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Framing Extreme Precipitation Events in the Context of Cumulative Emissions  
 

Abstract 
 
Travis R. Moore, Ph.D. 
Concordia University, 2024 
  

Heavy to extreme precipitation events are often-destructive forms of weather that, despite 

their infrequency, can lead to significant losses of human life and infrastructural damage. Such 

events are expected to increase in a warmer world as cumulative carbon emissions continue to 

rise. However, the extent to which this increase occurs varies considerably across scenarios and 

spatial scales, especially for the most extreme precipitation. The Transient Response to 

Cumulative CO2 Emissions (TCRE) has proven to be a powerful metric that characterizes the 

linear response of global mean temperature to cumulative carbon emissions, and previous 

research has shown its potential applicability to other climate indicators, such as regional 

temperature and precipitation, and heat extremes. By using simulations from nine Coupled 

Model Intercomparison Project Phase 5 (CMIP5) models, I intend to quantify extreme 

precipitation indices of one-day maximum (Rx1day) and five-day maximum (Rx5day) events 

against cumulative CO2 emissions. I show that the TCRE framework can be applied to represent 

changes in these precipitation extremes, with validation of this approach at sub-global scales 

across emissions scenarios. In Chapter 3, I determine whether precipitation extremes respond 

linearly to cumulative CO2 emissions, at global to local scales, using simple linear regression 

modelling. In Chapter 4, I conduct a Generalized Extreme Value (GEV) analysis to model the 

behavior of the most extreme values of Rx1day and Rx5day and evaluate whether trends in 

location parameter estimates and specified return levels can be approximated by (regional) 

TCRE values. For Chapter 5, I extend this analysis to estimate remaining carbon budgets (RCBs) 

associated with avoiding particular extreme precipitation levels. Overall, my results suggest that 

extreme precipitation work well within a TCRE framework, and that global and sub-global 

changes can be well approximated by linear responses to cumulative CO2 emissions, though with 

less robustly linear trends at local scales. My results further highlight that location parameter 

estimates and return levels of Rx1day and Rx5day scale approximately linearly to increasing 

cumulative carbon emissions. My findings also show that RCBs are generally small to avoid 

specified present-day 20-year and 100-year return levels. This suggests that such events are 

becoming commonplace with global warming. 
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Chapter 1: General Introduction 
 

Weather and climate extremes are expected to increase in both frequency and 

intensity as global cumulative emissions, and correspondingly global temperatures, 

continue to rise. This has prompted more global and regional concerns as such events often 

yield significant negative impacts to human health and safety, as well as present major 

environmental stresses. Indeed, according to the World Meteorological Organization, 

extreme weather events have accounted for more than two million deaths over a 52-year 

period, from 1970 to 2021, 90% of which occurred in developing nations (World 

Meteorological Organization, 2022). Mortality due to extreme weather and extreme climate 

events has, nevertheless, shown a decrease at the global scale despite an increase in 

extremes (Franzke & Torello, 2020). This suggests an overall better adaptation to such 

events, including in developing nations (Franzke & Torello, 2020), such as in India (Ray et 

al., 2021). That said, certain extreme events have been linked to marked increase in the 

number of fatalities; for example, deaths associated with heat extremes have shown an 

increase in regions of Europe (e.g. Franzke & Torello, 2020) and globally (e.g. Clarke et al., 

2022).  

However, while there is strong consensus that these events are likely to increase in 

frequency and/or intensity in a warmer climate, the extent to which they will do so 

remains uncertain, including with respect to responses to the various specified global 

warming targets and related amounts of warming mentioned in international agreements. 

A large portion of this uncertainty originates with the relatively coarse model resolutions 

often used to examine many of these extremes and their environmental conditions, 
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especially since several forms of extreme weather realistically cover much finer scales, 

such as severe thunderstorms and other related local to mesoscale systems.  

Weather and climate extremes are broad terms that make reference to rare events 

that occur outside of a given region or location’s climatology, appearing within the tails of a 

normal distribution of their frequencies. What constitutes a weather (or climate) extreme 

is typically presented under a wealth of definitions across the climate impacts literature. 

The Intergovernmental Panel on Climate Change Sixth Assessment Report (IPCC AR6), for 

example, defines such events differently based on time scale; weather extremes can be 

events that take place over some place and time, while a climate extreme can last for 

extended periods (IPCC, 2021). In consideration of this and related definitions, weather 

extremes may be described as shorter-term events. These events can, thus, be manifested 

as a relatively sudden event, such as a tornado outbreak, derecho or a flash-flood event 

associated with a family of severe thunderstorms in Canada or the United States and 

elsewhere. Conversely, a climate extreme can be, for instance, in the form of an ongoing dry 

regime that may contribute to abnormally ubiquitous wildfires in some region or collection 

of regions, such as the Canadian wildfires of the summer of 2023, or an ongoing wet 

pattern that may culminate in significant flooding.  

A precipitation extreme also may not always necessarily manifest as an extreme 

precipitation amount over various time scales, but rather can also be a form of 

precipitation that is not typically observed in a given location or region in question, even if 

this precipitation comes in lighter amounts and appears only briefly. Weather extremes 

that occupy longer periods of time, such as over multiple days in succession, may involve 

ongoing lighter precipitation amounts that may lead to gradual flooding events. Such 



 
 

3 
 

flooding situations may be exacerbated by already (near-) saturated ground, rapid 

snowmelt, and/or rivers having water levels that are above normal coming out of a winter 

season. Precipitation events that form in this manner often take place in the wake of a 

prominent atmospheric block (e.g. Rex, 1950; Woollings et al., 2018). Such blocking 

patterns often cause a particular weather pattern to persist for significant periods of time 

before the block can break down to allow for the more transient atmospheric flow to be 

restored. These situations frequently cause a mid-latitude cyclone, for instance, to remain 

almost stationary over the same regions for several days before it can evacuate normally. 

Atmospheric blocks also facilitate the extent of flooding that occurs with atmospheric 

rivers, such as the Pineapple Express, which can constantly direct and energize families of 

mid-latitude cyclones towards the same areas for as long as weeks, causing substantial 

flooding events over the West coast of North America (e.g. Newell et al., 1992). For this 

reason, atmospheric blocks have gained more attention in relation to warmer global 

temperatures, though projected trends are not well understood because of such patterns 

being underrepresented by models (e.g. Kennedy et al., 2016; Woollings et al, 2018; 

Steinfeld et al., 2022).  

 At the same time, extreme weather and/or climate events are made further 

complicated because of their ability to trigger other extremes. This is often present as 

successive and compounding extremes, which are much more significant than a single 

extreme event because of their ability to exacerbate the impacts tied to the original 

extreme event (e.g. Bevacqua et al., 2023; Riboldi, 2023). Such events, for example, may 

begin as an extreme rainfall event whose impacts are enhanced by a mudslide or landslide. 

Similarly, the flooding that may originate from a severe thunderstorm may be enhanced by 
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the destructive wind fields associated with either powerful straight-line winds or a 

(violent) tornado. 

The impact of a weather or climate extreme will further vary with the location or 

region that the event in question is affecting. For example, a flash-flooding event 

originating with a severe thunderstorm may be handled and managed better in a North 

America city than it would be in a city located in a third-world nation. 

Collectively, weather and climate extremes are commonly referred to as 90th 

percentile events and are typically analyzed in the climate impacts literature based on the 

changes in either their frequency or intensity (or both) in response to some prescribed 

warming threshold(s) (IPCC, 2021). However, despite their rarity, these events can 

frequently induce catastrophic damages, with effects that can last for years to even decades 

(Franks & Moore, 2021). Such extremes have the ability to further change the shape of 

landscapes permanently and can lead to significant losses of human life. Furthermore, in 

light of continued global warming, there is more concern that current and recent extreme 

events are no longer necessarily classified as so rare and, as such, may become part of a 

new normal (e.g. Mallakpour et al., 2018; Stillman, 2019). To that end, because of their 

sensitivity to even small amounts of warming, weather extremes are likely to become more 

frequent and intense at warming thresholds much lower than those specified in current 

global climate warming targets relative to the pre-industrial period.  

Among weather and climate extremes, heavy to extreme precipitation events, in 

particular, have notably received considerable attention across the scientific community 

and climate impacts literature. Precipitation extremes can be incredibly destructive, as 

(flash-) flooding often drives substantial socio-economic damage and can lead to numerous 
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human deaths (Gimeno-Sotelo & Gimeno, 2023). In the United States, flooding accounts for 

some of the largest numbers of human fatalities among natural disasters; most deaths are 

attributed to flash-flooding events, with approximately 5,000 deaths worldwide annually, 

as flash-flooding is responsible for about 85% of all global floods (World Meteorological 

Organization, 2022). To that end, the flooding events tied to precipitation extremes rank 

among the deadliest events each year globally and so are of growing importance with the 

expectation that they will intensify and become more frequent in response to warmer 

global (and regional) temperature. The most recent flooding event in Libya, for instance, 

which originated from a series of torrential rainfalls associated with a tropical-like cyclone 

over the Mediterranean, led to tens of thousands of fatalities alone in what was one of the 

most disastrous global flooding events (Oduoye et al., 2024).  

Extreme precipitation events are specifically expected to decrease in frequency but 

increase in intensity (IPCC AR6, 2021), much like trends simulated for tropical cyclones 

under warmer global temperatures (e.g. Knutson et al., 2010; Sugi et al., 2012; Moore et al., 

2015). Yet coverage for the response of the most intense precipitation to warmer global 

and notably regional temperatures in terms of both frequency and intensity remains quite 

sparse in the literature, despite the significant impacts that such events can have on society 

(e.g. Myhre et al., 2019). Warmer global temperatures notably have the ability to hold more 

atmospheric moisture, which guides larger precipitation rates that are especially important 

in deep convective systems (Donat et al., 2013; Allen, 2018; Neelin et al., 2022). Such events 

are capable of producing substantial amounts of precipitation in a very limited period of 

time, which can induce large amounts of water accumulation that subsequently often leads 

to flash-flooding. In light of the significant impacts linked to extreme precipitation, it 
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becomes further crucial to better understand how these events may respond to currently 

specified ‘dangerous’ climate warming thresholds, and other thresholds that may become 

of interest.  

Much like other extremes, extreme precipitation events are expected to increase in 

frequency and/or intensity as cumulative emissions continue to rise. A precipitation 

extreme similarly is presented under a variety of definitions, but the choice of definition 

impacts how that precipitation event will respond to warming and ultimately impacts 

expected trends (e.g. Pendergrass, 2018). For example, depending on the precipitation 

metric in question for tropical cyclones, the extent of scaling in the response of tropical 

cyclone precipitation to warming can differ, and sometimes greatly (Stansfield & Reed, 

2023). As compared with the temperature response to emissions, the weather systems that 

guide (extreme) precipitation events are realistically much more intricate. Therefore, it is 

not as clear how such precipitation-bearing events will respond to warmer temperatures 

directly as global emissions rise, including in response to any internationally-agreed global 

warming threshold. The term “precipitation” itself is meteorologically meant to be 

collective in representing all forms of condensed water precipitating to the surface. We 

may, as such, infer that a precipitation extreme operates in similar ways, in which all forms 

of condensed water fall at rates that (well) exceed some climatological norm. To that end, 

extreme precipitation events can often coincide with multiple forms of extremes. For 

example, large amounts rainfall may occur in a very small timespan during severe 

thunderstorms or tropical cyclones, while heavy to extreme snowfall associated with the 

cool sector of a cold-season mid-latitude cyclone (or as intense snowsqualls at other 

sectors of the cyclone depending on thermodynamic circulations, such as ahead or behind a 
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cold front) might also constitute an extreme precipitation event. A single dynamical mid-

latitude cyclone itself could be responsible for multiple types of precipitation extremes, 

especially during the colder months. As a result, because extreme precipitation events 

encompass such a large range of extreme weather, along with other hazards that may 

accompany them during the same events, they are undoubtedly of scientific interest in 

climate impacts and other fields.  

The climate impacts literature presents such extremes often as one-day and five-day 

maxima, more formally known as “Rx1day” and “Rx5day”, respectively (e.g. Zhang et al., 

2013; Valverde & Marengo, 2014; Mondal & Mujumdar, 2015; Mukjubee et al., 2018). 

Rx1day events may refer to the maximum amount of precipitation that falls over the course 

of a 24-hour period or less over some space, while an Rx5day event can be interpreted as 

the maximum cumulative amount of precipitation that is observed during a period of five 

successive days. Such precipitation indicators are frequently used in the literature to 

evaluate changes in their character (i.e. their intensity and/or frequency globally to 

regionally) in relation to warmer temperatures. However, these precipitation indicators 

are sparsely framed in the context of cumulative emissions directly and are much more 

poorly understood at sub-global spatial scales. This is further compounded by the scale at 

which many of these events occur, making it difficult to provide more meaningful 

evaluations of such systems into the future (e.g. Edwards et al., 2018). 

The Transient Climate Response to Carbon Dioxide Emissions (TCRE) describes the 

proportionality between global mean temperature and carbon dioxide emissions (e.g. 

Friedlingstein et al., 2014; Tokarska et al., 2019). It is a widely adopted framework for 

quantifying trends of climate indicators in relation to cumulative carbon emissions and 
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better understanding impacts at various global warming targets. It has further showed 

potential for applications for other important climate indicators outside of global mean 

temperature (e.g. Zickfield et al., 2012; Partanen et al., 2017). The TCRE has been 

documented extensively in the body of climate impacts literature as a means for framing 

the linear response of global mean temperature to cumulative CO2 emissions. It has more 

widely gained recognition in light of its ability to directly relate temperature, and 

potentially even other climate indicators, to emissions. This makes the TCRE a useful 

metric for estimating the extent to which a certain climate indicator may respond per unit 

increase in carbon emissions. Therefore, estimates derived from the TCRE can be of value 

in the climate policy and adaptation sectors for being able to more practically determine 

critical carbon emissions concentrations that are linked to notably dangerous warming 

thresholds increasing the likelihood of certain weather/climate extremes. Previous studies 

have tested the TCRE in global contexts as a means for evaluating the response of global 

temperature to emissions, finding that temperature responds approximately linearly to 

carbon emissions (e.g. Matthews et al., 2009; Gillett et al., 2013). More recent research has 

extended the TCRE framework to regional temperature patterns, similarly showing a 

regional linear response to carbon emissions (e.g. Leduc et al., 2016). In light of the linear 

relationship that characterizes the regional TCRE (RTCRE) in the context of temperature, it 

is further shown to be a promising tool for estimating trends for indicators of precipitation 

(e.g. Partanen et al., 2017). The TCRE has also shown to have useful applications in other 

sectors, such as in infrastructure and energy management (Priore et al., 2023).  

As an extension of the TCRE, carbon budgets are used in climate policy-making for 

setting emission reduction targets. Remaining carbon budgets may be defined as the total 
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allowable carbon dioxide emissions that can be emitted into the future in order to reach a 

specified global warming target (Matthews et al., 2020). The remaining carbon budget is, 

thus, a useful quantity in that it has the ability to flexibly communicate climate impacts in 

relation to cumulative emissions concentrations. To that end, carbon budgets specifically 

inform the extent to which global emissions need to be reduced in order to avert a certain 

climate impact, such as thresholds of global temperature that may be linked to dangerous 

heat wave events, or a catastrophic precipitation event. Furthermore, the ability to link 

emissions directly to temperature and other climate impacts can provide a meaningful 

estimate of the amount of carbon emissions needed to reach some stipulated emissions 

threshold associated with a given climate impact. Such carbon budgets are often calculated 

by using the present-day or near-present-day emissions value relative to an emissions level 

of interest into the future across a range of scenarios (e.g. Rogeli et al., 2016). Previous 

studies, for example, have applied the TCRE to estimate the remaining carbon budget to 

reach certain global warming thresholds of interest, such as the 1.5 C threshold mentioned 

as part of the range of warming targets in the Paris Climate Agreement. These remaining 

carbon budgets, as they are known, represent the amount of remaining (CO2) emissions 

needed to reach a certain climate impacts threshold. However, the concept of the remaining 

carbon budget considers CO2 emissions only, and so non-CO2 forcing contributions together 

with carbon emissions are likely to reduce the extent of emissions budgets necessary for 

achieving certain warming thresholds in question (Mengis & Matthews, 2020).  

Because the TCRE has shown promise in the evaluation of precipitation relative to 

CO2 emissions (e.g. Partanen et al., 2017; Myhre et al., 2019), it has great potential for 

estimating carbon budgets for climate indicators beyond merely global temperature. Such 
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estimates could similarly be of value for regional to even local-scale climate impacts as a 

means for framing impacts with emissions. 

Extreme Value Theory (EVT) has also frequently been used to statistically model 

extreme values across a wide range of fields. EVT is formulated around a statistical 

methodological framework that makes inferences about the extremes of a probability 

distribution (Coles, 2001). It is especially applied across several scientific fields and has 

useful applications in forecasting and management, but its framework has been extended 

to many other fields outside of the natural sciences (Jacob et al. 2019). In hydrology, it is 

commonly used to forecast precipitation extremes for flood risk management and other 

applications by modeling extreme values of precipitation (e.g. Goldstein et al., 2003; 

Mondal & Mujumdar, 2017). Such analyses have proven useful in estimating the probability 

that an extreme event of specified magnitude would occur over some given time period. 

Such return levels, thus, can be of use to policy makers and scientists alike in determining 

the average period of time that would be expected for a specific magnitude of extreme to 

return.  

Numerous studies have shown previously the success of EVT in its ability to 

effectively model precipitation extremes (Feng et al., 2007; Triphonia et al., 2016; Johnson 

& Smithers, 2019; Innocenti et al., 2019; Lhamo et al., 2023). Much like flooding events and 

other extremes, extreme weather events have also been frequently placed in the context of 

EVT. As a branch to EVT, the Generalized Extreme Value (GEV) theory specifically uses a set 

of continuous probability distributions to model extremes by applying a block maxima 

approach. This approach employs a series of blocks, with each containing a sample of 

extreme values that can be used to statistically model the behavior of extremes through 
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time by using derived parameter estimates of location, scale and shape. The continuous 

probability distributions that comprise the GEV include Gumbel, Frechet, and Weibull, 

representing Type 1, Type II and Type III distributions, respectively (Coles, 2001). Each 

probability distribution focuses on the rate of decay, or the heaviness of the tails of a 

probability density function (PDF). The Frechet distribution, for example, describes higher 

probabilities of extreme events through heavier-tailed behavior, as compared with the 

lower probabilities linked with the lighter-tailed tendency that follows the Gumbel and 

Weibull distributions (Carney, 2016). These probability distributions are, thus, used to 

assess the heaviness of the tails of the extreme probability distributions based on changes 

in shape parameter estimates calculated from block maxima. Location parameter estimates 

further provide useful information as to how the mean of the distribution of extremes is 

shifting, and estimates of scale provide insight of how much more or less compressed the 

distribution becomes over time.  

In the present work, I propose a variety of approaches for examining trends in 

indicators of precipitation extremes, specifically for Rx1day and Rx5day. As an extension of 

the TCRE framework, and in an attempt to address the gaps in the literature for the most 

intense extreme precipitation, I first endeavor to determine whether precipitation 

extremes at the global, regional and local scale can be approximated by the TCRE using 

simulations from a consistent set of nine global climate models (GCMs) from the Coupled 

Model Intercomparison Project Phase 5 (CMIP5). I specifically investigate trends in one-

day maxima (Rx1day) and five-day maxima (Rx5day) as representative indicators of 

extreme precipitation. In doing so, I estimate the extent to which precipitation extremes 

change per unit of carbon emissions among a set of emissions scenarios, as well as with 
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respect to historical simulations. In the next stage of this work, I apply a GEV analysis to 

determine trends in precipitation extremes using estimates of location, scale and shape. I 

further use the GEV analysis to determine historical and future trends for certain return 

levels at specified return periods. In the final stage of this research, I then extend the GEV 

analysis by using the block maxima approach to derive remaining carbon budgets. Using 

this method, it was possible to estimate these budgets by calculating the difference in 

cumulative CO2 emissions between the time 20-year return levels in the future become or 

exceed 10-year levels, and similarly for when 100-year return levels of extreme 

precipitation become 20-year levels in future. Using these estimates can help to better 

understand the extent of emissions concentrations that are required to avoid specified 

thresholds of precipitation extremes at various spatial scales. This is especially true for 

precipitation extremes that can cause particularly significant damage through flooding and 

other related hazards, especially in nations/regions that are already prone to such events 

altogether. Therefore, framing selected indicators of precipitation extremes in the context 

of cumulative CO2 emissions can provide potentially useful information for emission levels 

that are linked to particularly dangerous precipitation thresholds. As such, the three 

overlapping principal objectives surrounding the TCRE in relation to precipitation 

extremes in this dissertation are as follows: 

1) I assess the extent to which indicators of extreme precipitation (Rx1day and Rx5day) 

can be approximated by the TCRE framework at various spatial scales across different 

emissions thresholds and historical simulations. I then evaluate regional and local 

responses to determine whether selected precipitation indicators follow a linear response 

to cumulative CO2 emissions at these spatial scales. 
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2) Using the GEV analysis, I endeavor to examine the response of location parameter 

estimates and specified return levels to determine whether the most extreme Rx1day and 

Rx5day maxima can be approximated by a linear response to cumulative CO2 emissions, 

from the global to local scales, as a means for addressing the gaps in the literature 

concerning trends in the most intense precipitation extremes. 

3) Expanding on this GEV analysis, I attempt to use the TCRE framework to derive 

remaining carbon budgets associated with changes in Rx1day and Rx5day return levels at 

various spatial scales. 
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Chapter 2: Literature Review 

 

An overview of trends in weather extremes 

Extreme weather events are shown to increase either in frequency or intensity, or a 

combination of these two, as global to regional temperatures rise. Such trends in weather 

extremes range from an increased severity in thunderstorms (e.g. Trapp et al., 2007; Trapp 

et al., 2009; Brooks, 2013; Moore et al., 2015) to extreme heat waves and drought (e.g. 

Chavaillaz et al., 2019; Ullah et al., 2022). It is these extreme events that are globally 

responsible for widespread economic and infrastructural damages, changing ecosystems 

and human society in such profound ways that impacts can resonate for a lifetime. This is 

especially true with respect to human health, where psychological and physical stresses 

can endure for years at a time in notably vulnerable groups, such as children and the 

elderly (e.g. Franks & Moore, 2021; Butsch et al, 2023). Among most significantly 

influenced sectors is agriculture, taking about 26% of the impact from weather extremes 

(Monteleone et al., 2023).  

As global temperatures increase in tandem with growing populations, more people 

are also expected to be touched by extreme events more substantially. For example, 

impacts from more intense and enduring daytime and nighttime heat waves are likely to 

increase as exposure to these extremes rises globally (Chavaillaz et al., 2019), particularly 

impactful in the (densely) populated zones of South Asia (Ullah et al., 2023), Africa (Igun et 

al., 2022; Birch et al., 2022) and North America (e.g. Thompson et al., 2022). At the same 

time, more frequent and intense heat waves are expected to increase the likelihood for 

flash droughts at a global scale; since the 1950s, a 74% jump in these dry events has been 
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observed (Yuan et al., 2023). Increased drought intensity under warmer temperatures is 

also likely to increase soil erosion rates (e.g. Kronnas et al., 2022; Tripathy et al., 2023). 

Especially at mid-latitudes, the impact of increased heat is typically felt more with warmer 

minimum temperatures, which decreases the diurnal temperature range. 

Atmospheric blocking patterns further play a crucial role in the intensity and 

duration of heat waves and drought; such weather patterns can bring very hot 

temperatures and dry conditions that can last for more than a week, and, in some cases, on 

the order of months before the block breaks down. Extended drought and heat wave events 

have additionally been linked previously to more intense and longer-lasting wildfires (e.g. 

Lyons et al., 2023) and worsening health costs associated with wildfire smoke (Clarke et al., 

2023), such as during the widespread Canadian and European wildfires that emerged 

during the summer of 2023. Combined with dry lightning/thunderstorms, such fires have 

been associated with the persistently dry atmospheric conditions plaguing the regions, 

which is attributable to warmer global and regional temperatures. 

 

The impact of ENSO on extremes 

The extent to which weather extremes occur is also heavily dependent on important 

global climate modulators of climate variability, such as the El Nino Southern Oscillation 

(ENSO). ENSO is the principal mode of natural variability, which can profoundly dictate 

how frequent and intense certain modes of weather extremes can become (Lieber et al., 

2022). For example, ENSO-warm phases (El Nino) often create conditions suitable for 

flooding in South America because of warmer than normal sea-surface temperatures 

frequently present at the Eastern portion of the tropical Pacific. This becomes conducive to 
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enhanced convection there, which contributed to the Peru flooding event that had 

materialized during the super El Nino of 1997-1998 (e.g. Bas, 2023). ENSO-cool phases (La 

Nina) have also been linked to more frequent extreme heat events at mid-latitudes (Luo & 

Lau, 2020).  

That said, warmer global temperatures have been previously shown to potentially 

affect the character of ENSO in terms of its variability and period (e.g. Moore et al., 2015; 

Cai et al., 2023), as well as other oscillations that are integral for guiding the formation of 

certain weather events that are, in turn, responsible for specific extremes. However, 

climate change can often work in the same direction as natural variabilities, enhancing the 

impacts associated with various weather extremes, such as flooding, drought, extreme heat, 

and wildfire (Zhai et al., 2016). This is especially true during moderate to strong El Nino 

events, when the warmest annual global temperatures are often expected, and there is 

growing concern that the extreme convective precipitation tied to potentially stronger El 

Nino events in a warmer climate may increase (e.g. Zhai et al., 2016; Pathirana et al., 2023; 

Cai et al., 2023). Correspondingly, these changes can culminate in, for example, more 

frequently strong and longer-lasting tropical cyclones, especially in those basins that favor 

a combination of warmer sea-surface temperatures, and where wind shear can be 

suppressed (Knutson et al., 2010). 

 

Some challenges facing the study of weather extremes 

In light of the high degree of uncertainty surrounding weather and climate 

extremes, modelling such events consequently comes with a plethora of challenges. 

Notably, there are several forms of extreme weather that occur at rather fine spatial scales. 
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This often creates barriers to examining extremes when using larger-scale models, such as 

GCMs, to properly resolve the small-scale features that are important to the formation of 

such systems (Brooks, 2016). Notably, the extreme precipitation rates that regularly 

originate with strong to severe thunderstorms are difficult to meaningfully evaluate in 

terms of future trends because such events occur at scales on the order of just a few 

kilometers or less, especially if the thunderstorms producing them are in the form of 

single-cells, or pulse thunderstorms. The dynamic and thermodynamic elements that are 

important contributors to the development of organized thunderstorms are, thus, 

underrepresented in coarser model resolutions. This makes it challenging to determine 

how these factors will respond to warming and, ultimately, the trend that extreme 

precipitation will follow over time.  

For this reason, there exists a disparity in coverage for extremes in the literature, 

where the extent of research varies depending on the extreme in question. For example, 

there is a wealth of studies aimed at tropical cyclones and extreme heat but comparatively 

little focus on events such as severe thunderstorms and tornadoes, and other hazards 

associated with thunderstorms collectively, including with very little attention given to 

such meso- to microscale events in the reports provided by the IPCC (Brooks, 2013). Much 

of this void in research dedicated to finer-scale extremes comes from the challenges to, as 

mentioned, adequately simulate these weather events encompassing only a few kilometers, 

as well as the availability of data for such events altogether (Edwards, 2018). To that end, 

for sub-synoptic scale events, such as at the mesoscale, significant inhomogenieties in the 

observational record exist, owing largely to changes in the manner that such events are 

documented and detected. For example, increasing trends shown for tornadoes in the 
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historical record are likely mostly artificially-driven, since they are an artifact of enhanced 

detection in the wake of more sophisticated tracking systems that increase the chance of 

such events being covered and detected through time and space (Brooks, 2013; Allen, 

2018; Edwards, 2018). As such, this makes these events more challenging to properly 

diagnose in GCMs. At the same time, changes in the methods design, or the location of the 

observation stations for studying the same events over time in some region or location, can 

further introduce spurious trends in the historical records (Allen, 2018). 

 

Extreme precipitation trends 

Extreme precipitation events are among the most impactful forms of weather 

extreme. In light of their often destructive nature, these events are of particular importance 

to the scientific community and across other fields. Such extremes have significant 

environmental impacts that can be very harmful to human society. These events are, as 

such, comprehensively documented in the literature in the context of warmer global and 

regional temperatures since notably the 1980s in an effort to makes sense of future trends 

(Neelin et al., 2022). However, although the response of global mean precipitation is of 

value, precipitation extremes specifically carry notably much more importance because of 

their potentially much larger responsive magnitude at the regional scale, making such 

regional signals increasingly crucial to study (Sun & Ao, 2013), such as in the tropics (e.g. 

Neelin et al., 2022). Globally, extreme precipitation has been shown to increase sharply 

since the Industrial Revolution at particularly low and high latitudes, and at the highest 

rates of increase into the future at low latitudes (e.g. Sun et al., 2023). At the regional scale, 

similar observed and future trends are documented. For example, Potter et al. (2023) 
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showed that extreme precipitation in a high-emissions scenario in the glacierized regions 

on the Andean River Basin increased by 14% by the end of the 21st century, when 

temperatures rise by 3.6 C to 4.1 C. Similarly, in central Asia over the last 60 years, a model 

ensemble from the Coupled Intercomparison Project Phase 6 (CMIP6) showed an over 

100% increase and 20% increase in the intensity and frequency, respectively, of 

precipitation extremes due to anthropogenic forcing (Fallah et al., 2023). Similar results 

were also shown in Reddy & Saravanan (2023) for India, with a predicted increase of 52% 

and 46% in Rx1day and Rx5day, respectively, in a CMIP6 ensemble. Precipitation extremes 

have similarly increased in the mid-Atlantic to Northeast United States over the 1979-2019 

period, owing to enhancement of atmospheric rivers in winter and spring, and in light of 

increased event frequency in summer and fall (Henny et al., 2023). Myhre et al. (2019) also 

showed that the most intense precipitation extremes globally increase in frequency 

historically, though with weak trends in terms of the intensification of such events. South 

Asia is also shown to have significant increases in heavy precipitation, with China showing 

an increase in such events by about 6.5% per degree of warming in a CMIP5 multi-model 

ensemble (Zhang & Zhou, 2020).  

 

Trends in precipitation extremes with tropical cyclones and severe thunderstorms 

Extreme precipitation events also occur in conjunction with different forms of 

weather and climate extremes, including tropical cyclones, strong to severe thunderstorms, 

and those heavy precipitation events that originate with mid-latitude cyclones, in general. 

Notably, tropical cyclones are a major source of precipitation extremes. These events are 

shown to increase in intensity (e.g. higher mean rainfall rates, storm surge and sustained 
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wind speeds) over their lifetime because warmer global temperatures are expected to 

favor environments suitable for enhanced tropical cyclone intensification (Knutson et al., 

2010). This includes warmer sea-surface temperatures affecting tropical cyclone longevity 

and intensity (Knutson et al., 2010; Sobel et al., 2016; Bhatia et al., 2018), though there is 

general consensus in the decreasing number of such events to climate warming (e.g. Moore 

et al., 2015; Walsh et al., 2019; van Westen et al., 2023). Other studies have shown a trend 

towards a slowing in hurricane movement, such as Hurricane Harvey of 2017 or Hurricane 

Dorian in 2019, suggesting that affected locations would be more exposed to the extreme 

rainfall rates characteristic of these tropical systems for prolonged periods (e.g. Hall & 

Kossin, 2019). The slower movement of such systems further suggests more time to 

strengthen over warmer source regions prior to making landfall (Li & Chakraborty, 2020), 

such as in the case of Hurricane Dorian. 

