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Abstract 

 

 

Brain MRI Graphical Networks and Subgraphs:  

Developing a novel methodology for identifying small-scale underlying patterns 
responsible for large-scale functional differences between brains 

 

Lindsay Wright 

 

 

Magnetic resonance imaging (MRI) provides an unprecedented ability to investigate 

brain health and function. However, the high cost and high variability in the population limits 

its use in understanding complex diseases, which requires new methodologies. As such, the 

focus of this project was to define and identify a novel reorganisation of long Covid brain MRI 

data into network graphs and subgraphs based on functional, rather than spatial, connections 

between voxels. We define a physiological connectome: a graph in which the nodes are voxels, 

MRI metrics are node attributes, and edges are formed according to physiological similarity. 

From these graphs we define local neighborhood subgraphs containing each voxel’s set of 

nearest neighbours, which we examine for their properties. MRI features most strongly 

associated with high connectivity included low values of axial diffusivity (AD), mean 

diffusivity (MD), radial diffusivity (RD), and isotropic volume fraction (ISOVF); and mean 

values of intracellular volume fraction (ICVF). Orientation dispersion index (ODI) and 

fractional anisotropy (FA) values were highly variable. The general data trends outside of 

highly connected voxels include an inverse relationship between FA and ODI, RD and FA, AD 

and ODI, ICVF and RD, and ICVF and MD; a positive correlation between AD and MD, ODI 

and RD, and RD and MD. RD and AD, and ISOVF and ICVF do not demonstrate a clear trend. 

In future, these subgraphs will form the basis for a generalisable data augmentation and analysis 

method, to identify underlying patterns responsible for large-scale functional differences 

between brains.
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1. Introduction 

 

Meaningful quantification and modeling of living systems poses many challenges 

owing, in part, to biological variability and small datasets, a problem that is never more acute 

than in medical imaging of the brain. As large-scale studies involving imaging are costly, it is 

not uncommon to reach experimental conclusions from a limited sample size. Additionally, in 

rare diseases where there is a small pool of patients from which to recruit participants, it may 

only be possible to acquire a small dataset, limiting insights into the pathophysiology of these 

diseases. To address these challenges, one possible avenue is to develop a new methodology 

for identifying underlying patterns responsible for large-scale functional differences between 

brains. In this research, the first step in creating this methodology is to optimize downsampling 

of MRI data for subsequent analysis. This was done by creating clusters of physiologically 

similar voxels (i.e. voxels with similar combinations of imaging parameters), organised as 

network graphs. 

To develop this technique, the population selected for study is women who have 

experienced long Covid. As is widely known at this time, Covid-19 is a viral illness affecting 

multiple organ systems including the respiratory, cardiovascular and neurologic systems 

(Raveendran et al., 2021). A subset of acute Covid patients, estimated at as high as 87% of 

hospitalised patients and 35% of outpatients, go on to develop long Covid (Carfì et al., 2020). 

Long Covid is described as persisting or new onset symptoms occurring weeks or months after 

an acute infection with Covid. Neurological symptoms may include headache, fatigue, “brain 

fog”, and loss of taste or smell (Raveendran et al., 2021). Long Covid is a complex process that 

affects many aspects of brain health and is a relatively new topic of research. Neuroimaging, 

including magnetic resonance imaging, can lead to a better understanding of the nature of the 

changes in the brain underlying long Covid (Douaud et al., 2022; Zhao et al., 2024); due to this 

and the timeliness of the subject, the study of a small cohort of patients self-reporting with long 

Covid makes an ideal case study for this work on methodological development.  

Magnetic resonance imaging (MRI) can characterise physiologic functional impairment 

of brain tissue related to pathological conditions including long Covid. Through varying 

imaging parameters, MRI can provide insights into several different characteristics of brain 

tissue including its structure and organisation, (Huisman, 2010), perfusion (Haller et al., 2016), 

oxygen use (Biondetti et al., 2023), and vascular health (Liu et al., 2019). Each of these metrics 

can offer further understanding of the changes in the brain that may be responsible for the 

sequelae of long Covid. Interpreting these characteristics collectively across individuals in a 

meaningful way poses a challenge. To this end, organising MRI data in network graphs of 

labelled voxels can enable helpful comparison between sets of MRI properties. 

A network graph is a framework for data organisation consisting of nodes, representing 

data points, interconnected by edges, representing connections between data (Betzel and 
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Bassett, 2017). In this thesis, we define a physiological connectome in the following manner, 

using the concept: a graph in which the nodes are voxels, MRI metrics are node attributes, and 

edges are formed according to the similarity between their physiological properties. This thesis 

tackles the challenge of organizing the data into physiologically meaningful subgraphs that 

group together voxels with a similar set of properties. Brain MRIs contain hundreds of 

thousands of voxels; as such, clustering helps divide data into manageable subsets. These 

clusters are based on network graphs, where the strength of the relationship between voxels is 

described by the network edges.  

The small size of the dataset limits the strength of the conclusions that can be drawn 

using traditional analysis methods. One solution to address this limitation is to employ data 

augmentation (Pinaya et al., 2022). Data augmentation amplifies the important trends in the 

data to separate results from noise. Generative deep learning (DL) can be used to create 

synthetic data based on the features of the data it is trained on. For a DL model to learn, it 

requires large amounts of data to serve as examples. As such, the model cannot be trained on 

whole brain MRI data as there are insufficient samples. In future work, using the results of this 

thesis, we will train the DL model on the large number of subgraphs and reassemble the 

generated synthetic output into reconstructed brains mimicking the brain physiological 

connectome. Finally, these ‘hypothetical brains’ can then be analysed for significant trends in 

the data when compared to control which would suggest neurologic changes associated with 

long Covid. In identifying regions of disfunction in brains exhibiting long Covid, this work 

will demonstrate validity of this novel analytical approach for future applications.
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2. Background 

 

2.1 Covid 

 

The ongoing COVID-19 (Covid) global pandemic began in 2019, causing more than 

750 million cases and more than 7 million deaths worldwide as estimated by the WHO. As is 

widely known at this time, Covid is a viral illness affecting multiple organ systems including 

the respiratory, gastrointestinal, cardiovascular, and neurologic systems (Raveendran et al., 

2021). Symptoms include cough, sore throat, fever, dyspnea, myalgia, joint pain, fatigue, 

headache, anosmia, dysgeusia, nausea, and chest pain (Carfì et al., 2020). Covid is well-known 

for its life-threatening respiratory complications. Less attention has been dedicated to the 

impact of Covid infections on brain health, though it has been associated with several 

neurological pathologies including stroke and encephalopathies (inflammation of the brain and 

spinal cord) (Paterson et al., 2020).  

While acute Covid continues to be a public health concern, research as early as August 

2020 reported ongoing symptoms after the acute phase of covid. A subset of acute Covid 

patients, estimated at as high as 35% of outpatients and 87% (with 55% reporting three or more 

symptoms) of hospitalised patients, go on to develop long Covid (Carfì et al., 2020), with risk 

factors including increasing age, greater than 5 symptoms in the acute phase of Covid, and 

being female, with the female to male ratio of long Covid being approximately 2:1. Long Covid 

is described as persisting or new onset symptoms occurring weeks or months after an acute 

infection with Covid (Raveendran et al., 2021). The symptoms commonly result from 

disfunction of several organ systems including the nervous system. Of particular concern is the 

significant effects on brain health. Reported neurological symptoms include headache, 

profound fatigue, “brain fog”, tremor, problems with attention and concentration, dysfunction 

in peripheral nerves, and loss of taste or smell (Raveendran et al., 2021).  

The mechanism underlying long Covid is not certain; however, persistently elevated 

inflammatory markers suggest chronic inflammation may be involved (Raveendran et al., 

2021). Other reasons for residual, persisting, or new onset symptoms after the acute phase of 

Covid could include organ damage and organ damage severity, resilience of each organ system, 

immunological response, autoimmune involvement, the rare occurrence of persisting Covid 

viral illness, complications from Covid, complications from co-morbidities or medications, 

deconditioning, and post-traumatic stress (Raveendran et al., 2021).  

Recent work has shown that covid and long covid impact multiple aspects of brain 

structure, function and vascular and metabolic health (Ajčević et al., 2024; Giunta et al., 2024; 

Guillén et al., 2024; Horowitz et al., 2024; Hosp et al., 2024; Zhao et al., 2024), often for a 

long period after the disease. Furthermore, long covid has been associated with autonomic 
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dysfunction (Giunta et al., 2024) which may exacerbate other aspects of brain health 

dysfunctions. However, while the literature is now starting to provide insight into many of the 

brain health aspects that are affected by the disease, an integrated understanding is lacking. 

Because these patients are highly impacted in their daily lives, sample sizes remain limited, 

precluding multivariate and integrative approaches to studying the disease. To address some of 

these shortcomings of the currently available data, physiologically informed data augmentation 

would be instrumental in providing clinically relevant datasets for the study of the multi-faceted 

aspects of this disease. This project seeks to address this challenge. 

 

 2.2 Magnetic Resonance Imaging  

 

2.2.1 General  

 

Magnetic resonance imaging (MRI) is a non-invasive tool for examining internal 

structures (National Institute of Biomedical Imaging and Bioengineering, n.d.). To do this, it 

uses signals derived from the magnetic properties of hydrogen atoms in water. Hydrogen atoms 

each have an unpaired electron, giving them a quantum property called intrinsic angular 

momentum or spin which is responsible for the fourth quantum number #$ =	±1 2) . This spin 

gives them a magnetic moment. In the absence of a magnetic field, the net magnetisation of a 

pool of hydrogens will be zero, as the spins will be randomly oriented. Body tissues such as 

the brain, the heart, and blood have high water content. Since water contains an abundance of 

hydrogens, the body essentially comprises many small bar magnets. 

 

Figure 1 general schematic of an MRI. Within the coils, the magnetic field aligns with 

the axis of the patient table. (Serai, 2022) 
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MRIs are used to examine and study in-vivo organs such as the brain. For example, MR 

images can demonstrate the difference between areas of the brain comprising mostly of white 

matter (WM), where high concentrations of myelin-covered axons make the tissue appear 

white, and areas comprising mostly of grey matter, where the tissue is largely made up of 

neuron cell bodies (soma) and non-heavily myelinated axons (Mercadante and Tadi, 2023). An 

MRI machine generates a mostly uniform magnetic field (called B0) in a configuration similar 

to a solenoid: parallel to the axis of the coil, through the bore of the machine (fig. 1).  Exposure 

to this field causes a net shift in the magnetic moments of the hydrogens in corporeal water 

such that slightly more align parallel to B0, in their lower energy state (Li et al., 2020) and 

resulting in a small net magnetisation (Jones et al., 2021). The direction of these moments is 

then disrupted by a radiofrequency (RF) field (called B1) which reorients this spin to a higher 

energy state into the transverse plane. As the RF pulse ends, the hydrogen flips back to re-align 

with magnetic field of MR. The realignment releases electromagnetic energy which is detected 

and analysed. The time it takes for the spin to realign is tissue-dependent. 

Important measurable quantities in an MRI experiment include T1 relaxation, T2 

relaxation, and free induction decay. The process of realignment in the longitudinal direction 

is called T1 relaxation and follows an exponential trend with T1 as its first-order time constant 

(fig. 2 a., longitudinal magnetisation) (Elster, n.d. a). The realignment time constant T1 is a 

property of different materials and can be used to characterise tissues on imaging (T1-weighted 

imaging). It arises from loss of energy or heat to the lattice. T2 relaxation is a concept similar 

to T1 except it describes the relaxation of the transverse magnetisation components (the plane 

perpendicular to B0) through spin-spin interactions (Elster, n.d. b). It can be used to generate 

T2-weighted images. Since there is no standing magnetic field in the perpendicular plane, any 

transverse magnetisation relaxes into incoherence (fig. 2 b., transverse magnetisation). T2 is 

the ideal time constant for this behaviour arising from only natural atomic and molecular 

interactions. A second constant called T2* is the observed transverse relaxation time constant 

which reflects dephasing due to magnetic field inhomogeneities (Elster, n.d. c). T2* is always 

less than or equal to T2. (Liang and Lauterbur, 2000). Free induction decay (FID) is a decaying 

sinusoidal signal that occurs post-RF excitation (Elster, n.d. d). It decays with time constant 

T2* and can be manipulated to generate useful imaging signals (see the description of gradient 

recalled echo in section 2.2.5). The ability to capture these different relaxation constants 

depends on the imaging parameters used. These parameters include, first, the repetition time, 

which determines the time between acquisition of two images; and second, the echo time, 

which determines the time between tipping the magnetization into the transverse plane and the 

acquisition of k-space. 
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Figure 2: The relaxation process of the net magnetisation M0 for (a) the longitudinal or 

Mz and (b) transverse or M⊥ components, as calculated using the T1 and T2 relaxation times, 

respectively. (Xu et al., 2019) 

In addition to general temporal information, spatial information can be extracted from 

an MRI, through the use of gradients for spatial encoding. Gradient fields can be applied during 

RF excitation by gradient coils (fig. 1); this alters the magnetic field in a known, predetermined 

pattern, leading to a position-dependent proton resonance frequency. This spatially encoded 

distortion of the signal allows for its localisation in three-dimensional space. The signal is 

collected in a space called k-space, in which the intensity of each element of the matrix being 

filled reflects the contribution of a given spatial frequency. The signal can then be converted to 

image space to obtain meaningful metrics using Fourier transforms, processing techniques, and 

mathematical models to construct two- or three-dimensional MR images that reflect a given 

property for each voxel (Hidalgo-Tobon, 2010). 

In summary, an MRI sequence is a specific set of gradient and RF pulses which excite 

hydrogen electrons. As the electrons relax back into their low energy state, they release energy 

which is recorded to yield a signal. The signal is then processed according to an appropriate 

model into meaningful metrics which give information about tissue properties at every voxel. 

