BIM for lifecycle inspection and
repair information modeling [34]. Kasireddy and Akinci proposed integrating inspection
data with IFC to support condition assessment [35]. Ekba et al. proposed a systematic
approach to technical inspection, which includes detailed visual and instrumental inspec-
tion, as well as the identification and mapping of defects and damages typical for the
different stages of construction [36]. Choi et al. introduced a visualized semi-automated
approach for extracting building condition data and integrating them with BIM using 3D
point clouds. This method improves the efficiency of maintenance strategies by providing
accurate and reliable inspection data [37]. Mohamed and Tran developed an approach for
estimating inspection staffing needs for construction projects, emphasizing the importance
of adequate and experienced inspection staff for ensuring project quality [38]. Furtner and
O’Brien described an automated process for creating an IFC-compliant damage model
from digital inspections [39]. Chen et al. reviewed advancements in integrating BIM
and Life Cycle Assessment (LCA), highlighting how BIM can streamline LCA processes.
The study enhances efficiency in environmental performance assessments [40]. Tan et al.
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introduced a BIM-based defect data management (DDM) platform that integrates real-time
inspection data, providing a comprehensive management system for lifecycle inspection
and repair [41].

2.1.3. Post-Disaster Inspection

Post-disaster inspection is the third inspection type which should be conducted in
the event of a disaster and before re-occupying the building to evaluate potential health
and safety hazards. Search and rescue inspection is also carried out after disasters, which
is a time-sensitive task, and it needs quick action to reduce the potential injuries and
damages [42]. Shin and Cha proposed a new quality inspection process model that inte-
grates advanced technologies, which significantly enhances inspection practices during
post-disaster scenarios [43]. Liang et al. discussed the use of UAVs for efficient and accurate
monitoring and inspection in post-disaster scenarios [44].

2.2. Using Robots for Inspection

With the advancement of technology, autonomous robots have evolved and are
equipped with advanced capabilities [45]. Service robots can be used for different purposes
in the architecture, engineering and construction, and facilities management (AEC/FM)
industry. Mobile robots are designed for sensing, navigation, inspection, and remote
operation in dangerous situations. Industrial applications show the variety in the types,
capabilities, and uses of robots. Autonomous unmanned systems, including UAVs, un-
manned ground vehicles (UGVs), and autonomous underwater vehicles (AUVs), can be
used for quality inspection [46]. For instance, Doxel is a liDAR-equipped robot that scans
construction sites to monitor work [47].

Lin et al. introduced GLEWBOT, a bioinspired climbing robot for inspecting exterior
wall tiles, integrating the leech, gecko, and woodpecker techniques for enhanced accuracy
and efficiency [48]. Halder and Afsari reviewed various robotic systems, highlighting UAVs
and UGVs as the most common types used for inspection and monitoring tasks [49]. Patil
et al. demonstrated the use of UAVs for construction site inspection, which significantly
enhances efficiency and reduces the cost of inspection processes [50]. Pu et al. introduced
a framework named AutoRepo for the automated generation of construction inspection
reports using unmanned vehicles and multimodal large language models, which can
expedite the inspection process and improve report quality [51].

An autonomous robot control system enables robots to perform human activities
in a building [52]. Cognitive Robot Abstract Machine (CRAM) is a software toolbox for
designing and implementing cognitive-enabled autonomous robots, which is built using
the Robot Operating System (ROS) [3] framework. The two main parts of CRAM are
(1) CRAM Plan Language (CPL) and (2) knowledge processing system (KnowRob) [12].

2.3. IFC-Based Navigation

Path planning in 3D spaces needs information related to spaces and their functions,
geometry, locations, and obstacle and accessibility information. BIM can help extract precise
and up-to-date semantic and geometrical data from the building model [53]. As an example,
IfcWall is used to define general walls.

IFC schema represents objects and their semantic relationships [54]. For example, Lin
et al. used an IFC file as the input for path planning. They extracted all the geometric
and semantic information from the IFC file and mapped them onto a planar grid [55]. The
logical network is a representation of the full 3D building model and a detailed navigable
network (e.g., spatial relations between floors, rooms with shared walls, etc.) [56].

In another effort, Rasmussen et al. stated that topological relationships between zones,
elements, or zones and elements of a BIM model can be described as interface class in their
proposed minimal BOT [9]. Furthermore, they stated that topological relationships can be
used to specify restricted zones in the navigation. BOT can be used in combination with
different ontologies to define the building products such as walls and windows. Hou and
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Ju proposed a method for robot indoor path planning using BIM integrated with the A*
algorithm, improving the efficiency and accuracy of navigation in reconstructed building
environments [57]. Liu et al. developed a hybrid map-based path planning method for robot
navigation in unstructured environments, combining 2D grid and 2.5D digital elevation
maps to enhance the safety and efficiency of navigation [58]. Zhai et al. enriched the BIM
data schema (IFC) with IndoorGML, combining geometric information with spatial data to
establish an indoor navigation model. This model enhances the capabilities of quadruped
robots for automated 3D scanning by optimizing scan routes and improving computational
efficiency, coverage, and scan point count [59].

2.4. Review of Related Ontologies

Ontology is defined as the explicit shared knowledge and conceptualization of the
domain [60]. The ontology has two main elements: the related vocabulary to the domain
of interest, and the knowledge representation using this vocabulary to describe the do-
main [61]. Different tools and languages are used to build ontologies. Protégé [62] and
OntoEdit [63] are two examples of ontology editing environments. The web ontology
language (OWL) and resource description framework (RDF) are examples of the languages
used to represent ontologies in the human- and machine-readable formats [64].

2.4.1. AEC/FM Ontologies

The entire IFC schema is available in a large ifcOWL ontology, representing building
data using semantic web [65]. In addition to ifcOWL ontology, many ontologies have been
developed in the AEC/FM industry. For example, Cacciotti et al. presented an ontology
for the diagnosis of damage in order to process and manage cultural heritage damage
information [66].

