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Abstract

Adoption of Deep Learning Models and its Applications in Dementia Research

Jonatan Reyes, Ph.D.

Concordia University, 2024

Artificial Intelligence (AI) is at the forefront of the Fourth Industrial Revolution, fundamen-

tally transforming industries and societies through unprecedented automation and data-driven ap-

plications. The Fourth Industrial Revolution is characterized by a fusion of software and hardware

improvements, creating a seamless blend of the physical, digital, and biological spheres. These im-

provements make it possible for AI to leverage and process vast amounts of information to generate

actionable insights, and perform complex tasks more quickly and more accurately than humans,

leading to more informed decisions and efficient processes.

Despite its success and promising results in other domains, the adoption and integration of AI

innovations in healthcare has been complex and slow. Few AI innovations have met with success

and have been incorporated into daily practice. This thesis addresses technological, legal and ethical

issues that must be mitigated before AI-based systems can be fully adopted and trusted into clinical

trials and workflows. We identify an opportunity to further the state-of-the-art of AI solutions and

their adoption in healthcare through privacy-preserving aggregation algorithms and human-centered

evaluations of transparency in clinical decision support systems.

In particular, this dissertation explores advanced methodologies in Federated Learning (FL) for

improving collaborative learning, data privacy, and decision-making across various domains. We

improve the core FL aggregation algorithm for better handling the learning of distributed hetero-

geneous data sources, with a method named Precision-weighted Federated Learning. We perform

extensive evaluations with benchmark datasets on resource-constrained environments to measure
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its limits and perform additional tests on clinical data to enhance the quality of clinical assessment

analysis, validating its utility.

Our research also aims to understand how to visualize AI model outputs to enhance transparency

in clinical decision support systems. We conduct extensive evaluations to assess the impact of visu-

alizing AI uncertainty and personal traits on decision-making, supporting the design of AI outputs

that are interpretable by clinicians. Initially, we explore the effects in low-risk gaming scenarios, fol-

lowed by an examination of AI uncertainty representation in high-stakes clinical decision-making,

particularly in Alzheimer’s disease prognosis.

In summary, this dissertation presents significant advancements in FL and clinical decision sup-

port systems. We address some of the current limitations and challenges of adopting AI systems, and

demonstrate improvements in collaborative learning, data privacy, and human-AI decision-making.

These findings offer valuable insights for designing robust, efficient, and trustworthy AI and FL

systems. We believe that user-centered design practices will eventually play a more prominent role

in the development of AI tools and technologies, becoming the driving force behind moving inno-

vations from the laboratory to the clinic.
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Chapter 1

Introduction

Artificial intelligence (AI), a field where computers mimic or replicate human problem-solving

and decision-making abilities, stands at the forefront of the Fourth Industrial Revolution (Industry

4.0) [3]. It is profoundly shaping people’s work and lives through automation, text-mining, per-

sonalized experiences, enhanced healthcare diagnostics, improved educational tools, advancements

in autonomous transportation, financial innovations, entertainment applications, and beyond. The

unpredictable growth in the availability of data as well as improvements in hardware technologies

have enabled AI technologies to succeed in many applications [4].

In particular, deep learning (DL), a subset of AI, has gain widespread attention due to its data

processing capabilities and accurate predictions. The success of DL algorithms stems from their

ability to process data and identify key features in their raw form without human intervention. In

contrast, machine learning (ML), its predecessor, requires human expertise to refine raw data into

useful features for a model to differentiate between classes (i.e. feature engineering). These differ-

ences are illustrated in Figure 1.1. DL’s capability to autonomously process complex data allows

it to handle tasks that are difficult or even impossible for humans to interpret directly from the raw

data, such as recognizing intricate patterns in images or understanding complex speech signals. This

has made DL particularly effective in multiple fields including computer vision, speech recognition,

natural language processing [5, 6, 7] and other domains where large amounts of complex data are in-

volved. Thus, the adoption of DL-based applications, holds significant promise in shaping the future

of various disciplines, economies, and industries — particularly in critical sectors like healthcare.
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Figure 1.1: Comparison between machine learning and deep learning.

DL is driving a transformation in the healthcare industry. Biomedical research generates a

variety of data sources in the form of clinical imaging, electronic health records, sensor data, and

genetic information. This wealth of data has significantly enhanced data-driven processes and work-

flows, converting patient data into valuable insights for healthcare providers, spanning diagnostics

to treatment. The combination of clinical data, hardware acceleration, substantial storage capacity,

and DL methods has resulted in major advancements in numerous medical disciplines, including

radiology, oncology, cardiology, ophthalmology, neurology, internal medicine and general practice

decision-making.

However, the adoption and integration of AI innovations into clinical practice is complex. As

evidence, the number of papers describing AI methods for medical applications increased from 596

in 2010 to 12,422 in 2019, but only 64 received regulatory approval in the US in 2019 [8]. A similar

trend was observed in 2022, where only 139 devices were approved that year [9]. This under-

scores the need for AI solutions to adhere to rigorous standards and ethical guidelines established

by regulatory bodies. Key agencies responsible for protecting the public health and, in this context,

overseeing the development of AI medical solutions include the US Food & Drug Administration

(FDA), the European Medicines Agency (EMA), General Data Protection Regulation (GDPR), and
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the European regulation on artificial intelligence (EU AI) Act. These bodies ensure that AI inno-

vations comply with various regulations and standards, emphasizing transparency, safety reporting,

and socio-demographic representation. Technological, legal and ethical issues must be mitigated,

before AI-based systems can be fully adopted and trusted into clinical trials and workflows.

Addressing technical and legal considerations

Federated Learning (FL) [10] emerges as a promising solution to address some of the techno-

logical and legal issues associated with the adoption of AI-based systems in domains where data

privacy is particularly important, such as healthcare. FL is a framework that enables collaborative

learning across a group of participants without compromising the privacy of its participants. In FL

learning applications, only the model updates are shared, rather than sensitive raw data. The orig-

inal FL method was aimed at maximizing the user experience of mobile applications by learning

user behaviors across distributed learning models deployed to a group of mobile devices, resulting

in more accurate next-word predictions and improved face/voice recognition [10].

In a clinical context, each medical center functions as a learning device, with neural networks

trained on local patient data that remains within the center. This ensures compliance with GDPR

data protection regulations [11] and exemplifies a privacy-preserving method gradually being adopted

in medical applications. The literature shows that FL has been gradually applied to multiple tasks

such as predictive healthcare [12], organ and pathology segmentation [13], medical imaging clas-

sification [14], and biomedical data curation [15]. Its gradual implementation not only suggests a

promising solution to the analysis and aggregation of sensitive patient data distributed across mul-

tiple clinical institutions, but it also addresses the challenge of data volume commonly encountered

in clinical studies using deep learning solutions.

Addressing ethical considerations

A substantial amount of resources are invested into healthcare to support, strengthen, and trans-

form healthcare systems around the world. In 2011, the US reported an expenditure of 18% (3.2

trillion) of its gross domestic product (GDP) into healthcare [16], Their healthcare expenses are

expected to grow 7.5 percent by 2023 [17]. Despite the large investments and enthusiasm about the
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potential for AI to transform the healthcare industry, the literature reports that AI technologies in

healthcare had the slowest rate of adoption in 2019 [18]. Notably, it is believed that poor health

outcomes are attributed to sub-optimal decision-making [19, 20]. Decision-making is a central ac-

tivity in healthcare, requiring clinicians to make high-risk decisions based on prior knowledge, the

reliability of evidence and recommendations, and their own judgement [21]. AI has the potential to

enhance decision-making under certain conditions. The GDPR prohibits solely automated decision-

making and processing of health data, except with patient consent or for public interest reasons [22].

This regulation ensures that the AI system becomes a tool to support human decisions, rather than

simply replace human decisions with algorithms [23].

As a response to both of these issues, the computer science and human-computer interaction

(HCI) communities have produced significant research work, literature reviews, and special issues to

improve clinical application based on FL and clinical decision-making based on AI [24]. Figure 1.2

shows the growing interest among the community on both of these topics over the years. With

respect to clinical decision-making, the focus of these efforts is to slowly shift the development

of technologies from technology-centered design [25], which focuses on algorithm, to human-

centered design, or “human-AI” [26], which prioritizes the usability of systems. This is particularly

important in the medical domain, where severe consequences can resulting in direct adverse effects

on patients health and treatment. To that extent, transparent, informed, and rational clinical decision-

making is of utmost importance for the successful adoption of AI in healthcare.

1.1 Motivation

Despite the promising results achieved with deep learning (DL), several issues have limited its

broader impact in healthcare. These limitations are related to the inherent characteristics of medical

data, such as its complexity, poor annotation, unstructured nature, high dimensionality, and hetero-

geneity. Other challenges hindering the adoption of DL in medical settings include architectural

limitations such as interpretability, catastrophic forgetting, the vanishing gradient problem, model

compression, and overfitting. Moreover, ethical concerns related to the lack of transparency, trust in

AI solutions, and decision-making further contribute to the cautious adoption of DL in healthcare.
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Figure 1.2: Relevance of Federated Learning and human-AI decision-making over the years among
the research community. Data compiled from Google Scholar in June 2024.

Given the technical challenges of current DL methods and the compliance of FL with data pro-

tection regulations, we identify an opportunity to further the state-of-the-art of AI solutions and

their adoption in clinical settings. We posit that this can be achieved through a combination of im-

proved FL-based algorithms and extensive studies on human-AI interactions in decision-making.

Although FL is a viable tool to support privacy-preserving distributed training, it has several lim-

itations related to the network bandwidth, additional privacy guarantees and model protection, re-

producibility and interpretability and communication bottlenecks [27]. In particular, the literature

shows that the core averaging algorithm’s performance on heterogeneous data is still an active area

of research [28, 29, 30]. Therefore, in the development of the work in this thesis, we were mo-

tivated to (1) creating novel aggregation strategies to improve the learning of distributed machine

and deep learning models, especially for heterogeneous data sources, and (2) finding the balance

between confidence and caution in clinical decision-making through extensive evaluations of trust

and decision-making via human-AI interaction research.

1.2 Objectives and Contributions

This dissertation aims to enhance the adoption of AI-based technologies. Our contributions

are centered on the development of privacy-preservation algorithms and comprehensive analyses of
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the effect of AI uncertainty and its impact on trust and decision-making, while using neurological

disorders as case studies. Specifically, a novel FL-based aggregation algorithm was developed and

validated through clinical assessments of Parkinson’s disease. We also conducted extensive evalu-

ations about the interpretability of AI uncertainty using various visual formats and their effects on

trust and decision-making for both low-stakes and high-stakes scenarios, i.e. Alzheimer’s disease

prognosis. The main contributions of this dissertation are:

(1) A privacy-preserving aggregation algorithm.

• The introduction of Precision-weighted Federated Learning, a novel algorithm that lever-

ages the inherent heterogeneity in the training data to perform the aggregation of dis-

tributed models. We perform exploratory evaluations based on performance and relia-

bility with benchmark datasets, simulating different data distributions (Chapter 3).

• The demonstration of the clinical utility of the proposed algorithm. We extend perfor-

mance evaluations between various FL-based aggregation algorithms for the imputa-

tion of distributed clinical assessments. With a downstream analysis, we measure the

performance of these algorithm in the classification of PD patients based on symptom

progression (Chapter 4).

(2) Human-centered evaluations of transparency in clinical decision support systems.

• The assessment of the impact of visual representations of AI uncertainty in low-stake

decision-making. We measure changes in human perceptions (e.g. change of decision,

trust in AI, confidence in decisions) in response to visual uncertainty in static gaming

scenarios among individuals with different attitudes towards AI.(Chapter 5).

• The evaluation of different elements to assist in the understanding (e.g. description of

AI’s decision-making process and visual methods to show uncertainty) of AI uncer-

tainty in high-stake decision-making. We investigate how individual’s perceptions are

influenced when additional information about the AI model is provided when making

predictions of Alzheimer’s disease progression (Chapter 6).
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In summary, the work presented in this thesis address two of the challenging problems pre-

venting a smooth transition of AI innovations from research to clinical practice, concerning data

protection and transparency. Firstly, we leverage the data privacy-preserving mechanisms in the

FL framework and develop a novel variance-based algorithm for aggregating models. To validate

the clinical utility of the method, we present extensive evaluations about the generalization of dis-

tributed models and predictive power in a downstream analysis. Secondly, we encourage the de-

velopment of AI tools and methods promoting transparent solutions. In particular, we assess the

human perception of trustworthy AI systems in both low and high risk AI systems. Next-generation

medical tools can profoundly impact healthcare , but safety and data privacy, the approach to clinical

decision-making, and the transparency of clinical innovations need to be considered. These factors

can collectively enable compliance with regulatory standards as well as the successful adoption of

AI systems.

1.3 Thesis Outline

The remainder of this dissertation is organized as follows. Chapter 2 provides an overview

of deep learning, Federated Learning, and AI decision-support systems in healthcare. Chapter 3

introduces a novel Federated Learning-based aggregation methods and presents evaluations using

benchmark datasets. Chapter 4 provides in-depth evaluations of the proposed algorithm in a clinical

setting, along with a downstream analyses to validate its clinical utility. Chapter 5 assesses the

interpretability of AI solutions under uncertainty in low-stake decisions scenarios. In Chapter 6, we

extend the evaluations of AI interpretability to its impact on trust and decision-making in clinical

scenarios and specifically in Alzheimer’s disease. Lastly, we conclude and present future directions

of our work in Chapter 7.
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Chapter 2

Background

This chapter begins with an introduction to Artificial Intelligence (AI) and continues with a

discussion about Federated Learning (FL). This is followed by a discuss on clinical decision support

systems and their associations with human-AI interactions. Lastly, we briefly present the area of

application of this thesis, neurodegenerative diseases focusing on Parkinson’s Disease (PD) and

Alzheimer’s Disease (AD).