Different properties are obtained by varying the amount of time left for the three different 

relaxation types to evolve, as well as additional manipulations of the net magnetization (e.g. 

diffusion direction encoding). 

MRI has many advantages over alternative neuroimaging methods, such as CT or 

positron emission tomography (PET). As MRI does not involve ionising radiation in image 

acquisition, it avoids the risks associated with radiation which include an increased risk of 

cancer, especially in younger populations (Lin, 2010). Many MRI sequences are non-invasive; 

it does not require the administration of exogenous contrast agents, the use of which can be 

contraindicated in certain populations such as patients with renal dysfunction, children, or 

contrast allergies (Haller et al., 2016). Due to its safety profile, MRI is more repeatable which 

can facilitate longitudinal imaging. 
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2.2.2 Diffusion-Weighted Imaging 

 

Diffusion-weighted imaging (DWI) is an application of MRI that makes use of the 

molecular diffusion of water. This translational movement of particles in liquids or gasses, also 

known as Brownian motion, appears random owing to redirection of their trajectories by 

collisions with other particles (Brown, 1828; Einstein, 1905; D. Le Bihan et al., 2001). The 

intrinsic physical property of diffusion is not disrupted by MR effect or magnetic fields as water 

is not charged (Le Bihan et al., 2001). In DWI, researchers track this motion and consider how 

it is restricted in order to map structural boundaries such as cellular membranes, axons, and 

macromolecules in the brain (D. Le Bihan et al., 2001). From the voxel-wise displacement 

distribution of water, the geometry of the brain’s microstructure can be characterised. A brain 

region can be said to have a high degree of anisotropy if the amount of diffusion of water 

molecules varies greatly between axes in three-dimensional space; in other words, if the local 

movement of water is highly directional (fig. 3 B). Coherently organised tracts of WM, having 

bundles of parallel axons, show anisotropic diffusion as the water preferentially diffuses along 

the length of the fibre bundles. The opposite of anisotropy, isotropy, occurs in areas of the brain 

with less directionality to its organisation (fig. 3 A). For example, the diffusion of cerebrospinal 

fluid (CSF) in the ventricles is less constrained, leading to highly isotropic, or non-directional, 

diffusion. 

 

Figure 3: (A) Isotropic diffusion of CSF in ventricles, and (B) Anisotropic diffusion in 

a parallel bundle of axons. (Rosenbloom et al., 2003). 
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Figure 4: (a) Pulsed gradient spin echo (PGSE) sequence schematic. (b) The first 

gradient dephases spins and the second gradient rephases stationary spins, since there is a 180° 

RF pulse in between the gradients. (Magritek, 2016). 

To acquire DWI images, a pulsed gradient spin echo sequence is used (fig. 4 a). A spin-

echo sequence consists of two RF pulses of 90° and 180°. The 90° pulse reorients spins to a 

higher energy state. A gradient pulse causes the spins of diffusing water to dephase, then the 

180° RF pulse is applied, followed by a second gradient pulse (Alexander et al., 1997; Reese 

et al., 2003; Stejskal & Tanner, 1965). Since the second gradient is after the 180° pulse, 

stationary spins are rephased (fig. 4 b) while moving spins (e.g. in diffusing water) are not. 

This spin dephasing causes a transverse relaxation signal attenuation, allowing for the 

measurement of diffusion in DWI. The DWI images can then be processed into specific metrics 

using different models. Two common models include the diffusion tensor imaging (DTI) model 

and the neurite orientation dispersion and density imaging (NODDI) model, each with their 

own assumptions, limitations and advantages. 

DWI can be processed according to the conceptually simple DTI model to provide 

fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial 

diffusivities (RD). In situations where diffusion is not uniform in all directions (anisotropic, 

fig. 3 A), a single scalar value is insufficient to fully characterise it (Le Bihan et al., 2001). 

Within each voxel, DTI considers diffusion in terms of a scalar mean rate in each of the three 

axes of three-dimensional space (anterior-posterior, superior-inferior, and left-right). 
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Figure 5: eigenvalues of diffusion, !!, !", and !#. An isotropic property does not vary 

in magnitude between different directions of measurement; the measurement of an anisotropic 

property is direction dependent. AD, RD, MD, and FA are eigenvalue-dependent properties of 

diffusivity. (Tromp, 2015) 

From these eigenvalues (fig. 5), several measures can be determined. Axial diffusivity 

(AD) is the diffusivity along the principal direction. Radial diffusivity (RD) is diffusivity in the 

plane perpendicular to the principal direction. Mean diffusivity (MD) describes the total 

average displacement across all directions and is rotationally invariant. Fractional anisotropy 

(FA) is a measure of spherical asymmetry of diffusion. It is the most used measure of anisotropy 

due to its high signal-to-noise and contrast to noise ratio (Alexander et al., 2000; Hasan et al., 

2004; Papadakis et al., 1999; Sorensen et al., 1999). FA ranges from 0, describing isotropic 

diffusion, up to 1. Values above 0.7 indicate highly coherent fibres, such as in the corpus 

callosum (fig. 6). Values above 0.2 suggest WM, and values lower than 0.2 suggests GM and 

CSF. 

  



 10 

 

Figure 6: FA images of a 31-year-old healthy man’s brain. Bright regions showing high 

FA correspond to WM tracts. Dark regions show isotropy. (Rosenbloom et al., 2003). 

While DTI is an intuitive model, it is a gross measure which can lose some information 

due to the low resolution and simplicity of the model (Zhang et al, 2012). DTI essentially 

assumes a single compartment; that is, it assumes diffusion is occurring in an extracellular 

compartment only. The DTI model posits that each voxel has a single main orientation of 

diffusion. This is most appropriate in regions such as the corpus callosum, that have very large 

axon bundles with similar orientations.  However, this assumption does not allow for 

identification of overlapping tracts, or non-parallel bundles of axons. In the case of overlapping 

tracts, diffusion would be highly directional in the intracellular compartment along the length 

of the tracts. As DTI only considers average diffusion rate per Cartesian axis, the magnitudes 

of the diffusion vectors of the overlapping tracts are lost as a simple, lower average diffusion 

rate (Descoteaux, 2015). In the case of crossing fibers, because there are competing diffusion 

directions that both enhance AD and RD, the DTI model results in an overly isotropic diffusion 

tensor that underestimates the contribution of fiber bundles. This can then be erroneously 

interpreted as a lower “WM integrity”. DTI’s simplicity affords an advantage when compared 

to other more complex models in requiring much shorter MRI acquisition durations. This 

advantage lends itself well to clinical applications in acute processes such as stroke, or in 

populations which may not tolerate longer scan times such as pediatric or dementia patients. 

However, it is limited in its interpretability. 

The NODDI model is more complex and has more degrees of freedom than DTI. 

NODDI assumes a three-compartment schema, that is, that diffusion is constrained in the 
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intracellular space or compartment (intracellular volume fraction, ICVF), hindered in the 

extracellular space (isotropic volume fraction, ISOVF), or isotropic in CSF, which allows for 

different rates of diffusion between each compartment (Zhang et al., 2012). The orientation 

distribution of the intracellular space is modelled as restricted diffusion along axons of zero 

radius amounting to a collection of sticks, which make up a Watson distribution. The Watson 

distribution estimates the dispersion around a mean orientation at each voxel (Zhang et al., 

2011, 2012). For the extracellular compartment, the diffusion is modelled as hindered diffusion 

in a Gaussian anisotropic process. It considers two diffusivities, both parallel (axial) and 

perpendicular (radial) to the orientation of the intrinsic intracellular diffusivity (Zhang et al., 

2012). These values are determined from the measured neurite density (ND) while considering 

the effect of orientation dispersion (Jespersen et al., 2012). The third compartment, CSF, is 

modelled as isotropic Gaussian diffusion. The mathematical details behind this modeling is 

outside the scope of this project, however, the results of the NODDI model are metrics ND, 

and fibre orientation dispersion, also called orientation dispersion index (ODI). ND is an 

estimation of the volume of axons and dendrites in a voxel. ODI is a measure from 0 to 1, 

where 0 indicates perfect anisotropy and 1 indicates perfect isotropy. 

NODDI’s higher complexity allows for disentangling regions of crossing fibres from 

those having truly low neurite density. For example, in WM tracts where axons and therefore 

diffusion is largely aligned, such as in the corpus callosum, ND is high, and ODI is low and 

corresponds to high FA (fig. 7) (Zhang et al., 2012). In locations with lower alignment of axons 

(e.g. fanning and crossing fibres) however, ODI values are higher while ND values remain 

similarly high. This is expected, as WM has little variation in neurite density. In GM, ODI is 

higher and ND lower than in WM. 

By considering these two metrics together, it is possible to differentiate between 

changes in WM fibre density and changes in fibre organisation (Zhang et al., 2012). The cost 

of the higher degrees of freedom of the NODDI model is that longer scan times are required to 

acquire more images, which may not be well tolerated by certain populations. Additionally, the 

more complex mathematical approach involved requires longer data processing times. 
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Figure 7: FA, orientation dispersion index OD, intra-cellular volume fraction νic, and 

isotropic (CSF) volume fraction νiso. νic is mostly unchanging within white matter while ODI 

and FA have significant regional variations that are inversely correlated with each other. Row 

A: the dashed regions show the centrum semiovale where there is significant crossing and 

fanning of WM tracts. Here, lower FA values correspond to higher ODI values, with high νic 

(high neurite volume). Modified from Zhang et al., 2012. 

 

2.2.3 Magnetisation Transfer Imaging (MTI)  

 

Magnetisation transfer imaging (MTI) is a sequence that provides an estimate of the 

myelin content of the brain. Myelin is the characteristic lipid-heavy (70-85% lipids, 15-30% 

protein) insulation on axons which gives WM its colour (Morell and Quarles, 1999). The 

macromolecules that make up myelin are not directly visible through MRI as their bound 

A 
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protons have highly restricted motion (e.g. rotation, vibration, and translation), so the signal 

decays too quickly for recording (Olsson, Andersen, et. al., 2020). To image myelin, MTI uses 

the binary spin-bath model, also known as the two pools model, as its theoretical basis (de 

Boer, 1995). The first “pool” is the group of bound protons, consisting of the protons of the 

macromolecules as well as those of the “hydration layer”, the surrounding water molecules that 

are hydrogen-bonded to the macromolecules. This pool is referred to as the bound pool. The 

second “pool” referred to is the group of protons attached to free water, which allows those 

protons to be relatively unrestricted in their motion and have very long relaxation times 

compatible with imaging. This is called the free pool. The bound pool can be excited by a wide 

range of radiofrequencies while the free pool has a very narrow range of exciting frequencies. 

In MTI, the approach is to first apply an MT pulse to excite the bound pool that then 

transfers magnetisation to the free pool. Shortly after the MT pulse, a second RF pulse targeting 

the free pool is applied. The resulting post-MT signal from the free pool (called MT-on) is 

measured. The MT-on signal is compared to an MT-off control obtained using the free pool 

pulse without MT pulse to determine the extent of transfer. To selectively saturate the bound 

pool, the frequency of the MT pulse is chosen to be within the bandwidth of the bound pool 

frequencies, which is separated from the free pool frequencies by several orders of magnitude 

(Henkelman, Stanisz and Graham, 2001). The resulting change in magnetisation in the bound 

pool then reorients the nearby free water protons through a process called cross relaxation. 

Following the transfer of magnetisation, the signal derived from the effect of a subsequent RF 

pulse on the free pool shows a signal attenuation of the free water pool proportional to the size 

and density of the bound pool (Edzes and Samulski, 1977). Since the net magnetisation of the 

bound pool is proportional to myelin content, the MT-related signal attenuation of the free pool 

is proportional to the amount of myelin present. In this way, MTI provides an indirect, relative 

measure of myelin content per voxel (Sled, 2018). 

MTI can be processed into different metrics including magnetic transfer ratio (MTR) 

and magnetic transfer saturation (MTsat). MTR is a simple calculation of the difference 

between a control reading of the free pool signal (MT-off) and the free pool signal reduction 

(MT-on), as a ratio to MT-off (fig. 8). While this measure is intuitive, it is not specific. In 

measuring myelin content, it is sensitive to some confounders such as edema (Thiessen, Zhang 

et al, 2013). Inflammatory states which occur in some pathological conditions including 

multiple sclerosis (MS) can cause edema. Edema is an increase in cellular or interstitial fluid. 

This increase in the volume of the free water pool dilutes the signal attenuation and decreases 

the MTR. However, myelin loss is also a pathological feature of MS which can also cause a 

decrease in MTR. In MS, both myelin loss and edema can be signs of disease progression, but 

MTR can not specify which event is occurring (Levesque et al., 2005). Differentiating these 

conditions can be important in determining the appropriate course of treatment. 
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Figure 8: Stepwise demonstration of the calculation of an MTR image from proton 

density-weighted images (PDw). (Fox et al., 2011) 

MTsat is a semi-quantitative measure of the fraction of free water that is saturated 

(magnetised) by a single MT pulse (Olsson et al, 2021). The mathematical model is more 

sophisticated than MTR and considers several additional factors which would otherwise distort 

the true saturation fraction. To make these adjustments, MTsat requires a T1-weighted map to 

account for relaxation time, a B1 map to account for local variations in flip angles, and both 

MT-on and MT-off (Olsson et al, 2021). The B1 map is derived from the observed B1 field and 

is a measure of the inhomogeneities of the B1 field caused by, for example, attenuation of RF 

amplitude due to tissue conductivity (Helms et al., 2008), and is used for noise corrections in 

imaging. By adjusting for each of these factors, MTsat is much more specific than MTR. MTsat 

can measure myelin loss by removing the confound of edema. Additionally, compared to MTR, 

MTsat shows a greater image contrast and is more sensitive to demyelination and changes in 

tissue (Longoni et al, 2023). 

