
Robust Graph Convolutional Networks for Adversarial
Resilience and Anomaly Detection

MD Shakib Khan

A Thesis

in

The Concordia Institute

for

Information Systems Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of Master of Applied Science (Quality Systems Engineering) at

Concordia University

Montreal, QC, Canada

August 2024

© MD Shakib Khan, 2024

Robust Graph Convolutional Networks for Adversarial
Resilience and Anomaly Detection

Md. Shakib Khan

Robust Graph Convolutional Networks for Adversarial Resilience and Anomaly Detection

Master of Applied Science (Quality Systems Engineering)

Dr. J. Bentahar

Dr. J. Bentahar

Dr. A. Ayub

Dr. A. Ben Hamza

Dr. A. Youssef

Dr. F. Naderkhani (GPD)

Dr. M. Debbabi Gina Cody School

Robust Graph Convolutional Networks for Adversarial Resilience and Anomaly Detection

MD Shakib Khan

Adversarial attacks and anomaly detection are closely related, both focusing on identifying irregu-

larities that deviate from normal patterns across various data types, including graph-structured data.

Adversarial attacks on graphs pose a significant threat to graph convolutional networks (GCNs),

involving intentional manipulation of graph data to mislead GCNs into making incorrect predic-

tions. Standard GCNs, while powerful, often exhibit vulnerabilities to adversarial attacks that can

significantly degrade their performance in anomaly detection tasks. These networks also have in-

herent limitations, such as their inability to effectively consider higher-order neighbor information,

restricting their capacity to capture the full context of a node within the graph. To address these

challenges, this thesis introduces an iterative graph filtering framework, which builds upon the

graph signal processing concept of iteratively solving graph filtering using the fixed-point iterative

method. The proposed framework is designed to enhance resilience against adversarial attacks

while improving anomaly detection capabilities. The thesis makes two main contributions: a flex-

ible spectral modulation filter that selectively attenuates high-frequency components of graph sig-

nals; and a robust aggregation mechanism that efficiently captures information from higher-order

node neighbors, expanding the networks receptive field without increasing computational com-

plexity. Extensive experiments are conducted on benchmark datasets to evaluate the effectiveness

of the proposed methods. The results demonstrate significant improvements in anomaly detection

accuracy and adversarial robustness compared to strong baselines. This highlights the potential

of the proposed framework for reliable graph-based downstream tasks, paving the way for robust

GCNs that can handle the complexities and adversarial threats inherent in real-world applications.

iii

Abstract

I would like to express my profound gratitude to the exceptional professors who have played pivotal

roles in my Master’s journey. Professor Abdessamad Ben Hamza and Professor Amr Youssef

have been true inspiration throughout my academic pursuits. Professor Ben Hamza dedication to

fostering innovation and critical thinking has been truly remarkable. His encouragement to explore

new ideas and tackle challenges head-on has been instrumental in my growth as a researcher. The

invaluable feedback and advice he provided not only kept me motivated but also ignited a passion

for continuous learning. Professor Youssef constant encouragement has been crucial in helping me

navigate the complexities of graduate studies.Additionally, I extend my thanks to my lab mates,

Hasib Zunair, Zadid Hasan, Zaedul Islam, Md. Tanvir Hassan, Abu Taib Mohammed Shahjahan

whose constant support has been instrumental in enriching my experience. Their great ideas and

encouragement have played a significant role in shaping my academic pursuits. Reflecting on my

time at Concordia, I am deeply appreciative of all my instructors, who have contributed to my

growth and learning in profound ways. Their dedication to education has been truly inspiring.

Finally, I owe immeasurable gratitude to my parents and sibling for their unconditional love and

unwavering support. Their belief in my potential, endless encouragement, and prayers have been

the pillars of strength, especially during the most challenging times. I want to extend a special

thank you to my mother and father, whose selfless sacrifices and prayers have been an endless

source of motivation and hope. The support I have received from all these remarkable individuals

and institutions has been transformative, and I am filled with gratitude for their role in my academic

and personal development.

iv

Acknowledgments

List of Figures vii

List of Tables viii

List of Acronyms ix

1 Introduction 1

1.1 Motivation and Background . 1

1.2 Problem Statement . 4

1.2.1 Graph Adversarial Attacks . 4

1.2.2 Graph Anomaly Detection . 5

1.3 Objectives . 5

1.4 Literature Review . 6

1.5 Overview and Contributions . 9

2 Fixed-Point Graph Convolutional Networks Against Adversarial Attacks 11

2.1 Introduction . 12

2.2 Proposed Method . 14

2.2.1 Preliminaries and Problem Formulation 14

2.2.2 Spectral Modulation Filtering . 15

2.2.3 Fixed-Point Iterative Graph Neural Network 17

2.2.4 Numerical Stability of Fix-GCN . 18

2.3 Experiments . 19

2.3.1 Experimental Setup . 19

2.3.2 Results and Analysis . 20

2.4 Discussion . 30

v

Table of Contents

3 Graph Encoder-Decoder Model for Robust Anomaly Detection 31

3.1 Introduction . 32

3.2 Proposed Method . 36

3.2.1 Encoder . 38

3.2.2 Decoder . 39

3.2.3 Model Training . 41

3.3 Experiments . 43

3.3.1 Experimental Setup . 43

3.3.2 Results and Analysis . 45

3.3.3 Parameter Sensitivity Analysis . 46

3.4 Discussion . 50

4 Conclusions and Future Work 51

4.1 Contributions of the Thesis . 52

4.1.1 Fixed-Points Graph Convolutional Networks Against Adversarial Attacks . 52

4.1.2 Graph Encoder-Decoder Model for Robust Anomaly Detection 52

4.2 Limitations . 53

4.3 Future Work . 53

4.3.1 Dynamic Graphs . 53

4.3.2 Kolmogorov-Arnold Networks . 54

4.3.3 Applications . 54

References 56

vi

2.1 Transfer function of the spectral modulation filter. Lower values of the scaling param-

eter make the filter attenuate high-frequency components more strongly. 16

2.2 Node classification accuracy on Cora and CiteSeer dataset under targeted attacks (Net-

tack) with varying numbers of perturbations on the target nodes {1, 2, 3, 4, 5}. 23

2.3 Node classification accuracy on Github and PubMed dataset under targeted attacks

(Nettack) with varying numbers of perturbations on the target nodes {1, 2, 3, 4, 5}. . . . 24

2.4 Node classification accuracy under random attacks with varying perturbation rates. . . 26

2.5 Node classification accuracy under feature attacks with different perturbation rates. . . 27

2.6 Node classification accuracy of different models under evasion attacks (DICE) with

varying perturbation rates. 28

2.7 Node classification accuracy on citation networks (Cora, CiteSeer, PubMed) under

Mettack with a 5% perturbation rate using various values of the spectral modulation

filtering parameter s. 29

3.1 Contextual anomalies are identified based on attribute deviations relative to local

neighborhoods, while structural anomalies are identified based on deviations in con-

nectivity patterns. 33

3.2 Overview of the proposed graph encoder-decoder network architecture for anomaly

detection in attributed graphs. In the encoding stage, Fix-GCN is used as an encoder

to generate a latent representation. The decoding stage employs two specialized de-

coders: a structure reconstruction decoder and a graph deconvolutional network de-

coder to reconstruct the graph structure and the node attributes, respectively, from the

latent representation obtained during the encoding phase. 38

3.3 Effect of hyperparameter s on anomaly detection performance of our model using AUC

as evaluation metric . 49

3.4 Effect of hyperparameter ³ on anomaly detection performance of our model using

AUC as evaluation metric . 49

vii

List of Figures

2.1 Summary statistics of benchmark graph datasets. We only consider the largest con-

nected component in these adversarial graphs. 20

2.2 Node classification performance of Fix-GCN and baselines under non-targeted attacks

(Mettack) with different perturbation rates P(%). We report the average accuracy over

10 runs, along with the corresponding standard deviation. The best results are in bold

and the second best ones are underlined. 21

3.1 Summary statistics of datasets. 44

3.2 Test AUC (%) scores on four citation networks and two social networks. Boldface

numbers indicate the best performance, whereas the underlined numbers indicate the

second best performance. 47

3.3 Test Precision@K (%) scores of our approach and baselines on four citation networks

and two social networks. Boldface numbers indicate the best performance, whereas

the underlined numbers indicate the second best performance. 47

3.4 Test Recall@K (%) scores of our approach and baselines on four citation networks

and two social networks. Boldface numbers indicate the best performance, whereas

the underlined numbers indicate the second best performance. 48

3.5 Test F1@K (%) scores of our approach and baselines on four citation networks and

two social networks. Boldface numbers indicate the best performance, whereas the

underlined numbers indicate the second best performance. 48

viii

List of Tables

DNNs Deep Neural Networks

GCN Graph Convolutional Networks

Fix-GCN Fixed-Point Graph Convolutional Network

ResNets Residual Networks

AUC Area Under the Curve

ix

List of Acronyms

C
H

A
P

T
E

R

1

In this chapter, we outline the motivation behind this work, provide a succinct problem statement

and objectives, review relevant literature, and highlight the key contributions of the thesis. The

literature review section provides a comprehensive overview of graph neural networks against

adversarial attacks, graph anomaly detection, and graph encoder-decoder models.

1.1

Graph adversarial attacks are sophisticated techniques designed to manipulate or perturb graph

data with the intent of misleading graph learning models. These attacks aim to cause incorrect pre-

dictions or classifications by exploiting vulnerabilities in graph-based machine learning systems.

Common strategies include modifying graph structure by adding or removing edges, perturbing

node features, or even altering the node set itself. Adversarial attacks on graphs can be broadly

classified into two categories: poisoning attacks, which occur during the training phase, and eva-

sion attacks, which target already trained models at test time [1]. Several well-known attacking

methods have been developed to demonstrate the potential vulnerabilities of graph learning mod-

els. For instance, Nettack [2] aims to misclassify specific nodes in the graph by strategically

perturbing the graph structure during the training phase. Another notable method is Mettack [3],

which takes a broader approach by aiming to degrade the overall performance of Graph Neural

Networks (GNNs) through structural perturbations. This untargeted strategy emphasizes the po-

tential for widespread disruption of graph-based models. However, various approaches have been

proposed to address the graph adversarial problem. In the realm of defense against adversarial at-

1

Introduction

Motivation and Background

tacks, Robust GCN (RGCN) [4] employs Gaussian distributions to represent node embeddings and

incorporates a variance-based attention mechanism, enhancing the model’s resilience. Another de-

fensive strategy, GNN-Jaccard [5], focuses on pre-processing by removing edges with low Jaccard

similarity, operating under the assumption that clean graphs adhere to homophily principles.

Another major issue with graphs is anomalies which are unusual patterns, behaviors, or struc-

tures within graph-structured data that significantly deviate from the expected norm. These anoma-

lies can manifest as unusual individual nodes, unexpected connections between nodes, atypical

subgraphs, or entire graphs that differ from typical structures. Detecting such anomalies is crucial

in various domains, including network security, fraud detection in financial networks, social me-

dia spam identification, and e-commerce interaction analysis. The importance of graph anomaly

detection lies in its ability to reveal critical insights about system behaviors, potential security

threats, or fraudulent activities that might otherwise go unnoticed. However, this field faces sev-

eral challenges due to the complexity of graph data [6], which encompasses both topological and

attribute information, the rarity of anomalies, and the need to consider both local and global graph

structures. Approaches to tackle these challenges range from traditional statistical and clustering-

based methods to modern techniques leveraging Graph Neural Networks (GNNs), which have

gained popularity for their ability to learn complex graph representations. As graph-structured

data becomes increasingly prevalent and complex, the field of graph anomaly detection contin-

ues to evolve, with ongoing research aimed at developing more accurate and efficient methods

to uncover these critical patterns and behaviors in various network structures. However, several

methods have been developed to improve accuracy. ResGCN [7], for instance, leverages GCNs to

capture sparsity and nonlinearity in attributed graphs, learning residual information and employing

a residual-based attention mechanism to mitigate the impact of anomalous nodes. AMEN [8] takes

a different approach by considering ego-network information for each node to discover anoma-

lous neighborhoods in attributed networks. Additionally, a separate family of methods focuses on

identifying abnormal nodes within node feature subspaces. These diverse approaches collectively

demonstrate the ongoing efforts to enhance both the robustness of graph neural networks against

adversarial attacks and the accuracy of anomaly detection in graph-structured data, addressing the

unique challenges posed by the complex nature of graph data.

Encoder-Decoder Networks Graph anomaly detection using encoder-decoder architectures has

emerged as a promising approach in recent years, leveraging the power of graph representation

learning to identify unusual patterns or behaviors in graph-structured data. This method has gained

traction in various domains, including network security, fraud detection, and social media analysis,

where traditional approaches often struggle with the complex topological relationships inherent in

2

graph data. The encoder-decoder framework typically consists of an encoder, often implemented

using graph convolutional networks, which maps the input graph attribute data matrix X into a

low-dimensional latent representation Z, and a decoder that attempts to reconstruct the original

graph attributes from this latent representation. This process can essentially be represented as

Z = Encoder(X) and X̂ = Decoder(Z), where X̂ is the reconstructed graph attribute data matrix.

The reconstruction error, typically measured as the difference between X and X̂, is then used as

an anomaly score, based on the assumption that anomalies will be harder to reconstruct accurately

and thus have higher reconstruction errors. Recent developments in this field include unsuper-

vised approaches that learn anomaly scoring functions without requiring labeled training data, and

reconstruction-based methods that focus on rebuilding both graph structure and nodal features.

Residual Connections. Residual connections are a crucial architectural innovation in deep learn-

ing models (DNNs, especially in deep neural networks with numerous layers. They were first

introduced in the context of residual networks (ResNets) and have since become a fundamental

building block in various state-of-the-art architectures. In light of this insight, incorporating resid-

ual connections into our architecture also proves beneficial. Traditional deep neural networks can

encounter difficulties in training as the number of layers increases. By introducing residual con-

nections, deeper networks become easier to optimize, as they enable the model to retain essential

information from earlier layers and build upon it in subsequent layers. This facilitates the training

process and allows the network to explore more complex and meaningful representations. In addi-

tion, residual connections enable the reuse of learned features from previous layers in subsequent

ones. Moreover, residual connections effectively allow a neural network to learn identity mapping,

i.e., passing the input directly to the output. This is crucial when the optimal mapping between

input and output is close to an identity mapping. Without residual connections, the network would

need to learn this mapping from scratch, which can be inefficient and challenging, especially in

very deep architectures.

Dropout. Dropout is a regularization technique used in neural networks to mitigate the problem

of overfitting. Overfitting occurs when a neural network becomes too specialized in learning from

the training data and fails to generalize well to unseen or new data. In a typical neural network,

each neuron in a layer connects to neurons in the previous and subsequent layers, forming a dense

network of connections. During training, dropout randomly “deactivates” or “turns off” a certain

fraction of neurons in the network with a probability p. This means that those neurons and their

connections are temporarily ignored for the current forward and backward pass. Therefore, we

also apply dropout layers to our models.

3

1.2

In this section, we briefly describe the main problems addressed in this thesis: graph adversarial

attacks and graph anomaly detection. Graphs serve as powerful tools for representing relationships

between entities in various domains, including social networks, e-commerce platforms, citation

networks, shape classification and retrieval [9–13], geometry processing [14], and mesh water-

marking [15]. Formally, a graph is denoted by G = (V , E) where V = {1, . . . , N} is the set of

N nodes or vertices and E ¦ V × V is the set of edges or links connecting pairs of vertices. The

ability to detect and mitigate adversarial attacks, as well as identify anomalies, is critical for the

integrity and reliability of graph-based systems.

1.2.1

Graph adversarial attacks involve the intentional manipulation of graph data to deceive graph-based

models, such as graph neural networks, into making incorrect predictions. These attacks can be

categorized into:

• Evasion Attacks: Perturbations are made during the inference phase to alter the predictions

of a pre-trained graph neural network. Attackers may add, delete, or modify edges and node

features to deceive the model into making incorrect classifications or recommendations.

• Poisoning Attacks: These involve tampering with the training data. Attackers introduce

small but strategically crafted changes to the graph structure or node features during the

training phase, causing the graph neural network to learn incorrect patterns, which degrade

its performance on clean test data.

• Targeted Attacks: Specific nodes or edges are targeted to achieve desired misclassifications.

For example, in a social network, an attacker might aim to misclassify a particular user as

belonging to a different community.

• Non-Targeted Attacks: The goal is to cause a general degradation in the model’s perfor-

mance, without focusing on specific nodes or edges.

Adversarial attacks on graphs pose significant challenges, as graph perturbations can be subtle and

hard to detect. Also, graph neural networks trained on adversarially perturbed graphs often fail to

generalize, leading to poor performance. In addition, the susceptibility of graph neural networks

to adversarial attacks undermines their reliability, limiting their adoption in sensitive domains.

4

Problem Statement

Graph Adversarial Attacks

1.2.2

Graph anomaly detection aims to identify nodes or edges that exhibit unusual or unexpected be-

havior, deviating from the normal patterns within the graph. This task is particularly challenging

due to the rarity of anomalies, as only a small fraction of nodes or edges are typically anomalous.

Effective graph anomaly detection is essential for applications such as fraud detection in financial

networks, intrusion detection in communication networks, and identifying anomalous activities in

social networks. For instance, identifying fraudulent transactions or malicious accounts in bank-

ing and online payment systems can prevent significant financial losses and protect users. Also,

detecting intrusions, unauthorized access, or abnormal behaviors in computer networks and com-

munication systems can help in mitigating cyber threats and attacks. In addition, detecting unusual

user behavior or interactions in social media can help in identifying bots, fake accounts, or harmful

activities.

Despite its importance, anomaly detection on graph-structured data presents several significant

challenges, including the complex structures of graphs that can have diverse and complex topolo-

gies (e.g., dense or sparse graph structures), the scarcity of labeled anomalies, the high dimension-

ality of attributes that must be considered alongside the structural information, and the need to bal-

ance local and global patterns as some anomalies are localized to small regions of the graph (e.g., a

single fraudulent transaction in a financial network), while other anomalies might be spread across

the graph (e.g., a widespread network attack affecting multiple nodes). Another key challenge

lies in accurately identifying anomalies within complex and often noisy graph data. Traditional

methods may fall short in effectively capturing both the structural and attribute information neces-

sary for robust anomaly detection. Also, real-world graph data often contain noise and ambiguous

patterns, requiring the model to distinguish between true anomalies and noise-induced outliers.