2.1 Artificial Intelligence

Artificial Intelligence (AI) was officially introduced by John McCarthy at a 1956 conference

at Dartmouth College, where it was defined as “the science and engineering of making intelligent

machines” [31]. Initially, the goal was to explore how machines could perform cognitive tasks

(e.g. multi-step reasoning, understand natural language, create designs, and reason about their own

reasoning) [32]. Consequently, the field lies at the intersection of cognitive science and computer

science. Due to its practical successes, particularly in machine learning, AI has generated significant

research interest over the decades.

Machine learning (ML) is a sub-discipline of artificial intelligence (AI)(Figure 2.1). Its general-

purpose algorithms are based on the “learning by example” principle and are intended to replicate

human intelligence. The intuition behind the basic machine learning concepts and operations were

originated after observing how neurons are interconnected and activated in the brain. Hence the
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name neural networks. A typical neural network architecture contains units called neurons that

transmit a signal in response to a stimulus based on the decisions for which these neurons are

governed. The most common activation functions are Sigmoid, Tanh, Rectified Linear Unit (ReLU),

and Leaky ReLU. These activation functions normalize the output signal and compute the gradient

values of the network parameters (weights or bias) in single non-linear processing hidden layer.

The fine-tuning process of the gradients is carried out by the back-propagation algorithm, which

calculates the partial derivatives of a given cost function with respect to the network parameters.

Thus, the back-propagation step allows the neural network to “learn”.

One of the major limitations of traditional machine learning is the need for human intervention

and expertise in the refinement of the raw data into useful features to help the model distinguish

between classes. For example, engineers would craft a feature extractor that would clean and curate

the raw data to facilitate the machine learning algorithm to find patterns, and thus, to perform a more

accurate classification analysis [33]. This technique is called feature engineering. Conventional

feature engineering techniques are often limited in their ability to learn new patterns of features

from the raw data directly, but this particular limitation is addressed with deep learning.

Conceptually, deep learning (DL) lies within the broader field of machine learning (Figure 2.1).

The success of DL algorithms is attributed to the ability to process natural data and to discover key

features in their raw form without human intervention. As the input data is transformed through mul-

tiple hidden layers, the representation of features is learned with multiple levels of abstraction [33].

Miotto et al. [34] further differentiates deep learning from machine learning in the unrestricted

number of hidden layers, connections, and their capability to learn meaningful abstractions of the

inputs, which makes deep learning algorithms more powerful than its predecessor. Interestingly,

deep learning paradigms, coupled with the availability of hardware acceleration and phenomenal

storage capacity, have resulted in major advances to many prediction tasks, including computer

vision, natural language processing, and speech recognition.
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Figure 2.1: AI Taxonomy: Artificial Intelligence (AI), Machine Learning (ML), Neural Networks
(NN), and Deep Learning (DL)

2.1.1 Challenges in Machine and Deep Learning

We describe the challenges and shortcoming of machine and deep learning for clinical appli-

cations. Clinical data is often not ready for deep learning analysis as it can be incomplete, imbal-

anced, or ambiguous, preventing its safe utilization for decision support and appropriate delivery of

care [35]. Moreover, DL approaches require large amounts of data for fine-tuning model parame-

ters, which is not always possible to compile due to data availability, privacy and security concerns.

Clinical data is also highly complex and heterogeneous due to the variations in modalities, hardware

configurations, acquisition protocols, genetic evolution, and demographics [36, 37]. As such, the

assumption of enough high-quality training data that is balanced in both the number of samples and

classes, independent and identical distributions (IID), does not hold.

As well as data-related issues, there are other common limitations specific to applying DL mod-

els in health related fields. It is crucial for clinicians to be confident about the soundness of the AI

recommendation, alongside the final prediction. Clinicians need to assess both the reliability and

limitations of the model (uncertainty scaling) and decide whether or not to trust in the algorithmic

advice. It is also important to understand the patterns and structures of features identified by mod-

els (interpretability) to mitigate the black-box effect in machine/deep learning networks. This can

help clinicians recognize the phenotypic properties of diseases driving the predictions [34]. Other

challenges are related to the tendency of AI models to forget old information when processing new
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data (catastrophic forgetting), difficulty updating weights with very small gradients (vanishing gra-

dient problem) or very large gradients (exploding gradient problem), and the complexity of the

architecture due to the large number of parameters (model compression), which affects the model’s

portabibiliy. Additionally, AI models often struggle to generalize to new, unseen data (overfitting)

and may perform poorly in target domain (underspecifications) [38, 39]. As such, the inherent char-

acteristics in the training data as well as the architecture and capabilities of AI models contributes

to biases during the training phase.

To address some of the previous issues, multiple techniques have been developed to enhance

model learning. Transfer learning allows a model to apply knowledge from a previous learned task

to a new, related task. However, this transfer of knowledge can sometimes negatively impact per-

formance, when the new task is less related or more complex to the previously learned task. In

such cases, additional human expertise is often needed to create a proper mapping that translates

representations between tasks [40]. A special type of transfer learning is domain adaptation, which

relaxes mismatches between data distributions in feature space, allowing a trained model to gener-

alize to the domain of interest [41]. Despite this, domain adaptation faces challenges due to data

volume, imbalanced samples and classes, and less explored tasks such as object detection, pose

estimation, and time series analysis.

Early attempts to satisfy the demand of data volume, involved a remote central server that aggre-

gated data from different locations. This method, known as centralized learning, is convenient as the

size of the training data is increased; however, security concerns associated with transferring data

to the central server have led to the development of new data aggregation techniques that emphasize

data privacy and security. As a result, new methods combine data from geographically distributed

sources while protecting data privacy, making it particularly valuable to clinical applications.

2.2 Federated Learning

Collaborative learning enables two or more individuals to learn something together. In the

context of computer science, this concept has been extended to distributed machine learning. Early

attempts to enable collaborative learning involved a centralized data center where raw data was
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collected, analyzed and processed from each participant. However, when at least one participant,

or even the centralized data center, cannot be trusted, a major concern about this technique is data

privacy. To accommodate for this, McMahan et al. [42] introduced Federated Learning (FL), a

technique that allows the training of decentralized machine and deep learning in a federation of

mobile devices. This technique not only allows collaborative learning but also encourages data

privacy as the raw data never leaves the device.

FL works in rounds of communication through a distributed batch of mobile devices to learn a

shared global model. At the beginning of each round, a server sends the initial shared global model

to every client. Then, every client uses the shared model to compute stochastic gradient descent

(SGD) optimizations with the local data and the resulting update (i.e. DNN weights) is sent to the

server for further processing. After receiving all individual updates, the central server aggregates

these updates via the Federated Averaging (FedAvg) algorithm and updates the shared global model

and the round of communication repeats again. As more and more rounds of communications are

performed across clients, the model learns a better representation of the data distribution and thus

performance of the shared global model is optimized. When compared to the performance of a cen-

tralized data center, federated learning not only achieves better accuracy metrics but also enhances

the overall user’s experience according to their device usage. Furthermore, when a new client joins

the round of communication, the global model contains enough information from other clients that

there is no need to re-train the model as it can be used immediately on the new device. Thus, Fed-

erated Learning is a promising solution for the analysis of privacy-sensitive data distributed across

a wide distribution of clients. Figure 2.2 shows how this algorithm employs an iterative model

averaging scheme in a FL framework.

2.2.1 The FedAvg algorithm

FL traditionally achieves the training of distributed machine/deep learning models with the Fed-

erated Averaging algorithm. The complete pseudo-code describing the FedAvg method is given in

Algorithm 1.

The amount of computation depends on these hyper-parameters: the learning rate η to train
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Figure 2.2: Federated Learning framework

client’s models; the client fraction C indicating the number of clients participating in the compu-

tation on each round; the appropriate number of training passes (epochs) E over its local data; and

the most effective local mini-batch size B. After training, each client shares local stochastic gradient

descent (SGD) updates while minimizing the objective function described in Equation 1:

min
w∈Rd

f(w) with f(w) =
1

n

n∑
i=1

fi(w) (1)

where n is the number of data samples and fi(w) = ℓ(xi, yi;w) is the loss of the prediction on

example (xi, yi) made with model parameter w. Since it is expected that the data will be partitioned

over K clients, the objective function can be rewritten in terms of Pk (Equation 2); that is, the set

of data samples on a given client k, and its size nk = |Pk| as:

f(w) =

K∑
k=1

nk

n
Fk(w) with Fk(w) =

1

nk

∑
i∈Pk

fi(w), (2)

The aforementioned stochastic gradient descent optimization is expressed as gk = ∇Fk(wt),

where each client k takes a step on the gradient descent with the current model parameters wt

using its local data. An equivalent update is shown in Equation 3, denoting all clients’ parameters
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Algorithm 1 FederatedAveraging: The K clients are indexed by k; B is the local minibatch size, E
is the number of local epochs, and η is the learning rate.

1: Server executes:
2: initialize w0

3: for each round t = 1, 2, . . . do
4: m← max(C ·K, 1)
5: St ← (random set of m clients)
6: for each client k ∈ St in parallel do
7: wk

t+1 ← ClientUpdate(k,wt)
8: end for
9: wt+1 ←

∑K
k=1

nk
n wk

t+1

10: end for

11: function CLIENTUPDATE(k,w) ▷ Run on client k
12: β ← (split Pk into batches of size B)
13: for each local epoch i from 1 to E do
14: for each batch b ∈ β do
15: w ← w − η∇ℓ(w; b)
16: end for
17: end for
18: return w to server
19: end function

being updated in parallel with a fixed learning rate η. After local clients updates are computed, the

parameters of each model are transferred to the server, where the server applies Equation 4. In this

step, the server updates the global model with the weighted average of parameters across all clients.

wk
t+1 ← wt − ηgk for all k (3)

wt+1 ← wt − η

K∑
k=1

nk

n
gk (4)

2.3 Clinical Decision Support Systems

The literature shows a number of research work on computer-assisted tools as clinical decision

support systems (CDSS). CDSSs are software tools designed to augment clinical decision-making
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by allowing clinicians or patients to enter specific characteristics or symptoms of a person into a

machine with enough clinical knowledge, to receive and decide on the results from personalized

assessments or recommendations [43, 44]. Since their first use in the 1980s, CSSSs have aimed to

assist physicians in their making complex decisions. Today, CDSSs continue to provide this sup-

port through digital mediums such as electronic health records (EHR) and other computer-based

clinical workflows. Initially, conventional CDSS relied on decision rules explicitly coded based on

medical experience (knowledge-based systems), but after the introduction of AI into healthcare, ma-

chine learning replaced these explicit rules (non-knowledge-based systems), expanding their level

of performance [45].

Recent technological advancements have transformed the landscape for CDSSs. The widespread

use of mobile computing, AI, and wireless devices enables the collection and analysis of vast

amounts of data, enhancing the role of CDSS in the decision-making process. However, the in-

ternal mechanisms of machine learning and deep learning models often remain opaque (e.g., black-

box). While this lack of transparency may not be a significant issue in other fields, it is critical in

healthcare. Clinicians need to understand the reasoning behind AI-generated recommendations or

predictions to judge whether or not to follow algorithmic advice, especially in cases of disagreement

or high-stake decision making [34, 1]. As a result, many research papers, groups, and communities

advocate for greater transparency in the design phase of AI models to clearly explain their underly-

ing principles [46].

2.3.1 Decision-Making and Trust

Typically, the adoption of assistive AI systems is limited by a lack of trust of humans into an

AI’s prediction [47]. Trust is defined as the degree to which a person or group of people relies

on or has confidence in the dependability of someone or something to fulfill their promise [48].

Thus, the development of AI must conform to the principles of trustworthy AI. This is critical for

decision-makers in the healthcare domain, in situations when algorithmic advice can support their

decisions. Transparency in AI decisions is essential before it can be used for patient care, ensuring

that the AI is trusted when it is accurate and identified as untrustworthy when it is not [49]. There
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are two interconnected areas within the field of AI that seek to enhance AI transparency, human-

AI and explainable AI (XAI). Human-AI research primarily aims to augment human capabilities

and enhance decision-making processes by studying the usability, design, and overall experience

of interacting with AI system. On the other hand, XAI focuses more on accurately estimating and

communicating an AI model’s reliability to decision-makers, providing a clearer interpretation of

the AI’s behavior [50]. In this works presented in this manuscript, we focus our contributions to

human-AI research.

Human-AI, also known as “Human-Centered AI” is a design paradigm that emerged among the

community of AI researchers as a result of the growing interest in augmenting human capabilities.

This synergy would result in enhanced human decision-making process with AI assistance. As

explained by Shneiderman [51], the collaboration between humans and computers involves people

working alongside technology, in charge of technology, where better questions and more confident

decisions can be made based on the abundant information provided by the system. The success of

human-AI has lead the development of AI-driven decision support systems across various domains,

such as law and civic, medicine and healthcare, finance, education, leisure, and others.