 

2.2.4 Arterial Spin Labelling  

 

Arterial spin labelling (ASL) is a family of MRI sequences that creates perfusion-

weighted images, i.e. images that are weighted by how much blood is flowing through a 

particular area. It allows for the generated signal to distinguish between blood flow in vessels 

and the surrounding, mostly stationary, body tissues (Albert Einstein College of Medicine, 

2014). It differs from typical MRI by employing selective application of the RF pulses to 

specific regions only. The RF is applied at the level of the carotids below the bifurcation for 

systematic labelling of all blood perfusing the brain. Application of this pulse means that the 

spins of the hydrogens at that location – including both tissue and blood – invert (become 

labelled). This labelled signal is then allowed to flow through the large vessels into the brain 
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until it reaches the capillaries. An image is then acquired and the duration between tagging and 

imaging is called the post-labelling delay (PLD) (Grade et al., 2015). At the time the image is 

acquired, the image is therefore a combination of a relaxed signal from the stationary tissue of 

that region and a perfused-weighted signal from the RF-labelled blood. This technique 

therefore uses labelled water as an endogenous, intravascular tracer. This perfusion-weighted 

image cannot be used in isolation since signal attenuation comes both from stationary spin 

relaxation and labelled water. To obtain a perfusion weighted signal, this first image is 

subtracted from an image without magnetic tagging. This subtraction image is not quantitative 

however. To make the perfusion-weighted image quantitative, an additional perfusion 

calibration image (M0) is needed with a long repetition time to estimate the baseline or fully-

recovered magnetisation. This M0 map can be combined with the perfusion-weighted map into 

a kinetic model to obtain a quantitative measure of perfusion in units of ml blood/100g 

tissue/min. Kinetic modeling takes into consideration arterial transit time, incomplete spin 

inversion from the pulse, equilibrium magnetisation of blood, magnetisation decay via the 

exchange of magnetisation between static tissue and blood flow and magnetisation clearance 

via perfusion (Buxton et al., 1998). The final, flow-sensitive signal is proportional to the 

amount of inverted spin that arrives at the tissue in a given voxel (Haller et al., 2016). 

 

Figure 9: Blood passing through the arteries in the neck is continuously labelled and 

images are recorded distally. (Haller et al., 2016). 

The main limitation of ASL include a low signal-to-noise ratio. As such, ASL typically 

involves many repetitions and averaging to better discern signal from noise. This repetition has 

two main downsides: it makes signal acquisition a very slow process, and it causes ASL to be 

highly sensitive to motion artefacts. The speed can be improved somewhat by coupling ASL 

with other techniques such as echo-planar imaging to make it faster. The signal-to-noise ratio 

can also be improved by use of stronger magnetic fields, for example, use of 3T instead of 1.5T 

MRIs where available. 

The pseudocontinuous ASL (pCASL) sequence is a specific implementation of ASL 

which can be implemented on a standard clinical MRI scanner and has better signal-to-noise 

ratio than most other ASL sequences (fig. 9) (Grade et al., 2015). pCASL employs a series of 

very short (~1ms) RF pulses for approximately 1-2s, which is designed to label in a pseudo-

steady state manner (Haller et al., 2016).  The control images can be obtained from applying 
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the same frequency and duration of pulses with the pulse phase alternating by 180º for each 

subsequent pulse (Haller et al., 2016). pCASL also has its drawbacks, which include: the 

labelling efficiency of pCASL is generally lower than in some other ASL techniques (Haller et 

al., 2016); the pCASL labelling is sensitive to resonance offset at the labelling plane resulting 

in a shift; and some phase shift can occur between RF pulses (Grade et al., 2015). However, it 

is the most commonly used technique as it balances good signal-to-noise while limiting power 

deposition (W/kg; increases in core body temperature) into 

tissues. 

The flow-sensitive signal can be processed to quantify 

perfusion and to estimate cerebral blood flow (CBF). CBF is a 

quantitative, absolute measure in units of millilitres of blood per 

100 grams of tissue per minute. CBF is primarily affected by T1 

relaxation time and labeling duration, which is the length of time 

the blood is able to retain its label. Labeling duration is an 

acquisition parameter that is determined by blood and tissue T1 

(Detre et al., 2012). Other variables and imaging parameters can 

also influence CBF measures, including arterial transit time and 

post-labeling delay. Arterial blood transit time (ATT) is a function 

of flow velocity and describes the time required for blood to pass 

from arteries and into tissue. ATT has been well characterised in 

healthy subjects but can be affected by pathologies including 

cerebral vascular disease and stroke (fig. 11). The delay between 

the end of RF labelling and the beginning of imaging, during 

which time blood flows from the labelling plane into the brain, is 

referred to as the PLD. The PLD is of critical importance to 

imaging. It is chosen to best match with ATT and T1 relaxation 

time: the labelled blood must have arrived at the tissue while also 

still being well-labelled to produce a quality signal. If PLD is too 

short relative to the time taken for the first labelled blood of the 

bolus to arrive at the imaging volume (ATT, fig. 10 B), the signal 

will underestimate perfusion. If the PLD is longer than the longest 

time required for the labelled blood to pass from the labelling 

plane to the imaging volume (ATT plus the labelling duration, fig. 

10 D), the ASL signal will lose its sensitivity when blood and tissue have a similar T1 (e.g. 

GM); this allows for CBF quantification but may decrease the signal-to-noise ratio (Haller et 

al., 2016). Both ATT and T1 relaxation time are on the order of seconds, and directly influence 

the signal strength. Since pathological states can increase ATT, the typical PLD used in healthy 

individuals may not attain the best results in individuals with vascular disease and it may be 

beneficial to use multiple PLD techniques to determine the most appropriate parameter. 

Underestimation of ATT can lead to an underestimation of CBF (Haller et al., 2016). A typical 

PLD value for healthy adults is 1500ms (Haller et al., 2016). 

Figure 10: pseudo steady state 
application of RF pulse in 
pcASL.  
A, t = 0;  
B, t = ATT;  
C, t = labelling duration;  
D, t = ATT + labelling 
duration. Adapted from Haller 
et al., 2016. 

A 

B 

C 

D 
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Figure 11: Imaging of left middle cerebral artery (MCA) stroke. Top: ASL CBF 

showing hyperperfusion (arrows) of left MCA territory. Due to the stroke, the labelled blood is 

delayed resulting in it being imaged in collateral blood flow vessels. Bottom: ATT shows delay 

to the left MCA region. (Detre et al., 2012) 

A second metric which can be derived from ASL in combination with breathing 

manipulation is cerebrovascular reactivity (CVR). CVR provides a measure of cerebrovascular 

reserve, which quantifies the ability of the brain’s vasculature to vasodilate in response to a 

vasodilatory stimulus. Cerebrovascular reserve can serve as an indicator of vascular health of 

the brain (Liu et al., 2019). This measurement can be obtained using different methods 

including breath-holding, hyperventilation, carbon dioxide (CO2) inhalation and 

administration of acetazolamide (Liu et al., 2019). Both breath-holding and hyperventilation 

require a high degree of cooperation from the participant which may be difficult for certain 

populations and variable adherence to the experimental protocol may decrease reliability of 

this method. CO2 inhalation requires gas delivery apparatus, but otherwise is a popular 

approach to CVR as it is a more controlled stimulus which yields large effect sizes (Liu et al., 

2019). 

CO2 is a potent vasodilator with both a rapid onset and resolution of effects (Liu et al., 

2019). When serum concentrations of CO2 are increased from physiologically normal levels, 

blood pH decreases via dissociation of CO2 into bicarbonate and hydrogen ions. Both elevated 

CO2 and acidosis can trigger relaxation of the smooth muscle cells (SMCs) of the vascular 

endothelium (Liu et al., 2019). Relaxation of SMCs on the cellular level corresponds to a 

dilation of the blood vessels. In CVR, increasing inhaled CO2 leads to increased circulating 

CO2 that causes cerebrovascular vasodilation. This vasodilation results in elevated perfusion 

which can be captured using hemodynamic MRI signals such as ASL, allowing for the 

measurement of vascular reactivity to CO2 (Liu et al., 2019). 
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2.2.5 Quantitative Susceptibility Mapping 

 

Susceptibility weighted imaging, the precursor to quantitative susceptibility mapping, 

uses MRI phase measurements to describe the spatial distribution of magnetic susceptibility in 

human tissues (Schweser et al., 2016). Magnetic susceptibility is an intrinsic physical property 

of matter that describes the extent to which a material becomes magnetised when in the 

presence of an external magnetic field (Duyn, 2013).  The internal magnetic field can align in 

the same or in the opposite direction to the external field, referred to as paramagnetic or 

diamagnetic, respectively. A third classification, ferromagnetic, refers to very strongly 

paramagnetic materials that are not compatible with the use of MRI for safety reasons 

(Schweser et al., 2016). 

Paramagnetism is a phenomenon of unpaired electrons causing a magnetic moment in 

an atom. When exposed to a magnetic field, the moment aligns in the direction of the external 

field (Duyn and Schenck, 2017). Diamagnetism arises from a particular molecular-level 

instance of Lenz’s law: current induced by a changing external magnetic field is generated such 

that the magnetic field generated by the induced current opposes the change in the external 

magnetic field (Schenck, 1996). Essentially, the motion of the conductive electrons of a 

molecule change to produce a magnetic field which opposes the external field (Schenck, 1996). 

With respect to neuroimaging, magnetic susceptibility is mostly affected by water, 

myelin, iron, and calcium (Schweser et al., 2016). Both myelin (−13 to −34 ppb relative to 

water, Duyn and Schenck, 2017) and calcium are more diamagnetic than water (χ = −9.05 ppm, 

Duyn and Schenck, 2017) (Schweser et al., 2016). The susceptibility of iron depends on its 

form; the magnetic susceptibility of heme-iron depends on its oxygenation state (Bren et al., 

2015). In 1936, Linus Pauling and Charles Coryell confirmed earlier findings that oxygenated 

hemoglobin is diamagnetic while deoxygenated hemoglobin, having four unpaired electrons 

per iron atom, is paramagnetic (χ = −7.9 ppm, or about 1.2 ppm paramagnetic relative to water, 

Duyn and Schenck, 2017) (Bren et al., 2015). 

To quantify susceptibility, we use a gradient recalled echo (GRE) pulse sequence is 

used, taking advantage of the FID signal (see section 2.2.1). First, an RF pulse generates an 

FID signal. Next, a dephasing gradient field alters the resonance frequencies of the tissue, 

which causes the FID signal to ‘squelch’, or causes an accelerated dephasing of the FID signal. 

Finally, a rephasing gradient pulse having the same magnitude but opposite polarity of the first 

gradient is applied. This reverses the phase shifts of the dephasing gradient, refocusing the 

spins and creating a gradient echo from the reemerging FID (fig. 12). GRE does not require 

any specialised hardware, making it an accessible sequence commonly used to susceptibility 

imaging. 
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Figure 12: FID with T2* decay in the absence of gradient, and the dephasing of FID 

followed by the rephasing gradient resulting in a gradient echo. (Elster, n.d. e). 

Quantitative Susceptibility Mapping (QSM) is a post-processing technique used on 

susceptibility weighted imaging that extracts the local magnetic susceptibilities from MRI 

phase measurements to describe the spatial distribution of magnetic susceptibility (Schweser 

et al., 2016). The process of QSM is complex, requiring several steps (Schweser et al., 2016 

and Haacke et al., 2015). The variations in local magnetic susceptibility, such as from the 

presence of deoxyhemoglobin in veins, alter the local magnetic field. This local field 

perturbation can be measured and described by T2*-weighted phase data, since the T2* time 

constant is based on the rate of dephasing due to both spin-spin relaxation (T2) and to field 

inhomogeneities (Liang and Lauterbur, 2000). A larger phase value correlates to a higher 

magnetic susceptibility value (Liang and Lauterbur, 2000). Since the susceptibility values 

within the venous system are related directly to the extent of deoxygenation of the blood (Fan 

et al., 2014), it is possible to derive the degree to which blood has been deoxygenated from 

magnetic susceptibilities (Bren et al., 2015). 
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Figure 13: venous probability density map derived from 20 participants’ QSM MRIs. 

Voxels with 100% probability are locations where all participants had a voxel classified as a 

venous vessel. The images show inferior to superior axial slices (Huck et al., 2019). 
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QSM can map the localisation of the venous system in the brain (fig. 13; Huck et al., 

2019). The difference between QSM values of venous voxels and those of water can estimate 

the degree of deoxygenation in veins (Fan et al., 2014). This deoxygenation data is the basis 

for determining oxygen extraction fraction (OEF) across the brain. 

OEF is a metric derived from QSM. OEF is the proportion of blood oxygen that has 

diffused out of the blood and into tissue in response to tissue metabolic usage of oxygen 

(Biondetti et al., 2023). The consumption rate is determined by the difference in oxygen 

saturation in arterial and venous blood as a proportion of arterial blood saturation (Biondetti et 

al., 2023).  The arterial blood saturation is assumed to be 100%, and the venous blood saturation 

is determined from magnetic susceptibility of veins by QSM (Biondetti et al., 2023).  OEF is 

an important biomarker and has been used to study both healthy (Huck et al., 2019) and disease 

states, including cerebrovascular disease (Fan et al., 2020) and Alzheimer’s disease (Liu et al., 

2020). 

 

2.3 Computational Techniques 

 

2.3.1 Machine Learning 

 

Data driven techniques are central to the current scientific paradigm, enabling 

researchers to discover trends in the world through collecting and analysing larger volumes of 

data than was previously possible. These computational methods capable of handling large 

datasets are a powerful tool in identifying patterns in multivariate data. One specific method is 

machine learning (ML), a computational application of mathematics. ML is an algorithm that 

learns from data (Goodfellow et al., 2016). A general definition of learning is when a program 

or model has improved at a task according to a performance measure following experience or 

exposure to learning opportunities (Mitchell, 1997). Tasks may include fitting a line to data, 

identifying (or classifying) images, or dividing data into groups of similar instances (or 

clusters). 