The link between warmer global temperatures and tropical cyclone intensification 

has further been extensively examined, with exhaustive discussions placed on changes in 

tropical cyclone hazards, such as more extreme rainfall rates (Bhatia et al., 2018; Wu et al., 

2022; Utsumi & Kim, 2022) and increased storm surge (Xi et al., 2023), with impacts 

expected to be exacerbated with sea level rise. Regionally, the tropical cyclone precipitation 

extremes have similarly been shown to increase. For example, the most extreme 

precipitation events with tropical cyclones increased over the last 300 years over the 

United States East coast (Maxwell et al., 2021). Tropical cyclone Rx1day precipitation 

amounts are also enhanced across cyclones globally when temperatures are allowed to 

increase by 4 Celsius relative to the pre-industrial period, including an increase in 90th to 

99th percentile Rx1day values in a zone stretching from Hawaii to Japan (Kitoh et al., 2019).  
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Largely because of the lack of representation of finer-scale deep convective systems, 

such as severe thunderstorms, the literature dedicated to such events is currently very 

sparse (Brooks, 2013), though it is a rapidly growing area of research due to severe 

thunderstorms being an important source of precipitation extremes and other hazards 

(Allen, 2018). Despite limited observational records, researchers have turned more 

towards understanding the environments of severe thunderstorms, and how those 

specifically would change in response to a warmer climate. For example, trends of severe 

thunderstorms, as well as other forms of deep convection have been quantified through 

environmental indicators like convective available potential energy (CAPE). Increasing 

trends in the amount of CAPE have been documented in a warmer climate, mostly because 

of an increase in atmospheric moisture under warmer temperatures (Trapp et al., 2009; 

Brooks, 2013). This suggests that strong to severe thunderstorms would more likely yield 

enhanced precipitation rates as temperatures warm, increasing the risk for flash-flooding, 

as well as even more damaging hail events that could potentially induce costlier damage 

associated with such events (Allen, 2018) and compounding extremes (e.g. Bevacqua et al., 

2023). Conversely, other studies show that, despite enhanced instability in a warmer 

climate, thunderstorm environments, in general, may become less favorable in light of 

increased convective inhibition, dry air entrainment and lower relative humidity, leading to 

less precipitation extremes attributed to thunderstorms (Taszarek et al., 2021). However, 

these modelled decreasing thunderstorm trends are shown to be regionally-dependent 

(e.g. Trapp et al., 2009; Brooks et al., 2016). 
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Precipitation extremes and atmospheric moisture 

A warmer global climate is expected to increase the severity of precipitation 

extremes because of principally the extent to which warmer global (and regional) 

temperatures enhance atmospheric water vapor (Allan et al., 2022; Neelin et al., 2022; 

Zhou et al., 2023). This temperature-moisture relationship is shown to follow an 

exponential trend, with global atmospheric water vapor rising by about 7% for every 

degree Kelvin of global warming under constant atmospheric pressure, as described by the 

Clausius-Clapeyron relation (Donat et al., 2013). Such increases in moistening suggest that 

any precipitation event can potentially yield approximately 7% more total precipitation for 

every degree Kelvin/Celsius of global warming. Correspondingly, this would enhance the 

likelihood for intensified flooding events due to the more substantial precipitation rates 

that would occur with humidification, such as in South and East Asia during the wet 

monsoonal period (e.g. Lee et al., 2018), or over the course of tropical cyclones (Stansfield 

& Reed, 2023). In tandem with this increase, studies have similarly shown that global 

precipitation extremes scale approximately linearly with temperature, increasing 

appreciably for every degree Celsius of warming (Aleshina et al., 2021), though other 

studies have argued that such a relationship may be too rudimentary for the realistically 

complex nature of the events that give rise to precipitation extremes (e.g. Pendergrass et 

al., 2019). While global mean precipitation can be described as proportionally increasing 

with temperature, extreme precipitation specifically may respond in non-linear ways, 

especially in the tropics (Pendergrass et al., 2019). However, the extent of non-linearity in 

extreme precipitation varies with the climate model used and is more apparent in the 
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tropics, though the most distinct non-linear response in Rx1day precipitation was shown in 

the CESM1 model among CMIP5 models (Pendergrass et al., 2019).  

Although the extent of research is restricted for the most intense precipitation 

extremes, some studies have shown that such events may increase by as much as 95% per 

degree Kelvin of global warming, which well exceeds the 7% per degree Kelvin increase 

described in the Clausius-Clapeyron relation (Liu et al., 2009; Utsumi et al., 2011). Such 

super Clausius-Clapeyron relations were similarly shown in India for dewpoint 

temperature historically over the 1979-2015 period (Mukherjee et al., 2018), as well as 

with respect to extreme precipitation in the contiguous United States over 1950-2009 

(Mishra et al., 2012). Super Clausius-Clapeyron relations have also been documented for 

stratiform precipitation extremes, which scaled strongly linear with surface air 

temperature in Russia over the 1966-2017 period, though globally, linear scaling similar to 

the Clausius-Clapeyron relationship was found for precipitation extremes (Aleshina et al., 

2021). The role that humidity in the atmosphere plays is instrumental for the successful 

formation of multiple forms of weather extremes; this includes severe thunderstorms, 

tropical cyclones, wet monsoonal rainfall, and the mid-latitude cyclones that give birth to 

other types of extremes, such as snowstorms and ice storms, making humidification central 

in the study of future trends of such events collectively.  

 

The TCRE framework 

The TCRE has been widely adopted for examining the response of temperature to 

cumulative carbon emissions and is regarded as a highly effective framework in climate 

science and policy in terms of explaining trends in climate impacts (Frolicher & Paynter, 
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2015). The TCRE is a quantity that describes principally the linear increase of global mean 

temperature to cumulative CO2 emissions (Matthews et al., 2009; Gillett et al., 2013; Jones 

& Friedlingstein, 2020). It may also be described as the rate of change in globally averaged 

surface temperature per unit of CO2 emissions (de Mora et al., 2023). The collective 

response of (global) temperature is the combination of the TCRE and non-CO2 greenhouse 

gas emissions, which is represented in future climate scenarios, such as the Representative 

Concentration Pathways (RCPs). As a result, the TCRE represents the response to CO2 

emissions only.  

The TCRE has significant potential to effectively communicate climate impacts 

expected at a variety of warming targets because of its ability to relate the response of 

these impacts to cumulative CO2 emissions directly, which can be useful in sectors such as 

climate adaptation and mitigation. In light of its effectiveness to show the linear response 

of temperature in relation to CO2 emissions, the applications of the TCRE have further 

proved useful in estimating the response of other climate indicators. For example, the 

TCRE, as mentioned previously, has been applied to assess the future response of winter 

sea ice to cumulative carbon emissions (e.g., Zickfield et al., 2012). The TCRE has further 

been shown to be useful for estimating patterns of temperature change at the regional scale 

with emissions, as well as seasonally (Leduc et al., 2016; Partanen et al., 2017). For 

instance, Partanen et al. (2017) showed regional TCRE estimates of precipitation at 5.5 

Celsius and 2.0 Celsius warming in the Arctic during Northern Hemisphere winter and 

summer, respectively. Other studies have previously used the TCRE to examine the 

response of temperature extremes and regional precipitation changes to cumulative 

emissions. Partanen et al. (2017) used the TCRE to quantify precipitation trends across 
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several regions; in Northeastern Africa, for example, they found that precipitation 

increased by 40% per teraton of carbon (TtC) emitted. Chavaillaz et al. (2019) showed 

regional TCRE estimates of extreme heat exposure, with heat exposure over land increasing 

linearly with cumulative carbon emissions, which includes an 18-19 K-day increase per TtC 

above the deadly heat exposure threshold.  

 

GEV applications to precipitation extremes 

The applications of GEV analysis in the climate change impacts literature are quite 

extensive. GEV is further widely used across a plethora of fields to evaluate extremes and 

predict changes in their behavior over time. As an extension to EVT, some studies have 

previously employed GEV analyses to examine the extent to which extreme rainfall may 

change over time at the regional scale. For example, Gentilucci et al. (2023) used a GEV 

framework to identify pattern changes in precipitation extremes over time in Eastern Italy. 

Other studies have fitted a GEV to identify trends in specific return levels of precipitation 

thresholds in South America and Africa (e.g., Fullhart et al., 2023), as well as using a GEV to 

model winter precipitation extremes in relation to ENSO (Mahajan et al., 2023) and their 

impacts on atmospheric rivers (e.g. Singh et al., 2023). GEV analyses also showed that the 

5- to 500-year return periods corresponding to 1- to 5-day maxima increase by 10% to as 

much as 35% with anthropogenic warming (e.g. Mukherjee et al., 2018). In a historical 

analysis, Van den Besselaar et al. (2016) further found that European 20-year Rx1day and 

Rx5day maxima become more frequent towards the end of the 1951-2010 period relative 

to the first 20 years of that period. Outside of precipitation extremes, heat waves or 

extreme temperatures have received considerable attention in EVT. The GEV framework, 



 
 

26 
 

for instance, has been used to examine changes in heat wave probability in certain regions, 

such as in the Yangtze Basin (Yuan, 2023) or Western North America (e.g., Bjarke et al., 

2023). The impacts of such heat extremes are likely to be most amplified in population-

dense centers, such as in China, India and Pakistan (e.g., Ullah et al., 2023), as well as in 

other major populated areas globally. 

 

Framing extremes with the remaining carbon budget 

The global carbon budget has become a central concept in climate science that has 

helped developed better understanding of the global carbon cycle, as well as being 

instrumental in shaping climate policies and offering a dimension for predicting future 

climate impacts (Le Quére et al., 2018). 

 Carbon budgets have become more widely recognized since the IPCC Fifth 

Assessment Report (AR5) and are more heavily integrated in the climate policy-making 

framework (Lahn, 2020). A useful variant of the broader concept of carbon budgeting, 

called the remaining carbon budget, is based on the assessment of the allowable additional 

carbon emissions that can be emitted into the future while limiting global warming below 

specified temperature targets (Matthews et al., 2020; Matthews et al., 2021).  

A remaining carbon budget may be calculated based on the TCRE of a given climate 

indicator, in addition to the response of these indicators to greenhouse gas emissions other 

than CO2 (Tokarska et al., 2020). These budgets, thus, can serve as a useful tool for 

determining the extent of cumulative carbon emissions that can be emitted to avoid critical 

thresholds (of warming) relative to the pre-industrial period (or other baseline periods of 
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interest) which are subsequently needed to avoid specified climate impacts and meet 

climate targets (e.g. van der Ploeg, 2018; Rogeli et al., 2019).  

Similarly, the remaining carbon budget can have useful applications with respect to 

specified climate indicators of interest, such as precipitation (e.g. Rodrigues et al., 2021). Bauer 

et al. (2023), for example, examined climate impacts, including heat exposure and marine 

ecosystem degradation, when overshooting those carbon emissions associated with the 1.5 

C temperature threshold relative to the pre-industrial period. Baker et al. (2018) found that 

the increase in atmospheric CO2 emissions directly impacts climate extremes in the 

Northern Hemisphere, such as heat stress, tropical precipitation and temperature 

extremes, even with a low climate response. This suggests that weather extremes 

collectively can be sensitive to even small amounts of additional carbon emissions and, 

thus, relatively small remaining carbon budgets to reach certain thresholds of extremes. To 

another end, studies have used carbon budgets to determine when the transition to 

widespread renewable energy use needs to be made in order to avoid specified warming 

targets (e.g. Howard et al., 2018).  

However, caution should be exercised when using the (remaining) carbon budgeting 

concept, since the degree of uncertainty is large, much of which comes from 

biogeochemical Earth system uncertainty (Jones & Friedlingstein, 2020), as well as internal 

variability (Tokarska et al., 2020), and the uncertainties that stem from the choice of 

methodological framework and assumptions used to calculate them (e.g. Matthews et al., 

2020). How much remaining carbon budgets increase or decrease further heavily depends 

upon the choices humans make with respect to reducing the extent of non-CO2 forcings 

(Matthews et al., 2021). 
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Chapter 3: Linking historical and projected trends in extreme precipitation with 

cumulative carbon dioxide emissions 

This chapter was published as: 

Moore, T. R., Matthews, H. D., & Chavaillaz, Y. (2023). Linking Historical and Projected  

Trends in Extreme Precipitation with Cumulative Carbon Dioxide  

Emissions. Atmosphere-Ocean, 1-18. https://doi.org/10.1080/07055900.2023.2259328 
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Abstract 

Extreme weather events are expected to increase in frequency and intensity in response to 

higher global temperatures, augmenting societal exposure to these events. While the magnitude 

of projected changes in extremes varies considerably among future emission scenarios, a large 

part of this uncertainty is driven by the choice of scenario, rather than by the climate response to 

a particular emission scenario. A growing body of research has identified robust linear 

relationships between climate changes and cumulative carbon emissions; for global average 

temperature change, this relationship is known as the transient climate response to cumulative 

carbon emissions (TCRE). Extensions of the TCRE framework to other variables, such as 

regional and seasonal temperature and precipitation changes, have also shown to be effective, 

raising the possibility that changes in weather extremes could be linked to cumulative carbon 

dioxide (CO2) emissions. Here, we estimate changes in historical and projected trends in one-day 

(Rx1day) and five-day maximum precipitation (Rx5day) events as a function of cumulative 

carbon emissions across a range of future emission scenarios and global climate models. Our 

results show that median Rx1day and Rx5day generally increases linearly with increasing 

cumulative emissions, consistent with studies that have previously employed the TCRE 

framework to estimate changes in precipitation extremes, as well as other climate indicators. 

Overall, we show that a linear response to cumulative CO2 emissions is a good approximation for 

both historical and future trends in precipitation extremes. 

 

Keywords: Extreme weather; climate change; global warming; extreme precipitation; climate 

crisis; greenhouse gases; flood; severe thunderstorms  
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Introduction 

Although rare phenomena relative to a given climatology, weather extremes frequently 

yield significant short- and long-term impacts in the regions that they affect. Impacts from such 

events are often manifested economically, environmentally, culturally, and even psychologically; 

many of which that can last for years to even decades (Bergquist et al., 2019; Franks & Moore, 

2021). However, such events are expected to become less exceptional as global/regional 

temperature continues to warm (IPCC, 2021; Estrada et al., 2021).  

Extreme precipitation is a form of weather extreme that has received considerable 

attention in climate science in recent decades (Khandakar, 2013), since they are among some of 

the most impact-relevant consequences of climate change (Pfahl et al., 2017; EPA, 2017). There 

exists a variety of definitions that express what constitutes extreme precipitation across the body 

of climate impacts literature, causing a range of differences in the response of these extremes to 

warming (Pendergrass, 2018). Furthermore, what is considered as extreme varies geographically 

in relation to a given location’s or region’s climatology. For example, a location that normally 

does not receive snowfall may consider a light snowfall as an extreme event. Extreme 

precipitation may further be divided into separate categories of events. For instance, an event 

may exhibit abnormally high precipitation rates that lead to significant amounts of surface water 

accumulation over a short period of time. For these reasons, the Intergovernmental Panel on 

Climate Change Sixth Assessment Report (IPCC AR6) defines a weather extreme as some event 

that is rare relative to a specified time of the year and location/region in question (Seneviratne et 

al., 2021). 
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Precipitation extremes frequently create conditions suitable for flash-flooding, as well as 

in situations of previously saturated ground, high water levels and unseasonably wet conditions 

that may be in place prior to these events. In other cases, precipitation may occur at lighter rates 

but persist over an extended period of time, such as over a succession of days because of 

atmospheric blocking. This may similarly induce conditions suitable for significant water 

accumulation and, thus, may be classified as an extreme event.  

Assessing the response of these events to a changing climate is, therefore, critical due to 

the significant impacts that can result from heavy to extreme precipitation, ranging from coastal 

and inland flooding and landslides (Ban et al., 2017) to enhanced soil water stress in terrestrial 

ecosystems (Knapp et al., 2008) and waterborne diseases (Curriero et al., 2001). Tropical 

cyclones are also commonly a source of extreme precipitation that may lead to extensive coastal 

and inland flooding. Globally, these tropical systems could intensify in a warmer climate, in part 

by producing more significant rainfall rates (e.g. Knutson et al. 2010; Moore et al., 2015).  

Several studies have previously documented trends in precipitation extremes in recent 

decades, as well as in the context of future warming. The northeastern United States, for 

example, observed an increase in extreme precipitation over the last 15 years, mostly associated 

with frontal boundaries of mid-latitude cyclones, as opposed to precipitation related to tropical 

cyclones (Collow et al., 2017). Similarly, extreme daily precipitation events and rainy days were 

shown to increase over a 70+ year period in Sao Paulo (Zilli et al., 2017), as well as in Indonesia, 

from 1983 to 2012 (Tangang and Aldrian, 2017). Bush et al. (2019) also mentioned that 

Canada’s precipitation extremes are expected to increase into the future, though the observations 

do show more inconsistencies throughout the country with respect to the changes in short-

duration extreme precipitation events. The IPCC Managing the Risks of Extreme Events and 
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Disasters to Advance Climate Change Adaptation (SREX) further stated high confidence in a 

likely increase in heavy precipitation events across North America since 1950 (Seneviratne et al., 

2012; Kirchmeier-Young & Zhang, 2020). The return periods of extreme precipitation were 

additionally shown to be reduced over the 20th century, with a global increase in extreme 

precipitation of about 6% per degree in a Coupled Model Intercomparison Project Phase 5 

(CMIP5) model ensemble (Kharin et al., 2013), consistent with the Clausius-Clapeyron 

relationship (e.g. Pall et al., 2007). Pfahl et al. (2017) showed that, by itself, thermodynamics in a 

warmer climate would cause a uniform fractional increase in heavy to extreme precipitation 

events, though more regional variations were found in dynamically-constrained scenarios. The 

increase in the most extreme precipitation events among several Australian cities also scaled 

more significantly than near-surface water vapor in a warmer future climate (Bao et al., 2017). 

Using indices pertaining to extreme weather in CMIP5 multi-model datasets, the most intense 

precipitation extremes were documented to substantially increase in Australia by the end of the 

century relative to present-day (Alexander and Arblaster, 2017). However, for validating the skill 

of CMIP5 models simulating extreme precipitation at regional scales, natural variability and 

observed seasonality are paramount. For example, Janssen et al. (2016) showed that climate 

change model experiments from CMIP5 models tended to overestimate and underestimate 

observed spring and summer extreme precipitation across the United States, causing a 

magnification in errors with projections.  

The transient climate response to cumulative carbon dioxide (CO2) emissions (TCRE) 

has recently received more recognition as a useful tool to assess the response of global mean 

surface temperature to global cumulative CO2 emissions. The TCRE may be defined as the ratio 

of global mean surface air temperature to cumulative CO2 emissions, taking into account 
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physical climate processes, and land and ocean carbon sinks (Matthews et al., 2009; Gillett et al., 

2013; Simmons and Matthews, 2016; Leduc et al., 2016). It was previously shown that the 

TCRE could have a useful methodological framework because of its ability to directly relate 

global warming to emissions. It can, therefore, be a means to more flexibly communicate climate 

changes for mitigation policy purposes and be used as a metric for comparative analyses of 

carbon-climate models (Gillett et al., 2013). The TCRE has been extensively mentioned in the 

IPCC Fifth Assessment Report (AR5) and AR6 as distinctly outlining the proportionality 

between temperature and cumulative CO2 emissions across several climate models 

(Friedlingstein et al., 2014; Rogeli et al., 2018; Canadell et al., 2021). For this reason, it has been 

a useful metric to estimate carbon budgets and identify critical levels of cumulative emissions 

that correspond to dangerous global warming thresholds relative to pre-industrial levels 

(Matthews et al., 2020; Matthews et al., 2021).  

The response of higher global temperatures has been extensively shown to be virtually 

independent of emission pathways and approximately linear to cumulative CO2 emissions across 

a range of emission scenarios in carbon climate model simulations (Gillett et al., 2013). This 

robust proportionality between surface air temperature change and cumulative CO2 emissions 

was confirmed by other studies (e.g. Krasting et al., 2014) and was shown to be similarly robust 

at regional scales, both over land and ocean (Leduc et al., 2016). Applications of the TCRE 

framework have also been used in the assessment of extreme heat (e.g. Chavaillaz et al., 2019). 

The TCRE further has the potential to assess trends in precipitation. Previous studies 

have examined the extent to which precipitation extremes scale with global warming (e.g. 

Seneviratne et al., 2016; Wartenburger et al., 2017; Partanen et al; 2017; Kharin et al., 2018; 

Tebaldi & Knutti, 2018). In their study, for instance, Partanen et al. (2017) demonstrated that 
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precipitation scaled similarly with global cumulative carbon emissions, including a 30-40% 

increase per teraton of carbon (TtC) in northeastern Africa in a regional TCRE analysis across a 

suite of CMIP5 models. Donat et al. (2016) also found that average extreme precipitation scaled 

approximately linearly with model-specific global temperature change in dry regions.  

In this study, we present an analysis of extreme precipitation that is framed in the context 

of cumulative emissions in order to determine whether global extreme precipitation may be 

scaled linearly with increasing cumulative emissions. Part of the motivation of this work comes 

from the conceptual framework between cumulative emissions and precipitation extremes that 

can be inferred from this existing literature. However, the primary goal of our study is to 

estimate extreme precipitation with cumulative (carbon) emissions from a consistent set of 

models. This work could, therefore, be a useful contribution for understanding to what extent the 

TCRE could be applied to indicators of precipitation extremes at a variety of spatial scales. 

Methodology 

In this section, we describe in detail the methods used in this study. We begin with a 

description of the extreme precipitation data considered, followed by some discussion pertaining 

to the global climate models (GCMs) considered here, as well as model interpolation procedures. 

We then discuss the statistical tests selected to analyse the data.  

Data and scenarios 

Daily precipitation data relevant to this study was available in nine GCMs that were a 

part of a CMIP5 ensemble. While we acknowledge that Coupled Model Intercomparison Project 

Phase 6 (CMIP6) Earth System Models represent an improvement in the representation of the 

carbon cycle, as well as for simulations of precipitation extremes where notably significant 
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variations in topography exist (Seneviratne et al., 2021), the selection of GCMs here was based 

on Gillett et al. (2013) and Chavaillaz et al. (2019). Therefore, this involved selecting models 

whose output included both daily precipitation and the carbon cycle variables required to 

diagnose cumulative CO2 emissions. We also used CMIP5 data due to its availability at the time 

this project started, and to be consistent with the related work of Chavaillaz et al. (2019). 

However, the medium-resolution version of the MPI model (MPI-MMPI-ESM-MR) was the 

only model that had precipitation data available for the 1pctCO2 scenario, and so we excluded 

this model from our analysis to ensure the use of the same set of model simulations across 

scenarios. As such, the nine GCMs for which data were extracted are as follows: CanESM2, 

IPSL-CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR, MPI-MMPI-ESM-LR, MOHC-

HadGEM2, MIROC-ESM, NOAA-GFDL-ESM2G, and NOAA-GFDL-ESM2M.  

Cumulative emissions are calculated from the changes in oceanic, land and atmospheric 

pools and do represent fossil fuel emissions only. These three principal pools represent carbon 

stocks that are contained in the ocean, land and atmosphere. These carbon stocks flow between 

the ocean, land and atmosphere as fluxes through complex biophysical and geochemical 

processes as part of the global carbon cycle (e.g. Rackley, 2017). There were three scenarios 

considered for this study: “1pctCO2”, “rcp45”, and “rcp85”. This represents one percent CO2, 

Representative Concentration Pathways 4.5 (RCP 4.5) and Representative Concentration 

Pathways 8.5 (RCP 8.5), respectively. The 1pctCO2 scenario (140 years) denotes a scenario 

where the atmospheric CO2 concentration increases by one percent per year until CO2 quadruples 

relative to the pre-industrial period. The two RCP scenarios (90 years, from 2006 to 2095) are 

defined based on greenhouse gas concentrations and represent two different future climates by 

the year 2100. The greenhouse gas trajectory depends upon the extent to which greenhouse gases 
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are released into the atmosphere over time. RCP 4.5 is a scenario that is defined by stabilizing 

and then declining emissions, such that radiative forcing is limited to 4.5 watts per meter squared 

(W/m^2) by the year 2100. This pathway is characterized by emissions increasing until 

approximately the year 2040 prior to declining thereafter. In the case of the RCP 8.5 scenario, 

emissions will continue to increase throughout the 21st century, leading to a radiative forcing of 

8.5 W/m^2 by the year 2100. In light of these scenario differences, 1pctCO2 is an emission 

scenario that represents the climate system’s response to atmospheric CO2 only, while the RCP 

scenarios reflect a more collective response to both CO2 and other greenhouse gases and 

aerosols, as well as those emissions originating from land use changes. As a result, the TCRE 

represents the climate response in 1pctCO2, whereas in the RCP scenarios, the response is a 

combination of the TCRE and other contributions. Finally, the historical period used in this study 

spans 145 years (1861-2005), following the beginning of the pre-industrial period. 

Climate indicators and model interpolation 

We isolated the largest value among daily maximum values for each year, effectively 

extracting the ‘most extreme’ annual maxima globally for each model and scenario. We also 

obtained five-day maximum values using the original daily data available. These newly created 

indicators are hereafter known as “Rx1day” and “Rx5day” and are used herein to define what 

constitutes precipitation extremes, which includes all types of precipitation.  

We regridded Rx1day and Rx5day data to a common grid that corresponds to that of the 

CanESM2 model, which was the coarsest grid amongst the available nine (9) CMIP5 models. 

Once converted, all Rx1day and Rx5day values were interpolated onto a resolution defined by 

grid cells that were each the size of 2.8 degrees longitude by 2.8 degrees latitude. To account for 
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gridding inconsistencies in surface area extent between the equator and the poles, we calculated 

weights for Rx1day and Rx5day across each raster layer by using the cosine of latitude. We then 

derived the maximum values across each grid cell for each year and then averaged across those 

to derive annual estimates of global, regional and local precipitation, as needed. As such, we 

computed annual means for Rx1day and Rx5day across each grid cell on the Earth’s surface for 

each year, similar to the procedure employed by Seneviratne et al. (2016) for heavy precipitation. 

This was repeated for each of the GCMs considered for this study. We follow the same 

procedure for each emissions scenario, as well as for the historical period. We then calculated the 

difference between the 30-year mean at the beginning of the historical and the 30-year mean 

centered around 1 TtC of cumulative emissions (Figure 1). The spread of trends across models 

represents our range of uncertainty, and we present the model range of percent changes at 1 TtC 

(Tables 1-3). 

Statistical tests 

All statistical analyses were performed using R software. For this study, we used simple 

linear regression modelling. Linear regression was used herein to assess the effect of cumulative 

emissions on extreme precipitation by deriving rates of change of precipitation extreme 

indicators per TtC of cumulative emissions and associated standard errors that are based on 

model medians. We, therefore, infer trends that are centered on the regression line corresponding 

to the model medians in our study. Since the response of extreme precipitation could be assumed 

to follow linearity, it was, thus, relevant to also use Pearson correlation analysis. Following 

Chavaillaz et al. (2019), we assumed that the response of extreme precipitation was linear if the 

correlation coefficients and p-values were sufficiently strong. Though we acknowledge that a 

Pearson correlation coefficient of less than one (1) could be attributed to noise, or a functional 
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non-linear relationship, we consider in this study that high correlation coefficients 

reaching/exceeding 0.75 are inferred as a linear relationship, and if p-values were at or below 

0.01 with respect to the linear regression model.  

National and local selection 

In the next stage, we selected specific regions to specific locations of interest to assess 

similarities and/or differences in the response of extreme precipitation at those larger scales 

relative to global trends. First, we isolated land and ocean only to spatially average extreme 

precipitation values over either land or water. While somewhat arbitrary, our selection of nations 

(and specific locations) was on the basis of appreciably large percent change increases in 

extreme precipitation at one TtC among scenarios, relative to the beginning of the historical 

period (Figure 1). Our choice was also partly based on locations with larger population density, 

recent significant to catastrophic precipitation events, lower elevation relative to sea level, and/or 

their proximity to large bodies of water that could all contribute to exacerbating impacts 

associated with intensified precipitation extremes in the future. This selection is, therefore, meant 

to be illustrative of changes in precipitation extremes that can be expected at certain regions and 

locations as a function of cumulative emissions. This could also be potentially useful for 

policymakers who are interested in planning for adaptation needs in relation to future 

precipitation extremes, given some expectation of future global emissions trends. Further, there 

is scientific interest to explore to what extent the linearity of the relationship that we find at the 

global scale could extend to specific regions, and at the grid cell. As such, the following 12 

nations/regions were chosen for this study: Canada, United States, Japan, Brazil, India, South 

Africa, Australia, Sweden, Russia, China, Indonesia, and the North-central tropical Pacific. 
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As mentioned, we then extended the analysis to more localized areas to determine trends 

at those spatial scales. These locations typically occupied spaces at the grid cell, or a small 

grouping of cells. This meant that local-scale selections could be a combination of small 

countries occupying only a few grid cells, or a single cell. These were aggregated by spatially 

averaging across only those grid cells. The selected 10 locations were as follows: New York 

City, Philippines, Guyana, Montreal, Florida, Paris, Madagascar, Hong Kong, St. Louis, and 

Melbourne. For situations where we select cities for our analysis of local-scale trends, we note 

here that our focus is on the grid cell that surrounds those cities, as opposed to the cities 

themselves. Further, while we acknowledge that other locations and/or small countries could face 

increased vulnerability to precipitation extremes, we use this selection as a representation of 

potential impacts elsewhere at more localized scales. While we did not consider specific 

thresholds for population density, elevations relative to sea level, and the sizes of water bodies, 

we selected representative areas that could potentially experience increased negative impacts 

linked to precipitation extremes. For example, the New York City region is very densely 

populated, is only slightly above sea level and is located in close proximity to the Atlantic 

Ocean. Guyana is a nation that is conversely not so densely populated, but most of its population 

resides near the Atlantic Ocean, and the capital of Georgetown lies modestly below sea level. 

The Montreal region is generally well above sea level, but it is a densely populated area that is 

surrounded by two rivers, with Rivieres-Des-Prairies flooding many areas twice in a very small 

period of time, both in 2017 and shortly again in 2019, as a result of partly significant amounts of 

precipitation. Therefore, though we did not consider flooding risk directly in our analysis, we 

included these selected locations and regions as representative areas with particular vulnerability 

to extreme precipitation that may be compounded by their low elevation relative to sea-level. 
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All statistical results for global, regional and local trends are summarized in Tables 1-3, 

with extreme precipitation trends shown graphically as line plots in the results section.  

Results 

Global TCRE patterns of extreme precipitation 

Figure 1 shows global patterns of percent changes in Rx1day and Rx5day, highlighting a 

general global increase in precipitation at around 1 TtC relative to the 30-year mean at the 

beginning of the historical period. Under the RCP scenarios, we found up to a 90-100% increase 

in Rx1day at 1 TtC in the central equatorial Pacific, and up to 60% with respect to 1pctCO2 in 

this region. Thus, the central equatorial Pacific represents the greatest rates of increase for 

Rx1day, but we also found other significant increases in North-central Africa, South Asia, 

portions of Indonesia, as well as central Antarctica and North of the Arctic Circle among the 

RCP scenarios. In the case of Rx5day, overall much lower rates of increase are shown, with most 

areas displaying up to a 10% increase across scenarios. However, we found similarities in the 

global to regional patterns that are highlighted for Rx1day. For example, the largest rates of 

increase consistently occur in the central equatorial Pacific across scenarios, as well as in North-

central Africa, where up to a 50-60% increase at 1 TtC is shown. Elsewhere, we consistently 

found decreases of up to 30-40% at 1 TtC, with the largest rates shown in the Northern (sub-) 

tropical Atlantic, as well as portions of the Middle East and extreme Northern Africa for both 

Rx1day and Rx5day. Similar decreases are uniformly shown across the Southern Hemisphere 

sub-tropical high pressure belt in oceanic regions for both precipitation indices. Notably, the 

greatest decreases were in the Southern portion of the (sub-) tropical Eastern Pacific and 
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Atlantic. We also found decreases in the oceanic region West of Australia though with generally 

larger decreases in Rx5day (up to 20%) than for Rx1day (up to 10%). 

