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Abstract

Socially Aware Path Planning For Autonomous Road Vehicles

Victor Rasidescu

This research addresses the critical challenge of path planning for autonomous vehicles by
integrating Social Value Orientation (SVO) into path-planning algorithms for autonomous
vehicles. The framework utilizes a fuzzy logic-based system to evaluate and categorize the
social values of pedestrians and vehicles in real time by considering their observed behaviors
and social cues. This approach enables autonomous vehicles to make more informed and
socially aware decisions, thereby enhancing their ability to interact safely with human road
users. In addition, the thesis introduces an adaptive artificial potential field (APF) method
that dynamically assesses the dangers presented by di↵erent road users, taking into account
factors such as type, size, speed, and societal importance. By integrating road layout and
tra�c signal potential fields, the APF method guarantees that the autonomous vehicle can
navigate intricate road conditions while prioritizing safety.

The e↵ectiveness of the proposed path planning framework is rigorously validated using
CARLA driving simulator. These simulations create a realistic and dynamic tra�c envi-
ronment, allowing for the thorough testing of custom behavioral profiles for various actors
in di↵erent tra�c situations. Results demonstrate the framework’s practical applicability
and e↵ectiveness in enhancing the interaction between autonomous vehicles and human road
users.

The outcomes of this research contribute to the development of safe and human-centric
path-planning algorithms for highly automated vehicles, particularly in dense or mixed-tra�c
environments. This work represents a significant step towards creating autonomous systems
that can coexist harmoniously with human drivers and pedestrians, ultimately leading to
safer and more e�cient roadways.
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Chapter 1

Introduction

1.1 Background

Autonomous vehicles (AVs) promise transformative opportunities in future transportation
systems, particularly in enhancing e�ciency and safety and aligning with environmental
sustainability. The integration of AVs could address key issues highlighted in the 2021
report by the National Highway Tra�c Safety Administration (NHTSA) [1], which showed
that 18.5% of fatalities involved driving over the posted speed limit, 7% from failure to yield
the right of way, and 6.6% from failing to keep in the proper lane [2]. These statistics are
further summarized in Table 1.1. These identified behaviors can be used to assess the risk
associated with drivers or pedestrians, thereby improving AVs’ safety and autonomy.

According to the Society of Automotive Engineers (SAE), there are 5 levels of autonomy
that perform part or all of the dynamic driving task [3]. Level 0 performs no automa-
tion, and level 1 provides driver assistance such as cruise control. Level 2 performs partial
driving automation, where the vehicle can perform steering and acceleration tasks. Level
3 implements conditional driving automation, where the vehicle can perform most driving
tasks, but human override is still required. Level 4 is described as high automation. The
vehicle can perform all driving tasks under specific circumstances, but geo-fencing is still
required. Finally, level 5 systems achieve full automation without requiring human atten-
tion. This automation-level system has become the standard and is summarized in Table 1.2.
Currently, autonomous vehicle systems from automotive manufacturers o↵er up to level 3
capability as defined by the SAE standard. Mercedes-Benz DRIVE PILOT [4] is an example
of such a system. The ability to incorporate the driving behavior of other road users, be
it drivers, pedestrians, cyclists, or mobility scooters, represents a potential avenue towards
fully autonomous level 5 systems.
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Table 1.1: Driving Behaviors Reported For Drivers And Motorcycle Operators Involved In
Fatal Crashes, 2021 [2]

Behavior Number Percent

Driving too fast for conditions or in excess of posted limit or racing 11254 18.5
Under the influence of alcohol, drugs, or medication 6835 11.2
Operating vehicle in a careless manner 4601 7.6
Failure to yield right of way 4239 7
Failure to keep in proper lane 4042 6.6
Distracted (phone, talking, eating, object, etc.) 3346 5.5
Operating vehicle in erratic, reckless or negligent manner 2615 4.3
Failure to obey tra�c signs, signals, or o�cer 2450 4
Overcorrecting/oversteering 1845 3
Vision obscured (rain, snow, glare, lights, building, trees, etc.) 1584 2.6
Drowsy, asleep, fatigued, ill, or blacked out 1310 2.2
Swerving or avoiding due to wind, slippery surface, etc. 1278 2.1
Driving wrong way on one-way tra�c or wrong side of road 1179 1.9
Making improper turn 445 0.7
Other factors 5825 9.6
None reported 9576 15.7
Unknown 19636 32.2
Total 60904 100

Advanced path planning frameworks are a cornerstone for integrating AVs into public
roadways, and they necessitate a deep understanding of vehicle dynamics and environmen-
tal interaction. AVs must navigate complex environments, balancing safety and e�ciency,
thus requiring sophisticated algorithms capable of real-time decision-making and adaptation
to unpredictable scenarios. Moreover, integrating vehicle dynamics into the path-planning
process is essential for generating feasible and safe trajectories. This integration allows AVs
to make more informed and interpretive decisions, considering factors like vehicle speed,
turning radius, and braking capabilities, leading to smoother and safer maneuvers. Despite
the progress in path planning for AVs, the development of socially aware path-planning al-
gorithms is vital to ensure their safe integration into public roadways. Transitioning from
partially to fully automated driving requires socially conscious path planning based on in-
terpreting social cues from pedestrians and other vehicles. These cues, coupled with an
understanding of vehicle dynamics and environmental interactions, allow for sophisticated,
real-time decision-making. The incorporation of human-like thinking models into path plan-
ning algorithms is vital in this context, enabling the assessment of risks and anticipation
of intents. This blend of technical and social awareness allows AVs to navigate complex
situations safely and e�ciently.
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Table 1.2: Levels of Autonomy as Defined by SAE [3]

Level Description

0 No Automation: The driver performs all driving tasks.
1 Driver Assistance: Vehicle is controlled by the driver, but

some driving assist features may be included.
2 Partial Automation: The vehicle has combined auto-

mated functions like acceleration and steering, but the driver
must remain engaged with the driving task and monitor the
environment at all times.

3 Conditional Automation: The driver is a necessity, but is
not required to monitor the environment. The driver must
be ready to take control of the vehicle at all times with
notice.

4 High Automation: The vehicle is capable of performing
all driving functions under certain conditions. The driver
may have the option to control the vehicle.

5 Full Automation: The vehicle is capable of performing
all driving functions under all conditions. The driver is not
required to be present.

High-level path planning, also known as global planning or mission-level planning, is the
act of planning paths from the ego-vehicle’s location to the destination, which is usually
far and out of sight. The idea of distinguishing between high-level path planning and local
path planning arises from high-precision path planners’ limitations. Usually, incomplete or
unknown map parameters would limit the usefulness of applying local planning techniques to
navigation areas beyond sensor or data acquisition means. Furthermore, because of the com-
putational complexity required for the precision needed in local planning, these would present
an undue burden if applied to a very large workspace map. Methods such as Dijkstra’s search
algorithm were formulated to solve the question: Given a network of roads connecting cities,

what is the shortest route between two designated cities? By posing the entire road network
as a series of interconnected nodes, a series of navigational sub-objectives can be extracted
by finding the shortest path through a weighted graph. Another graph-based method, A*,
can also be adapted to high-level path planning. The issue of its significant computational
complexity is mitigated by limiting the search space to only the road network and placing
nodes that describe only the geometry of the road (such as the lane-center line) and not the
entire road surface. The series of nodes found by graph-based approaches can then serve as
sub-destinations in the local path-planning stage.
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By separating macroscopic navigational tasks to the high-level planner, we can delegate
more computational resources for the precision and accuracy needed for the local path-
planner stage where the local path planner can acquire data through various sensor inputs
(camera, ultrasonic, LiDAR, etc.) to create a high precision map of the ego-vehicle’s immedi-
ate surroundings with information that would have been otherwise unavailable to a high-level
planner. Furthermore, the high-level path planner can create a sequence of sub-destinations
to reach the global destination, akin to leaving breadcrumbs to follow a path. This allows
the local path planner to further reduce the range in which it needs to operate and can
help eliminate local minima by providing closely spaced sub-destinations/goals to the local
planner.

Path planning algorithms for autonomous vehicles encompass diverse state-of-the-art tech-
niques, each with unique strengths. Sampling-based methods like Rapidly-exploring Random
Trees (RRT) excel in high-dimensional spaces by e�ciently exploring random paths, making
them suitable for dynamic and unpredictable environments. Heuristic-based methods, such
as the A* algorithm, o↵er precision and simplicity, ideal for structured environments, but
can be computationally intensive in complex scenarios and easily incorporate many metrics
for optimality with the appropriate heuristics [5]. Additionally, intelligent methods like rein-
forcement learning (RL) represent a dynamic approach, continuously learning and adapting
from environmental interactions [6]. Artificial potential fields (APF) o↵er a unique per-
spective, simulating physical forces to navigate the obstacles. Khatib [7] proposed using
attractive and repulsive forces to create a potential field. Multi-dimensional equations are
used to represent the forces (potentials) created by the obstacles or the objective of the robot
in the configuration space, where the configuration space C for a ground robot is usually con-
strained to R2 because the configuration space is assumed to be locally flat. Because of the
problem of local minima, APFs are usually only used for local path-planning, as the problem
of mitigating local minima between the robot’s position and goal can become di�cult for
large configuration spaces [8]. This necessitates using a separate high-level path planner or
minima-reducing potential field equations such as harmonic potential fields (HPF). Figure
1.1 shows path planning visualisations for common methods discussed above.

4



(a) RRT [9] (b) A* [10] (c) Gradient Descent [11]

Figure 1.1: Common Robotic Navigation Algorithm Visualizations

However, a critical aspect often overlooked in these algorithms is the human-centric
element. Most of these methods are objective in nature and primarily focus on the technical
aspect of path-finding, sometimes missing the human-centric aspect of decision-making and
social interactions with pedestrians and other human-driven vehicles. This gap highlights
the need for incorporating social psychological models and human behavior modeling in
path planning algorithms, ensuring that autonomous vehicles can navigate e�ciently and
harmoniously coexist with human road users, respecting social norms and behaviors.

Social value orientation (SVO) is a social psychology concept introduced to describe a
person’s preference for allocating resources between themselves and another person [12]. This
framework was proposed for explaining social preferences after observing the cooperation of
participants [13] in social predicaments such as the Prisoner’s Dilemma [14] which more
simplistic self-serving behavioral models such as classical Game Theory did not predict.
Griesinger and Livingston [12] proposed a geometric framework for SVO where a circle is
used to show the spectrum of behavioral preferences.

Honjo and Kubo [15] proposed using SVO for social dilemmas in the context of nature-
based tourism (NBT) tour providers. It was suggested that one can imagine the tourism
dilemma as follows: Self-interested tourism firms increase tour supply to maximize their
benefits. Over-exploitation of natural resources happens, undermining the basis of NBT.
The economic value of NBT decreases, and the payo↵ allocation to tourism firms becomes
ine�cient. SVO is employed as a model to capture the diverse personality traits of individuals
engaged in wildlife viewing tours. SVO is expressed mathematically as a function that
calculates each person’s utility by considering their own payo↵s and the payo↵s to others.
The study assumes three types of players with distinct SVOs (individualistic, competitive,
and prosocial). Honjo and Kubo investigated how these varying social preferences influence
decision-making in the context of wildlife viewing tours, identifying which conditions lead to
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Figure 1.2: Social Value Orientation Ring [12]
.

Pareto-ine�cient Nash equilibrium (PINE). Unlike traditional game-theoretic studies that
often assume individualistic players maximize their own payo↵s without considering others,
the incorporation of SVO allows for a more realistic representation of human behavior.

As with most fluid definitions of human behavior, all actions exhibit some level of egotism
(outcome to self) and cooperativeness (outcome for others). The accurate classification of
the behavioral type of road users without explicit communication of their intent is a di�cult
process and will rely on non-verbal actions inherent in driving situations. The identification,
processing, and estimation of these behaviors can be used to influence the path-planning
protocol used by autonomous vehicles. Di↵erent social cues, such as a pedestrian’s distance
to a crosswalk, time waiting at a crosswalk, or the direction they are looking at, can serve
as an input vector to an estimation process. Likewise, a vehicle’s speed relative to general
tra�c or the speed limit, its driving smoothness, its following distance (in seconds) to the
proceeding vehicle, its lane centering, and its number of lane changes per minute (zigzagging)
can all serve as an input vector to obtain a social value to classify their cooperativeness.

Given the complexities of sociality and subjective human behavior interpretation, a sys-
tematic framework is essential for approximating the SVO of the ego vehicle and other road
users. The fuzzy inference system is an ideal candidate due to its adeptness at capturing
behavioral nuances and uncertainties. In this context, the fuzzy process is used as an esti-
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(a) Type-1 Fuzzy set (b) Type-2 Fuzzy Set

Figure 1.3: Fuzzy Membership Functions With Type-2 Visualization

mator to receive outputs from a behavioral input vector to estimate an actor’s social value
from [�1, 1] as seen in Figure 1.2. Fuzzy estimation processes serve as a linguistic model
to determine the degree of truth of someone’s social value. Contrary to classical logical
expressions, which just allow for Boolean outcomes, fuzzy logic allows for degrees of truth
using separate membership functions for each input and output variable, providing a means
for representing the uncertainty of a system. In this context, the input vector to a fuzzy
estimator can define a set of observed quantified behaviors, with each membership function
describing that behavior through a set of linguistic variables such as low, medium, and high.
Those variables are then fuzzified and defuzzified via the output membership functions and
fuzzy ruleset to obtain a value from [�1, 1] on the SVO circle. Criticism of basic type-1 fuzzy
sets usually revolves around the fact that no uncertainty is incorporated in the membership
functions themselves. Type-2 fuzzy sets introduce a second membership function to each
type-1 set to represent uncertainty. This can be extended to type-n fuzzy sets as proposed
by Zadeh [16]. All behaviors exhibit some level of egotism and cooperativeness, which seems
particularly well suited to fuzzy logic, which allows for degrees of truth as a means to rep-
resent the uncertainty of a system as opposed to a more rigid or Boolean labeling process.
Figure 1.3 depicts the input membership functions for type-1 and type-2 fuzzy sets.

1.2 Literature Review

1.2.1 High-Level Planning

Because of the computational complexity involved in high-accuracy local path planners, the
local minima problem, and incomplete obstacle knowledge of distant areas, the path planner
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operation is divided into high-level and local-level planners. When using local path planners
such as gradient descent, the issue of getting stuck in local minima instead of finding the
global minima of the potential field is a major concern. By carefully choosing the shape
and size of the potential field equations, it is possible to reduce the likelihood of getting
stuck in local minima. Harmonic potential fields (HPF) were first proposed by C. Connolly
[17] because they do not exhibit spurious local minima. The work was expanded upon by
Daily et al. [18] where they apply HPF to high-speed road vehicles for obstacle avoidance.
Other works applying HPF to the constraints of autonomous vehicle navigation are found
in [19, 20]. Additional methods that build on artificial potential fields, such as the advanced
fuzzy potential field method (AFPFM), were proposed by Park et al. [21], which used a
Takagi-Sugeno fuzzy system to avoid local minima.

While harmonic potential field methods can increase the size of the potential field without
exhibiting spurious local minima for a gradient descent path planner for a more unified solu-
tion, having two completely separate planning protocols is also possible. For the autonomous
vehicle problem, information such as road geometry, intersection locations, lane configura-
tions, and even tra�c congestion is usually known. It can serve as su�cient information
for a high-level objective planner. Graph-based search methods such as Dijkstra’s search
algorithm pose the entire road network as interconnected nodes. A series of navigational
sub-objectives can be extracted by finding the shortest path through a weighted graph. An-
other graph-based method, A*, can also be adapted to high-level path planning. The issue
of its significant computational complexity is mitigated by limiting the search space to only
the road network and placing nodes that describe the geometry of the road (such as the
lane-center line) and not the entire road surface. The series of nodes found by graph-based
approaches can then serve as local objective points in the local path-planning stage.

Kavraki et al. [22] proposed probabilistic roadmaps (PRMs) to create a roadmap by
randomly sampling the configuration space. Because of its random sampling, PRMs are
probabilistically complete as the number of sampled points increases. By limiting the high-
level workspace to the known road geometry ahead, PRM can sample random points, convert
them to a weighted connected graph, and solve them using graph traversal techniques such
as Dijkstra’s algorithm. Qiao et al. [23] proposed a PRM approach optimized for narrow
features such as roadways when viewed on a macroscopic level. PRMs can also be useful when
the roadway map is known but does not necessarily contain precise navigational waypoints
to input directly into a graph-based search algorithm.

1.2.2 Local Path Planning

Many methodologies have been developed to generate a suitable path from an artificial
potential field. One of the most straight forward is the gradient descent method [24], where
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minima is reached such that rU(q) = 0. The advantage of this approach is its relatively fast
computation time and is well suited for continuous real-time optimization. It is also possible
to handle some nonholonomic properties by constraining the angle at which the gradient
descent can be performed. However, gradient descent comes at the expense of its sensitivity
to initial conditions, making it prone to converge to local minima. Harmonic potential fields
(HPF) [17] and advanced fuzzy potential field method (AFPFM) [21] discussed previously
for high-level planning can also be applied to the local planning level to minimize the risk of
local minima.

A* is one of the earliest proposed path-planning algorithms and is useful for its complete-
ness, optimality, and e�ciency [25]. The configuration space is simplified into a mesh of
nodes to form a weighted graph, which the A* algorithm traverses. Conditions for optimality
can be specified to the node weightings, such as shortest path, shortest time, etc. A major
drawback of the A* algorithm is its extensive computational time and memory complexity.
The memory complexity is expressed as O(bd), where b represents the branching factor (aver-
age number of successors per node state). This challenges real-time high-speed applications,
such as autonomous road vehicle navigation. Improvements have been introduced to the A*
algorithm to address its shortcomings. Wang et al. [26] proposed the EBS-A* that intro-
duces expansion distance, bidirectional search, and smoothing into path planning. Xiang
et al. [27] has also shown improvements to memory e�ciency and convergence speed by
removing unnecessary nodes and retaining those at path inflection points.

Rapidly exploring random trees (RRT) is also a common algorithm for robotic naviga-
tion proposed by LaValle [28]. RRT grows a node tree with its root node at the starting
configuration. It attempts random node connections within the configuration space C and
completes the connection if it is feasible (no obstacle collisions, obeys constraint rule-set and
distance to node respects growth factor). Due to RRT’s random search, it can only achieve
probabilistic completeness, where the accuracy of a solution is dependent on the computa-
tion time. This also causes RRT to be non-deterministic, where solutions can vary between
two identical configuration spaces, and it does not guarantee optimality. However, RRT is
well-suited for environments with complex geometries or system constraints. Improvements
to the RRT algorithm have been proposed, such as the popular RRT* [29] method, where
nodes are assigned a cost function denoting the shortest path from the start. Exploring
nearby nodes within radius r and optimizing connections minimizes the cost function, yield-
ing the shortest path. RRT*-Smart [30] uses path optimization and intelligent sampling to
accelerate the convergence rate of RRT*.
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1.2.3 Behavioral Labelling

The identification of a road user’s behavioral profile to determine their degree of cooperative-
ness or egotism presents opportunities for research as there are many proposed approaches
to the problem.

Stackelberg game theory is often proposed in the labeling process of driver aggressiveness.
Schwarting et al. [31] proposed “driving as a game” in conjunction with SVO to label the
sociality of drivers where the driving agents maximize their accumulated reward over time.
At each point in time, the agent receives a multi-factorial reward involving an agent’s progress
towards their goal, comfort, delay, the distance between cars, and other driver priorities. To
incorporate SVO into their decision-making process, it was proposed to consider the angle
� formed between the horizontal axis and the social label in the right-hand plane seen in
Figure 1.2. On this basis, an altruistic actor has an angle � ⇡ ⇡/2, an individualistic agent
� ⇡ 0, and a competitive agent � ⇡ �⇡/4. To solve for the angle �, using a utility function
g1 = r1cos(�1)+r2sin(�1) was proposed, where the values of r1 and r2 represent the “reward
to self” and the “reward to other” from the game’s output, respectively.

