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Abstract 

Online Condition Monitoring of Stator Winding Insulation State of Electric 

Machines in Electrified Vehicles 

Ashutosh Patel, Ph.D. 

Concordia University, 2024 

Electrified vehicles commonly use traction machines powered by voltage source inverters 

(VSI) for efficient speed and torque control. However, short circuit faults and insulation failures 

remain prevalent, accounting for approximately 30% of motor failures. Given the uncertainties 

surrounding insulation degradation, detecting degradations of insulation in an early stage can 

help prevent major failures. Therefore, this Ph.D. research focuses on online monitoring of 

electrical machine’s winding insulation degradation. 

A comprehensive review of literature revealed certain research gaps. The first one is on 

selection of the most effective insulation degradation indicator for online condition monitoring 

without increasing motor drive costs. To address this challenge, this research uses existing 

signals in EV motor drives, such as line current measurements. However, there is limited 

information on how insulation degradation can impact the line currents in the existing literature. 

Therefore, this Ph.D. work address this knowledge gap through conducting investigations of 

insulation indicators. It is found that the antiresonance oscillations in line current can serve as 

indicators for insulation degradation, which was not reported in the existing literature.  

Existing literature on condition monitoring methods also presents notable limitations. 

Firstly, these techniques can not determine the degradation of groundwall (GW) or turn-to-turn 

(TT) insulations simultaneously. There is a need for a new approach for simultaneous condition 

monitoring of TT and GW insulations. This is crucial because different types of insulation are 

exposed to different temperatures, leading to a varied degradation rate. Additionally, current 

methods overlooked the variability of noise in measured signals, which can fluctuate due to 

various factors in real-world applications like EVs. This variability necessitates a condition 

monitoring approach that can handle noise while accurately determining insulation health. 

Moreover, existing methods rely on predefined thresholds and manual analysis, requiring expert 

interpretation, which limits their applicability across different machines and conditions. Hence, 
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this Ph.D. work proposes novel methodologies to address these limitations. A technique for 

simultaneous monitoring of TT and GW insulation conditions has been proposed. To address the 

limitation posed by noise variability and the reliance on manual analyses, a novel data-driven 

methodology for robust insulation condition monitoring has been proposed. 
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Chapter 1:Introduction 

Electric vehicles (EVs) and electric aircrafts have proven their candidacy as a potential mode 

of transportation for the coming future. Substantial efforts are being made globally to encourage 

the adoption of electrified vehicles. As a result, about 14 million new electric vehicles were 

registered globally in 2023 compared to only 3 million in 2020 [1], this number is expected to 

grow significantly. To support the transition to EVs, various governments have implemented 

policies and programs. In Canada, the federal government has introduced the ZEV (Zero-

Emission Vehicles) program, which aims to make EVs more affordable by providing monetary 

incentives [2]. Similarly, at the provincial level, incentives have been offered. For instance, the 

Quebec government proactively promotes the use of EVs by incentivizing both purchase and 

lease of electrified vehicles [3]. Moreover, considerable engineering and research initiatives are 

currently underway to enhance the infrastructure necessary to support the increasing numbers of 

EVs, which includes the development of more efficient and widespread charging infrastructure 

[4]. Overall, the potential benefits of electrified vehicles and government incentives are driving 

market growth and a shift towards electrified transportation. This shift plays crucial role for not 

only transportation sector but also in addressing carbon emissions and promoting a greener 

future. 

In any electrified vehicle, a powertrain is considered as the core component. Typical drive 

system of EV is illustrated in Fig. 1-1, while schematic representation is shown in Fig. 1-2. Most 

 

 

Fig. 1-1 Typical drive system of EV [5] 
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of the electrified powertrain systems are equipped with batteries, electric machine and voltage 

source inverters (VSI). The batteries store the energy, while the inverter converts the Direct 

Current (DC) power into Alternating Current (AC) power to drive the motor over a wide speed-

torque envelope.  

Typical types of electric machines being used in the EVs are induction machine (IM), 

permanent magnet synchronous machine (PMSM) and synchronous reluctance machine 

(SynRM). Within these machines, stator and rotor are the key components. The stator is the 

stationary part of the machine which contains coils or winding. The winding produces the 

magnetic field necessary for motor operation when energized by the inverter. The rotor typically 

equipped with permanent magnets or windings, and it rotates within the magnetic field generated 

by the stator. The interaction between the fields generated from the stator and rotor ultimately 

propels the vehicle. Despite significant efforts to design the system in the best way possible, the 

reliability and safety of such electrified systems get compromised due to various faults. For 

instance, faults related to batteries include sensor faults, actuator faults, electromechanical faults, 

charge or discharge rate related faults, and thermal faults may occur [6]-[10]. While faults in 

inverters are mainly short-circuit fault, open circuit fault, capacitor faults, current/voltage sensor 

faults [11]-[14]. In electrical machines, faults such as bearing fault, shaft bending, shaft 

misalignment, eccentricity faults, magnet demagnetization faults, short circuit faults, etc. are 

prevalent [15]-[18]. Among such faults, short-circuit faults or insulation failures contribute to 

approximately 30% of motor failures [19]-[21]. There is a decent amount of research being 

 

 

 

Fig. 1-2 Schematic representation of typical drive system [5] 
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conducted to design and develop more reliable machine insulation [22]-[27]. However, the aging 

or degradation of insulation material remains unavoidable due to various internal and external 

factors [28], [29]. Moreover, the growing interest in utilizing higher DC bus voltages and faster 

wide-bandgap (WBG) based devices like gallium nitride (GaN) and silicon carbide (SiC) in VSI 

causes even higher stress on motor insulation [30]-[35].  

Given the uncertainties associated with various stresses on insulation, monitoring the 

insulation condition becomes necessary to ensure the safe and reliable operation of the VSI-fed 

electric machines, especially in applications like EVs and aircraft where the safety of human life 

is crucial. Detecting and identifying types of insulation degradation in an early stage can help 

prevent major failures such as short circuits in the machine. Such information can also be used 

for predictive maintenance and fault-preventive control strategies to ensure the safe operation of 

the machine. Therefore, this paper focuses on online monitoring of stator winding insulation 

degradations in electrical machines. Firstly, the insulation system in stator winding and its 

degradation are discussed. Thereafter, a literature review on insulation condition monitoring 

methodologies is presented. Then, the problem statement and objective of the thesis are 

presented.  

1.1 Insulation System 

The stator of any machine typically comprises a stator core, winding and insulation system. 

The stator core is typically made of silicon steel and provides low reluctance path to the flux. 

The winding is made of copper or aluminum and are arranged in a specific pattern to creates 

rotating magnetic field when current flows through them. The insulation system comprises of 

different insulation materials like varnishes, polyimide material, mica, resins, and other 

 

Fig. 1-3 Various types of insulation in stator [29] 

 

Fig. 1-4 Various types of insulation in hairpin stator [36] 
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insulating materials, which are essential for ensuring electrical isolation of coils from each other 

and from the stator. Insulation systems of different types of machines differ significantly from 

each other. For instance, the insulation system of low voltage machines (rated rms voltage < 700 

V) are shown in Fig. 1-3 and Fig. 1-4. 

Typically, in low-voltage machines, there are three main types of insulation. The first is 

referred as turn insulation which refers to the insulation over the wires that ensures separation 

between turns. Second is the groundwall (GW) insulation, which separates the copper winding 

from the stator. The third one is phase insulation, which can be found between the phases of the 

winding. However, it is important to note that phase insulation might not always be present, as it 

depends on the particular application or design. For instance, as shown in Fig. 1-4, the hairpin 

stator does not contain any phase insulation. Failure of the insulation system creates a short 

circuit, which puts the safety and reliability of the whole system at risk. Examples of the 

damaged winding due turn and groundwall insulation failure are shown in Fig. 1-5 and Fig. 1-6 

respectively.  

 

Fig. 1-5 Failure of turn insulation [37] 

 

Fig. 1-6 Failure of groundwall insulation [37] 

1.2 Insulation Degradation 

Apart from improper insulation design and inappropriate operation of the machine, the 

insulation failure is primarily due to gradual degradation over time caused by TEAM stresses- 

thermal, electrical, ambient and mechanical stress.  
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1.2.1.Thermal Stress 

Thermal stress is a critical factor in the degradation process of insulation. The insulation 

material undergoes cyclic exposure to varying temperatures during the operation of the machine. 

This temperature variation is caused due to generation of heat from losses like copper losses, 

core losses and stray losses. Due to such thermal stress, the chemical and dielectric properties of 

insulation are affected [29]-[39]. The thermal stress causes oxidation, where in the chemical 

bond with the insulation breaks down and oxygen replaces the destroyed bond. Such oxidation 

weakens the polymer chain and causes degradation. Fig. 1-7 shows the damaged insulation and 

delamination caused by thermal aging. Moreover, thermal stress also affects the dielectric 

properties of insulation, causing a reduction in dielectric strength, change in permittivity, change 

in dielectric loss, etc., which ultimately affect the performance and reliability of the insulation 

[40]-[42]. Hence, it is crucial to select appropriate insulation materials based on the operational 

temperature. Insulation materials are categorized into different temperature classes, ensuring they 

can withstand a specific temperature for approximately 20000 hours.  This lifetime is usually 

approximated by the Arrhenius model, represented as equation (1.1). 

𝐿 = 𝐴 ∙ 𝑒𝑥𝑝 (
𝑅

𝑇ℎ + 273.15
) 

(1.1) 

Here, 𝐿 is the lifetime of the material, 𝑇ℎ represents the temperature which is often derived 

from IEC or IEEE standards [43], [44]. Usually, the electrical machines are designed to have the 

insulation class higher than the winding’s hotspot temperature to ensure a decent safety margin. 

Every 10°C increase in the temperature causes a lifetime reduction of 50%. Despite the 

appropriate selection of temperature class, the performance of insulation suffers due to 

 

Fig. 1-7 Insulation failure due to thermal stress [45] 

 

Fig. 1-8 Maximum voltage over the lifetime [46] 
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degradation. For instance, Fig. 1-8 shows the capability to withstand voltages reduces due to 

degradation.  

1.2.2.Electrical Stress 

Due to the utilization of PWM inverters, the insulation of motor winding undergoes higher 

electrical stress compared to the grid-driven machines. This is due to the nature of the output 

voltage from the PWM inverter, the output voltages are essentially pulses with varying duty 

cycle and frequency. Moreover, these pulses reach the maximum value of the DC bus in a few 

nanoseconds, resulting in a high voltage slew rate or dv/dt, and hence the insulation of machine 

winding undergoes higher electrical stress which may cause premature insulation failure [33], 

[47]. The voltage stress on the GW insulation can be up to two times the DC link and may reach 

up to four times at a neutral point [48], [49]. Moreover, the growing interest to utilize even faster 

wide-bandgap (WBG) devices like gallium nitride (GaN) and silicon carbide (SiC) based 

transistors in VSI causes even higher stress on motor insulation. This stress can expedite 

insulation degradation and can cause insulation failure before its anticipated lifespan. If the 

voltage across the insulation exceeds the partial discharge inception voltage (PDIV), the partial 

discharge (PD) occurs. The PDs are the flow of electrons through the insulation or on the surface 

of the insulation, which degrades the insulation. Hence, there is ongoing research to investigate 

and understand such electrical stress, which may aid in the improvement and optimization of the 

insulation system in VSI fed machines [50]-[54].  

1.2.3.Ambient Stress 

Ambient stress represents the stress on the insulation due to the surrounding environment. 

Various environmental conditions such as the presence of foreign material, moisture, chemical 

contaminants, etc. affect the properties of insulation [29]. For instance, moisture condensation 

significantly increases the rate of degradation [55]-[57]. Moreover, the presence of moisture also 

affects the dissipation factor, insulation capacitance, permittivity and PDIV of the insulation, 

which affects the effectiveness of the insulation [58]-[61]. Similarly, other contaminants from the 

environment may compromise the heat dissipation capability, causing increasing in temperature. 

Some chemical contaminants react with the insulation material causing accelerated degradation, 

while some chemicals may affect the mechanical properties of the insulation [29]. Additionally, 

some conductive contaminants may cause electrical treeing and partial discharge (PD) activity 

[62]. Therefore, the prevention of electrical machines from ambient stressors is crucial. 
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1.2.4.Mechanical Stress 

The insulation of the machine undergoes mechanical stress mainly due to vibration, transient 

forces caused by switching of power electronics, thermal expansion and contraction, etc. [29]. 

Such stresses weaken the insulation and may cause wear-related failure. The electrical motor 

insulation undergoes vibration due to electromagnetic forces, cogging in machine, operation 

condition of the vehicle etc. These vibrations may cause mechanical wear due to friction and 

potentially delamination can occur. Such consequences are further intensified due to loosened 

winding or inadequate impregnation. Similar mechanical wear occurs due to expansion and 

contraction of various materials in the motor. 

1.3 Literature Review 

Over the years, various online insulation condition monitoring techniques have been 

proposed, which focus on condition monitoring of one or multiple types of insulation 

degradations. These methods measure quantities such as partial discharge (PD) activity, common 

mode (CM) current, CM voltage, differential mode (DM) current, high-frequency line current, 

etc. to identify degradation. However, most of the existing methods pose unique challenges and 

constraints in implementation such as the necessity for additional sensors or hardware 

modifications. Such methodologies add complexity or cost to the existing system, making them 

impractical. Currently, there are a few methodologies that can detect degradation with great 

accuracy and minimal hardware modifications or additional cost to the typical motor drive 

system. Given their benefits, such methods are kept in primary focus in this thesis, and they can 

be mainly categorized into two categories: leakage current measurement based methods and line 

current measurement based methods. These methodologies, along with their limitations have 

been summarized in Table 1.1. 

Table 1-1 Summary of Condition Monitoring Methodologies 

Ref Year Measured 

Quantities 

Focused 

Insulation 

Degradation 

Symptom 

Validation 

Approach 

Limitations and 

Comments 

[63] 2019 Leakage 

current and 

PG voltage 

GW Decrease in 

Cap. 

Accelerated 

Thermal 

Degradation 

(1) Additional sensors 

required 

(2) Degradations not 

classified 

(3) Overlooked variation in 

measurement noise 

(4) Lacked theoretical 

analysis 

(5) Limited validation 
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[64] 2022 Leakage 

current and 

voltages 

GW Increase in Cap. Capacitance 

and resistance 

based 

emulation of 

degradation 

(1), (2), (3), (4), (5) 

[65] 2021 Leakage 

current and 

PG voltage 

GW and PP Increase in Cap. Capacitance 

based 

emulation of 

degradation 

(1), (3), (4), (5), and (6) 

Neglected simultaneous 

degradation in 

classification 

[66] 2021 Leakage 

current and 

PG voltage 

TT Increase in Cap. Capacitance 

based 

emulation of 

degradation 

(1), (2), (3), (4), (5) 

[67] 2023 Leakage 

current and 

PG voltage 

GW and TT Increase in Cap. Capacitance 

based 

emulation of 

degradation 

(1), (3), (4), (5), (6) 

[68] 2018 Leakage 

current 

NA 

(Overall) 

Decrease in 

Cap. 

Accelerated 

Thermal 

Degradation 

(1), (2), (3), (4), (5) 

[69] 2013 Leakage 

current 

GW NA NA (1), (2), (3), (4), (5) 

[70] 2010 Leakage 

current 

NA Increase in Cap. NA (1), (2), (3), (4), (5) 

[71] 2015 Line current TT Increase in Cap. Capacitance 

based 

emulation of 

degradation 

(2), (3), (4), (5) 

[72] 2017 Line current TT Increase in Cap. Capacitance 

based 

emulation of 

degradation 

(2), (3), (4), (5) 

[73] 2022 Line current GW Increase in Cap. Capacitance 

based 

emulation of 

degradation 

(2), (3), (4), (5) 

[74] 2021 Line current TT Increase in Cap. Capacitance 

based 

emulation of 

degradation 

(2), (3), (4), (5) 

[75] 2022 Line current GW Increase in Cap. Capacitance 

based 

emulation of 

degradation 

(2), (3), (4), (5) 

[76] 2023 Line current NA 

(Overall) 

Decrease in 

Cap. 

Accelerated 

Thermal 

Degradation 

(2), (3), (4), (5) 

[77] 2019 Line current NA 

(Overall) 

Increase in Cap. Accelerated 

Thermal 

Degradation 

(2), (3), (4), (5) 

Leakage current measurement-based methods typically utilize the fact that the degradation in 

insulation causes deviation in the CM impedance spectrum, this variation is caused by variation 

in insulation capacitance due to degradation. For instance, in [63], GW condition monitoring 
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method based on the variation of capacitance is presented, and it utilizes measurements of phase-

to-ground (PG) voltage and leakage current measurement to determine equivalent capacitance 

which is further utilized to determine insulation condition. In [64], a methodology that relies on 

the measurement of leakage current to identify the degradation in GW insulation is proposed, 

which uses characteristics such as initial oscillation amplitude, oscillation period, and attenuation 

time of leakage current to determine insulation condition. In [65], a methodology which can 

monitor both GW and phase insulation condition is presented. This method relies on the 

measurement of leakage current and PG voltages, it has the unique capability to monitor the 

phase-to-phase (PP) and GW insulation capacitance separately. In [66], a similar approach 

utilizing leakage current and PG voltages for TT insulation condition monitoring is presented. In 

[67], a unique method which can classify between the TT and GW degradation is proposed. The 

method requires leakage current and utilizes deviation in the CM impedance spectrum. This 

method can be considered as a data driven method since various degradation scenarios have been 

emulated and the corresponding impedance spectrum obtained by the proposed simulation 

model, thereafter the impedance data is further processed using the principal component analysis 

(PCA) method which works as features for the decision tree machine learning model and 

decision tree model estimates the insulation condition. In [68], an analog circuit has been 

proposed which is utilized to detect the peak value of the leakage current and deviation in the 

peak value of leakage current is utilized for insulation condition monitoring. In [69], GW 

condition monitoring based on only common mode leakage current measurement is presented. In 

[70], a leakage current measurement based methodology that estimates capacitance and 

dissipation factor has been presented. Nevertheless, the leakage current measurement-based 

methods are often considered less desirable due to the requirement of additional sensors for 

leakage current and/or voltage measurements, and hardware modifications. Integration of these 

additional sensors into a drive system leads to increased complexity and cost. 

In contrast, line current based methods are preferable in general, as the current sensors are 

usually already integrated in a typical drive system. In [71] and [72], methods that utilize 

deviation in the frequency spectrum of measured high-frequency line current have been 

proposed. This is done by calculating the frequency spectrum of the transient current and 

identifying change with the reference frequency spectrum, which represents the healthy 

insulation state. Deviation between these two spectrums has been interpreted as a sign of 
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insulation degradation. These methods primarily focus on TT insulation condition monitoring. In 

[73], a GW insulation condition monitoring methodology that focuses on degradations in line-

end coils is presented, which utilizes high frequency common mode current extraction from the 

line current oscillations. The high frequency common mode current extraction is done using the 

variable mode decomposition (VMD) algorithm. A similar approach that relies on transient line 

current is presented in [74], where low frequency common mode current, also referred to as ‘tail 

current’, is extracted from HF line current for condition monitoring of TT insulation. The root 

mean square (RMS) value of the tail current has been used as an indicator of the insulation state 

and deviation in this value is considered as an indicator of degradation. In [75], ringing in the 

transient line current has been analyzed for condition monitoring of the GW insulation, it was 

found that the RMS values and peak values of current ringing showed a quasi-linear increase 

with the change in parasitic capacitance. Moreover, various literature reports investigate the 

influence of different types of exposure on the line current. For instance, as in [76], 

investigations on the influence on the line current when accelerated aging has been performed. 