To enhance decision-making through design choices, significant efforts have been made to es-

tablish guidelines for developing AI technologies with a focus on human factors. For instance,

after reviewing 20 years of research literature, Amershi [52] proposed 18 design guidelines cate-

gorized by different stages of system interaction to evaluate the development of emerging design

ideas, whereas Horvitz [53] provided guidelines for the evaluation of the usability of such sys-

tems. Additionally, Laiet al. [1] identified common evaluation metrics for developing human-AI

decision-making systems, classifying them based on their intended goals. The first category, related

to the decision task, includes metrics such as performance (efficacy), speed of task completion (effi-

ciency), task-level satisfaction, and mental demand. The second category involves evaluations of the

AI itself, focusing on the user’s perception of trust, fairness, usability, satisfaction, and understand-

ing of AI predictions. These guidelines and design choices provide standardized measurements of

model performance and reliability in normal, stressed, and adversarial situations, leading to im-

proved decision-making and user experience.
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2.3.2 Uncertainty

Research in organizational behavior and psychology indicates that the adoption of new tech-

nology is influenced by a users perceptions and beliefs about the technology [54]. This insight

has motivated prompted researchers to explore people’s perceptions of AI uncertainty as a met-

ric for model adoption. If the AI technology is not believed to perform as well as or better than

the intended user, its usability will be limited, potentially leading to its rejection. To address this

issue, previous work has focused on bridging the gap between skepticism and model acceptance

by designing CDSS that display AI uncertainty in their predictions and measuring its impact on

decision-making through visual representations of AI uncertainty, user studies, and augmented real-

ity environments [55, 56, 57, 58]. These techniques have been shown to provide users with a clearer

understanding of AI confidence levels, thereby facilitating the adoption of algorithmic recommen-

dations as tools to support human decisions. Figure 2.3 provides a few examples representing AI

uncertainty.

Figure 2.3: Different ways to represent AI uncertainty: icon array chart (left), quantile dot plot
(middle), and predictive distribution (left)

2.4 Neurodegenerative Diseases

Neurological disorders mainly affect the nervous system, including the brain, spinal cord, and

peripheral nerves. Examples of these disorders include multiple sclerosis, traumatic brain injury,

stroke and diverse forms of dementia. Neurodegenerative diseases a subset of neurological dis-

orders, specifically involve the progressive degeneration of neurons, leading to symptoms such as

cognitive decline, motor dysfunction, and other neurological impairments. Dementia is a progres-

sive neurodegenerative disease that primarily affects memory, reasoning, language, physical and
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cognitive abilities. Most forms of dementia have a significant impact on the autonomy of individu-

als and their daily activities, leading to physical, psychological, and cognitive impairments. In this

manuscript, we focus our works on Alzheimer’s disease and Parkinson’s disease.

2.4.1 Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common form of dementia. Similar to the accumulation

of fatty deposits in arteries, AD induces an abnormal accumulation of protein fragments β-amyloid

outside neurons, as well as, twisted fibers of the protein tau inside the neurons, causing damage

to the brain tissue and the neurons, mostly in the Hippocampus and temporal grey matter, stop

functioning and die [59]. The effects of the damage are irreversible, and worsen over time. The

global statistics of Alzheimer’s estimate that 1 out of 85 individuals will be living with AD by

2025 [60], which is an imminent concern for present and future generations. In the United States,

morbidity significantly increased between 2000 and 2017, with Alzheimer’s-related deaths rising

by 145%, making it the sixth leading cause of death in the country [59].

The prodromal stage of AD is Mild Cognitive Impairment (MCI). MCI is a syndrome that ex-

presses a greater cognitive decline than the expected for an individual’s age and education level.

Some patients can perform everyday tasks without noticing the syndrome as it does not interfere

with activities of daily life, but in other instances MCI develops memory complaints and deficits

(e.g., amnestic mild cognitive impairment). In fact, more than half of patients with MCI are at

higher risk of developing AD within 5 years [61, 62]. As such, MCI currently constitutes the earli-

est possible traceable stage for AD and, therefore, it is critical to develop new tools that can provide

better statistical estimations of these converting factors, or even better, to identify new ones for an

early detection of AD.

2.4.2 Parkinson’s Disease

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disesase. It is be-

lieved that dopamine-deprivation in the substantia nigra and basal ganglia is responsible for the

development of this disease [63]. Both areas of the brain are responsible for the coordination motor

movement and reward functions, which leads to classic motor symptoms such as tremor, rigidity,
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and bradykinesia, which affects patients daily functions severely. In addition, psychiatric issues, in-

cluding compulsive behaviors, depression, cognitive decline, and sleep disorders, can also affect PD

patients [64, 65]. Approximately 40% of those with PD develop dementia [66]. According to the

Global Burden of Disease (GBD) study [67] published in 2016, 6.1 million individuals experience

PD around the world and, based on published prevalence studies, it is estimated that this number

will significantly increase, potentially reaching 9.3 million people by 2030 [68].

2.4.3 Clinical Assessments and Medical Imaging

In practice, clinicians perform periodic evaluations to assess the degree and course of neu-

rodegeneration. One of the first and most basic types of screening currently used in the clinic are

non-computerized assessments where each screening test is administered by a certified therapist.

The information obtained from screening testing help in determining the state and severity of motor

and non-motor symptoms. Cognitive assessments most commonly used by clinicians are the Mon-

treal Cognitive Assessment, Mini-Mental State Examination, Clock Drawing Test, among many

others [69]. To assess motor symptoms, the most common standardized rating scale is the Unified

Parkinson’s Disease Rating scale (UPDRS), Hoehn and Yahr staging, and the Schwab and England

rating of activities of daily living [70]

Depending on the clinical protocol, additional biomedical imaging evaluations may be per-

formed on the patient at the time of the visit. A variety of image modalities have been used for the

detection of abnormal neurodegeneration. It is common for magnetic resonance imaging (MRI) to

be used to quantify the degree of neurodegeneration as it provides detailed images of brain tissues.

Alternatively, positron emission tomography (PET) scans have been used to quantify the number of

twisted fibers inside neurons, measure the levels of phosphorylated tau and cortical tau in the cere-

brospinal fluid (CSF), identify neurodegeneration, and monitor the levels of glucose metabolism in

the brain. Similarly, amyloid PET imaging and CSF testings of the amyloid protein can be utilized

to measure the levels of deposits of protein fragments. More recently, additional image modalities,

such as structural and functional MRI, and amyloid Florbetapir (18F) tracers in PET imaging have

facilitated the discrimination of damaged gray tissue linked to dementia [71]. Figure 2.4 contains

three MRI scans, (left) normal cognitive decline, (middle) neurodegeneration on one patient with
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Alzheimer’s disease, and Parkinson’s disease (right).

Figure 2.4: Comparison of normal cognitive decline (left) and neurodegeneation with Alzheimer’s
disease (middle) and Parkinson’s disease (right). Images courtesy of Simon Crête.

2.5 Summary

In this chapter, we provided a brief introduction to AI. We described the differences between

traditional ML and BL development, discussed their current challenges as highlighted in the liter-

ature, and included some of the methods proposed to address these limitations. Specifically, we

presented an overview of the FL framework and its core aggregation algorithm, the Federated Av-

eraging method. Additionally, we introduced CDSS and reviewed literature demonstrating their

improvements in decision-making and trust in AI, particularly through evaluations of AI uncer-

tainty. Finally, we provided an overview of Alzheimer’s disease and Parkinson’s disease, using

them as case studies.
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Chapter 3

Precision-weighted Federated Learning

Preface

This chapter is the first of two aimed at enhancing data privacy in AI model development,

focusing on the technical and legal challenges of AI adoption in healthcare. In this first chapter, we

introduce the Precision-weighted Federated Learning (PW) method, a novel aggregation algorithm

for training distributed machine/deep learning models. Unlike traditional Federated Learning, PW

uses the inverse of variance estimations from individual clients as a weighting factor, similar to the

meta-analysis method in genetics. In the next chapter (Chapter 4), we explore how PW can be used

to improve the quality of data across multiple clinical centers. This is to highlight the proposed

method’s utility in clinical practice.

In this chapter, we introduce the PW algorithm, effectively handles highly heterogeneous and

sensitive data sources, crucial for applications like clinical data, which are often sensitive and var-

ied. PW maintains data privacy by ensuring sensitive information remains secure and decentralized

within each participant’s data storage while still enabling distributed learning. This method ad-

dresses data heterogeneity and privacy challenges and complies with data protection regulations,

thus supporting the broader adoption and trust of AI technologies in sensitive domains such as

healthcare.

This work contains proprietary information. It resulted in the filing of a US patent 1 and a
1Co-inventor of US provisional patent application entitled ”METHOD OF AND SYSTEM FOR PROVIDING AN
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paper [72] to be submitted to IEEE Systems, Man and Cybernetics Society and currently on arXiv.

AGGREGATED MACHINE LEARNING MODEL IN A FEDERATED LEARNING ENVIRONMENT AND DETER-
MINING RELATIVE CONTRIBUTION OF LOCAL DATASETS THERETO” that was filed on January 19th of 2021
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Abstract

Federated Learning using the Federated Averaging algorithm has shown great advantages for large-

scale applications that rely on collaborative learning, especially when the training data is either

unbalanced or inaccessible due to privacy constraints. We hypothesize that Federated Averaging

underestimates the full extent of heterogeneity of data when the aggregation is performed. We pro-

pose Precision-weighted Federated Learning2 a novel algorithm that takes into account the second

raw moment (uncentered variance) of the stochastic gradient when computing the weighted average

of the parameters of independent models trained in a Federated Learning setting. With Precision-

weighted Federated Learning, we address the communication and statistical challenges for the train-

ing of distributed models with private data and provide an alternate averaging scheme that leverages

the heterogeneity of the data when it has a large diversity of features in its composition. Our method

was evaluated using three standard image classification datasets (MNIST, Fashion-MNIST, and CI-

FAR) with two different data partitioning strategies (independent and identically distributed (IID),

and non-identical and non-independent (non-IID)) to measure the performance and speed of our

method in resource-constrained environments, such as mobile and IoT devices. The experimental

results demonstrate that we can obtain a good balance between computational efficiency and con-

vergence rates with Precision-weighted Federated Learning. Our performance evaluations show 9%

better predictions with MNIST, 18% with Fashion-MNIST, and 5% with CIFAR-10 in the non-IID

setting. Further reliability evaluations ratify the stability in our method by reaching a 99% reliability

index with IID partitions and 96% with non-IID partitions. In addition, we obtained a 20x speedup

on Fashion-MNIST with only 10 clients and up to 37x with 100 clients participating in the aggrega-

tion concurrently per communication round. The results indicate that Precision-weighted Federated

Learning is an effective and faster alternative approach for aggregating private data, especially in

domains where data is highly heterogeneous.
2A US provisional patent application has been filed for protecting at least one part of the innovation disclosed in this

article
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3.1 Introduction

Machine learning based on distributed deep neural networks (DNNs) has gained significant

traction in both research and industry [33, 73], with many applications in IoT, for mobile devices,

and in the automobile sector. For example, IoT devices and sensors can be protected from web

attacks during the exchanging of data between the device and web services (or data stores) in the

cloud [74]. Mobile devices use distributed learning models to assist in vision tasks for automatic

corner detection in photographs [75], prediction tasks for text entry [76], and recognition tasks for

image matching and speech recognition [33]. Alternatively, modern automobiles utilize distributed

machine learning models to improve drivers’ experience, vehicle’s self-diagnostics and reporting

capabilities [77].

Despite the benefits provided by distributed machine learning, data privacy and data aggregation

are raising concerns addressed in various resource-constrained domains. For example, the commu-

nication costs incurred when updating deep learning models in mobile devices is expensive for most

users as their internet bandwidths are typically low. In addition, the data used during the training

of models in mobile devices is privacy-sensitive, and operations of raw data outside the portable

devices are susceptible to attacks. One solution is using secure protocols [78] or differential-privacy

guarantees [79, 80] to ensure that data is transferred between clients and servers safely. Another

solution is to use data aggregation for distributed DNNs mitigating the need for transferring data

to a central data store. With this solution, the learning occurs at the client level where models are

optimized locally across the distributed clients. This approach is termed Federated Learning [42].

McMahan et al. [42] introduced the notion of Federated Learning in a distributed setting of

mobile devices. Their developed Federated Averaging algorithm uses numerous communication

rounds where all participating devices send their local learning parameters, i.e. DNN weights, to be

aggregated in a central server in order to create a global shared model. Once the global model is

computed, it is distributed to every client replacing the current deep learning model. Since only the

global model is communicated in these rounds, data aggregation is achieved, even though the client’s

raw data never leaves the device. Given such a setup, individual clients can collaboratively learn

an averaged shared model without compromising confidentiality. This makes Federated Learning a
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promising solution to the analysis of privacy-sensitive data distributed across multiple clients.

In McMahan et al.’s original paper the local learning parameters on each client are aggregated

by the central server and the global model is maintained with the weighted average of these param-

eters [42]. There are potentially a few statistical shortcomings identified with this type of averaging

method. If we consider that the aggregation of weights across multiple clients is similar to a meta-

analysis which synthesizes the effects of diversity across multiple studies then variation across the

population should be considered. Meta-analysis is a quantitative method that combines results from

different studies on the same topic in order to draw a general conclusion and to evaluate the consis-

tency among study findings [81, 82]. There is compelling evidence that demonstrates a misleading

interpretation of results and a reduction of statistical power when combining data from different

sources without accounting for variation across the sources [83, 84, 85].

3.1.1 Hypotheses

In this chapter, we build on the work of McMahan et al.[42], and propose the Precision-

weighted Federated Learning algorithm, a novel variance-based averaging scheme to aggregate

model weights across clients. The proposed method penalizes the model uncertainty at the client

level to improve the robustness of the centralized model, regardless of the data distribution: in-

dependent and identically distributed (IID) or non-identical and non-independent (non-IID). Our

approach makes use of the uncentered variance of the gradient estimator from the Adam optimizer

[86] to compute the weighted average at each communication step (Figure 3.1).

We hypothesize that the Federated Averaging algorithm underestimates the full extent of het-

erogeneity on domains where data is complex with a large diversity of features in its composition.