Zadeh proposed a fuzzy set theory based on previously established logical sets by Lukasiewicz
and Tarski. Unlike classical logic with Boolean outcomes, fuzzy logic employs separate mem-
bership functions for input and output variables, enabling the representation of uncertainty
in systems, assessing the degree of truth regarding social value by analyzing observed quan-
tified behaviors characterized by linguistic variables such as low, medium, and high. Deb et

al. [32] conducted a survey where respondents rate the frequency with which they engage in
di↵erent types of road-using behaviors as pedestrians and di↵erentiated pedestrian behav-
iors into five-factor categories: violations, errors, lapses, aggressive behaviors, and positive
behaviors. M. Lanzer et al. [33] evaluated pedestrian crossing, gaze, and gesture behavior.
Substantial agreement was found between self-reported and video-observed data for crossing
action. The identification and quantification of these behaviors can serve as an input vector
and ruleset to a fuzzy estimation process to obtain a value from [-1,1] on the SVO circle.
Criticism of basic type-1 fuzzy sets usually revolves around the fact that no uncertainty is
incorporated in the membership functions. Zadeh improved on his original fuzzy logic work
by formulating type-2 sets and generalizing these formulations as type-n sets. To obtain a
crisp output, type-2 fuzzy sets are type-reduced to type-1 sets. Type-reduction methods
such as the Karnik-Mendel method (KM-method) [34] is commonly used. The proposed
improvements on the KM-methods can be found in works [35], [36] as well as the enhanced
KM-method [37]. Chen et al. compare the computational e�ciency of various type-reduction
methods using big O notation [38]. Fuzzy estimators present the advantage of not needing
large datasets to learn behaviors at the expense of their ability to notice micro-behaviors or
spatiotemporal behavioral sequences.
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Deep neural network (DNN) approaches have become prominent in mimicking human-like
processes. The topic of spatiotemporal prediction of action sequences can be made possible
through data acquisition from camera feeds or other sensors. The work of Pihrt et al. [39]
used the large dataset provided by the Lyft Motion Prediction for Autonomous Vehicles
where ride-sharing company Lyft provided a large dataset for a competition to predict the
trajectories of other tra�c participants. Their approach involved using a deep convolutional
neural network (CNN) and recurrent networks (RNN). Pihrt et al. explored sequences of
driving data using multiple architectures such as ConvLSTM, PsyDNet, and PredRNN,
amongst others, to compare their ability to predict drivers’ behavior. Detecting behavioral
anomalies that stem from human susceptibilities, such as fatigue or aggression, could be
used to proactively quantify AV safety relative to human drivers, such as explored in the
works of Ryan et al. [40]. This work proposed an end-to-end model using convolutional
neural networks (CNN) to compare human and AV driving behaviors. Contextual driving
anomalies were detected using Gaussian processes (GP), and their frequency and severity
were used to derive a risk score.

While the trends and predictions that DNN approaches have the potential to achieve are
a very promising avenue of exploration, the di�culty in acquiring and managing the large
datasets needed for these methods proves to be a large hurdle with these methods. Fur-
thermore, it can be di�cult to provide justification to tra�c regulators with non-observable
methods.

1.3 Problem Statement

The inability to classify the risk or cooperativeness of individual road users can lead to overly
cautious driving behavior, paralysis of the autonomous vehicle, or dangerous interactions in
uncertain situations such as right-of-way merges. Incorporating social awareness into path-
planning algorithms can help address these issues. This work will focus on identifying and
estimating behavioral types through social value orientation (SVO) and its incorporation
into a path-planning algorithm for autonomous vehicles.

Additionally, a reliable framework for identifying and labeling behaviors must be estab-
lished. This label should be utilized e↵ectively to influence the ego vehicle’s path planner.
Furthermore, applying the behavior label must also consider the vehicle’s nonholonomic
characteristics when influencing its path.

The tra�c data [1] serves as a motivator for developing socially aware path-planning
algorithms. The ability to predict the likelihood of a vehicle or pedestrian performing a
dangerous maneuver based on their social cues enables AVs to attribute the correct level
of risk to them. This classification not only aids in avoiding potential hazards but also
reduces overly cautious planned paths and maneuvers. Consequently, AVs can adapt their
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behavior based on other road users’ perceived cooperativeness and safety consciousness,
promoting smoother tra�c flow and minimizing unnecessary disruptions. This approach to
path planning addresses specific risk factors identified by the NHTSA and fosters a more
nuanced and responsive interaction between AVs and the diverse behaviors exhibited by
human drivers on the road.

Currently, no reliable framework for identifying road users’ behavior profiles is in e↵ect.
This work seeks to implement interval type-2 fuzzy logic estimators (IT2FL) to estimate road
users’ social value (SVO). By identifying key behaviors and actions, an IT2FL estimator can
estimate the social value with a human interpretable input, output, and inference system,
allowing the system to be tuned for many demographics without the need for expansive
datasets and allowing transportation regulators to validate the safety of the system.

1.4 Research Scope and Objectives

This work aims to develop a framework that can identify and label the cooperativeness of
individual road users, as well as apply this label to the autonomous vehicle’s path planner.
This will aid the path-planning algorithm in attributing the appropriate amount of risk to
the analyzed behavior to reduce overly cautious driving around actors who demonstrate
a willingness to cooperate. Likewise, it will take more cautious routes around those who
behave anti-socially.

Additionally, this work seeks to demonstrate the e↵ectiveness of this framework by creat-
ing a simulation environment within the CARLA driving simulator, where custom behavioral
profiles are created around pedestrians and vehicles in the simulation environment and then
analyzed by the autonomous vehicle to determine their sociality in real-time. This imple-
mentation allows for extensive simulations, replicating complex tra�c situations, evaluating
the performance of our model, and laying the foundation for better interactions between au-
tonomous and non-autonomous road users. A complete autonomous navigation framework
will be developed, incorporating high-level route planning from start point to destination,
local-level planning that analyzes the perceived environment of the AV, and a control system
to follow the proposed planned path.

The path planner is separated into high-level and local-level path planners to achieve
the navigation goal. This separation is created to utilize the best information available at
the perception and global levels. The high-level path planner performs an A* search with
Euclidean distance heuristic on all the possible navigation paths from the starting position
to the desired destination. The roadway is meshed into a series of nodes, distinguishing
between lanes and intersections to provide a continuous list of sub-destination points to
reach the global destination using A*. This list of sub-destinations is utilized by the local
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path planner to apply appropriate repulsive potentials representing the local lane curvature
and correct attractive potential to each sub-destination.

Because the high-level path planner provides the optimal route, the local planner can take
this information as a series of sub-goals to achieve the global goal. Artificial potential fields
are created from the perceived environment at the local level. The potential field for the
local planner is created by the summation of the individual potential functions of each actor,
as well as road geometry and tra�c signals. The summation of potential functions represents
the spatial risk, where the potential functions are multi-factorial. Moreover, an actor’s type,
size, relative speed, and heading are used to construct their potential function. Furthermore,
the sub-goals obtained from the high-level planner serve as an attractive potential, whereas
actors and obstacles act as repulsive ones. The size and granularity of the field can be
dynamically adjusted to adapt to computational limitations.

The gradient descent method is used to generate a path from the potential field of the
local planner for e�ciency. The local-level planner is already deemed feasible and optimal
by limiting the potential field to only the local planning and providing an optimal high-
level path using A*. As such, any local minima remaining in the local planner arise from a
set of potentials that require the vehicle to stop. These desirable local minima ensure the
vehicle does not hit any obstacles when the road constraints and tra�c configuration have
created the local minima. Furthermore, the gradient descent path planner incorporates the
nonholonomy of the vehicle as obtained from the vehicle kinematics model. This ensures
that the proposed path is feasible and can be used directly as an input to a velocity and
steering control system.

The social value of actors (vehicles and pedestrians) is used to modify the planned path
with a robust navigation framework created. To accomplish this goal, the social value ori-
entation circle, as shown in Figure 1.2, is used as a geometric template for the estimation
process. The estimated social value ⌦ = [�1, 1] is used to modify the repulsive potential
force of actors where an actor labeled as cooperative will have a decreased repulsive force,
whereas an egoistic actor will have theirs increased.

To determine the social value of road users, a set of behaviors is identified for pedestrians
and vehicles. These identified behaviors are explicitly observable, quantifiable, and linguis-
tically definable. The identified behaviors are summarized in Table 1.3. Furthermore, the
quantity or duration observed for each identified behavior is decomposed into the social value
circle.
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Table 1.3: Identified Actor Behavior Vectors

Actor Type Identified Behaviors

Pedestrian Distance to crosswalk: The Euclidean distance a cross-
walk beginning point (Where the crosswalk meets the side-
walk) in meters.
Wait time: The time in seconds that the pedestrian has
been waiting stationary at a crosswalk before crossing.
Look time: The time in seconds that the pedestrian has
been looking at oncoming tra�c before crossing. Pedestrians
can look at tra�c before they reach the crosswalk.

Vehicle Speed limit: Travel speed expressed as a percentage of the
posted road speed limit.
Follow time: Time in seconds to the proceeding vehicle
(also known as time to impact)
Lane Changes: Lane changes per minute performed by the
driver.
Lane Centering: Rolling average of the a vehicle’s distance
from the center of the lane.

A fuzzy estimation process is used to translate the observed behavior into a crisp value
linguistically to obtain a social value from the input vector of observed behaviors. A com-
monsense approach was used to linguistically define the sociality of behavior through the use
of tuned input membership functions and the appropriate fuzzy ruleset. The output mem-
berships represent the social value orientation circle, where the crisp output value represents
the social value of that actor. To account for the uncertainty of modeling through linguistic
variables and any noise or uncertainty during the measurement of the behavior, an interval
type-2 fuzzy (IT2FS) estimation process was used. The IT2FS’s footprint of uncertainty
(FOU) is adjusted by the uncertainty in linguistically defining and measuring each behavior
action.

This work provides a simulation model through CARLA Simulator [41] software to ob-
serve the e�cacy and applicability of the proposed framework. Custom behavioral profiles
for actors are created to obtain a realistic simulation environment that also allows the au-
tonomous vehicle to observe the behavior of road users for their social value estimation
process, in addition to creating realistic navigation environments.

The contributions of this work can be summarized as follows:

• Integration of a Social Psychological Model into Path Planning: The the-
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sis introduces a new approach to incorporating Social Value Orientation (SVO) into
the path-planning algorithms of autonomous vehicles. This integration allows the
autonomous vehicle to account for other road users’ social behavior and intentions,
enhancing the vehicle’s ability to make socially aware decisions and improve safety and
harmony on the road.

• Development of a Fuzzy Logic Estimator for Real-Time Social Value Assess-
ment: The research develops a fuzzy logic-based system for the real-time assessment
and labeling of the social value of pedestrians and vehicles. This estimator uses ob-
served behaviors and social cues to assign a social value, providing a dynamic and
responsive method to gauge the cooperativeness or aggressiveness of other road users.
In particular, Type-2 fuzzy estimators are used to model the uncertainty of the so-
cial value estimators for pedestrians and vehicles. The type-2 fuzzy estimators are
type-reduced using the Enhanced Karnik-Mendel.

• Simulation and Validation in a Realistic Driving Environment: The research
utilizes the CARLA Simulator to create a comprehensive simulation environment that
includes custom behavioral profiles for various actors. This setup allows for exten-
sive testing and validation of the proposed path planning framework in realistic and
dynamic tra�c scenarios, demonstrating the approach’s practical applicability and ef-
fectiveness.

• Advanced Potential Field for Dynamic Risk Representation: The research
introduces an advanced artificial potential field (APF) method that dynamically rep-
resents the risks posed by various road actors based on their type, size, speed, and
social value. This method incorporates road geometry and tra�c signal potential
fields, enabling the autonomous vehicle to navigate complex road environments while
maintaining safety. Furthermore, the nonholonomic constraints of the autonomous
vehicle are used to obtain an executable path for the AV to follow.
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Chapter 2

Simulation Environment

2.1 CARLA Driving Simulator

CARLA [41] is an open-source driving simulator, that encourages collaboration and innova-
tion within the research community. Researchers can access the source code, modify existing
functionalities, or develop new features to suit their specific research requirements. Addition-
ally, CARLA supports the integration of external modules and plugins, enabling researchers
to extend its capabilities further. CARLA o↵ers a highly realistic and flexible environment
for simulating various urban driving scenarios. CARLA is also used by industry partners
such as Intel for the development of o↵-road autonomous vehicle simulators [42] as well as
Toyota to aid in autonomous vehicle and computer vision development [43].

2.1.1 Physics Engine

CARLA Simulator uses Unreal Engine 4 (UE4) [44] for its 3D computer graphics engine,
providing an environment with high visual fidelity. Furthermore, motion and physics sim-
ulation in CARLA is managed by Nvidia PhysX[45]. PhysX allows for the simulation of
multiple aspects of autonomous vehicles, such as wheel and tire dynamics. The simulation
capabilities of PhysX for autonomous vehicles and robotics applications are summarized in
Table 2.1.
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Table 2.1: Nvidia PhysX Solvers [45]

Solver AVs Game Dev. Industrial App. Robotics
Rigid Body Dynamics X X X

Scene Query X X X X
Joints X X X X

Articulations X X X X
Vehicle Dynamics X X X X
Character Control X X X

Soft Body Dynamics X X
Position Based Dynamics X X

Flow X X X

2.2 Roadway and Navigation Information

2.2.1 Road Layout

CARLA Simulator o↵ers many driving maps. For this work, the urban driving map Town 10

was selected for its many pedestrian and vehicle interaction points, its varied intersections
and relatively slow travel speed. The compactness of this map also permits rapid testing,
fast loading and constraining environmental variables. Figure 2.1 shows the road layout of
CARLA’s Town 10 environment and the third person view of the ego-vehicle.

(a) Aerial View (b) Third Person View

Figure 2.1: CARLA Simulator Town 10
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2.2.2 ASAM OpenDRIVE

The ASAM OpenDRIVE [46] format provides a common base for describing road networks
with extensible markup language (XML) syntax. The data that is stored in an OpenDRIVE
file describes road geometry, lane configurations, and objects, such as road markings and
tra�c signals.

OpenDRIVE provides a road network description that can be fed into simulators to develop
and validate advanced driver assistance systems (ADAS) and AV features. Most importantly,
OpenDRIVE provides a standardized format for road descriptions, which enables the indus-
try to reduce the cost of creating and converting these files for their development and testing
purposes and researchers to develop new autonomous vehicle features. [46]

Figure 2.2: OpenDRIVE Roadway Features [46]

The ASAM OpenDRIVE road network is modeled along the reference line, which is the
core piece of every road. Roads, lanes, and their elevation profiles are all attached to the
reference line. Objects representing features, such as signals, can be placed by using either
the reference line or the global coordinate system [46] as shown in Figure 2.2.

In an OpenDRIVE file, the overall road network is composed of individual sections inter-
connected with each other as shown in Figure 2.3. These links can support the driving logic
of simulated tra�c [46], especially for routing purposes, and provide a framework in which
high-level path planners, such as A*, can operate quickly and accurately. Additionally, the
individual lanes on roads are also distinguished, allowing for high-precision turn-by-turn di-
rections when applying route planning algorithms, which is of particular importance in this
work.

The information provided by OpenDRIVE can be used to plan paths for autonomous
vehicles. It includes the correct lane, lane center line, road speed limit, and other road
signals.
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(a) Road Segments (b) Lane Segments

Figure 2.3: OpenDRIVE Roadway Geometry [46]

2.3 Sensors

2.3.1 Collision and Invasion Detector

The collision detection sensor registers an event each time its parent actor collides with
another item by verifying if the parent actor’s bounding box has entered the item’s bounding
box. Every collision sensor generates a collision event for each collision occurring in a frame.
Collisions with multiple other actors can generate multiple collision events within a single
frame.

Similarly to the collision sensor, the lane invasion sensor registers an event each time its
parent crosses a lane marking. The sensor uses road data provided by the OpenDRIVE
description of the map to determine whether the parent vehicle is invading another lane by
considering the space between wheels.

2.3.2 Cameras

CARLA o↵ers multiple camera types and performs some of the data post-processing. The
following camera types are available naively through CARLA’s API [41]:

RGB Camera acts as a regular camera capturing images from the scene. For added
realism, it has the following disturbance/noise parameters:

– Vignette: Darkens the border of the screen.
– Grain jitter: Adds some noise to the render.
– Bloom: Intense lights burn the area around them.
– Auto exposure: Modifies the image gamma to simulate the eye adaptation to

darker or brighter areas.
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– Lens flares: Simulates the reflection of bright objects on the lens.
– Depth of field: Blurs objects near or very far away from the camera.

Semantic Segmentation Camera This camera classifies every object in sight by dis-
playing it in a di↵erent color according to its tags (e.g., pedestrians in a di↵erent color
than vehicles). When the simulation starts, every element in the scene is created with
a tag. So, it happens when an actor is spawned. The objects are classified by their
relative file path in the project.

Instance Segmentation Camera Similar in e↵ect and output to the semantic segmen-
tation camera, this camera classifies every object in the field of view by class and
instance ID. When the simulation starts, every element in the scene is created with a
tag. Thus, it happens when an actor is spawned. The objects are classified by their
relative file path in the project.

DVS Camera A Dynamic Vision Sensor (DVS) or Event camera is a sensor that works
radically di↵erently from a conventional camera. Instead of capturing intensity images
at a fixed rate, event cameras measure changes in intensity asynchronously in the
form of a stream of events, which encode per-pixel brightness changes. Event cameras
possess distinct properties when compared to standard cameras. They have a very high
dynamic range (140 dB versus 60 dB), no motion blur, and high temporal resolution
(in the order of microseconds). Event cameras are thus sensors that can provide high-
quality visual information even in challenging high-speed scenarios and high dynamic
range environments, enabling new application domains for vision-based algorithms.

Optical Flow Camera The Optical Flow camera captures the motion perceived from
the point of view of the camera. Every pixel recorded by this sensor encodes the
velocity of that point projected to the image plane.
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(a) DVS Camera Diagram

(b) DVS Output (c) Optical Flow (d) Semantic Segmentation

Figure 2.4: CARLA Camera Output & Diagrams [41]

2.3.3 Distance and Ranging

Distance and ranging sensors do not necessarily create a human interpretable output but
return a depth map of the obstacles surrounding the sensor. Visualizations of distance and
ranging methods are shown in Figures 2.4 and 2.5. CARLA o↵ers the following depth and
ranging sensors [41]:

LiDAR This sensor simulates a rotating LiDAR implemented using ray-casting. The
points are computed by adding a laser for each channel distributed in the vertical
FOV. The rotation is simulated by computing the horizontal angle at which the LiDAR
rotates in a frame. The point cloud is calculated using a ray-cast for each laser in every
step. For added realism, it has the following disturbance/noise parameters:

– General drop-o↵: Proportion of points that are dropped o↵ randomly.
– Intensity-based drop-o↵: For each point detected, an extra drop-o↵ is performed

with a probability based on the computed intensity. Ray intensity is as:

I

I0
= e�a·d
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where a is the attenuation coe�cient, which quantifies how much the intensity
of the laser ray decreases per unit distance, and d is the distance between the
LiDAR sensor and the detected point.

– Noise model to simulate unexpected deviations that appear in real-life sensors.
For positive values, each point is randomly perturbed along the vector of the laser
ray.

Radar The sensor creates a conic view translated to a 2D point map of the elements in
sight and their speed regarding the sensor. This can be used to shape elements and
evaluate their movement and direction. Due to the use of polar coordinates, the points
will concentrate around the center of the view.

Depth Camera The camera provides raw data of the scene, codifying the distance of
each pixel to the camera (also known as depth bu↵er or z-bu↵er) to create a depth
map of the elements. Operates like an ideal stereoscopic camera image.

(a) Depth Camera (b) LiDAR

Figure 2.5: CARLA Ranging Sensors [41]

2.3.4 Position and Inertia

Position and inertial sensors are crucial for determining the vehicle’s spatial orientation and
dynamic motion. These sensors return the absolute position of the vehicle and the relative
motion of the sensor, respectively, providing essential data for navigation and control systems.
CARLA provides the following position and inertial sensors [41]:

GPS Reports the current global position of its parent object. The GPS sensor provides
latitude, longitude, and altitude data, essential for geolocation and navigation tasks.
This data allows for accurate mapping and localization within a global coordinate
system.
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Inertial Measurement Unit (IMU) Provides measurements that an accelerometer, gy-
roscope, and compass would retrieve for the parent object. The IMU collects data on
linear acceleration, angular velocity, and orientation, which are critical for understand-
ing the vehicle’s motion dynamics. This information is used to infer the vehicle’s
velocity, orientation, and changes in motion, aiding in stability control and navigation.

2.4 Tra�c Management

CARLA o↵ers realistic vehicle and pedestrian behaviors. Vehicles follow tra�c rules, such
as lane-keeping, tra�c lights, and yielding right-of-way, making the simulation environment
conducive to studying interactions between AVs and other road users. Pedestrians exhibit
natural movement patterns, including walking, crossing streets, and reacting to vehicle move-
ments.

2.4.1 Tra�c Management Architecture

The tra�c management module of CARLA occurs on the client side. It is organized into
stages for independent operations and goals, enhancing computational e�ciency. Each stage
operates on a separate thread, communicating synchronously in a one-way flow. Users can
customize tra�c flow by adjusting parameters to dictate or encourage online and o✏ine
behaviors. This flexibility is crucial for simulating real-world scenarios and training driving
systems under diverse conditions [41].

The tra�c manager is divided into multiple tasks and multiple stages to provide adequate
tra�c flow. Table 2.2 and 2.3 summarize the di↵erent stages of tra�c state storage and the
stages of tra�c management and support the system block diagram shown in Figure 2.6.

Table 2.2: CARLA Simulation Storage [41]

Component Description

Actor Life-cycle
& State Manage-
ment (ALSM)

Scans the world to keep track of all the vehicles and walkers present
and to clean up entries for those that no longer exist. All the data is
retrieved from the server and is passed through several stages.

Vehicle Registry
Contains an array of vehicles on autopilot (controlled by the TM) and
a list of pedestrians and vehicles not on autopilot (not controlled by the
TM).

Simulation State
cache store of the position, velocity, and additional information of all
the vehicles and pedestrians in the simulation.
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Figure 2.6: CARLA Tra�c Manager Architecture [41]
.

Table 2.3: CARLA Actor Management Stages [41]

Stage Description

Localization
Paths are created dynamically using a list of nearby waypoints collected
from the In-Memory Map, a simplification of the simulation map as a
grid of waypoints. Directions at junctions are chosen randomly.