A frequently used distinction within ML is whether the learning is supervised or 

unsupervised. Supervised learning is when an ML algorithm is trained to associate input data 

with an expected output (Goodfellow et al., 2016) which serves as the ground truth. Often the 

inputs used for training are matched to outputs which are human generated; in other words, the 

inputs are ‘labelled’ by a ‘supervisor’. An example of supervised learning is providing data for 

several plants (measurements, colour, shape, etc.) matched to their species name, then using 

the algorithm to identify or classify new examples of plants. Examples of supervised ML 

algorithms include linear regression, logistic regression, k nearest neighbours, decision trees, 
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support vector machine, and random forest. Unsupervised learning algorithms are given a set 

of inputs but no outputs and learn trends or features in the data. An example of unsupervised 

learning is the use of diffusion map nonlinear ML to untangle the free energy landscape of a 

single molecule from a multi-molecule simulation, and the impact thereon of environmental 

factors such as temperature and solvent conditions in order to examine its structure (Mansbach 

and Ferguson, 2015). Examples of unsupervised ML algorithms include gaussian mixture 

models, clustering (e.g. k-means, DBSCAN, OPTICS), covariance estimation, and manifold 

learning. 

 

2.3.1 Clustering 

 

Clustering, also called cluster analysis, is one application of ML that is very useful in 

scientific research. Cluster analysis is a family of algorithms that accomplish the unsupervised 

task of organising instances of data (data points, or samples) into sets or groups in datasets 

where group membership is not already labelled in the data. Clustering algorithms create 

clusters which should be optimised such that the instances within a cluster are as similar as 

possible to each other and as dissimilar as possible to instances of different clusters (Xu and 

Tian, 2015). The definition of similarity should be well-defined and consistent for a given 

model. In the case of quantitative features, similarity is usually defined as an inverse distance 

(with the distance between points being called the dissimilarity). 

Clustering generally follows a standard set of ordered steps (Xu and Tian, 2015). First, 

the most representative features of the dataset must be extracted and selected. Secondly, an 

appropriate algorithm for the dataset in question must be chosen and hyperparameters of the 

algorithm identified; i.e. aspects of the algorithm must be defined such that they are adjusted 

to the specific characteristics of the dataset. For example, this might include selecting a 

proximity (inverse distance) measure and a clustering strategy appropriate to the clustering 

problem (fig. 14) (Xu and Wunsch, 2005). Next, the clusters must be evaluated for the validity 

of the resulting clustering solution to the problem of organising the specific dataset. Finally, 

the effective meaning behind the clustering results should be identified and explained. 

Many different clustering methods exist. As described in the second step of clustering 

above, appropriate selection of clustering method for a given problem is essential to the 

generation of useful results (fig. 14).  



 23 

 

Figure 14: Examples of characteristics of a selection of cluster algorithms on two-

dimensional toy datasets. Different types of data distributions are not well-categorised by every 

algorithm. For example, the first two rows of data are well characterised by spectral clustering, 

DBSCAN, HDBSCAN and OPTICS, but not the other algorithms. DBSCAN, HDBSCAN and 

OPTICS appear less appropriate for the fifth row of data. Spectral clustering categorises most 

datasets well; however, it separates the null dataset (last row) into meaningless separate 

clusters. Note the runtimes in the bottom right corner of each example, as a measure of the 

efficiency of each algorithm in processing each dataset. (scikit-learn developers, n.d. a). 

Several common clustering algorithms are built on finding nearest neighbors to 

datapoints, which relies on finding the distance between points in the dataset (Cover and Hart, 

1967). Starting with a query point selected from the dataset, an algorithm searches the space 

for the nearest points, which can be used to create clusters comprising k (an assigned positive 

integer value) members, plus the query point itself. A variant on finding a certain number of 

nearest neighbors is to identify neighbors within a fixed radius, which can be used to create a 

cluster by selecting all points within a certain distance or a specified radius (Bentley, 1975). 

Distance can be defined using a standard Euclidean distance or similar metric. When evaluating 

data with dimensions of varying scales, to avoid weighting the data based on scale it is 

necessary to normalise the data beforehand (Hastie, 2009). 

This thesis project makes use of the nearest neighbours concept to define relevant 

subgraphs associated with voxel neighborhoods. This is slightly different from performing a 

clustering analysis. Clustering algorithms should maximise similarity between members of a 

group and minimise similarity between members of different groups. Additionally, measures 

of both similarity and dissimilarity should be well defined. The purpose of using clustering 
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algorithms in this project is to create subgraphs based on proximity. For this, clustering-related 

concepts are used, though the results are not true clusters as instances do not exclusively belong 

to only one group.  

 

2.3.3 Strategies for Clustering High Dimensional and Large Datasets 

 

Clustering datasets of high dimensional points or comprising many datapoints may be 

computationally impractical without first compressing or reorganising the data. Algorithms that 

can be useful for reducing dimensionality, essentially compressing datasets, include principal 

component analysis (PCA) and independent component analysis (ICA). An algorithm that can 

be helpful in managing datasets with a large sample size is K-dimensional (k-d) tree. Tree 

structures organise the data to make searches of the dataspace more efficient. In very large 

datasets, it may be advantageous to reduce dimensionality before creating a k-d tree. While this 

was not done in this thesis, exploring PCA and ICA for this application may be valuable in 

future work to reduce computational complexity. The greatest attention here, however, focuses 

on k-d tree as it was the sole algorithm selected for this research. 

PCA is a statistical technique applied to research problems in many different disciplines 

including neuroscience (Kusztos et al., 2020), atmospheric science, and paleontology (Jolliffe 

and Cadima, 2016). To interpret high dimensional data, PCA linearly reduces the 

dimensionality of datasets while minimising information loss by preserving the variability of 

the data. The first principal component indicates the direction of greatest variation in the data 

(fig. 15 A). All subsequent components are orthogonal to all existing components and indicate 

the direction of next greatest variance subject to the orthogonality constraint. PCA essentially 

reduces to solving an eigenvector/eigenvalue problem, such that the eigenvectors are an 

orthonormal basis that describe the principal components, while the magnitude of the 

eigenvalue indicates the magnitude of variance along its principal component. It is most 

appropriate for use with data from a gaussian distribution. (Jolliffe and Cadima, 2016).  

ICA is a dimensionality reduction method that separates multivariate data into source 

signals (Tharwat, 2021). It does so blindly – that is, without knowledge of the source signals 

or how they are combined. It assumes multiple independently sampled, non-gaussian signals 

exist within a given dataset. Each component carries the same weight, and the vectors are not 

necessarily orthogonal (fig. 15 B). ICA is often used as a pre-processing technique and has 

been applied to problems in neuroscience including MR image analysis (Gonçalves et al., 

2009), fMRI, and EEG (Tharwat, 2021).  
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Figure 15: demonstration of dimensionality reduction techniques. In (a), the data is 

described by the two principal components. Note that the first component describes the axes of 

greatest variance, the second vector is orthogonal to the first, and that the two vectors have 

differing magnitudes (eigenvalues). In (b), the data is described by two independent 

components. Note that the vectors are not orthogonal. Both vectors describe the axes of greatest 

variance, and both are the same length. (Suri, 2003). 

K-d tree is a type of data structure used for space partitioning with the aim of making 

searches of the dataspace more efficient. While multiple approaches to creating and using a k-

d tree exist, the algorithm of interest for this thesis is described in Maneewongvatana and 

Mount (1999). A particular type of directed graph, trees organise datasets of points into a 

structure consisting of hierarchically connected nodes (fig. 16). The first node from which all 

other nodes branch is called the root node. In a binary tree, as in this k-d tree algorithm, all 

nodes but the edge nodes have one parent and two children. The first node, called the root node, 

has no parents. The final nodes, which have parents but no children, are called leaf nodes.  

The binary tree structure describes the algorithm’s execution in the data space. Each 

node is associated with a cell, that is, a rectangle of d-dimensions, where d is the dimensionality 

of the dataset. The cell of the root node contains all of the data points of the set. Each child 

node consists of a subset of data points contained within the root’s cell, which is partitioned 

according to the “sliding midpoint” rule (fig. 16 iii) (Maneewongvatana and Mount, 1999).  

This trend continues recursively until the number of points contained within a node’s cell is 

less than the ‘bucket size’ of the system, a threshold at which point the node becomes a leaf. 

Each internal node (non-root, non-leaf node) is associated with a splitting hyperplane. The 

algorithm uses a hyperplane to divide the space recursively by splitting along the middle of the 

longest axis only if there are points on both sides of the split (Narasimhulu et al., 2021). 
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Otherwise, it splits at the datapoint closest to the middle of the axis; that is, it ‘slides’ the 

splitting plane to the nearest data point (fig. 16 iii-v) (Narasimhulu et al., 2021).  

 

Figure 16: constructing a binary tree using sliding midpoint. Note that in iii, iv, and v, 

the division falls such that there are no data points in one of the cells, therefore the midpoint 

slides to the nearest datapoint. Adapted from Havran, 2016. 

Once the k-d tree is constructed, it can be used to efficiently find the nearest neighbours 

to a query point using a simple recursive algorithm (Maneewongvatana and Mount, 1999). 

When the query point is part of the dataset, it is in a leaf on the tree. When looking for a set 

number k of nearest neighbours, from the query leaf, the distance to all other points associated 

with this node is calculated and the k shortest distances are recorded. The algorithm moves to 

the next parent node where it verifies where the query point is relative to that node’s 

hyperplane. The query point is necessarily nearer to the child on the same side of the 

hyperplane; this child is assessed for nearness and compared to the recorded shortest distances. 
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If the hyperplane is at a shorter distance, this child is examined recursively. If it is not shorter 

it does not need to be explored, saving computational resources. When the search reaches and 

returns from the root, the shortest distances indicate the k nearest neighbours of the query point. 

The tree can also be searched for all points that are at a distance less than a specified radius. 

While searching the tree, any points that are at a distance less than the set radius are recorded 

as a neighbour. In following this algorithm, every leaf that is closer to the query point than any 

one of the neighbours on its initial proposed list of nearest neighbours will be verified, while 

not all points in the dataset will necessarily need to be evaluated. 

In summary, the k-d tree structure allows the space to be more efficiently searched for 

the nearest neighbours of a query point. By pre-structuring the data using k-d tree, where the 

neighbours on the tree are also the neighbours in the dataset’s space, the algorithm does not 

need to directly verify the distance to every point in the dataset (Maneewongvatana and Mount, 

1999). While the algorithm can handle larger datasets, its efficiency declines with high 

dimensionality. For dimensions greater than 20, the running speed is about the same as direct 

comparison between each point and every other point in the dataset (SciPy community, n.d. h). 

Efficient searches for nearest neighbours in high-dimensional datasets remain an open problem 

in computer science. 

 

2.4 Network Graphs 

 

Graph theory is a mathematical tool that has been used in many scientific fields 

including chemistry, physics, and neurosciences (Zhou et al., 2020; Bullmore and Sporns, 

2009; Ottet et al., 2013). A graph, also called a network or a network graph, is a framework for 

organising data consisting of nodes interconnected by edges (fig. 18) (Betzel & Bassett, 2017).  

Nodes, also called vertices, can contain information about an object (Wilson 1996). For 

example, in a social network, nodes would represent users and might contain information such 

as age, gender, location, occupation, and hobbies. In chemistry, nodes might be atoms in a 

molecule. The information for each node could include the element type, weight, valence, and 

isotope (fig. 17 A, B). 
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Figure 17: A. Caffeine molecular structure, B. related graph where black circles are 

nodes representing atoms and blue lines are edges representing covalent bonds, and C. the 

adjacency matrix of the graph with blue filling representing edges. Note that the adjacency 

matrix only shows the presence of bonds (unweighted edges) and not the strength or distance 

of the bonds (weighted edges). Adapted from Sanchez-Lengeling et al., 2021. 

Edges provide information about the relationship between the objects of interest (nodes 

of the graph) (Wilson 1996). Edges may be associated with weights, with a higher weight 

indicating a stronger relationship between the connected nodes, typically depicted visually with 

a thicker line. Edges may also have a direction. For example, if one person owes money to 

another, the edge connecting them that describes the debt is directed from the debtor to the 

loaner, whereas the flow of money would be directed in the reverse direction. Edges may also 

be undirected, for example, describing the physical distance between two shops in a town or 

the covalent bonds between atoms in a molecule (fig. 17 A, B).  

B A 
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Graphs contain local or small-scale information about the data points, as well as large 

scale information about the system as a whole, which can be extracted by a number of metrics. 

Small scale information can include the nodes and edges themselves, node/edge centrality, and 

node/edge degree. Large scale information can include measures such as the degree 

distribution, assortativity, connection density, number of nodes, and longest path. More 

recently, deep learning tools known as graph neural networks have been developed to allow the 

use of such powerful algorithms with graphs as inputs (Sanchez-Lengeling et al., 2021). 

 

Figure 18: An example of a graph used in neuroscience. Here, structural and diffusion 

MRI data for two populations is displayed: A. patients with a genetic subtype of schizophrenia 

(22q11.2 deletion syndrome), and B. healthy controls. The circles are nodes which represent 

cortical regions. The lines are edges representing white matter bundles. The bold red circles are 

hubs that are altered in the patient population whereas the bold black circles are preserved hubs. 

The size of each node denotes degree. The colours represent brain regions. Adapted from Ottet 

et al., 2013. 

The degree of a node refers to the number of connections to other nodes in the graph 

(Wilson 1996). A node that is not connected to any other node is called isolated and has degree 

0. A node that has one edge to it is called an end-vertex and has degree 1. Since edges, by 

definition, connect two nodes, the sum of all node degrees must be even. The distribution of 

degrees in a graph is called the degree distribution and is a global measure of the system 

(Bullmore and Sporns, 2009). More complex networks tend to have more positively skewed 

distributions, with most nodes having low degrees and a few nodes having higher degrees. 

