Impact of Linguistic Anti-patterns on Program
Comprehension

Farideh Sanei

A Thesis
in
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of
Master of Applied Science (Software Engineering) at
Concordia University

Montréal, Québec, Canada

August 2024

© Farideh Sanei, 2024



CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Farideh Sanei

Entitled: Impact of Linguistic Anti-patterns on Program Comprehension
and submitted in partial fulfillment of the requirements for the degree of
Master of Applied Science (Software Engineering)

complies with the regulations of this University and meets the accepted standards with respect to
originality and quality.

Signed by the Final Examining Committee:

Chair
Dr. Diego Elias Costa

Examiner
Dr. Emad Shihab

Supervisor

Dr. Yann-Gaél Guéhéneuc

Approved by

Dr. Joey Paquet, Chair
Department of Computer Science and Software Engineering

2024

Dr. Mourad Debbabi, Dean
Faculty of Engineering and Computer Science



Abstract

Impact of Linguistic Anti-patterns on Program Comprehension

Farideh Sanei

Understanding a software system is a major activity during the maintenance and evolution of
the system. Researchers studied how developers understand source code and which factors reduce
program comprehension. They reported that shorter identifier names have a negative impact on
program comprehension. The use of short identifiers is a symptom of a broader naming problem.
Consequently, researchers introduced linguistic anti-patterns (LAs) to describe bad practices in the
naming, documentation, and implementation of code entities, which can have a negative impact on
program comprehension.

In this study, we make the hypothesis that LAs have a small impact on program comprehension
because they can be easily recognised by developers. To test our hypothesis, we conducted an em-
pirical study to investigate whether the occurrences of LAs do indeed affect code comprehension by
asking participants to perform comprehension tasks on code containing or not occurrences of LAs,
with and without prior knowledge of LAs. We also examined whether participants could recognise
LAs by identifying them in various code snippets and assessed the ease of LA recognition with and
without prior knowledge. We also evaluate the impact of knowledge of LA on program compre-
hension and LA recognition. We measured participants’ performance (1) in comprehension tasks
using the correctness of their answers, time spent, and perceived effort and (2) in recognition tasks
also using correctness. Our findings indicate that, while LAs do impact program comprehension,
this impact is small or negligible because LAs are recognised by developers. They also show that
learning about LAs can mitigate their negative impact by improving their recognition rates.

We thus conclude with the possible negative result that linguistic antipatterns may not actually

function as antipatterns, given their minimal impact on program comprehension.
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Chapter 1

Introduction

In this chapter, we introduce the main concepts, objectives, and contributions of this work.

1.1 Overview

Software anti-patterns, in contrast to design patterns (Gamma et al., 1995; Arnaoudova et al.,
2013) are “poor” practices in the design, documentation, or implementation of software artifacts.
They are usually introduced by developers who are not familiar with the software system at hand
and—or do not have enough knowledge and experience in solving some particular problems.(Brown
et al., 1998; Khomh et al., 2012).

Brown, in his book, noted that design anti-patterns can also result from the misapplication of
“good” patterns in the wrong context. He introduced 40 anti-patterns that describe the most com-
mon pitfalls in the software industry. He explained that anti-patterns serve as a strategy to map a
common problem with a straightforward but poor solution. He presented each anti-pattern following
a template that shows the kinds of problems it deals with, indicating the symptoms of the problem
and explaining the typical reasons behind it (Brown et al., 1998).

Design anti-patterns, as poor solutions to recurring design problems while designing or imple-
menting a software system, negatively impact a system by making it more change-prone and—or
fault-prone (Khombh et al., 2012). In the study by (Abbes et al., 2011), several examples of antipat-

terns are highlighted:



* An example of an antipattern is the Blob, also referred to as God Class. The Blob is notable
for its large and complex structure, serving as a hub for a segment of a system’s behavior
while relying solely on other classes for data storage, typically referred to as data classes.
Key features of the Blob class include its large size, low cohesion, and its reliance on data

classes primarily for field storage and accessors.

* Another example of an antipattern is the Spaghetti Code, reflective of procedural thinking
in object-oriented programming. Spaghetti Code classes have little structure, declare long
methods with no parameters, and use global variables; their names and structure may sug-
gest procedural programming. They may not fully leverage object-oriented mechanisms like

polymorphism and inheritance, potentially hindering their effective use.

Previous work reported that design anti-patterns have a negative impact on program compre-
hension (Abbes et al., 2011). Hofmeister et al. (2017) also showed that shorter identifier names
impact program comprehension negatively. Therefore, understanding anti-patterns, as emphasized
by (Bogner et al., 2021), can help reduce the technical debt accumulated in the projects.

Linguistic anti-patterns (LAs) (Arnaoudova et al., 2016) are anti-patterns that pertain to in-
consistencies in the naming, documentation, and implementation of source-code entities. These
antipatterns affect the complexity of a program making it difficult to understand and maintain.

Indeed, researchers found that the identifier lexicon has a direct impact on software understand-
ability and reusability and, thus, on the quality of the final software product (Palma et al., 2015).
In this regard, researchers empirically explored the impact of identifiers and comments on source
code comprehension. Their investigations reveal that programs with comments and those containing
full-word identifiers are more understandable (Arnaoudova et al., 2016).

Brooks, in his theory on understanding programs, considers identifiers and comments as inter-
nal indicators for the meaning of a program. He describes program comprehension as a top-down
hypothesis-driven process, starting with a broad and general hypothesis based on the programmer’s
knowledge of the domain. This hypothesis gets refined to more narrow hypotheses using informa-
tion from the program lexicon, with developers checking details like comments against the code.

In this theory, Brooks warns that comments and code might conflict, and when that happens,



the decision on what to trust (comments or code) depends on the overall support of the hypothe-
sis being tested rather than the type of the indicator itself. This means different developers might
trust different indicators when facing contradictions among code and comments, leading to differ-
ent interpretations of a program (Arnaoudova et al., 2016; Brooks, 1983). Therefore the existence
of inconsistencies has the potential to misguide developers, causing them to form wrong assump-
tions about the behavior of the code and spend more time and effort to comprehend the source
code(Arnaoudova et al., 2016).

Arnaoudova et al. (2013) presented a catalog of LAs (in six categories named simply A, B, C,

D, E, and F) which we summarise in the following with short definitions and examples:

* A. Do more than they say, applicable to methods, contains four LAs that do more than what
their signature and—or documentation indicates. For example, "Set method returns” identifies
setter methods that return a value, which deviates from the conventional practice of setters

not returning anything.

* B. Say more than they do, applicable to methods, includes five LAs that do less than what
their signature and—or documentation indicates. For example, "Get method does not return”
highlights getter methods that, contrary to their name, do not return anything, creating a

discrepancy between the method name and its actual behavior without proper documentation.

* C. Do the opposite of what they say, applicable to methods, includes two LAs that describe
method implementations contradicting their signatures and—or documentations. For example,
"Method name and return type are opposite" identifies methods having a name inconsistent
with their return type (e.g., a method named Disable buthaving ControlEnableState

as return type (Arnaoudova et al., 2013)).

* D. Contain more than they say, applicable to attributes whose declaration implies that they
contain more than what their signature and documentation indicate. For example, "Name
suggests Boolean but the type does not" in which the attribute’s name suggests less (showing

a single instance) than what their type implies (storing a collection of objects).

» E. Say more than they contain, applicable to attributes whose declaration implies that they



contain less than what their signature and documentation indicate. For example, "Says many
but contains one" implies situations where the attribute name is plural while contradicting its

single type, such as an attribute named statistics with a Boolean type.

* F. Contain the opposite, applicable to attributes, describes situations where an attribute dec-
laration or definition is the opposite of what their signature and—or documentation indicates.
For example, "Attribute name and type are opposite" describes attributes in which names
contradict their types (e.g., having antonyms Start as part of the attribute name and End

forming part of its type).

Fakhoury et al. (2018a) studied the effect of LAs and readability on developers’ cognitive load
using a minimally-invasive functional brain-imaging technique (fNIRS) and an eye-tracker. They
reported that LAs have a negative impact on developers’ cognitive load. Arnaoudova et al. (2016)
examined the developers’ perception of the quality of code snippets containing LAs and reported
that developers consider LAs to be poor practices that should be refactored.

Researchers have applied Al for linguistic anti-pattern (LA) detection in recent years. In their
work, Borovits et al. Borovits et al. (2020) tackle the challenge of linguistic anti-patterns in Infras-
tructure as Code (IaC), addressing issues that impede code readability and maintainability. They
propose an automated approach named DeeplaC, utilizing word embeddings and deep learning to
identify LAs in IaC scripts, with experiments demonstrating an accuracy range of 0.785 to 0.915.
Subsequently, Borovits et al. Borovits et al. (2022) introduce FindICI, a novel method employing
machine learning, word embedding, and classification algorithms to detect linguistic inconsistencies
in IaC scripts. The study evaluates FindICI’s effectiveness by focusing on discrepancies between
the logic and brief textual descriptions of IaC code units. This examination leads to the successful
identification of linguistic inconsistencies, achieved through the utilization of classical and deep
learning algorithms as well as various word embedding methods.

Previous work introduced LAs and studied their impact on program comprehension. However,
this previous work had limitations (e.g., the number of participants in their experiments) and could
not show a strong negative impact of LAs on program comprehension, e.g., (Arnaoudova et al.,

2016; Guerrouj et al., 2015).



Thesis Statement
In this thesis, we propose and evaluate the impact of the presence of linguistic antipatterns
(LAs) and the knowledge of LA on program comprehension, we also evaluate the relation be-

tween the impact of LA and recognition of LAs, furthermore, we assess the impact of knowl-

edge of LA on LA recognition rate.

1.2 Research Methodology

Based on our previous work and experience in researching and teaching patterns, including LAs,
we hypothesise that HO: LAs have a small impact on program comprehension because they are eas-
ily recognised as such by developers, who are thus not negatively impacted by their occurrences in
their code. To test our hypothesis, we performed experiments divided into two sets. Our experi-
ments involve a total of 7 LAs and 229 participants. They distinguish between participants without
knowledge of LAs (in an experiment called BeforeLecture) and those with knowledge of LAs (in
an experiment called AfterLecture).

In the first set about comprehension, we ask two research questions about the impact of occur-
rences of four LAs and the knowledge of LAs on program comprehension, before and after lecturing
participants about these LAs. The LAs considered include A2 (“Is” returns more than a Boolean)
and E1 (Says many but contains one), before giving a lecture on LAs to the participants, and A3
(“Set” returns a value) and B4 (Not answered question), after the participants received a lecture on
LAs. In the second set about recognition, we asked two research questions about the recognition of
these LAs by participants, again before and after lecturing participants about these LAs.

Thus, in this study, we ask four research questions divided into two sets:

* First Set of Research Questions: Impact of LAs and LA Knowledge on Program Com-

prehension with and without LA Knowledge.

o RQ1: How do LAs affect developers’ program comprehension? To answer this
research question, we ask the participants to perform two comprehension tasks, using

different code snippets that may or may not contain LAs. We examine whether the



occurrence of LAs in the code affects the time spent by the participants performing the
tasks, their effort, and the correctness of their answers. We show that the presence of
LA has small or negligible impacts on participants’ program comprehension in terms of

correctness and time.

o RQ2: How does knowledge of LAs affect developers’ program comprehension? We
investigate if knowing LAs helps participants understand code snippets when perform-
ing comprehension tasks. We evaluate the participants’ knowledge of LAs through a
questionnaire. Then, we investigate potential correlations between their level of knowl-
edge of LAs and their program comprehension, measured in terms of correctness, time,
and effort. We show that training LA improves participants’ program comprehension in

terms of correctness in the presence of LA.