More specifically, we hypothesized that: (1) Precision-weighted Federated Learning can leverage in-

dividual intra-variability when averaging multiple sources to improve performances when the train-

ing data is highly-heterogeneous across sources, and (2) it can harness individual inter-variability

when averaging multiple sources to accelerate the learning process, especially when data is highly-

heterogeneous across sources.

To test our hypothesis we compared the performance of the original Federated Averaging algo-

rithm against the Precision-weighted method in a number of image classification tasks using MNIST
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Figure 3.1: Aggregation of weights and variance via Precision-weighted Federated Learning: local
models are trained across clients (Left), weights and variances are aggregated by the central server
(Bottom), a centralized model is computed (Right) and the aggregated weights are redistributed
across clients (Top).

[87], Fashion-MNIST [88], and CIFAR-10 [89] datasets.

3.1.2 Contributions

The contributions of this chapter are threefold: (1) We propose a novel algorithm for the averag-

ing of distributed models using the estimated variance of the stochastic gradient computed indepen-

dently by each client in a Federated Learning environment; (2) We provide extensive evaluations of

the method using benchmark image classifications datasets demonstrating its robustness to unbal-

anced and non-IID data distributions; and (3) We compare the method to Federated Averaging on

empirical experiments, and with fewer communication rounds we obtain comparable accuracy on

IID distributions, greater accuracy on non-IID distributions, and more stable accuracy over commu-

nication rounds over all distributions.

3.2 Related Work

There is an increasing concern for aggregation of private data in the data mining domain, par-

ticularly when models require access to a client’s data in order to improve their accuracy [90, 91].
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Data privacy and data aggregation are thus concerns that are actively being investigated for both

centralized [92, 93] and decentralized (or distributed) [42] data environments.

The method proposed in this chapter is dedicated to the aggregation of weights for DNNs with

decentralized data. It is, therefore, important to observe the communication challenges addressed

in previous work, mainly the security and protection of data, and the reduction of the steps needed

in communication cycles. Bonawitz et al. [78] proposed a complementary approach to Federated

Learning: a communication-efficient secure aggregation protocol for high-dimensional data. In

Bonawitz et al.’s work, Federated Learning was used in the training of DNN models for mobile

devices using secure aggregation algorithms to protect the data residing on individual mobile de-

vices. On the other hand, Konec̆nỳ et al. [94] presented two optimization algorithms (structural

and sketched updates) to reduce the communication cost in the training of deep neural networks in

a federation of participant mobile devices.

As well as communication challenges, the aggregation of data in decentralized environments is

impacted by statistical challenges, especially when the training data is non-IID. Smith et al. [95]

highlighted the fact that data across a DNN is often non-IID distributed; that is, each participant

updating the shared model in a Federated Learning setting generates a distinct distribution of data.

One way to handle data heterogeneity is by using multi-task learning (MTL) frameworks. Smith et

al. created the MOCHA framework, which enables the analysis of data variability in a Federated

MTL. However, as noted by Zhao et al. [96], the Federated MTL is not comparable with the

original work on Federated Learning as the proposed framework does not apply to non-convex deep

learning models. In the same paper, Zhao et al. proposed a data-sharing strategy to improve test-

accuracy when data is non-IID. This method requires a small subset of data consisting of a uniform

distribution to be shared across clients. Albeit promising results can be achieved with this method,

the shared subset of data may not always be available, especially when data is highly sensitive in

nature. Other methods explore the statistical challenges of Federated Learning by creating synthetic

data using Dirichlet distributions with different concentration parameters. This technique allows the

creation of more realistic non-IID data distributions at the client level, which are used to examine

the effects on aggregations carried out with the Federated Learning algorithm [96, 30].

There is a diverse body of work that further explores collaborative learning, data sharing and

27



data preservation across multiple data centers. Note that all of these methods are substantially dif-

ferent than the original work on Federated Learning. Although some yield comparable or even

better results than Federated Learning they lack empirical observations with non-IID data. Chang

et al. [97] addressed the problem of distributed learning on medical data and compared five heuris-

tics: separate training on subsets, training on pooled data, weight averaging, and weight transfer

(single and cyclical transfer). Of all these heuristics, training on pooled data has the best prediction

performance and training on cyclical weight transfer achieved comparable testing accuracy to that

of centrally trained models. Xu et al. [98] introduced a collaborative deep learning (co-learning)

method for the training of a shared global model using a cyclical learning rate schedule mixed with

an incremental number of epochs. Their results demonstrate that the method is comparable with

data centralized learning. Lalitha et al. [99] trained a model over a network of devices without a

centralized controller. However, the users could communicate locally with their closest neighbors.

The performance of the proposed algorithm on two users matches the performance of an algorithm

trained by a central user with access to all data. They left a full empirical evaluation for future

research. Chen et al. [100] proposed a Federated Meta-Learning framework for the training of

recommended systems. The framework permits data sharing at the algorithm level, preserves data

privacy, and reports an increase of 12.4% in accuracy compared with previous results. Kim et al.

[101] addressed the problem of catastrophic forgetting (the ability of neural networks to learn new

tasks while discarding knowledge about previous learned tasks) in a distributed learning environ-

ment on clinical data and introduced an approach for knowledge preservation. Similarly, Bui et

al. [102] unify continual learning and Federated Learning in a partitioned variational inference

framework. Vepakomma et al. [103], introduced split learning, which addresses challenges spe-

cific to health data, such as different modalities across clients, no label sharing and semi-supervised

learning.

In the field of genetics, genome-wide association studies aim to identify genetic variants asso-

ciated to phenotypes of interest. As the effect of these variants on phenotypes is usually moderate,

individual hospital studies are under-powered to detect them with confidence and a growing number

of consortia are created to combine data across studies. As patient genotypes are privacy sensi-

tive, these consortia use meta-analyses to aggregate summary statistics from multiple studies. This
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increases the statistical power of finding a mutation related to a phenotype, while protecting the pri-

vacy of individual genotypes. Lin and Zang [85] demonstrated that meta-analyses achieve compara-

ble efficiency as analyses of pooled individual participants under mild assumptions. This proximity

with the distributed learning setting motivated us to create the Precision-weighted Federated Learn-

ing, an averaging approach that considers a meta-analysis weighting scheme in the aggregation of

the effects of the variances from the weights generated during training of the neural network.

3.3 Precision-weighted Federated Learning

The Precision-weighted Federated Learning approach combines the weights from each client

into a globally shared model where the aggregation is achieved by averaging the weights by the

inverse of their estimated variance. We will use the same notations than the Federated Averaging

algorithm [42] to describe the implementation of the proposed method. We consider the general

objective

min
w∈Rd

f(w) with f(w) =
1

n
fi(w), (5)

for i = 1, ..., n, where n is the number of data examples and fi(w) = ℓ(xi, yi;w) is the loss of

the prediction on example (xi, yi) made with model parameters w. If the data is partitioned over K

clients, McMahan et al. rewrite the objective of Equation 5 as follows:

f(w) =
K∑
k=1

nk

n
Fk(w) with Fk(w) =

1

nk

∑
i∈Pk

fi(w), (6)

where Pk is the set of indexes of data examples on client k and nk = |Pk|. Under a uniform

distribution of training examples over the clients, the IID assumption, the expectation of the client-

specific loss Fk(w) is f(w). In a non-IID setting however, this result does not hold [42].

The corresponding stochastic gradient descent for optimization with a fixed learning rate η con-

sists in computing the gradient

gk = ∇Fk(wt) (7)
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for each client k at iteration t, and applying the two successive updates

wk
t+1 ← wt − ηgk for all k (8)

wt+1 ←
K∑
k=1

nk

n
wk
t+1. (9)

With Precision-weighted Federated Learning the global update of Equation 9 is replaced by

wt+1 ←
K∑
k=1

(
vkt+1

)−1∑K
k=1

(
vkt+1

)−1w
k
t+1 (10)

where vkt+1 denotes the variance of the maximum likelihood estimator of weight w at iteration t+1

for client k. This inverse variance weighting scheme used in Equation 10 corresponds to the fixed

effect model used in meta-analyses. Intuitively, this method allows taking into consideration the

uncertainty of each client into the aggregated result and uses the estimated variance to penalize

the model uncertainty at the client level: models with high estimated variance across clients have

a smaller impact on the aggregation result at the current communication round. Although vkt+1 is

inversely proportional to the sample size, it is a more nuanced summary as it captures additional

uncertainty about the client’s weights. The complete algorithm is provided in Algorithm 2.

3.3.1 The Precision-weighted Federated Learning algorithm

FL traditionally achieves the training of distributed machine/deep learning models with the Fed-

erated Averaging algorithm. The complete pseudo-code describing the FedAvg method is given in

Algorithm 1.

To estimate the inverse of the variance of the maximum likelihood, we use the raw second

moment estimate (uncentered variance) from the Adam optimizer [86], which approximates the

diagonal of the Fisher information matrix [104]. Our experiments show that this approximation

manages to capture the uncertainty of weights in practice.
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Algorithm 2 Precision-weighted Federated Learning Algorithm. The K clients are indexed by k;
B is the local minibatch size, E is the number of local epochs, and η is the learning rate.

1: Server executes:
2: initialize w0

3: for each round t = 1, 2, . . . do
4: m← max(C ·K, 1)
5: St ← (random set of m clients)
6: for each client k ∈ St in parallel do
7: wk

t+1, v
k
t+1 ← ClientUpdate(k,wt)

8: end for
9: wt+1 ←

∑K
k=1

(vkt+1)
−1∑K

k=1(vkt+1)
−1w

k
t+1

10: end for

11: function CLIENTUPDATE(k,w) ▷ Run on client k
12: β ← (split Pk into batches of size B)
13: for each local epoch i from 1 to E do
14: for each batch b ∈ β do
15: w ← w − η∇ℓ(w; b)
16: end for
17: if second half of last epoch then ▷ Weighted-Variance Callback
18: v ← v 1

V
19: end if
20: end for
21: return w, v to server
22: end function

3.4 Methodology

We tested the Precision-weighted Federated Learning method under different data distributions

for image classification tasks. The baseline we use is the Federated Averaging approach. Firstly, we

explore the performance of our method in resource-constrained environments, applicable to areas

where memory is limited, such as mobile and IoT devices. Next, we present a scenario in which

we investigate the speedup of our method as a function of the number of clients participating in the

aggregation of weights. Finally, we present the analysis for the generalization of the global model

when the parameter variance is applied to the aggregation of parameters of all the models in the

distributed learning process.

Since the statistics of the data are influenced by the way it is distributed across clients, we tested

the proposed methodology with both IID and non-IID data distributions. To create these scenarios,
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we distributed the training data across individual clients in two configurations (see Section 3.4.2).

The complexity of the image recognition problems was increased in agreement with the method-

ology proposed by Scheidegge et al. [105] and therefore MNIST, Fashion-MNIST and CIFAR-10

were used as benchmarks. Furthermore, we utilized modest convolutional architectures to compare

training speed and optimal convergence with our method and Federated Averaging and to explain

the effects of variance in the generalization of the centralized model. All of the experiments were

executed on an NVIDIA Tesla V100 Graphic Processing Unit.

3.4.1 Datasets

MNIST: The MNIST dataset consist of 70,000 gray-scale images (28 x 28 pixels in size) which

are divided in 60,000 training and 10,000 test samples. The images are grouped in 10 classes

corresponding to the handwritten numbers from zero to nine.

CIFAR-10: The CIFAR-10 dataset consists of 60,000 colored images (36 x 36 pixels in size) divided

in a training set of 50,000 and a testing set of 10,000 images. Images in CIFAR-10 are grouped into

10 mutually exclusive classes of animals and vehicles: airplanes, automobiles, birds, cats, deer,

dogs, frogs, horses, ships, and trucks.

Fashion-MNIST: The Fashion-MNIST dataset contains the same number of samples, image dimen-

sions and number of classes (different labels) in its training and testing sets than MNIST, however,

the images are of clothing (e.g. t-shirts, coats, dresses and sandals).

3.4.2 Data Distributions

IID: With IID data distribution the number of classes and the number of samples per class were as-

signed to clients with a uniform distribution. We shuffled the training data and created one partition

per client with an equal number of samples per class. For example, 10 clients receive 600 samples

per class. Figure 3.2 shows an example with 5 clients and 4 classes.

Non-IID: With this data partition, two classes are assigned per client at most. This is similar to the

partition shown in [42] used to explore the limits of the Federated Averaging approach, which we

now use to test and compare our algorithm under similar circumstances. In this extreme scenario,

the number of samples per class per client is evenly distributed, creating a balanced scenario (Figure
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Figure 3.2: Example of a IID data distributions with 5 clients and 4 classes

3.3).

3.4.3 Convolutional Neural Networks

The architectures used in our experiments were CNNs trained from scratch. All artificial net-

works were based on the Keras sequential model, trained with the Adam optimizer and an objective

function as defined by categorical cross-entropy.

For MNIST and Fashion-MNIST the architecture of the first artificial neural network consisted

of two convolutional layers using 3x3 kernels (each with 32 convolution filters). A rectified linear

unit (ReLU) activation is performed right after each convolution, followed with a 2x2 max pooling

used to reduce the spatial dimension, a dropout layer used to prevent overfitting, a fully densely-

connected layer (with 128 units using a ReLu activation), and leading to a final softmax output layer

(600,810 total parameters). The network was trained from scratch using partitions of training data

and the final model was evaluated using the testing set.

