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ABSTRACT 
Seismic analysis of concrete gravity dams using a novel time domain spectral finite element 

method 

 

Avirup Sarkar, Ph.D. 

Concordia University, 2024 

 

 

 

 

This thesis introduces a two-dimensional spectral finite element formulation tailored for the 

dynamic analysis of concrete gravity dams. While the Finite Element Method (FEM) is widely 

utilized for dynamic structural analysis, its application to large structures often demands 

substantial computational resources and time. To address this challenge, alternative modelling 

techniques known as Spectral Finite Element Methods (SFEMs) have been developed over the 

past decades to enhance computational efficiency. 

The objective of this thesis is to develop a computationally efficient analysis procedure for 

dynamic analysis of large structures like concrete gravity dams and then apply the developed 

procedure for assessing the behaviour of dams subjected to seismic ground motions as well as 

deterioration effects like alkali-aggregate reactions.  

The Time Domain-based SFEM (TDSFEM) was chosen for dynamic time history analysis of 

concrete gravity dams due to its advantages over the Frequency Domain-based SFEM (FDSFEM). 

TDSFEM is particularly effective in handling irregular geometries and finite domains, making it 

a better choice for complex structural analyses. Sensitivity analyses and convergence studies were 

conducted using both 4-noded and 9-noded elements, revealing TDSFEM’s superior 

computational efficiency, especially when higher-order elements are employed. 

Comparative studies between TDSFEM and conventional FEM highlighted TDSFEM's advantage 

in reducing computational time while maintaining accuracy in large-scale dynamic analyses. 
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Modal analysis and time history analysis indicated that TDSFEM, when used with higher-order 

elements, could be a practical alternative to conventional FEM, offering substantial time savings 

without sacrificing precision. 

The study also investigated damage detection methods based on modal parameters, including 

displacement, curvature, and strain energy. Among these, modal strain energy emerged as the most 

effective and reliable indicator for identifying and localizing damage. Additionally, TDSFEM was 

applied to model the behaviour and failure modes of FRP-reinforced concrete deep beams, with 

results closely matching experimental data, further demonstrating its efficiency. 

Moreover, the thesis introduced a simplified thermo-mechanical approach for modelling 

deterioration effects, such as alkali-aggregate reactions (AAR), providing a novel alternative to 

existing chemical reaction-based models. TDSFEM is thus presented as a viable, efficient method 

for analysing large structures, offering significant time savings and effective applications in 

damage detection and deterioration modelling. 

Keywords: Concrete gravity dams, Spectral Finite Element methods (SFEMs), Time Domain 

Based Spectral Finite Element method (TDSFEM), Numerical efficiency, Infinite Elements, 

Modal Strain Energy, FRP, concrete deep beams, Alkali-Aggregate Reaction (AAR).  
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CHAPTER 1: INTRODUCTION 

I. Background 

In recent years, there have been major changes in the philosophy of design of structures. With the 

introduction of concepts of capacity-based design and performance-based engineering design of 

structures, bulky and heavy weight structures are being replaced by light weight and sleek 

structural components. This makes the need for monitoring the state of the structure inevitable, 

continuously or at periodic intervals. The process of assessing the structural performance, 

detecting the damage (if any) and predicting the future life of the structure started out as Non-

destructive testing and evaluation and finally led to the branch of engineering called Structural 

Health Monitoring (SHM). SHM has evolved as a multi-disciplinary research domain with 

widespread applications in the field of aerospace, civil, mechanical, and naval structures. SHM 

requires deep understanding and knowledge of different branches of science like signal processing, 

sensors and electronics, material science, etc. Along with these, numerical simulation and 

modeling plays an important part of any SHM and damage detection framework. In the field of 

SHM, modeling has two basic parts: flaw modeling and damage detection algorithm. The type of 

flaw modelling depends on the type of structure to be investigated. In the case of steel structures, 

flaw is generally in the form of vertical, horizontal, inclined cracks or corrosion cracks, while in 

composites, delamination is the main type of flaw that needs to be modeled. The cracks due to 

creep, shrinkage, etc. need attention while modelling flaws in concrete structures. An efficient 

damage detection strategy demands that all these types of flaw modeling be incorporated in its 

numerical simulation scheme. Another requirement for an efficient damage detection technique to 

work properly is that it should blend well with the chosen mathematical model and work 

effectively in case of incomplete or noise pollution data. The earliest methods of damage detection 

are based on changes in modal parameters of structures. Damage in a structure leads to a reduction 

in the stiffness which in turn leads to changes in natural frequencies of the structure. This global 

nature has led to the development of many damage detection techniques based on changes of modal 

parameters. The starting point of damage detection based on changes in modal parameter was 

based only on changes in the natural frequencies of the structure (Cawley et al, 1979). At a later 

stage, damage detection methods based on changes in flexibility of the structure were proposed 
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(Chopra & Chakrabarti, 1973). By this method, damage in a structure could be easily detected and 

localized based on the first few modes of vibration of the structure. However, the problem with 

the aforementioned techniques is that they are insensitive to small damages. An advancement over 

these methods was made by a damage detection method based on changes in mode shape curvature 

(Chróścielewski, 2009). This method can effectively detect damage even of small dimensions. 

However, this method requires a large number of sensors to obtain the spatial resolution required 

to fully characterize the modes and compute the curvatures. A detailed review of the advantages 

and disadvantages of modal parameter based, or vibration-based damage detection based are 

present in literature (Pandey et al, 1991, Doebling at al, 1998). The major takeaway from the study 

of vibration-based damage detection methods is that they rely on low frequency characteristics of 

structures and return large errors for higher frequencies. Also, these methods require a large 

number of sensors if the method involves signal processing, which results in higher overall cost of 

the method. A solution to all the above-mentioned shortcomings is provided by methods of damage 

detection based on wave propagation. An efficient damage detection method also requires a 

suitable mathematical tool for proper handling of the problem at hand. The most common analysis 

tool applied in mathematical modeling of problems of structural dynamics is the finite element 

method. The Finite element method is a robust analysis method and provides solutions to large 

variety of problems of structural analysis. The matrix methodology adopted in this framework is 

also suitable for computer implementation. This is an important reason behind the popularity of 

the finite element method in solving most present-day engineering problems. But there are some 

inherent problems in the finite element methodology which needs to be addressed before applying 

it to solving problems of structural dynamics and damage detection. The starting point in solving 

a problem of structural dynamics by the finite element method is writing the dynamic equation of 

motion and formulation of the stiffness and mass matrices. The two types of mass matrices used 

are: lumped mass matrix and the consistent mass matrix. In the lumped mass matrix, the total mass 

of the element is equally distributed in the two nodes leading to a diagonal mass matrix. In the 

consistent mass matrix formulation, the entries of the mass matrix are calculated by computing the 

partial derivatives of the kinetic energy of the element with respect to the nodal velocity 

components. In both the formulations, if the nodes are far apart, many elements must be used to 

model the mass distribution correctly. Thus, even for a uniform rod with constant parameters, 

many elements must be used, and this leads to increased size of the problem, use of more computer 
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space and memory, high computational time and cost. This inherent problem of finite element 

method needs use of an analysis tool free from these shortcomings. The spectral element method 

is a comparatively new analysis tool developed on the principles of wave propagation, free from 

the problems of finite element method and leads to much less computation time and use of much 

less computation space. The details of the method are discussed in detail in the next chapter. The 

main objective of this study is to develop an efficient damage detection technique based on the 

principles of wave propagation of structures using spectral finite element method as an analysis 

tool.  

Finite Element Method (FEM) is one of the most extensively used analysis tools in varied 

engineering applications. The ease of implementation due to adopted matrix methodology in FEM 

formulations makes it highly compatible with modern day digital computation facility. This has 

led to the versatile use of FEM in almost all engineering applications over a considerable period 

of time. In dynamic analysis, accurately capturing the higher vibration modes of a structure is 

crucial for understanding its behavior for a significant level of precision. This is particularly 

relevant, where the response of structures to seismic excitation is of great importance. 

Conventional FEM often requires very fine mesh sizes to capture these high-frequency modes. 

The required mesh size should be comparable to the wavelength of the high frequency modes. It 

results in huge computational problems for large and complex structures like concrete gravity 

dams. In such cases, dynamic analysis using the conventional FEM requires significant 

computational time, space, and cost and this could impact the accuracy of the solution. It could be 

particularly challenging for vibration-based model updating and damage detection using finite 

element models (Bagchi et al., (2007)) where the conventional FEM has been used in dynamic 

analysis of structures. Damage or anomaly detected in dams using data driven models could 

mitigate the computational issues as they do not require an FEM model (Garabedian et al. 2006 a, 

b). However, they may have limited applicability. 

The shape functions used in conventional FEM are static and frequency independent. Over the past 

few decades, alternative analysis techniques have been developed with the objective of solving 

dynamic problems using less computational time and cost.  The starting idea of these methods was 

to use shape functions which are dynamic or frequency dependent. One of the early methods 

developed in this direction is the Dynamic Stiffness Method (DSM) (Kolousek (1941), 
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Przemieniecki (1968)). In this method, frequency-dependent shape functions are used. These 

frequency-dependent interpolation functions can adequately represent the higher modes of the 

structure with high level of precision. Also, there is no need to perform mesh refinement for higher 

accuracy. Another method developed with a similar idea which works in the frequency domain is 

the Spectral Analysis Method (SAM) (Newland (1993), Ginsberg (2001) and Humar (2001)). In 

the aforementioned method, the Fast Fourier Transform (FFT) is employed to efficiently compute 

the frequency dependent components of as many high frequency modes as deemed necessary for 

the problem. The key features of conventional FEM, DSM and SAM combined to the development 

of Spectral Finite Element Method (SFEM) (Beskos (1978)) which is frequency based (or FFT 

based) and sometimes also referred to as Frequency Domain based Spectral Finite element method 

(FDSFEM) (Doyle (1997) and Lee (2009)). 

Another class of finite element method was developed with the view to achieve computational 

efficiency over the conventional FEM, which is now referred to as the Time Domain Based 

Spectral Finite Element Method (TDSFEM) (Patera (1984)) which operates in a totally different 

methodology than the above mentioned FDSFEM. While the TDSFEM is labeled as a 'spectral' 

method, it operates in the time domain with spatial discretization. The term 'spectral' in this context 

refers to the incorporation of higher-order polynomials as interpolating functions, uses Gauss-

Lobatto-Legendre (GLL) integration technique, allowing for efficient computation. Although the 

method does not directly provide frequency domain information, it offers computational 

advantages over conventional FEM. The historical development of these methods, advantages and 

disadvantages are discussed in detail in the next few sections. The main objective of this research 

is to develop a TDSFEM-based method for the dynamic time history analysis of concrete gravity 

dams, and demonstrate the computational efficiency of the proposed TDSFEM-based method over 

conventional FEM. By applying TDSFEM to dynamic time history analysis, it was aimed to 

quantify the computational advantages of the method over conventional FEM. Such studies are 

not available in the available literature. The present research mainly focuses on investigating the 

computational time savings achieved by TDSFEM, particularly in case of complex geometries and 

large practical structures (like concrete gravity dam). For that purpose, TDSFEM elements were 

developed with linear and higher order interpolation functions. Also, infinite elements for 

TDSFEM were developed to model the foundation. The uniqueness of the present work comes 

from the development and practical application of the higher order TDSFEM elements and the 



Page | 5  

 

infinite elements. In terms of analysis of concrete gravity dams, another important aspect which 

needs to be looked at is the damage caused by alkali-aggregate reaction (AAR). In concrete 

structures, this is a typical problem due to the chemical ingredients of concrete. AAR is a chemical 

process which sets in concrete structures at a certain age and then structural degradation happens. 

AAR causes volumetric expansion, and the structures get affected by cracks. Depending on the 

amount of AAR, the cracks in the structure could be local or the damage could be high, needing 

severe retrofitting and repair measures to be adopted for the proper functioning of the structure. In 

many concrete gravity or arch dams, AAR has been observed to cause severe issues related to 

structural health. However, modeling of AAR and its effects on a dam is a challenging aspect as it 

requires rigorous chemical modeling followed by the standard mechanical analysis procedures to 

be implemented. In this thesis, a simplified thermo-mechanical approach has been adopted to 

model the effects of AAR on dams. 

 

II. Motivations for the study 

A. The available methods of damage detection based on changes in vibration characteristics 

of structures have many shortcomings, are insensitive to small damage and require a high 

number of sensors to be deployed for accurate damage detection. 

B. Finite element method, the most commonly used mathematical modeling tool for problems 

in structural dynamics and damage detection also has many inherent problems. For accurate 

modeling of inertial properties, it requires fine meshing leading to high computational 

space, time and cost. Thus, to develop an alternative computationally efficient analysis 

technique for analysis of large structures like concrete gravity dams. 

C. There is no considerable work done in the literature on damage detection of large structures 

like concrete gravity dams incorporating the above-mentioned points. 

D. To showcase the application and efficiency of developed numerical analysis procedures 

for structures other than dams but requiring heavy computational effort like pseudo-static 

or dynamic analysis considering material nonlinear behavior. 

E. To develop a simplified numerical algorithm for modeling deterioration effects in concrete 

structures like alkali-aggregate reactions (AAR). 
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III. Objectives of the study 

The objectives of the present research are as follows: 

A. To formulate an efficient analysis tool using spectral element method to save 

computational space, time, and cost, then apply it to two-dimensional problems. 

B. To develop a damage detection method capable of detecting and locating damage in 

concrete gravity dams based on modal parameters. 

C. To develop a TDSFEM-based method for seismic analysis of concrete gravity dams 

considering the effect of dam-reservoir-foundation interaction and application of above-

mentioned damage detection tools for dams. 

D. To demonstrate the efficiency of the developed procedure for other structures than concrete 

gravity dams but requiring heavy computational efforts like pseudo-static analysis 

considering the effect of material nonlinear behavior. 

E. To develop a simplified numerical algorithm for the modeling of deterioration effects in 

concrete structures like alkali-aggregate reactions (AAR). 

 

IV. Outline of the thesis 

The report starts with the basic introduction to the research topic of structural health monitoring 

and damage detection, leading to the discussions on shortcomings of prevalent damage detection 

methods and analysis tools. The introductory chapter ends with discussing the ideas that could be 

explored for overcoming the mentioned problems and mentions the overall motivations of the 

research work and objectives of the study. Chapter 2 is a background literature review on the 

available spectral finite element methods discussing their advantages and disadvantages and 

applicability in the context of dynamic analysis of large structures like concrete gravity dams. The 

chapter also presents the literature review on vibration-based damage detection methods and the 

deterioration effects of alkali-aggregate reactions on large structures like concrete gravity dams. 

Chapter 3 presents the methodology adopted in the thesis for the analysis performed using the time 

domain based spectral finite element method. Chapter 4 presents a detailed verification study of 

the developed TDSFEM based programs for the linear static, linear dynamic, non-linear static and 

non-linear dynamic problems solved in the thesis. Chapter 5 is on the application of the time 

domain based spectral finite element method in the linear dynamic analysis of concrete gravity 
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dams and damage localization based on modal parameters. In Chapter 6, nonlinear analysis of the 

concrete gravity dams is showcased considering the effect of reservoir and semi-infinite 

foundation. In Chapter 7, the modeling of alkali-aggregate reaction (AAR) in concrete gravity 

dams using a simplified thermos-mechanical model is shown. The final chapter is based on the 

overall summary and conclusions of the thesis. 
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CHAPTER 2: LITERATURE REVIEW 

I. Alternative modeling techniques 

As discussed in the previous section, the need for alternate methods to conventional FEM emerged 

from the fact that it requires very fine mesh to accurately capture the higher vibration modes of a 

structure while performing dynamic analysis. The size of the mesh required is comparable to the 

wavelength of the highest required vibration mode of the structure. This results in a huge size of 

the problem to be solved which needs high computational time, space and cost. 

In order to circumvent the problem of mesh refinement, researchers came up with the concept of 

dynamic shape functions which are frequency dependent in the method named Dynamic Stiffness 

Method (DSM). The idea was to use exact wave solutions of the governing differential equations. 

This enables accurate representation of the higher vibration modes without increasing the 

computational burden. The governing differential equation in the time domain is first transformed 

to frequency domain. This leads to dynamic stiffness matrix which is frequency dependent, and it 

accurately captures the inertial properties of the dynamics of the structure like mass distribution, 

stiffness distribution and damping. So, for a part of the structure with no material or structural 

discontinuity, a single element is sufficient and meshing it into finite elements is no longer needed. 

Consequently, the total number of degrees of freedom to be considered in the structure for dynamic 

analysis is much less compared to conventional FEM which means reduction in computational 

time as the problem to be solved is much less in size owing to reduced number of degree of 

freedoms. Development of the accurate dynamic stiffness matrix of a Euler-Bernoulli beam can 

be traced back to the work by Kolousek (1941). Similar frequency dependent dynamic stiffness 

matrices were developed for both beam and bar elements by Przemieniecki (1968). However, the 

problem in this method is that the eigen value problem posed by DSM is not a linear eigen value 

problem as is seen is case of conventional FEM. DSM leads to eigen value problems which are 

transcendental in nature and solving it to calculate all the natural frequencies of a structure posed 

major computational challenges. This issue was solved by Wittrick and Williams (1971) with their 

development of the well-known Wittrick-Williams algorithm to calculate the undamped natural 

frequencies of a structure for transcendental eigen value problems. Following the development of 

the Wittrick-Williams algorithm, the applicability of DSM increased manifold. Leung (1993) 
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provided a comprehensive literature review of the varied applications of DSM in the field of 

structural dynamics. Around the same time, Fourier transform based Spectral Analysis Method 

(SAM) was developed in which the solution to the governing differential equation is presented as 

the superposition of a large number of wave modes of different frequencies.  Detailed description, 

explanations and review of literature on the DFT/FFT based SAM have been provided by Newland 

(1993), Ginsberg (2001) and Humar (2001). Combining the concept of DSM and using the FFT 

algorithm like SAM, Beskos (1978) developed the Spectral Element Method (SEM) for the 

dynamic analysis of beams. However, the term “Spectral Element Method” was later coined by 

Doyle (1988).  