1.3

The aim of this thesis is to develop robust graph convolutional networks for adversarial resilience

and anomaly detection. Specifically, the objectives are to:

• Develop a novel model, called fixed-point iterative graph convolutional network (Fix-GCN),

which achieves robustness against adversarial perturbations by effectively capturing higher-

order node neighborhood information in the graph without additional memory or computa-

tional complexity.

• Design an unsupervised graph encoder-decoder model for anomaly detection in attributed

5

Graph Anomaly Detection

Objectives

graphs. In the encoding stage, we design a fixed-point GCN encoder that allows for effec-

tive aggregation of information from higher-order neighborhoods. In the decoding stage, we

employ a structure reconstruction decoder to predict the presence or absence of edges be-

tween nodes in the graph based on the latent representation obtained from the encoder, and

an attribute reconstruction decoder to recover the original node features based on the graph

structure and the learned latent representation.

• Evaluate the proposed methods through extensive experiments on standard benchmark

datasets, demonstrating their superiority over existing techniques.

1.4

Graph Convolutional Networks Against Adversarial Attacks. Considerable efforts have re-

cently been dedicated to devising defensive mechanisms that bolster the robustness of GNNs. For

instance, Robust GCN (RGCN) [4] is a defense method that utilizes Gaussian distributions to rep-

resent node embeddings and incorporates a variance-based attention mechanism. Similar to the

graph attention (GAT) model [16] that extends the fundamental aggregation function of GCN by

assigning varying importance to each edge using attention coefficients, the attention mechanism of

RGCN assigns weights to node neighborhoods based on their variances. Larger variances indicate

a higher likelihood of being targeted by attacks. By leveraging these variances, RGCN penalizes

the attention scores of adversarial edges, thereby reducing the propagation of adversarial effects

through the graph. GNN-Jaccard [5] is a pre-processing defensive mechanism designed to enhance

model robustness against adversarial attacks by removing edges from the graph that exhibit low

Jaccard similarity based on the assumption that the clean graph adheres to homophily, where nodes

with similar attributes are more likely to be connected. GCN-SVD [17] is another defense mech-

anism that operates at the preprocessing stage, specifically targeting high-rank perturbations like

those induced by Nettack [2]. It operates by performing a low-rank approximation of the graph

adjacency matrix through truncating its singular values via SVD. By focusing on retaining the low-

frequency structural features while eliminating high-frequency perturbations, GCN-SVD aims to

enhance the robustness of GNNs against adversarial attacks. Both GNN-Jaccard and GCN-SVD

adopt a two-stage preprocessing approach to mitigate the effects of adversarial attacks. In the

first stage, these methods preprocess the perturbed graphs to extract clean graph representations.

This preprocessing step involves applying specific strategies to identify and remove perturbations

introduced by adversarial attacks, such as edges with low Jaccard similarity in GNN-Jaccard or

high-frequency components in the adjacency matrix in GCN-SVD. Once the clean graph repre-

6

Literature Review

sentations are obtained, the second stage involves training the GCN model on these clean graphs.

As an effective approach, several defense methods propose to leverage the properties of low rank,

sparsity, and feature smoothness in the graph structure [18, 19]. For instance, Pro-GNN [18] em-

ploys a joint learning framework to simultaneously learn the clean graph structure from perturbed

data and optimize the parameters of the GNN. It imposes constraints on the graph structure, en-

forcing it to be low-rank and sparse through regularization, aligning it closely with the clean struc-

ture. However, the joint optimization process in Pro-GNN requires iterative updates to both the

adjacency matrix and the model parameters, leading to increased computational complexity. GN-

NGuard [20] employs a defense strategy against adversarial attacks by assigning higher weights

to edges connecting similar nodes and lower weights to edges connecting dissimilar nodes. The

rationale behind this approach lies in the assumption that similar nodes are more likely to interact

with each other. Although GNNGuard offers promising strategies for defending against adversarial

attacks, it relies on the estimation of neighbor importance for every node and the memory layer for

graph coarsening, which can incur significant computational overhead, especially for large graphs.

While incorporating defense mechanisms into GNNs has demonstrated efficacy in countering ad-

versarial attacks, a recent and promising line of work involves the design and development of

robust GNNs by devising novel graph filters or feature aggregation schemes tailored to preserve

information robustness against adversarial manipulations [21–25]. For instance, Simp-GCN [21]

employs an adaptive message aggregation mechanism to integrate the graph structure and node fea-

tures, as well as self-supervised learning to capture intricate relationships between node features,

including both similarities and dissimilarities. Mid-GCN [25] employs a mid-pass graph filter to

protect against adversarial attacks by leveraging the observation that the eigenvalues of the graph

Laplacian within mid-frequency are less affected by such attacks, as mid-frequency signals tend to

preserve information from higher-order neighbors.

Graph Anomaly Detection. Recently, graph anomaly detection has attracted increasing atten-

tion, leading to a plethora of innovative techniques, which can be classified into two main cate-

gories: (i) Shallow Models: The Local Outlier Factor (LOF) [26] algorithm can be employed to

detect density-based local outliers, flagging nodes that exhibit significantly different density pat-

terns compared to their surrounding regions. Additionally, SCAN [27] can be utilized for anomaly

detection based on structural similarity by identifying nodes that deviate from their local neigh-

borhood structure. (ii) Spectral Models: BWGNN [28] leverages a beta kernel to handle higher

frequency anomalies through multiple flexible, spatial/spectral localized, and band-pass filters.

The key idea is to employ filters that can effectively capture anomalous patterns across different

frequency bands, both in the spectral and spatial domains. Another notable approach is SpecF [29]

7

which proposed a community-based anomaly detection algorithm using a spectral graph filter that

incorporates the network community structure into the Laplacian matrix adopted as the basis for the

Fourier transform. (iii) Generative graph neural networks: ALARM [30] proposes a multi-view

representation learning framework with multiple graph encoders and a well-designed aggrega-

tor. Semi-GNN [31] is a semi-supervised graph neural model which adopts hierarchical attention

to model the multi-view graph for fraud detection. SL-GAD [32] performs anomaly detection

from both generative and multi-view contrastive perspectives. Sub-CR [33] then proposes a self-

supervised method based on multi-view contrastive learning with graph diffusion and attribute

reconstruction. (iv) Enhanced graph neural networks: Radar [34] proposes a graph anomaly de-

tection framework that leverages residual analysis to identify deviations between predicted and

observed attribute values in the graph. It focuses on detecting attribute-based anomalies in at-

tributed graphs by analyzing the residuals, which are the differences between predicted attribute

values and the observed attribute values. ResGCN [7] introduces a graph anomaly detection ap-

proach that captures the sparsity and nonlinearity present in attributed graphs through the use of

GCNs, learns residual information, and employs a residual-based attention mechanism to mitigate

the negative impact caused by anomalous nodes. AMEN [8] considers the ego-network infor-

mation for each node and discovers anomalous neighborhoods on attributed networks. Besides

that, another family of methods is focused on spotting abnormal nodes in a node feature subspace.

OCGNN (One-Class Graph Neural Network) [35], a hypersphere learning framework which is

designed to combine the powerful representation ability of GNNs with the classical hypersphere

learning objective to detect anomalies. ComGA [36] tailored a deep graph convolutional net-

work (tGCN) which propagates community-specific representation into its corresponding layers

of GCN via multiple gateways. And, the hidden node representations of each layer in the net-

wok which can fuse local and structure anomalies information. (v) Graph contrastive learning

methods: Mul-gad [37] & GRADATE [38] present a multi-view, multi-scale contrastive learning

framework with subgraph-subgraph contrast for graph anomaly detection by combining various

anomalous information and calculating the anomaly score for each node. HCM [39] models both

local and global contextual anomalies by using hop counts prediction as a self-supervised task to

train model. CoLA [40] designs a contrastive self-supervised learning framework to detect local

anomalies within the graph.

Graph Encoder-Decoder Models. In recent years, graph encoder-decoder models have emerged

as a prominent approach for graph anomaly detection. These methods leverage graph convolutional

networks (GCNs) and their variants as the core components of the encoder-decoder architectures,

effectively capturing and integrating both the structural and attribute information present in the

8

graph data. This unified representation learning capability is crucial for accurate anomaly detec-

tion, as anomalies can manifest in various forms, including deviations in node attributes, structural

patterns, or a combination of both. Recently, Dominant [41] introduces a deep autoencoder frame-

work that compresses input attributed networks into low-dimensional embeddings using a graph

convolutional network as an encoder. It then reconstructs both the topological structure and node

attributes with decoder functions, leveraging reconstruction errors to identify anomalous nodes.

DeepAE [42] presents a method that utilizes the different order proximities for reconstructing

the graph node attributes and structures. Also, in the decode they introduce a technique called

Laplacian sharpening which can preserve the differences between normal nodes and anomalies to

classify anomalies. GUIDE [43] utilizes a higher-order network structure with graph node atten-

tion layer which can learn different weights according to the structural differences between the

node and its neighbor, they did this in autoencoder way, where they have used GCN and GNA

for attribute and structure encoder respectively. GAAN [44] proposes a generative adversarial

anomaly detection model where they generate fake nodes using Gaussian noise and employ a MLP

based encoder to get the low-dimensional latent space. This method trains jointly reconstruction

loss and discriminator loss to detect anomalies. AnomalyDAE [45] proposes a deep joint repre-

sentation learning framework for anomaly detection through a dual autoencoder. Specifically, it

consists of a structure autoencoder and an attribute autoencoder to learn both node embedding and

attribute embedding jointly in latent space. Moreover, an attention mechanism employed in struc-

ture encoder to learn the importance between a node and its neighbors for an effective capturing

of structure pattern. GAD-NR [46] incorporates neighborhood reconstruction method for graph

anomaly detection.

1.5

This thesis is structured as follows:

• Chapter 1 lays the foundation for this research by presenting a thorough examination of the

studys motivations and objectives. It begins by articulating the problem statement, clearly

defining the research goals, and outlining the study’s scope. The chapter then delves into an

extensive literature review, providing critical insights into the current state of knowledge in

three key areas: deep learning algorithms for graph adversarial attacks, graph anomaly de-

tection techniques, and autonomous vehicle datasets. This comprehensive review establishes

the context for the study, highlighting gaps in existing research and setting the stage for the

novel contributions presented in subsequent chapters.

9

Overview and Contributions

• In Chapter 2, we develop a novel spectral modulation filter that selectively attenuates high-

frequency components while preserving low-frequency structural information in the graph

signal. This allows for better noise reduction and feature extraction. Furthermore, we im-

plement an efficient aggregation mechanism that captures higher-order neighborhood infor-

mation without increasing computational complexity. By combining these elements, our

model effectively balances the preservation of essential graph structure with the incorpora-

tion of broader contextual information, leading to improved anomaly detection capabilities

in attributed graphs.

• In Chapter 3, we present an encoder-decoder model for anomaly detection in attributed

graphs. The encoder uses an efficient aggregation mechanism to spread higher-order neigh-

borhood information among graph nodes. The decoder leverages a structure reconstruction

decoder and a graph deconvolutional network. To reduce noise and retain essential graph

information, we apply spectral graph wavelet denoising during decoding.

• Chapter 4 concludes the thesis by summarizing its key contributions, acknowledging limi-

tations, and proposing future research directions in the fields of graph adversarial attacks,

anomaly detection.

In addition to developing mechanisms that strengthen the robustness of GCNs against various

types of adversarial attacks, including structural modifications and feature alterations, we design

a GCN-based method to identify anomalous nodes within graph-structured data, leveraging struc-

tural and feature information to detect nodes that exhibit unusual or unexpected behavior. We

also conduct extensive experiments on benchmark datasets to evaluate the proposed methods, en-

suring that the framework delivers significant improvements in anomaly detection accuracy and

adversarial robustness compared to existing baselines.

10

C
H

A
P

T
E

R

2

In this chapter, we discuss robust graph convolutional networks against adversarial attacks. Adver-

sarial attacks present a significant risk to the integrity and performance of graph neural networks,

particularly in tasks where graph structure and node features are vulnerable to manipulation. In

this thesis, we present a novel model, called fixed-point iterative graph convolutional network

(Fix-GCN), which achieves robustness against adversarial perturbations by effectively capturing

higher-order node neighborhood information in the graph without additional memory or compu-

tational complexity. Specifically, we introduce a versatile spectral modulation filter and derive

the feature propagation rule of our model using fixed-point iteration. Unlike traditional defense

mechanisms that rely on additional design elements to counteract attacks, the proposed graph fil-

ter provides a flexible-pass filtering approach, allowing it to selectively attenuate high-frequency

components while preserving low-frequency structural information in the graph signal. By it-

eratively updating node representations, our model offers a flexible and efficient framework for

preserving essential graph information while mitigating the impact of adversarial manipulation.

We demonstrate the effectiveness of the proposed model through extensive experiments on various

benchmark graph datasets, showcasing its resilience against adversarial attacks.

11

Fixed-Point Graph Convolutional Networks Against
Adversarial Attacks

2.1

Graph neural networks (GNNs), particularly graph convolutional networks (GCNs) [47] and

their variants [48–50], have proven effective at learning representations of graph-structured data,

demonstrating state-of-the-art performance in a wide variety of real-world applications, including

weather forecasting [51], biomedicine and healthcare [52], traffic forecasting [53], and cybersecu-

rity [54]. The key to the effectiveness of GNNs lies in the neural message passing scheme, which

iteratively passes and aggregates feature information from neighboring nodes in the graph. How-

ever, despite their effectiveness, GNNs are vulnerable to adversarial attacks [2, 3], which involve

intentionally crafted perturbations to the input graph data, such as modifying the graph structure

or altering node features, with the goal of causing the model to make incorrect predictions.

Adversarial attacks on graphs can be classified into poisoning and evasion attacks based on the

attacker’s objectives and the timing of the attack [1–3,55]. Evasion attacks, also known as test-time

attacks, aim to deceive the model and compromise its prediction performance at testing time. On

the other hand, poisoning attacks, also known as training-time attacks, manipulate the training data

to mislead the model during the training phase with the aim of degrading the model performance

on downstream tasks. Moreover, poisoning attacks can be broadly categorized into targeted and

non-targeted attacks. Targeted attacks, such as Nettack [2], aim to misclassify specific nodes in

the graph by perturbing the graph structure during the training phase. Rather than focusing on

specific nodes, non-targeted attacks, such as Mettack [3], aim to degrade the overall performance

of GNNs by perturbing the graph structure (i.e., adding or modifying edges) during the training

phase. These adversarial attacks pose significant challenges to the integrity and performance of

GNN-based systems, especially in critical applications, such as healthcare, cybersecurity and au-

tonomous driving, where trustworthiness and robustness are paramount. Hence, it is crucial to

incorporate adversarial defense mechanisms into GNN models and/or develop and design robust

and resilient model architectures that can resist adversarial attacks effectively.

While integrating defense mechanisms into GNN models has demonstrated effectiveness in

thwarting adversarial attacks [4,5,17–19], these mechanisms often employ additional components

that require extensive computations for a successful defense. For instance, GCN-SVD [17] pre-

processes the graph adjacency matrix using singular value decomposition (SVD), retaining only

the low-frequency components to defend against adversarial attacks on graph structures. The ba-

sic idea is to remove high-frequency perturbations that may have been introduced by adversarial

attacks while preserving the essential low-frequency structural features. However, since GCN-

SVD, tailored specifically for Nettack [2], focuses on preprocessing the poisoned graph data, it

may not offer consistent efficacy against diverse adversarial attacks. A recent line of work focuses

12

Introduction

on designing GNN model architectures that are robust against adversarial attacks [21–25, 56–58].

For instance, Mid-GCN [25] introduces a mid-pass graph filter based on the observation that the

eigenvalues of the graph Laplacian within the mid-frequency range are less susceptible to adver-

sarial attacks. However, the mid-frequency information captured by this filter may not sufficiently

preserve important structural features of the graph, leading to degraded performance. In addi-

tion, the training of Mid-GCN exhibits instability, particularly evident as the spectral radius of its

propagation matrix increases with network depth.

In this thesis, we introduce a novel and robust model, named fixed-point iterative graph convo-

lutional network (Fix-GCN), designed to withstand diverse adversarial attacks under varying per-

turbation levels. The core message-passing mechanism of Fix-GCN is derived by solving a graph

filtering system using fixed-point iteration [59]. Our proposed network, belonging to the category

of resilient architectures, aims to withstand adversarial perturbations by designing a flexible-pass,

higher-order filter that selectively attenuates high-frequency components while preserving low-

frequency structural information in the graph signal. This selective attenuation of high-frequency

components ensures that the model remains robust and resilient, even when faced with adversar-

ial manipulation. Moreover, by capturing information from higher-order neighbors, Fix-GCN can

mitigate the risk posed by direct perturbations on 1-hop neighbors of target nodes, which are often

more effective than indirect perturbations (i.e., influencer attacks) on multi-hop neighbors. In ad-

dition, similar to the GCN-SVD defense method, our approach with the spectral modulation filter

operates on the principle of selectively preserving low-frequency components and discarding high-

frequency ones in the graph signal to defend against adversarial attacks while preserving essential

graph structural information. Our key contributions can be summarized as follows:

• We propose a novel spectral modulation filter that provides a mechanism to selectively at-

tenuate high-frequency components while preserving low-frequency structural information

in the graph signal.

• We present a robust graph convolutional network architecture with an aggregation mecha-

nism that captures information from higher-order neighbors of graph nodes, while maintain-

ing computational efficiency.

• Experimental results demonstrate the robustness of the proposed model against adversarial

attacks, outperforming competitive baselines across various benchmark datasets.

The remainder of this chapter is organized as follows. Section 2.2 presents the methodology,

including the problem formulation, propagation rule, model architecture, and model training and

prediction. The experimental setup and results are presented in Section 2.3.

13

2.2

2.2.1

Basic Notions. An attributed graph is a type of graph data structure where each node in the

graph is associated with attributes or features. Let G = (V , E ,X) be an attributed graph, where

V = {1, . . . , N} is the set of N nodes and E ¦ V × V is the set of edges, and X = (x1, ...,xN)
ᵀ

an N ×F feature matrix of node attributes (i.e., xi is an F -dimensional row vector for node i). We

denote by A an N×N adjacency matrix whose (i, j)-th entry is equal to 1 if i and j are neighboring

nodes, and 0 otherwise. We also denote by L = I 2 Â the normalized Laplacian matrix, where

Â = D21/2AD21/2 is the normalized adjacency matrix, D = diag(A1) is the diagonal degree

matrix, and 1 is an N -dimensional vector of all ones. Since the normalized Laplacian matrix is

symmetric positive semi-definite, it admits an eigendecomposition given by L = UΛU
ᵀ
, where

U = (u1, . . . ,uN) is an orthonormal matrix whose columns constitute an orthonormal basis of

eigenvectors and Λ = diag(»1, . . . , »N) is a diagonal matrix comprised of the corresponding

eigenvalues such that 0 = »1 f · · · f »N f 2 in increasing order [60].