The broad area in the central equatorial Pacific displaying the sharpest increases for both 

Rx1day and Rx5day among scenarios may be the result of increased moisture availability and 

evaporation across most regions under the higher global temperatures expected at 1 TtC of 

cumulative emissions, likely contributing to intensified (deep) convection. For this reason, the 

robust increasing signal over the East-central equatorial Pacific may further be related to higher 

sea-surface temperatures at higher background emissions, possibly in response to more El Nino 

events that comprise the El Nino Southern Oscillation (ENSO) (e.g. Moore et al., 2015). A 

change in the size and strength of the Intertropical Convergence Zone (ITCZ) may also 

contribute to the enhancement in extreme precipitation consistently found across scenarios in this 

region (e.g. Byrne & Schneider, 2016). Conversely, the consistent decrease in our precipitation 

indices in oceanic sub-tropical regions may be attributed to intensified and expansive sub-

tropical high pressure over oceanic regions as global temperatures warm at higher emissions (e.g. 

Schmidt & Grise, 2017). 
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Figure 1. Percent change in global Rx1day (a-c) and Rx5day (d-f) under the 1pctCO2, RCP 4.5 

and RCP 8.5 scenarios based on the difference between the 30-year model mean precipitation at 

around 1 TtC of cumulative emissions relative to the historical first 30-year model mean 

precipitation.  

 

Statistical results for median global extreme precipitation are summarized in Table 1. 

Global extreme precipitation increases linearly (Figure 2) in response to cumulative carbon 

emissions for all emissions scenarios for Rx1day and Rx5day across most of the global climate 

model simulations considered in this study. Global median extreme precipitation trends exhibit 

robust linearity for Rx1day and Rx5day for all of the scenarios (Figure 2, Table 1) and are highly 

statistically significant, as well as for the historical period (p < 0.01, Table 1). Indeed, we found 

correlation coefficients greater than 0.75 across all emissions scenarios for both our extreme 
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precipitation indicators (Table 1). Linearity is especially strong for the 1pctCO2 and RCP 8.5 

scenarios (r >= 0.90). The more enhanced linearity that we found under the 1pctCO2 and RCP 

8.5 scenarios is a reflection of the larger extents of warming and higher signal-to-noise ratio. 

Indeed, global median Rx1day, under the 1pctCO2 and RCP 8.5 scenarios, increases by an 

average of 7.11% and 14.78% per TtC, respectively. Similarly, global median Rx5day increases 

by 4.18% per TtC for 1pctCO2, and an 8.36% per TtC increase under the RCP 8.5 scenario.  

With respect to the historical period, the results show a significant linear increase for median 

Rx1day (r = 0.80, Table 1), where precipitation increases by an average rate of about 12% per 

TtC. This is larger than the increase shown by 1pctCO2 but less than RCP 8.5, and similar to 

RCP 4.5. Further, this reflects a mean increase that is approximately 5% less per TtC in the RCP 

4.5 scenario relative to the historical period, and a ~3% increase per TtC in median Rx1day in 

the RCP 8.5 scenario. This is similarly shown for global Rx5day, where the mean increase per 

TtC in the historical period is larger than in the 1pctCO2 and RCP 4.5 scenarios. For both median 

Rx1day and Rx5day, the mean increase per TtC was highest for the RCP 8.5 scenario, with an 

increase of 14.78% and 8.36%, respectively.  

Regional TCRE patterns in extreme precipitation: Land and oceanic regions 

The results show that both median Rx1day and Rx5day increase linearly per TtC across 

all emissions scenarios for land and ocean (Figure 2, Table 1). For all scenarios, this increase is 

significant within the 1% significance level, and linearity is shown to be large (Figure 2, r > 

0.75), with the exception of ocean median Rx5day under RCP 4.5. In particular, the increase was 

substantial for land for the RCP 4.5 and RCP 8.5 scenarios for median Rx1day, where 

precipitation increased by 12.08% and 13.58% per TtC, respectively (Table 1). For ocean, the 

increase was notably high for median Rx1day under RCP 4.5 (12.79%) and RCP 8.5 (15.16%). 
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For the RCP 8.5 scenario, we found a strong linear increase (r > 0.79) for Rx1day, where 

precipitation increased by 12.69% per TtC (p < 0.01, Table 1).  

Table 1. Trends for global, land and ocean median Rx1day and Rx5day for the 1pctCO2, RCP 

4.5 and RCP 8.5 emissions scenarios, and for the historical period. Findings are given as mean 

percent changes per TtC based on linear regression analyses, and Pearson correlation coefficients 

are provided. The model range at 1 TtC is also reported. *, ** and *** indicates results that are 

statistically significant at or within the 10%, 5% and 1% significance levels, respectively. 

Emissions 

scenario 

Change % change 

per TtC 

Standard 

error 

Pearson’s 

correlation 

coefficient r 

Model range 

at 1 TtC 

Global extreme precipitation 

Rx1day 

1pctCO2 Increase*** 7.11 0.11 0.98 0.33 to 12.50 

RCP 4.5 Increase*** 12.62 0.58 0.92 5.92 to 23.44 

RCP 8.5 Increase*** 14.78 0.27 0.99 4.60 to 27.59 

Historical Increase*** 12.02 0.75 0.80 -1.20 to 13.12 

Rx5day  

1pctCO2 Increase*** 4.18 0.16 0.92 -1.17 to 9.97 

RCP 4.5 Increase*** 7.17 0.68 0.75 4.77 to 16.35 

RCP 8.5 Increase*** 8.36 0.35 0.93 3.57 to 29.89 

Historical Increase*** 7.45 1.01 0.53 0.62 to 14.71 

 Land extreme precipitation  

Rx1day 

1pctCO2 Increase*** 6.75 0.12 0.98 -1.49 to 16.09 

RCP 4.5 Increase*** 12.08 0.51 0.94 4.69 to 20.99 

RCP 8.5 Increase*** 13.58 0.26 0.99 8.00 to 26.23 

Historical Increase*** 9.92 0.88 0.69 -0.37 to 11.59 

Rx5day  

1pctCO2 Increase*** 4.47 0.14 0.94 -0.65 to 15.17 

RCP 4.5 Increase*** 8.58 0.58 0.85 6.99 to 12.58 

RCP 8.5 Increase*** 8.08 0.32 0.94 1.88 to 37.52 

Historical Increase*** 7.99 0.96 0.57 1.48 to 14.43 

Ocean extreme precipitation 

Rx1day 

1pctCO2 Increase*** 7.23 0.13 0.98 0.78 to 12.78 

RCP 4.5 Increase*** 12.79 0.67 0.90 5.76 to 24.27 

RCP 8.5 Increase*** 15.16 0.32 0.98 3.35 to 28.05 

Historical Increase*** 12.69 0.84 0.79 -1.41 to 13.63 

Rx5day  

1pctCO2 Increase*** 4.07 0.19 0.88 -1.63 to 10.76 

RCP 4.5 Increase*** 6.61 0.84 0.64 3.43 to 18.31 

RCP 8.5 Increase*** 8.47 0.42 0.91 3.80 to 33.11 
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Historical Increase*** 7.24 1.17 0.46 -0.89 to 17.82 

 

 

Figure 2. Global, land and ocean median trends for the historical period (black), and the 

1pctCO2 (green), RCP4.5 (blue) and RCP8.5 (red) scenarios for Rx1day (a-c) and Rx5day (d-f). 

Annual percent changes for the RCP scenarios, and the historical period are given. Percent 

changes for 1pctCO2 are relative to Year 1 of that scenario. Trends for other individual model 

simulations are shown in the background for each scenario and represent the range of 

uncertainty. 

 

Regional TCRE patterns of extreme precipitation: National/regional trends 

To determine if robust linear trends exist at the regional scale, we examine trends for our 

selected 12 nations/regions.  
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Our results generally highlight statistically significant increases in median Rx1day and 

Rx5day across the selected nations/regions studied for all emissions scenarios, and for the 

historical period (p < 0.01, Table 2). The largest increases in precipitation mostly occur in the 

case of the RCP 4.5 and RCP 8.5 scenarios. For instance, Canadian Rx1day increased by an 

average rate of approximately 14%-15% per TtC for the RCP 4.5 and RCP 8.5 scenarios, which 

represents a 4-5% per TtC increase above what is shown in the historical period. We also found 

similar increases for median Rx5day for the RCP scenarios (Table 2).  

The rate of increase was notably large for Rx1day. Among the nations/regions studied, 

Indonesia exhibited the largest value for Rx1day, with an increase of about 15%, 29% and 41% 

per TtC for the 1pctCO2, RCP 4.5 and RCP 8.5 scenarios, respectively, all of which were highly 

statistically significant (p < 0.01).  Historically, Rx1day in Indonesia increased by about 26% per 

TtC (p < 0.01). This signifies a rise of 3% and 15% per TtC under the RCP 4.5 to RCP 8.5 

scenarios, respectively, reflecting a substantial increase under higher global cumulative 

emissions for this nation. India also showed large increases for its Rx1day under the RCP 

scenarios, with a rise of 24-27% per TtC. Japan similarly showcased substantial increases across 

the RCP scenarios for Rx1day, with rises of approximately 18% per TtC (p < 0.01). This 

represents a 10% increase per TtC relative to Japan’s historical period. Brazil, Sweden, Russia, 

China, and the North-central tropical Pacific further had large increases in Rx1day (11-18% per 

TtC across these regions), with all being significant within the 1% significance level. Sweden 

notably had the largest increase in Rx5day among the regions studied, rising by 14-16% per TtC 

in RCP 4.5 and RCP 8.5 (p < 0.01). China additionally showed an average increase of 12% per 

TtC for Rx5day under the RCP 4.5 scenario, as did Russia, at 11-12% per TtC for the RCP 

scenarios (p < 0.01).  
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Among extreme precipitation indicators, linear trends were largely found across most 

regions/nations investigated in the case of Rx1day (Figure 3, Table 2). However, we found that 

linear tendencies were notably stronger for certain countries and scenarios. With the exception of 

Australia and South Africa, as well as in the case of Sweden’s 1pctCO2 trend, coefficients of > 

0.75 for 1pctCO2 and RCP 8.5 for median Rx1day were shown (Figure 3, Table 2). Among 

these, Canada, the United States, China, and Russia showed the most pronounced linear trends (r 

>= 0.90), with Russia exhibiting especially robust linearity for Rx1day for the RCP 8.5 scenario 

(r = 0.98), all of which were strongly statistically significant. We similarly found coefficients of 

> 0.75 for median Rx5day for Canada (RCP 8.5), the United States (1pctCO2). and Russia (all 

scenarios), with Russia showcasing the highest coefficients.  

Table 2. National trends for median Rx1day and Rx5day for the 1pctCO2, RCP 4.5 and RCP 8.5 

emissions scenarios, and for the historical period. Findings are given as mean percent changes 

per TtC based on linear regression analyses, and Pearson correlation coefficients are provided. 

The model range at 1 TtC is also reported. *, ** and *** indicates results that are statistically 

significant at or within the 10%, 5% and 1% significance levels, respectively. 

Emissions 

scenario 

Change % change 

per TtC 

Standard 

error 

Pearson’s 

correlation 

coefficient r 

Model range 

at 1 TtC 

Canada extreme precipitation 

Rx1day 

1pctCO2 Increase*** 7.94 0.20 0.96 2.70 to 22.07 

RCP 4.5 Increase*** 13.99 0.94 0.85 -4.64 to 13.97 

RCP 8.5 Increase*** 15.14 0.40 0.97 0.62 to 38.43 

Historical Increase*** 10.55 1.23 0.59 -14.03 to 18.61 

Rx5day 

1pctCO2 Increase*** 4.96 0.44 0.69 -11.56 to 16.44 

RCP 4.5 Increase*** 13.21 2.28 0.53 -6.43 to 29.78 

RCP 8.5 Increase*** 11.15 0.85 0.81 -55.12 to 35.61 

Historical Increase** 7.55 3.22 0.19 -25.23 to 41.32 

United States extreme precipitation 

Rx1day 

1pctCO2 Increase*** 6.36 0.23 0.93 -9.78 to 15.24 

RCP 4.5 Increase*** 11.19 1.16 0.72 -0.40 to 27.36 

RCP 8.5 Increase*** 11.09 0.57 0.90 -0.04 to 24.36 
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Historical Increase*** 10.12 1.43 0.43 -13.22 to 10.87 

Rx5day 

1pctCO2 Increase*** 4.40 0.33 0.76 -39.79 to 30.39 

RCP 4.5 Increase*** 8.71 1.89 0.44 -9.27 to 45.70 

RCP 8.5 Increase*** 8.68 0.87 0.73 -0.36 to 67.13 

Historical Increase*** 8.50 2.60 0.24 -17.03 to 80.24 

Japan extreme precipitation 

Rx1day 

1pctCO2 Increase*** 9.40 0.6 0.80 -5.28 to 86.22 

RCP 4.5 Increase*** 17.53 2.66 0.58 -4.68 to 33.86 

RCP 8.5 Increase*** 17.82 1.49 0.79 -9.21 to 76.84 

Historical Increase*** 7.87 3.74 0.17 -20.62 to 21.99 

Rx5day 

1pctCO2 Increase** 5.27 0.67 0.56 -18.86 to 42.55 

RCP 4.5 Increase*** 8.50 3.21 0.27 -15.27 to 55.86 

RCP 8.5 Increase*** 10.49 1.56 0.58 -18.91 to 95.86 

Historical Increase*** 14.60 4.43 0.27 -18.78 to 63.73 

Brazil extreme precipitation 

Rx1day 

1pctCO2 Increase*** 7.08 0.42 0.82 -12.87 to 8.10 

RCP 4.5 Increase*** 11.69 2.03 0.52 -15.85 to 24.06 

RCP 8.5 Increase*** 14.30 0.89 0.86 -28.24 to 62.21 

Historical Increase*** 6.06 2.25 0.22 -21.75 to 43.83 

Rx5day 

1pctCO2 Increase*** 4.15 0.55 0.55 -8.24 to 43.24 

RCP 4.5 Increase** 5.09 2.14 0.25 -25.38 to 22.61 

RCP 8.5 Increase*** 6.06 1.13 0.50 -30.57 to 39.60 

Historical Increase** 6.31 3.17 0.17 -13.54 to 53.69 

Australia extreme precipitation 

Rx1day 

1pctCO2 Increase*** 3.27 0.57 0.44 -17.86 to 77.13 

RCP 4.5 Increase*** 10.45 2.86 0.36 -27.79 to 65.47 

RCP 8.5 Increase*** 4.99 1.30 0.38 -8.78 to 76.89 

Historical Increase*** 9.38 3.44 0.22 -10.45 to 43.80 

Rx5day 

1pctCO2 Increase*** 1.86 0.50 0.31 -9.86 to 41.31 

RCP 4.5 Increase* 4.26 2.43 0.18 -19.93 to 39.72 

RCP 8.5 Increase** 2.38 1.13 0.22 -43.19 to 36.22 

Historical No change 3.55 3.10 0.10 -8.44 to 25.47 

India extreme precipitation 

Rx1day 

1pctCO2 Increase*** 16.03 0.89 0.84 -19.30 to 80.24 

RCP 4.5 Increase*** 23.72 3.04 0.64 -12.46 to 102.62 

RCP 8.5 Increase*** 26.79 1.58 0.84 -2.85 to 95.55 

Historical Increase*** 12.96 3.92 0.27 -19.01 to 31.95 



 
 

49 
 

Rx5day 

1pctCO2 Increase*** 6.15 0.55 0.69 -9.97 to 80.66 

RCP 4.5 Increase*** 10.40 2.39 0.44 -19.39 to 62.73 

RCP 8.5 Increase*** 8.08 1.20 0.58 -42.47 to 53.04 

Historical No change 6.33 4.17 0.13 -20.88 to 44.26 

South Africa extreme precipitation 

Rx1day 

1pctCO2 Increase*** 3.14 0.60 0.41 -14.84 to 31.30 

RCP 4.5 Increase*** 6.86 2.71 0.26 -19.82 to 49.20 

RCP 8.5 Increase** 3.25 1.39 0.24 0.84 to 72.08 

Historical No change 4.69 3.83 0.10 -22.06 to 31.67 

Rx5day 

1pctCO2 Increase*** 2.28 0.52 0.35 -24.28 to 30.09 

RCP 4.5 No change 4.66 2.85 0.17 -26.79 to 31.89 

RCP 8.5 Increase* 2.50 1.30 0.40 -42.28 to 42.33 

Historical No change 5.86 3.77 0.13 -29.72 to 50.82 

Sweden extreme precipitation 

Rx1day 

1pctCO2 Increase*** 5.68 0.50 0.70 -18.89 to 75.85 

RCP 4.5 Increase*** 13.55 2.72 0.47 0.48 to 101.21 

RCP 8.5 Increase*** 16.79 1.14 0.81 -6.39 to 36.75 

Historical Increase*** 11.41 3.55 0.24 -12.07 to 41.32 

Rx5day 

1pctCO2 Increase*** 9.50 0.93 0.66 -28.57 to 62.39 

RCP 4.5 Increase*** 13.65 3.16 0.42 -55.65 to 47.86 

RCP 8.5 Increase*** 15.96 1.33 0.75 -14.27 to 67.43 

Historical Increase** 11.06 4.98 0.20/0.02 -23.06 to 32.14 

Russia extreme precipitation 

Rx1day 

1pctCO2 Increase*** 7.88 0.18 0.97 -2.32 to 18.44 

RCP 4.5 Increase*** 15.29 0.69 0.92 7.31 to 35.93 

RCP 8.5 Increase*** 15.20 0.33 0.98 5.74 to 32.86 

Historical Increase*** 6.62 1.14 0.24/0.01 0.70 to 16.81 

Rx5day 

1pctCO2 Increase*** 6.40 0.20 0.94 -1.31 to 11.75 

RCP 4.5 Increase*** 11.13 0.93 0.79 -0.75 to 15.51 

RCP 8.5 Increase*** 11.60 0.47 0.94 5.33 to 21.97 

Historical Increase*** 6.93 1.28 0.30 -2.34 to 14.78  

China extreme precipitation 

Rx1day 

1pctCO2 Increase*** 8.72 0.27 0.94 1.49 to 16.90 

RCP 4.5 Increase*** 16.19 1.28 0.80 8.57 to 39.34 

RCP 8.5 Increase*** 18.19 0.60 0.92 7.04 to 36.33 

Historical Increase*** 9.57 1.65 0.44 -12.18 to 22.87 

Rx5day 



 
 

50 
 

 

 

 

 

 

 

 

1pctCO2 Increase*** 4.66 0.38 0.73 0.25 to 33.90 

RCP 4.5 Increase*** 12.65 1.81 0.60 -4.91 to 20.69 

RCP 8.5 Increase*** 8.02 0.92 0.70 -27.79 to 34.87 

Historical Increase*** 13.63 3.35 0.32 -9.67 to 21.84 

Indonesia extreme precipitation 

Rx1day 

1pctCO2 Increase*** 14.73 0.68 0.88 -10.07 to 26.31 

RCP 4.5 Increase*** 28.63 3.60 0.65 -0.40 to 46.31 

RCP 8.5 Increase*** 41.03 2.24 0.85 -11.26 to 46.87 

Historical Increase*** 25.97 4.42 0.44 -2.67 to 37.93 

Median five-day maximum precipitation 

1pctCO2 No change 0.26 0.58 0.04 -10.17 to 19.73 

RCP 4.5 No change 0.61 2.65 0.03 -42.02 to 23.67 

RCP 8.5 No change 1.84 1.39 0.11 -39.74 to 31.36 

Historical No change -4.46 3.89 -0.10 -22.38 to 28.76 

East to central tropical Pacific extreme precipitation 

Rx1day 

1pctCO2 Increase*** 7.50 0.44 0.83 -1.82 to 25.51 

RCP 4.5 Increase*** 17.63 2.04 0.68 -15.34 to 40.72 

RCP 8.5 Increase*** 16.91 1.22 0.83 -18.60 to 64.61 

Historical Increase*** 10.87 2.81 0.29 -21.54 to 10.57 

Rx5day 

1pctCO2 Increase*** 5.19 1.89 0.23 -26.09 to 58.87 

RCP 4.5 No change 12.92 9.52 0.14 -40.27 to 252.79 

RCP 8.5 Increase*** 13.91 4.61 0.31 -12.53 to 291.47 

Historical No change 13.69 12.81 0.09 -62.53 to 60.35 
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Figure 3. Median trends for selected countries/regions for the historical period (black), and the 

1pctCO2 (green), RCP4.5 (blue) and RCP8.5 (red) scenarios for Rx1day (a) and Rx5day (b). 

Annual percent changes for the RCP scenarios, and the historical period, are given. Percent 

changes for 1pctCO2 are relative to Year 1 of that scenario. Trends for other individual model 

simulations are shown in the background for each scenario and represent the range of 

uncertainty. 

 

TCRE patterns of extreme precipitation: Local scale 

In this section, we examine precipitation trends at a more localized scale. These were 

considered as areas that represented the spatial domain of a single grid cell, or a small grouping 

of cells. Results are summarized in Table 3. 
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Unlike at the global to regional/national scale, we did not find particularly high 

correlation coefficients for all locations considered here (Figure 4, Table 3). It is worth 

mentioning that some of these selected locations did exhibit relatively high coefficients, though 

these would not be sufficient to attribute linearity according to our stated criteria. That said, the 

correlation coefficients were reasonably high, and in combination with low p-values, we feel 

confident that there remains a functional linear relationship in these localized median trends. For 

example, in the case of the 1pctCO2 and RCP 8.5 scenarios for Rx1day, the New York City 

region showed appreciably high coefficients under these scenarios (r = 0.56 and r = 0.64 for the 

1pctCO2 and RCP 8.5 scenarios, respectively). The Montreal region also showed a reasonably 

large coefficient for its Rx1day (r = 0.63), as did the Philippines for both the 1pctCO2 and RCP 

4.5 scenarios (r = 0.60 and r = 0.72, respectively). However, to be consistent, we acknowledge 

again that these trends do not meet our strict criteria for linearity. 

Though we found lower coefficients, these locations generally showed highly statistically 

significant increases in Rx1day and Rx5day, which was similar to trends shown globally and 

regionally/nationally (Table 3). For instance, for the New York City region, with the exception 

of Rx5day over the historical period, an increase per TtC was found across all scenarios, as well 

as for Rx1day for the historical period (p < 0.01 to 0.02). In particular, we found a 45% increase 

per TtC in Rx1day for the Philippines (p < 0.01) over its historical period, and a 22% increase 

per TtC under the RCP 8.5 scenario. Guyana also had a 19% increase per TtC in median Rx1day 

for the RCP 8.5 scenario (p < 0.01), and Florida showed about a 24% increase over its historical 

period (p < 0.01). Historical Rx5day was additionally increasing significantly for the St. Louis 

(19% per TtC) and Paris (27% per TtC) regions, both of which were statistically significant 

within the 1% significance level.  
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Table 3. Localized trends for median Rx1day and Rx5day for the 1pctCO2, RCP 4.5 and RCP 

8.5 emissions scenarios, and for the historical period. Findings are given as mean percent 

changes per TtC based on linear regression analyses, and Pearson correlation coefficients are 

provided. The model range at 1 TtC is also reported. *, ** and *** indicates results that are 

statistically significant at or within the 10%, 5% and 1% significance levels, respectively. 

Emissions 

scenario 

Change % change 

per TtC 

Standard 

error 

Pearson’s 

correlation 

coefficient r 

Model range 

at 1 TtC 

New York City region extreme precipitation 

Rx1day 

1pctCO2 Increase*** 6.76 0.87 0.56 -32.02 to 20.32 

RCP 4.5 Increase*** 17.48 5.01 0.35 -16.29 to 83.80 

RCP 8.5 Increase*** 20.93 2.66 0.64 -24.94 to 58.51 

Historical Increase*** 22.86 7.38 0.25 -49.84 to 128.34 

Rx5day 

1pctCO2 Increase*** 6.85 1.17 0.45 -54.60 to 114.19 

RCP 4.5 Increase** 14.47 6.27 0.24 -42.32 to 125.20 

RCP 8.5 Increase*** 9.03 3.18 0.29 -64.16 to 404.88 

Historical No change 11.13 8.29 0.11 -49.77 to 80.69 

Philippines extreme precipitation 

Rx1day 

1pctCO2 Increase*** 17.98 2.05 0.60 -27.96 to 372.48 

RCP 4.5 Increase* 14.35 7.38 0.72 -53.97 to 86.57 

RCP 8.5 Increase*** 21.88 3.18 0.59 -11.70 to 100.14 

Historical Increase*** 45.73 9.36 0.38 -49.59 to 28.87 

Rx5day  

1pctCO2 No change 1.94 1.25 0.13 -53.67 to 306.13 

RCP 4.5 No change 3.30 5.88 0.06 -75.70 to 64.50 

RCP 8.5 No change 2.18 3.57 0.07 -45.50 to 68.09 

Historical No change 6.01 8.03 0.06 -44.65 to 75.45 

Guyana extreme precipitation 

Rx1day 

1pctCO2 Increase*** 7.61 1.05 0.53 -62.56 to 325.86 

RCP 4.5 No change 9.18 5.73 0.17 -22.83 to 121.22 

RCP 8.5 Increase*** 18.79 2.66 0.60 -15.67 to 118.48 

Historical No change 9.08 6.16 0.12 -18.93 to 52.40 

Rx5day 

1pctCO2 Increase*** 5.28 1.00 0.41 -11.89 to 81.43 

RCP 4.5 No change 2.33 3.81 0.07 -35.30 to 55.27 

RCP 8.5 Increase*** 8.26 1.76 0.45 -39.25 to 52.53 

Historical No change 2.70 5.65 0.04 -44.15 to 42.31 

Montreal region extreme precipitation 
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Rx1day 

1pctCO2 Increase*** 8.33 0.89 0.63 -10.59 to 38.12  

RCP 4.5 Increase*** 15.59 3.73 0.41 -18.90 to 38.53 

RCP 8.5 Increase*** 8.15 2.03 0.39 -14.09 to 65.25 

Historical No change -4.39 5.30 -0.07 -26.40 to 48.37 

Rx5day 

1pctCO2 Increase*** 4.54 1.05 0.35 -56.01 to 38.71 

RCP 4.5 No change 11.33 7.20 0.17 -25.43 to 52.25 

RCP 8.5 Increase*** 11.21 3.01 0.37 -9.84 to 65.04 

Historical Increase** 22.20 9.74 0.19 -24.77 to 161.80 

Florida extreme precipitation 

Rx1day 

1pctCO2 Increase*** 4.05 0.88 0.37 -27.57 to 52.25 

RCP 4.5 No change 5.18 5.68 0.10 -33.40 to 52.94 

RCP 8.5 Increase*** 9.11 2.65 0.34 -37.28 to 156.86 

Historical Increase*** 23.62 7.74 0.25 -33.02 to 65.93 

Rx5day 

1pctCO2 Increase*** 4.20 1.05 0.32 -48.78 to 179.34 

RCP 4.5 Increase** 7.83 3.91 0.21 -23.30 to 134.95 

RCP 8.5 Increase*** 6.15 2.11 0.30 -18.04 to 163.06 

Historical No change 5.44 7.15 0.06 -76.65 to 143.41 

Paris region extreme precipitation 

Rx1day 

1pctCO2 Increase*** 4.45 0.84 0.42 -35.35 to 101.55 

RCP 4.5 Increase*** 11.23 4.33 0.27 -25.76 to 38.14 

RCP 8.5 Increase*** 12.41 1.76 0.60 -12.58 to 122.11 

Historical No change 5.62 5.85 0.08 -38.80 to 58.00 

Rx5day 

1pctCO2 Increase*** 9.24 1.35 0.51 -22.21 to 125.44 

RCP 4.5 No change 7.78 6.16 0.13 -55.23 to 169.01 

RCP 8.5 Increase*** 13.65 2.98 0.44 -8.55 to 144.98 

Historical Increase*** 27.13 10.32 0.22 -79.24 to 128.14 

Madagascar extreme precipitation 

Rx1day 

1pctCO2 Increase*** 7.23 1.30 0.42 -35.30 to 128.62 

RCP 4.5 Increase** 16.31 7.25 0.23 -39.48 to 153.16 

RCP 8.5 Increase*** 16.53 3.33 0.47 -43.19 to 92.45 

Historical Increase* 16.15 9.09 0.15 -57.52 to 56.67 

Rx5day 

1pctCO2 No change 1.44 1.01 0.12 -33.51 to 63.06 

RCP 4.5 No change 0.81 4.48 0.02 -41.83 to 61.62 

RCP 8.5 No change 2.86 1.86 0.16 -17.11 to 107.81 

Historical No change -1.04 6.83 -0.01 -23.35 to 22.78 

Hong Kong region extreme precipitation 

Rx1day 
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1pctCO2 Increase*** 6.60 2.06 0.27 -25.66 to 86.30 

RCP 4.5 No change 17.40 11.03 0.17 -39.34 to 93.24 

RCP 8.5 Increase** 11.25 5.41 0.22 -37.24 to 47.47 

Historical No change 3.21 15.82 0.02 -50.11 to 79.89 

Rx5day 

1pctCO2 Increase*** 3.83 1.46 0.22 -34.57 to 212.08 

RCP 4.5 No change 5.01 6.42 0.08 -52.01 to 212.54 

RCP 8.5 No change -0.44 3.07 -0.02 -65.30 to 138.72 

Historical No change 8.36 10.21 0.07 -36.09 to 66.04 

St. Louis region extreme precipitation 

Rx1day 

1pctCO2 Increase*** 6.17 0.85 0.53 -29.89 to 57.13 

RCP 4.5 Increase*** 13.06 4.89 0.27 -25.82 to 40.52 

RCP 8.5 Increase*** 12.80 2.38 0.50 -5.38 to 75.51 

Historical Increase** 13.46 6.50 0.17 -59.50 to 51.37 

Rx5day 

1pctCO2 Increase*** 7.02 1.06 0.51 -32.11 to 237.88 

RCP 4.5 Increase** 12.67 5.43 0.24 -39.29 to 82.82 

RCP 8.5 Increase*** 10.18 2.80 0.36 -37.14 to 233.16 

Historical Increase*** 18.55 6.84 0.22 -65.80 to 87.89 

Melbourne region extreme precipitation 

Rx1day 

1pctCO2 Increase*** 4.73 1.30 0.30 -77.46 to 162.15 

RCP 4.5 No change 3.97 6.42 0.07 -41.85 to 129.79 

RCP 8.5 Increase*** 8.56 2.51 0.34 -19.69 to 35.12 

Historical No change 6.77 8.69 0.07 -49.08 to 95.28 

Rx5day 

1pctCO2 No change 1.15 1.02 0.10 -10.39 to 92.34 

RCP 4.5 No change 4.86 6.22 0.08 -43.07 to 277.11 

RCP 8.5 No change 3.12 2.70 0.12 -25.75 to 166.70 

Historical No change 3.97 8.94 0.04 -48.66 to 95.28 
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Figure 4. Median trends for selected localized areas for the historical period (black), and the 

1pctCO2 (green), RCP4.5 (blue) and RCP8.5 (red) scenarios for Rx1day (a) and Rx5day (b). 

