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Abstract

Understanding Test Code Quality from Perspective of Test Code Design and
Maintenance

Dong Jae Kim

Software testing is vital for ensuring software reliability and robustness. It involves

executing a program and verifying it against developer-defined criteria to identify and fix

deviations, aiming for fault-free software. Despite extensive research on automated test

prioritization, fault localization, and program repair, test design and maintenance remain

under-explored. This dissertation aims to understand test code quality from the perspective

of design and maintenance practices, exploring various aspects of test design through manual

classification, quantitative methods, and automated approaches.

The first part of the dissertation examines test smells, which are design issues that im-

pact test code comprehension and maintainability. Although widely accepted in academia,

it is unclear whether developers address test smells in practice. The thesis investigates

developers’ awareness of test smells and their impact on defect-proneness. Findings reveal

that many proposed test smells persist and are removed incidentally through code deletion

and refactoring, with minimal effect on software defect density. This dissertation aims to

provide empirical support for re-ranking current test smell catalogs.

As test automation grows, modern frameworks like JUnit and TestNG are increasingly

used in Java-based systems. These frameworks introduce annotation-driven development,

which manages crucial aspects of the test execution lifecycle. Our second aim is to use min-

ing software repository techniques to provide insights into how modern testing frameworks

are used to improve test code design and maintenance. First, we investigate annotation

usage in test code, providing a manual classification of their API usage and misuses (e.g.,
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test smells). Second, we conduct a detailed empirical analysis of one controversial prac-

tice: disabling tests using JUnit and TestNG’s @Ignore annotation. While this alleviates

maintenance challenges, it introduces technical debt as it does not validate software quality.

Finally, we examine the tradeoffs between reusability and redundancy in test code practices,

particularly through inheritance, highlighting issues in test increasing test execution time.

Through case studies and experiments, the techniques proposed in this dissertation

offer new insights into test code quality that may guide the development of automated tool

support in the future, which may help developers improve test maintenance.
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Chapter 1

Introduction

Figure 1.1 provides a summary of the roadmap of our thesis. Specifically, this chap-

ter introduces the statement of our thesis, starting with our goal, followed by the thesis

objectives, and concluding with our thesis outcomes and contributions.

1.1 Thesis Goal

Software testing is pivotal for ensuring the reliability of software applications. With

advancements in technology, there has been an increased research effort aimed at automating

the tedious nature of testing, considering various aspects of the testing process. One of the

most important forms of test automation is regression testing, where tests must be run after

every code change to detect bugs and ensure that the software is fault-free. To improve test

automation to minimize testing cost, plethora of research investigates following aspect of

test automation: (1) prioritizing test cases to be run first out of a tremendous number of

tests to quickly detect faults, (2) localizing the bug once it is uncovered, and (3) repairing

the buggy code to allow the test to pass.

As software evolves, certain tests may become obsolete or require modifications to align

with updated functionalities. Test may also require good design decisions and principals

to enable ease of extensibility and maintainability. While advancements in test automa-

tion have led to significant improvements to uncover faults quickly and minimize software
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costs, improving test code design and maintainability remains an under-explored area, and

researchers overlook the challenges associated with maintaining test suites over time. The

software industry requires robust standards for test design and maintenance, which can

significantly impact overall software quality. Therefore, this thesis aims to investigate and

mitigate the challenges of test code maintainability, particularly focusing on manual classi-

fication, quantitative and automated approaches to improve maintainability in Java-based

software systems. In particular, the thesis seeks to offer practical insights into enhancing

test code design and maintenance practices for better software quality assurance practices.

1.2 Thesis Objective

In our attempt to improve test code design, we adopt an alternative perspective, which

is to uncover and resolve design issues that may hinder test code maintainability. Hence,

the main research objective for this thesis work is:

Given the critical role of test code in ensuring software reliability, it is imperative to

address design issues that affect its long-term maintainability. Surprisingly, many prior

studies have overlooked these issues, focusing primarily on software test automation.

Therefore, there is an empirical need to investigate design practices in test code to offer

insights that can benefit the software industry.

Based on this objective, our primary research questions are:

(1) What is the current state of knowledge about design issues in test code, particularly

regarding their applicability to industrial settings? To what extent do developers

prioritize identifying and resolving these design issues to improve software quality?

(2) As test automation tools become more prevalent in test code design, how do these

tools impact the presence and resolution of design issues in test code? Are there

established design practices available for developers using such tools to optimize the

resolution of these issues?
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(3) How does the use of reusability in test code design affect the presence and resolution of

design issues? What is the impact of test reusability on the effectiveness of detecting

bugs and maintaining long-term code quality?

This thesis takes one first step towards improving test quality from the perspective of

test design and maintainability. In particular, based on key questions above, the thesis

proposes three major aims to improve test design as listed below:

Objective 1 (O1): Although academic research has identified numerous test

design issues, their practical applicability remains unclear. Our objective is to

re-evaluate current knowledge of test design issues and analyze their applicabil-

ity in software industries. Similar to source code, test code can also have design issues

that negatively impact its maintainability. These design issues are commonly referred to

as “test smells”, which are recurring design problems that affect the maintainability of test

code. This thesis addresses a critical challenge: although there is an extensive catalogue

of test smells proposed by academics (Garousi & Küçük, 2018), there is a lack of empiri-

cal evidence regarding their practical applicability. Evaluating the relevance of these test

smells serves as the initial foundation of the thesis, which is crucial for the development

of better tool support for developers. If test smells that offer little value to developers

are increased, they may further hinder test suite maintainability. Hence, there is limited

empirical evidence on whether developers recognize the maintainability issues posed by test

smells, how they address them, and whether the presence of test smells correlates with

defect densities. Despite this, researchers continue to develop tools for detecting and classi-

fying test smells (Athanasiou, Nugroho, Visser, & Zaidman, 2014; Bavota, Qusef, Oliveto,

De Lucia, & Binkley, 2015; Junior, Soares, Martins, & Machado, 2020a; Spadini, Palomba,

Zaidman, Bruntink, & Bacchelli, 2018; Tufano et al., 2016). Hence, in the first aim of the

thesis, we conducted (O1), which empirical re-evaluate and re-rank current perception of

test smells by analyzing when and why developers remove test smells in software evolution.

We also provide a regression-model to assess whether test smell may have an impact on

defect-density, which is crucial for developing better test smell recommendation tools that
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may have more impact of software quality.

Figure 1.1: An overall view of this thesis

Objective 2 (O2): Currently, there is limited empirical evidence on how the

usability and configurability of modern software testing tools impact test code

design. Our objective is to provide insights on improving test code design based

on modern software test automation frameworks. Current test smell catalogues are

more than a decade old (Deursen, Moonen, Bergh, & Kok, 2001), and do not consider design

issues that stems from the advancement in test automation tools. For example, testing

framework like Junit, have changed the ways developers write and evolve test-suites, and

hence they may be subjected to different kinds of maintainability issues that may hinder
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test-suites code maintenance. Hence, in the second objective (O2) of the, we proposed two

novel research directions to address this. In (C2), we conducted an empirical study on how

developers leverage testing framework (e.g., Junit) involving annotations to improve test

code maintenance (e.g., improve readability, find test flakiness, test performance), as prior

studies (Zerouali & Mens, 2017) have found that JUnit4 is one of the most widely utilized

testing frameworks to write annotation-based test code in Java-based systems.

The goal of effective software testing is to identify the presence of bugs through thor-

ough program execution and verification of verdicts set by developers. The first step towards

achieving fault-free software is bug identification. However, once a test fails due to verdict

violation, fixing the bug can be non-trivial due to flakiness, difficulty in exact fault lo-

calization, and repair mechanisms. Due to time constraints for continuous delivery, these

tests may sometimes be temporarily disabled. To address this, modern testing frameworks

provide annotation APIs like @Ignore to help developers bypass failures. However, such

practices result in technical debt in the test code. Hence, in (C3) we conducted an em-

pirical study to demystify practices of disabling test code to understand to direct future

research efforts: (a) understanding how bugs are fixed to improve automatic bug repair

support, and (b) can help prevent future encounters with bugs that are hard to fix.

Objective 3 (O3): Understand reusability in test code design and its impact

on the effectiveness of test code. While reusability is essential for facilitating software

development, enabling developers to extend code, promote reuse, and enhance maintainabil-

ity, test code reusability remains an underexplored area. Therefore, in (C4), our aim is to

investigate reusability and extensibility in test code. Interestingly, we take a different view

on reusability by examining paradigms like inheritance in object-oriented programming.

Our preliminary research shows that while inheritance may be controversial (Kainu-

lainen, 2014; Stackoverflow, 2023), it is widely utilized to maintain test code. We con-

jecture that while inheritance improves ease of extensibility—for instance, inherited test

cases are automatically executed to assess coverage—there are hidden costs associated with

improper usage. For example, some inherited tests may be unnecessary yet executed, or

tests inherited by multiple subclasses, where their behavior does not change, may lead to
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redundancies. Hence, our aim is to demystify how inheritance is used to achieve reusability,

often at the expense of introducing test case redundancies.

1.3 Thesis Contribution

Below, we delve into a detailed research contribution aimed at demystifying test code

quality from the perspective of test maintainability.

1.3.1 Research Contribution for Objective 1

Based on our objective 1, we have contributed one research contribution.

Research Contribution 1 (C1): Demystifying test smells and their misconcep-

tions about their harmfulness in test maintainability. Despite ongoing research into

the discovery and classification of test smells (Athanasiou et al., 2014; Bavota et al., 2015;

Junior et al., 2020a; Spadini et al., 2018; Tufano et al., 2016), there remains significant

ambiguity and conflicting evidence regarding their impact on software maintainability. One

research found that developers are aware of test smells and their potential consequences (Pe-

ruma et al., 2019a), while others found that developers do not believe the benefit of removing

test smells (Junior et al., 2020a; Junior, Soares, Martins, & Machado, 2020b; Tufano et al.,

2016). Therefore, our focus is to understand why developers remove test smells and their ef-

fects on software quality, particularly in terms of defect-proneness. We also build regression

model to find the relationship between test smell addition/removal and software quality, in

terms of defect-proneness.

1.3.2 Research Contribution for Objective 2

Based on our objective 2, we have contributed two research contribution (C2 and C3).

Research Contribution 2 (C2): Demystifying prevalence and evolution of test

annotations to improve test maintainability. The introduction of annotations in

Java 5 has driven annotation as a critical component of the many Java-based frameworks,

influencing how developers to design and implement software. Even in software testing,

6



frameworks such as JUnit, TestNG, and Mockito have all adopted annotations as critical

ingredients in test design and implementation. A prior study by Zerouali and Mens (2017)

has found that JUnit4 is one of the most widely utilized testing frameworks for Java-based

systems, and test annotations (e.g., @Test) are also one of the most widely used annotations

in Java development. Despite the importance of test annotations, most prior research on

test maintenance has only focused on general test design and test assertions (Athanasiou et

al., 2014; Bavota, Qusef, Oliveto, De Lucia, & Binkley, 2012; Bavota et al., 2015; Garousi &

Küçük, 2018; Junior et al., 2020a; Qusef, Elish, & Binkley, 2019) and has not considered the

peculiarity of test annotations. Therefore, in this work, we aim to perform empirical study

on how developers leverage test annotations to maintain test code quality (e.g., readability,

test flakiness, test performance, obsolete test).

Research Contribution 3 (C3): Demystifying test disabling practices to improve

test maintainability. While software testing plays an important role in identifying faults

early, facilitating program repair, and potentially reducing future maintenance costs, re-

pairing bug may not always be done immediately. Bugs may require multiple rounds of

repairs and even remain unfixed due to the difficulty of bug-fixing tasks. To help test

maintenance, along with code comments, the majority of testing frameworks (e.g., JUnit

and TestNG) have also introduced annotations such as @Ignore to disable failing tests tem-

porarily. Although disabling tests may help alleviate maintenance difficulties, they may also

introduce technical debt. In this work we aim to perform empirical research on the preva-

lence, evolution, and maintenance of disabling tests in practice. We believe that studying

why developers disable test code may help developers understand the source of potential

technical debt that can direct future test maintainability practice.

1.3.3 Research Contribution for Objective 3

Based on our objective 3, we have contributed one research contribution (C4). Research

Contribution (C4): Demystifying inheritance in test code and impact on test

redundancies. Inheritance, a fundamental aspect of object-oriented design, has been

leveraged to enhance code reuse and facilitate efficient software development. However,
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alongside its benefits, inheritance can introduce tight coupling and complex relationships

between classes, posing challenges for software maintenance. Although there are many

studies on inheritance in source code, there is limited study on the test code counterpart. In

this proposal, we aim to take the first step by studying inheritance in test code, with a focus

on redundant test executions caused by inherited test cases. We proposed a hybrid approach

based on static and dynamic test analysis to identify and locate test case redundancies

introduced by inheritance that may increase test execution time but has no additional fault

revealing capabilities. Most importantly, this work opens future research direction to further

study why using inheritance in test code important, besides achieving reusability, and how

can we better guide developers when using inheritance.

1.4 Thesis Overview

The outline of this thesis is as follows. Chapter 2 presents the background of this

work and the basic concepts that shall be used throughout the thesis. In Chapter 3, we

present the related works of our research on two dimensions: (1) empirical studies on

re-evaluating and re-ranking current perception of test smells and their relationship with

defect density, and (2) studies that propose more relevant test smells on use of modern

testing framework. We also discuss the limitations of prior studies and the points that

this thesis may complement previous research, and improve current state of test quality

from perspective of test maintainability. Chapter 4 focuses on demystifying test smells and

their misconceptions about their harmfulness in test maintainability. Chapter 5 focuses on

demystifying prevalence and evolution of test annotations to improve test maintainability.

Chapter 6 focuses on demystifying technical debt in test code by tracking test disabling

practices. Chapter 7 focuses on demystifying test inheritance and their relationship with

test redundancies. Chapter 8 concludes the thesis and discusses the future work.

8



Chapter 2

Background

In this chapter, we establish the background of this work and introduce the elementary

concepts and the terminology that will be used throughout the thesis. Our work address

four different problems within the broad area of software testing, specific to design issues

and improve maintainability in the test code.

2.1 Context of the work

This thesis focuses on aiding developers to write maintainable test code by providing

empirical assessments and methods for detecting design issues in the test code. Therefore,

the work is situated on two research fields: empirical software engineering and software

testing research. In the following section we introduce two fields:

2.1.1 Empirical Software Engineering

Empirical Software Engineering (ESE) is an area of research that emphasizes the use

of empirical methods in the field of software engineering (Empirical Software Engineering

An International Journal Publishing model , n.d.). This area focuses on improving software

engineering processes by collecting, analyzing, and interpreting historical data mined from

software repositories written by developers, using either quantitative or manual classifica-

tion. Leveraging open-source historical data helps derive actionable insights to enhance
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software engineering processes and quality.

2.1.2 Automated Software Testing

Software testing is a vital component of modern software development. It is a process

that involves executing a software program and finding bugs so that the result will be

defect-free software. With advancements in technology, there is increased research effort to

automate the tedious nature of testing, considering various aspects of the testing process.

A plethora of research involves targeting three aspects of software testing research, as

listed below:

(1) Prioritizing the execution of fault-revealing tests through regression test case

prioritization (RTCP) (Beheshtian, Bavand, & Rigby, 2021; J. Chen et al., 2016;

Jagannath, Luo, & Marinov, 2011), test case selection (RTCS) (Di Nardo, Alshahwan,

Briand, & Labiche, 2015; Legunsen et al., 2016; S. Wang, Nam, & Tan, 2017), batch

commit testing (Beheshtian et al., 2021), and test parallelization (Candido, Melo, &

d’Amorim, 2017).

(2) Localizing the buggy line through spectrum-based techniques (utilizing coverage)

(Abreu, Zoeteweij, & Van Gemund, 2006; Jones, Harrold, & Stasko, 2002; Keller et

al., 2017) and information retrieval-based approaches (A. R. Chen, Chen, & Wang,

2021; T.-D. B. Le, Oentaryo, & Lo, 2015)

(3) Once a fault-revealing test fails and the presence of a bug has been ascertained, (3)

automatically repairing the buggy line (X.-B. D. Le, Chu, Lo, Le Goues, & Visser,

2017; Mechtaev, Yi, & Roychoudhury, 2016; Ye, Martinez, Durieux, & Monperrus,

2021).

2.2 Test Quality

Despite existing efforts to improve test automation and effective bug resolution, there is

considerably less focus on enhancing test quality. For instance, the efficacy of downstream
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software testing techniques in ensuring software quality depends heavily on the quality of the

tests initially written by developers. Without high-quality tests to verify the program’s state

during execution, downstream techniques for locating and fixing bugs may prove futile. To

assess test quality, developers commonly use metrics such as coverage and mutation testing,

which are de-facto industrial standards. In this thesis, we use the coverage metric but not

the mutation score; therefore, we will omit discussing mutation testing in this section.

2.2.1 Code Coverage

Coverage quantifies the extent to which test code exercises the behavior of the source

code, with higher code coverage increasing the likelihood of detecting bugs. Numerous

coverage tools exist in the literature for Java-based systems, such as Cobertura (cobertura,

2024) and JaCoCo (Jacoco, 2023), which offer common coverage metrics like statement,

branch, and path coverage. For example, as shown in Equation 1, statement coverage

shows the percentage of statements in the software program that are executed by testing. If

a software program has ten statements and six out of the ten statements have been executed

(i.e., covered) by the test case, then the code coverage is 60%.

Application Statement Coverage =
Number of Statement executed by the Test Suites

Total Number of Statements in the Application

(1)

2.2.2 Limitation of Common Test Quality Attribute

While both coverage may help address immediate concerns regarding the current quality

of tests, they do not consider other test quality attributes that may impact test designs, such

as maintainability, extensibility, and reusability of the test code. For example, prior work on

automated test generation, such as Evosuite (Fraser & Arcuri, 2011) and Randoop (Pacheco

& Ernst, 2007), has been shown to achieve high test quality by attaining both high coverage,

and the ability to detect faults (Almasi, Hemmati, Fraser, Arcuri, & Benefelds, 2017; Fraser

& Arcuri, 2015). Despite this, generated unit tests pose a significant maintenance burden,
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making them harder to debug when included in a project (Ceccato, Marchetto, Mariani,

Nguyen, & Tonella, 2015), as the automatically generated tests have poorer readability

compared to their human-written counterparts.

2.3 Test Quality from Perspective of Test Maintainability,

Extensibility and Reusability

To ensure the effectiveness of automated software testing, developers need to maintain a

set of high-quality test cases together with its source code to continuously validate software

quality. Unfortunately, similar to source code, test code may also contain defects and design

issues that hinder the quality of the test code. Thus far, researchers and practitioners

have started to notice recurring design problems in the test code (Spadini et al., 2018;

Van Deursen, Moonen, Van Den Bergh, & Kok, 2001) and have coined the term “test

smell”. Like code smells in source code, test smells indicate potential design problems that

may negatively impact maintainability or readability of the test code.

2.3.1 Test Smells

Due to the increasing importance of design issues in test code, (Garousi & Küçük,

2018) conducted a large-scale systematic study to summarize a catalog of 196 test smell

instances. However, most of the studied test smells are related to general code smells (e.g.,

long parameter list, god class, no comments, and bad naming), code smells specific to TCN

language, and code smells from grey literature (i.e., blog posts) or difficult to generalize

(e.g., complicated setup, long-running test, long test file). Different from their research,

this thesis focuses on 18 other test smells because they are related to unit testing practices

in Java (Peruma et al., 2020) and advocated in xUnit guidelines (Meszaros, 2007). For

instance, traditional test smells have been proposed by Deursen et al. (2001), as listed

below:

• Assertion Roulette (AR): One test case may contain several assertions with no

explanation. AR increases difficulties in comprehension.
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• Eager Test (EGT): A test case may exercise several methods of the object under

test, which may increase the difficulty in test maintenance.

• General Fixture (GF): A test case’s fixture is too general, and the test code only

accesses a part of it. The test case may execute unnecessary code and increase runtime

overhead.

• Lazy Test: Occurs when multiple test cases invoke the same method of the source

code object, which may increase the difficulty in test maintenance.

• Mystery Guest (MG): Test code that uses external resources. Tests containing

such a smell are difficult to comprehend and maintain, due to the lack of information

to understand them.

• Resource Optimism (RO): A test case that makes optimistic assumptions about

the state/existence of external resources, which may cause flaky test results.

• Sensitive Equality (SE): A test using the toString method for equality check in

assert statements. The test case is sensitive to.

Motivated by the work by (Deursen et al., 2001), and recognizing the limited empirical

foundation behind test smells in android systems, (Peruma et al., 2019a) proposed 11 new

test smells, as listed below:

• Conditional Test Logic (CTL): There exist conditions in a test case that may alter

the behavior of the test and its expected output.

• Constructor Initialization (CI): A test class may use a constructor instead of

JUnit’s setUp(). This may introduce side effects when the test class inherits another

class, i.e., the parent class’s constructor will still be invoked.

• Empty Test (ET): Occurs when test code has no executable statements.

• Exception Catch/Throw (ECT): Passing or failing of a test case depends on

custom exception handling code or exception throwing, which may hide real problems

and hamper debugging.
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• Print Statement (PS): Print statements in unit tests are redundant as unit tests

are executed as part of an automated script and do not affect the failing or passing

of test cases. Furthermore, they can increase execution time if the developer calls a

long-running method from within the print method (i.e., as a parameter).

• Redundant Assertion (RA): A test case may contain assertion statements that are

either always true or always false.

• Sleepy Test (ST): Occurs when explicitly making a thread to sleep in test cases,

which may cause flaky test results.

• Duplicate Assert (DA): Occurs when a test case tests the same condition multiple

times, which may increase test overhead.

• Unknown Test (UT): A test method is written without an assertion statement.

• IgnoredTest (IT): A test case that is disabled using JUnit’s @Ignore, which may

increase compilation time, and increases code complexity and comprehension.

• Magic Number Test (MNT): A test method contains unexplained and undocu-

mented numeric literals as parameters or identifiers, which increases maintenance

difficulty.

As shown above, there are many catalogues of test smells proposed in the literature, yet

it is unclear whether the presence of test smells poses real design issues in the test code.

Understanding the impact of test smells through empirical assessment may provide insights

for better tool support. There is a need to re-rank and re-evaluate the current perception

of test smells, which we aim to address in Chapter 4 in this thesis.

2.4 Modern Java-Based Testing Framework

To aid the development of test suites and test automation, modern software develop-

ment processes rely on testing frameworks, such as JUnit (Junit4, 2021) or TestNG (TestNG,

2023), in Java-based systems. These testing frameworks provide APIs that aid in writing
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structural testing in three phases, known as the 3A: Arrange, Act, and Assert (Program-

ming, 2011). Arrange initializes the small piece of application needed for testing, Act exe-

cutes the application, and finally, Assert ensures that the results from the application equal

the expected behavior. With the introduction of Java annotations, enforcing such testing

patterns has become straightforward, such as adding the @Before annotation to enforce the

initialization of dependencies (e.g., a database) that are required for setting up resources

for testing, in the case of database systems. Below we describe the common annotation

based testing API based on Junit4 to ease test suite development and automation:

2.4.1 Junit4 Test Automation

• @Rule (Field): @Rule provides a mechanism to enhance tests by running some code

around a test case execution, which is similar to fixture and teardown.

• @Parameterize (Field/Method): Test cases annotated with @Parameterize can be

invoked by using predefined inputs (i.e., parameterized test inputs) and expected

output.

• @Test (Method): @Test indicates that the annotated test code should be executed

as a test case. @Test takes optional parameters, such as Timeout to indicate that the

test should finish within a given time, or exception to indicate that the test should

throw an exception.

• @Before/@After (Method): @Before indicates that the annotated test code should

be executed as a precondition before each test case (i.e., Database setup). Similarly,

@After indicates the execution of the annotated test code as a postcondition after

each test case.

• @BeforeClass/@AfterClass (Method): @BeforeClass and @AfterClass are similar

to @Before and @After annotation types but indicate the annotated test code to only

execute once (i.e., before or after the test class is invoked).
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• @Ignore (Method/Class): @Ignore indicates that the annotated test case should not

execute.

• @Category (Method/Class): @Category provides a mechanism to label and group

tests, giving developers the option to include or exclude groups from execution.

• @Test(timeout=X) (Method/Class): A test will fail if its execution takes longer

than the value X specified in timeout.

As modern software processes rely on testing frameworks to write better test suites,

maintainability issues can arise from the usage or misusage of the API. We aim to elucidate

test annotation maintenance in Chapter 5 of the thesis.

2.5 Fine-Grain Code Differencing for Mining Developers’ Code

Change History

Since software is never constant and must evolve to remain satisfactory (Mens et al.,

2008), there is a need for a tool to detect code evolution history in order to identify design

and code smells in software application.

2.5.1 Mining Code Change History

To address smells in software code, developers have introduced techniques like refactor-

ing, which involves removing various design and code smells without affecting the behavior

of the source code. Refactoring is important because its goal is to improve the maintain-

ability of code with long-term sustainability in mind. For example, many researchers have

empirically investigated the benefits of refactoring by studying how it improves reusabil-

ity (Moser, Sillitti, Abrahamsson, & Succi, 2006), how the renaming of variable identifiers

affects code readability (Silva, Tsantalis, & Valente, 2016), and how the introduction of

Lambda expressions affects program comprehension (Lucas, Bonifácio, Canedo, Marćılio,

& Lima, 2019; Shen et al., 2019). Due to the benefits of refactoring, researchers have intro-

duced code differencing tools to track which refactoring operations were applied in version
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history, helping developers better understand changes during code review (Alves, Song,

& Kim, 2014; Ge, Sarkar, Witschey, & Murphy-Hill, 2017), resolve merge conflicts (Dig,

Manzoor, Johnson, & Nguyen, 2008), and select better regression tests (K. Wang et al.,

2018).

In this thesis, we utilize the most popular refactoring evolution miner tool called RMiner (Tsan-

talis, Ketkar, & Dig, 2020a) to mine test design and maintainability issues. We use RMiner

because at its core, it is an AST differencing tool at the commit level that matches AST

nodes of different types and supports semantic-aware changes. Moreover, it has the highest

precision (99.6%) and recall (94%) among other refactoring mining and AST diff tools.
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Chapter 3

Literature Review

In this thesis, we propose approaches to help developers improve test quality, with a

focus on improving test design and test maintainability. Most prior studies in software

testing primarily focus on downstream test automation technique, such as prioritizing fault

revealing test (Di Nardo et al., 2015; Legunsen et al., 2016; S. Wang et al., 2017), automated

fault localization (Abreu et al., 2006; Jones et al., 2002; Keller et al., 2017) and automated

fault repair (X.-B. D. Le et al., 2017; Mechtaev et al., 2016; Ye et al., 2021). However, such

approaches do not consider quality of developer written test from the perspective of test case

design and maintainability. In addition, presence test design issues may pose a significant

maintenance burden, i.e., harder to debug over-time, which may degrade software quality.

This thesis aims to improve test quality from the perspective of Software Engineer-

ing research by re-evaluating and re-ranking previously defined design issues (e.g., test

smells) (Deursen et al., 2001; Peruma et al., 2019b). Furthermore, this thesis proposes a

more relevant subset of test design issues that are applicable for modern software engi-

neering process that relies on utilizing testing framework (e.g., JUnit for Java systems), to

improve test maintenance and automation.
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3.1 Paper Selection Process

For our literature review, we primarily focus on papers that analyze test design and

maintainability issues in Java-based systems. Other literature reviews are included in ded-

icated chapters to emphasize more relevant subsets of research efforts associated with our

research goals. Nevertheless, in this chapter, the chosen related works are mainly catego-

rized into two aspects:

• Empirical studies on re-evaluating practitioners’ perceptions on test smells

in real-world systems: Test smells describe design issues that negatively impact

maintainability in the test code. Since this concept is proposed from academic per-

spective, we report on studies that (1) aims to demystify whether practitioners care

about these issue, and (2) whether test smells leads to higher defect density.

• Research on improving test maintainability from testing framework and au-

tomation perspective: Deviating from more traditional definition of test smells (Deursen

et al., 2001), utilizing testing framework (e.g., Junit) is the best-practice by industrial

standards to write better test code. In this section, we report on studies that focus

on improving test design and maintainability from test framework perspective.

3.2 Empirical studies on practitioners perceptions’ on test

smells in real-world systems

In this section, we first discuss prior studies aimed at demystifying developers’ per-

ceptions of test smells and re-evaluating our current understanding of test smells. This

knowledge is crucial for reassessing the prevailing notion that test smells are inherently

harmful. In the latter part of this section, we discuss recent studies aimed at correlating

test smells with defect density. These studies provide additional evidence that test smells

negatively impact the maintainability of test code, potentially leading to more defects. This

evidence further supports the notion that test smells may or may not be harmful in practice.
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3.2.1 Perception and Maintenance of Test Smells

Akiyama (1971) discusses the importance of well-designed test code, arguing that well-

crafted test cases are easier to comprehend and maintain. He proposes that refactoring

production code differs from refactoring test code and suggests various types of test smell

refactoring operations, such as removing dependencies and ensuring resource uniqueness.

Building on this work, Deursen et al. (2001) introduces 11 catalogs of test smells, which

represent patterns of poor design decisions associated with test code that impacts readability

and maintainability.

Since the proposal of test smells, a study conducted by Tufano et al. (2016) surveyed

developers’ awareness of test smells. The results show that most developers do not rec-

ognize design problems in test code and do not perceive test smells as actual problems.

Furthermore, to understand what kind of tool support is required, the study also conducts

quantitative research to observe when test smells are introduced and fixed. Their results

indicate that test smells have long survivability (i.e., 100 days), motivating the need for tool

support to help address them. However, they do not consider the alternative hypothesis

that developers may not care about test smells, hence there may be no need to address

them.

Another survey by Junior et al. (2020a) suggests that developers’ professional experience

cannot be considered a root cause for the insertion of test smells in test code. However, it

is worth noting that not all test smells necessarily result in problems, and perhaps specific

types of test smells may require more attention due to other factors. Many prior studies

have a preconceived notion that test smells are harmful, yet there is little empirical evidence

to show that test smells are inherently harmful.

Peruma et al. (2019a) proposed a new catalog of test smells and a detection tool to

address the lack of investigation of test smells in Android applications. They conclude that

test smells are widely distributed and similar across both mobile and non-mobile application

domains. Subsequently, they survey developers’ awareness of these detected test smells,

finding that developers are often aware of the negative consequences of test smells in the
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software system. Their study contradicts prior findings by Tufano et al., which suggests that

developers may struggle to justify addressing test smells as they may not directly impact

quality attributes like defect density.

Spadini, Schvarcbacher, Oprescu, Bruntink, and Bacchelli (2020) use tsDetector to

propose severity thresholds for ranking test smells. The new thresholds have been deter-

mined after investigating developers’ perception of test smell severity. This represents a

crucial first step towards re-evaluating the current perception of test smells, as not all test

smells may be equally severe. However, there may be potential biases in their user study

design, as not all types of test smells, such as assertion roulette, may indicate problems for

test code (Panichella, Panichella, Fraser, Sawant, & Hellendoorn, 2022).

C. S. Yu, Treude, and Aniche (2019) is the first work to investigate the process involved

in comprehending test code. They survey developers’ time spent reading and extending test

code at various test case design steps. While their research contributes to understanding

factors influencing test code comprehension, gaining actionable insights for tool support

proves challenging. The study lacks empirical evidence on the complex characteristics of

test code evolution. Motivated by the limitations of current repair techniques to accurately

design test cases, the study by Pinto, Sinha, and Orso (2012a) analyzes test code evolution

in terms of modifications, additions, and deletions to elucidate the complicated evolution of

test cases and suggest better repair techniques for the future. Similarly, we aim to fill the

gap in empirical evidence regarding how developers may remove test smells in practice.

3.2.2 Using design issue as metric to understand software post-release

defect

Software defect modeling has been proposed to ensure high quality by understanding

the relationship between various software metrics (e.g., lines of code, McCabe’s Cyclomatic

complexity) and the software defects (Moser, Pedrycz, & Succi, 2008). Khomh, Di Penta,

and Gueheneuc (2009) showed that the presence of code smells increases the code’s change-

proneness. Later on, they also showed that code components affected by code smells are

more fault-prone than non-smelly components (Khomh, Penta, Guéhéneuc, & Antoniol,
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2012). Their results were confirmed by Palomba et al. (2018), who found that code smells

make classes more change and defect-prone. Spadini, Palomba, Zaidman, Bruntink, and

Bacchelli (2018) showed that production code is more defect-prone when tested by smelly

tests. However, Spinellis, Louridas, and Kechagia (2021) showed that code elements are

durable, taking around 2 years to undergo modification, and this pattern shows no correla-

tion with various quality attributes of the code, such as smells, based on their explainable

regression analysis.

3.3 Research on improving test maintainability practices from

perspective of test automation

Despite efforts to distill more relevant subsets of test smells to better guide developers

in test maintainability, the current definitions of test smells are a decade old (Garousi &

Küçük, 2018) and do not take into consideration design issues resulting from API misuse

in modern testing frameworks. To address this gap, we first discuss prior studies aimed at

improving test maintenance through the usage and adoption of modern testing tools.

From our empirical study on improving test case design through testing frameworks,

we found that despite the advantages of using testing frameworks to enhance test case

design and maintainability, API misuses may introduce test smells, leading to technical

debt, specifically test debt, negatively impacting long-term maintainability (Cunningham,

1993). Therefore, in the latter section of the literature review, we delve into one additional

relevant study: (2) an empirical investigation aimed at understanding test debt.

3.3.1 Improving test maintainability from framework usages

Researchers have been investigating how developers use various testing and mocking

frameworks in open-source systems. Zerouali and Mens (2017) performed one of the first

studies on the evolution of testing frameworks. Their study shows that JUnit is the most
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prominent testing library, while many libraries, such as PowerMock, Mockito, and Easy-

Mock, are often used simultaneously to complement each other. Researchers have also con-

ducted quantitative studies to understand the adoption of mocking frameworks in mocking

file dependencies (Marri, Tao Xie, Tillmann, de Halleux, & Schulte, 2009). More recently,

Spadini, Aniche, Bruntink, and Bacchelli (2019) performed a comprehensive study on how

and why developers use mocking in test code and how mocking evolves over time.

For example, Rocha and Valente (2011) mined 106 open-source Java systems to inves-

tigate annotation usage empirically. Similarly, Dyer, Rajan, Nguyen, and Nguyen (2014)

analyzed 31K open-sourced projects to analyze how various Java language features are

adopted by developers, including the adoption of Java annotations. Their study shows that

Java annotations are very commonly adopted. With the increasing adoption of annotations

in the development of programming languages, such as Java 5 and Python 3.5, annotations

have become a critical component influencing how developers design and implement soft-

ware. However, there is limited work in analyzing how annotations are used to improve test

maintainability. Our aim is to derive valuable implications for researchers, developers, and

testing framework designers to further expand and improve test annotation practices.

3.3.2 Empirical study on technical debt from the perspective of test code

Cunningham (1993) discussed the concept of technical debt, where a short-term rewards

may induce higher maintenance costs in the long run. Building on this concept, Potdar and

Shihab (2014) introduced the idea of self-admitted technical debt (SATD), where developers

intentionally introduce commented-out code as a form of temporary fixes. Subsequently,

Wehaibi, Shihab, and Guerrouj (2016) demonstrated that SATD introduces fewer future

defects compared to non-SATD instances; however, implementing SATD changes is often

more complex.

In the context of test debt, several studies have contributed relevant insights. Siebra et

al. (2012) proposed inadequate testing as a form of test debt, while Brown et al. (2010) and

Guo and Seaman (2011) discussed the concept of unfinished testing. Additionally, Wiklund,

Eldh, Sundmark, and Lundqvist (2012) emphasized the importance of both automated and
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manual test coverage to mitigate test debt. However, most literature on test debt focuses

on the lack of testing infrastructure, but rarely delves into the reasons why test debt occurs.

For example, temporary hot-fixes, such as disabling failing test cases due to the difficulty

of bug fixing activities, may temporarily ease maintenance for developers but can introduce

test debt due to a missing quality assurance activity.
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Chapter 4

Demystifying test smells and their

misconceptions about their

harmfulness in test maintainability

In recent years, researchers and practitioners have been studying the impact of test

smells on test maintenance. However, there is still limited empirical evidence on why

developers remove test smells in software maintenance and the mechanism employed for

addressing test smells. In this paper, we conduct an empirical study on 12 real-world open-

source systems to study the evolution and maintenance of test smells, and how test smells

are related to software quality. Our results show that: 1) Although the number of test smell

instances increases, test smell density decreases as systems evolve. 2) However, our manual

classification on those removed test smells reveals that most test smell removal (83%) is a

by-product of feature maintenance activities. 45% of the removed test smells relocate to

other test cases due to refactoring, while developers deliberately address the only 17% of the

test smell instances, consisting of largely Exception Catch/Throw and Sleepy Test. 3) Our

statistical model shows that test smell metrics can provide additional explanatory power

on post-release defects over traditional baseline metrics (an average of 8.25% increase in

AUC). However, most types of test smells have a minimal effect on post-release defects. Our
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study provides insight into how developers resolve test smells and current test maintenance

practices. Future studies on test smells may consider focusing on the specific types of test

smells that may have a higher correlation with defect-proneness when helping developers

with test code maintenance.