A second network was used to train our models using data from the CIFAR-10 dataset. The
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Figure 3.3: Example of a non-IID data distributions with 5 clients and 4 classes

architecture consisted of one 3x3 convolutional layer (with 32 convolution filter using a ReLu acti-

vation), followed with a 2x2 max pooling, a batch normalization layer; a second 3x3 convolutional

layer (with 64 convolution filter using a ReLu activation), followed with, a batch normalization layer

and a 2x2 max pooling; a dropout layer; one fully densely-connected layer (with 1024 and 512 units

using a ReLu activation), another dropout layer; and a final softmax output layer (4,225,354 total

parameters).

3.4.4 Adam and the Weighted-Variance Callback

A key component in the formulation of the weighted average algorithm is the estimation of the

individual intra-variability expressed during the training of local data. As the training of the model

proceeds, we capture the weights’ variances via the second raw moment (uncentered variance) of the

stochastic gradient descent from the Adam optimizer and use it in the construction of the Precision-

weighted Federated Learning algorithm. In order to access the internal statistics of the model during

training, we use a callback function that averages the variance estimators on the second half of the

last epoch. The last epoch is chosen as it provides a more accurate prediction of the variance of the

final weight.
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3.5 Results

This section presents the results of our model predictions trained with the two aforementioned

data partitioning strategies in Section 3.4 and demonstrates the limits and practical application of

the proposed method. All of our experiments use a different random seeds to randomize the order of

observations during the training of the local models. As noted in McMahan et al.’s paper, averaging

federated models from different initial conditions leads to poor results. Thus, in order to avoid the

drastic loss of accuracy observed on independent initialization of models for general non-convex

objectives, each local model was trained using a shared random initialization for the first round of

communication. After the first round of communication, all local models were initialized with the

globally averaged model aggregated from the previous round.

3.5.1 Evaluating Computational Resources

Experiments with MNIST and Fashion-MNIST were conducted by using 500 rounds of commu-

nication, 1 epoch, and batch sizes (10, 25, 50, 100, and 200). Similarly, experiments with CIFAR-10

were executed for 500 rounds of communication, with 10 epochs, and batch sizes (10, 25, 50, 100,

and 200). All of the training samples of each dataset were arranged among 10 clients.

The comparison results of test-accuracy between Federated Averaging and Precision-weighted

Federated Learning aggregation methods using IID partitions is given in Table 3.1. Given this

setup, test-accuracy scores are comparable with those obtained using Federated Averaging, however,

our method is more stable. When we analyze the results of MNIST and Fashion-MNIST, we ob-

serve that test-accuracy values are consistent across batch sizes. The accuracy curves of Precision-

weighted Federated Learning and the Federated Averaging for these datasets are show in Figures 3.4

and 3.5). Alternatively, CIFAR-10 models trained with B = 10 using Precision-weighted Federated

Learning show an improvement of 12% (Figure 3.6) with more stable predictions. This improved

accuracy on CIFAR-10 could indicate that there is greater heterogeneity in models trained on natural

images than in models trained on grayscale images, even in an IID setting.

As discussed in the introduction section, we hypothesized improvements on the performance
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Table 3.1: Comparison of test-accuracy results (IID data distributions)
MNIST Fashion-MNIST CIFAR-10

FedAvg PW FedAvg PW FedAvg PW
B = 10 0.99± 0.002 0.99± 0.002 0.93± 0.009 0.93± 0.008 0.69± 0.045 0.77± 0.019
B = 25 0.99± 0.002 0.99± 0.002 0.93± 0.010 0.93± 0.010 0.77± 0.004 0.77± 0.018
B = 50 0.99± 0.003 0.99± 0.003 0.93± 0.011 0.93± 0.011 0.76± 0.023 0.76± 0.013
B = 100 0.99± 0.004 0.99± 0.004 0.93± 0.013 0.93± 0.012 0.76± 0.014 0.76± 0.011
B = 200 0.99± 0.006 0.99± 0.006 0.93± 0.016 0.93± 0.015 0.76± 0.014 0.76± 0.011

Averaged results using 1 epoch (MNIST and Fashion-MNIST) and 10 epochs

Figure 3.4: Test-accuracy for Federated Averaging (FedAvg) and Precision-weighted Federated
Learning (PW) using IID data distributions with MNIST (B = 50)

of models whose training data is highly-heterogeneous in nature. The comparison results of per-

formance using Non-IID data partitions are given in Table 3.2. As we observe, both methods

perform poorly with a batch number of B = 10 and more notably in Precision-weighted Federated

Learning, which is more sensitive to the noise present in the input images. This behavior of Fed-

erated Averaging is comparable with other related work in Federated Learning [96] and its effects

are also visible in Precision-weighted Federated Learning. However, with larger batch sizes, higher

test-accuracy and more stable predictions are obtained, starting from the first round irregardless of

the dataset (Figure 3.7) This indicates that the estimations of variance are effectively used to com-

puted a weighted average, resulting in more effective penalization of the model’s uncertainty at the
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Figure 3.5: Test-accuracy for Federated Averaging (FedAvg) and Precision-weighted Federated
Learning (PW) using IID data distributions with Fashion-MNIST (B = 50)

Table 3.2: Comparison of test-accuracy results (non-IID data distributions)
MNIST Fashion-MNIST CIFAR-10

FedAvg PW FedAvg PW FedAvg PW
B = 10 0.98± 0.026 0.98± 0.014 0.85± 0.028 0.82± 0.031 0.34± 0.052 0.16± 0.052
B = 25 0.97± 0.029 0.98± 0.028 0.85± 0.048 0.85± 0.024 0.51± 0.053 0.53± 0.054
B = 50 0.97± 0.053 0.98± 0.035 0.79± 0.048 0.86± 0.035 0.58± 0.048 0.60± 0.027
B = 100 0.95± 0.071 0.98± 0.055 0.77± 0.046 0.86± 0.040 0.56± 0.059 0.59± 0.041
B = 200 0.90± 0.083 0.98± 0.058 0.73± 0.052 0.86± 0.050 0.59± 0.07 0.59± 0.049

Averaged results using 1 epoch (MNIST and Fashion-MNIST) and 10 epochs (CIFAR-10)

client level. For MNIST, our method can obtain increases in test-accuracy of up to of 9% with

B = 200. The results of Fashion-MNIST show the highest increment of 18% in the test-accuracy

with B = 200. Similarly, the highest accuracy of CIFAR-10 improves by 5% with B = 100. These

results demonstrate that our first hypothesis is confirmed only when models are trained with a batch

size of B = 25 or higher.
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Figure 3.6: Test-accuracy for Federated Averaging (FedAvg) and Precision-weighted Federated
Learning (PW) using IID data distributions with CIFAR-10 (B = 10)

3.5.2 Reliability

The reliability index is an important element to consider in the evaluations of the performance

of machine learning systems. In this study, we compute the reliability index defined in [106] as the

ratio of the standard deviation of the test-accuracy and mean value of the test-accuracy as shown in

Equation 11.

ξk(%) =

(
1− σn

µn

)
x100 (11)

, where σn is the standard deviation and µn is the mean of test-accuracy scores per batch. Conse-

quently, the overall system reliability index can be computed by averaging all of the reliability in-

dexes as expressed in Equation 12. Table 3.4 quantifies the computed reliability index per batch size

and shows the overall system stability, which confirms that Precision-weighted Federated Learning

reaches optimal performance, except for CIFAR-10 in a non-IID. This is due to the sensitivity of
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Figure 3.7: Test-accuracy increases as batch size is larger with non-IID partitions. Aggregation
methods: Federated Averaging (FedAvg) and Precision-weighted Federated Learning (PW).

our method with small batch sizes, compromising performance.

ξ(%) =

(∑K
k=1 ξk
N

)
(12)

3.5.3 Increasing Participating Clients

Inspired by McMahan et al.’s original paper [42], we experiment with the client fraction C

that controls the amount of multi-client parallelism. To this regard, we investigate the number

of communication rounds necessary to achieve target test-accuracy of 75%, 80%, and 85% for

models trained with Fashion-MNIST. For this purpose, the predictive models used a fixed batch size
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Table 3.3: Reliability index across batches (IID data distributions)
MNIST Fashion-MNIST CIFAR-10

FedAvg PW FedAvg PW FedAvg PW
B = 10 99.80 99.80 99.03 99.14 93.47 97.52
B = 25 99.80 99.80 98.92 98.92 94.83 97.67
B = 50 99.70 99.70 98.81 98.81 96.99 98.29
B = 100 99.60 99.60 98.60 98.70 98.17 98.55
B = 200 99.40 99.40 98.27 98.38 98.29 98.55

99.66 99.66 98.73 98.79 96.35 98.11

Table 3.4: Reliability index across batches (non-IID data distributions)
MNIST Fashion-MNIST CIFAR-10

FedAvg PW FedAvg PW FedAvg PW
B = 10 97.34 98.57 96.71 96.22 84.62 67.70
B = 25 97.02 97.13 94.34 97.17 89.57 89.87
B = 50 94.54 96.42 93.95 95.94 91.72 95.49
B = 100 92.56 94.37 94.00 95.37 89.52 93.09
B = 200 90.75 94.06 92.89 94.16 88.03 91.75

94.44 96.11 94.38 95.77 88.69 87.58

B = 100 and epoch E = 1. The training data was split into 100 participants and evaluated speed

for every 10, 20, 50, and 100 clients participating in the aggregation in parallel.

Table 3.5 provides the number of communication rounds needed to reach the aforementioned

test-accuracy scores as well as their corresponding speedup. We observe a trend, which suggests that

an increase in participants reduces the number of communication rounds regardless of the aggrega-

tion method evaluated. This behavior is in alignment with McMahan et al.’s work in [42]. Given

this setup, Precision-weighted Federated Learning misses the first target with 10 and 50 clients, but

it can reach subsequent target score up to 20x faster with 10 clients and 37x with 100 clients par-

ticipating concurrently. Thus, we see that with a small client fraction (C = 0.1; that is 10 client per

round), a good balance between computational efficiency and convergence rate can be obtained.

3.5.4 Variance Analysis

In this chapter we demonstrated that combining widely disparate sources can hide important

features useful for discrimination, leading to limitations in the collaborative learning experience.
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Table 3.5: Number of rounds and speedup relative to Federated Averaging to reach different test-
accuracy values on Fashion-MNIST.)

C = 0.1 C = 0.2 C = 0.5 C = 1.0
ACC FedAvg PW FedAvg PW FedAvg PW FedAvg PW
75% 47 50 65 35 (19x) 21 23 17 12 (14x)
80% 149 125 (12x) 134 66 (20x) 153 57 (27x) 44 27 (16x)
85% 641 319 (20x) 671 225 (30x) 473 279 (17x) 286 78 (37x)

Owing to this, Precision-weighted Federated Learning considers the inverse of the estimated vari-

ance to compute a weighted average (Equation 10). As such, this algorithm operates under the

assumption that weights with large variance estimations across sources reduces the quality of the

analysis and therefore should have a smaller impact in the aggregation.

To explain the effects of variance in the generalization of the global model using Precision-

weighted Federated Learning, we trained 4 clients with a fixed batch size B = 10 and epoch E = 1

for 100 communication rounds. The training data of CIFAR-10 was distributed uniformly among

three clients with IID partitions and a single client with a non-IID partition (Client 1 in Figure 3.8).

In this regard, three clients receive a large number of training samples per class, whereas one of the

them receives a considerably small number of training samples (Clients 2, 3, and 4 in Figure 3.9).

This is to maximize the expression of variation across clients.

Figure 3.8: Class distribution per client. Client 1 using an non-IID unbalanced partition
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Figure 3.9: Class distribution per client. Clients 2, 3, 4 using an IID partition.

After model training and before the aggregation, we average the inverse of the estimated vari-

ance of the stochastic gradient per client before it is aggregated and plot it. Figure 3.10. Given a

small number of training samples, the amount of intra-variability computed for Client 1 is signifi-

cantly smaller than other models. Consequently, the inverse of these variances for this client is high

and therefore the penalization of weights is greater. This behavior is evident since the beginning

of the learning cycle and causes a reduction of the inverse of the variance as training continues.

Alternatively, models with larger training samples provide weights with higher quality and their

penalization is minimum. Figure 3.11 shows the inverse of the estimated variance per weight and

client. With this view we can identify conv2d/bias and conv2d/kernel with the highest mean of

the inverse variance. This suggests that the Adam optimizer could not capture the most prominent

characteristics that make up the training data, for these layers, due to the limited number of training

passes.

3.6 Discussion

Federated Learning is a promising solution to the analysis of privacy-sensitive data distributed

globally across clients. At the core of Federated Learning is Federated Averaging, an aggrega-

tion algorithm that consolidates the weighted average of distributed machine learning models into a
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Figure 3.10: Effect of variance in the generalization of the global model. Each data point represents
the mean of the inverse variances per client at a given communication round. Data points in the
”Mean of Estimated Variance” graph were normalized between 0 and 1.

global model shared with every client participating in the learning cycle. In this chapter, we hypoth-

esized that Federated Averaging underestimates the full extent of heterogeneity of data across par-

ticipants, leading to a reduction in the statistical power and quality of predictions, and thus proposed

Precision-weighted Federated Learning. Our method averages the weights of individual sources by

the inverse of the estimated variance. When weighting machine learning models differently, it must

be noted that different aggregation algorithms may yield different results under different circum-

stances. Our method shows the greatest advantages when the data is highly-heterogeneous across

clients.

Our first hypothesis postulates that not accounting for variation across clients may lead to a

reduction of statistical power when combining data form multiple sources. We confirmed this hy-

pothesis by showing that models trained with batch size B >= 25 and Precision-weighted Feder-

ated Learning can obtain a 9% improvement with MNIST, 18% with Fashion-MNIST, and 5% with

CIFAR-10 using non-IID partitions Nevertheless, the presented algorithm can still be improved.