* Second Set of Research Questions: Recognition rate of different LAs with and without

LA Knowledge.

o RQ3: What is the recognition rate of LAs by unknowledgeable participants? For
each type of LA under study, we define one detection task and study how different types
of LAs affect the participants’ recognition when the participants do not have knowledge

of LAs (BeforeLecture).

o RQ4: What is the recognition rate of LAs by knowledgeable participants? We
repeat the same experiment as in RQ3 but after giving a lecture about LAs to the par-
ticipants (AfterLecture). Thus, we investigate whether knowing LAs changes the recog-
nition rate of LAs compared to the results of RQ3. We show an improvement in LA

recognition rates after learning about them.

The answers to these research questions show that A2 has a statistically significant impact with
a small effect size because it is harder to recognise, with a 35.2% rate of correctly recognised
occurrences before being taught about LAs. E1 also has a statistically significant impact but with a
negligible effect size because it is easier to recognise, with a 63.63% recognition rate. After training,

all the recognition rates are very high, and neither A3 (with a recognition rate of 94.8%) nor B4 (with



a recognition rate of 97.59%) have a statistically significant impact on program comprehension.

The results for the first set also show that teaching about LAs reduces the negative impact of the
LAs on the participants’ program comprehension in terms of correctness with statistical significance
from small/negligible to non-significant. After training participants about LAs, participants have,
on average, more correct answers to the questions involving LAs (97%) compared to when they did
not know LAs (48%). The results for the second set also show an improvement in the recognition
rate after learning about LAs. After training participants about LAs, participants could recognise
them with more than 90% recognition rate.

Thus, we provide evidence supporting our hypothesis: LAs do have an impact on program
comprehension but this impact is mitigated (small or negligible) when the LAs are recognised by
developers. We also conclude that learning about LAs can reduce their negative impact by improv-
ing their recognition rate.

In our study, we also controlled for other factors, such as participants’ experience. Finally, we
studied the recognition of three other LAs, D1, F1, and F2, to understand whether the recognition
rates found for the other four LAs were representative of other LAs. We observed that these three
LAs have low recognition rates before training and we conclude that future work should study their

impact on program comprehension.

1.3 Research Contributions

With the proposed research method, we make the following contributions:

* Impact of LAs on program comprehension: By analyzing data from comprehension ques-
tions, we report that the presence of LAs in a code snippet has a statistically significant nega-

tive impact on correctness and time although with small or negligible effect sizes.

* Impact of LAs knowledge on program comprehension: By analyzing data from compre-
hension tasks comparing the participants’ performance before and after learning about LAs,
we show that acquiring knowledge of LAs significantly improves correctness, from LA pres-

ence having small or negligible impact to not having an impact on program comprehension.



This difference and improvement between the performance of participants with and without

LA knowledge is also statistically significant with a medium to large effect size.

* Recognition rate of different LAs: By analyzing data of detection tasks, we show that the
impact of LAs on program comprehension is proportional to their ease of recognition. The

easier the LAs are to recognize, the less impact they have on program comprehension.

Our contribution is under review for publication as follows:
Farideh Sanei, Zeinab (Azadeh) Kermansaravi, Yann-Gaél Guéhéneuc, Fabio Petrillo; A Large-
scale Empirical Study of the Impact of Linguistic Anti-patterns on Program Comprehension; Sub-

mitted to Information and Software Technology, 2024.

1.4 Thesis Outline

This thesis is comprised of seven chapters. The rest of the study is organized as follows. Chap-
ter 2 discusses the related literature and provides background information about LAs. Chapter 3
describes the used systems, studied LAs, and our detection approach. Chapter 4 describes the de-
sign of our experiments. Chapter 5 presents our results. Chapter 6 discusses these results and threats
to the validity of our study. Finally, Chapter 7 concludes the study and outlines some avenues for

future work.



Chapter 2

Related Work

Multiple studies on source-code identifiers (Caprile and Tonella, 2000; Merlo et al., 2003;
Caprile and Tonella, 1999; Anquetil and Lethbridge, 1998) highlighted the necessity of choosing
appropriate and meaningful identifiers during the implementation of a software system. In a related
context, recent research conducted a systematic literature review on code comment quality assess-
ment, identifying four primary quality attributes that most researchers prioritize, with a significant
emphasis on ensuring consistency between comments and code (Rani et al., 2023). This chapter
provides an overview of previous research concerning the definition of LAs, their detection, and

their effect on maintenance and evolution.

2.1 Definition of LAs

Abebe et al. in (Abebe et al., 2009) proposed the first definition of lexicon bad smells. These
lexicon bad smells are characterized by the use of abbreviations, contractions, and—or strange gram-
matical structures. They report that such lexicon bad smells have a negative impact on concept
location activities. Following this pioneering work, (Arnaoudova et al., 2013) defined a new cat-
egory of smells, linguistic anti-patterns (LAs), related to poor practice in naming, documentation,
and implementation of an entity. They focused on a higher level of detail related to inconsistencies
between method names, parameters, return types, and comments, and also between attribute names,

types, and comments.



Arnaoudova et al. in (Arnaoudova et al., 2013) organized LAs in two categories based on
affected artifacts, i.e., methods and attributes. Table 2.1 summarises these LAs providing their
names, categories, and short descriptions.

Arnaoudova et al. in (Arnaoudova et al., 2016) examined LAs from seven open-source systems
written in C++ and Java to understand how they are perceived by developers. They collected the
opinions of both internal developers (who wrote the code) and external developers who had no prior
knowledge of the studied systems. Table 2.2 summarises their findings. Results indicate that the
majority of developers view LAs as poor practices and awareness of LAs prompts code changes in
%10 of cases.

This previous work provides definitions for the linguistic antipatterns, which are poor naming

practices. We build on these definitions to study tools that could detect these antipatterns.

2.2 Detection of LAs

Researchers in (Tan et al., 2007, 2011, 2012) introduced three techniques to find inconsisten-
cies between code and comments called @iComment, @aComment, and @tComment. iComment
combines Natural Language Processing, Machine Learning, Statistics, and Program Analysis, to
automatically extract implicit program rules from comments and detect inconsistencies, revealing
bugs or bad comments.

De Lucia et al.in (De Lucia et al., 2011) proposed a tool called COCONUT to detect incon-
sistencies between the lexicons of the high-level artifacts describing a software system. The tool
compares the textual similarity of two different artifacts to find inconsistencies.

Researchers in (Abebe and Tonella, 2013) proposed an automatic approach to help developers
choose proper identifiers based on the concepts used in a system. The suggested identifiers are
ranked based on contextual relevance, aiding developers in writing concise and consistent identi-
fiers. The study, conducted through simulations, demonstrates the effectiveness of the approach in
providing completion suggestions that align with developers’ choices, particularly with methods like
term prefixes and neighboring concepts. Results suggest the applicability and potential usefulness

of the proposed identifier suggestion approach in improving code quality and understanding.

10
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In (Arnaoudova et al., 2016), authors introduced Linguistic Anti-pattern Detector (LAPD) as
an extension of CheckStyle, a tool to find inconsistencies among identifiers, source code, and com-
ments. This tool is available online'. They discussed general naming and commenting issues and
provided a catalog covering all possible LAs in methods and attributes (code and comments).

Researchers in (Fakhoury et al., 2018b) investigate the impact of poor source code lexicon
and readability on developers’ cognitive load, employing functional Near Infrared Spectroscopy
(fNIRS) and eye tracking during software comprehension tasks. Emphasizing the critical role of
lexicon quality in program understanding, the study finds a significant increase in cognitive load
when linguistic antipatterns are present in the source code. The research contributes empirical evi-
dence to the link between lexicon quality and developers’ ability to comprehend software, shedding
light on the importance of improving source code readability for efficient software maintenance.

Borovits et al. in (Borovits et al., 2020) performed the LAs detection in infrastructure as code
(IaC) scripts used to provision and manage computing environments. They detected inconsistencies
between the logic/body of IaC code units and their names using an approach that employs word
embeddings and deep learning techniques. They showed that the proposed approach obtains an
accuracy between 0.785 and 0.915 in detecting inconsistencies.

In (Borovits et al., 2022), the authors introduced FindICI, a novel approach that employs ma-
chine learning, word embedding, and classification algorithms to identify linguistic inconsistencies
in scripts for Infrastructure-as-Code (IaC). By focusing on discrepancies between the logic and
short text names of IaC code units, the study evaluates FindICI’s effectiveness with experiments on
Ansible tasks from open-source repositories. Results showed that both classical and deep learning
algorithms, alongside various word embedding methods, successfully identify linguistic inconsis-
tencies in laC scripts.

Al Madi in (Al Madi, 2022) addresses the significance of identifier naming in program compre-
hension and the potential hindrance caused by similar identifier names. The author introduces an
open-source tool, Namesake, designed for Python programs, which detects confusing naming com-
binations based on orthography, phonology, and semantics. By assessing similarity and flagging

problematic identifier combinations, Namesake provides programmers with a valuable resource to

"nttp://www.veneraarnaoudova.com/linguistic-anti-pattern-detector-lapd/
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improve naming quality, offering integration into DevOps pipelines for automated checking and
appraisal, especially when combined with existing coding style checkers.

Palma et al. (2015) introduced DOLAR (Detection Of Linguistic Antipatterns in REST), an ap-
proach employing both syntactic and semantic analyses to detect linguistic (anti)patterns in RESTful
APIs. They applied DOLAR to 15 widely-used RESTful APIs to identify ten linguistic (anti)patterns.
The validation of DOLAR involved analyzing APIs, including those of Facebook, Twitter, and
YouTube. The results showed high accuracy in detecting linguistic antipatterns (LAs) and indicated
the presence of LAs in most of the analyzed RESTful APIs.

Blasi and Gorla (2018) introduced RepliComment, a tool for Java code that automates the de-
tection and classification of source comment clones. It detects copy-and-paste errors in comments,
highlights clones indicative of poorly written comments, and points developers to which comments
should be fixed. They discovered over 11K comment clones in 10 Java projects, with 1,300 po-
tentially critical cases. Manual inspection of 412 RepliComment-identified issues showed a 79%
precision in critical clone detection. Further, examining 200 clones filtered as legitimate revealed
no false negatives.

Palma et al. (2022) investigated the linguistic quality of REST APIs for IoT applications. Propos-
ing the SARAv2 (Semantic Analysis of REST APIs version two) approach, they conducted compre-
hensive syntactic and semantic analyses of 19 REST APIs for IoT applications. They focused on the
detection of linguistic patterns and antipatterns, leading to the development of the REST-Ling tool,
a Web application that automates the identification process. Empirical validation using 1,102 URIs
showcased the tool’s accuracy which is more than 80%. The average detection time for linguistic
antipatterns is short, i.e., 8.396 seconds. Also, the results revealed that linguistic antipatterns are
common, and the tool effectively identifies them.

This previous work showed that it is possible to detect occurrences of LAs in software systems.