Moreover, many minimal ontologies were created for the linked building data purpose.
Linked building data principle means using a web-compatible standard for the exchange of
web-based information [9]. BEO (Building Element Ontology) [67] and MEP (Mechanical,
Electrical, and Plumbing) ontology [68] are two ontologies extracted from the IFC schema.
These two ontologies do not include any relations, which can be used based on user
requirements in different domains. As explained in Section 1, BOT and DOT are extensible
minimal ontologies to describe building spaces and damages, respectively. Rasmussen
et al. presented an Ontology for Property Management (OPM), which is a minimal high-
level ontology for managing changes and property valuation over time [69]. Wagner et al.
developed Ontology for Managing Geometry (OMG) to connect the geometric description
to the building element [70]. Bonduel et al. developed Ontology for Geometry Formats
(FOG) to exchange descriptive geometric data [71].

On the other hand, as explained in Section 1, many studies focused on integrating
ontologies with BIM information. For example, Niknam and Karshenas proposed BIM
Shared Ontology (BIMSO) to be extended with different building domain ontologies [11].
Table 1 shows the ontology metrics of some of the publicly available BIM-based ontologies.

2.4.2. Ontologies for Robots

In the robotic area, ontologies can be used for different applications such as general
robotic purposes (e.g., standardization [72,73]) and ontologies for autonomous robots
(e.g., description/reasoning about the environment and tasks) [14,74]. Robotic ontolo-
gies embody the real-world description of objects, properties, and relationships in the
domain [75]. KnowRob is an OWL-based robotic ontology that contains a small core system
and a large set of optional modules which are developed to perform human activities in a
building. The KnowRob ontology v.1.0 has 742 classes, 176 relations, 119 attributes, and
23 individuals [12].
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Table 1. Ontology metrics of some of the publicly available BIM-based ontologies (adapted from [76]).

Ontology
Metrics

Classes Relations Attributes Individuals

BOT v.0.3.2 [9] 10 16 1 5

FOG v.0.4 [71] 3 14 119 4

ifcOWL v.4.1 [65] 1360 1644 5 1171

DOT v.0.8 [10] 13 13 3 1

MEP v0.1.0 [68] 484 0 1 1

OMG v.0.3 [70] 8 17 2 0

BEO v.0.1.0 [67] 183 0 1 1

OPM v.0.1.0 [69] 17 8 4 1

2.5. Related Works

In this section, the research about integrating some aspects of robotics, inspection,
and navigation with BIM is reviewed. Table 2 lists a summary of the most related papers
including the following information: (1) the purpose of the inspection; (2) the building
lifecycle phase (e.g., construction and operation) in which the inspection is conducted; (3) in
the case of using a robot, the type of the robot (i.e., UAV and UGV); (3) the type of sensor
(i.e., RGB camera, depth camera, thermal camera, or LiDAR); (4) using BIM model or IFC
concepts in the process, and in the case of using BIM, considering mismatch between the
actual structure and the model; and (5) using the knowledge-based method (i.e., ontology).

Some studies focused on using different sensors and robots for inspection purposes.
All the studies considered at least one type of sensor (i.e., LiDAR or camera), which could
be an element of the robot in an integrated platform or could be mounted on the robot. The
target element of the inspection was building/infrastructure elements and specific defects,
such as cracks on steel or concrete surfaces. In addition to the review of most related papers
to robotic inspection in Table 2, Hamledari et al.’s [77] and Wang et al.’s [78] papers are
added only because their works considered a mismatch between the actual structure and
the BIM model.

Despite the great benefits of the reviewed papers, they have one or more of the
following limitations: (1) Robot awareness about the environment and the accuracy of
object information and interactions during the task can be improved by considering a
semantic description (i.e., ontology). (2) A standard BIM model was not used as a reference
for navigation and localizing the defects. (3) In the case of having a BIM model, the
BIM elements were not updated based on mismatch considerations, and the functional
properties of the BIM elements were not used for inspection. The BIM model is assumed
to be complete and reliable. (4) Robotic navigation was not considered in some studies.
Navigation here refers to using a path generation method and obstacle avoidance based on
sensor data.

From the studied literature, the integration of the knowledge of robotic inspection and
the construction domain is a key factor in an effective and efficient inspection, which needs
more attention. In the next sections, our developed ontology (OBRNIT) aims to cover all the
concepts related to BIM and robotic navigation and inspection as an integrated knowledge
representation.
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Table 2. Related works.
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An autonomous thermal scanning system with which to obtain the 3D thermal models of
buildings [79] Indoor building elements O ✓ - ✓ ✓ ✓ - ✓ - - -

A framework for the automated acquisition and processing of as-built data with autonomous
unmanned aerial vehicles [80] Building elements C ✓ ✓ - ✓ ✓ ✓ - ✓ ✓ -

The automated robotic monitoring and inspection of steel structures and bridges [81] Steel cracks O ✓ - ✓ ✓ ✓ ✓ - - - -

Automatic wall defect detection using an autonomous robot: a focus on data collection [82] Walls O ✓ - ✓ ✓ - - - - - -

Autonomous robotic exploration by incremental road map construction [83] Indoor building elements O ✓ - ✓ ✓ - - - - - -

Planning and executing construction inspections with unmanned aerial vehicles [84] Building roofs C ✓ ✓ - - ✓ - - ✓ - -

Tunnel structural inspection and assessment using an autonomous robotic system [85] Concrete cracks O ✓ - ✓ ✓ ✓ ✓ - - - -

The design and development of an inspection robotic system for indoor applications [86] Building elements (tested on walls) O ✓ - ✓ - ✓ ✓ ✓ - - -

A semi-autonomous mobile robot for bridge inspection [87] Concrete cracks (tested on columns) O - - ✓ - ✓ - - - - -

The IFC-based development of as-built and as-is BIMs using construction and facility
inspection data: site-to-BIM data transfer automation [77]

Building elements: walls, doors,
outlets, and light fixtures O - - - - ✓ - - ✓ ✓ -

The automated quality assessment of precast concrete elements with geometry irregularities
using terrestrial laser scanning [78] Precast concrete elements C - - - ✓ - - - ✓ ✓ -

Infrared building inspection with unmanned aerial vehicles [88] Building elements (tested on roofs
and roof windows) O - ✓ - - - - ✓ - - -

Efficient search for known objects in unknown environments using autonomous indoor robots
[89] Indoor building elements O ✓ - ✓ - ✓ ✓ - - - ✓