Problem Statement. Semi-supervised learning in a graph involves predicting the labels of nodes

that are not labeled, based on the labels of a small subset of nodes. Specifically, let Vl ¢ V be the

set of Nl labeled nodes in V with associated ground-truth labels in the label set Yl = {y1, . . . ,yNl
},

where yi * {0, 1}C is the one-hot encoding vector of node i and C is the total number of classes.

Let Vu ¢ V \ Vl be the set of Nu unlabeled nodes, where Nl + Nu = N and Nl � Nu. The

goal of semi-supervised node classification is to learn the parameters θ of a graph representation

learning (GRL) prediction model fθ : Vl ³ Yl. This is usually done by minimizing the categorical

cross-entropy loss function over the set of labeled nodes

min
θ

∑

i*Vl

C(yi, ŷi) = 2
∑

i*Vl

C∑

c=1

yic log(ŷic), (2.1)

where yi * Yl is the one-hot encoding vector of node i, ŷi = fθ(i) is the vector of predicted

probabilities of node i, and C(yi, ŷi) is the categorical cross-entropy loss for the ith node. Here,

yic is the indicator that the ith node belongs to the cth class, while ŷic is the predicted probability

that the model associates the ith node with class c.

Adversarial attacks on GRL models can be carried out through various means, including perturbing

the graph structure, node features, or a combination of both. To undermine the performance of a

GRL model, an adversarial attacker manipulates the edges and/or node features in the original

graph G, resulting in perturbed graphs G ′ = (V , E ′,X) or G ′ = (V , E ′,X′), where A′ denotes the

14

Proposed Method

Preliminaries and Problem Formulation

adjacency matrix of the perturbed graph. In the context of these attacks, X represents the original

node features, and X′ represents the manipulated node features. The attacker has the flexibility to

target the graph structure (edges) and/or the node features to create perturbations that can deceive

the GRL model into making incorrect predictions. Hence, it is crucial to develop a robust GRL

model to counter such attacks. Then, the learned robust model is employed to predict the labels of

the nodes in the set Vu.

2.2.2

Spectral graph filtering employs filters defined as functions of the graph normalized Laplacian

(or its eigenvalues). The goal of these filters, often referred to as frequency responses or transfer

functions, is to reduce or eliminate high-frequency noise in the graph signal. These functions

basically describe how a filter affects the input graph signal to produce the output graph signal. We

define a spectral modulation filter as follows:

hs(») =
1

(1 + s)»2 s»2
, (2.2)

where s * (0, 1) is a positive scaling parameter that allows for the modulation or adjustment of the

spectral characteristics, indicating its capability to control the filtering effect on different frequency

components of the graph signal. The filter hs is a rational polynomial function of the eigenvalues

of the normalized Laplacian matrix. It is a flexible-pass filter in the sense that it exhibits low-

pass characteristics, as it allows low-frequency components (corresponding to small eigenvalues)

to flexibly pass through with little attenuation, while attenuating high-frequency components (as-

sociated with large eigenvalues). As shown in Figure 2.1, the attenuation behavior of the filter is

determined by the scalar s, which serves as a tuning or modulation parameter. By adjusting s, we

can control the trade-off between preserving low-frequency structural information and reducing

high-frequency noise or variations in the graph signal. When s is large, the filter is less selective,

allowing a wider range of frequencies to pass through with less attenuation. As s decreases, the

filter becomes more selective and significantly attenuates higher frequencies, effectively filtering

out more of the high-frequency noise or variations in the graph signal.

Graph Filtering System. Applying the spectral modulation filter on the graph signal X * R
N×F

yields a filtered graph signal H given by

H = hs(L)X = ((1 + s)L2 sL2)21X, (2.3)

which can be rewritten as

((1 + s)L2 sL2)H = X, (2.4)

15

Spectral Modulation Filtering

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
»

0

5

10

15

20

25

h s
(»
)

s=0.2
s=0.5
s=0.7

Figure 2.1: Transfer function of the spectral modulation filter. Lower values of the scaling param-

eter make the filter attenuate high-frequency components more strongly.

or equivalently

H = (I2 (1 + s)L+ sL2)H+X

= (I2 sL)(I2 L)H+X.
(2.5)

Since L = I2 Â, the spectral modulation filter equation becomes

H = ((12 s)I+ sÂ)ÂH+X, (2.6)

which can be solved using, for instance, the fixed point iteration method [59], where H = ×(H)

with the function × defined by the right-hand side term of Eq. (2.6).

Fixed Point Iterative Solution. Fixed-point iteration is an iterative numerical method used to

find a fixed point of a given function [59]. The process involves repeatedly applying the function

to an initial guess or estimate and updating this estimate in each iteration until it converges to

the fixed point. For the spectral modulation filter equation H = ×(H), The fixed point iterative

solution is given by

H(t+1) = ((12 s)I+ sÂ)ÂH(t) +X, (2.7)

16

with some initial guess H(0), and t * N denotes the iteration number.

2.2.3

At the core of graph neural networks is the concept of feature propagation rule, which determines

how information is passed between nodes in a graph. It involves updating the current node features

by aggregating information from their immediate and high-order neighboring nodes, followed by

a non-linear activation function to produce an updated representation for the node. Inspired by the

fixed point iterative solution of the spectral modulation filter equation, we propose a fixed-point

graph convolutional network (Fix-GCN) with the following layer-wise update rule for node feature

propagation:

H(�+1) = Ã
(
((12 s)I+ sÂ)ÂH(�)W(�) +XW̃(�)

)
, (2.8)

where W(�) and W̃(�) are learnable weight matrices, Ã(·) is an element-wise activation function,

H(�) * R
N×F� is the input feature matrix of the �-th layer with F� feature maps for � = 0, . . . , L21.

The input of the first layer is the initial feature matrix H(0) = X. It is worth pointing out that the key

difference between Eq. (2.7) and Eq. (3.1) is that the latter defines a representation updating rule

for propagating node features layer-wise using trainable weight matrices for learning an efficient

representation of the graph, followed by an activation function to introduce non-linearity into the

network in a bid to enhance its expressive power.

The update rule of Fix-GCN is essentially comprised of three main components: (i) feature

propagation that combines the features of the 1- and 2-hop neighbors of nodes (i.e., it aggregates

information from immediate and high-order neighboring nodes), (ii) feature transformation that

applies learnable weight matrices to the node representations to learn an efficient representation

of the graph, and (iii) residual connection for ensuring that information from the initial feature

matrix is preserved. The initial residual connection used in the proposed model allows information

from the initial feature matrix to bypass the current layer and be directly added to the output of the

current layer. This helps preserve important information that may be lost during the aggregation

process, thereby improving the flow of information through the network. In other words, in addi-

tion to performing a second-order graph convolution, the update rule of Fix-GCN applies an initial

residual connection that reuses the initial node features. Note that the propagation operation or

matrix P = ((12 s)I+ sÂ)Â of the proposed GNN is a weighted combination of the normalized

adjacency matrix and its square. It allows Fix-GCN to capture information from nodes that are not

only directly connected (1-hop), but also incorporates information from the neighbors of the neigh-

bors (2-hop). The parameter s helps control the balance between the information from immediate

neighbors and the information from nodes that are at most two edges away in the graph. This is

17

Fixed-Point Iterative Graph Neural Network

particularly valuable for learning graph representations that capture more global information and

dependencies.

Connection to GCN. The hyper-parameter s in Fix-GCN provides control over the network’s

behavior. When s = 0, Fix-GCN reduces to the standard GCN with initial residual connections,

which basically decouples the transformations for the self-connections and the 1-hop neighbors,

essentially incorporating residual connections at the initial stage of the graph convolution process.

This process operates on the normalized adjacency matrix without self-connections. Similarly,

when s = 1, Fix-GCN corresponds to the second-order GCN with initial residual connections.

So, by varying the value of s between 0 and 1, we can smoothly control the behavior of Fix-GCN,

allowing it to capture different orders of information from the graph structure. Therefore, Fix-GCN

provides a flexible framework for adapting to various graph-based tasks and the level of emphasis

on local (first-order) and non-local (second-order) information in the graph structure.

Model Complexity. For simplicity, we assume the feature dimensions are the same across all

layers, i.e., F� = F for all �, with F � N . Multiplying the propagation matrix ((12 s)I+ sÂ)Â

with an embedding H(�) costs O(‖Â‖0F) in time, where ‖Â‖0 denotes the number of non-zero

entries of the sparse matrix Â (i.e., number of edges in the graph). Multiplying an embedding

with a weight matrix costs O(NF 2). Also, multiplying the initial feature matrix by the residual

connection weight matrix costs O(NF 2). Hence, the time complexity of an L-layer Fix-GCN is

O(L‖Â‖0F + LNF 2).

For memory complexity, an L-layer Fix-GCN requires O(LNF + LF 2) in memory, where

O(LNF) is for storing all embeddings and O(LF 2) is for storing all layer-wise weight matrices.

Therefore, our proposed Fix-GCN model has the same time and memory complexity as that of

GCN, albeit Fix-GCN takes into account both immediate and distant graph nodes for improved

learned node representations. It is important to note that there is no need to explicitly compute the

square of the normalized adjacency matrix in the Fix-GCN model. Instead, we perform right-to-

left multiplication of the normalized adjacency matrix with the embedding. This process avoids the

computational cost associated with matrix exponentiation and simplifies the computation, making

our model more efficient while achieving its objectives.

2.2.4

In order to demonstrate the numerical stability of the proposed Fix-GCN model, we start with a

useful result in matrix analysis, which states that the spectral radius of the sum of two commuting

matrices is bounded by the sum of the individual matrices.

18

Numerical Stability of Fix-GCN

Lemma 1. If two matrices M1 and M2 commute, i.e., M1M2 = M2M1, then

Ã(M1 +M2) f Ã(M1) + Ã(M2),

where Ã(·) denotes matrix spectral radius (i.e., largest absolute value of all eigenvalues).

Since the eigenvalues of the normalized Laplacian matrix L = I 2 Â lie in the interval [0, 2],

it follows that Ã(Â) f 1. Hence, we have the following result, which demonstrates the training

stability of the proposed model, with information smoothly propagating through the graph layers

without amplifying or dampening effects that could lead to instability.

Proposition 2. The update rule of Fix-GCN is numerically stable.

Proof. Recall that the propagation matrix of Fix-GCN is given by

P = ((12 s)I+ sÂ)Â = (12 s)Â+ sÂ2.

Since the matrices (12 s)Â and sÂ2 satisfy the assumptions of Lemma 1, we have

Ã((12 s)Â+ sÂ2) f Ã((12 s)Â) + Ã(sÂ2) f 1,

because both Ã(Â) and Ã(Â2) are bounded by 1. Hence, the spectral radius of the propagation

matrix is bounded by 1. Consequently, repeated layer-wise application of this propagation operator

is stable.

2.3

In this section, we conduct experimental evaluations of the proposed model, comparing it with

state-of-the-art methods. We begin by outlining the experimental setup, followed by providing

an overview of datasets, baseline methods and implementation details. Then, we present both

quantitative and qualitative results on benchmark datasets using various evaluation metrics. We

also conduct parameter sensitivity analysis on the significance of various components in our model

in an effort to provide valuable insight into the effectiveness of the model. The source code is

available at: https://github.com/Shakib-IO/Fix-GCN

2.3.1

Datasets. We assess the performance of our proposed method on five benchmark datasets:

GitHub [61], Cora-ML [62], and citation networks (Cora, CiteSeer, PubMed) [63]. Dataset statis-

tics are summarized in Table 2.1, where only the largest connected component is considered.

19

Experiments

Experimental Setup

Table 2.1: Summary statistics of benchmark graph datasets. We only consider the largest connected

component in these adversarial graphs.

Datasets #Nodes #Edges #Features #Classes

Cora 2,485 5,069 1,433 7

CiteSeer 2,110 3,668 3,703 6

Cora-ML 2,995 4,208 2,879 5

GitHub 3,150 71,310 4,005 2

PubMed 19,717 44,338 500 3

Baseline Methods. We evaluate the performance of our model against comparative GNN models

and state-of-the-art adversarial defense methods, including GCN [47], GAT [16], GCN-Jaccard [5],

GCN-SVD [17], RGCN [4], Pro-GNN [18], and Mid-GCN [25].

Implementation Details. All experiments are conducted on a Linux machine with a single

NVIDIA GeForce RTX 3070 GPU featuring 8GB of memory. For fair comparison, we run ex-

periments following the setup and default settings of the baselines, including the data split for

semi-supervised learning. For each dataset, we randomly assign 10% of the nodes to the labeled

training set, 10% of the nodes to the validation set, and the remaining 80% of the nodes to the test

set. We use PyTorch to implement our two-layer model with a hidden dimension of 64, and train

it for 200 epochs using the Adam optimizer [64] with a learning rate of 1e-2 and a weight decay

rate of 5e-4. The default dropout ratio is 0.6 for all datasets, and the filter hyperparameter s = 0.2

is determined via grid search.

2.3.2

We evaluate the node classification performance of Fix-GCN against various types of adversarial

attacks, including non-targeted attacks, targeted attacks, random attacks, and feature attacks.

Robustness Against Non-targeted Attacks. The goal of non-targeted attacks is to degrade the

overall performance of the mode. We adopt Mettack [3] as a non-targeted attack to perturb the

graph structure with the aim of compromising the model’s performance in node classification.

Specifically, we evaluate the robustness of our model against non-targeted adversarial attacks us-

ing different perturbation rates, spanning from 0% to 25% in increments of 5%. The node clas-

sification results of Fix-GCN and baseline methods are summarized in Table 2.2, where both the

average accuracy and standard deviation are reported over 10 runs. The best results are in bold

and the second best ones are underlined. The results presented in Table 2.2 show that, for the vast

majority of cases, our model consistently surpasses all baselines across all datasets, with notable

20

Results and Analysis

performance improvements observed, especially at higher perturbation rates. At 25% perturbation

rate, our Fix-GCN model yields relative improvements of 6.4%, 1.98%, 2.97% and 11.73% over

Mid-GCN on Cora, CiteSeer, GitHub and PubMed, respectively, with the highest relative improve-

ment of 13.23% achieved on Cora-ML. Interestingly, our model outperforms Mid-GCN under all

perturbation rates on the dense GitHub dataset, which has the highest number of edges among the

five graph benchmarks.

Table 2.2: Node classification performance of Fix-GCN and baselines under non-targeted attacks

(Mettack) with different perturbation rates P(%). We report the average accuracy over 10 runs,

along with the corresponding standard deviation. The best results are in bold and the second best

ones are underlined.

Dataset P(%) GCN GAT GCN-Jaccard GCN-SVD RGCN Pro-GNN Mid-GCN Fix-GCN

C
o
ra

0 83.50±0.44 83.97±0.69 82.05±0.51 80.63±0.45 83.09±0.44 85.39±0.81 84.61±0.46 84.80±0.33

5 76.55±0.79 80.44±0.74 79.13±0.59 78.93±0.53 77.42±0.39 82.78±0.39 82.94±0.46 82.19±0.27

10 70.39±1.28 75.61±0.59 75.16±0.76 71.47±0.83 72.22±0.38 79.03±0.59 80.14±0.86 82.64±0.58

15 65.10±0.71 69.78±1.28 71.03±0.64 66.69±1.18 66.82±0.39 76.40±1.27 77.77±0.75 80.58±0.81

20 59.56±0.92 59.54±0.92 65.71±0.89 58.94±1.13 59.27±0.37 73.32±1.56 76.58±0.29 79.27±0.55

25 47.53±1.96 54.78±0.74 60.82±1.08 52.06±1.19 50.51±0.78 69.72±1.69 72.89±0.81 77.56±0.94

C
it

eS
ee

r

0 71.96±0.55 73.26±0.83 72.10±0.63 70.65±0.32 71.20±0.83 73.28±0.69 74.17±0.28 73.68±0.31

5 70.88±0.62 72.89±0.83 70.51±0.97 68.84±0.72 70.50±0.43 73.09±0.34 74.31±0.42 74.03±0.22

10 67.55±0.89 70.63±0.48 69.54±0.56 68.87±0.62 67.71±0.30 72.51±0.75 73.59±0.29 74.27±0.31

15 64.52±1.11 69.02±1.09 65.95±0.94 63.26±0.96 65.69±0.37 72.03±1.11 73.69±0.29 73.82±1.02

20 62.03±3.49 61.04±1.52 59.30±1.40 58.55±1.09 62.49±1.22 70.02±2.28 71.51±0.83 72.80±0.47

25 56.94±2.09 61.85±1.12 59.80±1.47 57.18±1.87 55.35±0.66 68.95±2.78 69.12±0.72 70.49±0.69

C
o
ra

-M
L

0 85.85±0.30 83.45±1.46 80.22±1.54 83.87±1.53 82.39±1.71 85.38±1.14 86.56±0.28 86.78±0.56

5 79.76±1.44 79.11±1.69 79.75±1.78 80.29±1.89 80.13±1.91 80.38±1.98 80.20±1.68 80.07±0.66

10 74.64±0.67 79.36±1.66 74.33±1.79 79.08±1.73 74.55±1.91 79.48±1.23 79.30±0.96 79.17±0.82

15 53.74±1.09 61.22±1.44 57.38±1.09 74.95±1.58 55.42±1.25 53.60±1.18 73.32±0.66 76.95±1.42

20 45.24±1.88 52.72±1.29 47.15±1.09 47.95±1.76 47.68±1.32 47.37±1.34 60.92±1.43 75.17±1.24

25 48.80±1.91 54.26±1.98 49.42±1.56 56.85±1.99 50.62±1.01 50.52±1.12 67.18±1.35 76.09±0.67

G
it

H
u
b

0 72.92±0.13 72.81±0.12 72.93±0.56 73.31±0.15 73.16±0.19 73.34±0.34 79.51±0.67 81.39±0.23