Assortativity is the connectedness of like-degree nodes. A graph where high-degree nodes are 

connected to each other is said to have positive assortativity. Connection density is the 

proportion of edges in a graph compared to the number of possible edges in a graph. 

A path is defined as a traversal of the graph, from one node, along an edge, to a 

subsequent node, to another subsequent edge and so on, such that no node appears more than 

once in the sequence (Wilson 1996). The shortest path length is the fewest number of edges 

connecting two nodes (Bullmore and Sporns, 2009). Centrality is a node attribute 

A B 
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corresponding to the number of shortest paths passing through the node. A high centrality 

suggests that the node has high importance to the communication and connectivity within the 

network; such a node is called a hub. 

One way to identify local patterns within a graph is to analyze patterns in its subgraphs. 

A subgraph is any subset of nodes and edges of a graph, such that all nodes and edges of the 

subgraph are a part of the larger graph (Wilson 1996). Subgraphs can be created by removing 

nodes and edges of a whole graph. A network motif (fig. 19) is a subgraph consisting of a pattern 

of nodes and edges that appear frequently in a single graph or across sets of graphs (Bullmore 

and Sporns, 2009). Their distribution throughout the graphs suggests similarity of functions in 

different regions. It can be computationally demanding to determine the motifs in a graph. A 

module or community is a type of subgraph whose nodes are highly interconnected within the 

module, and less connected to nodes outside of the module (fig. 20). The identification of 

communities in a graph is the province of community detection algorithms. Hub nodes (cf. 

previous paragraph) can be further categorized according to their relationship with the 

communities of a graph. Provincial hubs are hub nodes that are highly connected within a single 

community. Connector hubs are high centrality nodes of one community that are connect to 

nodes in another community. 

 

Figure 19: Repeating patterns of nodes and edges are called motifs. Adapted from 

Bullmore and Sporns, 2009. 
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Figure 20: Sets of highly connected nodes with relatively low external connectivity are 

called modules. A specific module is called a community. Provincial hubs are highly central to 

their community, whereas connector hubs are central nodes connected to nodes both within and 

outside of their community. Adapted from Bullmore and Sporns, 2009. 

There are many different ways to represent graphs (fig. 18; fig. 17 B, C).  When 

representing a graph computationally, a matrix representation is a memory-efficient format for 

storage, especially of larger graphs. One such matrix is an adjacency matrix (fig. 17 C), which 

represents the relationships between nodes. For a graph of n vertices, an n x n adjacency matrix 

is constructed such that the entry at ij describes the edge between the i-th and j-th nodes. When 

quantified, adjacency is inversely related to distance; nodes which are highly adjacent will have 

a minimal distance between them and vice versa. A particularly memory-efficient tool for 

computational storage of adjacency matrices is the sparse matrix. A sparse matrix is an object 

designed for use when a matrix contains a large number of zero elements. It stores all non-zero 

entries as a tuple of row-column indices along with the value of the entry (Educative, n.d.; 

SciPy community, n.d. g). If an entry is queried and the tuple not found, the entry is assigned a 

zero. Because of this approach, sparse matrices do not save to memory the large number of 

zero entries, which can greatly reduce the memory requirements for the object.
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3. Related work 

 

Here, we include a brief overview of literature related to various aspects of this 

research. We note that, to our knowledge, the derivation of the brain physiological connectome 

via graph-based methodology for use in generative deep learning-based data augmentation is a 

novel application. 

 

3.1 Networks and Neuroscience 

 

Conceptualizing the brain as a series of overlapping networks with anatomical or 

functional connectivity is a well-established framework in neuroscience. Typically, 

connectivity is either based on structural connections that are inferred from diffusion-based 

imaging techniques, or functional networks that are defined for regions having similar temporal 

signal characteristics. In its traditional form, network analysis of the brain almost always refers 

to spatial networks. For example, Fornito et al. (2013) examined the use of network graphs and 

topological analysis in neurosciences and examining the “human connectome”. They also 

discuss several studies using generative models in analysing topology in brain networks. For 

example, a study by Raj et al. examined neurodegenerative disease by modeling disease 

progression using a diffusion model on a diffusion-weighted image-based structural 

connectome (Raj et al., 2012). This resulted in a hypothesised pattern resembling the atrophy 

of both Alzheimer’s disease and fronto-temporal dementia. Betzel and Basset’s (2017) paper 

on brain networks reviewed the use of generative network models which focused on structural 

neuronal networks across several species including humans. A recent study by Waikhom and 

Patgiri (2023) reviewed many applications of graph neural networks, including in neuroscience 

research. In their article, they discuss how whole-brain network graphs have been used to show 

differences in structural and functional connectivity in brain imaging data between several 

patient populations and control, including the ways in which these studies make use of 

functional connectivity centrality to determine the important regions in the brain involved in 

diseases such as bipolar disorder (Deng et al. 2019; Zhou et al. 2017), retinitis pigmentosa (Lin 

et al. 2021), and diabetic optic neuropathy (Xu et al. 2020). Finally, a seminal paper by Sporns 

(2018) discusses graph theory as a mathematical tool for interpreting brain network graphs, 

which are used in a large array of studies of network properties of the brain. 
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3.2 Data Augmentation in Medical Imaging 

 

Previous work in data augmentation for deep learning applications in medical imaging 

has primarily been focused on the domain of image classification and segmentation (Chlap et 

al., 2021), but there have been a few other approaches. One study proposed a novel approach 

to data augmentation by adding noise to fMRI time series data which performed well on a sex 

classification task (Kusztos et al., 2020). Nguyen et al. (2020) proposed a new, coregistration-

based method for generating fMRI data for augmentation, which demonstrated an improvement 

in treatment response predictions of patients to antidepressants.  

 

3.3 Generative Deep Learning and Neuroscience 

 

Generative deep learning has been applied to problems across scientific fields and 

beyond.  We mention here several of the most pertinent studies to this thesis. In neurosciences, 

one study successfully applied generative adversarial networks (GAN) and latent diffusion 

models in neuroimaging to generate structural synthetic brain imaging sets (Pinaya et al., 

2022). An encoder-decoder network was also used to map cerebral hemodynamic function 

(Hou et al., 2023). Wang et al. (2021) reviewed the use of generative deep learning in 

synthesising brain imaging data between modalities, for example, using a generative 

adversarial network (GAN) to predict a patient’s brain computed tomography image from their 

brain MRI (Kazemifar et al., 2019). GANs have also been used to model disease progression 

and natural aging of the brain (Wang et al., 2023). Specifically, a GAN was used in predicting 

the growth of glioblastoma brain tumors (Kamli et al. 2020), and a conditional attention GAN 

was used with positron emission tomography to predict myelin content in multiple sclerosis 

patients (Wei et al., 2020). 



 34 

4. Methods 

 

4.1 Participants 

 

MR imaging (the COV-IRM dataset) was collected from 15 women who experienced 

long Covid, aged 25-86 (average ± standard deviation of 47.87 ± 14.19 years). Data was also 

collected from 4 female controls with acquisition ongoing at the time of writing, ages 54-81 

(61.75 ± 18.73) with the intent to match recruited controls in age, sex, and hypertension status 

to the long Covid cohort. Controls may have a history of mild Covid infection if they were 

vaccinated but were excluded if they suffered more serious Covid-related symptoms such a 

loss of taste and/or of smell, confusion, dizziness, concentration difficulties, severe headache, 

respiratory difficulties, or elevated fever.  

All participants were screened for contraindications to testing apparatus including 3T 

MRI, the RespirAct gas delivery system, and the cardiac stress test exercise bicycle; most 

contraindications are common to more than one apparatus. Contraindications for 3T MRI 

include claustrophobia and ferromagnetic implants. Conditions affecting the cardiac stress test 

include severe exercise intolerance or exercise limitation due to non-cardiopulmonary 

conditions such as arthritis or claudication. The complete list of contraindications to the 

RespirAct system can be found in the RA-MR Operator’s manual (Thornhill Medical, 2017).  

General exclusion criteria consist of conditions and illnesses which may be associated 

with altered brain function. Potential participants were screened and excluded for any history 

of neurological illness, psychiatric illness, cognitive impairment or dementia with a mini-

mental status exam score less than 25 (Folstein et al., 1975), thyroid disease, diabetes, systemic 

hormone therapy, non-Covid respiratory illnesses, or other chronic, progressive illnesses 

unrelated to Covid. Other exclusions were current and regular smokers; excessive alcohol 

consumption (defined as > 2 drinks per day); ICU admission or intubation due to Covid; 

surgery under general anesthesia within the preceding six months; cardiac insufficiency; recent 

acute coronary events; restrictive lung disease; supplemental oxygen requirements; severe 

discomfort to hypercapnia; or severe heart failure or pulmonary disease. 

All participants were fluent in English or French to facilitate informed consent and for 

the validity of neuropsychological testing. The study was approved by the Comité d’éthique de 

la recherche et du développement des nouvelles technologies (CÉRDNT) de l’Institut de 

Cardiologie de Montréal. 
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4.2 Breathing Manipulation 

 

For CVR measurement, a breathing manipulation took place during the first sub-

acquisition (pCASL sequence) in the MRI scanner. CO2 delivery was performed using a 

computer-controlled gas manipulation device (RespirAct device by Thornhill Research Inc., 

Toronto, Canada) (Slessarev et al., 2007). The device administers gases to the participant in 

the MRI through a closed system and face mask. It controls the flow rate and concentrations 

for prospective targeting of end-tidal values following a pre-determined protocol. It also 

measures end-tidal oxygen and CO2 partial pressures. Initially, participants breathe room air 

(normocapnia) through the mask for two minutes. This is followed by two minutes of breathing 

at CO2 levels at 5 mmHg above the participant’s resting state CO2 (hypercapnia). Next, two 

more minutes of normocapnia are then followed by two minutes breathing elevated oxygen 

levels of 150 mmHg above resting O2. Finally, two more minutes of normocapnia are followed 

by breathing a mixture of 5 mmHg CO2 and 150 mmHg oxygen above resting state for two 

minutes. The test concludes with two final minutes of normocapnia for a 14-minute total 

protocol.  

 

4.3 MRI Acquisition and Processing 

 

Acquisitions were performed at the Institut de Cardiologie de Montréal. The scanner is 

a 3T Siemens Magnetom Skyra with a 32-channel array coil. A T1-weighted magnetization 

prepared rapid acquisition gradient echo (MPRAGE) was collected with a TR= 2300ms, TE= 

2.32ms and flip angle of 8° and a 0.9 x 0.9 x 0.9 mm resolution. This sequence provides 

structural information about the brain and an image to better visualize the spatial information 

from the remaining metrics. This data is not considered by the clustering algorithm but will be 

used for data visualisation. 

Multi-shell diffusion-weighted imaging (DWI) data were acquired with a 2x2x2 

resolution using a pulsed gradient spin-echo sequence (TR = 6000 ms, TE = 106 ms). 

Diffusion-sensitizing gradients of different strengths (b-values of 300, 700, 2500 s/mm2) were 

applied in several different directions (10 at 300 s/mm2; 30 at 700 s/mm2; 64 at 2500 s/mm2). 

Non-diffusion-weighted images (b-value of 0 s/mm2) were also acquired to provide a baseline. 

The DWI acquisitions lasted 14 minutes total. As mentioned in section 2.2.2, DWI was 

processed using both the DTI and NODDI models to provide the following measures: ISOVF, 

ICVF, FA, MD, AD, RD, ND, and ODI. 

Myelin content is estimated with magnetisation transfer saturation (MTsat) from 

magnetization transfer imaging (MTI). This is measured using two spoiled gradient-echo 
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(SPGE) acquisitions, one with a preparatory MT pulse and one without (MT-on and MT-off, 

respectively) along with a T1-weighted image and a B1 map. MT-on and MT-off images were 

acquired with these parameters: TR = 33 ms, TE = 3.81 ms, flip angle = 10° and a resolution 

of 2x2x2 mm. These two sequences were identical except for the off-resonance preparatory 

pulse (MT pulse) applied during the MT-on acquisition. The T1w image was acquired with a 

2x2x2 resolution, TR = 15 ms, TE = 3.81 ms, and flip angle = 25°. Additionally, a B1 map was 

collected to correct for transmit field inhomogeneities. These acquisitions lasted about 9 

minutes total. qMRLab (Karakuzu et al., 2020), a Matlab-based toolbox, was used to compute 

MTsat from the MTI data, using the T1w image and B1 field map to correct for T1 relaxation 

dependence and field inhomogeneities.  

Investigations into measures of cerebrovascular health are done with a 

pseudocontinuous arterial spin labelling (pCASL) sequence. The data was acquired over 14 

minutes using a 1300 ms post labeling delay and labeling duration of 1.5 s, with TR = 4000 ms 

and TEs = 10 ms and 30 ms. These parameters were adjusted to this project’s specific 

population in pilot data. The 10 ms echo of this sequence provides CBF and the 30 ms echo to 

assess CVR.  

Both echos of the pCASL data were motion corrected and brain extracted using FSL 

BET. For CBF quantification, a General Linear Model (GLM) was used to regress out motion 

parameters in MATLAB. The first pair of tag and control images were removed for signal 

stabilization and reliable motion estimation. Perfusion weighted images were generated by 

subtracting the tag and control images using surround subtraction of the first 3min of 

acquisition (Wu et al., 2011). The average of the control images was used to create the M0 

image. CSF masks were derived from the M0 images to serve as the M0 mask for final CBF 

quantification. 10 voxels were selected from the same axial slice containing the lateral 

ventricles for each participant, following the method described in Intzandt et al. (2020). 