A robotic crack inspection and mapping system for bridge deck maintenance [90] Concrete cracks O ✓ - ✓ ✓ ✓ - - - - -

Low-cost aerial unit for the outdoor inspection of building façades [91]
Building facade and envelope
elements (tested on facade
openings)

O - ✓ - - ✓ ✓ - - - -

Auto inspection system using a mobile robot for detecting concrete cracks in a tunnel [92] Concrete cracks (tested on walls) O - - ✓ - ✓ - - - - -

Notes: C = construction phase and O = operation phase.
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3. Developing OBRNIT
3.1. Methodology Workflow

The main steps for developing OBRNIT are explained in this section. The methodology
for developing OBRNIT is METHONTOLOGY, which is clear, well-documented, mature,
and based on the experience of other domains’ ontology development [93]. OBRNIT
development based on METHONTOLOGY includes the initial, development, and final
stages as shown in Figure 2. The best practices and knowledge in the robotic inspection
domain are used to develop OBRNIT. The initial stage involves steps to specify the scope,
main concepts, and the taxonomies of OBRNIT. The scope of OBRNIT is defined based on
the requirements. Research papers, textbooks, and online resources are used as sources
for the requirements (e.g., properties). The ontology needs to cover all the concepts about
the robot characteristics, building characteristics, and inspection and navigation tasks.
The competency questions need to be defined as a part of the requirements of the robotic
inspection domain. The competency questions are identified based on the use case diagram
(Figure 1) and the reviewed literature to define the key challenges OBRNIT can address, as
shown in Table 3.

Table 3. Competency questions.

Q1 How to locate the defect in the BIM model?

Q2 How to relate the mobility characteristics of the robot with the conditions of the
building based on the BIM model?

Q3 How to benefit from the BIM model in defining the path of the robot?

Q4 How to use the sensors of the robot to find the mismatches with the BIM model for
replanning the path of the robot?

Q5 How to select the suitable sensors for the robot for the specific inspection task?

Furthermore, this step helps to consider the size of the development and the level
of detail that needs to be covered in OBRNIT. The next step is defining the concepts and
taxonomies for OBRNIT. The data related to OBRNIT are gathered in this step. The list
of requirements from the defining scope step helps the process of ontology development.
Communication with experts and end-users along with receiving feedback from them is
essential during the whole cycle of this stage.

The development stage is devoted to constructing and verifying the initial structure of
OBRNIT. In the first step of the development stage, the conceptualization model is clearly
represented and implemented in a formal language (e.g., OWL) to be later accessible by
computers and used by different systems. The development of OBRNIT involves reusing
and adapting BIM concepts. BEO v.0.1.0 [67], which is based on the IfcBuildingElement
subtree in the IFC specification and ifcOWL ontology [65], is a good starting point for
including the relevant BIM concepts to OBRNIT. BEO is available in the OWL format,
which facilities the integration process. Moreover, BOT v.0.3.2 [9] and DOT v.0.8 [10]
ontologies are integrated and adapted in the development of OBRNIT to represent the
required concepts related to damages and building topology, respectively.

The ontology integration in the METHONTOLOGY method can be carried out at
the conceptualization level. The methods to reuse available ontologies are (1) ontology
merging, (2) ontology alignment, and (3) ontology integration. Ontology merging refers
to unifying two or more available ontologies by comparing the available ontologies and
finding similarities between their domain information. Ontology alignment refers to map-
ping the concepts and relationships in two or more available ontologies to find equivalency
between them. This method requires the smallest number of changes, and it is a simpler
form of merging [94]. Ontology integration refers to integrating one or more available
ontologies in the process of developing a new ontology by adapting, extending, special-
izing, or assembling. The ontology integration method is selected in this research as it
saves the effort to reuse and adapt the components that are needed to complete OBRNIT.
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The next step of the development stage is verifying the developed ontology. Based on the
consistency rules and competency questions, this process examines the ontologies from the
technical perspective.

The final stage is to add new, or modify the existing, relationships and evaluate OBR-
NIT with experts and end-users through evaluation questions. In this stage, the ontology is
improved with the suggestions of the domain experts and end-users to fulfill real-world
requirements. OBRNIT evaluation is performed through a case study and a criteria-based
evaluation method [95]. Similar ontologies in the robotic inspection domain are not avail-
able to compare the developed ontology with a benchmark ontology or high-level standards
in the domain. The final step is documenting the developed OBRNIT. Obtaining knowledge,
evaluation, and documentation are involved throughout the whole life cycle of ontology
development. Each step of the METHONTOLOGY method is presented using the IDEF5
(Integrated DEFinition) [96] ontology description method, which includes detailed infor-
mation about the input, output, control, and mechanism. The next section explains in detail
about the ontology development. The following section focuses on the verification and
evaluation steps.
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3.2. Components of OBRNIT

Some concepts from the BIM and KnowRob ontology [12] are used as parts of this
study. Protégé [62] is used to develop OBRNIT and to integrate it with BEO, BOT, and DOT.
OBRNIT has 386 classes, 45 relationships, 52 attributes, and 8 individuals. The current
version of OBRNIT is available at https://github.com/OBRNIT/OBRNIT (accessed on 18
July 2024).

OBRNIT covers four main groups of concepts including (1) robot concepts, (2) building
concepts, (3) navigation task concepts, and (4) inspection task concepts, which are explained
in the following sections. Figure 3 shows the main types of OBRNIT concepts. Figure 4
shows the main concepts and relationships of OBRNIT. Figure 5 shows the inspection
task’s main concepts and relationships. Some concepts are duplicated in Figures 4 and 5 to
improve the readability of the figures. Color coding is used to group the concepts pertaining

https://github.com/OBRNIT/OBRNIT
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to each of the four groups. However, the figures are simplified by adding the colors only
to the main concepts of the ontology. The relationships between the concepts show how
the ontology components are semantically interrelated. The types of relations used in the
developed ontology are as follows: is, has, uses, affects, performs, causes, captures, has
state, has time, has target, and measures (e.g., thermal camera measures temperature).