5 72.81±0.07 72.43±1.13 71.85±2.18 72.91±0.12 73.09±0.31 72.89±0.07 81.87±1.46 82.59±0.42

10 72.61±0.57 72.97±0.13 72.63±0.98 72.78±0.09 73.06±0.16 72.75±0.18 81.23±1.67 82.45±0.35

15 72.97±0.11 72.97±0.06 72.79±0.51 72.97±1.13 73.22±0.21 72.98±0.09 80.48±0.25 82.75±0.26

20 72.11±2.27 70.42±2.12 72.24±1.96 72.47±0.14 73.10±0.21 72.98±0.13 81.08±0.96 82.62±0.28

25 72.74±0.41 72.97±1.16 72.32±1.73 72.14±0.07 72.91±0.24 72.56±0.21 80.37±1.51 82.76±0.30

P
u
b
M

ed

0 87.19±0.09 83.73±0.40 87.06±0.09 83.44±0.21 86.16±0.18 87.33±0.18 85.67±0.37 88.26±0.27

5 83.09±0.13 78.00±0.44 86.39±0.06 83.41±0.15 81.08±0.20 87.25±0.09 83.48±0.10 87.33±0.38

10 81.21±0.09 74.93±0.38 85.70±0.07 83.27±0.21 77.51±0.27 87.25±0.09 81.43±0.43 86.77±0.25

15 78.66±0.12 71.13±0.51 84.76±0.08 83.10±0.18 73.91±0.25 87.20±0.09 79.74±0.14 86.33±0.12

20 77.35±0.19 68.21±0.96 83.01±0.22 83.88±0.05 71.18±0.31 87.15±0.15 78.69±0.32 87.28±0.21

25 75.50±0.17 65.41±0.77 83.66±0.06 82.72±0.18 67.95±0.15 86.76±0.19 77.81±0.34 86.94±0.16

Robustness Against Targeted Adversarial Attacks. Unlike non-targeted attacks, which de-

grade the overall performance of the model, targeted attacks aim to cause the model to produce

incorrect predictions for specific nodes. For instance, a targeted attack might involve perturbing

the graph structure in a way that causes the model to misclassify a particular node as belonging

to a specific class, even if it does not naturally belong to that class. We adopt Nettack [2] as a

21

targeted adversarial attack method, which iteratively perturb the graph structure by removing or

adding edges in a way that maximally changes the predictions of the GNN model for the target

nodes. For this attack, consistent with prior work [4, 18], we change the number of perturbations

made on each targeted node from 1 to 5, incrementally increasing by 1. Nodes in the test set with a

degree exceeding 10 are designated as target nodes. Since the GitHub dataset exhibits a relatively

high level of density, we opt to select only 8% of the nodes for attacks. Similarly, for the PubMed

dataset, we only use 10% of the nodes in our analysis to prevent potential lengthy execution times

associated with Nettack. The defense performance results (i.e., multi-class classification accuracy)

against targeted attacks are depicted in Figure 2.2, 2.3, which shows that our model consistently

outperforms the baseline methods under the varying numbers of perturbations on the target nodes

across all the datasets. The main findings from Figure 2.2, 2.3 are summarized as follows:

• When compared to the strongest baselines, Mid-GCN and Pro-GNN, our Fix-GCN model

consistently achieves superior performance on the Cora dataset across all levels of pertur-

bations. Similarly, on the CiteSeer dataset, Fix-GCN outperforms Mid-GCN in most cases,

especially as the number of perturbations increases. Moreover, it is noteworthy that GCN-

SVD, despite being tailored for Nettack, exhibits a significant drop in performance, particu-

larly at higher levels of perturbations.

• On the GitHub dataset, known for its denser nature, our model, alongside the strongest

baselines, Mid-GCN and Pro-GNN, demonstrates consistent performance across all levels

of perturbations. Also, GCN-SVD maintains a stable performance due to its specific de-

sign for Nettack. A similar trend is observed on the PubMed dataset, albeit with a slight

decline in performance, particularly at higher levels of perturbations. Interestingly, GCN-

Jaccard demonstrates superior performance at higher levels of perturbations, showcasing the

effectiveness of its two-stage approach. However, it is important to note that this approach

involves preprocessing the input graph by dropping dissimilar edges based on the Jaccard

similarity metric before training GCN on the processed graph. Notably, without this prepro-

cessing step, the GCN baseline experiences a significant drop in performance as the number

of perturbations increases.

• By combining the strengths of a robust aggregation mechanism that captures information

from higher-order neighbors of graph nodes and a flexible-pass filtering approach that pre-

serves low-frequency structural information in the graph signal, our Fix-GCN model outper-

forms all the baselines in most cases.

22

(a) Cora

(b) CiteSeer

Figure 2.2: Node classification accuracy on Cora and CiteSeer dataset under targeted attacks (Net-

tack) with varying numbers of perturbations on the target nodes {1, 2, 3, 4, 5}.

23

(a) Github

(b) PubMed

Figure 2.3: Node classification accuracy on Github and PubMed dataset under targeted attacks

(Nettack) with varying numbers of perturbations on the target nodes {1, 2, 3, 4, 5}.

24

These results underscore the robustness and effectiveness of our Fix-GCN model in defending

against adversarial attacks across various settings and datasets.

Robustness Against Random Attacks. The objective of random attacks is to introduce random-

ness by adding edges to the input graph, akin to injecting random noise into the clean graph.

In our experiment, we assess the performance of our Fix-GCN model and baseline methods

under varying ratios of random attack, ranging from 0% to 100% of the number of edges in the

true adjacency matrix, with increments of 20%. The results, reported in Figure 2.4, show that

Fix-GCN, along with Mid-GCN and Pro-GNN, maintains relatively stable performance across

all perturbation rates on Cora and CiteSeer datasets. Notably, Fix-GCN exhibits superior results

on most perturbation rates for both datasets, except at the highest 100% rate. In contrast, the

other comparative methods experience significant performance degradation as the perturbation rate

increases.

Robustness Against Feature Attacks. We assess the influence of random attacks on the efficacy

of our Fix-GCN model by randomly perturbing the initial node feature matrix. Besides structural

alterations to graphs, feature attacks represent a crucial aspect of adversarial attacks since node

features are extensively leveraged by GCN-based methods in their message-passing mechanisms.

Given that the features of Cora, CiteSeer, and GitHub datasets are exclusively comprised of 0s

and 1s, we introduce feature attacks by randomly flipping the 0/1 values [58]. For instance, the

Cora and CiteSeer graphs are composed of nodes representing scientific publications and edges

representing citation links between these publications. Each node is described by a binary feature

vector indicating the presence or absence of words from a dictionary. The results, as illustrated

in Figure 2.5, demonstrate that Fix-GCN consistently outperforms all baseline methods across all

perturbation rates, particularly at higher rates, on both datasets. Interestingly, both Mid-GCN and

Pro-GNN experience significant performance drops at higher levels of perturbation rates. A more

pronounced decline in performance is observed for GCN-Jaccard on both datasets. In contrast, our

Fix-GCN model demonstrates robust defense against feature attacks. This strong resilience against

such attacks is largely attributed to the fact that Fix-GCN integrates an initial residual connection

in its feature propagation scheme by design. The initial residual connection in the proposed model

serves the crucial function of preserving information from the initial feature matrix throughout the

aggregation process. By allowing the initial features to directly contribute to the output of each

layer, the residual connection ensures that important information is retained, even in the face of

adversarial perturbations targeting the node features. In essence, the initial residual connection

acts as a safeguard against feature manipulation, enhancing the model’s resilience to adversarial

attacks on node features.

25

(a) Cora

(b) CiteSeer

Figure 2.4: Node classification accuracy under random attacks with varying perturbation rates.

Robustness Against Evasion Attacks. The objective of evasion attacks is to manipulate the

model predictions by making small,

26

(a) Cora

(b) CiteSeer

Figure 2.5: Node classification accuracy under feature attacks with different perturbation rates.

often imperceptible changes to the graph structure during the testing phase. To assess the vulner-

ability of our model to evasion attacks, we employ a variant of the disconnect internally, connect

27

(a) Cora

(b) CiteSeer

Figure 2.6: Node classification accuracy of different models under evasion attacks (DICE) with

varying perturbation rates.

28

externally (DICE) method [24,65], which is a white box attack strategy. This method involves ran-

domly connecting nodes with different labels or dropping edges between nodes that share the same

label. In this experiment, we vary the perturbation rate from 0% to 25%, with a step size of 5%,

to evaluate the performance of our Fix-GCN model against evasion attacks. The results depicted

in Figure 2.6 illustrate that Fix-GCN demonstrates robustness against evasion attacks, particularly

at higher perturbation rates, where it outperforms Mid-GCN by a significant margin across both

datasets. Furthermore, the performance of GAT and GCN-SVD drops rapidly as the perturbation

rate increases, highlighting the effectiveness of Fix-GCN in defending against evasion attacks.

Parameter Sensitivity Analysis. We study the performance variation for our model on the three

citation networks with respect to the spectral modulation filtering parameter s. We vary s from

0.1 to 0.9, and the results are presented in Figure 2.7 using Mettack as an adversarial attack with

a 5% perturbation rate. It is evident that the accuracy remains relatively stable when s fluctuates

between 0.1 and 0.3, which correspond to low-pass filtering. The best performance is achieved

when s = 0.2, which is the value that we set in our experiments.

Figure 2.7: Node classification accuracy on citation networks (Cora, CiteSeer, PubMed) under

Mettack with a 5% perturbation rate using various values of the spectral modulation filtering pa-

rameter s.

29

2.4

In this section, we outline the merits of the proposed Fix-GCN model in three key aspects:

• Flexibility. By leveraging a flexible-pass filter that selectively attenuates high-frequency

components while preserving low-frequency structural information in the graph signal, our

Fix-GCN model is able to effectively mitigate the impact of adversarial perturbations. More-

over, capturing information from higher-order neighbors reduces the susceptibility of our

model to direct perturbations on 1-hop neighbors of target nodes. Adversarial attacks that

directly manipulate the immediate neighbors of target nodes can significantly impact the

model’s performance. By incorporating information from higher-order neighbors, Fix-GCN

can mitigate the effects of such direct perturbations.

• Robustness. Fix-GCN’s combination of selective filtering, higher-order information capture,

initial residual connection, and stable performance makes it robust against various forms of

adversarial attacks. In particular, the ability of our model to capture information from higher-

order neighbors adds an additional layer of defense against adversarial attacks, enhancing the

robustness of Fix-GCN in real-world scenarios where targeted perturbations on immediate

neighbors may occur frequently.

• Efficiency. The time and memory complexity of Fix-GCN is on the same order as that of

the standard GCN despite considering both immediate and distant graph nodes for improved

node representations. This computational efficiency is achieved without the need for explic-

itly computing the square of the normalized adjacency matrix, as Fix-GCN utilizes right-to-

left matrix multiplication to compute its second-order propagation matrix. This ensures that

our model maintains practicality and scalability for real-world applications, as it can handle

large-scale datasets efficiently without significantly increasing computational overhead.

While our model demonstrates robust performance against various adversarial attacks, particularly

at higher perturbation levels, its robustness may be further improved by designing an adaptive

filtering mechanism that dynamically adjusts the filter parameters based on the characteristics of

the input graph and the severity of adversarial perturbations. This adaptive approach could enhance

the model’s ability to adapt to different attack strategies and varying levels of perturbations.

30

Discussion

C
H

A
P

T
E

R

3

In this chapter, we introduce our approach for unsupervised graph anomaly detection. Standard

graph convolutional networks (GCNs) mainly focus on immediate neighbors, which might not

capture the broader context of a node within the graph, thereby resulting in missed detections of

structural or contextual anomalies. In this chapter, we introduce an unsupervised graph encoder-

decoder model for anomaly detection in attributed graphs. In the encoding stage, we design a

fixed-point GCN encoder that allows for effective aggregation of information from higher-order

neighborhoods, improving the encoder’s ability to learn from the global structure of the graph

while maintaining computational efficiency. Unlike existing GCN-based methods, the proposed

encoder provides theoretical guarantees of stability due to its propagation matrix design, ensuring

numerically stable feature updates. In the decoding stage, we employ a structure reconstruction

decoder to predict the presence or absence of edges between nodes in the graph based on the latent

representation obtained from the encoder, and an attribute reconstruction decoder to recover the

original node features based on the graph structure and the learned latent representation. We con-

duct comprehensive empirical evaluations of our proposed encoder-decoder model on six bench-

mark datasets using several evaluation metrics. The results demonstrate the superiority of our

model over competing anomaly detection approaches, highlighting its effectiveness in identifying

anomalous nodes in attributed networks.

31

Graph Encoder-Decoder Model for Robust Anomaly

Detection

3.1

Graph Anomaly Detection (GAD) is crucial for various real-world applications, including detect-

ing social network spammers [66] [67], [68], [69], identifying intrusions in cybersecurity sys-

tems [70], and uncovering financial fraudsters [71], [72], [73]. The objective is to identify graph

nodes exhibiting unusual or unexpected behavior based on their structural or feature information,

or a combination of both. Detecting these anomalous nodes is challenging because anomalies

are rare occurrences, and only a tiny fraction of graph nodes might be anomalous. Moreover,

GAD poses unique challenges that set it apart from anomaly detection methods for tabular and

time-series data [74], [75]. Unlike these traditional data formats, graph data is often multi-modal,

encompassing information from both node/edge attributes and topological structures. This inher-

ent complexity makes it difficult to establish a unified definition of anomalies for graph-structured

data and to devise a principled algorithm for detecting them.

Graph-structured data often exhibits multi-modality, which adds complexity to the task of

anomaly detection. The most common categories of anomalies are contextual anomalies and struc-

tural anomalies. Contextual anomalies refer to nodes whose attributes significantly deviate from

those of regular nodes, such as spammers or fake account holders in social media networks. These

anomalies are characterized by unusual or unexpected attribute values that differ from the typi-

cal patterns observed in the data [6]. On the other hand, structural anomalies refer to nodes with

connectivity patterns that are markedly different from other nodes. Examples include a group of

malicious sellers exchanging fake reviews with super dense connections or bots retweeting the

same tweet, forming a densely connected co-retweet network [76]. These anomalies manifest in

the form of abnormal structural patterns, such as unusual edge densities or unexpected connectivity

patterns within the graph [77]. Figure 3.1 depicts these two different type anomalies.

In recent years, several approaches have been proposed to tackle the daunting task of anomaly

detection. One of the earliest approaches is the clustering method [27,78] [79]. Some of the cluster-

ing techniques include distance-based methods like k-Means [80], which groups data points based

on their distance from cluster centroids, grid-based [81] techniques that divide the data space into

a finite number of cells and perform clustering based on the cell density, and hierarchical structure

methods [82] that create a hierarchical decomposition of the data, where clusters are formed by

merging or splitting clusters in a tree-like structure. Another approach aims to spot node and edge

anomalies based on graph communities, relying on matrix factorization techniques [83, 84]. How-

ever, these methods have several drawbacks. Many clustering algorithms require setting various

parameters (e.g., number of clusters, distance thresholds), which can significantly impact the qual-

ity of the results. Finding optimal parameter values is often non-trivial and may require domain

32

Introduction

Figure 3.1: Contextual anomalies are identified based on attribute deviations relative to local neigh-

borhoods, while structural anomalies are identified based on deviations in connectivity patterns.

expertise. Additionally, cluster-based methods are better suited for identifying global anomalies

but may struggle to detect local anomalies or anomalies within dense clusters.

Another approach to graph anomaly detection is the multi-view method [37], [85], [30], [31],

where different views or perspectives of the graph data are fed into the network, enabling it to

detect anomalies by leveraging the diverse information sources. Specifically, some works regard

the original input graph as the first view and generate a second view through graph augmentation

techniques with edge modifications [38]. While innovative in handling complex data from mul-

tiple perspectives, multi-view methods face several challenges. One significant issue is that the

effectiveness of multi-view anomaly detection heavily depends on the relevance and quality of the

individual views. If one or more views contain noisy, irrelevant, or misleading information, it can

degrade the performance of the entire model [86].

The lack of labeled data poses a significant challenge in anomaly detection. Identifying anoma-

lies requires a sufficient amount of labeled data, which is a highly labor-intensive and costly

task. To address this limitation, researchers have explored various approaches. One approach

is to design new Graph Neural Network (GNN) architectures that enable network anomaly de-

tection with limited labeled data [87]. Another technique involves utilizing data augmentation

methods to generate pseudo-labels, thereby increasing the quantity of anomalous samples [88].

Furthermore, to handle the label scarcity issue, some works have employed generative-based ap-

proaches [89] [44] [90] [91] [32]. The key idea behind these methods is to generate outlier nodes

that assimilate anomaly nodes in both local structure and node representations, providing effec-

tive negative node samples for training [92]. While these few-shot and generative-based methods

33

offer innovative solutions, they often focus on local neighborhoods or subgraphs, making it chal-

lenging to capture global topological properties and long-range dependencies in graphs. However,

capturing these global characteristics is crucial for effective anomaly detection, as anomalies can

manifest in both local and global patterns [93].

Another promising approach in graph anomaly detection has emerged from the domain of self-

supervised learning [39]. The reason behind the effectiveness of these methods lies in their ability

to learn informative knowledge without relying on manual labels. Researchers have applied self-

supervised contrastive learning techniques for anomaly detection tasks [94] [40] [95]. Contrastive

learning primarily focuses on studying the matching of instance pairs, which offers helpful in-

formation for anomaly detection. For normal instances in graphs, there is a potential matching

pattern between each node and its neighbours, aligning with the homophily hypothesis. In con-

trast, anomalies often manifest when there is an inconsistency or mismatch between attributes and

structure. However, the performance of contrastive learning heavily relies on the choice of graph

augmentation techniques. Improper augmentations may fail to capture meaningful structural in-

formation or introduce noise, degrading the learned representations [96].

In recent years, dynamic graphs have gained significant importance in various real-world ap-

plications [97]. Consequently, researchers have focused on developing techniques for detect-

ing anomalies in time-changing graphs using transformers [98] [99] [100] [101]. These ap-

proaches leverage the powerful self-attention mechanisms of transformers to capture the tempo-

ral and structural changes within the graph data. In addition to transformer-based approaches,

reinforcement learning techniques have also been recently applied to graph anomaly detection

tasks [102] [103] [104] [105] [106]. These algorithms can potentially learn effective strategies for

exploring and identifying anomalous patterns within graph data by iteratively interacting with the

environment and receiving feedback.