With a batch size B = 10, our method is sensitive to the noise introduce by individual sources,
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Figure 3.11: Category plots showing the dispersion of clients per layer at the first round. Data points
in the ”Mean of Estimated Inverse Variance” graph were normalized between 0 and 1.

degrading the performance of the method. These results prove the limits of our algorithm. Alter-

natively, when we compare our method with those models trained with IID partitions, our method

shows comparable results to those of Federated Averaging. This suggest that the inter-variance esti-

mations were small due to the large number of training samples and uniform distribution of classes

among participants, leading to more confident predictions.

Our second hypothesis addresses convergence speed and supports the idea that the use of es-

timated variance can capture better representation of intricate features dispersed across sources,

resulting in an acceleration of the learning process. We confirmed this hypothesis by demonstrating

that our method can reach test-accuracy targets faster, and with less communication rounds between

targets, than Federated Averaging. With Fashion-MNIST, we also obtained a 24x speedup (with

only 10 clients trained in parallel) than Federated Learning. This suggest that our method reduces

the communication costs required between rounds. Although it is possible to achieve higher test-

accuracy by using more complex state-of-the-art architectures, our goal in this study was to explore

the statistical challenges, especially when the training data is non-IID. Therefore, we measure the
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performance of both aggregation method with simple network architectures.

Although the aggregation of model parameters, rather than raw individual client data, repre-

sents a significant step towards privacy preservation, the Precision-weighted Federated Averaging

algorithm remains vulnerable to inference attacks, as the model parameters still contain information

about data. This is a limitation of the general Federated Learning protocol and is not exclusive to

our approach. Recently, Geyer et al. [107] and Truex et al. [108] introduced frameworks that pre-

serve client-level differential privacy. However, Melis et al. demonstrated that privacy guarantees

at the client-level are achieved at the expense of model performance and are only effective when

the number of clients participating in the aggregation is significantly large, thousands or more [80].

Owing to this, we will examine the behavior and performance of the Precision-weighted Federated

Learning scheme combined with Differential Private Federated Learning [79, 109] as a future work.

3.7 Conclusion

In this chapter, we presented an novel aggregation algorithm for computing the weighted aver-

age of distributed DNN models trained in a Federated Learning environment. It does not require

sharing raw private data. Instead, this algorithm takes into consideration the second raw moment

(uncentered variance) of the stochastic gradient estimated from the Adam optimizer to compute the

weighted average of distributed machine learning models. Precision-weighted Federated Learning

was benchmarked with MNIST, Fashion-MNIST and CIFAR using two data distribution strategies

(IID and non-IID). When compared to Federated Averaging, this algorithm was shown to provide

significant advantages when the data is highly-heterogeneous across clients, and showed compara-

ble test-accuracy when the data is uniformly distributed across clients. Demonstrating that including

the variability across models in the aggregation results in a more effective and faster option for av-

eraging distributed machine learning models having complex data with a large diversity of features

in its composition. With these advantages, Precision-weighted Federated Learning show promise in

comprehensive exploratory analyses of sensitive biomedical data distributed across medical centers.

Thus, in future work we will examine the feasibility of this method in medical image classification

tasks.
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Chapter 4

Bridging the Gaps: Imputation of

Parkinson’s Disease Clinical

Assessments with Federated Learning

Preface

In Chapter 3, we introduced the Precision-weighted Federated Learning algorithm and explored

its limits with benchmark datasets and simulations of various data distributions. In this chapter, we

extend the evaluations of our previous contribution to the medical domain and demonstrate its clini-

cal utility as we conduct a comparative analysis based on the performance of the proposed algorithm

and other popular aggregation methods. We focus our evaluations on the task of data imputation

of decentralized Parkinson’s disease clinical assessments distributed while imposing data privacy.

Specifically, we trained deep learning models in a collaborative learning environment to perform a

data-driven imputation of Parkinson’s clinical assessments and compare their results with traditional

imputation strategies. To provide a comprehensive assessment of the task, we include a downstream

analysis that validates the imputation results obtained with each of the different Federated Learning

strategies in the classification of Parkinson’s disease patients based on symptoms progression.

Our findings demonstrate that collaborative learning yields more secure and efficient outcomes
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compared to traditional imputation methods or traditional learning strategies. The imputation of

decentralized clinical assessments for Parkinson’s disease has multiple implications. First, clin-

ical assessments are siloed such that, when combined, they can enhance the statistical power of

machine/deep learning models. Second, a larger volume of training data obtained from different

populations and conditions can help mitigate biases during training that arise from incomplete data

and smaller data sources. Third, sharing multi-center clinical data for collaborative model training

allows for better generalizations, as models learn from clean, complete, and heterogeneous data

sources. This is crucial for research aimed at identify disease sub-types and monitoring the progres-

sion of disease severity.

This chapter is based on the journal paper Reyes, J., Noroozi, A., Xiao, Y., & Kersten-Oertel,

M. Bridging the Gaps: Imputation of Parkinson’s Disease Clinical Assessments with Federated

Learning. Submitted to IEEE Journal of Biomedical Imaging (January 2024). A preliminary version

of this work was presented at the Secure and Privacy-Preserving Machine Learning for Medical

Imaging MICCAI 2021 workshop [15].
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Abstract

Routine clinical assessments for Parkinson’s disease are essential instruments in both clinical

practice and research that are often used to identify disease sub-types and monitor the progression

of disease severity. However, each clinic has limited access to information and the quality of these

assessments is often degraded by the amount of missing information recorded at the time of each

visit. The main objective of the work in this chapter is to evaluate how collaborative learning can

improve the quality of decentralised Parkinson’s disease clinical assessments while imposing data

privacy. Specifically, we explore the impact of different aggregation strategies on the imputation

of clinical data from 1,370 patients from the Parkinson Progression Marker Initiative (PPMI). To

validate this study, we provide a downstream analysis where imputed data is used for the prediction

of symptoms progression. We observed that a federated learning (FL) approach yields superior

model performance based on imputation errors, when compared to a traditional learning strategies.

These improvements can achieve 37.7%, 31.46%, and 13.86% lower imputation errors with low,

moderate, and high degree of missing scores in the training data, respectively. In addition, we

obtained better classification scores (2.98% AUC, 2.30% PR-AUC, 2.41% accuracy, and 6.09% F-1

score) than the centralized setting. However, significant improvements with FL imputations were

not observed given the setup of the downstream analysis.

4.1 Introduction

Parkinson’s disease (PD), a chronic progressive disorder affecting the central nervous system,

is the second most common neurodegenerative disease after Alzheimer’s. PD has increased signif-

icantly across the world and is currently the fastest growing disorder in the worldwide. In 1990,

the Global Burden of Diseases (GDB) estimated a global, regional, and country level prevalence of

Parkinson’s of 2.5 million people. This number doubled to 6.2 million by 2016 [110], and based

on these growing rates, recent studies estimate that more than 12.9 million people will live with the

disease by 2040 [111].

Routine clinical assessments are an integral part of the care and management of patients with

neurodegenerative disorders. The medical history, physical and psychiatric examinations, and neu-

roimaging data in the Parkinson’s Progression Markers Initiative (PPMI) are examples of clinical
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assessments used for developing data-driven solutions, such as the assignment of subjects to specific

clinical PD subtypes, and the exploration of subtype-specific prognosis [112, 113, 114, 115]. One

of the common challenges with clinical assessments concerns the availability of complete medical

records, especially when pooling data from multiple centers for disease-related studies (e.g. PPMI).

The issue of missing scores over time is a common problem that arises from missing paper records

and the limitations of clinical protocols, which can sometimes prevent certain tests from being con-

ducted during a patient’s visit [116, 117]. Thus, it is not uncommon for there to be missing clinical

scores, particularly in follow-up visits.

Data imputation is proposed as a solution to the problem of missing values. In this technique,

missing values are replaced with estimations based on the interpretation of contextual informa-

tion and population distribution [118]. Classic imputation methods include replacement with the

mean/mode of non-missing values, and the use of an indicator variable, such as 0, in the presence of

missing-values [119]. Often, these strategies are simple but expensive, as the quality of the statis-

tical analyses can be degraded due to a reduction in the size of the data source, the introduction of

sample bias [120, 121] and inevitable inaccurate standard errors on the estimation of the population

distribution [122].

Single and multiple imputation methods can be used to impute missing values. Single impu-

tation relies on a single interpretation from the contextual information of the existing data [122,

123, 124, 125], while multiple imputation estimates associations between missing and non-missing

values, accounting for estimation uncertainty [126, 127]. A common shortcoming of single imputa-

tion is the underestimation of the precision (standard error) of the entire population [119, 128, 122].

Similarly, the need of enough domain knowledge to model the distribution of missing values is the

main limitation of multiple imputation. Both methods can lead to inaccurate estimations.

Deep learning-based techniques have also been developed to capture dependencies and patterns

in data, guiding the imputation method. For example, the k-nearest neighbors, random forest, and

stacked denoising autoencoders (AEs) algorithms have demonstrated to be effective in the estima-

tion of missing values in medical research [129, 130, 131, 116]. In this chapter, we explore the task

of imputation of missing clinical values with deep learning when training of models occurs with

data that is subject to privacy protections available at multiple clinical centers. Generally, when

49



learning from various data sources, more training data is beneficial, but patient privacy imposes

additional challenges. For instance, sharing raw patient data among clinical centers may violate

laws such as the General Data Protection Regulation (GDPR) of the European Union, the California

Consumer Privacy Act (CCPA),and Health Insurance Portability and Accountability Act (HIPAA)

[132], and the re-identification of patients through model-inversion and inference attacks [133, 134]

limit the ability to perform collaborative learning activities, such as disease sub-typing, biomarker

identification, and early disease diagnosis.

Federated Learning (FL) is a collaborative learning technique that has shown advantages when

training data is decentralized and inaccessible due to privacy constraints. With FL the model is able

to leverage all available data without sharing the information between clients (e.g. clinics). At each

cycle, a global model is distributed to the clients, trained with the local data and individual syn-

chronized stochastic gradient descent (SGD) updates are sent directly to a remote location (server)

for aggregation or to intermediary worker nodes [135]. Then, the updated global model is sent to

each client and the cycle repeats. McMahan et al. [10] originally introduced the notion of FL in the

context of mobile devices, however, due to the privacy and ownership challenges of medical data,

FL is being increasingly used in the clinical domain [136].

In the FL framework, the aggregation method is key in combining the parameters of neural

networks from each client. Its objective is to ensure that the global model is maintained in a state

that generalizes well across participants. The most widely used algorithm is Federated Averag-

ing (FedAvg) [10], which uses a weighted average to penalize the weights of networks. Since its

introduction, multiple alternative methods have been designed to improve convergence rates with

complex data having a large diversity of features in its composition.

In this study, we explore data imputation of distributed PD clinical assessments from the angle

of FL (Fig 4.1). Specifically, we compare the performance of 7 FL frameworks as well as centralized

learning for the imputation task. Further, to complement this analysis, we validate the effectiveness

of each imputation solution through estimations of changes in motor and non-motor symptoms

based on the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) scores. We demonstrate

the feasibility and practicality of the imputation of distributed clinical assessments with FL and its

ability to obtain lower reconstruction and imputation errors as well as higher performance, compared
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to a centralized learning and traditional imputation methods.

Figure 4.1: Framework utilized in this study. The PPMI database, with missing values, is split
among multiple medical center. The imputation task is performed using a centralized and multiple
FL strategies. To validate the results of the data imputation task, we predict symptoms progression,
based on increase of MDS-UPDRS sub-scores at 12-moth after the first visit.

4.2 Methods

4.2.1 Data

We utilized the PPMI database, sponsored by Michael J. Fox Foundation for Parkinson Re-

search, a comprehensive public multi-center database (www.ppmi-info.org/data), which includes

longitudinal imaging, genetic, biosamples and clinical assessment data of large PD cohorts. We ac-

cessed longitudinal clinical evaluations from 2,347 participants in the PPMI curated dataset [137],

in particular motor assessments, neuro-behavioral and neuro-psychiatric testing. Data was down-

loaded in October 2023.

Table 4.1 shows the 20 primary clinical assessments (and their sub-scores), imputed, includ-

ing: Benton Judgement of Line Orientation (BJLO) Test, Boston Naming Test Score (BNT), Ep-

worth Sleepiness Scale (ESS), Geriatric Depression Scale (GDS), Hoehn Yahr (HNY), Hopkins
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Table 4.1: Clinical assessments used on the imputation task and their percentage of missing scores
Questionnaire % missing value Questionnaire % missing value
BJLO 0.05 PIGD 0.19
BNT 0.73 QUIP 0.01
ESS 0.01 RBDSQ 0.01
GDS 0.01 SCOPA-AUT 0.01
HNY 0.18 SDMT 0.04
HVLT 0.04 SFT 0.04
LFS 0.70 STAI 0.01
LNS 0.04 MDS-UPDRS I 0.01
MoCA 0.04 MDS-UPDRS II 0.01
MSE-ADL 0.17 MDS-UPDRS III 0.19

Verbal Learning Test (HVLT), Lexical Fluency Score (LFS), Letter-Number Sequencing (LNS) ,

Montreal Cognitive Assessment (MoCA), Modified Schwab & England Activities of Daily Liv-

ing (MSE-ADL) scale, postural instability and gait difficulty-predominant disease (PIGD), Ques-

tionnaire for Impulsive-Compulsive Disorders (QUIP), REM Behaviour Disorder Questionnaire

(RBDQ), Scales for Outcomes in Parkinson’s Disease - Autonomic Dysfunction (SCOPA-AUT),

Symbol Digit Modalities Text (SDMT), Semantic Fluency Test (SFT), State-Trait Anxiety Inven-

tory (STAI), , assessments from the Movement Disorder Society-Unified Parkinson’s Disease Rat-

ing Scale (MDS-UPDRS) Part I: Non-Motor Aspects of Experiences of Daily Living, Part II: Motor

Aspects of Experiences of Daily Living, and Part III: Motor Examinations , and included test re-

sults from 43 single measurements of photon emission computed tomography (SPECT) imaging,

acquired at the baseline and subsequent visits. Generally, SPECT imaging tracks information about

the metabolic rates of neurotransmitters and measures brain signals in different regions, which are

commonly used in detecting metabolic abnormalities in the basal ganglia and is therefore included

in our experiments.

