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Abstract

Prismatic Dieudonné Theory for Truncated Barsotti-Tate Groups

Xiaomin Chu

The aim of this thesis is to classify truncated Barsotti-Tate groups over p-
torsion free quasi-syntomic rings via a semilinear category which is a prismatic
analogue of the category truncated displays introduced by Lau-Zink. This rests
crucially on the classification of p-divisible groups over quasi-syntomic rings due
to Anschütz-Le Bras and an argument of Beilinson which was used by Kisin to
deduce a similar classification of truncated Barsotti-Tate groups over rings of
integers of p-adic fields in terms of certain Breuil-Kisin modules.
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Notations and conventions

All the rings appearing in this article are commutative with unit.
Throughout this article we fix a prime number p.
The complexes used in this article are always cochain complexes. A con-

travariant functor applied to cochain complexes are understood to also flip the
sign of the degrees, so that it maps cochain complexes to cochain complexes. If
M is an object of some additive category, then we denote by M [0] the cochain
complex with M sitting in degree 0 and 0 elsewhere.

We use ≃ for canonical isomorphisms and ≈ for non-canonical ones. However
≃ is used for all quasi-isomorphisms in derived categories. The symbol = is used
in more restrictive settings, namely equality as elements of some set.

We stick to the notation in [Sta18] for the definitions in algebraic geometry
and category theory.

If f : A → B is a ring homomorphism and M an A-module, then denote
by f∗M the B-module M ⊗A,f B, the base change of M along f : A → B. In
particular, if σ : A→ A is an endomorphism of a ring A, then σ∗M is M⊗A,σA,
seen as an A-module via the second factor.

In order to avoid set theoretic issues in defining the sites, we choose once
and for all a strong limit cardinal κ, and all the rings in the article are assumed
to have cardinality less than κ.
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1 Introduction

The aim of this thesis is to classify the truncated Barsotti-Tate groups over
p-torsion free quasi-syntomic rings using prismatic cohomology, as envisioned in
Remark 1.4.11 of [AL23].

Definition 1. A quasi-syntomic (short for p-completely quasi-syntomic) ring
is a derived p-complete ring R with bounded p∞-torsion such that the absolute
cotangent complex LR/Zp

has p-complete Tor-amplitude in [−1, 0]. A quasireg-
ular semiperfectoid ring is a quasi-syntomic ring R which admits a surjection
from an integral perfectoid ring.

The precise definition of the terminologies used in the definition will ap-
pear in later parts. A lot of the interesting rings occuring in p-adic geometry
are quasi-syntomic. For example integral perfectoid rings and p-complete local
complete intersection Noetherian rings are quasi-syntomic.

The choice of the class of quasi-syntomic ring as base rings, which was also
made in [AL23], naturally occurs in calculting prismatic cohomology. Namely, a
quasi-syntomic ring can be covered by quasiregular semiperfectoid rings, while
the absolute prismatic cohomology of quasiregular semiperfectoid rings are con-
centrated in degree 0. Thus we may use the absolute prismatic cohomology of
a quasi-syntomic ring without working with derived objects. We will do the
classification for p-torsion free quasiregular semiperfectoid rings first and then
extend it to general p-torsion free quasi-syntomic rings using descent. The re-
quirement that the base ring is p-torsion free is a technical condition that allows
applying the truncation argument described below.

The strategy is to use the following observations:
(1) The category of standard truncated Barsotti-Tate groups of level n over

R, i.e. the truncated Barsotti-Tate groups over R that are the pn-torsion sub-
groups of some p-divisible group over R, can be embedded fully faithfully into
the bounded derived category of the p-divisible groups.

(2) Every truncated Barsotti-Tate group can be made standard if we pass
to a pro-étale cover of the base scheme. (Note that we will mostly use the
terminology ind-étale rather than pro-étale in the technical arguments since we
work exclusively in the affine situation.)

(1) was first used in [Kis06], while (2) was noticed by Lau in [Lau13].
We may obtain a classification of standard truncated Barsotti-Tate groups

using (1) and the results in [AL23], and then extend the classification to all
truncated Barsotti-Tate groups by pro-étale descent.
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2 Preliminaries

In this section we collect several preliminary results for later use.

2.1 I-completed commutative algebra

In this subsection we introduce the technical tool of derived completeness.
Throughout this subsection we fix a ring R and a finitely generated ideal I ⊂ R.

Definition 2. An object M in D(R) is call derived I-complete if for all f ∈ I
we have that

RHomR(Rf ,M) ≃ 0

. An R-module M is called derived I-complete if the complex M [0] is derived
I-complete.

It is clear that if two of the objects in a distinguished triangle are derived
I-complete, then so is the third. In particular derived I-complete modules are
closed under extensions. There is an extensive theory of derived I-completeness
as in [Sta18, Tag 091N]. We need the following basic results.

Remark 3. By [Sta18, Tag 091Q], the subset of elements f ∈ R such that

RHomR(Rf ,M) ≃ 0

is a radical ideal. Thus we may detect derived I-completeness by only checking
the condition RHomR(Rf ,M) ≃ 0 for f ranging in a set of generators of I. In
particular, if R→ S is a ring map and M is an object of D(S), then the image
of I in S generate the ideal IS in S, so M is derived IS-complete if and only if
it is derived I-complete as an object of D(R).

Lemma 4. A complex is derived I-complete if and only if all the cohomology
groups are derived I-complete.

Proof. [Sta18, Tag 091P].

Lemma 5. Derived I-complete modules are closed under kernels and cokernels.

Proof. Let f : M → N be a map of derived I-complete R-modules. Applying

Lemma 4 to the complex M
f−→ N , where M sits in degree 0 yields that ker f ≃

H0(M → N) and coker f ≃ H1(M → N) are derived I-complete.

Derived completeness of a module is a suitable relaxation of classical com-
pleteness.

Lemma 6. Suppose M is an R-module.
(1) If M is classically I-complete, i.e. M ≃ limn M/InM , then M is derived

I-complete.
(2) Conversely, if M is derived I-complete and M → limn M/InM is injec-

tive, then M is classically I-complete.

2

https://stacks.math.columbia.edu/tag/091N
https://stacks.math.columbia.edu/tag/091Q
https://stacks.math.columbia.edu/tag/091P


Proof. [Sta18, Tag 091R].

As with classical completeness, there is a derived completion functor.

Proposition 7. For K ranging in objects in D(R), there is a functorially asso-
ciated morphism K → K∧ such that for all K ∈ D(R) the object K∧ is derived
I-complete, and for all K,L ∈ D(R) such that L is derived I-complete, the
morphism

RHomR(K
∧, L)→ RHomR(K,L)

induced by K → K∧ is a quasi-isomorphism.

Proof. [Sta18, Tag 091V].

The functor (−)∧ is called the derived completion. Occasionally we will write
(−)∧I to emphasize the dependence on I.

The universal property of the derived completion implies the following useful
lemma.

Lemma 8. Let K be an object in D(R). We have that K∧⊗L
RR/I ≃ K⊗L

RR/I.

Proof. We will use the universal property of the derived tensor product as in
[Sta18, Tag 0GMT]. Every element f ∈ I acts by zero on the complex K ⊗L

R

R/I, so K ⊗L
R R/I is derived I-complete. Then the natural map K → K ⊗L

R

R/I factors through K∧ by the universal property. The universal property of
the derived tensor product then gives a map K∧ ⊗L

R R/I → K ⊗L
R R/I. The

composition K ⊗L
R R/I → K∧ ⊗L

R R/I → K ⊗L
R R/I is the identity since the

map K → K∧ → K ⊗L
R R/I is just the natural K → K ⊗L

R R/I by definition
of K∧ → K ⊗L

R R/I. The other composition K∧ ⊗L
R R/I → K ⊗L

R R/I →
K∧ ⊗L

R R/I is also the identity since by the universal property of K∧, we only
need to check that precomposing this map with K ⊗L

R R/I yields the natural
K ⊗L

R R/I → K∧ ⊗L
R R/I, and this is true as K ⊗L

R R/I → K∧ ⊗L
R R/I →

K ⊗L
R R/I is the identity.

The following lemma is very useful.

Lemma 9. (derived Nakayama) If K is a derived I-complete object in D(R),
then K ≃ 0 if and only if K ⊗L

R R/I ≃ 0.

Proof. This is [Sta18, Tag 0G1U].

Now we turn to the notion of I-complete flatness.

Definition 10. Let a ≤ b be indices in Z
⋃︁
{±∞}, such that at least one of

a, b is finite. An object K in D(R) is said to have I-complete Tor-amplitude in
[a, b] if for any R/I-module M , the complex M ⊗L

R/I (K ⊗
L
R R/I) has vanishing

cohomology outside [a, b]. K is called I-completely flat if it has I-complete Tor-
amplitude in [0, 0]. An R-module M is called I-completely flat if the complex
M [0] is I-completely flat. M is called I-completely faithfully flat if M is I-
completely flat and M/IM is faithfully flat over R/I.
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The notion of I-complete flatness is stable under base change.

Lemma 11. Let R→ S be a ring homomorphism. If K ∈ D(R) has I-complete
Tor-amplitude in [a, b], then K ⊗L

R S has IS-complete Tor-amplitude in [a, b].

Proof. Using [Sta18, Tag 08YU] we can calculate that

K ⊗L
R S ⊗L

S S/IS ≃ K ⊗L
R R/I ⊗L

R/I S/IS

So for any S/IS-module N , we have

(K ⊗L
R S ⊗L

S S/IS)⊗L
S/IS N ≃ K ⊗L

R R/I ⊗L
R/I N

has vanishing cohomology outside [a, b].

Lemma 12. Let R → S be an I-completely flat ring map and M ∈ D(S)
an object having IS-complete Tor-amplitude in [a, b], then M has I-complete
Tor-amplitude in [a, b] as an object in D(R).

Proof. Suppose that N is an R/I-module.

M ⊗L
R R/I ⊗L

R/I N = M ⊗L
S S ⊗L

R R/I ⊗L
R/I N

= M ⊗L
S S/IS ⊗L

R/I N

= (M ⊗L
S S/IS)⊗L

S/IS (N ⊗L
R/I S/IS)

as R → S is I-completely flat, N ⊗L
R/I S/IS is still concentrated in degree 0.

ThusM⊗L
RR/I⊗L

R/IN has vanishing cohomology outside [a, b] sinceM⊗L
SS/IS

has Tor-amplitude in [a, b].

In particular, a composition of I-completely flat R-algebra maps is still I-
completely flat.

Fix {f1, . . . , fn} a finite set of elements of I that generates I.

Definition 13. An R-algebra S is said to have tame {f1, . . . , fn}∞-torsion
if the pro-systems {S/IkS}k and {Kos(S; fk

1 , . . . , f
k
n}k are pro-isomorphic, i.e.

isomorphic as pro-objects of R-modules.

By [Sta18, Tag 0625], the definition is independant of multiplying f1, . . . , fn
by an invertible n×n matrix with coefficients in R. In particular, it is indepen-
dant of the order of fi.

Remark 14. We do not know if the notion of having tame {f1, . . . , fn}∞-torsion
only depends on I.

Lemma 15. Let a ≤ b be indices in Z
⋃︁
{±∞}. If M ∈ D(R) has I-complete

Tor-amplitude in [a, b], then M ⊗L
R R/In has Tor-amplitude in [a, b].

4
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Proof. We use induction on n. The case n = 1 is true by assumption. Suppose
M ⊗L

RR/In has Tor-amplitude in [a, b]. For any R/In+1-module N , we have an
exact sequence

0→ InN → N → N/InN → 0

And In.InN = 0 since I2n ⊂ In+1. So we only need to show that M ⊗L
R

R/In+1⊗L
R/In+1 N has vanishing cohomology outside [a, b] for R/In+1-modules

N such that InN = 0. In this case N is also an R/In-module, and

M ⊗L
R/In+1 N ≃M ⊗L

R/In N

which has vanishing cohomology outside [a, b] by induction hypothesis.

Lemma 16. Let a, b ∈ Z
⋃︁
{+∞}, a ≤ b be indices, where a is finite. Suppose

that S has tame {f1, . . . , fn}∞-torsion and M ∈ D(S) a derived IS-complete
object with IS-complete Tor-amplitude in [a, b]. Then M has vanishing coho-
mology outside [a, b].

Proof. As M is derived IS-complete, it is the Rlim of M ⊗S Kos(S; fk
1 , . . . , f

k
n)

by [Sta18, Tag 091Z].(Note that the Koszul complex is K-flat, so the derived
tensor product is just the usual tensor product.) By tameness assumption M is
also Rlim of M ⊗L

S S/ImS. Lemma 15 shows that each M ⊗L
S S/ImS has Tor-

amplitude in [a, b]. By [Sta18, Tag 0654], each M ⊗L
S S/ImS can be represented

by a K-flat complex K•
m with each term a flat S/ImS-module and Ki

m ≃ 0
if i ̸∈ [a, b]. Since Rlim is a right derived functor, the object Rlimm K•

m has
vanishing cohomology outside [a,+∞]. So the statement is proved if b = +∞.
If b is finite, then we may use a resolution of S/ImS to calculate M ⊗L

S S/ImS,
so that the term at degree b of M ⊗L

S S/I
mS is Kb

m/ImKb
m. Thus the transition

maps between different m induces surjections on the cohomology at degree b.
Using the exact sequence [Sta18, Tag 0CQE] and Mittag-Leffler, we see that
Rlimm M ⊗L

S S/ImS has vanishing cohomology outside [a, b].

Lemma 17. If S is an R-algebra with tame {f1, . . . , fn}∞-torsion and M is a
derived IS-complete, IS-completely flat object in D(S). Then M ≃ N [0], where
N is a classically IS-complete S-module.

Proof. Lemma 16 shows that M is concentrated in degree 0. Moreover, M
is the Rlim of M ⊗L

S S/ImS, while Lemma 15 shows that M ⊗L
S S/ImS is

the flat module M/ImM sitting in degree 0. The transition maps are clearly
surjective, so the Rlim is the usual limit sitting in degree 0 by Mittag-Leffler.
Then M ≃ limm M/ImM .

For the lemmas above to be useful, we need a way to produce rings of tame
{f1, . . . , fn}∞-torsion.

Lemma 18. If S is a ring with tame {f1, . . . , fn}∞-torsion and S′ an IS-
completely flat S-algebra, then S′ has tame {f1, . . . , fn}∞-torsion.
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Proof. The Koszul complex Kos(S′; fm
1 , . . . , fm

n ) is the derived tensor product

Kos(S; fm
1 , . . . , fm

n )⊗L
S S′

while by Lemma 15 we have S′/ImS′ ≃M⊗L
SS/I

mS. Thus the two pro-systems
are the derived base change from those for S, and are pro-isomorphic.

Lemma 19. Suppose that I = (f) is principal. If S is an R-algebra with
bounded f∞-torsion, then S has tame {f}∞-torsion. Here a module M is said
to have bounded f∞-torsion if M [f∞] = M [f c] for some c.

Proof. The complex Kos(S; fm) has H−1 the module S[fm], H0 the module
S/fmS and all other cohomology groups 0. The transition map Kos(S; fm+1)→
Kos(S; fm) induces the multiplication by f map on H−1 and the quotient map
on H0. If c is such that S[f∞] = S[f c], then Kos(S; fm+c+1)→ Kos(S; fm) in-
duces 0 on H−1 for every m. Thus the cones of the natural maps Kos(S; fm)→
S/fmS form a pro-zero system.

Let τ denote a Grothendieck topology on the category of schemes coarser
than (or equal to) the fpqc topology and finer than (or equal to) the Zariski
topology, and such that any fpqc subcover of a cover in τ is still a cover in
τ . Denote by (Aff/R) the category of affine schemes over R, and (Aff/R)τ the
category (Aff/R) equipped with the topology τ .

Suppose the ideal I ⊂ R is generated by {f1, . . . , fn}. If S is a derived IS-
complete R-algebra with tame {f1, . . . , fn}∞-torsion, then let (IAff/S) be the
opposite of the category of derived IS-complete S-algebras with tame {f1, . . . , fn}∞-
torsion. Note that the notation (IAff/S) does not explicitly indicate the depen-
dance on the chosen {f1, . . . , fn} and on the ring S. This will not be a problem
in the sequel since there will be no confusion of these choices. In fact most of
the time we work with I = (p) ⊂ Z.

Lemma 20. If T → T ′, T → T ′′ are maps in (IAff/S)op with T → T ′′ being IT -
completely flat, then (T ′⊗L

T T
′′)∧IT ′ is IT ′-completely flat over T ′, is concentrated

in degree 0, and gives a pullback of T ′′ and T ′ in (IAff/S).

Proof. We calculate that

(T ′′ ⊗L
T T ′)∧IT ′ ⊗L

T ′ T ′/IT ′ ≃ T ′′ ⊗L
T T ′ ⊗L

T ′ T ′/IT ′

≃ T ′′ ⊗L
T T/IT ⊗L

T/IT T ′/IT ′

is concentrated in degree 0 and there given by a flat T ′/IT ′-module. This shows
that (T ′⊗L

T T ′′)∧IT is IT ′-completely flat over T ′, which has tame {f1, . . . , fn}∞-
torsion. By Lemma 17 and Lemma 18, (T ′⊗L

T T ′′)∧IT is concentrated in degree 0,
and has tame {f1, . . . , fn}∞-torsion. Then it lies in the category (IAff/S). Its
being the pull back follows from the universal property of the derived completion
and the derived tensor product.

6



Since pullbacks in (IAff/S) along I-completely flat maps exist and remain
I-completely flat, we may define a Grothendieck topology on (IAff/T ) by declar-
ing the covers to be {Ti → T} where the ring maps T → Ti are IT -completely
flat and {Ti/ITi → T/IT} lies in τ . We call this topology the I-completely τ
topology. Let (IAff/S)τ denote (IAff/S) with the I-completely τ topology,

Lemma 21. An arbitrary cover {Ti → T}i∈J in (IAff/S)τ can be refined into
a cover of the form T ′ → T .

Proof. Since the family {Ti/ITi → T/IT}i∈J is an fpqc cover, there is a finite
subset J ′ ⊂ J such that {Ti/ITi → T/IT}i∈J′ is still an fpqc cover. By as-
sumption on τ , {Ti/ITi → T/IT}i∈J′ is a cover in τ . Since τ is finer than the
Zariski topology,

∏︁
i∈J′ Ti/ITi → T/IT is also a cover in τ . Then

∏︁
i∈J′ Ti also

lies in (IAff/S), and
∏︁

i∈J′ Ti → T refines the cover {Ti → T}i∈J .

Lemma 22. In this lemma I = (p). Suppose R has bounded p∞-torsion and
M ∈ D(R). If M is derived p-complete and p-completely flat, then M ≃ N [0]
where N is a classically p-complete R-module. Moreover, M/pnM is flat over
R/pn and we have

M ⊗R R[pn] ≃M [pn]

Proof. This is [BMS19], Lemma 4.7. The fact that M is concentrated in degree
0 and M/pnM is flat over R/pn follows from Lemma 17 and Lemma 15, in view
of Lemma 19.

2.2 I-completely fpqc descent

In this subsection we collect a few results about I-completely fpqc descent.
We first prove the exactness of the I-completed Amitsur complex.
Suppose R0 is a ring and I = (f1, . . . , fn) ⊂ R0 an ideal. Let R be a derived

I-complete R0-algebra with tame {f1, . . . , fn}∞-torsion and S a derived IR-
complete, IR-completely flat R-algebra.

Definition 23. For a derived IR-complete, IR-completely flat R-module M ,
the IR-completed Amitsur complex, Ami(M ;R → S) is defined to be the aug-
mented complex A• where

An = (M ⊗L
R C(R,S)n)∧IR

and C(R,S)• is the augmented Čech nerve

0→ R→ S → (S ⊗L
R S)∧IR → (S ⊗L

R S ⊗L
R S)∧IR → · · ·

with R lying in degree −1.

Note that each term (M ⊗L
R C(R,S)n)∧IR is derived IR-complete and IR-

completely flat over R. Thus each term is indeed concentrated in degree 0 by
Lemma 17.

7



Proposition 24. If R → S is IR-completely faithfully flat, then the Amitsur
complex Ami(M ;R→ S) is acyclic.

We first need a lemma.

Lemma 25. Suppose n ≥ −1,m ≥ 1 are integers. Under the assumption of
Proposition 24, An is classically I-complete, and

An ⊗R R/ImR ≃M/ImM ⊗R/ImR S/ImS ⊗R/ImR · · · ⊗R/ImR S/ImS

Proof. Note that An is I-completely flat over C(R,S)n, which is in turn I-
completely flat over R. Thus An is a classically IR-complete R-module sitting
in degree 0 by Lemma 17. Moreover, the module An⊗RR/ImR can be calculated
by An⊗L

RR/ImR since the latter is concentrated in degree 0 by Lemma 15. The
same Lemma implies that S ⊗L

R R/ImR ≃ S/ImS[0]. We calculate that

An ⊗L
R R/ImR ≃ (M ⊗L

R S ⊗L
R · · · ⊗L

R S)∧IR ⊗L
R R/ImR

≃ (M ⊗L
R S ⊗L

R · · · ⊗L
R S)⊗L

R R/ImR

≃M/ImM ⊗L
R/ImR S/ImS ⊗L

R/ImR · · · ⊗
L
R/ImR S/ImS

≃M/ImM ⊗R/ImR S/ImS ⊗R/ImR · · · ⊗R/ImR S/ImS

using the fact that M/ImM and S/ImS are flat over R/ImR by Lemma 15.
The third quasi-isomorphism follows by repeatedly replacing · · ·⊗L

RS⊗L
RR/ImR

with · · · ⊗L
R R/ImR⊗L

R/ImR S/ImS.