Recent developments in graph neural networks (GNNs) have empowered the unified modeling

of attributes and topology, leading to significant advancements in graph anomaly detection. An-

other popular approach is the autoencoder-based method [107] [41] [108]. This approach employs

an encoder and decoder, where the encoder maps the graph into a lower-dimensional embedding

space, and the decoder attempts to reconstruct the entire input graph from these embeddings. The

loss is calculated based on the reconstruction error of node attributes and structural information.

Autoencoder models built upon GNNs can effectively combine node attributes and graph structure,

enabling the detection of anomalies by analyzing the reconstruction loss of node attributes. Most

encoder-based approaches utilize Graph Convolutional Network (GCN) [109], Graph Attention

Network (GAT) [110], or GraphSage [111] as the encoder and decoder components. However, au-

34

toencoder methods for graph anomaly detection face several challenges and limitations. (1) graph

autoencoders need to input and reconstruct the full networked data, which becomes infeasible due

to the explosive memory requirements when dealing with large networks. (2) One limitation of

using GCNs as encoders and decoders is the over-smoothing issue, where the representations of

graph nodes from different classes become indistinguishable when stacking multiple layers, mak-

ing it difficult to detect anomalies [112]. (3) Most current GCN models are shallow, achieving

their best performance with 2-layer models. Such shallow architectures limit their ability to extract

information from high-order neighbors, which is crucial for effective anomaly detection [113].

Furthermore, encoder-decoder models often focus on reconstructing local neighborhoods or sub-

graphs, making it challenging to capture global topological properties and long-range dependencies

in the graph, which are crucial for effective anomaly detection. (4) The encoding and decoding

processes can lead to information loss, especially when dealing with high-dimensional node fea-

tures or complex graph structures, potentially degrading the anomaly detection performance [114].

While GCN-based approaches have shown promising results, addressing their limitations is crucial

for developing more robust and effective graph anomaly detection models. Anomalies in graphs

can manifest in various forms, such as unusual nodes whose importance are only apparent when

considering the broader context of the graph. For example, a node might appear normal within

its immediate neighborhood but exhibit anomalous behavior when considering its role in global

graph properties. Since GCNs only consider immediate neighbors, they might fail to detect these

anomalies because they do not have enough context to understand the node’s global significance

or its role in the broader graph structure. With their focus on immediate neighbors, GCNs provide

limited context that might miss broader structural or contextual anomalies. For structural anoma-

lies, a node might be part of a community structure that only becomes apparent when looking at the

graph from a larger perspective. For contextual anomalies, a node’s attributes might seem normal

locally but deviate significantly when compared to nodes that are further away but share similar

characteristics. For instance, in a social network, a user might have normal interactions with their

immediate friends but unusual interactions when considering their position in the overall network.

In this chapter, we introduce a graph encoder-decoder model for unsupervised anomaly detection

in attributed graphs. Our model leverages a fixed-point graph convolutional network (Fix-GCN) in

the encoding phase to capture intricate structural and attribute information from the graph. The en-

coder compresses the graph into a latent representation, which succinctly encapsulates the essential

features and relationships within the graph data. In the decoding phase, our model employs a struc-

ture reconstruction decoder to reconstruct the graph structure from the latent representation, along

with a graph deconvolutional network to restore the node attributes from the same latent representa-

35

tion. This reconstruction process highlights discrepancies between the original and reconstructed

graphs, enabling the detection of anomalies. By comparing the original graph’s attributes and

structure with the reconstructed counterparts, our model can effectively identify anomalous nodes

in the graph. In addition, our approach harnesses the power of unsupervised learning, making it

particularly suitable for real-world applications where labeled anomalies are scarce or unavailable.

The main contributions in this chapter can be summarized as follows:

• We propose an encoder-decoder model for anomaly detection in attributed graphs. The en-

coder incorporates an efficient aggregation mechanism to propagate higher-order neighbor-

hood information across graph nodes. The decoder leverages a structure reconstruction de-

coder and a graph deconvolutional network.

• We incorporate spectral graph wavelet denoising to mitigate noise during the decoding pro-

cess, preserving the essential information of the graph.

• We demonstrate the effectiveness of the proposed model through extensive experiments on

six benchmark datasets, showcasing superior performance in comparison with existing graph

anomaly detection methods.

The rest of this chapter is organized as follows. Section 3.2, we delve into the methodolog-

ical details of our proposed approach, outlining the key components employed to effectively de-

tect anomalies in graph-structured data. Section 3.3 presents the experimental evaluation of our

encoder-decode model. We perform extensive experiments on various datasets, assessing the ef-

fectiveness of our model in comparison with strong baseline methods.

3.2

In this section, we introduce a graph encoder-decoder network for unsupervised anomaly detection.

The encoder transforms the input attributed graph into a low-dimensional latent representation

using graph convolutional layers to aggregate information from first- and second-order neighbors.

The decoder reconstructs the node features and the graph structure from this latent representation

using structure and attribute reconstruction decoders. The quality of this reconstruction is crucial

for detecting anomalies, as discrepancies between the original graph and the reconstructed graph

can indicate anomalies.

Basic Notions. Let G = (V , E ,X) be an attributed graph, where V = {1, . . . , N} is the set of N

nodes, E ¦ V × V is the set of edges, and X = (x1, ...,xN)
ᵀ

an N × F feature matrix of node

36

Proposed Method

attributes (i.e., xi is an F -dimensional row vector for node i). We denote by A an N×N adjacency

matrix whose (i, j)-th entry is equal to 1 if i and j are neighboring nodes, and 0 otherwise. We also

denote by L = I2 Ã the normalized Laplacian matrix, where Ã = D
2

1

2AD
2

1

2 is the normalized

adjacency matrix, D = diag(A1) is the diagonal degree matrix, and 1 is an N -dimensional vector

of all ones.

Problem Statement. The goal of unsupervised node anomaly detection in an attributed graph is

to identify anomalous nodes in a graph without the use of labeled training data. In other words,

there is no available ground truth information that indicates which nodes are anomalous and which

ones are not. Given an attributed graph G = (V , E ,X), the objective of unsupervised node anomaly

detection is to learn a scoring function � : V ³ R that assigns an anomaly score to each node in

the graph. Once anomaly scores are computed, the r nodes with the highest anomaly scores are

selected based on a user-defined value of r. These selected nodes are then identified as anomalies.

In other words, nodes with high anomaly scores are considered anomalous, while nodes with lower

scores are deemed normal.

Approach Overview. The overall framework of our proposed anomaly detection approach is

illustrated in Figure 3.2. We design an effective graph encoder-decoder model capable of trans-

forming an input attributed graph G with an adjacency matrix A and a feature matrix X, into a

latent representation Z using a fixed-point graph convolutional network (Fix-GCN) as an encoder.

Then, the graph is reconstructed using a decoder comprised of two primary components: a struc-

ture reconstruction decoder and an attribute reconstruction decoder. Each of these components

addresses a specific aspect of the graph reconstruction process, ensuring a comprehensive recon-

struction of the graph’s structural and feature information. By computing the inner products of the

latent node representations generated by the encoder and applying a sigmoid activation function,

the structure reconstruction decoder yields the reconstructed adjacency matrix Â, which represents

the predicted existence of edges between nodes, thereby approximating the original graph struc-

ture. Complementing the structure reconstruction decoder, the attribute reconstruction decoder

focuses on reconstructing the node attributes using a graph deconvolutional network (GDN). This

component essentially tries to reverse the convolutional transformations applied by the Fix-GCN

encoder, yielding the reconstructed node feature matrix X̂ from the latent representation. The

GDN decoder employs a deconvolution operation, which can be interpreted as a graph diffusion

process. This process spreads the convolutional features back to their original nodes, taking into

account the graph’s topology. To mitigate the potential introduction of noise during the decon-

volution process, the GDN decoder incorporates spectral graph wavelet denoising. This technique

leverages graph signal processing principles to remove high-frequency noise, preserving the essen-

37

Figure 3.2: Overview of the proposed graph encoder-decoder network architecture for anomaly

detection in attributed graphs. In the encoding stage, Fix-GCN is used as an encoder to generate

a latent representation. The decoding stage employs two specialized decoders: a structure recon-

struction decoder and a graph deconvolutional network decoder to reconstruct the graph structure

and the node attributes, respectively, from the latent representation obtained during the encoding

phase.

tial low-frequency components that carry the primary information. By combining the latent node

representations with the original adjacency matrix and applying the deconvolution operation, the

GDN decoder reconstructs the node feature matrix.

3.2.1

In the encoding stage, we employ Fix-GCN with normalization as an encoder, which takes as input

an adjacency matrix and a node feature matrix, and produces a latent representation of the graph

that captures its structural and feature information by performing convolutions on the graph and

aggregating information from first and second-order neighboring nodes.

Fix-GCN Encoder. The layer-wise propagation rule of Fix-GCN is given by

H
(�+1) = Ã

(
PsH

(�)
W

(�) +XW̃
(�)
)
, (3.1)

where Ps = ((12s)I+sÃ)Ã is the propagation matrix, s * (0, 1) is a positive scaling parameter,

W
(�) and W̃

(�) are learnable weight matrices, Ã(·) is an element-wise activation function, and

H
(�) * R

N×F� is the input feature matrix of the �-th layer with F� feature maps for � = 0, . . . , L21.

The input of the first layer is the initial feature matrix H
(0) = X.

Since Ã = D
2

1

2AD
2

1

2 , applying the normalization trick to the matrix (1 2 s)I + sÃ yields a

new propagation matrix P̂s given by

P̂s = D
2

1

2

s AsD
2

1

2

s Ã, (3.2)

where As = (1 2 s)I + sA and Ds = (1 2 s)I + sD. By normalizing the propagation matrix,

Fix-GCN ensures that information from immediate and high-order neighboring nodes is integrated

38

Encoder

uniformly in the graph and across layers, enabling the encoder to learn effective representations

that capture both local and global graph characteristics. This integration is crucial for anomaly

detection tasks, where anomalies often manifest as irregularities or unexpected patterns in how

nodes interact within the graph structure. Normalization helps in robustly aggregating features,

thereby enhancing the model’s ability to detect subtle deviations that might indicate anomalies.

Hence, the layer-wise propagation rule of Fix-GCN with normalization is given by

H
(�+1) = Ã

(
P̂sH

(�)
W

(�) +XW̃
(�)
)
. (3.3)

The update rule of Fix-GCN is essentially comprised of three main components: (i) feature

propagation that combines the features of the 1- and 2-hop neighbors of nodes (i.e., it aggregates

information from immediate and high-order neighboring nodes), (ii) feature transformation that

applies learnable weight matrices to the node representations to learn an efficient representation

of the graph, and (iii) residual connection for ensuring that information from the initial feature

matrix is preserved. The initial residual connection used in the proposed model allows information

from the initial feature matrix to bypass the current layer and be directly added to the output of the

current layer. This helps preserve important information that may be lost during the aggregation

process, thereby improving the flow of information through the network. The parameter s helps

control the balance between the information from immediate neighbors and the information from

nodes that are at most two edges away in the graph. This is particularly valuable for learning

graph representations that capture more global information and dependencies. The final output

node embeddings are given by an N × P feature matrix Z = H
(L), where P is the embedding

dimension at the final network layer. This learned low-dimensional latent representation captures

the structural and semantic similarities of the graph nodes.

3.2.2 Decoder

In the decoding stage, the decoder attempts to reconstruct the original graph structure and nodal

features from the latent representation generated by the encoder. The decoder is composed of two

primary components: a structure reconstruction decoder and an attribute reconstruction decoder.

Structure Reconstruction Decoder. The aim of this decoder is to reconstruct the original graph

structure using the latent representation Z obtained from the Fix-GCN encoder. Each row zi of Z

corresponds to a latent representation of node i in the graph. We reconstruct the adjacency matrix

Â as follows:

Â = Ã(ZZ
ᵀ

), (3.4)

39

where Ã(·) is the sigmoid activation function. The term ZZ
ᵀ

computes the inner product between

all pairs of node representations. The element at position (i, j) in the resulting matrix represents the

similarity between the latent representations zi and zj of nodes i and j. This similarity is intended

to reflect the likelihood of an edge existing between nodes i and j. The sigmoid function is applied

element-wise to the resulting matrix, squashing the values to be between 0 and 1, which can be

interpreted as probabilities. In this context, Ã(ZZᵀ) represents the probability of the presence

of edges between nodes in the graph. In other words, the (i, j)-th element of the reconstructed

adjacency matrix Â represents the predicted probability that there is an edge between nodes i and

j in the original graph.

Attribute Reconstruction Decoder. Given the adjacency matrix A and the latent representation

Z, we employ a graph deconvolutional network (GDN) [108] as a decoder to reconstruct the node

feature matrix of the original graph as follows:

X̂ = GDN(A,Z). (3.5)

The deconvolution process can be thought of as an inverse operation to graph convolution, with the

aim of recovering the original node features from the compressed latent representation generated

by the encoder. In the context of anomaly detection, GDN helps identify anomalies by reconstruct-

ing the feature matrix and comparing it with the original. Discrepancies between the original and

reconstructed attributes can indicate the presence of anomalies.

The key idea behind the GDN decoder is to use a learnable deconvolution operation tries to re-

verse the convolutional transformation applied by the encoder. We apply a deconvolution operation

by taking the adjacency matrix A and latent node representation Z as input for the GDN decoder,

yielding a reconstructed node feature matrix H * R
N×F given by

H = Ã((I+ L)ZW), (3.6)

where L is the normalized Laplacian matrix, and W * R
P×F is a learnable weight matrix. The

deconvolution operation can be seen as a graph diffusion process that spreads the convolutional

features back to their original locations, while taking into account the underlying graph structure.

However, applying the inverse operation of the graph convolution may introduce undesirable noise

into the output graph. This issue can be remedied using spectral graph wavelet denoising [115], a

graph signal processing technique that aims to remove noise from a graph signal by leveraging a set

of wavelet functions, which are usually defined as a set of filters operating on the graph Laplacian

eigenvalues. The advantage of using spectral graph wavelets for denoising is that it is possible to

remove noise that corresponds to high-frequency components of the signal, while preserving the

40

low-frequency components that carry the main information of the signal. Moreover, they provide

a flexible and adaptive framework for capturing the underlying structure and smoothness of the

graph signal.

Specifically, let L = ΦΛΦ
� be an eigendecomposition of the normalized Laplacian matrix,

where Φ is a matrix whose columns are the eigenvectors (i.e., graph Fourier basis) and Λ =

diag(»1, . . . , »N) is a diagonal matrix comprised of the corresponding eigenvalues. Spectral graph

wavelets have shown to allow localization of graph signals in both spatial and spectral domains.

Let gs(») = e2»s be the transfer function (also called frequency response) of the heat kernel with

scaling parameter s. The spectral graph wavelet basis Ψs is defined as

Ψs = ΦGsΦ
ᵀ

, (3.7)

where

Gs = gs(Λ) = diag(gs(»1), . . . , gs(»N)) (3.8)

is a diagonal matrix of transformed eigenvalues via the transfer function. Note that Ψs is also

referred to as the heat kernel matrix whose inverse Ψ
21
s is obtained by simply replacing the scale

parameter s with its negative value. The spectral graph wavelet basis and its inverse can also

be computed efficiently using polynomial approximations via the Maclaurin series, which can be

used to approximate the heat kernel on a graph, by expanding it as a polynomial in the normalized

Laplacian matrix, and then truncating the series at a finite order [115].

Therefore, using the feature representation matrix H and both the spectral graph wavelet basis

and its inverse, the reconstructed node feature matrix X̂ = GDN(A,Z) via the GDN decoder can

be obtained as follows:

X̂ = ΨtReLU(Ψ21
t HW1)W2, (3.9)

where W1 * R
F×P and W2 * R

P×F are learnable weight matrices. The reconstructed node

feature matrix aims to provide an approximation of the original node feature matrix. By recon-

structing the node feature matrix, we can gain insights into the estimated values of node features,

understand the patterns within the graph, and utilize this information for further downstream tasks

such as anomaly detection. These reconstructions form the basis for anomaly detection, as devia-

tions and anomalies can be identified by comparing the reconstructed graph with the original input

data, leveraging the reconstruction errors as indicators of anomalous instances.

3.2.3

To detect anomalies, we minimize the joint reconstruction loss of the nodal attributes and topologi-

cal structure, allowing for computing the reconstruction errors. This loss function [45] is defined as

41

Model Training

a weighted combination of the modulated structure reconstruction error and the modulated feature

reconstruction error:

L = ³‖(A2 Â)	Θ‖2F + (12 ³)‖(X2 X̂)	Ω‖2F , (3.10)

where ‖ · ‖F denotes the Frobenius norm, 	 denotes element-wise multiplication, and ³ is a pa-

rameter that controls the trade-off between structure reconstruction and attribute reconstruction.

The modulation matrices Θ and Ω are defined as

Θi,j =

§
«
«
1 if Ai,j = 0

» otherwise.
, Ωi,j =

§
«
«
1 if Xi,j = 0

Ë otherwise.
(3.11)

where » > 1 and Ë > 1 are parameters for imposing more penalty on the reconstruction error of

the non-zero elements due to some missing edges or attributes.

Specifically, we aim to minimize the discrepancy between the original input graph data (ad-

jacency matrix and node feature matrix) and their reconstructed counterparts obtained from the

structure and attribute reconstruction decoders. By jointly considering the reconstruction errors

for both the structural information (adjacency matrix) and the node-level attributes (feature ma-

trix), our encoder-decoder model can capture deviations and anomalies that may manifest in either

or both modalities. The final reconstruction errors are then used to compute the anomaly score �i

of node i defined as follows:

�i = ³‖(ai 2 âi)	 θi‖+ (12 ³)‖(xi 2 x̂i)	 ωi‖ (3.12)

which is a weighted sum of a structure error term and a feature error term. Here, ai and xi represent

the i-th rows of A and X, respectively, denoting the structure and feature vectors of node i. On the

other hand, âi and x̂i are the i-th rows of Â and X̂, representing the recovered structure and feature

vectors obtained from the reconstruction process. Moreover, θi and ωi represent i-th rows of Θ

and Ω, respectively. The nodes are then sorted in descending order according to their anomaly

scores, which are derived from the reconstruction errors. Nodes with the highest anomaly scores

are identified as potential anomalies. It is important to note that a high value of the structure

error term implies that the i-th node in the graph is more likely to be an anomaly based on its

structural properties, such as its connectivity patterns or topological characteristics. Conversely, a

high value of the feature error term indicates an anomalous node from the perspective of its node-

level attributes or features. The sorting of nodes based on their anomaly scores, derived from the

reconstruction errors, allows for the identification and ranking of the most anomalous instances

within the graph.