Annual percent changes for the RCP scenarios, and the historical period, are given. Percent 

changes for 1pctCO2 are relative to Year 1 of that scenario. Trends for other individual model 

simulations are shown in the background for each scenario and represent the range of 

uncertainty. 

 

Discussion 

Our results show that the TCRE framework, representing a near-linear response of 

climate variables to cumulative CO2 emissions, may be applied to extreme precipitation, 

extending analyses previously conducted in other studies, such as Leduc et al. (2016), Partanen 

et al. (2017) and Chavaillaz et al. (2019). These findings are also consistent with previous works 
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that have investigated the extent that precipitation extremes scale with global warming (e.g. 

Seneviratne et al., 2016; Wartenburger et al., 2017; Tebaldi & Knutti, 2018). Indeed, using a 

suite of nine CMIP5 models for the purposes of this work, we found strong positive linear 

scaling for indicators of extreme precipitation against global cumulative emissions, as well as 

statistically significant increases per TtC. These trends are shown to generally apply in both a 

TCRE-only context (1pctCO2), as well as with respect to a combination of CO2 and other 

greenhouse gas forcings (i.e. TCRE + non-CO2 forcings in RCP 4.5 and RCP 8.5). However, the 

extent to which this linearity occurs is dependent on the spatial scale and/or the emission 

scenario in question. The greatest linearity (r >= 0.75) was uniformly found at the global scale, 

where both median Rx1day and Rx5day increase significantly for all scenarios, as well as for the 

historical period in terms of Rx1day. Land-only and ocean-only analyses similarly revealed a 

strongly linear signal for both the median Rx1day and Rx5day. In the case of land, precipitation 

exhibited similar linear trends across all scenarios but was weaker historically. This held true for 

oceanic areas, as well, where the response was strongly linear across all scenarios.  

The strong positive linear trends of extreme precipitation found here were further 

consistent with the Clausius-Clapeyron relationship. With increased greenhouse gas forcing, 

global temperatures correspondingly rise, allowing the moisture holding capacity to increase. 

The Clausius-Clapeyron relation describes the exponential increase in water vapor pressure with 

warmer temperatures, where water vapor increases by approximately 7% per degree Kelvin 

under constant relative humidity. Indeed, we show that extreme precipitation scales strongly 

linearly with higher cumulative emissions globally to locally at rates similar to or exceeding that 

of the Clausius-Clapeyron relationship (i.e. a super Clausis-Clapeyron relationship). This was 

especially true for trends in Rx1day under the RCP runs, where the rates of increase per TtC 
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were frequently at or exceeding 11% per TtC. Similar rates of change also occur under 1pctCO2 

at the upper end of our spread of model trends (Figure 2); for instance, at 1 TtC, we find a similar 

increase (> 10%) globally under 1pctCO2. Similar results were also shown in Pall et al., (2007), 

for example, where they found that increases in extreme precipitation under CO2 forcing agreed 

with the Clausius-Clapeyron relation, especially at mid- to high-latitudes. Our findings also 

consistently show that the rate of increase is greater in the RCP 8.5 scenario than it is for 

1pctCO2 (often approximately a doubling in RCP 8.5 relative to 1pctCO2), which we would 

expect as a result of the RCP scenarios accounting for non-CO2 forcings and land-use change 

emissions. This is consistent with other studies (e.g. Pendergrass & Hartmann (2014) and 

Seneviratne et al., (2021)). In Pendergrass & Hartmann (2014), for instance, they found that 

99.99-percentile rain rate responses are sometimes shown to be 75% to more than 100% larger in 

RCP 8.5 than in 1pctCO2 for selected CMIP5 models, with relatively small uncertainties (e.g. in 

the IPSL-CM5A-LR, MIROC5 or NorESM1-M models). However, we also stress that rates of 

increase for individual models would differ across model simulations, ranging from larger to 

much smaller disparities between 1pctCO2 and RCP 8.5 relative to what we show for the median 

trends. 

These patterns would further suggest intensifications of annual Rx1day and Rx5day 

events due to more moisture availability in a warmer atmosphere. For instance, particularly 

strong deep convective systems have a tendency of forming in environments that are and/or 

become moisture-abundant. With enhancement, this moisture would create thermodynamic 

environments suitable for strong to severe thunderstorms and other mesoscale convective 

complexes in light of an increase in the amount of convective available potential energy. More 

moisture availability would also favorably augment the amount of atmospheric precipitable 
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water. Consequently, more water could be condensed out of the air during a given heavy 

precipitation event at higher background temperatures that would, therefore, increase the 

frequency and severity of these events through enhanced precipitation rates. Our results show 

strongly linear intensification rates in median Rx1day and Rx5day (increases of 4-15% per TtC 

globally), suggesting more substantial precipitation rates under higher global emission 

concentrations.  

These tendencies were further implied in Figure 1, showing general increases at lower 

latitudes for the most extreme Rx1day and Rx5day at mean 1 TtC of cumulative emissions 

among scenarios, relative to the beginning of the historical period. This was especially true in 

tropical oceanic regions. The increase in precipitation among scenarios may be the result of 

increased atmospheric moisture availability and evaporation in low-latitude oceanic regions 

under higher global temperatures expected at 1 TtC of cumulative emissions. This would likely 

contribute to intensified convection in more favorable thermodynamic environments, which, for 

example, may intensify rainfall rates in tropical cyclones over their oceanic source regions (e.g. 

Knutson et al. 2010). In particular, the overall increase across scenarios in the most extreme 

Rx1day and Rx5day over a narrow latitudinal band in the North-central tropical Pacific 

(approximately 9-16 degrees North of the equator) is large (Figure 1). For this region, we found 

that precipitation extremes increase generally by as much as 90-100% at 1 TtC in the RCP 

scenarios for Rx1day relative to the beginning of the historical period. The results show that the 

most intense Rx1day and Rx5day events increase significantly across all emissions scenarios 

(Table 2), and this increase is strongly linear for Rx1day for the 1pctCO2 and RCP 8.5 scenarios. 

As mentioned previously, this could suggest tropical convective enhancement due to potentially 

stronger and more frequent ENSO-warm phases (El Nino events) at higher cumulative 
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emissions, favoring intensification in the most extreme precipitation under the higher (sea-

surface) temperatures. A shift towards stronger El Nino events with greenhouse forcing would be 

consistent with enhanced ENSO variability (e.g. Moore et al., 2015). Using fossilized coral 

oxygen isotope records in the central Pacific, ENSO variance was also shown to be 

approximately 25% stronger over the past five decades relative to 3000-5000 years ago (Grothe 

et al., 2019). As mentioned previously, the increase shown for extreme precipitation indicators in 

this region may also be attributed to changes in the size and strength of the ITCZ. 

When regionally constraining our analysis, we found a wider range of correlation 

coefficients. In general, larger nations, such as Canada, the United States, Russia and China, had 

a stronger linear signal for both Rx1day and Rx5day. However, the robustness of this linearity 

was most pronounced for Rx1day under the 1pctCO2 and RCP 8.5 scenarios across most of the 

nations considered. This was also true for India, Brazil, and as described previously, the North-

central tropical Pacific. In the case of India, this may imply intensification in the warm season 

South Asian monsoon through more intense rainfall rates from deep convection/thunderstorms in 

a warmer climate (e.g. Moore et al., 2015; Lui et al., 2019). One exception to this pattern was 

Australia, where consistently weaker linear trends were found across scenarios, and historically. 

This could be that much of the central portion of Australia climatologically spends few days 

annually with measurable precipitation in light of the influence of sub-tropical high pressure in 

this region. It is principally these high pressure systems that restrict precipitation development 

due to the sinking air motions (i.e. subsidence) that are endemic to much of Australia. Therefore, 

much of the nation’s precipitation is mostly limited to coastal areas, notably the East and North 

coasts. Nevertheless, we found highly statistically significant increases per TtC in Australian 
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Rx1day and Rx5day for all scenarios. This finding is consistent with Bao et al. (2017), who 

showed an increase in the most extreme precipitation in Australia. 

Although linearity was generally weaker at the local scale, this study similarly showed 

statistically significant increases in Rx1day intensification at specific locations across North 

America, including the Montreal, St. Louis and New York City regions, as well as the state of 

Florida. These findings generally agree with Li et al. (2019), showing increases in local extreme 

precipitation across North America with climate warming, as well as in Canada historically (e.g. 

Bush et al., 2019), although Kunkel (2003) found no changes in the most extreme precipitation 

historically in Canada. The increases per TtC found in the United States was further in agreement 

with the significant increases in daily extreme precipitation events in southeastern Virginia over 

the 21st century, as documented in Sridhar et al. (2019).  

Comparatively smaller nations exhibited similar results for Rx1day under the 1pctCO2 

and RCP 8.5 scenarios, notably Japan, Sweden and Indonesia. Conversely, at the local scale, 

while linear trends may well exist based on our results, we consistently found no robust trends. 

Intuitively, this would make sense, as there are likely to be larger-scale influences that affect 

extreme precipitation locally, thereby increasing the extent of noise. Locally to regionally, for 

instance, natural variability can more significantly affect the frequency and/or severity of 

extreme precipitation events over annual to multi-decadal time scales. Such natural variabilities 

can reduce the signal-to-noise ratio and, thus, can mask linearity at these localized scales, as 

compared to the stronger linear signal shown globally. Also, the scale at which these 

precipitation events occur is rather small, making them difficult to capture meaningfully in 

coarser model resolutions. For example, extreme precipitation events are often the result of deep 

convective systems, such as (severe) training thunderstorms (e.g. Maddox et al., 1977), that can 
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yield considerable amounts of rainfall over a very short time. Due to the mesoscale processes 

involved in the formation of such events, it becomes increasingly difficult to sufficiently resolve 

these dynamics at coarser resolutions and, therefore, outside of convection-permitting models. 

The lower correlation coefficients found at the local scale may further be related to shifts in the 

overall storm tracks as a result of changes in atmospheric circulations, or it may be related to 

changes in the frequency of high and low pressure systems that preferentially impact some of 

these locations.  

As such, while the TCRE is shown here to be a good approximation for extreme 

precipitation at all spatial scales, it is more distinct at larger scales as opposed to smaller ones. 

However, strong linear relationships also appear in regionally-constrained analyses, mostly for 

the largest nations/regions (i.e. Canada, Russia, the United States, China, and the North-central 

tropical Pacific). This may be due to the potentially more prevalent influence of the Clausius-

Clapeyron relation at mid- to high-latitudes (in which many of the selected nations are located), 

as described by Pall et al. (2007). The stronger linearity shown for these regions could also be 

partly an artifact of spatially aggregating over a larger number of grid cells over larger areas, 

increasing data sampling size. The differences in linearity from one location or region to another 

could also be at least partly explained by differences in the atmospheric circulation response to 

higher cumulative emissions (and, thus, warmer temperatures). For example, a strengthening of 

the monsoon circulation in India (e.g. Li et al., 2019) under warmer global/regional temperatures 

could foster conditions suitable for substantial increases in Rx1day and Rx5day rates. Indeed, as 

reported here, precipitation rates in India are shown to be much larger than all other 

nations/regions considered, especially for Rx1day (which are statistically significant across 

scenarios). 
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While we would have expected both Rx1day and Rx5day to increase at all spatial scales 

considered herein, it is interesting to note that our results point to larger rates of increase in 

Rx1day than in Rx5day. This is especially true globally, and for land and ocean. However, the 

extent to which this occurs is somewhat more varied at the national/regional to local scale than 

what we report globally or for land/ocean. For example, in Japan and China, historically, Rx5day 

exhibits a larger increase than for Rx1day events. This pattern is also shown for Sweden, and 

locally we see this appear in the Montreal and St. Louis regions, for Florida, and especially in the 

case of the Paris region. These regional to local patterns could suggest (substantial) changes in 

the properties of convective systems, as well as the broader, synoptic circulation features that are 

important for their development and evolution, depending upon the extent of regional warming 

(e.g. Seneviratne et al., 2021). The larger increases in the intensity of Rx5day regionally to 

locally shown here may be the result of an atmospheric configuration that favors more 

(consecutive) days spent with precipitation as cumulative emissions rise. In turn, this could more 

likely allow for precipitation to be observed over multi-day time periods that would effectively 

enhance five-day precipitation events. It could also be that increases in Rx1day events 

significantly contribute to increases in the magnitude of Rx5day events, which could partially be 

why increases in Rx5day events are generally expected. These regional to local variations are 

consistent with other studies. Valverde & Marengo (2014), for instance, showed some 

regionally-different trends between Rx1day and Rx5day in Brazilian basins, where Rx5day 

events exhibited a decrease in the upper Tocantins, while Rx1day events increased. Similarly, 

Kirchmeier-Young & Zhang (2020) found a larger scaling factor for Rx1day than for Rx5day 

over much of North America historically.  
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We also generally found that the rate of increase in 1pctCO2 was largely much lesser than 

that of RCP 8.5. In particular as mentioned, we would expect such a consistently larger response 

of precipitation extremes to the RCP 8.5 emissions scenario as compared to that of 1pctCO2 due 

to the RCP scenarios including not only CO2 forcing, but also non-CO2 forcings, in addition to 

the emission contributions from land-use changes. To that end, Seneviratne et al. (2021) show 

that the increase is about 40% larger in RCP 8.5 than it is in 1pctCO2. At the same time, this 

larger disparity becomes somewhat less distinct nationally/regionally to locally, though the 

reported changes across median trends still reflect fairly high differences between the two 

scenarios.  

Summary & Conclusion 

Using a suite of nine CMIP5 climate model simulations, this study presented TCRE-

based estimates of extreme precipitation changes by examining trends in the most intense 

Rx1day and Rx5day events as a function of global cumulative emissions. The results show that 

the TCRE framework can be a good approximation for precipitation extremes and, therefore, 

expands on the research that had previously applied the TCRE to evaluate trends in global to 

regional temperature and precipitation in the context of global cumulative emissions (e.g. Leduc 

et al., 2016, Partanen et al., 2017, Chavaillaz et al., 2019). As such, the TCRE framework is 

shown here to similarly be a useful quantity in the assessment of extreme precipitation, 

especially at larger spatial scales, and further casts insight in the extent to which extreme 

precipitation may respond to higher cumulative emission concentrations. Indeed, the results 

presented in this study typically showed that extreme precipitation is likely to intensify 

significantly per TtC globally to locally in response to higher emissions, including where 

linearity is generally not robust and/or could not be inferred. While we recognize that there are 
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many regions and specific locations not covered in this work that face equally, if not more 

vulnerability to precipitation extremes, the results shown here for the selected locations/regions 

may be extrapolated to other (grid-point) locations/regions. These patterns suggest significant 

impacts within a warmer climate that may be linked to more frequent and intense flooding, for 

example, such as those extreme precipitation events that contributed to the California flooding of 

January 2023, the British Columbia flooding of November-December 2021, the Australian flood 

of March 2021, the United States flooding associated with tropical cyclone Harvey in 2017, as 

well as the Southern Quebec floods of spring 2017 and spring 2019, to name just a few. This 

study highlighted that the most significant linear increase occurred with median Rx1day under 

the 1pctCO2 and RCP 8.5 scenarios, not only globally, but for nations located principally at the 

mid- to high-latitudes. This was further shown at singular grid cells that contain major 

metropolitan areas, where impacts could be particularly significant in response to more 

substantial water accumulation and runoff in situations of intense one-day precipitation events 

(e.g. the Indonesian flash-flood of April 2021 or the Montreal flash-flood of July 1987). In light 

of efforts to maintain global warming below the 1.5 C to 2.0 C levels of the Paris Agreement, 

this study provides some perspective as to what extent extreme precipitation could increase at 

global cumulative emission levels associated with such magnitudes of warming or even less. The 

findings presented here and other works that previously reported similar results could, therefore, 

be of value for localized policy makers where notably growing concerns of more extreme 

precipitation become increasingly favorable in a warmer global to local climate. To that end, 

although local policy makers do not have control over global emissions, these results can provide 

a framework for better adapting to a world that would likely feature more intense and frequent 

extreme precipitation events. However, using cumulative emissions to explain past and future 
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trends offers only a broad scope for examining precipitation extremes. For this reason, this study 

also indirectly stresses that further research could potentially derive TCRE-based estimates of the 

synoptic to mesoscale systems and their environments that often generate the precipitation 

extremities investigated here, or for the forms of natural variability that may affect their 

frequency and/or intensity (e.g. ENSO). A closer inspection of important feedbacks not 

accounted for in this analysis, such as the water vapor feedback, could also be useful. Such 

approaches could offer an additional dimension for further understanding future trends in the 

dynamics of precipitation extremes as cumulative emissions rise.  
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Chapter 4: Using CMIP5 data to model trends in global, regional and local precipitation 

extremes with a GEV distribution 

This Chapter is in preparation for submission for publication 
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Abstract 

Precipitation extremes are rare events that often have significant negative societal, 

environmental and economic impacts. For this reason, such events are of increasing importance 

to society in terms of how they may change in frequency and/or intensity in light of continued 

warmer global and regional temperatures as emissions rise. The Transient Climate Response to 

Cumulative Emissions (TCRE) has been a significant contribution for better understanding the 

response of global to regional temperature to cumulative CO2 emissions, showing linear scaling 

of temperature and other climate indicators with CO2 emissions. At the same time, the 

Generalized Extreme Value (GEV) distribution has previously been widely adopted in the 

analysis of extreme events across a variety of fields, particularly in the assessment of trends for 

climate extremes, including for modeling extreme precipitation. Using Coupled Model 

Intercomparison Project Phase 5 (CMIP5) model data, I apply a GEV distribution to quantify 

trends in historical and projected annual Rx1day and Rx5day at various spatial scales. Results 

indicate that annual maxima shift towards larger values and exhibit higher variability. 

Furthermore, location parameter estimates for Rx1day and Rx5day events scale approximately 

linearly with higher cumulative CO2 emissions at all spatial scales considered, consistent with 

the TCRE framework. Correspondingly, this contributes to largely linear increases in 20-year 

and 100-year return levels with increasing cumulative CO2 emissions. My findings also show 

that the probability of the highest annual maxima quantiles is generally lower due to decreasing 

shape parameter estimates as cumulative emissions rise, although this response is shown to be 

spatially-dependent. These results imply an increase in the frequency and intensity of annual 

maxima over time, which may contribute significantly to a higher frequency of flooding events 

and other hazards globally to locally. 
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Introduction 

Extreme precipitation events frequently induce significant negative impacts to human 

society, including substantial property damages and loss of life. The degree to which these events 

may change in response to warmer global temperatures, by extension of rising greenhouse gas 

concentrations, is of primary interest in the climate change sector (Pfahl et al., 2017). However, 

quantification of these events is often challenging because of their rarity. The lack of meaningful 

representation of such events in coarser model resolutions (e.g. Raupach et al., 2021) is further 

compounded by other inhomogeneity issues in the observational records, such as the incomplete 

reporting of these events, sparse observation networks, inadequate monitoring systems, and 

relatively short historical periods (Taszarek et al., 2021; Taszarek et al., 2019; Tippett et al., 

2016; Stott et al., 2016; Edwards et al., 2018). Other data inhomogeneities are also often related 

to the joining of observations from closely neighboring observation stations to create a longer 

time series (Vincent & Mekis, 2006; Edwards et al., 2018).  

 Although there exist several definitions, precipitation extremes may be broadly defined 

as precipitation quantities per unit time that exceed the climatology of a specified region or 

location (EPA, 2017). According to the Intergovernmental Panel on Climate Change Managing 

the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (IPCC 

SREX), changes in heavy to extreme precipitation events are based on late-20th century 90th 

percentile or greater values, such as 95th-99th percentile events (e.g. Herring et al., 2014). Flash-

flooding commonly occurs in situations of unusually high rainfall rates occurring over short time 

durations, such as over a single day or over sub-daily temporal scales. Most conducive to 

generating such rainfall is (deep) convective events, typically manifested as strong to severe 

thunderstorms, where, in some cases, rainfall may exceed average monthly amounts in just a 
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matter of hours or less. One such case was during the Montreal flooding event of July 14th, 1987, 

where almost precisely 100 millimeters (mm) (approximately 4 inches) of rainfall occurred in 

association with a severe multi-cell thunderstorm family that lasted for about two hours. Another 

situation where little to no convective available potential energy (CAPE) was involved, was a 

low pressure system that yielded the all-time largest 24-hour rainfall (120 mm) for the Montreal 

area, on November 8th-November 9th, 1996 (149.2 mm total between the two days at the 

McTavish station, and 134 mm at YUL). Such flooding may be exacerbated by anomalously 

high water levels, higher than normal soil moisture and previously wetter than normal 

conditions. There may further be situations where flooding materializes out of conditions that 

feature consecutive days spent with precipitation, even if this precipitation occurs in lighter 

amounts.  

Extreme value theory (EVT) is a sector of statistics designed to make inferences about 

the probability of extreme events or outliers. It has been widely adopted in the area of risk 

assessment statistics and applied for a broad range of purposes across many fields of study, 

particularly in climatology and hydrology. A branch of EVT, called the Generalized Extreme 

Value (GEV) distribution, is comprised of a family of continuous probability distributions that 

can be used to model extremes. The individual probability distributions that make up the GEV 

are the Gumbel, Frechet and Weibull distributions, representing Type I, Type II and Type III 

distributions, respectively. Each type is used to describe the overall rate of decay exhibited by 

the upper tail of these distributions (Batista et al., 2019) and is determined by a range of values 

given by shape parameter estimates. Typically, the extremes of a normal distribution lie in the 

tail regions of those distributions. Within these tails exists a separate distribution (i.e. a sub-

distribution that appears right-skewed) that is often of interest to researchers and policy-makers, 
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as it is here that the most extreme values are found. The GEV distribution could be used to 

derive parameter estimates of location, scale and shape and model how these may each be 

changing through time.  

A large body of climate impacts and hydrology literature has previously employed EVT-

related analyses to explore return periods of anomalously significant rainfall or rare flooding 

events by fitting a GEV. For example, several studies have considered fitting a GEV regionally 

to explore precipitation extremes, such as Northeastern North America (Innocenti et al., 2019), 

the Brazilian Amazon (Santos et al., 2015; Assis et al., 2018; Batista et al., 2019), the United 

States (Fix et al., 2016), the Mediterranean (Blanchet et al., 2016), or the United Kingdom 

(Brown, 2018). Other studies have used the GEV to assess trends in a variety of climate indices, 

such as testing the effect of the El Nino Southern Oscillation (ENSO) and North Atlantic 

Oscillation on seasonal precipitation extremes in North America (Whan & Zwiers, 2017), or the 

United Kingdom (Brown, 2018). Return periods may be defined as a given event of some 

magnitude (i.e. return level) being reached or exceeded once every specified interval of time, on 

average. It is this information that can be useful in policy-making and risk management to better 

understand how given events may change in time with prescribed levels of global warming under 

specified cumulative emissions concentrations. As such, return levels are often of interest in 

climate adaptation, policy-making, urban, road and highway drainage planning, as well as 

hydrological structure risk assessment, such as for levees and dams. 

The TCRE is a useful framework as a means for highlighting the linear relationship 

between global mean temperature and emissions (e.g. Tokarska et al., 2019), demonstrating that 

temperature responds approximately proportionally to global cumulative CO2 emissions. It 

specifically represents a constant value that describes the increase in global temperature in 
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response to cumulative CO2 emissions (Matthews et al., 2009; Gillett et al., 2013; Matthews et 

al., 2023) and, as such, has the ability to link impacts directly to carbon emissions. The TCRE 

has further shown more promise for applications at sub-global scales (e.g. Leduc et al., 2016), as 

well as with respect to other climate indicators, such as precipitation (Partanen et al., 2017), 

extreme precipitation (Moore et al., 2023) or even sea ice (Zickfield et al., 2012). Therefore, the 

TCRE can also more broadly be thought of as the physical climate response to cumulative CO2 

emissions (Herrington & Zickfield, 2014), which includes the response of climate indicators 

other than the most used climate index (i.e. global mean temperature) (MacDougall & 

Friedlingstein, 2015).  

As such, this framework can be of value in climate mitigation as a means of 

communicating climate impacts flexibly as cumulative carbon emissions rise. For example, the 

TCRE enables policy makers to better determine expected impacts linked to specified warming 

targets that may be associated with certain weather extremes (Tachiri et al., 2019). It should be 

noted, however, that extreme weather events at global to local scales have very different 

stakeholders. Further, global scale trends tend to be more believable, while sub-global scales, 

where trends are often noisier, are of more interest to stakeholders.  

The TCRE also holds potential for framing precipitation extremes by modelling them 

using EVT. This could, therefore, be a useful tool to evaluate the response of the most extreme 

precipitation events to increasing global cumulative emissions and, at the same time, address the 

gaps in the literature concerning such events. 

 In the current study, using a suite of CMIP5 model data, I endeavor to quantify trends in 

one-day and five-day maxima (previously referred to as Rx1day and Rx5day, respectively) and 
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20-year and 100-year return levels of precipitation extremes with increasing concentrations of 

cumulative greenhouse gas emissions by using a GEV distribution to model extremes. I 

specifically use a GEV analysis to examine observed and projected trends in the most extreme 

Rx1day and Rx5day events at different spatial scales, including globally, regionally and locally, 

as a function of cumulative emissions, and determining whether location parameter and return 

level estimates can be approximated by the TCRE framework at each of these scales. I discuss 

first the type of data used, and the formulation of the GEV to model this data accordingly. I focus 

on analyzing trends in various distribution parameters derived from the GEV and assess return 

level patterns of specified return periods under different cumulative emission scenarios 

established by the IPCC.  

Methodology 

In this section, I describe in detail the methods used for this study. I begin with a 

description of the extreme precipitation data considered. I then discuss the procedure of fitting a 

GEV, and the statistical test used to analyse the data.  

Data and Scenarios 

Daily precipitation data was extracted from nine (9) global climate models (GCMs) as 

part of a CMIP5 ensemble. The GCMs for which annual maximum one-day and five-day 

maximum precipitation data were available are the following:  
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Table 1. Selected 9 CMIP5 models and model descriptions. 

Model name Description 

CanESM2  Canadian Center for Climate Modeling and 

Analysis (2.8 x 2.8) 

IPSL-CM5A-LR  Institut Pierre Simon Laplace, France (3.75 x 

1.8) 

IPSL-CM5A-MR  Institut Pierre Simon Laplace, France (2.5 x 

1.25 

IPSL-CM5B-LR  Institut Pierre Simon Laplace, France (2.75 x 

1.8) 

MPI-MMPI-ESM-LR  Max-Planck-Institute for Meteorology (low-

resolution) 

MOHC-HadGEM2  Met Office Hadley Center, UK (1.88 x 1.25) 

MIROC-ESM  Japan Agency for Marine-Earth Science and 

Technology, Atmosphere and Ocean Research 

Institute (The University of Tokyo), and 

National Institute for Environmental Studies 

(2.8 x 2.8) 

NOAA-GFDL-ESM2G  National Oceanographic and Atmospheric 

Administration Geophysical Fluid Dynamics 

Laboratory, USA (2.5 x 2.0) 

NOAA-GFDL-ESM2M National Oceanographic and Atmospheric 

Administration Geophysical Fluid Dynamics 

Laboratory, USA (2.5 x 2.0) 

 

As discussed in Chapter 3 of this dissertation, I used here three greenhouse gas emissions 

scenarios, which are titled “1pctCO2”, “rcp45”, and “rcp85”, referring to one percent CO2, 

Representative Concentration Pathways 4.5 (RCP 4.5) and Representative Concentration 

Pathways 8.5 (RCP 8.5), respectively. The cumulative emissions data used here are derived from 

changes in oceanic, atmospheric and land pools, as described in Chapter 3. Furthermore, 

cumulative emissions represent fossil fuel emissions only. The 1pctCO2 scenario (140 years) 

denotes a situation where the atmospheric CO2 concentration increases by one percent per year 

until CO2 quadruples relative to the pre-industrial period. The two RCP scenarios (90 years) are 

defined based on greenhouse gas concentrations and represent two different future climates by 

the year 2100. The RCP scenarios span a period covering 2006 to 2095. The historical period 
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spans 145 years following the beginning of the pre-industrial period to approximately present-

day (2005).  

Variable creation and model interpolation 

Extreme precipitation data was converted into units of millimeters per day (mm/day). 

Daily precipitation derived referred to the maximum amount of precipitation achieved for a 

given day for a given grid cell, model and scenario. I isolated the largest value among these daily 

maximum values for each year, which effectively extracts the ‘most extreme’ annual maxima 

globally for each model and scenario. I also obtained five-day maximum values using the 

original daily data available. These newly created variables were known as “Rx1day” and 

“Rx5day” and are used herein to define what constitutes precipitation extremes, which includes 

all types of precipitation. As previously described in Chapter 3, I then converted individual 

model resolutions to a common grid system that carried the coarsest resolution (based on 

CanESM2, consisting of grid cells with sizes of about 2.8 x 2.8 degrees). 

Region and location selection 

I analyze land areas by applying a mask that isolated those grid point centers located only 

over land. This procedure was repeated for ocean grid cells only. Therefore, it was possible to 

consider annual maxima over either land or ocean, or for any specific nation of interest. I limited 

this study to a selection of five nations where precipitation extremes may be particularly 

impactful in light of significant population density, the extent of urbanized areas, sea level rise, 

as well as proximity to large water bodies: United States, Australia, India, Brazil, and South 

Africa. 
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Because impacts of extreme precipitation are likely to be most significant in densely 

populated zones, I then extended the analysis to localized areas to determine trends at those 

spatial scales, and whether these trends can be approximated by the TCRE in terms of location 

parameter estimates and specified return levels derived from the GEV. These locations typically 

occupied spaces that were at the grid cell, or a small grouping of adjacent cells. Small groupings 

of cells could comprise small nations or be comparable to the size of states in the United States. 

The selected five locations are as follows: Hong Kong, Philippines, St. Louis, Florida, and 

Montreal. 

Fitting a GEV 

 For this study, I used a GEV analysis to assess trends in the most extreme Rx1day and 

Rx5day values at different spatial scales. In order to fit a GEV to annual maximum extreme 

precipitation, it was necessary to first create “blocks” containing annual maxima precipitation 

data. Fitting a GEV in this manner is referred to as the “block maxima approach”. Each 

individual block would contain an equal number of non-overlapping years, with each year 

consisting of an annual maximum value. Consistent with Innocenti et al. (2019), I chose a seven-

year timespan for the blocks (hereafter referred to as “sub-period”) for this study. Since the RCP 

scenarios and historical period have a maximum number of years that do not work out evenly 

with the selected seven-year allocation for each block, I applied a truncation procedure by 

removing the last five years for the historical period and last six years for the RCP scenarios to 

ensure that each block carried an even number of years. While this procedure creates a 5-year 

gap between the historical period and the beginning of the RCP periods, the present-day was 

adjusted to the first block of the RCP period (now ending in 2012, as opposed to 2005). This 

allows for the present-day to be more reasonably close to the actual present-day. For each 
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block/sub-period, the cumulative emissions corresponding to the central year was used (e.g. 

emissions at Year 4 in the first block/sub-period, which spans Year 1 to Year 7). 

I then applied a data pooling procedure to gather annual maxima for the sub-periods. I 

first pooled the highest annual Rx1day and Rx5day values for each sub-period. To accomplish 

this, I selected the largest value for each year for all available years. Thus, the grid cell 

containing the highest value was selected for each specific year for all available years, 

effectively creating vectors consisting of seven annual maxima values for each block/sub-period. 

Figures 1 & 2 show this procedure: 

Figure 1. Representation of the block maxima approach for a given model for selecting the largest 

maxima for Rx1day and Rx5day. Each layer represents an individual year. Black “X” marks show 

the grid cell containing the largest values across all grid cells for each layer/year. 
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Figure 2. As with Figure 1, but with a representation of the procedure applied for all 9 models.  