Collisions
Bounding boxes are extended over each vehicle’s path to identify and
navigate potential collision hazards.

Tra�c Lights
Potential hazards that a↵ect each vehicle’s path due to tra�c light in-
fluence, stop signs, and junction priority are identified.

Motion Planner
Vehicle movement is computed based on the defined path. A PID con-
troller determines how to reach the target waypoints.

Vehicle Lights

The vehicle lights switch on/o↵ dynamically based on environmental fac-
tors (e.g. sunlight and the presence of fog or rain) and vehicle behavior
(e.g. turning on direction indicators if the vehicle will turn left/right at
the next junction, or turn on the stop lights if braking).

2.4.2 Pedestrian and Vehicle Behavior Simulation

CARLA o↵ers realistic vehicle and pedestrian behaviors. Vehicles follow tra�c rules, such
as lane-keeping, tra�c lights, and yielding right-of-way, making the simulation environment
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conducive to studying interactions between AVs and other road users. Pedestrians exhibit
natural movement patterns, including walking, crossing streets, and reacting to vehicle move-
ments.

To create custom behavior profiles for this research, a wrapper class was created around
the di↵erent modifiable parameters for each actor type. Where the vehicle speeds, follow
distance to proceeding vehicles, lane centering and lane changes are controlled to fit custom
behavior types. Additionally pedestrian behaviors around crosswalks is also controlled to fit
behavioral types, such as their walking speed, time spent before crossing and time looking
at tra�c. Table 2.4 summarizes the available parameters that can be modified to create
behavioral driving profiles and Figure 2.7 illustrates how the behavior parameters are used
to create custom behavioral profiles.

Table 2.4: CARLA Behavior Parameters [41]

Parameter Description

Safety

• Set a minimum distance between stopped vehicles (for a single vehicle
or for all vehicles). This will a↵ect the minimum moving distance.

• Set the desired speed as a percentage of the current speed limit (for
a single vehicle or for all vehicles).

• Reset tra�c lights.

Collisions

• Enable/Disable collisions between a vehicle and a specific actor.
• Define collision radius bounding box around vehicles, walkers, and

tra�c lights.

Lane Changes
• Force a lane change, ignoring possible collisions.
• Enable/Disable lane changes for a vehicle.
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Actor Control
CARLA

Parameters

Custom Behavior Control Wrapper

Close Following

Aggressive Lane Changing

Fast Driving

Slow Driving

Slow Driving + Average Lane Changing + ...

Custom Behavior Profile Types

Vehicle Actor

Figure 2.7: Custom Behavior Control Diagram

2.4.3 Collision Detection

To detect whether a vehicle has entered into a collision, CARLA using a bounding box system
to check if the area is clear between each time-step. This bounding box applies to tra�c
lights, pedestrians, vehicles, road markings such as lane lines, and other road obstacles. For
tra�c lights, a bounding box is present for the area a↵ected by the tra�c light when it is
red. This bounding box acts as a collision indicator. Figure 2.8 illustrates the bounding
box created around vehicles. A collision is detected when the ego-vehicle’s bounding box
interferes with an obstacle’s bounding box.

2.4.4 Driving Scenario Creation

To validate the proposed path planning framework, the creation of driving scenarios is nec-
essary. From the tra�c management module, it is possible to create a wrapper class over
the tools it o↵ers to extend its functionality. Unfortunately, CARLA’s autopilot for driver
and pedestrian actors possesses no intelligence, as vehicles and pedestrians are not goal ori-
ented. They follow a dynamically produced trajectory and choose a path randomly when
approaching a junction and their path is endless [41].

However, their initial spawning positions and their initial destinations (once reached they
randomly generate a new one) can be set manually. This, in conjunction to a custom behavior
profile that can be attributed to them allows us to have an adequate level of control.

2.5 Data Acquisition

To analyse and process a simulated scene, acquiring and saving data generated by the sim-
ulator is an important aspect of the development cycle. Data can be acquired in two ways:
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Figure 2.8: Vehicle Bounding Boxes [41]

By directly querying the simulation software for actor positions, poses, states, etc., or by
using the sensor suite available above and estimating the state of the world based on the
sensor outputs. This work focuses on path planning, and thus generally directly queries the
CARLA server for information about the surroundings of the ego-vehicle.

2.5.1 Synchronism and Determinism

CARLA o↵ers two operation modes when communicating with the server, synchronous and
asynchronous. While CARLA is a multithreaded task, the computations performed in each
thread can be sent and received to the server in a synchronous or asynchronous manner. In
synchronous mode, all computations are completed for each event (collisions, movements, in-
puts, physics calculations, etc) and their results are joined together before the next timestep.
In asynchronous mode, calculations are performed and returned as they are completed, but
their time to completion, order, or synchronicity is not guaranteed. While this can provide
a smoother experience in certain contexts such as video games or web-browsing, it is at
the direct expense of the determinism of the simulation. As such, this work only operates
synchronously.

Physics Substepping

When computing the physics of the simulation step, achieving precision often requires com-
putation within very low time steps. This poses a challenge when determining a suitable
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delta time for simulations, particularly those involving multiple computations per frame,
such as sensor rendering. The limitation primarily arises from the physics simulation itself,
prompting the application of substeps exclusively to physical computations. Using the ap-
propriate physics substep is crucial to accurate simulations. However, an excessively small
substep can needlessly increase computation time and prevent real-time simulation. Figure
2.9 shows the e↵ect of substep size on convergence.

(a) Velocity Computation (b) Z-Acceleration Computation

Figure 2.9: E↵ect of Timestep on Physics Convergence [41]

2.5.2 Data Recording

Actors are updated on every frame according to the data contained in the recorded file.
Actors in the current simulation that appear in the recording will be either moved or re-
spawned to emulate it. Those that do not appear in the recording will continue their way
as if nothing happened. The recorder file includes information regarding many di↵erent
elements.

• Actors creation and destruction, bounding and trigger boxes.
• Tra�c Lights state changes and time settings.
• Vehicles position, orientation, linear and angular velocity, light state, physics control.
• Pedestrians position orientation, linear and angular velocity.
• Lights Light states from buildings, streets, and vehicles.

From the recorded information generated by the simulation, it is possible to begin play-
back from any point in time within the recorded data. Additionally, the time factor of the
simulation can be adjusted, where a time factor of tf = 1 is real-time, tf < 1 is slow motion,
and tf > 1 is fast motion. In addition to saving data to a file output, it is also possible to
query the server for information in real time.

28



2.5.3 Performance Metrics and Evaluation

From the queryable information that can be obtained from the simulation server, and the
collision sensors provided through the CARLA API, it is possible to evaluate and record the
performance of the autonomous system. From this information, it is possible to determine
the distance from other actors and elements, states of all the actors as well as any collisions.
It is also possible to evaluate the respect of certain tra�c laws, such as red lights and lane
markings. Through these elements, it is possible to make comparisons between path planning
and control protocols for the ego-vehicle and evaluate performance metrics related to safety
and path e�ciency.

2.5.4 Coordinate System

The CARLA Simulator operates using a standard 6-degree-of-freedom coordinate system (x,
y, z, pitch, roll, yaw). This system provides a common reference for all actors and objects
in the simulation, ensuring that their positions and orientations are accurately represented.
The global origin of this coordinate system is located at the bottom left (South-West) of
the map file. This means that a simple coordinate transformation matrix can be applied
to any actor or object to convert them from the global frame of reference to an alternate
reference, if needed. This standard coordinate system is a fundamental aspect of the CARLA
Simulator, providing a consistent and reliable environment for autonomous vehicle system
development.
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Chapter 3

Autonomous Vehicle System

3.1 Bicycle Model Derivation

The dynamic equations of the bicycle model of a vehicle in the plane of motion are derived
in this section. The kinematic model is first derived to express the vehicle motion in body-
attached and ground-fixed coordinate frames. Figure 3.1 shows the bicycle model coordinate
frames and Figure 3.2 shows the free body diagram of the forces applied to the vehicle. The
bicycle model approximation assumes geometric symmetry of the vehicle, as well as a locally
flat surface with no pitch or roll vertical dynamics. Because the path planner provides a
2-dimensional path, only horizontal dynamics were considered. For low to moderate speeds
and reasonable maneuvers, this is an adequate simplification of the system. In the event
where full vehicle dynamics need to be considered, a separate suspension controller can be
implemented to control for vertical phenomena.

3.1.1 Coordinate Frames

In vehicle dynamics, a clear distinction between coordinate frames is crucial. The stationary
global road coordinate frame FG =

�
OXY , eXG , e

Y

G

 
is fixed to the ground with vector eX

G

oriented in the initial driving direction. The vehicle body-attached local coordinate frame
FL = {Oxy, exl , e

y

l
} is located at the ego-vehicle’s center of gravity C.G. with vector ex

l

directed forward along the longitudinal axis of the vehicle. The global and local coordinates
are utilized to express the vehicle’s position, velocity, and acceleration vectors. In this
context, the position vector rOxy/OXY

describes the location of the origin of the local vehicle
frame Oxy relative to the global road frame OXY . This vector is expressed as a linear
combination of the global frame unit vectors eX

G
and eY

G
:

rOxy/OXY
= XOxye

X

G
+ YOxye

Y

G
=


Xl

Yl

�
ex/y
G

. (3.1)
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Figure 3.1: Bicycle Model Configuration With Global and Local Coordinate Frames

Figure 3.2: Bicycle Model Free-Body Diagram

where ex/y
G

represents the global frame unit vectors eX
G

and eY
G


Xl

Yl

�
is a column vector

representing the coordinates Xl and Yl of the local frame origin Oxy in the global coordinate
system, respectively. This position vector is crucial in vehicle dynamics as it defines the
vehicle’s position globally, allowing for navigation and trajectory planning calculations.

In this research, the rotation matrix R l
is used to transform position vectors from the

global coordinate system to the local coordinate system. It rotates a vector around the eZ
G

axis, which is perpendicular to the ground plane defined by eX
G
and eY

G
(i.e. eZ

G
= eX

G
⇥ eY

G
):

eG = R l
el =


cos( l) � sin( l)
sin( l) cos( l)

�
el. (3.2)
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where  l is the heading angle of the vehicle defined as the angle between eX
G

and ex
l
. The

angle  l represents the heading angle of the vehicle, which is essential for understanding
how the vehicle is oriented with respect to the road. This orientation a↵ects maneuvering
and stability. The velocity vector VG of the ego-vehicle in the global frame is given by the
derivative of the position vector rOxy/OXY

:

VG = ṙOxy/OXY
= Ẋle

X

G
+ Ẏle

Y

G
=


Ẋl

Ẏl

�
eG. (3.3)

where Ẋl and Ẏl are the time derivatives of Xl and Yl, respectively. Furthermore, the
kinematic relations of the vehicle are derived considering the velocities at di↵erent points on
the vehicle. The linear velocity Vl at the center of gravity C.G. is related to the angular
velocity ! =  ̇l as:

Vl = VG + ! ⇥ rOxy/OXY
. (3.4)

Expressing velocity in di↵erent frames (global and local) is fundamental for dynamic
analysis and control algorithms in vehicle dynamics, such as trajectory tracking or evasive
maneuvers. Acceleration is a key factor in vehicle dynamics, a↵ecting everything from com-
fort to stability. It is particularly important in analyzing transient behaviors and designing
control systems. The acceleration vector AG of the ego-vehicle in the global frame is the
derivative of the velocity vector VG:

AG = V̇G = Ẍle
X

G
+ Ÿle

Y

G
=


Ẍl

Ÿl

�
eG. (3.5)

where Ẍl and Ÿl represent the second derivatives of the vehicle’s position coordinates in the
global frame. Additionally, eG =

⇥
eX
G

eY
G

⇤T
denotes the unit vectors in the global coordinate

system.

3.1.2 Dynamics Equations

The dynamic equations for the ego-vehicle, considered a rigid body in the host vehicle frame,
consist of the fundamental interactions between forces and motion. This model assumes no
compliance in the vehicle chassis or suspension systems, together with a smooth road and
geometric symmetry between the left and right sides of the vehicle. This simplification
allows for a clearer analysis of the fundamental handling dynamics without the additional
complexity of compliance e↵ects. These equations are crucial for understanding vehicle
dynamics and are given by:
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mẌl = Fx �mẎl ̇l, (3.6)

mŸl = Fy +mẊl ̇l, (3.7)

Iz ̈l = Mz, (3.8)

where m represents the vehicle’s mass, and Iz denotes the moment of inertia about the
vertical axis, reflecting the vehicle’s resistance to rotational acceleration. The forces Fx and
Fy are the net forces acting along the local frame axes, and Mz is the net moment about
the vertical axis. These equations are central to modeling the vehicle’s linear and angular
accelerations.

The role of tire forces is pivotal in vehicle dynamics, especially in modeling and simulation.
Pneumatic tires primarily generate the forces necessary for both propulsion and maneuvering.
The lateral forces the tires produce are particularly significant for vehicle handling stability
and performance. They arise primarily due to slip angles, a function of the vehicle speed and
the tire characteristics. According to prevalent tire models, the lateral forces are proportional
to the magnitude of these slip angles.

In other words, the lateral and longitudinal forces at the front and rear tires, denoted
as Fyf , Fyr, Fxf , and Fxr, respectively, depend on the slip angle, normal load, and friction
coe�cient of the tires. For the cornering forces, which contribute to the maneuverability of
the vehicle and motion in the lateral direction, the tire force for the front and rear tires can
be expressed as:

Fyf = 2C�f�f =
mgV 2

l
Lr

gR(Lf + Lr)
(3.9)

Fyr = 2C�r�r =
mgV 2

l
Lf

gR(Lf + Lr)
(3.10)

Where R is the steady-state turning radius of the vehicle, C�f , C�r is the cornering
sti↵ness and �f and �r is the slip angle of the front and rear tires respectively. Lf and Lr are
the distances from the front and rear axle to the CG. Finally, Vl is the longitudinal velocity
of the vehicle and g is the gravitational constant.

The general form of the Magic Tire formula stated by Pacejka is:

Fy = D sin(C arctan[Bx� E(Bx� arctan(Bx))]) (3.11)

where Fy is the lateral tire force resulting from a slip angle, and the parameters B, C, D,
and E are the fitting constants for a given tire curve.
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Figure 3.3: Pacejka Tire Model Lateral Force vs. Slip Angle [47]

Pacejka developed this tire model through extensive empirical testing of di↵erent tire con-
structions and conditions. The nameMagic Tire Formula is used because there is no physical
basis for this model, but instead relies on the empirical data to obtain the best fit between
experimental data and the tire model. These coe�cients are then used to generate equations
showing how much force is generated for a given vertical load on the tire, camber angle,
and slip angle [48]. The Pacejka tire model is widely used in professional vehicle dynamics
simulations, and racing car games, as they are reasonably accurate, easy to program, and
solve quickly [47]. An example curve for the Pacejka tire model is shown in Figure 3.3.

Longitudinal Forces

When using Simplified Julian’s Elastic Band traction model, the longitudinal traction force
Fx is generated by the area of the tire in full adhesion and the area experiencing slip. The
resultant longitudinal force depends on which portion of the curve the amount of slip is
situated and is shown in Figure 3.4.

For slip i < ic:
Fx = Cii (3.12)

For slip i = ic:

Fx = Ciic =
µpeakmg

2
(3.13)

For slip i > ic:

Fx = µpeakmg

✓
1� µpeakmg

4Cii

◆
(3.14)

34



100 100

Slip (%) Slip (%)

Fo
rc
e
(%

)

Fo
rc
e
(%

)
Traction Braking

1002000 0100

LockedSpinning

50

Figure 3.4: Longitudinal Tire Force-Slip Diagram

Where Ci is the longitudinal tire sti↵ness, i is the longitudinal slip %, ic is the critical slip
percent, determined by the linear region of the traction force-slip diagram shown in Figure
3.4. µpeak is the peak coe�cient of friction generated by the tire along the force-slip curve.
Di↵erent tire models can also be used, such as the Brush Tire model.

The friction force ellipse describes the maximum cornering forces available when compound
longitudinal and cornering forces are present as shown in Figure 3.5. The friction ellipse can
be represented as:

✓
Fx

Fxmax

◆2

+

✓
Fy

Fymax

◆2

= 1 (3.15)

Where Fxmax, Fymax are the maximum available friction forces when purely longitudinal
or lateral tire force is applied. The values of Fxmax, Fymax are determined by the tire material
and manufacturing properties.
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3.1.3 Slip Angle

The slip angle �f,r at the front and rear tires is defined as:

�f = arctan

 
Ẏl + Lf  ̇l

Ẋl

!
� �f (3.16)

�r = arctan

 
Ẏh � Lr ̇l

Ẋl

!
(3.17)

In the simplified bicycle model of the vehicle, the yaw rate
⇣
 ̇l

⌘
and the lateral velocity

(vy) of the CG are the two states of the system. The two states, together with the longitudinal
position, form the three degrees of freedom for the vehicle, where the longitudinal velocity
is denoted by (vx). The model’s input is the steering angle (�). From the vehicle’s free-body
diagram, nonlinear equations are derived, relating the C.G.’s accelerations in longitudinal,

lateral, and yaw directions
⇣
v̇x, v̇y,  ̈l

⌘
to tire forces. These equations are:

mv̇x = Fxf cos(�f ) + Fxf � Fyf sin(�f ) +m ̇lvy,

mv̇y = Fxf sin(�f ) + Fyf cos(�f ) + Fyr �m ̇lvx
Iz!̇l = Lf (Fxf sin(�f ) + Fyf cos(�f ))� LrFyr

(3.18)

Tire forces play a crucial role, especially in high-speed highway driving with low road
curvature and minimal steering angle. Under these conditions, small-angle approximations
are used for the vehicle body slip angle (�), the front and rear tire slip angles (�f and �r),
and the steering angle (�f ). At high speeds, significant lateral forces from the tires counteract
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lateral acceleration. The tire slip angle, defined as the angle between the vehicle’s heading
and travel direction, increases the lateral forces. In the simplified linearized bicycle model,
the lateral forces are linear functions of the slip angles:

Fyf
= Cf�f ,

Fyr = Cr�r.
(3.19)

For small longitudinal slip ratios:

Fyf
= 2Cf

 
Ẏl + Lf  ̇l

Ẋl

!
� �f

Fyr = 2Cr

 
Ẏh � Lr ̇l

Ẋl

! (3.20)

ÿ =
2C�f�f

m
� 2(C�f � C�r)

mvx
ẏ �

✓
vx +

2(C�fLf � C�rLr)

mvx

◆
 ̇,

 ̈ =
2LfC�f�f

Iz
� 2(C�fLf � C�rLr)

Izvx
ẏ �

2(C�fL2
f
+ C�rL2

r
)

Izvx
 ̇

(3.21)

Presented in state-space form, we obtain:
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ÿ
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3

775 =

2

6664

0 1 0 0

0 �2(C�f�C�r)
mvx

0 �vx � 2(C�fLf�C�rLr)
mvx

0 0 0 1

0 �2(C�fLf�C�rLr)
Izvx

0 �2(C�fL
2
f+C�rL

2
r)

Izvx

3

7775

2

664

y
ẏ
 
 ̇

3

775+

2

664

0
2C�f

m

0
2LfC�f

Iz

3

775 � (3.22)

3.1.4 Nonholonomic Constraints

Kinematic Equations

The nonholonomy of a robot can be shown more simplistically through the kinematic equa-
tions of motion of a system, as the nonholonomy is usually determined by the motion con-
straints and limitations of the system. From Figure 3.1, we state the kinematic model as:

2

4
ẋ
ẏ
 ̇

3

5 =

2

4
cos 0
sin 0
tan(�)

L
1

3

5

V
!

�
(3.23)

Where the length L represents the wheelbase of the vehicle (Lf + Lr). We can further
generalize the kinematic model by assuming that the steering control is applied as a steering
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angle, not a steering rate. The relation between the steering angle � and the vehicle angular
velocity ! can be written as ! = v

L
tan(�). The kinematic model in Equation 3.23 then

simplifies to:

q̇ =

2

4
ẋ
ẏ
 ̇

3

5 = G(q)u =

2

4
cos 0
sin 0
0 1

3

5

V
!

�
(3.24)

The implicit Pfa�an constraint on the velocities is written as:

A(q)q̇ =
⇥
0 sin � cos 

⇤
q̇ = ẋ sin � ẏ cos = 0 (3.25)

Because this velocity constraint can not be integrated into a constraint on the system’s
configuration, the system is thus nonholonomic. The real system is further constrained by
the limitation imposed on the maximum steering angle � caused by the vehicle’s steering
geometry does not allowing it to rotate to � = ± ⇡

2 . The relation between the steering
angle � and the vehicle angular velocity ! is rewritten as: !max = v

L
tan (�max). Because of

this limitation, the vehicle can not rotate in place. The system has the following control
transformation that takes the virtual controls V and ! and expresses them in terms of the
actual controls.

!