42

3.3

In this section, we present our experimental setup and empirical results. Our aim is to assess the ef-

fectiveness and performance of the proposed model in comparison with strong baseline methods for

anomaly detection in attributed graphs. The source code is available at: https://github.com/Shakib-

IO/robust_encoder_decoder.

3.3.1

Datasets. We evaluate the model performance on two groups of standard benchmark datasets.

Social networks: BlogCatalog and Flickr are two well-known social network datasets [116], orig-

inating from popular online platforms. The BlogCatalog dataset is derived from a blog sharing

website of the same name, while the Flickr dataset comes from the renowned image hosting and

sharing service. In these datasets, the nodes represent individual users of the respective websites.

The links or connections between nodes signify relationships or interactions between users. Typi-

cally, users on social networks create personalized content, such as blog posts on BlogCatalog or

photo uploads with descriptive tags on Flickr. This user-generated content is considered as attribute

data associated with the nodes (users) in the network.

Citation networks: Cora, Citeseer, Pubmed [63], and ACM [117] are well-known citation network

datasets that are publicly available and widely used for research purposes. These datasets comprise

collections of scientific publications from various domains. In these citation networks, the nodes

represent individual published articles or thesiss. The edges or links between nodes signify citation

relationships, where one article cites or references another. A key characteristic of these datasets is

that each node (article) is associated with a binary feature vector. This vector encodes the presence

or absence of specific words from a predefined dictionary or vocabulary. If a word is present in

the article’s text, the corresponding element in the binary vector is set to 1, otherwise it is 0. This

binary representation allows for efficient processing and analysis of the textual content associated

with each publication.

Consistent with previous studies, we follow a standardized preprocessing procedure for the at-

tributed network datasets [103] [41] [108]. However, since these datasets do not inherently con-

tain ground-truth labels for anomalous nodes, it is necessary to artificially introduce synthetic

anomalies for the purpose of evaluating anomaly detection methods. To this end, a collection

of anomalies, encompassing both structural and contextual types, are systematically injected into

each dataset. Structural anomalies involve modifications to the network topology or connectivity

43

Experiments

Experimental Setup

patterns, while contextual anomalies pertain to alterations in the attribute or feature representations

associated with nodes. Statistics of the datasets are summarized in Table 3.1.

Table 3.1: Summary statistics of datasets.

Dataset Nodes Edges Features Anomalies

Cora 2708 5429 1433 150

CiteSeer 3327 4732 3703 150

PubMed 19717 44338 500 600

BlogCatalog 5196 171743 8189 300

Flickr 7575 239738 12407 450

ACM 16484 71980 8337 600

Baselines. To comprehensively evaluate the effectiveness of our proposed method, we include

a diverse set of strong baselines for anomaly detection in our experimental study. These base-

lines encompass both traditional and encoder-decoder techniques for anomaly detection in graph-

structured data, with a particular focus on attributed graphs. The baselines considered include

Local Outlier Factor (LOF) [26], Structural Clustering Algorithm for Networks (SCAN) [27],

Anomaly Mining of Entity Neighborhoods (AMEN) [8], Residual Analysis for Anomaly De-

tection in Attributed Networks (Radar) [34], a joint modeling approach for anomaly detection

on attributed networks (ANOMALOUS) [118], Deep Anomaly Detection on Attributed Net-

works (Dominant) [41], Deep Graph Infomax (DGI) [119], Contrastive Self-Supervised Learn-

ing Framework for Anomaly Detection (CoLA), One Class Graph Neural Network (OCGNN)

[35], Graph Deviation Networks (GDN) [87], Community-Aware Attributed Graph Anomaly

Detection (ComGA) [36], Higher-order structure based anomaly detection on attributed net-

works (GUIDE) [43], Contrastive attributed network anomaly detection with data augmentation

(CONAD) [95], Residual Graph Convolutional Network (ResGCN) [7], and a graph encoder–

decoder network for unsupervised anomaly detection (LCPool) [108]. These baselines have been

selected based on their relevance to our proposed approach and their recognition as strong graph

anomaly detection methods. By comparing our method against these diverse baselines, we can

comprehensively assess its performance and identify its strengths and limitations relative to exist-

ing approaches.

Evaluation Metrics. In the experiments, various evaluation metrics are used to measure the

performance of different anomaly detection algorithms:

ROC–AUC: As a widely used evaluation metric in previous anomaly detection methods [31] [34]

the ROC curve is a plot of true positive rate (an anomaly is recognized as an anomaly) against false

44

positive rate (a normal node is recognized as an anomaly) according to the ground truth and the

detection results. (AUC) value is the area under the ROC curve, representing the probability that a

randomly chosen abnormal node is ranked higher than a normal node.

Precision@K: As each anomaly detection method outputs a ranking list according to the anomalous

scores of different nodes, we use Precision@K to measure the proportion of true anomalies that a

specific detection method discovered in its top-K ranked nodes.

Recall@K: This metric measures the proportion of true anomalies that a specific detection method

discovered in the total number of ground truth anomalies.

F1@K: F1@K represents the harmonic mean of precision and recall, evaluated at a specific value

of K, which denotes the number of top-ranked instances being considered.

Implementation Details. We implemented our model using PyTorch [120] and Pytorch Geo-

metric [121]. We trained our model using the Adam optimizer [122] for 200 epochs on all the

datasets. The learning rate was set to 1024 for BlogCatalog, Flickr, and ACM, while for Citeseer

and Pubmed, it was set to 1025 and 1023, respectively. Our Fix-GCN encoder had 3 hidden layers,

with the embedding dimension set to 512 for all the datasets. Across all experiments, we set the

hyperparameter s to 0.2, which was computed via grid search with cross-validation on the training

set. The weighting hyperparameter ³ in the loss function was chosen between 0.5 and 0.8 for

all datasets. The modulation hyperparameters » and Ë were chosen between 20 to 50 and 1 to 5,

respectively. We utilized the PyGOD library [123] for the injection of contextual and structural

anomalies and for running the baseline anomaly detection models. Other hyperparameters and

initialization strategies followed the baseline authors recommendations [41] [45].

3.3.2

We evaluate the anomaly detection performance of our approach against strong baseline methods.

Table 3.2 reports the AUC scores for our model and baselines on the six benchmark datasets. The

AUC scores for the baseline methods on the citation networks are taken from [41] and [108]. The

best results are shown in bold, and the second best results are underlined.

To provide a comprehensive evaluation of the anomaly detection performance, we report the

results across multiple evaluation metrics, including AUC, Precision@K, Recall@K, and F1@K

scores. These metrics are presented in Tables 3.2, 3.3, 3.4, and 3.5, respectively, for all datasets

under consideration. Focusing on the AUC scores in Table 3.3, we observe that most shallow meth-

ods, such as LOF, SCAN, and AMEN, exhibit relatively low performance in detecting anomalies.

In contrast, encoder-decoder methods like Dominant perform relatively better, whereas LCPool

performs much better than these shallow approaches. Notably, contrastive-based methods like

45

Results and Analysis

CoLA outperform most shallow techniques, indicating their effectiveness in capturing anomalous

patterns. However, despite the promising results of these methods, our analysis reveals that they

are still not sufficient to comprehensively detect anomalies across all scenarios. Our proposed

encoder-decoder model outperforms most of the existing baseline methods across datasets.

Table 3.3 presents the Precision@K metric results. Our model often exceeding 70%, consis-

tently performs better than other algorithms for the majority of datasets and K values. This proves

that our model is useful for precisely locating abnormalities in the top-K predictions. LCPool,

another GNN-based technique, also performs well, suggesting that encoder-decoder methods ef-

fectively utilize graph structure and node attributes to identify irregularities. When compared to

other traditional techniques such as LOF, Radar, Anomalous, AMEN, often falling below 50%,

typically show lesser precision, underscoring their challenges in capturing anomalies. Moreover,

Table 3.4 assesses the efficacy of anomaly detection using Recall@K, emphasizing the models

capacity for identifying real anomalies from among the top K predictions. As shown in Table 3.4,

our model performs better than other techniques on a variety of datasets and for different values of

K, indicating its superiority in anomaly detection. To evaluate the anomaly detection ability, Ta-

ble 3.5 uses the F1@K score, a balanced statistical metric that combines precision and recall. Our

model demonstrates its overall efficacy in precisely and thoroughly finding anomalies by emerging

as the best-performing approach for a broad range of datasets and K values. Finally, our model

continuously performs better in anomaly identification across all four tables, as seen by its strong

AUC, Precision@K, Recall@K, and F1@K scores over several datasets. This demonstrates how

our model effectively detects anomalies with a low rate of false positives. In all four evaluation

criteria, traditional approaches often perform lower than GNN models, indicating their limits in

capturing intricate patterns and relationships in graph-structured data. All of the findings point to

how crucial it is to select an assessment metric that is suited for the particular objectives of the

anomaly detection activity. Overall, this comprehensive evaluation across multiple datasets and

varying K values provides compelling evidence that our proposed model is a highly effective and

precise tool for anomaly detection in attributed graphs, outperforming both traditional and other

state-of-the-art methods.

3.3.3

In our study, we explored the influence of the controlling parameters s and ³ on the performance

of our proposed encoder-decoder framework. The results of this investigation, illustrating the

variance in performance across different values of s and ³ are presented in Figures 3.3 and 3.4,

respectively.

46

Parameter Sensitivity Analysis

Table 3.2: Test AUC (%) scores on four citation networks and two social networks. Boldface

numbers indicate the best performance, whereas the underlined numbers indicate the second best

performance.

Method Cora CiteSeer PubMed BlogCatalog Flickr ACM

LOF [26] - - - 49.15 48.81 47.38

SCAN [27] - - - 27.27 26.86 35.99

AMEN [8] 62.66 61.54 77.13 66.48 60.47 53.37

Radar [34] 65.87 67.09 62.33 71.04 72.86 69.36

Anomalous [118] 57.70 63.07 73.16 72.81 71.59 71.85

Dominant [41] 81.55 82.51 80.81 78.13 74.90 74.94

DGI [119] 75.11 82.93 69.62 58.27 62.37 62.40

CoLA [40] 87.79 89.68 95.12 78.54 75.13 82.37

OCGNN [35] 86.97 85.62 74.72 55.50 48.91 50.00

GDN [87] 75.77 78.89 69.15 54.24 52.40 69.15

ComGA [36] 88.40 91.67 90.20 81.40 79.90 84.96

GUIDE [43] 64.06 83.94 83.92 70.98 72.42 83.05

CONAD [95] 76.74 78.95 76.43 79.72 65.12 69.80

ResGCN [7] 84.79 76.47 80.79 78.50 78.00 76.80

LCPool [108] 88.46 91.34 92.34 82.85 83.12 84.69

Ours 91.67 92.31 90.33 88.43 87.18 87.88

Table 3.3: Test Precision@K (%) scores of our approach and baselines on four citation networks

and two social networks. Boldface numbers indicate the best performance, whereas the underlined

numbers indicate the second best performance.

BlogCatalog Flicker ACM Cora Citeseer Pubmed

K 50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300

LOF [26] 30.0 22.0 18.0 18.3 42.0 38.0 27.0 23.7 6.0 6.0 4.5 3.7 - - - - - - - - - - - -

Radar [34] 66.0 67.0 55.0 41.6 74.0 70.0 63.5 50.3 5.6 5.8 5.2 4.3 - - - - - - - - - - - -

Anomalous [118] 64.0 65.0 51.5 41.7 79.0 71.0 65.0 51.0 60.0 57.0 51.0 41.0 - - - - - - - - - - - -

AMEN [8] 60.0 58.0 49.6 38.3 67.0 64.0 55.0 46.1 52.0 49.0 43.2 36.0 54.6 47.2 29.0 23.0 64.0 44.0 23.0 21.6 56.0 54.1 49.0 45.7

Dominant [41] 76.0 71.0 59.0 47.0 77.0 73.0 68.5 59.3 62.0 59.0 54.0 49.7 68.0 55.0 36.0 27.0 76.0 51.0 32.0 25.3 70.0 66.0 63.0 56.0

DGI [87] 52.0 51.0 43.6 32.3 59.0 57.7 46.0 45.4 46.0 41.4 38.0 35.4 47.1 39.0 25.3 19.1 54.0 36.3 21.0 17.9 49.0 48.0 44.0 39.5

CoLA [40] 62.0 58.0 39.5 31.0 60.0 51.0 31.5 26.7 88.0 71.0 57.5 46.8 66.0 54.0 41.5 34.3 58.0 47.0 39.0 31.7 76.0 69.0 58.5 55.7

LCPool [108] 80.0 75.0 60.0 31.7 84.0 79.0 71.0 63.3 88.0 69.1 58.0 47.1 74.0 55.0 31.0 26.0 78.0 59.0 32.5 27.3 75.8 69.2 64.3 57.0

Ours 83.1 79.3 64.7 45.3 84.5 80.1 73.3 62.2 86.3 68.3 55.4 50.3 77.9 58.4 34.6 27.5 81.5 60.4 33.5 30.3 78.4 71.2 62.3 58.9

Regarding the hyperparameter s, we explored a range of values from 0.1 to 0.9. To determine

the optimal value, we performed a grid search across all the datasets. Our observations indicate

that when s falls between 0.1 and 0.3, our model exhibits superior performance, with the highest

results achieved when s = 0.2. Figure 3.3 illustrates the AUC values in percentage form, where

we can observe a declining trend in our models performance as the value of s increases beyond the

optimal range for all the datasets.

We further analyzed the effect of the trade-off hyperparameter ³ on the models performance,

and the results are presented in Figure 3.4. When ³ = 0, our loss function reduces to the structure

47

Table 3.4: Test Recall@K (%) scores of our approach and baselines on four citation networks and

two social networks. Boldface numbers indicate the best performance, whereas the underlined

numbers indicate the second best performance.

BlogCatalog Flicker ACM Cora Citeseer Pubmed

K 50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300

LOF [26] 5.0 7.3 12.0 18.3 4.7 8.4 12.0 15.8 0.5 1.0 1.5 1.8 - - - - - - - - - - - -

Radar [34] 11.0 22.3 36.7 41.6 8.2 15.6 28.2 33.6 4.7 9.7 17.3 21.5 - - - - - - - - - - - -

Anomalous [118] 10.7 21.7 34.3 41.7 8.7 15.8 28.9 34.0 5.0 9.5 17.0 20.5 - - - - - - - - - - - -

AMEN [8] 9.7 19.6 32.4 38.9 7.2 14.3 26.9 32.1 4.5 7.9 15.9 17.1 20.9 31.4 42.4 47.6 21.6 30.1 37.7 44.7 4.4 8.1 15.5 22.2

Dominant [41] 12.7 23.7 39.3 47.0 8.4 16.2 30.4 39.6 5.2 9.8 18.0 24.8 23.7 36.7 48.0 54.0 25.3 34.0 42.7 50.7 28.3 11.0 21.0 28.0

DGI [87] 8.4 17.1 28.2 34.1 7.3 13.0 24.4 29.3 4.3 8.4 13.7 16.5 18.1 27.1 31.9 35.8 17.2 24.1 30.3 35.8 3.5 6.6 12.1 17.7

CoLA [40] 10.4 19.5 26.5 31.2 6.7 11.5 14.1 18.0 7.3 11.9 19.3 23.4 22.0 36.0 55.3 68.7 19.3 31.3 52.0 63.3 6.3 11.5 19.5 27.9

LCPool [108] 24.8 25.2 40.3 60.9 18.2 20.6 41.3 48.8 9.8 18.5 21.0 28.3 42.5 51.7 71.3 88.5 31.0 52.2 57.5 70.8 11.8 15.8 27.8 30.8

Fix-GCN 30.4 26.2 39.4 50.7 23.7 26.5 43.9 50.7 9.1 18.0 28.2 30.4 40.3 54.1 74.3 70.3 35.7 50.1 59.6 71.6 22.7 24.1 29.3 31.9

Table 3.5: Test F1@K (%) scores of our approach and baselines on four citation networks and two

social networks. Boldface numbers indicate the best performance, whereas the underlined numbers

indicate the second best performance.

BlogCatalog Flicker ACM Cora Citeseer Pubmed

K 50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300 50 100 200 300

LOF [26] 8.6 10.9 14.4 18.3 8.4 13.7 16.6 18.9 0.9 1.7 2.2 2.4 - - - - - - - - - - - -

Radar [34] 18.8 33.4 44.0 41.6 14.7 25.5 39.0 40.3 5.1 7.2 7.9 7.2 - - - - - - - - - - - -

Anomalous [118] 18.3 32.5 41.2 41.7 15.7 25.8 40.0 40.8 9.2 16.3 25.5 27.3 - - - - - - - - - - - -

AMEN [8] 16.7 29.3 39.2 38.6 13.0 23.4 36.1 37.8 8.3 13.6 23.2 23.2 30.2 37.7 34.4 31.0 32.3 35.7 28.6 29.1 8.2 14.1 23.6 29.9

Dominant [41] 21.8 35.5 47.2 47.0 15.1 26.5 42.1 47.5 9.6 16.8 27.0 33.1 35.1 44.0 41.1 36.0 38.0 40.8 36.6 33.8 40.3 18.9 31.5 37.3

DGI [87] 14.5 25.6 34.2 33.2 13.0 21.2 31.9 35.6 7.9 14.0 20.1 22.5 26.2 32.0 28.2 24.9 26.1 29.0 24.8 23.9 6.5 11.6 19.0 24.4

CoLA [40] 17.8 29.2 31.7 31.1 12.1 18.8 19.5 21.5 13.5 20.4 28.9 31.2 33.0 43.2 47.4 45.8 29.0 37.6 44.6 42.2 11.6 19.7 29.3 37.2

LCPool [108] 37.9 37.7 48.2 41.7 29.9 32.7 52.2 55.1 17.6 29.2 30.8 35.4 54.0 53.3 43.2 40.2 44.4 55.4 41.5 39.4 20.4 25.7 38.8 40.0

Fix-GCN 42.3 41.3 50.9 48.2 28.4 35.6 56.3 60.2 22.5 33.7 33.2 32.4 50.3 56.0 48.6 45.2 47.3 57.3 50.2 46.3 22.3 29.8 36.2 37.0

reconstruction loss, while when ³ = 1, it reduces to the feature reconstruction loss. The struc-

ture reconstruction loss evaluates the extent to which our model accurately represents the original

adjacency matrix, whereas the feature reconstruction loss assesses the reconstructed node feature

representation. As can be observed in Figure 3.4, our model generally yields higher AUC values

when ³ is between 0.5 and 0.8. This suggests that the best detection performance is typically

achieved by simultaneously considering the reconstruction errors of both graph structure and node

features. By striking a balance between these two components through the trade-off hyperparam-

eter ³, our model can effectively capture and leverage the complementary information present in

the graph topology and node attributes, leading to improved anomaly detection capabilities.