We use the LAPD rules to build our detection tool.
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2.3 Impact of LAs

Authors of (Abebe et al., 2011) explored the impact of lexicon bad smells, such as extreme
contractions and inconsistent term use, on software comprehension tasks, specifically focusing on
Information Retrieval (IR)-based concept location. Through a case study on two open-source soft-
ware systems, the authors find that lexicon bad smells significantly affect concept location when
using IR-based techniques. The study suggests that refactoring these lexicon bad smells can have
a positive impact on the task, particularly in systems with relatively low-quality lexicons. The au-
thors plan to further investigate the impact of individual lexicon bad smells on concept location and
extend their approach to other comprehension tasks, conducting empirical studies with developers
to gauge their perception of improved code lexicon.

Researchers in (Abebe et al., 2012) examined the benefits of using LAs information alongside
structural metrics in fault prediction models. They measured the accuracy of prediction models in
two scenarios: (1) only structural metrics and (2) structural metrics and LAs. Through a case study
with three open-source systems (i.e. ArgoUML, Rhino, and Eclipse), they reported a significant
improvement in fault prediction capability, for models using LAs information.

Guerroyj et al. in (Guerrouj et al., 2015) performed an empirical study of the impact of anti-
patterns and LAs on change and fault-proneness in object-oriented systems. Results reveal that,
in some cases, classes with both design and lexical smells are more fault-prone. Additionally,
classes with design smells tend to be more change- and fault-prone than those with lexical smells
only, suggesting potential areas for targeted refactoring efforts. The study recommends focusing
on components with design smells, with future work aiming to understand the interaction between
design and lexical smells through a user study involving professional developers.

Fakhoury et al. in (Fakhoury et al., 2018a) investigated the impact of the quality of lexicons on
developers’ cognitive loads using a functional brain-imaging technique and an eye-tracker. They
provided empirical evidence of the negative impact of poor source-code lexicon on developers’
cognitive loads. Cognitive load is related but not identical to understanding but is a proxy measure

for a subset of understanding, focusing on effort.
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Aghajani et al. (2018) studied the impact of LAs on developers of client projects using APIs.
In the context of modern software development relying on third-party APIs, poorly designed APIs
with LAs can lead to a steeper learning curve, misunderstandings, and bug-prone code. The study,
conducted on 1.6k releases of popular Maven libraries and 14k open-source Java projects, along
with 4.4k related questions on Stack Overflow, investigated whether developers using APIs affected
by LAs are more likely to introduce bugs and ask more questions on Stack Overflow compared to
those using non-affected APIs. While statistical analysis suggests some impact, qualitative analysis
prompts further investigation to better understand the observed phenomenon and isolate the effects
of LAs on code-related activities through controlled experiments.

This previous work showed that LAs influence software development practices and outcomes.
We build on these studies to investigate the practical impact of LAs on the developers’ program

comprehension.

2.4 Conclusion

Previous work introduced and defined LAs as poor practices in naming, documentation, and
code and showed that they can affect program comprehension, which is a crucial aspect of software
quality but they did not study the effect size of the possible impact of LAs. If participants could
recognise LAs, they would not be negatively impacted by LAs occurrences in the code and in case

of any impact, it is probably small or negligible.
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Chapter 3

Study Background

We now describe the used systems, studied LAs, and the detection approach in this thesis.

3.1 Subject Systems

Using convenience sampling (Shull et al., 2007), we chose ten systems written in Java from
different domains, and different sizes: Apache Ant, Apache Hadoop, Apache commons-lang, Ar-
goUML (two versions), Cocoon, JFreeChart, JHotDraw, Hibernate, Rhino, and Xerces. Table3.1
describes the studied systems.

These systems are open source allowing for the replication of our study. We also chose these
systems because previous studies analyzed some of them (ArgoUML, Cocoon, JFreeChart, Xereces)
to study the impact of design anti-patterns on program comprehension (Abbes et al., 2011) and that
of linguistic anti-patterns on change- and fault-proneness (Guerrouj et al., 2015). The last reason
for selecting these systems is that they contain different types of LAs and could be easier/more
complex to understand. For ArgoUML, we considered two versions, because in ArgoUMLO.14
there was a LA of type “F1”, but developers solved it during the software evolution. Other types
of LAs were also removed during the evolution of ArgoUMLO0.14. Hence, we also study the last
version of ArgoUML (ArgoUML0.34).

First, we detect LAs in these systems to find the most frequent LAs. Second, we use different

Java classes and code snippets from these systems as real examples of the occurrences of LAs.
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Table 3.1: Studied Systems and Versions

H Systems and Versions ‘ Release date

System 1 ArgoUMLO0.34 2011-12-15

ArgoUMLO.14 2003-12-05
System 2 Cocoon2.2.0 2013-03-14
System 3 JFreeChart1.0.19 2014-07-31
System 4 JHotDraw7.0.6 2011-09-06
System 5 Rhinol.7.7.2 2017-09-27
System 6 Xerces2-j2-11-0 2010-11-26
System 7 Apache Ant1.10.1 2017-02-06
System 8 Hibernate5.2.12.Final 2017-10-19
System 9 Apache commons-lang-3.7 || 2017-11-08
System 10 || Apache Hadoop3.0.0 2017-12-13

3.2 Studied LAs

(Arnaoudova et al., 2016) studied LAs in seven open-source systems written in C++ and Java
to understand how they are perceived by developers. They collected the opinions of both inter-
nal developers (who wrote the code) and external developers (who had no prior knowledge of the
systems). They showed that developers attributed LAs to maintenance activities or inattention to
naming conventions/comments. About %56 of LAs were deemed removable, and internal devel-
opers had already addressed %10. The study identified the LAs that were perceived as poor by
both external and internal developers, encouraging the use of recommender tools like the developed

Checkstyle extension. Building on these findings, we selected the following LAs for our study:

e A2: “Is returns more than a Boolean”

¢ A3: “Set method returns”

* B4: “Not answered question”

* F1: “Attributes name and type are opposite”

* F2: “Attributes signature and comments are opposite”.

We chose these LAs because they were deemed the least acceptable by developers. These LAs
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were considered poor practices by both external and internal developers. In addition to these five

LAs, we also selected D1 and E1 which are the top two most frequent LAs in the ten subject systems:

* DI: “Says one but contains many”.

* El: “Says many but contains one”
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Figure 3.1a shows the percentages of each type of LA in the subject systems. Figure 3.1b shows
the most prevalent LAs in the studied systems. It shows that D1—“Says one but contains many” and
E1-“Says many but contains one” are the two most frequent LAs in all the studied systems. In the
following, we present some examples of the seven selected LAs to clarify their definitions. More

examples of LAs are available in (Arnaoudova et al., 2013).
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Listing 3.1: Example of A2—*Is returns more than a Boolean” (Cocoon2.2.0)

public int isValid () {
final long currentTime = System.currentTimeMillis () ;
if ( currentTime <= this . expires ) {
// The delay has not passed yet —-—
// assuming source is valid
return SourceValidity .VALID ;
}
// The delay has passed,
// prepare for the next interval.
this.expires = currentTime + this.delay ;

return this.delegate.isValid ();

Listing 3.1 shows an example of “A2—“Is” returns more than a Boolean" LA, which belongs to
the subcategory of “Methods”. In this case, the method name isValid suggests that the method
returns a boolean but it returns an integer, which is counterintuitive. This inconsistency arises

within the class called Delayedvalidity.
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Listing 3.2: Example of A3—“Set method returns” (Apache Ant 1.10.1)

public Object setProperty (final String key, final String value) throws
NullPointerException {
final Object obj = super.setProperty (key, value);
// the above call will have failed if key or value are null
innerSetProperty (key, value);

return obj;

Listing 3.2 presents an example of LA of type “A3”, where the method name is setProperty

but it returns Ob ject. Setters return types should be void.

Listing 3.3: Example of B4—“Not answered question” (ArgoUML v(.34)

protected void hasEditableBoundingBox (boolean value) {
bboxField.setEnabled (value);
bboxLabel.setEnabled (value);

Listing3.3 presents an example of the “B4-Not answered question" LA. The method has
EditableBoundingBox declaredin class StylePanelFighas a name that suggestsaBoolean

value but it returns nothing (void).
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Listing 3.4: Example of D1-“Says one but contains many” (Rhino1.7.7.2)

// constructor

public TableModelCritics () {}

// accessors
public void setTarget(Vector critic){
_target = critic;

// fireTableStructureChanged () ;

Listing 3.4 shows an example of LA of type “D1”. The attribute critic has a singular name

but the type is Vector.

Listing 3.5: Example of E1-“Says many but contains one” (Hibernate-release-5.2.12-final)

public class Caching{
// NOTE: TruthValue for now because I need to look at how JPA’s
SharedCacheMode concept is handled
private TruthValue requested = TruthValue .UNKNOWN;
private String region;
private AccessType accessType;

private boolean cacheLazyProperties;

public Caching(TruthValue requested) {

this.requested = requested;
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Listing 3.5 contains an LA of type “E1”, where the name of the attribute is cacheLazy
Properties while its type is Boolean. The name of the attribute suggests that it stores a

collection of properties but its type is Boolean.

Listing 3.6: F1-Example of “Attributes name and type are opposite” (ArgoUML 0.14)

MAssociationEnd Start = null;

Listing 3.6 presents a LA of type “F1”. The name of an attribute of class Act ionNavigability

is start, while it uses end as a part of the type of the attribute.
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Listing 3.7: F2-Example of “Attribute signature and comment are opposite” (ArgoUML 0.14)

public class SuffixLines extends BaseParamFilterReader implements
ChainableReader {
// Parameter name for the prefix.

private static final String SUFFIX_KEY = ‘‘suffix’’;

// The suffix to be used.

private String suffix = null;

//Data that must be read from, if not null.

private String queuedData = null;

// Constructor for ‘‘dummy’’ instances .

public SuffixLines () {

super () ;

Listing 3.7 presents a LA of type “F2”. The attribute SUFFIX_KEY inclass SuffixLines is

a suffix while the comment documenting it says Parameter name for the prefix.

3.3 Detection

LADP is a tool for identifying inconsistencies among identifiers, source code, and comments
(Arnaoudova et al., 2016). It handles generic naming and comments issues in object-oriented pro-
grams, specifically in the lexicon and comments of methods and attributes. It can detect LAs in

C++ and Java source code, but it is slow on large systems. We implemented an extension of PMD!,

"https://pmd.github.io/
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reusing the same algorithms as (Arnaoudova et al., 2016) to make the detection process faster. This
extension is available on-line”.

PMD is an open-source static Java code analyzer. It is a plug-in for IDEs, like Eclipse or
jEdit. It is used to find bad programming practices that can reduce performance. It also detects
copied—pasted pieces of code and other poor practices. It uses an Abstract Syntax Tree to identify
occurrences of poor practices. We added new rules and rule sets related to each type of LA to detect
linguistic anti-patterns. These rules stem from the definitions of the LAs (Arnaoudova et al., 2016).

We implemented our PMD extension to detect LAs in methods, attributes, parameters, and
documentation. We used the Stanford parser (Toutanvoa and Manning, 2000) to extract the POS
of words and WordNet to obtain the meaning of the words in the documentation, the methods
signatures, and the relations between the words (like antonyms or synonyms).