Poof of Proposition 24. Note that M/ImM and S/ImS are flat over R/ImR.
Moreover, nilpotent extentions of rings do not change the underlying topological
space of the Spec, so R/ImR→ S/ImS is still faithfully flat. Then the sequence
A• ⊗R R/ImR is the classical Amitsur complex for the module M/ImM and
the ring map R/ImR → S/ImS. Thus it is acyclic by [Sta18, Tag 023M]. We
have a bounded below acyclic complex of inverse systems

0→ {A−1 ⊗R R/ImR}m → {A0 ⊗R R/ImR}m → · · ·

The transition maps in each of the inverse systems are surjective. We may break
the acyclic complex into short exact sequences

0→ {A−1 ⊗R R/ImR}m → {A0 ⊗R R/ImR}m → coker d−1 → 0

0→ coker d−1 → {A1 ⊗R R/ImR}m → coker d0 → 0

· · ·

Note that the transition maps in coker di are also surjective. Thus we can apply
Rlim to each of them to obtain short exact sequences of the limits, and get an
acyclic complex

0→ lim
m

A−1 ⊗R R/ImR→ lim
m

A0 ⊗R R/ImR→ · · ·

But for each index n ≥ −1, Lemma 25 shows that An is the limit of An ⊗R

R/ImR. So we conclude that the complex Ami(M ;R→ S) is acyclic.
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We now collect a few lemmas about finite locally free modules. In these
lemmas R is allowed to be an arbitrary ring.

Lemma 26. If M is a finite locally free R-module and N is an arbitrary R-
module, then HomR(M,N) ≃ HomR(M,R)⊗R N .

Proof. The isomorphism HomR(M,N) ≃ HomR(M,R)⊗R N is true for N a fi-
nite free R-module since HomR(M,−) preserves direct sums. But HomR(M,−)
also commutes with filtered colimits and cokernels since M is finite locally free.
The tensor product also commutes with filtered colimits and cokernels. In writ-
ing the module N as a cokernel of free modules (of possibly infinite rank), we
have that HomR(M,N) ≃ HomR(M,R)⊗R N is true for all N .

Lemma 27. Let M be a finite locally free R-module, then the module M∗, de-
fined as HomR(M,R) is also finite locally free. We have a canonical categorical
equivalence M ↦→M∗∗ from finite locally free R-modules to itself. Moreover, for
any R-algebra S, we have that (M ⊗R S)∗ ≃M∗⊗R S, where (M ⊗R S)∗ is the
dual of M ⊗R S as an S-module.

Proof. Let Rfi , i = 1, . . . , n be a Zariski cover of R such that M ⊗R Rfi is free
of rank ni. We calculate with the Lemma 26

HomR(M,R)⊗R Rfi ≃ HomR(M,Rfi)

≃ HomRfi
(M ⊗R Rfi , Rfi)

≃ (Rfi)
ni

So HomR(M,R) is also finite locally free.
The map M → M∗∗ given by m ↦→ (f ↦→ f(m)) is an isomorphism on

each SpecRfi , so an isomorphism of R-modules. Suppose f : M → N is a
homomorphism of finite locally free R-modules. We denote by f∗ : N∗ → M∗

its dual, and f∗∗ : M∗∗ → N∗∗ its double dual. We need to show commutativity
fo the following diagram:

M N

M∗∗ N∗∗

f

f∗∗

An element m ∈M is mapped to ζ ↦→ ζ(m), ζ ∈M∗ in M∗∗, and f∗∗ maps
the latter to ζ ↦→ f∗(ζ)(m) for ζ ∈ N∗. On the other hand, f(m) ∈ N is mapped
to ζ ↦→ ζ(f(m)) ∈ N∗∗. But this is exactly ζ ↦→ f∗(ζ)(m) by definition of f∗.

Finally,

HomS(M ⊗R S, S) ≃ HomR(M,S)

≃ HomR(M,R)⊗R S

again by the Lemma 26.
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Lemma 28. If M,N are finite locally free modules over R, then there is a
canonical isomorphism (M ⊗R N)∗ ≃M∗ ⊗R N∗.

Proof. Using Lemma 26 we calculate that

(M ⊗R N)∗ ≃ Hom(M ⊗R N,R)

≃ Hom(M,Hom(N,R))

≃ Hom(M,R)⊗R Hom(N,R)

Lemma 29. If R is derived IR-complete and M is a finite locally free module
over R, then M is derived IR-complete and IR-completely flat.

Proof. The functor RHomR(Rf ,−) commutes with direct sums for all f ∈ IR,
so a finite direct sum of R-modules is derived IR-complete if and only if each
summand is derived IR-complete. But M is a direct summand of a finite free
R-module, so M is derived IR-complete. Since M is a projective module, the
derived tensor product M ⊗L

R R/IR is the same as M ⊗R R/IR, which is con-
centrated in degree 0. M/IM is flat over R/IR by base change.

Proposition 30. Let FinProj be the opposite of the category of pairs (A,M)
where A is a ring in (IAff/R) and M a finite locally free A-module. We equip
FinProj with the forgetful functor to (IAff/R). Then FinProj → (IAff/R) is
a stack for the I-completed fpqc topology whose pullbacks are (M ⊗R S, S) →
(M,R) corresponding to the map M →M ⊗R S,m ↦→ m⊗ 1.

Proof. The universal property of the usual tensor product implies that the mor-
phisms (M ⊗R S, S) → (M,R) in the statement are strongly Cartesian, as
in [Sta18, Tag 02XK]. We choose these maps as pullbacks in order to make
FinProj→ (IAff/R) a fibred category.

Suppose that S is some object of (IAff/R). If M,N are two finite locally
free S-modules, then HomS′(M ⊗S S′, N ⊗S S′) ≃ (M∗ ⊗S N) ⊗S S′ for any
S → S′ by Lemma 26. The module (M∗ ⊗S N)⊗S S′ is further isomorphic to
((M∗ ⊗S N) ⊗L

S S′)∧I by Lemma 29. Thus the complex obtained by applying
S′ ↦→ HomS′(M ⊗S S′, N ⊗S S′) to the Čech nerve of a cover T ′ → T , which
corresponds to a ring map T → T ′, is exactly the Amitsur complex A•((M∗⊗S

N)⊗ST ;T ↦→ T ′). So S′ ↦→ HomS′(M⊗SS
′, N⊗SS

′) is a sheaf by the exactness
of the I-completed Amitsur complex.

Suppose that we have a descent datum of finite locally free module for a
cover S → S′. We denote by Si the derived IS-completion of the (i + 1)-fold
derived tensor product of S′ over S. For notational conveniance, let ιa0,...,an

:
Sn → Sn+m, where 0 ≤ a0 ≤ · · · ≤ an ≤ n + m to be the inclusion to the
a0, . . . , an-th factors. The notation ⊗Sn,a0,...,an

Sn+m means the tensor product
along ιa0,...,an

. Then the descent datum is a finite locally free S′-module M and
an isomorphism φ : M ⊗S0,0 S

1 →M ⊗S0,1 S
1 satisfying the cocycle condition,

i.e. a commutative diagram
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M ⊗S0,0 S
2 M ⊗S0,2 S

2

M⊗S0,1S
2

φ⊗ι0,2

φ⊗ι0,1

φ⊗ι1,2

By Lemma 25, base changing the descent datum along S → S/IS gives a
descent datum of finite locally free modules for S/IS → S′/IS′ as in [Sta18,
Tag 023G]. Then classical fpqc descent [Sta18, Tag 023N] gives a finite locally
free S/IS-module N such that N ⊗S/IS S′/IS′ ≃M ⊗S′ S′/IS′. Since the ring
S is classically IS-complete, the pair (S, IS) is henselian and the S/IS module
N lifts to a finite locally free S-module P by [Sta18, Tag 0D4A]. The map
P ⊗S S′ → P ⊗S S′⊗S′ S′/IS′ ≃M ⊗S′ S′/IS′ lifts along the surjections M →
M ⊗S′ S′/IS′, so we have a map P ⊗S S′ → M . This map is an isomorphism
after modulo IS′, and P ⊗S S′,M are finite locally free S′-modules, so derived
Nakayama implies that P ⊗S S′ →M is an isomorphism. Thus we have proved
that the descent datum is effective.

Proposition 31. Suppose that M is a finite locally free R-algebra. The functor

hM : (IAff/R)op → Sets

given by S ↦→ HomR−alg(M,S) is a sheaf with respect to the IR-completely fpqc
topology.

Proof. Let S → S′ be a IS-completely faithfully flat ring map with S, S′ lying
in (IAff/R). By Lemma 15, the ring maps S/InS → S′/InS′ are flat. Then
the map is faithfully flat since the spectrum does not change if we enlarge n. In
particular the map is injective.

Lemma 26 shows that HomR(M,S) ≃M∗⊗R S for all R-algebra S. As M∗

is flat, we get an exact sequence by tensoring M∗ with the I-completed Amitsur
complex.

0→ HomR(M,S)→ HomR(M,S′)→ HomR(M, (S′ ⊗L
S S′)∧IS)

In other words, HomR(M,S) is the equalizer of

HomR(M,S′) ⇒ HomR(M, (S′ ⊗L
S S′)∧IS)

where the two maps are induced by the two natural S′ → (S′ ⊗L
S S′)∧IS .

Let ai, i = 1, 2, . . . ,m be a set of generators of M . For any R-algebra T , the
R-algebra homomorphisms M → T form the equalizer of

HomR(M,S) ⇒

⎛⎝m2⨁︂
i=1

T

⎞⎠⊕ T

where one map sends f to ((f(ai)f(bi))i,j , f(1)) and the other sends f to
((f(aibi))i,j , 1). Since equalizers commute with equalizers, HomR−alg(M,S) is
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the equalizer of

HomR−alg(M,S′) ⇒ HomR−alg(M, (S′ ⊗L
S S′)∧I )

2.3 Quillen exact categories

In this section we introduce the construction of the derived category of a Quillen
exact category. We follow the notes [Büh10].

Definition 32. A Quillen exact category is an additive category C with an
exact structure, i.e. a specified set E of pairs (i, p) where i is the kernel of p and
p is the cokernel of i, satisfying the following conditions:

(1) For any object A in C, the pairs (idA, 0) and (0, idA) belong to E .
(2) Suppose (i1, p1) and (i2, p2) are in E . If i1 and i2 are composable, then

there is some p3 such that (i1 ◦ i2, p3) lies in E . If p1 and p2 are composable,
then there is some i3 such that (i3, p1 ◦ p2) lies in E .

(3) Suppose that (i, p) lies in E where i : A1 → A2 and p : A2 → A3. If
f : A1 → B is any morphism, then the pushout j of i along f exists, and (j, q)
lies in E for some q. If g : C → A2 is any morphism, then the pullback π of p
along g exists, and (ι, π) lies in E for some ι.

The elements of E are called the short exact sequences. Any i (resp. p)
appearing in some pair (i, p) in E is called an admissible monic (resp. admissible
epic).

Note that the class of admissible monics and admissible epics are closed
under compositions with isomorphisms.

Clearly an abelian category is a Quillen exact category with the usual notion
of short exact sequences. More generally, we have the following lemma, stated
in [Büh10] as Lemma 10.20.

Lemma 33. Suppose A is an abelian category and C a full subcategory of A. If
C is closed under extensions, then C is a Quillen exact category with the exact
structure given by the exact sequences in A whose terms are in C.

Let C be a Quillen exact category. We may construct its derived category
following the usual recipe. Namely, let Ch(C) be the category of cochain com-
plexes in C. The notion of chain homotopy works without change in Ch(C), and
the exact structure allows us to identify the acyclic complexes in Ch(C) with
respect to which we may form a Verdier quotient. More precisely,

Definition 34. A complex K• ∈ Ch(C) is called acyclic if for every n, the
differential Kn → Kn+1 factors as Kn → Zn+1 → Kn+1, where Kn → Zn+1

is an admissible epic and Zn+1 → Kn+1 is an admissible monic, such that for
every n, the sequence Zn → Kn → Zn+1 is a short exact sequence.

Clearly these notions agree with the usual ones when C is abelian.
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Definition 35. A Quillen exact category C is called idempotent complete if any
morphism of the shape p : A→ A in C satisfying p2 = p has a kernel.

The definition of quasi-isomorphisms is significantly easier when C is idem-
potent complete. So we only give the definition under this assumption.

Definition 36. Suppose C is an idempotent complete Quillen exact category.
A map of complexes C• → D• in Ch(C) is called a quasi-isomorphism if its cone
is acyclic.

The full category of the homotopy category of Ch(C) spanned by the acyclic
complexes is thick, so we can take the Verdier quotient D(C). The Verdier
quotient may also be viewed as formally inverting quasi-isomorphisms. There
are also versions of the derived category with boundedness condition D+(C),
D−(C) and Db(C), as usual. More details of this construction are included in
Section 10.4 of [Büh10].

Finally we make some definition about functors between exact categories.

Definition 37. Let F : C → D be an additive functor between Quillen exact
categories. F is called exact if it takes exact sequences to exact sequences. F

is said to reflects exactness if F (A)
F (f)−−−→ F (B)

F (g)−−−→ F (C) is a short exact

sequence in D implies that A
f−→ B

g−→ C is a short exact sequence in C. F is
said to exhibits C as a fully exact subcategory if F is fully faithful, exact and
reflects exactness.

2.4 Embedding into the derived category

It is well-known that an abelian category embeds fully faithfully into its derived
category as complexes concentrated in degree 0. We now investigate the em-
bedding problem in slightly more generality. The idea of using the following
discussion to embed finite locally free group schemes (Zariski-locally) into the
derived category of p-divisible groups was proposed by Beilinson. See [Kis06],
Section 2.3.

Suppose A is an abelian category and C is a full additive subcatgory closed
under extensions. (In particular, closed under isomorphisms.) Then C can be
viewed as a Quillen exact category by declaring short exact sequences in C to
be short exact sequences in A whose terms are in C. Let E be a full additive
subcategory of A, closed under isomorphisms. Furthermore, we assume the
following conditions on C and E .

• C is idempotent complete as a Quillen exact category

• If f is a monomorphism of A with domain and target both in C, then
coker f is an object of C

• Every object of E is the kernel of a morphism in C which is an epimorphism
in A
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• If f is a monomorphism of A whose domain is in E and target is in C, then
coker f is an object of C

Lemma 38. If 0→ A0 → A1 → · · · → An is an exact sequence in A such that
Ai ∈ C for all i, then the cokernel of An−1 → An lies in C.

Proof. We prove the statement by induction on n. The case n = 0 is trivial.
Suppose we have an exact sequence 0→ A0 → · · · → An → An+1 in A with all
the terms objects of C. By induction hypothesis the cokernel of An−1 → An lies
in C. Then coker(An−1 → An)→ An+1 is a monomorphism in A by exactness.
Thus it has a cokernel in C, which coincides with the cokernel of An → An+1.

Lemma 39. A bounded below complex in Ch(C) is acyclic if and only if it is
acyclic as an object of Ch(A).

Proof. If C• is acyclic as a complex in C, then the factorizations Cn → Zn+1 →
Cn+1 provide a factorization in A.

Conversely, suppose C• is an acyclic bounded below complex. By Lemma 38,
the cokernels of Cn → Cn+1 all lie in C. We may take Zn = coker(Cn−1 → Cn).
By construction Zn → Cn → Zn+1 is an exact sequence in A, and thus also an
exact sequence in C. So Cn → Zn+1 → Cn+1 give the required factorization for
C• to be acyclic.

Lemma 40. Suppose C• is a bounded below complex in C which has vanishing
cohomology in degrees < 0 when regarded as a complex in A. Let K• be the
complex with Ki ≃ 0 when i < 0, K0 ≃ coker(C−1 → C0) and Ki ≃ Ci

for i > 0. Then K• is a complex in C, and the natural map C• → K• is a
quasi-isomorphism in Ch(C).

Proof. That K0 lies in C follows from Lemma 38. The cone of C• → K• is a
bounded below complex in C which is acyclic regarded as a complex in A. Thus
the cone is acyclic and C• → K• is a quasi-isomorphism.

Now we are ready to prove the embedding.

Proposition 41. The category E embeds fully faithfully into Db(C) by sending
an object X to the complex K0 → K1, where K0 → K1 is an epimorphism in
A with Ki in C and ker(K0 → K1) ≃ X.

Proof. Let H be the full subcategory of Db(C) spanned by the complexes K0 →
K1 where Ki lie in C, K0 → K1 is an epimorphism in A and ker(K0 → K1)
lies in E . We show that H0 : H → E is fully faithful, which will prove the
embedding.

Suppose a morphism f : K• → L• in H is mapped to 0 by H0. f factorizes

as the composition K• g−→ M• s←− L•, where g, s are maps of chain complexes
and s is a quasi-isomorphism. By Lemma 40, we may assume that M i ≃ 0
for i < 0. Then the map g, viewed as a map of complexes in A, induces 0 on
the H0. So g0(H0(K•)) = 0 in M0. But K0 → K1 is surjective. So the map
K0 → M0 factors through K1. Let hi : Ki → M i−1 be the map K1 → M0
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induced by K0 →M0 for i = 1, and 0 otherwise. h is a map of chain complexes
in C since the latter is a full subcategory of A. Then h is a null homotopy for
g. This proves faithfulness.

Now suppose there’s a map f : H0(K•) → H0(L•). Denote P = H0(K•),
Q = H0(L•). Let M0 be K0 ⊕ L0. We have a map (in A) (id, f) : P →
P ⊕Q, whose composition with the natural inclusions give g : P →M0. g is a
monomorphism since id : P → P is. By assumption g has a cokernel M0 →M1

which also lies in C.
Note that H0(M•) = ker(M0 → M1) = P

g−→ M0. So the compositions

H0(M•) → M0 pr2−−→ L0 → L1 and H0(M•) → M0 pr1−−→ K0 → K1 are 0, and
the projections give maps of chain complexes M• → K• , M• → L•. We have
a commutative diagram

P P Q

K0 M0 L0

id

f

Now we check that M• → K• is a quasi-isomorphism. The mapping cone
consists of only three non-zero terms M0 →M1⊕K0 → K1. We need to check
that this sequence is a short exact sequence. But this can be checked in A,
and the map induced on H0 is H0(M•) ≃ P , an isomorphism. Also, it follows
immediately from the diagram that K• ← M• → L• induces f on H0. This
proves fullness.

2.5 Finite locally free group schemes

In this subsection we collect some basic results about finite locally free group
schemes. Let R be a ring.

Definition 42. A finite locally free group scheme over R is an abelian sheaf
on (Aff/R)fppf representable by an R-algebra that is finite locally free as an
R-module.

Remark 43. Since we require representability of the sheaf, the topology we use
on (Aff/R) is not important. We could use fpqc, syntomic, étale, or Zariski
topology instead.

Remark 44. Suppose f : G → H is a map of finite locally free group schemes
over R which is an injective map of sheaves (on (Aff/R)fppf). Then [Sta18, Tag
035D] implies f is finite because G is finite over R and H is separeted over R.
And thus f is proper by [Sta18, Tag 01WN]. But morphisms to affine schemes
are the same as ring maps of global sections in the other direction, so f is a
monomorphism in the category of R-schemes. We conclude that f is in fact a
closed immersion by [Sta18, Tag 04XV].
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Conversely, if f : G → H is a closed immersion, then f is also a monomor-
phism in the category of R-schemes, and in particular injective as a map of
sheaves on (Aff/R)fppf .

Next we discuss the Cartier duality.

Proposition 45. If G is a finite locally free group scheme over R, then the
sheaf H om(Aff/R)fppf

(G,Gm) is also a finite locally free group scheme.

Proof. Let A be the R-algebra representing G. The commutative group scheme
structure on G makes A into a commutative cocommutative Hopf algebra. Since
A is finite locally free over R, we can apply Lemma 27 to see that the dual R-
module A∗ is also a finite locally free R-module. Thanks to Lemma 28, we
can define the multiplication, comultiplication, unit, counit and antipodal on
A∗ by the dual of comultiplication, multiplication, counit, unit and antipodal
on A respectively. The axioms of Hopf algebras are preserved by changing the
direction of arrows, so A∗ is also a commutative cocommutative Hopf algebra.

We write H om(−,−) for H om(Aff/R)(−,−) in the rest of the proof. We
claim that A∗ represents the sheaf H om(G,Gm). For all R-algebra S,

H om(G,Gm)(S) ≃ HomHopf(S[T, T
−1], A⊗ S)

can be identified with the set of group-like elements in A⊗RS, i.e. the elements
x ∈ A ⊗R S such that ∆(x) = x ⊗ x where ∆ is the comultiplication. On the
other hand, Lemma 27 shows that

HomR(A
∗, S) ≃ HomS(A

∗ ⊗R S, S) ≃ HomS((A⊗R S)∗, S) ≃ A⊗R S

Then, by definition of the multiplicative structure on A∗, the R-algebra homo-
morphisms A∗ → S are the elements x ∈ A⊗RS such that ξ⊗ζ(∆x) = ξ(x)ζ(x)
for all ξ, ζ ∈ A∗ ⊗R S ≃ (A ⊗R S)∗, and that η(x) = 1, where η = ϵ∗(1) and
ϵ∗ : S → A∗⊗R S is the dual of the counit ϵ : A⊗S → S. The first requirement
forces x to be a group-like element. We check the second requirement for group-

like elements. We need to verify that the composition S
ϵ∗−→ (A ⊗R S)∗

x−→ S
is the identity. Taking duals of the S-modules, we reduce to showing that
S

x−→ A ⊗R S
ϵ−→ S is the identity. That is, the counit ϵ take the group-like

element x to 1. The compatibility of the comultiplication and counit implies
that ϵ ⊗ id(∆(x)) is the identity, but ∆(x) = x ⊗ x, so ϵ(x)x = x. Moreover
the compatibility of the antipodal and the comultiplication implies that x is a
unit in S ⊗R A. Thus ϵ(x) = 1. We conclude that the R-algebra morphisms
A∗ → S are in bijection with the group-like elements of A⊗S, which is also the
S-valued points of H om(G,Gm).