48

Figure 3.3: Effect of hyperparameter s on anomaly detection performance of our model using AUC

as evaluation metric

³
Figure 3.4: Effect of hyperparameter ³ on anomaly detection performance of our model using

AUC as evaluation metric

49

3.4 Discussion

In this section, we highlight the merits of the proposed encoder-decoder model across three key

aspects:

• Improved Representation Learning. The proposed encoder-decoder model excels in cap-

turing the intricate relationships within attributed graphs by simultaneously encoding both

structural and attribute information. This dual focus enables it to generate a unified latent

representation that integrates graph topology and node feature details.

• Enhanced Reconstruction Capability. Featuring a dual decoder architecture, the model

achieves superior reconstruction of both the graph structure and node attributes. The struc-

ture reconstruction decoder accurately restores the adjacency matrix, crucial for maintaining

graph integrity, while the attribute reconstruction decoder employs a graph deconvolutional

network optimized for recovering node features. This dual-decoder setup not only ensures

fidelity in representation but also facilitates robust anomaly detection by providing compre-

hensive insight into anomalous nodes in attributed graphs.

• Robustness through Noise Reduction. To mitigate noise inherent in attributed graphs,

the model integrates spectral graph wavelet denoising during the attribute reconstruction

phase. This method selectively filters high-frequency noise while preserving essential low-

frequency components, thereby enhancing the fidelity of reconstructed node attributes. By

effectively reducing noise, the model improves overall robustness and reliability in anomaly

detection tasks, ensuring that detected anomalies are meaningful deviations rather than arti-

facts of noise or irrelevant variations.

These strengths collectively position the proposed encoder-decoder model as a robust framework

for unsupervised anomaly detection in attributed graphs, capable of handling complex graph struc-

tures while maintaining high fidelity in reconstruction and interpretation of both structural and

attribute information.

50

C
H

A
P

T
E

R

4

This thesis introduces a robust and efficient framework for graph convolutional networks (GCNs)

with the aim of enhancing their resilience to adversarial attacks and improving their capability to

accurately detect anomalies in graph-structured data. This is achieved by leveraging spectral modu-

lation filtering and resilient aggregation mechanisms to address the inherent limitations of standard

GCNs, particularly their vulnerability to adversarial manipulations and their limited ability to con-

sider higher-order neighbor information. At the core of our approach is a novel GCN-based model

that draws inspiration from the fixed-point iterative method, incorporating a layer-wise propaga-

tion rule derived from iteratively solving graph filtering. The proposed framework is comprised

of several key components that work in tandem to improve the model’s effectiveness and effi-

ciency. First, we introduce a spectral modulation filter that selectively attenuates high-frequency

components while preserving low-frequency structural information, allowing for more nuanced

feature extraction from the graph signal. Second, we implement an aggregation mechanism that

efficiently captures information from higher-order node neighbors, expanding the network’s re-

ceptive field without increasing computational complexity. We also adopt a spectral graph wavelet

denoising method to mitigate noise while retaining essential graph information. The proposed

framework aims to pave the way for more resilient and effective GCNs, ensuring reliable perfor-

mance in various real-world graph-based applications. In Section 4.1, we discuss the concluding

outcomes of the associated research work in each of the previous chapters, along with the contri-

butions made. Furthermore, we address the limitations of the proposed approach in Section 4.2,

and present suggestions for potential research directions related to this thesis in Section 4.3.

51

Conclusions and Future Work

4.1

4.1.1

In Chapter 2, we introduced Fix-GCN, a robust model against adversarial attacks. The core con-

cept behind Fix-GCN lies in its message-passing mechanism, which is derived from solving a

spectral graph modulation filtering system using fixed-point iteration. One of the key strengths of

our model is its ability to capture information from higher-order connections, thereby improving

its resilience against direct perturbations on immediate neighbors, which are often more vulner-

able to adversarial attacks. By considering information from higher-order neighbors, Fix-GCN

effectively captures the global context of the graph, making it more resilient to direct perturbations

on 1-hop neighbors. Moreover, Fix-GCN maintains computational efficiency comparable to the

standard GCN without sacrificing performance or requiring additional defense mechanisms. Our

comparative experiments showed that our model yields improved performance compared to strong

baselines across different graph datasets and under a variety of adversarial attacks.

4.1.2

In Chapter 3, we introduced a graph encoder-decoder model for unsupervised anomaly detection in

attributed graphs. The encoder in our model is designed to learn a compressed, latent representa-

tion of the input graph by aggregating information from first- and second-order neighboring nodes.

The decoder, which consists of a structure reconstruction decoder and an attribute reconstruction

decoder, reconstructs the original graph structure and node attributes from the latent representation

learned by the encoder. The structure reconstruction decoder reconstruct the adjacency matrix of

the original graph by computing the inner product between the latent representations of all node

pairs, while the attribute reconstruction decoder employs a graph deconvolutional network as a de-

coder to recover the original node features by spreading the latent features back to their respective

nodes, considering the graph structure. To address potential noise introduced by the deconvolu-

tion operation, we incorporated spectral graph wavelet denoising, which removes high-frequency

noise while preserving the low-frequency components that carry significant information. The ex-

perimental results demonstrate the superiority of the proposed model over competitive baseline

methods.

52

Contributions of the Thesis

Fixed-Points Graph Convolutional Networks Against Adversarial Attacks

Graph Encoder-Decoder Model for Robust Anomaly Detection

4.2

While our proposed framework demonstrates significant advancements in robustness and accu-

racy, achieving state-of-the-art performance in many scenarios, it also reveals certain limitations

that warrant consideration. One primary constraint is the model’s difficulty in capturing long-range

dependencies in larger graphs, despite its efficient handling of higher-order neighborhood informa-

tion. This scalability issue becomes particularly pronounced when dealing with very large graph

structures. Additionally, like many deep learning models, Fix-GCN may be susceptible to overfit-

ting, especially when trained on smaller graph datasets. The model’s performance is also sensitive

to hyperparameter selection, necessitating careful tuning for optimal results. Interpretability re-

mains a challenge, as the decision-making process of Fix-GCN can be difficult to decipher, partic-

ularly for complex graph structures. Furthermore, the model’s effectiveness may vary depending

on the underlying graph structure, potentially leading to inconsistent performance across different

types of graphs. While Fix-GCN aims to mitigate the over-smoothing issue common in tradi-

tional GCNs, this problem may still persist to some extent, especially in deeper architectures. The

model’s primary design for static graphs might limit its adaptability to dynamic or temporal graph

structures. Lastly, the robustness of Fix-GCN to noise and incomplete data, which are common in

real-world scenarios, remains an area for potential improvement. These limitations highlight areas

for future research and refinement in graph neural network architectures.

4.3

Several interesting research directions, motivated by this thesis, are discussed below:

4.3.1

In recent years, dynamic graphs have gained significant prominence across various domains, re-

flecting the evolving nature of real-world networks and relationships. Recognizing the growing

importance of these time-varying graph structures, we aim to extend the application of our pro-

posed Fix-GNN method to dynamic graph data. This expansion of our research focus will allow

us to explore the methods capabilities in detecting graph anomalies and enhancing robustness in

dynamic graph environments.

53

Limitations

Future Work

Dynamic Graphs

4.3.2

Kolmogorov-Arnold Networks (KANs) have recently been introduced as promising alternatives to

multi-layer perceptrons (MLPs), offering new possibilities for data processing and representation.

KANs are based on a theoretical result known as the Kolmogorov-Arnold representation theorem,

which states that any multivariate continuous function can be represented as a composition of a

finite number of univariate continuous functions and the addition operation. This theorem is similar

in spirit to the universal approximation theorem, which states that an MLP with single hidden layer

containing a finite number of neurons can approximate continuous functions on compact subsets of

the n-dimensional Euclidean space. While MLPs employ fixed activation functions on nodes (i.e.,

neurons), KANs take a different approach by placing learnable activation functions on edges (i.e.,

weights). This fundamental difference means that KANs do not use linear weight matrices at all;

instead, each weight parameter is substituted with a learnable one-dimensional function, typically

parameterized as a spline. In KANs, nodes simply sum incoming signals without applying any non-

linearities, which contrasts with MLPs where non-linear activations are integral to node operations.

This unique design characteristic of KANs enables them to adaptively learn complex mappings

while potentially offering advantages in tasks requiring flexible and data-driven adjustments to

edge weights.

The adaptation of KAN principles to graph-structured data represents a significant development

in the field of graph analysis and machine learning. Recognizing the potential of this emerging ap-

proach, we intend to integrate our Fix-GCN method with KAN principles. This integration aims to

combine the strengths of our fixed-point graph convolutional network with the approximation ca-

pabilities of KAN. By merging these two powerful concepts, we anticipate potential improvements

in various downstream tasks related to graph analysis.

4.3.3

In our future work, we aim to expand the application and capabilities of our model across diverse

domains. A primary focus will be on exploring its potential in biomedical networks, particularly

protein-protein interaction networks, where detecting anomalies could lead to the discovery of new

interactions or disease biomarkers. This application has significant implications for advancing our

understanding of biological systems and potentially accelerating drug discovery processes. Beyond

biomedical applications, we intend to investigate the models efficacy in security datasets, where

anomaly detection is crucial for identifying potential threats or unusual activities. Furthermore, we

are keen on exploring the models potential in computer vision tasks, with a particular interest in

3D human pose estimation. This interdisciplinary approach aims to leverage our graph-based tech-

54

Kolmogorov-Arnold Networks

Applications

niques to improve accuracy and robustness in pose estimation, potentially opening new avenues

in fields such as motion capture, augmented reality, and human-computer interaction. Through

these diverse applications, we hope to demonstrate the broad applicability and adaptability of our

graph-based model across various scientific and technological domains.

55

[1] W. Jin, Y. Li, H. Xu, Y. Wang, S. Ji, C. Aggarwal, and J. Tang, “Adversarial attacks and

defenses on graphs,” ACM SIGKDD Explorations Newsletter, vol. 22, no. 2, pp. 19–34,

2021.

[2] D. Zügner, A. Akbarnejad, and S. Günnemann, “Adversarial attacks on neural networks for

graph data,” in Proc. ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining, pp. 2847–2856, 2018.

[3] D. Zügner and S. Günnemann, “Adversarial attacks on graph neural networks via meta learn-

ing,” in International Conference on Learning Representations, 2019.

[4] D. Zhu, Z. Zhang, P. Cui, and W. Zhu, “Robust graph convolutional networks against adver-

sarial attacks,” in Proc. ACM SIGKDD International Conference on Knowledge Discovery

& Data Mining, pp. 1399–1407, 2019.

[5] H. Wu, C. Wang, Y. Tyshetskiy, A. Docherty, K. Lu, and L. Zhu, “Adversarial examples on

graph data: Deep insights into attack and defense,” in Proc. International Joint Conference

on Artificial Intelligence, 2019.

[6] X. Hu, J. Tang, and H. Liu, “Online social spammer detection,” in Proc. AAAI Conference

on Artificial Intelligence, 2014.

[7] Y. Pei, T. Huang, W. van Ipenburg, and M. Pechenizkiy, “ResGCN: Attention-based

deep residual modeling for anomaly detection on attributed networks,” Machine Learning,

vol. 111, pp. 519–541, 2022.

[8] B. Perozzi and L. Akoglu, “Scalable anomaly ranking of attributed neighborhoods,” in Proc.

SIAM International Conference on Data Mining, pp. 207–215, 2016.

[9] S. Biasotti, A. Cerri, M. Abdelrahman, and et al., “SHREC’14 track: Retrieval and classi-

fication on textured 3D models,” in Proc. Eurographics Workshop on 3D Object Retrieval,

pp. 111–120, 2014.

56

References

[10] S. Biasotti, A. Cerri, M. Aono, and et al., “Retrieval and classification methods for textured

3D models: a comparative study,” The Visual Computer, vol. 32, pp. 217–241, 2016.

[11] M. Masoumi and A. Ben Hamza, “Spectral shape classification: A deep learning approach,”

Journal of Visual Communication and Image Representation, vol. 43, pp. 198–211, 2017.

[12] E. Rodola, L. Cosmo, O. Litany, and et al., “SHREC’17: Deformable shape retrieval with

missing parts,” in Proc. Eurographics Workshop on 3D Object Retrieval, 2017.

[13] M. Masoumi and A. Ben Hamza, “Shape classification using spectral graph wavelets,” Ap-

plied Intelligence, vol. 47, pp. 1256–1269, 2017.

[14] H. Krim and A. Ben Hamza, Geometric methods in signal and image analysis. Cambridge

University Press, 2015.

[15] E. E. Abdallah, A. Ben Hamza, and P. Bhattacharya, “Spectral graph-theoretic approach to

3D mesh watermarking,” in Proceedings of Graphics Interface, pp. 327–334, 2007.

[16] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Bengio, “Graph attention

networks,” in International Conference on Learning Representations, 2018.

[17] N. Entezari, S. A. Al-Sayouri, A. Darvishzadeh, and E. E. Papalexakis, “All you need is low

(rank) defending against adversarial attacks on graphs,” in Proc. International Conference

on Web Search and Data Mining, pp. 169–177, 2020.

[18] W. Jin, Y. Ma, X. Liu, X. Tang, S. Wang, and J. Tang, “Graph structure learning for robust

graph neural networks,” in Proc. ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pp. 66–74, 2020.

[19] A. Alchihabi, Q. En, and Y. Guo, “Efficient low-rank gnn defense against structural attacks,”

in Proc. IEEE International Conference on Knowledge Graph, 2023.

[20] X. Zhang and M. Zitnik, “GNNGUARD: Defending graph neural networks against adversar-

ial attacks,” in Advances in Neural Information Processing Systems, pp. 9263–9275, 2020.

[21] W. Jin, T. Derr, Y. Wang, Y. Ma, Z. Liu, and J. Tang, “Node similarity preserving graph

convolutional networks,” in Proc. ACM International Conference on Web Search and Data

Mining, pp. 148–156, 2021.

[22] X. Liu, W. Jin, Y. Ma, Y. Li, H. Liu, Y. Wang, M. Yan, and J. Tang, “Elastic graph neural

networks,” in Proc. International Conference on Machine Learning, 2021.

57

[23] H. Chang, Y. Rong, T. Xu, Y. Bian, S. Zhou, X. Wang, J. Huang, and W. Zhu, “Not all low-

pass filters are robust in graph convolutional networks,” in Advances in Neural Information

Processing Systems, 2021.

[24] R. Lei, Z. Wang, Y. Li, B. Ding, and Z. Wei, “EvenNet: Ignoring odd-hop neighbors im-

proves robustness of graph neural networks,” in Advances in Neural Information Processing

Systems, 2022.

[25] J. Huang, L. Du, X. Chen, Q. Fu, S. Han, and D. Zhang, “Robust mid-pass filtering graph

convolutional networks,” in Proc. ACM Web Conference, pp. 328–338, 2023.

[26] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “Lof: identifying density-based

local outliers,” in Proc. ACM SIGMOD International Conference on Management of Data,

pp. 93–104, 2000.

[27] X. Xu, N. Yuruk, Z. Feng, and T. A. Schweiger, “SCAN: a structural clustering algorithm

for networks,” in Proc. ACM SIGKDD International Conference on Knowledge Discovery

and Data Mining, pp. 824–833, 2007.

[28] J. Tang, J. Li, Z. Gao, and J. Li, “Rethinking graph neural networks for anomaly detection,”

in Proc. International Conference on Machine Learning, pp. 21076–21089, 2022.

[29] R. Francisquini, A. C. Lorena, and M. C. Nascimento, “Community-based anomaly detec-

tion using spectral graph filtering,” Applied Soft Computing, vol. 118, p. 108489, 2022.

[30] Z. Peng, M. Luo, J. Li, L. Xue, and Q. Zheng, “A deep multi-view framework for anomaly

detection on attributed networks,” IEEE Transactions on Knowledge and Data Engineering,

vol. 34, pp. 2539–2552, 2020.

[31] D. Wang, J. Lin, P. Cui, Q. Jia, Z. Wang, Y. Fang, Q. Yu, J. Zhou, S. Yang, and Y. Qi,

“A semi-supervised graph attentive network for financial fraud detection,” in Proc. IEEE

International Conference on Data Mining, pp. 598–607, 2019.

[32] Y. Zheng, M. Jin, Y. Liu, L. Chi, K. T. Phan, and Y.-P. P. Chen, “Generative and contrastive

self-supervised learning for graph anomaly detection,” IEEE Transactions on Knowledge

and Data Engineering, vol. 35, pp. 12220–12233, 2021.

[33] J. Zhang, S. Wang, and S. Chen, “Reconstruction enhanced multi-view contrastive learning

for anomaly detection on attributed networks,” in Proc. International Joint Conference on

Artificial Intelligence, pp. 2376–2382, 2022.

58

[34] J. Li, H. Dani, X. Hu, and H. Liu, “Radar: Residual analysis for anomaly detection in

attributed networks,” in Proc. International Joint Conference on Artificial Intelligence,

pp. 2152–2158, 2017.

[35] X. Wang, B. Jin, Y. Du, P. Cui, Y. Tan, and Y. Yang, “One-class graph neural networks

for anomaly detection in attributed networks,” Neural Computing and Applications, vol. 33,

pp. 12073–12085, 2021.

[36] X. Luo, J. Wu, A. Beheshti, J. Yang, X. Zhang, Y. Wang, and S. Xue, “Comga: Community-

aware attributed graph anomaly detection,” in Proc. ACM International Conference on Web

Search and Data Mining, pp. 657–665, 2022.

[37] Z. Liu, C. Cao, and J. Sun, “Mul-GAD: a semi-supervised graph anomaly detection frame-

work via aggregating multi-view information,” arXiv preprint arXiv:2212.05478, 2022.

[38] J. Duan, S. Wang, P. Zhang, E. Zhu, J. Hu, H. Jin, Y. Liu, and Z. Dong, “Graph anomaly

detection via multi-scale contrastive learning networks with augmented view,” in Proc. AAAI

Conference on Artificial Intelligence, pp. 7459–7467, 2023.