Quantitative CBF maps were then calculated using average perfusion maps and FSL's BASIL 

toolkit. To correct for partial volume effects, structural images were segmented into GM, WM, 

and CSF using CAT12. The segmented tissues were then transformed to the ASL native space 

using the transformation matrix obtained from registering the mean ASL image to the T1 space 

using ANTS. Partial volume correction was performed using a method introduced in a 

referenced study (Asllani et al., 2008). 

The TE = 30 ms time series was used for CVR quantification. A blood oxygen level 

dependent (BOLD) time series was obtained through surround subtraction of the TE = 30 ms 

time series. A GLM was used to estimate the fractional change in BOLD signal during the 

hypercapnia block. This percent change in BOLD signal was divided by change in end-tidal 

CO2 in mmHg to obtain voxel-wise CVR maps.  

Quantitative susceptibility mapping (QSM) was derived from the phase and magnitude 

data from all uncombined coil channels of a 6-minute 3D gradient-recalled echo sequence. 

QSM data acquisitions were performed using a 32-channel coil, using a 3D multi-echo 
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gradient-echo sequence (TR/TE1/TE2/TE3/TE4/flip angle = 20 ms/6.92 ms/13.45 ms/19.28 

ms/26.51 ms/9°, 0.7 x 0.7 x 1.4 mm3 voxel size). Raw unwrapped phase data were combined 

and wrapped using the ROMEO toolbox (Dymerska et al., 2021). The QSM maps were 

reconstructed using the TGV toolbox (Langkammer et al., 2015). QSM maps were referenced 

to ventricular CSF susceptibility values. Then, a Recursive Ridge Filtering method (Bazin et 

al., 2016) was used to extract draining veins and calculate venous OEF (Fan et al., 2014). 

Non-brain voxels were removed from all computed maps using FSL’s brain extraction 

tool (Jenkinson et al., 2005). In addition, masking was applied to retain only voxels of interest 

for each modality (e.g., keeping only white matter voxels for metrics derived from DWI). 

Masks of white matter, grey matter, and CSF were generated by segmenting a structural image 

(MPRAGE T1w) using the FAST algorithm from the FSL toolbox (Smith et al., 2012; Smith, 

2002; Zhang et al., 2001; Patenaude et al., 2011; Smith et al., 2004). Masking was performed 

by multiplying the appropriate binary mask by the map (e.g., FA maps were multiplied by white 

matter mask).   

Current protocols ensure all research MRIs are verified by radiologists for incidental 

findings. All findings are reported to the participant and their family doctor who will be 

responsible for follow-up. 

 

4.4 Subgraphs 

 

The primary purpose of this project was to develop the first step of a data augmentation 

and analysis methodology in the context of the COV-IRM dataset. As this dataset was still 

being acquired at the time of writing, toy data was used for the purposes of developing the 

method. The toy data was selected from a dataset employing the same MRI protocol and 

included 7 white matter features (AD, FA, MD, RD, ICVF, OD, ISOVF); the other features 

described in section 2.2 were not available at the time of development. The code was developed 

with this toy data to mimic the data management challenges of the COV-IRM data to allow for 

transferability. As the toy dataset consists of 359 938 white matter voxels from a single 

participant’s brain, graphical visualisation is not possible. For the purposes of data visualisation 

for this thesis, a downsampled version (1073 white matter voxels) of this toy data was 

generated and processed using the same technique as the original toy data (see section 5.1). 

The graphs were plotted using Gephi (Bastian et al., 2009). 

The code is organised according to the publicly available Shablona template for small 

scientific python projects (Rokem, 2015) with the commands for this segmented into two 

scripts (fig. 21). The first script is used for reformatting the original MRI data, and the second 

script is used for subgraph generation. Specifically, the first script 

(git_generate_featurematrix.py), generates a matrix of features of size N x M, where N is the 
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number of voxels plus one row for column labels, and M is the number of features, or MRI 

metrics. This matrix (referred to in the code as labeled_matrix) is composed of a flattened array 

of white matter voxels (though the same process will later be applied to grey matter as well) 

and their features derived from MRI data .nii files, where the MRI data is in the form of a cubic 

array. The second script (git_ckdtree_clustering2.py) uses the output of the first script (i.e. 

labeled_matrix) to create subgraphs of nearest neighbours in matrix form; it saves as csv files 

both an adjacency matrix (adj) and a matrix of features (cluster) per subgraph of neighbour 

voxels. In the following sections, I describe the composition of the scripts and how they were 

used to generate results in this project, with the names of arguments in parentheses along with 

the specific values that were used in this project to validate the code with the toy data.  
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Figure 21: workflow of method indicating direction of information flow and argument passing.  

git_ckdtree_clustering2.py
In: 
• import_data_from – path to labeled_matrix csv file
• stringname - save output to this file name
• samples - dimensions of MRI
• r - nearest neighbours search radius
• weight_threshold
• width = 1 (default) - variance of the Gaussian for 

converting distances to edges 
Contained functions: 
1. generate_clusters
• Out: 
• minimum, maximum, average - values for minimum, 

maximum, and average number of nodes per subgraph
• adjmat.csv - adjacency matrix, one per subgraph
• cluster.csv - subgraph matrix of voxels and their features
• stats - means and standard deviations of each feature in 

each graph
• summary_notes - readme.txt save file of run parameters

generate_clusters
In: 
• feature_mat_scaled - All brain voxels plus a row of labels, and 

MRI features as columns
• r - nearest neighbours search radius
• weight_threshold - minimum edge weight to include in graphs
• width = 1 (default) - variance of the Gaussian for converting 

distances to edges
• samples - dimensions of MRI
• import_data_from - directory of labeled_matrix.csv file
Contained functions
1. cKDTree – creates tree
2. cKDTree.query_ball_point – indices of neighbours
3. cKDTree.sparse_distance_matrix – creates distance matrix
4. distance_to_adjacency
5. numpy.mean – calculates feature means per subgraph for stats
6. numpy.std – calculates feature standard deviations per subgraph 

for stats
Out: 
• labeled_matrix - subgraph voxels and features (cluster.csv)
• distance_matrix - subgraph distance matrix

distance_to_adjacency
In: 
• distance_matrix - matrix of distances between every member of 

the subgraph
• width = 1 (default) - variance of the Gaussian for converting 

distances to edges
• weight_threshold - minimum edge weight to include in graphs
Contained functions
1. Gaussian transformation of distances to adj (adjacency matrix)
2. thresholding_weight_2
3. Out: 
• adj - Adjacency matrix

thresholding_weight_2
In: 
• adj - adjacency matrix
• weight_threshold - minimum edge weight to include in graphs
Contained functions
1. (none)
2. Out: 
• weight_matrix_flat - pruned adjacency matrix (adjmat.csv)

git_generate_featurematrix.py
In: 
• features_dir - directory of .nii files
• stringname - save output to this file name
• samples - dimensions of MRI
• feature_number - number of MRI features per voxel
Contained functions: 
1. generate_feature_matrix 
Out: 
• labeled_matrix - subgraph voxels and features 

generate_feature_matrix 
In: 
• features_dir - directory of .nii files
• stringname - save output to this file name
• samples - dimensions of MRI
• feature_number - number of MRI features per voxel
Contained functions
1. (none)
Out: 
• labeled_matrix - subgraph voxels and features 

Script

Hypothetical Brains Function

Other Package Functions

Arguments/Inputs
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4.4.1 Generating a Matrix of Features 

 

The first script (git_generate_featurematrix.py) runs a single function, 

generate_feature_matrix. It requires user-supplied arguments for input, as follows: the 

dimensions of the cubic MRI data (samples = 256), the number of features per voxel 

(feature_number = 7), the directory where the .nii files are saved (features_dir = 
'/home/lwright/Desktop/TrialData/'), and the name for the .csv matrix save file (stringname = 
'brain_aug17_features').  

This command produces the flattened array of MRI data with one voxel per row, and 

MRI metrics (features) as columns. It uses the nibabel package (Brett et al., 2024) in python to 

load the MRI data from .nii files, one for each of the seven features. These data are then masked 

to exclude voxels imaging only air or containing only noisy data (for example, for DTI, voxels 

containing mostly grey matter are excluded). These data are collected in a 2D array of features 

per voxel (voxel_number rows and feature_number columns). Each column is scaled using 

StandardScaler from sklearn.preprocessing package. This shifts the mean of each column of 

feature data to zero and scaling to unit variance (Scikit-learn developers, n.d. b), allowing 

features with naturally very different scales to be more straightforwardly comparable. A row of 

numerical labels is added (0. to 6.) to identify the columns, and the feature matrix saved as csv 

and a print message confirming the completion of the script is displayed (“Attributes saved”). 

 

4.4.2 Creating Subgraphs of Nearest Neighbours 

 

The second script runs one function, generate_clusters, and requires user specified 

arguments. These arguments include, as previously described, the same voxels dimension 

variable (samples=256), the same csv file name (stringname = 'brain_aug17_features'), and 

the whole path to the csv file (import_data_from). It imports the data saved in the csv file by 

the previous script (feature_mat_scaled) and removes the labels which are unnecessary for the 

computerised analysis.  

This script runs one function, generate_clusters, to create subgraphs by performing a 

nearest neighbours search. It requires as input the feature matrix, and two new variables that 

must also be specified: the radius for the nearest neighbour search (r = 0.3); and the minimum 

edge weight to store in the adjacency matrix (weight_threshold = 0.1), where any weight below 

this is set to 0. The radius was selected to obtain subgraphs on the order of one to two thousand 

voxels, and the edge threshold was selected conservatively to allow for pruning as appropriate. 

One optional input is the width, a parameter that describes the variance of the Gaussian 

distribution (width = 1, default) used to smooth the distribution of edges as an optional pruning 
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method when converting from distance to weight (see further discussion below). This 

command accepts, but does not require, the samples and import_data_from variables as input 

at present. They are used currently only for documentation purposes and are included in an 

output summary file describing the parameters used for a given run. 

The function generate_clusters begins by starting a timer (now = datetime.now()); 
creating a string (dateonly) with the full date and time of the initiation of the run for file, 

directory, and documentation purposes; and creating a run directory with subdirectories for csv 

files. The files and run directory both have name configurations as follows: 

HypoBrains_Y2023_M12_D04_H12_M51_S19_v359938_r0.3 [project name, year, month, 

date, time, voxel_number = 359938, r = 0.3]. Next, a tree object is created from the feature 

matrix using cKDTree in the python scipy package (SciPy community, n.d. a).  This method 

was selected for use in finding nearest neighbours owing to its computational power for large 

datasets and ease of implementation. In this case, nearest neighbors are determined by distances 

in feature space, not spatial proximity of voxels, in order to create a “physiological 

connectome.”  A set of variables were instantiated for later use in collecting statistics on the 

subgraphs: minimum = 0, maximum = voxel_number, average = 0, and stats (a 3D array of 

zeros, voxel_number x feature_number x 2) for collecting both the mean value and standard 

deviation in the two layers of the matrix of each feature for each subgraph. 

 

4.4.2.1 Looping Through Voxels 

 

We construct a number of subgraphs equal to the number of voxels in the dataset, by 

using the cKDTree to find the feature-space neighbours (within a radius r) of each voxel. This 

is done as follows.  A loop iterates over each voxel in the dataset (with iteration variable i). The 

indices of all of this voxel’s neighbours within r radius distance are determined by 

cKDTree.query_ball_point (SciPy community, n.d. b). Inputs used are: the already instantiated 

tree; the i-th entry of the feature matrix (feature_mat_scaled[i]) as the starting point for the 

neighbours search, which corresponds to the voxel under consideration; the radius r = 0.3; the 

distance calculations were by Euclidean distance by selecting the Minkowski p-norm to be p 
= 2. (National Institute of Standards and Technology, 2017); the default eps = 0 was used for 

an exact determination of neighbours instead of approximation; parallel processing using all 

processors was selected (workers = -1); the returned array of indices was sorted (return_sorted 
= True) for ease of use in subsequent steps; and return_length = False so that the index values 

are returned, as is required.  

For each voxel i, a 2D array is created (cluster, of size M x N, where M is the number 

of neighbours and N the number of features, plus one more row for feature label headings) in 

which we collect the indices and features of its neighbours. A second tree is created from the 
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sub-cluster array (tree2), which is then used to determine the distances between all member 

voxels (distance_matrix) with cKDTree.sparse_distance_matrix (SciPy community, n.d. c). 

This command takes the cluster tree as input twice, as well as a maximum distance metric 

above which the distance is encoded as zero. This distance (max_distance = 100000) was 

selected to be an arbitrarily high value to retain all distance measures; this is to keep edge 

pruning for weighted edges which is more easily implemented. The distance matrix is in the 

default “dictionary of keys” (dok) format (SciPy community, n.d. f). 

The next step in generate_clusters is converting the distance matrix to the adjacency 

matrix of the corresponding i-th subgraph. This is accomplished using a defined function, 

distance_to_adjacency. It takes the distance matrix, and the aforementioned Gaussian width 

and weight threshold variables. The distance matrix is first converted to dense format as neither 

dok nor sparse matrices can be mathematically manipulated as is required here. Next, the 

entries of the distance matrix (x, here) are converted to weights. There are multiple ways to do 

so. For visualisation, an exponential function was used according to the formula: 

*+,-ℎ/ = +
%&

'()*+ 

Since distances are always positive values, this process still ensures that all returned 

weights are in the range (0, 1]. However, for future applications of this method, a Gaussian is 

recommended for its rigor: 

*+,-ℎ/ = +
%&!
'()*+ 

Since this formula is Gaussian, this process ensures that all returned weights are in the 

range (0, 1]. Zero is not included in the set, which means that this method will always produce 

an edge given any distance no matter how large. As such, pruning methods are extremely 

important for practical use.  