Extended research has been carried out using the frequency domain based SFEM (FDSFEM) and 

a detailed review of the literature on it can be found in Doyle (1997) and Lee (2009). Other 

frequency domain-based methods were also developed to solve soil-structure interaction problems 

(Humar et al., 1998). FDSFEM provides high accuracy in frequency domain problems such as 

calculating eigen-frequencies even for the higher modes of vibration. However, they do not address 

the issue of application to structures with complicated geometry or the computational aspect of 

dynamic analysis of practical structures. 

The motivation for researchers to develop efficient computational techniques for the dynamic 

analysis of structures led to the development of other spectral element methods. Patera (1984) 

developed one such spectral element method to be applied in the field of fluid dynamics named 

the time domain based spectral finite element method (TDSFEM). In that method, the structure of 

the conventional FEM was efficiently combined with the accuracy of the spectral techniques to 

solve the relevant governing differential equation i.e., the Navier-Stokes equation. The unknown 

field variable was approximated using Lagrange interpolation functions. Unlike the FDSFEM, 

TDSFEM does not provide any frequency domain or “spectral” information directly, as the 

framework is similar to conventional FEM. Thus, the inclusion of the term “spectral” in the 

TDSFEM can be questioned. The established procedure leads to computational efficiency over the 

conventional FEM. Later on, researchers applied this technique for solving problems of dynamics 

in the domain of structural engineering. The computational efficiency over conventional FEM 

being attributed to the applied numerical integration scheme. 
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While the available literature shows extensive work on FDSFEM and TDSFEM, their application 

was limited to structures with simpler geometries. While there is a difficulty in applying FDSFEM 

in 2D or 3D structures with irregular geometries, TDSFEM are amenable to such applications. 

Here, the application of TDSFEM is explored for 2D planer structures such as dams. While 

TDSFEM formulations for 2D plane-stress/plane-strain problems are available in the literature, 

their application to dynamic analysis was limited to modal analysis. Also, for a problem like dam-

foundation-reservoir system, their semi-infinite foundation required an infinite element that is not 

developed in TDSFEM yet. Also, there is no study available for dynamic time history analysis to 

2D plane structures using TDSFEM. The objective of the present study is close the above research 

gaps by adapting the 2D TDSFEM to modeling concrete gravity dam-foundation systems, 

developing the necessary formulations for an infinite element in TDSFEM to model the semi-

infinite foundation boundaries, and implementing a linear dynamic time-history analysis method 

for such systems. 

II. Frequency domain-based spectral finite element method (FDSFEM) 

The frequency domain based spectral finite element method (FDSFEM) works with exact solutions 

to the governing differential equations and thus the dynamic properties of the system are modeled 

with the highest accuracy. This method leads to the requirement of a single element for modeling 

a part of a structure with no material or geometric continuity, thus significantly reducing the size 

of matrices to be solved. As the method works in the frequency domain, the response is calculated 

by superposition of responses over a number of frequencies using the FFT and Inverse FFT 

algorithms. The computational efficiency of the FDSFEM has been demonstrated for simple Euler-

Bernoulli beams first by Doyle (1990) in his work on flexural wave propagation in beams. His 

research team extended the earlier work for application to Timoshenko beam theory 

(Gopalakrishnan et at, (1992)). To showcase the computational accuracy and efficiency of the 

FDSFEM, a comparison of modal analysis of Euler-Bernoulli beams using conventional FEM and 

FDSFEM has been performed (Lee & Lee, (1996)). Frequency domain based SFEM formulations 

for lattice structures have been developed by Lee (2000). In this work also, the necessity of much 

smaller number of elements and degrees of freedom for performing dynamic analysis of structures 

using FDSFEM with respect to conventional FEM has been demonstrated. Sarvestan et al (2017) 

performed vibration analysis of multi-story portal frame using both conventional FEM and 

FDSFEM, demonstrating that the former required almost 40 times the number of degrees of 
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freedom as required by the latter for reaching same accuracy in results. The application of 

FDSFEM can be extensively found in the domain in structural health monitoring and damage 

detection. Detection of additional mass in rods using the FDSFEM and experimental validation of 

the same has been done by Palacz et al (2005). Damage detection using iterative search techniques 

have also been performed where the FDSFEM has been used for modeling by Krawczuk (2002) 

and Palacz & Krawczuk (2002). The problem of damage detection using FDSFEM has also been 

solved by converting it into an optimization problem and henceforth also calculating the associated 

uncertainties by Ng et al. (2009). Some other varied applications of FDSFEM can be found in Park 

& Lee (2012), Wu (2013), Jin et al (2017), Kim & Lee (2017), Boudaa et al (2019), Caglar & 

Safak (2019) and Hamioud (2021). From the above-mentioned literature, some of the distinct 

advantages of the FDSFEM that can be pointed out are decrease in the number of degrees of 

freedom, number of equations to be solved, thus reducing computational time and high accuracy 

in the frequency domain problems like calculation of eigen frequencies. 

However, there are certain restrictions involved with the application of FDSFEM to structural 

engineering problems. FDSFEM requires the exact solutions of governing equations of wave 

propagation which are not available for structures with irregular geometry. Equations (1) and (2) 

depict the two-dimensional wave propagation equations for which the exact solutions only exist 

for regular geometries and not for irregular geometries like concrete gravity dams. 

µ𝛻2𝑢 + (⋋ +µ) [
𝜕2𝑢

𝜕𝑥2 +
𝜕2𝜔

𝜕𝑥𝜕𝑧
] = 𝜌

𝜕2𝑢

𝜕𝑡2                           (1) 

 

          µ𝛻2𝑤 + (⋋ +µ) [
𝜕2𝑤

𝜕𝑧2 +
𝜕2𝑢

𝜕𝑥𝜕𝑧
] = 𝜌

𝜕2𝑤

𝜕𝑡2                            (2) 

Also, the FDSFEM formulation uses throw-off elements at the boundary which are one-noded 

semi-infinite elements simulating the flow of energy out of the structure. The throw-off elements 

to be modeled at the element boundary restrict the application of FDSFEM to structures with 

complex geometries which are applicable to most real-life practical structures. The necessity for 

the element at the boundary to be infinitely long in FDSFEM formulation makes it impractical to 

be used in real life structures with complex geometry (He and Ng, (2017)). The use of FFT in 

FDSFEM causes wrap-around problem for forces with short duration, i.e., the response does not 

die down with the chosen time window irrespective of the type of damping adopted and this leads 

to distorted response (Mitra and Gopalakrishnan, (2005)). These limitations in the application of 
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FDSFEM highlight the need for further research and find alternatives or alternatives in SFEMs to 

overcome these challenges and expand their applicability. 

III. Time-domain based spectral finite element method (TDSFEM) 

The spectral element method developed by Patera (1984) later came to be known as the time 

domain based spectral finite element method (TDSFEM) provides an alternative. It needs to be 

pointed out here that in TDSFEM, the discretization is in the spatial domain. The difference 

between TDSFEM and the conventional FEM is the use of higher order polynomial as 

interpolating functions and the integrating points being connected to the element nodes, rather than 

in the element domain. This results in a diagonal mass matrix and thus it requires less computation 

time as compared to conventional FEM, saving computational cost. Applications of TDSFEM in 

the field of seismology and seismic wave propagation can be found in Smith (1975), Komatitsch 

(1999), Komatitsch & Tromp (2002), Tromp et al. (2008), Kudela & Ostachowicz (2009), 

Komatitsch et al. (2010). Semblat & Brioist (2000) pointed out the efficiency gained by use of 

higher order polynomials in finite element formulations. Kudela et al (2007) demonstrated that 

TDSFEM can be effectively used in modeling wave propagation in structures. Rucka (2009) has 

performed experimental and numerical studies of damage detection in rods with structural 

discontinuities using the TDSFEM formulation. Different rod theories and their behavior were 

modeled using TDSFEM by Zak and Krawczuk (2010). Witkowski et al. (2009) formulated 

TDSFEM for Timoshenko beam elements and carried out damage detection in frames. 

Chróścielewski et al. (2009) carried out a similar work for steel truss structures. Application of 

TDSFEM can be widely seen in 2D structures as the method is free from the problems faced in 

FDSFEM. Zak (2009) proposed a novel TDSFEM formulation for isotropic plates. Rucka (2011) 

used TDSFEM formulation for modeling in-plane wave propagation in plates and damage 

detection. Witkowski (2012) formulated 2D time domain based spectral finite elements for wave 

propagation analysis using plane stress elements. A comprehensive guide for wave propagation 

analysis in structures using time domain based spectral finite elements is provided by Ostachowicz 

et al (2012). Wang (2022) presented the vibration characteristics of simply supported beams, 

cantilever beams and a four-edged rectangular plate using the TDSFEM. 

From the above literature review, it is evident that the FDSFEM has higher computational 

efficiency over the TDSFEM as it requires only a single element to model the dynamic properties 
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of a structural part with no material or geometric discontinuity. However, the necessity of 

modeling a throw-off element in FDSFEM formulation limits its use in two-dimensional problems 

or in structures with complex or irregular geometry. Also, the solution of governing differential 

equations for wave propagation needed in FDSFEM formulation is not available for irregular 

geometries. The TDSFEM formulation adopts an integration scheme different from the Gauss 

Quadrature used in the conventional FEM, and thereby gains significant computational efficiency 

over the conventional FEM. Detailed comparison of the FDSFEM and TDSFEM has been 

provided by Palacz (2018) and Hafeez & Krawczuk (2023). It is thus imperative that for 

application to two-dimensional practical structures with complicated geometry, the TDSFEM is a 

more appropriate approach for modeling. Incidentally, there has been no major research performed 

on modeling large civil engineering structures (which have irregular geometries) like concrete 

gravity dams using alternative techniques like TDSFEM. Concrete gravity dams being enormous 

in size require huge computational time, space and cost when conventional FEM is used, especially 

when a finer mesh needs to be used to capture the stress variation in certain critical locations of a 

dam. 

IV. Modal parameter-based damage detection 

There are not many applications of the TDSFEM in the case of large structures like concrete 

gravity dams. The computational efficiency in terms of the time achieved in TDSFEM will be 

more beneficial in the case of large structures like dams. This thesis applies the concept and 

methodology of TDSFEM in the case of concrete gravity dams. The application is made in terms 

of dynamic analysis, damage detection, and localization which is a challenging task considering 

the enormity of the structure. Vibration-based methods in damage detection employ modal 

parameters like frequency, displacement mode shape, curvature mode shape, etc. to detect the 

presence of damage as well as for the localization and quantification of the same. However, these 

parameters, though can identify the presence of damage, cannot always efficiently detect the 

location of the damage. While vibration-based damage identification techniques are well 

established, it has many challenges as identified in Humar et al. (2006).  Among many such 

methods, matrix update method and strain energy-based was observed to be comparatively more 

effective in damage localization Humar et al. (2006). Strain energy-based damage detection 

method was demonstrated for a concrete gravity dam by (Bagchi et al., 2019). 
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V. Alkali-aggregate reaction (AAR) and its severe impact on structures 

The durability and structural integrity of concrete structures can be significantly impacted by the 

alkali-aggregate reaction (AAR), especially in concrete gravity dams. This chemical reaction 

occurs when alkali hydroxides in Portland cement react with reactive silica in aggregates, resulting 

in the formation of an expansive gel that causes cracking and structural damage over time (ACI, 

2001). The impact of this phenomenon is particularly alarming for the numerous large dams across 

the globe, which play a vital role in water supply, irrigation, flood control, and hydroelectric power 

generation. With more than 58,000 large dams in operation worldwide currently (ICOLD, 2023), 

the potential consequences of AAR on these critical infrastructures are a matter of global concern. 

To ensure the proper handling of AAR in dam structures, a comprehensive approach is required. 

This approach should include the use of suitable construction materials, continuous monitoring, 

and timely remedial actions. AAR can have a significant impact on the static and dynamic 

behaviors of dams, weakening their load-bearing capacity and making them less resistant to 

seismic events (ACI, 2001 and Thomas & Folliard, 2007).  

Highlighting the global scale of the AAR challenge, various dams worldwide have suffered 

significant impacts due to this phenomenon. In the United States, both the Gene Wash and Copper 

Basin dams have encountered stress-related issues attributed to AAR (Wood, 2001). The 

Mactaquac Dam, situated on Canada's St. John River, has been grappling with AAR-related 

expansion and leakage issues since the mid-1970s, manifesting through its construction joints 

(Holman, 2024). The Kariba Dam, straddling the Zambia/Zimbabwe border, exemplifies the 

complexities involved in managing AAR within essential hydroelectric infrastructure (World 

Bank, 2024). In Portugal, the Alto Ceira and Santa Luzia dams are among several structures that 

have faced structural challenges due to AAR (Wood, 2001), while in France, approximately thirty 

dams, including the Salanfe Dam, have reported swelling and cracking problems as a result of 

AAR (de Larrard & Duprat, 2015), (Droz et al, 2013). Additionally, the Fontana Dam in the USA 

stands as a notable example in the annals of dam engineering, suffering from AAR-induced 

cracking (Pan et al, 2012). These instances underscore AAR's significant risk to the operational 

safety and effectiveness of large dam infrastructures globally. Combating this issue demands an 

integrated approach, leveraging the latest in material science, engineering methodologies, and 

ongoing maintenance practices to preserve the structural health and reliability of these vital 

structures. 
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The objective of this study is to evaluate the impact of alkali-aggregate reaction (AAR) on the 

static and dynamic behaviors of the Koyna dam by comparing scenarios with and without AAR 

effects. Utilizing a simplified thermo-mechanical approach, this research model AAR effects as 

equivalent thermal strains, introducing a pseudo-temperature method to account for mechanical 

expansion similar to thermal expansion. This novel approach allows for the assessment of AAR's 

impact on dam safety and integrity without the need for complex, rigorous experimental setups 

that attempt to replicate field conditions. Through static and dynamic analysis, the study aims to 

demonstrate how AAR significantly compromises the structural integrity of dams, potentially 

leading to failure. Also, the computationally efficient time domain spectral finite element method 

has been used for all the analysis performed in this study. For large structures like concrete gravity 

dams, as computational time is huge, saving in computational time is beneficial. The research 

highlights the severity of AAR effects, suggesting the potential for further detailed investigations 

that could include stepwise analysis to observe AAR progression over time and non-linear analysis 

to predict dam behavior more accurately under AAR conditions. 

VI. Summary 

From the above literature review, it is evident that the need for alternative computationally efficient 

analysis techniques need to be adopted for dynamic analysis of large structures like concrete 

gravity dams. From the literature review, it was found that the Spectral Finite Element Method 

(SFEM) provides an efficient alternative to the conventional Finite Element Method (FEM). Two 

different families of SFEM are available in the literature, Frequency Domain SFEM (FDSFEM) 

and Time Domain SFEM (TDSFEM). While FDSFEM is formulation requires regular geometry, 

TDSFEM could work for irregular geometry as the domain can be discretized in the same manner 

as in conventional FEM. While there has been extensive development in TDSFEM in recent years, 

its application to two-dimensional stress analysis is limited. There is a need for further 

development in that area, particularly for the analysis of large structures like concrete gravity dams 

where foundation domain could extend to infinity. Also, there is a need for further development to 

formulate TDSFEM to account for material nonlinearity, dynamic effects, and thermal stress. As 

mass concrete structures such as concrete gravity dams could be affected by Alkali-Aggregate 

Reaction (AAR), there is a need for developing an appropriate method to account for the AAR 

effect in TDSFEM-based analysis of dams. Based on the analysis, a simplified damage detection 

and localization methodology could be useful to assess the structural condition of such structures.  
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CHAPTER 3: METHODOLOGY 

I. Time domain spectral finite element formulation for two-dimensional 

plane stress element 

The plane stress element formulation comes directly from the fundamentals of solid mechanics 

mentioned in the following discussion. Here, we consider a two-dimensional elastic body B where 

ua, u̇a, üa, , , b, C denote the displacement vector, the velocity vector, the acceleration vector, 

infinitesimal strain tensor, the Cauchy stress tensor, the body force and the positive definite 

elasticity tensor (Hughes, 2000). The domain  of B consists of two non-empty parts d and f 

which are disjoint. In this chapter, indicial notation is used throughout where the Greek subscripts 

take the value of the integers 1 and 2. For the two-dimensional homogenous and isotropic 

conditions, the field equations for the initial-boundary value problem are given in equations as 

below. 

, , ( , )

1
( )

2
u u u       = +                                               (3) 

..

, b u    + =                                                                 (4) 

( , )C u    =                                                                    (5) 

 

_

( )C             = + +                            (6) 

Here,  is the mass density and ,  are the material constants. The energy equilibrium equation of 

the system can be written below. 

( ) ( ) ( ) 0extU t K t G t+ − =                                                     (7) 

In the above equation, U(t) is the internal elastic energy density, K(t) is the kinetic energy density 

and G(t) is the work done by the external forces. The above equation can be written in the weak 

form as follows. 

..

( , ) ( , )

fB B B B

w u dV C w u dV w b dV w f dS          


+ = +                 (8) 
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In the above equation, u denotes the set of kinematically admissible displacement functions, w 

represents the set of kinematically admissible displacement functions satisfying homogenous 

boundary conditions. By applying the finite element formulation on the above equation, the overall 

domain B is subdivided into small parts and is approximated as a summation of the smaller “finite” 

elements as shown in Equation 9. 

( )ee N eB B                                                                                                      (9) 

Here, Ne is the number of finite elements into which the whole domain is divided. As per the 

conventional of the finite element method, B(e) for a typical element is a smooth image of the 

standard element (e). The standard element in case of two-dimensional problems is (e) = [-1,1] x 

[-1,1], also called the element in the natural or parent domain = (1, 2). The number of nodes 

considered in the 1 direction is m1 and the number of nodes considered in the 2 direction is m2, 

thus having a total N=m1.m2 number of nodes. Lagrange type interpolation functions are used as 

shape functions for the displacement field considered in the problem. Considering C0 interpolating 

functions, the matrix of shape functions for the node ‘a’ and an element with N nodes are as 

mentioned in equations below. 