To ensure that the occurrences of the studied LAs detected in the subject systems were true
instances, we manually verified every code snippet involved in the experiments to confirm the pres-

ence (or absence) of LAs in the snippets.

https://www.ptidej.net/downloads/replications/ist24b/
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Chapter 4

Experiment Design

We now describe our experimental process, participants, questions, hypotheses, and independent
and dependent variables.
4.1 Experimental Process

We performed two experiments to evaluate the impact of LAs on participants’ program compre-

hension. We conducted experiments over six weeks. Figure4.1 shows our experimental process.

BeforeLecture I::> Training I::> Quiz I:> AfterLecture

7\ 78

‘ Group A ‘ | Group B | | Group A | ‘ Group B ‘

Figure 4.1: Experimental Process

The first experiment called BeforeLecture, conducted over one week, involved participants
without prior knowledge of LAs to assess the impact of LAs on program comprehension. Then,
we taught these participants about LAs and evaluated their knowledge of LAs through a quiz test
within one week to ensure that they understood LAs well. To investigate whether knowing LAs can
improve program comprehension in terms of correctness, time, and effort, two weeks later, partici-

pants had one week to perform the second experiment, called AfterLecture. These two experiments
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also allowed us to evaluate the recognition rates of studied LAs among participants with and without
prior knowledge of LAs and to determine whether familiarity with LAs led to improvements in their
recognition rates in terms of correctness.

In BeforeLecture, we provided two similar online questionnaire forms for two groups. Group
A were participants with odd student IDs while Group B were those who had even student IDs.
We divide by student IDs to avoid bias (e.g., gender bias). Each group has six questions related to
different types of LAs. AfterLecture has the same structure as BeforeLecture, but different code
snippets, and different questions.

For each step (experiments and quiz), we asked participants to complete all the tasks within the
same day of their choice, considering the fact that their time for each question is calculated using a

hidden automatic timer.

4.2 Questionnaires

Each questionnaire contains four questions: Q1 and Q2 are general comprehension questions on
excerpts from the studied systems; Q3 is a detection question in a Java class; Q4 includes three sub-
questions Q(4.a to 4.c) to ask participants to find possible LAs in code snippets and to suggest the
refactoring solutions. We provide one questionnaire in Appendix A as an example. The complete
set of questionnaires for BeforeLecture, AfterLecture, and Quiz are available on-line.

We give Q1 to Group A with one particular type of linguistic anti-pattern while Group B is
given a refactored version of the same source code (i.e., with the LA removed). The type of LA
we chose for Q1 is A2 in BeforeLecture and A3 in AfterLecture. We do the contrary for Q2 in
which Group B receives the LA and Group A has the refactored code. The type of LA we chose for
Q2 is E1 in BeforeLecture and B4 in AfterLecture. This way, we can evaluate the impact of LAs
on participants’ program comprehension by comparing their comprehension when LAs are both
present and absent within the same code snippets.

For the first two questions in BeforeLecture, studied LAs are A2 “Is returns more than a
Boolean” and E1 “Says many but contains one” from the attribute category. In the same ques-

tions of AfterLecture, studied LAs are A3 “Set method returns” and B4 “Not answered question”.
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We chose them to be different from LAs in BeforeLecture to understand the impact of these two LAs
on program comprehension. This choice also prevents participants from giving answers based on
what they learned by experience during the first experiment, which we discuss further in Section6.4
related to the threats to validity.

For BeforeLecture, in the first question (Q1), we asked participants to find the method name that
does a specific task to understand whether bad method naming can impact their understandability,
and for the second question (Q2), we asked them a similar question, but now focusing on variables,
to understand how bad attribute naming can affect their understandability. We asked participants in
Q3, which element(s) were responsible for confusion (in case they reported to have been confused
by some identifiers and—or comments). Q(4.a to 4.c) were about finding bad coding practices in
some code snippets and comments. In AfterLecture, for both questions (Q1, and Q2), we asked
comprehension questions on code containing “A3”, and “B4”, to understand the impact of these two

LAs on code understandability. Q3 and Q(4.a to 4.c) were similar to those asked in BeforeLecture.

4.3 Questions

We used comprehension and detection questions to collect data on the participants’ perfor-
mances. We selected the Java classes and code snippets from the studied systems based on the
studied LAs and ensured that each Java class and code snippet contained only one type of LA. We
also produced refactored versions of these code snippets (containing no LA).

Similarly to (Abbes et al., 2011), we considered questions in two of the four categories of

questions regularly asked and answered by developers (Sillito et al., 2008):

* Finding a focus point in some subset of the classes and interfaces of some source code, rele-

vant to a comprehension task;

* Focusing on a specific class that is believed to be associated with some particular task and on

directly related classes;
» Understanding a number of classes and their relations in some subsets of the source code;
* Understanding the relations between different subsets of the source code.
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We only chose questions in the first two categories, because the last two categories include
questions that depend on different subsets of the source code, and, in our experiments LAs are
located in a single subset of the code (i.e., they do not span multiple classes).

For each group of participants, we defined the following two categories of questions:
* Category 1: Finding focus points:

(1) Which method is used to determine this value?

(2) How does this assignment affect this variable?
» Category 2: Expanding focus points:

(1) Where is the bad coding practice (respectively LA) in this method?

(2) Where is the source of confusion in this method?

The text in bold is a placeholder that we replaced with appropriate behaviors, concepts, elements,
methods, and types depending on the systems on which the participants were performing their
tasks. For example, in the case of Apache Ant, we replace “this value” in Question 1, Category
1, by restricted and the question reads: “Which method is used to determine the value of the
restricted attribute in the following link (Click on the link to show the snippet code)?”.

After designing the survey questionnaires, to evaluate our questions we conducted a pilot study
with five students from our research group, who are experienced developers. Using their feedback
we refined the formulation of some questions before starting our study. We ensured to ask questions
that were neither too simple nor too difficult while providing the data that we needed to answer our

research questions. All the questions used in our experiments are available online?

4.4 Variables

The independent variables of our experiments are variables capturing the presence/absence of
the seven studied LAs, and a variable capturing whether participants acquired or not knowledge of
LAs. These are variables that could affect the participants’ program comprehension.

We have six mitigating factors that could influence the participants’ program comprehension in

terms of correctness, time, and effort, as follows:
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* Participant’s age

* Participant’s gender

* Participant’s degree

* Participant’s knowledge level of programming
* Participant’s working experience

* Participant’s level of English fluency

We collected these mitigating factors using a postmortem questionnaire (feedback). This feed-
back questionnaire was filled out by participants at the end of BeforeLecture. We evaluate the
impact of these mitigating factors on program comprehension in Section6.3.

The dependent variables measure the participants’ program comprehension in terms of the cor-
rect answers, the time spent answering the questions, and the effort spent doing the task.

We measure the participants’ effort using the NASA Task Load Index (TLX) (Hart and Stave-
land, 1988). TLX is a multi-dimensional measure that evaluates the participants’ subjective work-
load based on a weighted average of their ratings on six scales: mental demands, physical demands,
temporal demands, own performance, effort, and frustration. We consider three scales including
“mental demands”, “effort”, and “frustration” related to one of our metrics “Effort”. NASA pro-
vides a computer program to collect weights for the six scales and ratings on these six scales. We
combine weights and ratings provided by the participants into an overall weighted workload index
by multiplying ratings and weights; the sum of the weighted ratings divided by fifteen (sum of the
weights represents the effort)(Hart and Staveland, 1988).

An example of questions asked from participants to capture “mental demand” is: “How much
mental and perceptual activity was required (e.g., thinking, deciding, calculating, remembering,
looking, searching, etc.)? We asked the participants to provide their responses on a scale from 1
(low) to 5 (high) for each question.

We measured the time using a hidden timer in the questionnaires (BeforeLecture and AfterLec-
ture). The timer automatically started when the participant began performing the comprehension

task and stopped when the participant finished the task and submitted an answer. We received an
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automatic email whenever a participant completed a task. The email contains their answers to the
tasks, the time they spent on the tasks, and their reported effort (from TLX). To detect correct an-
swers, we defined some keywords for each question and made a query based on these keywords
instead of reading the whole answers.

To compute correct answers, we defined some keywords for each question and made a query
based on these keywords instead of reading the whole answers. The keywords consisted of methods
or attribute names that were necessary to exist in the correct answers. We initially filtered partic-
ipants’ answers based on the presence of these keywords. Then, we performed further evaluation
on the responses passing this criterion to ensure the validity of the entire answer. We manually

identified correct answers for questions not specifying method or attribute names.

4.5 Participants

A total of 229 participants were involved in our experiments. These participants were stu-
dents from Polytechnique Montréal (PM) and Concordia University (CU). The participants from
PM were students attending the courses LOG8430 (Software Architecture and Advanced Design)
and LOG8371 (Software Quality Engineering), while those from CU were enrolled in the course
SOENG6461 (Software Quality Engineering). Most of the participants reported having good English
and programming skill levels. participants were mostly men, with bachelor’s degrees and aged
mostly between 18 to 25. A majority of them had between 1 to 3 years of experience working in
industry before their studies.

The courses LOG8430 and LOG8371 are cross-listed, and attended by both engineering students
and master’s students. The majority of the students from PM were engineering students. The course
SOENG6461 is a graduate core course, mandatory for all graduate students enrolled in the master’s
program in software engineering at CU. The students from PM had extensive training in software
engineering, including software quality and antipatterns and code smells while the students from CU
had very diverse backgrounds, most without prior knowledge of software quality. This experiment
was as an assignment for these courses and participants could get extra points for their final grades.

The number of participants in the two experiments is different and that is due to the voluntary
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nature of the experiment, where participants were not forced to participate in the experiments. This
variation explains the different numbers of answers per LA in BeforeLecture and AfterLecture. For
example, in BeforeLecture for PM, Group A which answered a question about 'F2’ consisted of
77 participants, while in AfterLecture, Group A, which worked on the same LA ("F2’), included
45 participants. We chose to keep the results of all students who participated in our experiments to
ensure the precision of our findings. This is rare to have such a high number of participants, as in

the field of software engineering, obtaining a large number of participants is typically challenging.

4.6 Collected Datasets

Table4.1 summarises the experiment datasets. For each experiment (BeforeLecture and After-
Lecture), each question (Q1 to Q4.c), and each Group (A or B), we have a dataset. We combine
these datasets into different combinations to perform our statistical analyses and test our hypotheses.

The datasets collected for our hypotheses are:

* DS)_4 consist of data from code snippets with LA and their corresponding code snippets

without LA considering each question (Q1 and Q2) and each experiment separately.

* DS5_g consist of the combination of withs in Q1 and Q2 and the combination of withouts in

Q1 and Q2 in BeforeLecture/AfterLecture.

e DS7 consists of the combination of all the withs and the combination of all the withouts

available in both questions of both experiments.

e DSy consists of the combination of withs in BeforeLecture and the combination of withs in

AfterLecture in both questions.

e DSg_11 consist of the above datasets for PM/CU/the combination of PM and CU datasets

(called Combined dataset).
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Table 4.1: Experiment Datasets (“Correct” indicates the code snippets do not contain any LA.)