Finally we show that the group structure on H om(G,Gm) agrees with that
defined by the comultiplication and counit of A∗. Suppose x, y are two S-
valued points of H om(G,Gm), which we identify with two group-like elements
in A⊗RS. The multiplication on H om(G,Gm) is defined by the multiplication
on Gm, which translated to

HomHopf(S[T, T
−1], A⊗R S)2 ≃ HomHopf(S[T, T

−1]⊗S S[T, T−1], A⊗R S)

→ HomHopf(S[T, T
−1], A⊗R S)
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where the latter map is the comultiplication of Gm. The product of x, y in
H om(G,Gm) is thus xy. We now show that the product of x, y as S-valued
points of SpecA∗ is also xy. x, y associate to the ring homomorphisms (A ⊗R

S)∗ → S dual to the maps S
x,y−−→ A ⊗R S. And we need to show that the

composition
(A⊗R S)∗ → (A⊗R S)∗ ⊗S (A⊗R S)∗ → S

is the ring homomorphism associated to xy. Taking the dual, this is equivalent
to

S → (A⊗R S)⊗S (A⊗R S)→ A⊗R S

mapping 1 ↦→ x⊗y ↦→ xy, which is true since the comultiplication on (A⊗R S)∗

is the dual of the multiplication on A⊗R S. Lastly the counit (A⊗R S)∗ → S is
the dual of the unit S → A⊗R S, which corresponds to the group-like element
1. It correspond to the identity element of H om(G,Gm).

Definition 46. If G is a finite locally free group scheme over R, then the group
scheme representing the sheaf H om(G,Gm) is called the Cartier dual of G. We
denote the Cartier dual of G by G∨.

Remark 47. Since base change of schemes along a morphism S → T of schemes
correspond to restriction of sheaves from (Sch/S) to (Sch/T ), and the internal
hom commutes with restriction, the Cartier dual commutes with base change.

Proposition 48. The Cartier duality functor is an order 2 autoequivalence of
the category of finite locally free group schemes.

Proof. We need to prove that G ↦→ (G∨)∨ is equivalent to the identity functor.
Suppose G is a finite locally free group scheme represented by the Hopf

algebra A. Then (G∨)∨ is represented by A∗∗, which is canonically isomorphic to
A as an R-module by Lemma 27. Again by Lemma 27, the double duality maps
a homomorphism of R-modules to itself under the isomorphism A ≃ A∗∗. Thus
the Hopf algebra structure on A∗∗ is identified with the Hopf algebra structure
on A by construction, and also a morphism f : A → B of Hopf algebras is
identified with itself under the isomorphisms A ≃ A∗∗ and B ≃ B∗∗.

Proposition 49. The Cartier duality functor takes an injection (as sheaves)
f : G→ H of finite locally free group schemes into a faithfully flat morphism of
schemes f∨ : H∨ → G∨.

Proof. This proof is adapted from Lemma 2.4 of [Rub]. Suppose f : G→ H is
an injection of finite locally free group schemes. Remark 44 shows that f is a
closed immersion. Then the map A(H)→ A(G) of coordinate rings is surjective.
Now we prove that A(G)∗ → A(H)∗ is faithfully flat.

The main theorem of Chapter 14 of [Wat79] asserts that an injective map
of Hopf algebras over a field is faithfully flat. Let R → k be a residue field
of R. Then A(H) ⊗R k → A(G) ⊗R k is surjective and so (A(G) ⊗R k)∗ →
(A(H) ⊗R k)∗ is injective. By Lemma 27, (A(H) ⊗R k)∗ ≃ A(H)∗ ⊗R k and
similarly for A(G). So A(G)∗ ⊗R k → A(H)∗ ⊗R k is injective. These two base
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changes are still Hopf algebras, and thus the map A(G)∗ ⊗R k → A(H)∗ ⊗R k
is faithfully flat. Now G∨, H∨ are finite and flat over R, and all maps on fibres
f∨
s : H∨

s → G∨
s , s ∈ SpecR are faithfully flat, so f∨ : H∨ → G∨ is faithfully flat

by the fibre criterion of flatness [Sta18, Tag 039E].

Remark 50. Suppose f : G → H is a map of finite locally free groups schemes
which is a surjective map of sheaves. Then 0 → ker f → G → H → 0 is
an exact sequence of sheaves, and we have an injection f∨ : H∨ → G∨ by
applying H om(−,Gm). As double Cartier duality takes a morphism back to
itself, Proposition 49 shows that f is faithfully flat.

Conversely, let G → H be a faithfully flat morphism of finite locally free
group schemes. If A(G), A(H) are the coordinate rings of G,H respectively,
then A(H) → A(G) is of finite presentation as a ring map since both are of
finite presentation over R. Therefore we can apply [Sta18, Tag 05VM] to obtain
that G→ H is surjective as a map of sheaves.

In fact in this case A(G) is even of finite presentation as a module over
A(H) since A(H)→ A(G) is finite. Then A(G) is finite locally free over A(H)
by flatness. Moreover, the kernel of G → H is flat over R, and is thus a finite
locally free group scheme.

Proposition 51. The Cartier duality functor is exact.

Proof. The Cartier dual is left exact since the internal hom is left exact. We
only need to prove that the Cartier duality takes injective maps of finite locally
free group schemes into surjective maps. Proposition 49 shows that an injection
G→ H of finite locally free group schemes is taken to a faithfully flat morphism
H∨ → G∨. Then Remark 50 implies that H∨ → G∨ is surjective.

Remark 52. Combining Remark 44 and Remark 50, we can give a scheme the-
oretic description of exactness of finite locally free group schemes. Namely, a
sequence

0→ G→ H → K → 0

of finite locally free group schemes is exact if and only if H → K is faithfully
flat and G fits in the pullback square of schemes

G SpecR

H K

1

Finally we give definitions of the Frobenius and the Verschiebung that will
be useful in the sequel.

Definition 53. Suppose pR = 0 and G a finite locally free group scheme over
R. We denote by F the relative Frobenius G → G(p), where G(p) denotes
G ×SpecR,x ↦→xp SpecR. Since the Cartier duality commutes with base change,
(G∨)(p) ≃ (G(p))∨. The morphism V : Gp → G corresponding to the relative
Frobenius F : G∨ → (G∨)(p) under Cartier duality is called the Verschiebung.
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3 Prismatic cohomology

3.1 Prisms

Definition 54. A δ-ring is a pair (R, δ) where R is an Z(p)-algebra and δ :
R→ R is a map of sets, such that

δ(0) = δ(1) = 0

δ(x+ y) = δ(x) + δ(y)−
p−1∑︂
i=1

(︁
p
i

)︁
p

xiyp−i

δ(xy) = xpδ(y) + ypδ(x) + pδ(x)δ(y)

Note that p |
(︁
p
i

)︁
is true for all 0 < i < p, so the definition is indeed valid

without p being invertible. If there is no risk of confusion, we may also refer to
the δ-ring (R, δ) with only R.

Definition 55. If (R, δ) is a δ-ring, then we call the map φ : R → R, x ↦→
xp + pδ(x) the Frobenius lift of (R, δ). If no confusion is possible, then we will
also simply say that φ is the Frobenius on R.

Lemma 56. The Frobenius on a δ-ring is a ring homomorphism whose reduc-
tion modulo p is the usual Frobenius of characteristic p rings.

Proof. We need to show that φ(x + y) = φ(x) + φ(y) and φ(xy) = φ(x)φ(y).
We calculated that

φ(x+ y) = (x+ y)p + pδ(x+ y)

= xp + yp +

p−1∑︂
i=1

(︃
p

i

)︃
xiyp−i + pδ(x+ y)

= xp + yp + pδ(x) + pδ(y) +

p−1∑︂
i=1

(︃
p

i

)︃
xiyp−i −

p−1∑︂
i=1

(︃
p

i

)︃
xiyp−i

= φ(x) + φ(y)

and also

φ(xy) = xpyp + pδ(xy)

= xpyp + p(xpδ(y) + ypδ(x) + pδ(x)δ(y))

= φ(x)φ(y)

The reduction modulo p part follows immediately from the expression x ↦→
xp + pδ(x).

Definition 57. A prism is a pair (A, I) where A is a δ-ring and I an ideal in
A, satisfying the following conditions:

(1) I is finite locally free of rank 1 as an A-module.
(2) A is derived (p, I)-complete.
(3) p ∈ I + φ(I)A.
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In practice the ideal I is usually principal, i.e. I = (d) where d is not a
zero-divisor in A. A particularily important example is that I = (d) where d is
not a zero divisor in A such that δ(d) is a unit. In this case the condition (3) is
verified as p ∈ (pδ(d)) ⊂ (d, dp + pδ(d)).

There is some rigidity involving the ideal I.

Lemma 58. If (A, I) → (B, J) is a morphism of prisms, i.e. a δ-ring map
A → B such that I is mapped into J , then J = IB. Conversely, if (A, I) is a
prism, (A, I)→ (B, IB) a map of δ-rings such that B is derived (p, I)-complete
and IB is finite locally free of rank 1 over B, then (B, IB) is also a prism.

Proof. [BS22], Lemma 3.5.
The proof of the converse implication is easy so we recall it. The only

condition that needs to be checked is that p ∈ IB + φB(IB)B. But the map
A → B is compatible with the Frobenii on A and B, so φB(IB) contains the
image of φA(I)A.

In particular, if A is a δ-ring and I ⊂ J are two ideals such that (A, I) and
(A, J) are both prisms, then I = J .

Definition 59. A prism (A, I) is called bounded if the ring A/I has bounded
p∞-torsion, and transversal if A/I is p-torsion free.

Lemma 60. If (A, (d)) is a transversal prism, then A is p-torsion free. In this
case (pm, dn) and (dm, pn) are regular sequences on A for arbitrary m,n ≥ 1.

Proof. Suppose x ∈ A is such that px = 0. Since A/d is p-torsion free, x ∈ (d).
Then x = dy for some y ∈ A. But then dpy = 0, and thus py = 0. Continuing
this process, we can find a sequence {xn} such that xn = dxn+1 and x0 = x.
But A is derived d-complete, and [Sta18, Tag 091P] implies that lim×d A ≃ 0.
So we have that x = 0.

For a transversal prism (A, (d)), both p and d are not zero divisors. Then
pm, dn are not zero divisors. We show by induction that A/dnA is pm-torsion
free for all m,n ≥ 1. When n = 1 this is the assumption. Suppose we have
shown the claim whenever n < n0. As d is not a zero divisor, we have an exact
sequence

0→ A/dn0−1A
d−→ A/dn0A→ A/dA→ 0

Applying RHomZ(Z/pmZ,−) to the exact sequence yields an exact sequence

(A/dn0−1A)[pm]→ (A/dn0A)[pm]→ (A/dA)[pm]

where the first and the third terms are 0 by induction hypothesis. Thus (A/dn0A)[pm] ≃
0. So (dn, pm) is a regular sequence.

Finally, consider the commutative diagram with exact rows

0 A A A/dnA 0

0 A A A/dnA 0

dn

pm pm
pm

dn
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The snake lemma implies that A/pmA
dn

−→ A/pmA is injective. So (pm, dn)
is also a regular sequence.

Lemma 61. A bounded prism (A, (d)) has tame {d, p}∞-torsion.

Proof. By assumption A is d-torsion free. Then we have exact sequences

0→ A/d
dn

−→ A/dn+1 → A/dn → 0

If (A/d)[p∞] = (A/d)[pc], then we show by induction that (A/dn)[p∞] = (A/dn)[pnc].
The case n = 1 is the assumption. Suppose we have case n. Let x ∈ (A/dn+1)[p∞].
Then the image of x in A/dn is killed by pnc by induction hypothesis. So
pncx lies in the image of A/d, and is a p∞-torsion. Then pcpncx = 0 since
(A/d)[p∞] = (A/d)[pc]. This completes the induction step.

Using again that A is d-torsion free, we have that

Kos(A; dm, pn) ≃ Kos(A/dm; pn)

while the latter has H−1 equal to (A/dm)[pn], H0 equal to A/(dm, pn) and
Hi = 0 if i ̸= −1, 0. Thus the transition maps

Kos(A; dm, pn+mc+1)→ Kos(A; dm, pn)

induces 0 on H−1. We conclude that the pro-systems

{Kos(A; dm, pn)}m,n, {A/(dm, pn)}m,n

are pro-isomorphic. Note that (dm, pn) ⊂ Imin(m,n) and I2(m+n) ⊂ (dm, pn).
Thus the ideals (dm, pn)m,n and Im are cofinal, so {A/(dm, pn)} and {A/In}n
are pro-isomorphic.

Remark 62. In this subsection we will often state results about prisms while
only giving the argument when the ideal in the prism is pricipal. The general
statements are proved in [BS22]. The idea of the generalization is to replace
the Koszul complexes in Definition 13 with a more general form Kos(J1, . . . , Jn)
where Jn are generalized Cartier divisors.

There is an analogue of Lemma 22 for bounded prisms.

Lemma 63. Let (A, I) be a bounded prism and M ∈ D(A) a derived (p, I)-
complete, (p, I)-completely flat complex. Then M ≃ M0[0], where M0 is a
classically (p, I)-complete A-module. Moreover, for any n ≥ 0, M [In] = 0 and
the module M/InM has bounded p∞-torsion.

Proof. This is [BS22], Lemma 3.7. If I = (d) is principal, then we can apply
Lemma 61 to see that A has tame {d, p}∞-torsion. Thus the part that M is
concentrated in degree 0 and there given by a classically (p, d)-complete module
follows from Lemma 17.
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Definition 64. Let (A, I) be a bounded prism and R an A/I-algebra. The
relative prismatic site (R/A)∆ is defined to be the category of pairs ((B, IB), f),
where (B, IB) is a bounded prism over (A, I) and f : R→ B/IB a map of A/I-
algebras. Morphisms from ((B′, IB′), f ′) to ((B, IB), f) are defined to be maps
of δ-rings B → B′ such that the diagram commutes

R

B/IB B′/IB′
f

f ′

We equip (R/A)∆ with the following topology: covers are given by mor-
phisms

((B′, IB′), f ′)→ ((B, IB), f)

where B → B′ is (p, I)-completely faithfully flat.

Definition 65. Let R be a ring. The absolute prismatic site (R)∆ is defined
to be the category of pairs ((B, IB), f), where (B, IB) is a bounded prism and
f : R → B/IB a map of rings. Morphisms from ((B′, IB′), f ′) to ((B, IB), f)
are defined to be maps of δ-rings B → B′ such that the diagram commutes

R

B/IB B′/IB′
f

f ′

We equip (R/A)∆ with the following topology: covers are given by mor-
phisms

((B′, IB′), f ′)→ ((B, IB), f)

where B → B′ is (p, I)-completely faithfully flat.

We will omit the map f : R → B/IB in the notation ((B, I), f) if no
confusion is possible. We need to verify the site axioms for the definition.
Namely, we need to show the following.

Lemma 66. Let (B′, JB′)→ (B, J)← (B′′, JB′′) be two morphisms in either
(R/A)∆ or (R)∆ where the map B → B′ is (p, J)-completely flat. Then

((B′ ⊗L
B B′′)∧(p,J), J(B

′ ⊗L
B B′′)∧(p,J))

is a prism and serves as the pullback of the diagram (B′, JB′) → (B, J) ←
(B′′, JB′′).

Proof. This is the first part of [BS22], Corollary 3.12. We give here the argument
for the case J = (d) is principal.
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Let C be (B′ ⊗L
B B′′)∧(p,d). Lemma 11 implies that C is (p, d)-completely

flat over B′′. Then we can apply Lemma 17 to see that C is concentrated in
degree 0, and is classically (p, d)-complete. Moreover, C ⊗L

B′′ B′′/(p, d)nB′′ is
concentrated in degree 0 by Lemma 15, and thus coincides with C/(p, d)nC.
But we also have that

C ⊗L
B′′ B′′/(p, d)nB′′ ≃ B′ ⊗L

B B′′ ⊗L
B′′ B′′/(p, d)nB′′

≃ B′/(p, d)nB′ ⊗L
B/(p,d)n B′′/(p, d)nB′′

≃ B′/(p, d)nB′ ⊗B/(p,d)n B′′/(p, d)nB′′

So in fact C is the classical (p, d)-completion of B′ ⊗B B′′, which inherits the
structure of a δ-ring by Remark 2.7 and Lemma 2.17 of [BS22].

In view of Lemma 58, it remains to show that C is d-torsion free. The ring
B′′ is d-torsion free since (B′′, (d)) is a prism, so

C[d] ≃ H−1(C ⊗L
B′′ B′′/dB′′)

By Lemma 11, C ⊗L
B′′ B′′/dB′′ is (p, d) = (p)-completely flat over B′′/dB′′,

which has bounded p∞-torsion since (B′′, (d)) is a bounded prism. Lemma 17
then implies that C⊗L

B′′B′′/dB′′ is concentrated in degree 0. Thus C[d] ≃ 0.

Definition 67. The prismatic structural sheaf on (R/A)∆ or (R)∆ is the functor

O∆ : (B, J) ↦→ B. We also define the functor O∆ : (B, J) ↦→ B/J .

Lemma 68. The functors O∆ and O∆ are indeed sheaves on (R/A)∆ and (R)∆,
and the sheaves have vanishing higher cohomology on each object (B, J).

Proof. This statement is shown in the second part of [BS22], Corollary 3.12.
Here we give the argument assuming that J = (d) is principal.

Lemma 66 implies that the Čech nerve of (B′, (d))→ (B, (d)) in (R/A)∆ or
(R)∆ is calculated in the category ((p, d)Aff/B). Applying the functor O∆ to

the Čech nerve gives the (p, d)-completed Amitsur complex Ami(B;B → B′),
which is acyclic by Lemma 61 and Lemma 24. The sheaf property and vanishing
of higher Čech cohomology follow.

For the functor O∆, we note that each term of the Čech nerve is d-torsion
free, so the derived tensor product Ami(B;B → B′) ⊗L

B B/dB can be calcu-
lated as applying ⊗BB/dB to each term of the complex, thanks to the acyclic
assembly lemma. But this is exactly the complex obtained by applying O∆ to

the Čech nerve of (B′, (d))→ (B, (d)), which is then acyclic. Again this shows
the sheaf property and the vanishing of higher Čech cohomology.

Equipped with the knowledge that all higher Čech cohomology of O∆ and

O∆ for all covers (B′, (d))→ (B, (d)) vanish, [Sta18, Tag 03F9] implies that all
higher cohomology on the object (B, (d)) vanish.

Definition 69. Let (A, I) be a bounded prism and R be a p-completely smooth
A/I-algebra, then the prismatic cohomology ∆R/A of R is defined to be the
complex

RΓ((R/A)∆,O∆)
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The Hodge-Tate cohomology ∆R/A is defined to be the complex

RΓ((R/A)∆,O∆)

For general A/I-algebra R, the derived prismatic cohomology ∆R/A of R is
defined to be the left Kan extension of ∆−/A from p-completely smooth A/I-

algebras. And the derived Hodge-Tate cohomology ∆R/A is defined to be the

left Kan extension of ∆−/A from p-completely smooth A/I-algebras.

To be more precise, the left Kan extension is done in the following steps:
for a general A/I-algebra R, we fix a simplicial resolution C• → R of R by
p-completely A/I-algebras Ci, calculate the prismatic cohomology ∆Ci/A or the

Hodge-Tate cohomology ∆Ci/A, and then take the homotopy colimits of the di-

agram ∆C•/A or ∆C•/A. It is claimed in Construction 7.6 of [BS22] that this
construction does not depend on the choice of the simplicial resolution. In par-
ticular, we may resolve a p-completely smooth A/I-algebra R by itself to see
that its derived prismatic cohomology (resp. its derived Hodge-Tate cohomol-
ogy) agrees with its prismatic cohomology (resp. its Hodge-Tate cohomology).
Thus we are justified to use the same symbol to denote either the derived or the
non-derived version of the prismatic cohomology and the Hodge-Tate cohomol-
ogy.

Proposition 70 (formally étale localization for derived prismatic cohomology).
Let (A, I) be a bounded prism and R → R′ map of p-complete A-algebra such
that (LR′/R)

∧
p ≃ 0, then ∆R′/A ≃ (∆R/A ⊗L

R R′)̂.

Proof. [BL22], Proposition 4.1.13.

Finally we introduce the Nygaard filtration.

Definition 71. Let (A, I) be a prism. The Nygaard filtration, denoted by
N≥nA ⊂ A for n ≥ 0, is defined to be

N≥nA =
{︁
x ∈ ∆R | φ(x) ∈ In

}︁
The Nygaard filtration is a decreasing filtration on A. However it is not

separated in general. From the definition it is clear that the Nygaard filtration
is separated if and only if φ is injective, which is not always the case.

3.2 Quasi-syntomic rings

We will use the cotangent complex of a ring map, defined in [Sta18, Tag 08PN].
The fundamental distinguished triangle for the cotangent complex, [Sta18, Tag
08QS], will be used in the sequel without citing the reference everytime.

Definition 72. A ring A is called quasi-syntomic if it is derived p-complete with
bounded p∞-torsion, and the cotangent complex LA/Zp

∈ D(A) has p-complete
Tor-amplitude in [−1, 0].
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A map A → B of derived p-complete rings with bounded p∞-torsion is
called quasi-syntomic if B is p-completely flat over A, and the relative cotangent
complex LB/A ∈ D(B) has p-complete Tor amplitude in [−1, 0].