Similarly, in [77] investigations on the line current when the machine is exposed to high dv/dt 

PWM excitation show that line current can be utilized for reliable insulation condition 

monitoring. The leakage current measurement based methods are often considered less desirable 

because they require the inclusion of additional sensors for leakage current and/or voltage 

measurements, or hardware modifications. Given the advantages of the line current based 

approach, this thesis focuses on the line current measurement based approach. Therefore, this 

Ph.D. thesis focuses on methods that rely on measurement of line current. 

1.4 Problem Statement  

As summarized in Table 1.1, most of the existing literature lacks theoretical analysis on 

insulation condition monitoring methodologies, to conduct such analysis often lumped HF stator 

winding models are utilized [65],[66]. Such simpler models can be utilized for certain 

applications but cannot be used to simulate various insulation degradations accurately and 

investigate online insulation condition monitoring. Specifically, these models have limited 

capability in representing the accurate HF behavior of the winding and the distribution of 

voltages within the stator winding [53]. Effective investigations for insulation condition 

monitoring demand higher accuracy in HF winding models. Therefore, for the development of 
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accurate HF stator winding models which can be further utilized for the development of 

condition monitoring techniques. 

Another limitation is that there exists a significant knowledge gap in understanding of the 

influence of insulation degradations on the line current, existing literature presents limited 

investigations. The existing literature presents limited investigations on the influence of 

insulation degradation HF line current and common mode/differential mode (CM/DM) 

impedance spectrum of the winding. Understanding the influence of insulation degradation on 

the HF line current and its corresponding impedance spectrum is crucial to understanding the 

influence of insulation degradation and development of condition monitoring methodology. A 

comprehensive investigation should be conducted to understand the influence of insulation 

degradation of both TT and GW insulation types with varying degradation severities and various 

locations within the winding.  

Existing line current measurement based techniques can be considered fairly accurate, 

however, there exists a key limitation. Existing methodologies present condition monitoring of 

either GW insulation or TT insulation, which lack the ability to quantify TT and GW insulation 

degradations simultaneously. However, condition monitoring of both TT and GW insulations 

simultaneously is crucial because different types of insulation are exposed to different 

temperatures, potentially leading to a varied degradation rate. Additionally, the impedance 

spectrum deviations caused by the aging of TT insulation can be influenced by the degradation 

of GW insulation [67]. Therefore, accurately classifying the degradation of each insulation type 

is essential for a comprehensive assessment. 

Another major shortcoming of existing methods is that the variability of noise in the 

measured current signal is disregarded. In practice, the noise level in the measured signal varies 

due to various factors. It is crucial to make sure that the method performs well across a wide 

range of noise levels, ensuring its viability in real-world applications. Additionally, the existing 

approaches rely primarily on predefined thresholds and manual analyses, which necessitates 

expert knowledge for data interpretation and feature analysis. Such dependency limits their 

adoption across different machine types and operational conditions. Such complexities 

associated with different degradation patterns and noise levels lead to a need for a more universal 

method that has the potential to be applied to any machine. Data-driven or machine learning 
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based approaches could be beneficial in condition diagnosis due to their ability to learn and adapt 

to any data. For instance, in [14], the application of a machine learning (ML) algorithm for 

leakage current measurement based insulation condition monitoring shows promising results. 

Due to the apparent advantages of such methods, this thesis proposes a novel data-driven line 

current based approach for insulation condition monitoring. 

1.5 Objectives 

The key limitations of the existing approach and open research problems in the field of line 

current measurement based condition monitoring have been discussed. The primary objective of 

this PhD research is to address these limitations and explore potential solutions. The problems 

that will be addressed as part of this research work are as follows: 

• Holistic investigation of insulation degradation: This PhD research will conduct a 

comprehensive investigation into the influence of insulation degradation on HF line 

current and the common mode/differential mode (CM/DM) impedance spectrum of the 

winding. Such investigations are crucial for developing effective condition monitoring 

methodologies.  To conduct such investigations, a simulation-based approach is 

employed. This is because the hardware based approach does not offer control over 

degradation location (TT and/or GW insulation) and degradation severity. Hence 

primarily a HF stator winding model is required to conduct such investigations. 

o Implementation of state-of-the art approach to develop a custom HF stator winding 

model: This PhD research aims to create a HF stator winding model for custom stator 

winding, that will enable comprehensive investigations to establish condition 

monitoring methodologies. This model is capable to represent the HF behavior of the 

winding and the inclusion of various insulation materials. This model would enable 

simulations of various types and severity of insulation degradations, laying the path for 

investigation on the influence of degradation on transient current as well as impedance 

spectrums. 

• Development of line current based condition monitoring methodologies: Utilizing the 

learning from the previous investigations, the following areas will be focused on.  
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o To develop a condition monitoring methodology that utilizes line current to determine 

the State of Health (SOH) and facilitates the differentiation of insulation degradation 

types.  

o To develop a condition monitoring methodology focused to address the variability such 

as noise in measured line current. The objective is to ensure this methodology's 

practical applicability, especially in environments with pronounced noise variability, 

such as EVs. The methodology should be capable of performing well across different 

levels of measurement noises. 

1.6 Thesis Organization 

Based on the research objectives, this thesis is organized into the following chapters.  

Chapter 1 presents introduction to the insulation failure and emphasizes on the importance of 

insulation condition monitoring. A comprehensive review of existing condition monitoring 

methodologies has been presented. The research problem statement, objectives, and 

contributions have been presented.  

Chapter 2 presents the development of the HF model of the stator winding. The modeling 

procedure and validation of the developed model have been discussed. The developed model 

enables detailed investigations required for understanding and development of online insulation 

condition monitoring methodology.  

Chapter 3 presents comprehensive investigations on the influence of different insulation 

degradations on the HF line current, CM impedance and DM impedance. Based on the results of 

the investigations, the utilization of dominant antiresonance oscillations in line current has been 

proposed for insulation condition monitoring. 

Chapter 4 proposes a novel insulation condition monitoring technique, which employs 

wavelet packet decomposition (WPD) to analyze high frequency (HF) line current and extract 

indicators for monitoring the state of health (SOH). The proposed technique can provide the 

SOH indicators of turn-to-turn (TT) and groundwall (GW) insulation simultaneously. 

Chapter 5 presents a novel data-driven insulation condition monitoring methodology. The 

methodology utilizes a machine learning (ML) algorithm to quantify the insulation degradation 

by utilizing the features obtained by processing HF line current. This methodology utilizes 
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wavelet scattering transform (WST) to extract crucial features from HF line current. This chapter 

also presents a comprehensive framework designed for developing insulation condition 

monitoring using the proposed ML based approach.  

Chapter 6 presents the conclusion of this thesis and possible future works. 

1.7 Contributions 

Journal papers: 

• A. Patel, C. Lai and K. L. Varaha Iyer, " Wavelet Packet Decomposition based Detection 

and Classification of Stator Winding Insulation Degradation for Electric Machines," in 

IEEE Transactions on Industry Applications [Under second review] 

 

• A. Patel, C. Lai and K. L. V. Iyer, " A Data-Driven Approach for Stator Winding 

Insulation Degradation Monitoring Considering Measurement Noise" in IEEE 

Transactions on Industry Applications [Under review] 

 

• A. Patel, C. Lai and K. L. V. Iyer, " Online Insulation Condition monitoring based on 

Antiresonance Oscillation in Line Current” Will be submitted to the IEEE Transactions 

on Industrial Electronics. 

 

Conference papers: 

• A. Patel, C. Lai and K. L. Varaha Iyer, "A Machine Learning based Approach for 

Detection and Quantification of Insulation Degradations in Machines' Stator Winding," 

2023 IEEE International Conference on Power Electronics, Smart Grid, and Renewable 

Energy (PESGRE), Trivandrum, India, 2023. 

• A. Patel, C. Lai and K. L. V. Iyer, "A Novel Approach towards Detection and 

Classification of Electric Machines’ Stator Winding Insulation Degradation using 

Wavelet Decomposition," 2023 IEEE International Electric Machines & Drives 

Conference (IEMDC), San Francisco, CA, USA, 2023. 

 

Patent: 

• A. Patel, C. Lai, N. C. Kar, G. Schlager, M. Winter, A. Exl and K. L. Varaha Iyer, 

“Determination and Classification of Electric Motor Winding Insulation Degradation” 
World Intellectual Property Organization (WIPO), WO2022094726A1. (Application filed 

in Nov, 2021) 
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Chapter 2:Development of Custom HF Stator Winding 

Model  

2.1 Introduction 

This chapter focuses on development of the high frequency (HF) modeling of the stator 

winding, development of the HF stator winding model plays a crucial role in investigating 

condition monitoring methodologies. Firstly, a brief overview of existing modeling approaches 

has been provided. Thereafter, the details on the HF modeling of stator winding using the 

multiconductor transmission line modeling (MCTL) approach have been presented. The 

developed model has the capability to incorporate frequency dependent resistance, frequency 

dependent inductances as well as detailed insulation system, leading to the accurate 

representation of the HF behavior of the winding. Moreover, the accuracy of this simulation 

model is investigated through an experimental investigation. The developed model will be 

utilized in the following chapters in studying insulation degradation and further developing 

condition monitoring methodologies. 

2.2 Brief Literature Review on HF Stator Winding Modeling Methodology 

There exist various winding modeling approaches in the literature. Some of the very first 

practices of HF stator winding modeling can be found in mid-1900s. For instance, in [78], the 

utilization of multiport networks for stator winding modeling has been presented. In 1983, as in 

[79], a scattering matrix solution-based approach was presented to investigate interturn voltages. 

Different approaches have been presented over the years. For instance, lumped parameter 

equivalent RLC circuit-based approach [79]-[81], transmission line based approach [82]-[85], 

finite element based approach [86], [87], [88], and multiconductor transmission line (MCTL) 

based approach [89]-[94]. Detailed comparative comparison of various modeling approaches has 

been presented to determine the most promising approach, taking into account both the 

advantages and limitations [95], [96]. Among the existing approaches there are two approaches 

that show great results due to their capability to consider frequency dependent parameters and 

capability to consider detailed insulation material, these approaches can be considered state-of-

the-art. These approaches are 1) Finite element (FE) based approach [86], [87], [88], and 2) 

multiconductor transmission line (MCTL) based approach [91], [92], [90]. In the context of HF 
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modeling, it is critical to consider frequency dependent behavior in the winding’s resistance and 

inductance. In [86], the FE based model was used to analyze voltages stress during switching 

transients, the model considered frequency dependent inductance, but frequency dependent 

resistance was not considered, which shows fairly good match between the predicted and actual 

voltages. However, this approach requires extremely large computation resources since the 

magnetic field solver to determine frequency dependent parameters are solved for each time-

step, which is less feasible. On the other hand, the MCTL based approach effectively addresses 

the limitation of the FE based approach by including frequency dependent inductance as well as 

resistance. Moreover, the MCTL approach significantly reduces the computational requirements 

compared to the FE method. However, the initial complexity and effort required for the MCTL 

model are much more than the FE based approach. However, it can be viewed as a worthwhile 

investment. Once the model is developed, it requires much less computation resources and less 

time to utilize the model. As discussed, the developed model will be utilized to conduct 

investigations on insulation degradation and the development of condition monitoring 

methodology. Such investigations require repetitive simulations of various degradation 

scenarios. Furthermore, the ability to conduct these simulations with fewer computational 

resources and less time, makes it suitable for ongoing condition monitoring. Hence, this thesis 

work utilizes the MCTL based approach due to the promising results, reduced computation cost 

and ability to provide faster results.  

2.3 HF of Stator Winding using MCTL approach 

This section discusses the HF modeling of stator winding using the MCTL approach. The 

key processes involved in the modeling are presented in Fig. 2-1. A stator of any machine mainly 

consists of three components: the stator core, conductors or wires, and insulation. Hence the first 

step involves the creation of a detailed slot model in the FEA tool, Ansys Electronics Desktop 

(AEDT). The created slot model should include detailed arrangements and properties of wires, 

insulation material and iron core. In order to simplify investigations and modeling, a winding 

with 8 coils or 24 turns is developed and modeled using MCTL approach. The developed model 

adequately serves the purpose of investigating online insulation condition monitoring 

methodologies. The properties of stator and insulation systems are summarized in Table (2.1). 

The experimental stator winding is shown in Fig. 2-2, while Fig. 2-3 shows the winding pattern 

and slot model created model in AEDT. The cross section of a slot shows the arrangement of 
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wires and the insulation system. The winding consists of a total of 8 coils or 24 turns (3 turns per 

coil). The total number of turns in each slot is 6 and there are 16 wires per turn. Hence there are 

96 wires in each slot. The TT insulation is the insulation over the wires while the GW insulation 

is the insulation that separates wires from the stator. It is important to note that the developed 

model assumes the same arrangement of wires in all slots, as the model is primary utilized to 

investigate the impact of insulation degradation. 

 

 

Fig. 2-1 HF stator winding modeling using MCTL approach 

  

Fig. 2-2 Experimental stator winding and slot cross-section 
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Table 2-1 Properties of Insulation 

Insulation Type Material Thickness (mm) Dielectric Constant 

Groundwall insulation Nomex® 410 0.18 2.7 

Wire Insulation (Enamel) Epoxy Kevlar 0.07 4.88 

 

After defining the slot model in the FEA tool, the next step involves the computation of 

parameters. The inductance and resistance of the winding changes significantly with the 

frequency. Moreover, the wires or turns inside the slot have mutual coupling among them, which 

varies with the frequency. Apart from such electromagnetic coupling, there exist capacitive 

coupling among the turns as well as with the iron core. It is crucial to incorporate such capacitive 

and electromagnetic coupling to obtain an accurate HF winding model. Hence, an electrostatics 

solver is utilized to obtain the capacitive coupling. To solve electromagnetic coupling and obtain 

frequency dependent resistance and inductances, the eddy-current solver has been utilized. The 

detailed parameter computation is discussed in the following section. 

The next step after parameter computation involves the computation of ladder circuits (LCs) 

parameters from the frequency dependent resistances and inductances obtained from the previous 

stage. To model frequency dependent resistance and inductance, a ladder circuit (LC) can be 

used. A LC comprise of various inductances and resistance organized in a ladder formation and, 

 

 

 

Fig. 2-3 Ilustation of stator winding and slot cross-section in FEA 
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which can replicate the frequency dependent behavior. A vector fitting (VF) algorithm has been 

utilized to extract these LC parameters from the previously calculated frequency dependent 

resistance and inductances. The comprehensive procedure to determine LC parameters is 

discussed in the next section. 

Once the required parameters and LCs are obtained, the MCTL model can be created as 

shown in Fig. 2-4. The developed model shows 8 coils, each coil containing 3 turns totaling 24 

turns. The inductance and resistance of each turn can be modeled using equation (2.1), where 𝑉𝑖 

is the voltage across one turn 𝑖, which represents the voltage due to self impedance and mutual 

coupling with other turns. For each turn 𝑖, 𝑅𝑖𝑖 and 𝐿𝑖𝑖 represents the self-resistance and 

inductance respectively, while 𝐼𝑖 is the current flowing through it. Hence, the first term in 

equation (2.1) represents voltage 𝑉𝑖𝑖 due to self parameters. In the second term, parameters 𝑅𝑖𝑘 

and 𝐿𝑖𝑘 represent the resistive and inductive coupling between turns 𝑖 and 𝑘, while 𝐼𝑘 is the 

current through the kth turn. Here, the term restive coupling refers to the voltage drop caused due 

to skin and proximity effect. Hence, the second term represents turn voltage due to mutual 

coupling 𝑉𝑖𝑘 with other turns. Here, the term 𝑁𝑡 represents the total number of turns per coil. 

Utilizing the equation, the equivalent MCTL model of the winding can be created as shown in 

Fig. 2-4.  

𝑉𝑖 = (𝑅𝑖𝑖(𝑓)𝐼𝑖 + 𝐿𝑖𝑖(𝑓)
𝑑𝐼𝑖
𝑑𝑡

) + ∑  

𝑁𝑡

𝑘=1
𝑘≠𝑖

(𝑅𝑖𝑘(𝑓)𝐼𝑘 + 𝐿𝑖𝑘(𝑓)
𝑑𝐼𝑘
𝑑𝑡

) 

(2.1) 

To represent the first term in the equation in frequency dependent manner, an LC is 

utilized which replicates frequency dependent self resistance and self inductance. The second 

term in the equation represent the voltage drop 𝑉𝑖𝑘 due to currents mutual coupling, which is due 

to the effect of skin and proximity effect and mutual coupling. Which is modeled using the 

current dependent voltage source. For each turn 𝑖, the current in each coupling turn (𝐼𝑘) causes 

opposing voltage drop due to the mutual coupling. This coupling is also frequency dependent, 

which can be represented using a LC as well. To model this the voltage drop 𝑉𝑖𝑘, current 

dependent voltage source can be utilized which represents the voltage drop due to the mutual 

coupling. Hence, when considering a coil with 3 turns, a single LC circuit captures the voltage 

drop from the turn's self parameters. While 2 distinct LC can be utilized to model the voltage 
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drops due to mutual coupling with remaining turns. Apart from LCs and current-dependent 

voltage sources, there are other parameters including: 1) 𝐿𝑜𝑣 represents the overhang inductance 

per turn 2) 𝑅𝑒 which represents per turn core loss 3) 𝐶𝑖𝑗 represents the capacitance between two 

turns, (π representation)  4) 𝐶𝑖𝑔   represents half the value of turn to ground capacitance (π 

representation). The details of the calculation of these parameters are discussed in the following 

section. The model can be built in any circuit simulation tool, this thesis work utilizes 

MATLAB/Simulink environment. 

2.4 Parameter Computation for MCTL Model 

As briefly discussed in the previous stage, parameters such as capacitances, frequency 

dependent resistance and inductances, ladder circuit (LC) parameters, overhand inductance per 

turn (𝐿𝑜𝑣) and core loss resistance per turn (𝑅𝑒) are required to be calculated. This subsection 

discussed the procedure to calculate the aforementioned parameters.  

 

 

 

Fig. 2-4 HF Modeling of Stator Winding using MCTL approach 
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2.4.1.Capacitance Calculation 

Electrostatics solver in the AEDT has been utilized to compute capacitance. The 

electrostatics computes the static electric field that exists in a structure given a distribution of DC 

voltages and static charges and provides a capacitance matrix, which can be further processed to 

compute the capacitive coupling among the conductors [97]. The capacitance represents the 

amount of energy stored in the electric field due to a voltage differential across a dielectric. This 

energy can be given by the equation (2.2). 

𝑊𝑒 =
1

2
𝐶𝑉2 

(2.2) 

Here, the 𝑊𝑒 is the stored energy, 𝐶 is the capacitance and 𝑉 is the voltage across the 

dielectric. The Electrostatics solver computes the capacitance between two conductors by 

simulating the electric field due to various voltage excitations. Then the energy stored in the field 

is computed followed by calculating the capacitances. Each turn in the winding is mainly 

distributed over two different regions: 1) slot region where the wires are covered by the core. 

And 2) overhang region or end winding region where the wires are in the air. For both regions, 

the capacitive coupling among the turns is different. It is important to consider this variation in 

parameters.  