(2 2) (2 2)( ) ( )
xa a xL L I =                                                                               (10) 

( ) 1 2( ) [ ( ), ( ),............, ( )]e NL L L L   =                                                   (11) 

For the displacement field in general, the interpolation scheme can be represented as shown in 

equation below. 

( ) ( )( , ) ( ) ( )e eu t L u t =                                                                                (12) 

( ) 1 2( ) { ( ), ( ),......., ( )}T

e Nu t u t u t u t=                                                             (13) 

1 2( ) { ( ), ( )}T

a au t u t u t=             where a=1 to N                                            (14) 

Ignoring the time dependency, the strain tensor and its virtual counterpart can be written in vector 

notation as follows 

11 22 12{ , ,2 }T Du    → = =                                                                   (15) 

11 22 12{ , , 2 }T Dw     → = =                                                      (16) 
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𝐷 = [

(. ),1           0

  0          (. ),2

(. ),2    (. ),1 

]                                                                                    (17) 

In abridged form, the displacement-strain relations can be written in equation form as below. 

( ) ( ) ( ) ( )( , ) ( ) ( ) ( ) ( )e e e et DL u t B u t   = =                                                 (18) 

( ) ( ) ( ) ( )( ) ( ) ( )e e e eDL w B w   = =                                                          (19) 

( ) ( )( ) ( )e eB DL =                                                                                     (20) 

Finally, the constitutive relationship for the plane-stress condition relating stress and strain can be 

written as follows. 

[

11

22

12

] =
𝐸

1−2 [

1                0
                1    0

0  0  0.5(1 − )
] [

11

22

212

]                                           (21) 

II. Formulation of element mass, stiffness and force matrices 

The section above describes the two-dimensional plane stress formulation from the background of 

solid mechanics. The present section presents in detail the two-dimensional plane stress 

formulation in the context of TDSFEM and how it deviates from the conventional FEM. The 

stiffness and mass matrices and the load vector can be written in the general form below. Four-

noded rectangular elements with two degrees of freedom at each node (as shown in Figure 1) are 

considered for both conventional FEM and TDSFEM formulations. 

 
Figure 1: A typical two-dimensional 4-noded rectangular element with 8 degrees of freedom 

 

( , ) ( , ) ( ) 0 ( ) ( ) 1 2( ) ( )T

e e e

B B

C w u dV K h B EB dx dx      → =                                 (22) 

..

( ) 0 ( ) ( ) 1 2( ) ( )T

e e e

B B

w u dV M h L L dx dx    → =                                              (23) 
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( ) 0 ( ) 1 2 ( )( ) ( )

f f

ext T T

e e e

B B B B

w b dV w f dS f h L bdx dx L fdS     
 

+ → = +                (24) 

For transformation from the parent element to the mapped element, the Jacobian determinant 

needs to be used which takes the form: 

1 2 1 2

1 2 2 1
( )

x x x x
j 

   

   
= −

   
                                                                                 (25) 

1 2

0 0 1 2( )dV h j h dx dx  =   =                                                                            (26) 

For the total element load vector, the external load vector is added to the nodal load vector as 

below. 

( ) ( ) ( )

ext node

e e ef f f= +                                                                                                          (27) 

( ) 1 2{ , ,......, }node T

e Nf P P P=                                                                                              (28) 

1 2{ , }T

a x x aP P P=                                                                                                               (29) 

Here, the vector Pa represents the nodal loads applied to the node ‘a’ of an element in the global 

co-ordinate system. 

However, to obtain the element matrices, numerical integration needs to be performed. 

1

( ) ( ) ( ) ( ) ( )

11

( ) ( ) ( ) ( ) ( ) ( )
pn

T T

e e e p e p e p p

p

K B EB j d w B EB j      
=−

=                               (30) 

1

( ) ( ) ( ) ( ) ( )

11

( ) ( ) ( ) ( ) ( ) ( )
pn

T T

e e e p e p e p p

p

M N N j d w N N j        
=−

=                            (31) 

1

( ) ( ) ( ) ( ) ( )

11

( ) ( ) ( ) ( ) ( ) ( )
pn

T T

e e e p e p e p p

p

f N f j d w N f j      
=−

=                                      (32) 

In the above equations, np represents the number of integration points, p indicates the co-ordinates 

of the integration points and wp are the associated weights of numerical integration. The departure 

of the TDSFEM from the conventional FEM in the numerical integration scheme is that it uses 

Gauss-Lobatto-Legendre (GLL) quadrature rule instead of the Gauss-Legendre quadrature rule 

used in the conventional FEM. In the GLL quadrature rule (Hilderbrandt, (1956)), the co-ordinates 

of the integration points and the associated weights are expressed as given in the equations below. 
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1
2

1 2

( )
(1 ) 0, ,

MdP
M m m

d






−

− =                                                                              (33) 

1 21 2

2
, ,

( 1)( ( ))M
w M m m

M M P −
= 

−
                                                                    (34) 

Here, PM denotes the Legendre polynomial of the M-th order given by the equation below. 

2 1 21
( ) [( 1) ], ,

2 !

M
M M

M M

d
P

M d
    


= −                                                             (35) 

The essential feature of the GLL quadrature rule is that the co-ordinates of the integration point 

coincide with the element nodes. Due to the nature of the interpolating polynomials used and the 

integration being carried out over the GLL nodes, the element mass matrix calculated by TDSFEM 

becomes a diagonal matrix. The global matrices are constructed from the element matrices by 

standard aggregation procedure as followed in conventional FEM. The accuracy achieved by 

TDSFEM and its computational efficiency over the conventional FEM has been studied and 

demonstrated in the next few chapters. 

III. Formulation for inelastic analysis 

Concrete is a brittle material and like other brittle and quasi-brittle materials, it follows the non-

associative plasticity in which the yield function and the plastic flow function are not the same. In 

the present work, the Concrete Damage Plasticity (CDP) model for concrete as suggested by Lee 

and Fenves (1998), which is a modified version of the one suggested by Lubiner et al (1989), has 

been considered. In this approach, the tensile and compressive damage are considered using 

separate variables which is a realistic way of modeling the behavior of concrete undergoing both 

tensile and compressive stresses. The yield functions and the plastic flow potential function 

considered are mentioned in the following equations. 

𝜎 = (1 − 𝑑)𝐷0
𝑒𝑙: (𝜀 − 𝜀𝑝𝑙)            (36) 

𝜀 = 𝜀𝑒𝑙 + 𝜀𝑝𝑙                                    (37) 

𝐹(𝜎̅, 𝜀̃𝑝𝑙) =
1

1−𝛼
(𝑞̅ − 3𝛼𝑝̅ + 𝛽(𝜀̃𝑝𝑙)(𝜎̂̅𝑚𝑎𝑥) − 𝛾(−𝜎̂̅𝑚𝑎𝑥)) − 𝜎̅c(𝜀c̃

𝑝𝑙
) ≤ 0   (38) 

𝜀̇𝑝𝑙 = 𝜆̇
𝜕𝐺(𝜎̅)

𝜕𝜎̅
   (39) 

𝐺 = √(𝜖𝜎𝑡0 𝑡𝑎𝑛 𝜓)2 + 𝑞̅2 − 𝑝̅ 𝑡𝑎𝑛 𝜓  (40) 
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In recent years, other researchers have developed modified concrete damage plasticity models for 

specific applications like Grassl (2009), Unger et al. (2011). For the return mapping algorithm, an 

elastic predictor-plastic corrector methodology is adopted along with the Newton-Raphson method 

for solving the set of non-linear equations as suggested by Simo and Taylor (1986). 

                                                                             

IV. Dynamic analysis 

In this thesis, dynamic analysis has been performed to evaluate the performance and computational 

efficiency of TDSFEM and also to evaluate the structural behavior of concrete gravity dams 

subjected to seismic ground motions. Few types of dynamic analysis have been performed- modal 

analysis, linear dynamic analysis, and non-linear dynamic analysis. Modal analysis has been 

performed for simply supported beams and concrete gravity dams in the verification stages of the 

developed TDSFEM algorithms in the study. Linear dynamic analysis has been performed for a 

concrete gravity dam for four node and nine node elements considering multiple ground motions 

of varying intensity, magnitude, and duration. For solving the set of linear matrix equations in 

linear dynamic analysis, Newmark’s method has been adopted in this thesis. Time history analysis 

of the concrete gravity dam considering the effect of material non-linear behavior has been 

performed for better prediction of the structural behavior subjected to seismic ground motion. In 

the verification chapter for establishing the TDSFEM algorithms, pseudo-static analysis of the 

concrete deep beams has been performed and the load-deflection as well as the failure mechanisms 

have been compared to the experimental behavior of the concrete deep beams. For the pseudo-

static analysis of the concrete deep beams, monotonic increasing load has been applied at a very 

slow rate till the failure of the beams. The slow rate of load application ensures that no inertial 

forces are generated.  

The basic structure of the developed algorithms is shown in Figure 2. The types of analysis 

performed are provided in Figure 3. 
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Figure 2: Flowchart of developed algorithm for linear dynamic analysis 

 

 

Figure 3: Types of analysis performed (check) 

 

Static Dynamic
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Linear dynamic analysis

Linear static analysis

Non-linear static analysis

Non-linear dynamic analysis
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V. Vibration-based Damage Detection 

Damage in a structure causes change in the modal parameters of the structure. In this thesis, the 

change in modal parameters have been considered as indicator for presence and location of damage 

in a structure. The modal parameters considered for this purpose are frequency, modal 

displacements, modal curvatures, and modal strain energy. For identification and location of 

damage, a backward method has been adopted, i.e., damage has first been introduced in the 

structure and then the above-mentioned parameters are calculated for the damaged structure. 

Damage index for each modal parameter for a particular mode has been defined as the change in 

the parameter value in the damaged structure relative to the parameter value in the original 

undamaged structure divided by the parameter value in the original undamaged structure, 

corresponding to the mode number considered. Higher value of damage index determines the 

location of the damage. A particular modal parameter is considered accurate in determining the 

location of damage if it has higher value of damage index corresponding to the location where the 

damage is introduced in the structural model. In this study, damage in the structure in terms of 

reduction of material modulus. It needs to be pointed here that very small damage does not affect 

the lower modes of vibration but only causes change in the higher vibration modes. Thus, at the 

onset of structural deterioration, change could only be noticed in the higher vibration modes. From 

this, it could be stated that the modal parameter which sees higher magnitude of change in the 

higher vibration modes for same level of damage could be considered a better damage identifier. 

A flowchart of the procedure for detecting damage based on changes in the modal parameter is 

shown in Figure 4. 

 

Figure 4: Flowchart showing the modal parameter-based damage detection process 
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The calculation of damage index for the modal parameters is as shown below.  

𝑑𝑑𝑖𝑖 =
𝑑𝑑𝑖− 𝑑𝑢𝑖

𝑑𝑢𝑖
        (41) 

Where, (ddi)i is the displacement damage index for mode i, ddi is the modal displacement for the 

damaged structure for mode i and dui is the modal displacement of the undamaged structure for 

mode i.  

𝜑𝑑𝑖𝑖 =
𝜑𝑑𝑖 − 𝜑𝑢𝑖

𝜑𝑢𝑖
     (42) 

Where, (𝜑𝑑𝑖)𝑖 is the curvature damage index for mode i, 𝜑𝑑𝑖 is the modal curvature for the 

damaged structure for mode i and  𝜑𝑢𝑖 is the modal curvature for the undamaged structure for 

mode i.  

𝑠𝑑𝑖𝑖 =
𝑠𝑑𝑖 − 𝑠𝑢𝑖

𝑠𝑢𝑖
       (43) 

Where, (𝑠𝑑𝑖)𝑖 is the strain energy damage index for the i-th mode, 𝑠𝑑𝑖 is the strain energy of the 

damaged structure for the i-th mode and 𝑠𝑢𝑖 is the strain energy of the undamaged structure for the 

i-th mode. 

VI. Alkali Aggregate Reaction (AAR) 

Alkali Aggregate reaction (AAR) is a chemical process which causes differential expansion in the 

structure and causes large cracks which needs retrofitting measures to be carried out. While AAR 

is a complex phenomenon and several chemical models are available based on laboratory tests 

conducted to simulate the effects of AAR on structures, this thesis presents a simplified thermo-

mechanical approach to model the structural behavior affected by AAR. Considering the fact that 

AAR causes expansion, a pseudo-temperature is calculated to produce the AAR strain. This 

pseudo-temperature is applied on the structure and the mechanical stresses produced by the same 

are evaluated along with the stresses produced by the other loads acting on the structure. Two 

stages are considered- one where the structure is not impacted by AAR and another where the 

structure is impacted by full AAR effects. Static and dynamic analysis are performed for both these 

stages. Figure 5 provides a flowchart of the methodology adopted for the AAR analysis. 
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Figure 5: Procedure adopted for AAR analysis 

For the calculation of the internal temperature variation of the dam, a thermal gradient is 

considered along the external surfaces of the dam and a thermal/ heat transfer analysis is performed 

in ABAQUS. This provides the internal temperature across the internal nodes of the dam body. 

Once the nodal temperatures are obtained, these are used to calculate the thermal loads on the 

structure and calculate the corresponding displacements and mechanical stresses produced as a 

result of temperature. Next is to calculate the pseudo-temperature to be applied for the AAR strain 

simulation. In order to do that, the AAR strain needs to be calculated. 

The calculations of AAR strains (Saouma & Perrotti, 2006) are elaborated as follows. 

𝜉(𝑡, 𝑇) =
1−𝑒

−
𝑡

𝜏𝑐(𝑇)

1+𝑒
−

𝑡−𝜏𝐿(𝑇)
𝜏𝑐(𝑇)

     (44) 

𝜏𝑐(𝑇) = 𝜏𝑐(𝑇0)𝑒
𝑈𝑐(

1

𝑇
−

1

𝑇0
) 
  (45) 

𝜏𝐿(𝑇) = 𝜏𝐿(𝑇0)𝑒
𝑈𝐿(

1

𝑇
−

1

𝑇0
)
    (46) 

3. Dynamic analysis

Stage 1: no AAR effects

Loads: Temperature, Hydrodynamic, seismic

Stage 2: full AAR effects

Loads: Temperature, Hydrodynamic, Pseudo-
thermal AAR loads, seismic  

2. Static analysis

Stage 1: no AAR effects

Loads: Temperature, Hydrostatic

Stage 2: full AAR effects

Loads: Temperature, Hydrostatic, Pseudo-thermal 
AAR loads 

1. Thermal analysis

Calculation of internal temperature variation of dam (heat transfer analysis)
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𝑈𝑐 = 5400 ± 500𝐾  (47) 

𝑈𝐿 = 9400 ± 500𝐾  (48) 

𝐸

𝐸0
=

𝐵

𝜀𝐴+𝐵
  (49) 

Once the AAR strain is calculated, the pseudo-temperature for the calculation of the AAR strain 

is done as follows. 

                                                         Tpseudo=AAR strain  (50) 

Once the pseudo-temperature to simulate the AAR strain is calculated, static and dynamic analysis 

is performed for the cases considering no AAR strain and full AAR strain for comparison of the 

effects caused by AAR along with the other applied loads- thermal, seismic and water. 

VII. Implementation in MATLAB 

In this thesis, all the analysis performed are using developed algorithms in MATLAB. Different 

modules have been created in MATLAB for i) geometry creation of two-dimensional structures, 

ii) meshing of the two-dimensional geometry, iii) material property definition, iv) creation of 

element matrices: mass, stiffness, load, etc., v) assembly of element matrices to form global 

matrices, vi) application of loads: hydrostatic, hydrodynamic, thermal, seismic ground motions, 

etc., vii) application of boundary conditions, vii) modal analysis and extraction of modal 

parameters: direct- modal displacement, indirect- curvature mode shapes, modal strain energy, 

viii) linear dynamic time history analysis, ix) non-linear pseudo-static analysis, x) non-linear 

dynamic analysis considering material non-linearity only, no geometric and contact nonlinearity 

considered, xi) calculation of principal stress components, etc. The algorithms are developed for 

both TDSFEM and conventional FEM for comparison of computation time in both the procedures, 

thus the structure of algorithms is kept same in both cases. The difference between the two cases 

is in the shape functions and numerical integration scheme as described in detail in the first 

subsection of this chapter. The details of some of the algorithms are presented in Appendix 2 of 

the thesis. 
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VIII. Summary 

In this chapter, the basics of the adopted methodology in the thesis have been presented. The 

chapter starts with the formulation of the TDSFEM procedure in two dimensional problems, 

following which the details of the matrix formulations are described. While the basic formulation 

of TDSFEM for linear stress analysis of planer structures is available in the literature, the present 

thesis develops the formulation to account for material nonlinearity and semi-infinite domain of 

foundation for static and dynamic analysis. For dynamic analysis, step-by-step time history 

analysis based on Newmark’s method has been implemented here. To account for material 

nonlinearity in concrete, the Concrete Damage Plasticity (CDP) method has been utilized. For 

solving the nonlinear equations following the peak response, and displacement control algorithm 

has been implemented at that stage to resolve any numerical instability. While the TDSFEM 

formulations remain the same and have been followed throughout the thesis, each chapter follows 

the development of a particular method specific to the analysis performed in that chapter which 

have been briefly presented in this chapter like the procedure followed for nonlinear analysis, 

dynamic analysis, vibration-based damage localization, simulation of AAR, etc. As the TDSFEM 

formulations are not available in the commercially available software packages, all the programs 

developed in this thesis have been developed in MATLAB and specific modules have been written 

for each particular type of analysis performed in this analysis. This chapter also discusses the 

MATLAB implementation briefly. The detailed methodology and problem statement for all the 

analysis performed in this thesis have been discussed in detail in the specific chapters of the thesis. 
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CHAPTER 4: VERIFICATION OF THE TDSFEM-

BASED METHOD 

I. Introduction 

This chapter presents a detailed verification study of the developed TDSFEM-based method. The 

method has been applied to some of the benchmark problems including the modal analysis of a 2D 

concrete beam and a concrete gravity dam for which numerical results are available in literature. 