Question BeforeLecture AfterLecture
Group A Group B Group A Group B
Ql A2 (with) A2 (without) | A3 (with) A3 (without)
Q2 E1 (without) | E1 (with) B4 (without) | B4 (with)
Q3 F1 F1 D1 D1
Q4.a F2 D1 F2 F2
Q4.b Correct Correct F1 F1
Q4.c Correct F2 A3 A3

4.7 Hypotheses

We formulated eight hypotheses to investigate our first set of research questions, including RQ1
(H1-H7) and RQ2 (HS8), as detailed in Table4.2. We defined H1 to H7 to assess the statistical
significance of differences in terms of correctness, time, and effort between participants working on
code snippets with LAs and participants working on code snippets without LAs. We defined these
hypotheses to answer RQ1 and see if the presence of LAs has any statistically significant impact
on program comprehension. We defined H8 to study whether there are any statistically significant
differences between participants who were unfamiliar with LAs and those knowledgeable about LAs
in terms of correctness, time, and effort. Using this hypothesis, we can answer RQ2 on whether
knowing LAs can mitigate their impact on program comprehension. These hypotheses are then
tested using data collected from comprehension questions.

To ensure the validity of the results of hypotheses testing, we assess the normality of our data
using the Shapiro-Wilk test. Depending on its result, we then employ a non-parametric test for
non-normally distributed data and a parametric test for normally distributed data. We should then
carefully consider the appropriate test, taking into account whether our compared variables are of
the same size or unequal sizes. After applying the test and finding statistically significant values in
our hypotheses, we should find the direction of these significant values. We calculate the average of
the compared variables for this purpose.

In H1 to H7, we check all reasonable comparisons of participants’ answers, their time, and

effort to the questions with and without LAs in each and both experiments. Considering N=1 to 7,
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we generally write our hypotheses as follows:

HN': {Before learning, After learning, Combining both experiments}, given {Q1/Q2/Q1

& Q2}, there is no difference in terms of correctness, time, and effort between partici-

pants working on code with LAs and participants working on code without LAs.

HS is given Q1 & Q2, there is no difference in terms of correctness, time, and effort between

participants having knowledge of LA and participants not having knowledge of LA.

Table 4.2: Hypotheses

Hypothesis | RQ Number Experiment Experiment Question
H1 RQ1 BeforeLecture Ql

H2 RQ1 BeforeLecture Q2

H3 RQ1 BeforeLecture Q1 & Q2

H4 RQ1 BeforeLecture & AfterLecture | Q1 & Q2

H5 RQ1 AfterLecture Q1

Ho6 RQI1 AfterLecture Q2

H7 RQI AfterLecture Q1 & Q2

H8 RQ2 BeforeLecture & AfterLecture | Q1 & Q2

The results support H1 to H7 if they align with our hypotheses,

showing that the presence of

LA does not affect program comprehension in terms of correctness, time, and effort. The results

support H8 if they indicate that having knowledge of LA does not affect program comprehension

in terms of correctness, time, and effort. Conversely, if the result for H1 to H7 shows that the

presence of LA affects program comprehension in terms of our metrics and the result for H8 shows

having knowledge of LA affects program comprehension in terms of our metrics, we consider it a

rejection of our hypothesis. We also calculate the effect size of any significant value to quantify the

magnitude of the difference. The choice of effect size measure also depends on the normality of our

data and the size of the variables.
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Chapter 5

Results

This chapter presents the results for the first set of RQs (investigating the impact of LAs and LA
knowledge on program comprehension) and the second set of RQs (evaluating the recognition rates

of different LAs by unknowledgeable and knowledgeable participants).

5.1 First Set of Research Questions

In the first set of research questions including RQ1 (how do LAs affect developers’ program
comprehension?) and RQ2 (how does knowledge of LAs affect developers’ program comprehen-
sion?), we present the results of evaluating the impact of LAs and knowledge of LAs on program
comprehension by analyzing the first two comprehension questions (Q1 and Q2). We applied the
Shapiro-Wilk test to our dataset and discovered that none of the collected data had a normal dis-
tribution, leading us to choose among non-parametric statistical tests for our analyses. Moreover,
in some hypotheses, the variables being compared had unequal sample sizes. Based on these two
observations, we chose the Mann-Whitney U test because it is a non-parametric test that can handle
unequal sample sizes, with a significance level set at alpha = 0.05. For the same reasons, we chose
Cliff’s delta, a non-parametric measure that suits our data, to evaluate the effect size. Tables from
Table 5.1 to Table 5.8 summarise the p-value computed by the Mann-Whitney U test for our hy-
potheses on the three datasets including Concordia, Polytechnique, and the Combined (combination

of Concordia and Polytechnique) datasets. The statistically significant values are shown in bold.
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The table also represents the effect size for the statistically significant values.

Table 5.1: Hypotheses Results for H1

Correctness Time Effort
p-value | Avg. With | Avg. Without | p-value | Avg. With | Avg. Without | p-value | Avg. With | Avg. Without | No. Responses
Concordia 0.12 0.5 0.65 0.30 8489.1 6968.01 0.16 2.85 3.12 100
HI Poly 0.37 0.27 0.34 0.000002 541.62 2570.8 0.527 2.66 2.5 129
Effect Size - - - 0.49 - - - - - -
Combined 0.017 0.35 0.509 0.005 3346.6 4489.32 0.29 2.73 2.82 229
Effect Size -0.15 - - 0.21 - - - - - -
Table 5.2: Hypotheses Results for H2
Correctness Time Effort
p-value | Avg. With | Avg. Without | p-value | Avg. With | Avg. Without | p-value | Avg. With | Avg. Without | No. Responses
Concordia 0.70 0.58 0.54 0.45 13548.9 8842.28 0.04 3.20 2.83 100
H2 Effect Size - - - - - - 0.22 - - -
Poly 0.01 0.69 0.87 0.63 111570.30 1730.38 0.92 2.71 2.70 129
Effect Size -0.17 - - - - - - - - -
Combined 0.048 0.63 0.75 0.138 12613.5 4440.4 0.058 297 2.74 229
Effect Size -0.11 - - - - - 0.13 - - -
Table 5.3: Hypotheses Results for H3
Correctness Time Effort
p-value | Avg. With | Avg. Without | p-value | Avg. With | Avg. Without | p-value | Avg. With | Avg. Without | No. Responses
Concordia 0.392 0.55 0.61 0.8431 11423.8 7755.2 0.6615 3.06 3 200
H3 Poly 0.0004 0.44 0.65 0.000009 4987.2 2069.1 0.73 2.68 2.62 258
~ | Combined 0.01 0.48 0.63 0.02 7798 4552.1 0.60 2.84 2.78 458
Effect Size 0.48 - - 0.16 - - - - - -

5.1.1 RQ1: How do LAs affect developers’ program comprehension?

To answer this question, we consider hypotheses H1 to H7, which explore all possible relations
among code snippets with and without LAs in BeforeLecture and—or AfterLecture. In the following,
we analyse the participants’ answers to each question considering the correctness of their answers,
their spent time, and their effort. Tables including Table 5.1 to Table 5.7 summarise the results
computed by the Mann-Whitney U test for defined hypotheses.

Correctness : The test results show that H5 to H7 lack statistical significance, whereas H1
to H4 exhibit statistically significant differences in terms of correctness. The results show that
participants working on a piece of code snippet without LA had higher correctness in answering
the questions compared to the others, implying a better understanding of code. As mentioned in
Section4, we computed the effect size for the ones that show a significant difference. The calculated
effect sizes present a large effect size for H3 and small or negligible effect sizes for the remaining

three hypotheses.
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Table 5.4: Hypotheses Results for H4

Correctness Time Effort
p-value | Avg. With | Avg. Without | p-value | Avg. With | Avg. Without | p-value | Avg. With | Avg. Without | No. Responses
Concordia 0.63 0.77 0.78 0.92 27868.8 24750.4 0.41 3.23 3.13 418
He Poly 0.056 0.68 0.76 3.72¢-07 9160.6 2553.2 0.14 2.79 2.62 394
Effect Size | -0.082 - - 0.28 - - - - - -
Combined 0.01 0.69 0.77 0.02 16413.6 13979.8 0.57 2.95 2.88 812
Effect Size -0.07 - - 0.09 - - - - - -
Table 5.5: Hypotheses Results for H5
Correctness Time Effort
p-value | Avg. With | Avg. Without | p-value | Avg. With | Avg. Without | p-value | Avg. With | Avg. Without | No. Responses
H5 | Concordia | 0.827 0.959 0.95 0.73 68844.5 52666 0.29 3.48 3.25 109
Poly 0.22 0.97 0.91 0.27 42533 5800 0.11 242 278 68
Combined 0.36 0.96 0.93 0.29 37923.2 39679.2 0.29 297 3.12 177

We conclude that the occurrence of linguistic anti-patterns negatively impacts the comprehen-

sion of the code snippets with small or negligible effect sizes.

Time : For each research question, we observed the same trend whether we considered outliers
or not, so we chose not to remove them to have more data for our analysis. We assumed that the
outliers are due to participants who did not consider the time, i.e. they opened a question and took
a break. Indeed, participants did not know that the time was recorded because the timer was hidden
to ensure that participants could answer the questions without feeling pressured by time constraints,
fostering a more accurate and natural response.

Results obtained from performing the Mann-Whitney U test on H3 and H4 show statistically
significant differences with small or negligible effect size, in terms of Time. They show that partic-
ipants working on a piece of code with LA spend more time answering the questions than others.
Also, there is a significant value in terms of time for H1, it rejects the hypothesis with a large effect
size for Polytechnique and a small effect size for the Combined dataset by showing that participants
working on a piece of code with LA spend less time answering the questions than others. When we
consider the results of H3 and H4, which include more participants than H1, the results are signif-
icant. Therefore, based on the results from H3 and H4, we conclude that participants spend more
time comprehending the code snippet with LA. However, the effect size is not that large.

Explanations: The inconsistency in time taken in H1 could be due to the performance of the
Polytechnique population in handling code containing LA type A2. It seems that participants from
Polytechnique may have experienced more confusion or challenges when answering questions hav-

ing LA type A2. As a consequence, this factor has influenced the Combined data, leading to a
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Table 5.6: Hypotheses Results for H6

Correctness Time Effort
p-value | Avg. With | Avg. Without | p-value | Avg. With | Avg. Without | p-value | Avg. With | Avg. Without | No. Responses
H6 | Concordia 0.45 0.98 0.95 0.39 21813 252522 0.96 3.31 3.28 109
Poly 0.17 0.95 1 0.68 199 2281.1 0.19 291 2.55 68
Combined 0.90 0.975 0.978 0.16 15824.1 14255.4 0.13 32 2.93 177

Table 5.7: Hypotheses Results for H7

Correctness Time Effort
p-value | Avg. With | Avg. Without | p-value | Avg. With | Avg. Without | p-value | Avg. With | Avg. Without | No. Responses
H7 | Concordia 0.47 0.97 0.95 0.95 49956.07 40342.4 0.48 3.39 3.26 218
Poly 1 0.97 0.97 0.82 2882 3471.6 0.84 2.5 2.63 136
Combined 0.55 0.97 0.88 27560.3 | 26177.37 0.76 3.08 3.02 354 177

contradiction with H1 and a reduction in the overall effect size to a small value due to its combina-

tion with the Concordia dataset.

Based on our observations, we conclude that the occurrence of LA can increase the time to

comprehend a code snippet, with a small effect size.

Effort: The statistical test results on H2 indicate a statistically significant difference in terms of
effort between participants dealing with the code snippet including LA and the ones without LA. It
shows participants reading a piece of code snippet with LA type E1 make more effort in answering
the question than the others. We obtained the effect size of small and negligible for Concordia and
Combined datasets respectively.