Earlier version of this chapter was published in Empirical Software Engi-

neering Journal (EMSE 2021). 34 pages. (D. J. Kim, Chen, & Yang, 2021a)

4.1 Introduction

In modern software development, developers need to continuously implement changes to

the software system to keep up with the consumers’ ever-growing demands. As a software

system evolves, tremendous collaborative effort takes place to deliver features and perform

maintenance activities. Due to the importance of software quality, automated regression

testing has played a pivotal role in software development. New test code is developed to test

the newly-added code and is executed after code changes to ensure that the new changes

do not introduce new defects (Ali et al., 2019).

To ensure the effectiveness of regression testing, developers need to maintain a set of

high-quality test cases to continuously validate software quality. Unfortunately, similar to

source code, test code may also contain defects and design issues that hinder the quality

of the test code. For example, prior studies (Lam, Godefroid, Nath, Santhiar, & Thum-

malapenta, 2019a; Luo, Hariri, Eloussi, & Marinov, 2014a) have found that the results of

some test cases may be unreliable (e.g., flaky tests) due to defects in test code. Thus far,

researchers and practitioners have started to notice recurring design problems in the test

code (Spadini et al., 2018; Van Deursen et al., 2001) and have coined the term test smell.

Like code smells in source code, test smells indicate potential design problems in test code.

Bavota et al. (2015) found that test smells are prevalent in software systems and may hinder

test comprehension and maintenance.

Despite the findings achieved so far, there is limited yet conflicting empirical evidence

on the awareness of test smells. One research found that developers are aware of test smells
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and their potential consequences (Peruma et al., 2019a), while others found that developers

do not believe the benefit of removing test smells (Junior et al., 2020a, 2020b; Tufano et al.,

2016). Therefore, studying how and why developers address test smells will help expand

future research on understanding what may prompt developers to maintain test code, and

provide evidence on the most paid attention test smells.

In this paper, we conduct an empirical study on the maintenance of test smell in 12

large-scale open-source systems. We study a total of 18 different types of test smells that

were defined and studied in prior research (Garousi & Küçük, 2018; Junior et al., 2020a,

2020b; Peruma et al., 2019a; Qusef et al., 2019; Spadini et al., 2018). In particular, we seek

to answer the three following research questions:

RQ1: How do test smells evolve overtime? We conduct a quantitative analysis to

study how tests smell evolve over a three year period (from 2016 to the beginning of 2019) in

the studied systems. Although we find that the total number of test smell instances increases

over time, the test smell density remains relatively stable in the 12 studied systems after

normalizing by the total number of test code lines.

RQ2: What is the motivation behind removing test smells? We conduct a manual

classification on a statistically significant sample of the commits that removed test smells.

We find that developers directly address the test smells in only 17% of the sampled commits.

In particular, developers are more likely to address two test smells: Exception Catch/Throw

and Sleepy Test. However, in 83% of the studied commits, the test smells are removed due

to the deletion of test code or are relocated to other test cases due to feature refactoring

activities. In short, we find that developers often do not directly address the test smells

when maintaining test code.

RQ3: What is the relationship between test smells and software quality? Similar

to prior work (T. Chen, Shang, Nagappan, Hassan, & Thomas, 2017; de Pádua & Shang,

2018), we build a logistic regression model to study the relationship between test smell

and software quality. We find that some test smells (e.g., Conditional Test Logic, Exception

Catch/Throw, andMystery Guest) have a positive correlation with a source code file’s defect-

proneness, after controlling for confounding factors like the traditional product, process and
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coupling metrics. However, most types of test smells have minimal effect on the defect-

proneness.

In summary, our findings show that, as a system evolves, developers may allocate re-

sources on maintaining test code, but they may not be aware of the test smells. Moreover,

some test smells have a minimal effect on defect-proneness, while only a few test smells have

a positive impact on defect-proneness. Future studies on test smells may consider focusing

on the types of test smells that may have a higher correlation with defect-proneness when

helping developers with test code maintenance.

4.2 Background

4.2.1 Brief Overview of Test Smells

Section 2.3.1 shows the 18 different types of test smells that we include in our study.

These test smells are studied in prior work (Bavota et al., 2012; Bavota et al., 2015; Garousi

& Küçük, 2018; Junior et al., 2020a; Knuth, 1981; Peruma et al., 2019a). In particular,

the current knowledge of test smells that we know from the literature was first proposed

by Deursen et al. (2001), and these were expanded as a basis for further investigation in

recent studies. For instance, some studies (Bavota et al., 2015; Bleser, Nucci, & Roover,

2019; Tufano et al., 2016) found a high diffusion of test smells in software systems, and such

test smells may not be removed as systems evolve. Other studies investigated the impact

of test smell on code comprehension by measuring the time taken for understanding the

test code in the presence/absence of test smells (Bavota, Qusef, Oliveto, Lucia, & Binkley,

2012a). Moreover, Athanasiou et al. (2014) studied the impact of test smell on software

quality (correlation with post-release defect) to fill the missing gap from numerous prior

studies that only underlines its effects on software maintainability.

Numerous researchers also surveyed software engineers to understand their awareness,

perception, or identification. For instance, a recent study by Peruma et al. (2019a) proposed

a new set of test smells and investigated their diffusion and awareness. Their result suggests

that developers are aware of test smells and their potential consequences. On the contrary,
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others give evidence that developers do not believe software systems could genuinely benefit

from addressing test smells (Junior et al., 2020a; Tufano et al., 2016). Nevertheless, there is

a lack of empirical evidence on what types of test smell developers pay attention to the most

and thereby maintain software evolution. Similarly, there is also missing evidence on the

common reasons and mechanisms in which test smells are addressed. Hence, in this paper,

we study how test smells evolve and how developers manage test smells during software

maintenance. Moreover, we explore whether the existence and maintenance of test smells

correlate with software quality. Our work uses the test smell detection tool implemented

by Peruma et al. (2019a) which include the most comprehensive type of test smells up to

date, encompassing both the test smells from the literature and their newly proposed test

smells.

4.2.2 Identifying Test Smells

In this paper, we focus on studying the evolution and maintenance of test smells. To

identify test smells, we adopt a test smell detection tool called tsDetector implemented by

Peruma et al. (2019a) to analyze the studied systems. We choose tsDetector because it

can detect a comprehensive list of test smells (i.e., 18 test smells in total, as described in

Table 2.3.1) and has an average F-score of 96.5% (Peruma et al., 2019a). We focus on these

18 test smells because they are related to testing practices in Java (Peruma et al., 2020),

advocated in xUnit guidelines (Meszaros, 2007), and extensively studied in prior researches

in test code maintainability and developers’ perception of test smells (Bavota et al., 2012;

Junior et al., 2020a). Although Garousi and Küçük (2018) summarized a catalog of 198 test

smells, many are general code smells specific to TCN language, come from grey literature

(i.e., blog posts), and difficult to generalize (e.g., complicated setup, long-running test, and

long test file). tsDetector uses JavaParser to detect test smell given the lists of the test

files and the corresponding source code under test (i.e., CUT ). The CUT files are required

to detect specific types of test smells, such as Eager Test and Lazy Test, whose primary

concerns are about testing multiple CUT files in one test case, which may negatively impact

code comprehension.
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To identify each test file’s corresponding CUT files, we follow prior studies and utilize

the naming convention (Chen, Thomas, Hemmati, Nagappan, & Hassan, 2017; Peruma et

al., 2019a; Spadini et al., 2018; Tufano et al., 2016; Zaidman, Rompaey, Demeyer, & van

Deursen, 2008). In particular, for each test file, we identify the corresponding CUT files by

removing the prefix or the suffix of “[Tt]est(s*)” from the names of the test files. We also

manually verify the build configuration files (e.g., Maven or Gradle build file) of the studied

systems to use the default heuristic specified by Maven/Gradle plugin to identify test files.

The default heuristic matches with the prefix that we use to determine the test files. The

test smell detector tsDetector takes the lists of test files, and their associated CUT files and

reports any occurrences of the 18 types of test smells.

Although tsDetector outputs test smells at a file-level, most reported test smells are at

a line-level and method-level, which are aggregated per file. In the rest of our analysis,

we study each test smell individually; therefore, at their respective line and method-level.

Furthermore, we modify the tsDetector to output the raw count of test smells instead of

the default boolean value. To encourage the replication of our results, we have made the

dataset publicly available1.

4.3 Studied Systems

We first introduce our studied systems. We then discuss the results of our research

questions. For each research question, we discuss its motivation, the approach we use to

address the question, and the results.

Case Study Systems. Table 4.1 shows an overview of the studied systems. We conduct

our study on several versions of the 12 open-source Java systems. In particular, we conduct

our research in all official releases from the beginning of 2016 to the beginning of 2019. We

chose the studied systems based on the following selection criteria. First, we selected the

top 1,000 Java projects on GitHub ordered by popularity (i.e., stargazer count). We also

made sure that the repositories are not forks. Second, we discarded projects that are below
1https://github.com/SPEAR-SE/TestSmellEmpirical Data
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Table 4.1: An overview of the studied systems.

Systems #Releases LOC in Source
Code (2016 -
2019)

LOC in Test Code
(2016 - 2019)

Kafka 9 95K - 265K 18K - 101K
Groovy 9 338K - 393K 8K - 9K
Camel 8 586K - 1.0M 379K - 484K
Zookeeper 4 128K - 119K 25K - 36K
Cxf 9 696K - 753K 195K - 218K
Karaf 11 132K - 168K 14K - 17K
Flink 8 388K - 731K 100K - 234K
Accumulo 7 420K - 577K 49K - 47K
Hive 11 3.5M - 4.4M 162K - 221K
Bookkeeper 9 102K - 200K 32K - 85K
Wicket 8 264K - 257K 54K - 57K
Cassandra 6 315K - 184K 43K - 112K
Hadoop 3 637K - 1M 418K - 658K

Total 102 6.9M - 9.1M 1.1M - 1.6M

the 90th percentile in terms of size (i.e., lines of code), repository popularity (i.e., stars),

and the number of commits. We also remove systems that do not use issue report systems.

In the end, we are left with these 12 systems.

As shown in Table 4.2, there are 998 active contributors in total (ranges from 15 to over

200 contributors) in the studied systems with a wide range of experiences (i.e., in terms of

number of commits). In some systems, such as Kafka and Flink, the contributors’ median

number of commits is relatively high (i.e., 306 and 278 commits, respectively), which shows

that many contributors are actively contributing to the systems. The studied systems are

widely used by practitioners, used in many commercial settings, and are large in scale, with

the number of lines of code (LOC) in source code ranges from 6.9M to 9.1M, and the LOC

in test code ranges from 1.1M to 1.6M. Moreover, the studied systems maintain a set of

comprehensive test cases and adopt the continuous integration practice by running the test

cases daily basis (Apache, 2020). The studied systems also cover different domains, from big

data processing and data warehousing solutions to distributed databases and programming

languages.
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Table 4.2: An overview of the developer experience and the number of contributors in the
studied systems.

# Contributed Commits
Systems Min Q1 Median Q3 Max Mean #Commits Contributor

Accumulo 1 5.75 27.00 486.25 2528 7.16 26
Bookkeeper 18 40.75 87.00 217.25 2545 4.37 35
camel 1 6.00 31.00 217.25 24339 6.61 204
Cassandra 2 23.50 101.50 189.50 1320 3.20 102
Cxf 1 3.00 10.00 82.75 8767 4.88 47
Flink 1 98.50 278.00 791.50 3456 3.25 175
Groovy 2 24.00 68.00 530.25 909 1.34 15
Hive 5 28.50 122.50 325.00 3041 2.80 112
Kafka 20 53.00 306.00 607.00 918 3.24 188
Karaf 1 1.00 2.00 61.00 949 1.91 38
Wicket 1 7.00 34.00 320.00 4219 1.39 20
Zookeeper 3 12.50 47.50 92.75 671 2.03 36
Hadoop 1 54.74 225.50 591 2368 2.47 373

4.4 Results

4.4.1 RQ1: How do test smells evolve overtime?

Prior studies (Bavota et al., 2015; Tufano et al., 2016) reveal that test smells are preva-

lent in software systems, and their presence hinders the comprehension and maintenance of

test code. In light of these findings, there is limited empirical evidence of how the perva-

siveness of test smell changes over time and its relation to software maintenance. In this

RQ, we quantitatively investigate the evolution of test smells.

Approach: To study the evolution of test smells, we follow the approach described in

Section 4.2 to detect test smells in each studied software version. In particular, we apply

a test smell detection tool called tsDetector (Peruma et al., 2019a) to analyze the studied

systems based on six-month windows from 2016 to 2019. In total, we obtain seven snapshots

per studied system. We consider as six-month window because studying the evolution of test

code on a commit by commit basis is expensive and dilute the modifications of test smells.

Moreover, since the studied systems have different sizes and test smells may co-evolve with

the amount of added test code and the raw number of the test smell instances, we also

report test smell density. We calculate test smell density by dividing the number of test

smell instances by the total number of code lines. We use code lines as our normalization

metrics because many test smells are detected at the line level. We also normalized using
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other metrics such as the number of methods in a file, and we found a similar trend.
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Figure 4.1: Time series plots that show the evolution of the test smell density (normalized
average) of the studied systems. The test smell densities are calculated based on seven
snapshots that are taken every six months between 2016 and 2019.
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Figure 4.2: Time series plots that show the evolution of the averaged raw test smell of the
studied systems. The test smells are aggregated from on seven snapshots taken every six
months between 2016 and 2019.

Results: Figure 4.1 shows the time series plots of the average test smell density in the

studied systems from 2016 to 2019. We present the studied systems with a similar scale of

test smell densities in one plot for the ease of visualization. Average test smell density is

the normalized test smell instances that is averaged over all studied systems. We averaged

the test smell densities to show a generalized trend amongst the studied systems. We

find that most test smell densities also stay relatively stable. However, ignored test smells

(IT) increased far greater over-time compared to other test smells. Figure 4.2 shows the

evolution of the raw counts of test smell instances averaged over all of the studied systems.
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In general, we observe that all of the averaged raw test smell metrics increase over-time,

but normalized test smell densities remain stable.

Table 4.3: The comparison of the test smell density (number of test smell instances per
1000 lines of test code) for each type of test smell in the studied systems from 2016 and
2019.

Test
Smell

Accumulo Bookkeeper Camel Cassandra Cxf

2016 2019 % 2016 2019 % 2016 2019 % 2016 2019 % 2016 2019 %

AR 15.63 14.87 -5 % ↗ 6.17 11.53 61 % ↘ 12.58 13.61 8 % ↘ 8.18 9.78 18 % ↘ 14.67 14.69 -
CTL 5.39 5.45 1 % ↘ 7.97 8.07 1 % ↘ 3.47 3.78 9 % ↘ 7.96 7.09 -12 % ↗ 4.16 4.20 1 % ↘
CI 0.41 0.27 -40 % ↗ 2.34 1.53 -42 % ↗ 0.21 0.32 38 % ↘ 0.06 0.17 101 % ↘ 0.79 0.74 -6 % ↗
ET 0.05 0.02 -79 % ↗ 0.00 0.00 - 0.19 0.14 -28 % ↗ 0.00 0.00 - % ↘ 0.06 0.05 -12 % ↗

ECT 19.67 15.88 -21 % ↗ 19.46 24.50 23 % ↘ 33.55 34.63 3 % ↘ 21.85 20.75 -5 % ↗ 29.11 28.33 -3 % ↗
GF 6.35 5.57 -13 % ↗ 5.79 6.54 12 % ↘ 2.05 2.37 14 % ↘ 1.37 2.41 55 % ↘ 4.26 3.93 -8 % ↗
MG 0.82 0.55 -40 % ↗ 1.87 1.54 -19 % ↗ 1.09 0.91 -17 % ↗ 1.17 1.19 1 % ↘ 1.40 1.27 -10 % ↗
PS 0.12 0.06 -63 % ↗ 0.06 0.12 60 % ↘ 0.08 0.06 -18 % ↗ 0.35 0.27 -27 % ↗ 0.08 0.10 24 % ↘
RA 0.92 0.34 -93 % ↗ 0.06 0.32 134 % ↘ 0.10 0.06 -52 % ↗ 0.25 0.30 16 % ↘ 0.12 0.12 -
SE 2.15 1.56 -32 % ↗ 0.03 0.22 150 % ↘ 0.85 0.77 -10 % ↗ 0.28 0.51 59 % ↘ 2.16 2.00 -7 % ↗
ST 0.56 0.55 -2 % ↗ 3.01 1.47 -68 % ↗ 1.32 0.94 -33 % ↗ 0.87 0.76 -14 % ↗ 0.47 0.53 12 % ↘
EG 14.11 15.22 8 % ↘ 1.96 9.17 129 % ↘ 3.11 3.51 12 % ↘ 5.12 5.95 15 % ↘ 6.71 6.49 -3 % ↗
LT 84.91 81.97 -4 % ↗ 6.01 36.97 144 % ↘ 11.92 15.00 23 % ↘ 29.79 32.10 7 % ↘ 24.74 24.40 -1 % ↗
DA 4.37 4.29 -2 % ↗ 3.73 4.21 12 % ↘ 2.04 2.47 19 % ↘ 2.98 3.30 10 % ↘ 3.03 3.01 -1 % ↗
UT 5.90 5.40 -9 % ↗ 0.85 4.24 133 % ↘ 3.46 4.28 21 % ↘ 7.59 6.64 -13 % ↗ 7.63 6.67 -13 % ↗
IT 0.46 0.61 28 % ↘ 0.70 0.90 25 % ↘ 0.86 1.10 25 % ↘ 2.08 2.10 1 % ↘ 0.94 0.78 -20 % ↗
RO 0.99 0.69 -35 % ↗ 2.18 1.85 -17 % ↗ 0.85 0.91 7 % ↘ 1.22 1.24 2 % ↘ 1.12 1.03 -9 % ↗

MNT 6.23 6.96 11 % ↘ 3.04 6.62 74 % ↘ 6.15 6.65 8 % ↘ 5.45 5.75 5 % ↘ 6.35 7.22 13 % ↘
Flink Groovy Hive Kafka Karaf

2016 2019 % 2016 2019 % 2016 2019 % 2016 2019 % 2016 2019 %

AR 12.24 12.92 5 % ↘ 19.52 22.44 14 % ↘ 13.17 11.46 -14 % ↗ 16.67 16.83 1 % ↘ 10.96 11.84 8 % ↘
CTL 5.16 4.21 -20 % ↗ 7.84 6.25 -23 % ↗ 5.06 4.36 -15 % ↗ 4.55 3.96 -14 % ↗ 2.53 2.28 -10 % ↗
CI 0.73 0.70 -4 % ↗ 0.77 0.74 -4 % ↗ 0.64 0.76 17 % ↘ 0.17 0.16 -9 % ↗ 0.49 0.37 -28 % ↗
ET 0.04 0.10 83 % ↘ 0.51 0.32 -47 % ↗ 0.03 0.03 -12 % ↗ 0.06 0.02 -98 % ↗ 0.07 0.05 -28 % ↗

ECT 16.63 19.28 15 % ↘ 64.35 58.01 -10 % ↗ 23.08 25.94 12 % ↘ 13.70 12.97 -5 % ↗ 37.18 36.69 -1 % ↗
GF 0.57 2.85 133 % ↘ 5.01 6.99 33 % ↘ 5.68 6.08 7 % ↘ 3.90 11.30 97 % ↘ 2.18 2.87 27 % ↘
MG 0.80 0.87 8 % ↘ 1.03 0.85 -19 % ↗ 0.43 0.50 16 % ↘ 2.04 0.47 -125 % ↗ 1.97 1.81 -9 % ↗
PS 0.10 0.03 -120 % ↗ 3.21 1.91 -51 % ↗ 0.50 0.37 -30 % ↗ 0.00 0.07 200 % ↘ 2.88 3.35 15 % ↘
RA 0.04 0.03 -31 % ↗ 3.08 1.59 -64 % ↗ 0.93 0.75 -21 % ↗ 0.06 0.13 76 % ↘ 0.07 0.05 -28 % ↗
SE 0.26 0.45 52 % ↘ 3.73 3.18 -16 % ↗ 2.89 1.82 -46 % ↗ 0.17 0.57 106 % ↘ 0.56 0.90 46 % ↘
ST 0.56 0.39 -36 % ↗ 0.00 0.00 - 0.15 0.25 49 % ↘ 0.12 0.11 -6 % ↗ 0.35 1.33 116 % ↘
EG 7.21 9.16 24 % ↘ 9.38 15.24 48 % ↘ 7.30 6.23 -16 % ↗ 17.25 17.39 1 % ↘ 5.83 7.49 25 % ↘
LT 42.04 45.36 8 % ↘ 43.42 75.80 54 % ↘ 34.12 33.66 -1 % ↗ 78.91 80.87 2 % ↘ 21.44 28.04 27 % ↗
DA 3.74 3.47 -8 % ↗ 5.39 4.23 -24 % ↗ 4.49 4.28 -5 % ↗ 4.31 3.30 -27 % ↗ 1.83 1.65 -10 % ↗
UT 3.31 5.32 46 % ↘ 15.29 13.66 -11 % ↗ 6.99 8.03 14 % ↘ 4.43 5.12 14 % ↘ 17.36 15.03 -14 % ↘
IT 0.54 1.23 78 % ↘ 0.64 0.53 -19 % ↗ 0.60 0.89 38 % ↘ 0.29 0.38 26 % ↘ 1.69 2.60 43 % ↘
RO 0.89 0.93 4 % ↘ 2.57 1.80 -35 % ↗ 0.53 0.56 5 % ↘ 2.10 0.59 -113 % ↗ 2.32 2.23 -4 % ↗

MNT 4.90 5.44 10 % ↘ 11.43 10.69 -7 % ↗ 8.70 7.45 -15 % ↗ 11.07 8.06 -32 % ↗ 5.69 6.27 10 % ↘

Wicket Zookeeper Hadoop

2016 2019 % 2016 2019 % 2016 2019 %

AR 17.36 3.24 -137 % ↗ 8.50 9.69 13 % ↘ 9.70 9.92 2 % ↘
CTL 2.09 0.51 -121 % ↗ 8.30 8.17 -2 % ↗ 5.61 5.12 -9 % ↗
CI 1.29 1.20 -8 % ↗ 0.56 0.66 17 % ↘ 0.41 0.41 1 % ↘
ET 0.11 0.00 -200 % ↗ 0.04 0.03 -36 % ↗ 0.04 0.04 -11 % ↗
ECT 13.56 2.43 -139 % ↗ 22.19 23.76 7 % ↘ 21.41 21.31 -
GF 5.31 0.12 -191 % ↗ 4.27 5.85 31 % ↘ 6.15 6.47 5 % ↘
MG 0.20 0.11 -63 % ↗ 2.75 2.46 -11 % ↗ 1.07 1.16 7 % ↘
PS 0.13 0.02 -152 % ↗ 0.16 0.14 -15 % ↗ 0.58 0.48 -19 % ↗
RA 0.59 0.09 -148 % ↗ 0.68 0.47 -36 % ↗ 0.18 0.14 -22 % ↗
SE 4.52 0.62 -152 % ↗ 0.84 0.72 -15 % ↗ 1.15 1.70 39 % ↘
ST 0.00 0.04 200 % ↘ 2.00 1.77 -12 % ↗ 1.03 0.92 -11 % ↗
EG 12.86 2.27 -140 % ↗ 3.87 5.08 27 % ↘ 4.93 5.12 4 % ↘
LT 57.07 10.53 -138 % ↗ 13.09 19.60 40 % ↘ 22.38 22.99 3 % ↘
DA 5.07 0.81 -145 % ↗ 4.23 4.20 -1 % ↗ 3.58 3.64 1 % ↘
UT 5.41 0.65 -157 % ↗ 6.62 5.74 -14 % ↗ 4.48 4.36 -3 % ↗
IT 0.17 7.32 191 % ↘ 0.44 0.47 7 % ↘ 1.09 1.03 -5 % ↗
RO 0.33 0.07 -130 % ↗ 2.91 2.68 -8 % ↗ 1.23 1.28 4 % ↘
MNT 5.52 1.02 -138 % ↗ 4.55 4.89 7 % ↘ 5.62 5.78 3 % ↘
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Table 4.4: The comparison of the prevalence of test smells (i.e., the raw number of test
smell instances) for the studied systems from 2016 to 2019.

Test
Smell

Accumulo Bookkeeper Camel Cassandra Cxf

2016 2019 % 2016 2019 % 2016 2019 % 2016 2019 % 2016 2019 %

AR 647 707 9 % ↗ 195 978 134 % ↗ 4740 6573 32 % ↗ 585 1317 77 % ↗ 2845 3219 12 % ↗
CTL 223 259 15 % ↗ 252 685 92 % ↗ 1309 1828 33 % ↗ 569 955 51 % ↗ 807 921 13 % ↗
CI 17 13 -27 % ↘ 74 130 55 % ↗ 81 153 62 % ↗ 4 23 141 % ↗ 153 163 6 % ↗
ET 2 1 -67 % ↘ 0 0 - 71 69 -3 % ↘ 0 0 - 11 11 -

ECT 814 755 -8 % ↘ 615 2079 109 % ↗ 12641 16727 28 % ↗ 1562 2795 57 % ↗ 5644 6209 10 % ↗
GF 263 265 1 % ↗ 183 555 101 % ↗ 773 1144 39 % ↗ 98 324 107 % ↗ 826 861 4 % ↗
MG 34 26 -27 % ↘ 59 131 76 % ↗ 409 442 8 % ↗ 84 160 62 % ↗ 271 278 3 % ↗
PS 5 3 -50 % ↘ 2 10 133 % ↗ 29 31 7 % ↗ 25 36 36 % ↗ 16 23 36 % ↗
RA 38 16 -81 % ↘ 2 27 172 % ↗ 37 28 -28 % ↘ 18 40 76 % ↗ 23 26 12 % ↗
SE 89 74 -18 % ↘ 1 19 180 % ↗ 321 372 15 % ↗ 20 69 110 % ↗ 418 439 5 % ↗
ST 23 26 12 % ↗ 95 125 27 % ↗ 496 456 -8 % ↘ 62 102 49 % ↗ 91 116 24 % ↗
EG 584 724 21 % ↗ 62 778 170 % ↗ 1171 1698 37 % ↗ 366 802 75 % ↗ 1302 1422 9 % ↗
LT 3514 3898 10 % ↗ 190 3137 177 % ↗ 4490 7245 47 % ↗ 2130 4324 68 % ↗ 4797 5346 11 % ↗
DA 181 204 12 % ↗ 118 357 101 % ↗ 770 1194 43 % ↗ 213 444 70 % ↗ 588 659 11 % ↗
UT 244 257 5 % ↗ 27 360 172 % ↗ 1305 2067 45 % ↗ 543 894 49 % ↗ 1479 1462 -1 % ↘
IT 19 29 42 % ↗ 22 76 110 % ↗ 324 533 49 % ↗ 149 283 62 % ↗ 183 170 -7 % ↘
RO 41 33 -22 % ↘ 69 157 78 % ↗ 320 442 32 % ↗ 87 167 63 % ↗ 218 225 3 % ↗

MNT 258 331 25 % ↗ 96 562 142 % ↗ 2318 3211 32 % ↗ 390 774 66 % ↗ 1232 1583 25 % ↗
Flink Groovy Hive Kafka Karaf

2016 2019 % 2016 2019 % 2016 2019 % 2016 2019 % 2016 2019 %

AR 1204 3031 86 % ↗ 152 212 33 % ↗ 1721 2533 38 % ↗ 286 1692 142 % ↗ 156 223 35 % ↗
CTL 508 988 64 % ↗ 61 59 -3 % ↘ 662 964 37 % ↗ 78 398 134 % ↗ 36 43 18 % ↗
CI 72 165 78 % ↗ 6 7 15 % ↗ 84 168 67 % ↗ 3 16 137 % ↗ 7 7 -
ET 4 23 141 % ↗ 4 3 -29 % ↘ 4 6 40 % ↗ 1 2 67 % ↗ 1 1 -

ECT 1636 4521 94 % ↗ 501 548 9 % ↗ 3017 5734 62 % ↗ 235 1304 139 % ↗ 529 691 27 % ↗
GF 56 669 169 % ↗ 39 66 51 % ↗ 743 1344 58 % ↗ 67 1136 178 % ↗ 31 54 54 % ↗
MG 79 205 89 % ↗ 8 8 - 56 111 66 % ↗ 35 47 29 % ↗ 28 34 19 % ↗
PS 10 6 -50 % ↘ 25 18 -33 % ↘ 65 81 22 % ↗ 0 7 200 % ↗ 41 63 42 % ↗
RA 4 7 55 % ↗ 24 15 -46 % ↘ 121 166 31 % ↗ 1 13 171 % ↗ 1 1 -
SE 26 106 121 % ↗ 29 30 3 % ↗ 378 402 6 % ↗ 3 57 180 % ↗ 8 17 72 % ↗
ST 55 91 49 % ↗ 0 0 - 20 56 95 % ↗ 2 11 138 % ↗ 5 25 133 % ↗
EG 709 2149 101 % ↗ 73 144 65 % ↗ 954 1378 36 % ↗ 296 1749 142 % ↗ 83 141 52 % ↗
LT 4135 10637 88 % ↗ 338 716 72 % ↗ 4460 7442 50 % ↗ 1354 8131 143 % ↗ 305 528 54 % ↗
DA 368 814 75 % ↗ 42 40 -5 % ↘ 587 946 47 % ↗ 74 332 127 % ↗ 26 31 18 % ↗
UT 326 1247 117 % ↗ 119 129 8 % ↗ 914 1775 64 % ↗ 76 515 149 % ↗ 247 283 14 % ↗
IT 53 288 138 % ↗ 5 5 - 79 196 85 % ↗ 5 38 153 % ↗ 24 49 68 % ↗
RO 88 219 85 % ↗ 20 17 -16 % ↘ 69 123 56 % ↗ 36 59 48 % ↗ 33 42 24 % ↗

MNT 482 1275 90 % ↗ 89 101 13 % ↗ 1137 1647 37 % ↗ 190 810 124 % ↗ 81 118 37 % ↗

Wicket Zookeeper Hadoop

2016 2019 % 2016 2019 % 2016 2019 %

AR 941 184 -135 % ↘ 213 351 49 % ↗ 4057 6527 47 % ↗
CTL 113 29 -118 % ↘ 208 296 35 % ↗ 2344 3367 36 % ↗
CI 70 68 -3 % ↘ 14 24 53 % ↗ 170 269 45 % ↗
ET 6 0 -200 % ↘ 1 1 - 17 24 34 % ↗
ECT 735 138 -137 % ↘ 556 861 43 % ↗ 8953 14014 44 % ↗
GF 288 7 -191 % ↘ 107 212 66 % ↗ 2571 4254 49 % ↗
MG 11 6 -59 % ↘ 69 89 25 % ↗ 449 760 51 % ↗
PS 7 1 -150 % ↘ 4 5 22 % ↗ 242 314 26 % ↗
RA 32 5 -146 % ↘ 17 17 - 74 93 23 % ↗
SE 245 35 -150 % ↘ 21 26 21 % ↗ 480 1118 80 % ↗
ST 0 2 200 % ↗ 50 64 25 % ↗ 432 607 34 % ↗
EG 697 129 -138 % ↘ 97 184 62 % ↗ 2062 3365 48 % ↗
LT 3093 598 -135 % ↘ 328 710 74 % ↗ 9358 15116 47 % ↗
DA 275 46 -143 % ↘ 106 152 36 % ↗ 1499 2393 46 % ↗
UT 293 37 -155 % ↘ 166 208 22 % ↗ 1872 2865 42 % ↗
IT 9 416 192 % ↗ 11 17 43 % ↗ 455 680 40 % ↗
RO 18 4 -127 % ↘ 73 97 28 % ↗ 516 841 48 % ↗
MNT 299 58 -135 % ↘ 114 177 43 % ↗ 2351 3798 47 % ↗
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We further investigate the change in the magnitude of test smell instances (i.e., raw

counts) and test smell density between the two snapshots taken in 2016 and 2019. Ta-

ble 4.3 shows the change in the magnitude of the test smell density, and similarly, Table 4.4

shows the change in the number of test smell instances (raw counts). As shown in Ta-

ble 4.3, the test smell density decreases for most types of test smells. On the contrary, we

find that the test smell instances’ raw counts increase for most types of test smells (Ta-

ble 4.4). Namely, 190 (81%) out of 234 (i.e., 18 test smell types times 12 studied systems)

of the test smell types (across all studied systems) have an increase in the number detected

test smell instances, which indicates that test smells are prevalent in the software and grad-

ually grow over time. However, after normalized by the LOC of the test code, 121 out of

234 (51%) of the test smell types (across all studied systems) have a decreased test smell

density. The findings may indicate that while the number of added test smell instances

are higher as the systems evolve, test smell addition may be slower than that of test code

addition. In other words, either developer may introduce fewer test smell instances when

adding new test code or actively maintain test code, which results in the removal of test

smell instances. We further study the reason for test smell removal in RQ2.

Discussion: Since developers with higher experience may fix more test smells, we fur-

ther study the correlation between developers’ experience and test smell removal/addition.

Following a prior study by Rahman and Devanbu (2011), we use the number of previous

commits as a proxy for developers’ experience. From the beginning of 2016 to the beginning

of 2019, we mined all the commits that modified the test file and calculated the test smell

removal/addition for each unique contributor. Then we study the relationship between test

smell removal/addition and developers’ experience (i.e., in terms of the number of prior

commits) by employing Spearman’s rank correlation coefficient. We choose Spearman’s

rank correlation since it is a non-parametric correlation test that does not assume the un-

derlying data distribution. We found a positive correlation (i.e., 0.53) between test smell

addition and developers’ experience and found a negative correlation (i.e., -0.57) between

test smell removal and developers’ experience. The correlation analysis suggests a

non-negligible correlation that experienced developers are more likely to add
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more test smells and remove fewer test smells. One potential explanation for our

result is that even highly experienced developers often do not refactor test smells due to

lack of awareness or benefits, which aligns with a prior survey (Peruma et al., 2019a). An-

other reason may be that most experienced developers work on the most often exercised

and most complex part of the system (Zeller, 2009). To corroborate our result, we study

the relationship between the size of code changes (i.e., lines of code and deleted) and devel-

opers’ experience. We employ a quantile-based correlation, where we split developers into

four different quantiles based on their experiences and studied their correlation with test

smell changes. Our result shows an increase in the correlation between experience and test

smell addition (i.e., 0.037, 0.194, 0.262, 0.215), and decrease in correlation between experi-

ence and test smell removal (i.e., -0.090, -0.227, -0.248, -0.157). Therefore, we observe that

the high expertise team may not necessarily remove more test smells because they may be

responsible for larger and more complex changes.

Although the number of test smells increases as the systems evolve, after normalizing

against TestLOC , the test smell density generally remains stable. We also find that

some types of test smell, such as Eager Test, Ignored Test, Unknown Test, Lazy Test,

and Sleepy Test, have one of the largest increase in terms of test smell density in most

studied systems. In contrast, Exception Catch/Throw, Redundant Assertion, and Print

Statement have the largest decrease in terms of test smell density in most studied sys-

tems.

4.4.2 RQ2: What is the motivation behind removing test smells?

A recent study (Garousi & Küçük, 2018) claims that developers perceive test smell as

harmful in software systems. In contrast, other studies reveal that developers are unaware

of test smells and do not acknowledge the benefits of refactoring them (Junior et al., 2020a;

Tufano et al., 2016). Nevertheless, there is limited empirical support on test smell removals,

whether a test smell vanishes as a side-effect of code evolution or is a refactoring target.

Such evidence is necessary to reveal the current perception developers may have on test
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smells. Hence, we perform a manual classification on the test smell removing commits to

identify the reasons that prompt developers to fix the test code with test smells and the

mechanisms employed to address test smells.

Approach. We conduct a manual classification on commits removing test smells. We

leverage Git to extract all the commits except for the merge commits between 2016 and

2019. We only keep the commits that include test file modifications and discard the other

commits from further analysis. A commit modifies a test file if the involved files have the

extension “.java” and have a prefix or a suffix of “[Tt]est(s*)”. For each of the commits,

we run tsDetector on the two versions of the software (i.e., every two consecutive commits)

and calculate the change in the number of test smell instances.

To understand why developers remove test smells, we take an indirect approach by

looking at a combination of bug reports, commit messages, test code, and the commit

history of relevant test code. Using the artifacts above, we answer three types of questions:

1) What kind of maintenance activity initially prompted developers to address test smells

(i.e., the main purpose of the commit)? 2) How is the test smell addressed (e.g., is it

refactored or by-product of other maintenance activities)? 3) When developers remove test

smells, do their discussions in the software artefacts align with the definitions of test smells,

providing evidence of their awareness? We used the three preliminary inquiries as a proxy

to gain insight into developers’ awareness of the most common reason for removing test

smell.