Buildings 2024, 14, 2274  11  of  28 
 

the colors only to the main concepts of the ontology. The relationships between the con-

cepts show how the ontology components are semantically interrelated. The types of re-

lations used  in  the developed ontology  are  as  follows:  is, has, uses,  affects, performs, 

causes,  captures,  has  state,  has  time,  has  target,  and measures  (e.g.,  thermal  camera 

measures temperature). 

 

Figure 3. OBRNIT main types of concepts. 

 

Figure 4. Main concepts and relationships of OBRNIT. 

Figure 3. OBRNIT main types of concepts.

3.2.1. Robot Concepts

The robot concepts of OBRNIT cover the main functions of a robot along with the
related knowledge of the inspection and navigation tasks. Declarative abstract knowledge
about the tasks and environment should be encoded in the robot controller and used to
determine proper actions for a specific task.

KnowRob ontology represents semantic models using object detection applied to
the acquired point clouds enriched by encyclopedic, common-sense, and action-related
knowledge [12]. From the BIM point of view, this ontology is primitive and does not
provide full support for building elements. For example, the concept of a wall is only
mentioned as a part of the edges of a region’s surface and does not have dimensions,
material, connectivity, type, etc. Walls may play a major role in inspection and navigation
tasks because they define the boundaries of robots’ movements or can be obstacles, or
the main target of inspection. Other building elements, such as ceilings, columns, and
windows, are not covered in KnowRob.

As shown in Figure 4, mobility and sensing are the two main functions of robots. The
mismatches between the path found based on the non-updated BIM model (Section 3.2.2)
and the as-is state of the surrounding environment (Section 3.2.3) will cause an obstacle for
the robot’s movement, and consequently its performance. Robot concepts cover basic at-
tributes (e.g., type and size), robots’ performance (e.g., movements and degrees of freedom
(DOF)), robots’ constraints (e.g., safety distance), and sensors for navigation and inspection
tasks. The DOF defines the modes for the motion capability of the robot. The types of robots
considered in OBRNIT are UAV and UGV. UGV refers to any type of crawling, climbing,
and other ground-based robots. The movement of UAVs is in the 3D spaces of the building.
However, UGVs move following the floors and may be able to climb the stairs. In this case,
there are some constraints on the movement, such as the maximum height of a stair step
that they can climb. Also, the flying movement of a UAV has constraints, which mainly
depend on the size of the UAV.
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Sensors can be used for inspection (e.g., RGB camera and thermal camera) and naviga-
tion purposes (e.g., depth camera and GPS). LiDAR and cameras are two different types
of sensors. Cameras collect images, which can be RGB/depth/thermal images. LiDAR
scanner is a remote sensing method which collects point clouds from the environment.
The accuracy and field of the view of the robot’s sensor, as well as its type, affect the
robot’s inspection performance. The concepts related to inspection tasks are explained in
Section 3.2.4.

3.2.2. Building Concepts

The BIM model can provide information about the environment of the robotic inspec-
tion. Every building element that affects the robot navigation and inspection processes
should be included in OBRNIT. As explained in Section 3, the integration process starts
with integrating BEO. The required concepts, which are not included in BEO, are added
from the ifcOWL ontology or defined based on the required concepts for robotic navigation
and inspection. The process of integrating BIM concepts with OBRNIT aims to link the
available BIM concepts with the developed OBRNIT concepts, including the related build-
ing concepts (e.g., BIM mismatch concepts), robot concepts, and inspection and navigation
task concepts. Some research focused on robots that can open a closed door with specific
access control or use a handle, knob, or button [98]. For example, Cobalt Access can open
locked doors by using the door’s access control reader [99]. However, passing through
locked doors without human intervention is still one of the main issues for most of the
robots. Figure 6 shows robot access control concepts in OBRNIT. The state of the door can
be open or closed, locked or unlocked, mechanically locked, or electronically locked.
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Table 4 shows examples of building concepts reused from BEO, BOT, and ifcOWL, and
new concepts defined in OBRNIT. The building concepts of OBRNIT include the following:
(1) Concepts reused from BEO ontology. (3) Concepts reused from BOT. (4) Concepts reused
from ifcOWL: Some necessary concepts, which are not included in BEO (e.g., the furniture
concept), are added from the ifcOWL ontology. HVAC elements are also added from the
ifcOWL ontology in order to consider the HVAC system defects. (5) Concepts adopted from
Building Management Systems (BMSs): Some concepts related to the state of the door are
required for navigation purposes. These concepts are adopted from BMS. (6) New building
concepts defined based on OBRNIT needs: These concepts include BIM mismatch concepts.
In addition, the following relationships are defined to link the building-related concepts to
the navigation and inspection concepts: (1) relationships to define the links between spaces
for navigation paths (e.g., door/corridor), (2) relationships to define a BIM object as the
point of interest of inspection, and (3) relationships to define obstacles or constraints for the
robot’s movement (e.g., a narrow door).
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Table 4. Examples of reused, adopted, and new building concepts in OBRNIT.

Concept’s Source Example Concepts

Concepts reused from BEO Beam, column, covering (ceiling and flooring), door, stair, wall, and window

Concepts reused from BOT Space and zone

Concepts reused from ifcOWL

HVAC system

Room and corridor

Furniture (e.g., table and shelving)

Concepts adopted from BMS Open door, closed door, locked door and unlocked door

New building concepts

Access point

Temporary structure (e.g., falsework/scaffolding)

BIM model (as-designed, as-built, and as-is)

A mismatch between as-designed/as-built BIM and as-is state of the surrounding
environment (missing objects, unexpected objects, and non-conformity issues),
deviation in dimension, deviation in location, material issue, unexpected state, and
damaged building element

Mismatch reason (communication problem, documentation problem, or human
error), change order, inaccurate documentation, and missing documentation

Furthermore, the mismatches between the as-designed or as-built BIM model and the
as-is state of the surrounding environment should be semantically represented in OBRNIT.
By implementing a BIM model of a building, all the information about the elements is
available through this model. Identifying the potential types of mismatches is the first step
to defining a logic-based robotic inspection system that can reduce delays and reworks.
Having a rich semantic database about the spaces and building components can enhance
the overall efficiency of the robot. Also, the information about the path has a major role
when the goal is finding the optimal route and avoiding collisions with the existing barriers.
Different spaces in the building can form different zones. Spaces (e.g., rooms) can be used
to generate nodes for generating the path of the robot, which is explained in Section 3.2.3.
The dimensions of a space can be used to define these nodes inside or on the edges of the
space. The main building spaces for robot path planning are rooms, corridors, and stairs.
The functionality of rooms and specifications of spaces can be different (e.g., security level
for access to public/restricted rooms).