Capacitance Calculation in Slot Region: The first step is to assign voltage excitation to 

the turns of the coil among which the capacitance coupling will be calculated. The standard 

practice is to assign 1V to one of the turn voltages and the rest can be assigned 0V. Moreover, 

 

 

Fig. 2-5 Illustration of capacitance coupling in the slot 
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the stator is also assigned a voltage. The next step includes the assignment of appropriate matrix, 

boundary conditions, mesh settings, and analysis settings. Thereafter, the electrostatics solver 

calculates the capacitance coupling among the conductors with excitation and provides a 

maxwell capacitance matrix. Here, each coil contains 3 turns, the resultant capacitive coupling is 

as shown in Fig. 2-5. The capacitor 𝐶𝑖𝑗 represents the capacitor between turn 𝑖 and turn 𝑗. While 

capacitor 𝐶𝑖0 represents the capacitance with respect to the stator. The capacitance matrix 

provided by the solver is shown in equation (2.3), while for a system with N conductors, the 

matrix can be given by following equation (2.4). Here, diagonal elements in the matrix represent 

the self-capacitance of each turn while off-diagonal elements represent mutual capacitances. 

Using the given relation, 𝐶𝑖𝑗 and 𝐶𝑖0  capacitances can be obtained. It is important to know that 

the matrix obtained provides capacitance per meter. Depending on the length, the matrix must be 

converted to obtain correct capacitances. 

[

𝑄1

𝑄2

𝑄3

] = [

𝐶10 + 𝐶12 + 𝐶13 −𝐶12 −𝐶13

−𝐶12 𝐶20 + 𝐶12 + 𝐶23 −𝐶23

−𝐶13 −𝐶23 𝐶30 + 𝐶13 + 𝐶23

] [

𝑉1

𝑉2

𝑉3

] 

 

(2.3) 

(

𝑄1

𝑄2

⋮
𝑄𝑁

) =

[
 
 
 
 
 
 
 
 ∑ 𝐶1𝑖

𝑁

𝑖=0
𝑖≠1

−𝐶12 ⋯ −𝐶1𝑁

−𝐶21 ∑ 𝐶2𝑖

𝑁

𝑖=0
𝑖≠2

⋯ −𝐶2𝑁

⋮ ⋮ ⋱ ⋮

−𝐶𝑁1 −𝐶𝑁2 ⋯ ∑ 𝐶𝑁𝑖

𝑁

𝑖=0
𝑖≠𝑁 ]

 
 
 
 
 
 
 
 

(

𝑉1

𝑉2

⋮
𝑉𝑁

) 

(24.) 

  

Overhang region capacitance: In the overhang region, the winding is in the air so there 

is no capacitive coupling with the stator. Only the capacitances between turns (𝐶𝑖𝑗) required to 

be considered and capacitances with respect to the stator (𝐶𝑖0) can be disregarded. A similar 

procedure as can be followed to obtain the capacitance matrix for the overhang region. 

Here, it is crucial to note that the accurate properties of insulation and the properties of 

wires are required to be considered while developing a slot model in AEDT. Moreover, it is 

extremely important to replicate the accurate arrangement of wires and insulation. The properties 

of insulation are presented in Table (2.1). The required properties of GW insulation including 

thickness and dielectric constant have been obtained from the datasheet. However, information 
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on turn insulation is readily available. Given the importance of the accurate parameters in 

capacitance calculation, these properties have been approximated through some measurements. 

The details are discussed in the following subsection.  

2.4.2.Determination of Turn Insulation Properties 

The required properties are thickness and the insulation dielectric constant. The accurate 

information on these parameters is not available in the datasheet, especially the dielectric 

constant. To obtain the insulation thickness, the overall diameter of the wire is measured which 

was 0.81mm while the copper wire diameter is 0.67mm (from the datasheet) [98]. Hence, the 

insulation thickness is determined to be 0.07mm. To obtain the dielectric constant of the 

insulation, a capacitance measurement-based technique is used. It is common practice to use 

wires of twisted pair (two wires twisted against each other) for the capacitance of dielectric 

material and partial discharge inception voltage (PDIV) correlation investigations [99], [100], 

[101] . Hence, a similar approach is used to determine the dielectric constant of the insulation. 

Firstly, a total of 22 twisted pairs of different lengths were created, which are shown Fig. 2-6 and 

Fig.2-7. Then using an impedance analyzer, the capacitance between two wires is obtained, 

which is due to 0.14mm (for one wire thickness is 0.07mm) of insulation. The average 

capacitance is calculated from all the samples. Table (2.2) summarizes the average capacitance 

obtained from 22 twisted pairs. 

 

Fig. 2-6 Twisted pairs of wires (130mm) 

 

Fig. 2-7 All the samples of twisted pairs of wires 
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Table 2-2 Measured capacitances for various twisted pairs of wires 

Approx. Twisted Pair Length Sample No. Measured Capacitance (pF) Actual Length (mm) 

130 mm 1 17.1 132 

 2 16.5 131.5 

 3 15 127.5 

 4 15.6 129.5 

 5 15.3 127.5 

 Average 15.9 129.6 

 Capacitance/100mm 12.26 pF 

200 mm 1 21.7 195.5 

 2 21.1 202.5 

 3 23.7 207.5 

 4 23.2 208.5 

 5 21.2 208 

 6 21.8 208 

 7 22.2 204 

 Average 22.13 204.85 

 Capacitance/100mm 10.8 pF 

400 mm 1 45 394 

 2 45.9 395.5 

 3 47 397 

 4 44.8 395.5 

 5 46.7 397 

 Average 45.88 395.8 

 Capacitance/100mm 11.59 pF 

600 mm 1 65.9 575 

 2 62.4 569.5 

 3 66.8 570 

 4 66 571 

 5 64.3 570.5 

 Average 65.08 571.2 

 Capacitance/100mm 11.39 pF 

All samples Capacitance/100mm 11.51 pF 

 

The average capacitance is 11.51 pF/100 mm. This information is further used to 

determine the dielectric constant is determined using the electrostatics solver in AEDT. In 

AEDT, two wires are modeled to be in close contact with each other. The diameter of the wire is 

0.67mm and the thickness of the insulation is 0.07mm. Each wire is assigned voltage excitation, 

other necessary settings are done, and the capacitance is obtained between two wires. Then the 

dielectric constant is adjusted to obtain the same capacitance which was obtained from the 

measurement i.e. 11.51pF/100 mm. The determined dielectric constant is 4.88.  
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2.4.3.Frequency Dependent Resistance and Inductance Calculation 

Resistance and Inductance of the wires vary depending on the frequency due to skin and 

proximity effects. Pulses from a PWM inverter can be considered as a superposition of multiple 

frequency components. For instance, machine operating frequency, switching frequency, the 

frequency corresponding to the rise time of the pulse, etc. For accurate determination of 

electrical stress, it is important to consider variations in resistance and inductances due to the 

frequency. The excitation pulse is a typical voltage pulse that can be considered as HF excitation 

to the winding, with an excitation frequency that extends up the frequency of 𝑓𝑚𝑎𝑥 =

1/min(𝑡𝑟 , 𝑡𝑓). Here, 𝑡𝑟 is rise time and 𝑡𝑓 is the fall time of the PWM pulse. Ideally, inductance 

and capacitance variation up to 𝑓𝑚𝑎𝑥 should be considered. Here, the minimum rise or fall time is 

20ns, which corresponds to the 𝑓𝑚𝑎𝑥 of 50Mhz. So, the model has been developed to replicate 

the frequency dependent behavior up to 55MHz. So, the eddy current solver in AEDT has been 

utilized to calculate frequency dependent resistance and inductances. This also includes the 

calculation of mutual resistive and inductive coupling among various turns in a slot also varies 

with the frequency which is also obtained using the eddy current solver. Similar to the 

capacitance calculation, each turn in the coil is assigned with a current excitation of 1A. Apart 

from this, appropriate matrix, boundary conditions, mesh settings, frequency sweep, and analysis 

settings are applied. The solver solves the electromagnetic field within the coil and provides a 

matrix for each frequency point.  

The diagonal elements in the matrix represent self impedance while the off-diagonal 

elements represent the mutual coupling among the turns. Hence, the impedance matrices for 

seven frequency points (50Hz, 500Hz, 5KHz, 50KHz, 500KHz, 5MHz, and 55MHz) are 

obtained. These parameters will be further used to create various ladder circuits (LCs), which are 

discussed in the next subsection. 

2.4.4.Overhang Inductance Calculation 

The total overhang inductance of the winding is considered to be constant. This is because 

the wires are placed in the air and the influence of frequency is comparatively smaller than in the 

slot region. The overhang inductance per turn has been determined using the equation (2.5). 

𝐿𝑜𝑣 ≅ 𝑘𝑟 ∙
1

𝑁
∙ (𝜇0𝑁

2 ∙ (
2

𝑃
) ∙ λ𝑏 ∙ 𝑙𝑜𝑣) 

(2.5) 
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Here, 𝑘𝑟 is a constant that accounts for the reduction in inductance due to skin effect, 𝑁 is the 

number of turns per phase, λ𝑏 is geometry coefficient and 𝑙𝑜𝑣 is the length of the overhang in 

each turn. The determined 𝐿𝑜𝑣 per turn is 1.016 μH. 

2.4.5.Core loss Resistance Calculation 

There is not enough research or established methods for the calculation of Re. However, 

there is a relation between the core loss resistance and the stator outer diameter, which can be 

used to determine 𝑅𝑒 [92], [102]. According to [92], core loss resistance per phase is estimated at 

2 kΩ for a stator with a diameter of 16.19 cm, (2010 Toyota Prius machine). The winding has 11 

turns per coil and 8 series coils per phase, hence the value of 𝑅𝑒 determined to be s 22.73 Ω. The 

developed winding in this thesis has a stator has a diameter of 20 cm, hence using the same 

approximation the core loss resistance per phase would be 2470 Ω.  The winding has 3 turns per 

coil and 8 series coils per phase. Based on the winding arrangement, the core loss resistance per 

turn Re is obtained as 102.91 Ω.  

2.4.6.Ladder Circuit Parameters Calculation 

This subsection presents the procedure to obtain the LC parameters from frequency 

dependent resistances and inductances acquired. The Ladder circuit is essentially multiple 

inductances and resistances connected in step format to approximate the variation in parameters 

due to frequency. The parameters obtained from the eddy current solver are required utilized to 

create LCs so the frequency dependent winding parameters can be modeled. To calculated LC 

parameters, a vector fitting (VF) based algorithm has been employed. As shown in Fig. 2-8, this 

algorithm processes the parameters derived from the previous stage to determine the final LC 

values. Detailed procedures to obtain parameters of LC are shown in Fig. 2-9.  

As outlined in the provided flowchart, the LC parameters for each level are sequentially 

calculated. The process is repeated for each level until all LC parameters are obtained. Once all 

the parameters for LC are obtained, the frequency response of the LC can be compared against 

the desired response or (parameters from the eddy current solver) to ensure that the LC is capable 

of replication similar behavior. For instance, Fig. 2-10 and Fig. 2-11 show parameters obtained 

from the eddy current solver and the response of an LC, it is quite clear that LC can replicate 

input behavior. 
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Fig. 2-8 High level overview of procedure to obtain LCs 

 

Fig. 2-9 LC parameter computation using VF algorithm 
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Fig. 2-10 Turn 1 self parameters: LC response vs desired response (parameters from AEDT) 

 

Fig. 2-11 Turn 1 and turn 2 mutual parameters: LC response vs desired response (parameters from AEDT) 

 

To model each coupling this procedure is followed and corresponding LC parameters are 

obtained. The implementation of the aforementioned VF based algorithm is carried out in 

MATLAB. The implementation is very challenging due to uncertainties associated with the VF 

algorithm. Implementation is not straightforward, there is no single code that would work for all 

the cases. It is crucial to understand and optimize various settings at each level of ladder circuit 

calculation to ensure that the obtained ladder circuit accurately replicates the desired behavior. 
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Moreover, the VF algorithm is typically considered as a black box. which is often used in various 

literature. Ultimately, the critical measure of success for the VF based algorithm is its ability of 

LC to accurately replicate the desired frequency dependent parameters. 

2.5 Experimental Validation: Validation of the Developed HF Winding Model 

 The developed model has been developed to conduct investigations on insulation degradation 

and the development of insulation condition monitoring methodologies, which require accurate 

replication of HF behavior of the winding. To validate the developed model various experiments 

have been conducted. Various measurements from simulation and experiments have been 

obtained for comparative analysis of 1) Common mode (CM) and Differential mode (DM) 

impedances and 2) voltage distribution inside the winding. These comparisons of the CM and DM 

impedances reflects the parasitic couplings of the winding. Therefore, the comparison of CM and 

DM impedance from the HF model with the experimental measurement is a common practice to 

validate the model [53],[54],[91]. This ensures validation of the model over a wide frequency 

range. On the other hand, other common approach to validate such HF models is through 

comparison of voltage distribution inside the winding. A typical inverter is applied to the winding 

and voltages at various locations inside the winding are measured and compared, such comparison 

validates the model in time-domain. 

2.5.1. Comparison of Common mode (CM) and Differential mode (DM) impedances 

 The CM and DM impedances from both the developed model and experimental setup have 

been acquired for comparison. The model has been implemented in Matlab/Simulink 

environment, and the impedances have been acquired using the Impedance Measurement block 

functionality in Simulink. The impedance measurements from the experimental setup are acquired 

using OMICRON Lab manufactured Bode100 impedance analyzer. The Bode 100 impedance 

analyzer can measure the impedance over a frequency range frequency range from 1 Hz to 50 

MHz.  The complete setup is illustrated in Fig. 2-12, Bode100 impedance analyzer is connected to 

the stator winding, and the measurement data has been acquired from PC connected to Bode100. 

As shown in Fig. 2-13, the connections to acquired CM and DM impedances have been made. 

The CM impedance is measured between the shorted terminals of the winding and stator core. 

The DM impedance is measured between the terminals of the winding and the stator core kept 

floating.  
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Fig. 2-12 Experimental setup for CM and DM impedance measurement 

 

Fig. 2-13 Schematic of CM and DM impedance measurement 

The comparison of CM impedances and DM impedances from hardware and simulation is shown 

in Fig. 2-14 and Fig. 2-15 respectively. The impedances show good agreement, indicating that 

the developed HF model is accurate. Moreover, it is crucial to note that the resonance and 

antiresonance frequencies match quite well.  

The resonance in electrical circuits is characterized by a significant increase in the circuit's 

impedance response at a specific frequency, known as the resonance frequency. Conversely, the 

antiresonance frequency is the frequency where the circuit’s impedance response reaches 

minima. In CM impedance, the first antiresonance frequency (𝑓𝐶𝑀_𝑎𝑟1) from the HF model is at 

1.92 MHz while the hardware results show antiresonance at 1.88 MHz. Similarly, the second 

antiresonance frequencies (𝑓𝐶𝑀_𝑎𝑟2) are also in close proximity, 22.5 MHz from simulation and 

19.8 MHz from hardware measurements. In DM impedance, the resonance and antiresonance 

frequencies can be found in close proximity. For instance, the resonance frequency (𝑓𝐷𝑀_𝑟1) 

from the HF model is at 2.1 MHz while the measured resonance frequency is at 2.35 MHz. Apart 

from resonance and antiresonance frequencies, the amplitude of impedance and phase also show 

great agreement with each other, highlighting the model’s capability to replicate the HF behavior 

of the winding.  
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Fig. 2-14 Comparison of CM impedance acquired from MCTL model and hardware 

 

 

Fig. 2-15 Comparison of DM impedance acquired from MCTL model and hardware 
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Table 2-3 Comparison of antiresonance and resonance frequencies from simulation and experiment 

Impedance Freq Experiment Simulation 

CM Impedance 𝑓𝐶𝑀_𝑎𝑟1 1.88 MHz 1.92 MHz 

 𝑓𝐶𝑀_𝑎𝑟2 19.8 MHz 22.5 MHz 

 𝑓𝐶𝑀_𝑟 3.84 MHz 3.81 MHz 

DM Impedance 𝑓𝐶𝑀_𝑎𝑟1 3.87 MHz 3.78 MHz 

 𝑓𝐶𝑀_𝑎𝑟2 21.6 MHz 22.6 MHz 

 𝑓𝐶𝑀_𝑟 2.35 MHz 2.1 MHz 

 

However, the developed model is not perfect due to uncertainties involved with the modeling 

and measurement procedure. These discrepancies can be due to the unknown position of wires 

inside the slot, approximation of dielectric properties of insulation, negligence of nonidealities, 

lumped end-winding modeling, etc. However, it should be acknowledged the MCTL modeling 

approach used is considered state-of-the-art and outperforms other modeling approaches [54], 

[90], [91], [92]. Moreover, even though such discrepancy does impact the time domain model 

performance, it does not do so in a manner, which significantly impedes the model performance 

for the purpose of voltage distribution [91]. There could be some improvements made to improve 

the model. However, this thesis does not focus on the improvement of HF modeling, rather it 

focuses on the utilization of such a model for investigating the influence of insulation 

degradation on CM/DM impedances and the development of condition monitoring 

methodologies. In summary, the CM and DM impedance fairly match with the hardware 

measurement including resonance frequencies and antiresonance frequencies. Thus, this HF 

model is utilized for investigations on condition monitoring methods. 

2.5.2. Comparison of Voltage Distribution 

 As discussed, the developed HF model through experiments, a voltage distribution 

measurement-based approach is used. This involves application of an inverter pulse and 

measurement of voltages at various locations inside the winding. Thereafter, the measured 

voltages from experiment and simulation are compared. The experimental setup is shown in Fig. 

2-16.  
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Fig. 2-16 Experimental validation setup for comparison of voltages 

 

Fig. 2-17 Typical measurement for measured voltages 

 

Fig. 2-18 Typical measurement for measured voltages 

(Enlarged View) 

 

Fig. 2-19 Comparison of peak and steady voltages from simulation and experiment 

 

Peak Voltage 

Steady Voltage 

Peak Voltage 
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A high dv/dt (17.7 kV/μs) voltage pulse to the winding using a half-bridge SiC inverter module. 

The utilized SiC module is Wolfspeed CAB450M12XM3 with a peak voltage rating of 1200V 

and peak current of 450A. After the application of voltage pulse, voltages at the terminals as well 

as the at each coil are measured. The voltages have been measured using Yokogawa differential 

probes with a bandwidth of 100 MHz and measure voltages up to 1400V. The utilized 

oscilloscope is Rhode & Schwarz RTM3004 with a bandwidth of 500 MHz. Typical 

measurements of voltages are shown in Fig. 2-17 and 2-18. The peak voltage refers to the 

maximum voltage measured, while steady voltage corresponds to the voltage level after initial 

oscillations in the voltages have been damped. After acquisition of these voltage from experiment, 

the same applied voltages as in the experiment is fed to the HF model to obtain voltages at each 

coil of the winding.  Obtained voltages at each coil through experiment and simulation are 

compared with each other, and results are shown in Fig. 2-19 and Table (2.4). The steady and 

peak voltages match quite well, indicating that the developed HF model is accurate. As discussed, 

these exists some discrepancies due to the unknown position of wires inside the slot, 

approximation of dielectric properties of insulation, negligence of nonidealities, lumped end-

winding modeling, etc. These are some potential improvements that can be made. 

 

Table 2-4 Comparison of peak and steady voltages from simulation and experiment 

Applied Pulse 

dv/dt 

Coil No. Peak Voltage (V) Steady Voltage (V) 

Simulated Experiment Simulated Experiment 

dv/dt: 17.7 kV/μs C1 526.074 526.07 289.272 287.79 

 C2 424.1954 437.21 252.9208 249.71 

 C3 367.1785 339.55 213.22 208.69 

 C4 298.7104 279 176.8681 172.56 

 C5 293.1471 270.22 140.5151 129.59 

 C6 289.7331 265.33 104.1624 92.48 

 C7 270.3356 263.38 71.57419 63.18 

 C8 224.9542 183.3 35.22583 22.17 
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2.6 Summary 

This chapter briefly discusses the HF modeling of stator winding using the 

multiconductor transmission line modeling (MCTL) approach, which has been further utilized 

for the investigations on condition monitoring methodology. In order to simplify modeling and 

validation, a winding with 8 coils or 24 turns is modeled, which adequately serves the purpose of 

investigating online insulation condition monitoring methodologies. The developed model 

incorporates frequency dependent resistance and inductances, leading to the accurate 

representation of the HF behavior of the winding. A comparative study was carried out to 

validate the developed model against experimental results. The comparative analysis covered 

common-mode (CM) impedance, differential-mode (DM) impedance, and peak and steady-state 

voltages at various coils. The results show a good match between simulation and hardware. 