 This was applied for the historical period and each cumulative emissions scenario. 

However, GEV parameter estimates tend to exhibit higher degrees of uncertainty under smaller 

sample sizes (e.g. Koutsoyiannis, 2004a). Therefore, in order to maximize sampling size for each 

sub-period, I selected the highest values across each model for each year. For instance, for the 

first year, under the RCP 4.5 scenario, the highest values for each of the nine GCMs would be 

selected for that year. This would then be applied for the next six years in that block/sub-period, 

creating a sample size of 63 observations (i.e. 63 annual maxima) per sub-period. For each sub-

period, Quantile-Quantile diagnostic plots were then used to assess how well fitted the data were 

for validating the use of the GEV. The Maximum Likelihood Method was then used when fitting 

a GEV. This method is used to estimate the parameters of probability density functions from a 

GEV distribution and is considered as one of the best methods in doing so (Raynal-Villasenor, 

2012), notably for shorter lengths of data (Hossain et al., 2021). 
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The GEV distribution is based on the three individual extreme value continuous 

probability distributions mentioned previously. As such, the three principal probability 

distributions are termed Gumbel (light-tailed), Frechet (heavy-tailed) and Weibull (bounded-

tail), representing Type 1, Type II and Type III, respectively. The Weibull distribution is a 

variety of light-tailed distribution (Girard). In light of its heavier-tailed distribution, the Frechet 

distribution is representative of higher probabilities of given extreme events, while lower 

probabilities are found with faster rates of decay typical of the Gumbel and Weibull 

distributions (Ferreira, 2011; Carney, 2016). These probabilities may be illustrated as 

shown in Figure 3: 

 

 

Figure 3. Probability density functions corresponding to Frechet (red), Weibull (blue) and 

Gumbel (green) distributions. Adapted from “The application of extreme value theory to 

pharmacometrics”, by P. L. Bonate (2021). Journal of Pharmacokinetics and 

Pharmacodynamics, 48(1), 83-97. 
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Each of these families represents a different asymptotic distribution of extreme values 

(Coles, 2001). The GEV distribution combines these families of probability distributions in the 

following form: 

                                        (1)                     

Where, “μ”, “σ” and “ξ” represents the location, scale and shape parameters, respectively. Both μ 

and σ must be greater than negative infinity and less than infinity, while sigma must be greater 

than 0 and less than infinity. Using this equation, it was possible to compute estimates of 

location, scale and shape for each sub-period. This is done by fitting a GEV to each block/sub-

period to solve for these parameters. Since location estimates are of particular interest, I focus on 

plotting these as a function of cumulative emissions, as well as with the calculated standard 

errors derived from these estimates. I further use probability density functions of GEV 

distributions fitted with location, scale and shape parameter estimates centered at around 0 

teratons of carbon (TtC), and then using those parameter estimates at every 0.5 TtC thereafter 

(Figures 5, 8 & 11). Similar to Innocenti et al. (2019), location estimates derived for the 

historical period were merged with those estimates of the two RCP scenarios (referred to herein 

as “Historical + RCP 4.5” and “Historical + RCP 8.5”), creating a time series consisting of 32 

sub-periods, while for the 1pctCO2 scenario, 20 sub-periods were created. 

Using the same procedure, I further show trends in 20-year and 100-year return levels as 

a function of cumulative emissions, including the historical period and RCP scenarios, as well as 

for the 1pctCO2 scenario. 
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Statistical test 

All statistical tests were performed using R, a programming software utilized for 

statistical computing. For the purposes of this study, I used trend analyses to evaluate the 

statistical significance of trends in location, scale and shape parameter estimates. Trends were 

assessed using the Mann-Kendall statistical test. The Mann-Kendall test is specifically designed 

to assess and detect trends in time series data and has been widely used in trend detection for 

hydrometeorological time series datasets (e.g. Wang et al., 2020). This statistical test was, 

therefore, useful for analyzing patterns for the three distribution parameters comprising the GEV 

distribution. However, due to serial correlation (autocorrelation), a pre-whitened version of the 

Mann-Kendall test was often used to improve trend accuracy. Serial correlation refers to 

similarities that occur between values of the same variables over successive intervals of time, 

implying that the data is correlated with itself (Koutsoyiannis, 2004a). Pre-whitening is, 

therefore, applied to reduce frequent trend detections (Bayazit & Onoz, 2007). As such, for each 

of the distribution parameters, I used an autocorrelation detection function as a diagnostic tool. 

Specifically, I used the Autocorrelation Function (ACF), which is a function designed to 

calculate estimates of autocorrelation that may exist in a time series. The threshold used in this 

study to determine whether sufficient autocorrelation exists was 0.40. Therefore, if the data 

showed an autocorrelation value of 0.40 or greater, a pre-whitened version of the Mann-Kendall 

test would be applied to correct for autocorrelation. The Mann-Kendall test additionally provides 

an estimate of the Sen’s slope, or a pre-whitened Sen’s slope in situations of sufficiently large 

autocorrelation. The Sen’s slope is designed to display and focus on the median slope of all 

slopes among data points in a time series. It is also recommended by the World Meteorological 

Organization that Sen’s slope be used as a part of the trend detection of hydrometeorological 
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data, partly because it is not affected by the number of outliers and any errors in the data, as 

compared with linear regression (Aditya et al., 2021). Sen’s slope is represented mathematically 

as follows: 

Qi = (xj – xi) / j – i, i = 1, 2, 3…n   (2) 

 

Where n refers to the number of paired values, “xj” and “xi” represent data values at time “j” and 

“i” when j > i (Aditya et al., 2021).  

The statistical significance of these trends was then estimated with calculated p-values. 

Results are summarized in Tables 2-4 for parameters of both Rx1day and Rx5day for each of the 

emissions scenarios.  

Results 

Global trends 

Globally, the results generally show highly statistically significant trends (p < 0.01) in 

location, scale and shape estimates for both Rx1day and Rx5day as cumulative emissions 

increase (Table 2, Figure 4). For location parameter estimates, the responses scaled 

approximately linearly with cumulative emissions (Figure 4), notably for Rx1day (p < 0.01). The 

global PDFs of GEV distributions for both Rx1day and Rx5day also correspondingly show a 

shift towards higher extreme precipitation values in response to significant increases in both 

location and scale values with higher cumulative CO2 emissions (Figure 5). This pattern is 

further representative of the rightward shift and stretched and reduced peaks in the GEV 

distributions at higher emissions (Figure 5). The shape parameter also largely decreased 

significantly (p < 0.01) at higher emissions, corresponding to a median rate of change of -0.0057 

(Table 2). This suggests a shift towards a lighter-tailed distribution at higher emissions for 
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Rx1day and Rx5day as shape values decrease. Consistent with the robust increases in location 

and scale parameter estimates shown for both global Rx1day and Rx5day, the results further 

display a significant increase in 20-year and 100-year return levels with larger cumulative 

emissions (Figure 6). This is particularly notable for global Rx1day, where both 20-year and 

100-year return levels also trend approximately linearly. Similar trends are also shown for 

Rx5day precipitation, especially for 20-year return levels.   

Land and ocean trends 

I found significant increasing (linear) trends across scenarios for land and ocean annual 

maxima (Table 2, Figures 4 & 5). With the exception of the Historical + RCP 8.5 case, my 

results largely show robustly increasing linear trends in location parameter estimates for both 

Rx1day and Rx5day as cumulative emissions rise (p <= 0.02). Among these increasing trends, I 

found that the median slope was noteworthy for the 1pctCO2 scenario, where a rate of change of 

7.19 mm/day was shown. Conversely, for the Historical + RCP 8.5 ocean trends, I found a 

significant decreasing trend (p = 0.07). The results further showed significant increasing linear 

trends (p <= 0.01) in scale parameter estimates for annual maxima for land and ocean (Table 2). 

The significant increasing trends in both location and scale parameter estimates are reflective of 

the rightward and more stretched tendencies in the GEV distributions towards larger extreme 

precipitation values, from the beginning of the historical period towards the end of the RCP and 

1pctCO2 scenarios (Figure 5). Correspondingly, much like at the global scale, higher 

probabilities are shown for the largest pre-industrial extreme precipitation events as CO2 

emissions rise; for example, a 400 mm/day event at 0 TtC is shown to increase in probability at 

higher emissions for both land and ocean (Figure 5). The shape parameter estimate trends for 

land and ocean generally exhibit significant linear decreases (p <= 0.10) for Rx1day and Rx5day, 
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with a median rate of decrease ranging typically from -0.01 to -0.03 (Table 2). Also similar to 

global trends, shape parameter estimates for land/ocean Rx1day and Rx5day mostly shift from a 

heavier-tailed to a lighter-tailed distribution as shape parameter values reach negative values – 

Table 2. This decreasing trend is especially notable for Rx1day Historical + RCP 4.5 and 

Historical + RCP 8.5 cases, and for the Rx5day under 1pctCO2 (p <= 0.02). Correspondingly, I 

found a robust increase in the intensity of return levels with higher cumulative emissions. Figure 

6 displays the generally increasing linear trends in both 20-year and 100-year return levels at 

larger emission levels. For example, for land Rx1day, owing to the robust increases in location 

and scale parameter estimates, an approximately 300 mm/day 100-year return level at the 

beginning of the historical period increases to about 450 mm/day at two TtC of cumulative 

emissions under the RCP 8.5 scenario.    

Table 2. Trends for global, land and ocean Rx1day and Rx5day precipitation for the location, 

scale and shape parameters under Historical + RCP 4.5 and Historical + RCP 8.5, and for 

1pctCO2. Results are given as the Sen’s slope for trends in parameters, as well as the distribution 

tendency based on the shape parameters over the time series. *, ** and *** indicate trends that 

are statistically significant at or within the 10%, 5% and 1% significance levels, respectively. 

Global 

Rx1day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.8560  

Lighter-tail 

<0.01 

Scale Increasing*** 0.6924 <0.01 

Shape Decreasing*** -0.0057 <0.01 

Rx1day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location No trend -0.1066  

Lighter-tail 

0.61 

Scale Increasing** 0.3163 0.05 

Shape Decreasing*** -0.0030 <0.01 

Rx1day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 5.0241  

Lighter-tail 

<0.01 

Scale Increasing*** 1.7933 <0.01 

Shape Decreasing*** -0.020 <0.01 

Rx5day trends (Historical + RCP 4.5) 
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 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.7532  

Lighter-tail 

<0.01 

Scale Increasing*** 0.9670 <0.01 

Shape No trend -0.0015 0.30 

Rx5day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing** 0.6033  

Lighter-tail 

0.03 

Scale Increasing*** 1.4364 <0.01 

Shape Decreasing* -0.0045 0.09 

Rx5day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.9591  

Lighter-tail 

<0.01 

Scale Increasing*** 2.0900 <0.01 

Shape Decreasing*** -0.0091 <0.01 

Land 

Rx1day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 1.3131  

Lighter-tail 

<0.01 

Scale Increasing*** 0.8078 <0.01 

Shape Decreasing*** -0.0100 <0.01 

Rx1day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location Decreasing* -0.1702  

Lighter-tail 

0.07 

Scale No trend 0.0963 0.29 

Shape Decreasing*** -0.0113 <0.01 

Rx1day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 4.2292  

No trend 

<0.01 

Scale Increasing*** 1.5771 <0.01 

Shape No trend -0.0036 0.60 

Rx5day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.4022  

No trend 

<0.01 

Scale Increasing*** 0.9050 <0.01 

Shape No trend -0.0032 0.12 

Rx5day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing** 0.5504  

Lighter-tail 

0.02 

Scale Increasing*** 0.1251 <0.01 

Shape Decreasing* -0.0043 0.07 

Rx5day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 7.1915  

Lighter-tail 

<0.01 

Scale Increasing*** 2.9754 <0.01 

Shape Decreasing* -0.0067 0.10 
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Ocean 

Rx1day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.8299  

Lighter-tail 

<0.01 

Scale Increasing*** 0.7401 <0.01 

Shape Decreasing*** -0.0050 <0.01 

Rx1day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location No trend -0.0076  

Lighter-tail 

0.99 

Scale Increasing*** 0.3799 0.01 

Shape Decreasing** -0.0042 0.02 

Rx1day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 2.9137  

Lighter-tail 

<0.01 

Scale Increasing*** 1.8671 <0.01 

Shape Decreasing*** -0.0263 <0.01 

Rx5day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.4281  

No trend 

<0.01 

Scale Increasing*** 0.8450 <0.01 

Shape No trend -0.0004 0.73 

Rx5day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing* 0.5554  

No trend 

0.06 

Scale Increasing*** 1.4716 <0.01 

Shape No trend -0.0038 0.11 

Rx5day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 4.0396  

Lighter-tail 

<0.01 

Scale Increasing*** 2.7663 <0.01 

Shape Decreasing*** -0.0097 <0.01 
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Figure 4. Global, land and water trends for location parameter estimates for (a) annual Rx1day 

and (b) Rx5day maximum precipitation as a function of cumulative emissions. The black curve 

represents the historical period, while the green, blue and red curves represent the 1pctCO2, RCP 

4.5 and RCP 8.5 scenarios, respectively. Transparent curves highlight the range of uncertainty 

that is reported based on the standard error. 
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Figure 5. Global, land and ocean probability density functions of GEV distributions displaying 

trends in extreme precipitation indicators. Curves represent estimates at 0 TtC, and then 

estimates centered on increments of 0.5 TtC thereafter. Estimates are shown for global, land and 

ocean for (a) Rx1day and (b) Rx5day for the historical period (black), RCP 4.5 (blue), RCP 8.5 

(red), and 1pctCO2 (green). 
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Figure 6. 20-year and 100-year return level trends for global, land and ocean for (a) Rx1day and 

(b) Rx5day.  

 

National trends  

In this section, I analyze trends in Rx1day and Rx5day for the five selected nations. 

Results are summarized in Table 3 and Figures 7-9.  

For all nations studied, my results largely show statistically significant increasing trends 

in Rx1day and Rx5day for both location and scale estimates as cumulative emissions increase (p 

<= 0.10). Much like global, water and land trends, national location parameter estimates respond 

mostly linearly (Figure 6). I also found significant rates of change for some countries. For 

example, as shown in Table 3, the United States yields a Sen’s slope that is about 0.08 to 1.28 

mm/day (p < 0.01) and 0.06 to 0.48 mm/day (p <=0.05) for location and scale, respectively. 
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Table 3 shows particularly significant location estimate increases for annual maxima for 

Australia and India, with a median rate of increase of 0.17 to 1.39 mm/day and 0.49 to 1.53 

mm/day (p < 0.01), respectively. Figure 8 correspondingly reflects this tendency, much like what 

was previously shown for global, land and ocean trends, with all nations showing significant 

shifts towards higher location parameter estimates in especially 1pctCO2 and RCP 8.5 for both 

extreme precipitation indicators, as well as with flattening peaks and more stretched distributions 

at higher emissions in response to increased scale parameter estimates. Nationally, higher 

probabilities for the most extreme precipitation events at 0 TtC are generally shown to increase 

at higher cumulative CO2 emissions (Figure 8). 

Brazil notably exhibited statistically significant trends for all parameters for Rx1day and 

Rx5day (p <= 0.10). Results also show that the Sen’s slope estimate for the scale parameter is 

particularly high for India (1.56 mm/day, p < 0.01, Table 2), under the 1pctCO2 scenario for 

Rx1day, while for Brazil, the location estimate increases by 1.71 mm/day for 1pctCO2 (p < 0.01, 

Table 3).  

 By contrast, shape estimates more frequently showed no significant trend with increasing 

cumulative emissions (Table 3), as compared to the more significant declining trend captured 

globally, and for land/ocean. However, some notable significant trends should be acknowledged. 

Brazil, for instance, consistently showed significant but opposing trends for Rx1day and Rx5day; 

Rx1day decreased significantly (p <= 0.10), while Rx5day significantly increased (p <= 0.06) 

towards a heavier-tailed distribution. This included a Sen’s slope of -0.0043 to -0.01 for Rx1day 

and 0.022 to 0.0056 for Rx5day. In other nations, I found significant decreasing trends, 

becoming lighter-tailed, though this was more prevalent for Rx1day (p <= 0.05, Table 3).  
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Much like for global and land/ocean trends, the consistent significant linear increases in 

scale and location estimates across nations are typically showcased in the upward linear trend 

featured by the national 20-year and 100-year return levels (Figure 9). In Brazil, for example, 

Rx1day 20-year return levels at the beginning of the historical period increase by nearly 100 

mm/day (from approximately 200 mm/day to nearly 300 mm/day) at about three TtC of 

cumulative emissions in the 1pctCO2 case. The results also show a nearly 150 mm/day increase 

in 20-year return level over the same time period and scenario for India Rx1day. 

Table 3. National trends for Rx1day and Rx5day precipitation for the location, scale and shape 

parameters under Historical + RCP 4.5 and Historical + RCP 8.5, and for 1pctCO2. Results are 

given as the Sen’s slope for trends in parameters, as well as the distribution tendency based on 

the shape parameters over the time series. *, ** and *** indicate trends that are statistically 

significant at or within the 10%, 5% and 1% significance levels, respectively. 

United States 

Rx1day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.2259  

No trend 

<0.01 

Scale Increasing** 0.0588 0.04 

Shape No trend -0.0021 0.33 

Rx1day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location No trend 0.0781  

Lighter-tail 

0.11 

Scale Increasing** 0.0697 0.02 

Shape Decreasing** -0.0038 0.05 

Rx1day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.6473  

Lighter-tail 

<0.01 

Scale Increasing*** 0.3798 <0.01 

Shape Decreasing*** -0.0161 <0.01 

Rx5day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.3344  

No trend 

<0.01 

Scale No trend 0.1095 0.15 

Shape No trend 0.0005 0.80 

Rx5day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.3806  

No trend 

<0.01 

Scale Increasing** 0.1641 0.05 
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Shape No trend 0.0032 0.12 

Rx5day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 1.2828  

No trend 

<0.01 

Scale Increasing*** 0.4836 0.01 

Shape No trend 0.0008 0.90 

Australia 

Rx1day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.6755  

Lighter-tail 

<0.01 

Scale Increasing*** 0.4171 <0.01 

Shape Decreasing* -0.0040 0.08 

Rx1day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.4387  

Lighter-tail 

<0.01 

Scale Increasing*** 0.3879 <0.01 

Shape Decreasing*** -0.0053 0.01 

Rx1day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 1.3903  

No trend 

<0.01 

Scale Increasing*** 0.5118 <0.01 

Shape No trend 0.0013 0.63 

Rx5day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing** 0.1680  

No trend 

0.03 

Scale No trend 0.1027 0.11 

Shape No trend 0.0025 0.20 

Rx5day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.2735  

No trend 

0.01 

Scale Increasing* 0.1290 0.08 

Shape No trend -0.1429 0.12 

Rx5day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location Increasing** 0.6047  

No trend 

0.03 

Scale Increasing*** 0.5863 <0.01 

Shape No trend -0.0019 0.63 

India 

Rx1day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.7067  

No trend 

<0.01 

Scale Increasing*** 0.2075 <0.01 

Shape No trend -0.0024 0.17 

Rx1day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 
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Location No trend 0.1447  

Lighter-tail 

0.41 

Scale Increasing** 0.1742 0.05 

Shape Decreasing** -0.0036 0.03 

Rx1day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 1.5339  

Heavier-tail 

<0.01 

Scale Increasing*** 0.6501 <0.01 

Shape Increasing* 0.0052 0.10 

Rx5day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.4908  

No trend 

<0.01 

Scale Increasing** 0.2753 0.05 

Shape No trend 0.0025 0.36 

Rx5day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.5600  

No trend 

<0.01 

Scale Increasing*** 0.5129 0.01 

Shape No trend 0.0029 0.20 

Rx5day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location No trend 0.2680  

No trend 

0.33 

Scale Increasing*** 1.5615 <0.01 

Shape No trend 0.0017 0.74 

Brazil 

Rx1day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.5656  

Lighter-tail 

<0.01 

Scale Increasing*** 0.2082 <0.01 

Shape Decreasing** -0.0043 0.03 

Rx1day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location No trend 0.0668  

Lighter-tail 

0.30 

Scale Increasing*** 0.2362 <0.01 

Shape Decreasing*** -0.0091 <0.01 

Rx1day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 1.7119  

Lighter-tail 

<0.01 

Scale Increasing*** 0.6501 <0.01 

Shape Decreasing* -0.0100 0.10 

Rx5day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing** 0.1899  

Heavier-tail 

0.05 

Scale Increasing* 0.0927 0.10 

Shape Increasing* 0.0022 0.06 

Rx5day trends (Historical + RCP 8.5) 
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 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.4122  

Heavier-tail 

<0.01 

Scale Increasing*** 0.2175 0.01 

Shape Increasing*** 0.0056 <0.01 

Rx5day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 1.1776  

Heavier-tail 

<0.01 

Scale Increasing*** 1.1472 <0.01 

Shape Increasing** 0.0050 0.04 

South Africa 

Rx1day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.2980  

Lighter-tail 

<0.01 

Scale Increasing*** 0.1233 <0.01 

Shape Decreasing** -0.0036 0.04 

Rx1day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.2159  

No trend 

<0.01 

Scale Increasing*** 0.2053 <0.01 

Shape No trend 0.0000 0.90 

Rx1day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.6023  

No trend 

<0.01 

Scale Increasing*** 0.6501 <0.01 

Shape No trend -0.0106 0.14 

Rx5day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.3722  

No trend 

<0.01 

Scale Increasing** 0.1280 0.03 

Shape No trend -0.0011 0.74 

Rx5day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.3872  

No trend 

<0.01 

Scale Increasing*** 0.1464 0.03 

Shape No trend 0.0013 0.56 

Rx5day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.8770  

No trend 

<0.01 

Scale Increasing*** 0.3316 <0.01 

Shape No trend 0.0006 0.90 
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Figure 7. National trends for location parameter estimates as a function of cumulative emissions 

for (a) Rx1day and (b) Rx5day. The black curve represents the historical period, while the green, 

blue and red curves represent the 1pctCO2, RCP 4.5 and RCP 8.5 scenarios, respectively. 

Transparent curves highlight the range of uncertainty that is reported based on the standard error. 
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Figure 8. National probability density functions of GEV distributions displaying trends in 

extreme precipitation indicators. Curves represent estimates at 0 TtC, and then estimates centered 

on increments of 0.5 TtC thereafter. Estimates are shown for global, land and ocean for (a) 

Rx1day and (b) Rx5day for the historical period (black), RCP 4.5 (blue), RCP 8.5 (red), and 

1pctCO2 (green). 
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Figure 9. National 20-year and 100-year return level trends for (a) Rx1day and (b) Rx5day. 

 

Local trends 

 In this section, I discuss results for the five locations used for this study. Results are 

summarized in Table 4, as well as in Figures 10-12. 

Much like national trends, my findings show that location parameter estimates scale 

linearly with cumulative emissions across the five areas (Figure 10), with trends that are largely 

significant (p <= 0.07, Table 4). Also like globally to nationally, location parameter estimates for 

the selected locales trend toward higher values. As shown in Table 4, across the five areas for 

Rx1day and Rx5day, Sen’s slope ranges from 0.10 to 0.77 mm/day (p <= 0.03). Scale parameter 
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trends mostly showed statistically significant increases (p <= 0.07) across all areas for both 

extreme precipitation indicators. I found a median rate of increase ranging from 0.08 to 0.84 

mm/day, with the greatest increasing rate (0.84 mm/day) shown for Philippines Rx1day, under 

1pctCO2 (p < 0.01).  

Following closely with national patterns, my results generally showed no significant 

trends for shape estimates at the local scale as cumulative emissions increased (Table 4). 

However, some notable trends exist. For Hong Kong, for instance, I found a significant 

decreasing trend under Historical + RCP 4.5 for Rx1day (p = 0.02) and 1pctCO2 Rx5day (p = 

0.03). For the Philippines, results showed highly significant decreases (p < 0.01) for Rx1day 

shape parameter estimates for all scenarios. Indeed, among the five areas, the results highlight 

the most significant decrease in shape parameter estimates with increasing cumulative emissions 

for Rx1day in the Philippines (Table 4). Conversely, the results showed a significant increasing 

trend (p = 0.04) for Rx5day under the 1pctCO2 scenario, as well as for Hong Kong (p = 0.02), 

suggesting a shift towards a heavier-tailed distribution (Table 4). Finally, for Montreal, 

significant increases were similarly found for Historical + RCP 4.5 and Historical + RCP 8.5 (p 

= 0.07), and a significant decrease in Rx5day under the 1pctCO2 scenario (p = 0.04). Across 

these locations, the significant trends showed a median rate of change of -0.01 to 0.01, with most 

transitioning from heavier-tailed to lighter-tailed behavior (Table 4). While I found no significant 

trends for Florida, there was a significant decrease (p < 0.02) for Rx1day under historical + RCP 

4.5. Similar to the national, global and land/ocean scale, consistently significant increasing 

location and scale estimates translate in rightward shifts and stretched, flatter peaks in the GEV 

distribution as cumulative CO2 emissions increase (Figure 11). While the probabilities of the 

highest values at 0 TtC also increase at higher emissions, as shown at other spatial scales, the 
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increase in probabilities is shown to be more subtle across locales as the tails of the distributions 

approach zero faster, similar to the overall patterns at the national scale (Figures 8 & 11). 

Conversely, Hong Kong showed a more gradual decline in its tails at higher CO2 emissions 

(Figure 11a). 

My results also show significant increases in 20-year and 100-year return levels, which 

like global, land, water and national trends, scale approximately linearly with cumulative 

emissions (Figure 12), notably in the case of Rx1day. This linearity is most distinct for St. Louis, 

Florida and Montreal for Rx1day, as well as for Philippines Rx5day. These increasing trends are 

consistent with the increases in location and scale estimates shown, which are related to 

progressively larger return levels in response to rising cumulative emissions. 

Table 4. Local trends for Rx1day and Rx5day precipitation for the location, scale and shape 

parameters under Historical + RCP 4.5 and Historical + RCP 8.5, and for 1pctCO2. Results are 

given as the Sen’s slope for trends in parameters, as well as the distribution tendency based on 

the shape parameters over the time series. *, ** and *** indicate trends that are statistically 

significant at or within the 10%, 5% and 1% significance levels, respectively. 

Hong Kong 

Rx1day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.1319  

No trend 

0.01 

Scale Increasing** 0.0749 0.03 

Shape No trend -0.0009 0.33 

Rx1day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.0953  

No trend 

0.01 

Scale Increasing*** 0.1094 0.01 

Shape No trend 0.0000 0.98 

Rx1day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location No trend 0.2005  

No trend 

0.16 

Scale Increasing** 0.2011 0.02 

Shape No trend 0.0042 0.52 

Rx5day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location No trend 0.0710  0.18 
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Scale Increasing*** 0.1710 Heavier-tailed 0.01 

Shape Increasing** 0.0040 0.02 

Rx5day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing** 0.1550  

No trend 

0.02 

Scale Increasing*** 0.1519 0.01 

Shape No trend 0.0000 0.98 

Rx5day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location No trend 0.1465  

Heavier-tailed 

0.41 

Scale Increasing** 0.4083 0.02 

Shape Increasing** 0.0066 0.03 

Philippines 

Rx1day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.5115  

Lighter-tail 

<0.01 

Scale Increasing*** 0.2938 <0.01 

Shape Decreasing*** -0.0127 <0.01 

Rx1day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.3210  

Lighter-tail 

<0.01 

Scale Increasing*** 0.2417 <0.01 

Shape Decreasing*** -0.0134 <0.01 

Rx1day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.2098  

Lighter-tail 

<0.01 

Scale Increasing*** 0.8425 <0.01 

Shape Decreasing*** -0.0180 <0.01 

Rx5day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location No trend 0.0608  

No trend 

0.37 

Scale Increasing** 0.0926 0.03 

Shape No trend -0.0006 0.49 

Rx5day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location No trend -0.0050  

No trend 

0.95 

Scale Increasing*** 0.1097 0.01 

Shape No trend 0.0014 0.25 

Rx5day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location No trend 0.0696  

Heavier-tail 

0.67 

Scale Increasing** 0.3835 0.04 

Shape Increasing** 0.0067 0.04 

St. Louis 

Rx1day trends (Historical + RCP 4.5) 
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 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.2013  

No trend 

<0.01 

Scale Increasing*** 0.0600 <0.01 

Shape No trend -0.0003 0.83 

Rx1day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.2401  

No trend 

<0.01 

Scale Increasing*** 0.0701 0.01 

Shape No trend -0.0007 0.74 

Rx1day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.3321  

No trend 

<0.01 

Scale Increasing*** 0.2202 <0.01 

Shape No trend -0.0029 0.40 

Rx5day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.3378  

No trend 

<0.01 

Scale Increasing*** 0.1850 <0.01 

Shape No trend -0.0025 0.13 

Rx5day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.2687  

No trend 

0.01 

Scale Increasing*** 0.1786 <0.01 

Shape No trend 0.0022 0.38 

Rx5day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.7695  

No trend 

<0.01 

Scale Increasing*** 0.5139 <0.01 

Shape No trend 0.0028 0.43 

Florida 

Rx1day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.1666  

Lighter-tail 

<0.01 

Scale Increasing*** 0.1200 <0.01 

Shape Decreasing** -0.0040 0.02 

Rx1day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.1518  

No trend 

<0.01 

Scale Increasing*** 0.1156 <0.01 

Shape No trend -0.0019 0.31 

Rx1day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.3321  

No trend 

<0.01 

Scale Increasing*** 0.2202 <0.01 

Shape No trend -0.0029 0.40 
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Rx5day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.1667  

No trend 

<0.01 

Scale Increasing* 0.1182 0.06 

Shape No trend -0.0013 0.52 

Rx5day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.1732  

No trend 

0.01 

Scale Increasing* 0.1323 0.07 

Shape No trend 0.0023 0.31 

Rx5day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location Increasing** 0.3720  

No trend 

0.03 

Scale No trend 0.2861 0.14 

Shape No trend 0.0038 0.34 

Montreal 

Rx1day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.1032  

Heavier-tail 

<0.01 

Scale Increasing** 0.0250 0.02 

Shape Increasing* 0.0038 0.07 

Rx1day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.0643  

Heavier-tail 

0.01 

Scale Increasing*** 0.0392 0.01 

Shape Increasing* 0.0045 0.07 

Rx1day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.1976  

No trend 

<0.01 

Scale Increasing*** 0.0979 <0.01 

Shape No trend -0.0022 0.58 

Rx5day trends (Historical + RCP 4.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.1569  

No trend 

<0.01 

Scale Increasing** 0.0673 0.02 

Shape No trend -0.0012 0.46 

Rx5day trends (Historical + RCP 8.5) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.1376  

No trend 

<0.01 

Scale Increasing*** 0.1103 <0.01 

Shape No trend -0.0005 0.88 

Rx5day trends (1pctCO2) 

 Trend Sen’s slope Distribution p-value 

Location Increasing*** 0.5477  

Lighter-tail 

<0.01 

Scale Increasing*** 0.1637 <0.01 
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Shape Decreasing** -0.0100 0.04 

 

Figure 10. Local trends for location parameter estimates for (a) Rx1day and (b) Rx5day as a 

function of cumulative emissions. The black curve represents the historical period, while the 

green, blue and red curves represent the 1pctCO2, RCP 4.5 and RCP 8.5 scenarios, respectively. 

Transparent curves highlight the range of uncertainty that is reported based on the standard error. 
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Figure 11. Local probability density functions of GEV distributions displaying trends in extreme 

precipitation indicators. Curves represent estimates at 0 TtC, and then estimates centered on 

increments of 0.5 TtC thereafter. Estimates are shown for global, land and ocean for (a) Rx1day 

and (b) Rx5day for the historical period (black), RCP 4.5 (blue), RCP 8.5 (red), and 1pctCO2 

(green). 
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Figure 12. Local 20-year and 100-year return level trends for (a) Rx1day and for (b) Rx5day. 