The mismatches between the information in the available BIM model and the reality
cause navigation problems for robots. The preliminary model of the BIM at the design phase
is called as-designed BIM. As-built BIM includes all the changes during the construction
phase. As-is BIM includes the updated information of the facility and all the changes
(e.g., repair, replacement, etc.) at the time of data collection. In some cases, the lack of
adequate communication in the design phase, insufficient documentation, or the errors of
the contractor can turn into unexpected results including information mismatches between
the as-designed BIM model and the as-is state of the building. The same problem can occur
in the operation phase, where renovation issues can cause mismatches between the non-
updated as-built BIM and the as-is state of the building. The assumption in OBRNIT is that
the path planning is based on a reference BIM model, but this model is not as-is and reliable.
The semantic mismatch between the as-designed BIM model (or the as-built BIM model)
and the as-is state of the surrounding environment could be caused by one of the following
problems: (1) There is an object in the BIM model, which does not exist in reality. This
problem can be the result of design changes during the construction phase (e.g., removing
a door) where the changes are not applied in the BIM model. (2) There is an object in the
building which is not included in the last updated BIM model. (3) There is a discrepancy
between the BIM model and the actual building with respect to objects’ attributes, such
as location or dimensions. As shown in Figure 4, these problems that the robot can face
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in a building are classified as missing objects, unexpected objects, and non-conformity
issues. Each of these issues could be linked to fixed or mobile objects. For instance, building
elements (e.g., access points) can be missing objects, and furniture and temporary structures
(e.g., falsework) can be unexpected objects. Also, classes related to non-conformity should
cover material issues, unexpected states (e.g., damaged building element or a closed door
which is expected to be open), deviation in location or deviation in dimensions (e.g., narrow
door), etc. As shown in Figure 4, each of the main mismatch entities has one or more causes
and effects. For instance, some of the causes are human errors, documentation problems
(e.g., change request was not documented), and communication problems during the
different phases of AEC/FM. Each of these reasons causes a problem that can be described
as an effect (e.g., obstacles for a robot). A narrow door (i.e., deviation in dimensions) or a
closed door (i.e., different states from what is expected) are examples of non-conformity
that can cause problems for a robot during its operation.

3.2.3. Navigation Concepts

The navigation task in OBRNIT refers to the act of performing navigation by the robot.
As shown in Figure 4, navigation concepts cover the main information related to the path of
the robot including nodes and links, which can be used for path planning. The navigation
task has a network, and it uses the information of this network for path planning. Different
types of navigation sensors can be used including GPS, LiDAR scanner, and depth camera.
A LiDAR scanner can be used to support both the inspection task (Section 3.2.4) and the
navigation task. The robot uses the path for performing the navigation task. A path has
attributes including the length, direction, and buffer-width.

A node can be the origin or destination of a path, or a way-node on the path. Spaces
(e.g., room and corridor) and access point elements of a building (e.g., doors and windows)
can be the nodes of a path. For example, if a robot must move from a corridor to a room,
the center point of the corridor is the origin node, the center point of the room is the
destination node, and the door of the room is a way-node. The positions of the way-nodes
vary based on the obstacles in the way of the robot. These obstacles may be unexpected
objects detected by the robot as explained in Section 3.2.2. New links on the path connect
these way-nodes to the origin and the destination nodes and each other [55]. Links connect
the nodes and define the direction of the path. Examples of links are the links connecting
a window to a room (in the case of UAV), a door to a corridor, or a door to a room based
on the defined building elements and spaces as explained in Section 3.2.2. Links can be
horizontal or vertical (e.g., stairs’ links are vertical). Figure 7 shows a simple example,
where Node 1 at the center of Room 1 is the origin node and Node 2 at the center of Room
2 is the destination node. Link 1 is the shortest link to connect the origin to the destination
nodes; but it crosses two obstacles (i.e., the walls of the rooms). Nodes 3 to 7, which are
way-nodes on the path, and the links between them are added to create an obstacle-free
path (path A). As explained in Section 3.2.2, the states and dimensions of the access points
(e.g., doors and windows) are important to enable the robot’s movement over the path. For
example, a closed or narrow door can be an obstacle to the robot’s navigation.

3.2.4. Inspection Concepts

The inspection is the main task of the robot in OBRNIT and is mostly performed using
vision sensors (e.g., LiDAR scanners and cameras). As explained in Section 3, the DOT
concepts are integrated to link with the building defect concepts of OBRNIT. Examples
of concepts reused from DOT are damage, damage pattern, documentation, and defect.
In this section, the attributes of the inspection-related tasks of OBRNIT are defined based
on common defects in buildings [100]. OBRNIT covers only the major types of defects
related to ceiling, beam, column, wall, floor, roof, door, and window elements. However,
it does not cover all the types of building defects. Building elements can have different
types of defects that the robot can inspect based on their material. For example, concrete
surfaces can have defects such as cracks, spalling, and efflorescence. Moreover, some
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types of defects such as missing roofs can be detected after a disaster occurrence. As
shown in Figure 5, the inspection task has an inspection method, which can be a visual
inspection or a method for the measurement/detection of physical conditions (e.g., broken
glass) or environmental conditions (e.g., temperature). The method of inspection is based
on the sensor’s measurement/detection and acquired datasets. Measurement/detection
devices for inspection are radio-frequency ID (RFID) readers, image sensors (i.e., RGB and
thermal cameras), and LiDAR scanners. RFID is a technology that uses radio frequencies to
detect objects. RFID tags can be attached to separate object instances and linked with BIM
information. Inspection using cameras produces images while inspection using LiDAR
scanners produces point clouds. These images and point clouds can be used to detect
surface defects, deformations, non-conforming elements, etc. The quality of LiDAR data
are defined based on the two main parameters of density and accuracy [101]. The density of
a point cloud is represented by the number of points in a specific area. The distance between
the two points which are next to each other defines the point spacing. Computer vision
methods can be used for anomaly detection on the collected data. Also, the information
on computer vision methods can be used for obstacle detection and navigation tasks
(Section 3.2.3).
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Defects can cause damage to the building elements. Damage occurs when a defec-
tive element loses its function. For example, water leakage from the ceiling is a defect,
which can cause damage to the ceiling elements over time. There are several causes for
defect formation and damage occurrence. Defects and damages have various patterns and
characteristics.