However, this model shows some discrepancies due to various uncertainties associated with the 

modeling procedure. Nonetheless, it's crucial to acknowledge that the model demonstrates a 

reasonable level of accuracy when compared to actual hardware measurements, particularly in 

terms of matching resonance and antiresonance frequencies, which proves the model's 

effectiveness in capturing key electrical characteristics. Consequently, despite the identified 

limitations, this high-frequency (HF) model proves to be crucial for investigations on condition 

monitoring methods. Comprehensive investigations on the influence of various types of 

insulation degradation on transient line current and corresponding frequency spectrum can be 

conducted which would help in developing accurate condition monitoring methodologies. 
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Chapter 3: Utilization of Antiresonance Oscillations for 

Insulation Condition Monitoring  

As discussed, one of the limitations in existing literature is that there exists a significant 

knowledge gap in understanding of the influence of insulation degradations on the HF line 

current. There is a need to address this knowledge gap through investigations, and learning can 

be further utilized to develop appropriate condition monitoring methodology. Hence, his chapter 

presents comprehensive investigations on the influence of different insulation degradations on 

the HF line current. The investigations aim to identify the underlying mechanisms and patterns 

associated insulation degradation and HF line current. To conduct these investigations, HF stator 

winding model presented in the previous section has been utilized. Based on the investigations 

results, utilization of the dominant antiresonance oscillations in line current for condition 

monitoring has been proposed. The first subsection introduces characteristics of the oscillation in 

the line current due to inverter switching. The second subsection presents investigations on the 

influence of various degradations on the line current and CM impedances, proposing the 

utilization of dominant oscillation in condition monitoring. 

3.1 Dominant High Frequency Line Current Oscillations  

The HF current oscillations during the switching of power electronics devices carry information 

related to the HF behavior of the winding. This information can be extracted using the PWM 

voltage pulses from the inverter, these pulses can be considered as HF excitation which spreads 

up to a maximum frequency of 𝑓𝑚𝑎𝑥 = 1/min(𝑡𝑟 , 𝑡𝑓). Here, 𝑡𝑟 is rise time and 𝑡𝑓 are and fall 

time of the PWM pulse. A typical PWM pulse and corresponding spectral envelope are show in 

Fig. 3-1. A typical PWM pulse from an inverter can be considered as an asymmetrical trapezoid 

as illustrated in in Fig. 3-1. The key properties that define such trapezoid pulse are the rise time 

(𝑡𝑟), fall time (𝑡𝑓), duty ratio (𝐷), switching period (𝑇). The corresponding spectral envelope is 

shown in Fig. 3-1. The spectral envelope can be mainly divided into three regions. In the first 

region, the amplitude remains constant up to frequency of 
𝑓𝑠𝑤

𝜋𝐷⁄ , which is mainly the function 

of switching frequency 𝑓𝑠𝑤 and duty ratio. In the next region, the amplitude reduces at the rate of 

-20db/dec as the frequency increases. This decrease is up to a frequency of 1 𝜋𝑡𝑟⁄ , hence mainly 
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determined by the rise time of the pulse. In the third region, the amplitude decreases even faster 

at the rate of -40db/dec and extends up to frequency of 1/min(𝑡𝑟 , 𝑡𝑓). However, as a rule of 

thumb, typically this maximum frequency is considered to be 1/(𝜋 ∙ min(𝑡𝑟 , 𝑡𝑓)) as the spectral 

component after this frequency are insignificant. Hence, the rise and fall times are critical 

parameters as they determine the highest frequency components present in the PWM signal. A 

shorter rise or fall time results in higher frequency components. Hence, a PWM pulse works as a 

HF excitation which can be utilized to extract the information on the HF impedance of the 

winding. This can be achieved through understanding the HF line current and it’s oscillations 

behavior due to the application of such PWM voltage pulse. The HF excitation to the winding 

induces the resultant line current to contain HF component which are function of CM and DM 

impedances. To conduct the investigations, the HF stator winding model have been utilized. The 

illustration of the setup is shown in the Fig. 3-2, it contains a half-bridge inverter to apply a 

PWM voltage excitation pulse (𝑉𝑃𝑊𝑀) to the winding and the HF line current 𝑖𝑙𝑖𝑛𝑒 is measured. 

Here, 𝑖𝑙𝑖𝑛𝑒 rises as a steady rate and there exists some oscillations, which can be represented by 

equation (3.1). 

𝑖𝑙𝑖𝑛𝑒(𝑡) = 𝑖𝑡𝑟𝑎𝑛𝑠(𝑡) +  
1

𝐿𝑀
∫ 𝑉𝑃𝑊𝑀(𝑡) 𝑑𝑡

𝑡

0

 
(3.1) 

Here, 𝑖𝑙𝑖𝑛𝑒 is the line current that rises at a steady rate due to the winding’s inductance 𝐿𝑀, 𝑉𝑃𝑊𝑀 

is voltage excitation pulse, and 𝑖𝑡𝑟𝑎𝑛𝑠 represents the high frequency current which mainly 

represents current through the high-frequency CM and DM coupling paths. Hence, 𝑖𝑙𝑖𝑛𝑒 can be 

utilized to extract the information on the CM and DM impedances.   

 

 

 

Fig. 3-1 Typical PWM inverter pulse and corresponding spectral envelop 
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Fig. 3-2 Prominent oscillations in it and itrans during inverter switching 

 

 

Fig. 3-3 Prominent oscillations in iline and itrans during inverter switching 
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 To extract 𝑖𝑡𝑟𝑎𝑛𝑠 from, firstly linear trend in the current needed to be captured and mitigated. A 

steady increase in 𝑖𝑙𝑖𝑛𝑒. Fig. 3-3 shows 𝑖𝑙𝑖𝑛𝑒 and 𝑖𝑡𝑟𝑎𝑛𝑠 obtained, the prominent oscillations can 

be clearly observed in both the currents. first-order polynomial is sufficient to capture this trend, 

this is represented by equation (3.2). In MATLAB, the coefficients 𝑝0 and 𝑝1 can be determined 

using the ‘polyfit’ function, which can fit a first-order polynomial to 𝑖𝑙𝑖𝑛𝑒. Once the coefficient 

𝑝0 and 𝑝1 are obtained, the transient current 𝑖𝑡𝑟𝑎𝑛𝑠 can be obtained using equation (3.3), which 

essentially subtracts the linear trend from the 𝑖𝑙𝑖𝑛𝑒. 

𝑓(𝑡) = 𝑝1𝑡 + 𝑝0 (3.1) 

𝑖𝑡𝑟𝑎𝑛𝑠(𝑡) = 𝑖𝑙𝑖𝑛𝑒(𝑡) − 𝑝1𝑡 − 𝑝0 (3.2) 

As shown in Fig. 3-3, the obtained transient current 𝑖𝑡𝑟𝑎𝑛𝑠 can be characterized by two prominent 

oscillations. The first is the HF oscillations observed in the beginning and the second is the 

subsequent low frequency (LF) oscillation. The HF oscillations oscillate at 22.5 MHz, 

corresponding to the second antiresonance frequency (𝑓𝐶𝑀_𝑎𝑟2) of the CM impedance. The LF 

oscillations oscillates at 1.92 MHz, the first antiresonance frequency (𝑓𝐶𝑀_𝑎𝑟1) of the CM 

impedance. This oscillatory behavior has significant potential for insulation condition 

monitoring. By understanding the relationship between these oscillations and insulation 

degradation, insulation condition monitoring strategies can be developed. However, the existence 

and nature of this relationship require thorough investigation to establish a robust correlation. 

This chapter presents such investigations using the developed HF model 

3.2 Analysis of Influence of TT and GW Insulation Degradation on the CM/DM 

Impedance Spectrum and HF Line-current 

This subsection presents analysis on the influence of various degradation scenarios on the CM 

impedance, line current 𝑖𝑙𝑖𝑛𝑒 and transient current 𝑖𝑡𝑟𝑎𝑛𝑠. Using the HF winding model, both 

frequency and time domain analysis have been conducted for various insulation condition 

scenarios, including: 1) good insulation 2) GW insulation degradation 3) TT insulation 

degradation 4) overall degradation where both TT and GW insulation degrades. As discussed in 

the Chapter 1, increase in capacitance is the most common symptom of degradation, this 

increment can be up to 40-50% before failure. Hence, this section presents a comprehensive 

analysis of the implication of aforementioned insulation condition scenarios with varying 

degradation severity ranging from 10% to 40% on CM impedance, line current 𝑖𝑙𝑖𝑛𝑒 and transient 
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current 𝑖𝑡𝑟𝑎𝑛𝑠. The analysis has been done using the HF model. Firstly, the analysis begins under 

good insulation conditions which serves as the baseline. The capacitances in the model kept the 

same as determined using an electrostatics solver in AEDT during the model development stage. 

Thereafter, other degradation scenarios are simulated for varying degradation severity. To 

simulate TT degradation scenario, where on the turn insulation or the insulation over the wires 

degrade, the values of the capacitances representing TT insulation are increased by 10% to 40%. 

Similarly, to simulate GW degradation, the capacitances corresponding to GW insulation are 

adjusted to reflect the same range of degradation severity. In the overall degradation scenario, 

both TT and GW insulation are simultaneously degraded. This has been achieved through 

adjustment of capacitances representing both TT and GW insulation are increased by 10% to 

40%. For each of the degradation case, the frequency domain and time domain analysis have 

been conducted. Frequency domain analysis reveals how the spectrum, resonance and 

antiresonance frequencies get affected with increasing capacitance due to insulation degradation. 

This is critical for understanding the high-frequency behavior of the winding and identifying 

specific frequency ranges where degradation effects are most pronounced. The frequency domain 

analysis comprises an investigation on both CM and DM impedances. However, this subsection 

focuses on CM impedance only. The impedance measurement functionality in 

MATLAB/Simulink environment have been utilized to measure CM impedance, it is measured 

between the shorted terminals of the winding and stator core. In the time domain, line current 

𝑖𝑙𝑖𝑛𝑒 and transient current 𝑖𝑡𝑟𝑎𝑛𝑠 are acquired and investigated for each degradation case. The 

analysis shows how the amplitude and frequency of these currents change with varying degrees 

of insulation degradation, providing insights into the influence of degradation on these current. 

The investigations elucidate the relationship between insulation degradation and its impact on 

CM impedance, 𝑖𝑙𝑖𝑛𝑒 and 𝑖𝑡𝑟𝑎𝑛𝑠. By understanding these relationships, effective insulation 

condition monitoring methodologies can be developed. 

3.2.1. Analysis of CM impedance for Various Degradations  

For the aforementioned degradation scenarios, Fig. 3-4 illustrates CM impedance for TT 

degradations, Fig. 3-5 for GW degradations, and Fig. 3-6 for overall degradations. Each figure 

contains two subfigures: (a) shows the CM impedances for different levels of degradation, while 

(b) shows the deviation from the good insulation condition. For the aforementioned degradations, 

analysis from these plots are crucial as they provide detailed insights into how CM impedance 
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varies across different degradation levels, and their deviation from the baseline good insulation 

condition is clearly depicted. 

  

(a)                                                                               (b)                                      

Fig. 3-4 TT degradation: (a) CM impedances for various degradation scenarios (b) Deviation in CM impedances 

due to degradation 

 

  

(a)                                                                               (b)                                      

Fig.  3-5 GW degradation: (a) CM impedances for various degradation scenarios (b) Deviation in CM impedances 

due to degradation 
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For good insulation scenario, as seen from the CM impedance, it exhibits the 𝑓𝐶𝑀_𝑎𝑟1 at 

about 1.92 MHz, and 𝑓𝐶𝑀_𝑎𝑟2 at about 22.5 MHz. For TT degradation scenarios, the CM 

impedances and deviation in CM impedance from the good insulation scenario shows deviations 

in the amplitude (ΔZ) throughout the CM spectrum for all degradation severities. Below 2.5 

MHz, these deviations are relatively minor while the most deviation can be observed at about 

resonance frequency (𝑓𝐶𝑀_𝑟). This indicates that the low-frequency components of the CM 

impedance are less sensitive to TT degradation. Moreover, minor deviation near the 𝑓𝐶𝑀_𝑎𝑟1, 

these changes are comparatively smaller than those at the resonance frequency, they are still 

indicate some sensitivity to TT degradation. In the 3-50 MHz range, more significant changes 

can be observed, including at 𝑓𝐶𝑀_𝑎𝑟2. With increasing levels of degradation severity, more 

deviation can be observed. The increase in amplitude deviations as the degradation severities 

increase indicates that this frequency range could be critical in detecting and assessing TT 

insulation degradation. For GW degradation scenarios, the results are shown in Fig. 3-5 (a) and 

3-5 (b). Analysis shows similar findings where noticeable deviation can be found throughout the 

frequency range. However, the deviations are more substantial than in the TT degradation 

scenarios, particularly below 2.5 MHz. Moreover, the deviation near the resonance frequency is 

 

(a)                                                                               (b)                                      

Fig. 3-6 Overall degradation: (a) CM impedances for various degradation scenarios (b) Deviation in CM 

impedances due to degradation 
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about four times more compared to TT degradation scenarios. This indicates a greater sensitivity 

of the low-frequency components to GW degradation. Unlike the TT degradation scenario, 

significant deviation near to the 𝑓𝐶𝑀_𝑎𝑟1 and 𝑓𝐶𝑀_𝑟 can be observed. Near to these frequencies, 

the deviation is significantly greater compared to the TT degradation scenarios. This suggests 

potential that GW degradation has a much more pronounced effect on the impedance than the TT 

degradation. However, a contrasting trend near to the 𝑓𝐶𝑀_𝑎𝑟2 can be observed, where the 

deviation is not as significant as in the TT degradation scenario. This suggests that GW 

degradation impacts the frequency components near the 𝑓𝐶𝑀_𝑎𝑟2 differently compared to TT 

degradation, with less pronounced changes in this frequency range. Fig. 3-6 (a) and Fig. 3-6 (b) 

shows the results for the overall degradation, a similar trend as in the GW degradation can be 

found. However, due to the inclusion of TT degradation, comparatively more deviation near to 

the 𝑓𝐶𝑀_𝑎𝑟2 can be observed. Due to the inclusion of TT degradation, there is comparatively more 

deviation near 𝑓𝐶𝑀_𝑎𝑟2. This indicates that overall degradation affects both the high and low-

frequency components more significantly than either TT or GW degradation alone. Key 

takeaways from frequency domain analysis are: 1) all three degradation scenarios cause 

deviation in the impedance throughout the frequency spectrum. 2) identifying the frequency 

range that uniquely represents the TT degradation is extremely difficult, this makes simultaneous 

SOH determination of TT and GW challenging. 3) Only GW degradations cause significant 

deviation below the frequency 𝑓𝐶𝑀_𝑎𝑟1, unlike TT degradations. 4) GW degradations cause 

significant reduction in 𝑓𝐶𝑀_𝑎𝑟1 and 𝑓𝐶𝑀_𝑟, with noticeable effect on 𝑓𝐶𝑀_𝑎𝑟2. 5) TT degradations 

lead to significant reduction only in 𝑓𝐶𝑀_𝑎𝑟2, with negligible deviations in 𝑓𝐶𝑀_𝑎𝑟1 and 𝑓𝐶𝑀_𝑟. The 

frequency domain analysis provides good intuition of deviation in impedance spectrum, 

resonance frequency and antiresonance frequencies associated with various insulation 

degradation scenarios. However, it is importation to assess the ability of 𝑖𝑡𝑟𝑎𝑛𝑠 in capturing 

crucial information for condition monitoring. Given that 𝑖𝑡𝑟𝑎𝑛𝑠 is sensitive to both CM and DM 

impedances, the spectrum of 𝑖𝑡𝑟𝑎𝑛𝑠 would reflect both CM and DM impedances. Therefore, brief 

analysis on potential utilization of 𝑖𝑡𝑟𝑎𝑛𝑠 for condition monitoring is presented. 
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3.2.2.Analysis of HF line Current for Various Degradations Considering CM Impedance 

For the aforementioned degradation scenarios, a PWM voltage excitation pulse 𝑉𝑃𝑊𝑀 of 500V 

and 20 ns of rise time is applied to the HF winding model and the line current 𝑖𝑙𝑖𝑛𝑒 is obtained. 

       

(a)                                                                               (b)                                      
 

 

(c)  

Fig. 3-7 Current it and itrans for various degradation scenarios. (a) TT degradation (b) GW degradation (c) Overall 

(TT and GW) degradation 
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This current is further processed to obtain 𝑖𝑡𝑟𝑎𝑛𝑠, the currents are shown in Fig. 3-7. Moreover, 

the FFT spectrum of  superimposed with CM impedances is presented in Fig. 3-8. As discussed, 

the prominent oscillations in current 𝑖𝑡𝑟𝑎𝑛𝑠 are occurring at the antiresonance frequencies of the 

CM impedance. For good insulation scenario, 𝑖𝑡𝑟𝑎𝑛𝑠 depicts HF oscillations at about 23 MHz and 

LF oscillations at about 1.91 MHz, corresponding to the antiresonance frequencies. More 

specifically, the initial HF oscillations are at 𝑓𝐶𝑀_𝑎𝑟2 while the following LF oscillations are at 

𝑓𝐶𝑀_𝑎𝑟1. For TT degradation, with increasing levels of degradation severity the HF current 

amplitude increases while the oscillation frequency decreases from 23 MHZ to 20.9 MHz. 

Contrastingly, the LF oscillations barely show any deviations. This behavior of 𝑖𝑡𝑟𝑎𝑛𝑠 reflects the 

findings from the frequency domain analysis. Specifically, with increasing TT degradation 

        

(a)                                                                               (b)                                      
 

 

(c)  

Fig. 3-8 CM impedance and FFT spectrum of itrans for degradation scenarios (a) TT degradation (b) GW 

degradation (c) Overall (TT and GW) degradation. 
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severity, the 𝑓𝐶𝑀_𝑎𝑟2 and impedance amplitude both decrease, while the 𝑓𝐶𝑀_𝑎𝑟1 remains constant 

and the amplitude of impedance increases. For increasing severity of GW degradation, the 

transient current 𝑖𝑡𝑟𝑎𝑛𝑠 shows deviations in both HF and LF oscillations. The LF oscillation 

frequency decreases from 1.91 MHZ to 1.6 MHz and the amplitude of current shows some 

increase as the degradation severity increases. The HF oscillation frequency decreases from 23 

MHZ to 21.1 MHz, but the impact is less significant compared to the LF range. The deviations 

observed in the current clearly correlate with the behavior of CM impedances. For the overall 

degradation scenarios, the 𝑖𝑡𝑟𝑎𝑛𝑠 shows cumulative effects as both TT and GW insulations are 

degraded. The FFT spectrum shows the combined effects on the CM impedance, with significant 

deviations across the entire frequency range including antiresonance frequencies 𝑓𝐶𝑀_𝑎𝑟1 and 

𝑓𝐶𝑀_𝑎𝑟2. The decrease in these frequencies and increase in amplitude can be observed as the 

degradation increases.  