Additionally, nonlinear static analysis was performed for a set of FRP-reinforced concrete deep 

beams results of which were compared with available experimental results. 

One of the objectives of the thesis is to demonstrate the application of TDSFEM in 2D plane 

structures and highlight the computational efficiency of the method. The other objective is to apply 

the TDFSEM to the dynamic time history analysis of concrete gravity dams subjected to seismic 

ground motions. For that purpose, a set of MATLAB-based programs has been developed for 

dynamic analysis using the TDSFEM, and also the conventional finite element method. In order 

to verify the developed TDSFEM programs, a set of problems available in literature are first solved 

using the codes and the results verified against the available results. For the purpose of studying 

the computational efficiency of TDSFEM, the order of polynomials for shape functions and 

degrees of freedom used in case of both conventional FEM and TDSFEM are kept same. The 

computational efficiency of TDSFEM arises from the following two aspects: i) the shape functions 

and the integration scheme chosen in SFEM leads to diagonal mass matrix; and ii) the Gauss 

quadrature integration scheme used in conventional FEM uses irrational co-ordinates is avoided 

in TDSFEM by choosing integration points at the element nodes. 

First, the developed program has been validated by performing modal analysis of a simply 

supported beam and verifying the numerical results with analytical results. Also, modal analysis 

of a concrete gravity dam (Pine Flat Dam) has been performed and the results have been verified 

with those reported in literature. Next, the developed program has been used to non-linear pseudo-

static analysis of FRP reinforced concrete deep beams and the results are validated against 

experimental results.  
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II. Modal Analysis of a 2D-beam 

A simply supported beam used in Witkowski (2012) is considered with dimensions as shown in 

Table 1.  Figure 6 shows the mesh details used here based on the benchmark problem reported in 

Witkowski (2012), and it is used for both conventional FEM and TDSFEM programs for 

comparison.   

Table 1: Properties of simply supported beam 

Simply Supported Beam Details 

Length 

(m) 

Width 

(m) 

Depth 

(m) 
E (GPa) Poisson's Ratio Density (kg/m3) 

1 0.05 0.125 200 0 7850 

 

  

Figure 6: Mesh refinement details of beam (same followed in both FEM and SFEM) (Witkowski (2012)) 

Table 2: Modal Frequencies 

Comparison of Frequencies (Hz) 

Mode 

Number 

Analytical 

(Euler-Bernoulli) 
FEM SFEM 

SFEM (Witkowski, 

2012-Table 2) 

1 285.96 283.71 306.92 308.17 

2 1143.82 1118.82 1156.80 1154.9 

3 2573.60 2207.23 2334.46 2377.6 

The modal frequencies obtained from conventional FEM and the TDSFEM are shown in Table 2. 

The modal frequencies of the beam are comparable to those reported by Witkowski (2012) 

considering both conventional FEM and TDSFEM. Thus, the developed MATLAB programs for 

TDSFEM and conventional FEM are validated by the above analysis. 

II. Modal Analysis of a Concrete Gravity Dam 

For further validation of the developed programs in case of concrete gravity dams, the well-

researched Pine Flat Dam has been considered. Pine Flat dam is situated in California, United 

States of America and was constructed in 1954. The geometric and material property details of the 
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dam can be found in various literature (Rea et al (1972), Chopra and Chakrabarti (1980), Feltrin 

et al. (1992), Salamon et al. (2021)). The modal analysis of the dam (considering fixed base and 

empty reservoir condition) has been performed using the developed FEM and TDSFEM programs. 

The reported frequency of the first mode in literature (Chopra and Chakrabarti (1980)) is 3.155 Hz 

with matches closely with the obtained frequency values in the present study (as shown in Figure 

7). The percentage difference in modal frequency estimation (values presented in Figure 7) 

between FEM and TDSFEM are 1.1 %, 0.3 % and 0.74 % for modes 1, 2 and 3 respectively. 

 

Figure 7: A typical meshing of the Pine Flat Dam, material properties and frequency values  

III. Nonlinear Static Analysis of FRP reinforced concrete deep beams 

Ongoing research is dedicated to the evaluation of the performance of concrete structural elements, 

such as beams and columns, reinforced with fiber-reinforced polymer (FRP). In recent years, 

numerous international design standards have incorporated relevant provisions for the design of 

structural elements reinforced with FRP in concrete. Notably, the behavior of deep beams deviates 

significantly from beams governed by flexural behavior, yet design provisions specifically 

addressing FRP concrete deep beams are limited. This limitation may be attributed to the 

insufficient volume of research on the behavior of FRP concrete deep beams. 

This study focuses on two key aspects related to FRP-reinforced concrete deep beams. Firstly, it 

presents the findings of an experimental investigation conducted on an FRP-reinforced concrete 

deep beam. Secondly, an alternative modeling approach is introduced to simulate the beam's 

behavior. The rationale for adopting this alternative modeling technique is elaborated upon in the 

subsequent paragraph. 
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Since its inception, Finite Element Method (FEM) has been extensively used by researchers and 

practitioners for a varied range of engineering analysis. This can be attributed to various factors, 

such as, (i) it is the one of the most well researched analysis techniques, (ii) it has the capacity to 

model complex multi-physics problems and even used for different type of analysis like static, 

quasi-static, dynamic, etc. (iii) the ease of application in various engineering problems due to its 

matrix methodology and integration of FEM in commercial software packages. Despite the above 

stated reasons, there are certain challenges in the application of FEM. One of the challenges is the 

computational time required for quasi-static or dynamic analysis. Thus, there has been ongoing 

research in the past few decades to come up with computationally more efficient analysis 

techniques. Some of the developed computationally efficient techniques are known as “spectral 

finite element methods”. In the present work, some of the spectral element methods available in 

literature and their applicability in the present context of work is discussed. Finally, the time 

domain based spectral finite element method (TDSFEM) is used for predicting the behavior of the 

deep beam. The authors also discuss the saving in computation time achieved by the applied 

methodology over the conventional FEM. This kind of application of the TDSFEM in the context 

of modelling the behavior of fiber-reinforced concrete beam is a novelty and adds significantly to 

the body of existing research in the domain. 

Various research studies have extensively presented the behavior and performance of fiber-

reinforced polymer (FRP) strengthened reinforced concrete columns (Nayak et al (2014), Rao et 

al (2021), Rao et al (2023)).  The performance of FRP-reinforced concrete beams is also well-

documented in the literature (Prajapati et al (2017)). However, there is limited available literature 

on the performance of FRP-reinforced concrete deep beams. An effort to assess the performance 

of such deep beams was undertaken by Latosh (2014). Latosh (2014) conducted both experimental 

and numerical analyses using the Finite Element Method (FEM) to investigate the behavior of 

FRP-reinforced concrete deep beams. Latosh et al (2019) also performed extensive numerical 

studies using the conventional FEM to simulate the behavior of the FRP reinforced concrete deep 

beams. 

In all the above-mentioned literature, the used analysis tool has been the finite element method 

(FEM). However, the need for the use of other computationally more efficient analysis techniques 

stems from the fact that FEM can sometimes consume huge computation time depending on the 
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nature of the problem to be solved. In case of problems where iterative techniques need to be 

applied to solve the equilibrium equations like the application of Newton-Raphson procedure in 

solving the non-linear equation of motion, the solution procedure becomes quite cumbersome. This 

is due to the fact the matrix equations need to be solved iteratively to reach convergence for a 

particular equilibrium stage. In situations where this process needs to be repeated for multiple 

stages like quasi-static or dynamic problems, the computation time becomes huge in the 

conventional FEM. This leads to the need for other computationally efficient techniques where the 

computation time needed to solve the above-mentioned problems could be reduced. 

Incidentally, there has been no major research performed on modeling the failure mechanisms or 

behavior of FRP-reinforced concrete deep beams considering material non-linearity. The objective 

of this paper is to apply the efficient TDSFEM for quasi-static analysis of FRP-reinforced concrete 

deep beams under monotonic loadings, compare the failure mechanisms with observed 

experimental results and quantify the computational efficiency achieved over conventional FEM 

in terms of the computational time saved using TDSFEM. In this study, the order of the 

polynomials of shape functions and degrees of freedom used for both FEM and TDSFEM 

simulations is considered the same to study the comparative performance of the two methods. 

To evaluate the performance of the FRP reinforced concrete deep beams, extensive experimental 

studies are performed by Latosh (2014). A total of 9 samples of concrete deep beams are cast 

which are divided into 3 groups with varying slenderness ratio and percentage of longitudinal and 

transverse reinforcement. All the beams are simply supported and tested under monotonically 

increasing loading at the mid-point of the beams till the failure of the beams. The details of the 

beam specimens are presented in Table 1. In the nomenclature, the first letter represents the group 

name, followed by a number which represents the a/d ratio and another number which represents 

the ratio of percentage of nominal web reinforcement. The total length of all the beams is 1.8 

meters and the width of all beams are also the same, 230 mm. The properties of the FRP bars are 

presented in Table 12. A typical experimental setup of the beams is shown in Figure 8. 
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Table 3: Details of all deep beam specimens 

 
 

Table 4: Details of FRP bars 

 

 

 

Figure 8: A typical experimental setup of the deep beams 
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Concrete is a brittle material and like other brittle and quasi-brittle materials, it follows the non-

associative plasticity in which the yield function and the plastic flow function are not the same. In 

the present work, the concrete damage plasticity model for concrete as suggested by Lee and 

Fenves (1998), which is a modified version of the one suggested by Lubiner et al (1989), has been 

considered. In this approach, the tensile and compressive damage are considered using separate 

variables which is a realistic way of modeling the behavior of concrete undergoing both tensile 

and compressive stresses. The yield functions and the plastic flow potential function considered 

are mentioned in the methodology section. 

In recent years, other researchers have developed modified concrete damage plasticity models for 

specific applications like Grassl (2009), Unger et al. (2011). For the return mapping algorithm, an 

elastic predictor-plastic corrector methodology is adopted along with the Newton-Raphson method 

for solving the set of non-linear equations as suggested by Simo and Taylor (1986). 

IV. Results of failure analysis of FRP reinforced concrete deep beams 

The results of the applied load versus the mid-point deflection of all the beams are presented next 

as observed in the experiments and the numerical simulations. 

 

Figure 9: Load v/s mid-point deflection for A1-100 
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Figure 10: Load v/s mid-point deflection for A1-75 

 

Figure 11: Load v/s mid-point deflection for A1-50 

 

Figure 12: Load v/s mid-point deflection for A1-00 
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Figure 13: Load v/s mid-point deflection for B1.5-100 

 

Figure 14: Load v/s mid-point deflection for C2-100 

 

Figure 15: Load v/s mid-point deflection for C2-75 
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Figure 16: Load v/s mid-point deflection for C2-50 

 

Figure 17: Load v/s mid-point deflection for C2-00 

In all the above figures, it is observed that the results of numerical simulations using both FEM 

and TDSFEM match well with the experimental results. Next, a comparison of computation time 

is provided in Table 3 for the analysis performed using the FEM and TDSFEM programs. Though 

the general structure of both the developed algorithms are kept same, the significantly less 

computation time in case of TDSFEM can be attributed to the nature of the interpolating functions 

and the integration scheme employed in the procedure. Thus, the TDSFEM can be considered as 

a viable alternative to the conventional FEM in case of analysis of FRP reinforced concrete deep 

beams. 
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Table 5: Comparison of computation time 

 

 

V. Failure modes of concrete deep beams 

 

Figure 18: Experimental observed failure pattern of A1-00 

 

 

Figure 19: Minimum Principal Stress Contour of A1-00 

 

Specimen Length (m) Divisions along length Depth (m) Divisions along depth Total elements Total DOFs Time consumed by FEM (s) Time consumed by TDSFEM (s)

A1-100 1.8 60 0.675 20 1200 2562 4432 2792

A1-75 1.8 60 0.675 20 1200 2562 4391 2766

A1-50 1.8 60 0.675 20 1200 2562 4441 2798

A1-00 1.8 60 0.675 20 1200 2562 4438 2796

B1.5-100 1.8 60 0.5 16 960 2074 3588 2260

C2-100 1.8 60 0.375 12 720 1586 2792 1759

C2-75 1.8 60 0.375 12 720 1586 2813 1772

C2-50 1.8 60 0.375 12 720 1586 2744 1729

C2-00 1.8 60 0.375 12 720 1586 2798 1763
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Figure 20: Maximum Principal Stress Contour of A1-00 

 

 

Figure 21: Experimental observed failure pattern of A1-50 
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Figure 22: Minimum Principal Stress Contour of A1-50 

 

 

Figure 23: Maximum Principal Stress Contour of A1-50 
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Figure 24: Experimental observed failure pattern of A1-75 

 

 

Figure 25: Minimum Principal Stress Contour of A1-75 
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Figure 26: Maximum Principal Stress Contour of A1-75 

 

 

Figure 27: Experimental observed failure pattern of A1-100 
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Figure 28: Minimum Principal Stress Contour of A1-100 

 

 

Figure 29: Maximum Principal Stress Contour of A1-100 
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Figure 30: Experimental observed failure pattern of B1.5-100 

 

 

Figure 31: Minimum Principal Stress Contour of B1.5-100 
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Figure 32: Maximum Principal Stress Contour of B1.5-100 

 

 

Figure 33: Experimental observed failure pattern of C2-00 
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Figure 34: Minimum Principal Stress Contour of C2-00 

 

 

Figure 35: Maximum Principal Stress Contour of C2-00 
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Figure 36: Experimental observed failure pattern of C2-50 

 

 

Figure 37: Minimum Principal Stress Contour of C2-50 
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Figure 38: Maximum Principal Stress Contour of C2-50 

 

 

Figure 39: Experimental observed failure pattern of C2-75 
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Figure 40: Minimum Principal Stress Contour of C2-75 

 

 

Figure 41: Maximum Principal Stress Contour of C2-75 
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Figure 42: Experimental observed failure pattern of C2-100 

 

 

 

Figure 43: Minimum Principal Stress Contour of C2-100 
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Figure 44: Maximum Principal Stress Contour of C2-100 

 

 

Table 6: Summary of failure modes of all beams 

 

 

IV. Summary 

This chapter presents a detailed verification study of the developed TDSFEM program for static 

and dynamic analysis. The chapter starts with solving the modal analysis of a simply supported 

beam and compares the results with the analytical solution and numerical values from available 

literature. It is observed that the results from the proposed method are comparable to the analytical 

and the other numerical solution. Further, modal analysis of the well-researched Pine Flat Dam is 

performed and again the values are comparable to the values available in published literature. This 

Specimen Failure Mode

A1-100 Shear Compression

A1-75 Shear Compression

A1-50 Diagonal Splitting

A1-00 Diagonal Splitting

B1.5-100 Shear Compression

C2-100 Shear Compression

C2-75 Strut Crushing

C2-50 Strut Crushing

C2-00 Strut Crushing



Page | 52  

 

establishes the linear dynamic analysis program developed in TDSFEM for use in further analysis 

in the thesis. 

For validating the non-linear analysis program, pseudo-static pushover analysis of a set of concrete 

deep beams with varying geometric dimensions is performed. The results of load-deflection 

behavior of the beams are matched with the results of the experimental results for the same set of 

beams. The experiments were previously conducted by Latosh (2014) at the Structural Engineering 

Laboratory of Concordia University. The numerical analysis of the set of beams using FEM was 

also conducted by Latosh et al (2019). In this chapter, the numerical analysis results obtained by 

TDSFEM are validated against the experimental results given in Latosh et al (2019). The failure 

mechanism of the beams as seen in the numerical simulation results conducted by using TDSFEM 

in this section match with the experimental and numerical analysis results shown by Latosh (2014) 

and Latosh et al (2019). In this section, it is also demonstrated that the time of computation required 

for the TDFSEM programs is less than the similar FEM programs, thus emphasizing the numerical 

efficiency of TDSFEM with reasonable accuracy. 
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CHAPTER 5: MODAL AND LINEAR DYNAMIC 

SEISMIC ANALYSIS OF CONCRETE GRAVITY 

DAMS USING TDSFEM 

I. Introduction 

Concrete gravity dams being large structures, application of a computationally efficient analysis 

procedure has the potential to save considerable amount of computational time and cost. Koyna 

dam has been considered here as a case study as it is a well-studied dam, particularly for dynamic 

analysis studies (Chopra and Chakrabarti (1973), Bagchi et al. (2019), Sooch and Bagchi (2012, 

2014); Sarkar et al. (2022)) and is also presented in the ABAQUS manual as an example of seismic 

analysis of concrete gravity dam. Thus, Koyna dam is considered here as a benchmark problem. It 

has been considered in this paper for modal analysis and time history analysis of concrete gravity 

dams. The geometry of the dam is shown in Figure 45a. Different meshing scenarios were tried, a 

typical meshing with 45 elements is shown in Figure 45b. Similar meshing has been done with 

190 and 760 elements till convergence is reached. 

 

Figure 45: (a) Geometry details of Koyna Dam (ABAQUS Manual), (b) A typical meshing of the dam geometry with 45 elements 

It should be noted that while simpler meshes have been used here to model the dam to demonstrate 

the advantage of the TDSFEM and proposed formulation of the dam-foundation system for modal 

and dynamic time history analyses, in practice, the meshes could be much finer, leading to large 

number of degrees of freedom. In such cases, the computational gain with TDSFEM will be quite 

advantageous, especially when a repetitive analysis is needed with an ensemble of ground motions. 
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The Young’s Modulus for the dam body is considered 31,027 MPa, Poisson’s ratio as 0.15 and 

density as 2,643 kg/m3. Four-noded iso-parametric quadrilateral elements have been considered 

for modeling the dam. The values of the first four modal frequencies calculated by the developed 

conventional FEM and TDSFEM are comparable to the values presented in the ABAQUS manual 

and by Chopra and Chakrabarti (1973). However, the most notable observation is that the time 

taken by the program for the modal analysis using the TDSFEM is about 40 percent of the time 

taken by the conventional FEM program. The mode shapes obtained are plotted with undeformed 

shape in Figure 46. 