4.2.2 Data pre-processing

For the imputation task, we scaled clinical scores with a min-max normalization method (min:

0, max: 1) based on individual score range. We also excluded patient information with a prodromal

cohort status and removed categorical features from the analysis. For the prediction task, we impute
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categorical values using the mode of the column. The final database contained clinical assessments

of 1,370 patients (839 males/531 females, age at baseline (mean±SD) = 62.5±10.1).

4.2.3 Data splits

To emphasize the practical value of each FL experiment, we accounted for the non-identical and

non-independent (non-IID) condition of each clinical center. We partitioned patients records in the

PPMI database based on their respective Site ID, resulting in 52 centers. To create a hold-out test

set, we pooled 20% of the total number of patients records into a single center, the remaining 27

centers were utilized for training and evaluating models.

4.2.4 Model selection

For the imputation task, we trained unoptimized Fully Connected Autoencoder (FCAE) mod-

els [116]. FCAEs are unsupervised learning models derived from denoising autoencoders. Their

architecture consist of a custom masking layer, used to apply noise to entire modalities (clinical

score and sub-scores), and a sequence of encoding and decoding layers made up of blocks of fully-

connected and concatenation layers. These models were implemented with Keras 2.4.3 and Tensor-

flow 2.4.1, and their architecture is available in a public repository1.

For the prediction task, we trained XGBClassifier models [138], which are based on decision

trees. The popularity of these models in Parkinson’s disease research has increased due to their

predictive power and robustness when handling imbalanced data.

4.2.5 Model performance evaluations

To perform evaluations during the imputation task, we measure imputation errors of missing

score and reconstruction errors of non-missing scores with the held-out test set by using two metrics

(Equations 13 and 14). Since the missing scores in the ground-truth are unknown and unsuitable for

measuring model performance, we introduced artificial missing clinical scores by hiding existing

scores in the test set. These pseudo-missing values were then used as ground-truth. Formally,

given a patient record N is composed of a sequence of n ∈ {0, ..., N − 1} clinical scores, where

1https://github.com/m-prl/PatiNAE
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k ∈ {0, ..., N − 1} is a set of non-missing scores and µ ∈ {0, ..., N − k − 1} is a set of missing

scores in the original database, the additional pseudo-missing values (µ+ ϵ) is the total number of

missing-scores in a patient record N , such that k ∈ {0, ..., N − (µ+ ϵ)− 1}.

Equation 13 measures the reconstruction error of non-missing scores:

A1 =
1

K

N∑
i=1

M∑
j=1

(x̂ij − xij)
2 ∗ P i

j (13)

, where K is the total number of known scores in the test set, N and M are the rows and columns

in the database, x represents ground-truth values, and a mask P , which identifies pseudo-missing

values in the test set. Similarly, Equation 14 quantifies the imputation error given the total number

of missing clinical scores U .

A2 =
1

U

N∑
i=1

M∑
j=1

(x̂ij − xij)
2 ∗ (1− P i

j ) (14)

4.2.6 Centralized Learning

Early attempts to enable collaborative learning involved a centralized data center where raw

data was collected, combined, analyzed, and processed from each participant on a single remote

server. To simulate this setting, we trained instances of FCAEs by pooling patient records from the

27 training sets and evaluated their reconstruction and imputation performance on the test set. This

served as a benchmark for evaluating the generalization of distributed models, which are described

next.

4.2.7 Federated Learning and Aggregation Algorithms

In a FL framework, each model is trained with local data. Therefore, to simulate a FL environ-

ment, we instantiate 27 nodes and assigned a single partition of the PPMI data, each representing

a single client in the learning process. This ensured that each clinical center had access to an inde-

pendent local dataset. Another node was instantiated as the server, having exclusive access to the
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held-out test set. With this setting, we explore and compare the performance a number of algorithms

as described below.

Federated Simple Averaging (FedSimple)

With this setup, the aggregation algorithm computes the arithmetic mean of the network param-

eters. Equation 15 corresponds to simple average, where wk
t + 1 represents the model weights of

client k at iteration t, K signifies the total number of clients involved in the learning task.

wt+1 ← 1

K

K∑
k=1

wk
t+1 (15)

Federated Averaging (FedAvg)

McMahan et al. [10] introduced Federated Learning, a learning framework for distributed de-

vices. At the core of this framework, the Federated Averaging (FedAvg) algorithm aggregates net-

work parameters and maintains a global model that is shared across participants. The FedAvg

algorithm computes the weighted average of all individual model updates, such that:

wt+1 ←
K∑
k=1

nk

n
wk
t+1. (16)

where wk
t + 1 denotes the model weights of client k at iteration t, nk represents the number of local

training samples and n is the total number of samples.

Precision-weighted Federated Learning (PW)

Reyes et al. [72] proposed the Precision-weighted Federated Learning (PW) algorithm as a

variance-based aggregation scheme for distributed machine/deep learning models. This algorithm

differs from FedAvg in the way that individual local updates are aggregated. Instead of using the

ratio of data samples as the multiplicative factor for weight update, PW takes into account local

variance estimations, which are computed by the optimizer, and the update of the parameters of the
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shared global model is made in proportion to the inverse of this variance, as shown in Equation 17:

wt+1 ←
K∑
k=1

(
vkt+1

)−1∑K
k=1

(
vkt+1

)−1w
k
t+1 (17)

where, wk
t+1 represents the model weights of client k at iteration t and vkt+1 represents the variance

of a given weight w at iteration t for client k. To estimate the inverse of the variance of the maximum

likelihood, we propose the use of the raw second moment estimate (uncentered variance) from the

Adam optimizer [86].

Imputation of Missing IoT Records (FedMiss)

Gkillas and Lalos [139] addressed the problem of data imputation in sensor recordings of dis-

tributed networks, such as IoT edge devices. With this aggregation method, missing rates of a

given measurement are used to penalize local model updates. Equation 18 shows the aggregation

operation performed at the server:

wt+1 ← 1

d

d∑
k=1

qkw
k
t+1. (18)

where, wk
t+1 corresponds to model weights of client k at iteration t, qk represents the rate of

missing values in the dataset of each participant, and d corresponds to the total number of edge

devices and the number of corresponding sensors within each device. In our study, we interpret

edge devices as clinical centers, but we cannot conceptualize sensors. For that reason, we simply

consider the number of participating clinical centers only.
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Ditto

Li et al. [140] proposed Ditto as a general framework for personalized FL. Ditto’s objectives

consider fitting a single global model, w, across all local data in the network. The aim is to solve:

min
w

G(F1(w), ..., FK(w))

where Fk(w) is the local objective for device k, and G(.) is a function that aggregates the local

objectives Fk(w)k∈[K] from each device. Ditto considers two ‘tasks’: the global objective (Global

Obj) and the local objective Fk(vk), which aims to learn a model using only device k’s data. To

relate these tasks, they incorporate a regularization term that encourages the personalized models to

be close to the optimal global model. The resulting bi-level optimization problem for each device

k ∈ [K] is given by:

min
vk

hk(vk, w
∗) := Fk(vk) +

λ

2
||vk − w∗||2

s.t.w∗ ∈ argmin
w

G(F1(w), ..., FK(w)).

where, the hyper-parameter λ controls the interpolation between local and global models.

Cyclic Weight Transfer (CWT)

Chang et al. [97] proposed the Cyclic Weight transfer (CWT) method. This learning method

involves training a model on each client for a limited number of iterations and subsequently sharing

the updated weights of such model with the next client. With CWT, a cycle completes when all

clients are train with that model, then the cycle repeats.

Federated Learning Optimization (FedProx)

Li et al. [27] designed FL Optimization (FedProx), which is a generalization and re-parametrization

of the FedAvg algorithm, that addresses the issues of training FL models exhibiting system and sta-

tistical (Non-IID) heterogeneity. This algorithm differs from the traditional FedAvg in that clients

optimize a regularized loss with a proximal term. This term penalizes local updates to keep them

closer to the global model, thus, accounting for heterogeneity associated with each local model.
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More specifically, this method adds the proximal term to the original objective function defined in

Equation 19.

min
w∈Rd

f(w) with f(w) =
1

n

n∑
i=1

fi(w) +
µ

2
||w − wt||2, (19)

where w represents the model’s weights being optimized, wt is the global model’s parameters at

step t, µ is the proximal term’s coefficient, which controls the regularization strength, and f(w) is

the local objective function. When µ = 0, we obtain the original FedAvg algorithm. To handle the

computation load over a wide variety of systems, local optimizations run for a device-determined

number of epochs, instead of meeting a strict training deadline. This allows more clients to con-

tribute to the aggregation algorithm depending on device resources.

4.2.8 Progressive and non-progressive status

For the predictions of PD symptoms progression, we define patients with a progressive or non-

progressive status based on the increase in motor and non-motor symptoms. Since the data in the

MDS-UPDRS scores is continuous, we convert the predictions of MDS-UPDRS into a classification

task by using the method described by Sadaei et al. [115]. To that extent, we define patients with

a progressive status as those who exhibit an increase in their MDS-UPDRS scores between time

points, other cases are considered non-progressive. As such, the target variable chosen for the

classification task was the PD progressive status computed on the 12-month visit for MDS-UPDRS

subparts (MDS-UPDRS I, II, and III). It is interesting to perform predictions of disease progression

with the MDS-UPDRS subparts scores as these indicate the severity of disease condition, based on

motor and non-motor symptoms.
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4.3 Experimental Results

4.3.1 Imputation of distributed clinical assessments

We provide the training setup as follows. Given a set of clinical examinations with missing

values µ, we trained each FCAE with a pre-imputation strategy on the set of features by initializing

missing scores with the mean value of their corresponding column. With this step, we bypassed

the initialization step of FCAEs. Further, we split the training data into training (70%) and val-

idation (30%) segments. The selection and optimization of hyper-parameters was carried out by

using a Bayesian technique using a Gaussian process as a prior in the optimization. To provide

fair comparisons, we utilize the same hyper-parameters across different implementations of collab-

orative learning algorithms in this study. The optimized training setup utilized for the imputation

task includes the Adam optimizer with a learning rate of 1e-06, a batch size of 16, 120 epochs, and

specifically for FCAEs, a drop out rate of 0.1 and an internal representation (IR) of 7. With a Mean

Squared Error (MSE) loss function, we minimize the reconstruction and imputation errors. Further,

we monitor training and reduce the learning rate when there is no improvement in learning after 10

epochs, and stop training when there is no absolute improvement after 10 training passes.

Effect of missing modalities during training

We explore the effects of having multiple degrees of noise in the training data in order to ex-

amine how its heterogeneity, expressed in the number of missing entries in clinical information,

impacts the performance of aggregation methods. To that extent, we trained FCAEs models for

every client with various artificial missing values introduced into the training data (e.g. corruption

ratios) 10%, 30%, and 60%, and the optimized hype-parameters for 150 rounds of communication.

Figure 4.2 shows the reconstruction and imputation errors plots, based on the A1 and A2 met-

rics, respectively. These plots illustrate the performance of models up to communication round 75,

allowing for a clearer appreciation of the models’ convergence. As observed, that generalization

improves more with FL models, compared to the central regime. We also noticed that FedMiss does

not converge, primarily because the number of data sources available among participating clients

is small compared to the large number of data sources from clients and sensors intended in the
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original paper. For the rest of the FL algorithms, it takes less than 20 round of communication to

outperform the central model. Table 4.3 provides more granular comparisons. Alternatively, CWT

is the FL algorithms that presents lower imputation and reconstruction errors, except for A2 when

the corruption ratio is high. Yet, CWT is the second best performing algorithm after centralized

learning. These findings are in alignment with previous studies comparing FedAvg with CWT [11],

as CWT shows certain advantages in performance over other FL algorithms. Here, we posit that the

performance of CWT is attributed to the sharing of a single model’s weights with the next client

during training, allowing it to access the combined data from all clients multiple times, instead of

using multiple models trained on individual data subsets. These results suggest that better general-

ization of data imputation can be obtained with distributed models, as demonstrated in our initial

exploration of the effectiveness of FL algorithms in imputing distributed clinical assessments [15].

Figure 4.2: Performance of FL algorithms based on the reconstruction error (A1) and imputation
errors (A2) with an increasing number of missing values (10%, 30%, and 60%) in the training set.
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Impact of the number of clients participating concurrently in the learning process

In FL, the computational capabilities and availability of participating clients (e.g. clinical cen-

ters) can be challenging. The client fraction is a setting that allows a proportion of clients, relative

to the total number of available clients, to actively operate at a given learning cycle. In the follow-

ing experiments, we investigate the effects of having multiple clients participating on the learning

process, concurrently. To do so, we configured the learning environment to select (20%, 50%, and

100%) random clients at each iteration. Then, we trained distributed FCAEs models with a fixed cor-

ruption ratio of 10% for 150 rounds of communication and used the same training hyper-parameters

as described before.