In summary, the analysis of 𝑖𝑡𝑟𝑎𝑛𝑠 for various degradation scenarios reveals distinct impacts on 

HF and LF oscillations, reflecting the corresponding changes in CM impedance. Moreover, these 

findings consolidate that the 𝑖𝑡𝑟𝑎𝑛𝑠 and the prominent oscillations can be utilized the extract 

information on CM impedance, especially around the antiresonance frequencies. Moreover, the 

temporal isolation of prominent oscillations within the time domain is crucial, simplifying the 

extraction of information related to both the first and second antiresonances. Hence, 

characteristic behavior of 𝑖𝑡𝑟𝑎𝑛𝑠 make it invaluable for the development of condition monitoring 

methodology. 

3.3 Analysis of DM Impedance for Various Degradations 

 This subsection presents an analysis on the influence of various degradation scenarios on the 

DM impedance, line current 𝑖𝑙𝑖𝑛𝑒 and transient current 𝑖𝑡𝑟𝑎𝑛𝑠. Fig. 3-9, Fig. 3-10 and Fig. 3-11 

illustrate the impedances for various degradations and deviation in the impedance from good 

insulation scenario. 

The change DM impedance for TT degradation has been presented in Fig. 3-9 (a). Firstly, it is 

crucial to understand the behavior for the scenario when there is no degradation or when the 

insulation is good. As seen from the DM impedance, it exhibits the resonance frequency (𝑓𝐷𝑀_𝑟) 

at about 2MHz, first anti-resonance frequency (𝑓𝐷𝑀_𝑎𝑟1) at about 3.9MHz and second anti-
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resonance frequency (𝑓𝐷𝑀_𝑎𝑟2) at about 22.5 MHz. The change DM impedance due to TT 

degradation is shown in Fig. 3-9, the deviation in the amplitude of impedance throughout the 

spectrum can be observed. Here, it is crucial to note that the deviations in the resonance 

frequency are comparatively smaller that the deviations in the antiresonance frequencies. 

However, the most deviations in the amplitude can be found at near the resonance 𝑓𝐷𝑀_𝑟. For 

varying levels of GW degradation, the DM impedances are shown in Fig. 3-10, the most 

significant deviation in the impedance is observed near the 𝑓𝐷𝑀_𝑟 at around 2.1 MHz. Moreover, 

compared to the TT degradations, more significant decrease in the resonance frequency can be 

observed. The deviations in both resonance and anti-resonance frequencies can be observed. 

These deviations in 𝑓𝐷𝑀_𝑟 and 𝑓𝐷𝑀_a𝑟1 are more pronounced compared to those seen in TT 

degradation scenarios, while the deviation in 𝑓𝐷𝑀_a𝑟1are comparative less. As discussed in the 

previous section, the anti resonance frequencies 𝑓𝐷𝑀_a𝑟1 and 𝑓𝐷𝑀_a𝑟2 behave the same way as 

found in the CM impedance investigations. The influence of GW degradation on 𝑓𝐷𝑀_𝑟 could be 

potentially utilized for condition monitoring. For overall degradation scenarios, the combined 

effect of TT and GW degradation can be observed. Where the deviations in the resonance and 

antiresonance frequencies are more pronounced.  

The investigations on DM impedance highlight the potential for utilizing resonance 

frequencies for condition monitoring. These findings from DM impedance support and 

strengthen the results from CM impedance. The clear changes at the resonance and anti-

resonance frequencies show their potential for effective condition monitoring. While the 

potential for utilizing 𝑖𝑡𝑟𝑎𝑛𝑠 and anti resonance oscillations for condition monitoring has been 

explored with respect to CM impedance, it is equally important to evaluate its effectiveness in 

relation to DM impedance. Moreover, it is crucial to investigate if there exist resonance 

oscillations in 𝑖𝑙𝑖𝑛𝑒 and if they can be utilized for condition monitoring. Therefore, the following 

section presents a brief analysis on DM impedance characteristics and  𝑖𝑙𝑖𝑛𝑒 for condition 

monitoring. 
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(a)                                                                               (b)  

 Fig. 3-9 TT degradation: (a) DM impedances for various degradation scenarios (b) Deviation in DM 

impedances due to degradation                                 

 

(a)                                                                               (b)                                      

Fig. 3-10 GW degradation: (a) DM impedances for various degradation scenarios (b) Deviation in DM 

impedances due to degradation 

fdm_ar1 fdm_ar2 fdm_r fdm_ar1 fdm_ar2 fdm_r 

fdm_ar1 fdm_ar2 fdm_r fdm_ar1 fdm_ar2 fdm_r 
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3.3.1.Analysis of HF line Current for Various Degradations Considering DM Impedance. 

This subsection presents analysis on the influence of various degradation scenarios on the DM 

impedance and transient current 𝑖𝑡𝑟𝑎𝑛𝑠.  For various degradation scenarios, the FFT spectrum of  

𝑖𝑡𝑟𝑎𝑛𝑠 superimposed with DM impedances are presented in Fig. 3-12. The deviation in 

oscillations in the 𝑖𝑡𝑟𝑎𝑛𝑠 have been already discussed previously. A similar correlation on the anti 

resonance oscillations and DM impedance is evident. However, it is crucial to note that 

oscillations at the resonance frequency are not observed. The dominant oscillations are only at 

the antiresonance frequencies, these oscillations and deviations observed in the current clearly 

correlates with the behavior of DM impedances. As determined from the frequency domain 

investigations, the FFT spectrums clearly show that the antiresonance oscillation in 𝑖𝑡𝑟𝑎𝑛𝑠 clearly 

correlates with the behavior of DM impedances. These findings consolidate that the 𝑖𝑡𝑟𝑎𝑛𝑠 and 

the dominant oscillations at antiresonance can be utilized to extract the information on CM/DM 

impedance at the antiresonance frequencies. Moreover, as the degradation increases the decrease 

in the resonance frequency and increase in the amplitude clearly show correlation with the 

degradation. Moreover, the temporal isolation of dominant oscillations within the time domain 

 

(a)                                                                               (b)                                      

Fig. 3-11 Overall degradation: (a) DM impedances for various degradation scenarios (b) Deviation in DM 

impedances due to degradation 

fdm_ar1 fdm_ar2 fdm_r fdm_ar1 fdm_ar2 fdm_r 
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plays a crucial role in simplifying the extraction of information related to both the first and 

second antiresonances. Hence, characteristic behavior of 𝑖𝑡𝑟𝑎𝑛𝑠 make it invaluable for insulation 

condition monitoring.  

3.4 Summary 

In this chapter, comprehensive investigations on the influence of various degradations including 

turn-to-turn (TT) degradation, ground wall (GW) degradation on the line current (𝑖𝑡), transient 

line current (𝑖𝑡𝑟𝑎𝑛𝑠) and the common mode (CM) impedance spectrum have been presented. The 

transient line current (𝑖𝑡𝑟𝑎𝑛𝑠) show unique behavior, which contains high-frequency (HF) 

        

(a)                                                                               (b)                                      
 

 

(c)  

Fig. 3-12 DM impedance and FFT spectrum of itrans for degradation scenarios (a) TT degradation (b) GW 

degradation (c) Overall (TT and GW) degradation. 

fdm_ar1 fdm_ar2 fdm_r fdm_ar1 fdm_ar2 fdm_r 

fdm_ar1 fdm_ar2 fdm_r 
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oscillations in the beginning followed by subsequent low-frequency (LF) oscillation, these 

oscillations are directly linked with the antiresonance frequencies of the CM/DM impedance. 

Further investigations reveal how different levels of insulation degradation affect impedance, 

which gets distinctly reflected in the 𝑖𝑡 and 𝑖𝑡𝑟𝑎𝑛𝑠. Specifically, the 𝑖𝑡𝑟𝑎𝑛𝑠 and the prominent 

oscillations at antiresonance frequencies can be utilized the extract information on CM 

impedance. This chapter emphasizes on the potential utilization of the HF line current 

oscillations for monitoring insulation condition. 



52 

 

Chapter 4:A Novel Methodology for Simultaneous 

Condition Monitoring of TT and GW Insulation 

4.1 Introduction 

A novel condition monitoring methodology for TT and GW insulation is presented. This 

method proposes indicators that have the capability to determine the SOH of insulation and 

classify between TT and GW insulation degradations. The proposed method employs wavelet 

packet decomposition (WPD) to analyze high frequency (HF) line current and extract indicators 

for monitoring the state of health (SOH). Compared with existing methods, the proposed 

technique can provide the SOH indicators of turn-to-turn (TT) and groundwall (GW) insulation 

simultaneously through the analysis of HF line current. Moreover, antiresonance oscillations in 

the HF line current are also explored to determine insulation SOH. The results on validation of 

the proposed methodology through simulation as well as experiments have been presented. In 

this chapter, firstly, the proposed methodology is presented. Thereafter, validation of the 

proposed methodology through simulation studies has been discussed. Thereafter, the 

experimental setup and investigations of the proposed methodology through experiments have 

been presented. 

4.2 Overview of the Proposed Methodology 

The proposed methodology relies on the fact that the degradation of insulation leads to a 

change in the capacitance of the insulation, resulting in a change in the high-frequency (HF) 

impedance of the winding. The previous section presented the prominent oscillations in the HF 

transient current 𝑖𝑡𝑟𝑎𝑛𝑠, which reflects the CM impedance at anti-resonance frequencies. 

Additionally, analysis of the influence of various insulation degradation on 𝑖𝑡𝑟𝑎𝑛𝑠 confirms its 

viability in assessing insulation condition. Utilizing such distinctive behavioral characteristics of 

𝑖𝑡𝑟𝑎𝑛𝑠, a novel method to determine SOH of TT and GW insulation is proposed that only requires 

line current measurement. The framework for the proposed methodology is illustrated in Fig. 4-1, 

it mainly contains 4 steps: 1) Extraction of HF transient current 𝑖𝑡𝑟𝑎𝑛𝑠 2) Wavelet Packet 

Decomposition 3) Calculation of SOH Indicators Through Wavelet Packets Reconstruction. 
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4.2.1.Step 1: Extraction of HF Transient Current 𝒊𝒕𝒓𝒂𝒏𝒔 

As presented in the previous section, to extract 𝑖𝑡𝑟𝑎𝑛𝑠, a PWM voltage excitation pulse 𝑉𝑃𝑊𝑀 is 

applied to the winding and the HF line current 𝑖𝑡 is obtained. Here, 𝑖𝑡 is the line current that rises 

at a steady rate due to the winding’s inductance 𝐿𝑀, and it is super positioned with of HF transient 

current 𝑖𝑡𝑟𝑎𝑛𝑠, and it can be represented by equation (4.1). 

 

Fig. 4-1 Illustration of proposed WPD based methodology 

𝑖𝑙𝑖𝑛𝑒(𝑡) = 𝑖𝑡𝑟𝑎𝑛𝑠(𝑡) +  
1

𝐿𝑀
∫ 𝑉𝑃𝑊𝑀(𝑡) 𝑑𝑡

𝑡

0

 
(4.1) 

Here, it is crucial to note that the oscillations in the 𝑖𝑡𝑟𝑎𝑛𝑠 exists for certain microseconds. 

Therefore, 𝑖𝑙𝑖𝑛𝑒 can be acquired for such short duration. Assuming the signal 𝑖𝑙𝑖𝑛𝑒 is acquired for 

𝑛 samples, the resultant data is [𝑖𝑡1, 𝑖𝑡2 … , 𝑖𝑡𝑛 ]. Thereafter polynomial curve fitting is performed 

to the data. The fitting is articulated through the general polynomial as equation (4.2). However, 

considering the nature of the line current 𝑖𝑡, where current saturation occurs only after a certain 

period, a first-order polynomial is sufficient to capture this linear trend. First order polynomial 

fitting can be given by equation (4.3). 

𝑓(𝑡) = 𝑝𝑘𝑡𝑘 + 𝑝𝑘−1𝑡
𝑘−1 + …+ 𝑝1𝑡 + 𝑝0 (4.2) 

𝑓(𝑡) = 𝑝1𝑡 + 𝑝0 (4.3) 

Once the coefficients 𝑝0 and 𝑝1 are obtained, the transient current 𝑖𝑡𝑟𝑎𝑛𝑠 can be obtained as the 

equation (4.4). 

𝑖𝑡𝑟𝑎𝑛𝑠(𝑡) = 𝑖𝑙𝑖𝑛𝑒(𝑡) − 𝑝1𝑡 − 𝑝0 (4.4) 
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This allows for the precise separation of 𝑖𝑡𝑟𝑎𝑛𝑠 from the acquired line current signal 𝑖𝑙𝑖𝑛𝑒. 

Thereafter 𝑖𝑡𝑟𝑎𝑛𝑠 is further processed using WPD. 

4.2.2.Step 2: Wavelet Packet Decomposition  

As discussed before, the proposed methodology utilizes WPD to extract important features 

from the transient current 𝑖𝑡𝑟𝑎𝑛𝑠. The WPD is illustrated in Fig. 4-2, it decomposed the signal into 

approximation and detail coefficient using low-pass filter ℎ(𝑛) and high-pass filter 𝑔(𝑛) 

respectively. The resultant coefficients at level 𝑙 can be given by equation (4.5) and (4.6). 

𝑤𝑙,2𝑘(𝑡) = ∑  

𝑛

ℎ(𝑛) 𝑤𝑙−1,𝑘(2𝑡 − 𝑛) 
(4.5) 

𝑤𝑙,2𝑘+1(𝑡) = ∑  

𝑛

𝑔(𝑛) 𝑤𝑙−1,𝑘(2𝑡 − 𝑛) 
(4.6) 

Here, 𝑤𝑙,2𝑘 denotes approximation coefficient at level 𝑙, obtained by convolving the 𝑘𝑡ℎ 

coefficient from the previous level 𝑙 − 1, denoted by 𝑤𝑙−1,𝑘, with a low pass filter ℎ(𝑛). 

Similarly, convolution of a high pass filter 𝑔(𝑛) over the same coefficient 𝑤𝑙−1,𝑘 provides detail 

coefficient 𝑤𝑙,2𝑘+1. The length of these coefficient vector at level 𝑙 can be given by 𝑛 ≈ 𝑁/2𝑙. As 

shown in Fig. 4-2, this convolution procedure is repeated multiple times to obtain coefficients at 

different levels. Due to the filtering, each coefficient at level 𝑙 and position 𝑘 in the decomposition 

tree is associated with a particular frequency band [𝑓𝑚𝑖𝑛, 𝑓𝑚𝑎𝑥], given using equation (4.7).  

𝑓𝑚𝑖𝑛 =
𝑘

2𝑙+1
𝑓𝑠  ,  𝑓𝑚𝑎𝑥 =

𝑘 + 1

2𝑙+1
𝑓𝑠 

(4.7) 

 

Fig. 4-2  Illustration of extraction of wavelet packets through WPD 
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Where 𝑓𝑠 represents the sampling frequency. This property of WPD facilitates a detailed 

frequency analysis. Hence, this method utilizes WPD to extract crucial information for condition 

monitoring. When employing WPD, there are two crucial factors that require proper 

consideration. The first is the selection of the appropriate base wavelet function and the other is 

selecting the appropriate level of decomposition. Given the focus of the proposed methodology in 

identifying deviations near antiresonance frequencies, the selection of level of decomposition 

should be done in such a way that the antiresonance frequencies 𝑓𝐶𝑀_𝑎𝑟1 and 𝑓𝐶𝑀_𝑎𝑟2 are isolated 

within separate coefficients, which can be satisfied with the condition in equation (4.8) and (4.9). 

𝑘1

2𝑙+1
𝑓 < 𝑓𝐶𝑀_𝑎𝑟1 <  

𝑘1

2𝑙+1
𝑓 

(4.8) 

𝑘2

2𝑙+1
𝑓 < 𝑓𝐶𝑀_𝑎𝑟2 <  

𝑘2

2𝑙+1
𝑓 

(4.9) 

Here, 𝑘1 ≠ 𝑘2 to ensure 𝑓𝐶𝑀_𝑎𝑟1 and 𝑓𝐶𝑀_𝑎𝑟2 are isolated within separate wavelet coefficients. 

This allows the isolation of specific frequency bands that show a strong correlation with 

degradation severity or degradation type. Moreover, the resolution of each frequency band 

𝛥𝑓(𝑙) = 𝑓𝑚𝑎𝑥(𝑙, 𝑘) − 𝑓𝑚𝑖𝑛(𝑙, 𝑘) should be maintained as high as possible to capture detailed 

behavior around 𝑓𝐶𝑀_𝑎𝑟1 and 𝑓𝐶𝑀_𝑎𝑟2. Broad frequency bands may encompass frequency 

components unrelated to the deviations near to the antiresonance frequencies, leading to potential 

misinterpretation of the relevant features. However, achieving a higher resolution requires higher 

level of decomposition, which results in increased computational cost. Therefore, the level of 

decomposition should be optimized to balance resolution of frequency band and computational 

cost. 

For the selection of appropriate base wavelet, three predominant approaches are 

predominant:1) Maximum energy criterion, 2) Minimum Shannon entropy criterion, and 3) 

Energy to Shannon entropy ratio (ESER) based criterion. The underlying concept of ESER based 

criterion is to maximize the ratio of energy to Shannon entropy for given base wavelet. Building 

upon the foundational principle of the ESER, this method utilizes modified approach that 

maximizes the sum of normalized ESER values from two distinct coefficient. The base wavelet is 

selected in such way that the sum of normalized ratio from both the packets is maximized. For a 

set of base wavelet candidates 𝛹 = [𝜓1, 𝜓2, … , 𝜓𝑚], the procedure for selection of optimal base 

wavelet 𝜓𝑜𝑝𝑡 can be done using the following steps. 
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Step 2A: Firstly, for each candidate 𝜓𝑤 in 𝛹, wavelet packet coefficients for the packet of 

interest 𝑊𝑃𝑗, where 𝑗 is either 1 or 2 associated with the antiresonance frequencies. Thereafter, for 

each of these packets, energy, entropy and ESE ratio is computed using equations (4.10)-( 4.12).  

𝐸𝑊𝑃𝑗
(𝜓𝑤) = ∑|𝑤𝑊𝑃𝑗,𝑖

(𝜓𝑤)|
2

𝑦

𝑖

 

(4.10) 

𝐻𝑊𝑃𝑗
(𝜓𝑤) = −∑

|𝑤𝑊𝑃𝑗,𝑖
(𝜓𝑤)|

2

𝐸𝑊𝑃𝑗
(𝜓𝑤)

 log(
|𝑤𝑊𝑃𝑗,𝑖

(𝜓𝑤)|
2

𝐸𝑊𝑃𝑗
(𝜓𝑤)

)

𝑦

𝑖

 

(4.11) 

𝐸𝑆𝐸𝑅𝑊𝑃𝑗
(𝜓𝑤) =

𝐸𝑊𝑃𝑗
(𝜓𝑤)

𝐻𝑊𝑃𝑗
(𝜓𝑤)

 
(4.12) 

Here, 𝑦 denotes the number of elements within the coefficient vector that are of interest for 

analysis. For 𝑊𝑃1, which captures low frequency (𝑓𝐶𝑀_𝑎𝑟1) component that exists throughout the 

duration of signal, 𝑦 is set to its maximum permissible value. While 𝑊𝑃2 captures high 

frequency (𝑓𝐶𝑀_𝑎𝑟2) componenet that exists fraction of the original signal hence it is kept small. 

Approximately the value of 𝑦 can be obtained as 𝑦 ≈ 𝑁ℎ𝑓/2
𝑙, where 𝑁ℎ𝑓 is the number of 

samples related to initial high frequency oscillations in 𝑖𝑡𝑟𝑎𝑛𝑠, and 𝑙 is level of decomposition. 