 

Figure 46: Undeformed shape along with 1st three mode shapes of the dam (760 elements) 

While the application of TDSFEM for 2D planar structures for dynamic time history analysis is 

not reported earlier, it is expected that TDSFEM will be computationally efficient in such cases as 

well. Therefore, after the modal analysis of the dam, the response history or dynamic time history 

analysis has been performed using the recorded horizontal and vertical ground motions at the 

location. The details of the ground motion records were obtained from ABAQUS manual (shown 

in Figure 47a). Figure 47b shows the response spectra plot for the ground accelerations. The 

magnitude of the earthquake was 6.7 (1967) on the Richter scale. 
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Figure 47: Koyna Earthquake: transverse and vertical ground accelerations a) Acceleration time history b) Response spectrum 

(ABAQUS manual) 

Additionally, two more seismic ground motion records consistent with the seismicity at Koyna 

have been considered for the time history analysis of the structure in order to account for the 

variation in frequency content and duration of ground motion records on the behavior of the 

structure. In the case of both these additional ground motion records, both FEM and TDSFEM 

have been used to compare the response calculation of these methods. These seismic ground 

motion records have the ratio of peak ground acceleration to peak ground velocity close to 2, which 

is similar to the same ratio for the recorded seismic ground motion at Koyna. The details of these 

seismic records have been provided in Table 3. It is to be noted here for both these ground motion 

records; transverse and vertical accelerations have been considered simultaneously in the time 

history analysis of the structure just like the case for Koyna ground motion. 

Table 7: Details of additional seismic ground motion records 

Earthquake 

Abbreviation 

Earthquake 

Name 
Date Station Magnitude PGA (g) 

PGV 

(m/s) 

 

a/v ratio 

 

EQ-NR Northridge-01 01/17/1994 
Anacapa 

Island 
 

6.7 

 

0.067 

 

0.032 

 

2.09 

 

EQ-SF San Fernando 
 

02/09/1971 
Castaic - Old 

Ridge Route 
 

6.6 

 

0.32 

 

0.17 

 

1.88 

 

 

 

Newmark’s method is used in solving the displacement time history of the dam. Damping is 

considered to be Rayleigh’s stiffness proportional damping and for that the   value is considered 

as 0.00323 corresponding to critical damping ratio of 0.03 and first modal frequency value as 18.61 
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rad/s. The horizontal displacement history of the dam crest relative to the ground is shown in 

Figure 48. 

 

Figure 48: Horizontal Displacement time history of dam crest due to Koyna earthquake: FEM and SFEM comparison (dam only 

without reservoir, maximum displacement=34mm) 

In the time history analysis procedure, time taken by the time domain based spectral finite element 

program is 690 seconds (approx. 12 mins) while the time taken in the finite element program is 

1575 seconds (approx. 27 mins). Thus, like modal analysis, the spectral FEM program consumes 

much less time (about 40 percent) than that consumed by conventional FEM program in case of 

time history analysis as well. Sensitivity analysis is carried out in the following section to compare 

the efficiency of the two methods. 

 

Figure 49: Horizontal Displacement time history of dam crest (fixed base): FEM and SFEM comparison for the ground motions 

given in Table 3 

Figure 49 presents the displacement response history of the dam crest for the additional ground 

motion records detailed in Table 3. From the ground motion time history analysis, it could be 

observed that FEM and TDSFEM produce similar results. While one record is of 60 seconds 
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duration, the other one is of 40 seconds duration as can be seen in Figure 49. Thus, for the three 

records of different duration and frequency content, FEM and TDSFEM produce similar results 

and the accuracy of TDSFEM in case of these ground motion parameter variations is also 

satisfactory. For all further analysis results presented here, only the Koyna earthquake is 

considered to limit the length of the article. While the results presented in Figures 48 and 49 are 

generated for the fixed-base condition without the effect of reservoir and the foundation, further 

analysis is performed considering dam-reservoir, and dam-foundation-reservoir systems. 

Effect of reservoir: The dynamic pressure exerted by the reservoir on the upstream face of the dam 

is modeled by considering added mass technique as proposed by Westergaard (1933). Westergaard 

proposed that the hydrodynamic pressure exerted by the water on the dam during an earthquake 

has an effect like the case if a certain mass of water moves back and forth with the dam while the 

remainder of the reservoir does not interact with the dam. The calculation of added mass at height 

y, per unit area is given by the equation below. 

3( ) (7 / 8)* * *( ); , , 1000 /w w w w waddedmass y h h y y h where kg m = −  =     (36) 

Modal analysis and time history analysis have been performed considering the effect of reservoir 

using the added mass technique. The values of the first three modal frequencies considering the 

reservoir are obtained as 16.95 rad/s, 48.71 rad/s and 58.51 rad/s. The time of computation for 

TDSFEM is around 40 percent of that in FEM. In the time history analysis, the observed maximum 

displacement is 39 mm (as shown in Figure 50), which is around 15 percent more than that obtained 

in time history analysis without considering the effect of reservoir. 

 

Figure 50: Displacement time history of dam crest due to Koyna earthquake (with reservoir, maximum displacement=39mm) 
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II. Sensitivity Analysis and Convergence Study 

In this section, a sensitivity analysis has been performed by varying the number of elements in the 

models constructed using conventional FEM and TDSFEM to achieve the convergence of the 

response parameters such as, the modal frequencies and the maximum horizontal crest 

displacement of the structure, to the corresponding benchmark values.  The computational time 

taken for each model has also been recorded and compared. Tables 3 to 7 show the convergence 

of the first three natural frequencies of the considered concrete gravity dam with the changing 

number of elements and the corresponding time of computation, for both FEM and TDSFEM 

models. As a TDSFEM model produces a diagonal mass matrix, for the comparison of FEM and 

TDSFEM, both consistent and lumped mass matrices have been considered for FEM. It needs to 

be pointed out here that the structure of the developed codes for conventional FEM and TDSFEM 

are essentially the same. However, the order of computation in conventional FEM is larger with 

respect to TDSFEM for the same size of a problem considered. This is due to the locations of the 

Gauss integration points in each element. The integration points in conventional FEM (2-point 

Gauss quadrature points) are at locations corresponding to the irrational numbers -1/√3 and 1/√3 

which lead to an additional step (square root) in computation of the stiffness matrix. This increases 

the order of computation in conventional FEM, which is not necessary for the TDSFEM elements 

as the integration point coincides with the nodes. To evaluate the impact of the square root function 

in the time for computation, simplified values of 1/√3 has been used in the integration scheme for 

conventional FEM, in which case, the value of 1/√3 is replaced by its approximate decimal values, 

making the order of computation similar to TDSFEM. Comparisons of modal frequency 

calculations by the number of elements and computation time has been performed amongst four 

different models, including, conventional FEM with consistent mass matrix, conventional FEM 

with diagonal mass matrix, conventional FEM with diagonal mass matrix and Gauss integration 

points simplified as decimal numbers and TDSFEM. The results are demonstrated in Tables 4 to 

8 and Figures 51 and 52. 
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Table 8: SFEM and FEM Comparison for 45 elements 

SFEM and FEM Comparison for 45 elements 

  

ABAQUS 

(Benchmark) 

FEM-

Consistent 

Mass Matrix 

FEM-

Diagonal 

Mass 

Matrix 

FEM-Diagonal 

Mass Matrix-

Simplified 

Gauss Points 

SFEM 

No. of elements   45 45 45 45 

Time of computation (s)   79 71 46 30 

1st Frequency (rad/s) 18.86 20.17 20.87 21.41 21.25 

2nd Frequency (rad/s) 49.97 52.56 53.27 53.96 53.55 

3rd Frequency (rad/s) 68.16 70.06 70.2 70.81 70.23 

 

Table 9: SFEM and FEM Comparison for 190 elements 

SFEM and FEM Comparison for 190 elements 

  

ABAQUS 

(Benchmark) 

FEM-

Consistent 

Mass Matrix 

FEM-

Diagonal 

Mass 

Matrix 

FEM-Diagonal 

Mass Matrix-

Simplified 

Gauss Points 

SFEM 

No. of elements   190 190 190 190 

Time of computation (s)   336 296 190 117 

1st Frequency (rad/s) 18.86 19.63 19.92 20.26 20.13 

2nd Frequency (rad/s) 49.97 51.85 52.01 52.48 52.11 

3rd Frequency (rad/s) 68.16 69.81 69.89 70.39 69.95 

 

It is observed from Tables 4-8 that for a fixed value of element number, TDSFEM program needs 

much less computation time than that for conventional FEM (consistent mass matrix) program. 

However, when FEM with diagonal mass matrix is used, the time taken by conventional FEM gets 

reduced. The use of FEM with diagonal mass matrix and with Gauss points considered as 

approximate decimal numbers reduces the computation time in FEM even further. However, 

diagonalization of the mass matrix in the FEM models lead to a loss of accuracy to some extent 

with respect to FEM models with consistent mass matrix as shown in the values of frequencies in 
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Tables 4 to 8. Figure 51 shows the plot of convergence of 1st frequency over number of elements 

for TDSFEM and various FEM models considered here. It is noticed from the plot that 

conventional FEM with consistent mass matrix is closest to the ABAQUS benchmark values for a 

given number of elements. The two FEM cases with diagonal mass matrix (with same values, thus 

overlapped lines in Figure 51) produce the frequency values between those from FEM with 

consistent mass matrix and SFEM. 

 

Table 10: SFEM and FEM Comparison for 405 elements 

SFEM and FEM Comparison for 405 elements 

  

ABAQUS 

(Benchmark) 

FEM-

Consistent 

Mass Matrix 

FEM-

Diagonal 

Mass 

Matrix 

FEM-Diagonal 

Mass Matrix-

Simplified 

Gauss Points 

SFEM 

No. of elements   405 405 405 405 

Time of computation (s)   730 641 406 255 

1st Frequency (rad/s) 18.86 19.11 19.29 19.43 19.36 

2nd Frequency (rad/s) 49.97 50.72 51.21 51.76 51.55 

3rd Frequency (rad/s) 68.16 68.94 69.06 69.41 69.13 

 

Table 11: SFEM and FEM Comparison for 760 elements 

SFEM and FEM Comparison for 760 elements 

  

ABAQUS 

(Benchmark) 

FEM-

Consistent 

Mass 

Matrix 

FEM-

Diagonal 

Mass 

Matrix 

FEM-

Diagonal 

Mass Matrix-

Simplified 

Gauss Points 

SFEM 

No. of elements   760 760 760 760 

Time of computation (s)   1492 1287 908 616 

1st Frequency (rad/s) 18.86 18.94 19.01 19.12 19.04 

2nd Frequency (rad/s) 49.97 50.12 50.86 51.38 51.21 

3rd Frequency (rad/s) 68.16 68.61 68.77 69.12 68.87 
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Table 12: SFEM and FEM Comparison for 1125 elements 

SFEM and FEM Comparison for 1125 elements 

  

ABAQUS 

(Benchmark) 

FEM-

Consistent 

Mass Matrix 

FEM-

Diagonal 

Mass Matrix 

FEM-Diagonal 

Mass Matrix-

Simplified Gauss 

Points 

SFEM 

No. of elements   1125 1125 1125 1125 

Time of computation (s)   2498 2036 1352 940 

1st Frequency (rad/s) 18.86 18.89 18.92 18.98 18.93 

2nd Frequency (rad/s) 49.97 50.05 50.74 51.25 51.14 

3rd Frequency (rad/s) 68.16 68.52 68.76 68.98 68.81 

 

 

Figure 51: Convergence of 1st frequency 

A plot of the time taken by the SFEM and FEM (consistent mass matrix, diagonal mass matrix, 

diagonal mass matrix with gauss points converted to decimal numbers) programs to converge is 

shown in Figure 52 for the 1st natural frequency. It is observed that the FEM with consistent mass 

matrix requires the maximum computation time, followed by FEM with diagonal mass matrix and 

Gauss points at irrational coordinate, while FEM with diagonal mass matrix and simplified Gauss 

points requires considerably less computation time. SFEM consumes the least amount of 

computation time. 
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Figure 52: Computation time for modal analysis 

It is observed from Figure 52 that the computational time for TDSFEM model is considerably 

lower than the three FEM models. This is attributed to the facts that the order of complexity of 

computation O(n) in TDSFEM is lower than conventional FEM with consistent mass matrix due 

to the additional square root function computation in the latter and also diagonalization of the mass 

matrix in SFEM. When the diagonal mass matrix is considered in FEM, the computation time gets 

reduced with respect to FEM with consistent mass matrix, however, the computational complexity 

and thus order of computation is still higher due to the calculation of the square root function. 

Finally, the use of diagonal mass matrix along with Gauss points reduced to approximate decimal 

values for the Gauss points reduces the computation time in conventional FEM to a great extent, 

but it is still higher than SFEM. This can be attributed to the fact that the shape function matrix 

and the strain matrix (i.e., B matrix) in case of SFEM contains a lot of zeroes due to the fact that 

the shape functions and the integration points are orthogonal to each other in the GLL integration 

technique used in SFEM. 
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Table 13: SFEM and FEM Comparison for Horizontal Crest Displacement 

 

Similar results are produced for time history analysis. The parameter chosen for the sensitivity 

analysis using time history analysis is the maximum horizontal crest displacement. Table 9 

presents the results of convergence of horizontal crest displacement and the corresponding time of 

computation and number of elements for the four cases- FEM with consistent mass matrix, FEM 

with diagonal mass matrix, FEM with diagonal mass matrix and Gauss points considered as 

decimals and time domain SFEM. The results are also shown graphically in Figures 53 (the two 

FEM cases with diagonal mass matrix produce same results, thus overlapped lines) and Figure 54. 

As the diagonalization of the stiffness matrix and many zero values in the stiffness matrix occur 

naturally due to the choice of the shape function and the integration scheme in TDSFEM, it is 

proved to be computationally efficient as compared to the conventional FEM. 

 

Figure 53: Convergence of Horizontal Crest Displacement 
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Figure 54: Computation time for time history analysis 

From Table 9 and Figures 53 and 54, it is observed that the convergence analysis results on the 

horizontal crest displacement by time history analysis confirm to the results of convergence study 

on modal frequencies by modal analysis. FEM with consistent mass matrix consumes maximum 

time with highest accuracy, while FEM with diagonal mass matrix consumes little less time with 

some loss of accuracy. When FEM with diagonal mass matrix is considered with simplified Gauss 

points considered as decimal values, the reduction of computational order leads to significant 

decrease in computation time with values same as FEM with diagonal mass matrix normal case. 

SFEM model takes the least computation time amongst all four cases considered and starts with 

maximum error (when element number is least), converging to the expected value as element 

number increases. 

III. Performance of TDSFEM with higher order elements  

To investigate the comparative performance of FEM and TDSFEM in the case of higher order 

elements, 9 noded rectangular elements with quadratic shape functions in both directions have 

been used to model the dam geometry. Modal analysis and time history analysis have been 

performed for both FEM and TDSFEM using the 9-noded elements. The results from the previous 

section have shown that FEM with consistent mass matrix produces the most accurate results and 

consumes less time when the simplified Gauss quadrature points are considered as decimal values. 
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Thus, for all further simulations of FEM, consistent mass matrix with the simplified Gauss points 

considered as decimal values are used to get acceptable accuracy and optimized time of 

computation. In order to compare the performance of the models 9-noded elements (quadratic 

shape functions) with the model with 4-noded elements (linear shape functions), the total number 

of degrees of freedom in both models are kept the same. The convergence of the 1st natural 

frequency from modal analysis and computation time for TDSFEM and FEM are shown in Figures 

55 and 56 respectively. Similar plots for the maximum horizontal crest displacement from time 

history analysis are shown in Figures 57 and 58. 

 

Figure 55: Convergence of 1st frequency for 4-node and 9-node elements using FEM and TDSFEM 
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Figure 56: Computation time of modal analysis for 4-node and 9-node elements using FEM and TDSFEM 

 

 

Figure 57: Convergence of Maximum horizontal crest displacement for 4-node and 9-node elements using FEM and TDSFEM 
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Figure 58: Computation time for time history analysis for 4-node and 9-node elements using FEM and TDSFEM 

The results demonstrate the better performance of 9-noded TDSFEM elements with respect to the 

4-noded TDSFEM elements. In the case of 9-noded TDSFEM elements, the errors in the results 

of frequency and horizontal crest displacement are reduced and almost match with the results of 

9-noded FEM elements with consistent mass, with significant reduction of computation time. In 

the present study, the total degrees of freedom for the models with 4-noded and 9-noded elements 

were considered similar (so 9-noded element models have lesser number of element than the 

corresponding models with 4-noded elements) to compare them directly and achieve consistent 

results (same or similar number of degrees of freedom provide same flexibility to the models and 

thus produce comparable results). Thus, TDSFEM with higher order elements, which provide 

accurate results with significant saving in computation time, can be considered as a viable 

alternative to conventional FEM for dynamic analysis of large structures. 

IV. Modeling of dam foundation with infinite elements 

In order to consider the effect of foundation on the behavior of the dam, infinite elements have 

been developed to model the foundation system. Rectangular six-noded elements with two degrees 

of freedom at each node are considered, with three nodes in the infinite direction. Isoparametric 

formulation is used with the master element being a 2x2 square element. The master element and 

typical actual element is shown in Figure 59. The infinite element formulation in FEM is typically 
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demonstrated in literature (Bhatti, 2005). The shape functions for the displacements are as given 

in Equation 37 to 42. 

 

Figure 59: Six-noded Infinite element formulation 

𝑁1 = 0.25 ∗ 𝜂 ∗ (𝜂 + 1) ∗ (1 − 𝜉)                                 (37) 

 

𝑁2 = 0.25 ∗ 𝜂 ∗ (𝜂 + 1) ∗ (1 + 𝜉)                                  (38)  

 

𝑁3 = −0.5 ∗ (𝜂 − 1) ∗ (𝜂 + 1) ∗ (1 − 𝜉)                    (39) 

 

𝑁4 = −0.5 ∗ (𝜂 − 1) ∗ (𝜂 + 1) ∗ (1 + 𝜉)                    (40) 

 

𝑁5 = 0.25 ∗ 𝜂 ∗ (𝜂 − 1) ∗ (1 − 𝜉)                                 (41) 

 

𝑁6 = 0.25 ∗ 𝜂 ∗ (𝜂 − 1) ∗ (1 + 𝜉)                                (42) 

The mapping for the co-ordinates from the master element to the actual element is as mentioned 

in Equation 43 and 44. 