Remark 73. As we require quasi-syntomic rings to have bounded p∞-torsion, it
is equivalent to require that they are p-adically complete in either the classical
sense or the derived sense by Lemma 17.

Although we define quasi-syntomic rings to be derived p-complete, it is some-
times useful to consider non-complete rings.

Lemma 74. Let R → S be a p-completely flat map of rings where R lies in
(pAff/Zp). Then (LS∧

p /R)
∧
p ≃ (LS/R)

∧
p

Proof. By assumption S∧
p is concentrated in degree 0 and classically p-complete.

Consider the chain of ring maps S → S∧
p → S/p. By the fundamental triangle

of the cotangent complex we have a distinguished triangle

LS∧
p /S ⊗L

S∧
p
S/p→ L(S/p)/S → L(S/p)/S∧

p

+1−−→

But S/p ≃ S∧
p ⊗L

SS/p, so [Sta18, Tag 08QZ] implies that L(S/p)/S → L(S/p)/S∧
p
is

a quasi-isomorphism. Then LS∧
p /S ⊗L

S∧
p
S/p ≃ 0, and derived Nakayama implies

that (LS∧
p /S)

∧
p ≃ 0.

Now consider the chain of ring maps R→ S → S∧
p . We have a distinguished

triangle

(LS/R ⊗L
S S∧

p )
∧
p → (LS∧

p /R)
∧
p → (LS∧

p /S)
∧
p

+1−−→

Thus we have a quasi-isomorphism

(LS/R ⊗L
S S∧

p )
∧
p → (LS∧

p /R)
∧
p

But applying derived Nakayama to the natural

(LS/R ⊗L
S S)∧p → (LS/R ⊗L

S S∧
p )

∧
p

shows that (LS/R ⊗L
S S∧

p )
∧
p ≃ (LS/R)

∧
p . Thus we conclude that (LS/R)

∧
p ≃

(LS∧
p /R)

∧
p .

Definition 75. A quasi-syntomic map A→ B is called a quasi-syntomic cover
if B is p-completely faithfully flat over A. For a ring R, the quasi-syntomic
topology on (pAff/R) is defined to be the Grothendieck topology with covers
being {Ti → T} where each ring map T → Ti is quasi-syntomic, and {Ti/p →
T/p} is an fpqc cover.

Let R be a quasi-syntomic ring. The big quasi-syntomic site over R, denoted
by (R)QSYN, is defined to be the opposite of the category of R-algebras with
bounded p∞-torsion, equipped with the quasi-syntomic topology. And the small
quasi-syntomic site, (R)qsyn, is defined to be the category opposite of that of all
quasi-syntomic map R→ R′, with the quasi-syntomic topology.
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Lemma 76. If R is quasi-syntomic, R→ R′ is quasi-syntomic, then R′ is also
quasi-syntomic.

Proof. The fundamental triangle for Zp → R→ R′ is

LR/Zp
⊗L

R R′ → LR′/Zp
→ LR′/R

+1−−→

We calculate that

LR/Zp
⊗L

R R′ ⊗L
R′ R′/p ≃ LR/Zp

⊗L
R R/p⊗L

R/p R
′/p

≃ (LR/Zp
⊗L

R R/p)⊗R/p R
′/p

And the last term has Tor amplitude in [−1, 0] in D(R′/p). So LR/Zp
⊗L

R R′

has p-complete Tor amplitude in [−1, 0]. But also LR′/R has p-complete Tor
amplitude in [−1, 0]. We conclude that LR′/Zp

has p-complete Tor amplitude in
[−1, 0].

In the quasi-syntomic site, Bhatt, Morrow and Scholze singled out a par-
ticularly well behaved class of rings. The following is the Definition 4.20 of
[BMS19].

Definition 77. LetR be a quasi-syntomic ring. R is called quasiregular semiper-
fectoid if there is a perfectoid ring S mapping to R, and the ring R/p is semiper-
fect. Moreover, R is called quasiregular semiperfect if it is quasiregular semiper-
fectoid and is an Fp-algebra.

Remark 78. Equivalently, we may define R to be quasiregular semiperfectoid if
it is quasi-syntomic and there is a perfectoid ring S mapping surjectively to R.
For the equivalence of the two, see Remark 4.22 in [BMS19].

A convenient feature of a quasiregular semiperfectoid ring is the existence of
an initial prism (∆R, (d)).

Proposition 79. Let R be quasiregular semiperfectoid. The category of prisms
(A, I) equipped with a map R→ A/I has an initial object (∆R, (d)).

Proof. [BS22], Proposition 7.2.

Remark 80. As shown in Proposition 7.10 of [BS22], The prism (∆R, (d)) is
bounded, and R→ ∆R ≃ ∆R/d is p-completely faithfully flat.

We need several results about the Nygaard filtration in the initial prism of
a quasiregular semiperfectoid ring.

Proposition 81. If R is quasiregular semiperfectoid, then ∆R/N≥1∆R ≃ R,
where the isomorphism is induced by φ.

Proof. [BS22], Theorem 12.2.

Lemma 82. Suppose R is quasiregular semiperfectoid and (∆R, (d)) the initial
prism. For every n ≥ 1, the image of N≥1∆R in ∆R/p

n coincides with the ideal
{x ∈ ∆R/p

n | φ(x) ∈ d∆R/p
n}.
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Proof. The Nygaard filtration N≥1∆R is the kernel of the composition

∆R
φ−→ ∆R → ∆R/d

and the image is identified with R. Since the map R → ∆R/d is p-completely
faithfully flat by Remark 80, Lemma 22 then implies that R/pn → ∆R/(d, p

n)
is faithfully flat, and thus injective. Then the image of

∆R/p
n φ−→ ∆R/p

n → ∆R/(p
n, d)

is isomorphic to R/pn.
It is clear that the image of N≥1∆R in ∆R/p

n lies in the ideal

{x ∈ ∆R/p
n | φ(x) ∈ d∆R/p

n}

Moreover, the quotient of ∆R/p
n by the image of N≥1∆R is also R/pn. Thus

the two ideals coincide.

3.3 Ind-étale base changes of quasi-syntomic rings

Definition 83. A ring homomorphism R→ S is called ind-étale if S is a filtered
colimit of étale R-algebras.

Let R be a ring and I ⊂ R a finitely generated ideal. A ring map R→ S is
called I-ind-étale (short for I-completely ind-étale) if S⊗L

RR/I is concentrated
in degree 0 and there given by an ind-étale R/I-algebra.

Lemma 84. If R → S is ind-étale, where R is p-complete with bounded p∞-
torsion, then R→ S∧

p is p-ind-étale.

Proof. S∧
p ⊗L

R R/p ≃ S ⊗L
R R/p ≃ S/p is concentrated in degree 0 and ind-étale

over R/p.

Lemma 85. If R → Si are p-ind-étale for i objects of some filtered category,
then R→ (colimi Si)

∧
p is p-ind-étale.

Proof. We calculate that

(colimi Si)
∧
p ⊗L

R R/p ≃ (colimi Si)⊗L
R R/p

≃ colimi(Si ⊗L
R R/p)

Each Si ⊗L
R R/p is concentrated in degree 0 and given by an ind-étale R/p-

algebra. Thus (colimi Si)
∧
p ⊗L

R R/p is concentrated in degree 0 and given by an
ind-étale R/p-algebra.

Proposition 86 (Algebraization). Let R be a p-complete ring with bounded
p∞-torsion. If R→ S is a p-ind-étale map where S is also derived p-complete,
then S is the derived p-completion of an ind-étale R-algebra.
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Proof. Lemma 17 implies that S is classically p-complete. Since R/p → S/p is
ind-étale, [Sta18, Tag 097P] gives an ind-étale map R → S′ such that S′/p ≃
S/p. Let S′ ≃ colimi∈I Si where each Si is étale over R. The maps Si → S′/p→
S/p lift uniquely to some Si → S/pn for each n as Si is étale. Then these maps
assemble into a map Si → limn S/p

n ≃ S. Uniqueness of the liftings ensures
that these maps are compatible with transition maps between Si’s, so they
give a map S′ → S. Then (S′)∧p → S is a map between derived p-complete,
p-completely flat R-algebras that reduces to identity modulo p, and derived
Nakayama (Lemma 9) shows that it is an isomorphism.

Corollary 87. If R → R′ is a p-ind-étale map with R having bounded p∞-
torsion, then (LR′/R)

∧
p ≃ 0. In particular, R→ R′ is quasi-syntomic.

Proof. Using [Sta18, Tag 08S9], i.e. taking the cotangent complex commutes
with filtered limits, the cotangent complex of an ind-étale ring map is 0. Then
we conclude by algebrazaition and Lemma 74.

Proposition 88. If R is quasiregular semiperfectoid and R→ S is p-complete
and p-ind-étale, then S is also quasiregular semiperfectoid.

Proof. By Lemma 76 and Corollary 87, S is also quasi-syntomic. If R′ is a
perfectoid ring with a map R′ → R, then the compostion R′ → R → S is
a map from a perfectoid ring to S. Now we check that S/p is semiperfect.
Write S/p ≃ colimi∈I Li, where I is a filtered category and each R/p → Li

is étale. By [Sta18, Tag 0EBS], the relative Frobenius Li ⊗R/p,φ R/p → Li is
an isomorphism. But R/p is semiperfect, so the map Li → Li ⊗R/p,φ R/p is
surjective. So each Li is semiperfect. The colimit colimi∈I Li commutes with
the forgetful to Fp-modules, and filtered colimits in Fp-modules are exact, so
S/p ≃ colimi∈I Li is semiperfect.

Proposition 89. If R is quasiregular semiperfectoid and R→ S is p-complete
and p-ind-étale, then there is a unique map of prisms (∆R, (d)) → (∆S , (d))
inducing the dashed arrow in the following commutative diagram

R ∆R

S ∆S

The map ∆R → ∆S is p-ind-étale, is p-completely faithfully flat if R → S is
p-completely faithfully flat. The map of prisms ∆R → ∆S is (p, d)-ind-étale, and
is (p, d)-completely faithfully flat if R→ S is p-completely faithfully flat.

Proof. By the Proposition 88, S is also quasiregular semiperfectoid. The exis-
tence and uniqueness of the map ∆R → ∆S follow from the universal property
of ∆R.
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The Proposition 7.10 of [BS22] allows us to compute ∆R and ∆S as the
prismatic cohomology ∆R/A and ∆S/A, where (A, d) is a perfect prism such
that A/d maps to R. The formally étale localization of the derived prismatic
cohomology implies that ∆S/A ≃ (∆R/A ⊗L

R S)∧p . Using that R → S is p-
completely flat, we calculated that

∆S/A ⊗L
∆R/A

∆R/A/p ≃ (S ⊗L
R ∆R/A)

∧
p ⊗L

∆R/A

∆R/A/p

≃ S ⊗L
R ∆R/A/p

≃ (S ⊗L
R R/p)⊗L

R/p ∆R/A/p

≃ (S/p⊗R/p ∆R/A/p)[0]

Then ∆R/A → ∆S/A is p-ind-étale, and is p-completely faithfully flat if R → S
is p-completely faithfully flat.

For the last part, we calculate that

∆S ⊗L
∆R

∆R/(p, d) ≃ ∆S ⊗L
∆R

∆R ⊗L
∆R

∆R/p

≃ ∆S ⊗L
∆R

∆R/p

≃ (S/p⊗R/p ∆R/A/p)[0]

The second quasi-isomorphism uses the fact that both ∆R and ∆S are d-torsion
free. We conclude that ∆R → ∆S is (p, d)-ind-étale. If R → S is p-completely
faithfully flat, then ∆R → ∆S is p-completely faithfully flat, so ∆R → ∆S is
(p, d)-completely faithfully flat.

3.4 Prismatic structural sheaf

Let R be a quasi-syntomic ring.
We first introduce, as in [AL23], Section 4.1, several functors between the

topoi
Sh((R)∆),Sh((R)QSYN),Sh((R)qsyn)

Let u be the functor (R)∆ → (R)QSYN, defined by (B, I) ↦→ B/I. u is
cocontinuous by [AL23], Proposition 3.3.8. Then u induces a morphism of topoi

u∗ : Sh((R)∆)→ Sh((R)QSYN)

u−1 : Sh((R)QSYN)→ Sh((R)∆)

Let ρ be the inclusion functor (R)qsyn → (R)QSYN. ρ is continuous cocon-
tinuous, so it induces the following three functors:

ρ−1 : Sh((R)QSYN)→ Sh((R)qsyn), ρ∗, ρ! : Sh((R)qsyn)→ Sh((R)QSYN)

where ρ−1, ρ∗ define a morphism of topoi and ρ! is the left adjoint to ρ−1. For
more details on the construction of the functors, see [Sta18, Tag 00XR]. In
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[AL23], ρ−1 is denoted by ϵ∗ and ρ! by ϵ♮. However ρ! doesn’t commute with
finite limits, so ρ!(= ϵ♮), ρ−1 = (ϵ∗) do not define a morphism of topoi in the
other direction.

For consistency with [AL23], we denote v∗ = ρ−1u∗ despite v∗ is not the
push forward functor in a morphism of topoi.

Then we define a few sheaves on the prismatic site and the small quasi-
syntomic site. Let O∆ be the prismatic structural sheaf, I∆ the sheaf (B, I) ↦→ I

on the prismatic site, and O∆ the quotient O∆/I∆. Let N≥1O∆ be the kernel
of the composition

O∆
φ−→ O∆ → O∆

By [BS22], Corollary 3.12, the section of O∆ on (B, I) is in fact just B/I. Thus
the section of N≥1O∆ on (B, I) is the Nygaard filtration N≥1B.

Furthermore, define the following sheaves on (R)qsyn:

Opris = v∗O∆,N
≥1Opris = v∗O∆, I

pris = v∗I∆

Let O denote the structural sheaf on (R)qsyn.
Suppose that n ≥ 1. We denote by Opris

n the sheaf Opris⊗ZZ/pnZ on the site
(R)qsyn, and by N≥1Opris

n the image of N≥1Opris in Opris
n . If n =∞, then Opris

n

is defined to be Opris. In addition, we denote by On the sheaf O⊗ZZ/pnZ where
O is the quasi-syntomic structural sheaf. Again O∞ is simply defined to be O.
By applying Lemma 82 to all quasiregular semiperfectoid rings in (R)qsyn, we
see that N≥1Opris

n is also the kernel of the composition

Opris
n

φ−→ Opris
n → Opris

n /Ipris

We write formally R/p∞ to mean R, and ∆R/p
∞ to mean ∆R.

Proposition 90. Suppose R a p-torsion free quasi-syntomic ring and n ≥ 1 or
n =∞. Then

RΓ((R)qsyn,On) ≃ R/pn[0]

If R is further supposed to be quasiregular semiperfectoid, then

RΓ((R)qsyn,Opris
n ) ≃ ∆R/p

n[0]

RΓ((R)qsyn,N≥1Opris
n ) ≃ ker(∆R/p

n → R/pn)[0]

Proof. Lemma 21 shows that all covers in (R)qsyn can be refined into a cover
of the form S′ → S. In view of [Sta18, Tag 03F9], that RΓ((R)qsyn,O) = R
follows from Lemma 24 Since all the objects S in (R)qsyn are p-completely flat
over S, Lemma 22 implies that the sheaf O is p-torsion free, so we have an exact
sequence

0→ O pn

−→ O → On → 0

This implies that RΓ((R)qsyn,On) ≃ R/pn[0].
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From now on we suppose that R is quasiregular semiperfectoid. The site
(R)∆ has an initial object ∆R by Proposition 79. Then Lemma 68 implies that
RΓ((R)∆,O∆) ≃ ∆R[0]. Using the Leray spectral sequence associated to the
morphism of topoi

u∗Sh((R)∆)→ Sh((R)QSYN)

we can compute that RΓ((R)QSYN, u∗O∆) = ∆R. Let C be the covers in (R)qsyn
of the form R′ → R′′ where R′′ is quasiregular semiperfectoid. By [BMS19],
Lemma 4.30, all covers in (R)qsyn can be refined by the covers in C, and all
terms of the Čech nerve of a such cover are quasiregular semiperfectoid. The
higher Čech cohomology all vanish for covers in C on the site (R)QSYN by
RΓ((R)QSYN, u∗O∆) = ∆R. But for a cover in (R)qsyn, the Čech cohomol-
ogy of ρ−1u∗O∆ can also be calculated using the site (R)QSYN. So the higher

Čech coholomogy for Opris on covers in C all vanish. Then [Sta18, Tag 03F9]
implies that all higher cohomology of Opris on R vanish.

As R is p-torsion free, each quasiregular semiperfectoid ring S in (R)qsyn is
p-torsion free. By [BS22], Proposition 7.10, we know that ∆S is p-completely
flat over S, and thus p-torsion free by Lemma 22. Thus ∆S is a transversal
prism, and is p-torsion free by Lemma 60. As all objects in (R)qsyn are covered
by some quasiregular semiperfectoid ring, the sheaf Opris is p-torsion free, and
we have an exact sequence

0→ Opris pn

−→ Opris → Opris
n → 0

ApplyingRΓ((R)qsyn,−) to the exact sequence givesRΓ((R)qsyn,Opris
n ) ≃ ∆R/p

n[0]
Finally, apply RΓ((R)qsyn,−) to the exact sequence

0→ N≥1Opris
n → Opris

n → On → 0

and use the fact that the induced ∆R/p
n → R/pn is surjective, we can conclude

that RΓ((R)qsyn,N≥1Opris
n ) ≃ ker(∆R/p

n → R/pn)[0].

We collect a few results about finite locally free modules.

Lemma 91. Let A be a ring with tame {f1, . . . , fn}∞-torsion. Write I =
(f1, . . . , fn). Let C be a site and O a sheaf of A-algebras on C (here the notation
O is in conflict with the structural sheaf on (R)qsyn but it is too standard to
change) such that

(a) Any cover {Ui → U}i∈J in C can be refined into a cover {Vi → U}i∈J′

where J ′ is finite.
(b) Each O(U) is derived I-complete with tame {f1, . . . , fn}∞-torsion.
(c) For every cover {Ui → U}i∈J in C, the (opposite of the) family {O(U)→

O(Ui)}i∈J is an I-completely fpqc cover.
(d) For a cover {Ui → U} and a morphism V → U , we have that O(Ui ×U

V ) ≃ (O(Ui)⊗L
O(U) O(V ))∧I .

IfM is a finite locally free O-module, then:
(1) For every object U ∈ C,M(U) is a finite locally free O(U)-module.
(2) For every morphism V → U in C, we haveM(V ) ≃M(U)⊗O(U)O(V ).
(3) For every object U ∈ C, RΓ(U,M) ≃M(U)[0].
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Proof. Suppose that {Ui → U}i∈J is a cover in C such that

M|Ui
≃ O|ni

Ui

for some integers ni. We may suppose that J is finite.
We have free O(Ui)-modules O(Ui)

ni , together with isomorphisms ti,j :
Oni

i,j ≃ M(Ri,j) ≃ O
nj

i,j , where Oi,j ≃ O(Ui ×U Uj). The isomorphisms ti,j
satisfy the cocycle condition by construction. Thus we have a descent da-
tum of finite locally free modules for the I-completely fpqc cover (opposite
to) {O(U) → OUi}i∈J , which is effective by Proposition 30. Suppose that
the descent datum is isomorphic to the canonical descent datum associated to
the finite locally free O(U)-module M . Then M is classically I-complete, and
M/InM is the kernel of∏︂

i∈J

(O(Ui)/I
n)ni →

∏︂
i,j∈J

(O(Ui ×U Uj)/I
n)ni

(xi)i ↦→ (xi − ti,j(xj))i,j

Note that inverse limit is left exact, so the sheaf property ofM forcesM(U) to
be isomorphic to M .

If V → U is a morphism in C, then {(V ×U Ui}i∈J is a cover of V . Since
M|Ui

is free over O|Ui
for every i, we have that

M((V ×U Ui) ≃M(Ui)⊗O(Ui) O(V ×U Ui)

For any n ≥ 1, O(Ui)⊗L
O(U) O(U)/In is concentrated in degree 0 and flat over

O(U)/In by Lemma 15 and Lemma 17. Then we have that

O(Ui ×U V )/In ≃ O(Ui)/I
n ⊗O(U)/In O(V )/In

Then the base change of the descent datum in the last paragraph to O(V )/In is
isomorphic to the canonical descent datum associated to the finite locally free
O(V )/In-module M(V )/InM(V ). By flatness, the base change to O(V )/In

commutes with taking cohomology. So we have that

M(U)/InM(U)⊗O(U)/In O(V )/In ≃M(V )/InM(V )

Taking the limit over all n and using the fact that finite locally free modules
over O(U),O(V ) are classically p-complete gives that

M(U)⊗O(U) O(V ) ≃M(V )

Now we calculateRΓ(U,M). We first claim that for every object V , RΓ(V,O)
is concentrated in degree 0. Let {Vi → V }i∈K be a cover. We may assume
that K is finite. The condition (d) implies that the Čech complex C•({Vi →
V }i∈K ,O) is the stupid truncation to degrees ≥ 0 of the I-completed Amitsur
complex

Ami(O(V );O(V )→
∏︂
i∈K

O(Vi))
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which is concentrated in degree 0 by Proposition 24. As this is true for any
cover, [Sta18, Tag 03F9] implies that RΓ(V,O) is concentrated in degree 0.