[39] T. Huang, Y. Pei, V. Menkovski, and M. Pechenizkiy, “Hop-count based self-supervised

anomaly detection on attributed networks,” in Proc. Joint European Conference on Machine

Learning & Knowledge Discovery in Databases, pp. 225–241, 2022.

[40] Y. Liu, Z. Li, S. Pan, C. Gong, C. Zhou, and G. Karypis, “Anomaly detection on attributed

networks via contrastive self-supervised learning,” IEEE Transactions on Neural Networks

and Learning Systems, vol. 33, pp. 2378–2392, 2021.

[41] K. Ding, J. Li, R. Bhanushali, and H. Liu, “Deep anomaly detection on attributed networks,”

in Proc. SIAM International Conference on Data Mining, pp. 594–602, 2019.

[42] D. Zhu, Y. Ma, and Y. Liu, “Anomaly detection with deep graph autoencoders on attributed

networks,” in Proc. IEEE Symposium on Computers and Communication, pp. 1–6, 2020.

[43] X. Yuan, N. Zhou, S. Yu, H. Huang, Z. Chen, and F. Xia, “Higher-order structure based

anomaly detection on attributed networks,” in Proc. IEEE International Conference on Big

Data, pp. 2691–2700, 2021.

[44] Z. Chen, B. Liu, M. Wang, P. Dai, J. Lv, and L. Bo, “Generative adversarial attributed net-

work anomaly detection,” in Proc. ACM International Conference on Information & Knowl-

edge Management, pp. 1989–1992, 2020.

59

[45] H. Fan, F. Zhang, and Z. Li, “AnomalyDAE: Dual autoencoder for anomaly detection on

attributed networks,” in Proc. IEEE International Conference on Acoustics, Speech and

Signal Processing, pp. 5685–5689, 2020.

[46] A. Roy, J. Shu, J. Li, C. Yang, O. Elshocht, J. Smeets, and P. Li, “GAD-NR: Graph anomaly

detection via neighborhood reconstruction,” in Proc. ACM International Conference on Web

Search and Data Mining, pp. 576–585, 2024.

[47] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional net-

works,” in International Conference on Learning Representations, 2017.

[48] F. Wu, T. Zhang, A. H. de Souza Jr., C. Fifty, T. Yu, and K. Q. Weinberger, “Simplifying

graph convolutional networks,” in Proc. International Conference on Machine Learning,

2019.

[49] S. Abu-El-Haija, B. Perozzi, A. Kapoor, N. Alipourfard, K. Lerman, H. Harutyunyan,

G. Ver Steeg, and A. Galstyan, “MixHop: Higher-order graph convolutional architectures

via sparsified neighborhood mixing,” in Proc. International Conference on Machine Learn-

ing, pp. 21–29, 2019.

[50] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple and deep graph convolutional

networks,” in Proc. International Conference on Machine Learning, pp. 1725–1735, 2020.

[51] R. Lam, A. Sanchez-Gonzalez, M. Willson, P. Wirnsberger, M. Fortunato, F. Alet, S. Ravuri,

T. Ewalds, Z. Eaton-Rosen, W. Hu, A. Merose, S. Hoyer, G. Holland, O. Vinyals, J. Stott,

A. Pritzel, S. Mohamed, and P. Battaglia, “GraphCast: Learning skillful medium-range

global weather forecasting,” Science, pp. 1416–1421, 2023.

[52] M. M. Li, K. Huang, and M. Zitnik, “Graph representation learning in biomedicine and

healthcare,” Nature Biomedical Engineering, pp. 1353–1369, 2022.

[53] L. Zhao, Y. Song, C. Zhang, Y. Liu, P. Wang, T. Lin, M. Deng, and H. Li, “T-GCN: A tem-

poral graph convolutional network for traffic prediction,” IEEE Transactions on Intelligent

Transportation Systems, vol. 21, no. 9, pp. 3848–3858, 2019.

[54] H. He, Y. Ji, and H. H. Huang, “ILLUMINATI: Towards explaining graph neural networks

for cybersecurity analysis,” in Proc. IEEE European Symposium on Security and Privacy,

pp. 74–89, 2022.

60

[55] L. Sun, Y. Dou, C. Yang, K. Zhang, J. Wang, S. Y. Philip, L. He, and B. Li, “Adversarial

attack and defense on graph data: A survey,” IEEE Transactions on Knowledge and Data

Engineering, 2022.

[56] S. Geisler, D. Zügner, and S. Günnemann, “Reliable graph neural networks via robust ag-

gregation,” in Advances in Neural Information Processing Systems, pp. 13272–13284, 2020.

[57] Y. Wang, S. Liu, M. Yoon, H. Lamba, W. Wang, C. Faloutsos, and B. Hooi, “Provably robust

node classification via low-pass message passing,” in Proc. IEEE International Conference

on Data Mining, pp. 621–630, 2020.

[58] L. Zhang and H. Lu, “A feature-importance-aware and robust aggregator for GCN,” in Proc.

ACM International Conference on Information & Knowledge Management, pp. 1813–1822,

2020.

[59] R. L. Burden, J. D. Faires, and A. M. Burden, Numerical Analysis. Cengage Learning, 2015.

[60] F. Chung, Spectral Graph Theory. American Mathematical Society, 1997.

[61] B. Rozemberczki, C. Allen, and R. Sarkar, “Multi-scale attributed node embedding,” Jour-

nal of Complex Networks, vol. 9, no. 2, pp. 1–22, 2021.

[62] A. Bojchevski and S. Günnemann, “Deep Gaussian embedding of graphs: Unsupervised

inductive learning via ranking,” in International Conference on Learning Representations,

2018.

[63] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad, “Collective clas-

sification in network data,” AI magazine, vol. 29, no. 3, pp. 93–93, 2008.

[64] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International

Conference on Learning Representations, 2015.

[65] M. Waniek, T. P. Michalak, M. J. Wooldridge, and T. Rahwan, “Hiding individuals and

communities in a social network,” Nature Human Behaviour, vol. 2, no. 2, pp. 139–147,

2018.

[66] J. Ye and L. Akoglu, “Discovering opinion spammer groups by network footprints,” in Proc.

Joint European Conference on Machine Learning & Knowledge Discovery in Databases,

pp. 267–282, 2015.

61

[67] V. H. Nguyen, K. Sugiyama, P. Nakov, and M. Y. Kan, “FANG: Leveraging social context

for fake news detection using graph representation,” in Proc. ACM International Conference

on Information & Knowledge Management, pp. 1165–1174, 2020.

[68] D. Savage, X. Zhang, X. Yu, P. Chou, and Q. Wang, “Anomaly detection in online social

networks,” Social Networks, vol. 39, pp. 62–70, 2014.

[69] A. Li, Z. Qin, R. Liu, Y. Yang, and D. Li, “Spam review detection with graph convolu-

tional networks,” in Proc. ACM International Conference on Information and Knowledge

Management, pp. 2703–2711, 2019.

[70] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A survey,” ACM Computing

Surveys, vol. 41, pp. 1–58, 2009.

[71] Y. Dou, Z. Liu, L. Sun, Y. Deng, H. Peng, and P. S. Yu, “Enhancing graph neural network-

based fraud detectors against camouflaged fraudsters,” in Proc. ACM International Confer-

ence on Information & Knowledge Management, pp. 315–324, 2020.

[72] B. Branco, P. Abreu, A. S. Gomes, M. S. Almeida, J. T. Ascensão, and P. Bizarro, “Inter-

leaved sequence rnns for fraud detection,” in Proc. ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining, pp. 3101–3109, 2020.

[73] C. Liu, Q. Zhong, X. Ao, L. Sun, W. Lin, J. Feng, Q. He, and J. Tang, “Fraud transac-

tions detection via behavior tree with local intention calibration,” in Proc. ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining, pp. 3035–3043, 2020.

[74] J. Tang, F. Hua, Z. Gao, P. Zhao, and J. Li, “GADBench: Revisiting and benchmarking su-

pervised graph anomaly detection,” in Advances in Neural Information Processing Systems,

vol. 36, 2024.

[75] X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q. Z. Sheng, H. Xiong, and L. Akoglu, “A com-

prehensive survey on graph anomaly detection with deep learning,” IEEE Transactions on

Knowledge and Data Engineering, vol. 35, pp. 12012–12038, 2021.

[76] A. Z. Wang, R. Ying, P. Li, N. Rao, K. Subbian, and J. Leskovec, “Bipartite dynamic repre-

sentations for abuse detection,” in Proc. ACM SIGKDD Conference on Knowledge Discov-

ery & Data Mining, pp. 3638–3648, 2021.

62

[77] B. Hooi, H. A. Song, A. Beutel, N. Shah, K. Shin, and C. Faloutsos, “FRAUDAR: Bounding

graph fraud in the face of camouflage,” in Proc. ACM SIGKDD Conference on Knowledge

Discovery & Data Mining, pp. 895–904, 2016.

[78] K. Leung and C. Leckie, “Unsupervised anomaly detection in network intrusion detection

using clusters,” in Proc. Australasian Conference on Computer Science, pp. 333–342, 2005.

[79] Z. Mingqiang, H. Hui, and W. Qian, “A graph-based clustering algorithm for anomaly in-

trusion detection,” in Proc. International Conference on Computer Science & Education,

pp. 1311–1314, 2012.

[80] J. MacQueen et al., “Some methods for classification and analysis of multivariate observa-

tions,” in Berkeley Symposium on Mathematical Statistics & Probability, vol. 1, pp. 281–

297, 1967.

[81] Z. He, X. Xu, and S. Deng, “Discovering cluster-based local outliers,” Pattern Recognition

Letters, vol. 24, no. 9-10, pp. 1641–1650, 2003.

[82] C. T. Zahn, “Graph-theoretical methods for detecting and describing gestalt clusters,” IEEE

Transactions on Computers, vol. 100, no. 1, pp. 68–86, 1971.

[83] H. Tong and C.-Y. Lin, “Non-negative residual matrix factorization with application to graph

anomaly detection,” in Proc. SIAM International Conference on Data Mining, pp. 143–153,

2011.

[84] T. Idé and H. Kashima, “Eigenspace-based anomaly detection in computer systems,” in

Proc. ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,

pp. 440–449, 2004.

[85] J. Wu, S. Pan, X. Zhu, and Z. Cai, “Boosting for multi-graph classification,” IEEE Transac-

tions on Cybernetics, vol. 45, pp. 416–429, 2014.

[86] X.-R. Sheng, D.-C. Zhan, S. Lu, and Y. Jiang, “Multi-view anomaly detection: Neighbor-

hood in locality matters,” in Proc. AAAI Conference on Artificial Intelligence, pp. 4894–

4901, 2019.

[87] K. Ding, Q. Zhou, H. Tong, and H. Liu, “Few-shot network anomaly detection via cross-

network meta-learning,” in Proc. ACM Web Conference, pp. 2448–2456, 2021.

63

[88] S. Zhou, X. Huang, N. Liu, H. Zhou, F.-L. Chung, and L.-K. Huang, “Improving general-

izability of graph anomaly detection models via data augmentation,” IEEE Transactions on

Knowledge and Data Engineering, 2023.

[89] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie, and M. Guo, “Graph-

GAN: Graph representation learning with generative adversarial nets,” in Proc. AAAI Con-

ference on Artificial Intelligence, 2018.

[90] L. Meng, H. Mostafa, M. Nassar, X. Zhang, and J. Zhang, “Generative graph augmentation

for minority class in fraud detection,” in Proc. ACM International Conference on Informa-

tion and Knowledge Management, pp. 4200–4204, 2023.

[91] H. Zenati, C. S. Foo, B. Lecouat, G. Manek, and V. R. Chandrasekhar, “Efficient GAN-based

anomaly detection,” arXiv preprint arXiv:1802.06222, 2018.

[92] H. Qiao, Q. Wen, X. Li, E.-P. Lim, and G. Pang, “Generative semi-supervised graph

anomaly detection,” arXiv preprint arXiv:2402.11887, 2024.

[93] Z. Gong, G. Wang, Y. Sun, Q. Liu, Y. Ning, H. Xiong, and J. Peng, “Beyond homophily:

Robust graph anomaly detection via neural sparsification,” in Proc. International Joint Con-

ference on Artificial Intelligence, pp. 2104–2113, 2023.

[94] M. Jin, Y. Liu, Y. Zheng, L. Chi, Y.-F. Li, and S. Pan, “ANEMONE: Graph anomaly de-

tection with multi-scale contrastive learning,” in Proc. ACM International Conference on

Information & Knowledge Management, pp. 3122–3126, 2021.

[95] Z. Xu, X. Huang, Y. Zhao, Y. Dong, and J. Li, “Contrastive attributed network anomaly de-

tection with data augmentation,” in Proc. Pacific Asia Conference on Knowledge Discovery

& Data Mining, pp. 444–457, 2022.

[96] Y. Hu, C. Chen, B. Deng, Y. Lai, H. Lin, Z. Zheng, and J. Bian, “Decoupling anomaly

discrimination and representation learning: self-supervised learning for anomaly detection

on attributed graph,” Data Science and Engineering, pp. 1–14, 2024.

[97] S. M. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi, P. Forsyth, and P. Poupart, “Repre-

sentation learning for dynamic graphs: A survey,” Journal of Machine Learning Research,

vol. 21, no. 70, pp. 1–73, 2020.

64

[98] L. Zheng, Z. Li, J. Li, Z. Li, and J. Gao, “AddGraph: Anomaly detection in dynamic graph

using attention-based temporal GCN,” in Proc. International Joint Conference on Artificial

Intelligence, 2019.

[99] H. He, X. Li, P. Chen, J. Chen, W. Song, and Q. Xi, “DGFormer: An effective dynamic

graph transformer based anomaly detection model for IoT time series,” in Proc. Interna-

tional Conference on Collaborative Computing, pp. 173–188, 2023.

[100] J. Li, Q. Xing, Q. Wang, and Y. Chang, “CVTGAD: Simplified transformer with cross-

view attention for unsupervised graph-level anomaly detection,” in Proc. Joint European

Conference on Machine Learning and Knowledge Discovery in Databases, pp. 185–200,

2023.

[101] Y. Liu, S. Pan, Y. G. Wang, F. Xiong, L. Wang, Q. Chen, and V. C. Lee, “Anomaly detection

in dynamic graphs via transformer,” IEEE Transactions on Knowledge and Data Engineer-

ing, vol. 35, pp. 12081–12094, 2021.

[102] J. Langford and T. Zhang, “The epoch-greedy algorithm for multi-armed bandits with side

information,” in Advances in Neural Information Processing Systems, 2007.

[103] K. Ding, J. Li, and H. Liu, “Interactive anomaly detection on attributed networks,” in Proc.

ACM International Conference on Web Search & Data Mining, pp. 357–365, 2019.

[104] P. Morales, R. S. Caceres, and T. Eliassi-Rad, “Selective network discovery via deep rein-

forcement learning on embedded spaces,” Applied Network Science, vol. 6, pp. 1–20, 2021.

[105] K. Ding, X. Shan, and H. Liu, “Towards anomaly-resistant graph neural networks via rein-

forcement learning,” in Proc. ACM International Conference on Information & Knowledge

Management, pp. 2979–2983, 2021.

[106] Y. Bei, S. Zhou, Q. Tan, H. Xu, H. Chen, Z. Li, and J. Bu, “Reinforcement neighborhood se-

lection for unsupervised graph anomaly detection,” in Proc. IEEE International Conference

on Data Mining, pp. 11–20, 2023.

[107] Y. Li, X. Huang, J. Li, M. Du, and N. Zou, “SpecAE: Spectral autoencoder for anomaly

detection in attributed networks,” in Proc. ACM International Conference on Information &

Knowledge Management, pp. 2233–2236, 2019.

65

[108] M. Mesgaran and A. B. Hamza, “A graph encoder–decoder network for unsupervised

anomaly detection,” Neural Computing and Applications, vol. 35, no. 32, pp. 23521–23535,

2023.

[109] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional net-

works,” in International Conference on Learning Representations, 2017.

[110] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph attention

networks,” in International Conference on Learning Representations, 2018.

[111] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,”

in Advances in Neural Information Processing Systems, 2017.

[112] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and relieving the over-

smoothing problem for graph neural networks from the topological view,” in Proc. AAAI

Conference on Artificial Intelligence, vol. 34, pp. 3438–3445, 2020.

[113] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li, “Simple and deep graph convolutional

networks,” in International conference on machine learning, pp. 1725–1735, 2020.

[114] L. Xie, D. Pi, X. Zhang, J. Chen, Y. Luo, and W. Yu, “Graph neural network approach for

anomaly detection,” Measurement, vol. 180, p. 109546, 2021.

[115] J. Li, J. Li, Y. Liu, J. Yu, Y. Li, and H. Cheng, “Deconvolutional networks on graph data,”

in Advances in Neural Information Processing Systems, pp. 21019–21030, 2021.

[116] L. Tang and H. Liu, “Relational learning via latent social dimensions,” in Proc. ACM

SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 817–826,

2009.

[117] J. Tang, J. Zhang, L. Yao, J. Li, L. Zhang, and Z. Su, “ArnetMiner: extraction and mining of

academic social networks,” in Proc. ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pp. 990–998, 2008.

[118] Z. Peng, M. Luo, J. Li, H. Liu, Q. Zheng, et al., “Anomalous: A joint modeling approach

for anomaly detection on attributed networks,” in Proc. International Joint Conference on

Artificial Intelligence, pp. 3513–3519, 2018.

[119] P. Velickovic, W. Fedus, W. L. Hamilton, P. Liò, Y. Bengio, and R. D. Hjelm, “Deep graph

infomax,” in International Conference on Learning Representations, 2019.

66

[120] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, et al., “PyTorch: An imperative style, high-performance deep

learning library,” in Advances in Neural Information Processing Systems, 2019.

[121] M. Fey and J. E. Lenssen, “Fast graph representation learning with pytorch geometric,”

arXiv preprint arXiv:1903.02428, 2019.

[122] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in International

Conference on Learning Representations, 2015.

[123] K. Liu, Y. Dou, Y. Zhao, X. Ding, X. Hu, R. Zhang, K. Ding, C. Chen, H. Peng,

K. Shu, et al., “PyGOD: A python library for graph outlier detection,” arXiv preprint

arXiv:2204.12095, 2022.

67