In the analysis, we take a statistically significant sample of the commits removing test

smells. In particular, we apply stratified random sampling on these commits with a 95%

confidence level and a 5% confidence interval. We use a 95% confidence level and a 5%

confidence interval because this provides a high probability that the true population pa-

rameter lies within 5% of our sample estimate. We adopted stratified sampling to sample

the test smells in each studied system independently, which can be advantageous to reduce

sampling error when a subpopulation within the overall population varies (Zhao, Liang, &

Dang, 2019). In total, we manually analyzed 304 commits from a total of 1,452 commits
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(achieving a 95% confidence level with a 5% confidence interval). The first two authors ex-

amine the sample independently. Any disagreement is discussed until reaching a consensus.

We used Cohen’s Kappa inter-rater agreement to measure the degree of agreement between

the two authors (Cohen, 1960). Cohen’s kappa considers a scenario where the agreement

between two authors is purely by chance. We achieve Cohen’s Kappa coefficient of 0.97,

indicating almost a perfect agreement level Cohen (1960).

To assist our manual classification, we leveraged a tool called Refactoring Aware Commit

Review (Tsantalis, Mansouri, Eshkevari, Mazinanian, & Dig, 2018a), which is a code diff

visualization tool for showing the refactoring activities applied between two commits. In

the studied samples, 241 commits (80%) includes issue ID from the Jira bug report, and 25

commits (8%) use GitHub’s pull request/issue tracking. The remaining 34 commits (11%)

only contained commit messages. Some commit messages contained sufficient information

to understand the reason behind test code changes. Such commit messages may include

keywords like “Refactor” or “Fix test speed.”

Result. Table 4.5 shows a two-dimensional summary illustrating the association between

the maintenance activities that initially prompted developers to maintain test code (hor-

izontal dimension) and the type of specific test code changes (vertical dimension) that

developers applied when removing test smells. We also found 12 incorrectly detected test

smell instances by tsDetector, i.e., a 4% false-positive rate, and excluded them in Table 4.5.

For the maintenance activities (horizontal), we uncover five categories that prompted

developers to maintain test code. Four of the five categories are: refactoring test code (65

commits), feature improvement (87 commits), bug fixing (76 commits), and adding new

functionality (55 commits). The remaining nine commits (i.e., the fifth category - “others”)

consist of the ones that we cannot identify clear motives due to insufficient documentation

(e.g., low-quality commit messages and bug reports). As an example, in CXF (bcb6385a),

the developer addresses a test smell (i.e., Ignored Test) by completing the test implemen-

tation. However, the test case was ignored when it was first introduced to the codebase

years ago and did not reference any bug report. Thus, it is difficult to label the correct

41



Table 4.5: A summary of our manual classification on the commits that removes test smell,
i.e., 304 sampled commits minus 12 commits that are incorrectly flagged by the test smell
detection tool. Our analysis focuses on the context of each commit and how the test smell
is addressed. In particular, we show the association between test code changes and the
corresponding maintenance activities that developers apply.

Maintenance Activities

Refactoring
Test Code

Feature
Improve-
ment

Bug Fix-
ing

Feature
Addition

Others Total #

Code change

TEST SMELL AWARE REFACTORING

Exception Catch/Throw 9 4 3 5 - 21
Sleepy Test 9 4 1 1 - 15
Unknown Test - 3 1 1 2 7
Assertion Roulette 1 - 1 - - 2
Sensitive Equality - - 2 - - 2
Magic Number 1 - - 1 - 2
Conditional Test Logic - 1 - - - 1

Total 20 12 8 8 2 50

TEST SMELL UNAWARE REFACTORING

Persistence 10 22 12 13 1 58
By-Product Removal 20 18 22 10 5 75

Total 30 40 34 23 6 133

OTHER CODE CHANGES

Test Code Deletion 13 33 30 20 1 97
Add Comment/@Ignore 2 1 1 3 - 7
Revert a Commit - 1 3 1 - 5

Total 15 35 34 24 1 109

#Total 65 87 76 55 9 292
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maintenance motives.

We classify the type of test code changes (vertical) into three categories: Test Smell

Aware Refactoring (50 commits), Test Smell Unaware Refactoring (133 commits), and Other

Code Changes (109 commits). We classify a commit in the category of Test Smell Aware

Refactoring if developers directly addressed the test smell. We classify a commit as a Test

Smell Unaware Refactoring if the test smells are removed as a side-effect of other activities.

Test Smell Unaware Refactoring consists of two subcategories: Test Smell Persistence and

By-product Removal. The Test Smell Persistence (58 commits) shows instances of applying

standard code refactoring, such as extracting common test code, where test smells are tran-

siently relocated to another test class. The By-product Removal (75 commits) represents the

cases when the test smell is removed due to refactoring and maintenance of other tasks (e.g.,

removing duplicate source code). We group the remaining commits that remove test smells

but are not test smell specific refactoring into the “Other Code Changes” (109 commits).

These commits made changes such as deleting test code, disabling tests (commenting or

ignoring code), and reverting a commit.

In the following subsections, we discuss our manual classification results of the three

high-level test smell removal categories.

Test Smell Aware Refactoring

Although less frequent, we find that developers directly refactor specific test smells in

50 out of 292 (17%) studied commits. As shown in Table 4.5, these commits are related

to removing Exception Catch/Throw (21 commits), Sleepy Test (15 commits), Unknown

Test (7 commits), Assertion Roulette (2 commits), Sensitive Equality (2 commits), Magic

Number (2 commits), and Conditional Test Logic (2 commits). By looking into the vertical

dimension (i.e., the context of the commits), we find that Test Smell Aware Refactoring

happen more frequently during test refactoring commits (20/50), but developers also remove

test smells during other maintenance activities (e.g., feature improvement and bug fixing).

However, not all test smell are removed by developers (i.e., developers may remove

the test code completely). Therefore, we also report the proportion of test smell “fixing”
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commits (i.e., removed by developers) over the number of test smell removing commits in

our stratified samples (i.e., all commits that remove the specific test smell), which shows the

true proportion of the fixed test smells. In this case, even though Exception Catch/Throw

has the highest number of test smell removing commits, only 31% were removed. Sleepy Test

has the highest number of removed (60%) compared to other test smells. 21% of Unknown

Test, 12.5% of Sensitive Equality, 5.1% of Magic Number, 2.9% of Assertion Roulette, and

1.9% of Conditional Test Logic are removed by developers. Our findings show that, in the

studied systems, developers are more likely to fix Sleepy Test and Exception Catch/Throw

due to the existence of test smell instead of other maintenance activities. Below, we discuss

how developers address different types of test smells.

Refactor Sleepy Test. 15 out of the 292 (5%) commits are related to refactoring the Sleepy

Test test smell. This represents cases where developers removed 60% of the removed Sleepy

Test. This test smell occurs when developers explicitly cause a thread to sleep, leading to

unexpected results as the processing time for a task can differ on different devices (Meszaros,

2007). We find that developers often remove Sleepy Test due to unexpected test behavior

and increased test time. For example, in Kafka (7b7c4a7), a developer mentions that:

“The timeouts are often large (e.g., 10 seconds) and still occasionally they trigger prema-

turely. They need to be replaced by waitUntilTrue and some logic that checks when processing

in streams is complete”.

In another example, a developer in Camel (722e590c) mentions that “[u]se awaitility for

testing where we otherwise use thread sleep which can be speeded up.”. We find developers

often apply two approaches to address Sleepy Test. One is to use waitFor() condition in

the Java Awaitility library and the other is to refactor the test smell using Java’s Future

library. These two approaches allow the test case to run asynchronously without blocking.

As presented in Table 4.3 (RQ1), while Sleepy Test accounts for one of the most prevalent

test smells, we find in our manual classification that developers also allocate some efforts

to refactor such smells. The awareness for Sleepy Test may be a result of the increase

in attention for the unreliability in test code qualities (e.g., flaky tests) (Eck, Palomba,

Castelluccio, & Bacchelli, 2019; Lam, Godefroid, et al., 2019a; Shi, Bell, & Marinov, 2019).
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Moreover, we find that developers may also be concerned with an increased test execution

time caused by calling thread.sleep(). Future research is needed to understand further

developers’ awareness and opinion on the consequences of Sleepy Test.

Refactor Exception Catch/Throw. We find that 21 out of the 292 (7.2%) commits are

related to refactoring the Exception Catch/Throw test smell. This represents cases where

developers removed 31% of the removed Exception Catch/Throw (other instances were

removed as the by-product of other maintenance activities). As discussed in a previous

paper (Peruma et al., 2019a), this test smell occurs when the passing or failing of the test

is dependent on custom exception handling code or exception throwing instead of using

JUnit’s expected attribute. In this category, developers refactored the test smell in 10

commits, and the remaining were refactored during other maintenance activities: feature

improvement (3 commits), bug fixing (3 commits), and feature addition (5 commits). As

shown in Listing 4.1, developers remove the code logic in the catch block that determines

the passing and failing of the test case. The developers mentioned in the bug report that

using fail in the catch block is a bad programming style and masks the details of the stack

trace2. After removing the test smell, a new test smell (i.e., unknown test) is introduced.

We have also seen other similar cases in our study, where a new test smell is introduced

after developers resolved the current test smell. In short, our manual classification

finds that developers are more likely to refactor the Exception Catch/Throw

test smell during various maintenance tasks. We also find that these test smells

removal is often not associated with test failures but to improve future maintainability.

Unknown Test. We find that developers refactor Unknown Test in 7 out of 292 (<3%)

commits. This represents cases where developers removed 21% of the removed Unknown

Test. This test smell occurs when test cases do not contain any logic or assertions state-

ments. Thus, it is challenging to comprehend what the role of the test case is. As an

example, in Kafka (7d6ca52a), the test class called JmxReporterTest.java is added three

years ago. However, three years after its creation, the developers noticed missing test

code while working on other tasks and immediately addressed it. Similarly, as mentioned
2https://github.com/apache/flink/pull/4446
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Listing 4.1: Developers removed the dependency of test outcome on exception handling
code (Flink - e83217bd).

1 @Test

2 public void testZeroSizeHeapSegment() {

3 - try {

4 MemorySegment segment = new HeapMemorySegment(new byte[0]);

5 testZeroSizeBuffer(segment);

6 testSegmentWithSizeLargerZero(segment);

7 - }

8 - catch (Exception e) {

9 - e.printStackTrace();

10 - fail(e.getMessage());

11 - }

12 }

in CXF (bcb6385), developers completed the missing test implementation two years ago.

Thus, our finding suggests that there might be other instances of the Unknown

Test, where developers may only notice them while maintaining other tasks.

One potential reason for adding Unknown Test code may be that in feature additions, the

Unknown Test gets added to prepare for the future implementation. This is illustrated

in CXF (2705f4d), [CXF-7525] Completing the system test, where developers initially only

provided empty test cases when implementing the feature and later complete the test case.

While adding Unknown Tests may serve as code documentation to describe what test cases

should be implemented in the future; developers may forget to complete the test case and

become technical debt (Cunningham, 1993; Pham & Yang, 2020a).

Refactor Sensitive Equality. We find that developers refactor the Sensitive Equality

test smell in 2 out of 292 (<1%) commits. This represents cases where developers deliber-

ately fixed 12.5% of the removed Sensitive Equality. This test smell occurs when the test

method verifies objects by invoking the toString() method. The potential consequence of

the test smell is that the change in the implementation of toString() might result in test

failure (Meszaros, 2007). We find a similar discussion in Flink (390d3613 ), “rerollercoast-

ing through abstraction layer; we don’t really know what the implementation is by calling

tostring?”.

While there were a total of 16 samples of the removed Sensitive Equality, only 2 out of
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16 commits (12%) reflected an awareness of the test smell (in other cases, developers delete

the entire test method or move the whole test code to another test case). It may be because

the use of the default toString() is intuitive from both its purpose and naming convention,

and developers may not have an immediate incentive to address the test smell until the test

fails.

Refactor Magic Number. We find that developers refactor Magic Number in 2 out of

292 (<1%) commits. This represents cases where developers removed 5.1% of the removed

Magic number. This test smell occurs when assert statements in a test method contain

numeric literals (i.e., Magic Numbers) as parameters. Magic Number does not indicate

the meaning/purpose of the number. Hence, they should be replaced with constants or

variables, thereby providing a descriptive name for the input (Meszaros, 2007). As an

example in Kafka (7ebc5da6 ), the test smell was refactored after a feature addition, which

involved explicitly replacing the Magic Number with a variable with a more meaningful

variable name to improve code comprehension.

Figure 4.3: Assertion refactoring, removing duplicate assertion and Assertion Roulette test
smells. Located in the commit 3b42fb5 from Apache Karaf.

1 @Test

2 public void testLoad() {

3 .....

4 dependency = conditional.getCondition().get(0);

5 String actual = "req:osgi.ee;filter:=\"(

(osgi.ee=JavaSE)(!(version>=1.7)))";

6 - assertNotNull(dependency);

7 - assertEquals(actual, dependency);

8 + assertThat(dependency, contains(actual));

9 }

10 }

Refactor Assertion Roulette. We find that 2 out of 292 (<1%) commits are from refac-

toring Assertion Roulette (AR). This represents cases where developers removed 2.9% of

the removed Assertion Roulette in the manual samples. This test smell occurs when the test

method has several assertion statements making it challenging to determine which assertion

had failed (Meszaros, 2007). Although prior work (Deursen et al., 2001; Meszaros, 2007)
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Figure 4.4: Conditional logic refactoring, removing complex conditional logic using asser-
tions. Located in the commit 7ebc5da6 from Apache Kafka.

1 @Test

2 public void checkTypeInformation() {

3 .....

4 - if(tupleType.isTupleType()) {

5 - if(!((TupleTypeInfo<?>)tupleType).equals(testTupleType)) {

6 - fail("Tuple type information was not set correctly!");

7 - }

8 - } else {

9 - fail("Type information was not set to tuple type information!");

10 - }

11 + assertThat(tupleType.isTupleType(), is(true));

12 + assertThat(tupleType, is(equalTo(expectedType)));

13 .....

14 }

proposes using an assertion explanation to refactor the test smell, we find that developers

may also remove the test smell using another assertion statement. Listing 4.3 shows an

example where assertThat is used to remove both Assertion Roulette and duplicate asser-

tion test smell. In this case, developers attempt to mitigate the test code’s verboseness by

refactoring with assertions, which helps to remove the test smells.

Conditional Test Logic. We find that 1 out of 292 (<1%) commits removed Conditional

Test Logic. The finding shows that developers removed 1.9% of the removed Unknown

Test. This test smell occurs when the test case’s success or failure depends on the assertion

method within the control flow blocks and thus is not predictable (Meszaros, 2007). A prior

survey (Garousi & Küçük, 2018) noted that developers prefer to consider it is smelly or not

on a “case-by-case basis”. Our study also finds that developers typically do not refactor

Conditional Test Logic. For the only case that we found, developers refactored the test

smell when there are nested conditional statements. In Kafka (7ebc5da6 ), shown in the

code snippet in Listing 4.4, the developer simplifies the test smell’s verbosity with assertion

statements. Namely, assertThat() & is() is used to improve the readability of the test logic.
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Although less frequent, we find that developers removed specific test smells in 50 out of

292 (17%) studied commits. In particular, Exception Catch/Throw and Sleepy Test are

the two most commonly refactored test smells. Based on the discussion in bug reports

and commit messages, we find that developers are often aware of the sub-optimal practice

of using Thread.sleep and spent efforts on improving the design of exception handling

mechanisms. Even though the number is less, we also find some refactoring of other test

smells, such as the Unknown Test, Magic Number, Sensitive Equality, Conditional Test

Logic, and Assertion Roulette.

Test Smell Unaware Refactoring

Most test smells (133/292, 45%) are not removed by developers but are either relocated

or deleted as consequences of other refactoring activities. We classify such commits as Test

Smell Unaware Refactoring since developers were unaware of the test smells and removed

them as a by-product of other maintenance tasks, such as refactoring, feature improvement,

feature addition, or bug fixing. In our manual classification, we find that Test Smell Unaware

Refactoring may affect the test smells in two ways: 1) The test smells are relocated to

another codebase, i.e., test smell persistence. 2) The test smells are removed unintentionally

due to cascading results of other source code refactoring activities. Below we discuss the

two categories in detail.

Test Smell Persistence. We find that in 58 out of 292 (20%) commits, the test smells

were relocated to other locations. In this case, test code may undergo various refactoring

activities such as introducing inheritance (19 commits), extracting method (25 commits),

extracting class (10 commits), replacing method with the existing helper (2 commits), and

moving method/class (2 commits). For example, in CXF (31a4a55 ), developers applied

two refactorings (i.e., extract superclass and pull up method) to the test case JCacheOAu-

thDataProviderTest to extract common test code. However, four existing test smells (i.e.,

Assertion Roulette, Conditional Test Logic, Duplicate Assertion, and Magic Number) in

the test code are relocated to the new test case as a result of the refactoring. Namely,

developers did not remove the test smells during test code refactoring. In some
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cases, relocation may magnify test smell’s effect. For example, in Hive (14e92703),

while the developer fixes a bug associated with test failure, the developer extracts a reusable

method that explicitly causes a thread to sleep and relocates code to a method in a test

utility file. The method was then used in three other test cases, thus magnifying the test

smell’s impact.

By-Product Removal. We find that in 75 out of 292 commits (25%), the test smells

are removed by developers as a cascading effect of source code changes. Such maintenance

activities include feature improvement, adding features, and bug fixing (i.e., the horizontal

view in Table 4.5). For example, a commit in Accumulo (9dadca0f ) implements a new

feature and refactors the source code using a builder design pattern. As a result of the

source code changes, one test smell instance of Eager Test (i.e., calling multiple source code

methods in a test case) is removed since the test case now calls the builder method instead

of invoking four distinct methods.

In summary, we find that developers may refactor test code while performing other

maintenance activities. Developers may refactor for future maintainability or as a necessary

precursor for change in feature requirement. For example, to support new features in the

source code, developers may refactor test code to accommodate common logic in test code

and apply code reuse. However, in most cases, test smells were unintentionally removed by

test code relocation or diffusion as a side-effect of these maintainability tasks. Our findings

show that developers are unaware of test smells and may not actively remove test smells as

systems evolve.

We find that developers may not directly remove test smells when refactoring test code.

Many manually studied test smells (133/292, 45%) are relocated or removed uninten-

tionally by developers.

Other Maintenance Activities

We find that test code may be deleted as a system evolves. The majority of test smell
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removals are related to test code deletion. 109 out of 292 (37%) commits belong to the

category Other Code Changes. We classify a commit into this category when the removed

test smell results from deleting test code, disabling test (ignoring/commenting out), or

reverting a commit.

Test Code Deletion. In our study, we find that for a non-trivial number of commits

(97/292 commits, 33%), the test smells are removed because the test code is deleted. De-

velopers may delete a test case when it becomes redundant or obsolete. For example, in

Flink (e671f34 ), while porting source code to another file, developers discuss the removal of

test cases since another already has similar test cases. Developers sometimes also delete test

cases when they become obsolete or hard to maintain as the system evolves. For example,

in Accumulo (c265ea5b), the test code becomes irrelevant since the corresponding features

under test are unstable and removed. Therefore, the test smells in the test code are also

removed.

Add Comment/@Ignore. 7 out of 292 (2%) commits are related to commenting out

or ignoring the test code. This category represents removing test smells as a result of

temporarily disabling the test code. In general, we find that developers may comment out

the entire test case to bypass test failure. For example, in Kafka (ca1f18e), developers

commented out the test code to temporarily make the test pass since the test would only

work after developers migrate to Java 9. As another example, in Camel (9ad68066), the

test case is ignored due to test failure caused by a recent upgrade to jetty 9.3. Although

the test smell is removed due to commenting or ignoring the test code, the test smell is not

addressed. Lastly, we also see cases where the commented out test case was only brought

back a few months later. Future studies should also investigate if such commented out test

cases are re-enabled or become a technical debt in the system (Pham & Yang, 2020a).

Revert a Commit. 5 out of 292 (<2%) commits are related to reverting the test code.

This category represents removing test smells as a result of temporarily reverting software

to the previous versions. For example, in Wicket (266c90037), the system was reverted due

to a defect caused by adding new features. Thus, the newly introduced test smell was also

reverted.
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We find that as the system evolves, test code and its associated test smells may be deleted

due to the obsoleteness and maintenance difficulty of the source/test code. Developers

may also temporarily comment out test cases to bypass test failures caused by recent

code changes. However, we see instances where developers only bring the commented

out test code back after several months or years.

Summary & Implication. Our manual classification shows that, in most cases, de-

velopers may not be aware of the test smells. We find that 82.9% of the studied test smells

are removed, relocated, or disabled (e.g., commented out) as a by-product of other mainte-

nance activities. During these refactoring activities, developers may relocate the test smell

to another test case, and the test smell remains unchanged. In some cases, as discussed,

the impact of test smell may become larger, as the test code that contains test smells is

extracted to become a utility method. Nevertheless, we still find that developers removed

test smells in 16% of the studied commits. In particular, we find that developers are more

likely to remove Exception Catch/Throw and Sleepy Test. Our finding suggests that, al-

though developers may refactor test code, they often do not remove test smells.

In the next RQ, we further investigate the relationship between test smells and software

quality.

4.4.3 RQ3: What is the relationship between test smells and software

quality?

Although researchers have made a necessary step towards understanding the maintain-

ability aspects of test smells (Bavota et al., 2015; Bleser et al., 2019; Junior et al., 2020a;

Peruma et al., 2019a), it is still not clear whether removing test smells has an effect on

the quality of software. In the previous RQ, we find that in addition to deliberately re-

solving test smells, test smells are commonly removed as by-products of other maintenance

activities, such as deleting the test code entirely. Regardless of how the test smells are

removed or relocated (RQ2), the removed test smells are no longer impacting the source
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code files. However, it remains unknown whether test smells have any relationship with the

code quality. Hence, in this RQ, we aim to understand further the relationship between

test smells and software quality, particularly the post-release defect. Our finding may help

identify the types of test smells that correlate with a post-release defect and inspire future

research that helps developers efficiently address more test smells.

Approach. Our goal is not to predict defects but to study the additive effect of test smell

metrics on post-release defects over controlled metrics using logistic regression models.3

Logistic regression models are commonly used in prior research to study the effect of various

software metrics on post-release defect (Bird, Nagappan, Murphy, Gall, & Devanbu, 2011;

Chen, Thomas, Nagappan, & Hassan, 2012; de Pádua & Shang, 2018). Below, we define

the metrics that we use and the model building process.

Studied Metrics & Data Collections

• Post-Release Defects. The post-release defect is our response metric in the re-

gression model. The post-release defect is defined as the defects reported within a

fixed time frame after a certain version of a software is released (Moser et al., 2008;

Piotrowski & Madeyski, 2020). For each source code file, we label it as defect prone

if the file is modified at least once in bug fixing commits within six months after the

release of the software system (Zimmermann, Premraj, & Zeller, 2007). Developers in

the studied systems are required to enter the issue ID in commit messages. Thus, we

first query the issue tracker to obtain a list of bug reporting issues within six-month

of each release date. We then find all the bug-fixing commits based on whether the

commit messages contain one of the obtained issue IDs. At the end of the step, we

obtain the list of source code files that contain post-release defects (e.g., TRUE or

FALSE). Finally, if a test file tests a source code file that contains a post-release

defect, we label the test file as defect-prone.

• Traditional Product and Process Metric. Similar to prior studies, we control
3Logistic Regression from Lrm R package.
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for traditional product and process metrics in our regression model. Previous studies

found that traditional product metrics (e.g., lines of code) and process metrics (e.g.,

code churn and pre-release defect) are good explainers for post-release defects (Moser

et al., 2008; Nagappan & Ball, 2005; Nagappan, Ball, & Zeller, 2006) and are com-

monly used as baseline metrics (Bird et al., 2011; Chen et al., 2012; D’Ambros, Lanza,

& Robbes, 2010). We collect these metrics at the test-file level and use them as a base-

line to build a BASE model. We later add test smell metrics to the BASE model and

study whether the test smell metrics may further explain a source code file’s defect-

proneness. Although our metrics may not represent all of the metrics, they are shown

to have a high correlation with other complexity metrics and used for benchmarking

in prior proposals of new metrics (Biyani & Santhanam, 1998; T. Chen et al., 2017;

D’Ambros et al., 2010). For the traditional product metric, we used CLOC (AlDanial,

2019) to extract the LOC metric in the test file. For traditional process metrics, we

use commands “git follows” and “git diff” to extract three different code churn metrics:

file churn, code churn, and deleted lines of code. File churn is the number of commits

that modified the file. Code churn is the total number of code lines, such as code

deletion, addition, and modification. Finally, code deletion is the total lines of code

deleted. For the other process metric, namely the pre-release defect metric, we follow

a similar approach to extracting post-release defects using a six-month time window

before one software release.

• Coupling Metric. In addition to the traditional product and process metrics, we

also add two coupling metrics (namely COUPLING) as our controlled metrics to the

BASE model to reduce the effects of confounding variables. We measure two coupling

metrics, ts coupling (i.e., a test case to source code) and tt coupling (i.e., test cases to

test cases), in test cases, which are used in prior studies to assess the quality of test

code design (Child, Rosner, & Counsell, 2019). We exclude the dependencies with

external frameworks or libraries when calculating the coupling metrics.

• Test Smell Product and Process Metrics. We consider both test smell product
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and process metrics. Test smell product metrics (TEST PRODUCT) are the number

of detected test smells present in the system’s current release. Test smell process

metrics (TEST PROCESS) are the number of test smells added and removed six

months before releasing the system. Note that we extract the two metrics for each

type of test smells (18 types in total). Calculating test smell process metrics can be

challenging due to file deletion and rename. To address these challenges, we use the

“git follow” to keep track of package change and file renaming. Since test smells are

detected at different granularities, such as line, method, and class level, we aggregated

the test smells at the file-level.

Model Construction

We use a logistic regression model to model post-release defect because it is easier to in-

terpret and is widely used in prior studies (T. Chen et al., 2017; Harrell Jr, 2015; Kuhn

& Johnson, 2013; Nagappan & Ball, 2005). Logistic regression can better isolate (with a

predominantly additive effect) the effects of the test smell metrics on explaining post-release

defect over the BASE model (i.e., an improvement on the model fitness) (Harrell Jr, 2015).

In particular, we build an initial model using the baseline metrics (i.e., traditional process

and product metrics and coupling metrics). Then, we build a series of new models to add

TEST PRODUCT and TEST PROCESS over the BASE model. By studying the explana-

tory power of a series of models and their additive effects of test smell metrics, we explore

whether test smell contributes to a better explanation of post-release defect. We build three

models for each studied system:

• BASE (LOC+CHURN+PRE+COUPLING): The baseline model uses the tra-

ditional product, process, and coupling metrics.

• BASE+TEST PRODUCT: We add TEST PRODUCT to the BASE model and

measure the improvement in the explanatory power over the BASE model.

• BASE+TEST PRODUCT+TEST PROCESS: The third model measures the
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combined effect of TEST PRODUCT and TEST PROCESS metrics over the BASE

model.

For each model that we construct, we first apply data transformation to reduce the data

skewness. We follow prior studies using log-transformation on the metrics to normalize the

data (Chen et al., 2012; de Pádua & Shang, 2018). Second, we remove the metrics with

a zero variance because these metrics do not contribute to the model (i.e., the values are

constant). Third, we apply redundancy analysis to drop predictors that can be predicted

based on a model composed of all other predictors with an adjusted R2 of higher than

0.94. Since some metrics may be correlated and cause the problem of multicollinearity

and overfitting (Harrell Jr, 2015; Jiarpakdee, Tantithamthavorn, & Hassan, 2018; S. Wang,

Chen, & Hassan, 2018), we use Variance Inflation Factors (VIFs) to detect the collinearity

among the metrics (Kuhn & Johnson, 2013). A high VIF value reflects an increase in the

variance due to collinearity in the data. If a metric has a VIF value larger than 10, we

remove the metric from the model (Kuhn & Johnson, 2013)5.

Model Assessment Process

Our goal is not to predict post-release defect, but rather to study the explanatory power

of the test smell metrics. Thus, we adopt three different model assessment techniques (prob-

ability of defect-proneness, Wald χ2 test, and area under the curve; AUC) to understand

the relationship between test smell and post-release defect.

First, we study the contribution of individual TEST PRODUCT and TEST PROCESS

metric by looking at proportions of χ2 for each metric relative to the total χ2 of the model.

χ2 is a likelihood ratio test to identify how much a metric contributes to the model’s fitness.

The higher χ2 indicates a higher explainability of the metric (i.e., more important) in the

model (de Pádua & Shang, 2018; Harrell Jr, 2015). Finally, we use AUC, the area under the

Receiver Operating Characteristics (ROC), to compare nested logistic regression to capture

the relationship between the explanatory metrics and the source code’s defect-proneness
4Redundancy analysis from the Hmisc R package.
5VIF analysis from RegClass R package.
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file (Harrell Jr, 2015). AUC measures the fitness of the model. An increase in AUC when

new metrics are added to the model indicates that the new model has a higher ability to

capture the relationship and a better fitness (i.e., there is a correlation between the added

metrics and defect-proneness, after controlling for the baseline metrics).

Second, we study the effect size of test smell metrics on the probability of defect-

proneness (Moser et al., 2008; Shang, Nagappan, & Hassan, 2015). To quantify the effect,

we set all of the model’s metric values to their mean value and record the probability of

defect-proneness. Then, we increase the value of the metrics in which we want to measure

the effect (i.e., test smell metrics). For each subject metric, we increase the value by 125%

and 150% of its mean value and re-calculate the probability of defect-proneness after the

increase and report the percentage difference. A positive value indicates that increasing

the metric’s value increases the probability of the post-release defect. A negative value

indicates that increasing the value of the metric decreases the likelihood of the post-release

defect. The intuition behind the analysis is to understand which metric contributes more

to the explainability of the software defects while controlling for other metrics (de Pádua

& Shang, 2018).

Result. The explanatory power of test smell metrics in regression models. Adding

test smell metrics increase the AUC of the model by an average of 8.25% over the BASE

model. Table A.1 – A.6 in the appendix show the details of the regression models, where

we show the additive effects of test smell features over the baseline metrics. We move the

tables to the appendix to make the paper more concise. We show the proportion of χ2

to understand the importance of including the metric on the model fitness. We show the

AUC to understand whether our test smell metric contributes to a higher ability to capture

the relationship on the post-release defect over baseline metrics. We find that in all of

the models, the AUC increases by 5.1% over the baseline when adding TEST PRODUCT

metrics; and there is around 8.25% increase in AUC over the baseline when adding both

of the TEST PRODUCT and TEST PROCESS metrics. Although the increase is small,

we see a consistent result in all the studied systems except Wicket (as discussed in RQ1,

Wicket experienced major refactoring in 2019, which may affect the modeling results). Our
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results also show that adding TEST PROCESS metrics have only a small increase in the

model’s explainability after considering the baseline metrics and TEST PRODUCT. The

potential reason may be that, as shown in RQ2, developers may remove or add a test

smell as a by-product of other refactoring activities. Therefore, there may be noises in the

TEST PROCESS metrics. Lastly, for the proportion of χ2, we find that the explainability

of test smell metrics varies from system to system. However, we see that test smell metrics

such as Conditional Test Logic, Constructor Initialization, Exception Catch/Throw, Mystery

Guest, Resource Optimism, Assertion Roulette, Eager Test, and Lazy Test have higher

explainability across the studied systems. In short, these test smells may have a higher

correlation with the defect-proneness of source code files.

The effect size of test smell metrics on defect-proneness.Most test smell metrics

have minimal effect on defect-proneness. The analysis mentioned above shows the explain-

ability of the metrics but not the effect. Hence, we further study the effect of each test smell

metric. Table A.7 – A.9 in the appendix show the effect size of the TEST PRODUCT and

TEST PROCESS metrics on post-release defects for the studied systems. As discussed in

the approach section, we measure the effect size by increasing individual test smell metrics

while keeping all other metrics at the mean value. We find that the effect size and direction

(i.e., positive or negative) of the effect vary from system to system. However, the effects

of most test metrics on the defect-proneness are minimal (i.e., less than 1% increase in

the probability of defect-proneness when 150% increases the value of the test smell met-

ric). Compared to TEST PROCESS metrics, TEST PRODUCT metrics, in general, have

a slightly larger positive relationship with source code defect-proneness. Among all test

smell metrics, we find that Exception Catch/Throw and Conditional Test Logic show the

highest positive relationship in the majority of the studied systems. The findings imply

that more Exception Catch/Throw and Conditional Test Logic in a test case may lead to a

higher probability of having a post-release defect in its corresponding source code file. The

analysis result on Exception Catch/Throw also echoes our finding in RQ2. We found that

developers are more likely to refactor Exception Catch/Throw when maintaining test code.
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On the other hand, in RQ2, we only observed one commit that addressed Conditional Test

Logic. Prior research (Peruma et al., 2019a) found that developers do not naturally think of

Conditional Test Logic as a problem. Hence, future studies are needed to evaluate further

the effect of this test smell on software quality. Finally, one possible reason for the high

variability in effect size of the TEST PROCESS metric compared to the TEST PRODUCT

metric could be that many of the test smells were removed as a by-product in the effort to

improve test code maintainability (as found in RQ2). Thus, future research on test smell

should consider those by-product removals and relocation when designing the study.

Table 4.6: The comparison of the area under (a ROC) curve for the studied systems. The
model is trained using the system in the first column, and AUC is calculated using the
system depicted in the remaining columns.
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Accumulo 0.73 0.61 0.52 0.68 0.62 0.63 0.59 0.60 0.53 0.66 0.59 0.59 0.60
Bookkeeper 0.62 0.87 0.62 0.64 0.58 0.64 0.71 0.54 0.58 0.61 0.61 0.58 0.51
Camel 0.60 0.65 0.75 0.63 0.68 0.64 0.51 0.61 0.52 0.66 0.49 0.69 0.62
Cassandra 0.67 0.66 0.57 0.78 0.69 0.64 0.55 0.65 0.55 0.59 0.53 0.67 0.61
Cxf 0.62 0.50 0.69 0.63 0.78 0.62 0.58 0.71 0.52 0.62 0.58 0.68 0.55
Flink 0.66 0.80 0.65 0.72 0.67 0.77 0.83 0.65 0.59 0.79 0.61 0.73 0.70
Groovy 0.60 0.63 0.53 0.66 0.63 0.64 0.97 0.58 0.51 0.65 0.60 0.57 0.63
Hadoop 0.60 0.63 0.53 0.66 0.63 0.64 0.97 0.58 0.51 0.65 0.60 0.57 0.63
Hive 0.61 0.62 0.67 0.62 0.62 0.64 0.81 0.61 0.67 0.61 0.64 0.67 0.56
Kafka 0.64 0.77 0.55 0.71 0.67 0.73 0.64 0.61 0.59 0.82 0.53 0.64 0.67
Karaf 0.54 0.59 0.54 0.59 0.53 0.57 0.49 0.63 0.54 0.58 0.82 0.60 0.65
Wicket 0.53 0.56 0.49 0.53 0.52 0.51 0.58 0.55 0.52 0.60 0.58 0.82 0.59
Zookeeper 0.51 0.58 0.57 0.57 0.58 0.56 0.73 0.71 0.53 0.52 0.61 0.55 0.83

The comparison of area under (a ROC) curve for the studied systems.The cross-

system AUC is lower than within-system AUC. We further investigate whether different

systems share a similar relationship between test smell and defect proneness (i.e., whether

the models are applicable cross-systems). Table 4.6 shows the results of our cross-system

AUC using combined (i.e., product and process) test smell features. In general, we find that

the results of cross-system AUC are lower than the within-system AUC. In particular, some

models trained on one system (e.g., Accumulo) perform worse when applied on some systems
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(e.g., AUC is 0.53 when the model is applied on Camel) but are relatively better when

applied on other systems (e.g., AUC is 0.67 when applied on Cassandra and Kafka). Our

results show that while different systems have different development characteristics, some

systems may have a more similar relationship between test smells and defect-proneness.

Future studies are needed to further study effect of test smells across systems from different

domains.

The studied test smell metrics increase the AUC of the model by an average of 8.25%

over the BASE model. The test smell product metrics such as Conditional Test Logic,

Constructor Initialization, Exception Catch/Throw, Mystery Guest, Resource Optimism,

Assertion Roulette, Eager Test, and Lazy Test may have a higher correlation with the

defect-proneness, while process metrics have little or no improvements to the model

fitness. In short, most test smell metrics have minimal effect on defect-proneness, and

different test smell has a different effect on the defect-proneness of source code files

across the studied systems.

4.5 Threats to Validity

External Validity. The studied systems are all open source and implemented in Java,

so the results may not be generalizable to all systems. To minimize the threat, we study

systems that are large in scale, cover various domains, frequently used in commercial set-

tings, and diversify the pool of test code under analysis based on the expertise of the

developer. Even though our results are consistent among the studied systems, other devel-

opers/systems might exhibit a different awareness level about the test smells. Therefore,

future studies must evaluate the results on additional systems and systems implemented in

different programming languages.