Here, two options exist for edge pruning. The first is the width (variance) of the 

Gaussian. As the width parameter was 1, this method was not used at this time. These weights 

are instead pruned according to the weight threshold parameter via another defined function, 

thresholding_weight_2. This function takes only the weight matrix and the weight threshold 

and compares the entries in the matrix to the threshold; any entry below threshold is assigned 

a weight of 0. The matrix is then converted to a sparse matrix format (csr_matrix) (SciPy 

community, n.d. e), the diagonal elements of the matrix set at 1.0, to minimise machine error 

in the adjacency value for any voxel to itself. This adjacency matrix is saved as csv.  

Finally, at the end of the loop for the i-th voxel, the number of voxels in the subgraph 

is compared to the maximum and minimum variables. If the number of voxels is larger than 

the maximum variable, the number is assigned to the variable, and vice versa for minimum. 

The number is also added to the average variable for later calculation. The mean and standard 

deviation for each feature for the i-th subgraph is calculated (np.mean and np.std, respectively, 



 43 

both with axis = 0 to collect data columnwise, Numpy Developers, n.d.) and assigned to a row 

of the stats 2D array. The feature matrix of the subgraph is also saved as csv. A print statement 

confirms the completion of creating the i-th subgraph and gives the time progression of the run. 

 

4.4.2.2 Collecting Subgraph Statistics 

 

Outside of the loop, once all subgraphs are created and saved to file, the set of feature 

means and standard deviations are each saved as separate csv files. Finally, the average 

variable, which has summed the total number of voxels in all subgraphs, is divided by the total 

number of voxels in the original feature matrix to calculate the average number of voxels per 

graph. A final runtime is printed out, then a summary of parameters and stats is created and 

saved to the run directory as a readme.txt file. These include: the run name; the source file 

name; the number of samples (dimensions of the MRI data); the total number of voxels and 

features; the radius; the maximum, minimum and average number of voxels per subgraph; and 

the run time. 

 

4.4.3 Verification and Analysis  

 

The package includes two alternative methods for creating both adjacency and distance 

matrices (by loop or using pdist and squareform from scipy.spatial.distance (SciPy community, 

n.d. d). They were both found to be less efficient or unable to process the full-sized toy data 

set. They were included in the code package for unit testing the less intuitive blackbox of 

cKDTree.sparse_distance_matrix.  

There is also a defined function (meanogram) in the code package for graphing a 

histogram of the means or standard deviations distribution of features, which was not used in 

the script as it is computationally intensive and can be done separately from this subgraphing 

process when needed. This function requires the subgraph stats matrix, a variable indicating 

which layer of the matrix to use (metric = 0 or 1; means or standard deviations, respectively), 

the bin count for the histogram, and the directory for saving the picture file of the plot. This 

function was used in troubleshooting during development and retained for future use, if needed. 

A final function is present for calculating the free energy surfaces (FES) of all 

combinations of features (see 5.1, fig. 23), called free_energy_surface_allfeatures. This 

analysis approach is related to concepts from statistical mechanics and thermodynamics but 
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can be generalised to probability theory (Crooks, 2007). The probability of a given state may 

be related to a generalised system-specific “free energy”  0$" of that state: 

1$" =
+%,-#"
2 → 0$"~ −

1
6 ln 1$" 

Where Z (the partition function) is a normalising constant and 6 is inversely related to 

the system “temperature.” If the sampling of microstates is high enough to approach the 

underlying distribution of microstates, then the count of any given microstate is inversely 

related to the Helmholtz free energy of that state. The partition function essentially becomes 

counts of a given microstate, where a microstate here is a specific combination of MRI features. 

The higher the count, the lower the free energy and the more likely the combination of features. 

free_energy_surface_allfeatures uses pyemmaplots.plot_free_energy (CMB-group, 

2020) to show the relationship between pairs of features and the favourability of their 

combination. This function takes as inputs the feature matrix, the preferred directory location 

for saving the graph, the maximum and minimum free energies to be included in the plot (vmax 
= 10 and vmin = 0, respectively, as extreme default values for later visual adjustment), the 

number of histogram bins used in each dimension, and the width of the border around the 

subplots (border = 1). The output is a set of FES plots comparing each pair of features from 

the feature matrix input. The FES results used vmin = 0, vmax = 6, and nbins = 1000. 
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5. Results and Discussion 

 

In this thesis, we developed a method to create physiological connectomes that could 

be used in the future for data augmentation. Results with toy data and are presented here to 

demonstrate proof of functionality of the method development. First is an overview of the 

downsampled version of the toy data and properties of the downsampled whole brain graphs. 

Next is an evaluation of the co-occurrence and possible codependence of pairs of MRI features 

as examined on the original, full resolution data, which is then compared to theoretical 

predictions. This is followed by an examination of the relationship between these trends of 

pairwise feature relationships and graph connectivity. Finally, a demonstration of these same 

pairwise features is presented in a sample subgraph, to verify the similarities and differences 

observed between the properties of the subgraph and those of the whole brain. 

Theory predicts several trends in pairwise relationships between features. Mean 

diffusivity (MD), and axial diffusivity (AD) and radial diffusivity (RD) are all components of 

the same model, have shared variable dependencies, and are not independent (see section 2.2.2, 

fig. 5), (Tromp, 2015). As such, it would be expected for these features to correlate. Though 

they arise from separate models, ODI and FA should be inversely related (Zhang et al., 2012) 

as they describe opposite phenomena: isotropy and anisotropy, respectively. FA and MD relay 

similar information about diffusion (Alexander et al., 2011). ISOVF and ICVF represent 

extracellular and intracellular volume fraction, respectively. It would be expected that these 

demonstrate an inverse relationship. Since ODI is related to isotropic diffusion, it would likely 

positively correlate to ISOVF, as diffusion is less constrained in the extracellular space (Zhang 

et al., 2012). Similarly, FA should correlate to ICVF due to microstructure constraints 

increasing anisotropy (Schilling et al., 2023). Likewise, FA and AD should also correlate since 

AD represents diffusion along the long axis of the tensor (Tromp, 2023).  
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5.1 Whole Brain Graph 

 

 

Figure 22: whole brain network graph of down-sampled white matter data (20 x 20 x 

20 voxels; 1073 white matter voxels, 7 features) for demonstration and visualisation purposes. 

Node size correlates to connectivity (weighted degree). Edges were filtered during graph 

rendering to retain relationships of greatest similarity between nodes (top 2511 edges by edge 

weight retained). Node colour relates to the voxel ID number, based on voxel location in 

flattened data array. Note that a typical white matter cluster of this project’s full resolution brain 

MRI would also be, on average, approximately this size. 

This whole brain graph (fig. 22) shows that the voxel ID values are qualitatively 

dispersed randomly among all the nodes large enough to visualise. Since large node size relates 

to high degree, this suggests that connectivity and location are not strongly correlated, in terms 

of the flattened array. It is not possible to be sure of the location of the flattened array voxels 

0 

1072 
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in 3D space, however, without converting the flattened array back to a 3D spatially organised 

array. Future work should investigate these relationships in image space.  

This graph also illustrates the complexity of the network, even in downsampled data. 

Similarly, it is difficult to analyse full resolution subgraphs due to their complexity. As such, 

further work is needed to identify trends in this type of voluminous and highly complex dataset.  

 

5.2 Co-occurrence of Pairwise Features 

 

To obtain a more robust measure of relationships between features in the data, a set of 

free energy surface graphs comparing each pair of features in the non-downsampled data was 

created (fig. 23). These free energy surfaces were created to explore the co-incidence of various 

combinations of the different MRI metrics. Low free energy (the blue/purple colours) shows a 

higher likelihood of values for different metrics. White and red show less common metric 

combinations. The metrics values have been scaled and therefore the x and y labels cannot 

directly be interpreted in terms of their physical meaning, though the general relationship 

patterns are preserved. Future work should assess these relationships using unscaled data to 

preserve physical meaning.  

 The free energy surface is mostly consistent with the expected theoretical trends. FA 

and ODI show a negative correlation. This is expected as a high FA is indicative of a highly 

coherent diffusion direction, and therefore low dispersion of tracts. However, ICVF and ISOVF 

were expected to have a negative correlation but do not, demonstrating a larger variance in co-

occuring values. This may be due to the complexity of the three-compartment model used to 

fit these parameters, and could be related to the myelin component not captured in these two 

compartments (Le Bihan et al., 2001). Since MD reflects the overall diffusivity including both 

axial and radial components, AD, MD and RD are expected be positively correlated. AD and 

MD do show a degree of positive correlation with a less homogenous set of values as shown 

by the dispersion of their FES. RD and MD show a minor correlation, whereas RD and AD 

have a consistent core of values with a wider FES spread for other co-occurances. While the 

co-dependence of RD and AD was lower than expected, this likely stems from the fact that in 

voxels with isotropic diffusion or crossing fibers, AD and RD would vary in the same direction, 

whereas in voxels with a more defined direction of diffusion, AD and RD would be inversely 

related. These two types of voxels are all represented here, showing a high degree of variance 

in the relationship between AD and RD depending on the composition of the voxel (Tromp, 

2023). RD and FA, and AD and ODI, demonstrate an inverse relationship, for similar reasons 

to RD and AD demonstrating a negative correlation. Namely, high FA is indicative of voxels 

with a predominant diffusion direction, and therefore a lower radial diffusivity, while a high 

AD is also often associated with a dominant diffusion direction and therefore low dispersion. 
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RD and ODI are positively correlated, which complements RD and FA’s negative correlation. 

Finally, ICVF and MD, and ICVF and RD both show a negative correlation. This is consistent 

with the interpretation of constrained diffusion within axons, so that a greater intacellular 

volume fraction is associated with an overall lower diffusivity (Zhang et al., 2012).  
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Figure 23: Free energy surfaces for full resolution brain MRI 359 938 white matter voxels, 100 voxel bins. Higher probability combinations of 

features have lower energy and vice versa. Note an inverse relationship between FA and ODI, between RD and FA, between AD and ODI, between 

ICVF and RD, and between ICVF and MD; a positive correlation between AD and MD, between ODI and RD, and between RD and MD. RD and 

AD, and ISOVF and ICVF do not demonstrate a clear trend.
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5.3 The Relationship Between Node Connectivity and MRI metrics 

 

   

Figure 24: whole brain network graph of down-sampled white matter data (20 x 20 x 20 voxels; 

1073 white matter voxels, 7 features) with node colour representing scaled values of axonal 

diffusion. Both mean diffusivity and radial diffusivity demonstrate similar characteristics. 

Node size correlates to connectivity (weighted degree). Edges filtered during graph rendering 

to retain relationships of greatest similarity between nodes (top 2511 edges by edge weight 

retained). Subgraph of voxel 138 nodes labeled. 

In order to select a subgraph of interest, an understanding of the dataset as a whole is 

required. In this vein, we investigate the relationship between physiological connectivity—that 
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is, node degree in the whole-brain graph extracted from all features—and the individual node 

attributes, which are the MRI white-matter metrics. We then demonstrate our method by 

producing a local subgraph neighborhood demonstrating several of these relationships. In 

particular, the selected node had below average values for AD, MD, RD, and an inverse 

relationship between FA and ODI. 

In fig. 24, we investigate the relationship between connectivity and axial diffusion. The 

values appear predominantly negative. Both mean diffusivity and radial diffusivity also appear 

predominantly negative when similarly analysed. The data, however, has been scaled to 0 mean 

and standard deviation of 1 as expected from StandardScaler and verified manually from the 

feature matrix. The apparent uniformity of this graph is likely because the positive values when 

visualised according to weighted degree are too small to be observed. As the larger nodes are 

more visible, the low values appear to be associated with higher degree and visually dominate 

the graph. Highly weighted edges are the strongest connections between voxels across all 

features and are of particular interest in this method. This dominance of negative AD in the 

more highly connected nodes would be consistent with greater metric similarities across voxels 

which are not characterized by a single diffusion direction. Accordingly, a voxel reflecting this 

below average value characteristic for RD, AD, and MD was selected and its associated 

subgraph visualised for examination. 

The fractional anisotropy values (fig. 25) for high degree nodes appear highly non-

homogenous with an average value likely near the FA mean. The orientation dispersion index 

values for high degree nodes appears non-homogenous with an average value moderately 

negative, as there is much more red-orange representation than blue-green. Neither FA nor ODI 

appear highly correlated with connectivity. As mentioned in the previous subsection, it is 

expected that FA is inversely related to ODI which grossly appears to be the case when viewing 

the data from this perspective. 

The isotropic volume fraction (fig. 26) is the portion of the voxel which is estimated to 

be extracellular space (Zhang et al., 2012). Most of the highly connected voxels are below 

average values of ISOVF; that is, they are predominantly red, orange, or dark yellow. The 

values are less homogenous than the MD, AD, and RD graphs, suggesting a less strong 

correlation between ISOVF and connectivity. Considering that this data is taken from a healthy 

individual without a large amount of atrophy, it is expected that most voxels have a large partial 

volume of WM fibers. Since ISOVF is a measure of extracellular space, it is reasonable that 

ISOVF would be less highly connected than MD, RD, and AD. 

Intracellular volume fraction (fig. 26) is the portion of the voxel which is estimated to 

be intracellular space (Zhang et al., 2012). Most of the highly connected voxels have ICVF 

values near the mean; that is, they are predominantly light yellow, with a notable presence of 

both light orange and light green.   
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Figure 25: whole brain network graphs of down-sampled white matter data (20 x 20 x 20 voxels; 1073 white matter voxels, 7 features) with node 

colour representing scaled values of fractional anisotropy and orientation dispersion index as indicated. Node size correlates to connectivity 

(weighted degree). Edges filtered during graph rendering to retain relationships of greatest similarity between nodes (top 2511 edges by edge 

weight retained). Subgraph of voxel 138 nodes labeled. 
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Figure 26: whole brain network graphs of down-sampled white matter data (20 x 20 x 20 voxels; 1073 white matter voxels, 7 features) with node 

colour representing scaled values of isotropic volume fraction and intracellular volume fraction as indicated. Node size correlates to connectivity 

(weighted degree). Edges filtered during graph rendering to retain relationships of greatest similarity between nodes (top 2511 edges by edge 

weight retained). Labelled nodes are those associated with the subgraph of voxel #138.
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5.4 Demonstration of Local Neighbourhood Subgraph Production and Analysis 

 

Table 1: Voxel #138 nearest neighbours subgraph (r = 0.6, weight_threshold = 0.0), consisting 

of 23 nodes (average number of nodes per subgraph: 23.99) and 276 edges all of which are 

visualised.  