OBRNIT covers two main types of defects, including building defects and HVAC
system defects. The point of interest of the inspection task is defined by the inspection
purpose, which can be general scanning, inspecting mechanical systems (e.g., HVAC),
or detecting building defects. General robotic scanning aims to update the BIM model
or to collect data on a hazardous building, which is unsafe to inspect by human inspec-
tors. The malfunctions of the HVAC system affect the environment’s temperature and air
quality. Defected HVAC elements or related building elements (e.g., improper insulation)
can be evaluated by thermal cameras. In the case of inspecting building defects (e.g.,
surface/material defects), specific building elements (e.g., doors, walls, floors, etc.) are the
points of interest, and each of them can be a target for the inspection task. For example,
defective gaskets and improper insulation are some types of window frame defects, and the
ceiling can be inspected for different types of defects such as leakage, stain, discoloration,
bulging, spalling, delamination, and efflorescence. Some issues related to non-conformity
can be considered as building defects, as discussed in Section 3.2.2. Furthermore, the
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detected defects can be used to update the available BIM model to create an up-to-date
as-is BIM model.

4. Evaluation

Ontology evaluation is a main step in ontology development, which refers to the
process of evaluating if the developed ontology is correct and if it represents the main
concepts and relationships [102]. Two evaluation methods are used for evaluating the
usefulness of OBRNIT: (1) application-based evaluation and (2) qualitative criteria-based
evaluation. The application-based evaluation is the evaluation of a developed ontology
using a case study. This approach judges whether the ontology is suitable to perform the
task and meets the objectives. However, it is not used to evaluate the design or the contents
of the ontology [102]. On the other hand, the qualitative criteria-based evaluation approach
is used to evaluate the ontology based on criteria such as clarity, coherence, consistency,
correctness, and expandability. Consistency criteria are tested using the HermiT OWL
Reasoner in the verification process [103]. The HermiT OWL Reasoner, which is based
on the hypertableau algorithm, is used for identifying subsumption relationships and
consistency evaluation [104]. The reasoner clarified some inconsistencies in the ontology.
As described in Section 3.1, these results were utilized as feedback and input to Step 3 to fix
the problems before going to the final step.

4.1. Case Study

This case study investigates the use of an inspection robot to locate a leakage in
Room 9-215, situated on the ninth floor of a building at Concordia University (Figure 8).
The primary objective is to demonstrate the applicability of the OBRNIT by utilizing
specific information extracted from the BIM model of the building in conjunction with the
capabilities of the employed inspection robot. For this case study, the robot has partial
knowledge of the environment based on a non-updated BIM model. After defining the
inspection point of interest as the leakage in the ceiling of Room 9-215, the robot navigates
to reach this location to perform the inspection task. Path planning is conducted based
on a reference as-built BIM model. Once at the inspection location, the robot utilizes an
RGB camera to capture images of the ceiling. The specifications of the inspection task are
outlined in Table 5.

Table 5. Inspection task specifications based on concepts in OBRNIT.

Concept in OBRNIT

Point of interest Ceiling defect

Type of defect Leakage

Inspection method Measurement/detection

Measurement/detection device RGB camera

The Mecabot Pro robot [105], an unmanned ground vehicle (UGV) with horizontal
mobility, has been chosen for this case study as shown in Figure 9. The detailed specifica-
tions of the inspection robot are provided in Table 6. This robot is equipped with a LiDAR
sensor, enabling comprehensive 360-degree scanning for object avoidance. The seamless
integration of this LiDAR into the Mecabot platform ensures efficient mapping and naviga-
tion functionalities. Furthermore, the robot is equipped with a depth camera, providing
detailed visual information. To explore immersive environments and capture rich visual
experiences, the robot is enhanced with a VR (Virtual Reality) camera. This additional
camera enables the robot to record and stream immersive 360-degree videos. To facilitate
the robot’s autonomous navigation and mapping, SLAM was used to continuously detect
obstacles not available in the BIM model. The implementation of the robotic inspection
case study was performed using the ROS [3].
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Table 6. Inspection robot main specifications.

Concept in OBRNIT Specifications

Robot type (UGV) Mecabot Pro

Movement Horizontal movement

Sensor type

LS LiDAR (Leishen C16 3D) 360-degree scanning range and surroundings perception

Depth camera (Orbbec Astra) RGBD image capturing for a range of uses including gesture control,
skeleton tracking, 3D scanning, and point cloud development

VR camera (Insta360 ONE RS) 360-degree view for photos and video capturing

Degrees of freedom 3 degrees of freedom

Size

Length 58.1 cm

Width 54.1 cm

Height 22.5 cm

Table 7 presents examples of BIM-based information, including the objects in Room
9-215, the inspection point of interest, and the spaces/objects from the elevator on the ninth
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floor to the door of Room 9-215. It is important to note that this table only contains the
walls of Room 9-215 and does not show the other walls of the entire ninth floor.

Table 7. Examples of the IFC-based information of Room 9.215 and the spaces/objects outside
the room.