V

Figure 3.6: Car-Like Vehicle Control Bounds [49]

Figure 3.6 represents the control bounds of a car-like robot with Ackermann steering
where ! and V represent the vehicle’s yaw rate and longitudinal velocity, respectively. The
bow-tie shape arises from the limit on the vehicle’s turning radius, which a↵ects its maximum
yaw rate !, and the vehicle’s speed limit, which limits its forward-backward velocity V . In
the case of a forward-only car, Figure 3.6 reduces to only the right-hand plane [49].
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3.2 Vehicle Control

3.2.1 System Response

A steering controller is to be implemented to steer the vehicle along a path generated by
the local path planner. For simplicity, only the lateral deviation from the generated path is
used for path tracking. At low speeds and moderate steering angles, this showed to be an
adequate means of controlling the ego-vehicle. From the bicycle model equations of motion
developed in equation 3.22, the Laplace transformation of the state-space model takes the
form:

Y (s)

U(s)
= C(sI � A)�1B +D (3.26)

From the state-space model in Equation 3.22, where the observed state is y:

q̇(t) = Aq(t) +Bu(t)

y(t) = Cq(t) +Du(t)
(3.27)

q̇(t) =

2

6664

0 1 0 0

0 �2(C�f�C�r)
mvx

0 �vx � 2(C�fLf�C�rLr)
mvx

0 0 0 1

0 �2(C�fLf�C�rLr)
Izvx

0 �2(C�fL
2
f+C�rL

2
r)

Izvx

3

7775
q(t) +

2

664

0
2C�f

m

0
2LfC�f

Iz

3

775 u(t),

y(t) =
⇥
1 0 0 0

⇤
q(t)

(3.28)

Using the Laplace transformation presented in Equation 3.26, the transfer function for each
state is obtained by setting the feed-through matrix D = [0] and setting the observability
matrix C = [1 0 0 0], C = [0 1 0 0], C = [0 0 1 0], C = [0 0 0 1] to obtain the transfer
functions for the lateral position, lateral velocity, yaw, and yaw rate respectively. For a
constant velocity vx = 7m/s, moment of inertia Iz = 1500 kg.m2, mass m = 1750kg, tire
cornering sti↵ness C�r = C�f = 100 kN/rad, front and rear lengths are Lf = 1.8m and
Lr = 1.9m:

G1(s) =
171.4s2 + 20440s+ 136.2

s4 + 163.1s3 + 3882s2
(3.29)

G2(s) =
171.4s2 + 20440s+ 136.2

s3 + 163.1s2 + 3882s
(3.30)

G3(s) =
360s2 � 324.1s� 2.177

s4 + 163.1s3 + 3882s2
(3.31)
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G4(s) =
360s2 � 324.1s� 2.177

s3 + 163.1s2 + 3882s
(3.32)

3.2.2 Steering Control

Any automatic transmission road-going vehicle has three control inputs: the steering wheel,
accelerator, and brake pedal. Two of these inputs can be simplified into one, where the
accelerator and brake pedal can simply be combined as a velocity controller because it is
reasonable to assume that road vehicles do not require the brake pedal and accelerator to
be pressed simultaneously. While not the main focus of this work, two controllers were
implemented to aid in simulating various tra�c situations within the CARLA Simulator.

Geometric Look-Ahead Controller

Geometric steering controllers are based on a pure pursuit control method, with a look-ahead
parameter. The output of the computed steering command is used to drive the ego-vehicle
from its current position to the look-ahead point. A precondition to this controller is that the
path generated by the path planner is designed reasonably and requests acceptable steering
maneuvers. This also has the added benefit of reducing oscillations, improving stability, and
as a consequence, improving passenger comfort.

The look-ahead distance acts as a proportional steering controller, where large look-ahead
distances usually perform smoother inputs, at the cost of missing fine changes in the path.
A look-ahead distance that is too large can result in significantly cut corners, which in the
context of autonomous vehicles could mean a collision with the sidewalk or an obstacle [50].
The e↵ect the look-ahead distance has on steering control is demonstrated in Figure 3.7.

Short look-ahead Large look-ahead

Planned pathActual path

Figure 3.7: E↵ect of Look-Ahead Distance
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From the kinematic equations of motion described in equation 3.23, the geometric rela-
tionship between the turning radius and steering angle � is expressed as:

tan(�) =
L

R
(3.33)

According to the geometric relationship shown in Figure 3.8, the turning radius of the
vehicle is:

R =
2L sin(↵(t))

LAD

(3.34)

Where ↵ is the angle formed between the rear wheel and the look-ahead point, and LAD

is the look-ahead distance. From equation 3.33 and 3.34 the steering angle applied to the
vehicle for a look-ahead distance LAD can be expressed as:

�(t) = arctan

✓
2L sin(↵(t))

LAD

◆
(3.35)

The lateral error between the ego vehicle’s rear wheel and the look-ahead point is defined
as el = LAD sin(↵). By small angle approximation, we use equation 3.35 to express the
lateral error as:

el =
L2
AD
�(t)

2L
(3.36)
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PID Controller

In an attempt to achieve more comfortable path tracking for the ego vehicle’s occupants, a
PID controller was implemented on the lateral position error. The introduction of a PID
controller allows for more tuning possibilities over the path tracking of the ego-vehicle. This
added control can give us more flexibility over various design parameters such as track-
ing overshoot, responsiveness, or other criteria such as perceived passenger comfort. The
equation for a P-controller is given as:

�p = Kpel (3.37)

where Kp is the proportional gain constant. The I-controller reduces the steady-state
error in lateral error tracking by integrating the lateral error from the planned path over
time. The equation for the I-controller is:

�i = Ki

Z
t

0

el(⌧) d⌧ (3.38)

where Ki is the integral gain constant. Finally, the derivative component dampens large
velocities in the controller output by di↵erentiating the lateral error from the planned path
over time. The equation for the D-controller is:

�d = Kd

d

dt
(el) (3.39)

where Kd is the di↵erential gain constant. However, it is important to note that it is
sometimes di�cult to incorporate D-controllers in systems that have noise present in the
input, as the di↵erential controller attempts to compensate for the large changes in the
derivative of the input and must usually be coupled with a signal processing method to
clean the signal. Because of this, this work focused on using a PID controller to compensate
the system. Figure 3.9 shows the simplified block diagram of the steering controller, and
yLA is the lateral position of the planned path at the look-ahead point, and �p, �i, �d are
proportional, integral and derivative controllers described by equations 3.37, 3.38 and 3.39
respectively.

To find an appropriate set of controller gains for the PID controller, the Ziegler-Nichols
(ZN) method was used to obtain a baseline for performance. The ZN-method is a heuristic
turning procedure for PID controllers that o↵er adequate but not necessarily optimal gain
parameters for a controller [51]. The ZN method suggests first stimulating the system via
an increase of the proportional gain until the ultimate gain Ku is reached by observing when
the system output is stable with consistent oscillations. Tu is the oscillation period when the
system is acted on by gain Ku. Based on the desired controller and performance, Ziegler et
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Figure 3.9: PID Steering Controller Block Diagram

Table 3.1: Ziegler-Nichols Method Parameters

Controller Kp Ki Kd Ti Td

P 0.5Ku — — — —
PI 0.45Ku 0.54Kp/Tu — 0.83Tu —
PD 0.8Ku — 0.1KuTu — 0.125Tu

Classic PID 0.6Ku 1.2Kp/Tu 0.075KuTu 0.5Tu 0.125Tu

Some Overshoot 0.33Ku 0.66Kp/Tu 0.11KuTu 0.5Tu 0.33Tu

No Overshoot 0.2Ku 0.4Kp/Tu 0.066KuTu 0.5Tu 0.33Tu

al. summarize the values for proportional, integral, and derivative gains Kp, Ki, Kd as seen
in Table 3.1.

Using Table 3.1 to compute the parameters Kp, Ki, Kd, Ti and Td, yields the following
transfer function for compensator u(s) from error e(s)

u(s) = Kp

✓
TdTis2 + Tis+ 1

tis

◆
e(s) (3.40)

Controller Results

To ensure passenger comfort and reduce unease from steering overshoot, the performance
requirement of a maximum of 0% overshoot was imposed for the steering controller. The
best results were obtained by setting the look-ahead distance to 2 seconds of travel in front
of the vehicle (i.e., vx = 3m/s ! LAD = 6m). Using the ZN method as a starting point, for
a vehicle traveling 10km/h, the controller gains were Kp = 1.25, Ki = 0.001. At 25km/h,
Kp = 0.5, Ki = 0.001. The response to a step input representing a reference path of 1 m is
shown in Figure 3.10.

Remark: The controller response shown in Figure 3.10 assumes that the ego-vehicle travels
at a constant velocity vx of 10 km/h and the controller will be inadequate for
velocities that are significantly di↵erent. Multiple velocity regions can be defined
and each tuned using the same method as above.
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(a) 10 km/h (b) 25 km/h

Figure 3.10: Steering Controller Response to Step Input

A response to a step input represents the worst-case scenario for the steering controller,
as a step input usually does not represent a reasonably planned path. The gain parameters
were further refined within the CARLA simulation to balance the system’s responsiveness
with the road geometry within the simulator.

3.2.3 Velocity Control

The longitudinal velocity control in a conventional road vehicle is controlled by the accel-
erator and brake pedals. Because it is reasonable to assume that the accelerator and brake
pedal do not need to be applied simultaneously, these two inputs can be grouped into a
unified velocity controller. The sign of the output dictates whether the accelerator or brake
pedal must be actuated.

Remark: The state-space vehicle dynamics model presented in equation 3.22 assumes con-
stant longitudinal velocity vx. The assumption of constant velocity renders the
state-space equations a linear time-invariant (LTI) system. The system becomes
a time-variant (LTV) if a velocity controller is introduced. To overcome this,
regions of constant velocity are created, and the controllers are tuned according
to the system’s behavior for each region. This creates multiple LTI systems to
describe the vehicle dynamics when velocity is not constant.

Reference Velocity

The reference velocity vref is the length of the planned path generated by the local planner
relative to the length of the local planner boundary. Intuitively, it is reasonable to assume
that if the local path planner can generate a continuous, acceptable path from the ego
vehicle to the edge of the local planner boundary, there are no significant obstacles that
would require a reduction of speed from the cruising velocity. Conversely, if the local path
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planner does not reach its boundary because of a local minima, an obstacle is hindering the
navigation path. The distance to this local minima represents the proportional reduction of
speed required, where a local minima at the ego-vehicle would require a full stop.

LLPB

Lmin

Planned path

Minima

Local planner boundary

CG

Figure 3.11: Free Distance Diagram

Figure 3.11 shows the relationship between the local planner boundary distance relative
to the planned path length, where LLPB is the local planner boundary distance from the ego
vehicle’s center of gravity and Lmin is the planned path length in the longitudinal direction.
Both LLPB and Lmin are in the ego-vehicle’s longitudinal direction of travel.

The control input uses a value mapping formula to achieve a proportional control output
relative to the length of the planned path. The standard mapping formula is given as:

mnew =
(m� amin)(bmax � bmin)

(amax � amin)
+ bmin (3.41)

where amin  m  amax is to be mapped to new range bmin  mnew  bmax. Adapting
the mapping formula to obtain a target velocity for the velocity controller, we have:

vref =
(Lmin � Lstop)(vfree � vmin)

(LLPB � Lstop)
+ vmin (3.42)

where vref is the reference velocity, Lstop is the distance from the end of the planned path
at which the ego-vehicle should be stationary, vfree is the free path speed (i.e. the path
reaches the local planner boundary). vfree could represent the speed limit of the road or
that of general tra�c flow. vmin is the minimum velocity that the vehicle should drive at.
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PID Controller

As with the steering controller, a PID controller was implemented for velocity control in
order to have more flexibility in its performance. Equations 3.37, 3.38 and 3.39 described
previously describe the P, I and D-controller respectively. The input to the controller uses the
computed geometric velocity target as a reference value, and the vehicle’s current position
as feedback. The velocity error is stated as:

ev = vref � v (3.43)

where ev is the velocity error, vref is the mapped reference velocity from equation 3.42
and v is the current ego-vehicle velocity. To achieve both braking and accelerator control,
the signal is split based on the sign of the error term ev.

P
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ai

ad

P

Vehicle Model
vref
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v

bp

bi

bd

P

if ev � A

if ev  B

b

ev

Figure 3.12: PID Switching Velocity Controller Block Diagram

Figure 3.12 shows the simplified block diagram for a switching velocity controller. Here,
a is the accelerator output and b is the brake pedal output. ap, ai, ad and bp, bi, bd, are the
accelerator and brake proportional, integral and derivative controllers respectively. Finally,
the values of A and B are the velocity error dead-zone constants for the accelerator and
brake pedal, which are set to prevent oscillatory switching between each controller.

The selection of controller gains Kp, Ki and Kd for the braking and accelerator switching
controllers is done using the Ziegler-Nichols method which is summarized in Table 3.1 as a
starting point.

Controller Performance

To prevent passenger unease, a control requirement of zero overshoot is necessary, and a
maximum acceleration rate of 1m/s2 was imposed. For breaking, a zero percent overshoot
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was required to prevent jerking when coming to a stop.

Figure 3.13: Acceleration and Braking Response

Experimentally, for a constant cruising speed of 10km/h, the acceleration controller pro-
portional and integral gains were ap = 0.1, ai = 0.05 respectively. The braking controller
gains were bp = 0.12, bi = 0.05. Furthermore, the dead-zone values for the controller switch-
ing were set at A = B = 0.5km/h. Figure 3.13 shows the acceleration an braking response
from a 10km/h to 0km/h reference velocity signal.

Remark: Due to the non-linear force of air resistance acting on the vehicle, engine breaking
and rolling resistance on the tires, multiple regions of velocity can be tuned to
achieve adequate performance for many target speeds. This work mainly operates
at lower velocities.
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Chapter 4

Path Planning

As discussed previously, there is an important distinction in the methodologies used for high-
level path planning (global or mission-level planning) and local planning. By employing a
hybrid methodology, we can find total route optimality via an appropriate route planning
algorithm, reduce the possibility of local minima, and allocate the appropriate computational
resources for high-precision tasks.

4.1 High-Level Route Planning

Roadway node mesh

Navigation start node

Destination

Figure 4.1: Roadway Planned Path

To generate a series of sub-goals, the A* search algorithm finds the shortest path con-
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necting the origin and destination with a distance heuristic. To accomplish this, the entire
roadway map is meshed into a node structure where each node is placed on the center line
of all lanes, and the connection direction replicates the lane’s tra�c direction. Figure 4.1
demonstrates how a road network meshed on each lane’s center line can be solved to obtain
a path from the origin to the destination if one exists.

Remark: To ensure the feasibility and existence of a path from the initial ego-vehicle node
to a requested destination node, a depth-first search (DFS) is performed before
searching for the optimal path using A*.

4.1.1 A* Route Search

The A* search belongs to the best-first class of algorithms, which explores a graph by expand-
ing the most promising node chosen according to a specified rule in a weighted-connected
graph structure. In this case, the specified heuristic for optimality is only the Euclidean
distance between nodes. However, it can be expanded to many parameters, such as time
(with real-time tra�c data), number of left-hand turns (to minimize intersection wait times),
etc. The scope of this high-level path planner is simply to obtain an optimal distance path
from origin to destination.

When Hart et al. [52] formulated the A* search, they stipulated that a graph G is defined
to be a set {ni} of nodes and a set {eij} of directed connections called arcs. If epq is an
element of the set {eij}, it is said that there is an arc from node np to node nq and that nq is
a successor node of np. These arcs have a cost, be it distance, time, etc. The cost of arc eij
is defined as cij. Due to the directed nature of the graph, a connection between node ni, nj

does not imply the reverse connection of node nj, ni exists. If such a connection did exist,
their respective costs cij 6= cji. Only graphs G where � > 0 such that the cost of every arc
of G cij � � are considered.

The search problem is specified implicitly as a set of source nodes S ⇢ {ni} and a successor
operator � on {ni} whose value for each ni yields all the successors ni of nj and their
associated arc costs cij. Applying the � operator to the source node and all its subsequent
successors, as long as new nodes can be generated, results in an explicit graph specification.
It is assumed that graph G is always given in implicit form. The sub-graph Gn from any
node n in set {ni} is the graph defined implicitly by the single source node n and some
operator � defined on {ni}. It is said that each node Gn is accessible from n. A path from
n1 to nk is an ordered set of nodes (n1, n2, n3, ...nk) with each node nn+1 a successor of ni.
There exists a path from ni to nj if and only if nj is accessible from ni. The summation of
all arc provides every path costs

P
j

i=0 ci,i+1 and a path from ni to nj is said to optimal by
having the smallest cost over all other sets of paths ni to nj. The cost of a path ni to nj
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is represented by h(ni, nj). When searching for the optimal path, we have the start node s
and a nonempty set of potential goal nodes T in G. For any node n in graph G, an element
t 2 T is said to be a preferred goal node of n if and only if the path’s cost from n to t is
less than any other path. The unique cost of an optimal path from n to t is described as:
h(n) = min

t2T
(h(n, t)).

The algorithm is performed by maintaining a tree of paths in memory from the origin to
the destination. The algorithm has the evaluation function f(n), which is defined as:

F (n) = g(n) + h(n) (4.1)

where the function g(n) is the calculated cost of the path from the start to node n, and
h(n) is the heuristic estimate of the cost from node n to the goal node. The A* algorithm
is an iterative process. The algorithm maintains an open list of nodes yet to be evaluated,
and at each iteration, it selects the node n, which has the lowest value evaluated at f(n).
At each iteration, the neighboring nodes in the directed graph are evaluated, which updates
their respective g(n) and f(n) values and adds them to the open list when appropriate. For
A* to guarantee an optimal solution, the heuristic function h(n) must satisfy the following
properties:

Admissibility: The heuristic function can not overestimate the true cost to reach the
goal from node n such that: h(n)  CostActual(n, ngoal)

Consistency: For every node n and its successor n + 1, the estimated cost from the
origin to node n in addition to the cost of reaching node n + 1 must be less or equal
to the estimated cost from the origin to node n+ 1. Where: h(n)  CostActual(n, n+
1) + h(n+ 1)

Because the configuration space C is assumed to be locally flat between nodes, the heuris-
tic Euclidean distance function h(n) =

p
(xn � xgoal)2 + (yn � ygoal)2. Procedurally, we can

summarize the A* algorithm as follows [52]:

Step 1: Start at origin node s.

Step 2: Note s as open, calculate f(s).

Step 3: Select neighbouring connected node n whose cost f(n) is lowest. Tie-breakers are
resolved arbitrarily unless node n 2 T .

Step 4: If n 2 T :

True: Terminate search.

False: Mark n closed. Apply successor operator � to node n. Calculate f(n) for
each successor and mark all successor nodes as open that are not already
closed. Remark as open any closed node ni which is a successor of node
n if fnew(ni) < fold(ni). Repeat step 2.
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Application

The application of the A* search to the high-level path planner involves using pre-processed
graphs G, which provided a source node s as the ego-vehicle starting point and a destination
node t. The pre-processed graph ensures that the directed graph G only has directed nodes
that are legal driving maneuvers. For example, the directed connections ensure that the A*
search can not perform illegal lane changes, U-turns, or drive the wrong way. Figure 4.2
illustrates the subset of graph G for a small subsection of the road network in which if a
path exists between origin and destination, the optimal path can be found using A* search.

Figure 4.2: Roadway Node Mesh

By providing a directed graph G with a curated set of nodes placed on the lane center and
providing only legal maneuvers through the arc direction, we can perform the A* search to
find a valid, legal, optimal path from the source node to the destination. Furthermore, the A*
search returns an ordered list N of nodes (n1, n2, n3, ...nk) where N 2 G. This ordered list N
acts as a list of sub-goals that the local-level planner uses to navigate its local surroundings.

The high-level planner executes a node search once at the beginning of the navigation
task and ideally never again, where the set of ordered nodes N would be su�cient for the
local path planner to navigate the sequentially series of sub-goals. Road hazards or tra�c
blockages can trigger a re-calculation if real-time tra�c information is known or the local
path planner cannot execute the path after a set attempt time.
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4.2 Local-Level Path Planning

4.2.1 Configuration Space

The configuration space C represents the set of all possible configurations that the au-
tonomous vehicle can be in. While the autonomous vehicle can rotate in the pitch, roll,
and yaw directions, the configuration space in this work is considered locally flat with negli-
gible pitch and roll modes of motion. For a vehicle that can travel and rotate in 2-dimensional
space, we have a configuration space C = R2 and the special Euclidean orthogonal group of
2-D rotations SE(2) = R2 ⇥ SO(2) is applied. The C is represented with parameters (x, y,
✓). The obstacle space Cobs represents the configuration space that the robot is not allowed
to occupy. In this context, this represents the configuration space occupied by pedestrians,
other vehicles, environmental obstacles, opposite lanes of tra�c, etc. It should be noted that
Cobs is not essentially limited to the physical space taken by the obstacles. This work provides
a framework for incorporating the obstacle’s dimensions, speed, direction, and social value
(when applicable) into a complete risk distribution representing its obstacle configuration
space.

Let there be some obstacle region O in the workspace W with O ⇢ W . The vehicle rigid
body A ⇢ W is defined. If q 2 C represents the configuration of the rigid body A, the
obstacle configuration space is defined as Cobs = q 2 C|A(q) \ ; 6= 0. This configuration
space is the set of all possible configurations at which the vehicle intersects the obstacle
region, O. Since sets A(q) and O are closed sets, the obstacle region is a closed set in C.
The rest of the configurations make up the free space, denoted as Cfree = C\Cobs. The free
space Cfree is an open set such that the rigid body can come arbitrarily close to the obstacle
region O and still be in Cfree [53] [54].