As RΓ(Ui,O) ≃ O(Ui)[0], we have that RΓ(Ui,M) ≃ (O(Ui))
ni [0]. Using

the Čech-to-derived spectral sequence we see that the cohomologies of RΓ(U,M)
can be calculated as those of the Čech complex C•({Ui → U}i∈J ,M). But
M(V ) ≃ M ⊗O(U) O(V ) where M ≃ M(U), which implies that the Čech
complex C•({Ui → U}i∈J ,M) is the stupid truncation to degrees ≥ 0 of the
I-completed Amitsur complex Ami(M,O(U) →

∏︁
i∈J O(Ui)). We conculde by

Proposition 24 that RΓ(U,M) ≃M [0].

Lemma 92. Suppose that R is a p-torsion free quasi-syntomic ring and n ≥ 1
or n =∞. If M is a finite locally free On-module (on (R)qsyn), then M(R) is
a finite localy free R/pn-module, and for every R→ R′ in (R)qsyn we have that
M(R′) ≃M(R)⊗RR′. The cohomology can be calculated as RΓ((R)qsyn,M) ≃
M(R)[0].

Proof. Here we take C to be (R)qsyn and O to be On in Lemma 91. Lemma 90
implies that On(R

′) ≃ R′/pn for every R′. Then the conditions (a) - (d) are
trivial to verify.

Lemma 93. Suppose that R is p-torsion free quasi-syntomic. If M→ N is a
surjection of finite locally free On-modules, thenM(R)→ N (R) is a surjection
of finite locally free R/pn-modules.

Proof. Let f :M→N be a surjection of finite locally free On-modules. Passing
to a cover that trivializes bothM and N , we may check that ker f is also finite
locally free over On. Taking global section of the exact sequence

0→ ker f →M→N → 0

and using that RΓ((R)qsyn, ker f) is concentrated in degree 0, we obtain that
the map M(R) → N (R) is also surjective. But M(R),N (R) are finite locally
free R/pn-modules, so the surjection splits. Note that M(R′) ≃ M(R) ⊗R R′

and N (R′) ≃M(R)⊗R R′, so the splitting N (R)→M(R) induces a splitting
N →M.

Lemma 94. Suppose that R is a quasiregular semiperfectoid ring. If M is a
finite locally free O∆-module (on (R)∆), thenM(∆R) is a finite locally free ∆R-
module. For every (A, (d)) ∈ (R)∆ we have thatM((A, (d))) ≃M(∆R)⊗∆R

A.
Moreover,

RΓ((R)∆,M) ≃M(∆R)[0]

Proof. Here we take C to be (R)∆ and O to be O∆ in Lemma 91. The conditions
(a) - (d) are trivial to verify.
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Lemma 95. Let R be quasiregular semiperfectoid. There are equivalences of
categories between the followings that preserves direct sums:

(1) finite locally free Opris-modules.
(2) finite locally free O∆-modules.
(3) finite locally free ∆R-modules.
In particular, finite locally free Opris-modules are direct summands of finite

free Opris-modules.
Moreover, the equivalences are exact.

Proof. The equivalence of (1) and (2) is [AL23], Proposition 4.1.4. The equiv-
alence between (2) and (3) is constructed by the global section functor. It is
indeed an equivalence by Lemma 94.

The vanishing of cohomology in Lemma 94 also implies that the global sec-
tion functor from (2) to (3) is exact. The global section functor from (1) to
(3) is exact by Lemma 90. While if we have an exact sequence of ∆R-modules,
then the exact sequence splits. The split exact sequence will give split exact
sequences in the categories (1) and (2). So the functors from (3) to (1) and (2)
are also exact.

Finally we show the repleteness of the topoi in this subsection. We follow
[BS13] for the definition.

Definition 96. A topos X is called replete if the surjections in X are closed
under sequential limits.

Lemma 97. Suppose that C is a site where all covers {Ui → U} can be refines by
a cover of the form V → U , and limits of countable towers of covers of the form
V → U exist and are still covers, i.e. if we have a diagram · · · → U2 → U1 → U
such that U1 → U and Ui+1 → Ui are covers for all i, then the limit of the
diagram · · · → U2 → U1 exists and is still a cover of U . Then the topos Sh(C)
is replete.

Proof. Suppose {Fi} is an inverse system in Sh(C) indexed by N such that
Fi+1 → Fi is surjective for every i. Let n be some index and a0 ∈ Fi(S0), where
S0 is some object of C. We obtain by induction a tower of covers · · · → S2 →
S1 → S0 and ak ∈ Fn+k(Sk) such that the map of sheaves Fn+k → Fn+k−1 takes
ak to the restriction of ak−1 to Sk. By assumption the limit S∞ of · · ·S2 →
S1 → S0 exists and is a cover of S0. Then we have elements bi ∈ Fn+i(S∞)
whose image under Fn+i → Fn+i−1 is bi−1, and b0 is the restriction of a0 to
S∞. So we have constructed a cover S∞ → S0 and an element (bi) ∈ limFi(S∞)
whose projection in Fn(S∞) is the restriction of a0. This shows that limFi → Fn

is surjective.

Lemma 98. The topoi Sh((R)qsyn), Sh((R)QSYN) and Sh((R)∆) are replete.

Proof. We need to verify the conditions of Lemma 97 for the sites (R)qsyn, (R)QSYN

and (R)∆. The part about refining covers onto the form V → U follows from
Lemma 21 for (R)QSYN and (R)qsyn, since a finite direct product of rings with
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bounded p∞-torsion also has bouned p∞-torsion, and taking the cotangent com-
plex commutes with finite direct products. It is also true for (R)∆ by definition
of the topology on (R)∆.

Now we check the condition concerning limits of covers. Let · · · → S2 →
S1 → S be a tower of covers in (R)QSYN, and S∞ be the complex (colimi Si)

∧
p .

Then S∞⊗L
SS/p ≃ (colimi Si⊗L

SS/p)[0], so S∞ is p-completely faithfully flat over
S, and is thus concentrated in degree 0 and classically p-complete by Lemma
22. Moreover, S∞[pn] ≃ S∞ ⊗S S[pn] by the same Lemma. Thus S∞ is an
object of (R)QSYN. By the universal property of the derived completion, S∞ is
the limit of · · · → S2 → S1 in the category (R)QSYN.

To check the condition for (R)qsyn, we assume further that the ring maps
Si → Si+1 and S → S1 are quasi-syntomic and p-completely faithfully flat.
Then Si → S is quasi-syntomic for all i. Using Lemma 74 and the fact that the
cotangent complex commutes with filtered colimits, we calculate that

(LS∞/S)
∧
p ≃ (Lcolimi Si/S)

∧
p

≃ (colimi LSi/S)
∧
p

has p-complete Tor-amplitude in [−1, 0]. So S∞ is also an object of (R)qsyn.
The rest follows from the arguments in the last paragraph.

Finally, we check the condition for (R)∆. Suppose that · · · → (B2, IB2) →
(B1, IB1) → (B, I) is a tower of covers in (R)∆. We will only prove the claim
when I = (d) is principal. The general case is [BS23], Remark 2.4. Let B∞
be the complex (colimi Bi)

∧
(p,d). Again B∞ is (p, d)-completely faithfully flat

over B, so Lemma 63 implies that B∞ is concentrated in degree 0. The ring
colimi Bi has a natural structure of a δ-ring by [BS22], Remark 2.7. Also,
B∞ ⊗L

B B/(p, d)n is concentrated in degree 0 by Lemma 15, and thus coincides
with B∞/(p, d)nB∞. While B∞⊗L

B B/(p, d)n ≃ (colimi Bi)⊗L
B B/(p, d)nB, the

latter also coincides with colimi Bi ⊗B B/(p, d)nB since it is concentrated in
degree 0. Thus B∞ is the classical (p, d)-completion of colimi Bi, which inherits
a structure of a δ-ring by [BS22], Lemma 2.17. Note that B is d-torsion free, so
B[d] ≃ H−1(B∞⊗L

B B/dB). But B∞⊗L
B B/dB is p-completely flat over B/dB,

which has bounded p∞-torsion. So Lemma 22 implies that B∞ ⊗L
B B/dB is

concentrated in dergee 0. Therefore B∞ is d-torsion free. In view of Lemma 58,
(B∞, (d)) is a prism. Moreover, (B∞/dB∞)[pn] = (B∞/dB∞)⊗B/dB B/dB[pn]
by the same Lemma, so (B∞, (d)) is indeed an object of (R)∆. The universal
property of the derived completion implies that B∞ is the limit of the tower
· · · (B2, (d))→ (B1, (d))→ (B, (d)).

Lemma 99. Suppose that X is a replete topos and

0→ {Fi} → {Gi} → {Hi} → 0

is an exact sequence of inverse systems in X indexed by N and the maps Fi+1 →
Fi are surjective for all i. Then the map limGi → limHi is surjective.

Proof. This follows directly from [BS13], Lemma 3.1.8.
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4 Truncated Barsotti-Tate groups

In this section we recall the definition of and several useful results about trun-
cated Barsotti-Tate groups. For the moment let R be any ring.

4.1 Finite locally free group schemes as quasi-syntomic
sheaves

In this subsection we show that finite locally free group schemes can be seen as
sheaves on (R)QSYN.

The notion of a syntomic morphism is useful.

Definition 100. An algebra A over a field k is called a local complete inter-
section if there are elements f1, . . . , fn ∈ A generating the unit ideal such that

each Afi is of the form k[x1, . . . , xmi
]/(g

(i)
1 , . . . , g

(i)
ni ) and dim(Afi) = mi − ni.

A ring map R → S is called syntomic if it is flat, of finite presentation and
for each s ∈ SpecR the base change to k(s) is a local complete intersection map
k(s)→ Ss.

Lemma 101. If R→ S is a syntomic ring map, then LS/R has Tor-amplitude
in [−1, 0].

Proof. Combine [Sta18, Tag 07D3] and [Sta18, Tag 08SL].

Lemma 102. If G is a finite locally free group scheme over R, then G is syn-
tomic over R. A morphism of finite locally free group schemes that is surjective
as a map of fppf sheaves is syntomic.

Proof. Finite locally free group schemes are syntomic by [Mes72], Lemma II.3.2.6.
Suppose f : G→ H is a surjective map of finite locally free group schemes.

By Remark 50, f is faithfully flat and of finite presentation (as algebra or as
module). And the structural map G → SpecR is syntomic. Then [Sta18, Tag
05B7] implies that f is syntomic.

Remark 103. Finite locally free group schemes are also sheaves on the syntomic
site (Aff/R)syn. Injectivity of a morphism of finite locally free group schemes
are clearly the same whether we use the fppf or syntomic topology on (Aff/R).

As the fppf topology is finer than the syntomic topology, a morphism f :
G→ H of finite locally free group schemes is surjective as a map of fppf sheaves
if it is surjective as a map of syntomic sheaves. Lemma 102 implies the converse
is true. Indeed, f being surjetive as a map of fppf sheaves implies that f is
faithfully flat. If T → H is a T -valued point of H, then T ×H G → G is a
T ×H G-valued point of G that maps to T → H, and T ×H G is a syntomic
cover since G→ H is a syntomic cover.

SupposeR is derived p-complete with bounded p∞-torsion. Let Ξ : (R)QSYN →
(Aff/R) be the inclusion functor. If S ∈ (R)QSYN and S′ → S is a syn-
tomic cover corresponding to the ring map S → S′, then S′ is in particular
flat over S. So (S′)∧p is p-completely flat over S, and thus concentrated in
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degree 0. The cotangent complex LS′/S has Tor-amplitude in [−1, 0] since
S → S′ is syntomic, by Lemma 101. Then (L(S′)∧p /S)

∧
p has p-complete Tor-

amplitude in [−1, 0]. We conclude that (S′)∧p is quasi-syntomic over S, so also
quasi-syntomic over R by Lemma 76. So the functor Ξ is cocontinuous if we
equip (Aff/R) with the syntomic topology. We then have an exact functor
Ξ−1 : Sh((Aff/R)syn) → Sh((R)QSYN). Recall that we have an exact functor
ρ−1 : Sh((R)QSYN)→ Sh((R)qsyn).

Proposition 104. Let G a finite locally free group scheme over R. Sheafi-
fication is not required for calculating Ξ−1G. Moreover, ρ−1Ξ−1 induces a
fully faithful embedding from the category of finite locally free group schemes
to Ab((R)qsyn).

Proof. The composition G ◦ Ξ sends an object T ∈ (R)qsyn to the set of ring
homomorphisms A(G) → T , where A(G) is the ring of functions of G. Then
G ◦ Ξ is even a p-completely fpqc sheaf as shown in Proposition 31.

Lemma 102 shows that G is syntomic over R, but G is also derived p-
complete, so it is quasi-syntomic over R by Lemma 101. Then the category
of finite locally free group schemes is a full subcategory of (R)qsyn, so it embeds
fully faithfully via the Yoneda embedding from (R)qsyn to Sh((R)qsyn), which
takes G to its functor of points on (R)qsyn. This agrees with G ↦→ ρ−1Ξ−1G.
So the restriction is fully faithful.

Lemma 105. Let R be a ring such that p lies in the Jacobson radical of R. A
morphism G→ H of finite locally free group schemes over R is injective (resp.
surjective) if and only if its base change to all residue field of R of characteristic
p are injective (resp. surjective).

A sequence 0 → G1 → G2 → G3 → 0 of finite locally free group schemes
over R is exact if and only if the composition G1 → G3 is 0, and it is exact
after base change to all residue fields of R of characteristic p.

Proof. Denote by G
(k)
i the base change of Gi along R→ k.

By Remark 44 and Remark 50, injectivity (resp. surjectivity) of a morphism
is equivalent to being a closed immersion (resp. faithfully flat). Both properties
are preserved by arbitrary base change. If 0 → G1 → G2 → G3 → 0 is exact,
then G2 → G3 is faithfully flat and G1 is the fibre product G2 ×G3 SpecR

where the map SpecR → G3 is the unit section. In this case G
(k)
2 → G

(k)
3 is

faithfully flat by base change, and G
(k)
1 is the corresponding fibre product since

fibre product commutes with base change. Thus 0→ G
(k)
1 → G

(k)
2 → G

(k)
3 → 0

is exact.
Conversely, suppose that G → H is a morphism such that all G(k) → H(k)

are injective for k a residue field of R of characteristic p. Let A(G), A(H) be
the coordinate rings of G,H respectively. Then A(H) ⊗R k → A(G) ⊗R k is
surjective for all such k. We have by Nakayama that the maps induced by
A(H)→ A(G) on the stalks of R at the maximal ideal m is surjective whenever
R/m is of characteristic p. But p lies in the Jacobson radical of R, so all the
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maximal ideals of R contain p. Thus A(H)→ A(G) is surjective, which implies
that G→ H is a closed immersion. Since the Cartier duality is compatible with
base change and interchanges injectivity and surjectivity of a morphism of finite
locally free group schemes, we get the claim for surjectivity by duality.

Suppose that 0 → G
(k)
1 → G

(k)
2 → G

(k)
3 → 0 is exact for every residue field

of characteristic p R→ k. We have by the above that G1 → G2 is injective and
G2 → G3 is surjective. Then G2 → G3 is faithfully flat, and thus the kernel
is a finite locally free group scheme. (see Remark 50) We have a factorization
G1 → ker(G2 → G3) → G2, and G1 → ker(G2 → G3) is an isomorphism after
base change to k for all k. Let B = A(G1) and C = A(ker(G2 → G3)) be the
respective coordinate rings. Then we have a map of R-algebras C → B whose
base changes to all characteristic p residue fields of R are isomorphisms. Again
it is surjective by Nakayama. Moreover, B and C are both finite locally free
as R-modules, and they have the same rank at all closed points. Thus C → B
is a surjection between finite locally free R-modules of the same rank, and is
thus bijective. Then we conclude that G1 ≃ ker(G2 → G3), and the sequence is
exact.

Proposition 106. A morphism f : G→ H of finite locally free group schemes
is injective (resp. surjective) if and only if Ξ−1f : Ξ−1G → Ξ−1H is injective
(resp. surjective).

A sequence 0 → G1 → G2 → G3 → 0 of finite locally free group schemes is
exact as fppf sheaves if and only if it is exact as sheaves on (R)QSYN.

Proof. The forward direction follows from Remark 103 and the exactness of
Ξ−1.

If 0 → G1 → G2 → G3 → 0 is exact as sheaves on (R)QSYN, then full
faithfulness implies that the composition G1 → G3 is 0. Note that all the
residue fields of R of characteristic p lie in (R)QSYN. Thus the reverse direction
follows from Lemma 105.

4.2 Truncated Barsotti-Tate groups

All the materials in the subsection are well-known. We follow [Ill85].

Definition 107. A truncated Barsotti-Tate group of level n, or a BTn, is a
sheaf G of abelian groups on (Aff/R)fppf satisfying

(a) G is a finite locally free group scheme;
(b) G is killed by pn, and flat over Z/pnZ;
(c) if n = 1 and R0 = R/p, G0 the base change of G to R0, then the sequence

G
F−→ G(p) V−→ G

is exact (as fppf sheaves).

Remark 108. If G is a Z/pnZ-module on the fppf site, then G is flat over Z/pnZ
if and only if for all i = 0, 1, . . . , n, the sequence

0→ G[pn−i]→ G
pn−i

−−−→ G[pi]→ 0
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is exact. Indeed, the exactness of the sequence is equivalent to the image of
pn−i being the kernel of pi for all i, which is shown to be equivalent to G being
flat over Z/pnZ in [Mes72], Lemma I.1.1.

Proposition 109. If G is a BTn and m ≤ n, then the subsheaf G[pm]-torsions
is a BTm.

Proof. For m ≥ 2 this is shown in [Mes72], Remark I.2.3, while the extra con-
dition in m = 1 is verified in [Mes72], Proposition II.3.3.11.

Definition 110. A p-divisible group over R is a sheaf of abelian groups on
(Aff/R)fppf satisfying:

(a) G is p∞-torsion, i.e. for any U ∈ (Aff/R) and s ∈ G(U), there is some
n ≥ 1 such that pns = 0;

(b) the multiplication by p map ·p : G→ G is a surjection of sheaves;
(c) G[p] is a finite locally free group scheme.
Let p − div(R) be the full subcategory of Ab((R)fppf) spanned by all the

p-divisible groups.

Remark 111. For a p-divisible group G, there are exact sequences

0→ G[p]→ G[pn+1]
·p−→ G[pn]→ 0

for all n ≥ 1. Since finite locally free group schemes are closed under extensions
(See [DG70], III 4, 1.9), we can show by induction that all the G[pn] are finite
locally free group schemes.

Proposition 112. If G is a p-divisible group, then G[pn] is a BTn for all n.

Proof. As multiplication by p is surjective on G, we have exact sequences

0→ G[pi]→ G[pn]
·pi

−−→ G[pn−i]→ 0

for all positive integers i ≤ n. Thus the proposition follows from [Mes72],
Remark I.2.3 and Proposition II.3.3.11.

Lemma 113. If G is a BT1, then the rank of the coordinate ring of G is of the
form ph, where h is a locally constant N-valued function on SpecR.

Proof. We call the rank of the coordinate ring of a finite locally free group
scheme its group order. Since the coordinate ring is finite locally free over R,
the order is a locally constant function on SpecR. It remains to show that for
every residue field R → k, the order of G ×SpecR Spec k is a power of p. The
order is also preserved after base changing to the algebraic closure of k. Then
we only need to show that a finite group scheme H over an algebraically closed
field k, such that multiplication by p on H is zero, has order a power of p.

We have the connected-étale exact sequence

0→ H0 → H → H ét → 0
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by [Sti09], Proposition 37. If k has characteristic 0, then H0 ≃ 0 and H is a
constant group scheme. The order of H is the cardinality of H(k). But H(k)
is an Fp-vector space by assumption, and thus has cardinality a power of p. If
k has characteristic ℓ ̸= p, then by [Sti09], Corollary 50 (1), the order of H0 is
a power of ℓ. Then the order, some power of ℓ, kills H0 by [Sti09], Theorem 6.
But p also kills H0, so 1 kills H0 and H0 ≃ 0. Again H is a constant group
scheme, so it has order a power of p. Finally, assume that k has characteristic
p. Then [Sti09], Corollary 50 (1) implies that the order of H0 is a power of p,
while the order of H ét is also a power of p since it is constant. As the order is
multiplicative in exact sequences, the order of H is also a power of p.

Definition 114. If G is a BTn for a p-divisible group, we define the height of
G to be the locally constant function h on SpecR such that the rank of the
coordinate ring of G[p] is ph.

Remark 115. If R→ R′ is a ring map and H is a BTn or a p-divisible group over
R with height h, then the base change of G to R′ has height the composition

SpecR′ → SpecR
h−→ N.

Proposition 116. (a) If 0→ G1 → G2 → G3 → 0 is a short exact sequence of
fppf sheaves and either G1, G2 ∈ p − div(R) or G1, G3 ∈ p − div(R), then the
third is also in p− div(R);

(b) If H → G is an injection of fppf sheaves, where H is finite locally free
and G a p-divisible group, then G/H is a p-divisible group;

Proof. Part (a) is [Mes72], I.(2.4.3). Part (b) is [BBM82], Lemme 3.3.12.

Remark 117. Since G is a p-divisible group, we have an exact sequence

0→ G[p]→ G[pn+1]→ G[pn]→ 0

Thus Proposition 51 shows that the Cartier dual p∨ : G[pn]∨ → G[pn+1]∨ is
injective. Moreover the map p : G[pn+1]∨ → G[pn]∨ corresponds to the natural
injection under the Cartier duality, so it is surjective. Then the colimit of
{G[pn]∨} along p∨ is a p-divisible group. We call the colimit the Cartier dual
of G, and denote it by G∨.