 

Discussion 

My results show that a GEV analysis can be a useful statistical tool to quantify trends of 

global, regional and local annual precipitation maxima as a function of cumulative CO2 

emissions. Notably, I found that at all spatial scales, the location and scale parameter estimates 

increase most consistently and substantially for Rx1day and Rx5day as cumulative emissions 

increase among all scenarios, exhibiting generally the most statistically significant upward linear 

trends (Tables 2-4). Therefore, my findings indicate that location parameter estimates, at all 

spatial scales, can be approximated under the TCRE (Figures 4, 7 and 10), as well as with respect 

to the 20-year and 100-year return levels (Figures 6, 9 and 12). Furthermore, the robustness of 
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these increasing linear trends typically does not vary considerably globally to locally and would 

suggest that the location of the mean of annual maxima distributions increase significantly as 

cumulative emissions rise at all spatial scales. Indeed, the robust increases in the location and 

scale parameters are reflected by the progressively larger return levels characteristic of specified 

return periods (20-year and 100-year). For instance, a 20-year Rx1day return level of about 250 

mm/day for land-only during the historical period would become an approximately 350 mm/day 

event at two TtC of cumulative emissions, at the end of the RCP 8.5 scenario. I also found a 

similar increase in 100-year return levels under the same scenario for land Rx1day.  

Intuitively, these patterns would make sense, as significantly increasing trends in the 

location and scale parameter estimates indicate substantial rightward shifts in the means of 

annual maxima as cumulative emissions rise (e.g. Figures 5, 8 and 11), increasing return level 

intensity and annual maxima variability. Additionally, this tendency would suggest that return 

periods decrease at higher cumulative emissions, which would increase the frequency of 

specified extreme precipitation levels. For example, a 20-year return level historically would 

more likely be reached or exceeded much sooner at higher emissions, while newer 20-year return 

levels would reach higher precipitation thresholds as emissions increase. This pattern is shown 

for all spatial scales considered in this study and is consistent with those results presented in 

other works; Kirchmeier-Young & Zhang (2020), for example, showed that North American 

one-day and five-day annual maximum precipitation extremes intensify sharply under the 

influence of anthropogenic warming. These results are consistent with the strong intensification 

trends shown for Rx1day and Rx5day for the United States in this study, as well as more locally 

in the United States, in Florida and St. Louis. Furthermore, Wang et al. (2020) found significant 

five-day maxima increases of 4-8% for China with an additional 0.5 C of warming. Here, I also 
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found a similar trend for Hong Kong under Historical + RCP 4.5 and Historical + RCP 8.5, 

where location estimates increase significantly at higher emissions, consistent with Wang et al. 

(2020).  

My findings also largely reveal significant decreases in the shape parameter estimates at 

the global scale, and when regionally constraining the analysis to land or ocean only. This 

implies distributions having a tendency to become less heavy-tailed at higher cumulative 

emissions and, thus, approaching zero probability faster for the most extreme precipitation 

events. Such a trend would suggest that the variance of the most extreme maxima decreases with 

increasing emissions, and the probability of the most extreme events, including return levels, 

decreases over time. However, it should be noted that return levels increase significantly in 

magnitude at higher emissions, even if the probability of occurrence for the most intense return 

levels decrease, and rightward shifts in the GEV distribution with higher emissions suggest more 

extreme values altogether despite lower probabilities linked to those most intense events.  

Shape parameter estimates are also shown to be spatially-dependent and could be more 

sensitive to the type of annual maxima in question. For example, when focusing the analysis to 

the national and, more especially, the local scale, significant trends were largely absent in shape 

estimates in this study, and this was largely the case for Rx5day. One notable exception was 

Brazil among the selected nations. For that nation, statistically significant trends were 

consistently observed for annual maxima, but the actual trend in estimates varied with the 

extreme precipitation indicator. For instance, Brazilian Rx1day showed a decreasing trend across 

all scenarios (trending towards a lighter-tailed distribution), and for Rx5day, an increasing trend 

was conversely shown (i.e. becoming more a heavier-tailed distribution). Therefore, while 

extreme precipitation largely increases in frequency/intensity, some regional differences occur in 
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shape patterns, and also varying with the extreme precipitation index. Decreasing trends in shape 

estimates have previously been reported in the literature at higher emissions concentrations that 

were linked to more drying in the Caribbean and tropical Americas in the RCP 4.5 and RCP 8.5 

scenarios in CMIP5 simulations (e.g. Costa et al., 2023). There were similar increases shown for 

consecutive dry days in Brazil as emissions rise (Avila-Diaz et al., 2020), consistent with the 

significant decreasing shape parameter trends shown for Brazil Rx1day across scenarios in this 

work. Drying trends were further shown for the NE Amazonian rainforest, the Mediterranean 

and South Africa in a multi-model ensemble in CMIP6 (Vogel et al., 2020), as well as in 

Ethiopia in CMIP5 RCP 4.5 and RCP 8.5 scenarios via decreases in days spent with very heavy 

precipitation (Teshome & Zhang, 2019), further highlighting regionally variable trends reported 

for extreme precipitation indices. 

Nevertheless, the general lack of trend in shape parameter estimates shown here across 

nations and locally implies that the probabilities of occurrence and variance for the highest 

annual maxima quantiles do not change as emissions increase, though the highest maxima would 

be more intense at higher CO2 emissions relative to those during the pre-industrial period. To 

that end, annual maxima would still largely intensify significantly, owing largely to (robust) 

increases in location and scale estimates. As such, all of the selected nations largely exhibited a 

significant rise in 20-year and 100-year return levels. The tendency is most noteworthy for Brazil 

due to shape parameter estimates for Rx5day increasing significantly, suggesting larger variance 

and probabilities of occurrence for intensifying values for the largest return levels (e.g. 100-year 

return levels). India similarly showed statistically significant increases in shape parameter 

estimates for one-day annual maxima under 1pctCO2, shifting towards a heavier-tailed behavior 
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as cumulative emissions increased and suggesting that the newer most extreme events/return 

levels at higher emissions would increase in probability.   

In some situations, my results also show applicability locally, such as for Hong Kong and 

Philippines Rx5day, and for Montreal Rx1day, where shape estimates all increase significantly 

(exhibiting heavier-tailed behavior) at higher cumulative emissions. The increase found here for 

Montreal would be consistent with those results presented in Barlow et al. (2019), where they 

showed heavier-tailed tendencies for the most intense North American precipitation extremes for 

regions affected by a large diversity of precipitation-producing systems. For the Montreal area, 

for example, this would suggest that the probability (and intensity) of the highest annual maxima 

quantiles historically, such as that of July 14th, 1987, would increase as cumulative CO2 

emissions rise. Indeed, for the Montreal area, my results show that 20-year and 100-year return 

levels of Rx1day increase approximately linearly with increasing cumulative emissions (Figure 

12a). This is consistent with the heavier-tailed behavior of precipitation extremes documented in 

previous studies (e.g. Serinaldi & Kilsby, 2014; Cavanaugh et al., 2015).  

The more spatially-variable shape parameter response found in this study may be 

explained through several factors. In particular, the greater degree of uncertainty regionally to 

locally may be linked to the larger sensitivities to natural variability that more readily occur at 

these spatial scales. This uncertainty could also be related to the coarser resolutions used to 

represent otherwise realistically finer-scaled weather events and, thus, represented outside of 

convection-permitting models. The patterns found here are, therefore, consistent with those 

findings presented in Innocenti et al. (2019), where negligible trends in shape parameter 

estimates at the grid cell level across most grid boxes over Eastern North America were shown. 

In general, however, there is a more consistent shift towards higher annual maxima values at 
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specified return periods due to consistent significant increasing trends shown for the 

location/scale parameter (Tables 2-4, Figures 5, 8 and 11), and a general increase in annual 

maxima variability, owing to the consistent significant increases in the scale parameter estimates. 

Therefore, the implication here is that annual maxima quantiles tend to largely become more 

extreme under higher cumulative emission settings, but the degree to which the probability of 

occurrence for the highest precipitation values change appears to be spatially-dependent. 

It is also important to note that even with the lack of trend in shape parameter estimates, 

or in cases of statistically significant decreases in the shape parameter, the consistent increasing 

trends in the location and scale parameter estimates at all spatial scales still would favor heavier-

tailed behavior. As such, the probability of occurrence tied to more intense extreme precipitation 

events would still be high at higher cumulative emissions, regardless of trends in the shape 

parameter.    

Possible causes and implications of patterns 

 While several mechanisms are important for the initiation and development of extreme 

precipitation events, there are important base factors that should be considered. The trends 

towards more frequent and intense annual maximum precipitation found in this study may firstly 

be associated with an increased availability of atmospheric moisture that becomes more 

favorable at warmer temperatures in response to higher cumulative emissions. Several studies 

have previously documented this important temperature-moisture relationship concretely (e.g. 

Held & Soden, 2000; Held & Soden, 2006), where atmospheric moisture increases by 

approximately 7% per degree Kelvin of warming, consistent with the Clausius-Clapeyron 

relationship. Effectively, for every degree Kelvin of warming, a given precipitation event could 
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theoretically yield about 7% more precipitation (Held & Soden, 2006; Coumou & Rahmstorf, 

2012). Very often, one-day maximum precipitation or sub-daily events, in particular, occur in 

association with (deep) convective systems, such as severe or training thunderstorms. Due to 

larger moisture availability under warmer background temperatures, CAPE would more 

frequently be enhanced on days where the potential for deep convective systems exists (Trapp et 

al., 2009), thereby increasing the likelihood for more intense precipitation over the course of 

these events if this heightened available energy could be realized through sufficient dynamical 

forcing. It stands to reason, then, that Rx1day and Rx5day events would favorably intensify with 

more atmospheric moisture available to them, and so despite the uniform decreasing shape 

parameter estimates at the global, ocean and land scale, the probability for observing more 

intensified precipitation extremes would still be high as emissions rise. 

Nationally to locally, atmospheric moistening would also be important. In India, for 

instance, the trend towards more frequently intense one-day and five-day precipitation events 

suggests an enhancement in warm-season South Asian atmospheric moisture, and summer water 

vapor transport enhancement (e.g. Xu & Fan, 2019), that would contribute to intensified deep 

convective systems (i.e. thunderstorms) during the wet monsoonal period. This would be 

consistent with the results in this study, where robustly linear trends are shown for Rx1day 20-

year and Rx1day 100-year return levels as cumulative emissions increase (Figure 9a). Moreover, 

the shape parameter estimates shown for Indian Rx1day and Rx5day typically reveal no 

significant trend though increase significantly under the 1pctCO2 scenario (Rx1day). This 

finding suggests that 20- and 100-year return levels would not only substantially increase at 

higher cumulative emissions, but that their probability of occurrence would either increase or 

remain identical to historical levels.  
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In other instances, the increasing trend towards more intense one-day and five-day annual 

maxima in both Brazil and the Philippines could be the result of amplified tropical moisture 

available to the deep convective systems that often form in these nations. Effectively, this would 

increase the intensity of such events and would be consistent with the trend towards larger return 

levels shown for Brazil (Figure 9a-b), as well as an increase in the probability of occurrence for 

particularly intense Rx5day events in response to the significant increases in shape parameter 

estimates shown there (Table 3). Enhanced moistening may also be a significant contributor to 

the intensified return levels shown for the United States and Australia. The trend towards higher 

values of extreme precipitation could also be related to changes in the character of natural 

variability modes, such as ENSO period and amplitude, at higher cumulative emissions. This 

could amplify the frequency/intensity of annual maxima as warmer temperatures work in the 

same direction as natural variability (Trenberth, 2012). 

It should also be noted that, as mentioned previously, the shape parameter estimate trends 

shown here vary considerably across spatial scale, while statistically significant increasing trends 

in location and scale parameters exhibit uniformity across all spatial scales. This further 

highlights the greater extent of uncertainty characteristic of the shape parameter. Indeed, 

previous studies have stressed this tendency in the evaluation of shape parameter estimates. For 

instance, this parameter is difficult to estimate because of the relatively short records that are 

inherently tied to precipitation extremes (e.g. Papalexiou & Koutsoyoannis 2013; Carney, 2016), 

increasing the extent of sampling bias. Correcting the sample of shape parameter estimates 

could, therefore, result in more conservative estimates (Carney, 2016). The more varied response 

of the shape parameter to cumulative emissions at the regional to local scale shown in this work 

is further consistent with results in other studies (e.g. Ragulina & Reitan, 2017). Papalexiou & 
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Koutsoyiannis (2013) and Koutsoyiannis (2004b) further showed that the response of the shape 

parameter ultimately may be sensitive to the geographical location based on their annual rainfall 

data analysis.  

 In general, the shift towards intensified annual maxima presents an increased likelihood 

for various flooding events, such as the gradual flooding that commonly develops under an 

accumulation of precipitation over a succession of days, or the flash-flooding variety that is 

commonly a by-product of intense one-day or sub-daily events. Many one-day and five-day 

maximum events are typically capable of producing a substantial amount of precipitation over a 

small period of time. The hazards induced by these events are especially important for areas 

characterized by low-permeable surfaces, such as urbanized areas – an important motivation for 

my choices for the nations and locales discussed here. The shorter return periods for Rx5day 

found in this study across all spatial scales does further imply a higher likelihood for longer-

duration flooding that is typically manifested by such events, such as the Southern Quebec 2017 

and 2019 spring flooding, the British Columbia flooding of 2021, or the September 2013 

flooding event that struck Colorado (Herring et al., 2014). As shown in this study, there was a 

significant shift towards higher Rx5day values for the Montreal area as cumulative emissions 

increased. Due to the significant contributions that these precipitation events bring with them, 

this finding would suggest that flooding types not unlike those of spring 2017 and spring 2019 

may occur more regularly as cumulative emissions increase.   

Conclusion 

In this study, I applied EVT by fitting a GEV to evaluate trends in global, regional and 

local extreme precipitation indicators by framing them in the context of global cumulative 

emissions. Indeed, using this method, it was possible to better understand how the location, scale 
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and shape of probability distributions used to model Rx1day and Rx5day behavior may change 

in response to higher cumulative CO2 emissions. My results firstly show that location parameter 

estimates of Rx1day and Rx5day, as well as 20-year and 100-year return levels, can be 

approximated by the TCRE, with both showing linear responses to cumulative CO2 emissions. 

My results further showed a significant increase in frequency and intensity of annual maxima at 

all spatial scales, as well as a corresponding reduction in return periods. This was largely due to 

significant and linear increases in location and scale parameter estimates across all spatial scales, 

favoring a trend towards larger annual maxima values, including for the highest annual maxima 

quantiles (e.g. 100-year return levels), with rising cumulative emissions. Although no significant 

trends in shape parameter estimates at smaller spatial scales, some significant increases were 

shown locally to nationally in this work, suggesting some increased probability and variance for 

more intense high-end precipitation extremes at those scales. It should be noted that even without 

changes in shape parameter estimate trends with higher emissions, the probability of occurrence 

of what would be higher-order return levels (e.g. more intense 100-year return levels) in the 

future would remain identical to those probabilities for those return levels during the historical 

period. Furthermore, these future return levels would likely represent an intensification of a 

given historical return level in light of increases in the location/scale parameter estimates shown 

here. 

These results expand on studies that previously used EVT to analyze trends in extreme 

precipitation and other climatic extremes (e.g. Barlow et al., 2019; Innocenti et al., 2019) but 

also based on a variety of spatial scales using simulated precipitation data historically and across 

emissions scenarios. At the same time, these findings further suggest that present-day and 

historical precipitation extremes become a new normal in the future as cumulative emissions 
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increase, and so return levels of specified return periods historically become more 

frequent/regular and intense at higher emissions. Therefore, my results imply trends favoring 

precipitation extremes that would more favorably yield flooding, notably for those regions and 

localities already situated near or along flood plains. In urbanized settings, flash-flooding may 

increasingly become a hazard as one-day events (Rx1day), for example, intensify and occur 

more frequently. Such events may also more often lead to landslides and other related hazards, 

especially in tropical regions.  

In light of international agreements that limit global warming to thresholds of around 1.5 

Celsius relative to the preindustrial period, the findings presented in my study highlight that the 

character of one-day and five-day annual maxima, at all spatial scales, could respond robustly in 

frequency and intensity to even small amounts of warming tied to lower amounts of additional 

cumulative CO2 emissions. As global temperatures rise, it becomes increasingly critical to 

develop a management framework that strives to better mitigate impacts associated with 

flooding, as well as other environmental hazards that are common with precipitation extremes. I 

further stress that this study focused on annual precipitation maxima directly, rather than 

considering a more holistic approach that would incorporate environmental conditions critical for 

the generation of such extremes. It could, therefore, be of interest for future works to consider 

factors that may play a role in the development of precipitation extremes, such as using 

dynamical and thermodynamical factors as possible covariates, and how these together may 

respond to different emissions scenarios. 
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Chapter 5: Estimating the remaining carbon budget for global, regional and local extreme 

precipitation thresholds 

This chapter is also being prepared for publication. 
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Abstract 

Precipitation extremes are among the most impactful forms of weather to human society. 

As cumulative CO2 emissions rise, such extremes are expected to increase in frequency and/or 

intensity, with significant intensification regionally with more magnified warming observed at 

those finer spatial scales. There is growing interest in determining the degree to which global 

cumulative carbon emissions need to be reduced in order to avoid particularly 

significant/dangerous precipitation thresholds, with this interest being heightened at the regional 

to local scale. In the present chapter, I extend TRCE-based analyses of previous chapters to 

estimate allowable future cumulative carbon emissions (remaining carbon budgets) consistent 

with avoiding future extreme precipitation thresholds. Data from nine Coupled Model 

Intercomparison Project Phase 5 (CMIP5) model simulations were used to quantify trends in the 

most extreme Rx1day and Rx5day precipitation events by placing them in the context of 

cumulative CO2 emissions. As an extension of the GEV analysis explored previously, I found 

that present-day 20-year return levels of precipitation become 10-year return levels at generally 

low amounts of additional cumulative CO2 emissions. This is also true for the cumulative 

emissions required for the present-day 100-year return levels to become 20-year levels in the 

future. Collectively, these results suggest that present-day precipitation extremes will become 

more common in the future if global cumulative CO2 emissions are permitted to rise in even 

small additional quantities. I show that more stringent carbon emissions targets than those 

specified in recent international agreements are needed to avert the changes in return levels of 

precipitation extremes considered here. 
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Introduction 

Extreme weather events refer to events that occur at the extremes of a specified 

climatology. Statistically, these events are typically located within the tails of a normal 

distribution. Although there exists a substantial amount of research dedicated to studying 

extreme weather events, there also remains no widely-accepted definition of what constitutes 

either a weather or climate extreme (Stephenson et al., 2008). For precipitation extremes, 

however, as mentioned previously, the Intergovernmental Panel on Climate Change 

Intergovernmental Panel on Climate Change Managing the Risks of Extreme Events and 

Disasters to Advance Climate Change Adaptation (IPCC SREX) defines changes in heavy to 

extreme precipitation in relation to late-20th century 90th percentile or greater values, such as 95th 

to 99th percentile events (Herring et al., 2014). However, the wide range of definitions of what 

constitutes an extreme event partly accounts for the trends reported across the body of climate 

impacts literature, which fuels uncertainty as to future responses for such events (McGregor et 

al., 2005; Stephenson et al., 2008; Zhang et al., 2017; Pendergrass, 2018; Pendergrass et al., 

2019; Moore et al., 2023).  

Despite their rare nature, it is these weather events that often bring with them devastating 

short- and long-term effects to human society, including loss of life and significant property 

damages, as well as environmental stresses that can last for decades at a time. While the Paris 

Agreement aims to ideally maintain a mean global warming value of 1.5 C or less relative to the 

pre-industrial period, it remains unclear as to how the character of weather extremes, as well as 

their environmental conditions, will respond to such warming thresholds. This is especially 

relevant regionally, since observed and expected warming at those spatial scales are generally 
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larger than the global mean response to continued rising cumulative emissions (e.g. Dupont & 

Pearman, 2006). 

The study of precipitation extremes is, thus, of importance because of the ability of such 

events to induce potentially catastrophic damage as a result of (flash-) flooding, particularly in 

growing urbanized settings where surface permeability is already so low. As a result of 

successive or compounding extremes (e.g. Sun et al., 2023), the flooding that emerges from 

extreme precipitation events could sometimes trigger, for example, devastating mudslides and 

landslides as surfaces become increasingly unstable in the wake of substantial precipitation 

amounts that fall over such short durations. Significant one-day maximum precipitation events 

can further lead to flash-flooding (e.g. the recent historical New York City flash-flooding event 

of September 29th, 2023, the Libyan flash-flooding of early-September 2023, or with respect to 

the extreme one-day rainfall event that struck the Fort Lauderdale area on April 12th, 2023). At 

the same time, excessive amounts of precipitation that occur over a succession of days to weeks 

can result in more gradual flooding as a result of quickly saturating soils and/or anomalously 

high water levels within watersheds.  

In response to a warmer global (and regional) climate, environments may become more 

conducive to heavy to extreme precipitation development, increasing the likelihood of more 

frequent and intense events. However, there exists a large range of trends across climate model 

simulations of precipitation extremes. This is likely attributable to regional differences, as well 

as to the simulated differences of the broader atmospheric circulation features that enable these 

events to develop (Pendergrass et al., 2016). Despite the spread of results in the climate impacts 

literature, the general expectation is for global precipitation extremes to increase in both 
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magnitude and frequency as temperatures rise (IPCC AR6; Knutson et al., 2010; Hartmann et al., 

2013; Moore et al., 2023). For instance, Myhre et al. (2019) showed that the most intense 

precipitation events significantly increase in occurrence for every degree Celsius of global 

warming. Similar results were shown for global heavy precipitation events, including enhanced 

South Asian precipitation fueled by an intensified warm-season monsoonal circulation into the 

future (Moore et al., 2015; Katzenberger et al., 2022), as well as historically over the 1901-2020 

period (e.g. Falga & Wang, 2022). Precipitation extremes are generally expected to become as 

much as 32-55% more frequent by 2100 (Thackeray et al., 2022). Regionally, such precipitation 

events are similarly shown to increase in both intensity and frequency. For example, in the arid 

regions of China, extreme precipitation increased in intensity over the 1960-2016 period (Wang 

et al., 2022), as well as in future simulations under 1.5 C to 2.0 C warming in Eastern Africa 

across extreme precipitation indices (Ayugi et al., 2022), and in terms of extremely wet days in 

Brazil under RCP scenarios (Avila-Diaz et al., 2020).  

Carbon budgets have been shown to have useful applications for exploring trends across 

a variety of climate variables, notably for avoiding specified global warming thresholds (e.g. van 

der Ploeg, 2018; Rogelj et al., 2019). In their broadest form, carbon budgets may be defined as 

the total allowable cumulative CO2 emissions that meet or avoid a specified global warming 

threshold, or for some other given climate indicator that may be of interest. The concept of 

carbon budgeting has, thus, received considerable attention since its central appearance in the 

IPCC Fifth Assessment Report (AR5) and has since become a widely adopted framework for 

guiding climate policy (Lahn, 2020). As such, the application of carbon budgets provides a 

useful framework by which I can estimate thresholds of global warming in efforts of reducing 

global carbon emissions by some prescribed quantity. 
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Carbon budgets can be calculated based on the well-established linear relationship that 

exists between temperature and cumulative CO2 emissions. This linearity is known as the 

Transient Climate Response to cumulative CO2 Emissions (TCRE), which proportionally links 

anthropogenic global cumulative carbon emissions with global temperature change (Matthews et 

al., 2009; Gillette et al., 2013; MacDougall, 2016). Such trends may extend to the sub-global 

scale. Results from a more regionally-constrained analysis, for example, have shown that 

regional temperature similarly scales approximately linearly with cumulative CO2 emissions, as 

well as over land and ocean (e.g. Leduc et al., 2016). However, while this linearity is captured 

well, large uncertainties surround estimates of the (regional) TCRE. This, to some extent, 

subsequently affects the usefulness of the carbon budget conceptually (Jones & Friedlingstein, 

2020), partly due to the warming contributions originating with non-CO2 forcings thar are not 

captured in the TCRE framework (Millar et al., 2016; Partanen et al., 2020). Uncertainties also 

stem from the choice of methodological framework, as well as the assumptions factored into 

calculations of the carbon budget (Matthews et al., 2020). The slope of the TCRE further varies 

among models in light of the differences in representation of the carbon cycle and climate 

feedbacks (e.g. Bruhwiler et al., 2021, MacDougall et al., 2016).  

Other studies have identified linear responses to carbon emissions for climate variables 

outside of temperature, extending the scope of the TCRE. For example, Zickfield et al. (2012) 

showed approximately linear reductions in September Arctic sea ice in response to rising 

cumulative emissions. Regional TCRE estimates of precipitation were also shown in Partanen et 

al. (2017), where precipitation exhibits a linear increase with increasing cumulative emissions. 

Similar near-linear relationships were also shown for the response of indicators of extreme 

precipitation from global to sub-global scales to cumulative carbon emissions (Moore et al., 
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2023). However, this linearity may be regionally-dependent. For instance, Pendergrass et al. 

(2019) show that tropical extreme precipitation follows non-linear tendencies as emissions rise, 

although this pattern was displayed only in one model among a suite of CMIP5 models used in 

their study.  

In this Chapter, I aim to further explore the relationship between cumulative CO2 

emissions and precipitation extremes by using the carbon budget concept to estimate allowable 

cumulative CO2 emissions associated with various extreme precipitation thresholds. This allows 

me to define remaining carbon budgets (RCBs) that are associated with extreme precipitation 

thresholds at global, regional and local scales using climate model output from the CMIP5 model 

ensemble. By framing precipitation extremes in using the concept of remaining carbon budgets, I 

endeavor to examine the degree to which emissions would need to be reduced to avoid 

particularly significant future extreme precipitation thresholds globally, regionally, as well as 

locally using various emissions scenarios. 

Methodology 

I describe here in detail the methods for this chapter, with a focus on a description of the 

carbon budgeting design used as an extension of the Generalized Extreme Value (GEV) analysis 

articulated previously in Chapter 4. 

Model, emissions scenarios and precipitation data 

As explored in Chapters 3 and 4, I use here the same suite of 9 CMIP5 models described 

previously, with the CanESM2 model serving as the host model (~2.8 x 2.8 degree grid cell 

system, representing 8192 grid cells, with each cell covering an approximately 300-square 
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kilometer area on the Earth’s surface) for the interpolation procedure. I further used the same 

emissions scenarios as in previous chapters, including a scenario describing a 1% increase in 

CO2 emissions per year until a quadrupling occurs relative to the pre-industrial period (1pctCO2, 

which spans 140 years), as well as two Representative Concentration Pathway (RCP) scenarios 

(RCP 4.5 and RCP 8.5, each covering a 90-year period, from 2006 to 2095) which were joined 

with simulations of historical emissions (145 years) that begin at the pre-industrial period 

(defined as 1861). Emissions are represented in units of teratons of carbon (TtC). Also following 

the work done in the preceding chapters, I use the same extreme precipitation indicators that 

characterize what is known as annual one-day maxima (Rx1day) and five-day maxima (Rx5day) 

events (in units of millimeters per day (mm/day)) that correspond to each emission scenario for 

each of the CMIP5 models used herein. These extreme precipitation events capture all types of 

precipitation and effectively are derived from the largest annual maxima of precipitation 

extremes extracted for each grid cell across models for each emissions scenario. As with the 

analyses conducted in Chapters 3 and 4, all data manipulations and plotting were conducted in R 

programming software.   

Global, land, ocean, national, and locational selection 

I begin this analysis with an examination of global patterns of Rx1day and Rx5day to 

obtain estimates of RCBs globally. I then constrained the analysis to land-only by applying a 

mask to all land grid cells. This then made it possible to similarly estimate carbon budgets for 

precipitation extremes of interest across land collectively. Assessing RCBs associated with 

precipitation extremes over land is desirable, since this is where human populations and 

terrestrial lifeforms collectively reside. However, an assessment of RCBs over oceanic regions in 

their entirety would also carry some scientific value due to extreme precipitation events often 
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forming over such regions before drifting onto land. This is especially true with those extreme 

precipitation events linked to tropical cyclones, forming over oceanic source regions prior to 

drifting over land, including landfalling situations. In other cases, (severe) thunderstorms can 

form quickly over water before advancing onto land areas and potentially cause substantial 

flooding, especially in sub-tropical and tropical regions. Therefore, some examination of oceanic 

extreme precipitation events would be of importance and, as such, I proceeded conducting an 

ocean-only analysis by applying a mask over land areas, effectively serving to isolate 

ocean/water grid cells, as applied in Chapter 3 and 4. The global analysis considers all grid cells, 

capturing all land and water cells. Extending this analysis beyond the global and land/ocean 

scale, I selected specific land areas as a representation of my regional analysis, and much like 

previous chapters, this selection was used to compare those trends found globally in terms of 

trends of Rx1day and Rx5day.  

Regions and locales selected in this chapter represent the same selection from the 

previous chapter (Chapter 4). Since an extension of the GEV analysis from Chapter 4 is applied 

here as a tool for estimating the remaining carbon budget, I focus on these regional to local 

selections as a representation for regions and locations globally. Furthermore, as previously 

highlighted in Chapter 4, this selection captures regions and locations that carry large population 

densities, have coastal areas that lie at or below sea level, are vulnerable to precipitation 

extremes altogether, and have recently experienced catastrophic flooding linked to recent 

extreme precipitation events.  

As described in Chapters 3 and 4, regions are chosen as nations, while locales are 

represented at the grid cell or as a small grouping of cells. The regional selection, therefore, 

corresponds to the United States, Brazil, South Africa, India, and Australia, while the local 
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selection uses Montreal, St. Louis, Florida, the Philippines, and Hong Kong. As with Chapter 4, 

analyses corresponding to these selections are meant to be representative of all regions and 

locations and so are not meant to be an exhaustive selection.  

Fitting a GEV to derive RCBs of precipitation thresholds 

In Chapter 4, I previously used Extreme Value Theory (EVT) to examine trends in the 

most extreme Rx1day and Rx5day events at the global to local scale under the three emissions 

scenarios outlined above, as well as with respect to the historical period. EVT is a popular tool in 

statistics that is used as a means to model the behavior of extreme values through time, which are 

located within the tails of a given distribution. GEV distributions, a sector of EVT, are well 

known for their ability to model extremes across a wide range of fields. GEV distributions are 

widely adopted for the modelling of weather extremes, including extreme precipitation and 

extreme heat events (e.g. Rypkema & Tuljapurkar, 2021). In the present chapter, I extend the 

GEV analysis by using TCRE estimates of return level values derived from Chapter 4. These 

frameworks are, therefore, combined to determine the RCBs globally to locally across a set of 

emissions scenarios based on selected present-day return levels. The present-day return levels in 

this study were based on the final block or sub-period comprising the historical period (i.e. the 

20th block) derived from the block maxima approach detailed in Chapter 4.  

Threshold selection for remaining carbon budgets 

 Here, I outline the procedure involved for selecting specific return levels in order to 

compute RCBs at various spatial scales. 

In this chapter, I utilize the concept of the Remaining Carbon Budget in relation to 

specified extreme precipitation return levels. The RCB is defined here as the remaining 
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allowable global cumulative (CO2) emissions associated with specified changes in extreme 

precipitation values relative to the present-day period. As mentioned in previous chapters, the 

historical period runs over 145 years, ending in 2005. Under the block maxima approach 

previously employed in Chapter 4 that made use of a Generalized Extreme Value (GEV) 

distribution, these 145 years were grouped into seven-year blocks, with blocks similarly 

allocated for the time series pertaining to all emissions scenarios (i.e. RCP 4.5, RCP 8.5, and 

1pctCO2). Since the final blocks were comprised of less than seven years in the case of the 

historical period and the RCP scenarios, these were removed to ensure that the number of years 

across each block (or sub-period) was inherently the same, as described in the previous chapter. 