The free space Cfree is the set of configurations without obstacles or possible collisions.
Finally, the target space Ctarget represents the target destination or goal of the robot. In the
context of path-planning and autonomous vehicles, usually, the final destination or goal of
the vehicle is not directly observable but can be reached by a sequence of sub-targets, akin
to turn-by-turn driving directions given to humans to reach a destination.

4.2.2 Coordinate System

CARLA Simulator’s environment provides all positions of actors and objects in a global
coordinate reference frame. To adequately create a potential field from the ego vehicle’s
perspective, a translation and rotation transformation matrix is needed to convert all in-
formation from the global reference frame to the local ego-centric frame of reference. The
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transformation matrix M matrix is represented as:

M =


T 0
0 1

� 
R 0
0 1

� 
T�1 x
0 1

�
(4.2)

The translation matrix T and the rotation matrix R are expressed as follows:

R =

2

4
cos(✓) sin(✓) 0
� sin(✓) cos(✓) 0

0 0 1

3

5 (4.3)

T =
⇥
v1 v2 vp

⇤
(4.4)

where ✓ is the angle of rotation between frames, vp is the vector along the axis of rotation,
and [v1, v2] are the plane of rotation. The coordinate system used for the local planner in
subsequent sections is the local ego-centric frame of reference unless otherwise stated.

4.2.3 Artificial Potential Fields

Potential functions o↵er a path-planning protocol in which a robot or autonomous vehicle
follows the gradient such that rU(q) = 0. In its simplest form, the ideal robot is represented
by a particle that can rotate and translate freely. Due to the nonholonomy of the autonomous
vehicle, constraints can be placed on the gradient descent that limits the angle at which the
potential gradient can be followed. The potential force acting on a particle robot for a
configuration space C = R2 :

F (q) = �~rU(q) (4.5)

The force F acting on the robot at a given configuration point q is equal to the gradient
~rU(q) = [@U

@x
, @U
@y
].

The artificial potential field (APF) is created by adding together repulsive and attractive
potentials. As mentioned earlier, attractive potentials indicate the local sub-target defined
by the path planner, while repulsive potentials are generated by elements around the obstacle
configuration space Cobs. The total potential field is:

U(q) = Uatt(q) +
X

Urep,i(q) (4.6)

The sub-goal of the overall navigation problem is represented by the potential function
Uatt(q). Each obstacle has its own repulsive potential Urep,i(q) formed by a Gaussian distri-
bution equation representing the spatial risk created by the obstacle. The equations for each
potential should be di↵erentiable [@U

@x
, @U
@y
] for R2.
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4.2.4 Gradient Descent

The general approach for obtaining a navigation path from a potential field using the gradient
descent method involves performing the gradient operation on an iterative basis from an
initial condition (the ego vehicle’s initial configuration) until a minimum is found. This
iterative search method is performed on a potential field U(q) with the following equation
[54]:

qk+1 = qk � ↵rU(qk) (4.7)

where qk is the current configuration of the ego-vehicle, rU(qk) is the gradient of the
potential field at the current configuration point, and scalar ↵ is the iterative step size that
the gradient descent is using.

Figure 4.3: E↵ect of Gradient Step Size ↵

The tuning of the adequate step size ↵ is highly important due to its e↵ect on the conver-
gence rate and accuracy of the gradient descent. A step size ↵ that is too large may result
in significant oscillations in the path or its inability to converge to a minimum. One that
is too small can result in needless computational complexity and converging time, which
is important in real-time applications. The gradient descent is iteratively performed until
the end condition is met, i.e. a minimum is found such that: rU(qk) = 0. However, this
punctual point on the graph is usually infinitesimally small and unattainable with a step
size ↵. Thus, a more relaxed end condition is set:

krU(qk)k  ✏, ✏ > 0 (4.8)

where ✏ is a minimum gradient value at which the iterative process is stopped. Figure
4.3 demonstrates the e↵ect of step size when performing the gradient descent of a function.
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4.2.5 Adaptive Gradient Descent

The step size ↵ was assumed to be a constant value. However, as discussed previously,
sub-optimal values of ↵ can lead to path oscillations or convergence issues. The concept of
adaptive step size ↵ is utilized [54].

↵best = argmin
↵

[U(q � ↵rU(q))] (4.9)

Newton’s method or other numerical methods can be used to determine the optimal step
size. However, this can quickly become ine�cient as the optimal step size must be calculated
for each gradient step. A more e↵ective method is finding an acceptable step size at each
iteration rather than spending time minimizing the value. A backtracking line search is a
common method for optimizing the step size method. Given a starting configuration q and
a search direction rU , a line search determines a step size ↵ � 0 that reduces the objective
function U : R2 ! R which is assumed to be continuously di↵erentiable.

For a backtracking line search, an initial step size ↵ is guessed from the previous step size
by setting the initial guess larger than the previous step size ↵. This guess is then tested
with the Armijo-Goldstein [55] condition:

U(qk+1)  U(qk + �↵krU(qk)
TrU(qk) (4.10)

If the condition is satisfied, the step size is accepted and the gradient descent continues.
If not, Armijo proposes reducing the step size by half and checking again. More formally,
the step size ↵ is reduced by a decay factor �, where 0  �  1 and tested again for the
Armijo-Goldstein condition.

Another approach is to incorporate the second-order information of the function by ap-
plying the Hessian of the objective function. Where the ith row and jth column of a Hessian
are (HU)i,j =

@
2
U

@xi@xj
. The general form Hessian matrix of a function U is given as:

H =

2

66664

@
2
U

@x2
1

@
2
U

@x1@x2
· · · @

2
U

@x1@xn

@
2
U

@x2@x1

@
2
U

@x2
2

· · · @
2
U

@x2@xn

...
...

. . .
...

@
2
U

@xn@x1

@
2
U

@xn@x2
· · · @

2
U

@x2
n

3

77775
(4.11)

The backtracking line search Armijo-Goldstein end condition for a step size ↵ becomes:

U(qk+1)  U(qk) + �↵krU(qk)
T (Hk)

�1rU(qk) (4.12)

Where Hk and rU(qk) are the Hessian and gradient at the current configuration point,
respectively. The Hessian method considers the curvature of the potential function U to
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make a more informed step size adjustment and usually converges to a solution with fewer
iterations. However, it adds significant computational complexity by requiring the Hessian
and its inverse computation at each iteration [56].

4.2.6 Path Optimization

Because of the separation between the high- and local-level path planners, the local-level
planner has already been tested for feasibility and optimality by the high-level path planner
using the A* search algorithm. As such, any local minima remaining in the local planner arise
from a set of potentials that require the vehicle to stop. These desirable local minima ensure
the vehicle does not hit any obstacles when the road constraints and tra�c configuration
have created the local minima. This aspect allows for safe navigation within the confines of
the road and tra�c and di↵erentiates this work from a simple obstacle avoidance model. Red
lights, pedestrians, and vehicles can all create a minimum that prevents the ego-vehicle from
moving forward, and the potential field of the lane prevents the ego-vehicle from illegally or
unsafely trying to avoid the obstacle.

4.2.7 Nonholonomic Constraints

The straightforward gradient descent of a potential field generates a path that follows the
direction of the steepest descent to a minimum. However, the path generated does not
incorporate the nonholonomic constraints of the vehicle attempting to follow it. The gradient
might require a motion or state that is not attainable. In the previous section, the Pfa�an
constraint of a bicycle model vehicle was shown in Equation 3.25, and the control bounds of
the model were shown in Figure 3.6.

In the context of path planning and providing a steering control mechanism for the au-
tonomous vehicle, providing a safe and attainable path is important, without which the
proposed path is pointless. To adapt the gradient descent method to the nonholonomic con-
straints of the vehicle, the angle at which the gradient descent can be performed is limited to
a factor �max which is obtained from the maximum yaw rate that ego-vehicle can generate.

From the kinematic model presented in Equation 3.24, we have the yaw rate �̇ =
⇣

tan(�)
L

⌘
V .

Where � is the steering angle of the front tires, and �max will denote the maximum steering
angle that can be generated by the vehicle’s steering geometry. The maximum angle �max

at which the gradient descent can search between iterations is thus:

�max =
↵ tan(�max)

L
(4.13)
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Where ↵ is the gradient descent step size, and L is the length of the vehicle’s wheelbase.
This condition is implemented by limiting the maximum angle at which the gradient can be
performed. A limiting function C is implemented, where C is defined as:

C(x,�max) =

8
><

>:

�max, if x > �max

x, if � �max  x  �max

��max if x < ��max

(4.14)

Programmatically, the limiting function can also be written as max(min(x,�max),��max).
Applying the limiting function C to the iterative gradient descent of function U , we obtain:

qk+1 = qk � ↵C(rU(qk),�max) (4.15)

Providing a gradient path that incorporates the maximum steering angle of the ego-
vehicle helps generate accurate and relevant paths around obstacles and the roadway.

4.3 Potential Functions

4.3.1 Repulsive Potentials

The repulsive potentials represent all objects or elements that the autonomous vehicle must
avoid or stay within. In the CARLA Driving Simulator, these represent other vehicles,
pedestrians, tra�c lights, and the lane in which the ego-vehicle must navigate. For simplicity,
obstacles such as lamp posts, sidewalks, or other obstacles not pertaining to the navigable
road surface are accounted for by the driving lane’s potential field, which includes these
hazards.

Pedestrians and Vehicles

All pedestrian and vehicle actors are represented by a 3-dimensional Gaussian distribution.
The general form of the potential force equation used by social actors (pedestrians and
vehicles) is:

Urep = Krepe
�
 ✓

(x�i)2

2�2
x

◆Px

+

✓
(y�j)2

2�2
y

◆Py
!

(4.16)

where Krep is the gain parameter for each repulsive equation, (i, j) are the centroids of
the actor’s location (m), which equates to the mean of the distribution in x and y directions,
respectively. (�x, �x) represent the standard deviations of the potential force distribution
(m). Parameters Px and Py are the order of the Gaussian distribution.
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We can extend the definition of the standard deviations (�x, �x) to include not only the
physical dimensions of the actor but also a dynamic growth factor that incorporates the
reaction time of that actor to create a safe perimeter around them. To incorporate this
parameter, we define the reaction distance as the relative incoming velocity V between the
actor and the ego-vehicle (m/s), multiplied by the reaction time parameter t (s). We include
the actor’s physical length (m) and width (m) dimensions as L, W , and the actor’s social
value ⌦ multiplied by a scaling factor ↵.

�x = (Lx + t|V |)(1 + ↵⌦) (4.17)

�y = (Wy + t|V |)(1 + ↵⌦) (4.18)

We also introduce scaling factors x and y to scale the growth due to relative incoming
velocity. For example, if the ego-vehicle and a vehicle traveling in the opposite direction
on the highway have a relative closing velocity of 200km/h (55.5m/s), we would expect a
large increase in that actor potential longitudinally (in its direction of travel), but not as
much laterally. In Equations (4.17) and (4.18), we apply the actor’s social value ⌦ = [�1, 1]
as a multiplicative element to its potential force, without removing potential caused by its
physical dimensions and reaction distance if its social value is equal to 0 (individualistic).
The scaling factor ↵ is constrained between [0,1].

Extending Equation (4.16) we obtain:

Urep = Krepe
�
 ✓

(x�i)2

2[(Lx+t|V |)(1+↵⌦)]2

◆Px

+

✓
(y�j)2

2[(Wy+t|V |)(1+↵⌦)]2

◆Py
!

(4.19)

Pedestrians

To demonstrate the potential field e↵ect created by pedestrians and their various input
variables, we plot the discretized versions of their potential equations in Figures 4.4 and
4.5. Because pedestrians can move in any direction with little notice, we propose a wider
risk distribution and set their Gaussian order in Equation (4.19) to one. In the following
example, we demonstrate the e↵ect of relative velocity and social value on their APF. We
set the SVO scaling factor ↵ = 1, longitudinal and horizontal reaction time scaling factors
x = 1, y = 0.1 with a reaction time t = 2s, location centroid (i, j) = (0, 10), pedestrian
dimensions L,W = 1m and the Gaussian order Px, Py = 1.
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(a) V = 0m/s,⌦ = 0 (b) V = 5m/s,⌦ = 0

Figure 4.4: E↵ect of Relative Velocity on Pedestrian APF

(a) ⌦ = 0 (individualist) (b) ⌦ = �0.75 (Cooperative) (c) ⌦ = 0.75 (Competitive)

Figure 4.5: E↵ect of Social Value on Pedestrian APF

Vehicles

A Gaussian order of 2 is used to better represent vehicles’ geometry. This creates a more
rectangular distribution that better encapsulates a vehicle as an obstacle. We also propose
that vehicles are less sensitive to lateral reaction time (because of their nonholonomic nature)
than pedestrians, who can change direction at any time and with little notice.

The discretized versions of their potential equations are plotted in Figures 4.6 and 4.7 to
demonstrate the potential field e↵ect created by vehicles and their various input variables. A
Gaussian order Px, Py = 2 is set, the SVO scaling factor ↵ = 1, longitudinal and horizontal
reaction time scaling factors x = 1, y = 0.05 with a reaction time t = 2s, location centroid
(i, j) = (0, 10), and vehicle dimensions L = 4m,W = 2m.
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(a) V = 0m/s,⌦ = 0 (b) V = 5m/s,⌦ = 0

Figure 4.6: E↵ect of Relative Velocity on Vehicle APF

(a) ⌦ = 0 (individualist) (b) ⌦ = �0.75 (Cooperative) (c) ⌦ = 0.75 (Egotist)

Figure 4.7: E↵ect of Social Value on Vehicle APF

Tra�c Lights

To navigate intersections and come to a stop when a tra�c signal turns red, a tra�c light
APF is implemented, which is conditional to its light state (red, yellow, green). As with pre-
vious equations, the tra�c light APF uses a super-Gaussian distribution, which the general
form is presented in Equation (4.16). However, tra�c lights do not possess a social compo-
nent, so the standard deviations of the equation are modified accordingly. Additionally, the
�x and �y parameters presented previously in Equations (4.17) and (4.18) become:

�x = Lx + t|V | (4.20)

�y =
1

2
Wlane (4.21)

60



(a) V = 0m/s (b) V = 5m/s

Figure 4.8: E↵ect of Relative Velocity on Tra�c Light APF

Extending Equation (4.16), we can obtain the tra�c light artificial potential:

Urep = Krepe
�
 ✓

(x�i)2

2(Lx+t|V |)2

◆Px

+

✓
(y�j)2

1
2W2

lane

◆Py
!

(4.22)

where the Gaussian order Px, Py = 4. It is noted that the distribution does not expand
horizontally from the reaction time of incoming velocity (see Equation (4.21)). In conjunction
with a Gaussian order of 4, this prevents the tra�c light APF from bleeding into adjacent
lanes and serves as a wall to the navigation path the ego-vehicle takes during red lights.
However, the potential field still includes expanding the distribution in the ego-vehicle’s
travel direction. This is maintained to slow the vehicle down appropriately the faster it
travels toward the intersection.

The discretized versions of their potential equations are plotted in Figure 4.8 to demon-
strate the potential field e↵ect created by tra�c lights and their various input variables. A
Gaussian order of Px, Py = 4 is set, longitudinal reaction time scaling factor x = 1, with
a reaction time t = 2s, location centroid (i, j) = (10, 0) (m), and tra�c light dimensions
L = 1m, Wlane = 4m.

Lane of Navigation

A repulsion force is created around its left and right bounds to keep the vehicle within the
confines of the lane it needs to navigate in. A 2nd-order equation creates the potential force
as:

Urep = Krep

✓
(y � j)2

Wlane

◆
(4.23)
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where Urep is the potential at any point, Krep is the repulsive force gain factor, j is the
lateral distance of the lane center to the ego-vehicle (m), and Wlane is the width of the ego-
vehicle’s lane. As shown, the lane’s potential force is not dependent on x and solely from the
lateral distance to the ego-vehicle. This will be further explained in the following subsection.
The discretized version of its potential equation is plotted in Figure 4.9 with lane width
Wlane = 4m to demonstrate the potential field e↵ect created by the basic navigation lane.

Figure 4.9: Straight Lane of Navigation APF

Lane Curvature

It is immediately evident that the basic lane of navigation presented is not a complete
solution to describe the repulsive potential created by the lane. To correctly plan for the
road geometry ahead, the lane potential field must also represent the road’s curvature. A
polynomial regression is performed on the road geometry from a series of sampled points
of the lane center. The discussion of these sampling points from the OpenDRIVE road
geometry file is the topic of the high-level planner in Chapter 4.

To summarize those key points, the high-level path planner performs an A* search of all
roadway nodes, where the roadway is a directed graph G. All directed nodes are located on
all lane centers, and arcs only directionally connect legally reachable nodes (i.e., no illegal
lane changes, U-turns, or wrong-way). The A* search returns an ordered list N of nodes
(n1, n2, n3, ...nk) where N 2 G. This ordered list N acts as a list of sub-goals that the
local-level planner uses to navigate its local surroundings.
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Local planner APF

Figure 4.10: Local Planner Node Subset

nc

Ego-vehicle

nc+fnc�r

Local planner boundary

Figure 4.11: Local Planner Node Subset NL = {nc�r, nc+f}

From the ordered list N of sub-goals, the local planner determines the closest node nc

to the ego-vehicle by Euclidean distance. Then, the local set of sub-goals NL is extracted
from the ordered list N such that NL 2 N and NL = {nc�r, nc+f} where r and f are the
number of nodes behind the ego-vehicle and in front of the ego-vehicle in the ordered list N .
Experimentation showed that the best coe�cients for r and f were obtained at r = 8 and
f = 20. NL acts as a sliding window on the ordered node set N determined by the high-level
planner as shown in Figure 4.10 and is shown in isolation in Figure 4.11.

By replacing mean j in Equation (4.23) by a polynomially regressed equation describing
the position of the set of sub-goals NL, it causes the mean of the distribution to follow the
curvature of the road ahead. The subset NL is expressed in local ego-centric coordinates
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by applying the transform matrix MG

L
and the polynomial regression formula applied to the

transformed nodes:

y = �0 + �1x+ �2x
2 + �3x

3 + ...+ �nx
n + ✏ (4.24)

The least squares method is used to minimize the residual vertical error between sampled
road geometry points and the polynomial regression as follows:

R2 =
X

[yi � f(xi, �0, �1, �2, �3 + ...+ �n)]
2 (4.25)

Experimentation showed that the best balance between over-fitting and accuracy for the
polynomial lane equation was obtained by performing a 4th-order regression:

f(x) = �0 + �1x+ �2x
2 + �3x

3 + �4x
4 (4.26)

Combining Equation (4.26) to Equation (4.23) we obtain:

Urep = Krep

✓
(y � f(x))2

Wlane

◆
(4.27)

To demonstrate the potential field e↵ect created by the complete navigation lane given
by Equation (4.27), we plot the discretized version of its potential equation in Figure 4.12.
The lane width is set to Wlane = 4m, and a 4th-order regression from the local sampled road
section is used:

Figure 4.12: Lane of Navigation APF
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4.3.2 Attractive Potential

The purpose of the attractive potential is to guide the ego-vehicle toward the navigation
goal. Within the context of a local planner, the attractive potential location usually implies
a sub-goal. Navigating a sequence of correct sub-goals will amount to completing the global
navigation task. As mentioned earlier, the global goal is usually out of sight, and a large
configuration space would increase the probability of encountering undesirable local minima.

The high-level path planner shows that the sub-goal locations (navigation points) are
determined by the A* search algorithm and packaged as a list of sequential locations.

Parabolic Attraction to Sub-Goal

The most common method of creating an attractive potential field is to use a parabolic
or paraboloid equation centered at the objective or local sub-goal. The equation of the
paraboloid takes the form:

Uatt =
(x� i)2

a2
+

(y � j)2

b2
(4.28)

Where i, j are the centroid of the parabola and a, b are scaling factors in the x, y directions,
respectively. The sub-goal paraboloid attractive potential is plotted in Figure 4.13.