Lemma 118. Let 0 → G1 → G2 → G3 → 0 be a sequence of abelian sheaves
on any site such that each Gi is of p∞-torsion and ·p : Gi → Gi are surjective.
Then the follows are equivalent:

(1) 0→ G1 → G2 → G3 → 0 is exact.
(2) For each n, the sequence 0→ G1[p

n]→ G2[p
n]→ G3[p

n]→ 0 is exact.
(3) The composition G1 → G3 is 0, and 0→ G1[p]→ G2[p]→ G3[p]→ 0 is

exact.

Proof. Suppose 0 → G1 → G2 → G3 → 0 is exact. Note that Gi[p
n] ≃

H om(Z/pnZ, Gi). The complex Z ·pn

−−→ Z is a projective resolution of Z/pnZ,
so E xt1(Z/pnZ, G1) ≃ G1/p

nG1. But p is surjective on G1, so G1/p
nG1 ≃ 0.
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Then the long exact sequence gives an exact sequence 0→ G1[p
n]→ G2[p

n]→
G3[p

n]→ 0. This proves that (1) implies (2). That (2) implies (1) follows from
the exactness of filtered colimits, [Sta18, Tag 03CO], (5).

(2) trivially implies (3). Assume (3) is true. Using the exact sequences
0 → Gi[p

n] → Gi[p
n+1] → Gi[p] → 0 and the 3 × 3 lemma we can prove

inductively that 0→ G1[p
n]→ G2[p

n]→ G3[p
n]→ 0 is exact for each n.

For defining the Tate module, a site where covers are closed under cofiltered
limit is convenient. Thus we assume from now on that R is derived p-complete
with bounded p∞-torsion.

Proposition 119. The functor Ξ−1 induces a fully faithful, exact and exactness-
reflecting embedding of the category of p-divisible groups into Ab((R)QSYN).

Proof. A morphism G→ H between p-divisible groups can be identified with a
compatible system of maps G[pn] → H[pn]. So the embedding is fully faithful
by Proposition 104.

If G is a p-divisible group, then the maps p : G[pn+1] → G[pn] are sur-
jective, and thus p : (Ξ−1G)[pn+1] → (Ξ−1G)[pn] is surjective. Moreover Ξ−1

commutes with taking pn-torsions by the explicit formula for Ξ−1. Then we can
apply Lemma 118 to reduce exactness of p-divisible groups and their images
in Ab((R)QSYN) to the exactness of finite locally free group schemes. Thus we
conclude by Proposition 106.

Definition 120. Let G be a p-divisible group over R. The Tate module of G,
denoted by TpG, is defined to be the following sheaf on (R)QSYN

lim
n

G[pn]

where the transition maps G[pn+1]→ G[pn] is given by multiplication by p.

Proposition 121. Let G1 → G2 → G3 be maps of p-divisible groups, the
followings are equivalent,

(1) 0→ G1 → G2 → G3 → 0 is exact;
(2) 0→ TpG1 → TpG2 → TpG3 → 0 is exact;
(3) 0→ G∨

3 → G∨
2 → G∨

1 → 0 is exact.

Proof. (1) ⇒ (2): By Lemma 118 we have exact sequences 0 → G1[p
n] →

G2[p
n] → G3[p

n] → 0. Then the required left exactness follows from the left
exactness of the section fucntor and of limits, and the surjectivity of TpG2 →
TpG3 follows from Lemma 99 as Sh((R)QSYN) is replete.

(2) ⇒ (1): For any p-divisible group G we have G[pn] ≃ TpG ⊗Z Z/pnZ. If
(a1, a2, . . .) is a p-torsion element in TpG(S), then pai = 0. But ai = pai+1,
so the only possibility is that ai = 0 for all i. Then TpG is p-torsion free.

Thus TorZ1 (TpG3,Z/pnZ) ≃ 0. Taking tensor product of 0 → TpG1 → TpG2 →
TpG3 → 0 with Z/pnZ, we obtain the required exact sequences.

For (1)⇒ (3), we again reduce to showing the exactness of pn-torsions for all
n. But then it follows from Proposition 51. and (3) ⇒ (1) follows by applying
the duality functor twice.
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4.3 The stack BTn

Let C be the category of morphisms of schemes G → S, where S is an affine
scheme, and G is a BTn over S, with morphisms being commutative squares
(which aren not neccessarily pull back squares)

G′ G

S′ S

Since arbitrary base changes for BTn’s are BTn’s, the functor C → (Aff/Z)
is a fibered category.

Definition 122. The fibered category BTn is defined to be the C → (Aff/Z)
constructed in the paragraph above. There is also a restriction BTn to (pAff/Zp),
which is again a fibered category.

There is also a groupoid version of the stack.

Definition 123. Let BT n be the subcategory of BTn with the same objects,
but only pull back squares as morphisms. Again it’s a fibered category over
(Aff/Z), which has a restriction to (pAff/Zp).

Proposition 124. BTn is a stack on (pAff/Zp)fpqc.

Proof. BTn is a full subcategory of the fibered category of finite locally free
groups schemes. By [AL23], Proposition A.2 in the appendix, the fibered cate-
gory of finite locally free group schemes is a stack over (pAff/Zp)fpqc. It remains
to show that the conditions distinguishing a BTn from a finite locally free group
scheme is local in the p-completely fpqc topology.

Note that a morphism of finite locally free group schemes is injective if and
only if the map on the coordinate rings is surjective. We claim that surjectivity
of a map between finite locally free modules can be checked after a p-completely
fpqc cover. Let f : M → N be such a map and R → R′ a p-completely fpqc
cover. Suppose that

f ⊗ 1 : M ⊗R R′ → N ⊗R R′

is surjective. Then the induced map M ⊗R R′ ⊗R′ R′/p → N ⊗R R′ ⊗R′ R′/p
is also surjective. But M ⊗R R′ ⊗R′ R′/p ≃M/pM ⊗R/p R

′/p and similarly for
N , and R/p → R′/p is faithfully flat, so M/pM → N/pN is surjective. Since
R is classically p-complete by Lemma 22, p lies in the Jacobson radical of R.
Nakayama then implies that M → N is surjective. Thus injectivity of maps
between finite locally free group schemes can be check after a p-completely fpqc
cover. As base change commutes with Cartier duality and with taking kernel,
surjectivity and exactness can also be checked after a p-completely fpqc cover.
But the extra conditions for a finite locally free group scheme to be a BTn can
all be rephrased as injectivity, surjectivity or exactness statements. So BTn

form a stack on (pAff/Zp)fpqc.
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The groupoid version is only needed to prove the results in the next sub-
section. We denote by BT h

n the sub-(fibred category) of BT n consisting of
BTn’s of height constantly h where h is some natural number. The definition
of the height of a BTn only depends on its p-torsion subgroup, so the trunca-
tion BT n+1 → BT n, G ↦→ G[pn] preserves the height. The following classical
theorem is enough for our purpose.

Theorem 125 (Grothendieck-Illusie). BT h
n is an algebraic stack of finite

type on (Aff/Z)fpqc with affine diagonal, and there is an affine scheme X and

a morphism X → BT h
n which is a smooth presentation. The truncations

BT h
n+1 → BT h

n are smooth and surjective.

Proof. The argument that BT h
n is an algebraic stack of finite type over SpecZ

with affine diagonal, and that there is a amooth presentation of BT h
n by an

affine scheme, is in the beginning of Section 2 of [Lau08]. The part about the
truncation morphism being smooth and sujective is [Lau08], Theorem 2.1, which
depends on [Ill85] Théorèm 4.4.

4.4 Standard BTn

Definition 126. A BTn G is called standard if there is a p-divisible group H
such that G = H[pn].

Lemma 127. Let R→ S be a smooth cover, then there is an étale cover R→ R′

such that the map R′ → S ⊗R R′ has a retract.

Proof. [Gro67], Corollaire 17.16.3 (ii).

Lemma 128. Suppose R is a ring and G a BTn over R, then there is a smooth
cover R→ S and a BTn+1 H over S such that G⊗R S is isomorphic to H[pn].

Proof. Since the height is locally constant on SpecR, it is constant on connected
components. By arguing on each connected component of SpecR and glue
together the results, we may assume that G has constant height h.

We will use that the truncation morphism from BT h
n+1 to BT h

n is smooth
and surjective.

Let SpecR→ BT n be the group scheme G under the 2-Yoneda embedding.
Then we have a pullback square

U SpecR

BT n+1 BT n

where U is an algebraic stack.
Since BT h

n has affine diagonal, [Sta18, Tag 0GQE] implies that the mor-
phism SpecR → BT h

n is affine. Then U → BT h
n+1 is also affine by base
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change. Let T → BT h
n+1 be a smooth presentation, and V the pullback as in

the diagram

V U

T BT h
n+1

The morphism V → T is affine, so V is also an affine scheme. Moreover,
V → U is smooth surjective. Thus V → SpecR is amooth surjective, and we
have a commutative diagram

V SpecR

BT h
n+1 BT h

n

which gives us a BTn+1 over V whose truncation is the base change of G to
V .

Proposition 129. Let G be a BTn over R. There is an ind-étale cover R→ R′

such that the base change of G to R′ is standard.

Proof. We use the Lemma 128 inductively.
Let G0 = G and R0 = R. Let m ∈ N and assume that we have constructed

Rm an étale cover of R, Gm a BTn+m over Rm such that G⊗R Rm ≃ Gm[pn].
Apply the Lemma 128 to Gm, we have a smooth cover Rm → S and a BTn+m+1

H over S such that Gm ⊗Rm
S ≃ H[pn+m]. Now use the Lemma 127, we have

an étale cover Rm → Rm+1 such that Rm+1 → S⊗Rm Rm+1 has a retract. Base
changing H along the map S → S ⊗Rm Rm+1 → Rm+1 gives a BTn+m+1 over
Rm+1 which we denote by Gm+1. Since truncation commutes with base change,
we have that G⊗Rm

Rm+1 ≃ Gm+1[p
n]. This completes the inductive step.

With all the Rm, Gm constructed, we can take R′ = colimRm and G∞ =
colimGm ⊗Rm

R′. R′ is ind-étale over R while G∞ is a p-divisible group over
R′ such that G⊗R R′ ≃ G∞[pn].

As base change of standard BTn’s are standard BTn’s, we get the p-completed
version for free.

Corollary 130. Let G be a BTn over R, where R is assumed to be p-complete
with bounded p∞-torsion. There is an p-ind-étale cover R → R′ such that the
base change of G to R′ is standard.
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4.5 Truncation from p-divisible groups

We would like to invoke the Proposition 41 to embed the standard BTn’s
into the derived category of p-divisible groups. Let A be the abelian category
Ab((R)fppf).

Lemma 131. The exact category p − div(R) is idempotent complete, i.e. for
any morphism f : X → X in p− div(R) such that f2 = f , X has a direct sum
decomposition Y ⊕ Z such that f is id on Y and 0 on Z.

Proof. The category A is abelian, so in particular idempotent complete. Let
X ≃ Y ⊕ Z, where Y,Z ∈ A and f restricts to id on Y and 0 on Z. Fix some
SpecS ∈ (R)fppf . Every element x in Y (S) (resp. Z(S)) can be embedded into
X(S) as (x, 0) (resp. (0, x)), and thus is killed by some power of p since X
(resp. Z) is a p-divisible group. Moreover, there is some cover S → S′ and
r ∈ X(S′) such that pr = (x, 0) (resp. pr = (0, x)) in X(S′). Let r = (x′, y′)
with x′ ∈ Y (S′) and y′ ∈ Z(S′), then px′ = x (resp. py′ = x) in Y (S′) (resp.
Z(S′)). So the conditions (a), (b) in the definition of p-divisible groups are
verified by Y and Z.

Note that X[p] ≃ Y [p]⊕ Z[p]. Also, f restricts to a map f [p] : X[p]→ X[p]
with Z[p] being the kernel. Then Z[p] is a kernel of finite locally free group
schemes, and is thus representable. Y [p], being the kernel of 1 − f [p], is also
representable. Let O(X[p]),O(Y [p]) and O(Z[p]) be the R-algebras that rep-
resent X[p], Y [p] and Z[p]. The inclusion and projection give a pair of map
between Z[p] and X[p], whose composition is idZ[p]. Going to the opposite cat-
egory, we have a pair of maps between O(Z[p]) and O(X[p]), whose composition
is idO(Z[p]). Thus O(Z[p]) is a direct summand of O(X[p]), and is finite locally
free. So Z ≃ ker f is a p-divisible group, and the same reasoning goes for Y .
Then X ≃ Y ⊕ Z is a direct sum decomposition in p− div(R).

Proposition 132. The category of standard BTn’s embeds fully faithfully into

the derived category Db(p− div(R)) as complexes of the shape H
pn

−→ H sitting
in degree 0, 1, where H is a p-divisible group.

Proof. We need to verify the conditions for the Proposition 41. That p−div(R)
is a fully exact subcategory of A is true by definition. The category p− div(R)
is idempotent complete by Lemma 131. Also Lemma 116 implies that if G→ H
is an injective map of fppf sheaves where either of the two cases are true:

• G,H are both p-divisible groups

• G is a BTn and H is a p-divisible group

Then the cokernel is also a p-divisible group. Finally each standard BTn is the

kernel of some H
pn

−→ H by definition.
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5 Dieudonné theory

5.1 Prismatic Dieudonné theory

In this subsection we briefly introduce the prismatic Dieudonné theory of [AL23].
Suppose R is a quasi-syntomic ring.

Definition 133. A prismatic Dieudonné crystal over R is a finite locally free
Opris-module M equipped with a φ-linear map φM :M → M, such that the
cokernel of the linearization φM : φ∗M → M has cokernel killed by Ipris. A
prismatic Dieudonné crystal is said to be admissible if the image of

M φM−−→M→M/IprisM

is a finite locally free O-module F such that the map F ⊗O Opris/Ipris →
M/IprisM is injective.

For a p-divisible group G, we just write Ξ−1G for the sheaf ρ−1Ξ−1G on
(R)qsyn.

Theorem 134. For a p-divisible group G over R, the Opris-module

M = E xt1(R)qsyn(Ξ
−1G,Opris)

equipped with the natural Frobenius φM induced by the Frobenius on Opris is
an admissible prismatic Dieudonné crystal. The functor G ↦→ (M, φM) is a
contravariant equivalence between the category of p-divisible groups over R to
that of admissible prismatic Dieudonné crystals over R.

Proof. [AL23], Theorem 4.6.10.

For a quasiregular semiperfectoid ring R, there is also a version of the equiv-
alence using ∆R-modules.

Definition 135. Let R be a quasiregular semiperfectoid ring and (∆R, d) the
initial prism. A prismatic Dieudonné module is a finite locally free ∆R-module
equipped with a φ-linear map φM : M → M such that the cokernel of the
linearization φM : φ∗M → M is killed by d. A prismatic Dieudonné module is
said to be admissible if the image of the composition

M
φM−−→M →M/dM

is a finite locally free R-module F such that F ⊗R ∆R →M/dM is injective.

Theorem 136. Let R be a quasiregular semiperfectoid ring. For a p-divisible
group G over R, the ∆R-module M = Ext1(R)qsyn(Ξ

−1G,Opris) equipped with the
natural Frobenius φM induced by the Frobenius on ∆R is an admissible prismatic
Dieudonné module. The functor G ↦→ (M,φM ) is a contravariant equivalence
between the category of p-divisible groups over R to that of admissible prismatic
Dieudonné modules over R.

Proof. This is a combination of Theorem 134 and [AL23], Proposition 4.1.13.
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5.2 Exactness of the prismatic Dieudonné functor

In this subsection we investigate how the prismatic Dieudonné functor interacts
with exactness.

For R a quasi-syntomic ring and G a p-divisible group or a finite locally free
group scheme over R, we denoteM∆(G) the sheaf E xt1(R)∆

(u−1Ξ−1G,O∆). Our

notation is slightly inconsistent with that of [AL23] as we useM∆(G) for a sheaf
on (R)∆. The sheaf v∗M∆(G) on (R)qsyn is the prismatic Dieudonné crystal of

[AL23]. We denote also byN≥1M∆(G) theOpris-module E xt1(R)qsyn(Ξ
−1G,N≥1Opris).

If R is quasiregular semiperfectoid, then we denote M∆(G) the ∆R-module

Ext1(R)∆
(u−1Ξ−1G,O∆) andN

≥1M∆(G) the ∆R-module Ext1(R)qsyn(Ξ
−1G,N≥1Opris).

Lemma 137. Let R be quasi-syntomic and G→ H an injection of finite locally
free group schemes over R. Then the map of sheaves

E xt1(R)∆
(u−1Ξ−1H,O∆)→ E xt1(R)∆

(u−1Ξ−1G,O∆)

is surjective.

Proof. By a theorem of Raynaud, [BBM82], Théorème 3.1.1, there is a Zariski
cover R → R′ and an abelian scheme A over R′ such that there is a closed
immersion of group schemes H → A. Let R1 be the classical p-completion of
R′ and A1 the base change of A to R1, which is an abelian scheme over R1.
Since G → H is also a closed immersion by Lemma 44, G is also a closed
sub-(group scheme) of A1 after base changing to R1. Moreover, the closed
immersions G→ A1, H → A1 have cokernel A2, A3 respectively, which are also
abelian schemes as G,H are finite locally free group schemes. Let B1, B2, B3

be the formal completion of A1, A2, A3 along the closed subscheme defined by
the sheaf of ideal (p) respectively.

Now we can use the results in [AL23], Section 4.5 to calculate Ext groups for
B1, B2, B3. The sheaf E xt2(R1)∆

(u−1Ξ−1B2,O∆) vanishes by [AL23], Theorem

4.5.6. We can then apply RH om(R1)∆
(u−1Ξ−1(−),O∆) to the exact sequence

0→ H → B1 → B3 → 0

to obtain a surjection

E xt1(R1)∆
(u−1Ξ−1B1,O∆)→ E xt1(R1)∆

(u−1Ξ−1H,O∆)

and similarly with H replaced by G. Note that the injection G → A factors
through H, and thus the surjections has a corresponding factorization. So we
have a surjection

E xt1(R1)∆
(u−1Ξ−1H,O∆)→ E xt1(R1)∆

(u−1Ξ−1G,O∆)

Since R→ R′ is a Zariski cover, R→ R1 is a quasi-syntomic cover of R. By
the localizing property of E xt1, we conclude that

E xt1(R)∆
(u−1Ξ−1H,O∆)→ E xt1(R)∆

(u−1Ξ−1G,O∆)

is surjective.

47



Proposition 138. Suppose R is quasi-syntomic and 0→ G1 → G2 → G3 → 0
is an exact sequence of p-divisible groups over R. Then the sequence

0→M∆(G3)→M∆(G2)→M∆(G1)→ 0

is exact.

Proof. The proof is essentially taken from [AL23], Proposition 4.6.8 but here
we work on the prismatic site instead.

Since the functor u−1Ξ−1 is exact, we have an exact sequence

0→ u−1Ξ−1G1 → u−1Ξ−1G2 → u−1Ξ−1G3 → 0

of sheaves on (R)∆. Moreover, exactness of u−1Ξ−1 also implies that the map
p : u−1Ξ−1G→ u−1Ξ−1G is still surjective for any p-divisible groupG. Then the
argument of [AL23], Remark 4.2.2 applies to show that H om(u−1Ξ−1G,O∆) ≃
0 for any p-divisible group G. Applying RH om(R)∆

(−,O∆) and use the van-

ishing of H om(u−1Ξ−1G1,O∆), we have an exact sequence

0→M∆(G3)→M∆(G2)→M∆(G1)

Now we prove surjectivity of M∆(G2) → M∆(G1). For each integer n,
Lemma 137 gives an exact sequence

M∆(G3[p
n])→M∆(G2[p

n])→M∆(G1[p
n])→ 0

and also
M∆(G3[p

n+1])→M∆(G3[p
n])

is surjective. Since the topos Sh((R)∆) is replete, Lemma 99 implies that

lim
n
M∆(G2[p

n])→ lim
n
M∆(G1[p

n])

is surjective. But we have by the proof of [AL23], Proposition 4.6.5 that

M∆(Gi) ≃ lim
n
M∆(Gi[p

n])

And surjectivity follows.

Corollary 139. If R is quasiregular semiperfectoid, then the functor M∆(−) is
exact.

Proof. The sheaf M∆(G) is finite locally free for every p-divisible group G by
[AL23], Proposition 4.6.5. Then we can apply Lemma 95 to Proposition 138.

Lemma 140. Suppose that R = k is a perfect field of characteristic p and
0 → G1 → G2 → G3 → 0 is a sequence of p-divisible groups over k. If the
sequence

0→M∆(G3)→M∆(G2)→M∆(G1)→ 0

is exact, then the sequence

0→ G1 → G2 → G3 → 0

is also exact.
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Proof. SinceM∆(Gi) is finite locally free over O∆ which is p-torsion free, each
M∆(Gi) is p-torsion free. Taking ⊗L

ZZ/pnZ with the exact sequence given in
the statement, we have an exact sequence

0→M∆(G3)/p
n →M∆(G2)/p

n →M∆(G1)/p
n → 0

while on the other hand we have M∆(Gi)/p
n ≃ M∆(Gi[p

n]) as is proved in
the proof of [AL23], Proposition 4.6.5. But the equivalence of exact categories
in [AL23], Theorem 5.1.4 implies that 0 → G1[p

n] → G2[p
n] → G3[p

n] → 0 is
exact. We conclude by Lemma 118 that 0→ G1 → G2 → G3 → 0 is exact.

Lemma 141. Suppose that R is quasiregular semiperfectoid and

0→ G1 → G2 → G3 → 0

is a sequence of p-divisible groups over R such that the composition G1 → G3

is 0 and the base change of the sequence to every characteristic p residue field
of R is exact. Then

0→ G1 → G2 → G3 → 0

is exact.