Internal Validity. There may be confounding metrics that may affect the result of our

logistic regression model. To mitigate this, we include baseline metrics, such as lines of

test code, code churn, and two coupling metrics (i.e., source code to test code dependencies

and test code to test code dependencies) in the model. Moreover, our model does not
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indicate a causal relationship, but rather that there is a possibility of a relationship that

may be further investigated in future research. Furthermore, our study aims to understand

the relationship between test smell metrics to software post-release defects by studying the

effect of test smells on post-release defects. Therefore, we build a logistic regression model to

study the relationship between test smell and post-release defects, because logistic regression

models provide better interpretability compared to more advanced machine learning model.

Future studies investigating the effect of test smell on prediction performance should study

just-in-time prediction and cross-system prediction.

Construct Validity. There may be false positives in the tool, tsDetector, that we used for

identifying test smells. However, we found that false positive rate to be low in our manual

classification. We found 12 false positives (4% false positive rate), which is consistent with

the number reported in the prior study (Peruma et al., 2019a). Moreover, there may be

biases in our manual classification on characterizing the commits that remove test smells. To

minimize the biases, two authors independently inspect every commit and then merge the

results. Furthermore, we examine all available software artifacts, such as commit messages,

code changes, and bug reports. As for the reasons for removing test smells, many non-

technical factors may play a role, such as a lack of knowledge and lack of time. However,

in the bug report we analyzed, we did not find that developers mention such non-technical

aspects that challenge test code’s maintainability. Future studies should further dedicate

studies on such non-technical factors. Moreover, while we find evidence in software artifacts

that demonstrates developers’ awareness of test smells, our manual classification serves only

as a proxy measure for why developers removed test smells. Future research should involve

presenting these removal instances to developers immediately after they occur to better

understand the true reasons behind the removal of test smells. A recent paper Spadini et

al. (2020) reported a severity threshold for tsDetector to make a recommendation when

test smells are prevalent. Such results have a low impact on our results because we study

test smells removal at a more general level, not only when there are too many tests smells.

Finally, in our time series plot (RQ1), we plot the averaged test smell metrics of all systems.

To ensure that one system does not overestimate the average, leading to false trends, we
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verified that the individual systems’ time series has the same trend as the average.
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4.6 Implication & Contribution

Table 4.7 summarizes our findings for each research questions. We additionally discuss

implications for each result.

Table 4.7: Summary of our findings and their implications.

Findings about how test smells evolve overtime Implications

F.1 Although the total number of test smell increases over time,
after normalizing by the total number of lines of test code, the test
smell density remains relatively stable in most of the 12 studied
systems.

I.1 As software system evolves, test smell will likely co-evolve with amount of
added test code. However, our results suggest that developers may allocate
some resources in maintaining test code that results in removal of test smells.

Findings about test smell awareness refactorings Implications

F.1 Sleepy Test & Exception Catch/Throw are the two test smells
that developers directly address..

I.1 Our results may help future research and tool builders to focus on these
two test smells for a better recommendation support on addressing test smells.

F.2 Developers sometimes refactor test smell to remove verbose
statements. In particular, developers may use better assertion
style to remove test smells.

I.2 There are numerous testing frameworks that offer distinct assertion syntax.
However, due to lack of experience and knowledge, developers may sometimes
resort to verbose assertions. Future research should investigate refactoring
recommendation using better assertion statements.

Findings about test smell unawareness refactorings Implications

F.1 58 out of 292 (20%) commits relocated test smells to another
test case after some refactoring and maintenance activities. In
such cases, developers pay attention to test code reusability and
duplication instead of addressing test smells. Subsequently, we
find that in some cases relocation can diffuse the impact of test
smells (e.g., relocated to a utility file).

I.1 Although the maintenance test code has become a prominent task in recent
years, for the most part, test smell is not the reason for refactoring, and
developers may not pay attention to addressing test smells.

F.2 70 out of 292 (24%) commits remove test smells while working
on other maintenance tasks.

I.2 Test smells are inherent problems, which may hinder test design and com-
prehension. However, our result shows that developers may not be aware of
the test smells. Many test smells are indirectly removed when developers deal
with bug fixing or feature enhancement.

Findings about other maintenance activities that removed
test smells

Implications

F.1 Most test smells are removed due to test code deletion (33%).
We find that as test code evolves, there may be substantial in-
stances of ad-hoc manual test code deletions caused by redundant
or obsolete test code, which remove test smells as a side-effect.

I.1 Our result suggests that developers often manually maintain test code
by deleting duplicate or obsolete test code, which may be time consuming.
Future studies should support the detection of refactoring opportunities or
even conduct automated refactoring to reduce maintainability efforts.

F.2 Developer tends to disable (i.e., commenting out or ignoring)
test case (2%) to make a test pass.

I.2 Future studies should further investigate the causes for disabling test cases,
and whether disabled test cases become technical debts in the systems (e.g.,
forget to re-enable) (Cunningham, 1993; Pham & Yang, 2020a).

Findings about relationship between test smell and soft-
ware quality

Implications

F.1 Test smell metrics complement traditional metrics in explain-
ing post-release defects, even though the addition is small (an
average of 5.8% increase in AUC).

I.1 Our result suggests that test smell metrics have a certain correlation with
post-release defect, even though the correlation (i.e., improvement in model
fitness) is not large.

F.2 The test smells such as Conditional Test Logic, Constructor
Initialization, Exception Catch/Throw, Mystery Guest, Resource
Optimism, Assertion Roulette, Eager Test, and Lazy Test have a
higher defect explanatory power in the model.

I.2 Future studies on test smells may focus more on the above-mentioned test
smell due to their higher explainability in post-release defect in the model.

F.3 The effect sizes of most test smell metrics on defect-proneness
are small. Among all test smells, Conditional Test Logic and Ex-
ception Catch/Throw have the largest effect on a post-release de-
fect.

I.3 Future studies should further investigate the effect of Conditional Test
Logic and Exception Catch/Throw on software quality and help practitioners
prioritize their effort on addressing test smells.
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4.7 Chapter Summary

First and foremost, the primary value of our research work comes from recognizing the

importance of understanding why developers remove test smells and the mechanisms in

which they are addressed. We believe this is a necessary corequisite to validate current

perception of test smells towards developing a more useful refactoring recommendation

tool. Without such knowledge, future studies may progress to propose new test smells

and detection tools with minor applicability in the wild and may even hamper software

maintenance effort. To that end, we attempt to tackle this problem in three folds. First,

we find that developers may allocate resources in the maintenance of test code. The test

smell density decreases over time, even though the total number of test smell increases in

the software systems. Second, we find that developers are more likely to address a subset of

test smells (i.e., Exception Catch/Throw and Sleepy Test) and the rest were usually removed

indirectly as a side-effect of accomplishing other non-trivial maintenance tasks related to

fixing bugs or change in feature requirements. Similarly, we identify other code changes

besides refactoring that relocate, diffuse, delete, disable and revert test code that caused the

removal of test smells. Finally, we apply regression models to understand the relationship

between test smell metrics and post-release defect. After controlling for baseline metrics

(i.e., LOC, code churn, pre-release defect, and coupling in test code), we find that test

smell metrics provide additional defect explanatory power, although the increase is small.

Our model also finds that test smells such as Exception Catch/Throw and Conditional Test

Logic have a larger effect on post-release defect. In summary, our study highlights that

developers may allocate resources on maintaining test code, but they often do not address

test smells. However, we find that some test smells do have some relationship between

post-release defect. Future studies are needed to better assist developers with prioritizing

the resources to address test smells and refactoring test code.
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Chapter 5

Demystifying test annotation

maintenance in the wild

Since the introduction of annotations in Java 5, the majority of testing frameworks,

such as JUnit, TestNG, and Mockito, have adopted annotations in their core design. This

adoption affected the testing practices in every step of the test life-cycle, from fixture setup

and test execution to fixture teardown. Despite the importance of test annotations, most

research on test maintenance has mainly focused on test code quality and test assertions.

As a result, there is little empirical evidence on the evolution and maintenance of test an-

notations. To fill this gap, we perform the first fine-grained empirical study on annotation

changes. We developed a tool to mine 82,810 commits and detect 23,936 instances of test

annotation changes from 12 open-source Java projects. Our main findings are: (1) Test

annotation changes are more frequent than rename and type change refactorings. (2) We

recover various migration efforts within the same testing framework or between different

frameworks by analyzing common annotation replacement patterns. (3) We create a tax-

onomy by manually inspecting and classifying a sample of 368 test annotation changes and

documenting the motivations driving these changes. Finally, we present a list of actionable

implications for developers, researchers, and framework designers.
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Earlier version of this chapter was published in the 43rd IEEE/ACM

International Conference on Software Engineering (ICSE 2021). 12

pages. (D. J. Kim, Tsantalis, Chen, & Yang, 2021)

5.1 Introduction

Modern software systems are becoming more complex due to the ever-growing demands

from customers. To ensure that the software quality remains on par with consumer ex-

pectations, testing has become a pivotal role in software development. Developers rely on

testing to verify the quality of every code change and provide an indication on whether the

software can be released to production (Ali et al., 2019).

To increase the effectiveness of testing, developers need to maintain and improve test

code continuously. Similar to source code, test code may also contain design issues that

hinder the quality. For example, prior studies have found that the results of some test

cases can be unreliable (i.e., flaky tests) due to bugs in test code (Lam, Godefroid, Nath,

Santhiar, & Thummalapenta, 2019b; Luo, Hariri, Eloussi, & Marinov, 2014b). To that end,

developers have begun to notice a recurring design problem in test code and coined the term

test smells (Van Deursen et al., 2001) as an indicator of design problems in tests. Since its

inception, researchers have shown that test smells are prevalent in software systems (Peruma

et al., 2019a), negatively affect software maintainability and comprehension (Bavota et

al., 2012; Bavota et al., 2015), and may impact software quality in terms of post-release

defects (Spadini et al., 2018).

The introduction of annotations in Java 5 has driven annotation as a critical component

of the many Java-based frameworks, influencing how developers to design and implement

software Z. Yu, Bai, Seinturier, and Monperrus (2019). Even in software testing, frameworks

such as JUnit, TestNG, and Mockito have all adopted annotations as critical ingredients

in test design and implementation. A prior study (Zerouali & Mens, 2017) has found that

JUnit4 is one of the most widely utilized testing frameworks for Java-based systems, and

test annotations (e.g., @Test) are also one of the most widely used annotations in Java
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Table 5.1: A brief overview on commonly used JUnit4 annotations.

Annotations Annotation Lo-
cation

Description of Commonly used JUnit Annotation

@Rule Field @Rule provides a mechanism to enhance tests by
running some code around a test case execution,
which is similar to fixture and teardown.

@Parameterize Field/Method Test case annotated with @Parameterize can be in-
voked by using a predefined input (i.e., parameter-
ized test inputs) and expected output.

@Test Method @Test indicates that the annotated test code should
be executed as a test case. @Test takes optional
parameters, such as Timeout to indicate that the
test should finish within a given time, or exception
to indicate that the test should throw an exception.

@Before/@After Method @Before indicates that the annotated test code
should be executed as a precondition before each test
case (i.e., Database setup). Similarly, @After indi-
cates the execution of the annotated test code as a
postcondition after each test case.

@BeforeClass/@AfterClass Method @BeforeClass and @AfterClass are similar to @Be-
fore and @After annotation types, but indicate the
annotated test code to only execute once (i.e., before
or after the test class is invoked).

@Ignore Method/Class @Ignore indicates that the annotated test case
should not execute.

@Category Method/Class @Category provides a mechanism to label and group
tests, giving developers the option to include or ex-
clude groups from execution.

@Test(timeout=X) Method/Class A test will fail, if its execution takes longer than the
value X specified in timeout.
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development. Table 5.1 provides an overview of the commonly used test annotations in

JUnit4. Although the test annotations may be different across testing frameworks (e.g.,

TestNG or JUnit5), in general, they provide similar functionalities.

Despite the importance of test annotations, most prior research on test maintenance

has only focused on general test design and test assertions (Athanasiou et al., 2014; Bavota

et al., 2012; Bavota et al., 2015; Garousi & Küçük, 2018; Greiler, Van Deursen, & Storey,

2013; Greiler, Zaidman, Van Deursen, & Storey, 2013; Junior et al., 2020a; Qusef et al.,

2019) and has not considered the peculiarity of test annotations. Therefore, in this paper,

we present the first empirical study on how developers leverage test annotations in the wild

to maintain the high quality of test code (e.g., readability, test flakiness, test performance,

obsolete test). We first extended the state-of-the-art refactoring mining tool, Refactoring-

Miner 2.0 (Tsantalis, Ketkar, & Dig, 2020b), to detect annotation additions, removals, and

modifications. We study the collected annotation changes both quantitatively and through

manual classification by answering three research questions:

RQ1: How common are test annotation changes? Test annotation changes are 26.5%

more common than regular test refactorings such as renames and type changes. Despite

their popularity, there is negligible tool support (e.g., antipattern detection, annotation

change suggestions, and annotation API usages) for test annotation changes.

RQ2: How are test annotations changed in the wild? We quantitatively study

frequent test annotation changes. We find that developers update test annotations more

frequently than annotation additions and removals. Moreover, test annotation migration

across testing frameworks and within a different version of the same framework is also

common.

RQ3: Why do developers change test annotations? We conduct a manual clas-

sification to uncover test annotation usage and misusage, and how developers bypass the

limitations of test annotations. Our findings highlight potential future directions on helping

developers improve test maintenance and detect potential issues in test code.

In summary, our findings provide actionable implications for three groups of audiences:
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(1) Researchers: We open an avenue for further research directions on detecting mis-

uses and test smells related to test annotations and their relation with other aspects of

software development (i.e., quality, maintainability, and performance improvements). We

also highlight potential directions on automated test code refactoring by leveraging test

annotations.

(2) Developers: Our findings reveal the usage of test annotations in an ad-hoc manner by

some developers. A number of test cases is temporarily disabled until a fix is found; however,

the disabled tests are not re-enabled after the fix. Moreover, in several cases, developers are

unaware of the features offered by testing frameworks, and thus apply suboptimal custom

solutions. These findings indicate the need to educate developers with the best testing

practices and provide recommendation tools to help developers apply the appropriate test

annotations where needed.

(3) Framework Designers: We find cases where developers try to bypass the current limi-

tations of test annotations (i.e., fixture configuration) and provide suggestions for framework

designers on improving the flexibility of test annotations.

5.2 Method for Detecting Changes in Test Annotations

RefactoringMiner Extension. In order to detect annotation additions, removals and

modifications, we extended the state-of-the-art refactoring mining tool, RefactoringMiner

2.0 (Tsantalis et al., 2020b). We selected this tool for the following reasons:

(1) It operates at commit level, allowing us to obtain annotation changes at the finest

granularity level of software evolution (i.e., commits).

(2) It can detect refactoring operations, allowing us to include annotation changes for

refactored program elements (i.e., methods with changes in their signatures, moved/re-

named classes and fields) in addition to non-refactored program elements. This makes

our dataset more complete and our findings more reliable.

(3) It has the highest precision (96.6%) and recall (94%) among other refactoring mining
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and AST diff tools, allowing us to have an accurate dataset of annotation changes

with a very small number of false positives and false negatives.

(4) It has the fastest execution time among other refactoring mining tools, allowing us to

scale up our data collection for the entire commit history of large projects with over

20K commits.

Using the RefactoringMiner API, we obtain the pairs of program elements (i.e., type,

method and field declarations), which have been matched between the currently analyzed

commit and its parent in the directed acyclic graph that models the commit history of git-

based version control repositories. The pairs of matched program elements may have iden-

tical signatures (e.g., a pair of methods with identical names, parameter and return types),

or may have different signatures due to refactoring operations (e.g., Rename Method,

Change Parameter Type, Add/Delete Parameter).

Java annotations are used in three different forms:

• Marker annotations without member value pairs: @TypeName.

• Normal annotations with a list of member value pairs:

@TypeName(name1=value1,name2=value2,..), where names are SimpleName AST

nodes and values are Expression AST nodes.

• Single Member annotations with a single member value: @TypeName(Expression),

where the member name is omitted (i.e., @foo(bar) is equivalent to the normal an-

notation @foo(name=bar)).

We consider two annotations as equal if they have the same TypeName, and the same member

value pairs regardless of their order. Let us assume that for a given pair of matched program

elements Ap is the annotation set of the program element in the parent commit, and Ac

is the annotation set of the matched program element in the child commit. Then, the

added annotations are computed as A+ = Ac \ (Ap ∩ Ac). The removed annotations are

computed as A− = Ap \ (Ap ∩ Ac). The pairs of modified annotations are computed as
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A∼ = {(ap, ac)|ap ∈ Ap ∧ac ∈ Ac ∧ap.TypeName = ac.TypeName ∧ap.MemberValuePairs ̸=

ac.MemberValuePairs}.

To evaluate the precision and recall of our RefactoringMiner extension, we extended the

oracle used in (Tsantalis et al., 2020b), which contains true refactoring instances found in

536 commits from 185 open-source GitHub projects, with instances of Annotation Addi-

tions/Removals/Modifications for four different program elements, namely type, method,

field, and parameter declarations. To compute precision, an author of the paper manu-

ally validated 638 annotation change instances reported by our RefactoringMiner exten-

sion. To compute recall, we need to find all true instances of annotation changes. We

followed the same approach as in (Tsantalis et al., 2020b) by executing a second tool,

namely GumTree (Falleri, Morandat, Blanc, Martinez, & Monperrus, 2014), and consider-

ing as the ground truth the union of the true positives reported by RefactoringMiner and

GumTree. GumTree takes as input two abstract syntax trees (e.g., Java compilation units)

and produces the shortest possible edit script to convert one tree to another. We used all

Insert and Delete edit operations on Annotation AST nodes to extract annotation changes

and report them in the same format used by RefactoringMiner. Table 5.2 shows the number

of true positives (TP), false positives (FP), and false negatives (FN) detected/missed by

our RefactoringMiner extension. The overall precision is 99.7% and the recall is 98.7%.

Table 5.2: Precision and recall of our extended version of RefactoringMiner.

Change Type TP FP FN Precision Recall

Add Method Annotation 312 1 7 99.7% 97.8%

Remove Method Annotation 97 1 0 99% 100%
Modify Method Annotation 19 0 0 100% 100%

Add Parameter Annotation 29 0 0 100% 100%
Remove Parameter Annotation 3 0 0 100% 100%

Modify Parameter Annotation 2 0 0 100% 100%

Add Field Annotation 47 0 1 100% 97.9%

Remove Field Annotation 17 0 0 100% 100%
Modify Field Annotation 7 0 0 100% 100%

Add Class Annotation 52 0 0 100% 100%

Remove Class Annotation 20 0 0 100% 100%
Modify Class Annotation 31 0 0 100% 100%

Overall 636 2 8 99.7% 98.7%
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Table 5.3: An overview of the studied systems (from 2015 to 2020).

Systems Total Test LOC No. Test Method No. Test Class
(2015 → 2020) (2015 → 2020) (2015 → 2020)

Ambari 125K → 273.8K 2,471 → 5,753 501 → 999

Camel 562K → 787K 12,884 → 18,693 6,713 → 8,961
Cassandra 44.3K → 189K 969 → 4,515 217 → 626

Druid 45K → 307K 773 → 5,818 199 → 1,148

Flink 79K → 437K 1,416 → 9,199 412 → 2,150
Hadoop 480K → 914K 9,269 → 17,610 1,798 → 2,954

Hbase 185K → 359K 2,843 → 5,861 660 → 1,476

Hive 124K → 323K 2,572 → 7,541 473 → 1,182
Ignite 261K → 99K 4,146 → 2,286 1,285 → 529

Kafka 2.9K → 191K 77 → 6,059 24 → 688
Openfire 2.2K → 8.3K 84 → 361 25 → 51

Storm 3.7K → 47K 118 → 1,134 35 → 277

Total 1916K → 3939K 37,622 → 84,830 12,342 → 21,041

5.3 Studied Systems

We choose the studied systems by following three selection criteria. First, we selected

the top 1,000 Java projects on GitHub ordered by popularity (i.e., stargazer count). We

also made sure that the repositories are not forks. Second, we discarded projects that are

below 90 percentile in terms of size (i.e., lines of code), repository popularity (i.e., stars) and

the number of commits. Finally, we discarded inactive repositories that did not have any

commits in 2020. We ended up with 12 systems, i.e., Druid, Hadoop, Cassandra, Storm,

Flink, Hbase, Camel, Hive, Openfire, Ambari, OrientDB and Kafka. These studied systems

cover different domains, ranging from distributed databases, stream processing frameworks,

message brokers, and groupchat servers. Table 5.3 shows an overview of the studied systems.

Our study focuses on test annotation usage, but there may be some non-test-related

annotations in test classes. Hence, we set off to understand what are the common testing

frameworks or libraries from which test-related annotations are used. We mined all anno-

tation usages in the versions released in 2015 and 2020, respectively, for the 12 studied sys-

tems. In particular, we analyzed all test files that have a ”.java extension and “[Tt]est(s*)”

as prefix or suffix in their name. We manually verify the build configuration files (e.g.,

Maven or Gradle build file) of the studied systems to use the default heuristic specified

by Maven/Gradle plugin to identify test files. After collecting the annotation usages, we

manually study them and identify their corresponding framework. Table 5.4 summarizes
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Table 5.4: Use of Annotations from Different Frameworks in Test Code Released in 2015
and 2020, respectively.

Framework Type Frequency Proportion (%)

Testing Framework 32,900 → 102,395 72.6% → 65%
JUnit 31,256 → 101,047 69% → 64%
TestNG 1,644 → 1,348 3.6% → < 1%

Mocking Framework 260 → 1,640 < 1% → 1%
Mockito 236 → 935 < 1% → < 1%
PowerMock 24 → 256 < 1% → < 1%
EasyMock 0 → 449 0% → < 1%

Java lang annotations 8,579 → 16,125 19% → 10%

Custom Annotation 2,738 → 36,300 1.7% → 23%

Spring Framework 442 → 551 1% → < 1%

Other Libraries 410 → 17,369 1% → 1%
E.g., Google, JavaX

the annotation usage of different frameworks in the 12 studied systems. We find that JUnit

annotations are the most commonly used annotations in test code, accounting for 69% of

the mined annotations in 2015 and 64% in 2020. TestNG is a less commonly used testing

framework, accounting for 3.6% of the mined annotations in 2015 and 1% in 2020. Our

finding shows that developers in the studied systems are migrating away from TestNG. We

also found annotations from frameworks used for test mocking (i.e., Mockito, PowerMock

and EasyMock), the Spring framework, and other non-test-related libraries. The annotation

usage of testing frameworks, such as JUnit and mocking frameworks, increases significantly

over the years. However, their percentages decrease due to the increasing use of custom

annotations. In section VI, we discuss some of the custom annotations related to testing.

To collect annotation changes, we run our RefactoringMiner extension on every commit

that modified at least one Java test file between 2015-2020 for the 12 studied systems. We

only keep changes on test-related annotations (i.e., from JUnit, TestNG and mocking frame-

works) and discard the rest. In total, we mined 109,460 test-related annotation changes in

the commit history of the 12 studied systems from 2015 to 2020.1
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5.4 Results

In this section, we conduct a quantitative study to understand the prevalence of test

annotation usages and change patterns. In the last RQ, we conduct a manual classification

to understand the reasons that developers change annotations and how test annotation

helps improve test maintainability.

5.4.1 RQ1: How common are test annotation changes?

As a stepping stone to understanding how developers leverage annotations, we examine

how frequently test annotations are changed compared to common source code changes (i.e.,

renames and type changes) at the same program element level.

Approach. We study how frequently developers change test annotations. To provide some

comparative statistics, we show the prevalence of test annotation changes compared to

common source code transformations (i.e., renames and type changes) at the same program

element level (i.e., class, method and field declaration). In particular, we compare test

annotation changes at the method level with Rename Method and Change Return Type, at

field level with Rename Field and Change Field Type, and at the class level with Rename

Class. Such a comparison is attainable because all compared changes are performed on the

same kind of program elements. We used the tool implemented by Ketkar, Tsantalis, and

Dig (2020b) to detect renames and type changes. Ketkar et al. (2020b) report an average

precision of 99.7% and a recall of 94.8% for type change detection, and an average precision

of 99% and recall of 91% for rename detection, which is very close to the precision/recall val-

ues reported in Table 5.2, allowing for a fair comparison annotation change and refactoring

practices.

Result. Table 5.5 compares the prevalence of test annotation changes with that of the

Table 5.5: Mined Test Code Changes in 82,810 Commits.

Field Method Class Total Num.

Commit Commit Commit

Annotation Changes 396 0.075 18,472 3.52 5,068 0.97 23,936 5,249

Refactoring 7,125 0.40 9,657 0.53 2,136 0.12 18,918 17,914
∆ % Percentage -94.4% -81.3% +91.3% +564.2% +137.2% +708.3% +26.5% -70.7%
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refactoring changes in test code from the 82,810 commits. As shown in Table 5.5, the

number of test annotation changes is comparable to the number of test refactorings (i.e.,

26.5% difference). Test annotation changes are performed at a method and class level more

than renames and type changes, i.e., 91.3% and 137.2% more, respectively. However, at the

field level, test annotation changes occurred less than renames and type changes. Despite

the popularity of test annotation changes, little tool support exists for test annotations

compared to common code transformations such as renames and type changes.

We find that much fewer commits modify test annotations than those that perform

renames and type changes. Out of the 82,810 commits, 5,249 commits (6%) modify test

annotations, and 17,914 (21%) perform code transformations such as renaming and type

changes. Once normalized by the number of commits, test annotation changes at class and

method level are performed much more frequently than renames and type changes. This

shows that test annotation changes at class and method levels are more concentrated in

fewer commits, suggesting that annotations may be associated with dedicated maintenance

activities. In RQ3, we will further discuss ways annotations are utilized in the maintenance

of test code.

Test annotation changes are comparable to renames and type changes at the same pro-

gram element level and are even more frequently applied at the method and class level.

Despite the popularity, there is currently negligible tool support (i.e., antipattern de-

tection, annotation change suggestions, and annotation API usages) for test annotation

changes.

5.4.2 RQ2: How are test annotations changed in the wild?

We examine what are the common test annotation change patterns in the wild. Study-

ing predominant annotation changes reveals frequent maintainability activities developers

perform through test annotation changes as software evolves. Such insights act as stepping

stones for our subsequent manual classification on the motivations and challenges behind

test annotation changes.
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Table 5.6: Quantitative Analysis: Top three highest frequency of annotation addition,
removal and modification.

Addition Freq. Removal Freq. Modification Freq.

Field Level
@Mock 147 @Rule 57 @Mock 23

@Rule 42 @Mock 31 @Parameter 12

@Parameter 23 @ClassRule 19 @Parameterized 4

Method Level

@Ignore 1362 @Ignore 968 @Test 6874

@Before 1238 @Before 482 @Parameterized 94
@After 584 @BeforeClass 293 @Parameters 25

Class Level

@RunWith 770 @Ignore 318 @Category 1506

@Category 734 @RunWith 306 @RunWith 326
@Ignore 482 @Category 201 @PrepareForTest 91

Table 5.7: Quantitative Analysis of annotation replacements.

Granularity Annotation Changes Freq. Total

Field Level 27 (2.4%)

JUnit @Rule ↔ @ClassRule 17

JUnit4 → JUnit5 @ClassRule/@Rule → @RegisterExtension 4
@ClassRule → @Container 3
@Rule → @TempDir 3

Method Level 1,007 (91%)

JUnit @BeforeClass/@AfterClass → @Before/@After 332 500 (45%)
@Before/@After → @BeforeClass/@AfterClass 148
@Before/@After → @After/@Before 11
@Parameters ↔ @Parameterized 6
Timeout=X in @Test → @Timeout 2
@BeforeClass → @AfterClass 1

JUnit4 → JUnit5 @Before → @BeforeEach 216 313 (28%)
@After → @AfterEach 43
@BeforeClass → @BeforeAll 23
@AfterClass → @AfterAll 19
@Ignore → @Disabled 12

TestNG → JUnit @BeforeMethod/@AfterMethod → @Before/@After 108 142 (13%)
@Test(Enabled=False) → @Ignore 30
@BeforeTest → @Before 4

Custom ↔ JUnit @TestTag → @Category 25 27 (2.5%)
@Category(PerformanceTest.class) → @PerformanceTest 2

TestNG @BeforeTest → @BeforeClass/@BeforeMethod 6 21 (1.9%)
@AfterTest → @AfterClass/@AfterMethod 9
@AfterClass → @AfterMethod 3
@AfterMethod → @BeforeMethod 1
@BeforeClass → @BeforeMethod 2

JUnit4 → SpringBoot @Category → @IntegrationTest 4 4 (0.4%)

Class Level 70 (6.3%)

JUnit4 → JUnit5 @Ignore → @Disabled 46 68 (6.3%)
@RunWith → @ExtendWith 17
@Ignore → @Category 5

JUnit4 → SpringBoot @Category → @IntegrationTest 2 2 (<1%)

Total 1104
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Result. We present the quantitative analysis on test annotation change patterns from two

aspects. First, we present the raw change patterns based on three types of changes: addi-

tion, removal and modification. The three types of changes are the direct output from our

RefactoringMiner extension. Table 5.6 lists the top three annotation changes per change

type at three program levels (i.e., field, class and method). We observe that modification

has a strong prevalence at a method and class level across the three types of changes.

Developers frequently update parameters of the @Test (e.g., timeout=X) and @Category

annotations. In general, we notice that developers frequently change the test annotations

from mocking frameworks, i.e., add @Mock and @RunWith (20% of PowerMockRunner,

14% of MockitoJUnitRunner). Considering the low prevalence of mocking frameworks in

tests (around 1% as shown in Table 5.3), this suggests that the mocking frameworks are

frequently updated as code evolves. We also find that developers frequently add and modify

@Parameter, @Parameterized and @RunWith (50% of Parameterized) annotations, suggest-

ing that expanding test input and diversifying test execution settings is commonly leveraged

to facilitate code evolution.

We also observe a high prevalence of adding and removing the @Ignore annotation

at both method and class level (i.e., disabling and enabling test cases and test classes).

This suggests that technical debt may occur in test code evolution. Lastly, we observe a

large number of modifications for the @Category annotation at the class-level to organize

test classes into groups, and a diverse set of fixture additions and deletions (i.e., @Before,

@After, @BeforeClass).

Furthermore, we perform an in-depth analysis to reveal a composite change pattern,

i.e., an annotation replacement. A replacement @X→@Y occurs when annotation @X is

removed and @Y is added on the same program element and commit. Annotation replace-

ments may happen, within one testing framework, or between different testing frameworks.

Replacements show that as software evolves, the original test annotation (or framework)

does not satisfy the testing needs. Therefore developers may look for alternatives. However,

such alternatives are not directly provided or are hard-to-achieve in the current framework.

Hence, developers need to compromise with workarounds or adopt another framework.

77



Mining annotation replacements is straightforward, based on the output of our Refactor-

ingMiner extension. Specifically, for each commit, we match pairs of removed and added

annotations on the same program elements (i.e., fields, methods, and classes) and ensure

that these pairs involve different annotation types.

In total, we mined 1,104 replacements from all mined annotation changes. Table 5.7

shows the frequencies of different replacement patterns. Most (91%) of the replacements are

at the method level, and 45% of the replacements are switching between JUnit fixtures. For

example, developers replace @BeforeClass/@AfterClass with @Before/@After or vice versa

to configure the setup and tear down phases at the test class or test case level. Similarly,

developers replace @Rule with @ClassRule at field level to expand the impact of a rule to

the entire class. At all program element levels, we notice that many replacements occur

due to migrations, i.e., between different testing frameworks, or from JUnit4 to JUnit5.

Interestingly, we observe a few replacements between different frameworks, which are not

due to migrations. Developers may find a similar test annotation in SpringBoot more

suitable for a particular development need than the JUnit @Category annotation. Another

common case is to replace custom annotations with the JUnit ones. Developers may define

custom annotations for particular needs as JUnit may not yet support the desired features,

or developers may not be aware of such support by JUnit. When the developers become

aware of the unused JUnit features, or the desired features are shipped in the next JUnit

releases, they tend to replace their custom annotations.

Our study shows that developers modify test annotations more frequently compared to

additions and removals. Annotations from mocking frameworks are commonly changed

despite their low prevalence. Further analysis of annotation replacements shows that

they commonly occur for migrating to newer framework versions or other frameworks.

5.4.3 RQ3: Why do developers change test annotations?

Our goal is to provide suggestions to researchers, practitioners, and framework designers

on opportunities to improve test annotations. We derive a taxonomy of test annotation
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changes representing distinctive test maintenance efforts. We believe our taxonomy will

provide insights on the maintenance of test annotations and how to improve test quality.

Approach. We manually study and understand the reasons that developers change test an-

notations by analyzing all available software artefacts: including issue ID from the Jira bug

report, GitHub’s pull request/issue tracking, commit messages and the code changes. Some

commit messages contained sufficient information to understand the reason behind test an-

notation changes. Such commit messages may include keywords like “Increase timeout”

(e.g., Hadoop - e4c3b52 ).

In particular, our manual classification is composed of the following phases:

Phase I: We use stratified random sampling, with a 95% confidence level and 5% confidence

interval to acquire 368 annotation change samples from the test annotation changes identi-

fied by our RefactoringMiner extension. We use a 95% confidence level because it provides

a high level of certainty that the true population parameter falls within the specified range.

We adopted stratified random sampling to sample each studied system independently to

reduce sampling error when a sub-population within the overall population varies (Zhao et

al., 2019).

Phase II: To create the taxonomy for the test annotations, we first classified the changes at

a high level based on the annotation type (e.g., @Ignore). Then, the first two authors of the

paper (A1 an d A2) independently derived an initial list of the reasons behind annotation

changes by manually inspecting the relevant commit messages, test source codes, and bug

reports.

Phase III: Authors A1 and A2 unified the derived reasons and compared the assigned rea-

son for each annotation change. Any disagreements were discussed until a consensus was

reached. We used Cohen’s Kappa inter-rater agreement to measure the degree of agree-

ment between the two authors (Cohen, 1960). Cohen’s Kappa considers a scenario where

the agreement between two authors is purely by chance. The inter-rater agreement of the

coding process has a Cohen’s kappa of 0.91, indicating almost a perfect agreement level

(Viera, Garrett, et al., 2005).

Result. Table 5.8 shows the derived taxonomy of the reasons that developers changed the
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JUnit annotations (upper half of the table) and the annotations from other frameworks

(lower half of the table) that we found in the sample. To encourage the replication of our

results, we have made the dataset available1

JUnit Test Annotation Changes

@Ignore (32%). @Ignore is the most frequently changed test annotation (mostly added).

Developers often use this annotation to temporarily disable the execution of tests when

there are software bugs or flaky tests. Developers may also bypass test failures caused by

recent code changes during a feature addition that breaks a test. For example, in Hive

(7f4a3e17), the developer ignored the failing test code due to breaking changes during fea-

ture addition to pass the test temporarily. Other instances of adding @Ignore are due to

dependencies with external libraries. For example, developers disabled a test while waiting

for a new software version (e.g., JDK update). However, developers may also add @Ig-

nore to replace automated testing with manual testing when the test code requires manual

startup. Although developers frequently ignore tests to facilitate maintenance difficulties,

this practice may become ad-hoc and affect code quality. We found instances where devel-

opers use @Ignore to pass failing tests without fixing the issue in the code. For example,

in Druid (da32e1ae), the developer disabled a test due to unknown failure. Later on, the

bug persisted, but the test was enabled, and the issue was closed. Similarly, in Camel

(8ba68e34), the developer disabled a test due to external dependencies during feature ad-

dition. However, the ignored test is never enabled. We further conducted an exploratory

investigation to see whether the ignored flaky tests in Table 5.8 are fixed and later enabled.

We find that developers often do not find the root cause of test flakiness and ignore the

test in the entirety of software evolution, indicating that ignored tests persist and are often

forgotten.

As @Ignore becomes a common way to bypass challenges in test maintenance, it may

become ad-hoc and a source of technical debt.

1. https://github.com/SPEAR-SE/TestAnnotationMaintenance Data
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Table 5.8: manual classification: Taxonomy of Annotation Changes.

Annotation Type Motivation Frequency

JUnit Test Annotations Changes
Ignore 115

Bugs Adding @Ignore to bypass test failure caused by bugs in test/source code. 42
Flaky test Adding @Ignore to disable flaky tests. 33
External dependency Adding @Ignore when an external dependency needs to be manually configured (e.g., database),

or the developers wait for a new release of an external dependency to resolve an issue (e.g., JVM).
20

Feature addition/improve-
ment

Adding @Ignore to disable tests that are related to incomplete features/code changes. 19

Timeout 51
Relax timeout Increasing @Test(timeout) thresholds to accommodate slow cluster, slow machine or slow tests. 23
Deadlock detection Adding @Test(timeout) to help detect deadlocks (i.e., if tests do not finish within the specified

time, there may be a deadlock).
15

External resource retrieval Adding @Test(timeout) to complement tests that retrieve an external resource. For example,
without a timeout, the test may fail due to NullPointerException and suppress the actual fault
(e.g., resource unavailability).