Figure 4.13: Paraboloid Sub-Goal Attractive Potential

From the ordered list N of sub-goals obtained from the global planner, the local goal-node
subset NL 2 N contains all the of the local planner nodes used for the lane regression as
shown in Figure 4.11. NL = {nc�r, nc+f} where r and f are the number of nodes behind the
ego-vehicle and in front of the ego-vehicle in the ordered list N as explained in the previous
section. The (c + f)th node in list NL is used as the centroid for the attractive paraboloid.
As the ego-vehicle moves forward, the new (c+f)th node is used as the attractive paraboloid
center.
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Figure 4.14: Total Potential Field Example Scene

4.3.3 Total Potential

The total potential is created by adding all individual repulsive forces created by actors
and the environment and the attractive potential of the local sub-goal. The total repulsive
potential is expressed as:
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Utot = Uatt + Urep

Utot = Uatt + Urep,lane
+
X

Urep,vehicle,i
+
X

Urep,pedestrian,i
+
X

Urep,light,i

(4.29)

where i represents the ith actor of that type and its state in the local navigation scene.
To demonstrate the total potential of a navigation scene, we plot the following discretized
version of the repulsive potential field. A fictitious road scene is created where the ego-
vehicle navigates along a northbound straight lane and is stopped at a red tra�c light. An
individualistic (⌦ = 0) pedestrian is walking at 1m/s northbound on the sidewalk parallel to
the ego-vehicle, and two incoming vehicles are driving in the southbound lanes. The leading
vehicle has an egoistic social value (⌦ = 0.75), and the following vehicle has a cooperative
social value (⌦ = �0.75). Both are traveling southbound at 7m/s. The total potential for
this scene is shown in Figure 4.14.
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Chapter 5

Social Value Orientation Modeling

This work limits the use of the social value orientation ring to the right-hand plane of possible
behavioral labels. The di�culty of using the SVO circle to determine the sociality of a road
user comes from the labeling process, where the non-verbal communication of individual
actors is used to estimate their behavioral profile. All behaviors exhibit some level of egotism
and cooperativeness, which is particularly well suited to fuzzy logic. Membership functions
for each input and output variable allow for degrees of truth as a means to represent the
uncertainty of a system as opposed to a more rigid or Boolean labeling process. Each actor
has a di↵erent set of input variables to determine their SVO which observes behaviors that
are unique to that actor type. The use of a fuzzy estimator allows for a human observable
system that can be tuned to various demographic or geographic tendencies. Additionally,
it presents the advantage of not needing large datasets to learn behaviors, at the expense
of its ability to notice behavioral sequences. The fuzzy sets were created by identifying
common actions observed during di↵erent driving scenarios. From these identified actions,
their behavioral spectrum was subjectively quantified from altruistic to sadistic using the
right-hand plane of the SVO circle shown in Figure 5.1.

The original type-1 fuzzy set proposal by Zadeh was criticized for having membership
functions with no uncertainty associated with it. Introducing type-2 fuzzy sets allows for
uncertainty to be attributed to the membership functions defining the measured behaviors,
which is of particular importance in the context of commonsense approaches to fuzzy esti-
mator tuning, as well as significant variation in demographic or geographic tendencies in the
measurement of behavioral cues.
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Outcome for Others

1(0,0)

Figure 5.1: SVO Half-Ring

5.1 Fuzzy Systems

5.1.1 Type-1 Fuzzy Systems

Zadeh [16] provided the following definition for fuzzy sets: A fuzzy set is a class with a
continuum of membership grades. A fuzzy set A in a referential (universe of discourse) X is
characterized by a membership function A which associates with each element x 2 X a real
number A(x) 2 [0, 1], having the interpretation A(x) is the membership grade of x in the
fuzzy set A.

A : X �! [0, 1] (5.1)

Where A(x) is the membership degree of x to the fuzzy set A and the collection of all fuzzy
subsets of X is denoted by F(X). The case of A(x) = 1 represents full membership of x in
A, and A(x) = 0 represents no membership. We can define the membership function of a
classical set A ✓ X as its characteristic function:

µA(x) =

(
1, if x 2 X

0, otherwise
(5.2)

This work uses 3 types of membership functions: the Z-shaped membership (zmf), S-
shaped membership (smf), and the Gaussian membership (gaussmf), which are described as
follows:
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µzmf (x; a, b) =

8
>>><

>>>:

1, x  a

1� 2
�
x�a

b�a

�2
, a  x  a+b

2

2
�
x�b

b�a

�2
, a+b

2  x  b

0, x � b

(5.3)

µsmf (x; a, b) =

8
>>><

>>>:

0, x  a

2
�
x�a

b�a

�2
, a  x  a+b

2

1� 2
�
x�b

b�a

�2
, a+b

2  x  b

1, x � b

(5.4)

µgauss(x; �, c) = e
�(x�c)2

2�2 (5.5)

Fuzzy Inference

Zadeh proposed the use of linguistic variables to define degrees of truth, with linguistic
variables working as a dictionary that translates linguistic terms into fuzzy sets. A linguistic
variable is a quintuple (X, T, U,G,M) in which X is the name of the linguistic variable, and
T is the set of linguistic terms that represent the values of the variable. Additionally, U is
the universe of discourse, G is a collection of syntax that produces the correct expressions in
T , and M is a set of semantic rules that map T to a fuzzy set in the universe U [57]. Figure
5.2 demonstrates a set of membership functions for an arbitrary linguistic variable over its
universe of discourse.
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Figure 5.2: Fuzzy Membership Functions Example
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Following the definition of the linguistic variable (X, T, U,G,M), a fuzzy ruleset is cre-
ated. A fuzzy rule is used to either map empirical information, use expert opinion, or even
commonsense knowledge to express these rules that would otherwise be di�cult to model
mathematically. In cases when expert opinion is highly subjective, this can be expressed
linguistically through a range of consensus. Uncertainty of this nature is also addressed by
type-2 fuzzy systems, which are presented in the following section. It is often intuitive to
map a value to an outcome, and fuzzy rules are a method of modeling this. A fuzzy rule is
a triplet (A,B,R) that consists of an antecedent A 2 F(X), a consequent B 2 F(X) that
are linguistic variables linked through a fuzzy relation R 2 F(X ⇥ Y ). Using fuzzy sets a
fuzzy rule is written in a if-then format as follows:

IF x is Ai THEN y is Bi, i = 1, 2, ...n (5.6)

This work uses the Mamdani rule base:

RM(x, y) =
n_

i=1

Aix ^Biy, i = 1, 2, ...n (5.7)

As individual rules may have more antecedents linked through conjunctions we can have
the same situation for a fuzzy rule base [57]:

IF x is Ai AND y is Bi THEN z is Ci i = 1, 2, ...n (5.8)

The Mamdani rule base becomes:

RM(x, y, z) =
n_

i=1

Aix ^Biy ^ Ciz, i = 1, 2, ...n (5.9)

With the linguistic variables defined and the Mamdani rule sets created, the process of
fuzzy inference is the process of obtaining an output for a given input that was possibly never
encountered previously [57]. The compositional rule of inference is based on the classical rule
of Modus Ponens P ! Q,P ` Q. Given a fuzzy rule base R 2 F(X ⇥ Y ) the compositional
rule of inference is a function F : F(X) ! F(Y ) determined though the composition
B0 = F (A0) = A0 ⇤ R with ⇤ : F(x) ⇥ F(X ⇥ Y ) ! F(Y ) being a composition of fuzzy
relations [57] such that: x is Ai ! y is Bi, x is A0 ` y is B0. For a Mamdani inference system,
the composition law is written as follows:

B0(y) = A0 �R(x, y) =
_

x2X

A0(x) ^R(x, y) (5.10)
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Finally, the output is defuzzified to provide us once again with a crisp output. There are
di↵erent defuzzification methods, such as the centroid method (or center of gravity), center
of area, mean of maxima, and maxima criterion, amongst others. This work utilizes the
centroid defuzzification method, where the output value selected is the center of gravity of
the fuzzy set u 2 F(X) expressed as:

COG(u) =

R
W
x · u(x)dxR

W
u(x)dx

(5.11)

5.1.2 Type-2 Fuzzy Systems

There are di↵erent sources of uncertainty that fuzzy systems handle in practical applications
and real-world environments. Some of these sources of uncertainty are as follows [58]:

• Uncertainty in inputs due to noise and conditions of observers and sensors.

• Uncertainty caused by changes in the conditions of operation controllers.

• Use of noise data for training parameters.

? Uncertainty in modeling through verbal variables.

The last of which is of particular relevance to this work. Where the uncertainty of
modeling the behavioral variables of road users is particularly sensitive to geographical norms
and tendencies, subjectivity, and lack of empirical data. Where type-1 systems use crisp
inputs and utilize membership functions which are applied in an antecedent and consequent
manner, type-2 systems pose the membership degree as a fuzzy number. This degree of
freedom helps model further uncertainties.

A type-2 fuzzy set eA which is defined by the membership function 0  µ eA(x, u)  1 such
that x 2 X and u 2 Jx ✓ [0, 1]:

eA = {(x, u), µ eA(x, u)|8x 2 X, 8u 2 Jx ✓ [0, 1]} (5.12)

Where Jx is the type-1 primary membership function when Jx ✓ [0, 1] for 8x 2 X, and
µ eA(x, u) is a type-2 secondary membership function. If the degree of the secondary mem-
bership is 1, then there will be an interval type-2 membership function. The upper-bound
membership function (UMF) and the lower-bound membership function (LMF) indicate the
highest and lowest degrees of primary membership, respectively. In general, a type-2 mem-
bership function can be considered the combination of type-1 membership functions, each
of which is called an embedded membership function. If the type-2 membership function is
sliced horizontally, the lowest level is called the footprint of uncertainty (FOU) [59]. Figure
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5.3 illustrates the relationship between the UMF, LMF and FOU of a membership function
for an arbitrary linguistic variable over its universe of discourse.
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Figure 5.3: Type-2 Upper and Lower Membership Functions

Fuzzification and Ruleset

Similar to type-1 systems, an input vector x = (x1, x2, ..., xp)
T is mapped onto a membership

function eA described in Equation 5.12. The ruleset structure is also identical to type-1
systems in which antecedent and consequent membership functions are utilized with the sole
di↵erence being that type-2 µ eA(x, u) functions are used. To describe the ruleset of a type-2

system, we consider the following ruleset R with p inputs x = (x1, x2, ..., xp)
T , and output y

where the Lth rule R is defined as:

RL : IF x1 is eFL

1 AND x2 is eFL

2 , ...,AND xp is eFL

p
THEN y is eGL, L = 1, 2, ...,M (5.13)

The t-norm and s-nor, also known as the t-conorm, represent the mathematical operators
^ (logical AND) and _ (logical OR), respectively. They are used to generalize the degree of
truth between [1, 0] and determine the correct degree of rule firing in a fuzzy system. The
t-norm and s-norm for a type-2 fuzzy system can be defined as follows:

T (A,B) = [min(A(x), B(x)),max(A(x), B(x))]

S(A,B) = [max(A(x), B(x)),min(A(x), B(x))]
(5.14)

The LMF of the type-2 set is the minimum of LMFs A,B, and the UMF is the maximum
of UMFs A,B for the t-norm and vice-versa for the s-norm. This definition captures the
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intersection of the resulting uncertainty. In most applications, the interval type-2 fuzzy set
is used with t-norm and the degree of rule firing becomes [59]:

eFL(X 0) = [fL(X 0), f
L

(X 0)] = [fL, f
L

] (5.15)

fL(X 0) = µ eFL
1
(x0

1) · ... · µ eFL
p
(x0

p
)

f
L

(X 0) = µ eFL
1
(x0

1) · ... · µ eFL
p
(x0

p
)

(5.16)

Type Reduction

To obtain a crisp output from a type-2 system, it must be type-reduced. This work uses the
Karnik-Mendel (KM)[34] and Enhanced Karnik-Mendel (EKM)[37] type-reduction methods,
which are iterative approaches to obtain crisp type-2 outputs. KM and EKM methods
are the most commonly used methods for type reduction, as their relative simplicity and
computational e�ciency make them possible to use in real-time applications. For an interval
type-2 fuzzy system (IT2 FS) we have:

y(Z1, ..., ZM ,W1, ...,WM) =

R
z1
...
R
zM

R
w1

...
R
wM

TM

L=1µzl
(zl) ⇤ TM

L=1µwl
(wl)

PM
i=1 wlzlPM
i=1 wl

(5.17)

where T and ⇤ denote t-norm with wl 2 Wl, zl 2 Zl. Because the secondary membership
functions µzl

(zl) = 1 and µwl
(wl) = 1 as a property of IT2FSs. Thus, Equation 5.17 simplifies

to:

y(Z1, ..., ZM ,W1, ...,WM) =

R
z1
...
R
zM

R
w1

...
R
wMPM

i=1 wlzlPM
i=1 wl

(5.18)

In interval type-1 fuzzy sets, memberships are crisp numbers with upper and lower
bounds. For general interval type-2 fuzzy systems, each zl in Equation 5.18 is an inter-
val type-1 set with centroid cl, expanding on both sides by sl. Additionally, each wl is an
interval type-1 set with centroid hl and expansion �l. As y is an interval type-1 set, deter-
mining only the first and last points yl and yR is required [59]. It is well known that yl and
yR can be written as:

yl = min
wi2[wi,wi]

P
M

i=1 ziwiP
M

i=1 wi

=

P
L

i=1 ziwi +
P

M

i=L+1 ziwiP
L

i=1 wi +
P

M

i=L+1 wi

yr = max
wi2[wi,wi]

P
M

i=1 ziwiP
M

i=1 wi

=

P
R

i=1 ziwi
+
P

M

i=R+1 ziwiP
R

i=1 wi
+
P

R

i=R+1 wi

(5.19)
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The final output y is obtained by the average of yr and yl:

y =
yr + yl

2
(5.20)

where L and R are switch points. There is no closed-form solution for L and R, and
hence for yl and yr. KM algorithms are used to compute them iteratively, which converges
to a solution in at most M iterations [34, 37]. From the following definition:

S(w1, w2, ..., wM) =

P
M

i=1 wlzBP
M

i=1 wl

(5.21)

where wl 2 [hl ��l, hl ��l], hl � �l and zl 2 [cl � sl, cl + sl]. the maximum values of
S and yl are determine through the following procedure [59] by considering zl = cl + sl and
z1  z2  ...  zM :

Step 1: Using Equation 5.21, compute S 0 = S(h1, h2, ..., hM) by considering wl = hl

Step 2: Find switch point k(1  k  M � 1) when zk  S 0  zk+1.

Step 3: Compute S 00 = S(h1 ��l, ..., hM ��k) for L  k and wl = hl +�l

Step 4: if S 00 = S 0:

True Terminate, S 00 = max(S)

False Repeat Step 2, set S 00 = S

The Enhanced Karnik-Mendel (EKM) algorithm [37] brings computational improvements
to the original KM method. Although still an iterative process, by providing a better initial
guess to the switch points R and L, as well as providing a termination condition. Similar to
the KM method, yr and yl are found iteratively, and the initial conditions for yr and yl are
shown in Equation 5.19. For the EKM method, the optimal initial conditions are shown as:

yl =

P
M

i=1 zi
wi+wi

2P
M

i=1
wi+wi

2

yl =

P
M

i=1 zi
wi+wi

2P
M

i=1
wi+wi

2

(5.22)

Observing the original KM-method initialization of yr, yl in Equation 5.19, we notice
that when i  L, wi is used to compute yl, and when i > L, w

i
is used to compute yl.

This implies that a better initialization of the parameters is possible by finding appropriate
guesses for L and R, L0, R0. Because yl is the smallest value of Y , we conjecture that very
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probably it is smaller than [34] z[M/2], the center element of zi; consequently, L0, should also
be smaller than [M/2], and so forth for yr [37]. Wu and Mendel found through simulation
that initializing L0 = [M/2.4] and R0 = [M/1.7] provided the fewest number of iterations to
converge to a solution.

The original KM-method termination condition is S 00 = S 0. Since S 00 is obtained in the
current iteration and S 0 from the previous iteration, S 00 = S 0 implies that the current iteration
does not contribute to minimizing yl, allowing its deletion without altering yl. The switch
points for S 00 and S 0 are denoted as k0 and k, respectively. By changing the termination
condition from S 00 = S 0 to k0 = k, we achieve the same yl while saving one iteration [37].

The computational cost can further be reduced by removing redundant iterations. The
KM-method computes

P
i=1
M

wi and
P

M

i=1 ziwi to compute S 00. This does not retain or utilize
the results from previous iterations. During the jth iteration, the switch point k ,

P
M

i=1 wi andP
M

i=1 ziwi is denoted as
⇣P

M

i=1 wi

⌘

j

and
⇣P

M

i=1 ziwi

⌘

j

. Wu and Mendel propose that kj and

kj+1 are close in value, and as a consequence, the value of wi value of the jth iteration share

many common terms with the j + 1th, such that only the di↵erences between
⇣P

M

i=1 wi

⌘

j

,
⇣P

M

i=1 wi

⌘

j+1
and

⇣P
M

i=1 ziwi

⌘

j

,
⇣P

M

i=1 ziwi

⌘

j+1
must be computed. As with the procedure

shown for the KM type reduction method, the EKM procedure is fully described in [37].

5.2 Social Value Operationalization

The operationalization process involves translating the fuzzy concept of social value that is
not directly measurable into a crisp and distinguishable metric. By providing a framework
in which well-defined measurable data points can be translated into a social value, we aim
to create a robust foundation for risk attribution for non-autonomous road users.

5.2.1 Social Cues

To measure the non-verbal communication between road users and the autonomous ego-
vehicle, di↵erent social behaviors and actions were identified for pedestrians and drivers.
These behaviors were selected based on the following factors:

• Explicitly observable and measurable.

• Implies an intent or a social contract.
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• Has a spectrum of implied intent, where the measured amount (duration, frequency,
etc.) of said action implies a di↵erent intent.

• The spectrum can be mapped between an outcome for self (egoistic behavior) and an
outcome for others (altruistic behavior).

Because the social contract of non-verbal communication between vehicle-to-vehicle and
vehicle-to-pedestrian di↵er vastly, di↵erent social cues between each were identified for each.
These actions and their definitions are summarized in Table 5.1. Furthermore, to correctly
attribute a social value to an observed behavior, each action must represent a cooperative or
egoistical intent and the quantity/frequency of the observed action determines the intensity
of the intent. A summary of each social cue’s sociability spectrum is given in Table 5.3.

Table 5.1: Road-users Social Cues and Type-2 Uncertainty

Cue Pedestrian Social Cue Description Uncertainty

1 Distance to Crosswalk (m): The pedestrian’s Euclidean distance to
the closest crosswalk beginning point is measured.

Low

2 Time Waiting (s): Time spent waiting at a crosswalk point before
crossing.

Medium

3 Time Looking (s): Time spent looking at oncoming tra�c before
crossing.

High

Cue Vehicle Social Cue Description Uncertainty

1 Speed Limit (%): The vehicle’s maximum travel speed within a time
window Tw as a percentage of the road’s posted speed limit.

Low

2 Lane Centering (m): Distance from the lane center within time win-
dow Tw.

Medium

3 Following Time (s): Following distance in seconds of travel to pro-
ceeding vehicle (Time-to-impact).

Medium

4 Lane Changes (
changes

min
): Lane change frequency of vehicle. Medium

Table 5.2: Type-2 Uncertainty Operationalization

Uncertainty UMF Lead LMF Lag LMF Scale

Low 0.05 0.05 1
Medium 0.1 0.1 0.95
High 0.15 0.15 0.90

The uncertainty associated with the measurement of social cues is expressed through the
interval between the UMFs and LMFs. Through logical reasoning, the determination of a
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pedestrian’s distance to a crosswalk is relatively straightforward. A pedestrian’s position is
simply referenced to a map of known crosswalk positions from the OpenDRIVE information.
We can thus make the assumption that the uncertainty in this measurement is low. However,
the social cue of a pedestrian looking at oncoming tra�c represents a less trivial measure-
ment. Not only is the pose of the head relative to a pedestrian’s body much more di�cult
to determine than their general spatial position, but a small di↵erence in their gaze can
make the di↵erence between looking at oncoming tra�c or the scenery. It is thus assumed
that the uncertainty in this process is high. Table 5.1 summarizes the estimated uncertainty
surrounding each social cue.

The low, medium and high uncertainties dictate how large the FOU will be for the mem-
bership functions associated with that behavior. Using the type-1 membership functions
as a baseline, the lead and lag parameters determine the positions of the UMF and LMFs
relative to the type-1 distribution respectively. The scale represents the gain applied to the
LMF relative to the UMF. Table 5.2 summarizes the lead, lag and scale values used for each
uncertainty profile.

The choice of membership function shapes is problem-specific and there are many ways
to characterize fuzziness, such as looking at the distribution of the data. However, the trial
and error method is often used for MF shape because there is no exact method for choosing
the MFs. The shape of MFs depends on how one believes in a given linguistic variable. The
basic problem with modeling a situation is breaking the 0–1 modeling. Generally speaking,
triangular MF is one of the most frequently encountered practices. Of highly applied MFs,
the triangular MFs are formed using straight lines. These straight-line membership functions
have the advantage of simplicity. Gaussian MFs are popular methods for specifying fuzzy
sets because of their smoothness and concise notation. These curves have the advantage of
being smooth, nonzero at all points [60, 61], with guaranteed continuity, and are faster to
compute for smaller rule bases [62]. Gaussian MFs were used in this work, as the supposition
is that the noise and statistical distribution present at the sensor and detection level of social
cues would present a Gaussian noise distribution [63].
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Table 5.3: Cue Spectrum of Sociability

Pedestrian

Distance to Crosswalk

% Far: Represents no intent, or willing to let others pass (Cooperative)

& Close: Represents an intent to cross (Competitive)

Time Waiting

% Long: Represents a sense of self-preservation (Cooperative)

& Short: Represents no sense of self-preservation (Competitive)

Time Looking

% Long: Represents a willingness to engage in a social contract (Cooperative)

& Short: Represents no acknowledgement of others (Competitive)

Vehicles

Speed Limit

% Low: Allows others to get ahead at their expense (Cooperative)

& High: Gets themselves ahead at the expense of others (Competitive)

Lane Centering

% Good: Does not show intent for passing (Cooperative)

& Poor: Shows intent for passing (Competitive)

Following Time

% Short: Does not pressure others and allows for merging space (Cooperative)

& Long: Applies pressure to others for personal benefit (Competitive)

Lane Changes

% Few: Is patient for better collective outcome (Cooperative)

& Many: favours personal outcome over collective outcome (Competitive)

5.3 Pedestrian Social Value Estimator

5.3.1 Pedestrian Type-1 Fuzzy Estimator

From the actions identified in Table 5.1 and their spectrum of sociability summarized in Table 5.3,
a fuzzy input vector is created to define the linguistic variables LM = (X,T, U,G,M), M = 3 for
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the identified social cues.