Proof. The exactness of 0 → G1 → G2 → G3 → 0 is equivalent to that of
0 → G1[p

n] → G2[p
n] → G3[p

n] → 0 for all n, while the latter can be checked
after base change to all residue field of R of characteristic p by Lemma 105.

Proposition 142. Suppose R is quasiregular semiperfectoid and G1 → G2 →
G3 two morphisms of p-divisible groups over R. If the sequence

0→M∆(G3)→M∆(G2)→M∆(G1)→ 0

is exact, then the sequence

0→ G1 → G2 → G3 → 0

is also exact.

Proof. Let R → k be a residue field of characteristic p. By assumption R/p is
semiperfect, so k is perfect. The inclusion functor (k)∆ → (R)∆ induced by R→
k is continuous cocontinuous, so we have an exact functor w−1 : Sh((R)∆) →
Sh((k)∆).

Denote Ξ−1
R : Sh((Aff/R)syn) → Sh((R)QSYN) and Ξ−1

k : Sh((Aff/k)syn) →
Sh((k)QSYN) the functors as in Proposition 119. Let u−1

R , u−1
k be the functor

from the big quasi-syntomic site to the prismatic site over R, k respectively.

Finally let G
(k)
i be the base change of Gi to k.

By the explicit expression of the functors, we have u−1
k Ξ−1

k G
(k)
i ≃ w−1u−1

R Ξ−1
R Gi.

Since the E xt1 sheaf localizes, we have isomorphisms

E xt1(k)∆(u
−1
k Ξ−1

k G
(k)
i ,O∆) ≃ w−1 E xt1(R)∆

(u−1
R Ξ−1

R Gi,O∆)
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The exactness of w−1 implies that

0→ E xt1(k)∆(u
−1
k Ξ−1

k G
(k)
3 ,O∆)→ E xt1(k)∆(u

−1
k Ξ−1

k G
(k)
2 ,O∆)→ E xt1(k)∆(u

−1
k Ξ−1

k G
(k)
1 ,O∆)→ 0

is exact. Then Lemma 140 implies that

0→ G
(k)
1 → G

(k)
2 → Gk

3 → 0

is exact. We conclude by Lemma 141 that

0→ G1 → G2 → G3 → 0

is exact.

Corollary 143. If R is quasiregular semiperfectoid, then a sequence 0→ G1 →
G2 → G3 → 0 of p-divisible groups is exact if and only if the sequence

0→M∆(G3)→M∆(G2)→M∆(G1)→ 0

is exact.

Proof. This is the combination of Corollary 139 and Proposition 142, noting
that the exact categories of finite locally free O∆-modules and of ∆R-modules
are equivalent by Lemma 95.

Now we investigate the exactness of the Hodge filtration.

Remark 144. The natural map induced by the inclusionN≥1Opris → Opris maps
N≥1M∆(G) (resp. N≥1M∆(G) ) injectively into v∗M∆(G) (resp. M∆(G)).
This follows from the exact sequence

0→ N≥1Opris → Opris → O → 0

and the fact that H om(R)qsyn(G,O) = 0 (resp. Hom(R)qsyn(G,O) = 0) which is
shown in [AL23], Remark 4.2.2.

Proposition 145. Suppose R quasiregular semiperfectoid with initial prism
(∆R, (d)), and G a p-divisible group over R. Then there is an exact sequence

0→ TpG
∨ → N≥1M∆(G)

φ
d −1
−−−→ v∗M∆(G)→ 0

on (R)qsyn.

Proof. [AL23], Remark 4.8.4. (Note that our M∆(G) is a sheaf on (R)∆, and
v∗M∆(G) is theM∆(G) in [AL23] by [AL23], Lemma 4.2.4.)

Proposition 146. If R is quasiregular semiperfectoid and 0 → G1 → G2 →
G3 → 0 is an exact sequence of p-divisible groups over R, then the sequence

0→ N≥1M∆(G3)→ N≥1M∆(G2)→ N≥1M∆(G1)→ 0

is exact.
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Proof. Proposition 121 shows that

0→ TpG
∨
3 → TpG

∨
2 → TpG

∨
1 → 0

is exact on (R)QSYN, and thus also exact on (R)qsyn. Proposition 138 and the
exact equivalence in Lemma 95 shows that

0→ v∗M∆(G3)→ v∗M∆(G2)→ v∗M∆(G1)→ 0

is exact. By functoriality the map

N≥1M∆(G3)→ N≥1M∆(G1)

is 0. We conclude that

0→ N≥1M∆(G3)→ N≥1M∆(G2)→M∆(G1)→ 0

is exact by the exact sequence in Proposition 145 and the 3× 3 lemma.

The remaining part of this subsection is devoted to proving that the sequence
of global sections of Proposition 146 is exact.

Lemma 147. Suppose R is quasi-syntomic. Then N≥1M∆(G) coincides with

the submodule φ−1
M (IprisM), where M = v∗M∆(G) and φM is induced by the

Frobenius on Opris.

Proof. We only need to check the statement for the sections of the sheaves on
quasiregular semiperfectoid rings since any object in (R)qsyn can be covered by
some quasiregular semiperfectoid ring. So assume R is quasiregular semiperfec-
toid and (∆R, (d)) the initial prism. Note that Opris and N≥1Opris are derived
p-complete, so [AL23], Remark 4.2.2 shows that H om(R)qsyn(S,Opris) ≃ 0 and

H om(R)qsyn(S,Opris) ≃ 0 for any sheaf S such that multiplication by p on S is
a surjection. Using the exact sequence

0→ TpG→ lim
×p

Ξ−1G→ Ξ−1G→ 0

in [AL23], Lemma 4.2.5 and the vanishing of the H om sheaves, we have that

v∗M∆(G)(R) ≃ Hom(R)qsyn(TpG,Opris)

and
N≥1M∆(G)(R) ≃ Hom(R)qsyn(TpG,N≥1Opris)

Suppose f ∈ Hom(R)qsyn(TpG,Opris). As Opris is d-torsion free, φM (f) lies
in dM(R) if and only if for any R′ ∈ (R)qsyn, R′ quasiregular semiperfec-
toid and s ∈ TpG(R′), the evaluation φM (f)(R′)(s) lies in dOpris(R′). But
φM (f)(R′)(s) = φ(f(R′)(s)) by the definition of φM . Therefore φM (f) ∈
dM(R) if and only if for all R′ and s as above, f(R′)(s) lies in N≥1Opris(R′).
And we conclude that f lies in φ−1

M (dM)(R) if and only if f lies in the submodule
Hom(R)qsyn(TpG,N≥1Opris).
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Denote temporarily by L(G) the quotient (v∗M∆(G))/N≥1M∆(G).

Lemma 148. For R quasi-syntomic and G a p-divisible group over R, the sheaf
L(G) is finite locally free over O.

Proof. By Lemma 147, the quotient (v∗M∆(G))/N≥1M∆(G) identifies with the

image of the composition v∗M∆(G)
φM−−→ v∗M∆(G)→ v∗M∆(G)/IprisM∆(G).

The latter is finite locally free over O since v∗M∆(G) is an admissible prismatic
Dieudonné crystal.

Lemma 149. If R is quasiregular semiperfectoid with initial prism (∆R, (d))
and G a p-divisible group over R, then the following sequence is exact

0→ N≥1M∆(G)→M∆(G)→ L(G)(R)→ 0

Proof. Recall that N≥1M∆(G) ≃ H om(R)qsyn(TpG,N≥1Opris). Using again
the exact sequence

0→ TpG→ lim
×p

Ξ−1G→ Ξ−1G→ 0

We know that N≥1M∆ ≃ Hom(R)qsyn(TpG,N≥1Opris). Therefore we have that

N≥1M∆(G) ≃ Γ((R)qsyn,N≥1M∆(G))

Then everything except surjectivity ofM∆(G)→ L(G)(R) follows from applying
RΓ((R)qsyn,−) to the exact sequence

0→ N≥1M∆(G)→ v∗M∆(G)→ L(G)→ 0

Let T denote the sheaf

v∗M∆(G)/N≥1Opris.v∗M∆(G)

which is also finite locally free over O, and maps surjectively to L(G). Lemma
93 then implies that T (R)→ L(G)(R) is surjective.

Now we show that M∆(G)→ T (R) is surjective. By Proposition 90,

RΓ((R)qsyn,N≥1Opris) = N≥1∆R

Lemma 95 allows us to write v∗M∆(G) as a direct summand of a finite free
Opris-module. Then RΓ((R)qsyn,N≥1Opris.v∗M∆(G)) is concentrated in degree
0. Applying RΓ((R)qsyn,−) to the exact sequence

0→ N≥1Opris.v∗M∆(G)→ v∗M∆(G)→ T → 0

yields that M∆(G)→ T (R) is surjective.
Then we conclude that M∆(G)→ L(G)(R) is surjective.
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Proposition 150. If R is quasiregular semiperfectoid and 0 → G1 → G2 →
G3 → 0 is an exact sequence of p-divisible groups over R, then

0→ N≥1M∆(G3)→ N≥1M∆(G2)→ N≥1M∆(G1)→ 0

is exact.

Proof. Use the exact sequences in Proposition 138, Proposition 146 and the 3×3
lemma, we have an exact sequence

0→ L(G3)→ L(G2)→ L(G1)→ 0

But L(Gi) is finite locally free over O, so we have

0→ L(G3)(R)→ L(G2)(R)→ L(G1)(R)→ 0

Then use the exact sequences in Lemma 149, Proposition 139 and the 3 × 3
lemma again, we have that

0→ N≥1M∆(G3)→ N≥1M∆(G2)→ N≥1M∆(G1)→ 0

is exact.

5.3 Pixels

We introduce in this subsection the objects we use to classify BTn over quasireg-
ular semiperfectoid rings, the pixels. Pixels are modeled after the truncated
displays in [LZ18], Definition 1.1.

For the moment fix a ring A and a map of A-modules κ : J → A. Assume
that A has an endomorphism φ, and there is a φ-linear map φ1 : J → A whose
image generates A as an A-module.

Definition 151. A prepixel over (A, J) is a tuple (P,Q, ι, ϵ, Ḟ , F ) where P,Q
are A-modules, ι : Q → P , ϵ : P ⊗A J → Q are two A-linear maps and F :
P → P , Ḟ : Q → P are two φ-linear maps, satisfying the following conditions:
compositions ι ◦ ϵ and ϵ ◦ (id ⊗ ι) are the respective action maps via κ; the
equality Ḟ ◦ ϵ(x⊗ v) = φ1(v)F (x) holds for all x ∈ P and v ∈ J .

Denote by PrePxl(A, J) the category of prepixels over (A, J), with morphisms
given by morphisms of pairs that commute with the structural maps.

Proposition 152. The category PrePxl(A, J) is an abelian category.

Proof. Let PM be the category of pairs of A-modules. There is a natural forget-
ful functor G : PrePxl(A, J)→ PM, which is faithful and conservative since the
additional requirement for a morphism in PM to be a morphism in PrePxl(A, J)
is the commutation with the structural maps. Thus, in order to show that
PrePxl(A, J) is abelian, it suffices to show that PrePxl(A, J) has kernels and
cokernels, and formations of kernels and cokernels commute with G.

Let (f, g) : (P1, Q1, ι1, ϵ1, Ḟ1, F1) → (P2, Q2, ι2, ϵ2, Ḟ2, F2) be a morphism
in PrePxl(A, J). ι1 and Ḟ1 maps ker g to ker f , and ϵ1 maps the image of
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ker f ⊗A J → P1⊗A J to ker g. So these maps restrict to a prepixel structure on
(ker f, ker g). Similarly ι2, ϵ2, Ḟ2 induce a prepixel structure on (coker f, coker g).
Note that if a morphism (P3, Q3)→ (P1, Q1) factors through (ker f, ker g) as a
morphism in PM, then the factorization automatically lies in PrePxl(A, J), and
similarly for cokernels. Thus kernels and cokernels exist in PrePxl(A, J), and
are calculated by kernels and cokernels in PM.

From now on assume that R is quasiregular semiperfectoid and is p-torsion
free. In this case ∆R is also p-torsion free since it is p-completely flat over R
by Remark 80. Thus ∆R is a transversal prism, and Lemma 60 shows that ∆R

is p-torsion free. By [BS22], Theorem 12.2, the image of the divided Frobenius
φ1 : N≥1∆R → ∆R generates ∆R. Then we may take (A, J) to be (∆R,N≥1∆R).
Denote by PrePxl(R) the category PrePxl(∆R,N≥1∆R).

Remark 153. Let (P,Q, ι, ϵ, Ḟ , F ) be a prepixel over R. By assumption there
is some αi ∈ A and vi ∈ J such that

∑︁
i αiφ1(vi) = 1. Then for all x ∈ P , we

have that

F (x) =
∑︂
i

αiφ1(vi)F (x)

=
∑︂
i

αiḞ ◦ ϵ(x⊗ vi)

So F is determined by Ḟ .
Moreover, for x ∈ Q, we have

F (ι(x)) =
∑︂
i

αiḞ (ϵ(ui ⊗ ι(x))) = dḞ (x)

Thus Ḟ is determined by F if P is d-torsion free.

Lemma 154. If M is a finite locally free module over ∆R/p
n, then the action

map M ⊗∆R
N≥1∆R →M is injective.

Proof. By Lemma 60, the ring ∆R is p-torsion free. Thus ∆R
pn

−→ ∆R is a pro-
jective resolution of ∆R/p

n. Since R is also p-torsion free, we can calculate that

Tor∆R
1 (∆R/p

n, R) = 0. As M is a direct summand of a finite free ∆R/p
n-module

and Tor commutes with direct sums, we have Tor∆R
1 (M,R) = 0. Tensoring the

exact sequence
0→ N≥1∆R → ∆R → R→ 0

with M gives the desired injectivity.

In particular, the map N≥1∆R⊗∆R
∆R/p

n → ∆R/p
n is injective. We identify

the ∆R-module N≥1∆R ⊗∆R
∆R/p

n with its image which we denote by NR,n.

We will also write ∆R,n for ∆R/p
n in the sequel. By Lemma 60, the ring ∆R,n is

d-torsion free. Then there is a φ-linear map φ1 : NR,n → ∆R,n defined by x ↦→
φ(x)
d . Theorem 12.2 of [BS22] implies that φ1 is surjective after linearization. If

n =∞, then we define ∆R,n to be ∆R and NR,n to be N≥1∆R.
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Definition 155. Suppose n ∈ N≥1 or n = ∞. A pixel of level n over R is a

prepixel (P,Q, ι, ϵ, Ḟ , F ) over R satisfying the following conditions:
(1) P is finite locally free over ∆R,n;
(2) coker ι and coker ϵ are finite locally free over R/pn;
(3) Ḟ (Q) generates P ;
(4) the map coker ϵ→ P/N≥1∆RP induced by ι is injective.
Denote by Pxln(R) the full subcategory of PrePxl(R) spanned by the pixels

of level n.

Remark 156. Suppose (P,Q, ι, ϵ, Ḟ , F ) is a prepixel over R where P is finite lo-
cally free over ∆R/p

n (possibly n =∞), such that the condition (4) in the defini-
tion of a pixel is also verified. Lemma 154 shows that the map N≥1⊗∆R

P → P
is injective. Then ϵ has to be injective. This, together with the injectivity of
the map coker ϵ→ P/N≥1∆RP , implies that ι : Q→ P is injective. Indeed, we
have a commutative diagram with exact rows

0 N≥1∆RP Q Q/im(ϵ) 0

0 N≥1∆RP P P/N≥1∆RP 0

ϵ

ι

We conclude from the snake lemma that ι : Q→ P is injective.
We identify Q with a submodule of P via ι in the following.

Remark 157. This remark is adapted from [AL23], Remark 4.1.7.
Suppose that (P,Q, ι, ϵ, Ḟ , F ) is a prepixel over R. Suppose further that P

is finite locally free over either ∆R or ∆R/p
n, and the cokernel of φ∗(P )

F−→ P is
killed by d.

Note that p is in the Jacobson radical of ∆R and φ is a Frobenius lift, so all
the maximal ideals m ⊂ ∆R are fixed by φ. Then φ∗(P ) is also finite locally
free, and it has the same rank as P at all closed points As F : φ∗(P ) → P is
surjective after inverting d, it is actually an isomorphism after inverting d since
P is finite locally free. Then F : φ∗(P ) → P is injective as P is d-torsion free.
Consider the commutative diagram with exact rows

φ∗(Q) P K 0

0 φ∗(P ) P L 0

Ḟ

d

F

where K,L are defined to be the respective cokernels. The right vertical
map is 0 since by assumption dL = 0. Then the snake lemma gives an exact
sequence

0→ K → φ∗(P/Q)→ P/dP
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So the condition that Ḟ (Q) generates P is equivalent to that φ∗(P/Q)
F−→ P/dP

is injective. But P/Q is an R ≃ ∆R/N≥1∆R-module, so

φ∗(P/Q) ≃ P/Q⊗R R⊗∆R,φ ∆R ≃ P/Q⊗R ∆R/d

To summerize, Ḟ (Q) generates P if and only if the map

P/Q⊗R ∆R/d→ P/dP

induced by F is injective.

Pixels have a normal decomposition that is similar to the normal decompo-
sition of truncated displays in [LZ18]. We need a few lemmas.

Lemma 158. The pair (∆R,n,NR,n) is henselian.

Proof. Note that by [AL23], Lemma 4.1.28, the pair (∆R,N≥1∆R) is henselian.
Also we have that R ≃ ∆R/N≥1∆R is classically p-complete. Thus [Sta18, Tag
0DYD] implies that

(∆R/p
n, (pn,N≥1∆R)/p

n∆R)

is henselian. The latter ideal agrees with NR,n.

The lemma includes the fact that the ideal NR,n lies in the Jacobson radical
of ∆R,n.

Proposition 159. Suppose (P,Q, ι, ϵ, Ḟ , F ) is a pixel of level n over R. There
are two finite locally free ∆R,n-modules L, T and isomorphisms P ≃ L ⊕ T ,
Q ≃ (L ⊗∆R,n

NR,n) ⊕ T such that the map ι identifies with κL ⊕ id and ϵ

identifies with id ⊕ κT , where κL and κT are the action map of NR,n on L, T
respectively. Such a decomposition is called a normal decomposition.

Once a decomposition P ≃ L⊕ T,Q ≃ (NR,n ⊗∆R,n
L)⊕ T is fixed, choices

of Ḟ , F on (P,Q, ι, ϵ) as in the structure of a pixel are in bijection with φ-linear
isomorphisms (i.e. φ-linear maps which are isomorphisms after linearization)
Φ : L⊕ T → L⊕ T .

Proof. This proof is adapted from [AL23], Proposition 4.1.22 and Proposition
1.3 of [LZ18].

By assumption Q/NR,nP lies in the exact sequence

0→ Q/NR,nP → P/NR,nP → P/Q→ 0

As P/Q is finite locally free over R/pn, P/NR,nP ≃ P/Q⊕ T ′, where T ′ is the
image of Q/NR,nP in P/NR,nP . (In fact T ′ is isomorphic to Q/NR,nP .) Since
∆R,n → R/pn is henselian, there is some finite locally free ∆R,n-module T whose
reduction modulo NR,n is T ′. Let L be a finite locally free ∆R,n-module lifting
P/Q. Then the map P → P/NR,nP → P/ι(Q) ⊕ T ′ lifts along the surjection
L⊕ T → P/ι(Q)⊕ T ′ since P is projective. The map P → L⊕ T is surjective
since it is surjective modulo N≥1∆R, which lies in the Jacobson radical of ∆R.
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Moreover, the ∆R,n-modules P,L ⊕ T have the same rank at all closed points.
Thus P → L⊕ T is an isomorphism.

The composition Q
ι−→ P ≃ L⊕ T → T equals Q/NR,nP → T ′ after modulo

NR,n, and is thus surjective. then there is a map T → Q such that T → Q
ι−→

P ≃ L⊕ T → T is the identity. Consider the map (NR,n ⊗∆R,n
L)⊕ T → Q→

P ≃ L⊕ T . The composition equals the map κL ⊕ id : (NR,n ⊗∆R,n
L)⊕ T →

L ⊕ T . We have a commutative diagram with exact rows (unadorned tensor
products are over ∆R,n)

NR,n ⊗ (L⊕ T ) NR,n ⊗ L⊕ T T/NR,nT 0

0 im(ϵ) Q Q/NR,nP 0

where the left and right vertical maps are surjective. Thus the map NR,n ⊗
L⊕ T → Q is surjective.

It remains to check that the map (NR,n⊗∆R,n
L)⊕T → Q is injective. As R

is p-torsion free, NR,n⊗∆R,n
L→ L is injective by Remark 156, and consequently

(NR,n⊗∆R/pnL)⊕T → P is injective. This implies that (NR,n⊗∆R,n
L)⊕T → Q

is injective.
Finally we show the bijective correspondence of the Frobenius structures.

Fix (P,Q, ι, ϵ) part of a pixel and L, T a normal decomposition.
Suppose we have Ḟ , F on (P,Q, ι, ϵ), then we may define Φ to be the direct

sum of the φ-linear maps L→ P
F−→ P and T → Q

Ḟ−→ P . Φ is surjective after

linearization since the composition (NR,n ⊗∆R
L) ⊕ T → L ⊕ T

Φ−→ P agrees

with Ḟ ′ which is surjective after linearization. Since φ∗(L⊕T ), L⊕T are finite
locally free modules of the same rank, Φ is an isomophism.