6

Perf. regression detection Adding @Test(timeout) to ensure that the test finishes on time for detecting performance regres-
sion.

6

Ad-hoc timeout removal Removing @Test(timeout) completely as tests become too slow instead of relaxing the timeout. 1

Fixture 35
Reset fixtures Replacing @BeforeClass with @Before to reset fixtures for each test case (e.g., for bug fixing or

test case isolation).
14

Improve test speed Replacing @Before with @BeforeClass to improve test time by removing unnecessarily repeated
fixture initialization.

10

Inflexible configuration Removing or changing fixtures since they are not configurable per test case (e.g., @Before method
runs for every test case, while @BeforeClass runs only once before a test case).

6

Maintainability Adding fixtures to remove duplicate initialization in the test code for better maintainability. 1

Category 37
Test prioritization Adding @Category to group tests based on their speed/size to detect failures more quickly (e.g.,

run faster tests first).
33

Ignore tests Adding @Category in addition to @Ignore to organize ignored tests for future maintainability. 4

Parameterized 31
Increase test coverage Adding or changing @Parameterized to increase coverage for failing corner cases, or newly added

features.
16

Refactor test code Adding @Parameterize to refactor tests to improve maintainability (e.g., share common test inputs
or test code).

7

Parallelize tests Adding @Parameterized and use a thread pool to run tests in parallel and speed up test execution. 4
Add debugging messages Changing @Parameterized parameter to include optional messages for improved debugging. 3
Slow test Removing @Parameterized to improve test execution time. In JUnit4, @Parameterized is limited

to class level. If only subsets of tests use parameterized annotations, then it may increase test
execution time.

1

Expected Exception 18
Adjusting exception han-
dling

Changing between different exception handling mechanisms (i.e., JUnit3 Try with fail, JUnit4
@Rule, JUnit5 Assertions.assertThrows, JUnit4 @ExpectedException, or even custom expected
exception)

14

Test Driven Development Adding expected exception to complement test-driven development by making the test pass with
known exceptions until the feature implementation is done.

2

Exception too general Changing expected exception from a general exception type to a more specialized one. For example,
@ExpectedException(GenericException) can pass the expected exception test, but does not provide
details about the actual exception type.

2

Rule 14
Refactor via @Rule Adding built-in or custom (e.g., extract duplicate fixture) @Rule to improve test code maintain-

ability.
14

Fixed Test Order Adding @FixMethodOrder from JUnit4 to enforce deterministic test orders and fix flaky tests. 5

Other Types of Test Annotations Changes
Migration 21

JUnit4 to JUnit5 migra-
tion

Manual migration from JUnit4 to JUnit5 (e.g., one package at a time), resulting in sparse JUnit5
adoption. Typically migrated annotations are related to fixtures (i.e., @Before to @BeforeEach),
and sometimes from @RunWith to @ExtendWith, or from @Category to @Tags.

19

JUnit3 to JUnit4 migra-
tion

Automated migration from JUnit3 to JUnit4 using tool support. 1

TestNG to JUnit5 Remove TestNG in favour of JUnit5 due to its popularity. 1

Mocking 17
Namespace error in mock-
ing

Mocking frameworks, such as PowerMock, utilize an independent classloader, which may cause
namespace error (i.e., class not found).

11

Mock usage Adding Powermock to mock final, utility and abstract class. 5
Mock vs Injection Removing mocking and use dependency injection instead. 1

Custom 11
Retry on failure/exception Implementing custom annotations to retry test on failure (JUnit4 ). Developers should leverage

JUnit5 @RepeatedTest
8

Experimental Implement custom annotation to categorize tests during feature addition to detect untested code,
instead of using JUnit4 @Category.

3

Mixed Framework Usage 3
Using @DependsOn in
TestNG

Using TestNG in addition to JUnit, because TestNG provides the @DependsOn annotation, which
enforces test ordering. However, developers can leverage JUnit4 @FixMethodOrder to avoid using
multiple frameworks.

2

Using @Test(group=X) in
TestNG

Using testNG in addition to JUnit, because TestNG provides the group option inside @Test an-
notation, which categorizes tests. However, developers can leverage JUnit4 @Category or JUnit5
@Tag to avoid using multiple frameworks.

1

By-product Changing/adding/removing test annotation due to feature deletion or test code relocation. 10
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@Test(Timeout=X) (14%). Our analysis reveals innovative uses of timeout and mainte-

nance problems of such uses due to software’s ever-evolving nature. We find that timeout

is employed to achieve various goals, i.e., detecting deadlocks (e.g., Hbase-2428c5f) and

performance regressions (e.g., Hadoop- f131dba8), and providing meaningful debugging in-

formation when accessing external resources. While timeout is an effective tactic to serve

the aforementioned purposes, we observe that developers constantly need to increase the

timeout threshold (even by removing the use of timeout entirely) to avoid test failures and

to accommodate the evolving software development. For example, once the running envi-

ronment changes (e.g., to a slower cluster or platform), test execution may become slower

and lead to timeout errors. Developers need to increase the timeout threshold to avoid test

failures. Another example is that detecting performance regressions may become flaky as

code evolves, i.e., the execution time comes closer to the timeout threshold and leads to

unstable test results in different runs. To avoid flakiness, developers may increase the time-

out threshold. This shows that timeout may not be suitable for performance testing, and

a framework (e.g., OpenJDK JMH) that allows more sophisticated settings (e.g., repeated

runs, warm-up iterations) should be leveraged.

Developers use @Test(timeout=X) to detect concurrency issues or performance regres-

sions; however, they may also relax/remove the timeout when performance regressions

occur.

Fixtures (9.6%). Our fixture change analysis reveals the inherent difficulties and error-

proneness in maintaining the balance between a clean test environment and minimized test

execution time. To minimize test execution time, developers may continuously refactor test

initialization code, i.e., extracting duplicate initialization code in a separate method with

fixture annotations, or changing a fixture method from @Before to @BeforeClass (Druid-

da32e1ae). However, some fixture code (e.g., resetting shared variables), if incorrectly

placed in a class fixture (i.e., @BeforeClass), may violate the test independence assump-

tion (S. Zhang et al., 2014), introduce bugs in test code, and produce unstable test results

(i.e., flaky test). Therefore, developers may perform changes to execute such a fixture
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code for each test method repeatedly (e.g., Ambari-7153112e). Interestingly, we noticed

that developers expressed performance concerns on such changes and sometimes, they were

even uncertain about whether such changes would completely fix the buggy test. Hence,

developers may benefit from having a detection tool that helps them determine the trade-

off (e.g., a search-based approach). Moreover, we observe that developers need to perform

workarounds due to the limitations of expressing fixtures in JUnit. In particular, developers

may remove JUnit fixture to resort to a direct call to the parameterized helper methods,

increasing redundancies. This happens when there is a need to adopt different fixtures

for each test method. However, JUnit does not support tailoring fixture, i.e., all the test

cases in one test class share the same fixture. Another limitation is the lack of fine-tuning

JUnit fixtures based on the test cases. For example, in UpdateActiveRepoVersionOnStar-

tupTest - Ambari (2700bd125f), developers replaced JUnit @Before with a parameterized

helper method to conditionally configure the cluster in the fixture based on test cases. We

find that developers performed such workarounds due to JUnit limitations complicate test

fixture and may increase test maintenance overhead.

Developers are concerned about the tradeoff between minimizing test code duplication

and minimizing test execution time. Furthermore, the lack of configuration capabilities

in JUnit fixtures causes developers to perform workarounds, increasing technical debt

and maintenance overhead.

@Category (10%).We find that developers mostly add @Category to categorize tests for test

prioritization. In Hbase, the category groups test based on timeout thresholds. Developers

acknowledge that categorizing based on timeout can improve regression testing practice

by running faster tests first (i.e., the ones with smaller timeout threshold) to detect bugs

quickly. We also find that developers add @Category to complement ignored tests for better

maintainability. For instance, a “FailingTest” category can indicate ignored tests due to test

failure. Developers may also use @Category to specify whether certain tests are integration

tests or unit tests.
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Developers customize @Category to assist diverse maintenance needs. We find that

categorization based on test execution time can be useful for efficient regression test

analysis, and can also help detect failed or ignored tests for more reliable maintainability.

@Parameterized (8.5%). We find that most changes to @Parameterized align to its regular

use, i.e., increase the flexibility of managing test inputs. Developers may add more corner

cases to the input using @Parameterized after adding new features or fixing bugs to avoid

regression. We also find that developers may refactor the test code using @Parameterized.

We find cases where developers use @Parameterized to reuse common test input arguments

in different test cases. For example, in a test from Hadoop (ad1b988a8286), developers

use @Parameterized to remove multiple subclasses that share the same code with only

differences in test input. We also find that developers may use @Parameterized to run

tests with different inputs in parallel to speed up test execution. However, one limitation

of @Parameterized is that it can only be applied at the class level. Therefore, if only a

subset of the test methods needs the parameterized annotation, there may be additional

setup overhead that slows down the test. Finally, the JUnit4 Parameterized class contains

an optional string pattern that helps decorate test results with additional messages for

improved debugging. Including such messages is considered the best practice by some

developers, as we found in our manual classification. Nevertheless, most of our manual

classification samples do not leverage this best practice, and thus we believe users of JUnit4

can benefit from knowing about it.

@Parameterized is used to enable test code to take arguments and refactor test code

and test input duplications. Moreover, developers can improve the test execution speed

of a @Parameterized test by using parallel programming.

Expected Exception (4.9%). Developers sometimes need to test if the code would throw a

specified exception for erroneous behaviours. Over the JUnit history, encoding expected

exceptions in test cases can be achieved differently, i.e., try with fail in JUnit3, @Rule and

@ExpectedException in JUnit4, and assertThrows in JUnit5. On the one hand, we find that
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new JUnit releases gradually adapt to the increasing need for handling expected exceptions

elegantly, i.e., a specialized annotation @ExpectedException instead of the workaround try

with fail, and an improved annotation assertThrows to overcome the limitation of @Ex-

pectedException. On the other hand, we find that developers may not be fully aware of

new features in their adopted JUnit version.

For example, we find cases that developers may migrate back to JUnit3 to use the try

with fail mechanism, because @ExpectedException is limited in providing comprehensive

error messages. Such a backward migration is not needed, since developers could leverage

@Rule from JUnit4, or migrate to JUnit5 assertThrows. In other cases, we find that devel-

opers tried to customize their test code to handle expected exceptions, but later migrated to

a more framework-dependent pattern as described above. Our findings suggest a potentially

ill-defined knowledge of how to handle expected exceptions in practice. Developers could

benefit from having an expected exception recommendation tool to reduce test maintenance

overhead. We also find that developers may use expected exceptions to facilitate test-driven

development. Namely, the expected exception avoids test failures while developers actively

work on implementing the features. Finally, we find a misuse of the expected exception

associated with the Exception type. Developer discussions reveal that the use of general

excepted exception types (e.g., java.lang.Exception) could hide the actual faults because

the test will still pass if an unexpected sub-type exception is thrown. Therefore, one way

to solve this issue is to use specific exception types instead of a general exception type.

There is a diverse way to handle expected exception in test code. Developers sometimes

are unaware of which mechanism to utilize and what mechanisms may be available in

their adopted JUnit version.

@Rule (3.8%). JUnit4 introduced @Rule to provide a flexible mechanism to enhance tests

by running code around a test execution, similar to @Before and @After. In alignment

with the regular use of the @Rule, we find that developers often refactor duplicate test

code using @Rule to improve maintainability and readability. We also found three common

uses of built-in @Rules, namely the Timeout, TemporaryFolder, and TestName rules (JUnit
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team, 2018). In these cases, developers preferred using these built-in @Rules to simplify

test code. Future studies may consider using various annotations to help refactor test code.

Developers utilize @Rule to remove duplicate code in test fixtures. Moreover, we find

that developers can benefit from using built-in @Rules to simplify their test code.

@FixMethodOrder (1.4%). Prior studies (Eck et al., 2019; Lam, Godefroid, et al., 2019b;

Lam, Oei, Shi, Marinov, & Xie, 2019; Luo et al., 2014a) found that one of the root causes

of flaky tests is test order dependencies. JUnit4 provides @FixMethodOrder to allow a

deterministic test execution order. For example, we find in Camel (4e7ec8f79b6) that

since JDK7 does not preserve test execution order, developers fixed test flakiness using

@FixMethodOrder. Hence, there is a future research opportunity on automated test fixing

by applying such annotations.

Developers apply @FixMethodOrder to ensure a deterministic test execution order and

avoid dependency-related flaky tests.

Other Types of Test Annotations Changes

Migration (5.8%). In the migration from JUnit3 to JUnit4, we find that developers use an

automated tool that applies migration in the entire codebase. However, the migration from

JUnit4 to JUnit5 is applied manually and slowly (e.g., one package at a time). There are

many migrations that started over one year ago (i.e., before 2019), but the issue reports

still remain open today. We believe migrations to JUnit5 are intentionally manual, because

some annotations, such as @Rule, are removed in JUnit5. Moreover, some annotations are

renamed and may further cause confusion to developers (e.g., @Before is renamed to @Be-

foreEach). Therefore, developers could benefit from having an automatic JUnit5 migration

tool. Finally, we find some changes where developers migrate from TestNG to JUnit5 due

to the popularity of JUnit.
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We find that the migration from JUnit4 to JUnit5 is done manually and slowly. To help

developers utilize the new features in JUnit5, future studies should further investigate

migration patterns for JUnit5 in order to assist developers with automated migration.

Mocking (4.7%). A JUnit class annotated with @RunWith indicates that the JUnit frame-

work invokes a specified class using a developer-specified test runner instead of running the

default runner. An issue with using mocking runners is that these mocking frameworks

utilize an independent class loader, which sometimes causes namespace error due to con-

flicting classes. To resolve the issue, developers add @PowerMockIgnore to defer loading

the conflicting classes. Finally, for one instance, we find that developers decided to remove

mocking and use dependency injection instead.

Developers often use mocking for external dependencies. However, they may encounter

issues related to namespace conflicts.

Custom Annotation (3%) and Mixed Framework Usage (0.8%). We found cases where de-

velopers created customized annotations to repeat the test execution upon failure (e.g., for

detecting flaky test), or to indicate that a test is experimental. However, JUnit5 provides

a new annotation @RepeatedTest, and both JUnit4 and JUnit5 provide annotations (e.g.,

@Category) to categorize tests. We also find cases where developers added annotations

from TestNG, even though developers were already using JUnit, which provides similar

annotations. The findings may indicate that sometimes developers might not know the

functionality that is provided by testing frameworks, and may use customized annotations

and increase maintenance costs.

Developers resort to customized annotations due to the lack of awareness about the fea-

tures offered by testing frameworks, suggesting the need for annotation recommendation

tool support.

By-product (2.7%). We find that developers may modify test annotations due to a feature

removal or test refactoring (e.g., relocate the annotation to another test file).
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5.5 Threats to Validity

Internal Validity. Our findings depend on the accuracy of our tool to mine annotation

changes from the commit history. We mitigate this threat by validating our tool thoroughly.

The extension of RefactoringMiner 2.0 detects annotation changes with a 99.7% precision

and 98.7% recall.

External Validity. We study systems that are all open source implemented in Java, so the

result may not be generalizable to all systems. To minimize the threat, we follow a set of

criteria to select systems that are popular on GitHub, large in scale, and actively maintained.

The studied systems cover various domains and are frequently used in commercial settings.

Construct Validity. We conduct a manual classification to understand the reasons be-

hind test annotation changes. Due to the large number of changes, we take a statistically

significant sample. There may be bias or misidentification in our manual classification on

characterizing test annotation changes. Thus, two authors independently examined all avail-

able software artifacts and discussed them until the agreement is made. We do not claim

to find all usage and misusage patterns, and the limitations of test annotations. However,

we show the existence of such patterns and identify further research opportunities. Thus,

future work should survey developers based on recent annotation changes to gain additional

insights.

5.6 Implication & Contribution

Based on our empirical findings, we present actionable implications and future work

for three groups of audiences: 1) researchers, 2) application developers and testers, and 3)

framework designers.

5.6.1 Discussion and Implication for Researchers

R1: Test annotation is an integral part of test design and implementation.

Future studies on test maintenance and refactoring should consider the pecu-

liarity of test annotations. As we find in RQ1, test annotation changes are frequent in
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test maintenance, and developers often use test annotations to improve test maintenance.

As we found in RQ3, developers use various test annotations, such as fixtures or @Rule,

to remove duplication in test code. Based on our manual classification, such refactorings

are commonly performed, but there is a lack of tool support. Therefore, future refactor-

ing studies may want to design test code refactoring techniques that leverage such test

annotations.

R2: Developers may use test annotation for ad-hoc fixes, which may affect test

maintenance or even code quality. Future studies are needed to study such

impact and provide research solutions. In RQ3, we find that developers may use test

annotations for ad-hoc fixes (e.g., adding @Ignore to failing tests or increasing the timeout

threshold in @Test(timeout=X) without finding the root cause). Although the fixes make

the tests pass, the underlying issues remain unsolved, which may cause more severe issues in

the future. Moreover, as we found in RQ2, there are much more additions of @Ignore than

removals, which indicates that many tests get disabled without being re-enabled. Future

studies are needed to study the prevalence of such technical debt in ad-hoc test fixes and

their potential consequences.

R3: There are future research opportunities on detecting misuses of test anno-

tations. Recently, test smell detection starts to receive interest from both the academia

and industry due to its practicality (Junior et al., 2020a, 2020b; Peruma et al., 2019a; Qusef

et al., 2019; Spadini et al., 2018; Tufano et al., 2016). However, most prior studies only

consider test smells related to test code, yet as we found in RQ3, there exist many test

annotation misuses. For example, we found that developers use suboptimal ways to handle

expected exceptions or @Parameterized in tests (e.g., tests expecting generic exceptions or

not recording error messages when using @Parameterized). Furthermore, there are also

possible test annotation misuses related to fixtures (e.g., using @Before without considering

its performance impact). Our study highlights and opens an avenue for future research to

better detect test smells and improve test quality.

R4: Future research is needed to provide automated test grouping and better

utilization of test annotations to reduce test execution overhead. To reduce test
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execution overhead, prior studies have proposed various test selection (Gligoric, Eloussi, &

Marinov, 2015a; Rothermel & Harrold, 1997; Shi, Yung, Gyori, & Marinov, 2015; L. Zhang,

Marinov, Zhang, & Khurshid, 2011) and prioritization techniques (J. Chen et al., 2017; Li,

Harman, & Hierons, 2007; Mei et al., 2012; Rothermel, Untch, Chu, & Harrold, 2001; Saha,

Zhang, Khurshid, & Perry, 2015; Thomas, Hemmati, Hassan, & Blostein, 2014; Yoo, Har-

man, & Clark, 2013; L. Zhang, Hao, Zhang, Rothermel, & Mei, 2013). In RQ3, we find that

developers use @Category to group and execute small tests first (e.g., run faster tests first

to detect failures early). Future studies may consider integrating their techniques with test

annotations for better research adoption. Developers may also use parallelization to speed

up test execution (e.g., using @Parameterized with thread pools). However, we find that

JUnit5 provides a new annotation, @Execution(ExecutionMode.CONCURRENT), which

allows parallel test execution. Future study is needed to assist developers to automatically

adopt such annotations and improve test execution time without causing concurrency issues

or flaky tests.

5.6.2 Discussion and Implication for Application Developers and Testers

A1: Developers need better education about the capabilities of testing frame-

works. As found in a prior study (Chen, Shang, Hassan, Nasser, & Flora, 2016), due to

differences in background, some developers may not be familiar with specific frameworks.

In RQ3, we also have similar observations with testing frameworks. Even though JUnit is

the most commonly used framework in Java (Zerouali & Mens, 2017), we find that some

developers do not fully utilize test annotations. For example, some developers were unsure

which way they should use to handle expected exceptions, and some developers created cus-

tom test annotations, even though JUnit already provides the same functionality. A prior

study found that there is often a champion who first adopts new features in a framework

and helps the team with adoption (Parnin, Bird, & Murphy-Hill, 2013). We recommend

that developers follow similar procedures and dedicate at least one team member to gain

expertise in testing frameworks and help the development team utilize testing frameworks.
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5.6.3 Discussion and Implication for Framework Designers

F1: Framework designers need to provide better flexibility in their APIs. In

RQ3, we find some cases where developers need to find workarounds or adopt other testing

frameworks to bypass some inflexibility in JUnit. For example, @Before is executed for every

test case in the class, but developers may only want @Before to be executed for a subset of

the test cases. In this case, developers removed JUnit fixture annotations and replaced them

with a direct call to the helper method, increasing redundancies. In other cases, fine-tuning

fixtures based on test cases also enforced developers to use a Parameterized helper method

over JUnit @Before. Finally, we also uncovered some limitations with @Parameterized

in JUnit4, although it can remove test code and test input duplication and improve test

coverage. Firstly, the JUnit4 parameterized class only works at class level, and cannot be

configured at method level. Thus, for the specified test inputs, the test runner will execute

every single test case even if not all test cases utilize the input. Hence, we believe that

software engineering researchers may work with framework developers and identify possible

issues that framework users encounter and improve the framework accordingly.

F2: Better annotation support targeting specific testing issues (e.g., flaky tests).

We find that JUnit provides annotations, such as @FixMethodOrder, to resolve issues re-

lated to order dependent flaky tests. Similarly, one of the customizations we find is retrying

on test failure. However, JUnit5 now provides a new annotation @RepeatedTest to help de-

velopers detect test flakiness more easily. To this end, with the recent research advances in

the detection of flaky tests, we believe that incorporating more support in a practical frame-

work, such as JUnit, will help developers quickly address test flakiness without resorting to

other specialized tools that are difficult to adopt in practice.

5.7 Chapter Summary

This paper presents the very first empirical study on annotation changes in Java tests to

fill the knowledge gap regarding the evolution and maintenance of tests, since prior studies

focused mainly on the test code and ignored the test annotations. Our study reveals many
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interesting findings with actionable implications:

(1) Test annotation changes are more common than test refactorings. Despite that, there

is very limited tool support for migrating test annotations to newer framework versions

or different frameworks, and automating common annotation change patterns within

the same framework version.

(2) Test developers are sometimes unaware of the features provided by testing frameworks,

and thus apply alternative suboptimal solutions. There is great need for tool support

to detect the misuse (or lack of use) of annotations and recommend appropriate test

annotations.

(3) Test developers are forced to apply workarounds to overcome the current limitations

of testing frameworks. Framework designers need to be aware of these workarounds

to improve the design and flexibility of test annotations.
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Chapter 6

Demystifying test disabling

practices to improve test

maintainability

Software testing is an essential software quality assurance practice. Testing helps expose

faults earlier, allowing developers to repair the code and reduce future maintenance costs.

However, repairing (i.e., making failing tests pass) may not always be done immediately.

Bugs may require multiple rounds of repairs and even remain unfixed due to the difficulty

of bug-fixing tasks. To help test maintenance, along with code comments, the majority

of testing frameworks (e.g., JUnit and TestNG) have also introduced annotations such as

@Ignore to disable failing tests temporarily. Although disabling tests may help alleviate

maintenance difficulties, they may also introduce technical debt. With the faster release of

applications in modern software development, disabling tests may become the salvation for

many developers to meet project deliverables. In the end, disabled tests may become out-

dated and a source of technical debt, harming long-term maintenance. Despite its harmful

implications, there is little empirical research evidence on the prevalence, evolution, and

maintenance of disabling tests in practice. To fill this gap, we perform the first empirical

study on test disabling practice. We develop a tool to mine 122K commits and detect
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3,111 changes that disable tests from 15 open-source Java systems. Our main findings are:

(1) Test disabling changes are 19% more common than regular test refactorings, such as

renames and type changes. (2) Our life-cycle analysis shows that 41% of disabled tests are

never brought back to evaluate software quality, and most disabled tests stay disabled for

several years. (3) We unveil the motivations behind test disabling practice and the associ-

ated technical debt by manually studying evolutions of 349 unique disabled tests, achieving

a 95% confidence level and a 5% confidence interval. Finally, we present some actionable

implications for researchers and developers.

Earlier version of this chapter was published in the 29th ACM Joint Euro-

pean Software Engineering Conference and Symposium on the Foundations

of Software Engineering (ESEC/FSE 2021). 12 pages. (D. J. Kim, Yang,

Yang, & Chen, 2021)

6.1 Introduction

Modern software development handles an increasing complexity of feature enhance-

ments. To ensure that the software quality remains on par with consumer expectations,

software testing has been playing a pivotal role in software development. With the avail-

ability of JUnit and other testing frameworks, writing test code is becoming widely popu-

lar (D. J. Kim, Tsantalis, et al., 2021; Zerouali & Mens, 2017). Most large-scale systems

utilize testing practices routinely and expose faults early.

However, test code can be subject to age and quality issues like the production code

under test. For example, a test can also contain test-specific design issues that may hinder

its ability to guard against regressions. Prior studies (Lam, Muslu, Sajnani, & Thum-

malapenta, 2020; Luo, Hariri, Eloussi, & Marinov, 2014c) have found that flaky tests may

hinder the reliability of testing results that may fail for reasons other than recent changes.

Similarly, researchers introduced the concept of test smells, which are design issues spe-

cific to the test code that may negatively impact test code comprehension and mainte-

nance (Bavota, Qusef, Oliveto, Lucia, & Binkley, 2012b; Van Deursen et al., 2001).
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To mitigate the efforts to fix broken tests, developers need to maintain and improve test

code continuously. Challenges in maintaining and improving test code are more than fixing

flaky tests and refactoring test smells. A prior study by Pinto, Sinha, and Orso (2012b)

highlights both the importance and potential of studying the evolution of how tests are

modified, added, or deleted. Understanding such evolution is essential to understand how

the test becomes obsolete, why it is difficult to fix, and how it should be repaired. The

findings can inspire future research and provide better testing support and tools.

In the context of software testing, developers can disable tests by commenting out the

test method or class. In addition, with the introduction of annotations in Java 5, frameworks

such as JUnit and TestNG introduce the annotations @Ignore and @Test(enabled= false),

allowing developers to disable failing tests temporarily. Although disabling tests can be seen

as an added flexibility for developers to alleviate maintenance difficulties, one can suspect

that it may introduce technical debt.

With such flexibility, developers may disable hard-to-fix tests as a compromising so-

lution to meet project deliverables. Despite the potential challenges that arise later from

disabling tests, there exist limited studies on disabled tests as a source of technical debt. We

believe that studying why developers disable test code is of paramount importance for both

practitioners and researchers: (1) it indicates a source of potential technical debt that can

direct future research efforts, (2) it may provide additional evidence on how bugs are fixed

to improve automatic tool support, and (3) can help prevent future encounters of bugs.

To the best of our knowledge, there are no studies in the literature investigating disabled

tests as a source of technical debt and providing tools for tracking all types of disabling

changes in the test code. To address this issue, we develop an automated tool to identify

all kinds of disabling and re-enabling practice at commit level: (1) a commented-out test

code instance, (2) commenting out or deleting @Test, (3) using @Ignore from JUnit, and (4)

setting @Test(enable=false) in TestNG. Our approach could detect the disabling/re-enabling

practices with an overall precision of 96%.

In total, we study test disabling practices in 15 open-source systems of different sizes

and from diverse domains. Our study focuses on understanding the disabled tests from the
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following aspects: how often do developers disable a test (i.e., the prevalence and evolution)

and why developers disable a test (i.e., motivations behind disabling and re-enabling a test).

In particular, we answer the following three research questions (RQs):

RQ1: How common are test disabling changes? Test disabling practices are 19%

more common than regular test refactorings, such as renames and type changes. Even

though we find that disabling tests are prevalent, there is no prior study on how they may

affect test maintenance.

RQ2: What is the change pattern of disabled tests? Through analyzing the change

pattern and final destination of the disabled tests, we find that most disabled tests stay

disabled. Many of the disabled tests have been disabled for several years. We also find that

for the disabled tests that are resolved, many are deleted directly.

RQ3: Why do developers utilize test disabling practice? We conduct a manual

classification to uncover test disabling practices and how they are used to bypass maintain-

ability challenges. We find that most tests were disabled in the first place due to issues such

as test failures, but many tests remain disabled even when the bugs are fixed. Some bugs

may be marked as “Won’t Fix” with the tests being disabled. We also find that developers

often use disabling changes to handle other maintenance challenges in testing, such as test

dependency and refactoring. Our findings highlight potential future directions on helping

developers improve test maintenance and detect potential issues in test code.

In summary, our findings provide actionable implications for two groups of audiences:

(1) Researchers: We open an avenue for further research directions on detecting disabled

tests and their relation with other aspects of software development (i.e., quality, maintain-

ability, and performance improvements). We also highlight potential directions on assisting

developers in tracking disabled tests and their co-evolution with production code.

(2) Developers: Our findings reveal the usage of disabled tests in many different aspects

of test maintenance. Disabled tests may be used in ad-hoc ways to hide real faults or bypass

test failures. Most tests are temporarily disabled until a fix is found; however, the disabled

tests are not re-enabled after the fix (i.e., a bug report is closed). These findings indicate the

need to assist developers with the best testing practice to trace disabled tests in practice.
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6.2 Method for Detecting Test Disabling Practice

In this section, we discuss our methodology for tracking test code evolution to identify

test disabling-related changes. Tracking the evolution of program elements in commit his-

tory is an ongoing research direction, and most existing tools are not designed specifically

to work on annotations and commented-out code (Grund, Chowdhury, Bradley, Hall, &

Holmes, 2021; Pham & Yang, 2020b; Tsantalis et al., 2020b; Tsantalis, Mansouri, Eshke-

vari, Mazinanian, & Dig, 2018b). Therefore, we propose an approach that detects disabled

tests through analyzing annotations and comments and tracks the evolution of the detected

disabled tests. Our approach first detects all tests, including both disabled and active

(i.e., enabled) tests in each studied version (Section 6.2.2), and second performs version-by-

version comparison to track the evolution of the tests (Section 6.2.3).

6.2.1 Definition of Test Disabling Practice

When using testing frameworks such as JUnit or TestNG, developers can use the @Test

annotation to specify a method or methods in a class as test cases. As systems evolve,

some tests may become obsolete or require some changes, and developers may want to

temporarily disable a test. Developers can use framework-supported annotations (i.e., @Ig-

nore), removing the @Test annotation, or commenting out the test method/class to disable

a certain test. Our goal is to study such test disabling practices in the codebase and their

potential impact on test maintenance. In particular, we consider the following code changes

as test disabling changes (in contrast, we consider the reverse operations as test re-enabling

changes):

(1) Adding @Ignore at both the class and method level.

(2) Setting @Test(enable=false).

(3) Deleting @Test annotation.

(4) Commenting out the entire test method or class.

97



6.2.2 Detecting Disabled and Active Tests

Given one version, our approach first detects all the disabled and active (i.e., enabled)

tests. Detecting active tests is straightforward: We leverages JavaParser to find all the tests

with an @Test annotation as the testing frameworks (JUnit 4 and 5, and TestNG) of the

studied systems require to have such an annotation for tests.

Detecting disabled tests requires one to design techniques per each type of test disabling

practice. Each type of disabling-related change (as defined in Section 6.2.1) corresponds

to one unique type of disabled test. The first two types, i.e., adding @Ignore and setting

parameters in @Test, will result in adding explicit annotations to the disabled test methods.

The third type will produce methods in test classes without an @Test(...) annotation.

The fourth type will result in complete test methods embedded in comments. Similar to

detecting active tests based on @Test annotation, for the first three types, we also utilize

JavaParser for analyzing method annotations. For the last type, we propose an algorithm

to identify commented-out test methods.

Analyzing Annotations for Detecting Disabled and Active Tests

For detecting active tests and some types of disabled tests, we use the off-the-shelf

JavaParser (Tomassetti, Smith, Maximilien, & Kirsch, 2021) to extract annotations per

method in test classes. The following rules are applied to decide the status of a method in

test classes.

• If the annotations contain @Test (without enable=false parameter), the associated

method represents an active test.

• If the annotations contain either @Test(enable=false) or @Ignore, the associated method

represents a disabled test.

• If the annotations do not contain @Test, the associated method represents a candidate

disabled test.

Note that the lack of @Test annotation is indefinite to decide a disabled test since it

98



is common for developers to write non-test methods (e.g., helper methods) in test classes.

Such candidate disabled tests will be further confirmed through analyzing the evolution

(i.e., tracking). If a previous/later version of a candidate disabled test is an active test, this

test method is confirmed disabled for the current version.

Detecting Disabled Tests in Comments

In addition to the disabled tests expressed by annotations, we also identify the tests that

are disabled through commenting out. Algorithm 1 describes how we extract disabled tests

in comments. The input commentTarget is either a block comment or a list of comments in

consecutive lines. A commentTarget may contain zero or more commented-out tests. For

one commentTarget, our tool first detects an @Test annotation (line 8) and then continues

to detect a ‘{’ in the following comment lines. The text in between could be an annotation

and a method signature. Then we use a JavaParser API parseMethodDeclaration to confirm

whether the text is indeed a method signature. In addition, we use the existence of a paired

right bracket to filter out incomplete test methods that only contain method signatures.

Algorithm 1 Commented out test method detection

1: Input: commentTarget
2: Output: coTests, i.e., is a list of commented-out tests
3: function detectCOTests(commentTarget)
4: lines ← commentTarget.split( “\n” )
5: coTests ← []
6: for i←0; i¡lines.length; i++ do
7: line←lines[i]
8: if line contains @Test then
9: location ← location of the first occurence of ‘{′

10: in this or the following lines
11: break if location is null

▷ notMethodSignature is based on a JavaParser API
12: continue if notMethodSignature(

strInBetween( i, location ) + “{}”)
13: end← findEndOfMethodBody( lines, location)
14: cotests.add( ¡the detected commented-out test¿ );
15: i←end
16: end if
17: end for
18: end function
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6.2.3 Tracking the Evolution of Disabled Tests

Upon detecting (candidate) disabled and re-enabled tests in one version, we continue to

track the evolution in the commit history, and pinpoint the related changes of such tests,

e.g., one disabled test is later re-enabled. Tracking the evolution requires our approach to

match program elements in every two consecutive versions.

We adapt RefactoringMiner to perform the matching because 1) RefactoringMiner is

shown to have the highest precision (96.6%) and recall (94%) compared to other refactor-

ing tools and AST diff tools (Tsantalis et al., 2018b); and 2) RefactoringMiner can detect

various types of refactoring operations, such as method/class renaming, moving and ex-

tracting methods, and modifying method signatures. Furthermore, we incorporate tracking

commented-out tests in our approach. As commented-out code may be incompatible with

the live code and may result in compilation errors (not supported by RefactoringMiner), we

use a lightweight approach to handle the commented-out test code. In particular, a TEST

ID (<fully qualified class name>::<method name>(<method parameter types list>)) is con-

structed based on the extracted information of commented-out tests (Section 6.2.2). For

each commented-out test method, its TEST ID is compared with the ones in the parent

and child commits for finding the paired test methods. The abovementioned points allow

our approach to collect an accurate and comprehensive dataset for our study.

For each pair of matched tests in two consecutive versions, if the status of the test is

modified from active (i.e., enabled) to disabled, we decide the commit is disabling-related

changes. The reverse status change is determined as a test re-enabling change. If there is

no matching test in the latter commit, the unmatched test is deemed deleted. If there is

no matching test in the prior commit, the unmatched test is deemed newly added by the

current analyzed commit, e.g., one commit may introduce commented-out tests.

Approach Evaluation. We performed an evaluation of our approach with regards to 1)

detecting disabled tests in comments (Section 6.2.2) and 2) detecting disabled tests in

commit history as these two steps may produce incorrect results.

For 1) detecting disabled tests in comments, we took all the 168 detected commented-out
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Table 6.1: Precision of test tracking, i.e., detecting the three types of commit changes,
including disabling a test, re-enabling a test, and deleting a disabled test.

Disabling Re-enabling Deleting an Total
a test a test disabled test

Sample 364 122 98 584
Precision 98% 96% 92% 97%

tests, examined them manually to decide the correctness. Our approach yields a precision

of 100%. However, we cannot evaluate the recall due to the lack of oracles. For 2), as

tracking is performed at commit level (e.g., whether one commit is disabling-related), we

used stratified sampling to take a statistically significant (95%±5%) sample of 584 cases

on three types of changes, namely disabling a test (364), re-enabling a test (122), and

deleting a disabled test (98). Then we manually examined the correctness of each sampled

commit. Table 6.1 shows the precision of the three types of changes. Our approach achieves

a precision of 97% for all the sampled cases and a precision of 98%, 96%, and 92% for the

three change types, respectively.

Upon manual examination, we identify the following sources of false positives. First,

due to framework migrations, developers may need to add or delete annotations. For ex-

ample, migrating from TestNG to JUnit4 will remove the @Test on the class, which will

be detected as ignoring a test class, and adding @Test on each method will be detected as

unignoring test methods. Second, due to the limitations of RefactoringMiner, duplicating

one file to two similar files and merging two files into a single file cannot be detected. For

example, in Apache Camel (9da3f5af), the Web3jConsumerIntegrationTest is duplicated

to Web3jConsumerTransactionsTest and Web3jConsum-erLogTest. However, Refactoring-

Miner only reportsWeb3jConsumer-IntegrationTest is renamed toWeb3jConsumerTransactionsTest.