IfcEntity Name Tag Concept in OBRNIT
IfcColumn M_Round Column: 610 mm Diameter 364991 Column
IfcCovering Compound Ceiling: 600 × 600 mm grid 2, white 378778 Ceiling (point of

interest for leakage
inspection)

IfcCurtainWall Curtain Wall: Storefront 363008 Curtain wall
IfcDoor M_Single-Flush: 0915 × 2134 mm: 379291 379291 Door
IfcFurniture M_Furniture_System-Standing_Desk-Rectangular:

1500 × 750 mm
372571

TableIfcFurniture 373006
IfcFurniture 373129
IfcFurniture 373192
IfcFurniture 373239
IfcFurniture 373486
IfcFurniture 373630
IfcFurniture 374087
IfcFurniture 374640
IfcFurniture 374723
IfcFurniture

M_Chair—Executive
376992

ChairIfcFurniture 377394
IfcFurniture 377583
IfcFurniture 377646
IfcFurniture 377711
IfcFurniture 377776
IfcFurniture 377859
IfcFurniture 377916
IfcFurniture 377983
IfcFurniture 378050
IfcFurniture M_Shelving: 1240 × 0305 × 1500 mm 368134 Shelving
IfcFurniture 370460
IfcFurniture M_Cabinet-File 4 Drawer: 1000 × 0457 mm 367042 Drawer
IfcFurniture 367118
IfcFurniture 368542
IfcSlab Floor: Generic Floor—400 mm 359802 Flooring
IfcSpace Room—9-215 Room
IfcWallStandardCase Basic Wall: Interior—138 mm Partition 360817 Wall
IfcWallStandardCase 360875
IfcWallStandardCase 360745
IfcWallStandardCase 361005
IfcWallStandardCase 361035

R
oo

m
9-

21
5

IfcWallStandardCase Basic Wall: steel—200 mm concrete masonry unit
(CMU)

361214

IfcBuildingElementProxy
Elevator: 1300 × 950 mm

263782 Transport element
-elevatorIfcBuildingElementProxy 263642

IfcBuildingElementProxy 263853

IfcBuildingElementProxy Site_Scaffolding 321511 Falsework/scaffolding

IfcSpace Corridor—9-A1 - Corridor

IfcSpace Corridor—9-A2 -

IfcSpace Corridor—9-A3 -

IfcSpace Corridor—9-A4 -

IfcStair Assembled Stair: 7” max riser 11” tread 258349 Stair
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Table 8 shows the navigation network and path planning concepts for the desired
path. The origin node is in front of the elevators on the ninth floor, and the destination
node is inside Room 9-215. The path is divided into two parts: (1) Horizontal movement
from the ninth-floor elevator hall to Room 9-215 (Figure 8a). The shortest path (Path A)
would involve using Corridors 9-A1 and 9-A2 (Nodes 1, 2, and 5). However, this path is
obstructed by scaffoldings, which are used for a renovation project, creating an obstacle for
the robot. As a result, the robot must follow a longer path (Path B) to reach the room. The
robot obtains information about the scaffoldings from its sensing ability using LiDAR. After
detecting the obstacle, the robot replans a new path (Path B). The corridors involved in Path
B to reach Room 9-215 are Corridor 9-A3, Corridor 9-A4, and Corridor 9-A2, which contain
Nodes 1, 2, 3, 4, and 5. (2) The second part of the path involves horizontal movement
inside the room, from the door to the destination node (i.e., the inspection point of interest),
as shown in Figure 8b. Sub-nodes 6 and 7 in the navigation path distinctly represent the
robot’s behavior in avoiding obstacles (i.e., a chair) using the LiDAR data. The total distance
the robot traveled, considering both parts of the path, is 40.56 m.

Table 8. Navigation network and path-planning concepts.

Concept in OBRNIT

Parts of the Path to Reach Inspection Point of Interest Links Connecting Nodes Obstacles for Robot

Horizontal path in corridors on the 9th floor
Path A 1-2‘-5 Scaffoldings, walls, and door

Path B 1-2-3-4-5 Walls and door

Horizontal path inside Room 9-215 5-6-7-8 Chairs and tables

The case study demonstrates that OBRNIT can answer all the competency questions
(Table 3) and it covers all the concepts necessary for the planning of the robotic building
navigation and inspection. Integrating the mobility characteristics of the robot and the
knowledge about the surrounding environment have been used to help the robot define
the appropriate path based on the robot type and constraints and meet the requirements
for the inspection task. The ontology has been used to help select a robot with suitable
sensors for the navigation and inspection tasks. Moreover, the robot benefits from the BIM
model to define the path based on defining the nodes and links of the path. In addition, the
BIM model helps the robot locate the inspection object. The case study shows how several
concepts are extracted from OBRNIT.

4.2. Criteria-Based Evaluation

A survey was conducted to evaluate the adequacy of the semantic representation of
the concepts and relationships of OBRNIT. The survey includes eight questions, which are
related to the different components of OBRNIT. These questions reflect the coverage of the
concepts and semantic relationships between the classes, and aim to measure the clarity and
comprehensiveness of OBRNIT. The first question was about the respondents’ information.
The second question was about BIM and its benefits for inspection robots. The third and
fourth questions considered the clarity and comprehensiveness of the main concepts of
OBRNIT. The fifth and sixth questions were about the clarity and comprehensiveness of
the inspection part of OBRNIT. The seventh question was about a statement related to
the complexity of interactions between components in OBRNIT. Finally, the last question
considered OBRNIT’s capability for system development. Figures 3–5 and 8 were provided
in the survey to present the background and some details of OBRNIT. A five-point Likert
scale is used to obtain the quantitative values of the answers.

The survey was sent to 105 internationally recognized experts selected based on
their knowledge of BIM, construction, and robotic inspection. A total of 33 individuals
participated in the survey (response rate of 31%). The 33 respondents have a total of



Buildings 2024, 14, 2274 22 of 28

117 years of experience in robotics, computer science, and information systems, and a total
of 225 years of experience in BIM, construction, and inspection research.

Table 9 lists the results of the survey answers. For Q2, the respondents strongly agreed
(36.36%) or agreed (51.52%) that BIM extends the declarative knowledge of the environ-
ment for the cognitive robot’s performance during navigation tasks. The answers for Q3
indicate that the main concepts and the relationships of OBRNIT are very clear (9.38%),
clear (56.25%), somewhat clear (25%), and not so clear (6.25%). The answers to Q4 about
the comprehensiveness of the main concepts and the relationships in OBRNIT indicate that
they are very comprehensive (15.63%), comprehensive (59.38%), and somewhat compre-
hensive (21.88%). Q5 indicates that the inspection task concepts are very clear (15.63%),
clear (59.38%), and somewhat clear (15.63%). The answers to Q6 about the comprehensive-
ness of the inspection task concepts were very comprehensive (18.75%), comprehensive
(53.13%), somewhat comprehensive (21.88%), and not comprehensive (3.13%). For Q7,
the respondents strongly agreed (21.88%) or agreed (68.75%) that complex declarative
knowledge of OBRNIT is useful in clarifying the context of knowledge. Q8, which is related
to the usage of OBRNIT for the development of robotic navigation and inspection systems,
gained responses that strongly agreed (28.13%), agreed (65.63%), and neither agreed nor
disagreed (6.25%).