Explanations: The reason could be related to the type of LA which shows that participants in
Concordia had a difficult time finding correct answers in the code snippet containing the LA type E1
"Says many but contains one". Furthermore, the effort in H2, being the only statistically significant

result for this metric, may have been produced by chance.

Our observations show that occurrences of linguistic anti-patterns do not significantly impact

the effort to understand code, except for type EI with, at most, a small effect size.

Conclusion for RQ1
Based on our observations for this research question, we conclude that LA presence increases
time and decreases correctness to comprehend the code. However, the magnitude of this effect

is small or negligible. This result is statistically supported for the PM dataset but not for the

CU dataset.
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5.1.2 RQ2: How does knowledge of LLAs affect developers’ program comprehen-

sion?

In this research question, we want to know if the participants’ comprehension of code is propor-
tional to the level of their knowledge (of LAs). To achieve this goal, after performing BeforeLecture,
we taught participants about LAs, their consequences, and possible refactoring solutions and right
after the lectures, we conducted a quiz to capture the level of knowledge of the participants. We
defined our hypothesis, H8, to answer this research question.

Figure5.1b presents the number of correct answers for each question of the quiz for the partici-
pants from Concordia University. In the quiz, Questions 1, 2, and 3 are general definition questions
and more than 93% of the participants answered them correctly. After these first three questions, we
asked participants to detect LAs in four different code snippets containing respectively A2, A3, D1,
and F1. Figure5.1b shows that more than 96% of participants could detect A2, A3, and F1 correctly.
The participants were less successful in detecting D1, but still, almost 85% of participants answered
the corresponding question correctly. At Polytechnique Montreal, Figure5.1a shows that more than
85% of participants could detect A2, A3, and F1 successfully. In general, all participants displayed

a good knowledge of LAs after the lectures, showing that our teaching was efficient.
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Figure5.2 presents the results of the quiz for participants from Polytechnique Montreal and
Concordia Universities separately. Almost all the participants could answer more than 85% of the
questions correctly. Therefore, we conclude that the participants on average have a good knowledge
of linguistic anti-patterns in theory and practice.

The results from RQ1 indicate an improvement in participants’ performance, showing a reduc-
tion in the impact of LA presence on program comprehension. Initially, the impact was significant
with small or negligible effect sizes in the BeforeLecture. However, this impact decreased to non-
significant in the AfterLecture. This suggests that learning about LAs can mitigate their impact
on program comprehension. We also conducted a statistical analysis to confirm the difference in
participants’ performance before and after acquiring knowledge about LAs.

Statistical Results: The statistical tests conducted on H8 revealed a statistically significant
difference with a medium to large effect size, in terms of correctness (Table 5.8 represents the
results). It shows that participants who have knowledge of LAs have more correct answers when
answering the questions with LA than the participants who do not have knowledge of LAs. There is
also a statistically significant difference in terms of effort between participants who have knowledge
of LA and the participants who do not have knowledge of LA, although it rejects our hypothesis, it
shows that when working with LAs, participants who have knowledge of LAs make more effort to
answer the questions than the participants who do not have knowledge of LAs. The effect size for

the CU dataset is small, the effort impact is propagated in the Combined dataset but because of its
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combination with the PM dataset, its effect size is negligible in terms of effort.

The analysis of H8 shows statistically significant differences in terms of time between students
at Polytechnique Montreal University, and also between students at Concordia University, with
small effect sizes. Surprisingly, the results for the Concordia dataset reject the hypothesis by indi-
cating that participants with knowledge of LA spent more time answering the questions. However,
when considering the combined dataset, the effects of results for participants of CU and PM seem

to neutralize each other, resulting in non-significant differences in terms of time.

Table 5.8: Hypotheses Results for H8

Correctness Time Effort
p-value | Avg. With | Avg. Without | p-value | Avg. With | Avg. Without | p-value | Avg. With | Avg. Without | Responses

Concordia | 4.67e-13 0.55 0.97 1.23e-04 11423.8 42956 0.04698 3.06 3.39 209

HS Effect Size -0.42 - - -0.30 - - -0.15 - - -
Poly 3.73e-13 0.44 0.97 0.003 4987.2 2882 0.4131 2.68 2.58 197
Effect Size -0.52 - - 0.25 - - - - - -
Combined | <2.2e-16 0.48 0.97 0.17 7798.01 27560.3 0.04 2.84 3.08 406
Effect Size -0.48 - - - - - -0.10 - - -

Explanations: Analyzing the performance of students at CU and PM without prior knowledge
reveals interesting findings. Before learning about LA, CU students had less knowledge of patterns
compared to their PM counterparts. However, after attending the lecture on LA and evaluating
their answers, CU students showed remarkable progress in correctness. This progress was at the
cost of more time and perceived effort, indicating their careful approach and commitment to fully
understand the concepts. In contrast, PM students, who had better backgrounds because they already
passed a course related to design patterns and anti-patterns (Section4.5), after the lecture showed
better performance, resulting in higher speed and more accuracy in their responses.

We believe that the initial difference in familiarity with design anti-patterns and design patterns
between CU and PM students influenced their performance. After learning about LA, CU students
made significant improvements in correctness, although it required more time and perceived effort.

Meanwhile, PM students showed a swift and more confident approach after learning.

We conclude that having knowledge of linguistic anti-patterns can mitigate the negative impact

of LAs, increasing the correctness with a medium to large effect size.
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Conclusion for the first set of RQs

When examining the impact of LAs, we observed that there is a statistically significant effect;
however, the effect size tends to be small or negligible. This observation suggests that while
LAs have a negative influence on program comprehension, it may not be substantial. How-
ever, when considering the aspect of learning about LAs, we observed a different trend. The
impact on correctness is statistically significant and the effect size varies between medium and
large. This finding implies that actively learning about LA has a significant positive impact
on correctness, and the effect size is more substantial. Considering these findings, it would be
beneficial for our community to enhance awareness and encourage the understanding of LAs
among students. This can lead to students benefiting from the medium to large effect size in

improved correctness and overall comprehension of code associated with learning about LAs.

5.2 Second Set of Research Questions

In this set of research questions, we investigated the recognition rate of our studied LAs by

participants both before and after acquiring knowledge of LAs.

5.2.1 RQ3: What is the recognition rate of LAs by unknowledgeable participants?

In this research question, we analyze the data obtained during BeforeLecture regarding LAs type
A2 and El. In BeforeLecture, we investigated the recognition rate of these LAs by participants, in
terms of correctness. We did not consider time and effort when answering this research question
because the level of complexity of code snippets used in the different questions is not equivalent.
Some questions include small code snippets, while others include larger code snippets. As it is ex-
pected that participants will take a longer time and make more effort inspecting a larger code snippet

than a smaller code snippet, a comparison of time and effort would not have been meaningful.

A2- “Is returns more than a Boolean” Participants from Group A in BeforeLecture, answered
the first question (Q1) including this type of LA. The results show that 42 participants out of 119

(35.29%), could answer the question correctly.
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A2- “Is returns more than a Boolean” could be recognised with a reasonable rate.

E1- “Says many but contains one” In BeforeLecture, the second question for Group B contains

El. In total 70 out of 110 (63.63%) participants could answer the question correctly.

El- “Says many but contains one” has been answered correctly by most of the participants
indicating that El is easy to recognise. We investigated EI in H2 of RQI and showed its
negligible impact on program comprehension. It seems that the reason for its negligible impact

on program comprehension is the ease of its recognition.

The results show that LA type A2 with a more significant impact (at most small) is harder to

recognise and LA type E1 with negligible impact is easier to recognise.

5.2.2 RQ4: What is the recognition rate of LAs by knowledgeable participants?

To answer this research question, we do the same steps as for RQ3 but focus on the data obtained
from AfterLecture. Similar to RQ3, we only consider correctness, to evaluate the participants’
recognition rate. We want to know whether having knowledge of LAs can improve the LA recogni-
tion rate by participants. In the following, we discuss each type of LA in more detail, following the

same format as RQ3.

A3- “Set method returns” In AfterLecture, both groups of participants had a question (Q4.c) on
code containing this LA. We obtained 166 correct answers out of 177 submitted responses. Group A
also had the first question (Q1) on code containing this LA. We found that 91 participants answered
correctly out of 94 submitted answers. When combining the results of the two questions, we obtain

that 94.83% of participants could do the task correctly.

A3- “Set method returns” has been answered correctly by more than 94% of participants show-

ing that it is very easy to recognise.

B4- “Not answered question In AfterLecture, only participants in Group B answered one Ques-

tion (Q2), which involved code containing B4. Almost all the participants could answer the question
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correctly (81 out of 83). These participants make up 97.59% of the participants who answered this

question.

B4- “Not answered question” has been answered correctly by more than 97% of participants

which is a high percentage indicating the ease of its recognition.

The results show that LAs of types A3 and B4 are very easy to recognise and more than 94% of
participants could recognise them. These LAs’ impact on program comprehension was insignificant

which we believe is due to the ease of their recognition.

Conclusion for the second set of RQs
The results show that when the participants are educated about LAs their recognition rate is

improved making them much easier to recognise after learning about them.

5.3 Conclusion for First and Second Sets of Research Questions

Table 5.9 shows the results from the first and second sets of research questions. The results
show that A2 has a statistically significant impact with a small effect size because it is harder to
recognise, with a 35.2% rate of correctly recognised occurrences before being taught about LAs.
El also has a statistically significant impact but with a negligible effect size because it is easier
to recognise, with a 63.63% recognition rate. After participants are educated about LAs, when all
the recognition rates are very high, neither A3 (with a recognition rate of 94.8%) nor B4 (with
a recognition rate of 97.59%) have a statistically significant impact on program comprehension.
The results also show improvements in both program comprehension and LA recognition rates.
Program comprehension improved as the significant impact of LA presence with small or negligible
effect sizes in BeforeLecture reduced to insignificance impact in AfterLecture. LA recognition rate

improved from a maximum of 63.63% to a minimum of 94.8%.
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Summary of the conclusions of the first and second sets of RQs

We made the hypothesis HO that LAs have a small impact on program comprehension because
they can be easily recognised by participants. The results from our first and second sets of RQs
support our hypothesis (HO) and show that LA presence does not have a substantial impact
on program comprehension, their impact is at most small or negligible due to their ease of
recognition by the participants. We thus conclude that linguistic antipatterns may not truly
function as antipatterns considering their minimal impact on program comprehension. Also,
we showed that learning about LAs can reduce their negative impact on program comprehen-

sion by improving their recognition rate..

Table 5.9: Resluts of First and Second Sets of RQs

LAs Impact Recognition
Significance | Effect size | Correctness

BeforeLecture

A2 | Yes Small 352%

El | Yes Negligible | 63.63%
AfterLecture

A3 | No 0 94.8%

B4 | No 0 97.59%
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Chapter 6

Discussion

We now discuss further aspects of our experiments and their results to draw our final conclusion.