Step 2B: This step involves performing normalization for each set of ESER values 

corresponding to 𝑊𝑃𝑗 of interest. This step is crucial to ensure the homogeneity of data resulting 

from ESER ratios from different packets. By normalizing the data, consistent and accurate 

comparison of ESER can be guaranteed. The normalized ESER (𝐸𝑆𝐸𝑅𝑊𝑃𝑗

𝑛𝑜𝑟𝑚) can be obtained 

from the equation (4.13). 

𝐸𝑆𝐸𝑅𝑊𝑃𝑗

𝑛𝑜𝑟𝑚(𝜓𝑤) =
𝐸𝑆𝐸𝑅𝑊𝑃𝑗

(𝜓𝑤) − min {𝐸𝑆𝐸𝑅𝑊𝑃𝑗
}

max {𝐸𝑆𝐸𝑅𝑊𝑃𝑗
} − min {𝐸𝑆𝐸𝑅𝑊𝑃𝑗

}
  

(4.13) 

Here, min {𝐸𝑆𝐸𝑅𝑊𝑃𝑗
} and max {𝐸𝑆𝐸𝑅𝑊𝑃𝑗

} represent min and maximum ESER value within 

the set for packet  𝑊𝑃𝑗. This step results in set of normalized ESER values for each packet 𝑊𝑃𝑗 

for all wavelet candidates. 

Step 2C: The optimal wavelet 𝜓𝑜𝑝𝑡 is determined by identifying the wavelet that maximizes 

the sum of normalized ESER as shown in equation (4.14). 
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𝜓𝑜𝑝𝑡  = 𝑎𝑟𝑔𝑚𝑎𝑥
𝜓𝑤 ∈ 𝛹

(𝐸𝑆𝐸𝑅𝑊𝑃𝑗

𝑛𝑜𝑟𝑚(𝜓𝑤)+ 𝐸𝑆𝐸𝑅𝑊𝑃𝑗

𝑛𝑜𝑟𝑚(𝜓𝑤)) 
(4.14) 

The chosen wavelet 𝜓𝑜𝑝𝑡 is anticipated to offer the optimal balance between energy and 

entropy for the wavelet packets associated with the antiresonance frequencies, thus enabling 

insightful analysis. 

After identifying the appropriate wavelet packets related to the antiresonance frequencies 

(𝑊𝑃1 and 𝑊𝑃2), optimal base wavelet 𝜓𝑜𝑝𝑡, and optimal decomposition level 𝑙, they become the 

standard for processing the signal 𝑖𝑡𝑟𝑎𝑛𝑠 to obtain wavelet packets that can be further utilized for 

SOH determination and degradation classification. 

4.2.3.Step 3: Calculation of SOH Indicators Through Wavelet Packets Reconstruction 

Step 3A: This step involves the calculation of indicators from packets obtained from WPD. 

These indicators can be tracked throughout the life of a machine and informed decisions on 

insulation SOH can be made. The first step involves reconstruction of the signal from the packets 

𝑊𝑃1 and 𝑊𝑃2.Through this reconstruction procedure, the signal related to a specific frequency 

band or wavelet packet can be obtained, the procedure is given by the equation (4.15). 

𝑤𝑙,𝑘(𝑡) = ∑  (

𝑛

ℎ∗(𝑡 − 2𝑛) 𝑤𝑙+1,2𝑘(𝑡) + 𝑔∗(𝑡 − 2𝑛) 𝑤𝑙+1,2𝑘+1(𝑡)) 
(4.15) 

Here, 𝑤𝑙,𝑘 denotes 𝑘𝑡ℎ coefficient at level 𝑙, obtained from the coefficients 𝑤𝑙+1,𝑘 and 

𝑤𝑙+1,2𝑘+1 from the next level 𝑙 + 1. Here ℎ∗(𝑛) and 𝑔∗(𝑛) represent the reconstruction low pass 

and high pass filters. Through reconstruction process, signal 𝑖𝑊𝑃1,𝑛 and 𝑖𝑊𝑃2,𝑛 related to 𝑊𝑃1 and 

𝑊𝑃2 are obtained. Signal 𝑖𝑊𝑃1,𝑛 represents behavior related to the first antiresonance frequency 

and 𝑖𝑊𝑃2,𝑛 represents the behavior related to the second antiresonance frequency. These signals 

are further processed to compute the indicators, given by equations (4.16)-(4.17). These indicators 

represent the norm of the signal up to 𝑝 samples.  

𝑆𝑂𝐻𝐺𝑊 = √∑|𝑖𝑊𝑃1,𝑛| 2 

𝑝

𝑖=1

 

(4.16) 

𝑆𝑂𝐻𝑇𝑇 = √∑|𝑖𝑊𝑃2,𝑛| 2 

𝑝

𝑖=1

 

(4.17) 
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Here, the value of 𝑝 represent the samples of interest in the reconstructed signal. For 𝑆𝑂𝐻𝑇𝑇, 

initial high frequency oscillations in 𝑖𝑡𝑟𝑎𝑛𝑠 are of interest hence the value of 𝑝 is the number of 

samples associated with these high frequency oscillations. Similarly, for 𝑆𝑂𝐻𝐺𝑊, the value of 𝑝 

can be selected to be maximum as the full signal is of relevance. These indicators can be utilized 

for SOH determination as well as classifying between TT and GW degradations. 

Step 3B: The procedure for simultaneous monitoring of GW and TT degradation is described 

in Fig. 4-3.As discussed, the GW degradation causes deviations in both HF and LF oscillations at 

𝑓𝐶𝑀_𝑎𝑟1 and 𝑓𝐶𝑀_𝑎𝑟2. Therefore, GW degradation has influence on both 𝑆𝑂𝐻 𝐺𝑊 and 𝑆𝑂𝐻 𝑇𝑇. 

While the presence of only TT degradation does not affect oscillations at 𝑓𝐶𝑀_𝑎𝑟1, and causes 

deviations in only 𝑆𝑂𝐻 𝑇𝑇. Hence, firstly, 𝑆𝑂𝐻 𝐺𝑊 should be determined. The deviations in 

 

Fig. 4-3 Procedure for condition monitoring 
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𝑆𝑂𝐻 𝐺𝑊 greater than threshold 𝑇𝐻𝐺𝑊 confirms the presence of GW degradation. The severity of 

GW degradation can then be quantified based on the deviations in 𝑆𝑂𝐻 𝐺𝑊. Following the 

identifying of the GW degradation, the indicator 𝑆𝑂𝐻 𝑇𝑇 is determined and utilized to determine 

if TT degradation exists using the threshold 𝑇𝐻𝑇𝑇2. Thereafter, if TT degradation is present, its 

severity is determined based on the value of 𝑆𝑂𝐻 𝐺𝑊 and 𝑆𝑂𝐻 𝑇𝑇. Here, it is crucial to note that 

the GW degradation always causes deviations in 𝑆𝑂𝐻 𝑇𝑇. Therefore, in scenarios where both GW 

and TT degradations are present, the 𝑆𝑂𝐻𝑇𝑇 differs in the scenario when only TT degradation 

occurs. The value of 𝑆𝑂𝐻𝑇𝑇 is typically higher in such cases hence appropriate thresholds are 

required to be established. If the value of 𝑆𝑂𝐻 𝐺𝑊 does not increase, it indicates the absence of 

GW degradation. In such cases, 𝑆𝑂𝐻 𝑇𝑇 is determined. An increase in 𝑆𝑂𝐻 𝑇𝑇 beyond threshold 

𝑇𝐻𝑇𝑇2 confirms the presence of only TT degradation. Thereafter the severity of TT degradation 

can then be quantified based on the deviations in 𝑆𝑂𝐻𝑇𝑇 . Conversely, no increase in 𝑆𝑂𝐻 𝑇𝑇 

confirms no insulation degradation or good insulation scenario. Using the information on SOH 

indicators and their relationship with degradations, appropriate thresholds can be established and 

utilized for condition monitoring. 

4.3 Simulation Results: Validation of the Proposed Methodology 

This section demonstrates the efficacy of the proposed methodology through simulation 

studies. A comprehensive simulation study have been conducted for various degradation scenarios 

and details on resulting indicators from the proposed method has been presented, this analysis 

highlights the method's robustness in accurately identifying and classifying insulation 

degradation. As discussed in Chapter 3, the HF winding model is utilized to simulate various 

insulation condition scenarios, including 1) good insulation 2) TT insulation degradation 3) GW 

insulation degradation 4) Overall degradation where both TT and GW insulation degrades. The 

degradation severity has been varied from 10% to 40% for each scenario and corresponding line 

currents 𝑖𝑡 have been obtained. The currents 𝑖𝑡 and 𝑖𝑡𝑟𝑎𝑛𝑠 are illustrated in Fig. 4-4. Here, 𝑖𝑡 and 

𝑖𝑡𝑟𝑎𝑛𝑠 are sampled at the sampling period of 1.2 ns., resulting in sampling frequency 𝑓𝑠 of 833 

MHz. Thereafter, these currents have been further processed using the proposed methodology to 

obtain various indicator. 
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Firstly, using the good insulation scenario, the baseline indicator has to be established. Line 

current 𝑖𝑡 is processed to extact 𝑖𝑡𝑟𝑎𝑛𝑠. The next step involves selection of appropriate wavelet 

packets related to the antiresonance frequencies. As discussed in Chapter 3, the first and second 

antiresonance frequencies are approximately 1.91 MHz and 23 MHz, respectively. Based on 

equations (4.7)-(4.9), wavelet packets 𝑤7,0 and 𝑤7,7 are selected for analysis. These packets 

corresponds to frequency bands [0, 3.25] MHz and [19.5, 22.8] MHz respectively, which 

sufficiently include antiresonance frequencies. For the selection of the appropriate base wavelet 

function 𝜓𝑜𝑝𝑡, 93 candidate base wavelets from various wavelet families such as Haar, 

Daubechies, Symlets, Biorthogonals, Coiflets, etc. have been selected. Through the procedure 

described in the previous subsection, the candidate wavelet has been selected. Out of 93 wavelets 

mentioned before, ‘db19’ is selected to be the base wavelet with a ratio of 1.3. Following the 

determination of appropriate wavelet packets and base wavelet, the reconstruction of wavelet 

packets is performed. Then reconstructed signals are processed to determine the indicators 

𝑆𝑂𝐻𝐺𝑊 and 𝑆𝑂𝐻𝑇𝑇. Similarly, Similarly, for the remained degradation scenarios, the HF transient 

current 𝑖𝑡𝑟𝑎𝑛𝑠 is processed to obtain the indicators using the same wavelet packets and base 

wavelet. These indicators are shown in Fig. 4-5 and Table 4.3. The proposed SOH indicators are 

highly effective at detecting insulation degradations. The indicator 𝑆𝑂𝐻𝐺𝑊 is designed to assess 

degradation in GW insulation. As seen from Fig. 4-5 (a), 𝑆𝑂𝐻𝐺𝑊 shows an increase as the GW 

insulation degrades, while remains stable in the case of TT insulation degradation. Notably, it  

    
(𝑎)                                                                             (𝑏)                                                                              (𝑐) 

Fig. 4-4 Current it and itrans for various degradation scenarios. (a) TT degradation (b) GW degradation (c) 

Overall (TT and GW) degradation 
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shows greater change for more severe degradation and remain unchanged for TT degradation, 

reinforcing its reliability as an indicator for GW degradation. Indicator 𝑆𝑂𝐻𝑇𝑇 is designed for TT 

degradation detection. As shown in Fig. 4-5 (b), the value of the indicator shows an increase as 

the TT degradation severity increases. However, the value of the indicator also increases due to 

the GW degradation scenarios. As discussed in Section II, this is expected due to the fact that the 

GW degradation also affects the frequency spectrum near to the second antiresonance frequency. 

However, the indicator is less sensitive to the GW degradation and shows lesser change than in 

 

Fig. 4-5. SOH indicators (a) 𝑆𝑂𝐻𝐺𝑊 (b) 𝑆𝑂𝐻𝑇𝑇 

Table 4-1 Simulation Results: Indicators for various degradations 

Degradation 

Scenario 

Severity 𝑺𝑶𝑯𝑮𝑾 𝑺𝑶𝑯𝑻𝑻 % Change 

in 𝑺𝑶𝑯𝑮𝑾 

% Change 

in 𝑺𝑶𝑯𝑻𝑻 

Good 0 % 20.56 2.03 - - 

TT Degradation 10% 20.51 2.24 -0.24 10.34 

20% 20.46 2.64 -0.49 30.05 

 30% 20.42 3.32 -0.68 63.55 

 40% 20.37 4.33 -0.92 113.30 

GW Degradation 10% 23.57 2.25 14.64 10.84 

 20% 25.88 2.54 25.88 25.12 

 30% 27.27 2.90 32.64 42.86 

 40% 29.53 3.34 43.63 64.53 

Overall (TT and GW) 

Degradation  

10% 23.52 2.61 14.40 28.57 

20% 25.63 3.93 24.66 93.60 

 30% 27.06 5.98 31.61 194.58 

 40% 29.39 7.81 42.95 284.73 

 

(a) (b)
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the case of TT degradation scenario, thereby minimizing the risk of false alarm. Thus, high 

accuracy can be ensured for TT degradation scenarios. For the most challenging scenario when 

both TT and GW degradations are present, the proposed indicators are effective as the 𝑆𝑂𝐻𝐺𝑊 

can provide information on the GW insulation. While the 𝑆𝑂𝐻𝑇𝑇 can be utilized for SOH 

determination for TT insulation. Using the information on SOH indicators and their relationship 

with the degradation patterns, precise thresholds can be established. This enables accurate online 

condition monitoring; these indicators can be tracked over time for insulation SOH determination.  

Using the information on SOH indicators and their relation with the degradation patterns, precise 

thresholds can be established. The challenge to establish the relationship between varying 

degradation types, severities, and the resultant indicators can be addressed through either 

simulation or hardware based approach. For instance, the machine can be subjected to thermal 

cycle based aging to obtain a relation between the WPD indicators and the level of degradation or 

the number of thermal cycles. Once this relation is established, monitoring WPD indicators 

throughout the machine's operational lifecycle becomes a viable strategy for assessing insulation 

degradation. Alternatively, a simulation-based approach can be employed, where a high-fidelity 

model of machine’s stator winding, cable can be utilized to simulate various insulation 

degradation scenarios, thus establishing a link between WPD indicators and insulation 

degradations without subjecting the machine to actual aging or even without having a physical 

machine. However, it is important to note the focus of this research is not to propose such an 

accurate model, but rather to utilize the existing models for investigations on insulation condition 

monitoring.  Moreover, it's crucial to emphasize that the primary focus of this research is not on 

establishing these relationships but rather on exploring insulation condition monitoring using 

novel indicators. 

4.4 Experimental Results: Validation of the proposed methodology 

4.4.1.Experimental Setup 

This section explains the laboratory setup utilized for investigations on the proposed 

methodology. As shown in Fig. 4-6, the setup contains a DC power supply, a SiC MOSFET 

based inverter, a stator winding, emulation PCBs, connection cables and devices for signal 

measurement. The degradation of insulation is an irreversible process, and it is not feasible to 

investigate various types of degradation with varying severity of degradation because of the 

complexities associated with controlling the desired amount of degradation in specific insulation 
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in the winding. For instance, TT degradation can not be performed without having an effect on 

the GW insulation. Due to such challenges, various literature adopts emulation of insulation 

degradation. This offers the advantages such as great control over both the amount of 

degradation and type of degradation. In such emulation, capacitors are connected to the winding 

to replicate the insulation degradation. To emulate TT degradation, a capacitor can be connected 

in parallel to the winding, while GW degradation can be emulated by connecting a capacitor 

 
(a) 

 

 

       (b)  

Fig.4-6 (a) Experimental setup (b) PCBs utilized for emulation of insulation degradation 
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between winding to the ground. Hence, a custom stator winding with taps has been utilized 

which allows emulation of insulation degradations, eight taps have been created. Deliberate 

efforts were made to minimize the length of the taping and reduce additional parasitic, although 

complete elimination is not possible due to practical constraints. Moreover, custom PCBs have 

been developed for efficient emulation of both TT and GW degradations. Ceramic capacitors 

with different values were connected to custom PCBs to emulate various severities of 

degradation. For various emulation scenarios, line currents  𝑖𝑡 are measured using Keysight 

30MHz/300A HF Rogowski current probe and R&S RTM3004 500MHz oscilloscope. The 

measured data contain noise which has been filtered using a low-pass filter with the cutoff 

frequency of 50MHz. 

4.4.2. Test Results and Discussions 

Using the experimental setup, the proposed methodology has been investigated. Firstly, for the 

good insulation scenario, the proposed framework has been followed to obtain the baseline 

indicators. Using the SiC inverter, a voltage pulse is applied to obtain 𝑖𝑡 has been measured and 

corresponding 𝑖𝑡𝑟𝑎𝑛𝑠 is calculated, both currents are shown in Fig. 4-7. Here, the sampling period 

is set to 0.8 ns., resulting in a sampling frequency 𝑓𝑠 of 1250 MHz.  

 As discussed previously, the prominent oscillations of 𝑖𝑡𝑟𝑎𝑛𝑠 represents the antiresonance 

 

Fig. 4-7 Experimental results: Dominant oscillations in it and itrans  
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frequencies in the CM impedance. The dominant oscillations can be observed at 21MHz and 1.34 

MHz. Here, it is crucial to note that these antiresonance frequencies have been deviated from 

30MHz and 1.89MHz. This reduction in antiresonance frequencies is expected due to additional 

inductances in the loop due to connection cables and inverter busbars. The proposed methodology 

relies on the resultant 𝑖𝑡𝑟𝑎𝑛𝑠 of the system. Hence for hardware experimentation, the antiresonance 

frequencies to be considered are 21MHz and 1.34MHz. Now, relevant wavelet packets are 

selected using equations (11)-(12). Wavelet packets 𝑤7,0 and 𝑤7,2 are selected for analysis. These 

packets coreresponds to frequency bands [0, 4.88] MHz and [9.76, 14.64] MHz respectively. 

Optimal base wavelet function 𝜓𝑜𝑝𝑡 has been selected from 93 candidate base wavelets. The 

candidate wavelet that maximizes the sum of ESER values for 𝑊𝑃1 and 𝑊𝑃2 is chosen as the 

optimal wavelet. Out of 93 wavelets mentioned before, ‘sym16’ is selected to be the base wavelet 

with a ratio of 1.47. Following the determination of appropriate wavelet packets and base wavelet, 

the reconstruction is performed. The reconstructed signals are further processed to determine the 

indicator values. These values work as reference values and for various degradation scenarios, 

they are expected to show an increase. The emulated degradation scenarios include GW 

degradation, TT degradation and degradation in both TT and GW insulation. For each of the 

aforementioned scenarios, two severities 10% and 20% have been emulated. For good insulation 

degradation scenarios, the total GW insulation measured is about 1.15 nF. Therefore, for 10% 

GW severity, an additional capacitance of 20 pF has been inserted between the coil and the 

ground using the taps. Similarly, for 20% GW severity, additional capacitance of 40 pF has been 

connected. For TT degradation scenario, the initial capacitance measured is 109 pF. Hence, across 

each coil approximately 10pF and 20 pF capacitors have been connected which represents 

increase in the TT insulation approximately by 10% and 20%. For the scenario where both 

insulations are degraded, capacitors representing both TT and GW degradations have been 

inserted. For each degradation scenario, the indicators have been obtained as described in the 

procedure. Obtained currents 𝑖𝑡 and 𝑖𝑡𝑟𝑎𝑛𝑠 for various degradation scenarios can be seen in Fig. 4-

8. The resultant indicators can be seen in the Table 4.4.   

From Fig. 4-8, the deviations in the transient current due to degradations can be observed. The 

deviation in the transient currents is not very obvious compared to the simulation, this is due to 

the noise in the measurements. However, the LF oscillations at 𝑓𝐶𝑀_𝑎𝑟1 show visible deviation 

while the deviations in HF oscillations at 𝑓𝐶𝑀_𝑎𝑟2 are not significant. Despite these challenges, the 
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proposed method performs quite well. The indicators show similar trends to the simulation 

results. For good insulation scenario, the value of 𝑆𝑂𝐻𝐺𝑊 is 2.03 while the value of 𝑆𝑂𝐻𝑇𝑇 is 

  

(a)                                                                               (b)                                      

 

(c) 

Fig. 4-8 Current it and itrans for various degradation scenarios. (a) TT degradation (b) GW degradation (c) Overall 

(TT and GW) degradation 
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25.14. For TT degradation scenario, the value of 𝑆𝑂𝐻𝑇𝑇 increases with increasing level 

degradation severity, while 𝑆𝑂𝐻𝐺𝑊 remains constant. For GW degradation scenario, the value of 

both the indicators increases. The indicator 𝑆𝑂𝐻𝑇𝑇 show lesser change than in the TT degradation 

scenario while the indicator 𝑆𝑂𝐻𝐺𝑊 show major deviation as the degradation severity increases, 

the finding matches the simulation results. For the scenario of both the degradation, the indicators 

further confirm the trend, 𝑆𝑂𝐻𝑇𝑇 and 𝑆𝑂𝐻𝐺𝑊 both increase with degradation severity. 