Conversely, suppose we have a φ-linear isomorphism Φ : L⊕T → L⊕T . We
denote its restriction to L, T by ΦL,ΦT respectively. Then we may define Ḟ to
be (φ1 ⊗ ΦL) ⊕ ΦT and F to be ΦL ⊕ dΦT . The image of Ḟ generates L ⊕ T
since Φ is a φ-linear isomorphism and φ∗(NR,n ⊗ L)→ φ∗(L) induced by φ1 is

surjective. Therefore Ḟ , F defines a structure of pixel on (P,Q, ι, ϵ).

Remark 160. If (P,Q, ι, ϵ, Ḟ , F ) is a pixel of level n, then the module Q and the
map ι : Q → P are determined by P and F . In fact, ι identifies Q with the
submodule F−1(dP ). This is a combination of Lemma 82 and [AL23], Lemma
4.1.23.

Thus to specify a pixel of level n, it is enough to give a φ-module over ∆R/p
n

that satisfies certain conditions. To be precise, let C(R) denote the category of
pairs (M,φM ) where M is a finite locally free ∆R/p

n-module and φM : M →M
is a φ-linear endomorphism satisfying that M/φ−1

M (dM) is finite locally free over
R/pn and the map (M/φ−1

M (dM))⊗R/pn ∆R/(d, p
n)→M/dM is injective.
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We show that C(R) is equivalent to Pxln(R). Suppose that (P,Q, ι, ϵ, Ḟ , F ) is
a pixel of level n. Then ι : Q→ P is the inclusion F−1(dP )→ P . And Remark
157 implies that the map (P/F−1(dP ))⊗R/pn ∆R/(d, p

n)→ P/dP is injective.

Thus the forgetful functor (P,Q, ι, ϵ, Ḟ , F ) ↦→ (P, F ) sends a pixel of level n
to an object of C(R). Conversely, if (M,φM ) is an object of C(R), then the
same Remarks implie that (M,φ−1

M (dM), ιM , ϵM , φM/d, φM ) is a pixel of level
n, where ιM is the inclusion map φ−1

M (dM)→M and ϵM is the action map. The
construction is inverse to the forgetful functor. Therefore the forgetful functor
induces an equivalence of categories.

We use the category of prepixels, instead of just φ-modules, because the
category of prepixels naturally induces the exact structure of all pixels (of all
different levels) which we will use in Lemma 169.

Remark 161. In view of [Hen20], Remark 3.10 and Lemma 3.12 and the normal
decomposition of pixels, the category of pixels of level n over a p-torsion free
perfectoid ring R is equivalent to BKn(R), which was shown in [Hen20] to be
(contravariant) equivalent to the category of BTn’s.

We can now discuss the base change of pixels. Let R → R′ be a quasi-
syntomic map between quasiregular semiperfectoid ring, and ∆R → ∆R′ be the
map of prisms obtained from the universal property of ∆R. Lemma 22 implies
that R′ is also p-torsion free. Note, however, that the map ∆R → ∆R′ is not
neccessarily (p, d)-completely faithfully flat.

Definition 162. Suppose (P,Q, ι, ϵ, Ḟ , F ) is a pixel of level n over R. Let
P ≃ L ⊕ T and Q ≃ (NR,n ⊗∆R

L) ⊕ T be a normal decomposition and Φ the

φ-linear map on L⊕ T as in Proposition 159. Let L′, T ′ be the tensor product
of L, T with ∆R′ respectively, and Φ′ the base change of Φ. Then we have
a pixel (P ′, Q′, ι′, ϵ′, Ḟ ′, F ′) of level n over R′ of which L′, T ′ being a normal
decomposition and Φ′ corresponds to Ḟ ′, F ′ under the bijection in Proposition
159. We call (P ′, Q′, ι′, ϵ′, Ḟ ′, F ′) the base change of (P,Q, ι, ϵ, Ḟ , F ) to R′.

Remark 163. We need to verify that the base change defined using a normal
decomposition is independant of the choice of a normal decomposition.

Under the equivalence in Remark 160, we verify that the base change of
pixels agrees with the functor (M,φM ) ↦→ (M⊗∆R

∆R′ , φM ⊗∆R
∆R′) from C(R)

to C(R′). Note that this statement implies that if (M,φM ) is an object of C(R),
then

(M ⊗∆R,n
∆R′,n, φM ⊗∆R,n

∆R′,n)

is an object of C(R′). Suppose (P,Q, ι, ϵ, Ḟ , F ) is a pixel of level n and P ≃
L ⊕ T,Q ≃ (NR,n ⊗∆R,n

L) ⊕ T,Φ : P → P is a normal decomposition. By

definition the base change to R′ is (P ′, Q′, ι′, ϵ′, Ḟ ′, F ′), and P ′ ≃ P ⊗∆R,n
∆R′,n.

Moreover, F ′ is constructed as Φ′|L ⊕ d Φ′|T , where Φ′ is Φ⊗∆R,n
∆R′,n. After

taking the forgetful functor, we get the desired formula for the base change.

Proposition 164. Let QRSP(R) be the opposite of the category of quasiregular
semiperfectoid R-algebras that are quasi-syntomic over R, equipped with the p-
ind-étale topology. Then the pixels of level n form a stack on QRSP(R).
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Proof. If S lies in QRSP(R), then R→ S is p-completely flat while S is derived
p-complete. Thus S is also p-torsion free by Lemma 22. If S → S′ is a p-ind-
étale cover in QRSP(R), then ∆S → ∆S′ is (p, d)-completely faithfully flat by
Proposition 89. Note that each ∆S/p

i is d-torsion free, thus ∆S/p
n has tame

{p, d}∞-torsion. Then Proposition 30 shows that the category of finite locally
free modules over ∆S/p

n is equivalent to that of descent datum of finite locally
free modules for the cover ∆S/p

n → ∆S′/pn.
But a pixel of level n can be represented in a base change compatible way by

two finite locally free ∆R,n-modules L, T , 4 maps L→ L, T → T, L→ T, T → L
and an isomorphism φ∗(L⊕ T )→ L⊕ T . The module φ∗(L⊕ T ) is also finite
locally free. Then it is clear that pixels form a stack on QRSP(R).

Proposition 165. There is a base change compatible equivalence

Υ : DMadm(R)→ Pxl∞(R)

Proof. This is the level ∞ case of the equivalence in Remark 163.

Remark 166. From the proof of the comparison between pixels of level ∞ and
windows we can see that the condition coker ϵ being finite locally free over R in
the definition of a pixel of level ∞ follows from the others.

Proposition 167. Let n ≥ 1 be an integer and (P,Q, ι, ϵ, Ḟ , F ) a pixel of
level ∞, then (P ′, Q′, ι′, ϵ′, Ḟ ′, F ′) is a pixel of level n, where P ′ = P/pnP ,
Q = Q/pnQ and the structural maps are induced from those on P,Q. This
construction defines a truncation functor τn : Pxl∞(R)→ Pxln(R).

Proof. It is clear that P/pnP is finite locally free over ∆R,n, and

coker(ι⊗ZZ/pnZ) ≃ (coker ι)⊗ZZ/pnZ, coker(ϵ⊗ZZ/pnZ) ≃ (coker ϵ)⊗ZZ/pnZ

are finite locally free over R/pn. That Ḟ (Q/pnQ) generates P/pnP follows from
the same statement for P and Q. Finally we show that Q/(pnQ + im(ϵ)) →
P/(pnP +N≥1∆RP ) is injective. Apply −⊗L

Z Z/pnZ to the exact sequence

0→ Q/im(ϵ)→ P/N≥1∆RP → P/Q→ 0

Note that P/Q is finite locally free over R, and thus p-torsion free. So

TorZ1 (Z/pnZ, P/Q) = 0

, and Q/(pnQ+ im(ϵ))→ P/(pnP +N≥1∆RP ) is injective.

Proposition 168. The truncation functor from Pxl∞(R) to Pxln(R) is essen-
tially surjective.
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Proof. If (P,Q, ι, ϵ, Ḟ , F ) is a pixel of level n, then we have a normal decompo-
sition P ≃ L⊕ T,Q ≃ (NR,n ⊗∆R,n

L)⊕ T and Φ : L⊕ T → L⊕ T determined

by Ḟ , F as in Proposition 159. Then L, T can be lifted to finite locally free
∆R-modules L̃, T̃ , and we can lift Φ to a φ-linear Φ̃. Then we can construct a
structure of a pixel of level ∞ on P̃ = L̃ ⊕ T̃ and Q̃ = (N≥1∆R ⊗∆R

L̃) ⊕ T̃

using Φ̃.

Lemma 169. If M = (P,Q, ι, ϵ, Ḟ , F ) is a pixel of level∞, M ′′ = (P ′′, Q′′, ι′′, ϵ′′, Ḟ ′′, F ′′)
a pixels of level m for some m ≥ 1 (possibly also m = ∞) and f : M → M ′ a
surjective map of prepixels. Then the kernel of f is also a pixel of level ∞.

Proof. Suppose we have an exact sequence 0→M ′ →M →M ′′ → 0 of prepix-
els and M is a pixel of level∞, M ′′ a pixel of level m. Let M = (P,Q, ι, ϵ, Ḟ , F )
and similarly for M ′ and M ′′.

Note that F (Q) (resp. F ′′(Q′′)) generates dP (resp. dP ′′), so the cokernels

of φ∗(P )
F−→ P and φ∗(P ′′)

F ′′

−−→ P ′′ are killed by d. And by Remark 157,

φ∗(P ′′)
F ′′

−−→ P ′′ is injective. We have a commutative diagram of exact rows

φ∗(P ′) φ∗(P ) φ∗(P ′′) 0

0 P ′ P P ′′ 0

F ′ F F ′′

The snake lemma then shows that the cokernel of φ∗(P ′)
F ′

−→ P ′ is also killed
by d.

Since P is finite locally free over ∆R, P/p
mP is finite locally free over ∆R/p

m.
The map P/pmP → P ′′ is then a surjection between finite locally free ∆R/p

m-
modules. Thus P ′′ is a direct summand of P/pmP . Suppose P/pmP ≃ P ′′⊕K.
Since (∆R, (p

m)) is a henselian pair, there are finite locally free ∆R-modules L,M
lifting P ′′,K. The map P/pmP → P ′′ ⊕K lifts to a map P → L ⊕M , which
is surjective by Nakayama and thus an isomorphism. Under this isomorphism
the kernel of P → P ′′ identified with pmL ⊕M . But ∆R is p-torsion free, so
P ′ ≃ pmL ⊕M is a finite locally free ∆R-module. The same reasoning applies
to P/Q→ P ′′/Q′′, implying that P ′/Q′ is finite locally free over R.

To check that Ḟ (Q′) generates P ′, we may apply Remark 157 to reduce to
showing that P ′/Q′ ⊗R ∆R/d → P ′/dP ′ is injective. But P ′/Q′ ⊗R ∆R/d →
P/Q⊗R ∆R/d is injective since P ′′/Q′′ is finite locally free over R. Thus injec-
tivity of P ′/Q′⊗R ∆R/d→ P ′/dP ′ follows from that of P/Q⊗R ∆R/d→ P/dP .

Finally the injectivity of coker ϵ′ → P ′/N≥1∆RP
′ follows from that of coker ϵ→

P/N≥1∆RP since coker ϵ′ → coker ϵ is injective.

Lemma 170. Pxl∞(R) is closed under extensions in PrePxl(R).

Proof. Suppose we have an exact sequence 0 → M ′ → M → M ′′ → 0 of
prepixels and M ′,M ′′ are pixels of level ∞. Let M = (P,Q, ι, ϵ, Ḟ , F ) and
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similarly for M ′ and M ′′. Then clearly P ≃ P ′ ⊕ P ′′ (resp. P/Q ≃ P ′/Q′ ⊕
P ′′/Q′′) is finite locally free over ∆R (resp. R). Suppose t ∈ P arbitrary element.
Then the image of t in P ′′ equals

∑︁
i αiḞ

′′(ui) for some αi ∈ ∆R and ui ∈ Q′′.
The map Q→ Q′′ is surjective by assumption, so each ui can be lifted to some
vi ∈ Q. Now

∑︁
i αiḞ (vi) − t is mapped to 0 in P ′′, so it lies in the image of

P ′. But then
∑︁

i αiḞ (vi) − t =
∑︁

j βjḞ
′(wj) for some βj ∈ ∆R and wj in Q′.

So t =
∑︁

i αiḞ (vi) −
∑︁

j βjḞ (wj). This shows that P is generated by Ḟ (Q).
Finally we have exact sequences

0→ Q′/im(ϵ′)→Q/im(ϵ)→ Q′′/im(ϵ′′)→ 0

0→ P ′/N≥1∆RP
′ →P/N≥1∆RP → P ′′/N≥1∆RP

′′ → 0

Then the 3× 3 lemma shows that

0→ Q/im(ϵ)→ P/N≥1∆R → P/Q→ 0

is exact.

Lemma 170 shows that Pxl∞(R) is a Quillen exact category. Thus it makes
sense to talk about Db(Pxl∞(R)).

Proposition 171. For n ≥ 1 an integer, the category Pxln(R), embeds fully

faithfully into Db(Pxl∞(R)) via τnM ↦→ (M
pn

−→M).

Proof. We verify the conditions of Proposition 41 for our situation, taking the
opposite category everywhere. Pxl∞(R) is idempotent complete since it is anti-
equivalent to p−div(R). If M →M ′ is a surjection of prepixels such that either
of the following two conditions are true:

• M,M ′ lie in Pxl∞(R)

• M lies in Pxl∞(R) and M ′ lies in Pxln(R) for some n ≥ 1

Then Proposition 169 implies that the kernel is a pixel of level∞. Finally pixels
in Pxln(R) are cokernels of pixels of level ∞ by Proposition 168.

5.4 Truncated Dieudonné theory

In this subsection we state and prove the main theorem of this article.

Proposition 172. Suppose that R is a p-torsion free quasiregular semiper-
fectoid ring. The prismatic Dieudonné functor induces a contravariant fully
faithful embedding from the category of standard BTn’s to Pxln(R) for every n.
The equivalence is compatible with quasi-syntomic base change.

Proof. By the Propositions 139, 150 and 142, the contravariant functor

p− div(R)
M∆(−)
−−−−−→ DMadm(R)→ Pxl∞(R)
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is exact and reflects exactness, where the exact structure on Pxl∞(R) is induced
from the abelian category PrePxl(R). Thus we have a contravariant equivalence
of bounded derived categories

Db(p− div(R))→ Db(Pxl∞(R))

Moreover the equivalence is compatible with the termwise quasi-syntomic base
change of the complexes by Proposition 165.

Let G = H[pn] be a standard BTn over R, where H is a p-divisible group.

Then G is embedded intoDb(p−div(R)) as the complexH
pn

−→ H. This complex

is taken by the prismatic Dieudonné functor to M
pn

−→M , where M is the pixel
of level ∞ corresponding to M∆(H) under the equivalence in Proposition 165.
But this is exactly the embedding of τnM into Db(Pxl∞(R)) in Proposition
171. Thus the functor G ↦→ τnM is fully faithful. The embedding of a pixel of
level n into Db(Pxl∞(R)) is compatible with base change, so the overall functor
G ↦→ τnM is compatible with quasi-syntomic base change.

Theorem 173. Suppose that R is a p-torsion free quasiregular semiperfectoid
ring. The prismatic Dieudonné functor induces a contravariant equivalence from
the category of BTn’s over R to pixels of level n over R. The equivalence is
compatible with quasi-syntomic base changes between p-torsion free quasiregular
semiperfectoid rings.

Proof. We use the contravariant equivalence in Proposition 172.
Proposition 164 shows that pixels of level n satisfy p-ind-étale descent, and

Proposition 124 shows that BTn’s satisfy p-completely fpqc descent.
LetG be a BTn over R. By Corollary 130, there is a p-ind-étale cover R→ R′

such that the base change of G to R′ is standard. We denote by D the canonical
descent datum obtained from G for the cover R→ R′. Then D is mapped to a
descent datum D′ of pixels of level n associated to R→ R′. Since pixels satisfy
p-ind-étale descent, the descent datum D′ is effective, giving a pixel M of level n
over R. Then G ↦→M is a functor from BTn to Pxln(R). Since both BTn’s and
pixels of level n satisfy p-ind-étale descent, and the functor mapping standard
BTn to pixels is fully faithful, we conclude that G ↦→M is fully faithful.

The functor is essentially surjective since by Proposition 168, all the pixels
of level n can be obatined as a truncation of a pixel of level ∞, and pixels of
level ∞ are in equivalence with p-divisible groups.

That the equivalence is compatible with quasi-syntomic base changes follows
from the same fact for the equivalence in Proposition 172.

Corollary 174. All BTn over a p-torsion free quasiregular semiperfectoid ring
R are standard.

Proof. This is a combination of the classification and Proposition 168.

The passing from the quasiregular perfectoid case to the quasi-syntomic case
is achieved by descent.
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Definition 175. Suppose that R is a p-torsion free quasi-syntomic ring. Let
QRSP(R) be the category of objects R → R′ in (R)qsyn such that R′ is a
quasiregular semiperfectoid ring, with morphismsR′ → R′′ being quasi-syntomic
ring maps between R and R′. Note that all objects in QRSP(R) are p-torsion
free.

A crystal of pixels of level n over R is an association M : S ↦→MS where S
is an object of QRSP(R) and MS is an object of Pxln(S), such that if S′ → S
is a morphism in QRSP(R) corresponding to the ring map R → R′, then MS′

is the base change of MS along S → S′.
A morphism f : M → N between two crystals of pixels of level n is defined

to be a system of morphisms fS : MS → NS of pixels for S ranging in QRSP(R)
such that for all morphisms S → S′ in QRSP(R), fS′ is the base change of fS
to S′.

Remark 176. If R is a p-torsion free quasiregular semiperfectoid ring, and n ≥ 1,
then evaluating at the ring R itself gives an equivalence between crystals of pixels
of level n over R to pixels of level n over R.

Theorem 177. Suppose that R is a p-torsion free quasi-syntomic ring. The
prismatic Dieudonné functor induces a contravariant equivalence between the
category of truncated BTn over R to that of the crystals of pixels of level n over
R.

Proof. We send G a BTn over R to the crystal S ↦→MS , where MS is the pixel
over S associated to the BTn over S the base change of G to S. If f : G→ H is
a morphism of BTn, then f induces morphisms fS : HS → GS , where GS , HS

are the base changes of G,H to S respectively. We send f to the morphisms
of pixels corresponding to fS for all S. As the equivalence in Theorem 173 is
compatible with quasi-syntomic base changes, fS′ is the base change of fS for
all morphisms S → S′ in QRSP(R).

Conversely, given a crystal of pixels over R, we can find a quasi-syntomic
cover S → R corresponding to the ring map R → S, where S is quasiregular
semiperfectoid. Then (S⊗L

RS)∧p is also quasiregular semiperfectoid by [BMS19],

Lemma 4.30. As S and (S⊗L
R S)∧p are derived p-complete and p-completely flat

over R, they are also p-torsion free by 22. Theorem 173 then gives a descent
datum of BTn with respect to the cover S → R. The descent datum is ef-
fective since BTn satisfy p-completely fpqc descent. Thus we obtain a BTn

over R. Again by quasi-syntomic descent we see that the BTn constructed is
independant of the choice of S.

Finally we show that the functor is fully faithful. Let G,H be two BTn. If
two morphisms f, g : G → H induces the same morphism of crystals of pixels,
then fS = gS for all quasiregular semiperfectoid R-algebra lying in (R)qsyn. But
then f = g since BTn form a stack. Now suppose that we have a morphism
F from the crystal of pixels assoticted to G to that of H. Then we have a
system of morphisms fS : GS → HS for all objects in QRSP(R). Choose some
quasiregular semiperfectoid R-algebra S such that R → S is a quasi-syntomic
cover. Again by the sheaf property of morphisms between BTn, we have a
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morphism F : G → H inducing fS . If S′ is another object in QRSP(R), then
(S ⊗L

R S′)∧p is an object of QRSP(R), and (S ⊗L
R S′)∧p covers S′. The morphism

f(S⊗L
RS′)∧p

is the base change of fS to (S ⊗L
R S′)∧p , so the same as F(S⊗L

RS′)∧p
.

We know that the base change of FS′ to (S ⊗L
R S′)∧p is F(S⊗L

RS′)∧p
, and the map

Mor(GS′ , HS′)→ Mor(G(S⊗L
RS′)∧p

, H(S⊗L
RS′)∧p

) since S′ is covered by (S⊗L
RS′)∧p .

We conclude that the morphism fS′ has to be FS . So the morphism f between
the crystals of pixels is induced by F .

Note that by Remark 160, a crystal of pixels of level n can be determined
by the data of pairs (MS , φS) for each S ∈ QRSP(R), where MS is a finite
locally free ∆S/p

n-module, φS : MS → MS a φ-linear map, subject to certain
conditions. Thus the following conjecture seems reasonable. However we are
not able to prove it.

Definition 178. A truncated prismatic Dieudonné crystal of level n over R is
a pair (M, φM) whereM is a Opris

n -module and φM :M→M a φ-linear map,
satisfying the following conditions:

(1) The moduleM is finite locally free over Opris
n .

(2) The cokernel of the linearization φ∗M→M of φM is killed by Ipris.
(3) The image of the composition

M φM−−→M→M/IprisM

is a finite locally free On-module F such that the map

F ⊗On
Opris

n /IprisOpris
n →M/IprisM

induced by φM is injective.
The category of truncated prismatic Dieudonné crystal of level n over R is

denoted by DMn(R).

Conjecture 179. Suppose that R is a p-torsion free quasi-syntomic ring. The
prismatic Dieudonné functor induces a contravariant equivalence between the
category of BTn’s over R and the category DMn(R).
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