Thus, we detectWeb3jConsumerLogTest as a newly added class. In Apache Flink (8d3a74f9),

StatefulJobSavepointFrom12MigrationITCase and StatefulJobSavepointFrom13MigrationITCase

are merged to StatefulJobSavepointMigrationITCase, but RefactoringMiner only reports

StatefulJobSavepointFrom12MigrationITCase is renamed to StatefulJobSavepointMigrationIT-

Case. Thus, we detect StatefulJobSave-pointFrom13MigrationITCase as a deleted class.
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Table 6.2: An overview of the studied systems (from 2015 to 2020).

Test LOC Source LOC
Systems 2015 2020 2015 2020 Total # Commits

Camel 355K 533K 289K 607M 22,584
Cassandra 28K 78K 177K 216K 4,336
Cloudstack 51K 80K 1M 519K 4,698
Druid 22K 147K 64K 242K 4,181
Flink 82K 371K 105K 407K 13,997
Hadoop 349K 660K 463K 810K 13,668
Hbase 168K 287K 433K 409K 7,271
Hive 104K 269K 524K 1M 8,221
Ignite 162K 500K 253K 577K 15,397
Incubator-pinot 1.6K 75K 11K 196K 6,179
Kafka 2K 133K 11K 132K 5,845
Maven 14K 17K 44K 48K 660
Openfire 1.2K 5.2K 179K 94K 2,097
Orientdb 74K 188K 140K 360K 8,452
Storm 2.7K 35K 61K 240K 4,554

Total 1.4M 3.3M 3.8M 5.9M 122K

Lastly, RefactoringMiner does not work for commented-out tests, so renaming a commented-

out test will be detected as deleting a commented-out test and adding a new commented-out

test.

6.2.4 Studied Systems

Table 6.2 shows an overview of the studied systems. To obtain high-quality repositories

to make our results more reliable, we select the studied systems by following three selection

criteria. First, we selected the top 1,000 Java systems on GitHub ordered by popularity

(i.e., stargazer count). We also ensured that the repositories are not forks as they may not

be part of the main branch and not actively maintained. Although it would be interesting

to study disabled tests from other branches that consist of feature additions or bug fixing

activities, as they may involve more frequent usages of test disabling, our research only

considers disabled tests that are merged into the main branch, as they may indicate more

challenging maintainability tasks that could not be resolved at the time. Second, we dis-

carded the systems that are below the 90th percent quantile in terms of size (i.e., lines of
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code), repository popularity (i.e., stars), and the number of commits collectively. Namely,

we only study repositories that fall inside the top 10% in all of the mentioned criteria. Fi-

nally, we discarded inactive repositories that did not have any commits in 2020. We ended

up with 15 systems, i.e., Camel, Cassandra, Cloudstack, Druid, Flink, Hadoop, Hbase,

Hive, Ignite, Incubator-Pinot, Kafka, Maven, Openfire, Orientdb, Storm. We analyze the

code changes in these systems from January 2015 to January 2020. These studied systems

cover different domains, ranging from distributed databases, stream processing frameworks,

message brokers, and group chat servers.

6.3 Results

6.3.1 RQ1: How Common are Test Disabling Changes?

Many prior studies focus on studying maintenance challenges caused by technical debt (Cun-

ningham, 1993; Liu et al., 2018; Pham & Yang, 2020b; Tan, Yuan, Krishna, & Zhou, 2007).

However, there is less empirical evidence on the technical debt in the test code thus far,

especially on technical debt related to disabling practices. Developers may disable tests

as code evolves, which may cause future maintenance challenges. As a stepping stone to

understanding test maintenance challenges, in this RQ, we study the frequency of test dis-

abling practices.

Approach. We study how frequently developers disable a test at both class and method

levels. Disabling tests at the class level would prevent executing all test cases within the

class, whereas disabling at the method level would stop executing a single test case (e.g.,

a method with an @Test annotation). To provide a comparative statistic, we show the

prevalence of test disabling changes (i.e., disable/re-enable/delete) along with common test

code transformations at the same program element level by following prior studies (Ketkar,

Tsantalis, & Dig, 2020a; D. J. Kim, Tsantalis, et al., 2021). Specifically, we compare test

disabling changes at method level with Rename Method, Rename Parameter, and Change

Parameter Type, and at class level with Rename Class. We use a tool, called Refactor-

ingMiner, implemented by Tsantalis et al. (2020b) to detect rename and type changes.
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Table 6.3: Frequency comparison between test disabling changes and the common test code
refactorings at the same program element level.

Method Level Class Level Total Total
Total Per Commit Total Per Commit Changes Commits

Test Disabling Changes 2,581 2.7 530 0.6 3,111 949
Refactoring 2,495 1.9 120 0.1 2,615 1,334
∆ % Percentage +3.4% +42% +341% +500% +19% -29%

Table 6.4: The frequency of various types of test disabling-related changes. Disabling Tests
shows the total number of changes that disable tests. Re-enabled Tests shows the total
number of changes that re-enable tests and whether developers simultaneously modified the
tests (i.e., modified vs. unmodified). Deleting Disabled Tests shows the number of changes
that delete disabled tests.

Disabling Re-enabling Tests Deleting
Tests Modified Unmodified Disabled Tests

Method 2,581 314 486 762
Class 530 115 96 87

Total 3,111 (62.5%) 429 (8.6%) 582 (11.7%) 849 (17.1%)

Tsantalis et al. (2020b) reported that RefactoringMiner could detect refactoring activities

with an average precision of over 99% and recall of over 93%. Despite differences in the two

practices, such comparison is reasonable because these common code refactorings occur at

the same program level.

Result. Test disabling changes is prevalent during test maintenance and has a

similar change frequency compared to test refactorings. Table 6.3 compares the

prevalence of the disabling changes with that of the refactoring changes in test code. As

shown in Table 6.3, at the method level, the number of test-disabling changes is comparable

to the number of test refactorings (i.e., +3.4% difference), and at the class level, the test-

disabling changes are performed more frequently than the rename class refactorings (i.e.,

+341% differences). We also observe that the total test-disabling changing commits are

less than the total test refactoring commits. Despite this, at both method and class level,

the average test-disabling changes per commit are higher than that of test refactorings (i.e.,

+19% difference). Based on these results, we find that test disabling changes are prevalent

in practice and are comparable to traditional refactorings.
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Table 6.4 presents the frequency of three types of test disabling-related changes: dis-

abling a test, re-enabling a test, or deleting a disabled test. We find that 62.5% (i.e.,

3,111/4,971) of the disabling-related changes disable the test, which is the most frequent

change among all the change types. 20.3% (i.e., 1,011/4,971) of the disabling-related changes

re-enable the test. Moreover, a non-trivial percentage (i.e., 42%) of the re-enabling changes

modify the test. In other words, many of the disabled tests remain the same when they are

re-enabled. We also find that a significant number (17.1%) of the test disabling changes

delete disabled tests. In the next RQ, we further study the destination of each disabled test

and its change pattern.

Developers frequently disable tests in software development, and the frequency of such

practice is comparable to common refactorings at the same program element level. We

also find that many disabled tests may be re-enabled without any changes or may be

deleted directly.

6.3.2 RQ2: What is the Change Pattern of Disabled Tests?

As shown in RQ1, test disabling practice has a non-negligible presence during test main-

tenance and evolution. In this RQ, we further study the evolution patterns of disabled tests,

their destination (e.g., finally re-enabled or stay disabled), and how long a test remains dis-

abled. Studying the evolution of disabled tests may quantitatively show the process of how

developers maintain disabled tests, whether the corresponding issues are fixed immediately

or persist for a long time, and whether the corresponding issues are improperly fixed and

cause the tests to become disabled again in the future.

Approach. Our goal is to study the life-cycle of every disabled test. In RQ1, we analyze

the test disabling changes by studying their frequency. However, bugs that are hard to

fix may cause multiple rounds of changes to the test code. Hence, we carefully track the

evolution history by utilizing the full commit-level history of the disabled test to report

their evolution pattern and final destination. To study the change pattern more accurately,
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Table 6.5: Change patterns of disabled tests. Unresolved tests represent the tests that
remain disabled at the end of the studied period. Resolved tests represent the tests the are
either re-enabled or deleted completely at the end of the studied period.

Change Pattern Frequency

Change patterns for unresolved tests

DISABLED 1,229
DISABLED → RE-ENABLED → DISABLED 21
DISABLED → DELETED → DISABLED 1
Total 1,251

Change patterns for resolved tests

DISABLED → RE-ENABLED 871
DISABLED → DELETED 824
DISABLED → RE-ENABLED → DISABLED → RE-ENABLED 46
DISABLED → RE-ENABLED → DISABLED → DELETED 24
DISABLED → RE-ENABLED → DISABLED → RE-ENABLED →

1
DISABLED → RE-ENABLED
Total 1,766

we trace refactoring activities (e.g., rename) performed on disabled tests, using Refactor-

ingMiner (Tsantalis et al., 2020b). Additionally, we study the longevity of disabled tests

by mining the number of days between the changes that disable the tests and the changes

that either re-enable or delete the disabled tests.

Result. Many disabled tests (41%) remain disabled in the studied period. For

the resolved disabled tests, 47% were deleted in the codebase. Table 6.5 shows the

evolution patterns of disabled tests, which highlights how disabled tests evolve ever since

they were born. Note that since a test may undergo multiple rounds of changes in the

studied period, the total frequency of evolution patterns should be lower than RQ1 where

we report the total raw frequency. We also categorize the statistics into unresolved and

resolved cases to indicate the final destination of disabled tests. Unresolved tests refer to

the tests that stay disabled, and resolved tests refer to the ones either being re-enabled

or deleted. We find that most disabled tests (41%, 1,251/3,017) stay unresolved as the

destination. For the resolved cases, 28% (848/3,017) become deleted, and 30% (918/3,017)

become re-enabled. There are 21 cases where developers tried to resolve a disabled test

but eventually changed them back to being disabled. After some investigation, we find

that these tests are disabled again due to three main reasons. First, developers revert the

commit due to a mistake. Second, developers re-disable the test code later when the test
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Table 6.6: The distributions of the average time (in days) for a disabled test to become re-
enabled, deleted, or remain disabled (i.e., developers did not modify the test in the studied
period after it was re-enabled).

Time (in days)
Min. 25% 50% 75% Max. Mean

Re-enabled 8.4 17.1 39.4 65.9 431.2 61.8
Deleted 4.8 19.9 92.3 222.1 696.6 158.7
Remain Disabled 142.0 508.0 793.2 1096.4 1475.7 797.4

fails again. Third, developers re-disable the test code whenever there is a version update

of one external dependency. There are also 24 cases where developers tried to resolve the

ignored test but eventually deleted them. We observe that these tests were disabled for a

long time and may have become obsolete as developers suggest deleting the tests instead of

updating them.

Table 6.6 shows the distributions of the average time (in days) it takes for a disabled

test to become re-enabled or deleted (i.e., resolved). We also show similar statistics for the

tests that stay disabled (i.e., unresolved). We observe that the median time for developers

to re-enable a test is 39 days. However, it often takes over three months (median is 92

days) for developers to delete a disabled test. In general, there is a higher possibility that a

disabled test may become deleted if it has been disabled for a more extended period. One

likely explanation is that many of the disabled tests may have become obsolete. We notice

similar patterns of obsoleteness across all types of disabled tests.

Finally, for the tests that remain disabled, most of them have been disabled for several

years. It is likely that these disabled tests are “forgotten” by developers and remain in the

codebase.

In RQ3, we manually study the reasons for the tests to be disabled and re-enabled.

Overall, it takes a longer time for the disabled tests to be deleted (median time is

three months) than to be re-enabled (median time is 39 days). Many tests that remain

disabled have been disabled for years.
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6.3.3 RQ3: Why do developers utilize test disabling practice?

As previous RQs reveal, disabling tests is a ubiquitous practice during software evolution.

The test disabling practice is a double-edged sword. On the one hand, it provides developers

with convenience in bypassing test-related issues. On the other hand, it may be used to

bypass some maintenance difficulties, which can result in a silent and long waiting period

for the tests to be re-enabled, if ever. Test disabling mechanism may hinder software

reliability as the disabled tests may remain disabled indefinitely in codebases. In particular,

there is a lack of tools to manage the life cycle of disabled tests and assist developers in

proactively re-enabling the temporarily disabled tests. In this RQ, we perform a manual

classification to understand why developers utilize test disabling practice, i.e., the scenarios

that developers utilize such convenience of disabled tests. Categorizing the scenarios will

reveal the common challenges developers may face in maintaining disabled tests and test

maintenance in general. Obtaining such understanding on disabling tests will inspire future

tools that can better manage disabled tests for improving quality assurance activities.

Approach. To understand the motivations of utilizing test disabling practice, we analyzed

and categorized a statistically significant sample of disabled test instances. We combined

the disabled tests from all the studied systems and adopted the stratified sampling technique

to sample each studied system independently for producing a statistically significant sample

using 95% confidence level and a 5% confidence interval. We use a 95% confidence level

because it provides a high level of certainty that the true population parameter falls within

the specified range. We also found 9 incorrectly detected instances by our tool, i.e., a 2.6%

false positive rate, and excluded them in Table 6.7.

We manually study and understand the reasons that developers disable tests by analyz-

ing all available software artefacts: including issue ID from the Jira bug report, GitHub’s

pull request/issue tracking, commit messages and the code changes. Some commit messages

contained sufficient information to understand the reason behind test disabling practices.

Our manual classification involves two phases:
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Phase I. The first two authors of the paper (A1 and A2) independently derived an ini-

tial classification by manually inspecting the relevant software artifacts such as commit

messages, test code, comments surrounding the test code, and bug reports if available.

Additionally, we use git log to check out other relevant commits on the same set of modi-

fied source code files to gain supplementary insights if the current commit lacks sufficient

information.

Phase II. A1 and A2 unified the derived reasons and compared the assigned reason for each

evolution pattern. Any disagreements were discussed until a consensus was reached. We

used Cohen’s Kappa inter-rater agreement to measure the degree of agreement between

the two authors (Cohen, 1960). Cohen’s Kappa considers a scenario where the agreement

between two authors is purely by chance. In our manual classification, the inter-rater

agreement of the coding process had a Cohen’s kappa of 0.7, indicating a substantial level

of agreement (Cohen, 1960). To encourage the replication of our results, we have made the

dataset available1.

Result. Table 6.7 shows our manually derived taxonomy of the reasons developers disable

the tests. Below, we discuss each category in detail.

Hiding Test Failure (40%). Developers frequently disable some tests when test failures oc-

cur. The most common cause (81/131) is that bugs are introduced during software main-

tenance. While working on fixing the bugs, developers may temporarily disable the failing

test cases, especially when the bugs require non-trivial effort and time to fix. However, only

32/131 of the disabled tests are re-enabled after the relevant bugs are fixed. In this case,

we also notice that developers do pay a certain effort to provide some traceability of the

disabled tests, such as creating bug reports on disabled test cases as a reminder to re-enable

such tests. In contrast, some issues are difficult to fix, and test failures may have persisted

for a non-trivial time. Developers adopt test disable to remove test failures explicitly with-

out working on fixing the bugs. 7/131 of the tests were disabled due to failure and were

never re-enabled in our studied period. For such cases, test disabling practice is used by

developers as a convenient way of bypassing test failures while keeping the test code in the
1https://github.com/boyang9602/FSE Ignore Test
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Table 6.7: manual classification result: a taxonomy of why developers disable tests.

Categories Motivation #Frequency

- Hiding Test Failures 133 (40.6%)
Disabling tests while working on bug fixes Developers temporarily disable failing tests while

working on fixing the bugs.
81

Flaky test Developers may disable flaky tests to avoid occasional
failures.

42

Won’t-fix bugs in code/test Developers disable tests to avoid failures as they will
not work on fixing the failures due to difficulty.

7

Slow test Test failures due to long running time, so developers
disable such tests to avoid failures.

2

Library incompatibility JUnit annotation (@Parameterized) was not supported
by Ant in the used CI platform. Thus, the test was
disabled.

1

- Precautions During Feature Maintenance 78 (23.8%)
New/Improved Features In the process of implementing new or improving exist-

ing features, developers may temporarily disable rel-
evant tests or introduce new tests that are disabled
(e.g., commented-out tests) to avoid potential failures.

62

Deprecation Developers may disable relevant tests in the process
of deprecating features.

12

Refactoring Developers may disable tests during refactoring. 4

- Diverting to Manual Testing 38 (11.6%)
Require manual input Developers need to manually run tests that need to be

manually configured (e.g., database setup and secret
keys).

24

Expensive Test Developers need to manually run tests that are expen-
sive to run and may not have to be run all the time
(e.g., performance and migration test).

13

Experimentation Developers manually run tests that are under experi-
mentation.

1

- Dependency Issue 21 (6.4%)
Difficulties in maintaining external dependencies External dependency is hard to maintain due to var-

ious reasons. Developers may need to disable tests
when there are bugs in the external dependency, un-
expected version changes, or dependencies are hard to
integrate or use.

17

Waiting for functionality update in external dependency Developers disable tests while waiting for feature im-
provement in the external dependencies.

4

- Test Design Issues 16 (4.9%)
Selective test inheritance Developers disable tests to disable unneeded inherited

tests, while selectively reusing some inherited tests.
14

Redundant Test Developers disable tests that are redundant and cov-
ered by a different test class.

2

- Other Reasons 41 (12.5%)
Unknown Lacks of explicit mention of why tests are disabled

(e.g., no relevant Jira issues and comments).
32

Obsoleteness Developers disable obsolete tests. 5
disable by mistake Developers accidentally disable the test. 4
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repository. However, we found that there is no traceability provided for developers to track

these disabled tests. We could not find any mention of the disabled tests in Jira issues or

in documents. These disabled tests may remain forgotten with the issues remain unfixed.

Another main motivation (42/131) is to avoid test failures caused by flaky tests. As

flaky test results are nondeterministic, diagnosis can be challenging. After developers fix

the issues (i.e., flaky tests no longer fail), they may re-enable the tests. In our studied cases,

only 7/42 flaky tests are re-enabled later, aligning with the study by (Lam et al., 2020),

who reported that over half of flaky tests remain unfixed.

We also uncovered two test failures due to slow tests, for which developers simply disable

the slow tests without either fixing the test or the source code. Finally, one failure is caused

by library incompatibility in Travis CI. In Openfire (ddb20ffe), developers discuss that @Pa-

rameterized is not supported by the Ant build system installed in Travis CI, causing failure

in tests where @Parameterized is used. Developers disable the affected tests as a convenient

solution while waiting for the incompatibility to be resolved by framework developers.

In total, only 31% of the tests are re-enabled after the bug fix. The remaining disabled

tests are either disabled indefinitely (i.e., due to lack of solution) or deleted. We also

find that, for such permanently disabled tests, there is often a lack of traceability in

GitHub or Jira issues.

Precautions during Feature Maintenance (23%). Developers commonly utilize test disable

practice to avoid potential test failures during maintenance activities, such as adding new

features and refactoring. For 62/78 cases, we find that developers precariously disable

the test cases that may fail in the process of feature implementation due to incomplete

functionalities (e.g., the feature takes more than one commit to finish). For example, in

Flink (df448625), developers commented out the tests related to retrieving log files and left

a comment saying that “TODO activate this test after logging retrieval has been added to

the new web frontend”. We also notice that developers may indicate relevant bug issue IDs

when disabling test cases. For example, in Hadoop (18fe65d75), developers left a comment as

“requires HDDS-801. Requires once feature is in place”. Although we find that developers
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may try to add traceability on disabled tests, the current practice remains ad-hoc (i.e.,

by using only comments in the code). Developers may use disabled tests to harbor some

temporary tests and delete such tests after the feature is complete, i.e., being replaced by

an official test (e.g., Orientdb (0fc9bee1). Nevertheless, among the 62 cases we examined

in this category, only 30 tests are re-enabled, and the others remain disabled in the studied

systems.

In addition to new features, we find that developers may disable the tests of depre-

cating features (instead of removing them). Developers may choose to disable the tests

temporarily while replacing deprecated features and adopt the disabled tests once the

new implementation is finished. However, we observe there are cases where the tests for

the deprecated features remain disabled in the codebase. Lastly, developers sometimes

disable tests during refactoring (4/78). For example, in Openfire-97f7cf3f and in Trust-

StoreConfigTest.java, developers commented out the entire class prior to extracting Open-

fireX509ExtendedTrustManagerTest and removing few code duplications using a helper class,

KeystoreTestUtils.java.

Developers may temporarily disable tests during feature maintenance or refactoring.

However, we find that 50% of such disabled tests remain disabled.

Diverting to Manual Testing (11.2%). Developers may disable some tests with the plan to

manually running them. For the studied cases in this category, test reconfigurability was the

most common problem causing developers to disable the test (24/38). For example, we find

that some tests are disabled for manual testing due to the need to manually configure the

access key and secure key (e.g., Camel (ba22a8175f94a)) or setup databases (e.g., CloudStack

(96c38bf4)). Such cases require manual testing as the tests depend on resources that must

be manually started or configured prior to the test execution. Another 13/38 of the tests in

this category are disabled because they are expensive to run (e.g., migration or performance

tests). For example, as discussed in Flink (b7ae3e5338): ManualWindowSpeedITCase),

“When doing a release, we should manually run theses tests on the version that is to be

released and on an older version to see if there are performance regressions.” However, it is
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difficult to know if developers remember to manually run these tests before each release, and

disabling these tests may result in higher maintenance costs (e.g., only discovering issues

before the release).

Finally, we find one rare case in Camel (bd1661b248): JavaSocketTests, where the de-

veloper introduces a commented-out test code as it is part of experimental code.

Developers manually test expensive resources that should only be executed under par-

ticular circumstances, such as migration or performance testing.

Dependency Issue (6.2%). Without good mocking strategies, we find that external depen-

dencies may become hard to maintain (17/21) and a source of technical debt, causing tests

to fail and be disabled. For example, in Camel (35b83b1d), we find that bugs in the ex-

ternal dependencies cause test failures (i.e., “Upgrade smack due to bug in smack 4.0.6”).

In another case, in Camel (40ae73c4), due to unexpected version changes in external de-

pendencies, the test fails and is disabled (i.e., “It looks like the problem is embedded XMPP

server. It was overridden to 2.21 currently”).

In total, only 5/17 cases were re-enabled after the issue was fixed. Interestingly, as

shown in IGNITE-9920, the test continues to be disabled even if the bug report is reported

closed with a WONT’T FIX resolution due to difficulties in test maintenance. The other

tests remain disabled due to similar reasons. Developers may also disable tests while waiting

for new features to be added in external dependencies. For example, in Druid (4b3bd8bd),

developers comment out several tests as they need to wait for an external dependency (i.e.,

Joda) to release a new feature. However, we find that only 1/4 cases become re-enabled

later.

Developers may disable tests due to issues/updates in external dependencies. However,

71% of the disabled tests in this category remain disabled or are deleted due to reasons

such as test maintenance difficulties.

Test Design Issues (5%). Developers may disable tests when changing/improving test de-

sign. We find that developers may leverage inheritance to reuse part of the tests in parent
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classes. However, developers may disable some of the inherited yet unneeded tests in child

classes. A reverse may also happen where developers re-enabled the disabled tests in the

child classes (Ignite (63b9e1653d)). Our finding shows that there may be maintenance or

designing challenges when handling test inheritance. Therefore, developers need to decide

whether an inherited test should be executed or not. Additionally, there are cases where

developers find the same tests that exist in multiple test classes and decide to disable the

redundant tests.

Developers may disable tests to bypass test design limitations related to test inheritance.

Other Reasons (12.5%). We categorize the remaining disabled tests that do not belong to

any of the above-mentioned categories as “Other Reasons”. We find that there are 32 cases

of disabled tests where we cannot find any discussion/comment. We categorize these cases

as unknown. For example, developers may only include a commit message, such as “Disable

Test”, without any other explanation or reference to other software artifacts (e.g., Jira),

where only 7 out of 32 were eventually re-enabled.

We find 5 cases where developers disable the tests because they become obsolete. Finally,

there are 4 cases where developers disable the test accidentally (e.g., commented out the

test) and thus were re-enabled immediately afterward.

Developers did not provide the reasons nor traceability (e.g., Jira issues) for many

(32/338) of the disabled tests. Most of such disabled tests remain disabled in the studied

systems. We also find cases where developers disabled obsolete tests, and they may also

disable some tests by mistake.

6.4 Threats to Validty

In this section, we discuss threats to validity of our study.

Internal Validity. Since commented code may exist in countless different formats, it may

be impossible to find a generalized rule to detect all the cases. Table 6.8 shows one such

example, where there is a mix between the commented-out code and natural language.
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Table 6.8: An example of an invalid block comment that cannot be detected by the tool.
Invalid comment represents a mix between natural language and code.

Original Method Commented using
Block Comment

1 @Test

2 /* this is a demo*/

3 public void demo() {

4 }

1 /*@Test

2 this is a demo

3 public void demo() {

4 }*/

Therefore, our tool may not be able to detect all the commented-out methods. Nevertheless,

to minimize the threat, we treat the consecutive line comments as a single target and detect

each target as multiple commented-out methods. We apply the same rule when there could

be blank lines between the different parts of a commented-out method. Namely, we allow

our rules to be tolerant for a single line of code, but we treat it as two different targets

for a number higher than one. Despite this issue, the precision of our tool for test status

is high (98%), where in fact there are no false positives in terms of commented out tests.

Our approach also relies on RefactoringMiner to detect and track refactoring changes. As

shown by Tsantalis et al. (2020b), RefactoringMiner has high precision and recall, which

should not affect our results. It is possible that some commented-out code is only meant

as a template code for future implementation and could be non-compilable. Our tool does

not check for these instances, and they may exist in our study and skew our understanding

of the manual classification. Moreover, we only consider @Test annotation to determine

the test method and test class. It is also possible that files that use an older version of

Junit (i.e., Junit3) may not use @Test annotation to indicate a test method or class. Our

tool does not check for these instances and may miss some disabled tests. Finally, we do

not consider partially commented out tests, such as commenting out assertions. Compared

to disabling a test completely, partially commented out tests may involve more complex

change, such as when tests contain multiple assertions in a test.

External Validity. Our studied systems are all open source implemented in Java, so the

result may not be generalized to all systems. To minimize the threat, we follow a set of
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criteria to select systems that are popular on GitHub, large in scale, and actively maintained.

The studied systems cover various domains and are frequently used in commercial settings.

Future studies are encouraged to replicate our experiment on other systems and systems

implemented in different programming languages.

Construct Validity. In RQ3, we conduct a manual classification on the reasons that the

tests become disabled. We conduct the study on a statistically significant sample using

a 95% confidence level and 5% confidence interval. To reduce the biases in our manual

classification result, two of the authors independently studied the sample and compared the

results. Any discrepancy is discussed until a consensus is reached. We computed the Cohen’s

Kappa, and found that the level of agreement is substantial between the two authors (0.7).

6.5 Discussion and Implication

Based on our empirical findings, we present actionable implications and future work for

two groups of audiences: 1) researchers and 2) application developers and testers.

6.5.1 Discussion and Implication for Researchers

R1: Developers use disabled tests to bypass test failures, which may affect test

maintenance and code quality. Future studies should investigate its impact on

software quality. As we find in RQ2, tests may be hard to fix immediately and may

remain disabled for an extended period. Some re-enabled tests are again disabled later due

to inadequacy of the bug fixes as bug fixing tasks are difficult. Moreover, as found in RQ3,

developers may disable tests to temporarily hide test failures, such as disabling flaky tests,

while the bugs remain unfixed. Although these tests are necessary for revealing faults, they

may no longer guard the software against regressions and uncover the possible presence of

new bugs. Therefore, future research must study the impact of disabled tests on software

quality from two aspects. First, an interesting direction is to study the relationship between

disabling tests and software defect proneness to provide additional insights into the impact

of disabled tests on software quality. Second, future studies may quantitatively assess
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the impact of disabled tests on fault detection capabilities using mutation analysis (Jia &

Harman, 2011).

R2: There is a lack of automated support on tracking disabled tests, which may

lead to “forgotten” tests. Future studies may consider providing traceability

support to developers. During our manual classification, we notice that many disabled

tests are not referenced in issue reports and are not tracked by any software artifact. For

example, developers may commit test disabling changes with only mentioning in the commit

message that a test is disabled. In some cases, we find that the bug may be resolved, but

the test is still disabled. Due to the lack of traceability and documentation, most of these

disabled tests may then be “forgotten”, and stayed disabled for several years and are never

re-enabled. Future research may consider providing automated traceability to track the

disabled tests and better assist developers during test evolution.

R3: Developers may disable some tests and divert them to manual testing.

Future studies should investigate approaches to provide better automation sup-

port. As we find in RQ3, 11% of the tests are disabled because they are difficult to

run automatically or are time-consuming. However, delaying test execution may result in

accumulated maintenance overhead (e.g., bugs are only revealed at the late stage of the

development or before the release). Since these tests need to be manually executed, it is

also possible that developers may forget to run them. Future studies may also investigate

better mocking approaches and adopt test reduction or prioritization (Gligoric, Eloussi, &

Marinov, 2015b; Peng, Chen, & Yang, 2020a) to ensure these tests can still be included in

part of the continuous integration process while maintaining acceptable test overhead.

R4: Future studies should investigate the impact of test obsolescence and the

co-evolution between test and source code. In our study, we find that developers use

test disabling for a wide range of maintainability tasks, yet only a few were ever re-enabled

in practice. Many of the disabled tests are deleted as they become obsolete. As systems

evolve, some tests may become outdated and may need to be updated Marsavina, Romano,

and Zaidman (2014); Zaidman, Van Rompaey, Demeyer, and Van Deursen (2008); Zaid-

man, Van Rompaey, Van Deursen, and Demeyer (2011). However, it is not clear to which
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degree do developers maintain tests to keep up with the development, and whether there

are replacement tests for the tests that were deleted. Future studies on test obsolescence

and their co-evolution with source code may provide better support to developers on test

maintenance.

6.5.2 Discussion and Implication for Developers

D1: Assisting developers with best testing practices about how to maintain

disabled tests. As found in RQ1 and RQ2, test disabling is prevalent in test maintenance,

but most disabled tests remain disabled. Developers often disable tests due to a bug;

however, they rarely open a new Jira issue to track the process of re-enabling the test code.

For example, out of the 141 samples that remain disabled (RQ3), only 10% are related to

unresolved issues and 22% of the tests that remain disabled do not have any documentation

on Jira. For the remaining 68% of the disabled tests, they remain disabled even after

the issues were fixed. As an example, in Hive (22df53b6), several tests remain disabled

and forgotten even after their bug issues were closed (e.g., HIVE-18341). To better trace

these disabled tests, developers should consider adding Jira issues, or similar artifacts, to

document tests that require an update. Otherwise, the non-traceability of disabled test

code may lead to worse software quality in the long term.

6.6 Chapter Summary

Similar to source code, there are bugs and maintenance challenges in test code. As a

result, developers may bypass a test failure by disabling the test, i.e., adding @Ignore or

comment out the test. Such tests disabling practices, when misused, may cause technical

debt and harm the long-term maintenance. In this paper, we conduct the very first empirical

study on test disabling practice in Java systems. We first implement a tool to detect and

track the changes of disabled tests in software development history. Then, we conduct both

quantitative and manual classification on test disabling changes. We find that: 1) Test

disabling is a prevalent practice in test evolution and has a similar frequency level compared
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to test refactoring at the same program element level. 2) Most disabled tests remain disabled

and have been disabled for years. Many of the disabled tests are either re-enabled without

any code change or deleted directly. 3) Our manual classification highlights the reasons

for the tests to be disabled. We find that most tests are disabled due to maintenance

challenges (e.g., flaky tests and required to do manual testing) rather than waiting for bug

fixes. Moreover, most disabled tests remain disabled even after the bugs are fixed. Our

discussions provide possible future research directions to further improve test maintenance

and suggestions to developers to better track disabled tests so that they are not “forgotten”.
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Chapter 7

Demystifying inheritance in test

code and impact on test

redundancies

Inheritance, a fundamental aspect of object-oriented design, has been leveraged to

enhance code reuse and facilitate efficient software development. However, alongside its

benefits, inheritance can introduce tight coupling and complex relationships between classes,

posing challenges for software maintenance. Although there are many studies on inheritance

in source code, there are limited studies on using inheritance in test code. In this paper,

we take the first step by studying inheritance in test code, with a focus on redundant

test executions caused by inherited test cases. We empirically study the prevalence of test

inheritance and its characteristics. We also propose a hybrid approach that combines static

and dynamic analysis to identify and locate inheritance-induced redundant test cases. Our

findings reveal that (1) inheritance is widely utilized in the test code, (2) inheritance-induced

redundant test executions are prevalent, accounting for 13% of all execution test cases, and

(3) the redundancies slow down test execution by an average of 14%. Our study highlights

the need for careful refactoring decisions to minimize redundant test cases and identifies

the need for further research on test code quality.
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Earlier version of this chapter was published in the the 46th International

Conference on Software Engineering (ICSE-2024). 12 pages. (D. J. Kim,

Chen, & Yang, 2024)

7.1 Introduction

In a highly evolving software market, customers expect new features delivered on time

alongside reliable and high-quality products (Abrahamsson, Salo, Ronkainen, & Warsta,

2017). To reduce maintenance cost and improve productivity, code reuse plays a pivotal

role. Through code reuse, developers can take the advantage of existing functionality and

achieve faster development while maintaining code quality. Particularly, one of the main

advantage of inheritance, a fundamental aspect of object-oriented design, is to facilitate

code reuse (Oracle, 2022a, 2022b). Inheritance offers a simple way for a Class A to reuse a

feature defined in Class B by utilize the Extends keyword, such as Class A extends Class

B.

While inheritance provides many benefits in reducing implementation and maintenance

overhead, using inheritance ineffectively can also create tight coupling between classes (stack-

overflow, 2013b), causing non-flexibility and overly redundant code (stackoverflow, 2020).

Many researchers found that ineffective use of inheritance is correlated to software qual-

ity issues and maintenance difficulties Marinescu and Codoban (2014); Nasseri, Counsell,

and Shepperd (2008); Prechelt, Unger, Philippsen, and Tichy (2003); Tahir, Counsell, and

MacDonell (2016). Prior studies even used inheritance as a proxy to measure software com-

plexity and to predict software defects in industry systems (Chidamber & Kemerer, 1994;

Chowdhury & Zulkernine, 2011; Subramanyam & Krishnan, 2003; Zimmermann, Nagappan,

& Williams, 2010).

Existing studies on inheritance primarily focused on the source code (Chidamber &

Kemerer, 1994; Chowdhury & Zulkernine, 2011; Marinescu & Codoban, 2014; Nasseri et

al., 2008; Prechelt et al., 2003; Subramanyam & Krishnan, 2003; Tahir et al., 2016; Zim-

mermann et al., 2010). However, there has been limited investigation into the impact of
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inheritance in the test code; especially inherited test cases. Our preliminary analysis reveals

that 40% of 503 sampled open-source software systems use inheritance in test classes, indi-

cating a significant adoption of inheritance in software testing. One potential benefit of test

inheritance, as found by X. Wang, Xiao, Yu, Woepse, and Wong (2021), is that developers

often turn to inheritance to mock the source code under test. Another benefit of inheritance

is test code reusability, which can improve coverage and help test maintenance (Biddle &

Tempero, 1996).

Despite the potential benefits of test case inheritance, using inheritance in test code

can also lead to overly complicated code as software systems become more complex. A

study by Peng, Chen, and Yang (2020b) showed that test case inheritance causes most

code dependencies, which can over-complicate test case design and maintenance. Moreover,

some practitioners view inheritance as poor practice and should be refactored (stackoverflow,

2013a), i.e., “Prefer composition over inheritance and interfaces” (stackoverflow, 2020) or

“It is a bad idea to use inheritance in test” (apache dev, 2023). In addition to test case

design, one issue with test inheritance is that it can result in multiple subclasses inheriting

identical test cases from the same superclass. Such inherited and identical test cases are

redundant and can cause test execution overhead, which further extends the already time-

consuming testing process.

In this paper, we aim to study the impact of inheritance in the test code by focusing

on the redundant test executions caused by inherited test cases. We develop a hybrid

approach that combines static and dynamic analysis to study and detect inheritance-induced

redundant test executions. First, we apply static analysis to analyze the source code and

extract the inheritance hierarchy in test classes. Then, we extract test cases candidates

that potentially cause redundancies. Finally, we apply dynamic analysis, which involves

source code coverage and test oracle analysis, to detect whether these candidates are truly

redundant. We conduct our study on 15 open-source Java systems and found that (1) 13%

of the total executable test cases are in fact redundant, and (2) such redundant tests take

14% of total test execution time. Finally, we shed light on (3) the challenges of addressing

redundancy, precisely the difficulty in preserving code coverage while removing redundancy.
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This paper makes the following contributions below:

• We are one of the first studies that provide evidence on the prevalence of inheritance

usage in test code: over 40% of the analyzed systems use inheritance in test.