As a demonstration of the subgraphs of the 1073 voxel dataset, voxel 138 subgraph was 

selected for discussion. It was selected in part because it had negative values for MD, AD and 

RD. Within the downsampled dataset, the highest degree nodes have a clear trend with respect 

to values of MD, RD, and AD: they tend to be small negative values, which is reflected here in 

this subgraph. Additionally, ODI is positive, and FA is a negative number, demonstrating the 

expected inverse relationship of these two features. Finally, ISOVF is a very small positive 

value, and ICVF is a larger positive value. This would be consistent with the most highly 

connected nodes (representing voxels with a higher similarity across metrics with other voxels, 

Index AD FA MD RD ICVF ODI ISOVF 

49 -0.102 -0.415 -0.009 0.056 0.055 0.329 0.046 

83 -0.107 -0.083 -0.071 -0.044 0.093 0.150 0.084 

108 -0.110 -0.456 -0.062 -0.027 0.224 0.215 -0.005 

138 -0.308 -0.229 -0.189 -0.101 0.454 0.354 0.041 
157 -0.264 -0.154 -0.201 -0.150 0.173 0.165 -0.171 

159 -0.226 -0.304 -0.151 -0.095 0.018 0.188 -0.009 

173 -0.341 -0.436 -0.354 -0.354 0.371 0.163 -0.345 

260 -0.135 -0.106 -0.178 -0.204 0.451 -0.120 0.051 

349 -0.312 -0.026 -0.246 -0.193 0.325 -0.085 0.000 

412 -0.286 0.261 -0.211 -0.152 0.500 0.047 -0.093 

419 -0.357 -0.279 -0.285 -0.226 0.186 0.092 -0.222 

580 -0.285 -0.668 -0.094 0.043 0.158 0.509 0.031 

581 -0.238 -0.403 -0.091 0.015 0.373 0.429 0.146 

601 -0.271 -0.719 -0.326 -0.356 0.524 0.306 0.052 

678 -0.024 -0.080 0.080 0.151 0.208 0.245 0.241 

725 -0.410 -0.458 -0.334 -0.271 0.538 -0.059 0.231 

732 -0.427 -0.481 -0.358 -0.299 0.559 0.122 -0.159 

733 -0.211 -0.735 -0.083 0.009 0.577 0.325 0.206 

893 -0.344 0.033 -0.246 -0.170 0.299 -0.059 -0.125 

921 -0.327 -0.404 -0.284 -0.245 0.397 0.340 0.081 

951 -0.141 -0.301 -0.081 -0.037 0.150 0.096 -0.156 

1035 -0.156 -0.471 -0.091 -0.042 0.218 -0.015 0.284 

1063 -0.291 -0.550 -0.187 -0.109 0.145 0.248 -0.064 

MIN -0.427 -0.735 -0.358 -0.356 0.018 -0.120 -0.345 

MAX -0.024 0.261 0.080 0.151 0.577 0.509 0.284 

MEAN -0.247 -0.324 -0.176 -0.122 0.304 0.173 0.006 
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irrespective of spatial location) being voxels with axons within them, but not completely made 

up of large axons, and for these axons to not have all the same orientation. While the volume 

fractions (ISOVF and ICVF) relationship does not follow the typically expected trend (the two 

values should be inverse), the voxel 138 subgraph offers an excellent opportunity to 

demonstrate the concepts involved in this method. To visualise the MRI features, the same data 

and graph configuration are presented with node colour reflecting the scaled values of a 

specified feature. It is also worthwhile to note that this subgraph also confirms that highly 

similar voxels are not necessarily located close together in space, indicating that this method 

successfully reflects physiological similarity rather than anatomic connectivity. 
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Figure 27: Voxel 138 subgraphs. The node size represents the weighted degree in terms of the subgraph connectivity. The labels are the indices by 

whole brain flattened voxel array locations. The colours describe the relative value of the features AD, MD, and RD, as labelled. The darkness of 

the edge colour indicates the weight of the edge. 

 

 

AD MD RD 

-0.024 -0.427  0.080 -0.358  0.151 -0.356 
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Figure 28:  Voxel 138 subgraphs. The node size represents the weighted degree in terms of 

the subgraph connectivity. The labels are the indices by whole brain flattened voxel array 

locations. The colours describe the value of the features FA and ODI, as labelled. The 

darkness of the edge colour indicates the weight of the edge.  

FA 

-0.735 

0.261 

-0.120 

0.509 

ODI 
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Figure 29:  Voxel 138 subgraphs. The node size represents the weighted degree in terms of 

the subgraph connectivity. The labels are the indices by whole brain flattened voxel array 

locations. The colours describe the value of the features ISOVF and ICVF, as labelled. The 

darkness of the edge colour indicates the weight of the edge.  

ISOVF 

-0.345 

0.284 

0.018 

0.577 

ICVF 
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Voxel 138 subgraph consists mostly of relatively high degree voxel nodes (fig. 27-29) 

that demonstrate several of the expected characteristics associated with the highly weighted 

degree nodes of the whole graph (fig. 22). As noted in table 1, the mean values of AD, MD, 

and RD are negative, which aligns with the trend across large degree voxels in the whole brain 

graphs. In subgraph 138, AD, MD and RD generally correlate well, with few examples of 

variation between subgraph voxels (Fig 27), such as voxel 580 in MD and voxel 260 in AD. 

This is mostly to be expected from the FES plot (fig. 21), where MD correlates roughly to both 

AD and RD, though AD and RD don’t show a strong relationship. With respect to FA and ODI, 

many voxels demonstrate the expected inverse relationship (260, 580, 581, 601, 893, 921, and 

1063, to name several). This relationship is strongly supported by the FES plot, which shows 

a clear negative correlation between FA and ODI. Finally, both ISOVF and ICVF demonstrate 

the heterogenous makeup of values expected of high degree voxels according to whole graph 

observations (fig. 29). While some voxels do demonstrate inverse values between these two 

features (49, 159, 173, 580, 732, and 1035), many voxels show a similarity between values 

(157, 260, 419, 581, and 733). While this latter trend is inconsistent with theoretical 

expectations and likely reflects the complexity of the model used to estimate them and its three-

compartment nature, it aligns with the FES plot, which demonstrates a lack of clear relationship 

between the two features. More work is needed to assess whether voxels without an inverse 

relationship have a high myelin content. Overall, we have demonstrated the production of a 

local neighborhood subgraph reflecting similar trends to the whole-brain data. This 

demonstrates the possibility of generalizing from small subgraphs to whole-brain data, which 

is crucial for performing data augmentation from local neighborhood data. 

 

5.5 Challenges  

 

One of the greatest challenges in developing this methodology has been data 

management. Nearly 360 000 voxels leading to an equal number of clusters is computationally 

demanding for both memory in processing and storage between steps in the method. To meet 

this challenge, verifying what data is important and what information may be discarded has 

been imperative. While further investigations into alternative visualisation options may aid in 

the understanding of the data (e.g. chord diagram or circle plots), it does not address the larger 

issue of data management. 

Coupling pruning with sparse matrices has been the primary strategy for managing 

memory requirements. To this end, this method offers multiple opportunities and methods for 

edge pruning. As the formula for converting from a distance matrix to an adjacency matrix is 

Gaussian, it does not produce edges of weight 0 leading to a complete graph, where every node 

is connected to every other node by an edge. Without pruning, the adjacency matrices would 
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be fully populated, producing an object of a memory-prohibitive size. By pruning low-

weighted edges, the size of the matrices can be managed well with sparse matrices.  

Using sparse matrices for organizing data decreases memory requirements as only non-

zero values occupy storage. Since below a user-defined threshold, pruning assigns edges a 

value of 0, a large portion of the adjacency graphs are occupied by zeros. In using sparse 

matrices, these zeros do not add to the strain of this methodology on memory requirements.  

Another strategy employed for decreasing memory requirements is to save matrices to 

storage. This frees up memory, as once they are saved in storage, they are overwritten in the 

memory. This introduces a new challenge: storage requirements. Even when using only simple 

text-based formats for file storage, the large number of subgraphs rapidly occupies significant 

portions of memory. The number of files can even be an issue, as many supercomputers have 

strict limits for the number of files allowed in storage. One strategy being developed for this 

difficulty was to stack adjacency matrices such that each file has multiple adjacency matrices 

saved to storage in a 3D array. This method would allow for saving batches of subgraphs to 

storage, however, until they are stored, the subgraphs occupy memory. Thus, it is an 

optimization problem. Maximise the number of adjacency matrices in memory before storing 

the set of matrices and removing them from memory. 

All of these steps, however, still leave a precarious draw on computational resources 

when considering that there are nearly 360 000 voxels in the white matter alone in a single 

brain. This process will also need to be repeated in grey matter voxels to have a complete 

overview of brain changes in patient populations. As such, a final strategy may require 

decreasing the resolution of the MRI data to decrease the total number of voxels. The noise 

introduced by this approach could be at least partially mitigated through employing established 

downsampling methods developed to decrease resolution without confounding data by 

avoiding the combination of spatially adjacent voxels with very different functions or partial 

volume compositions (Huo et al., 2018). This diminishes the amount of data available for 

subsequent steps in the methodology but may be a necessary step without major cost when 

considering the magnitude of data involved.  

A final option for data management is reconsidering the approach to the subgraphing 

process itself. While making use of a dimension reduction technique such as PCA or ICA would 

almost certainly improve the computation time of the distance matrix, it would not decrease 

the size of the distance and adjacency matrices. Exploring an alternative nearest neighbours 

method which creates true clusters – where each node is a member of only one cluster – could 

decrease redundancy in the subgraphs and also in the volume of data. However, the redundancy 

may have value in reinforcing particularly important connections in the connectome by 

increasing its representation in the dataset, which would be lost in using true clusters. 
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6. Conclusions and Future Work 

In this thesis, we set out to lay the groundwork for defining physiological connectomes 

which can form the basis for data augmentation approaches. This novel methodological 

approach to brain MRI analysis has been successfully applied to toy data to create 

neighborhood subgraphs of the physiological connectome. While these early results are 

encouraging regarding the functionality of the method, much more work will be needed before 

the method reaches the full potential of its applications. In the short term, as discussed in the 

previous section, further work is required to organise and manage the volume of data involved 

in this project. A formal calculation on the error rate and error propagation in the feature values 

and edges would be helpful to verify which edges are valid measures and which are within the 

error range, reflecting noise in the data. This information could help guide edge pruning in 

future work.  A rigorous comparison of neighborhood size with error properties would also be 

useful. As the project unfolds, it should become more clear what size and composition of 

subgraphs is best suited to the analysis methods suggested by this project, possibly allowing 

for more aggressive pruning and a more efficient methodology. Additional statistical analysis 

to verify the subgraphs and compare to the whole could be insightful. It may also be useful to 

restore the feature data to its unscaled values to assess any correlation with 3D spatial 

coordinates. 

In the future, after working through the data management concerns, the next phase of 

the project is to proceed towards data augmentation and topological analysis (fig. 30).  

 

Figure 30: graphical abstract of project overview.  
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This thesis has addressed the first step in the visualized methodological pipeline, 

creating subgraphs of brain MRI voxels. Subsequent steps in this project will use these 

subgraphs to train a graphical neural network for the purposes of using generative deep learning 

for data augmentation purposes. The trained model will be used to produce ‘hypothetical 

brains’ – synthetic brain MRI data consistent with the (local) trends of acquired data without 

directly reproducing the original dataset. The synthetic data will then be topologically analysed 

using a technique called persistent homology (Naitzat et al., 2020), the results of which should 

give insight into the most important connections in the brains of people suffering from long 

covid. The process will be repeated using control brain MRIs to determine which of these 

connections are unique to the pathological changes associated with long covid. 

Generative deep learning (GDL) uses deep neural networks to create a model for the 

underlying probability distribution of the properties of the training data (Pinaya et al., 2022). 

This distribution can then be sampled from to generate synthetic data that resembles the 

original data to perform data augmentation (Pinaya et al., 2022). To our knowledge, the use of 

GDL to create synthetic data mimicking the brain physiological connectome is a novel 

application. Using the PyTorch package for deep learning (Paszke et al., 2019), deep learning 

models will be trained on brain network subgraphs produced using the methodology of this 

thesis. The large quantity of local subgraphs will provide sufficient data to train notoriously 

data-hungry deep learning models. The accuracy of the deep learning model in learning these 

properties will be tested by using the models to synthesise local subgraph properties of a 

“hypothetical brain” which can be compared to a hold-out test set of brain graphs. 

The next step in the project will be to analyse the properties demonstrated by the 

generated hypothetical brain network graphs. The network graphs will be modelled as flow 

networks (Rocks et al., 2020). Persistent homology will then be applied to the biological flow 

network model. Persistent homology identifies functional similarities between heterogenous, 

topologically structured systems, such as flow networks modelling the cerebral vasculature of 

multiple brains (Rocks et al., 2020). The use of persistent homology should allow for 

identification of common functional similarities between sets of diverse brains. The network 

will be further analysed by adapting existing functional flow network methods (Rocks et al., 

2020). Finally, by comparing the findings of these analyses to control, the functional changes 

associated with long covid may be identified, offering both a basis for future investigations into 

specific brain regions, and informing research into targeted treatment options. 

In conclusion, this thesis forms the basis for a novel approach to modeling and 

analysing brain imaging data with the intent that the approach be generalizable to other 

complex biological systems. 
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