Inputs

Figure 5.4 illustrates the input membership functions for each input variable obtained from the
observed pedestrian behavior. The characteristics of each function are further discussed below.

(a) L1 (b) L2 (c) L3

Figure 5.4: Type-1 Pedestrian Input Membership Functions

For L1, X is Distance to Crosswalk with linguistic values T : {close, far}, over a universe of
discourse U = [0, 10] (m). The syntax rules G close 2 G, if x 2 G then very x 2 G and so
forth. The set of membership functions M are represented by ZMF µclose = (1.5, 6), and SMF
µfar = (1.5, 6).

For L2, X is Wait Time with linguistic values T : {short, medium, long}, over a universe of
discourse U = [0, 10] (s). The syntax rules G short 2 G, if x 2 G then very x 2 G and so
forth. The set of membership functions M is represented by ZMF µshort = (0.5, 5), Gaussian
µmedium = (1, 3.5) and SMF µlong = (1, 7).

For L3, X is Look Time with linguistic values T : {short, medium, long}, over a universe of
discourse U = [0, 10] (s). The syntax rules G short 2 G, if x 2 G then very x 2 G and so forth. The
set of membership functions M is represented by ZMF µshort = (1, 6), Gaussian µmedium = (1, 4)
and SMF µlong = (1.5, 7).

Ruleset

A commonsense ruleset was created, such that the triggering of more competitive membership
functions would result in more anti-social labeling and vice versa. A set of 11 rules was created to
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cover all the combinations of membership activation without redundancy. Table 5.4 summarizes
the pedestrian ruleset.

Table 5.4: Pedestrian Fuzzy Ruleset

1. (D. Crosswalk is Far) ^ (Wait Time is Long) ^ (Look Time is Long) ! SVO is Altruist

2. (D. Crosswalk is Far) ^ (Wait Time is Long) ^ (Look Time is Med.) ! SVO is Altruist

3. (D. Crosswalk is Far) ^ (Wait Time is Med.) ^ (Look Time is Med.) ! SVO is Cooperative

4. (D. Crosswalk is Far) ^ (Wait Time is Med.) ^ (Look Time is Short) ! SVO is Cooperative

5. (D. Crosswalk is Close) ^ (Wait Time is Long) ^ (Look Time is Long) ! SVO is Cooperative

6. (D. Crosswalk is Close) ^ (Wait Time is Long) ^ (Look Time is Med.) ! SVO is Cooperative

7. (D. Crosswalk is Far) ^ (Wait Time is Short) ^ (Look Time is Short) ! SVO is Individualist

8. (D. Crosswalk is Close) ^ (Wait Time is Long) ^ (Look Time is Short) ! SVO is Individualist

9. (D. Crosswalk is Close) ^ (Wait Time is Short) ^ (Look Time is Med.) ! SVO is Competitive

10. (D. Crosswalk is Close) ^ (Wait Time is Med.) ^ (Look Time is Short) ! SVO is Competitive

11. (D. Crosswalk is Close) ^ (Wait Time is Short) ^ (Look Time is Short) ! SVO is Sadistic

Outputs

The output membership functions were also created based on a commonsense approach, such that
each label seen in the right-hand-plane of the social value orientation circle in Figure 5.1 represents
one-fifth of the spectrum as a Gaussian distribution function. Because the SVO output is used as
an additive feature to that actor’s potential field, altruistic behavior is a negative SVO, so its e↵ect
will decrease that actor’s potential. Inversely, the positive sign on competitive and sadistic SVO
will increase their e↵ect.

It is given that all output memberships follow the Gaussian distribution presented in Equation 5.5,
with µalt = (0.25,�1), µcoop = (0.25,�0.5), µind = (0.25, 0), µcomp = (0.25, 0.5), µsad = (0.25, 1)
and is shown in Figure 5.5.

81



Figure 5.5: Type-1 Pedestrian Output Membership Functions

Pedestrian Type-1 Social Value Estimation Example

An example of the type-1 fuzzy estimator for pedestrians is shown in Figure 5.6. The input vector
to the fuzzy estimation process is given as xcrosswalk = 3, xwait = 5, xlook = 5.

Figure 5.6: Type-1 Pedestrian Estimator Membership Activation

Observing the activated membership functions in Figure 5.6, with the fuzzy ruleset described
above, we demonstrate that this provides an SVO output of 0.372, which is a mostly Cooperative

behavior when plotted on the SVO circle. Figure 5.7 displays the estimator output on the RHP of
the social value orientation circle.
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Figure 5.7: Type-1 Pedestrian Estimator Example Social Value

Discussing the results of the example, it seems plausible that a pedestrian who has been waiting
for 5 seconds at a crosswalk (xwait = 5), has been looking at oncoming tra�c for 5 seconds (xlook =
5) and is 3 meters away from a crosswalk (xcrosswalk = 3) exhibits a good willingness to cooperate
with drivers, but is still showing their intent to cross by being close to a crosswalk beginning point.
A social value of 0.372 seems like an adequate estimate for the behavior exhibited.

5.3.2 Pedestrian Type-2 Fuzzy Estimator

A type-2 fuzzy estimator is introduced to better represent the uncertainty of the estimation process,
which is of particular concern when using a commonsense approach for the linguistic variables
introduced for the type-1 fuzzy estimator. As mentioned earlier, the uncertainty of modelling with
linguistic variables, as well as uncertainty and noise when measuring social cues, prompt the use of
type-2 fuzzy estimators to model these phenomena.

Similar to the type-1 pedestrian estimator defined above, the same linguistic variables LM =
(X,T, U,G,M), M = 3 were identified for the type-2 system. The upper membership functions
(UMFs) are set equal to the type-1 memberships and the lower membership functions (LMFs) are
implemented with identical distributions to their respective UMF but with a lag of 0.2 and a scale
of 1.

Inputs

Figure 5.8 illustrates the type-2 input membership functions for each input variable obtained from
the observed pedestrian behavior including the FOUs created between the UMFs and LMFs. The
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parameters pertaining to the lead and lag of the UMFs and LMFs relative to the type-1 memberships
are shown in Table 5.2.

(a) L1 (b) L2 (c) L3

Figure 5.8: Type-2 Pedestrian Input Membership Functions

Ruleset

The ruleset for the type-2 system is identical to the ruleset presented for the type-1 system. This
is congruent with the fact that the logical assertion of an actor’s social value does not change
between type-1 and type-2 systems but rather only the uncertainty surrounding the measurement
and labeling of their behavior. The pedestrian ruleset is summarized in Table 5.4.

Outputs

The output membership functions follow the same commonsense approach as presented in the type-
1 estimator in Figure 5.5, with each of the 5 labels representing one-fifth of the spectrum. The
LMF distributions follow the same distributions as the type-1 estimator but have a lag parameter
of 0.2 and a scale of 1 with their respective type-2 MFs shown in Figure 5.9.
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Figure 5.9: Type-2 Pedestrian Output Membership Functions

Pedestrian Type-1 and Type-2 Comparison

As a matter of comparison, the same input vector is used as shown in Figure 5.6. The input vector
to the type-2 fuzzy estimation process is given as: xcrosswalk = 3, xwait = 5, xlook = 5. Observing
the activated type-2 membership functions in Figure 5.10, we obtain an SVO output of 0.316 which
is more individualist than the type-1 estimator from Figure 5.6. In both cases, the label attributed
to the actor is congruent with the observed behavior.

Figure 5.10: Type-2 Pedestrian Estimator Membership Activation
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Figure 5.11: Type-2 and Type-1 Pedestrian Estimator Comparison

In both cases, the label attributed to the actor is congruent with the observed behavior. Showing
the potential field created by a static pedestrian with no SVO, type-1 SVO, and type-2 SVO, we
have the potential field distributions shown in Figure 5.12.

Observing the potential field distributions shown in Figure 5.12, we note that smaller SVO values
(cooperative) cause smaller potentials. If the safety perimeter around a potential field is delimited
at a potential value of 0.1 (10% of maximum), the decrease in potential from the e↵ect of SVO
represents a decrease in lateral safety distance from 2.146m with no SVO component (⌦ = 0)
to 1.352m with type-1 estimation (⌦ = 0.372) and 1.423m with type-2 estimation ⌦ = 0.831.
This represents an decrease of safety margin decrease of 36.99% and 33.83% for type-1 and type-
2 respectively. The gain parameter ↵ shown in equations 4.17 and 4.18 can help modulate this
decrease in safety margin, where 0  ↵  1. In other words, the type-2 estimator was more
conservative in its estimation. The type-1 and type-2 output on the social value orientation circle
is shown in Figure 5.11.

In both cases, the SVO estimators allow for less risk to be attributed to individuals who are
perceived to be cooperative, without totally neglecting their e↵ect.
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(a) None (b) Type-1 (c) Type-2

Figure 5.12: Type-1 & Type-2 Estimation for Pedestrian Potential Field, 10% Safety Contour

5.4 Vehicle Social Value Estimator

5.4.1 Vehicle Type-1 Fuzzy Estimator

From the actions identified in Table 5.1 and their spectrum of sociability summarized in Table 5.3,
a fuzzy input vector is created to define the linguistic variables LM = (X,T, U,G,M), M = 4 for
the identified social cues.

Inputs

Figure 5.13 illustrates the input membership functions for each input variable obtained from the
observed vehicle actor behavior. The specifications of each linguistic variable is further discussed
below.

For L1, X is Speed Limit with linguistic values T : {slow, medium, fast}, over a universe of
discourse U = [0, 200] (%). The syntax rules G slow 2 G, if x 2 G then very x 2 G and so forth.
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(a) L1 (b) L2 (c) L3 (d) L4

Figure 5.13: Type-1 Vehicle Input Membership Functions

The set of membership functions M are represented by ZMF µslow = (60, 125), and Gaussian
µmedium = (10, 110) and SMF µfast = (100, 160).

For L2, X is Follow Time with linguistic values T : {close, medium, far}, over a universe of
discourse U = [0, 6] (s). The syntax rules G close 2 G, if x 2 G then very x 2 G and so
forth. The set of membership functions M is represented by ZMF µclose = (0.5, 2.5), Gaussian
µmedium = (0.5, 2) and SMF µfar = (1.5, 4).

For L3, X is Lane Centering with linguistic values T : {good, medium, poor}, over a universe
of discourse U = [0, 2] (m). The syntax rules G good 2 G, if x 2 G then very x 2 G and so
forth. The set of membership functions M is represented by ZMF µgood = (0.2, 0.6), Gaussian
µmedium = (0.15, 0.6) and SMF µpoor = (0.6, 1.2).

For L4, X is Lane Changes with linguistic values T : {low, medium, high}, over a universe of
discourse U = [0, 5] (changes/min). The syntax rules G low 2 G, if x 2 G then very x 2 G and
so forth. The set of membership functions M is represented by ZMF µlow = (0.25, 1.5), Gaussian
µmedium = (0.5, 1.5) and SMF µhigh = (1.5, 3).

Ruleset

The ruleset for vehicle social value follows the same commonsense approach as the pedestrian
estimator, such that the triggering of more competitive membership functions would result in more
anti-social labeling and vice versa. A set of 15 rules was created to cover all the combinations of
membership activation without redundancy. Table 5.5 summarizes the vehicle ruleset.
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Table 5.5: Vehicle Fuzzy Ruleset

1. (Follow T. is Far) ^ (L. Changes is Low) ^ (L. Centering is good) ^ (Speed Lim. is Slow) ! SVO is Altruist

2. (Follow T. is Far) ^ (L. Changes is Low) ^ (L. Centering is Med.) ^ (Speed Lim. is Med.) ! SVO is Cooperative

3. (Follow T. is Far) ^ (L. Changes is Med.) ^ (L. Centering is good) ^ (Speed Lim. is Med.) ! SVO is Cooperative

4. (Follow T. is Far) ^ (L. Changes is Med.) ^ (L. Centering is Med.) ^ (Speed Lim. is Slow) ! SVO is Cooperative

5. (Follow T. is Med.) ^ (L. Changes is Low) ^ (L. Centering is good) ^ (Speed Lim. is Med.) ! SVO is Cooperative

6. (Follow T. is Med.) ^ (L. Changes is Low) ^ (L. Centering is Med.) ^ (Speed Lim. is Slow) ! SVO is Cooperative

7. (Follow T. is Med.) ^ (L. Changes is Med.) ^ (L. Centering is good) ^ (Speed Lim. is Slow) ! SVO is Cooperative

8. (Follow T. is Med.) ^ (L. Changes is Med.) ^ (L. Centering is Med.) ^ (Speed Lim. is Med.) ! SVO is Individualist

9. (Follow T. is Close) ^ (L. Changes is High) ^ (L. Centering is Med.) ^ (Speed Lim. is Med.) ! SVO is Competitive

10. (Follow T. is Close) ^ (L. Changes is Med.) ^ (L. Centering is Poor) ^ (Speed Lim. is Med.) ! SVO is Competitive

11. (Follow T. is Close) ^ (L. Changes is Med.) ^ (L. Centering is Med.) ^ (Speed Lim. is Fast) ! SVO is Competitive

12. (Follow T. is Med.) ^ (L. Changes is High) ^ (L. Centering is Poor) ^ (Speed Lim. is Med.) ! SVO is Competitive

13. (Follow T. is Med.) ^ (L. Changes is High) ^ (L. Centering is Med.) ^ (Speed Lim. is Fast) ! SVO is Competitive

14. (Follow T. is Med.) ^ (L. Changes is Med.) ^ (L. Centering is Poor) ^ (Speed Lim. is Fast) ! SVO is Competitive

15. (Follow T. is Close) ^ (L. Changes is High) ^ (L. Centering is Poor) ^ (Speed Lim. is Fast) ! SVO is Sadistic

Outputs

The output membership functions are identical to the pedestrian output memberships shown in
Figure 5.5, with each label seen in the right-hand-plane of the social value orientation circle in
Figure 5.1 representing one-fifth of the spectrum.

Vehicle Type-1 Social Value Estimation Example

An example of the type-1 fuzzy estimator for pedestrians is shown in Figure 5.14. The input vector
to the fuzzy estimation process is given as xspeed = 160, xfollow = 1, xcentering = 2, xchanges = 5.

Observing the activated membership functions in Figure 5.14, with the fuzzy ruleset described
above, we demonstrate that this provides an SVO output of -0.801, which is a very competi-

tive/sadistic behavior when plotted on the SVO circle. Figure 5.7 displays the estimator output on
the RHP of the social value orientation circle.

Analyzing the example’s outcomes, it appears plausible that the driver exhibits highly competi-
tive behavior with an SVO value of 0.801. The result is also shown on the social value orientation
circle in Figure 5.15. This behavior is evident in a vehicle traveling at 160% over the speed limit
(xspeed = 160), following the next vehicle (i.e. tailgating) with only a 1-second time-to-impact dis-
tance (xfollow = 1), maintaining a distance of 2 meters from the center of their lane (xcentering = 2),
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Figure 5.14: Type-1 Vehicle Estimator Membership Activation
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1
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Figure 5.15: Type-1 Vehicle Estimator Example Social Value

and executing 5 lane changes per minute (xchanges = 5). Given these parameters, the label of very
competitive is fitting for this driver’s behavior.
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5.4.2 Vehicle Type-2 Vehicle Fuzzy Estimator

As previously mentioned with the type-2 pedestrian SVO estimator, a type-2 fuzzy process models
the uncertainty of a commonsense approach to linguistic variables, as well as uncertainty and noise
when measuring social cues.

The same linguistic variables LM = (X,T, U,G,M), M = 4 were identified for the type-2 system.
The upper membership functions (UMFs) are set equal to the type-1 memberships and the lower
membership functions (LMFs) are implemented with identical distributions to their respective UMF
but with a lag of 0.2 and scale of 1.

Inputs

Figure 5.16 illustrates the type-2 input membership functions for each input variable obtained from
the observed vehicle actor behavior including the FOUs created between the UMFs and LMFs. The
parameters pertaining to the lead and lag of the UMFs and LMFs relative to the type-1 memberships
are shown in Table 5.2.

(a) L1 (b) L2 (c) L3 (d) L4

Figure 5.16: Type-2 Vehicle Input Membership Functions

Ruleset

The ruleset for the type-2 system is identical to the ruleset presented for the type-1 system. This
is congruent with the fact that the logical assertion of an actor’s social value does not change
between type-1 and type-2 systems but rather only the uncertainty surrounding the measurement
and labeling of their behavior. Table 5.5 summarizes the vehicle ruleset.

Outputs

The output membership functions follow the same format as shown in the pedestrian Type-2 output
memberships in Figure 5.9.
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Vehicle Type-1 and Type-2 Comparison

As a matter of comparison, the same vehicle behavior input vector is used as shown in Figure 5.14.
The input vector to the fuzzy estimation process is given as xspeed = 160, xfollow = 1, xcentering = 2,
xchanges = 5.

Figure 5.17: Type-2 Vehicle Estimator Membership Activation

Observing the activated type-2 membership functions in Figure 5.17, we obtain an SVO output
of -0.831 which is more sadistic than the type-1 estimator from Figure 5.14. Type-1 and type-
2 results are compared on the social value orientation circle in Figure 5.18. In both cases, the
label attributed to the actor is congruent with the observed behavior. Showing the potential field
created by a static vehicle with no SVO, type-1 SVO, and type-2 SVO, we have the potential field
distributions shown in Figure 5.19.

Observing the potential field distributions shown in Figure 5.19, we note that larger SVO values
(egotism) cause larger potentials. If the safety perimeter around a potential field is delimited at
a potential value of 0.1 (10% of maximum), the increase in potential field from the e↵ect of SVO
represents an increase in lateral safety distance from 2.92m with no SVO component (⌦ = 0) to
5.27m with type-1 estimation (⌦ = 0.801) and 5.36m with type-2 estimation ⌦ = 0.831. This
represents a safety margin increase of 80.4% and 83.5% for type-1 and type-2, respectively. The
gain parameter ↵ shown in equations 4.17 and 4.18 can help modulate this increase in safety margin,
where 0  ↵  1.

92



1

-1

Altruistic (⇡2)

Sadistic (�⇡
2)

Cooperative/Prosocial (⇡4)

Individualistic (0)

Competitive/Egoistic (�⇡
4)

Outcome to self

Outcome for Others

1

(0,0)

-0.831
-0.801

Type-2

Type-1

Figure 5.18: Type-2 and Type-1 Vehicle Estimator Comparison

(a) None (b) Type-1 (c) Type-2

Figure 5.19: Type-1 & Type-2 Estimation for Vehicle Potential Field, 10% Safety Contour
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Chapter 6

Simulation Experiment Results

6.1 System Overview

The various subsystems of navigation are illustrated in Figure 6.1, which presents a comprehensive
block diagram of the entire system. This diagram also summarizes the simulation framework,
where a driving scenario is defined and its parameters are applied to the simulator. Additionally,
the navigation and control of the ego-vehicle are recorded and displayed, enabling a thorough
analysis of the results.

6.2 Estimation Process Performance

Various comparison metrics were observed to measure the e�ciency and potential of each estimation
process. These metrics will help determine if each estimation process is suitable for real-time
navigation and if any added computational complexity demonstrates a higher ability for nuance or
performance.

6.2.1 Computation Time

Because the type-2 fuzzy estimation process has the added complexity of type-reduction to obtain
a crisp output, there is additional computational overhead over type-1 estimation. Figure 6.2
demonstrates the computation time for each fuzzy estimation process to quantify the additional
overhead.

The execution time for type-1 and type-2 using the EKM type-reduction method was meticulously
compared by generating a random input vector to obtain its crisp output 50,000 times. Each
iteration was timed and stored to obtain a mean and standard deviation of the computation for
each SVO estimation process.
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Figure 6.1: System Block Diagram

(a) Pedestrian Estimator (b) Vehicle Estimator

Figure 6.2: Fuzzy Estimator Computation Time Comparison
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Figure 6.2 demonstrates that the type-1 fuzzy estimation is 84.1% and 75.5% faster than the
type-2 estimation for pedestrians and vehicles, respectively. However, while type-2 estimation is
significantly slower than type-1, each estimation requires only 0.833 ms and 1.02 ms to complete,
which does not pose a significant burden to the real-time response of the estimation framework.
Conversely, the processing time is additive. Each actor in a local scene must have their SVO
computed, and the total execution time is the sum of all computations. This can be mitigated
by intelligently computing SVO on a distance basis or any other heuristic to reduce the amount
of computations. Furthermore, a scheduling method that assesses the freshness of an actor’s SVO
before committing resources to updating it can also be used.