• We propose a hybrid approach that combines static and dynamic analysis for pinpoint-

ing inheritance-induced redundant test execution, providing developers with insights

to identify bottlenecks in test case executions.

• We find that a non-negligible number of test cases are introduced through test case

inheritance, accounting for 13% of the total executable test cases and 14% of the total

test execution time.

• We find that eliminating redundancy poses challenges in preserving code coverage, as

inherited test cases can be redundant in certain subclass but non-redundant in the

rest.

• We release the source code of our tool and the dataset1 of our experiments to help

other researchers replicate and extend our study.

7.2 Motivation

Existing studies on inheritance have primarily focused on the source code (Chidamber &

Kemerer, 1994; Chowdhury & Zulkernine, 2011; Marinescu & Codoban, 2014; Nasseri et al.,

2008; Prechelt et al., 2003; Subramanyam & Krishnan, 2003; Tahir et al., 2016; Zimmermann

et al., 2010). However, there has been limited investigation into the impact of inheritance in

the test code. We conjecture that developers regularly use test code inheritance in practice.

To verify whether developers use inheritance in test code, we analyze the number of test

code inheritance that is attributed to various software systems, by mining hundreds of

open-source Java Repositories, similar to technique the employed by (Kang, Yoon, & Yoo,

2023). We start with the Java-med dataset from Alon et al. (Alon, Brody, Levy, & Yahav,

2018), which consists of 1,000 top-starred Java systems from GitHub. We utilize Spoon, a

static analysis tool, to create the source/test code model for the entire repository (Pawlak,
1https://anonymous.4open.science/r/ICSE2024-D32B/README.md
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Table 7.1: Analyzed repository characteristics.

Repository Inheritance Characteristics #Repositories

Has at least one inheritance tree in the test code 202
No inheritance tree in the test code 301

Monperrus, Petitprez, Noguera, & Seinturier, 2015). From the list of Java files in the

repository, we check (i) whether a file is a test file and (ii) whether the test file is part of the

inheritance tree. To measure the prevalence of inheritance, we choose to use the inheritance

tree rather than simply counting inheritance usage (e.g., Extends). The inheritance tree

offers a more comprehensive view, representing the hierarchical structures of test classes

and the holistic relationships among classes in the repository.

To check if a file is a test, we examine if the name’s Prefix or Suffix contains the

“T/test” keyword. To determine whether a test file is a component of the inheritance tree,

we search for Extends keywords and iteratively traverse upward through its superclass

until we reach the root node of the inheritance tree. During traversal, a test class itself may

be a superclass for other test classes. Hence, we also traverse through all the subclasses

until reaching a leaf class. We omit systems that do not have test classes. Accordingly,

from the 1000 repositories, we are left with 503 repositories as shown in Table 7.1. We

find that the ratio of the repositories that have at least one inheritance hierarchy tree is

40% among 503 studied repositories. The finding suggests that a significant number of

repositories in fact adopt inheritance in software testing. This percentage is a staggering

proportion considering that many practitioners view inheritance as poor practice and should

be refactored, i.e., “Prefer composition over inheritance and interfaces” (stackoverflow,

2013a) or “It is a bad idea to use inheritance in test” (apache dev, 2023; stackoverflow,

2020). More interestingly, there is a moderate to strong correlation (i.e., 0.61) between the

number of test files in the repository and the number of test inheritance hierarchy (Akoglu,

2018). The finding indicates that as the software becomes complex, developers may be more

inclined to use test inheritance. Based on this analysis, we believe that inheritance plays a

significant role in the design of test code.
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Extends

Extends

Extends

AbstractSorted
BidiMapTest

DualTree
BidiMap2Test

UnmodifiableSorted
BidiMapTest

AbstractBidiMapTest

  + TestCase1()
  + TestCase2()

AbstractOrdered
BidiMapTestExtends

Figure 7.1: Developers re-use test through inheritance to ease maintenance.

Figure 7.1 shows a real-life scenario of test inheritance in Commons-collections, where

the developer uses inheritance for test code reuse and easing maintenance. For example,

test cases 1 and 2 from AbstractBidiMapTest cover the coverage of different source code

functionality, DualTreeBidiMap and UnmodifiableSortedBidiMap. Despite the aforemen-

tioned advantages, the prevalence of inheritance in test code shows a potential challenge:

the proliferation of redundancies within test cases. For example, as shown in Figure 7.1,

not only is the inheritance deep, but the two test cases declared in the root class can also

be inherited throughout the hierarchy. The impacted subclasses with the abstract modi-

fier, i.e., AbstractSortedBidiMapTest, AbstractOrderedBidiMapTest, do not execute the test

cases. However, the concrete subclasses, i.e., DualTreeBidiMap2Test and UnmodifiableSort-

edBidiMapTest, in the leaf position will eventually execute the test cases, as the testing

frameworks (e.g., JUnit) will instantiate them during testing, which leads to potential re-

dundant test case execution, i.e., proliferation. While such redundancies may have no

consequences (e.g., performance overhead) in the source code, their presence in test code

represents a considerably detrimental practice.

Unlike source code, where redundant code may remain dormant and unexecuted, test

cases annotated with the @Test annotations are automatically executed within the inheriting

child classes. As shown in Figure 7.1, while such a test case aims to help maintenance and
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code reuse, it may also lead to redundancies if the coverage and test oracle remain the

same. This fundamental distinction forms the basis of our research focus, which aims to

identify redundant test cases lacking fault-locating capabilities while contributing to an

increase in test execution time. Our investigation seeks to shed light on these intricacies of

inheritance-induced redundancies in test code.

Based on the aforementioned discussion about redundant test cases, we focus on two

important definitions: (1) Redundancy-Inducing Inheritance: Inheritance is consid-

ered redundancy inducing if it declares test cases and has impacting subclasses, and (2)

Inheritance-Induced Redundant Test Candidates: Test cases are classified as poten-

tially redundant if they are executed more than once due to inheritance, although they may

or may not be truly redundant. In Figure 7.1, the example represents (1). The root class,

AbstractBidiMapTest, contains test cases and has many impacting subclasses. Its test cases

are hence (2), as they are executed multiple times in the subclasses. In the subsequent

section, we present our technique for detecting Inheritance-Induced Redundant Test

Executions , given (1) and (2).

7.3 Related Works

Inheritance Evolution and Maintenance. Many works investigated the evolution of inheri-

tance in source code. For example, Shaheen and du Bousquet (2008) studied the relationship

between inheritance and the number of methods to test. They claim that testing should

be more expensive if the inheritance depth is high, as the inherited method should be re-

tested. Nasseri et al. (2008) studied whether inheritance evolves breadth-wise or depth-wise,

and developers consider depth-wise as hard to maintain and prefer breadth-wise inheri-

tance. Nasseri, Counsell, and Shepperd (2010) studied the evolution of inheritance from the

perspective of class re-location to understand what motivates their move and try to give

insights on potential maintenance challenges. Giordano et al. (2022) studied the evolution

and impact of delegation and inheritance on code quality. They find that their evolution

often leads to code smell severity being reduced and improved maintainability.
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Inheritance Maintenance in Test Code. Limited works investigated the evolution and main-

tenance of inheritance in the test code. The work by X. Wang et al. (2021) conjectured

that despite the existence of powerful mocking frameworks, developers often turn to inher-

itance to mock source code under test. Hence, they proposed a tool to refactor mocking

via inheritance with a mocking framework. In contrast, our analysis shows the existence of

inheritance in the test case design and its implication on test execution overhead. There is

another body of work relevant to our work. Peng et al. (2020b) studied the impact of code

dependencies on continuous integration. They found that inheritance causes the majority

of dependency in test cases and proposed test dependency-related smells. While their work

is the most relevant to our work, they emphasize test dependencies and little on the impact

of test code redundancies.

Test Case Minimization/Reduction. Our work is related to research in test case reduc-

tion/minimization, which focuses on eliminating redundant test cases while preserving fault

detection capability. Nadeem, Awais, et al. (2006) developed TestFilter that uses the

statement-coverage criterion for the reduction of test cases. McMaster and Memon (2007)

proposed a new metric called average expected probability to help minimized test cases

that retain fault-detecting capability. Fang and Lam (2015) used assertion fingerprints to

detect similar test cases that can be refactored into one single test case. Alipour, Shi,

Gopinath, Marinov, and Groce (2016) presented an approach that reduces a test suite by

compromising a certain amount of coverage while preserving the overall fault-finding ability.

Other approaches focus on test case generation that involves test case reduction to remove

redundancy in the generated tests. Nirpal and Kale (2011) proposed a Genetic Algorithm

to generate test cases. Fraser and Arcuri (2012) proposed a novel technique implemented

as a part of EvoSuite to generate test suites with high coverage. Their results show that

smaller test suite gives higher coverage and adopted their fitness function to reduce redun-

dant tests. These studies focus on minimizing redundant test cases by removing entire test

cases. Our work, on the contrary, is more related to the design of the test code, which

makes test case removal non-trivial. Complementary to test case reduction, other works

focus entirely on reducing time execution of test executions (Groce, Alipour, Zhang, Chen,
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& Regehr, 2014; Khalek & Khurshid, 2011; J. Kim, Kim, & Yoo, 2017). Bell and Kaiser

(2014) used unit test virtualization to reduce the time required for the execution of a test

suite. J. Kim et al. (2017) utilized general purpose GPU to improve the execution of ge-

netic algorithms. Our work, on the contrary, focuses on identifying redundant test cases,

which may also help reduce test execution time. Moreover, while these works show great

promise in improving test case execution time, issues of redundancy still exist. There is

work by Vahabzadeh, Stocco, and Mesbah (2018) that is most relevant to our work. They

perform fine-grained test case minimization by merging all test cases that have the same

code coverage. However, due to the complexity of inheritance relationships, they

7.4 Technique for Identifying Inheritance-Induced Redun-

dant Test Executions

Due to the complexity of inheritance trees and the scale of modern software, developers

may not always be aware of redundant test executions caused by inheritance. In this section,

we present our technique to detect redundant test executions. Figure 7.2 summarize the

overview of our technique, which consists of three main parts: static analysis to detect (1)

Redundancy-Inducing Inheritance and (2) Inheritance-Induced Redundant Test

Candidates , and (3) dynamic analysis to identify Inheritance-Induced Redundant

Test Executions . Performing static analysis before dynamic analysis reduces the cost

of the latter since not all test cases are Inheritance-Induced Redundant Test Executions .

Therefore, we perform dynamic analysis on a subset of the total test cases, specifically on

the Inheritance-Induced Redundant Test Candidates .

7.4.1 Statically Detecting Redundancy-Inducing Inheritance

In this section, we describe how we extract redundancy-inducing test inheritance. For

this task, we use Spoon, a static analysis tool (Pawlak, Monperrus, Petitprez, Noguera, &

Seinturier, 2016).
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Figure 7.2: Overview of the End-to-End Process for Finding Redundant Test Cases.
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Identifying Test Cases

In our detection of redundant test cases, our first step is to identify the relevant test

classes from the .java files. Our studied systems use JUnit4+ testing frameworks to design

test cases and utilize Maven to execute the test cases. Hence, we first search for all potential

test cases that exist within the studied systems. We look for methods that are annotated

using the @Test annotation. However, not all test cases written in the test code are executed

during regression testing. A test case can either be disabled to prevent flaky test or excluded

in the Maven build, specified in the pom.xml, according to development needs (D. J. Kim,

Yang, et al., 2021). Hence, we execute our test cases using Maven and filter out skipped

test cases.

Extracting Inheritance Hierarchy

We then determine whether the identified test classes form an inheritance tree, i.e.,

extends superclass. For every test class, we use the Vistor Pattern to recursively visit

its superclass until the terminating condition is met, such as Java’s root Object() class

or a class from external libraries. When traversing upstream, a test class itself may be

a superclass for other test classes. Hence, we also traverse through all the subclass

until reaching a leaf class. Once we have traversed all reachable test classes, we generate a

comprehensive tree hierarchy denoted as Tree, containing crucial information. We represent

nodes 1) N cl as test classes, and nodes 2) N mt as test cases. We represent edges 1) E cl as

a directed edge between two N cl (e.g., node1 and node2), where the node1 is the subclass of

node2, and 2) E mt is the non-directed edge between N cl and N mt, where N mt is a test

case of test class, N cl. As shown in the Figure 7.2, this step is described by transformation

from source code to tree-preprocessed.

Identifying Inherited Test Cases

In Section 7.4.1, we assigned test case nodes, N mt, to its corresponding test class,

N cl. Based on this Tree, we now extract the following test case types: unique methods,
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overridden methods, and inherited methods, which are annotated as U mt, O mt, and

I mt. To elaborate, U mt are methods that are unique to the class, O mt are methods that

override the parent method, and I mt are methods inherited from its superclass. More

formally, we consider a method to be O mt, if and only if (1) they have the same signature,

i.e., the same method name, the same number of parameters, and are not static, (2) the

method is a subtype of a supertype method and (3) type erasure of the parameter is equal

for generic types (Pawlak et al., 2015). Once O mt is detected, identifying U mt and I mt

becomes straightforward. Any method signature statically present in N cl is classified as

U mt for that particular class, while any method inherited from the superclass is categorized

as I mt. Following the definitions (1-3), we generate a post-processed inheritance hierarchy,

termed Tree post, where test cases are accurately annotated. This transformed Tree is

now ready for further analysis of redundant test cases. Refer to Figure 7.2 for a visual

representation of this transformation from tree-preprocessed to tree-postprocessed.

7.4.2 Statically Detecting Inheritance-Induced Redundant Test Candi-

dates

As discussed in Section 7.2, our focus is to detect redundant test case execution caused

by inheritance. For this, we first perform static analysis to identify potential redundant

candidates. In particular, we analyze the Tree post generated in prior Section 7.4.1 in the

following ways: 1) We first determine the test classes, T cl, that are non-leaf class in the

Tree post and have executable test cases, T mt. Such T cl indicate potential sources of

inherited test cases, 2) We then determine whether T cl contain more than one subclasses,

and if the resulting subclasses is a non-abstract class that can execute the inherited test

case. Then, such test cases are executed more than once and are potentially redundant.

More formally, if a test case T mt1 is inherited by both non-abstract subclassA and

sublassB, then such T mt1 has the potential of being a redundant candidate.
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7.4.3 Detecting Inheritance-Induced Redundant Test Executions through

Dynamic Analysis

Whether T mt1 is a truly redundant test case cannot be fully determined by static anal-

ysis discussed in Section 7.4.2. For example, a subclassA and subclassB may both inherit

T mt1, but through a program dependency, subclasses can alter the state of the T mt1

(e.g., by setting environment variables). In this case, T mt1 can no longer be considered

redundant as its behavior may be intentionally written by the developer to achieve partial

code reuse by subclassing. However, it is challenging to statically determine the ground

truth of program dependency to guarantee that T mt1 is redundant. Hence, we resort to

dynamic analysis by executing the test cases to collect execution trace information. Specif-

ically, we instrument the test cases prior to execution to collect (i) source code coverage

and (ii) test oracle information. Our intuition is that if the T mt1 that is executed in

both subclassA and subclassB has the same code coverage and test oracle, then T mt1 is

truly redundant. This technique draws inspiration from prior works in test case amplifica-

tion (Danglot et al., 2019; Hossain, Dwyer, Elbaum, & Nguyen-Tuong, 2023a) and test case

reduction (Di Nardo, Alshahwan, Briand, & Labiche, 2013; Konsaard & Ramingwong, 2015;

McMaster & Memon, 2007; Nadeem et al., 2006; Vahabzadeh et al., 2018; Yoo & Harman,

2012), where code coverage and oracles are considered to validate test case quality. Below,

we discuss the detail of our dynamic analysis.

Extracting Code Coverage

To detect redundant tests, we conduct code coverage analysis on Inheritance-Induced

Redundant Test Candidates . We use JaCoCo to collect coverage data during test execution.

Below, we outline the process for executing 1) inherited test cases and 2) instrumenting

JaCoCo.

Executing Inherited Tests. In our analysis, we run test cases one-by-one to avoid accumu-

lation of dirty states that may affect the test result, i.e., coverage and oracle. Hence, we
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re-initialize the JVM and reset the environment for every test execution. However, execut-

ing test cases in Maven is non-trivial for inherited test cases. Such inherited test cases are

not directly present in the test code, yet may be executed many times through inheritance

(e.g., a test case in the superclass is inherited by multiple subclass). To execute the inherited

test case, we use Maven-Surefire’s command-line options called -DTest with specified test

cases such as subclass#inherited method. Here, subclass#inherited method refers to

the test case inherited from its superclass, while subclass represents the class that inher-

its the test case. In addition, we observed that running a single test case in a multi-module

project may only rely on a compilation of a specific subset of modules rather than on the

entire project. Hence, we improve test execution time to speed up the experiment by lever-

aging the -pl option with a comma-separated list of modules to remove the compilation of

unnecessary modules. However, we may miss some dependent modules when using the -pl

option. Hence, we use the options -am to build all the dependent modules of the speci-

fied modules. For example, if module A depends on module B, using -am will build both

modules. Finally, Maven may run numerous static analyses in the default build, such as

License check and CheckStyle, which are not required to execute test cases. We also remove

these to improve test execution time. Finally, we run these options in the root directory to

successfully execute a single inherited test case in a multi-module project.

Collecting Code Coverage. We use JaCoCo to generate the code coverage report at three

levels, i.e., instruction coverage, branch coverage, and line coverage. JaCoCo is one of the

most popular code coverage tools that instruments bytecode to trace test execution (Jacoco,

2023). We integrate JaCoCo as a Maven plugin by configuring the pom.xml of the studied

projects. While integration is simple for most Maven projects, for the multi-module Maven

project, the coverage report is only limited to classes within the module, and will not

be shown for test cases covering classes outside of the modules (e.g., integration test).

Therefore, as some test cases cover multiple modules, we add an extra report-aggregate goal

to the parent Maven build script (i.e., the main pom file).
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Acquiring Test Oracle

In software testing, Test Assertion plays a critical role in assessing whether the actual

behavior of the program aligns with the expected behavior specified by the developers

(i.e., the test oracle) (Danglot et al., 2019; Gupta, Sharma, & Pachariya, 2019; Hossain

et al., 2023a; Yoo & Harman, 2012). If the observed values of the program state differ

from the oracle, the test assertion fails, indicating that the program is incorrect. Test

failures indicate software regression caused by buggy code introduced through developer

modification. Hence, in addition to coverage, the quality of assertions becomes crucial in

assessing the effectiveness of test cases in capturing faults within the source code (Hossain,

Dwyer, Elbaum, & Nguyen-Tuong, 2023b; Jia & Harman, 2009; Papadakis et al., 2019).

Hence, to detect redundancies in test cases, we use both code coverage and test assertion,

ensuring effective identification of redundant test executions.

We instrument the test assertions to collect the state of the program for both expected

and actual behavior during test execution. Our test instrumentation is lightweight. We

examine the static import of the studied systems to uncover all potential testing frameworks

(e.g., JUnit/Hemcrest) that developers may use to write test cases. From these frameworks,

we extract all the APIs used for assertion. During the test instrumentation, we identify

such APIs and replace these APIs with print statements, which collect the program states

during test execution. However, during our instrumentation, we uncovered that assertions

are written in a variety of contexts in the test code. In particular, (1) The test cases may

rely on reusable method which performs the oracle analysis. In this case, the test case itself

may not have assertions. Hence, we leverage Spoon to instrument the entire codebase to

collect more accurate test oracles.

Execution Time of our Technique

As discussed previously, our technique consists of three important steps: detecting 1)

Redundancy-Inducing Inheritance, 2) Inheritance-Induced Redundant Test Candidates, and

3) Inheritance-Induced Redundant Test Executions. The execution time for steps 1) and 2)
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Table 7.2: Systems Studied and Their Inheritance Statistics.

#Inheritance #Test classes constituted #Test classes within
Project tree by inheritance tree entire codebase

Commons-collections 10 206 (85%) 243
Zookeeper 6 301 (80%) 378
Avro 46 233 (49%) 478
Maven 13 83 (37%) 227
Shiro 10 45 (36%) 126
Commons-math 27 124 (31%) 400
Feign 6 30 (28%) 108
Iotdb 21 110 (25%) 437
Shenyu 7 133 (16%) 838
Dubbo 32 122 (14%) 856
Graphhopper 11 36 (14%) 252
Rocketmq 5 23 (11%) 214
Commons-lang 6 16 (10%) 161
Pdfbox 3 17 (8%) 213
Biojava 3 11 (4%) 259

Total 202 1,691 (31%) 5,322

takes a few seconds to less than 3 minutes, which is relatively trivial. We do not consider

the execution time for dynamic analysis since JaCoCo is third-party software. However,

based on JaCoCo developers, the performance overhead is approximately a 10% increase

from normal test execution time (Jacoco, 2003). However, our static analysis help us locate

inheritance-related issues and saves time for our dynamic analysis.

7.5 Results

In this section, we first introduce the studied systems. Then, we study inheritance-

induced test redundancy by answering four RQs.

Studied Systems. We conduct our analysis on 15 open-sourced systems. The selection

of 15 systems was influenced by time constraints, as analyzing all 503 systems from Sec-

tion 7.2 would have been time-consuming. To identify the 15 systems, we applied additional

criteria to identify highly maintained systems: the presence of inheritance, usage of JUnit

in the Maven configuration files, sufficient test files, containing commit activity between

2022-2023, high popularity (stargazer count>600), and non-forked repositories. The crite-

ria for systems to have inheritance is to ensure that redundancies are common issues for
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systems that involve inheritance. From the pool of systems, we randomly selected the fol-

lowing 15 systems: Commons-math, Commons-lang, Iotdb, Maven, Pdfbox, Shiro, Shenyu,

Biojava, Rocketmq, dubbo, Avro, Zookeeper, Commons-collections, Feign, and Graphhop-

per. As shown in Table 7.2, these studied systems cover different domains, from distributed

databases to stream processing frameworks, message brokers, and group chat servers. Ta-

ble 7.2 also displays the number of test inheritance extracted from the studied systems using

the technique from Section 7.4.1. The results reveal that despite the relatively small number

of test inheritances tree in some systems, like commons-collections (i.e., 10 inheritances),

their impact on the codebase was substantial, constituting 85% of the total number of test

classes. In contrast, in systems like Avro, which had a higher number of test inheritances

tree (i.e., 46), the percentage of impacted test classes was lower, at 49%. This finding sug-

gests that even a few instances of test inheritance can substantially influence overall testing

structure. It underscores the need to analyze the intricacies inheritance in each system to

grasp the true impacts of test inheritance. In conclusion, the results highlight the diverse

nature of test inheritance in different systems.

7.5.1 RQ1: How Prevalent are Inheritance-Induced Redundant Test Can-

didates?

As discussed in Section 7.2, inheritance is widely adopted in practice, which raises

an intriguing question about the number of test cases inherited from superclasses and

whether test cases may become redundant. Particularly, when extensive test inheritance

occurs, test cases may be inherited by numerous test subclasses, leading to challenges in

understanding the test logic inherited from the superclass and the possibility of redundant

test execution. This research question aims to investigate the occurrence of Inheritance-

Induced Redundant Test Candidates to shed light on the implications of test inheritance

in real-world projects. By exploring these test case relationships, we aim to gain valuable

insights into the impact of inheritance in software testing.

Approach. In Section 7.4.1, we presented our static analysis approach to identify Inheritance-

Induced Redundant Test Candidates . These candidates arise when two or more subclasses
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inherit the same test cases from the superclass, leading to the execution of inherited test

cases multiple times (may or may not be redundant). To assess the prevalence of these

candidates, we compare them with all executable test cases in the studied systems, us-

ing the mvn-surefire test execution strategy by following the approach that is described in

Section 7.4.3.

Result. On average, inheritance-induced redundant test candidates account for

approximately 13% of the total executable test cases. This finding is based on a

comparison of the number of Inheritance-Induced Redundant Test Candidates against the

total number of executable test cases, which is reported in the last column, i.e., # Discovered

Candidates, as shown in Table 7.3. Specifically, out of the 40,420 executable test cases in

the examined systems, 5,080 (13%) are attributed to potential redundancies, specifically

through test inheritance. This indicates a potentially significant impact of test inheritance

on the overall testing efforts. For instance, Table 7.3 highlights that 50% of the test cases

in Commons-C. are contributed through inheritance, followed by 21% in both Commons-

M. and Feign. The results highlight the high prevalence of Inheritance-Induced Redundant

Test Candidates among the test cases. While the average percentage of Inheritance-Induced

Redundant Test Candidates may seem modest at 13%, the presence of such test cases is

not negligible, given the large number of test cases in the examined systems. Furthermore,

certain systems, such as Commons-C., show a remarkably high percentage of inherited test

cases, highlighting the importance of examining inheritance relationships and their impact

on testing.

Initially, redundant test candidates come from 790 unique test cases. However,

through inheritance the number of redundant candidates can increase sixfold.

We also analyze the number of different subclasses from which the redundant candidates

can be inherited. For instance, if a Inheritance-Induced Redundant Test Candidates test

case is inherited from two subclasses, then we consider this test case to be multiplied

two times through inheritance. We depict this multiplier in column 8 (e.g., Multiplier) in

Table 7.3. Furthermore, we provide three summary statistics (mean, max, min) to show the

diversity of inheritance. Hence, Table 7.3 shows that Commons-C. has 230 unique test cases
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that are defined in superclasses. These test cases undergo inheritance through an average

of 14 subclasses, with a maximum of 93 subclasses and a minimum of 2 subclasses.

Through various inheritance practices, the number of redundant candidates then multiplies

by 14x, increasing to 3167 test cases. Notably, all systems initially have a smaller subset

of test cases (790). However, through inheritance, the total number of potential redundant

candidates can increase sixfold (to 5,080). These initial findings underscore the potential of

identifying and addressing redundant test candidates to optimize testing resources.

Answers to RQ1. We discovered that 13% of the total executable test cases are

Inheritance-Induced Redundant Test Candidates. These instances of redundancies are

primarily caused by a small subset of test cases, but their occurrence increases six-fold

through the inheritance process.

7.5.2 RQ2: Are the Inheritance-Induced Redundant Test Candidates

Truly Redundant?

In RQ1, based on our static analysis results, we observed that systems that utilize

inheritance consistently exhibit potential redundant candidates. However, assessing the

redundancy of a test case solely through static analysis presents challenges. For exam-

ple, consider a scenario where two subclasses inherit the same test case. Due to program

dependencies, each subclass may have different execution contexts (e.g., through test fix-

tures (D. J. Kim, Tsantalis, et al., 2021)) of the test case differently; thus, these test cases

cannot be considered redundant. Hence, in this RQ, our objective is to delve deeper into

the true redundancy of these uncovered redundant candidates by conducting a comparative

analysis of their code coverage and test oracles. By examining these quality attributes, we

aim to gain comprehensive insights into the true redundancy of these test cases. We believe

that this investigation will contribute significantly to enhancing the understanding of the

effectiveness of these redundant test candidates and their overall impact on testing quality.

Approach. We define test case redundancy as the condition where the coverage and test
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oracles are identical. We collect coverage and oracle following the approach from Sec-

tion 7.4.3. For complete coverage comparison, we compare branch, line and instruction. We

use Algorithm 2, to identify truly redundant tests from the initial Inheritance-Induced

Redundant Test Candidates . Note that, employing dynamic analysis to compare all

test executions can be resource-intensive, as not all redundant test cases are induced by

inheritance, which makes our static analysis an important intermediate step to focus on

Inheritance-Induced Redundant Test Executions . The algorithm proceeds through three

key steps. In step 1○, a set of redundant test candidates, along with their corresponding

coverage and oracle information, is provided as input. In step 2○, as shown in line 4, the

algorithm generates all possible pairwise combinations of the redundant candidates. For

each pair, it compares both their coverage and oracle information. A pair is deemed redun-

dant only when both coverage and oracle are found to be equivalent. This comparison is

represented by a triplet, denoted as < Test1, T est2, Boolean >, where the boolean value

is True if and only if both coverage and oracle are equal, and False otherwise. Given

that pairwise comparisons are employed among the redundant candidates, the number of

comparisons performed follows the formula n!(n−r)!
r! . In step 3○, as shown in line 5, we use

union-find (Wikipedia, 2023b) algorithm to establish the connected component relation-

ships within the pairwise comparisons. The output of the relationship is denoted as Group.

In step 4○, as shown in line 7-12, we examine the Group and flag component that has at

least two candidates to be redundant, i.e., have the same code coverage and oracle. For

example, given < A,B, False >, < A,C, False >, and < B,C, True >, the algorithm will

flag that the presence of A always leads to False, indicating that B and C are redundant,

while A is non-redundant.

Result. 45% of identified redundant test candidates are truly redundant. Table 7.4

provides an overview of the identified redundant test executions among the studied redun-

dant test candidates. We uncover that the majority of systems exhibit redundant tests,

with around 50% or more of the candidates falling into redundant tests in most systems.

Notably, Commons-C. initially contained the highest number of redundant test candidates.

However, through redundancy analysis, a significant portion of these candidates (86%) were
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Algorithm 2 Redundancy Analysis

Input: Array Coverage, Array Oracle

Output:
1: Global Var1: RedundantTest
2: Global Var2: noRedundantTest
3: procedure findRedundantTest(Coverage,Oracle)
4: Pairs ← doPairWiseCombination(Coverage, Oracle)
5: Group ← unionFind(Pair)
6: for group in Groups do
7: if len(group) > 1 then
8: RedundantTest ← group
9: else

10: noRedundantTest ← group
11: end if
12: end for
13: end procedure

identified as non-redundant, leaving only 14% as truly redundant. This may be related to

developers’ design and usage of inheritance in test cases. For example, in Commons-C.

developers commonly use test inheritance to help test diverse implementations of different

algorithms, e.g., sorting algorithms. Namely, these sorting algorithms share the same test

setup, i.e., create new lists, prior to testing the sorting algorithm. Developers use test

inheritance to reuse code and avoid duplication.

We uncover that on average 45% of the redundant test candidates are truly redundant

when considering both code coverage and test oracles, while the remaining 55% demonstrate

differences in either code coverage, test oracles, or both, making them non-redundant. These

results yield two important insights: Firstly, the significant presence of redundancy (45%)

among the identified candidates of redundant test cases suggests opportunities for eliminat-

ing tests that may not contribute to fault localization. Secondly, from another perspective,

the presence of a significant number (55%) of non-redundant test cases highlights the poten-

tial benefits of test case inheritance in not only facilitating code reuse but also diversifying

code coverage and assertions, enhancing testing practice.
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Answers to RQ2. We uncover that 45% of the redundant test candidates are truly

redundant tests, whereas the remaining test cases facilitate diversification of coverage

and assertion oracle.

7.5.3 RQ3: How Much Time does Inheritance Induced Redundant Test

Contribute to the Overall Test Execution Time?

As seen in RQ2, there is a large occurrence of redundant test cases exhibiting identical

coverage and oracle results. Considering the prevalence of these redundant tests, it is

important to investigate their impact on the overall test execution time and to what extent

to which these redundant test cases prolong the testing process.

Approach. Following Section 7.4.3, we employed Maven-Surefire to execute the redundant

test cases and collect the test execution time. Specifically, we use mvn clean test to

run all the test cases and mvn clean test -DTest=RedundantCandidates to sequentially

run redundant test cases for each studied project within a single JVM. Note that the test

execution time excludes the time for code compilation. To enhance the reliability of our

findings, we conducted data collection five times and calculated the average results.

Result.On average, the detected inheritance induced redundant tests contributes

to 14% of the total test execution time. Table 7.4 provides detailed insights into the

execution time of redundant tests and the total number of tests for different studied sys-

tems. Among the studied systems, 11 out of 15 systems contained redundant test cases.

The presence of these redundant tests had a large impact on the overall test execution time,

constituting approximately 14% of the total time. As anticipated, the extent to which re-

dundant test cases contributed to the execution time was closely related to their proportion

within the total number of test cases. For example, systems such as Feign and Commons-

C. exhibited a higher overall execution time due to a substantial number of redundant test

cases. Interestingly, for Commons-C., although it has many redundant candidates (e.g.,

2677), it has fewer truly redundant tests (e.g., 385), which is the opposite for other systems

like Feign, where 100% of candidates are truly redundant. More importantly, we find that
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Table 7.4: The prevalence of redundant tests and their impact on test execution time.
Candidates refers to Inheritance-Induced Redundant Test Candidates and Redundant refers
to true redundant test cases.

# Test Execution Test Execution Time (seconds)

Project Candidates Redundant Total Tests Redundant

Feign 291 291 (100%) 183.996 146.428 (79.6%)
Commons-C. 2677 385 (14%) 16.076 4.373 (27.2%)
Avro 106 87 (82%) 215.396 36.988 (17.2%)
Shiro 65 30 (46%) 86.845 13.696 (15.8%)
Commons-M. 817 415 (51%) 75.371 5.377 (7.1%)
Rocketmq 2 2 (100%) 267.950 1.974 (0.7%)
Pdfbox 12 8 (67%) 66.070 0.257 (0.4%)
Biojava 86 63 (73%) 774.207 2.615 (0.3%)
Iotdb 10 4 (40%) 1362.134 3.540 (0.3%)
Maven 36 18 (50%) 48.927 0.103 (0.2%)
Dubbo 201 99 (49%) 1322.386 0.493 (0.1%)
Commons-L. 9 0 N/A N/A
Graphhopper 92 0 N/A N/A
Shenyu 26 0 N/A N/A
Zookeeper 42 0 N/A N/A

Average % Redundancy in Candidates % Contribution to Execution Time
45% 14%

while Commons-C. has a lower percentage of truly redundant tests (e.g., 17.2%) compared

to Commons-M. and Avro, its redundant test execution contributes much more to the over-

all execution time. Therefore, the impact of redundant tests depends on the test design,

and some systems may be more affected by test execution time. This finding also under-

scores the potential benefits of removing redundancy, as it has the potential to significantly

improve testing resources.

Answers to RQ3. We uncover that 14% of total test execution time is spent on

redundant test cases that do not provide any additional benefits.

Discussion. Expanding upon the findings of our RQ3, it becomes evident that using inher-

itance in the test code leads to an increased occurrence of redundant test execution. Such

redundancies are not immediately noticeable in the test code, as they can be inherited from

its superclass. Our methodology allows for the detection of such redundancies caused by
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inheritance, providing developers with awareness of potential bottlenecks in test code. De-

velopers can bypass these redundancies by using the build system (Maven) to exclude test

cases from execution. Another bypassing strategy is to override the inherited test cases with

another test case in the subclass annotated with @Ignore (Apache Ignite - 63b9e1653d), as

often shown in prior work (D. J. Kim, Yang, et al., 2021). However, these strategies do

not completely remove redundancies in the test code; they only skip their execution, over-

looking the complexity of redundancy removal. In RQ4, we elaborate on the complexity of

removing redundancies related to inheritance test cases.

7.5.4 RQ4: Assessing the Feasibility of Reducing Inheritance-Induced

Redundant Test Execution?

In prior RQs, we uncovered many test redundancies. Consequently, the next natural

step is to eliminate these redundancies that do not contribute effectively to fault localization

capabilities in order to improve test execution time. While developers could temporarily

bypass such tests, the removal of redundant test cases within an inheritance context presents

a more significant challenge. As observed in RQ1, in extreme cases, a test case can be

inherited and executed as many as 96 times, demonstrating complex coupling and making

the task of redundancy removal challenging. Hence, in this RQ, we conduct an empirical

analysis to understand the feasibility of removing redundant test cases in inheritance. Our

aim is to provide insights to aid future research in the development of test case minimization

tools.

Approach. We conduct a feasibility analysis because, unlike previous works on test case

minimization that typically involve straightforward removal of redundant test cases (Di Nardo

et al., 2015; Leitner, Oriol, Zeller, Ciupa, & Meyer, 2007; Pan, Ghaleb, & Briand, 2023),

the scenario of test case redundancies related to inheritance contains complex coupling and

necessitates careful refactoring decisions. Hence, we conduct two analysis to study the

challenges of removing inheritance induced redundant test cases. We list them below:

• RQ4(A). Can inherited test cases become both redundant and non-redundant test
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Figure 7.3: Overlap between Redundant and Non-redundant Tests in Test Execution.
The overlapping region (orange) indicates that an inherited test case is redundant in one
subclass but non-redundant in another subclass. The one figures on the left correspond
to five systems, while the two figures on the right correspond to the rest.

executions?

• RQ4(B). How far are the redundant test cases from their definition of the superclasses

in the inheritance trees?

RQ4(A): Can inherited test cases contain both redundant and non-redundant

groups of tests?

In RQ3, We uncovered that 45% of identified redundant candidates are truly redundant,

whereas the remaining is non-redundant, i.e., through code coverage or test oracle. In this

RQ, we hypothesize that it is possible for inherited test cases to be redundant in one context,

i.e., redundant in one subclass but not redundant in another subclass. The existence of

such a complex scenario will give us an initial glimpse of the challenges for efficient test case

minimization.

Approach. We modify Algorithm 2 to check if the equivalent group contains both redun-

dant test cases and non-redundant test cases resulting from the same Inheritance-Induced

Redundant Test Candidates, and denote this as Co-existence group.