Table 9. Distribution of the responses.

Q No Ave. SD Results

Q2 1.75 0.65 Strongly agree Agree Neither agree
nor disagree

Disagree Strongly
disagree

No
answer

36.36% 51.52% 12.12% 0% 0% 0%

Q3 2.29 0.72 Very clear Clear Somewhat
clear

Not so clear Not clear at
all

No
answer

9.38% 56.25% 25% 6.25% 0% 3.13%

Q4 2.06 0.61 Very
comprehensive

Comprehensive Somewhat
comprehensive

Not
comprehensive

Missing lots
of concepts

No
answer

15.63% 59.38% 21.88% 0% 0% 3.13%

Q5 2 0.58 Very clear Clear Somewhat
clear

Not so clear Not clear at
all

No
answer

15.63% 59.38% 15.63% 0% 0% 9.38%

Q6 2.09 0.73 Very
comprehensive

Comprehensive Somewhat
comprehensive

Not
comprehensive

Missing lots
of concepts

No
answer

18.75% 53.13% 21.88% 3.13% 0% 3.13%

Q7 1.87 0.54 Strongly agree Agree Neither agree
nor disagree

Disagree Strongly
disagree

No
answer

21.88% 68.75% 9.38% 0% 0% 0%

Q8 1.78 0.54 Strongly agree Agree Neither agree
nor disagree

Disagree Strongly
disagree

No
answer

28.13% 65.63% 6.25% 0% 0% 0%

The feedback from the survey is largely on the positive side. For Q3 about the clarity
of OBRNIT, the explanation of the partially negative evaluation could be that this question
only provided the overall condensed figure of OBRNIT (Figure 4) without any explanation.
The reason for not providing the explanation is to keep the time needed for answering
the survey within a reasonable limit (less than 30 min). This was a compromise aiming to
increase the number of responses to the survey.

The respondents’ comments were also very positive in general, and some suggestions
for improvement were provided. Some examples of comments are as follows: for Q2, “BIM
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can extend the knowledge of path optimality, safety, and feasibility as it can provide the
basic geometric information necessary for localization and pathfinding”; for Q6, “Other
types of defects could be added”. These comments will be considered in our future work.

5. Results and Discussion

This paper developed an integrated ontology, called OBRNIT, to extend BIM applica-
tions for robotic navigation and inspection tasks. There are 386 classes, 45 relationships,
52 attributes, and 8 individuals in OBRNIT. OBRNIT comprises high-level knowledge of
the concepts and relationships related to buildings, robots, and navigation and inspection
tasks. BIM is considered as a reference that is integrated with the knowledge model. The
application of OBRNIT was investigated in a case study. In addition, a survey was de-
signed and conducted to evaluate the semantic representation of OBRNIT. The evaluation
demonstrates that OBRNIT covers the domain’s concepts and relationships up to the point
that satisfies the domain experts. Based on the evaluation, OBRNIT was able to give a clear
understanding of the concepts and relationships in the domain, and it can be applied for
developing robotic inspection systems. OBRNIT can be used as a first step towards logic-
based inspection, which can help robots perform inspection tasks autonomously without
the help of human judgment. It is difficult to prove that an ontology enables additional
capabilities for systems that would not be possible without it [4]. However, using a central
ontological knowledgebase can facilitate the development of robotic inspection systems.
The integration of abstract knowledge with robot action-related procedural knowledge, as
suggested by [15], could make tasks more easily executable. Furthermore, developing a
planning language system for reasoning over the ontological knowledgebase for plan exe-
cution, as studied by [52,89], could enhance the practical application of OBRNIT. Linking
OBRNIT with other available ontologies, such as the Sensor Ontology [106], could further
extend its capabilities.

6. Contributions, Conclusions, and Future Work

This paper has successfully developed and evaluated OBRNIT, an integrated ontol-
ogy for robotic navigation and inspection tasks based on BIM. The ontology provides a
comprehensive framework for understanding and representing the complex relationships
between buildings, robots, and inspection tasks. OBRNIT’s potential to enhance the de-
velopment of autonomous robotic inspection systems is significant, offering a foundation
for future advancements in this field. OBRNIT is expected to provide the following ben-
efits: (1) OBRNIT can help system engineers involved in developing robotic inspection
systems by identifying the different concepts and relationships about robotic inspection
and navigation tasks based on BIM information; (2) capturing the essential information
from BIM can help to develop a seamless knowledge model to cover the missing parts of
BIM; (3) using ontological knowledge can help overcome the complexity in interactions
between the components in the robotic inspection system.

This study has several limitations: (1) This paper focused on developing declarative
knowledge, including conceptual and geometric information related to inspection and
navigation tasks, and does not address the low-level path planning and the problem of
SLAM. (2) The development of as-is BIM models, which are necessary for robotic inspec-
tion and obstacle avoidance, remains challenging for existing buildings. (3) Additional
studies are needed to demonstrate how the ontology enhances robotic inspection system
capabilities beyond the current methods. Future work will focus on further development
and implementation of OBRNIT to integrate it with low-level robotic capabilities to make
the robot more autonomous. This includes (1) combining abstract knowledge with robot
action-related procedural knowledge to make tasks executable; (2) developing a planning
language system for reasoning over the ontological knowledgebase for plan execution;
(3) extending OBRNIT by linking it with other available ontologies and expanding the
concepts to other types of defects; (4) developing methods for the automatic updating of
BIM models throughout the different stages of building lifecycles, addressing the scarcity of
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as-built or reliable as-is BIM models in existing buildings. These directions aim to enhance
the practical applicability of OBRNIT and address the current limitations in the field of
robotic inspection and navigation.
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