𝑥(𝜉, 𝜂) =
𝜂 ∗ (1 − 𝜉)

(1 + 𝜂)
𝑥1 +

𝜂 ∗ (1 + 𝜉)

(1 + 𝜂)
𝑥2 +

(1 − 𝜂) ∗ (1 − 𝜉)

2(1 + 𝜂)
𝑥3 +

(1 − 𝜂) ∗ (1 + 𝜉)

2(1 + 𝜂)
𝑥4         (43) 

 

𝑦(𝜉, 𝜂) =
𝜂 ∗ (1 − 𝜉)

(1 + 𝜂)
𝑦1 +

𝜂 ∗ (1 + 𝜉)

(1 + 𝜂)
𝑦2 +

(1 − 𝜂) ∗ (1 − 𝜉)

2(1 + 𝜂)
𝑦3 +

(1 − 𝜂) ∗ (1 + 𝜉)

2(1 + 𝜂)
𝑦4         (44) 

It could be observed that the mapping functions considered in Equations 43 and 44 make the co-

ordinates of the mapped points 5 and 6 go to infinity. Using the above-mentioned shape functions 

and mapping functions, the element matrices for the foundation elements are calculated for both 

FEM and TDSFEM. In FEM, the integration is carried out using Gauss quadrature while for 
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TDSFEM, the integration is carried out using Gauss-Lobatto-Legendre quadrature as mentioned 

in the earlier sections. Though the use of infinite elements to model foundation is prevalent in 

conventional FEM literature, the use of infinite elements in TDSFEM was not reported in the 

literature to the best of the authors’ knowledge. Therefore, adapting the infinite element 

formulation to 2D TDSFEM represents an addition to the body of knowledge. Once the element 

matrices for the foundation are calculated, they are assembled with the dam structure element 

matrices and the whole structure dam-foundation global matrices are formed. The total width of 

the foundation considered is 805 m, the elastic modulus considered is 31027 MPa, density as 2643 

kg/m3 and Poisson’s ratio as 0.33. For the foundation model, the Rayleigh damping coefficients 

 and  are considered as 1.64 and 0.0012. 

 

Figure 60: Dam-foundation assembly with infinite elements 

Figure 60 shows the plots of the dam with the foundation elements extending to infinity. The width 

of the foundation is considered to be about 12 times the height of the dam. Time history analysis 

has been performed and the crest displacement has been shown in Figure 60. 

 

Figure 61: Horizontal crest-displacement history considering dam-foundation system for FEM and TDSFEM (subjected to 

Koyna earthquake) 
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Figure 61 shows a reasonably good match in the results for FEM and TDSFEM. It is observed that 

the maximum displacement of the crest is around 28 mm, which is less than that for the dam with 

fixed base condition. Another set of analysis is carried out considering the dam-foundation-

reservoir system thus taking account the effect of both foundation and reservoir on the behavior of 

the dam. The foundation has been modeled with infinite elements as mentioned in the preceding 

segment and the reservoir has been modeled by Westergaard added mass technique. Figure 62 

shows the crest displacement history of the dam-foundation-reservoir system with both FEM and 

TDSFEM. 

 

Figure 62: Horizontal crest-displacement history considering dam-foundation-reservoir system for FEM and TDSFEM 

(subjected to Koyna earthquake) 

The analysis time required for the computations with foundation in Section 9 is again significantly 

less for TDSFEM than that for FEM, which is consistent with the results obtained in the previous 

sections. 

  

(a)                                                                                                                                                 (b) 

Figure 63: Envelope of maximum principal stress for dam-foundation-reservoir system (subjected to Koyna earthquake) in Pa 

units a) FEM, b) TDSFEM 

Figure 63 presents the plot of the envelope of maximum principal stress (tensile) over the dam 

body for dam-foundation-reservoir case. It is observed that maximum stress values are obtained at 
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the dam heel and neck, which are regions of possible dam failure due to tensile stress exceeding 

the maximum tensile capacity of the dam. 

  

(a)                                                                                  (b) 
Figure 64: Envelope of minimum principal stress for dam-foundation-reservoir system (subjected to Koyna earthquake) in Pa 

units: a) FEM, b) TDSFEM 

Figure 64 presents the plot of the envelope of minimum principal stress (compressive) over the 

dam body for dam-foundation-reservoir case. The compressive stress values do not exceed the 

yield strength of concrete in compression. It is observed from Figures 63 and 64 that FEM and 

TDSFEM stress plots match exactly for the dam-foundation-reservoir case. This can be attributed 

to the exact match in the horizontal crest displacement history for both TDSFEM and FEM as 

observed in Figure 62. It could be concluded from Figures 63 and 64 that damage in the dam body 

occurs due to tensile cracking and not yielding in compression. The linear dynamic stress analysis 

aids in understanding that under the action of the applied seismic ground motion, the behavior of 

the dam in tension goes beyond its tensile capacity (i.e., at the dam heel and neck regions) and thus 

non-linear analysis would provide a better insight into the response of the structure. But it also 

needs to be noted that the material non-linearity in the dam body occurs only at localized regions 

of the dam heel and neck, while the other parts of the dam body do not exhibit the material non-

linearity due to lower stresses (Chopra & Chakrabarti (1973), Bhattacharjee & Léger (1993), Tidke 

et al (2022)). The same phenomenon is observed in the present study (refer, Figure 63 and 64). 

Thus, linear analysis is very important and deemed sufficient in normal circumstances. Nonlinear 

analysis with material nonlinearity will be warranted if the linear analysis indicates the tensile and 

compressive stresses in the dam body exceed the limits significantly. The present work focuses on 

linear dynamic analysis showcase the computational efficiency of TDSFEM in terms of 

computational time and accuracy of TDSFEM. Non-linear analysis models with TDSFEM to be 

developed in the future are expected to provide higher efficiency than conventional FEM due to 
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the fact that the stiffness matrices would need to be updated at different steps and the dynamic 

equation need to be solved for the incremental response at each of those steps. Figures 65 and 66 

present the plot of maximum and minimum principal stress envelopes for the dam without 

reservoir for the fixed base case while Figures 67 and 68 present the same for the dam with 

reservoir. 

 

Figure 65: Envelope of Maximum Principal Stress (Dam without reservoir) (fixed base case) 

 

Figure 66: Envelope of Minimum Principal Stress (Dam without reservoir)(fixed base case) 
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Figure 67: Envelope of Maximum Principal Stress (Dam with reservoir) (fixed base case). 

 

Figure 68: Envelope of Minimum Principal Stress (Dam with reservoir) (fixed base case) 

V. Damage identification and localization in concrete gravity dams based 

on modal parameters 

    A. Modeling of damage in concrete gravity dams 

Damage is introduced to the structure in terms of reduction in Young’s Modulus. For four elements 

on the vertical upstream face of the dam, Young’s Modulus considered in the second analysis is 1 

percent of that in the pristine structure. So, for the damaged elements, Young’s Modulus value 

considered is 310.27 MPa. The geometry of the model with the location of the damaged elements 

is shown in Figure 69. 
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Figure 69: The geometry of the dam, showing damage location 

The natural frequencies of the structure along with the corresponding displacement mode shapes, 

curvature mode shapes, and strain energy mode shapes are compared between the pristine and 

damaged state of the structure.  

Damage indices are defined for the displacement mode shape and strain energy mode shape. For 

the displacement mode shape, damage index values are calculated as the change in modal 

displacements of the nodes from the pristine to the damaged structure (for modes 1 to 3) 

normalized by the modal displacements of the nodes in the pristine structure. Similarly, for the 

strain energy mode shapes damage index values are calculated as the change in modal strain energy 

from the pristine to damaged structure (for modes 1 to 3) normalized by the strain energy values 

of the corresponding nodes in the pristine condition. For the curvature mode shapes, a similar 

calculation is done only for the vertical upstream face of the dam. For all the nodes on the vertical 

upstream face, the curvature mode shape damage index is calculated by the change in curvature 

values normalized by the curvature of the pristine model (for modes 1 to 3). 

The analysis procedure followed as explained above is performed for both TDSFEM and FEM by 

developed codes in MATLAB and the computation time is observed for the two. 

    B. Estimation of damage using modal parameters 

At first, the change in modal frequencies, obtained for the pristine and damaged structure, is 

presented in Table 10. For the analysis performed, sensitivity analysis is performed, and 760 

elements are found to be adequate to accurately calculate the modal frequency values.  
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Table 14: Change in 1st three modal frequencies 

MODE 
PRISTINE 

STATE 

DAMAGED 

STATE 

1st 19.04 19.02 

2nd 51.21 51.18 

3rd 68.87 68.81 

 

The Changes in natural frequency values do identify the presence of damage in the structure. 

However, the change is so small, that it may be obfuscated by the presence of noise in measured 

data in the field. Here, as the overall change in the structure due to damage in 4 elements is very 

less, the change in frequency values is very less. Also, frequencies being a global parameter are 

not able to provide adequate information on the location and quantification of damage. The other 

parameter which is compared between the pristine and damaged structure is the displacement mode 

shapes. Figures 70 to 72 represent the modal damage indices based on the first three mode shape 

vectors. 

 

Figure 70: Damage index (Displacement Mode 1) 

From the results, it is observed that the displacement mode shape change (normalized and denoted 

as damage index) over the structure though characterizes the presence of damage, it is not 
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consistent in accurately localizing the damage location in all the modes. Thus, displacement mode 

shapes are also not reliable properties to be considered for damage localization of structures. 

 

Figure 71: Damage index (Displacement Mode 2) 

 

Figure 72: Damage index (Displacement Mode 3) 
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Figure 73: Damage index (Curvature mode shape) 

 

The curvature mode shape has been identified in literature (Pandey et al, 1991) to be a better 

predictor in terms of damage location than the other modal parameters. The modal curvature 

damage index for the vertical upstream face of the dam is shown in Figure 73. 

In these plots, it is observed that in Mode 2 and Mode 3, the location of damage is accurately 

predicted in terms of the Curvature Damage Index, however in Mode 1, the Curvature damage 

index is not accurately able to predict the location of the damage as it predicts higher value of 

damage index further from the damage location. 

 

Figure 74: Damage index (Strain Energy Mode 1) 
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The final parameter studied is the strain energy mode shape. The Figures 74 to 76 show the damage 

index corresponding to the three modes. 

 

Figure 75: Damage index (Strain Energy Mode 2) 

 

 

Figure 76: Damage index (Strain Energy Mode 3) 

From the Figures 74 to 76, it is observed that the modal strain energy-based damage index 

accurately indicates the location of damage by providing maximum values of damage index at the 

exact location of damage. Thus, strain energy can be considered the most suitable parameter for 

localization of damage amongst the four modal parameters studied. 

For all the above-mentioned analysis, similar results have been obtained with both TDSFEM and 

conventional FEM, thus emphasizing the fact that other than the computational aspect, both the 
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methods provide similar results. An important observation made here is that the analysis time 

required by conventional FEM is recorded as 2517 s, while the analysis time required by TDSFEM 

is 1545 s. Thus, TDSFEM provides a huge reduction in the computational time over the 

conventional FEM which is very important for analysis of large structures. 

In this chapter, two aspects have been studied: the efficiency of modal parameters in detection of 

damage location and the computational efficiency of TDSFEM over conventional FEM. From the 

results of analysis, it is observed that amongst the modal parameters, modal strain energy is the 

most accurate predictor of damage location. Frequency, though able to identify the presence of 

damage in a structure, is not able to predict the location of damage. Also, for minute change in 

structural properties, the change in frequency is very less, thus making it an unreliable parameter 

for damage detection. Displacement mode shape also does not provide accurate results in terms of 

damage localization.  

Curvature mode shape is found to be a better parameter than frequency and displacement mode 

shape in terms of judging the location of damage. However, it provides inconsistent results in some 

cases. As observed, in case of Mode 1, curvature mode shape is not able to predict the location of 

damage. On the other hand, Modal Strain Energy provides the best estimate for damage location 

with good consistency for all the modes. Finally, the application of TDSFEM in analysis of dams 

causes huge reduction in the computational time which is of a great importance. This method can 

be used in cases where a large number of analyses needs to be performed, achieving significant 

reduction of computational time. 

VI. Discussions, Conclusions and Summary 

The results of dynamic analysis of concrete gravity dam show that the TDSFEM is 

computationally more efficient than the conventional FEM for dynamic analysis of large 

structures, as the time consumed for analysis is reduced considerably. The reason for less time 

consumption can be attributed to the reduced complexity (also referred to as the order of 

complexity) of the spectral finite element formulation than the conventional FEM program. Order 

of complexity is a parameter which describes the runtime of an algorithm based on amount of input 

data (Cormen et al, 2001) and is generally denoted by the big-O notation O(n), O(n2), etc. In the 

case of the MATLAB programs developed here, the structure of the algorithms developed is the 

same for both conventional FEM and TDSFEM. The difference lies in the way system matrices 
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are formed in TDSFEM, and in the fact that the stiffness formulation uses GLL quadrature rule for 

numerical integration of the element matrices rather than the Gaussian quadrature as used in 

conventional FEM. This leads to the diagonalization of the mass matrix. Also, the conventional 

FEM uses Gauss points for integration which are -1/√3 and 1/√3 for 2-point integration. The 

additional function for evaluating the non-rational number increases the computation complexity 

in the case of conventional FEM. Now, the order of complexity which depends on the number of 

times a particular operation is performed in an algorithm, that remains the same in the developed 

TDSFEM and FEM algorithms (due to same number of degrees of freedom which is the size of 

the matrix to be solved), but the time consumed in each step reduces drastically in SFEM due to 

sparsity in the mass and stiffness matrices (due to zeroes in shape function and B matrix in SFEM 

as a result of integration points being orthogonal to shape functions). In the conventional FEM, 

the diagonal mass matrix is also considered, and the comparisons shown with TDSFEM. It needs 

to be pointed out that the additional advantage in computational time in the case of TDSFEM can 

be attributed to the integration points (GLL points) in TDSFEM (-1 and 1 in case of 2-point 

integration) which coincide with the element nodes, contrary to the conventional FEM using Gauss 

integration points (-1/√3 and 1/√3) in case of 2-point integration. For GLL quadrature, up to 3 

integration points, the integration points are rational numbers and thus will provide computational 

time reduction compared to conventional FEM having irrational numbers as integration points. 

However, it has been observed that in case of conventional FEM, while using Gauss points as 

integration points, if the irrational numbers are replaced by decimal values, the computation of an 

additional square root function is reduced, and thus the computation time is reduced. TDSFEM 

with higher order elements gets rid of the inaccuracy encountered in TDSFEM with lower order 

elements and provides significant saving in computation time over the conventional FEM. 

This chapter presents FEM-based alternative computational methods for dynamic analysis of two-

dimensional structures. The methods reviewed here include the two most common SFEM methods 

found in literature- frequency or Fast Fourier Transform (FFT) based spectral finite element 

(FDSFEM) and time domain based spectral finite element method (TDSFEM). From the 

discussion, the TDSFEM is considered more suitable than the FDSFEM for application to dynamic 

analysis of structures with any arbitrary geometry and boundary conditions. A set of MATLAB 

based programs were developed to demonstrate the computational efficiency of the TDSFEM for 

dynamic analysis of large structures (validation studies have been performed using a simply 
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supported beam and the Pine Flat concrete gravity dam (U.S.A)). For the present study, a 

benchmark structure has been considered i.e., the Koyna Dam (India) and its geometric and 

material properties used to validate the results with available literature (Chopra & Chakrabarti 

(1973), Bhattacharjee & Leger (1993), Tidke et al (2022)). However, the developed codes could 

be adopted for any two-dimensional structure. 

The significant reduction of computation time in the TDSFEM (due to diagonalization obtained 

by using the GLL integration points) compared to the conventional FEM demonstrates that this 

method could be successfully implemented for dynamic analysis of large structures with a similar 

level of accuracy as demonstrated in the results of modal analysis and dynamic time history 

analysis. The performance of TDSFEM considering higher order elements is particularly 

beneficial as the accuracy is same as conventional FEM with significant reduction of 

computational time (refer, Figure 56 and 58). Thus, the results of the study demonstrate the 

suitability of considering higher order TDSFEM elements as a viable alternative to the 

conventional FEM for the dynamic analysis of large structures. 

The foundation has been modeled using infinite elements using both FEM and TDSFEM 

techniques. The use of infinite elements using TDSFEM for foundation modeling is an 

advancement in this domain. The modeling of dam-foundation-reservoir system as a whole has 

also been taken up leading to the saving in computational time (as the size of matrix solved is even 

greater than the dam with fixed base case). 

The main findings of the study can be summarized as: 1) The conventional FEM requires 

considerable computation time for dynamic analysis of large structures. TDSFEM is 

comparatively more efficient and consumes much less amount of time for the analysis, and 

provides reasonable accuracy, especially when higher order elements are used; 2) Both the modal 

analysis and time history analysis results show a similar level of computational efficiency of 

TDSFEM over the conventional FEM, 3) The computational efficiency of TDSFEM is also 

demonstrated when the whole dam-foundation-reservoir model is considered for dynamic analysis. 