6.2.2 Estimation Range

Because the footprints of uncertainty (FOUs) for type-2 membership functions cover a larger span
of each input’s domain, it is hypothesized that the type-2 estimators should have a greater output
range and more nuance in their crisp output

When measuring the input vector for both pedestrians and vehicles, their behavior is measured
in real-time. As such, an actor’s social value continuously varies as the duration and quantity of
each exhibited behavior change. For each linguistic variable, we can observe the system response
over time when the input vector changes in Figures 6.3 and 6.4.

Figure 6.3: Pedestrian Estimator Crisp Output Range

Observing Figures 6.3 and 6.4, we note that there is a significant increase in the output range for
type-2 systems. Furthermore, every input with the exception of Lane Changes changes earlier in
the measurement, as noted by the lag in the initial change point for type-2 systems. This results in
type-2 systems responding more rapidly to initial changes in an actor’s behavior. Type-2 systems
show a clear improvement in range, nuance, and responsiveness over type-1 systems for the same
ruleset. Table 6.1 summarizes the initial response time di↵erence and di↵erence in dynamic range
for each input variable between type-1 and type-2 systems. Negative response deltas represent a
system that responds to less input, and a greater dynamic range delta indicates a wider range of
possible SVO values and, thus, greater nuance.
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Figure 6.4: Vehicle Estimator Crisp Output Range

Table 6.1: Type-1 vs Type-2 Estimator Performance

Input Initial

Response

Type-1

Initial

Response

Type-2

Delta Range

Type-1

(⌦)

Range

Type-2

(⌦)

Delta

Dist. to Cross. 6.43m 6.43m 0m 0.22 0.32 0.1

Wait Time 0s 0s 0s 0.74 0.74 0

Look Time 2.14s 1.42s -0.72s 0.44 0.55 0.11

Follow Time 4.28s 4.71s -0.43s 0.82 0.89 0.07

Lane Changes 0 chg/min 0 chg/min 0 chg/min 0.69 0.67 0.02

Lane Centering 0m 0m 0m 0.89 0.92 0.03

Speed Limit 71.42% 57.13% -15.29% 0.82 0.90 0.08
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Table 6.1 indicates that the type-2 estimator is better or equal on both measured performance
indicators.

6.3 Behavioral Simulation Parameters

6.3.1 Parameters and Definitions

To create a uniform and repeatable simulation environment for social value estimation, standard
behavioral profiles were created in CARLA Simulator. These behavioral profiles do not have an
e↵ect on the navigation path of the vehicle but rather on how their respective paths will be followed.
5 Standard profiles were created, but many more can be implemented through the flexible framework
that was designed.

Vehicles

The tra�c controller discussed in Chapter 2 determines how CARLA will control vehicle inputs
for vehicle actors. A wrapper around this framework was created to easily and e↵ectively create
repeatable behavioral patterns for vehicle actors and apply user-defined parameters that dictate
how an actor will follow their planned path. The parameters a↵ecting vehicle actor control and
their descriptions are summarized in Table 6.2. Furthermore, the values that were set for each
behavioral profile are defined in Table 6.3.

Table 6.2: Vehicle Behavior Parameter Descriptions

Parameters Description

Speed Limit Distance Value is the percentage of a speed limit that defines
how far the vehicle’s target speed will be from the
current speed limit.

Speed Decrease How quickly in km/h the vehicle will slow down when
approaching a slower vehicle ahead.

Safety Time Time-to-Collision: Time it will take for the vehicle to
collide with a proceeding object that suddenly stops.

Min. Proximity The minimum distance in meters from another vehicle
or pedestrian before the vehicle performs a maneuver
such as avoidance, or tailgating.

E-Stop Distance The distance from an object at which the vehicle will
perform an emergency stop.

Tailgate Count A counter to avoid tailgating too quickly after the last
tailgate.
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Table 6.3: Vehicle Behavior Parameter Values

Parameters Altruistic Cooperative Individualistic Competitive Sadistic

Speed Limit Distance (%) -60 -30 0 30 60
Speed Decrease (km/h) 14 12 8 4 1

Safety Time (s) 5 3 2 1 0.25
Min. Proximity (m) 12 10 8 4 0
E-Stop Distance (m) 8 6 4 2 0

Tailgate Count 0 0 -1 -2 �1

Pedestrians

As with vehicle actors, a wrapper for pedestrian actor controllers was also created. Because pedes-
trian controls, paths, and desired simulated behaviors di↵er vastly from those of vehicles, a com-
pletely di↵erent set of parameters is used to modify the pedestrian manager. These parameters
and their descriptions are summarized in Table 6.4 and the values set for each behavioral profile
are defined in Table 6.5.

Table 6.4: Pedestrian Behavior Parameter Descriptions

Parameters Description

Walking Speed Steady-state speed at which the pedestrian travels
Speed Change Percent speed change around crosswalks
Wait Time Time a pedestrian waits at a crosswalk before crossing
Look Time Time spent looking at tra�c before crossing

E↵ect Distance Distance from the crosswalk at which pedestrians will
begin to exhibit behaviors

Safe to Cross Dist. Pedestrian will begin to cross if all vehicles are further
than this distance

Table 6.5: Pedestrian Behavior Parameter Values

Parameters Altruistic Cooperative Individualistic Competitive Sadistic

Walking Speed (km/h) 2 4 5 6 7
Speed Change (%) 60 80 100 120 140
Wait Time (s) 4 2 1 0.5 0
Look Time (s) 4 2 1 0.5 0

E↵ect Distance (m) 5 4 3 2 1
Safe to Cross Dist. (m) 20 15 10 5 0
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6.3.2 Observation, Measurement, and Quantification

The ego vehicle observes each behavior directly from actors and is unknown before they exhibit
that action. Table 6.6 summarize the method in which each input behavior for the fuzzy estimation
process is measured and quantified. A peak measurement is the maximum value observed over time
window tw, an average measurement is the average value observed over tw, and live is the measured
in-progress value. The choice of which method is used is based on whatever is most representative of
that behavior. For example, someone’s respect for the speed limit might not be correctly observable
in heavy tra�c if it is not possible to exceed the tra�c flow. Thus, observing the peak value over
tw would be more representative of someone’s willingness to speed.

Table 6.6: Actor Behavior Quantification

Input Quantification

Speed Limit (%) Peak
Lane Centering (m) Live
Follow Time (s) Peak

Lane Changes ( chg

min
) Peak

Dist. to Crosswalk (m) Live
Time Waiting (s) Live
Time Looking (s) Live

6.4 Simulation Results

6.4.1 Merging Vehicle Avoidance

Overview

The simulation event involves the ego-vehicle being maliciously cut-o↵ by a vehicle in the adjacent
lane, where the vehicle begins performing the merging maneuver before they’ve cleared the ego-
vehicle. This malicious behavior is indicative of a sadistic profile, such that the driver is not only
trying to get ahead of the ego vehicle in a competitive manner but is trying to inflict harm. Similar
situations can present themselves in the real world during road rage incidents. Figure 6.5 represents
the intended vehicle path during the scenario, and Figure 6.6 demonstrates the progression of the
event and the corresponding artificial potential field in a film-strip style representation.

Simulation

The road speed limit is set to 20km/h and the actors are left to reach their steady-state velocity for
the respective profile. The profile chosen for the merging vehicle is sadistic and its associated pa-
rameters are summarized in Table 6.3. Prior To the event, the merging vehicle’s observed behavior
was also left to exhibit itself and reach a steady state.
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Sadistic Vehicle

Ego-Vehicle

Figure 6.5: Merge Emergency Avoidance

Figure 6.6: Merge Scenario & Potential Field Progression

Table 6.7 shows the RMS, weighted RMS (WRMS), and peak longitudinal and lateral accelera-
tions from the emergency merge situation for each type of SVO estimation process. The RMS and
WRMS values are calculated as follows:

aRMS =

s
1

T

Z
a2wdt =

r
1

n
(a21 + a22 + ...+ a2n) (6.1)

RMSTotal =
q
RMS2

x +RMS2
y +RMS2

z (6.2)

Table 6.7: Emergency Merge Acceleration Metrics

Estimation Type RMS (m/s2) WRMS (m/s2) Peak Long. (m/s2) Peak Lat. (m/s2)
None 0.291 0.407 14.536 3.816
Type-1 0.135 0.190 8.054 1.419
Type-2 0.123 0.172 7.819 1.059
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(a) No Estimation (⌦ = 0) (b) Type-1 Estimation (c) Type-2 Estimation

Figure 6.7: Emergency Merge Trajectory and SVO Progression

Table 6.8: Emergency Merge Position Metrics

Estimation Type Closest Dist. (m) Total Dist. (m)

None 2.580 8.01
Type-1 2.91 9.70
Type-2 2.88 10.51
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Figure 6.8: Emergency Merge Accelerations and Vehicle Inputs
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WRMS =
q
KxRMS2

x +KyRMS2
y +KzRMS2

z (6.3)

Where the weighted RMS coe�cients Kx, Ky, Kz are 1.4, 1.4, and 1, respectively, and represent
the human’s sensitivity to accelerations in those directions. [65]

Discussion

From Figure 6.7, we can observe that SVO estimation provided a stronger, and earlier response
to the maliciously merging vehicle. This is also corroborated in Figure 6.8 which shows that both
type-2 and type-1 fuzzy estimation responded significantly earlier than no estimation shown in
the earlier change in brake and throttle applications, as well as an earlier steering response. This
trade-o↵ resulted in lower RMS and WRMS values shown in Table 6.7 and significantly smoother
vehicle inputs during the initial response to the merging vehicle, as well as quicker and smoother
re-acceleration once the ego-vehicle has been passed.

Comparing type-1 and type-2 estimation in Figure 6.8, we notice that type-2 estimation had a
more gradual response than type-1 estimation. This resulted in the ego-vehicle applying less initial
steering input than type-1 and instead relying on an earlier braking input to avoid the merging car.
This resulted in less lateral movement into the adjacent lane and a more direct path. The total
distance traveled by the type-2 estimator was 8.35 % further than the type-1 estimation during the
simulated scenario (9.70 m vs. 10.51 m) at the expense of 1.03% less safety margin (2.91 m vs.
2.88 m). The path e�ciency and safety metrics are summarized in Table 6.8. The safety distance
was measured as the closest distance between vehicle centroids during the scenario.

6.4.2 Immobile Vehicle Avoidance

Overview

The simulation event involves a parked vehicle blocking the ego vehicle’s lane. There are two incom-
ing vehicles in the opposite lane: a leading altruistic profile vehicle and a following individualistic
vehicle. The ego-vehicle can either perform a lane change maneuver or wait for the two vehicles to
pass, then perform a lane change. The correct estimation of the altruistic vehicle’s SVO will allow
the ego vehicle to aggressively perform a lane change instead of being paralyzed while waiting for
both to pass. Correctly assessing the vehicle’s SVO will also allow the total time lost by all vehicles
to be minimized. Figure 6.9 illustrates the actor positions and intended ego-vehicle path. Figure
6.10 demonstrates the progression of the event and the corresponding artificial potential field in a
film-strip style representation.

Simulation

The road speed limit is set to 20 km/h, and the actors are left to reach their steady-state velocity
for the respective profile. The profile chosen for the right-lane leading vehicle is altruistic, and the

104



following vehicle is set to individualistic. Its associated parameters are summarized in Table 6.3.
The actors observed behavior was also left to exhibit itself and reach a steady state.

Ego-Vehicle

Altruist Vehicle

Immobile Vehicle

Indiv. Vehicle

Figure 6.9: Merge Emergency Avoidance

Table 6.9: Immobile Vehicle Scenario Position Metrics

Estimation Type Closest Dist. (m) Total Dist. (m)

None 2.545 20.089
Type-1 3.116 39.565
Type-2 3.098 40.323

Table 6.10: Immobile Vehicle Scenario Acceleration Metrics

Estimation Type RMS (m/s2) WRMS (m/s2) Peak Long. (m/s2) Peak Lat. (m/s2)
None 0.193 0.270 4.181 0.688
Type-1 0.060 0.083 0.193 0.944
Type-2 0.053 0.074 0.196 1.124

Discussion

The use of SVO had very observable outcomes in this scenario. The lack of SVO estimation
resulted in significant hesitation by the ego-vehicle as seen in the velocity, steering, and braking
profiles shown in Figure 6.12 as well as the actor positions in Figure 6.11. Without SVO, the
ego-vehicle overestimated the risk posed by the altruistic actor in the right lane and over-estimated
the risk posed by the immobile vehicle blocking its path. This initially resulted in hesitation when
trying to pass the altruistic actor, which caused the ego-vehicle to overshoot its intended path and
come closer to the immobile vehicle. Because the immobile vehicle’s risk was also overestimated,
the ego vehicle could not continue its path and was indefinitely paralyzed. Arguably, this paralysis
could be overcome with a forward-reverse path planner but could result in additional distress and
frustration to passengers.
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(a) Ego-Vehicle Lane Change and Overtake

(b) Ego-Vehicle Hesitation and Paralysis

Figure 6.10: Immobile Vehicle Scenario & Potential Field Progression
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(a) No Estimation (⌦ = 0) (b) Type-1 Estimation (c) Type-2 Estimation

Figure 6.11: Immobile Vehicle Scenario Trajectory and SVO Progression
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Figure 6.12: Immobile Vehicle Scenario Accelerations and Vehicle Inputs
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In this scenario, the di↵erence between type-1 and type-2 estimation methods was moderate
but observable. However, due to the type-2 estimator attributing lower SVOs to the altruistic

actor and immobile vehicle, the ego-vehicle was able to take a more direct path and cover a larger
distance during the simulated event. The SVO estimation was 0.023, or 2.93% more altruistic for
the vehicle in the right lane, and 0.009 or 1.85% more altruistic for the immobile vehicle. Table
6.10 summarizes the acceleration metrics of the scenario and Table 6.9 summarizes the position
and distance metrics. Similar acceleration performance was obtained between type-1 and type-
2 estimation but type-2 estimation covered 1.87% greater distance (39.565m vs. 40.323m) while
having 12.38% better WRMS performance (0.060m/s2 vs 0.053m/s2).

6.4.3 Pedestrian Crossing

Overview

Pedestrian-vehicle interactions are an everyday occurrence in urban environments. In crosswalk
scenarios, an unspoken contract is formed between a pedestrian and a vehicle, where a pedes-
trian non-verbally shows their intention to cross the road. Likewise, the driver must observe this
pedestrian and determine the likelihood of their intention to cross.

The scenario created depicts a priority crosswalk situation, where a pedestrian has priority to
cross, and a vehicle must yield if it is safe. Thus, the social contract between a competitive or
altruistic pedestrian and a vehicle presents much more nuance than a signaled or non-priority
crosswalk. Figure 6.13 illustrates the pedestrian-vehicle interaction, and Figure 6.14 depicts the
progression of the APF during the scenario.

Ego-Vehicle

P

Figure 6.13: Pedestrian Crossing Scenario
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Simulation

The road speed limit is set to 20km/h and the actors are left to reach their steady-state operation
for their respective behavioral profiles. The crossing pedestrian was given a competitive profile,
where the associated parameters are summarized in Table 6.4.

Figure 6.14: Pedestrian Crossing Scenario & Potential Field Progression

Table 6.11: Pedestrian Crossing Position Metrics

Estimation Type Closest Dist. (m) Total Dist. (m)

None 3.050 74.746*
Type-1 4.790 42.050
Type-2 4.810 42.620

Table 6.12: Pedestrian Crossing Scenario Acceleration Metrics

Estimation Type RMS (m/s2) WRMS (m/s2) Peak Long. (m/s2) Peak Lat. (m/s2)
None 0.364 0.510 20.657 0.502
Type-1 0.814 1.139 8.734 0.718
Type-2 0.285 0.399 8.376 0.489

Discussion

As with previous scenarios, significant improvements are made by the use of SVO estimation. In
the case of no estimation, the ego-vehicle did not successfully stop for the pedestrian. While an
attempt at stopping was made, as seen by the velocity profile in Figure 6.12 and in the actor
positions in Figure 6.15, strong hesitation caused excessive longitudinal accelerations and eventual
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(a) No Estimation (⌦ = 0) (b) Type-1 Estimation (c) Type-2 Estimation

Figure 6.15: Pedestrian Crossing Scenario Trajectory and SVO Progression
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Figure 6.16: Pedestrian Crossing Scenario Accelerations and Vehicle Inputs
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abandonment of the braking maneuver. When observing the distance metrics summarized in Table
6.11*, no estimation managed to drive significantly further during the simulation window because
it did not wait for the pedestrian to cross. Figure 6.15 a) shows that the ego-vehicle significantly
overshot the crosswalk, causing the pedestrian to stop and divert behind the ego-vehicle. This is
an unacceptable outcome as the ego-vehicle did not yield for the pedestrian, nor did it continue,
and instead hesitated significantly. Figure 6.17 depicts the hesitant pedestrian-vehicle interaction.

Figure 6.17: Pedestrian Crossing Scenario - No SVO Hesitation

The results were similar when using type-1 and type-2 estimation. However, because the type-2
estimator responded marginally stronger before the pedestrian started to cross, the vehicle began
braking slightly earlier, as seen in Figure 6.16. While the type-1 estimator had a stronger overall
response, it did not impact braking performance as the ego vehicle was already in a full-force
braking maneuver. Therefore, it is noted that an earlier response was more e↵ective than a stronger
response. Furthermore, the type-2 estimator had slightly smoother steering inputs because the
increase and decrease in the SVO when the pedestrian finished crossing was more gradual. Finally,
the type-2 estimator permitted the ego-vehicle to begin re-accelerating sooner because the smaller
SVO decreased the potential of the pedestrian once they had crossed sooner. Table 6.12 summarizes
the acceleration metrics of the scenario and Table 6.11. Type-2 estimation provided 96.23% better
WRMS performance (1.139m/s2 vs. 0.399m/s2 as well as 4.18% and 37.95% less peak longitudinal
and lateral accelerations respectively (8.734m/s2 vs. 8.376m/s2 and 0.718m/s2 vs. 0.489m/s2).
Furthermore, type-2 estimation achieved a 0.42% greater safety distance (4.79 m vs. 4.81 m) while
covering a 1.35% greater distance during the scenario (42.62 m vs. 42.05 m).
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Chapter 7

Conclusions and Future Research

7.1 Conclusion

The use of social value orientation with a gradient descent path planner showed significant improve-
ments over classical gradient descent methods. Results showed that the use of a fuzzy estimation
process significantly improved path planning by reducing hesitations, smoother control, increased
safety margins for dangerous drivers, and improved tra�c flow with those deemed cooperative.

While the largest leap forward was made through the introduction of fuzzy estimation of SVO
over none, incremental improvements were shown when comparing type-2 fuzzy estimation to type-
1. The system handles uncertainties in sensor data and environmental variations by leveraging the
robustness of type-2 fuzzy logic, thus improving decision-making in complex scenarios. Simulation
results demonstrate that the model can optimize path planning by predicting and adapting to
potential hazards with greater accuracy, significantly reducing the risk of accidents and enhancing
tra�c flow.

It is important to note that type-2 fuzzy systems introduce significant computational complexity
over type-1 systems. Because SVO estimation is a real-time process and must be computed for
each actor per time-step, large computational overhead can occur in high-density tra�c situations
which could a↵ect real-time decision-making. Possible alternatives include limiting the process
to actors in the immediate proximity of the ego-vehicle, scheduling SVO estimation with a round-
robin or priority-queue scheduler using each actor’s SVO freshness or proximity as a priority metric.
Furthermore, it could also be permissible to fall back to type-1 estimation as a good enough process
during high tra�c. A combination of all suggestions can be incorporated to create a computationally
e�cient and safe estimation process. OEM vehicle manufacturers usually rely on robust, lower-
end processors as a cost-saving measure when producing vehicles at scale, and could exacerbate
computation issues if these proposals are not incorporated.
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In conclusion, this research advances the technical specifications of autonomous navigation sys-
tems and addresses the critical aspect of social acceptance by ensuring that AV operations align
with human values and safety norms.

7.2 Future Research

This work created a robust artificial potential field navigation framework incorporating SVO as a
gain parameter for each actor’s potential. However, a shortcoming of this work is that the fuzzy
estimation process used a common-sense approach to determine what behavioral parameters and
their membership functions to estimate an actor’s SVO.

Because this work was implemented in the CARLA simulator and a flexible custom actor behavior
manager was implemented, it would be of great value to create many behavioral profiles and obtain
participants to drive in a full vehicle simulator inside a CARLA environment. While driving,
participants can either verbally communicate their perceived cooperativeness of a vehicle-vehicle or
vehicle-pedestrian interaction or rely on the use of electroencephalograms (EEG) to automatically
capture their sentiment of a simulated interaction. This data can then be referenced to that actor’s
behavioral profile parameters and used as input to a neuro-fuzzy tuning process. This can present
an opportunity for cross-disciplinary research with medical and behavioral science academics to
further expand this field of research. If a very significant dataset can be created, it could be
possible to forego fuzzy estimation and implement a deep neural network framework. However,
this would require industry partners and significant investment to achieve and would omit the
many advantages fuzzy estimation presents for industry regulators.

Additionally, di↵erent path planning algorithms, such as A*, can be utilized to validate whether
SVO’s advantages also bring the same improvements as gradient descent. Documenting and con-
trasting SVO with di↵erent path planning protocols can increase its likelihood of adoption by the
automotive industry or its likelihood of being applied to non-vehicular or other non-related robotic
industries.
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