6.1 Linguistic Anti-patterns

We studied seven different types of LAs. During the detection and the writing of the questions,

we faced three problems regarding:

D1- “Says one but contains many” We found a large number of real examples in our studied
systems in which this type of LA occurs but we did not consider them as LA. We observed that
developers prefer to choose simple names, like tmp for a stack of arrays, x and y for arrays of

dimensions, or v for a collection of vectors. Here is an example of Apache-ant-1.10.1.
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Listing 6.1: Example of an exception of “D1” (Apache-ant-1.10.1)

int size = LEFT_COLUMN_SIZE - label.length();
StringBuffer tmp = new

StringBuffer () ;

for (int i = 0; 1 < size; i++) {

tmp.append ("_");

We decided not to consider such names as linguistic anti-patterns. Instead, they should be
regarded as exceptions within this language convention. While such naming has the potential to
reduce code readability, its impact might be mitigated, considering developers frequently employ

such simple names.

E1- “Says many but contains one”” El is very similar to D1. When the type of an attribute is
int, our tool expected it to have a singular name because int is a single type. Thus, it detected
any plural names of type int as an occurrence of the E1 LA. However, we found that the names of
these attributes could be plural because they are numerical variables that hold numbers of things,

for example, numbers of rows. Here we provide one real example:

Listing 6.2: Example of an exception of “E1” (JFreeChart 1.0.19)

// sx%x The maximum number of lines for category labels. =/

private int maximumCategoryLabelLines;

Therefore, for numerical variables, plural names with singular type could be meaningful, and
such naming should be considered as exceptions for this LA, since those LA appearances have a

small impact on program comprehension, because of the meaningful association of variable names
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with their intended meanings.

“Opposite meaning” We found a new type of LA, for example:

System.err.println ("Computation successful");.

The statement uses the err attribute to print some error messages, yet the message is positive. We
propose to create a new LA that could be described as “the method name and its parameters are
contradictory”. This particular case is the most subjective LA even among the authors of this paper.
We agree that some people might consider it an LA, while other people might argue that it is just

for redirection and, therefore, not an LA.

6.2 Extended Analysis: Recognition Rates of Additional LAs (D1, F1,
F2)

We studied the recognition rates of three other LAs, D1, F1, and F2, to understand whether the
recognition rates found for the other four LAs are representative of other LAs. We assessed the
recognition rates for these LAs in both experiments (BeforleLecture and AfterLEcture) to under-
stand if there is an improvement in their recognition rates after giving participants a lecture on LAs.

First, we discuss the results obtained from BeforeLecture.

D1- ““Says one but contains many” Only participants in Group B from BeforeLecture answered
questions on code snippets containing D1, in Q4.a. The results show that only one participant out
of 110 participants (0.90%) could recognise this LA correctly. The other participants either did not

answer the question or answered it wrongly.

D1I- “Says one but contains many” is the hardest LA to recognise among all seven types of LAs

based on the proportion of correct answers.
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F1- “Attribute name and type are opposite” Participants from BeforeLecture answered a ques-
tion on systems containing F1 (Q3). A total of 22.70% of participants (52 out of 229 participants)

identified this type of LA as a bad coding practice.

F1- “Attribute name and type are opposite” is difficult to recognise according to the proportion

of correct answers from participants.

F2- “Attribute signature and comments are opposite” In BeforeLecture, participants in both
groups answered questions on code snippets containing instances of LA of type F2. Group A had
Q4.a and Group B had Q4.c. In total, 29 participants from Group A and 22 participants from Group

B could recognise F2 correctly. They constitute 22.27% of participants in the first experiment.

F2- “Attribute signature and comments are opposite” is easier than “D1” but is still hard to

reconise.

The results show that the LAs D1, F1, and F2 are difficult LAs to recognise before participants
learn about LAs.

In the following, we discuss the results obtained on the recognition rates of these three LAs
from AfterLecture. We do the same steps as for BeforeLecture but focus on the data obtained from
AfterLecture. We want to know whether having knowledge of LAs can improve the LA recognition

rate by participants. In the following, we discuss each type of these three LAs in more detail:

D1- “Says one but contains many” All participants answered one Question (Q3) containing D1
in AfterLecture. We obtained 83 correct answers out of 177 responses: only 47.36% of participants

provided the correct answers, even though they were taught about this LA before the experiment.

D1- “Says one but contains many” is the hardest LA to detect among the seven studied LAs. In
BeforeLecture, only 1 out of the 110 participants successfully recognised this LA. Although the

proportion of correct answers improved after the participants were taught about LA, it is still

the hardest LA to recognise among our studied LAs.
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F1- “Attribute name and type are opposite” In AfterLecture, participants answered the question
Q4.b, which involved code containing F1. We obtained 88 correct answers out of 177 provided

answers, for a percentage of 49.71%.

Farticipants had a hard time identifying instances of F1- “Attribute name and type are oppo-

site”, even after learning about the LAs.

F2- “Attribute signature and comments are opposite’” In AfterLecture, participants answered
Q4.a, which involved a code snippet containing an LA of type F2. Out of 177 participants, 166

participants could find the correct answer. They constitute 93.78% of participants.

F2- “Attribute signature and comments are opposite” is easy to find and recognise when par-

ticipants know about LA.

The results show low recognition rates for these three LAs (D1, F1, and F2) before learning
about LAs, therefore, we conclude that future work should study their impact on program com-
prehension. The results also show an improvement in the recognition rates of these LAs after par-
ticipants learn about LA. Figure 6.1 and Table 6.1 present all the obtained discussed results and
compare the recognition rate of these LAs before and after having knowledge of LAs.

Table 6.1: The Correctness Percentage for Different LAs (BeforeLecture and AfterLecture)

Type | Correctness_Before (%) | Correctness_After (%)
D1 0.9% 47.36%

F1 22.7% 49.7%

F2 22.2% 93.7%

6.3 Mitigating Factors

We also investigated to what extent other factors, like fluency in the language in which the
identifiers and comments are written, programming experience, gender, age, work experience, and
education, could explain the participants’ performance. We established a dataset containing infor-

mation about these mitigating factors. We aggregated this data in sets for English proficiency (high
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proficiency, low proficiency), programming knowledge (good, bad), age (18-25, 26-35, and 36-45),
gender (male, female), degrees (Bachelors, Masters, PhDs, and others), and work experience (0 to
5 years, 5 to 10 years, and more than 10 years).

Given the variables’ non-normal distribution and unequal sample sizes, the Mann-Whitney U
test emerges as an appropriate statistical method for our analysis. Therefore, we utilized this test
to assess the significance of the impact of our factors on program comprehension in terms of cor-
rectness, time, and effort. For factors consisting of data with more than two different ranges of
values (such as age, work experience, and degree), we employed the Bonferroni correction method
to control the familywise error which represents the probability of making at least one Type I error
(false positive) when conducting multiple statistical tests simultaneously. The Bonferroni correc-
tion involves dividing our chosen significance level by the number of pairs of variables we tested
against each other. After identifying statistically significant results, we calculated the average of
the corresponding variables to determine the direction of these significant values. Furthermore, we
computed the effect size to assess the practical significance of the statistically significant findings.

All the results are available online?.
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6.3.1 Age, Gender and English proficiency level

We found no statistically significant differences between participants of different ages or from
different genders or with different levels of English proficiency in terms of our dependent variables

including correctness, time, and effort.

6.3.2 Programming knowledge

Correctness: We found a statistically significant result for Q3 in terms of correctness. Surpris-
ingly, it contradicted our hypothesis, indicating that participants with greater programming knowl-
edge provided fewer correct answers for Q3. However, the effect size is small. Q3 consists of
D1 as the hardest (the most challenging) LA both before and after knowledge, which may confuse
developers with a good knowledge of programming into choosing a wrong answer.

Time: There is a statistically significant finding for Q1 in terms of time, showing that partici-
pants having more programming knowledge spend less time answering the question. Q1 consists of
A2 in BeforeLecture and A3 in AfterLecture, which are both easy LAs to recognise. Therefore, the
easier the LA to recognise, the less time it takes to answer the question.

Effort: We found statistically significant results (with small effect sizes) for effort, showing that

participants with more knowledge of programming put less effort into answering questions.

6.3.3 Degree

Correctness: We found a statistically significant result (with a small effect size) for Q3 in terms
of correctness when comparing bachelors and others. The findings indicate that participants with a
bachelor’s degree exhibit a higher number of correct answers compared to other participants. We
found the same result for Q3 by comparing participants in the Masters and Others groups. Question
3 includes D1, which is the hardest among others in both experiments, so it seems that participants,
even after learning about LAs, have challenges finding the right answers when dealing with DI.
The sets of masters and bachelors participants include Polytechnique students who have a good
background in design patterns (as we discussed in 4.5) making them perform better when dealing

with the most difficult LA.
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Time: Considering the two sets of bachelor and others, and masters and others, there are statisti-
cally significant findings (with negligible effect sizes) for Q2 in terms of time. The results show that
bachelor’s students and master’s students spend less time answering Q2 than others. Q2 consists of
El in BeforeLecture and B4 in AfterLecture, which are both easy to recognise.

Effort: We found statistically significant (with small effect size) results for effort comparing
bachelors and others, showing that bachelors put more effort into answering questions. The results
are the same when comparing masters and others but with small and medium effect sizes. These

results show that master’s and bachelor’s students are more precise about their answers.

6.3.4 Work experience

We found no statistically significant differences between participants with different work ex-
periences in terms of correctness and time. When answering Q1, there is a statistically significant
difference (with a medium effect size) between participants having 0 to 5 years of work experience
and participants having more than 10 years of experience in terms of effort. Surprisingly, it contra-
dicted our hypothesis by indicating that participants with more than 10 years of working experience

make more effort to answer Q1 than participants with 0 to 5 years of experience.

6.4 Threats to Validity

Construct Validity: To assess construct validity, our study explored different aspects affecting
participants’ comprehension, including the correctness of their answers, time, and effort to evaluate
their comprehehnsion. These measures are objective, but other factors, like fatigue, could change
their values. We relied on the NASA TLX to measure the effort, which is inherently subjective
because it is self-reporting. We accept the threat of self-reporting, and future work should consider
other measures of the effort, possibly through eye-tracking or other more invasive means.

The NASA TLX used in our study underwent modifications from its original form, which
involved reducing the number of scales. These adjustments may have implications for the con-
struct validity of the NASA TLX scores. However, it’s important to note that we excluded certain

scales—including physical demands, temporal demands, and own performance because they were
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not pertinent to our study. However, we recognize the potential impact of these modifications on the
validity of our findings.

After learning about LAs, we used a quiz to evaluate the participants’ knowledge of LAs. We
wrote the quiz questions to measure the participants’ knowledge but these questions could also have
missed their objective. However, the results of the AfterLecture partially confirmed that participants
acquired good knowledge through our LA course and, thus, we accept this threat.

Participants’ experience as well as continuing education between the BeforeLecture and Af-
terLecture could have had an impact on participants’ program comprehension. Participants were
full-time students taking several courses during their semesters. The two experiments took place
during a whole semester. Therefore, there is the risk that participants gained experience, which
could affect their performance and, consequently, the results of this study. However, we claim that
the impact, if any, should be low given the short time between the two experiments, most likely not
enough to bring participants from one level of experience to the next according to Dreyfus’ model
(Dreyfus and Dreyfus, 1980).

We used the PMD plugin to detect LAs by defining new rules related to each LA in Java systems.
We accepted that the precision of this tool may not be 100%. Some false positive classes may have
passed our manual validation if they “looked like” an LA. Conversely, our tool may have missed
some true positive classes. Moreover, in addition to the impact of LAs, other characteristics in the
code could have influenced participants’ program comprehension. We accept these threats because
we built the code snippets manually. We verified the code snippets and shared? them with the
community for inspection and reuse.