Result. Out of 1,402 detected redundant tests, 588 (41%) test cases co-occurs

with non-redundant tests. As illustrated in Figure 7.3, inherited tests can result in

both redundant and non-redundant test executions. In other words, inheriting a test case

145



results in redundancies in one subclass, but not in another subclass, due to the different

execution contexts specified by developers, e.g., through test fixtures. Specifically, our

analysis reveals that among the 1,402 detected truly redundant test cases, 588 test cases

actually co-exist with their non-redundant test case counterparts. Notably, 5 out of 15

studied systems (i.e., Avro, Commons-C., Commons-M., Dubbo, and Shiro) encompass this

co-existence of redundancy and non-redundancy in the inherited test cases. This suggests

that even for the same test case defined in a superclass, inheritance of this test case does

always cause redundancy, and some may be utilized in different subclass contexts (e.g., to

ease maintenance and improve coverage). However, whether test inheritance is beneficial

to test design remains a future research problem. While it may improve code coverage, it

can also increase code complexity, which may become difficult to maintain in the long run.

Nonetheless, the variability in the nature of redundancy may be related to the design of

test cases in different systems. These findings highlight a complex scenario for effective test

case minimization.

RQ4(B): How far are the redundant test cases from their definition of the

superclasses in the inheritance trees?

As seen in RQ4(A), Inheritance-Induced Redundant Test Candidates can be found in

many different subclass contexts, co-existing with non-redundant test cases. In this RQ,

we delve into the distance of these executable test cases in the subclass, i.e., where the

test case is executed, from their superclass, i.e., where the test case is declared. Analyzing

class distance will reveal the potential existence of complex hierarchical relationships, i.e.,

how many subclasses do these inherited test cases impact through inheritance? Analyzing

such distance is beneficial to understand the challenges of removing redundant tests that

impact multiple classes.

Approach. We investigate class distance in all of the Redundancy-Inducing Inheritance

(e.g., 4,472 test candidates), including redundant test, non-redundant test, and co-existence

of both. To analyze class distance, we leverage our inheritance tree from Section 7.4.1. We

use the shortest-path algorithm (Wikipedia, 2023a) to find the path it takes to reach the
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Figure 7.4: Analysis of distance in the inheritance tree between the parent test case and
the child test.

impacted subclass from a superclass.

Result. Inherited test cases that lead to both redundant and non-redundant test

executions in subclasses exhibit a highly variable number of inheritance distance

from superclass. As shown in Figure 7.4, majority of redundant tests (728/812 - 90%)

are executed by the direct subclass, whereas remaining 10% have executions that executed

by two subclasses downstream. The finding shows that these redundant test cases may

be easier to resolve. Interestingly, we find that for tests that co-exist with non-redundant

tests, there are more diverse sets of class distances. In particular, some non-redundant

tests may be executed up to five class distances in the downstream subclass. Namely, for

systems Avro, Commons-C., Commons-M., Dubbo, and Shiro, which contains co-existence

of redundant and non-redundant tests, there is a more complex inheritance distance. This

reveals that inheritance relationships within Inheritance-Induced Redundant Test Executions
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may have significant variability in hierarchical structures. Specifically, it is possible that

test cases designed with such complexity in class distance are less likely to be redundant,

as they impact a higher number of subclasses, whereas much simpler class hierarchies

have a higher tendency to be redundant. Nonetheless, the presence of a complex hierarchy

constitutes additional complexity that makes test case minimization challenging, as it may

impact many downstream subclasses.

Answers to RQ4. Removing redundant tests need careful preservation of code cov-

erage. This is particularly important when dealing complex inheritance relationships,

where co-existence of both redundant and non-redundant can contribute to code cover-

age and may impact multiple classes.

Discussion. Expanding upon the findings of our study, which demonstrate a significant

overlap between redundant and non-redundant test cases, it becomes evident that the re-

moval of redundant test cases, as often seen in traditional test case reduction strategies, may

not represent a valid strategy for inherited test cases. Our results underscore the complexity

of the issue. In other words, while redundancies must be addressed, it is also apparent that

certain test cases leverage inheritance to enhance coverage and assertions, indicating their

value in the testing process. Consequently, this raises an interesting question: How can

we reorganize the test interfaces to reduce redundancies and improve test maintainability?

Namely, our results show the possibility of exploring higher-level architectural refactoring

to enhance test quality. Nevertheless, our approach provides initial insights to eliminate

the impact on test execution overhead.

7.6 Threats to Validity

Internal Validity. Firstly, our findings depend on the accuracy of the third-party tool

(e.g., spoon) to mine Redundancy-Inducing Inheritance and Inheritance-Induced Redundant

Test Candidates in the source code and also the accuracy of the dynamic analysis tool

(e.g., Jacoco) to execute Inheritance-Induced Redundant Test Executions . It is important

148



to note that validating the precision of these third-party tools is not within the scope of

our responsibility, However, both spoon and Jacoco are widely used in prior research and

in practice and we did not find any false positives during our manual examination of the

results.

External Validity. Our studied systems are all open source systems implemented in Java,

so the result may not be generalized to all systems. However, to minimize the threat,

we follow a set of criteria to popular systems from various domains, large in scale, and

actively maintained. Within this criteria we randomly sample 15 studied systems to obtain

diverse studied systems. However, we acknowledge that the three projects containing over

85% of the redundancy candidates might indicate a concentration of the issue in certain

projects. Nevertheless, the representatives of the entire open-source Java project ecosystem

is a complex matter. Our intent was not to claim that this issue is uniformly distributed

across all projects but to highlight that our findings are dependent on how different systems

use inheritance in their test code design. Hence, our work may not be applicable to all

systems, and the impact may be more significant in larger projects. Although our tool is

designed for analyzing Java systems, we have made our source code available, where our

implementations may inspire writing similar analyses for other programming languages.

We encourage future studies to replicate our experiments on other systems and projects

implemented in different programming languages.

Construct Validity. Our dynamic analysis encountered some test failures and environ-

mental errors, resulting in un-executed test cases and potentially under-representing our

analysis for Inheritance-Induced Redundant Test Executions . However, the number of un-

executed tests is small. There may be bugs in the tools that we use. For example, prior to

JaCoCo version 0.8.10 (i.e., most updated version), the report-aggregate plugin contained a

bug where it only collects coverage of dependent module except for its current module (Ja-

coco, 2013). We noticed the issue and migrated to the fixed version of Jacoco. However,

there may still be undiscovered bugs in the tools that can affect the results. Our technique

leverage functionality from third-party software, such as Spoon and Jacoco. We lever-

age Spoon to extract Redundancy-Inducing Inheritance and Inheritance-Induced Redundant
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Test Candidates , whereas we leverage Jacoco to identify Inheritance-Induced Redundant

Test Executions . Moreover, for extracting assertion of the test cases we also rely on the

Spoon API. It is important to note that validating the precision of these third-party tools

is not within the scope of our work. However, our manual investigation of the results from

Redundancy-Inducing Inheritance achieved 100% precision.

7.7 Implications & Contribution

Based on our empirical findings, we present actionable implications and future research

directions for researchers and practitioners.

7.7.1 Discussion and Implication for Researchers.

R1: Future research should explore test removal while preserving code coverage,

as inheritance-induced redundant test cases may overlap with non-redundant

tests. While our analysis revealed many Inheritance-Induced Redundant Test Executions ,

in RQ4 we also found a 41% overlap with tests that contribute to increased/different code

coverage. This presents a challenge in determining how to remove redundant test execu-

tions while preserving non-redundant test cases that aim to increase code coverage. The

co-existence of redundant and non-redundant tests complicates test case reduction, as both

types of tests serve different purposes. Redundant test cases may increase execution time

and hinder fault localization capability, while non-redundant test cases play a role in in-

creasing code coverage. Hence, future research is necessary to comprehend the trade-offs

associated with using inheritance to achieve code coverage and its potential increase in

redundancy.

R2: Further research may investigate trade-offs between using inheritance to

make tests reduce maintenance cost and not using inheritance to reduce test case

redundancies. While inheritance in test (apache dev, 2023; stackoverflow, 2013a, 2020) is

a controversial practice, we find that 40% amongst 503 sampled systems utilize inheritance

in test code, which is widely adopted in practice. In particular, projects like Commons-

collections and Commons-math, despite their heavy reliance on inheritance, exhibit fewer
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redundancies, hinting at the compactness and superior quality of their tests. This opens

the door to future research avenues, exploring the trade-offs between employing inheritance

and abstaining from it. Future research may also delve into quality attributes, such as the

time required for activities like bug fixing, coverage enhancement, and feature addition,

comparing tests that employ inheritance to those that do not. Moreover, for test cases that

result in redundancies, future studies may also investigate how they manifest in the code

and provide preventative measures.

R3: In general, future research is needed to understand how to remove complex

inheritance relationships in the test code. In RQ4, we revealed that redundant tests

may exhibit complex inheritance hierarchy relationships. Removing redundant tests in such

scenarios poses a challenge, as redundancy impacts multiple class relationships. Further

research is needed to explore effective strategies and tools to refactor these complex inheri-

tance relationships in general, which may also help remove inheritance-induced redundant

test cases. Namely, our paper show the possibility of exploring higher-level architectural

refactoring to enhance test quality.

R4: We uncovered the widespread existence of inheritance-induced redundant

test cases. How these test cases impact fault localization can be further explored

in future research. As redundant test cases are inherited from other test classes, test

failures may be difficult to localize using fault localization. For instance, in Apache-Avro,

the TestProtocolSpecific class contains 15 test cases that are inherited and executed by five

different subclasses. Interestingly, all 15 test cases fail in one subclass while passing in the

remaining four, which might be due to specific bugs associated with the test setup in that

particular subclass. As these failures are not indicative of source code defects, they could

potentially mislead developers and fault localization algorithms, which attempt to localize

source code defects (Wong, Gao, Li, Abreu, &Wotawa, 2016), causing them to identify faults

incorrectly. We encountered a similar scenario in AbstractOrderedBidiMapDecoratorTest

from Commons-collections. Considering that Commons-collections is part of the defects4j

benchmark and contains many inheritance-induced dependencies, future studies could also

investigate how eliminating such redundancies can improve fault localization techniques
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focus on distinct failure.

7.7.2 Discussion and Implication for Practitioners.

P1: Practitioners need better support for detecting repetitive test candidates.

Inheritance is a double-edged sword, while it may improve test compactness and maintain-

ability, it can also introduce test case redundancies. For example, as seen in RQ2, while

many redundant test cases are caused by inheritance, they are related to a small subset of

parent test cases. Furthermore, some test cases may repeat up to 93 times due to inheri-

tance. Therefore, it would be beneficial to raise awareness among developers about these

issues. Future work should provide tools to assists developers to be aware of the redundant

test cases.

7.8 Chapter Summary

This paper presents the first empirical study on test case redundancy caused by in-

heritance. We propose a hybrid approach that combines static and dynamic analysis to

detect and verify inheritance-induced redundant test cases. We apply our approach to 15

open-source Java systems. We find that (1) Despite controversies surrounding test inheri-

tance, non-negligible tests (14%) of test case executions are redundant. (2) The redundant

test cases take, on average, 13% of the total execution, which adds additional test execu-

tion overhead. (3) Many inherited test cases (40%) are redundant in some subclass but

non-redundant in others, making it difficult to eliminate redundancy while preserving code

coverage. This complexity calls for careful refactoring decisions to address the issue ef-

fectively. Finally, we also discuss challenges and future research directions on resolving

inheritance-related issues.
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Chapter 8

Conclusion and Future Work

This chapter summarizes the main ideas that are presented in this thesis. In addition,

we propose future work to leverage program analysis to help improve test quality and

maintainability.

8.1 Thesis Contribution

Despite extensive research on various aspects of test automation, including automated

test prioritization, fault localization, and program repair, the design of tests remains an

under-explored area. The software industry needs robust standards for test design and

maintenance, which can significantly enhance overall software quality. This thesis aims

to improve the quality of test code through effective design and maintenance practices in

three aspects: 1) Re-evaluate current knowledge of test design issues and analyze their

applicability in software industries, 2) Provide insights on test design practices based on

modern software test automation frameworks to assist developers who may be facing similar

issues in their software projects, and 3) Understand reusability in test code design and its

impact on the effectiveness of test code.

For (1), we have one research outcome aimed at improving the current perception and
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applicability of “test smell” (D. J. Kim, Chen, & Yang, 2021b). This study includes a man-

ual classification of real-world open-source projects, providing a comprehensive catalogue of

why and how developers resolve test smells during software evolution. We also investigate

whether test smell addition or removal practices impact defect density. Our findings indicate

that developers actively remove only certain types of test smells, and many test smells may

not have a significant relationship with post-release defects, as shown by our explainable

logistic regression model. Our study provides a systematic understanding of practitioners’

perceptions of “test smell”, which could be valuable for developing automated tool supports.

For (2), we have two research outcomes aimed at understanding how the usability and

re-configurability of modern automated testing frameworks impact test design. Our first

empirical study focuses on the JUnit testing framework (D. J. Kim, Tsantalis, et al., 2021).

We examine how annotation metadata can improve test design and identify annotation

misuses that negatively impact test design. Additionally, we provide a comprehensive clas-

sification of test design practices that will serve as a valuable insights for developers. In

the second empirical study, we delve into a controversial annotation API, @Ignore, which

enables developers to disable tests to facilitate continuous deployment (D. J. Kim, Yang, et

al., 2021). We propose an annotation miner capable of tracking the lifecycle of tests that

undergo multiple rounds of disabling and re-enabling, not only through @Ignore annotations

but also through code comments. Our objective is to understand why tests are disabled and

re-enabled, aiming to provide better insights on maintainability challenges that may arise

during testing process. Our classification on reasons behind why test become disabled and

re-enabled reveals that while hard-to-fix bugs are the majority of the culprits, many tests

remain disabled without validating software quality. Moreover, ad-hoc usage of disabling

suggests that maintaining software quality involves trade-offs: if a bug can be fixed quickly,

the test should be re-enabled promptly. However, we find that due to poor issue tracking

practices for disabled tests, many tests remain disabled.

For (3), we present one research outcome aimed at detecting how using inheritance

to achieve test case reusability can lead to redundancies in test execution. Our study

demonstrates that inheritance is commonly used to achieve reusability in test code. We
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provide an approach to assess the prevalence of redundancies caused by test inheritance.

In conclusion, we summarize the contributions of this thesis as follows:

• We proposed a classification for why developers remove test smells and their effects

on software quality, particularly in terms of defect-proneness. We also build regres-

sion model to find the relationship between test smell addition/removal and software

quality, in terms of defect-proneness (Chapter 4).

• We performed an empirical study on how developers leverage test annotations to main-

tain test code quality (e.g., readability, test flakiness, test performance, obsolete test).

We proposed classification on usage and misusages of test annotations (Chapter 5).

• We performed an empirical research on the prevalence, evolution, and maintenance

of disabling tests in practice. Studying why developers disable test code may help

developers understand the source of potential technical debt in the test code that can

direct future test maintainability practice (Chapter 5).

• We propose a hybrid approach based on static and dynamic test analysis to identify

and locate test case redundancies introduced by inheritance. These redundancies can

increase test execution time without additional fault-revealing capabilities. Our work

suggests future research directions to provide better guidance to developers on using

inheritance to prevent pitfalls such as redundancies (Chapter 6).

8.2 Future Work

This thesis represents a significant step towards improving test design and maintainabil-

ity practices. However, there are numerous open challenges and research opportunities that

can complement this work and contribute to developing comprehensive guidelines for test

maintainability. Our main contribution is that, by enhancing test quality, these efforts can

ultimately improve software quality as a whole. Hence, we discuss some potential directions

for future work.
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Providing complete automatic test design issue detection, recommendation

and refactoring suggestions in Java-based system. Previous studies aimed to identify

issues within test design and maintenance using a decade-old research perspective on “test

smell”. In this thesis, we not only re-evaluate “test smell” (Deursen et al., 2001), but also

propose several research directions for assessing the impact of modern test automation tools

on test design practices. In this thesis, we have uncovered test design practices adopted

by developers in open-source projects to provide insights on how to improve test design

and maintenance practices. However, there remains a lack of automated tool support in-

tegrated into IDE solutions. Future research will explore recommendations and automated

refactoring tools to better assist developers in maintaining test quality.

Extending test design issues in large-scale proprietary, cross-domain, and

cross-language systems. In this thesis, we take a preliminary step in investigating test

design issues stemming from the JUnit in open-source projects. We find that while JUnit

can enhance test maintainability, there are instances of ad-hoc usage and misuse due to the

configurable nature of its annotation APIs. Looking forward, our aim is to explore whether

proprietary software systems face similar or different challenges, and whether they could

benefit from recommendation or refactoring tools. Moreover, we aim to perform user studies

to evaluate whether our developers could truly benefit from automated tool supports that

aims to improve test maintenance from Junit framework.

Provide new benchmark on test code generation adhering best practices.

Previous studies on automatic test suite generation using Evosuite (Fraser & Arcuri, 2011)

and Randoop (Pacheco & Ernst, 2007) have demonstrated that these tools can achieve high

test quality by attaining both high coverage and mutation scores, as well as the ability to

detect faults (Almasi et al., 2017; Fraser & Arcuri, 2015). Despite this, generated unit tests

pose a significant maintenance burden, making them harder to debug when included in a

project (Ceccato et al., 2015), due to their poorer readability and maintainability compared

to human-written counterparts.

Moreover, with the rise of large language models and the increasing ease of code gen-

eration tasks, it becomes paramount to validate the quality of generated code, specifically
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test code in the context of the thesis. In future studies, we may provide benchmarks for

techniques that validate the quality of automatically generated test code, assessing factors

such as extensibility, maintainability, and readability.

Provide empirical study on the trade-offs between re-usability and maintain-

ability. As seen in Chapter 6, while inheritance enables test re-usability and extensibility,

it also leads to redundancy. However, some projects, despite heavily relying on inheritance,

exhibit fewer redundancies, suggesting the compactness and superior quality of their test

code. Future research should investigate how inheritance manifests in test code and de-

termine when it should be used to improve maintainability or avoided to prevent design

issues. Specifically, since inheritance can be a source of test debt by achieving re-usability

at the expense of redundancy, future studies should also explore the best ways to achieve

re-usability in test code.
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Supplementary Figure
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Table A.1: The statistics of the regression models showing additive defect ex-
plainability of PD(TEST PRODUCT) + PR(TEST PROCESS) metrics over the
BASE(LOC+CHURNS+PRE+COUPLING). Tot. χ2 shows the total explanatory power
of the studied model. We also show the proportion of χ2 contributed by each metric.

project modelType Metrics χ2 Tot. χ2 AUC (%)

Accumulo BASE LOC 33.05% 188.85 0.68
pre bug 20.8%
deletedLine 21.54%
fileChurn 8.52%
ts coupling 13.57%
tt coupling 2.52%

BASE+PD ts coupling 40.5% 63.25 0.71 (3.9%)
tt coupling 7.52%
Conditional.Test.Logic 6.11%
Constructor.Initialization 16.76%
Redundant.Assertion 6.75%
Eager.Test 6.17%
Duplicate.Assert 7.07%

BASE+PD+PR ts coupling 31.71% 80.79 0.73 (6.4%)
tt coupling 5.89%
Conditional.Test.Logic 4.78%
Constructor.Initialization 13.12%
Redundant.Assertion 5.28%
Eager.Test 4.83%
Duplicate.Assert 5.54%
Duplicate.Assert.Added 4.95%
Unknown.Test.Added 10.78%
Eager.Test.Removed 5.98%

Bookkeeper BASE LOC 56.96% 177.81 0.8
pre bug 5.12%
codeChurn 22.63%
fileChurn 4.8%
ts coupling 10.48%

BASE+PD ts coupling 25.04% 74.40 0.84 (5.3%)
Assertion.Roulette 9.16%
Constructor.Initialization 20.52%
Lazy.Test 5.54%
Unknown.Test 23.86%
Resource.Optimism 15.89%

BASE+PD+PR ts coupling 16.61% 112.12 0.87 (8.8%)
Assertion.Roulette 6.08%
Constructor.Initialization 13.62%
Lazy.Test 3.67%
Unknown.Test 15.83%
Resource.Optimism 10.54%
Exception.Catching.Throwing.Added 4.4%
Lazy.Test.Added 3.75%
Unknown.Test.Added 7.85%
Magic.Number.Test.Added 5.82%
General.Fixture.Removed 3.85%
Sleepy.Test.Removed 7.97%
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Table A.2: The statistics of the regression models showing additive defect ex-
plainability of PD(TEST PRODUCT) + PR(TEST PROCESS) metrics over the
BASE(LOC+CHURNS+PRE+COUPLING). Tot. χ2 shows the total explanatory power
of the studied model. We also show the proportion of χ2 contributed by each metric.

project modelType Metrics χ2 Tot. χ2 AUC (%)

Camel BASE LOC 76.33% 276.76 0.74
pre bug 4.76%
codeChurn 7.79%
ts coupling 11.12%

BASE+PD ts coupling 34.6% 88.98 0.75 (1.3%)
Assertion.Roulette 15.11%
Conditional.Test.Logic 6.02%
General.Fixture 8.2%
Mystery.Guest 14.6%
Redundant.Assertion 8.01%
Duplicate.Assert 7.82%
Resource.Optimism 5.64%

BASE+PD+PR ts coupling 31.38% 104.29 0.75 (1.6%)
Assertion.Roulette 12.57%
Conditional.Test.Logic 5.59%
General.Fixture 7.23%
Mystery.Guest 12.42%
Redundant.Assertion 5.82%
Duplicate.Assert 5.81%
Resource.Optimism 4.86%
Print.Statement.Added 4.47%
Print.Statement.Removed 4.86%
Eager.Test.Removed 4.99%

Cassandra BASE LOC 43.38% 228.50 0.75
pre bug 33.02%
codeChurn 6.37%
fileChurn 8.95%
ts coupling 5.72%
tt coupling 2.57%

BASE+PD ts coupling 69.01% 18.93 0.76 (1.1%)
tt coupling 30.99%

BASE+PD+PR ts coupling 30.73% 42.50 0.78 (3.3%)
tt coupling 13.8%
IgnoredTest.Added 11.15%
Conditional.Test.Logic.Removed 33.06%
Exception.Catching.Throwing.Removed 11.25%
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Table A.3: The statistics of the regression models showing additive defect ex-
plainability of PD(TEST PRODUCT) + PR(TEST PROCESS) metrics over the
BASE(LOC+CHURNS+PRE+COUPLING). Tot. χ2 shows the total explanatory power
of the studied model. We also show the proportion of χ2 contributed by each metric.

project modelType Metrics χ2 Tot. χ2 AUC (%)

Flink BASE LOC 46.04% 1396.14 0.76
pre bug 35.08%
codeChurn 6.61%
deletedLine 0.29%
fileChurn 10.41%
ts coupling 1.56%

BASE+PD ts coupling 19.61% 111.28 0.77 (1.0%)
Conditional.Test.Logic 9.81%
Exception.Catching.Throwing 4.96%
General.Fixture 12.99%
Mystery.Guest 22.05%
Lazy.Test 3.62%
Unknown.Test 20.69%
Magic.Number.Test 6.27%

BASE+PD+PR ts coupling 16.27% 134.14 0.77 (1.5%)
Conditional.Test.Logic 8.14%
Exception.Catching.Throwing 4.12%
General.Fixture 10.77%
Mystery.Guest 18.29%
Lazy.Test 3.0%
Unknown.Test 17.16%
Magic.Number.Test 5.2%
EmptyTest.Added 4.28%
Mystery.Guest.Added 3.67%
Duplicate.Assert.Removed 3.08%
Magic.Number.Test.Removed 6.01%

Zookeeper BASE LOC 50.8% 79.69 0.79
pre bug 36.45%
codeChurn 12.75%

BASE+PD Resource.Optimism 100.0% 4.90 0.8 (1.7%)
BASE+PD+PR Duplicate.Assert.Removed 25.57% 16.76 0.83 (5.4%)

Unknown.Test.Removed 74.43%

161



Table A.4: The statistics of the regression models showing additive defect ex-
plainability of PD(TEST PRODUCT) + PR(TEST PROCESS) metrics over the
BASE(LOC+CHURNS+PRE+COUPLING). Tot. χ2 shows the total explanatory power
of the studied model. We also show the proportion of χ2 contributed by each metric.

project modelType Metrics χ2 Tot χ2 AUC (%)

Hive BASE LOC 72.11% 500.82 0.64
pre bug 1.76%
codeChurn 6.96%
ts coupling 5.67%
tt coupling 13.5%

BASE+PD ts coupling 14.86% 191.14 0.66 (1.6%)
tt coupling 35.38%
Conditional.Test.Logic 2.58%
EmptyTest 3.62%
General.Fixture 9.66%
Lazy.Test 12.53%
Duplicate.Assert 4.16%
Unknown.Test 9.21%
IgnoredTest 2.09%
Resource.Optimism 5.91%

BASE+PD+PR ts coupling 10.94% 259.52 0.67 (3.3%)
tt coupling 26.05%
Conditional.Test.Logic 1.9%
EmptyTest 2.67%
General.Fixture 7.12%
Lazy.Test 9.23%
Duplicate.Assert 3.07%
Unknown.Test 6.78%
IgnoredTest 1.54%
Resource.Optimism 4.35%
Conditional.Test.Logic.Added 1.56%
Mystery.Guest.Added 3.57%
Duplicate.Assert.Added 5.94%
IgnoredTest.Added 1.84%
Redundant.Assertion.Removed 2.27%
Sensitive.Equality.Removed 2.84%
Eager.Test.Removed 2.08%
Duplicate.Assert.Removed 1.62%
Unknown.Test.Removed 3.15%
Magic.Number.Test.Removed 1.48%

Wicket BASE LOC 89.35% 103.02 0.78
fileChurn 6.56%
tt coupling 4.09%

BASE+PD tt coupling 14.08% 29.95 0.8 (2.9%)
Conditional.Test.Logic 48.84%
Eager.Test 23.95%
Unknown.Test 13.13%

BASE+PD+PR Conditional.Test.Logic 22.75% 48.82 0.82 (5.6%)
Eager.Test 12.09%
Unknown.Test 7.92%
Assertion.Roulette.Added 30.48%
Conditional.Test.Logic.Added 17.51%
Exception.Catching.Throwing.Added 9.26%
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Table A.5: The statistics of the regression models showing additive defect ex-
plainability of PD(TEST PRODUCT) + PR(TEST PROCESS) metrics over the
BASE(LOC+CHURNS+PRE+COUPLING). Tot. χ2 shows the total explanatory power
of the studied model. We also show the proportion of χ2 contributed by each metric.

project modelType Metrics χ2 Tot χ2 AUC (%)

Kafka BASE LOC 58.84% 848.39 0.8
pre bug 28.83%
codeChurn 2.0%
fileChurn 4.69%
ts coupling 4.52%
tt coupling 1.13%

BASE+PD ts coupling 31.14% 123.05 0.81 (1.6%)
tt coupling 7.76%
Exception.Catching.Throwing 19.13%
Mystery.Guest 10.74%
Redundant.Assertion 4.45%
Lazy.Test 9.81%
Duplicate.Assert 6.8%
Unknown.Test 4.14%
Magic.Number.Test 6.02%

BASE+PD+PR ts coupling 28.13% 136.23 0.82 (2.6%)
tt coupling 7.01%
Exception.Catching.Throwing 17.28%
Mystery.Guest 9.7%
Redundant.Assertion 4.02%
Lazy.Test 8.86%
Duplicate.Assert 6.14%
Unknown.Test 3.74%
Magic.Number.Test 5.44%
Exception.Catching.Throwing.Added 3.57%
Exception.Catching.Throwing.Removed 2.82%
Print.Statement.Removed 3.28%

Karaf BASE LOC 59.15% 10.26 0.64
tt coupling 40.85%

BASE+PD tt coupling 9.8% 42.78 0.75 (14.4%)
General.Fixture 14.16%
Print.Statement 16.85%
Sleepy.Test 47.66%
Unknown.Test 11.53%

BASE+PD+PR tt coupling 6.16% 72.25 0.82 (28.4%)
General.Fixture 8.53%
Print.Statement 9.76%
Sleepy.Test 30.24%
Unknown.Test 6.33%
Eager.Test.Added 5.87%
IgnoredTest.Added 9.52%
Magic.Number.Test.Added 9.87%
General.Fixture.Removed 13.73%

Hadoop BASE LOC 100.0% 6.72 0.82
BASE+PD Duplicate.Assert 100.0% 7.21 0.96 (14.1%)
BASE+PD+PR Duplicate.Assert 50.29% 14.74 0.97 (17.7%)

Duplicate.Assert.Added 49.71%
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Table A.6: The statistics of the regression models showing additive defect ex-
plainability of PD(TEST PRODUCT) + PR(TEST PROCESS) metrics over the
BASE(LOC+CHURNS+PRE+COUPLING). Tot. χ2 shows the total explanatory power
of the studied model. We also show the proportion of χ2 contributed by each metric.

project modelType Metrics χ2 Tot χ2 AUC (%)

Cxf BASE LOC 70.8% 217.57 0.74
pre bug 17.85%
deletedLine 3.51%
fileChurn 3.72%
ts coupling 1.84%
tt coupling 2.27%

BASE+PD ts coupling 9.09% 44.10 0.77 (3.4%)
tt coupling 11.19%
Assertion.Roulette 47.17%
Constructor.Initialization 12.22%
Exception.Catching.Throwing 20.34%

BASE+PD+PR ts coupling 5.97% 67.19 0.78 (5.0%)
tt coupling 7.34%
Assertion.Roulette 30.96%
Constructor.Initialization 8.02%
Exception.Catching.Throwing 13.35%
Sensitive.Equality.Added 10.22%
Exception.Catching.Throwing.Removed 8.44%
Eager.Test.Removed 9.34%
IgnoredTest.Removed 6.36%

Groovy BASE LOC 100.0% 6.72 0.82
BASE+PD Duplicate.Assert 100.0% 7.21 0.96 (14.1%)
BASE+PD+PR Duplicate.Assert 50.29% 14.74 0.97 (17.7%)

Duplicate.Assert.Added 49.71%
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Table A.7: The effect size of the test smell metrics on post-release defects. Effect is measured
by setting the subject metric to 110 % and 150 % of it mean value, while other metrics are
kept at their mean values. Bolded numbers indicate a positive increase in effect.

project Metric Group Individual Metric 110 % ↑ 150 % ↑

Accumulo TEST PRODUCT Conditional.Test.Logic 0.12 % 0.62 %
Constructor.Initialization -0.07 % -0.34 %
Redundant.Assertion -0.04 % -0.18 %
Eager.Test -0.4 % -1.97 %
Duplicate.Assert -0.18 % -0.91 %

TEST PROCESS Eager.Test.Removed -0.01 % -0.04 %
Duplicate.Assert.Added 0.01 % 0.03 %
Unknown.Test.Added -0.01 % -0.03 %

Hive TEST PRODUCT Conditional.Test.Logic 0.08 % 0.41 %
EmptyTest 0.01 % 0.03 %
General.Fixture 0.05 % 0.27 %
Lazy.Test -0.25 % -1.22 %
Duplicate.Assert 0.05 % 0.26 %
Unknown.Test 0.12 % 0.58 %
IgnoredTest 0.01 % 0.06 %
Resource.Optimism 0.07 % 0.33 %

TEST PROCESS Redundant.Assertion.Removed -0.01 % -0.01 %
Sensitive.Equality.Removed 0.01 % 0.04 %
Eager.Test.Removed 0.01 % 0.01 %
Duplicate.Assert.Removed 0.01 % 0.01 %
Unknown.Test.Removed 0.06 % 0.29 %
Magic.Number.Test.Removed -0.01 % -0.06 %
Conditional.Test.Logic.Added -0.01 % -0.01 %
Mystery.Guest.Added 0.01 % 0.03 %
Duplicate.Assert.Added 0.01 % 0.04 %
IgnoredTest.Added 0.01 % 0.03 %

Wicket TEST PRODUCT Conditional.Test.Logic 0.01 % 0.01 %
Eager.Test 0.01 % 0.03 %
Unknown.Test 0.01 % 0.01 %

TEST PROCESS Assertion.Roulette.Added -0.01 % -0.01 %
Conditional.Test.Logic.Added -0.01 % -0.01 %
Exception.Catching.Throwing.Added 0.01 % 0.01 %

Cassandra TEST PROCESS Conditional.Test.Logic.Removed -0.01 % -0.03 %
Exception.Catching.Throwing.Removed 0.01 % 0.07 %
IgnoredTest.Added -0.01 % -0.01 %

Bookkeeper TEST PRODUCT Assertion.Roulette -0.17 % -0.82 %
Constructor.Initialization 0.33 % 1.81 %
Lazy.Test -0.22 % -1.01 %
Unknown.Test -0.09 % -0.42 %
Resource.Optimism 0.07 % 0.36 %

TEST PROCESS General.Fixture.Removed -0.01 % -0.02 %
Sleepy.Test.Removed 0.01 % 0.02 %
Exception.Catching.Throwing.Added 0.01 % 0.01 %
Lazy.Test.Added -0.03 % -0.14 %
Unknown.Test.Added -0.03 % -0.17 %
Magic.Number.Test.Added -0.01 % -0.01 %
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Table A.8: The effect size of the test smell metrics on post-release defects. Effect is measured
by setting the subject metric to 110 % and 150 % of it mean value, while other metrics are
kept at their mean values. Bolded numbers indicate a positive increase in effect.

project Metric Group Individual Metric 110 % ↑ 150 % ↑

Camel TEST PRODUCT Assertion.Roulette 0.01 % 0.01 %
Conditional.Test.Logic -0.01 % -0.01 %
General.Fixture -0.01 % -0.01 %
Mystery.Guest 0.01 % 0.01 %
Redundant.Assertion 0.01 % 0.01 %
Duplicate.Assert 0.01 % 0.01 %
Resource.Optimism 0.01 % 0.01 %

TEST PROCESS Print.Statement.Removed 0.01 % 0.01 %
Eager.Test.Removed -0.01 % -0.01 %
Print.Statement.Added -0.01 % -0.01 %

Groovy TEST PRODUCT Duplicate.Assert -0.01 % -0.01 %
TEST PROCESS Duplicate.Assert.Added 0.01 % 0.01 %

Karaf TEST PRODUCT General.Fixture 0.01 % 0.01 %
Print.Statement 0.01 % 0.01 %
Sleepy.Test 0.01 % 0.01 %
Unknown.Test -0.01 % -0.02 %

TEST PROCESS General.Fixture.Removed -0.01 % -0.01 %
Eager.Test.Added 0.01 % 0.01 %
IgnoredTest.Added -0.01 % -0.01 %
Magic.Number.Test.Added 0.01 % 0.01 %

Hadoop TEST PRODUCT Duplicate.Assert -0.01 % -0.01 %
TEST PROCESS Duplicate.Assert.Added 0.01 % 0.01 %

Table A.9: The effect size of the test smell metrics on post-release defects. Effect is measured
by setting the subject metric to 110 % and 150 % of it mean value, while other metrics are
kept at their mean values. Bolded numbers indicate a positive increase in effect.

project Metric Group Individual Metric 110 % ↑ 150 % ↑

Cxf TEST PRODUCT Assertion.Roulette 0.01 % 0.08 %
Constructor.Initialization -0.01 % -0.03 %
Exception.Catching.Throwing 0.02 % 0.11 %

TEST PROCESS Exception.Catching.Throwing.Removed 0.01 % 0.01 %
Eager.Test.Removed -0.01 % -0.02 %
IgnoredTest.Removed 0.01 % 0.01 %
Sensitive.Equality.Added -0.01 % -0.01 %

Flink TEST PRODUCT Conditional.Test.Logic 0.04 % 0.22 %
Exception.Catching.Throwing -0.12 % -0.57 %
General.Fixture 0.01 % 0.07 %
Mystery.Guest 0.02 % 0.11 %
Lazy.Test -0.07 % -0.34 %
Unknown.Test -0.06 % -0.31 %
Magic.Number.Test -0.05 % -0.27 %

TEST PROCESS Duplicate.Assert.Removed -0.01 % -0.02 %
Magic.Number.Test.Removed -0.01 % -0.01 %
EmptyTest.Added -0.01 % -0.02 %
Mystery.Guest.Added 0.01 % 0.01 %

Zookeeper TEST PROCESS Duplicate.Assert.Removed -0.01 % -0.01 %
Unknown.Test.Removed -0.01 % -0.02 %

Kafka TEST PRODUCT Exception.Catching.Throwing 0.36 % 1.81 %
Mystery.Guest 0.06 % 0.31 %
Redundant.Assertion -0.04 % -0.2 %
Lazy.Test -0.9 % -4.32 %
Duplicate.Assert 0.17 % 0.84 %
Unknown.Test -0.06 % -0.28 %
Magic.Number.Test 0.33 % 1.66 %

TEST PROCESS Exception.Catching.Throwing.Removed -0.01 % -0.05 %
Print.Statement.Removed -0.03 % -0.16 %
Exception.Catching.Throwing.Added 0.03 % 0.14 %
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