The scope of future work includes system identification, damage detection, uncertainty 

quantification of large structures using the TDSFEM. It will also be interesting to study the 

efficiency of TDSFEM in the non-linear dynamic response history analysis of large practical 

structures like concrete gravity dams. For the non-linear analysis, the concrete damage plasticity 
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model can be used to simulate the material behavior. As the present article does not address the 

abovementioned issues, they are cited as some of the limitations of scope of the present work. It 

needs to be pointed out here that the adopted methodology in this work can also be extended to 3D 

structures with complex geometry. In the case of three-dimensional modeling of dams, the 

computational efficiency achieved by TDSFEM methodology could lead to enormous saving of 

computation time. While the above aspects are out of scope of the present article, they will be 

considered in the future. 
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CHAPTER 6: NONLINEAR ANALYSIS OF 

CONCRETE GRAVITY DAMS 

I. Dynamic analysis of concrete gravity dams using TDFEM considering 

material nonlinearity 

Concrete is a brittle material and like other brittle and quasi-brittle materials, it follows the non-

associative plasticity in which the yield function and the plastic flow function are not the same. In 

the present work, the Concrete Damage Plasticity (CDP) model for concrete as suggested by Lee 

and Fenves (1998), which is a modified version of the one suggested by Lubiner et al (1989), has 

been considered. In this approach, the tensile and compressive damage are considered using 

separate variables which is a realistic way of modeling the behavior of concrete undergoing both 

tensile and compressive stresses. The yield functions and the plastic flow potential function 

considered are mentioned in the following equations.    

In recent years, other researchers have developed modified concrete damage plasticity models for 

specific applications like Grassl (2009), Unger et al. (2011). For the return mapping algorithm, an 

elastic predictor-plastic corrector methodology is adopted along with the Newton-Raphson method 

for solving the set of non-linear equations as suggested by Simo and Taylor (1986). 

II. Effect of reservoir 

The dynamic pressure exerted by the reservoir on the upstream face of the dam is modeled by 

considering added mass technique as proposed by Westergaard (1933). Westergaard proposed that 

the hydrodynamic pressure exerted by the water on the dam during an earthquake has an effect 

like the case if a certain mass of water moves back and forth with the dam while the remainder of 

the reservoir does not interact with the dam. The calculation of added mass at height y, per unit 

area is given by the equation below. 

3( ) (7 / 8)* * *( ); , , 1000 /w w w w waddedmass y h h y y h where kg m = −  =  
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III. Effect of foundation 

In order to consider the effect of foundation on the behavior of the dam, infinite elements have 

been developed to model the foundation system. Rectangular six-noded elements with two degrees 

of freedom at each node are considered, with three nodes in the infinite direction. Isoparametric 

formulation is used with the master element being a 2x2 square element. The master element and 

typical actual element is shown in Figure 77. The infinite element formulation in FEM is typically 

demonstrated in literature (Bhatti, 2005). The shape functions for the displacements are as given 

in Equation 37 to 44 in Chapter 5. 

 

Figure 77: Six-noded Infinite element formulation 

It could be observed that the mapping functions considered in Equations 28 and 29 make the co-

ordinates of the mapped points 5 and 6 go to infinity. Using the above-mentioned shape functions 

and mapping functions, the element matrices for the foundation elements are calculated for both 

FEM and TDSFEM. In FEM, the integration is carried out using Gauss quadrature while for 

TDSFEM, the integration is carried out using Gauss-Lobatto-Legendre quadrature as mentioned 

in the earlier sections. Though the use of infinite elements to model foundation is prevalent in 

conventional FEM literature, the use of infinite elements in TDSFEM was showcased by the 

authors (Sarkar et at (2024)). However, in this chapter, the reported work has been extended by 

considering a full-scale model of the foundation where the depth of the foundation and the width 

of the foundation has been considered as per guidelines for non-linear analysis of dams (USBR 

guidelines) (as shown in Figure 78). Once the element matrices for the foundation are calculated, 

they are assembled with the dam structure element matrices and the whole structure dam-

foundation global matrices are formed. The elastic modulus considered is 31027 MPa, density as 

2643 kg/m3 and Poisson’s ratio as 0.33. For the foundation model, the Rayleigh damping 

coefficients  and  are considered as 1.64 and 0.0012. 
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Figure 78: Dam-foundation assembly with infinite elements 

IV. Deconvolution of ground motion 

In the case of considering the foundation, the ground motion is applied at the bottom of the 

foundation. In order to do the same, the recorded ground motion is deconvoluted using 

DEEPSOIL, a program developed at the Department of Civil Engineering, University of Illinois 

at Urbana-Champaign, United States of America (USA). In this program, the deconvolution is 

performed using the frequency domain approach. This approach is the same as the frequency-

domain linear equivalent linear analysis approaches except that the input motion can be applied at 

the ground surface or anywhere else in the soil column. The corresponding rock motion is then 

computed. The deconvolution procedure requires the definition of soil properties of each layer like 

soil thickness, unit weight, shear modulus and damping ratio. The values of these properties are 

considered as defined in the foundation properties. The concept of deconvolution comes from the 

theories of wave propagation and is briefly discussed here. The objective of the procedure is to 

obtain a ground motion to be applied at the bed rock level which will produce the same effects as 

the ground motion at the surface produces. An iterative procedure is adopted for this purpose where 

the frequency content of a trial ground motion at the bed rock level is matched with the frequency 

content of the ground motion recorded at the surface level by following the wave propagation 

principles where the intermediate soil strata is considered as a two-dimensional shear column layer 

based on its shear wave velocity. The deconvolved ground motions are applied at the bottom of 

the foundation. 
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V. Results of non-linear time history analysis 

The results of the nonlinear time history analysis are represented in this section in terms of the 

horizontal displacement of the crest. The ground motion considered for the analysis is the recorded 

ground motion at the site of the Koyna Dam as shown in Figure 47 in Chapter 5. The Figures 79 

to 82 show the plots of the horizontal displacement history of the crest for the 1) dam only case 

(fixed base)-D, 2) dam (fixed base) with reservoir case-DR, 3) dam only with foundation case-DF 

and 4) dam with foundation with reservoir case -DFR for both TDSFEM and the conventional 

FEM. It is seen from the plots that the results of TDSFEM and FEM match considerably well. The 

comparison of computation time for the two analysis procedures in all the four cases is shown in 

Table 15. The results of dynamic analysis of concrete gravity dam show that the TDSFEM is 

computationally more efficient than the conventional FEM for dynamic analysis of large 

structures, as the time consumed for analysis is reduced considerably. The reason for less time 

consumption can be attributed to the reduced complexity (also referred to as the order of 

complexity) of the spectral finite element formulation than the conventional FEM program. Order 

of complexity is a parameter which describes the runtime of an algorithm based on amount of input 

data (Cormen et al, 2001) and is generally denoted by the big-O notation O(n), O(n2), etc. In the 

case of the MATLAB programs developed here, the structure of the algorithms developed is the 

same for both conventional FEM and TDSFEM. 

 

Figure 79: Time history of horizontal crest displacement for dam only fixed base condition (both FEM and TDSFEM) 
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Figure 80: Time history of horizontal crest displacement for dam with reservoir fixed base condition (both FEM and TDSFEM) 

 

 

 

Figure 81: Time history of horizontal crest displacement for dam with foundation (both FEM and TDSFEM) 
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Figure 82: Time history of horizontal crest displacement for dam-foundation-reservoir case (both FEM and TDSFEM) 

 

 

 

Table 15: Comparison of computation time 

Case Computation time FEM (seconds) 
Computation time TDSFEM 

(seconds) 

D 9357 4024 

DR 9481 4211 

DF 20017 8954 

DFR 20238 9180 
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Figure 83: Maximum principal stress of dam body for Dam-foundation-reservoir case (FEM) in MPa units 

 

 

Figure 84: Maximum principal stress of dam body for Dam-foundation-reservoir case (TDSFEM) in MPa units 

In Figures 83 and 84, the plot of the maximum principal stress contour over the dam body is shown 

in case of FEM and TDSFEM. These plots provide an idea of the possible failure pattern of the 

dam under the applied ground motion at the neck and heel region due to the tensile stresses 

exceeding the permissible limits. The reported failure pattern of the dam in literature (Chopra & 
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Chakrabarti (1973), Bhattacharjee & Leger (1993), Tidke et al (2022)) matches with the present 

findings. 

VI. Discussions, Conclusions and Summary 

This chapter presents FEM-based alternative computational methods for dynamic analysis of two-

dimensional structures. The method considered here is the time domain based spectral finite 

element method (TDSFEM). From the discussion, the TDSFEM is considered more suitable than 

the time domain based spectral finite element method (FDSFEM) for application to dynamic 

analysis of structures with any arbitrary geometry and boundary conditions. A set of MATLAB 

based programs were developed to demonstrate the computational efficiency of the TDSFEM for 

dynamic analysis of large structures For the present study, a benchmark structure has been 

considered i.e., the Koyna Dam (India) and its geometric and material properties used to validate 

the results with available literature (Chopra & Chakrabarti (1973), Bhattacharjee & Leger (1993), 

Tidke et al (2022)). However, the developed codes could be adopted for any two-dimensional 

structure.  

    The significant reduction of computation time in the TDSFEM (due to diagonalization obtained 

by using the GLL integration points) compared to the conventional FEM demonstrates that this 

method could be successfully implemented for dynamic analysis of large structures with a similar 

level of accuracy as demonstrated in the nonlinear dynamic time history analysis.  

    The foundation has been modeled using infinite elements using both FEM and TDSFEM 

techniques. The use of infinite elements using TDSFEM for foundation modeling is an 

advancement in this domain. The modeling of dam-foundation-reservoir system as a whole has 

also been taken up leading to the saving in computational time (as the size of matrix solved is even 

greater than the dam with fixed base case).  

   The main findings of the study can be summarized as: 1) The conventional FEM requires 

considerable computation time for dynamic analysis of large structures. TDSFEM is 

comparatively more efficient and consumes much less amount of time for the analysis, and 

provides reasonable accuracy, especially when higher order elements are used; 2) The 

computational efficiency of TDSFEM is also demonstrated when the whole dam-foundation-

reservoir model is considered for dynamic analysis.  
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   The scope of future work includes utilizing the benefits of the computational efficiency achieved 

by TDSFEM in various analysis and applications of concrete gravity dams. In the case of analysis 

types like fragility analysis, inverse problems, etc. where the solution involves repeated iterations 

to be performed on the set of matrix equations, TDSFEM could prove to be highly advantageous. 

Also, integration of the TDSFEM procedure into the commercially available software packages 

could be highly beneficial for both academia and industry as it would reduce the computational 

time for repeated analysis scenarios. In the present work, for modeling the effects of the reservoir, 

a simplified approach has been considered. This could be extended to more advanced methods of 

modeling the reservoir using coupled Euler-Lagrangian approach or the acoustic formulation. 

While these are out of scope of the present work, it can be considered in the future as an extension 

of the present work. It will also be interesting to consider other boundary conditions for the 

foundation like viscous boundary, non-reflecting boundary, etc. and study the effect on the 

response of the structure.  As the present article does not address the abovementioned issues, they 

are cited as some of the limitations of scope of the present work. It needs to be pointed out here 

that the adopted methodology in this work can also be extended to 3D structures with complex 

geometry. In the case of three-dimensional modeling of dams, the computational efficiency 

achieved by TDSFEM methodology could lead to enormous saving of computation time. While 

the above aspects are out of scope of the present article, they will be considered in the future. 
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CHAPTER 7: MODELING OF ALKALI-AGGREGATE 

REACTIONS IN CONRETE GRAVITY DAMS USING 

TDSFEM 

I. AAR effects causing deterioration in concrete structures 

Concrete as a material undergoes deterioration over time which impacts the performance of 

concrete structures and sometimes leads to devastating effects and requires severe repair and 

retrofitting measures. One of the major deterioration effects which is observed in concrete 

structures is the damage caused by chemical changes in the compositions of concrete, namely the 

alkali-aggregate reaction often referred to as AAR. AAR causes major changes in concrete 

structures due to differential expansion created in different parts of the structures causing major 

cracks.  

Alkali-aggregate reaction (AAR) is the predominant chemical process observed in concrete, 

leading to gradual deterioration over time and the formation of a network of both small and large 

cracks within the concrete structure. AAR results in permanent expansion and contributes to the 

weakening of concrete dams. This deterioration can compromise the stability of a dam, particularly 

when existing cracks, induced by AAR, extend further during powerful earthquakes. The 

interaction of these cracks could potentially lead to the failure of the dam. Therefore, it is crucial 

to assess the damage caused by AAR as part of the seismic safety evaluation of concrete dams 

prior to significant seismic events. 

Several macroscopic models have been developed to analyze the structural expansion resulting 

from alkali-aggregate reaction (AAR), with Charlwood's model (1992) being one of the most 

commonly utilized approaches. Charlwood's model assumes a constant rate of swelling during the 

AAR reaction, which does not align well with the kinetics observed in experimental tests. While 

the model can estimate the final amount of expansion displacement in AAR-affected concrete 

dams, it lacks accuracy in reproducing the structural deformation process, especially when 

nonlinearities are considered. Consequently, more sophisticated models have been developed to 

incorporate both AAR kinetics and mechanical behavior, such as those by Huang and Pietruszczak 

(1996), Ulm et al. (2000), and Steffens et al. (2003). Among these, Ulm's model, which integrates 
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reaction kinetics from Larive (1998), has gained wide acceptance. These models are effectively 

used to quantitatively assess AAR expansion in both time and space within concrete structures. 

Numerous studies have been conducted to predict expansion deformation during the AAR process 

in concrete dams and validate these predictions through field measurements of crest displacements. 

For an extensive overview of research on the modeling of alkali-aggregate reaction (AAR), readers 

can consult the work of Pan et al. (2012). 

In all simulations for large structures like concrete gravity dams, computational time is a 

challenging aspect. Thus, a computationally efficient analysis procedure is extremely beneficial 

for analysis of large structures. The efficiency of time domain based spectral finite element method 

in analysis of large dams have been demonstrated in literature (Sarkar et al, 2024), (Sarkar & 

Bagchi, 2023), (Sarkar et al, 2022). In this paper, the authors have extended the procedure 

established in mentioned literature for AAR effects on dams. 

In summary, the literature demonstrates a growing interest in developing sophisticated models and 

simulation techniques to assess and understand the detrimental effects of AAR on concrete dams. 

These contributions underscore the complexity of AAR as a phenomenon and highlight the critical 

need for further research to refine these models for more accurate damage assessment and 

mitigation strategies, particularly focusing on the creation of simplified thermo-mechanical 

models tailored for concrete gravity dams. This review indicates the field's progression towards 

more accurate and practical solutions to combat the challenges posed by AAR in maintaining the 

integrity and safety of concrete dam structures globally. 

II. AAR kinetics 

Rotter et al. (1998) and Saouma et al. (2006) contribute to understanding the mechanical impacts 

of AAR and modeling approaches. Rotter focuses on determining the specific fracture energy of 

AAR-affected concrete, while Saouma introduces a novel model for AAR expansion. Comi et al. 

(2009) proposes a model to simulate the swelling and deterioration of concrete, a concept further 

investigated by Sellier et al. (2009) through an innovative method assessing AAR kinetics and 

residual swelling capability. Pan et al. (2013), Pan et al. (2014) introduced models for analyzing 

cracking and predicting the long-term behavior of AAR-affected concrete dams, highlighting the 

importance of considering anisotropic expansion and seismic response in such structures. 

Moreover, suggestions have been made to incorporate mechanical and microscopic tools such as 
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the Stiffness Damage Test (SDT) and the Damage Rating Index (DRI) for evaluating the condition 

of AAR-affected concrete (Shayan & Grimstad, 2006) and (Sanchez et al., 2017). 

 

Figure 85: AAR progression over time 

III. Simulation of AAR effects in concrete gravity dams using TDSFEM 

In this section, a novel thermo-mechanical approach is adopted for analysis of AAR effects on 

concrete gravity dams using the time domain based spectral finite element method (TDSFEM). 

The Koyna dam, located in Maharashtra, India, plays crucial roles in water storage, hydroelectric 

power generation, and flood control within its region. The cross-section of the Koyna dam used in 

the numerical simulation is depicted in Figure 85. With a crest length of 853.5 meters and a height 

of 85.34 meters above the riverbed, descending to a depth of 103.02 meters below the deepest 

foundation, the Koyna dam stands as a substantial structure. It consists of 27 monoliths, each 

spanning 15.24 meters in width. The elastic modulus of the dam structure is estimated at 31027 

MPa, with a density of 2643 kg/m³, and a Poisson's ratio of 0.15. 

 First, an initial thermal analysis of the Koyna Dam is performed to find the temperature variation 

of the dam body. The details of the above procedure are presented in the methodology chapter of 

the thesis (refer Figure 3). Based on the internal nodal temperature variation of the dam body, a 

pseudo thermal analysis is performed to calculate the AAR strain and stress variation in the dam 

body. 

 



Page | 95  

 

 

Figure 86: Temperature variation of the dam obtained from thermal analysis 

A few stages of analysis are performed. First, a static analysis is performed considering only 

hydrostatic load and temperature effects on the dam, without any AAR effects. Second, static 

analysis is performed with hydrostatic loads and temperature effects, along with full AAR effects. 

In this analysis, the modulus of elasticity is reduced as per the AAR effects. Third, dynamic 

analysis is performed by applying seismic loads along with the previously considered loads and 

full AAR effects to analyze the structure. The stress variation in the structure helps to ascertain the 

probable failure zones of the dam considering the effect of AAR. he analysis integrates the 

combined effects of ambient temperature, gravity, hydrostatic, and hydrodynamic loading on the 

system. To assess the seismic response of the Koyna dam, ground motion data obtained from an 

accelerometer in one of the dam's galleries during the earthquake on December 11, 1967, with a 

moment magnitude of Mw=6.5, was utilized. The analysis considered ground motion characterized 

by peak horizontal accelerations of 0.473g (perpendicular to the dam axis) and peak vertical 

accelerations of 0.311g, as depicted in Figure 47(a). Additionally, the response spectra of these 

accelerographs are illustrated in Figure 47(b). 

Here, a stepwise analysis approach is adopted. Initially, a static analysis is conducted, considering 

hydrostatic forces and thermal impacts on the dam. Two analysis stages are undertaken: one 

without considering Alkali-Aggregate Reaction (AAR) effects and another incorporating full AAR 

strain effects. Subsequently, the second stage of analysis involves linear dynamic analysis, 

incorporating seismic, hydrodynamic, and thermal effects on the dam. Once again, two analysis 
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stages are considered: one without AAR effects and one with full AAR effects. To simulate the 

impact of AAR, a pseudo-temperature load is applied to the structure. The full AAR strain is 

assumed to be 0.003 (Saouma & Perotti, 2006). The analysis utilizes a time-domain-based spectral 

finite element method, employing the Gauss-Lobatto-Legendre quadrature for integration, as 

opposed to the conventional Gauss quadrature utilized in typical finite element methods. The 

matrix formulations and other methodological details are outlined in Chapter 3. 