However, as also mentioned in Chapter 4, the “present-day” period was adjusted to the first 

block of the RCP scenarios (which ends in 2012), as this is more representative of the present-

day. Also, although the 1pctCO2 scenario considers the response of Rx1day and Rx5day to 

cumulative CO2 emissions only, this scenario is of interest for this analysis, as it can show the 

extent of RCBs needed to meet extreme precipitation thresholds in a hypothetical or 

counterfactual future world with additional CO2 forcing only. 

The selection of extreme precipitation indicators (Rx1day and Rx5day) used in this study 

was based on return level values derived from the GEV analysis conducted previously. The 

present-day GEV parameter estimates are, therefore, based on the first block of the RCP periods, 

and so return levels were chosen in this manner. Specifically, the baseline return levels were 

selected from the first block that initiates the RCP 4.5 period, representing the present-day 

baseline for both RCP scenarios. This return level was selected as the baseline value, as the RCP 

4.5 emissions characterizing the first block are closer to the actual emissions that occurred during 

that period. This is used to calculate the cumulative emissions between this block and those 
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future blocks that carry the value at which the present-day 20-year or 100-year return level is met 

and/or exceeded as either 10-year or 20-year return levels in the future. 

As such, using the block maxima method, I was specifically able to compute RCBs by 

determining first when in the future present-day 20-year return levels (95th percentiles) become 

10-year return levels (i.e. 90th percentiles). This procedure was then similarly applied for 

determining when present-day 100-year return levels (99th percentiles) become the 20-year return 

level into the future. Finding the 90th percentile values at the present-day and other periods are 

determined by fitting a GEV distribution that is associated with the present-day block and other 

blocks, making it possible to calculate percentiles of interest using these probability distributions. 

The present-day 95th (and 99th) percentile values of extreme precipitation indicators are chosen 

for this work as baselines, as these are commonly used as a threshold selection for (extreme) 

precipitation indices across the body of climate impacts literature for flood risk assessment, 

infrastructural management and collectively climate change adaptation (e.g. Chang et al., 2022; 

Zhou et al., 2024). Furthermore, it is these events that represent the heaviest of precipitation 

(IPCC, 2021). It is further of interest, since it often signifies a significantly higher magnitude of 

precipitation event, which increases the likelihood for potentially catastrophic impacts in already 

vulnerable locations and regions. As such, these can be useful quantities for notably regional to 

local risk management efforts in the context of RCBs, providing further insight as to 

approximately when such present-day return levels can be met and/or exceeded in the future 

under different cumulative emissions scenarios at sub-global scales.   

Block maxima that characterize the future period fall into the RCP scenarios, which are 

those blocks that follow the last block of the historical period to complete the time series. The 

RCP scenarios comprise a total of 12 blocks, following the 20 blocks characterizing the 
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historical period. However, as mentioned previously, the first of the 12 blocks comprising the 

RCP 4.5 scenario is treated as the adjusted ending block of the historical period (i.e. present-

day).  

I then applied a similar analysis for the 1pctCO2 scenario. That said, in the case of 

1pctCO2, since there is no real reference point that signals the end of the historical period, I 

instead used the present-day emissions value of the historical period (i.e. 2012 under RCP 4.5) to 

determine when the present-day begins in the 1pctCO2 scenario. This served as a meaningful 

present-day emissions value in the 1pctCO2 case and was used to calculate RCBs similarly based 

on the point at which corresponding 20-year return level values at present-day emissions 

reach/exceed 10-year return levels in upcoming blocks. This was similarly applied for when 

present-day 100-year levels reach or exceed 20-year levels. Using this approach for the 1pctCO2 

case further intuitively makes sense, since the historical value would represent a more realistic 

present-day estimate in light of historical present-day emissions being linked to not only CO2 

forcing, but also non-CO2 forcing. As a result, it was a more reasonable choice to use as the 

present-day value for 1pctCO2. This was applied across all spatial scales, from globally to 

locally.  

Calculating the remaining carbon budget 

In this section, I describe the procedure involved for calculating RCBs. In accordance 

with the selection procedure described in the previous sub-section, I firstly calculate RCBs based 

on the difference between present-day cumulative CO2 emissions and those CO2 emissions 

corresponding to the point at which present-day 20-year return level values reach and/or exceed 

the future 10-year return levels. Similarly, RCBs were computed based on the difference in 
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present-day CO2 emissions and those emissions at the point present-day 100-year return level 

values reach and/or exceed the present-day 20-year return level. In each case, this was applied 

for both extreme precipitation indicators, for Rx1day and Rx5day, and across all spatial scales, 

from globally to locally. It is also important to note that there are some situations where either 

present-day 20-year or 100-year return levels never meet and/or surpass 10-year or 20-year 

return levels in future block maxima. In such cases, I proceed by calculating RCBs based on the 

block containing the next largest value found in the future blocks making up the RCP and 

1pctCO2 scenarios. As a result, RCBs can mathematically be represented under the following 

formulations: 

RCBReturn level20 = EFuture 10-year level – EPresent 20-year level                                       (1) 

RCBReturn level100 = EFuture 20-year level – EPresent 100-year level                           (2) 

where RCBReturn level20 represents the difference between the cumulative CO2 emissions 

associated with the future block maxima whose 10-year return level value matches/exceeds the 

present-day 20-year return level value for extreme precipitation indicators (EFuture 10-year level), 

and those cumulative CO2 emissions tied to the present-day 20-year return level (EPresent 20-year 

level). RCBReturn level100 similarly corresponds to the difference between the cumulative CO2 

emissions associated with the block maxima containing the point at which 20-year return levels 

in the future reach and/or exceed the present-day 100-year return level (EFuture 20-year level), and 

those cumulative CO2 emissions associated with the block containing the present-day 100-year 

return level value (Epresent 100-year level).  
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I then computed the standard errors associated with these RCBs, as represented by the 

standard error bars included in the RCB figures provided below, as well as numerically in data 

tables. RCB standard errors were calculated across scenarios by using the carbon emissions 

spanning the blocks from the present-day period to the point at which the 95th and 99th return 

level percentile is met or exceeded. 

Results 

 I present here results for global, land and ocean RCBs that are linked to future return 

levels relative to present-day values. Figures 1-2 and Table 1 provide a summary of these 

findings. 

Global, land and ocean patterns of RCBs 

 Globally, my results consistently show RCB values of less than 0.80 TtC (+/- 0.06 to 0.09 

TtC) across scenarios with respect to present-day 20-year return levels becoming 10-year return 

levels in the future for both Rx1day and Rx5day (Figure 1, Table 1). The largest RCBs are 

shown for the Rx1day 1pctCO2 case (i.e. 1.67 TtC +/- 0.16 TtC), while the smallest values are 

shown for RCP 4.5 and RCP 8.5, and with RCP 4.5 values being consistently larger across both 

extreme precipitation indicators. When constraining the analysis to land and ocean only (Figure 

1, Table 1), these patterns continue to be largely observed, with the smallest values displayed for 

the RCP scenarios (i.e. largely 0.15-0.79 TtC +/- 0.04-0.08 TtC) and highest in 1pctCO2 (up to 

2.08 TtC +/- 0.18 TtC). In the case of the RCP scenarios, the size of the RCBs is overall smaller 

for land Rx1day than it is for ocean, and at the global scale but is larger with respect to Rx5day. 

RCBs are further larger for RCP 8.5 than RCP 4.5 for land, which differs from the results given 
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for the global or ocean scale. Also, land and ocean budgets are shown to be consistently larger 

across Rx5day than for Rx1day, overall similar to those patterns at the global scale (Table 1, 

Figure 1). Globally and for ocean only, RCBs are mostly at their smallest for RCP 4.5, though 

the lowest RCB coincides with 1pctCO2 land Rx1day (0.12 TtC +/- 0.06 TtC). As such, these 

findings highlight that the extent of RCBs is lower for the RCP scenarios and mostly higher in 

the case of 1pctCO2 across global, land and ocean. Intuitively, this makes sense, since the RCP 

scenarios include non-CO2 forcing, causing baseline/threshold values to be matched and/or 

exceeded sooner into the future under lower cumulative CO2 emissions. 

 For present-day 100-year values becoming 20-year return levels in the future, my 

findings show similar RCB patterns globally, for land only, as well as for ocean (Figure 2, Table 

1). However, as compared with present-day 20-year return levels (95th percentiles) becoming 

future 10-year levels (i.e. 90th percentiles) described previously, the RCB values shown here are 

generally larger across scenarios in the future across all spatial scales. As described previously, 

RCBs are generally largest under the 1pctCO2 scenario, and mostly for Rx5day overall. To that 

end, the highest value occurs globally (2.16 TtC +/- 0.17 TtC), and then for land- and ocean-only 

Rx1day (2.08 TtC +/- 0.18 TtC). With respect to the ocean scale, the RCB value is also large for 

Rx1day (1.67 TtC +/- 0.16 TtC). By contrast, the lowest RCBs are found with the RCP 

scenarios, but the lowest values are dependent on the scenario in question. For example, for 

either extreme precipitation indicator, the lowest RCBs are found with RCP 8.5 across global, 

land and ocean; in the RCP 8.5 case, for instance, the RCB value is shown to be as low as 0.15 

TtC (+/- 0.04 TtC) for ocean Rx1day and Rx5day, as well as for both global Rx1day and land 

Rx5day. For land Rx1day, however, the RCB is similar across both RCP scenarios, with 0.23-

0.24 TtC (+/- 0.05 TtC) of additional emissions being required to match or exceed the present-
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day 269 mm/day event in the future (Table 1). Also noteworthy is that values of RCBs, at least 

for the global and ocean case, are generally larger in both RCP 4.5 and RCP 8.5 for Rx1day and 

Rx5day, but values are consistently higher for 1pctCO2 for Rx5day than for Rx1day across all 

spatial scales. This suggests that lesser additional cumulative emissions are generally required to 

meet or exceed thresholds in Rx1day than Rx5day, including with respect to Rx1day carrying 

smaller budgets under 1pctCO2 (Table 1, Figure 1).  

It is further worth noting that baseline/threshold values are larger globally than for either 

ocean or land (Figures 1-2). This pattern would be an artifact of the block maxima approach, in 

which only the largest value for each year across each model is extracted. Since the maximum 

value must occur over either ocean or land, the annual maxima extracted globally must also be 

either equal to or greater than the maxima over ocean or land each year. This effectively ensures 

that the global scale annual maxima will always carry values equal to or larger than ocean or 

land. By contrast, in Chapter 3, which involved spatially averaging across grid cells, this yielded 

the larger annual values at the ocean/water scale than globally, since the average comes from 

averaging over the largest values which are often found over the ocean. 

Table 1. Global, land and ocean remaining carbon budgets (RCBs) for Rx1day and Rx5day 

under different emissions scenarios. RCBs are calculated based on the difference in cumulative 

carbon emissions between when the present-day 20-year return levels become 10-year return 

levels in the future, and those emissions at present-day. Similarly, RCBs were calculated based 

on the difference in cumulative emissions between when present-day 100-year return levels 

become 20-year return levels in the future, and emissions at present-day. Standard errors (SE) are 

provided for each RCB value. RCBs and SEs are given in units of teratons of carbon (TtC). 

Global 

Rx1day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 375 0.57 0.07 

RCP8.5 375 0.15 0.04 

1pctCO2 375 0.50 0.07 
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Rx5day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 929 0.79 0.08 

RCP8.5 929 0.15 0.04 

1pctCO2 929 1.67 0.16 

Rx1day 100-year becoming 20-year return level  

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 463 0.75 0.08 

RCP8.5 463 0.15 0.04 

1pctCO2 463 0.80 0.11 

Rx5day 100-year becoming 20-year return level  

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 1633 0.65 0.08 

RCP8.5 1633 0.59 0.08 

1pctCO2 1633 2.16 0.17 

Land 

Rx1day 20-year becoming 10-year return level 

Scenario Threshold (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 269 0.23 0.05 

RCP8.5 269 0.24 0.05 

1pctCO2 269 0.12 0.06 

Rx5day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 790 0.79 0.08 

RCP8.5 790 1.44 0.14 

1pctCO2 790 2.08 0.18 

Rx1day 100-year becoming 20-year return level  

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 291 0.23 0.05 

RCP8.5 291 0.24 0.05 

1pctCO2 291 0.12 0.06 

Rx5day 100-year becoming 20-year return level  

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 1217 0.79 0.08 

RCP8.5 1217 0.15 0.04 

1pctCO2 1217 2.08 0.18 

Ocean 

Rx1day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 361 0.65 0.08 

RCP8.5 361 0.15 0.04 

1pctCO2 361 0.80 0.11  

Rx5day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 810 0.75 0.08 
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RCP8.5 810 0.15 0.04 

1pctCO2 810 2.08 0.18 

Rx1day 100-year becoming 20-year return level  

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 425 0.75 0.08 

RCP8.5 425 0.15 0.04 

1pctCO2 425 2.08 0.18 

Rx5day 100-year becoming 20-year return level  

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 1347 0.41 0.06 

RCP8.5 1347 0.15 0.04 

1pctCO2 1347 1.67 0.16 

 

 

Figure 1. Global, land and ocean remaining carbon budgets (RCBs) for present-day 20-year 
return levels (95th percentiles) reaching 10-year return levels (90th percentiles) in the future 
across emissions scenarios corresponding to a) Rx1day and b) Rx5day. RCBs are calculated 
relative to the emissions at the present-day, with the present-day 20-year return level being 
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used as the baseline here. Error bars are representative of the standard errors calculated for 
the derived RCBs. 

 

 

Figure 2. Global, land and ocean remaining carbon budgets (RCBs) for present-day 100-year 
return levels (99th percentiles) reaching 20-year return levels (95th percentiles) in the future 
across emissions scenarios corresponding to a) Rx1day and b) Rx5day. RCBs are calculated 
relative to the emissions at the present-day, with the present-day 100-year return level being 
used as the baseline here. Error bars are representative of the standard errors calculated for 
the derived RCBs. 
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Regional/National patterns of RCBs 

In this section, I assess national/regional patterns of RCBs corresponding to meeting 

and/or exceeding 20-year and 100-year return levels into the future, focusing on comparisons 

between them and global to land- and ocean-only estimates. Results are summarized in Figures 

3-4 and Table 2. 

 Nations/regions selected for this study show similar trends to global, land and ocean 

patterns of RCBs across scenarios for present-day 20-year return levels becoming 10-year return 

levels into the future. Similarly with global, land and ocean, the greatest values of RCBs are 

consistently shown for the 1pctCO2 scenario, and the lowest under generally the RCP scenarios, 

notably with respect to RCP 4.5 (Table 2), for both extreme precipitation indicators. Together 

with somewhat more variability for the RCP scenarios than what is showcased globally to land 

and ocean, the results show a consistent trend towards increasing RCBs across scenarios 

nationally. For all nations examined, much like at the global, land and ocean scales, but with the 

exception of Brazil, Australia and South Africa Rx5day under RCP 8.5, and United States 

Rx1day under RCP 8.5, the RCB values were consistently well under 1 TtC across the RCP 

scenarios (a range of 0.15-0.90 TtC +/- 0.04-0.10 TtC) (Figure 3, Table 2), and largest for 

1pctCO2 (up to 2.29 TtC +/-0.19 TtC in the case of United States Rx1day and Rx5day).  

There are further some notable patterns that differ from the results outlined in the 

previous sub-section. Indeed, RCP 8.5 shows larger RCBs than for RCP 4.5, representing a 

reversal from the global to land and ocean pattern. With the exception of India, nations largely 

show higher RCP 8.5 values than for RCP 4.5, especially under Rx1day (Figure 3, Table 2). The 

results also reveal less uniformity in the distribution of RCBs from one nation to the other, 
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suggesting higher variability when constraining the analysis to the national scale. For example, 

as mentioned, the United States had the smallest RCB, with only 0.15 TtC (+/- 0.04 TtC) of 

additional carbon emissions being required to reach its Rx5day of 268 mm/day under RCP 8.5. 

South Africa additionally showed a small RCB of 0.23 TtC +/- 0.05 TtC for reaching its Rx5day 

threshold. Conversely, the United States carried the largest value for 1pctCO2 with respect to 

Rx1day, as outlined previously (i.e. 2.29 TtC +/- 0.19 TtC). Furthermore, Brazil showed 

consistently the largest RCB values across the RCP scenarios (0.75-1.26 TtC +/- 0.08-0.13 TtC). 

Australia also displayed high RCBs with respect to RCP 8.5, with values of as much as 0.90-1.26 

TtC (+/- 0.10-0.13 TtC) (Table 2). For the United States Rx5day, RCBs of 0.15-0.32 TtC (+/- 

0.04-0.06 TtC) were shown across the RCP scenarios, representing the smallest national RCP 

budgets altogether, and from globally to locally (Figure 3, Table 2). South Africa also had a 

small RCB for its Rx1day (0.23 TtC +/- 0.05 TtC) for RCP 4.5. An overall small spread was 

similarly shown for India’s Rx5day, having a modest range of RCBs (0.34-0.41 TtC +/- 0.06 

TtC) across the RCP 4.5 to RCP 8.5 scenarios. For 1pctCO2, India’s Rx5day and South Africa’s 

Rx1day showed the lowest additional amounts of cumulative carbon emissions, with 0.79-0.80 

TtC +/- 0.11 TtC being needed. As such, at the national scale, my results show more variability 

in the extent of remaining budgets under the RCP scenarios, relative to the somewhat smaller 

range of 0.15-2.08 TtC (+/- 0.04-0.18 TtC) found for global, land and ocean trends across 

scenarios.  

For present-day 100-year return levels becoming 20-year values into the future, the 

results also generally show more variation in RCB values relative to what was displayed for 

global, land and ocean. Whereas the global and ocean cases consistently showed larger Rx5day 

RCB values in both RCP scenarios than in Rx1day, the results highlight that, at the national 
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scale, there is a tendency towards an opposing pattern, in which Rx1day RCBs are somewhat 

larger than those of Rx5day overall (Figure 4, Table 2). This also applies in terms of larger RCB 

values appearing in Rx1day than Rx5day for the 1pctCO2 scenario. Further, there is more of a 

trend towards larger RCBs across nations than globally, and relative to land and ocean, under the 

RCP scenarios for both Rx1day and Rx5day. For example, the United States is shown to have the 

largest RCB under the 1pctCO2 scenario for both extreme precipitation indicators, as does India 

and South Africa for Rx5day (2.29 TtC +/- 0.19 TtC). This RCB amount surpasses the maximum 

of 2.16 TtC +/- 0.17 TtC shown for global Rx5day patterns (Table 1). That said, with respect to 

the 1pctCO2 case, there is a near-similar RCB maxima distribution (i.e. values often exceeding 

2.00 TtC, from globally to nationally). The results also point towards RCB values often 

exceeding 1.00 TtC for the RCP 8.5 scenario, as compared with those values at the global, land 

and ocean scale which remained well below 1.00 TtC (Table 1) for that scenario. The largest 

RCBs, overall, appeared with South Africa Rx5day under 1pctCO2, Australia and Brazil Rx5day, 

as well as India’s Rx5day with respect to the 1pctCO2 scenario, and in terms of United States 

Rx1day. The smallest overall values of RCBs were conversely shown for India Rx1day, and for 

Rx5day in the United States across scenarios.    

Collectively, the results point towards more sizable RCBs at the regional/national scale 

than with global, land and ocean estimates of Rx1day and Rx5day metrics for thresholds, but 

with more varied values of RCBs under both the RCP 4.5 and RCP 8.5 scenarios. This includes a 

trend towards larger RCB values nationally from the global, land and ocean scales across 

scenarios for present-day 99th percentile events reaching future 95th percentile return levels, most 

especially for RCP 8.5 and 1pctCO2, as with the overall shift from global and land/ocean towards 

the national scales, and with somewhat larger values for Rx1day than for Rx5day. Similarly, the 
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size of the RCBs generally increases in the case of 20-year events reaching future 10-year events 

when shifting from the global/land/ocean scale to the national one. Much like in the global to 

land/ocean case, larger RCBs were generally found for present-day 100-year return levels 

becoming 20-year return levels into the future, as compared with those RCBs linked to 20-year 

return levels becoming 10-year events in the future, but values are overall larger at the national 

level.  

Table 2. National remaining carbon budgets (RCBs) for Rx1day and Rx5day under different 

emissions scenarios. RCBs are calculated based on the difference in cumulative carbon 

emissions between when the present-day 20-year return levels become 10-year return levels in 

the future, and those emissions at present-day. Similarly, RCBs were calculated based on the 

difference in cumulative emissions between when present-day 100-year return levels become 20-

year return levels in the future, and emissions at present-day. Standard errors (SE) are provided 

for each RCB value. RCBs and SEs are given in units of teratons of carbon (TtC). 

United States 

Rx1day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 127 0.70 0.08 

RCP8.5 127 1.08 0.14 

1pctCO2 127 2.29 0.19 

Rx5day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 268 0.32 0.06 

RCP8.5 268 0.15 0.04 

1pctCO2 268 2.29 0.19 

Rx1day 100-year becoming 20-year return level  

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 173 0.70 0.08 

RCP8.5 173 1.08 0.12 

1pctCO2 173 2.29 0.19 

Rx5day 100-year becoming 20-year return level  

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 323 0.32 0.06 

RCP8.5 323 0.15 0.04 

1pctCO2 323 2.29 0.19 

Australia 

Rx1day 20-year becoming 10-year return level  

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 
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RCP4.5 213 0.75 0.08 

RCP8.5 213 0.90 0.10 

1pctCO2 213 1.31 0.14 

Rx5day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 562 0.65 0.08 

RCP8.5 562 1.26 0.13 

1pctCO2 562 1.31 0.14 

Rx1day 100-year becoming 20-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 260 0.75 0.08 

RCP8.5 260 0.90 0.10 

1pctCO2 260 2.08 0.18 

Rx5day 100-year becoming 20-year return level 
Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 1491 0.65 0.08 

RCP8.5 1491 0.45 0.07 

1pctCO2 1491 1.87 0.17 

India 

Rx1day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 223 0.79 0.08 

RCP8.5 223 0.74 0.09 

1pctCO2 223 1.31 0.14 

Rx5day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 415 0.41 0.06 

RCP8.5 415 0.34 0.06 

1pctCO2 415 0.79 0.11 

Rx1day 100-year becoming 20-year return level  

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 297 0.79 0.08 

RCP8.5 297 0.90 0.10 

1pctCO2 297 0.93 0.11 

Rx5day 100-year becoming 20-year return level  

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 765 0.41 0.06 

RCP8.5 765 1.26 0.13 

1pctCO2 765 2.29 0.19 

Brazil 

Rx1day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 229 0.75 0.08 

RCP8.5 229 1.26 0.13 

1pctCO2 229 2.08 0.18 
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Rx5day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 408 0.79 0.08 

RCP8.5 408 1.26 0.13 

1pctCO2 408 1.31 0.14 

Rx1day 100-year becoming 20-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 353 0.75 0.08 

RCP8.5 353 1.25 0.13 

1pctCO2 353 1.87 0.17 

Rx5day 100-year becoming 20-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 718 0.79 0.08 

RCP8.5 718 1.25 0.13 

1pctCO2 718 1.31 0.14 

South Africa 

Rx1day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 119 0.65 0.08 

RCP8.5 119 0.74 0.09 

1pctCO2 119 0.80 0.11 

Rx5day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 206 0.23 0.05 

RCP8.5 206 1.07 0.12 

1pctCO2 206 2.08 0.18 

Rx1day 100-year becoming 20-year return level  

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 165 0.65 0.08 

RCP8.5 165 1.25 0.13 

1pctCO2 165 0.80 0.11 

Rx5day 100-year becoming 20-year return level  

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 300 0.65 0.08 

RCP8.5 300 1.07 0.12 

1pctCO2 300 2.29 0.19 
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Figure 3. National remaining carbon budgets (RCBs) for present-day 20-year return levels 
(95th percentiles) reaching 10-year return levels (90th percentiles) in the future across 
emissions scenarios corresponding to a) Rx1day and b) Rx5day. RCBs are calculated relative to 
the emissions at the present-day, with the present-day 20-year return level being used as the 
baseline here. Error bars are representative of the standard errors calculated for the derived 
RCBs. 
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Figure 4. National remaining carbon budgets (RCBs) for present-day 100-year return levels 
(99th percentiles) reaching 20-year return levels (95th percentiles) in the future across 
emissions scenarios corresponding to a) Rx1day and b) Rx5day. RCBs are calculated relative to 
the emissions at the present-day, with the present-day 100-year return level being used as the 
baseline here. Error bars are representative of the standard errors calculated for the derived 
RCBs. 

 

Local patterns of RCBs 

In this sub-section, I discuss findings for local RCB patterns. Results are presented in 

Figures 5-6 and Table 3. 
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RCB estimates locally/at the grid cell across scenarios capture the broader 

national/regional trends discussed in the previous sub-section, and generally at the global to land 

and ocean scale. Indeed, the findings largely show that present-day 20-year return levels require 

consistently small additional amounts of cumulative CO2 emissions in order to become future 

10-year return levels across all scenarios, as compared with present-day 100-year return levels 

reaching future 20-year values (Figures 5-6, Table 3). For the five locales examined, the results 

similarly reveal that the largest values of RCBs occur with the 1pctCO2 scenario, and smaller 

values across the RCP 4.5 and RCP 8.5 scenarios, with the exception of Montreal Rx5day having 

a smaller remaining budget for 1pctCO2 than with either RCP 4.5 or RCP 8.5. However, the 

results are somewhat more varied in the local analysis than those patterns shown for globally to 

nationally. That said, much like at the national scale, RCBs are shown here to have a tendency of 

being larger for RCP 8.5 than for RCP 4.5, similarly representing a reversal in the pattern from 

the global scale, and in terms of land- and ocean-only. However, the generally larger values 

across RCP scenarios at the local scale shown signify a more significant distinction from the 

national scale, with values more often appearing as about 1.50 TtC or greater for 1pctCO2 

(Figure 5-6, Table 3), leading to a larger spread of RCBs across scenarios. This is similar to the 

global scale Rx5day under 1pctCO2, though RCBs are shown here to be slightly more often 

greater than 1.00 TtC for RCP 8.5 than nationally (Tables 2 and 3). Much like at the global to 

land and ocean scale, RCBs are overall larger for Rx5day than they are for Rx1day, though with 

increased variability at the local scale (Table 3). That being mentioned, for both St. Louis and 

Florida, an opposing pattern was observed, with both locales consistently having RCBs larger for 

Rx1day than for Rx5day (Table 3). The overall largest RCBs were found in the Philippines 

across extreme precipitation indicators and scenarios (0.70-1.87 TtC +/- 0.08-0.17 TtC), while 
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St. Louis showcased the smallest values among the studied locales for its Rx5day events (0.08-

1.13 +/- 0.04-0.13 TtC), followed by Montreal Rx5day (0.45-0.57 TtC +/- 0.07 TtC) (Figure 5, 

Table 3). St. Louis itself carried the absolute smallest RCB under RCP 4.5 for Rx5day (0.08 

TtC), as well as the smallest 1pctCO2 budget (1.13 TtC). 

With respect to the present-day 100-year return levels becoming future 20-year levels, the 

results also display a similar pattern to what was shown for globally to nationally for RCBs. As 

described previously, the RCBs corresponding to the RCP scenarios trend towards smaller values 

than the consistently larger values shown in the 1pctCO2 scenario (Figure 6, Table 3). Much like 

at the national scale, the largest RCBs tied to the 1pctCO2 scenario locally are often higher than 

what was captured globally, as well as with respect to land and ocean. However, for 1pctCO2, 

RCBs are generally slightly lower than at the national scale, though the RCBs corresponding to 

the RCP scenarios are slightly higher than at the national scale overall. The highest values of 

RCBs are found in St. Louis and Florida under 1pctCO2, where 2.08 TtC and 2.29 TtC (+/- 0.18-

0.19 TtC) of cumulative emissions occur, respectively, for Rx1day. For Hong Kong and 

Philippines Rx5day, as well as for Montreal’s Rx1day, RCB values for 1pctCO2 was also large 

(1.87 TtC +/- 0.17 TtC). Conversely, the lowest RCBs are found for St. Louis Rx5day (0.15 TtC 

+/- 0.04 TtC) across the local RCP scenarios, similar to the present-day 20-year return level for 

St. Louis becoming the 10-year value into the future. In Florida, RCBs are shown to be 0.70 TtC 

and 0.90 TtC (+/- 0.08-0.10 TtC) for RCP 4.5 and RCP 8.5, respectively. At the national scale, 

this is consistent with the lower RCB values found for the United States’ Rx5day (0.15-0.32 +/- 

0.04-0.06 TtC), and with respect to RCBs being smaller in Rx5day than in Rx1day. Indeed, 

Rx5day for the United States similarly displayed the lowest RCBs across selected nations.  
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Table 3. Local remaining carbon budgets (RCBs) for Rx1day and Rx5day under different 

emissions scenarios. RCBs are calculated based on the difference in cumulative carbon 

emissions between when the present-day 20-year return levels become 10-year return levels in 

the future, and those emissions at present-day. Similarly, RCBs were calculated based on the 

difference in cumulative emissions between when present-day 100-year return levels become 20-

year return levels in the future, and emissions at present-day. Standard errors (SE) are provided 

for each RCB value. RCBs and SEs are given in units of teratons of carbon (TtC). 