 

Table 4-2 Experimental Results: Indicator for Various Degradations 

Degradation Scenario Severity 𝑺𝑶𝑯𝑮𝑾 𝑺𝑶𝑯𝑻𝑻 % Change in 

𝑺𝑶𝑯𝑮𝑾 

% Change in 

𝑺𝑶𝑯𝑻𝑻 

Good 0 % 25.14 2.03 - - 

TT Degradation 10% 24.62 2.18 -2.07 7.39 

20% 25.20 2.89 0.24 42.36 

GW Degradation 10% 26.69 2.50 6.17 23.15 

 20% 26.95 2.73 7.20 34.48 

Both TT and GW Degradation 10% 26.70 2.10 6.21 3.45 

20% 28.69 3.03 14.12 49.26 

 

The consistency between the experimental results and simulation results highlights the ability 

of the proposed method and indicator’s capabilities in condition monitoring. However, there still 

some discrepancies between the hardware and simulations. These discrepancies are due to the fact 

the emulation of insulation degradation does not represent the same scenario of actual degradation 

with great accuracy. The additional connections to the winding through taps, introduce additional  

parasitic and new connections that are not present in the actual degradation. Previously various 

literature reported some limitations of emulation of insulation degradations. Despite these 

limitations, emulation remains the most viable method for the investigation and validation of 

condition monitoring methodologies. It provides a repeatable, controlled environment to 

investigate insulation condition monitoring techniques, which is indispensable in the absence of 

extensive real degradation data. Hence, while the experimental setup presents an emulation of 

degradation rather than actual degradation, the observed trends indicators prove the efficacy of the 

proposed method's effectiveness. Moreover, the simulation results discussed before, where in the 

degradation is closer to the actual degradation, provides confidence in the proposed methodology 

and indicators as reliable approach for condition monitoring. 
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4.5 Summary 

 A novel insulation condition monitoring method is proposed that utilizes antiresonance 

oscillation in HF line currents to determine the overall SOH of TT and GW insulation. The 

proposed method utilizes wavelet packet decomposition (WPD) to extract crucial indicators for 

insulation SOH determination. The detailed steps for the utilization of the proposed approach 

have been discussed in this chapter. Simulation and experimental investigations have been 

conducted for the validation of the proposed methodology. Simulation based investigations have 

been conducted using HF winding model, where in different types and severity of degradations 

have been simulated. This includes multiple degradation scenarios with varying degradations 

severities, including good insulation, GW insulation degradation, TT insulation degradation and 

overall degradation where both TT and GW insulation degrades. Experimental tests have been 

performed on a laboratory setup, where in multiple degradations have been emulated and results 

have been discussed. The preliminary results are promising.  
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Chapter 5: A Novel Noise-Adaptive Insulation Condition 

Monitoring Methodology  

This chapter propose a methodology that utilizes a machine learning (ML) algorithm to 

quantify the insulation degradation by utilizing the features obtained by processing high-

frequency (HF) line current. To extract features from the HF line current, wavelet scattering 

transform (WST) is utilized. The proposed condition monitoring framework has a unique 

capability to quantify insulation degradations even with varied levels of measurement noise.  

Within this chapter, firstly, an overview of the proposed methodology is provided. Thereafter, a 

comprehensive framework for the ML-based insulation condition monitoring, which addresses 

data acquisition, data augmentation, feature extraction as well as training and testing various ML 

algorithms, is introduced. Thereafter, the efficacy of the proposed approach is validated with 

extensive simulation and experimental tests, and the performance in detecting insulation 

degradation is confirmed by various results under different measurement noises.  

5.1 Overview of the Proposed Methodology 

The proposed methodology utilizes the fact that the capacitance of the insulation changes due 

to degradation, which results in variation in the high-frequency (HF) impedance of the winding. 

This variation can be detected by identifying deviations in the HF line current. This chapter 

proposes a methodology to extract and utilize features from this HF line current to quantify 

degradation. The key steps of the proposed methodology are illustrated in Fig. 5-1. 

Step 1: Extraction of HF Transient Current (𝒊𝒕𝒓𝒂𝒏𝒔) 

To extract information on degradation, a typical PWM voltage pulse from the inverter is 

applied to the winding and the HF line current (𝑖𝑙𝑖𝑛𝑒) is measured. The excitation is a typical 

inverter voltage pulse which can be considered as HF excitation to the winding, with excitation 

frequency that extends up the frequency of 𝑓𝑚𝑎𝑥 = 1/min(𝑡𝑟 , 𝑡𝑓). Here, 𝑡𝑟 is rise time and 𝑡𝑓 is 

fall time of the PWM pulse. Due to such HF excitation, the resultant 𝑖𝑙𝑖𝑛𝑒 contains HF 

components which are a function of HF impedance of the winding, this current can be represented 

by equation (5.1) 

𝑖𝑙𝑖𝑛𝑒(𝑡) = 𝑖𝑡𝑟𝑎𝑛𝑠(𝑡) +  
1

𝐿𝑀

∫ 𝑉𝑃𝑊𝑀(𝑡) 𝑑𝑡
𝑡

0

 
(5.1) 



70 

 

Here, 𝑖𝑙𝑖𝑛𝑒 rises at a steady rate due to the winding’s inductance 𝐿𝑀, 𝑉𝑃𝑊𝑀 is a voltage 

excitation pulse, and 𝑖𝑡𝑟𝑎𝑛𝑠 represents the HF transient current which mainly represents current 

through the high-frequency coupling paths. The HF impedance of the winding change is due to 

capacitance increase caused by insulation degradation, the capacitance increases can be up to 40-

50%. These changes in impedance cause variation in current 𝑖𝑡𝑟𝑎𝑛𝑠. Hence, the proposed approach 

utilizes the current  𝑖𝑡𝑟𝑎𝑛𝑠, to identify the changes in winding's HF impedance. The current 𝑖𝑙𝑖𝑛𝑒 is 

acquired for only a few microseconds due to short duration of HF oscillations. This current is 

further processed to mitigation of the steady increase in 𝑖𝑙𝑖𝑛𝑒. A first-order polynomial is 

sufficient to capture this linear trend, this is represented by equation (5.2). After determination of 

coefficients 𝑝0 and 𝑝1, 𝑖𝑡𝑟𝑎𝑛𝑠 can be obtained using equation (5.3). 

𝑓(𝑡) = 𝑝1𝑡 + 𝑝0 (5.2) 

𝑖𝑡𝑟𝑎𝑛𝑠(𝑡) = 𝑖𝑙𝑖𝑛𝑒(𝑡) − 𝑝1𝑡 − 𝑝0 (5.3) 

Extracted 𝑖𝑡𝑟𝑎𝑛𝑠 is further processed using wavelet scattering transform (WST) to extract 

crucial features. These features are further processed and utilized for quantification of insulation 

condition. 

Step 2: Wavelet Scattering Transform and Feature Extraction 

As discussed, the proposed methodology utilizes wavelet scattering transform (WST) to extract 

crucial features from the transient current 𝑖𝑡𝑟𝑎𝑛𝑠. The WST is a powerful feature extraction 

method that decomposes signal through multilevel hierarchical structure using wavelet filters, 

 

Fig. 5-1 Overview of the key steps involved 
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modulus operation and low pass filter [23]. The features extracted through this process are 

referred to as scattering coefficients, Fig. 5-2 illustrates the multilevel structure and extraction of 

scattering parameters, where the blue nodes represent the scattering parameters. 

Considering the time-domain signal 𝑥(𝑡), the zero-order scattering coefficient 𝑆0𝑥  can be 

obtained using equation (5.4) by applying low pass filter that performs averaging. While the first 

order coefficients and second order coefficients can be obtained using equation (5.5) and equation 

(5.6) respectively. 

𝑆0𝑥(𝑡) = 𝑥 ∗ 𝜙(𝑡) (5.4) 

𝑆1𝑥(𝑡, 𝜆1) = |𝑥 ∗ 𝜓𝜆1
| ∗ 𝜙(𝑡) (5.5) 

𝑆2𝑥(𝑡, 𝜆1, 𝜆2) = ||𝑥 ∗ 𝜓𝜆1
| ∗ 𝜓𝜆2

| ∗ 𝜙(𝑡) (5.6) 

Here, 𝜙(𝑡) represents a low pass filter, 𝜓𝜆1
 and 𝜓𝜆2

represents the wavelet filter banks for the 

first and second order transform respectively. These filter banks typically use Morlet wavelet 

𝜓(𝑡) as mother wavelet, while ∗ represent the convolution operation. To obtain the first order 

scattering coefficients 𝑆1𝑥, the signal is convolved with wavelets 𝜓𝜆1
 to obtain wavelet 

coefficients. Thereafter, modulus of these wavelet coefficients is computed and convolved with 

the low pass filter 𝜙(𝑡). This procedure can be repeated for any level 𝑚 as shown in equation 

(5.7).  

 

Fig. 5-2 Illustration of extraction of scattering coefficients through WST 
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𝑆𝑚𝑥(𝑡, 𝜆1,···, 𝜆2) = ||𝑥 ∗ 𝜓𝜆1
| ··· ∗ 𝜓𝜆𝑚

| ∗ 𝜙(𝑡) (5.7) 

The extracted coefficients are essentially features, they are further processed before being 

utilized for training of ML algorithms. The resultant 𝑛 scattering coefficients are denote as 

[𝑆1, 𝑆2,···, 𝑆𝑛], where each scattering coefficient 𝑆𝑖 represents a vector [𝑐1
𝑖 , 𝑐2

𝑖 ,···, 𝑐𝑙
𝑖]. Firstly, the 

norm of each scattering coefficient 𝑆𝑖 is computed, which can be described as shown in equation 

(5.8). This operation results in a new set [‖𝑆1‖, ‖𝑆2‖,···, ‖𝑆𝑛‖], where each ‖𝑆𝑖‖ is a scaler value 

that represents the norm of scattering coefficient 𝑆𝑖.  

‖𝑆𝑖‖ = 𝑁𝑜𝑟𝑚(𝑆𝑖) = ∑ (𝑐𝑗
𝑖)2

𝑙

𝑗=1
 

(5.8) 

The efficacy of the extracted scattering coefficients including the total number of scattering 

coefficients 𝑛 and their size 𝑙, are driven by three critical parameters: (1) maximum order of 

scattering transform 𝑚𝑚𝑎𝑥 (2) quality factor 𝑄𝑚 and (3) maximum log-scale parameter 𝐽. The 

maximum order of scattering transform 𝑚𝑚𝑎𝑥 determines the depth of the transform and directly 

affects the total number of scattering coefficients. Quality factor 𝑄𝑚 represents the number of 

wavelet filters per octave in the filter bank 𝜓𝜆𝑚
 at order 𝑚 . For instance, the first order filter bank 

(𝜓𝜆1
) may use 8 wavelets per octave (𝑄1 = 8). A higher value of 𝑄𝑚 implies high resolution 

frequency, more features and increased computation cost while the lower value of 𝑄𝑚 represents 

low resolution frequency analysis, fewer features and lower computation cost. The other 

parameter that requires proper consideration is a maximum log-scale parameter 𝐽, which 

determines the averaging scale 𝑇 = 2𝐽 of the filter. Intuitively, the parameter determines the 

maximum size or width of the wavelets being used, higher value enables extraction of slower or 

low frequency variations, while a lower value leads to extraction of high frequency variations. 

Hence, optimization of parameter 𝐽 for any problem is crucial to extract important features as well 

as to reduce computation cost. Even if the higher computational cost is not a barrier, the number 

of resultant scattering coefficients and their size affect the performance of a ML algorithm. For 

instance, sparse data may lead to overfitting, or failure in pattern learning. Hence, it is crucial to 

optimize these parameters while keeping ML algorithms in consideration. Therefore, the selection 

of parameters 𝑚𝑚𝑎𝑥, 𝑄𝑚 and 𝐽 along with their impact on performance of ML algorithms is 

further discussed in the next section.  
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Step 3: Insulation Degradation Quantification using ML Algorithm 

The insulation degradation level is quantified by utilizing the processed features from the 

previous step. This step involves feeding the processed feature set [‖𝑆1‖, ‖𝑆2‖,···, ‖𝑆𝑛‖] into the 

pretrained ML algorithm 𝑓, parametrized by coefficients θ. This relation can be mathematically 

formulated as equation (5.9). 

𝑦 = 𝑓([‖𝑆1‖, ‖𝑆2‖,···, ‖𝑆𝑛‖] ; θ) (5.8) 

Here, 𝑦 represents the degradation level quantified by a pretrained ML algorithm 𝑓. Such 

quantification of insulation degradation allows efficient monitoring of insulation condition 

throughout the lifespan of the machine and hence appropriate maintenance actions, or preventive 

measures can be taken.  

The performance of the ML model remains a key priority, hence the training and selection of 

appropriate ML algorithm is very crucial. Although any ML algorithm could be utilized, simpler 

ML algorithms are more preferred due to reduced computation requirements. The following 

section provides structured end-to-end framework for utilization of the proposed methodology. 

5.2 Framework for Proposed Methodology 

This section presents an end-to-end framework designed for developing insulation condition 

monitoring using the proposed ML based approach. Comprehensive overview provided on the 

processes involved, which includes data acquisition, data augmentation, feature extraction, ML 

Model training, and testing or deployment of ML model. The framework is provided in Fig. 5-3, 

it comprises two phases: the offline training phase and the online monitoring phase. 

5.2.1.Offline Training Phase 

During the offline training phase, the primary objective is to develop a well-trained ML model 

capable of quantifying insulation degradation with great accuracy. This phase includes the 

following processes.  

Data Acquisition:  

The requirement of data is a fundamental necessity for any ML model. As discussed, the 

proposed methodology relies on processing the HF line current (𝑖𝑙𝑖𝑛𝑒) to quantify the insulation 

degradation level. Therefore, it is essential to obtain data on 𝑖𝑙𝑖𝑛𝑒 and corresponding level of 

insulation degradation. Such data can be acquired through experiments or simulations. 
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Fig. 5-3 End-to-end framework for the proposed methodology 
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For instance, a simulation based approach can be used where an HF stator winding model has 

been developed and utilized to obtain this data. To acquire data through an experiment, various 

insulation degradation scenarios can be emulated on a real motor and corresponding HF line 

current can be measured. Another experimental approach involves subjecting a stator winding to 

accelerated thermal aging, where in the HF line current can be obtained for varying numbers of 

thermal cycles or degradation levels. However, the winding gets permanently damaged in such 

process. 

Data Augmentation:  

The proposed methodology aims to quantify insulation degradations under varying levels on 

noise in 𝑖𝑡. Hence, it is important to ensure that the dataset contains all the variability expected 

within the ML model’s scope of operation, including different degradation severities and noise 

levels. However, the acquired data lacks varying noise levels because the simulated data is free 

of noise and the hardware acquired data does not include varying levels of noise and degradation 

severities. Given the lack of such data, data augmentation is employed where noise is 

deliberately injected, in order to obtain line current signal with various signal-to noise (SNR) 

levels. Using such data augmentation, data is enriched with various noise levels, which is crucial 

for ML model training. The augmented dataset contains line currents signals for various 

degradations with varying SNR levels. This data can be divided into two subsets: 1) training and 

validation data, which is utilized for the training and performance validation of the ML model 

and 2) test data, which is to evaluate the performance of the finalized ML model on new data, 

ensuring its robustness and generalizability to unseen data. Although separate test data is not 

strictly required, it may play a important role in additional validation of the final ML model. 

Feature Extraction Optimization and ML Model Training:  

The primary objective of this step is to optimize feature extraction procedure and obtain a 

well-trained ML model that can be subsequently utilized for online monitoring stage to quantify 

insulation condition. Firstly, key steps 1) and 2) of the proposed methodology are employed for 

each data point in the augmented dataset to extract the feature set [‖𝑆1‖, ‖𝑆2‖,···, ‖𝑆𝑛‖]. The next 

step is to prepare the extracted features for the ML model. Firstly, standardization of each feature 

set in the data is performed. This process is shown in equation (5.10).  
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The standardization process which adjusts the features to have zero mean and unit variance, 

ensuring the same across all features.  

𝑆𝑖,𝑠𝑡𝑑 =
𝑆𝑖 − 𝜇𝑖

𝜎𝑖
 

(5.10) 

Here, 𝑆𝑖 represents individual feature set, 𝜇𝑖 and 𝜎𝑖 represents mean and standard deviation over 

the feature set 𝑆𝑖 in the data. The standardized data is further utilized for ML model 

development. However, the performance of the ML model gets affected by the extracted 

features. The effectiveness of extracted features depends on the WST parameters (𝑚𝑚𝑎𝑥, 𝑄𝑚, 𝐽), 

they affect the number of scattering coefficients and their size. Hence, the tuning of these 

parameters is directly linked to the ML model development. The ML model development phase 

comprises of training, parameter tuning and performance validation of various ML models. The 

best performing model is deemed to be most capable and further utilized for online condition 

monitoring. Although any ML model can be selected, the proposed approach works with even 

simpler algorithms like linear regression. Upon completion of this stage, optimal values of WST 

parameters (𝑚𝑚𝑎𝑥, 𝑄𝑚, 𝐽) are established, and trained ML model is ready for online monitoring. 

5.2.2.Online Monitoring Phase 

The stage involves online quantification of insulation condition using the pretrained ML 

model. Throughout the lifetime of the machine, the measured HF line current may indicate 

varying levels of degradation with inherent noise variability. This data undergoes the same 

feature extraction procedure described in steps 1) and 2) of the methodology. The values of WST 

parameters (𝑚𝑚𝑎𝑥, 𝑄𝑚, 𝐽) remains as finalized during the offline phase. Thereafter, as shown in 

step 3) of the proposed approach, the extracted features are further analyzed by the pretrained ML 

model to quantify insulation condition. Such quantification of insulation condition enables a safe 

operation of the machine through timely maintenance and fault preventive control. 
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5.3 Simulation-Based Validation and Results 

This section presents the validation of the proposed methodology through simulation-based 

investigations. The proposed methodology and framework discussed in the previous sections 

have been followed and results have been presented. The data on HF line current for varying 

levels of degradation and noise have been acquired through simulation for validation. An HF 

model of the stator winding can be developed using multiconductor transmission line (MCTL) 

approach and utilized to obtain the data. This model uses ladder circuits for representing 

frequency dependent resistance and inductance of the winding, while capacitances are used to 

represent various insulation materials. The developed simulation model has been validated 

through experiments in prior work. 