We observed the positive impact of LA on time in the presence of LA for example in H1. This
unexpected finding raises concerns about the accuracy of time recording or potential issues within
the experiments themselves. We accept the threat related to potential issues in recording time.

We defined some keywords for each question and made a query based on these keywords to
detect correct answers. The accuracy of our defined keywords affects our results because we use
the number of correct answers to analyze our data. To mitigate this threat, we performed manual
identification of correct answers for each question.

To evaluate the impact of different linguistic antipatterns (LAs), we used various LAs across
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different experiments. The variation in LA types, along with the participants’ prior knowledge in
the second experiment, may have influenced the results, complicating the isolation of the impact of
knowledge of LAs. This poses a potential threat to the validity of our work. However, this threat
is almost mitigated, as the LAs selected for the study were the most negative LAs identified in
previous work (Arnaoudova et al., 2016) and had similar complexity. This strategy for selection of
LAs provided equally challenging questions in both experiments, allowing us to primarily observe

the impact of knowledge of LAs for RQ2 as the main change in the second experiment.

Internal Validity: Threats to internal validity concern confounding factors that might influence
the results. We consider that seven threats could impact the internal validity of our study.

Practical knowledge: It is possible that students had practical knowledge of linguistic antipat-
terns, yet were unaware of the academic definitions of LAs and their respective classifications, as
this concept is a relatively recent development. Therefore, the lectures would have had little to no
impact on their program comprehension of LAs. We accept the threats of having knowledge through
practical experiences.

Learning with the experiment: Participants could learn about bad coding practices from Be-
foreLecture to perform better in AfterLecture, even if no training was conducted. We accept the
threat of participants learning about LAs with experience.

Differential Participant Performance: Additionally, we noticed a notable difference in the
performance of participants from Polytechnique University who showed faster and more accurate
responses after learning about LAs. This distinction in performance may be because of their back-
ground in pattern and anti-pattern concepts based on the courses they have taken, which may have
influenced their speed, resulting in more confidence and speed when answering questions with LAs.

Diffusion: Threats pertain to participants sharing tasks, questions, and answers. Although it
is possible that a few participants exchanged some information, we defined two sets of questions
to prevent too easy diffusion to prevent the participants with better knowledge of LA from sharing
their answers and, thus, have more impact on our results. Therefore, this threat is almost mitigated,
however, we accept the possible impact of diffusion threat on our results.

Selection Threats: Threats in the selection of participants concern the natural differences
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among the participants’ abilities, which could affect our results. We examined the possible im-
pact of these confounding factors (using Age, Gender, English proficiency Level, Programming
Knowledge, Work Experience, and Degree metrics). Results show that these factors did not signif-
icantly affect our dependent variables (i.e. correctness, time, and effort), which thus mitigates this
threat. The additional table that shows the results of statistical tests is online.

Participant Variability: Some of the participants had prior knowledge of LAs and some of
them did not complete the experiment process. However, we retained the data related to all the
participants to have a larger sample size and achieve more precise results. The variability in par-
ticipant characteristics posed a potential threat to the validity of our results. To mitigate this threat,
we controlled the impact of these factors and noticed some differences in the average values of the
dependent variables between participants with these factors and others; however, the differences
were not substantial. To ensure the validity of our results, we also excluded those participants and
analyzed the statistical results. We obtained the same conclusion that the presence of LAs has a
small or negligible impact on program comprehension, and knowing LAs improves participants’

program comprehension.

Conclusion Validity: Threat to conclusion validity concerns the correctness of the results. We
asked participants to answer detection and comprehension questions about LAs in code snippets
instead of reading the whole code and doing maintenance tasks. Participants could have answered
the questions differently if they were asked to do the maintenance tasks and were given the whole
code because they could have had a broader view of the system in hand. Due to the nature of
experiments with participants where we wanted participants to only focus on LA in a piece of code,
we accept these threats as did many previous works.

We studied seven different LAs in each experiment and asked participants to perform tasks
requiring time and effort. Thus, we have tried to design our study as simple as possible, which we
believe to be realistic. We designed our questions related to the tasks to be simple while covering the
requirements of our research questions. Moreover, this design is not unique, some previous studies
(Hofmeister et al., 2017; Fakhoury et al., 2018a) used the same design and code snippets to perform

their experiments.
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Reliability Threat: Threat to Reliability validity is about the possibility of replicating this study.
We studied ten open-source systems with 229 participants but do not claim that these results are
representative of all systems or developers. We provide all the necessary data online® to help other

researchers replicate our work.

External Validity: External validity threat is related to the generalisability of the results. We
performed our study on ten different, real systems belonging to different domains and with different
sizes as shown in Table3.1. We wrote questions such that participants needed to focus on some code
snippets from a whole system. We cannot claim that our results can be generalized to other systems
written in other programming languages and to other participants. Future works should extend this

study by considering other LAs, other participants, other questions, and other systems.
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Chapter 7

Conclusion and Future Work

Linguistic Anti-patterns (LAs) are poor practices in the naming, documentation, and implemen-
tation of source-code entities, which are conjectured to affect the understanding of systems. In this
study we made a hypothesis that LAs have a small impact on program comprehension because they
can be easily recognised by developers. We performed two experiments (BeforeLecture and After-
Lecture) to collect quantitative evidence about the impact of LAs on participants’ comprehension of
code snippets before and after a lecture on LAs. We also investigated the impact of having knowl-
edge of LA on program comprehension and assessed the recognition rate of different types of LAs
in our study to see their relation with program comprehension.

We considered seven different types of LAs for our study. We chose these LAs because they
were considered to be poor practices by developers and they frequently occur in systems as shown
by several previous works. We collected data before and after teaching participants about LAs.
We established eight hypotheses to measure the impact of the presence of LA and knowledge of
LA on program comprehension. To assess them, we used three metrics: (1) the amount of correct
answers, (2) the time spent performing tasks, and (3) the NASA task load index for effort. We
conducted statistical tests on these metrics to analyze the results and validate our hypotheses. We
also investigated the recognition rates of these LAs because we believed LAs do not have an impact
on program comprehension as they are easily recognisable by developers who are not thus impacted
by their presence. We also assessed the impact of knowledge of LA on recognition rates. A total of

229 participants from two Universities participated in our experiments.
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Results showed that linguistic anti-patterns (LAs) do have an impact on program comprehen-
sion but this impact is mitigated (small or negligible) when the LAs are recognised by developers.
The results also show that learning about LAs can reduce their negative impact by increasing their
recognition rate. It would be therefore beneficial to increase the awareness of LAs among students,
as it can lead to improved program comprehension and correctness.

Thus, we conclude with the potential negative outcome that linguistic antipatterns may not ef-

fectively function as antipatterns, given their minimal impact on program comprehension.

Main conclusion

We conclude that the presence of LAs negatively affects program comprehension but with a
small or negligible effect size due to their ease of recognition by participants. We also conclude
that learning about LAs positively affects program comprehension by reducing the negative
impact of LA and improving the recognition rate. Therefore, improving knowledge of LAs

among students and developers is beneficial.

In future work, we want to study other types of LAs to see their impact on program compre-
hension. We also want to reproduce this experiment with other participants, in particular from the
industry, to generalize our results. Finally, we want to study other programming languages, specifi-
cally dynamic programming languages, in which developers rely even more on names to compensate

for the lack of types.
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Appendix A

BeforeLecture-GroupA

Quality Code Activity 1

Group A

Please Enter Your Student |D: *

For this activity, you need to perform some tasks on two java classes and answer the questions.
Besides, your task is to find coding practices on different code snippets, and finally write your
feedback. We have designed this activity to be as short and sunple as possible, It should not
take more than 1 hours.

Mt
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First Question:

1113

Question 1: Which method
following link (Click on the

used to determine the value of the "restricted” attribute in the
k to show the snippet code)? *

Litps:github com Resources-aks Actvity 1-Group 1 'blob'master RuntimeConfigpumble WX javy

Back MNext

https://github.com/Resources-aks/LA-Paper/blob/master/Activity1-
Groupl/RuntimeConfigurableWX.java




Second Question:

0[1§0]2

Question 2: At Line 912 does the assignment "=" affect a single or a collection of variables?
in the following link? *

bitps:github com Resources-aks Activity | .Group L blob'master DirectoryScannerWy java

Back Next

https://github.com/Resources-aks/L A-Paper/blob/master/Activity1-Group 1/DirectoryScannerWY .java




Question 3: Identify element (s) in the pieces of code that causes confusion and make
understand-ability harder (click on the following link): *

-/ github. com/Resources-aks' Activity 1 -Group | blob/master’ ActionNavigability. javs

Back Meaxt

https://github.com/Resources-aks/L A-Paper/blob/master/Activity | -Group 1/ActionNavigability.java




Question 4: For each of the following five code snippeis;

Tdentify bad coding practice (if any) in the code and-or comments and justify your
answer.

Then, supgest ways to correct it (them)?

3% public final class Suffixiines

a8 extends BaseParamFilterReader

41 implements ChainableReader {

42 /** Parameter name for the prefix. */

43 private static final String SUFFIX_KEY = "suffix";
44

45 {** The suffix to be used. */

4E private String suffix = null;

a7

48 /** Dats that must be resd from, if not null. *f
48 private String guevedData = null;

58

51

52 enstructer for “dummy" instances.

53 ’

54 * fsee BaseFilterdeadersBaseFilterdeader()
55 ]

3 public Suffixiines() {

57 super(};

58 }

58 /M

U B

Please justify your answer: *

289 public void setCurrentProject(Project newValus) {

258 Project oldvalue = currentProject;

291 currentProject = newValue;

292 firePropertyChange("currentProject”, oldvalue, newValue);
293 3

Please justify your answer: *




1852
1553
1554
1555
1556
1557
1558
1559
1558
1561

protected boolean isSelected(final String name, final File Fila) {
if (selectors != null) {
int i = 8; i ¢ selectors. length; is)
if (lzelectors[i].isSelected(basedir, name, fila)) {
return false;

¥
return true;

Please justify your answer: *

Back

Maxt




Feedback

Plenss select your age *
v

Please select your gender *

.

Please ==lect your highest level of sducation completed *
B Bachelor's degree

© Master's degree

0 Doooral degiee

O athers

How much are you fuant in English? *

4 bad
newtral
guad

excellent

[ - )

expert

How much work axperiance da you have? *
< 3 years

35

510

LB

=10

How di ‘=kills: and

®

bad
meutral
good
excellent

seaw®

expert

How do you rate your level in JavaT *
Kever touched it

Soime nutions.

1 can code in java

I havee gocad skills mn Java, | use it frequent]

oo E0

Expert



How dio youl rate your level in Eclipss® *
B Never towched it

S0 notians

| ean cade in jaa

Expert

B
]
B 1 have good skills i Java, | use i frequently
]

Dl you knvow what masns Linguistic Ant patterm? *

ow @ @@

Frustration *

v @ @ @

Muntal Demand

Low @ @ @

Frusiration *
123
Lw @ @ @

High

Hah



‘Question 3

Mental Demand *

low @ @ @ @ @ High

low @ @ @ @ @ Hioh

Qustion 4

low @ @ @ @ @ Hoh

lew @ @ @ @ @ Hgh

Ay linal commiments?
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