IV. Results of static and dynamic analysis with full AAR effects on whole 

dam body 

This section presents the results obtained from the analysis conducted. Figure 86 illustrates the 

internal temperature variation within the dam body. This temperature fluctuation serves as the 

basis for applying temperature loads to calculate the mechanical stresses exerted on the dam body. 

In the analysis where full Alkali-Aggregate Reaction (AAR) effects are considered, a pseudo 

temperature load is computed to replicate the same effects as the full AAR strain. The results of 

the analysis, comparing scenarios with no AAR and full AAR effects, are depicted in the figures 

within this section. Figures 87 and 88 display contour plots illustrating the maximum and minimum 

principal stresses for static analysis under hydrostatic and thermal loads, excluding the effects of 

AAR. Conversely, Figures 89 and 90 portray contour plots of the maximum and minimum 

principal stresses for static analysis under hydrostatic and thermal loads, considering full AAR 

effects. Similarly, for dynamic analysis, a comparable comparison is conducted between scenarios 

without AAR and with full AAR. Figures 91, 92, and 93 present the crest displacement, contour 

plot of maximum, and minimum principal stresses, respectively, for dynamic analysis considering 

hydrodynamic and seismic forces, alongside temperature loads but excluding AAR effects. The 

corresponding results for the full AAR situation are presented in Figures 94, 95, and 96. 
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Figure 87: Maximum Principal stress plot for static analysis no AAR effect 

 

 

Figure 88: Minimum Principal stress plot for static analysis no AAR effect 
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Figure 89: Maximum Principal Stress plot for static analysis with full AAR effect 

 

Figure 90: Minimum Principal Stress plot for static analysis with full AAR effect 
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Figure 91: Crest Displacement history for dynamic analysis considering seismic, reservoir and thermal effects without AAR 

effects 

 

Figure 92: Contour Plot of Maximum Principal Stress envelope for dynamic analysis considering seismic, thermal and reservoir 

effects without AAR effects (in MPa *10 units) 
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Figure 93: Contour Plot of Minimum Principal Stress envelope for dynamic analysis considering seismic, thermal and reservoir 

effects without AAR effects (in Pa units) 

 

Figure 94: Crest Displacement history for dynamic analysis considering seismic, reservoir and thermal effects with full AAR 

effects 
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Figure 95: Contour plot of Maximum Principal Stress for dynamic analysis considering seismic, thermal and reservoir effects 

with full AAR effects (in Pa units) 

 

Figure 96: Contour plot of Minimum Principal Stress for dynamic analysis considering seismic, thermal and reservoir effects 

with full AAR effects (in Pa units) 
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V. Stepwise progression of AAR effects on the behavior of dam 

While the above section showcases a situation where the whole dam body is subjected to the same 

level of AAR strain effects, the simulations in this section consider differential AAR strains across 

the dam body based on the differential temperature increase across the body of the dam. Also, in 

the previous section, only two stages are considered i.e. the nascent state of the dam without any 

AAR effect and finally, the state where the maximum AAR strain has affected the dam, while in 

this section, the stepwise progression of AAR strain is taken into consideration.  

 

Figure 97: Degradation of material properties due to progression of AAR over time (Saouma et at, 2006) 

In this section, four different situations are considered for the stagewise progression of AAR over 

the dam body. In the first scenario, the dam is affected by 25 percent of the maximum possible 

AAR strain with the strains varying over the dam body as a function of its temperature. In the 

second scenario, the maximum strain in the dam body is 50 percent of the maximum possible AAR 

strain with the strains across the dam body varying as per the temperature distribution of the dam 

body. In the third and fourth scenarios, the maximum strain in the dam body is considered as 75 

percent and 100 percent of the maximum possible AAR strain with the strains in the dam body 

varying as a function of the temperature of the dam body. The variation of the material properties 

of the dam are considered as given in Figure 97. The temperature variation across the dam body 

for the calculation of the AAR strain variation is considered as shown in Figure 86. In all the four 

cases, dynamic analysis is carried out with seismic ground motions (Figure 47) applied at the base 
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of the dam. All other forces acting on the dam like thermal, hydrostatic and hydrodynamic as 

considered in the previous section are also considered for all the analysis performed in this section. 

The results of the dynamic analysis due to the stagewise progression of AAR over time and the 

variation of AAR over the dam body as a function of temperature is shown in terms of maximum 

principal stress contour of the dam body and time history of horizontal crest displacement at each 

of these four stages. Figure 98 and Figure 99 respectively showcase the plots of horizontal crest 

displacement history and envelope of maximum principal stress contour of the dam for the first 

scenario i.e. the maximum strain in the dam body is 25 percent of the maximum possible AAR 

strain of 0.003 with the strain across the dam body varying as a function of temperature. Similar 

plots for the other stages i.e. maximum strain values in the dam body reaching 50, 75 and 100 

percent of the maximum possible AAR strain are shown in Figures 100-101, Figures 102-103 and 

Figures 104-105 respectively. While the previous section depicts a theoretical maximum situation 

where the whole dam body is equally impacted by the maximum possible AAR strain, the results 

of this section consider more practical scenarios where the impact of AAR strain is considered as 

a function of the temperature variation of the dam body and helps to evaluate the failure 

progression of the dam as the impact of AAR increases over time. 

 

Figure 98: Time history of horizontal crest displacement for dynamic analysis with maximum AAR strain as 25 percent of 

maximum possible AAR strain 
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Figure 99: Contour plot of Maximum Principal Stress for dynamic analysis with maximum AAR strain as 25 percent of maximum 

possible AAR strain (in Pa units) 

 

Figure 100: Time history of horizontal crest displacement for dynamic analysis with maximum AAR strain as 50 percent of 

maximum possible AAR strain 
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Figure 101: Contour plot of Maximum Principal Stress for dynamic analysis with maximum AAR strain as 50 percent of 

maximum possible AAR strain (in Pa units) 

 

Figure 102: Time history of horizontal crest displacement for dynamic analysis with maximum AAR strain as 75 percent of 

maximum possible AAR strain 
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Figure 103: Contour plot of Maximum Principal Stress for dynamic analysis with maximum AAR strain as 75 percent of 

maximum possible AAR strain (in Pa units) 

 

Figure 104: Time history of horizontal crest displacement for dynamic analysis with maximum AAR strain as 100 percent of 

maximum possible AAR strain 
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Figure 105: Contour plot of Maximum Principal Stress for dynamic analysis with maximum AAR strain as 100 percent of 

maximum possible AAR strain (in Pa units) 

VI. Discussions, conclusions and summary 

Figures 87 and 88 depict the contours illustrating the maximum and minimum principal stresses 

during static analysis without Alkali-Aggregate Reaction (AAR), while Figures 89 and 90 display 

the same scenarios with the full impact of AAR considered. Noticeably, stress values are markedly 

elevated in the presence of AAR. For dynamic analysis, Figure 91 exhibits the temporal evolution 

of horizontal crest displacement without AAR, whereas Figure 92 illustrates the corresponding 

scenario with full AAR effects. It is evident that in the presence of AAR, the structural deformation 

is considerable, with a discernible shift in the displacement baseline from zero, suggesting 

potential cracks and permanent damage that may warrant investigation through nonlinear analysis. 

Comparison of principal stresses between scenarios without and with full AAR effects is presented 

in Figures 93, 94, and 95, 96. Significantly higher stress levels are observed in the AAR case, 

indicating that the dam's failure could be precipitated by the onset of full AAR effects. 

Figures 98 to 105 depict the results of dynamic analysis for the stagewise progression of AAR 

strain and considering a variation of AAR strain across the dam body as a function of temperature 

variation of the dam body. These situations depict more practical scenarios of AAR simulation of 

the dam body compared to the previous case where the whole dam is considered to be uniformly 
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affected by the maximum AAR strain. Also, the stagewise analysis helps to understand the possible 

failure pattern of the dam as the AAR strain effect increases over time. Figure 98 shows the 

maximum displacement to be 55mm at the 25 percent maximum strain level which increases to 73 

mm, 96mm and 125 mm respectively for the strain levels of 50, 75 and 100 percent respectively 

(Figures 100, 102 and 104 respectively). Similar plots for the envelope of maximum principal 

stress contours are shown in Figures 99, 101, 103 and 105. 

In this chapter, a simplified thermo-mechanical approach has been presented to model the effects 

of alkali-aggregate reactions on large concrete structures like concrete gravity dams. The alkali-

aggregate reaction is a complex chemical phenomenon that occurs in concrete structures leading 

to large cracks and rendering the structure impossible for use without severe retrofitting measures. 

In dams, this phenomenon has been observed to be often causing failure. While the present 

literature suggests various complex chemical models based on experimental results to model the 

alkali-aggregate reactions in structures, those models require complex, rigorous experimental and 

analytical techniques. Also, as the phenomenon is time and temperature-dependent, there are 

certain difficulties in simulating the exact field conditions in the laboratory-based experimental 

setup. The authors have recognized these facts and presented a simple thermo-mechanical analysis 

approach to determine the effects of alkali-aggregate reactions on dam structures. The authors have 

used a pseudo-temperature approach to estimate the AAR strains, based on the simple fact that 

AAR causes mechanical expansion which is also caused by the increase in temperature. 

In this chapter, the results show that the considered dam is severely affected by the AAR effects 

as compared to the results of analysis with no AAR effects. For static as well as dynamic analysis, 

the stresses in the dam body show that AAR can lead to the failure of the structure. In the dynamic 

analysis, it is observed that the dam has deformed significantly due to the effects of AAR and 

maximum displacements and stresses are detrimental and failure of the dam is caused. In this 

chapter, at first, two stages of analysis are considered- an initial stage without the onset of AAR 

effects and a final stage when the full AAR effects have set in. In a more detailed study, stepwise 

analysis is considered to note the progression of AAR effects on the dam body over time. Also, 

the variation of AAR over the dam body is considered as a function of the temperature.  
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CHAPTER 8: SUMMARY, CONCLUSIONS AND 

SCOPE OF FUTURE WORK 

I. Summary 

This thesis provides an alternative finite element-based modeling technique for numerical analysis 

of large structures like concrete gravity dams. By the literature review, it is concluded that the 

most commonly used methods of dynamic analysis and damage detection based on changes in 

modal parameters have certain inherent shortcomings. Also, the finite element method as an 

analysis tool has the requirement of very fine mesh size in problems of dynamics and thus, 

computationally inefficient in terms of space and time. This thesis presents FEM-based alternative 

computational methods for dynamic analysis of two-dimensional structures. The methods 

reviewed here include the two most common SFEM methods found in literature- frequency or Fast 

Fourier Transform (FFT) based spectral finite element (FDSFEM) and time domain based spectral 

finite element method (TDSFEM). From the discussion, the TDSFEM is considered more suitable 

than the FDSFEM for application to dynamic analysis of structures with any arbitrary geometry 

and boundary conditions. A set of MATLAB based programs were developed to demonstrate the 

computational efficiency of the TDSFEM for dynamic analysis of large structures (validation 

studies have been performed using a simply supported beam and the Pine Flat concrete gravity 

dam (U.S.A)). For the present study, a benchmark structure has been considered i.e., the Koyna 

Dam (India) and its geometric and material properties used to validate the results with available 

literature (Chopra & Chakrabarti (1973), Bhattacharjee & Leger (1993), Tidke et al (2022)). 

However, the developed codes could be adopted for any two-dimensional structure. 

The significant reduction of computation time in the TDSFEM (due to diagonalization obtained 

by using the GLL integration points) compared to the conventional FEM demonstrates that this 

method could be successfully implemented for dynamic analysis of large structures with a similar 

level of accuracy as demonstrated in the results of modal analysis and dynamic time history 

analysis. The performance of TDSFEM considering higher order elements is particularly 

beneficial as the accuracy is same as conventional FEM with significant reduction of 

computational time. Thus, the results of the study demonstrate the suitability of considering higher 
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order TDSFEM elements as a viable alternative to the conventional FEM for the dynamic analysis 

of large structures.  

The foundation has been modeled using infinite elements using both FEM and proposed TDSFEM-

based technique. The use of infinite elements using TDSFEM for foundation modeling is an 

advancement in this domain. The modeling of dam-foundation-reservoir system as a whole has 

also been taken up leading to the saving in computational time (as the size of matrix solved is even 

greater than the dam with fixed base case).  

Damage identification and localization has been performed using modal parameters and it has been 

observed that modal strain energy is the most effective modal parameter for accurate determination 

of presence of damage in a structure and its location.  

Non-linear analysis of Koyna Dam has been performed considered material nonlinear behavior as 

an extension of the linear analysis. The proposed TDSFEM-based formulation has been further 

improved by including material nonlinearity suitable to concrete structures. While linear analysis 

is an important step which helps in understanding the structural behavior, the result of nonlinear 

analysis is deemed more realistic behavior of the structure. As the nonlinear analysis is numerically 

more rigorous, the saving in computation time is even more advantageous which has been 

demonstrated.  

As a part of the verification study, a concrete beam from literature was modelled and analyzed for 

static loads, modal analysis of a dam was performed, and nonlinear static analysis of a concrete 

deep beam was conducted. The failure modes of FRP reinforced concrete deep beams have been 

numerically simulated using pseudo static analysis performed using the time domain based spectral 

finite element method. These results have been validated against experimental investigations 

previously conducted at the Structural Engineering Laboratory of Concordia University. This is a 

novel attempt to model FRP reinforced concrete deep beams using the time domain based spectral 

finite element method. 

A benchmark concrete gravity dam, namely the Koyna Dam has been used as a case study to 

demonstrate the methods developed in this thesis. Both linear and nonlinear dynamic analysis was 

performed using the recorded ground motion at the dam site. In order to model the deterioration 
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effects of concrete gravity dams caused by AAR, a simplified thermo-mechanical approach has 

been developed. Results show the possible failure zones of a dam affected by AAR. 

II. Conclusions 

The main findings of the study can be summarized as:  

1) The conventional FEM requires considerable computation time for dynamic analysis of 

large structures. TDSFEM is found to be comparatively more efficient, and it consumes 

much less amount of time for the analysis, and provides reasonable accuracy, especially 

when higher order elements are used. In the case of linear dynamic analysis, time of 

computation is reduced by 60 percent in case of TDFSEM in comparison to conventional 

FEM. It needs to be pointed out here that all the computations in this study are performed 

using an ordinary personal computer with an Intel Core i5 8th Gen @1.87GHz CPU and 

4GB memory. 

2) Both the modal analysis and time history analysis results show a similar level of 

computational efficiency of TDSFEM over the conventional FEM,  

3) The computational efficiency of TDSFEM is also demonstrated when the whole dam-

foundation-reservoir model is considered for dynamic analysis. Due to the global matrices’ 

sizes getting bigger in this case, the advantage of computational time saving is even better 

realized. 

4) The vibration-based damage identification and localization shows that modal strain energy 

is a better indicator of damage location than the modal parameters like modal displacement 

and modal curvature. 

5) The results of dynamic analysis using material non-linear behavior show a better 

representation of the performance of the structure when subjected to seismic ground motion 

and the actual stress levels of the dam and failure zones are identified even better than 

linear dynamic analysis. In case of non-linear analysis, the system of equations need 

iterations to be performed while solving, thus the time of computation becomes even more 

critical and TDSFEM provides saving in computation time in each step. 

6) The results of dynamic analysis using material non-linear behavior show the potential 

permanent lateral displacement of the dam body subjected to seismic ground motion. 
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7) The saving in computation time using TDSFEM for non-linear dynamic analysis in 

comparison FEM is even higher as the procedure requires iterative solution techniques at 

each step in solving the matrix equations of motion. 

8) Alkali-Aggregate reaction is a severe issue in the case of concrete structure and causes 

severe material degradation. A simplified thermos-mechanical analysis using TDSFEM to 

model the effects of AAR shows that the dam undergoes severe deformations and is 

susceptible to complete failure under the combined impact of seismic ground motion and 

AAR effects. 

III. Scope for future research 

The scope of future work includes system identification, damage detection, uncertainty 

quantification of large structures using the TDSFEM. It needs to be pointed out here that the 

adopted methodology in this work can also be extended to 3D structures with complex geometry. 

In the case of three-dimensional modeling of dams, the computational efficiency achieved by 

TDSFEM methodology could lead to enormous saving of computation time. In this thesis, the 

reservoir has been modeled using the simplified method while this can be further modeled using 

acoustic elements for better prediction of the dam behavior. Non-linear analysis has been 

performed in this thesis using the concrete damage plasticity model, which is a widely used 

nonlinear material model for concrete nonlinear behavior, however, it cannot capture the crack 

mechanics and crack propagation in structures. Thus, more advanced crack propagation modeling 

techniques could be implemented with the TDSFEM framework for better prediction of crack 

generation in structures subjected to dynamic loading. In this thesis, the whole work has been done 

using developed codes in MATLAB for the time domain based spectral finite element method, as 

it is not available in commercial software packages. In future, element subroutines can be 

developed in powerful commercial software packages and time domain spectral finite element can 

be incorporated into their modules. This would enable the range of operations which are available 

in the software packages to be implemented using TDSFEM and its numerical efficiency could be 

fully utilized for a varied range of analysis. The simplified methodology developed for AAR 

analysis in the case of dams can be extended to more complicated analysis using TDSFEM. In 

that, the other material deterioration effects like ageing can also be considered. Also, geometric 

and contact nonlinearity could be considered along with material nonlinearity. While the above 

aspects are out of the scope of the present work, they will be considered in the future. 
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APPENDIX 2: MATLAB CODES 

I. Creation of geometry 
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II. Creation of element matrices 
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III. Application of static water pressure 
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IV. Time history analysis 
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V. Calculation of principal stress values 
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VI. Plot of principal stress values 

 

 

 

 

 