To acquire data, the developed HF model is utilized to simulate various insulation degradation 

cases. As discussed, various literature assert that the degradation causes an increase in the 

insulation capacitance, this increase can be up to 40-50%. Hence, to acquire data, this research 

work simulates degradations up to 40%, in increments of 0.5%. For each degradation scenario, a 

PWM voltage excitation pulse 𝑉𝑃𝑊𝑀 of 500V amplitude is applied and corresponding 𝑖𝑡 is 

obtained. The generated dataset comprises 80 distinct measurements of 𝑖𝑡, each representing a 

unique degradation scenario. However, this data lacks noisy variability.  

In data augmentation stage, the initial dataset has been further processed to incorporate noise. 

For each datapoint in the dataset, random noise is added to obtain current signal with various 

SNR levels, ranging from -10 dB to 10 dB, in increments of 2 dB. For example, Fig. 5-4 shows 

 

Fig. 5-4 Line current for various degradation scenarios (SNR: 10) 
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line current for various degradation scenarios for SNR=10 dB. It is important to ensure that the 

dataset covers the entire range of SNR levels. This augmentation of dataset significantly 

increases the size of initial dataset to 960 datapoints, each corresponding to a unique degradation 

scenario and noise level. 

Following data augmentation, the next stage focuses on optimization of the feature extraction 

procedure and developing a well-trained ML model. As discussed, optimal selection of WST 

parameters (𝑚𝑚𝑎𝑥, 𝑄𝑚, 𝐽) and optimal ML model selection are interdependent. Hence, for 

various combinations of WST parameters, multiple ML models are trained and evaluated. To 

reduce the computational cost, deliberately simpler ML models have been selected including 

linear regression, lasso regression, elastic net and decision tree regression models. The 

performance of ML models is evaluated through k-fold cross validations to ensure robust 

validation and minimal bias in performance evaluation. 

The influence of WST parameters on validation performance of decision tree regression model 

is shown in Fig. 5-5, and it shows that the minimum validation error obtained with parameters 

𝑚𝑚𝑎𝑥 = 2, 𝐽 = 11 and 𝑄𝑚 = 9. Table 5.1 provides the summary on the validation performance 

of various ML models through various matrices like mean absolute error (MAE), mean squared 

error (MAE), coefficient of determination score (𝑅2). The decision tree regression model 

provides the best performance with the mean absolute error (MAE) of 0.65%. Nevertheless, 

other models also demonstrate great performance. For instance, the lasso regression model and 

elastic net regression models display similar performance, with MAE values of 1.25% and 

1.31%. By analyzing such results, the optimal WST parameters and the best performing ML 

model is selected to be utilized for the online monitoring phase. Here, the WST parameters are 

determined to be 𝑚𝑚𝑎𝑥 = 2, 𝐽 = 11 and 𝑄𝑚 = 9, while the decision tree model is identified as 

optimal model for online monitoring phase.  

In the online monitoring phase, the finalized ML model is deployed for real-time monitoring of 

insulation condition. The measured HF line current may represent any degradation level and 

noise level in it, which undergoes processing through the proposed approach, and the developed 

ML model processes these features to quantify the degradation level. Excellent validation results 

provide confidence in the proposed approach. However, to thoroughly test the approach, the 

developed model has been tested on an entirely new dataset which mimics the data in online 
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monitoring phase. The test dataset comprises four test scenarios, each with a unique SNR level: -

6.5, -2.5, 2.5, and 6.5 dB. Each test scenario contains 80 different HF line currents, each 

representing a unique degradation of up to 40%. So, the resultant test dataset comprises 320 

unique HF line currents. As discussed, the decision tree model performed the best during the 

training and validation phase, and corresponding test results are summarized in Table 5.2. In Fig. 

5-6, the predicted value of degradation by the decision tree model against the true degradation 

value, illustrating the error distribution for the test data. Each data point is in close proximity to 

the ground truth, indicating that the model achieves good performance with low mean error 

across the test data. Detailed performance metrics are shown in Table 5.2. Here, the ‘overall’ row 

presents the aggregated performance for the complete test data. All of the models performed  

 

Fig. 5-5 Simulation Results: Validation error for decision tree model for various WST parameters (mmax=2) 

 

Table 5-1 Simulation Results: Validation Performance Metrics of ML Models 

ML Model  Mean Absolute 

Error (MAE) 

Mean Squared 

Error (MSE) 

R2 Score 

Linear Reg. 1.49 0.0422 0.9675 

Lasso Reg. 1.25 0.0418 0.9586 

Elastic Net Reg. 1.31 0.0449 0.9555 

Decision Tree 0.64 0.0114 0.9912 
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quite well. The linear regression model shows a quite good overall MAE of 1.50% and 𝑅2 score 

of 0.9729. Moreover, the Lasso model and Elastic Net model perform slightly better, with overall 

MAEs of 0.9%. As expected from the validation results, the decision tree model performs 

comparatively better with the overall MAE of 0.61% and 𝑅2 score of 0.9935. Nonetheless, all 

the models show a great capability in the quantification of insulation degradation, showcasing 

 

Fig. 5-6 Error distribution of predictions from the decision tree model 

 

Table 5-2 Simulation Results: Performance Metrics of ML Models on Test Dataset 

ML Model  Test Data MAE MSE R2 Score 

Linear Reg. SNR: 6.5 0.90 1.26 0.9906 

 SNR: 2.5 1.31 2.50 0.9812 

 SNR: -2.5 1.66 4.23 0.9683 

 SNR: -6.5 2.12 6.44 0.9517 

 Overall 1.50 3.61 0.9729 

Lasso Reg. SNR: 6.5 0.39 0.24 0.9982 

 SNR: 2.5 0.74 0.96 0.9928 

 SNR: -2.5 1.06 1.89 0.9858 

 SNR: -6.5 1.41 3.04 0.9772 

 Overall 0.90 1.53 0.9885 

Elastic Net Reg. SNR: 6.5 0.40 0.24 0.9982 

 SNR: 2.5 0.72 0.91 0.9932 

 SNR: -2.5 1.08 1.90 0.9857 

 SNR: -6.5 1.40 3.01 0.9774 

 Overall 0.90 1.51 0.9886 

Decision Tree SNR: 6.5 0.33 0.25 0.9981 

 SNR: 2.5 0.46 0.37 0.9973 

 SNR: -2.5 0.66 1.22 0.9909 

 SNR: -6.5 1.00 1.61 0.9879 

 Overall 0.61 0.86 0.9935 
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the proposed approach’s efficacy. The ability to quantify insulation degradation even in the 

presence of significant noise illustrates the robustness of the model and its suitability for real 

world applications with varying noise levels. 

5.4 Experimental Validation and Results 

5.4.1.Experimental Setup 

This section explains the laboratory setup utilized to acquire data through experiments for 

validation of the proposed approach. As shown in Fig. 5-7, the setup contains a DC source, an 

inverter, a hairpin stator winding, degradation emulation PCBs, voltage probe, current probe, and 

an oscilloscope.  

To emulate insulation degradation, commonly additional capacitors to the winding capacitors 

are connected to replicate the capacitance increase caused by insulation degradation. To emulate 

GW degradation, capacitors can be connected between winding to the ground while to emulate 

turn insulation degradation capacitors can be connected in parallel to the winding. This research 

work employs a similar emulation-based approach to acquire data on HF line current for varying 

levels of degradations. To accommodate emulation, the stator winding has been modified to have 

nine tapings on one of the phases and custom PCBs have been developed for insulation 

degradation emulation. The PCBs enable connection and disconnection of different ceramic 

capacitors between the taps. The location of the taps and connection of emulation PCBs are 

illustrated in Fig. 5-8. External capacitances 𝐶𝐺𝑊 are utilized to emulate GW degradation while 

𝐶𝑇𝑇 are utilized to emulate turn insulation degradation.  

As discussed, the insulation capacitance may increase up to about 40-50% due to degradation. 

Hence, data is acquired for 40 different scenarios, capacitance increase ranging from 0 to 39%, in 

increments of 1%. For each 1% increment in degradation, additional capacitances of 13.5 pF is 

connected to the tapings and the ground to emulate GW degradation by increasing the 

capacitance 𝐶𝐺𝑊. Simultaneously, additional capacitance of 56 pF is connected between the taps 

to emulate each 1% turn insulation degradation by increasing the capacitance 𝐶𝑇𝑇. To acquire 𝑖𝑡,  

Keysight 30MHz/300A HF Rogowski current probe and R&S RTM3004 500MHz oscilloscope 

have been utilized 
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5.4.2.Experimental Results and Discussions 

The discussed experimental setup has been utilized to acquire data for validation of the 

proposed methodology. For each previously discussed degradation scenario, a PWM voltage 

excitation pulse 𝑉𝑃𝑊𝑀 of 400V is applied to the winding and corresponding HF line current 𝑖𝑡 is 

obtained. Hence, the dataset comprises 40 unique measurements of 𝑖𝑡. For this dataset, the 

proposed methodology and framework have been followed. The data augmentation process is the 

same as explained in the previous subsection. For each datapoint in the dataset, random noise is 

added with various SNR levels, ranging from -10 dB to 10 dB, in increments of 2 dB. Hence, the 

 

Fig. 5-7 Experimental setup 

 

 

Fig. 5-8 Illustration of emulation of insulation degradation 
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augmentation of dataset contains 480 datapoints, each corresponding to a unique degradation 

scenario and noise level. 

The next stage involves optimization of feature extraction and development of a well-trained 

ML model, this primarily involves optimal selection of WST parameters and ML model. This is 

achieved through evaluating multiple ML models for various combinations of WST parameters. 

The validation performance of ML models is evaluated using k-fold cross validation. Considered 

ML models are the same. The validation performance is summarized in Table 5.3. Similar to a 

previous study, the decision tree model shows the best performance with MAE of 0.65%, for 

WST parameters 𝑚𝑚𝑎𝑥 = 2, 𝐽 = 13 and 𝑄𝑚 = 7. Other ML models also show commendable 

performance with MAE lower than 1.5%. Considering the performance, the selected WST 

parameters are 𝑚𝑚𝑎𝑥 = 2, 𝐽 = 13 and 𝑄𝑚 = 7, and the decision tree model is selected as the 

optimal model for online monitoring phase. 

Table 5-3 Experimental Results: Validation Performance Metrics of ML Models 

ML Model  MAE MSE R2 Score 

Linear Reg. 1.38 0.0331 0.9738 

Lasso Reg. 1.23 0.0266 0.9737 

Elastic Net Reg. 1.35 0.0314 0.9689 

Decision Tree 0.45 0.01 0.9922 

 

Fig. 5-9 Experimental Results: Validation error for decision tree model for various WST parameters (mmax=2) 
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Even though the validation performance is promising, the model has been tested on a 

completely new dataset comprising 160 unique HF line currents. The performance matrices of all 

models on the test dataset are summarized in Table 5.4.  The test dataset includes four scenarios, 

each with unique SNR levels: -6.5, -2.5, 2.5, and 6.5 dB, comprising 40 unique line currents 

 

Fig. 5-10 Error distribution of predictions from the decision tree model 

 

Table 5-4 Experimental Results: Performance Metrics of ML Models on Test Dataset 

ML Model  Test Data MAE MSE R2 Score 

Linear Reg. SNR: 6.5 1.15 2.1717 0.9837 

 SNR: 2.5 1.30 2.4909 0.9813 

 SNR: -2.5 1.75 4.4853 0.9663 

 SNR: -6.5 2.44 8.9497 0.9328 

 Overall 1.66 4.5244 0.9660 

Lasso Reg. SNR: 6.5 0.75 0.9391 0.9930 

 SNR: 2.5 0.80 1.0582 0.9921 

 SNR: -2.5 0.97 1.4874 0.9888 

 SNR: -6.5 1.23 2.2388 0.9832 

 Overall 0.93 1.4309 0.9893 

Elastic Net Reg. SNR: 6.5 0.82 1.1275 0.9915 

 SNR: 2.5 0.87 1.2402 0.9907 

 SNR: -2.5 1.05 1.7115 0.9872 

 SNR: -6.5 1.25 2.3258 0.9825 

 Overall 1.00 1.6012 0.9880 

Decision Tree SNR: 6.5 0.23 0.2750 0.9979 

 SNR: 2.5 0.23 0.2750 0.9979 

 SNR: -2.5 0.40 0.4500 0.9966 

 SNR: -6.5 0.30 0.4000 0.9970 

 Overall 0.29 0.3500 0.9974 
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representing various degradation scenarios. The distribution of error for the decision tree model 

is shown in Fig. 5-10, the predicted values of degradation are in close proximity with the true 

values. As expected from the validation results, the decision tree model performs the best with an 

overall MAE of 0.29%, which is extremely accurate. As the noise level increases, the 

performance degrades, which is expected.  In summary, these models show a great capability to 

handle varying noise levels, validating the proposed methodology and the framework. 

5.5 Summary 

This chapter proposed a data-driven methodology for quantification of insulation degradation 

using only HF line current. Moreover, the proposed methodology has a unique capability to 

quantify degradations under various noise levels in the measured signal. Measured HF line 

current is processed through wavelet scattering transform for feature extraction, these features 

are further fed into the trained ML algorithm to quantify degradation. A structured framework 

has been developed for the efficient implementation of the proposed method, which discusses 

data acquisition, data augmentation, feature extraction as well as training of ML algorithms. For 

validation of proposed approach, simulation and hardware based studies have been conducted, 

they utilize random wound and hairpin wound machines respectively. The simulation based 

study proves the efficacy of the opposed approach with a mean absolute error (MAE) of about 

0.61% on a test dataset comprises 320 unique HF line current, each representing different 

degradation and noise level. Experimental results further validate the approach, achieving even 

better MAE of about 0.29% on test dataset comprising 160 datapoints. The results for different 

severities of degradations and different noise levels from two different studies not only prove the 

proposed approach’s efficacy in quantification of insulation degradation but also its ability to 

handle different noise levels in the measured signal.  
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Chapter 6:Conclusions and Future Works 

6.1 Conclusions 

This Ph.D. thesis primarily focuses on the development of novel stator winding insulation 

condition monitoring methodologies. The main contributions and conclusions of this thesis are 

presented as follows. 

In Chapter 1, the introduction to the insulation condition monitoring and literature review on 

the topic have been presented. In existing literature there exists mainly two types of insulation 

condition monitoring methodologies suitable where low cost and minimal complexity are 

paramount. There exist two different kind of methodologies that are especially suited for systems 

requiring low cost and minimal complexity: 1) leakage current measurement and 2) line current 

measurement based methodologies. Among these, line current measurement based 

methodologies are identified as the most suitable for practical applications. Thereafter, the 

research gaps and limitations of the existing literature are identified. Thereafter the problem 

statement, research objectives and the overall structure of the thesis are discussed. 

In chapter 2, the primary focus is on the development of HF modeling of the stator winding 

for investigations on insulation condition monitoring. In this chapter, an MCTL based HF 

modeling model has been developed. The developed model considers frequency dependent 

resistances, inductances and mutual coupling between the turns. The modeling procedure and 

calculation of various parameters have been discussed in detail. The developed model is 

validated through comparison of simulated CM impedance, DM impedances and voltage 

distribution with actual measurements from hardware. The results show good match between 

simulation and hardware. The developed model is crucial for investigations on condition 

monitoring methodologies. 

Chapter 3 addresses a limitation identified in the existing literature related to limited 

understanding on the influence of insulation degradations on HF line currents, CM impedance 

and DM impedance. Using the developed model in the previous chapter, this chapter conducts a 

detailed investigations of how various types of insulation degradation influence HF line currents 

and CM/DM impedances. Based on the investigations, it was found that the transient line current 

exhibits unique behavior characterized by initial high-frequency oscillations followed by lower-



87 

 

frequency oscillations. These oscillations are directly linked to the antiresonance frequencies of 

the CM impedance, which can be reflective of insulation condition. Hence, the chapter proposes 

the utilization of prominent oscillations which are at antiresonance frequencies of CM impedance 

for condition monitoring.  

In Chapter 4, a novel insulation condition monitoring technique has been proposed, which 

employs wavelet packet decomposition (WPD) to analyze HF line current and extract indicators 

for monitoring the state of health (SOH).  Existing approaches fall short in simultaneous 

condition monitoring of TT and GW insulation. However, the proposed technique can provide 

the SOH indicators of TT and GW insulation simultaneously through the analysis of line current. 

The detailed steps for the utilization of the proposed approach have been discussed. The results 

have been validated through simulations and experiments. Overall, the investigation and the 

results conclude that the proposed method is robust and accurate for determining the SOH of TT 

and GW insulations simultaneously. 

Chapter 5 presents a novel data-driven methodology for insulation condition monitoring, 

which utilizes a ML algorithm to analyze features extracted from HF line currents using wavelet 

scattering transform (WST). The proposed methodology has a unique capability to quantify 

degradations under various noise levels in the measured signal. A structured framework has been 

developed for the efficient implementation of the proposed method, which discusses data 

acquisition, data augmentation, feature extraction as well as training of ML algorithms. For 

validation of proposed approach, simulation and hardware based studies have been conducted, 

studies show great mean absolute error of about 0.61% in simulation based study and 0.29% in 

experiments. The results proved the methodology’s ability to effectively quantify different 

severities of insulation degradation under various noise levels. 

6.2 Future Works 

Chapter 2 focused on the development of HF modeling of the stator winding for 

investigations on insulation condition monitoring. In this chapter, an MCTL based HF modeling 

model has been developed and validated. Some discrepancies between the simulation and 

hardware and simulation have been discussed. These discrepancies can be due to the unknown 

position of wires inside the slot, approximation of dielectric properties of insulation, negligence 

of nonidealities, negligence of frequency dependent end-winding modeling, core loss 
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representation, etc. As part of the future work, investigations and efforts should aim to address 

these discrepancies to improve the accuracy of the HF model. Improved model can lead to more 

reliable and accurate investigations on condition monitoring methodologies. 

Chapter 3 presents investigations on the influence of TT and GW insulation degradations on 

the CM impedance, DM impedance and HF line current. Thereafter, it emphasizes on the 

potential utilization of the HF line current oscillations for monitoring insulation condition. The 

investigations have been conducted under assumption of uniform degradation in the winding. 

However, future research can explore more complex scenarios and anomaly conditions to gain 

deeper insights into insulation degradation mechanisms. For instance, investigations on scenarios 

where only a few specific turns of the winding exhibit higher degradation compared to other 

locations in the winding.  

Chapter 4 and chapter 5 presents novel insulation condition monitoring methodologies. The 

proposed methodologies have been validated through emulating insulation degradation. The 

emulation of insulation degradation is not completely accurate and may not represent actual 

degradation with great accuracy, which can be addressed. As part of the future work, the 

approaches can be further validated for real insulation degradation scenarios caused by thermal 

exposure. Moreover, the methodology can be further investigated for its suitability for real world 

application, where in the influence of various factors, such as operating conditions, temperature, 

current sensor performance, influence of the rotor and complex aging scenarios can be 

investigated. Currently, due to limited hardware capability, the methodology has been validated 

through processing data offline. As part of the future work, the methodology can be validated 

through online implementation. Additionally, the on the proposed methodologies can be 

investigated to reduce computation cost. For instance, the limitations data drive approach is that 

it requires more computational resources due to the high number of features and the application 

of the wavelet scattering transform (WST) for feature extraction. Potential future work may 

focus on reducing these computational resources through feature reduction techniques or 

simplifying feature extraction. Addressing aforementioned aspects will enhance the reliability 

and applicability of the proposed method.  
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