Hong Kong area 

Rx1day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 145 0.70 0.08 

RCP8.5 145 1.26 0.13 

1pctCO2 145 1.49 0.15 

Rx5day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 199 0.75 0.08 

RCP8.5 199 0.59 0.08 

1pctCO2 199 1.87 0.17 

Rx1day 100-year becoming 20-year return level  

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 322 0.75 0.08 

RCP8.5 322 1.26 0.13 

1pctCO2 322 1.68 0.16 

Rx5day 100-year becoming 20-year return level  

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 316 0.75 0.08 

RCP8.5 316 0.59 0.08 

1pctCO2 316 1.87 0.17 

Philippines 

Rx1day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 145 0.70 0.08 

RCP8.5 145 1.44 0.14 

1pctCO2 145 1.67 0.16 

Rx5day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 291 0.75 0.08 

RCP8.5 291 1.44 0.14 

1pctCO2 291 1.87 0.17 

Rx1day 100-year becoming 20-year return level 

Scenario Baseline (mm/day) RCB (TtC) SD (TtC) 

RCP4.5 211 0.70 0.08 

RCP8.5 211 1.08 0.12 

1pctCO2 211 1.31 0.14 
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Rx5day 100-year becoming 20-year return level 

Scenario Baseline (mm/day) RCB (TtC) SD (TtC) 

RCP4.5 603 0.75 0.08 

RCP8.5 603 1.44 0.14 

1pctCO2 603 1.87 0.17 

St. Louis area 

Rx1day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 73 0.65 0.08 

RCP8.5 73 0.74 0.09 

1pctCO2 73 2.08 0.18 

Rx5day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 133 0.08 0.04 

RCP8.5 133 0.15 0.04 

1pctCO2 133 1.13 0.13 

Rx1day 100-year becoming 20-year return level  

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 93 0.65 0.08 

RCP8.5 93 0.74 0.09 

1pctCO2 93 2.08 0.18 

Rx5day 100-year becoming 20-year return level  

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 164 0.15 0.04 

RCP8.5 164 0.15 0.04 

1pctCO2 164 1.13 0.13 

Florida 

Rx1day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 103 0.75 0.08 

RCP8.5 103 1.44 0.14 

1pctCO2 103 1.49 0.15 

Rx5day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 222 0.70 0.08 

RCP8.5 222 0.90 0.10 

1pctCO2 222 1.13 0.13 

Rx1day 100-year becoming 20-year return level  

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 145 0.75 0.08 

RCP8.5 145 1.44 0.14 

1pctCO2 145 2.29 0.19 

Rx5day 100-year becoming 20-year return level  

Scenario Threshold (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 303 0.70 0.08 
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RCP8.5 303 0.90 0.10 

1pctCO2 303 1.13 0.13 

Montreal area 

Rx1day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 48 0.57 0.07 

RCP8.5 48 0.45 0.07 

1pctCO2 48 1.49 0.15 

Rx5day 20-year becoming 10-year return level 

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 120 0.70 0.08 

RCP8.5 120 1.44 0.14 

1pctCO2 120 0.24  0.07 

Rx1day 100-year becoming 20-year return level  

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 61 0.57 0.08 

RCP8.5 61 1.44 0.14 

1pctCO2 61 1.87 0.17 

Rx5day 100-year becoming 20-year return level  

Scenario Baseline (mm/day) RCB (TtC) SE (TtC) 

RCP4.5 181 0.70 0.08 

RCP8.5 181 1.44 0.14 

1pctCO2 181 0.24 0.07 
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Figure 5. Local remaining carbon budgets (RCBs) for present-day 20-year return levels (95th 
percentiles) reaching 10-year return levels (90th percentiles) in the future across emissions 
scenarios corresponding to a) Rx1day and b) Rx5day. RCBs are calculated relative to the 
emissions at the present-day, with the present-day 20-year return level being used as the 
baseline here. Error bars are representative of the standard errors calculated for the derived 
RCBs. 
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Figure 6. Local remaining carbon budgets (RCBs) for present-day 100-year return levels (99th 
percentiles) reaching 20-year return levels (95th percentiles) in the future across emissions 
scenarios corresponding to a) Rx1day and b) Rx5day. RCBs are calculated relative to the 
emissions at the present-day, with the present-day 100-year return level being used as the 
baseline here. Error bars are representative of the standard errors calculated for the derived 
RCBs. 
 

Discussion 

  Extending the TCRE-based analysis from Chapters 3 and 4, I was able to estimate here 

the cumulative carbon emissions needed to meet or exceed various extreme precipitation return 

level thresholds pertaining to Rx1day and Rx5day. It was, therefore, possible to derive RCBs to 

determine the point at which present-day 20-year and 100-year return levels (90th and 99th 
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percentiles) become 10-year or 20-year return levels (90th and 95th percentiles) in the future 

across emissions scenarios from the global to local scale. My findings generally show that from 

globally to locally, RCB values are lowest across the RCP scenarios (i.e. RCP 4.5 and RCP 8.5) 

and highest under the 1pctCO2 scenario. However, whether RCBs are lower or higher across 

scenarios, notably in the RCPs, is spatially-dependent, as well as varying with the return level 

threshold choice. Indeed, there is more variability in RCB values when shifting the analysis from 

the global scale to the local one. Most commonly for RCBs required for 20-year (95th percentile) 

return levels to reach 10-year (90th percentile) return levels, the lowest values of RCBs coincide 

with RCP 4.5 than with RCP 8.5 consistently nationally to locally, but the reverse holds true at 

the global scale, as well as for ocean.  

100-year to 20-year return level trends 

Similarly, in terms of the present-day 100-year return level becoming 20-year return 

levels into the future, RCBs corresponding to RCP 4.5 are generally smaller than for RCP 8.5 

across all spatial scales, with again the exception of globally and ocean only. In both situations, 

the point at which these return levels are reached and/or exceeded frequently coincides at earlier 

future blocks in the RCP scenarios. In the case of thresholds being reached by the first block of 

the RCP scenarios, this represents the minimum RCB of approximately 0.08 TtC (+/-0.04 TtC) 

of additional cumulative emissions from the present-day block (i.e. the first block comprising the 

RCP 4.5 scenario); at the national to even local scale, the RCB value is as low as 0.08 TtC (+/- 

0.04 TtC) in the case of St. Louis Rx5day for the RCP 4.5 scenario, and 0.12 TtC (+/- 0.04 TtC) 

under 1pctCO2 (i.e. land Rx1day for meeting both thresholds). 
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For the 100-year trends, RCBs are generally larger across the cumulative emissions 

scenarios (Figures 2, 4 and 6, Tables 1-3). This is due to the 100-year return level value more 

regularly being reached deeper into the future (i.e. such values are found in latter block maxima). 

As a result, 100-year return levels represent RCBs requiring larger emissions sizes in order to be 

matched and/or exceeded. Nevertheless, although RCBs are generally larger with respect to 100-

year return levels becoming future 20-year levels, the same tendency is observed; that is, budgets 

are similarly smaller in the RCP scenarios than in 1pctCO2. This pattern is further maintained as 

RCBs overall increase across scenarios with decreasing spatial scale. 

Emissions scenario differences 

 Intuitively, the consistently low RCBs found here would make sense in the RCP cases, 

since it is the RCP scenarios that encompass a combination of non-CO2 and CO2 forcings. This 

compares with the 1pctCO2 scenario, which is driven by CO2 only, as opposed to the collective 

response originating with CO2 and non-CO2 forcings included in the RCP scenarios that would 

otherwise match the realistic climate response more closely. Such differences are reflected in my 

results, where smaller values of RCBs consistently occur with the RCP scenarios than for 

1pctCO2, from globally to locally, for reaching and/or exceeding both present-day return levels 

considered. Effectively, such emissions trajectories described for the RCP scenarios reduce the 

extent of allowable additional CO2 emissions needed to reach the precipitation thresholds in 

question. Therefore, it stands to reason that thresholds of extreme precipitation, or potentially 

other climate/weather extremes, could be achieved sooner into the future if either of the RCP 

scenarios examined here are followed in light of the collective contributions from both CO2 and 

non-CO2 forcings. However, the extent to which this occurs varies with the extreme precipitation 
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indicator, spatial scale and threshold selection, with RCBs being consistently at their lowest 

overall globally, for land, and for ocean with respect to the RCP scenarios for reaching present-

day 100-year return level values. RCBs are also generally lower when focusing the analysis to 

reaching present-day 20-year return level thresholds, as compared with reaching and/or 

exceeding 100-year return levels, and they are shown to be overall lower for Rx1day than for 

Rx5day.  

Altogether, these findings suggest that specified extreme precipitation thresholds can 

more quickly be reached at the global scale, as well as in terms of land and ocean. Conversely, 

more CO2 emissions are largely required across scenarios when constraining the analysis to the 

national to local scale, notably for matching or exceeding 100-year return levels. In terms of 

reaching 20-year return levels, RCBs also similarly increase from globally to locally, though 

RCBs linked with 1pctCO2 decrease slightly overall from nationally to locally (Tables 2 and 3). 

Nevertheless, at smaller spatial scales (i.e. nationally to locally), similar patterns are observed 

across scenarios for Rx1day and Rx5day, in which RCBs are at their lowest for the RCP 

scenarios (lowest values dependent on the threshold choice, spatial scale and extreme 

precipitation indicator) and consistently largest for 1pctCO2.  

 As described previously, values of RCBs are shown to be mostly higher for RCP 8.5 than 

for RCP 4.5 for reaching and/or exceeding extreme precipitation thresholds (Figures 1-6, Tables 

1-3). Since cumulative CO2 emissions are prescribed to increase more aggressively in RCP 8.5, 

especially over the course of the latter half of that scenario, this would further explain why RCBs 

are very often larger than in RCP 4.5. Correspondingly, the higher emissions characteristic of 

RCP 8.5 result in higher specified return level values being reached sooner into the future, as 
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compared with similar values occurring later in the RCP 4.5 situation (mostly in the case for 

reaching/surpassing the present-day 100-year return level).  

Conversely, I showed that the 1pctCO2 scenario consistently drives the largest RCBs, 

from globally to locally. As mentioned, this pattern is likely to be an artifact of this scenario 

being comprised of CO2 emissions only, effectively increasing the RCB amounts needed for the 

same thresholds to be reached/exceeded. Therefore, under a CO2-only scenario, it would imply 

that more CO2 emissions would be necessary to reach a given present-day return level. For 

example, in the United States, the 20-year return level of 127 mm/day for Rx1day (Table 2) is 

shown here to be linked to an RCB of 0.70 TtC (+/- 0.08 TtC) under RCP 4.5 and 1.08 TtC (+/- 

0.14 TtC) for RCP 8.5 in terms of matching/exceeding this value into the future, but this same 

baseline value (127 mm/day) is also shown to have a 2.29 TtC (+/- 0.19 TtC) RCB under 

1pctCO2 (Table 2).  

In a counterfactual world, then, where cumulative CO2 emissions are the sole greenhouse 

gas, this provides some indication of how much cumulative CO2 emissions would be required to 

reach some extreme precipitation threshold. It should be noted, however, that in some cases, 

RCBs appear in low amounts under even 1pctCO2 for reaching/exceeding present-day 20-year 

thresholds into the future, as well as in terms of reaching/exceeding present-day 100-year return 

levels (e.g. global Rx5day), stressing that relatively small additional cumulative CO2 emissions 

alone can be sufficient for reaching thresholds of precipitation extremes sooner than later. This 

includes, in some instances, at the national scale, as well as at the local scale (Tables 2-3), 

suggesting that relatively small additional increases in CO2 by itself similarly would be enough 

to meet specified present-day return level thresholds. Particularly significant is the result shown 
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for land-only Rx1day, where the RCB is lowest (0.12 TtC) for 1pctCO2 for both thresholds 

(Table 2). At the same time, the lower RCB values mostly shown for RCP 4.5 indicate that the 

more stringent efforts to limit global emissions by ideally stabilizing these emissions by 2040 

may not be ambitious enough to avoid specified thresholds of precipitation extremes. This 

implies that particularly dangerous levels of Rx1day and Rx5day are, as mentioned, often 

reached rather quickly into the future with only minimal amounts of additional cumulative CO2 

emissions at all spatial scales in question, whether for reaching more intense 10- to 20-year 

return levels into the future, or for reaching present-day 100-year thresholds in future as 20-year 

return levels. 

Similarities between national and local patterns 

Some connections could further be made between national and local trends, as outlined 

previously. In the United States, for example, higher values of RCBs are shown for Rx1day in 

that nation for the RCP scenarios for reaching/exceeding thresholds, including being larger than 

for Rx5day. This diverges from the overall trend of RCBs being characteristically larger for 

Rx5day than Rx1day, including consistently across both extreme precipitation threshold 

categories (Tables 1-3). Subsequently, Florida displays a similar tendency, with Rx5day values 

being much smaller than for Rx1day across RCP scenarios, tracing well the overall pattern 

shown for the United States/national scale (Table 3) to a locale in that nation. In the case of St. 

Louis, the results similarly point to lower RCBs for Rx5day than for Rx1day for reaching 

present-day 20-year and 100-year return levels (Table 3). For both Florida and St. Louis, 

1pctCO2 RCBs are further among the lowest under Rx5day, similar to what is shown at the 

national scale (United States) for that scenario. Ultimately, the United States generally shows 
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small RCBs in principally the RCP scenarios to reach specified selected present-day return level 

thresholds, with similar or increasing sizes of RCBs when advancing to the local scale in that 

nation (i.e. Florida and St. Louis) for reaching/exceeding both threshold selections into the 

future. 

Overall patterns 

  In cases of larger RCBs at the national to local level for either RCP 4.5 or RCP 8.5, as 

described above, higher amounts occur as a result of their present-day return levels being 

matched and/or surpassed later into the future, as opposed to earlier in it in, or close to the first 

block maxima. However, in most cases, my findings indicate that RCBs are still often well under 

1 TtC of cumulative CO2 emissions for reaching thresholds across all spatial scales for either 

Rx1day or Rx5day. This is consistently the case for RCP 4.5. As such, similar RCBs occurring 

across scenarios in a few cases suggest that more intense precipitation extremes into the future 

can be achieved simultaneously, regardless of the emissions pathway. The allowable cumulative 

emissions, thus, required to meet a given extreme precipitation threshold value in the future 

would arguably be quite small across scenarios in light of recent global carbon emission rates 

alone, especially in terms of the total annual emissions featured in the year 2022. Indeed, as 

shown for some nations and locations, present-day 100-year return levels can become 20-year 

return levels with additional allowable cumulative emissions that are well under 1 TtC, such as 

the United States and correspondingly Florida and St. Louis for Rx5day more locally, as outlined 

previously. This may further be representative of patterns in other nations, as well as locations 

within those nations, that are not examined in this work. 
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The smaller amounts of RCBs needed to meet or reach extreme precipitation thresholds 

into the future also reflect the climate sensitivity to even comparatively small global cumulative 

emission rises. This suggests that precipitation extremes, including the most intense among 

these, can strengthen quickly and become more frequent when global CO2 emission 

concentrations only increase by (relatively) low amounts. This implies that, for instance, present-

day 20-year return levels become more regular into the future, along with newer, intensified 

versions of these present-day return levels. This is suggested by these values becoming 10-year 

return levels, or through present-day 100-year levels becoming 20-year events with sometimes 

very limited additional cumulative CO2 emissions.  

To that end, corresponding rises in global to regional temperature would likely foster 

environmental settings that would be conducive to more intense precipitation extremes as 

emissions increase. Indeed, the results indirectly show here the importance of the magnified 

regional warming that realistically drives the rising global mean temperature pattern (e.g. Sun & 

Ao, 2013). This warming is especially significant at mid- to high-latitudes, which would likely 

act to increase the regional climate sensitivity at those latitudes to such warming as global 

emissions rise. The findings presented here would, therefore, broadly support those results 

presented in Sun et al., (2023), showing that (extreme) precipitation increases most significantly 

at low- and mid-latitudes. This is consistent with the overall smaller RCB values that are 

observed when constraining the analysis globally, highlighting the notion that future global, land 

and ocean values of Rx1day and Rx5day can occur sooner than for nationally to locally with 

respect to reaching specified thresholds. This would be especially true in the case of RCP 8.5, 

where cumulative CO2 emissions are as low as 0.15 TtC +/- 0.04 TtC, regardless of the present-

day return level in question (Table 1). The patterns shown for oceanic areas further suggest 
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important implications for land, since intensified precipitation extremes that originate over 

oceans can drift over land areas, causing potentially significant damages from hazards like flash-

flooding and storm surge. This would further indicate intensified precipitation extremes in source 

regions that are critical for the development of tropical cyclones, for example, which is notably 

concerning for those cyclones that potentially make landfall and induce exacerbated coastal 

storm surge (e.g. Gori et al., 2021). Such patterns over the oceans, thus, imply that tropical 

cyclones may inherit intensified precipitation rates at relatively small increases of cumulative 

CO2 emissions in the future. Indeed, the results show here that ocean precipitation extremes 

reach specified return level thresholds quickly into the future (Table 1). 

Although RCBs are generally largest at especially the local scale for reaching and/or 

exceeding present-day return levels, the results presented in this work also do show that some 

locales (and nations) can, indeed, achieve more intense precipitation extremes in the near-future 

at small additional CO2 emissions. This would be in light of likely faster intensification rates 

regionally, possibly attributable to the more magnified warming rates that realistically occur at 

finer spatial scales than what is captured globally. 

At the same time, it should be noted that the RCP scenarios are treated (slightly) 

differently between CMIP5 and the Coupled Model Intercomparison Project Phase 6 (CMIP6). 

For instance, RCP 8.5 in CMIP5 carries CO2 concentrations that are approximately 20% less than 

in CMIP6’s Shared Socio-economical Pathways (SSP) 5-8.5 (Bourdeau-Goulet & Hassanzadeh, 

2021). Despite these differences in the representation of this particular scenario, the results 

presented for RCP 8.5 in this work still could reflect meaningful RCBs relative to the present-

day. Indeed, the present-day, centered on 2012, precedes years that showed largely aggressive 
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increases in globally-measured cumulative emissions. This further suggests less time for 20-year 

or 100-year levels to reach the designated thresholds considered herein. Furthermore, most recent 

years’ emissions have been particularly high; in 2022 and 2023 alone, record levels of global 

CO2 emissions were observed, with levels in 2023 surpassing the record emissions achieved just 

a year prior. As such, CMIP5’s definition of RCP 8.5’s emissions throughout the 21st century 

may, thus, be a closer representation or approximation of reality. 

Possible causes for trends  

In particular, as temperatures rise, this increases the atmosphere’s ability to hold more 

water vapor content, which is a central component in the development of more intense 

precipitation extremes, as well as for many other weather/climate extremes collectively. This is 

consistent with the Clausius-Clapeyron relationship, which describes an increase in atmospheric 

water vapor content of approximately 7% per degree Kelvin/Celsius of warming (e.g. Donat et 

al., 2013). This enhanced humidification would, thus, fuel precipitation development within the 

synoptic to mesoscale systems that often produce these events, mostly through enhanced 

atmospheric instability (i.e. higher CAPE) that favor increased updraft speeds in deep convective 

systems. It is, therefore, likely that such intensification in the Rx1day and Rx5day extremes 

examined here are at least partly the result of more intensified thunderstorms, such as 

enhancements in the environments required for the development of particularly strong to severe 

thunderstorms (e.g. Trapp et al., 2007; Moore et al., 2015; Edwards et al., 2018), as well as other 

modes of deep convection. With decreasing latitudinal thermal gradients, this may also include a 

shift towards slower propagation speeds of mid-latitude cyclones. In turn, this weakened gradient 

further could translate into weaker jet streams and 500-millibar/mid-tropospheric flow that may 
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slow the movement of mesoscale convective systems that typically organize within the synoptic-

scale environments. Such environments would favor slower-moving thunderstorms, which have 

been linked to extreme one-day rainfall events (e.g. Hu et al., 2021). Furthermore, precipitation 

enhancements, notably in one-day amounts into the future may be associated with substantial 

intensification rates in rainfall in tropical cyclones (e.g. Tan et al., 2022). To another end, the 

intensified 20-year return levels shown here (Chapter 4) for Rx5day at all spatial scales from 

their approximate present-day values also suggests potentially more atmospheric blocking at 

higher emission concentrations. Such blocking could create atmospheric/jet stream 

configurations more suitable for significant five-day precipitation (Rx5day) events through, for 

instance, active atmospheric rivers, where plumes of moisture are more frequently allowed to 

fuel mid-latitude cyclone families over the same regions repeatedly for extended periods.  

Enhancements in important global climate modulators of natural variabilities, such as the 

El Nino Southern Oscillation (ENSO), may further play a role in directing precipitation events 

towards more intensified thresholds (e.g. Moore et al., 2015), especially as this natural variability 

works in the same direction as climate change during particularly (strong) El Nino years. At the 

same time, the South Asian wet monsoonal circulation may be enhanced at higher cumulative 

emissions (e.g. Supharatid et al., 2022), which may be linked to the intensified 20-year and 100-

year return levels and location parameter estimates shown in Chapter 4 for India, as well as 

correspondingly the lower RCBs needed to reach India’s present-day return levels for Rx1day in 

particular (Table 2). 

Such factors could largely explain why more intense precipitation thresholds may not 

necessarily require significantly more global CO2 emission concentrations relative to present-day 
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values in order to meet the selected thresholds; in some cases, as mentioned previously, the same 

remaining carbon budgets can sometimes overlap with similar precipitation thresholds across 

scenarios. Therefore, the implication here is that extreme precipitation thresholds can be reached 

under a small range of RCBs across cumulative emissions scenarios.  

Conclusion  

 In this chapter, I extended TCRE-based analyses conducted in previous chapters to derive 

RCBs pertaining to specified thresholds of return levels of precipitation extremes across different 

spatial scales. It was, therefore, possible to estimate RCBs corresponding to the point at which 

present-day 20-year and 100-year return levels of Rx1day and Rx5day become 10-year and 20-

year levels into the future globally to locally, which was the focus of this chapter. My results 

specifically show that for present-day 20-year return levels becoming 10-year return levels in the 

future, and the point at which present-day 100-year return levels become future 20-year return 

levels, RCBs are shown to appear in mostly limited amounts across emissions scenarios used in 

this study. To that end, the RCP scenarios have consistently the least amount of additional 

allowable emissions (notably for RCP 4.5), and with 1pctCO2 conversely having the largest 

globally to locally for Rx1day and Rx5day, regardless of return level selection. Although RCB 

values trended higher when focusing my analysis to the national to local scales (notably in the 

100-year return level analysis), some lower amounts of RCBs sometimes still emerged for the 

nations/regions to locales considered herein. That said, at all spatial scales, there was generally 

more overlap across the RCP scenarios, but nationally to locally, there were further some cases 

where the RCBs tied to the 1pctCO2 scenario more closely approached those RCBs associated 
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with RCP 4.5 and RCP 8.5 (such as for land-only, India, Brazil, South Africa, Hong Kong, the 

Philippines, Florida, and Montreal). 

My results, therefore, offer a different lens through which precipitation extreme 

indicators can be viewed in relation to global cumulative emissions by deriving estimates of 

remaining carbon budgets that are linked to particularly dangerous extreme precipitation levels. 

This is especially important at regional to local scales, where larger gaps in the body of climate 

impacts literature occur. These findings could further potentially be of value in the climate 

adaptation and policy sectors by way of better contextualizing emissions targets that are linked 

with various extreme precipitation thresholds of interest. Notably, I showed that RCBs at all 

spatial scales are generally small in terms of meeting specified emissions targets tied to the 

selected extreme precipitation thresholds examined herein. The extent of RCBs shown suggest 

that even small amounts of additional global CO2 emissions can have a profound impact on 

extreme precipitation events at all spatial scales. Regional magnifications of global warming, 

especially at higher latitudes, thus, raise concern as to regional (extreme) precipitation responses 

in the future. To that end, I showed that, globally to locally, progressively more significant 

extreme precipitation levels can be reached quickly in the future, requiring only very small RCBs 

to meet such thresholds going forward. As such, despite efforts to satisfy emissions targets 

specified in the Paris Climate Agreement that are compatible with thresholds of 1.5 C to 2.0 C of 

global warming relative to the pre-industrial period, I stress that much more stringent targets are 

instead necessary in the hope of avoiding the potential catastrophic impacts that surround more 

intensified precipitation extremes into the future. This is especially important for areas and 

regions that are already below sea level, and where (flash-) flooding is or has become a growing 

concern. More extreme and frequent precipitation thresholds can be notably impactful in 
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urbanized centers, as well as along the flood plain where coastal flooding can be particularly 

significant. I acknowledge, however, that my study employs a broad approach for examining 

precipitation extremes, which realistically appear at the sub-synoptic spatial scales that are not 

meaningfully captured in the coarser model resolutions used for the simulations of extreme 

precipitation events studied in this work. Therefore, upcoming studies could perhaps use a 

similar methodological approach to explore these or similar events at finer scales, or more 

meaningfully the complex environmental conditions that are important to the development of 

precipitation extremes altogether, which could improve the predictability of such events. 

However, an improvement in model resolution would not necessarily be sufficient to 

correspondingly improve precipitation projections; rather, a fundamental approach would be to 

more directly improve the model physics of precipitation and precipitation extremes collectively. 
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Chapter 6: Overall Conclusions 

In this dissertation, I analyzed trends in precipitation extremes at a variety of spatial 

scales by framing them in the context of cumulative (CO2) emissions, primarily determining 

whether precipitation extremes, including the most intense extremes, can be approximated 

by the TCRE, similar to the extent to which global to regional temperatures are framed in 

previous works. As part of this research, I also endeavored to address uncertainties in 

trends of the most extreme precipitation events in response to rising concentrations of 

cumulative emissions by using GEV analyses, as well as placing extremes in the context of 

the remaining carbon budget. I specifically employed simulated precipitation data from a 

consistent set of nine GCMs participating in the CMIP5 to examine trends of global, regional 

and local precipitation extremes by using the extreme precipitation indicators commonly 

studied in the body of climate impacts literature (Rx1day and Rx5day). This data was used 

to address three important overlapping research objectives in this work, which were 

further investigated in the three principal chapters that are centered on the TCRE 

framework. First, I endeavored to frame spatially averaged Rx1day and Rx5day 

precipitation extreme indicators as a function of cumulative (CO2) emissions and determine 

whether linear trends exist at various spatial scales. In my next chapter, I applied EVT for 

the selected extreme precipitation indicators by using specifically the GEV analysis to 

model extreme precipitation behavior. I then proceeded to use GEV analyses to frame 

location parameter estimates and specified return levels as a function of cumulative 

emissions, determining similarly whether these trends can similarly be approximated by 

the TCRE at the global to local scale. In an attempt to further apply TCRE estimates of 

precipitation extreme indictors to derive RCBs linked to thresholds of the most extreme 
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precipitation, in Chapter 5 of this work, I outline two primary objectives: Firstly, I estimate 

RCBs that are linked to present-day 20-year return levels becoming 10-year return level 

values in the future by applying GEV analyses previously derived in Chapter 4, and 

secondly: determine the RCB pertaining to the point at which present-day 100-year return 

levels become the 20-year return level across scenarios, globally to locally. This introduces 

a meaningful approach to quantify precipitation extremes and provide some insight as to 

remaining cumulative CO2 emissions required to reach selected precipitation thresholds 

that may be deemed as dangerous to disastrous. This work also offers a new dimension for 

understanding trends in extreme precipitation events at the regional to local scale and, as 

such, attempts to address some of the uncertainty associated with such events in the 

climate impacts literature. 

I firstly found that trends for selected extreme precipitation indicators largely scale 

linearly with increasing global cumulative emissions, showing that these indicators can be 

well approximated by the TCRE framework. Assessing the TCRE at the regional scale also 

reveals that linear trends in precipitation extremes occur at sub-global scales, as multiple 

nations studied here exhibit the (strong) linear tendencies that are captured globally to 

land and ocean. My results, therefore, show that the TCRE can be applied and extended to 

extreme precipitation, from especially globally to regionally. At the local scale, I conversely 

found no robust trends for Rx1day and Rx5day, though linearity may still exist and could 

simply be masked by background noise caused by the natural variability that would more 

readily be expected at such finer spatial scales. In the next stage of this work, I showed that 

chosen thresholds of precipitation extremes become more intense and frequent with 

increasing cumulative emissions, with consistently increasing linear trends in location and 
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scale parameter estimates for both Rx1day and Rx5day at all spatial scales. Shape 

parameter estimates showed generally no significant trends at regional to local scales, but 

there were more consistently statistically significant decreasing trends displayed globally, 

for ocean, and for land only. The implication, therefore, is that the probabilities of 

occurrence for (the most) intense Rx1day and Rx5day events would decrease over time. 

For nationally to locally, the lack of significant trends in the shape parameter estimates 

suggest that the probabilities of the most intense events in the future remain 

approximately the same as the present-day and historically altogether. However, this also 

suggests that these extreme precipitation events would still become more intense under 

the same or lesser probabilities historically, as location parameter estimates can similarly 

be approximated by the TCRE. The patterns of the TCRE are further reflective in the more 

intense and frequent return levels selected for this study, from globally to locally, as 

emissions rise. It should also be noted that increases in the location and scale parameter 

estimates, nevertheless, favor a trend towards heavier-tailed behavior, despite trends in 

the shape parameter. That said, increasing trends in the shape parameter combined with 

increases in location and shape are particularly concerning, which was shown be the case 

in this work for some nations and locales.  

Expanding on these findings, I further show that selected thresholds of Rx1day and 

Rx5day return levels do not generally require a significant amount of additional global 

(CO2) emissions in order to be reached. For example, present-day 20-year return levels can 

become a 10-year return level into the future relatively quickly across emissions scenarios; 

this is especially the case in both the RCP 4.5 and RCP 8.5 scenarios, with the latter 

representing a substantial amount of annual cumulative emissions that are prescribed to 
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occur throughout the 21st century. However, even in a counterfactual world comprised of 

only CO2 emissions (as in the 1pctCO2 case), the budgets are still shown in this study to be 

relatively limited for land-only, and for some of the studied nations and locations as 

emissions rise. These findings suggest that the most intense precipitation extremes, 

therefore, strengthen very rapidly with even relatively small amounts of additional annual 

cumulative emissions from present-day amounts. This stresses the need to establish more 

ambitious (CO2) emissions targets in order to avoid particularly dangerous extreme 

precipitation events at all spatial scales. Such intensification in precipitation extremes 

could include more substantial precipitation rates observed over the duration of tropical 

cyclones, as well as during strong to severe thunderstorms, which act to exacerbate the 

impacts of (flash-) flooding that are linked to deep convection collectively. Currently-

deemed weak convective systems may, for example, also respond robustly to small 

increases in global emissions, as even these systems would favorably produce more 

significant precipitation rates as atmospheric moistening is expected to increase with 

warmer global temperatures. Indeed, all forms of precipitation extremes rely on some 

extent of atmospheric moisture (humidification) as part of their development, making 

moistening central to better understand the evolution in (extreme) precipitation 

characteristics over time, and the systems that produce them. Indeed, in light of the 

expectation for increased humidification in a warmer global to local climate, precipitation 

extremes are likely to increase in both frequency and intensity, including at rates that 

exceed the Clausius-Clapeyron relation. The linear increase in extreme precipitation shown 

here would be consistent with the wealth of studies that have previously documented the 

(robust) increases expected with atmospheric humidification as cumulative emissions rise 
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into the future. Part of this increase would come from enhanced atmospheric instability, as 

moistening is crucial for the deep convective systems (such as, again, (severe) 

thunderstorms and tropical cyclones)) that account for the majority of precipitation 

extremes to begin with, including the most extreme precipitation events. The combination 

of warmer temperatures and higher concentrations of atmospheric moisture would, thus, 

contribute to enhanced CAPE that favors more robust deep convection. The extent of 

enhanced moistening would also be instrumental in the more persistent wetter patterns 

that occur over a succession of days (i.e. enhanced Rx5day events), such as through large-

scale patterns that are associated with atmospheric rivers. 

It should also be noted that I analyzed precipitation extremes broadly in this 

dissertation, as such events are realistically occurring at much finer spatial scales as 

compared with the much coarser resolutions considered herein. To that end, future 

research could potentially endeavor to examine precipitation extremes using finer-scale 

analyses, as well as, more importantly, the environmental conditions that are often 

necessary for the development of such events. Collectively, however, these findings stress 

that currently established global warming targets associated with specified cumulative 

emissions thresholds are insufficient to avert particularly significant precipitation extreme 

events into the (near-) future. To that end, present-day and recent precipitation extremes 

are and have been a growing concern to human society, especially with respect to (flash-) 

flooding events and their short- to even long-term effects. The extent to which these events 

intensify and increase in frequency in response to even small increases in global 

cumulative emissions is shown here to be substantial. Thus, unless climate policy efforts 

can push global greenhouse gas emissions targets to considerably lower thresholds relative 
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to currently stipulated international agreements, it is likely that precipitation extremes, 

including the most intense precipitation extremes, will favorably increase in both 

frequency and intensity as cumulative emissions continue to rise. That said, meeting 

currently established and/or agreed-upon global emissions/warming targets would more 

likely mitigate the impacts associated with particularly disastrous precipitation events, but 

the findings here, nevertheless, indicate that precipitation extremes would become much 

more intense at such emissions targets, or even at lower amounts globally and at sub-

global scales. As also shown, the RCBs consider only CO2 emissions, and so the collective 

global to regional climate response to global greenhouse forcing would realistically be 

quicker with smaller CO2 emissions, as is indicated in the RCP scenarios. As such, it is with 

more necessity to develop policy frameworks that strive to aggressively adapt to a world 

that may feature (much) more significant extremes if emissions are allowed to rise at rates 

that are compatible with the 1.5 C to 2 C global warming thresholds, or, as shown in this 

work, well under this desired range. 
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