Table 4.4 shows a summary of the performance of models based on the mean and standard de-

viation of the A1 and A2 (MSE) scores computed with the held-out test set. Interestingly, CWT

can obtain lower reconstruction and imputation errors compared to models trained with a central-

ized learning approach, when the rate of participating clients is 20% and 50%. In general, we

observe that better generalizations can be achieved when all participants remain active during train-

ing, except for DITTO and FedAvg. We presume that training with fewer participants improves the

global regularization strategy in DITTO, encouraging local models to avoid overfitting at individual

clients. Conversely, FedAvg demonstrates comparable performance with more stable imputations

than models trained with all active clients in a centralized learning setting.

Table 4.3: Evaluation of model convergence utilizing centralized or FL, assessed by reconstruction
error for known values (A1) and imputation error for missing values (A4), with varying levels of
missing data (10%, 30%, and 60%) in the training dataset. We report the mean and standard errors
of MSE errors obtained across multiple runs using different seeds. The FL strategy with the lowest
MSE is highlighted in bold

Corruption Ratio 10% Corruption Ratio 30% Corruption Ratio 60%
A1 A2 A1 A2 A1 A2

Central 0.0618± 0.0013 0.0260± 0.0012 0.0662± 0.0010 0.0321± 0.0011 0.0843± 0.0007 0.0469± 0.0004
CWT 0.0363± 0.0113 0.0162± 0.0041 0.0353± 0.0095 0.0220± 0.0035 0.0576± 0.0172 0.0534± 0.0097
DITTO 0.0742± 0.0487 0.0354± 0.0284 0.0727± 0.0461 0.0381± 0.0247 0.1089± 0.0416 0.0571± 0.0234
FedAvg 0.0683± 0.0434 0.0310± 0.0240 0.0665± 0.0413 0.0341± 0.0204 0.1147± 0.0383 0.0599± 0.0204
FedMiss 0.1708± 0.0013 0.0872± 0.0020 0.1708± 0.0014 0.0871± 0.0020 0.1709± 0.0013 0.0875± 0.0019
FedProx 0.0667± 0.0426 0.0311± 0.0239 0.0741± 0.0437 0.0353± 0.0229 0.1116± 0.0400 0.0608± 0.0212
PW 0.0648± 0.0411 0.0289± 0.0227 0.0646± 0.0404 0.0348± 0.0205 0.1079± 0.0380 0.0574± 0.0205
FedSimple 0.0748± 0.0462 0.0361± 0.0260 0.0743± 0.0432 0.0389± 0.0221 0.1205± 0.0348 0.0624± 0.0190
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Table 4.4: Summary of model performance in terms of MSE reconstruction error and MSE impu-
tation error, A1 and A2 respectively, with various clients participating concurrently in the learning
process. Results are presented as the mean and standard deviation of A1/A2 errors obtained across
multiple runs using different random seeds. The FL strategy with the lowest MSE is highlighted in
bold.

Participating Clients: 20% Participating Clients: 50% Participating Clients: 100%
A1 A2 A1 A2 A1 A2

Central - - - - 0.0618± 0.0013 0.0260± 0.0012
CWT 0.0531± 0.0362 0.0224± 0.0192 0.0438± 0.0235 0.0186± 0.0111 0.0363± 0.0113 0.0162± 0.0041
DITTO 0.0752± 0.0472 0.0351± 0.0265 0.0754± 0.0479 0.0347± 0.0268 0.0742± 0.0487 0.0354± 0.0284
FedAvg 0.0710± 0.0433 0.0322± 0.0236 0.0704± 0.0429 0.0310± 0.0232 0.0683± 0.0434 0.0310± 0.0240
FedMiss 0.1708± 0.0012 0.0873± 0.0018 0.1708± 0.0012 0.0874± 0.0018 0.1708± 0.0011 0.0872± 0.0020
FedProx 0.0752± 0.0461 0.0343± 0.0259 0.0744± 0.0458 0.0337± 0.0256 0.0667± 0.0426 0.0311± 0.0239
PW 0.0755± 0.0465 0.0341± 0.0253 0.0729± 0.0455 0.0319± 0.0250 0.0648± 0.0411 0.0289± 0.0227
FedSimple 0.0752± 0.0457 0.0355± 0.0259 0.0753± 0.0452 0.0348± 0.0254 0.0748± 0.0462 0.0347± 0.0260

Effects of Local Computation

In practice the batch size for machine and deep learning can vary based on the nature of the

task, the amount of data, the architecture of the network, and the computational resources available.

Often, batch sizes are often small for medical applications, due to the limited amount of private

data stored within clinical centers, constrained computational resources, type of data modality (e.g.

MRI), or high variability in the data. Owing to this, we design a set of experiments where we

compare the impact of small batch sizes in model’s performance. We trained models using the same

configuration as in Section 4.3.1, and compared their MSE error with batch sizes 16 and 32.

Table 4.5 summarizes the imputation performance using small batch sizes. We observe that

models trained in a FL setting are more robust when more heterogeneous samples are propagated

through the network, an effect not seen in models trained in a centralized learning setting. Notably,

CWT outperforms most of the FL aggregation algorithms, except when the number of missing

clinical scores is high (corruption ration = 60%). These results suggests that, depending on the

amount of missing values in the training data, more accurate imputations can be achieved with

CWT and PW.
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Table 4.5: Summary of model performance, based on imputation error (A2) only, when simulated
clinical centers models are trained with small batch sizes 16 and 32. We report the mean and
standard deviation of MSE error calculated during multiple runs using different seeds.

Corruption Ratio 10% Corruption Ratio 30% Corruption Ratio 60%
A2 (B=16) A2 (B=32) A2 (B=16) A2 (B=32) A2 (B=16) A2 (B=32)

Central 0.0260± 0.0012 0.0508± 0.0019 0.0321± 0.0011 0.0522± 0.0018 0.0469± 0.0004 0.0577± 0.0019
CWT 0.0162± 0.0041 0.0131± 0.0011 0.0220± 0.0035 0.0207± 0.0011 0.0534 ±0.0097 0.0453± 0.0044
DITTO 0.0354± 0.0284 0.0157± 0.0016 0.0381± 0.0247 0.0214± 0.0019 0.0571± 0.0234 0.0436± 0.0029
FedAvg 0.0310± 0.0240 0.0156± 0.0021 0.0341± 0.0204 0.0225± 0.0011 0.0599± 0.0204 0.0489± 0.0121
FedMiss 0.0872± 0.0020 0.0871± 0.0019 0.0871± 0.0020 0.0873± 0.0021 0.0875± 0.0019 0.0870± 0.0020
FedProx 0.0311± 0.0239 0.0161± 0.0007 0.0353± 0.0229 0.0224± 0.0010 0.0608± 0.0212 0.0488± 0.0083
PW 0.0289± 0.0227 0.0149± 0.0014 0.0348± 0.0205 0.0221± 0.0009 0.0574± 0.0205 0.0424± 0.0088
FedSimple 0.0361± 0.0260 0.0172± 0.0008 0.0389± 0.0221 0.0248± 0.0013 0.0624± 0.0190 0.0472± 0.0085

4.3.2 Prediction of short-term disease trajectories

To evaluate the model’s coherence, particularly regarding feature importance, we used the

Select-K-Best method to identified the top 50 important features based on the F-1 score. The mo-

tor and non-motor symptoms identified in this study have been previously reported in the literature

as being used in data-driven approaches for the identification of PD sub-types and disease trajec-

tories [141, 114, 112]. The demographic and clinical examinations used to train XGBClassifier

models include:

(1) Motor symptoms: PIGD, HNY.

(2) Non-motor symptoms: MDS-UPDRS I (np1anxs, np1apat, np1cog, np1dds, np1dprs, np1fatg,

np1hall), GDS, MSE-ADL, QUIP (quip any, quip eat, quip hobby, quip pund, quip sex,

quip walk), RBDSQ, SCOPA-AUT (scopa gi, scopa pm, scopa therm, scopa ur), STAI (stai,

stai trait).

(3) Neuropsychological features: MoCA, BJLO, HVLT (hvlt discrimination, hvlt immediaterecall,

hvlt retention, hvltrdly, hvltrec, hvltfprl), LNS, LFS, SDMT, SFT.

(4) Other features: SPECT (con caudate, con putamen, con striatum, datscan caudate l, datscan caudate r,

datscan putamen l, datscan putamen r, ips caudate, ips putamen, ips striatum, lowput ratio,

mean caudate, mean putamen, and mean striatum).
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With the key features identified, we proceed to train XGBClassifier models to validate the im-

pact of different imputation solutions classifying subjects based on their progressive status, as de-

fined in Section 4.2.8. During training, we use the K-fold cross-validation method on imputed PPMI

datasets, where K=5. Within each fold, 1/K of the samples were reserved as the test set, and the

rest of samples were used for training models. To measure classification performance of aggrega-

tion algorithm with training data showing high levels of missing values, we configured a setting

with corruption ratio of 60% , a client fraction of 100%, which allow all clinical centers to partic-

ipate in the learning process, and a batch size of 32. No other optimization were considered. We

measure classification performance based on accuracy, F1-score, Precision-Recall and ROC-AUC

curves on each of the imputations produced with learning algorithms and included evaluations with

imputations made with mean values from each column, which is considered the current practice.

The result of predictions of progressive status for MDS-UPDRS I, II, and III with clinical infor-

mation from the 50 features, are shown in Table 4.6. While higher PR-AUC and ROC-AUC can be

obtain with imputed values from models trained in a centralized learning, imputations with FedAvg

and FedProx represents FL alternatives that achieve higher PR-AUC and ROC-AUC, respectively.

In addition, we observed that the imputation of clincial assessments with PW may achieve both

higher PR-AUC and ROC-AUC for MDS-UPDRS II, and III. Table 4.7 presents the performance

metrics based on accuracy and F1-score metrics obtained when the training data was imputed with

the different strategies. For MDS-UPDRS I, the averaging effect in FedMiss achieves higher ac-

curacy, despite the low performance of models trained with FedMiss in our previous experiments;

FedProx can exhibit higher F1-scores for MDS-UPDRS I, and better accuracy for MDS-UPDRS II;

and PW achieves higher accuracy for MDS-UPDRS III as well as high F1-scores for MDS-UPDRS

II, III. The choice of aggregation algorithm depends on the predicted variable. These results suggest

that more accurate imputations may be obtained with FL algorithms learning from highly heteroge-

neous inputs.

To validate the statistical significance of the results, we conducted independent one-way ANOVAs

for each metric. An ANOVA test revealed a significant effect on classification performance of MDS-

UPDRS I based on the AUC metric (F (9, 240) = 2.087, p = 0.031, ω2 = 0.038). Post hoc testing
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using Tukey’s correction indicated that imputations produced with the a centralized learning strat-

egy resulted in significantly higher AUC compared to those obtained with CWT (p = 0.036). No

significant differences were observed for other metrics. Therefore, we conclude that using FL im-

putation strategies may lead to improvements in classification scores compared to a centralized

learning setting, but no statistical significance was observed with the given configuration.

Table 4.6: Performance results based on (mean ± standard deviation) precision-recall (pr) and area
under the roc curve (roc-auc) curve among the predictions of disease progressive status using fed-
erated and non-federated learning algorithms.

MDS-UPDRS I MDS-UPDRS II MDS-UPDRS III
PR ROC-AUC PR ROC-AUC PR ROC-AUC

Central 0.5500 ± 0.0278 0.5572 ± 0.0303 0.5629 ± 0.0678 0.6289 ± 0.0850 0.6307 ± 0.0357 0.5717 ± 0.0566
CWT 0.5291 ± 0.0347 0.5312 ± 0.0302 0.5617 ± 0.0656 0.6371 ± 0.0807 0.6245 ± 0.0341 0.5697 ± 0.0516

DITTO 0.5405 ± 0.0303 0.5420 ± 0.0261 0.5651 ± 0.0656 0.6357 ± 0.0788 0.6237 ± 0.0363 0.5666 ± 0.0553
FedAvg 0.5423 ± 0.0242 0.5480 ± 0.0274 0.5552 ± 0.0682 0.6283 ± 0.0905 0.6302 ± 0.0362 0.5734 ± 0.0566
FedMiss 0.5416 ± 0.0285 0.5487 ± 0.0289 0.5668 ± 0.0577 0.6340 ± 0.0748 0.6239 ± 0.0447 0.5685 ± 0.0628
FedProx 0.5378 ± 0.0336 0.5448 ± 0.0302 0.5709 ± 0.0665 0.6449 ± 0.0741 0.6304 ± 0.0333 0.5747 ± 0.0540

PW 0.5334 ± 0.0229 0.5326 ± 0.0276 0.5758 ± 0.0613 0.6476 ± 0.0729 0.6322 ± 0.0267 0.5807 ± 0.0478
FedSimple 0.5329 ± 0.0287 0.5346 ± 0.0244 0.5636 ± 0.0695 0.6358 ± 0.0825 0.6215 ± 0.0388 0.5710 ± 0.0544

Mean 0.5420 ± 0.0274 0.5418 ± 0.0260 0.5609 ± 0.0596 0.6292 ± 0.0784 0.6165 ± 0.0413 0.5686 ± 0.0656

4.4 Discussion

With this study, we address the issue of missing clinical data. In particular, we explored the

clinical utility of FL for the tasks of data imputation of Parkinson’s disease clinical assessments dis-

tributed across multiple centers. Our findings have implications for both researchers and clinicians.

We demonstrate its utility by imputing real patient data from the PPMI database and validating

the impact of different FL aggregation algorithms. The evidence that supports the aforementioned

Table 4.7: Performance results based on (mean± standard deviation) accuracy and f-1 scores among
the predictions of disease progressive status using federated and non-federated learning algorithms.

MDS-UPDRS I MDS-UPDRS II MDS-UPDRS III
Accuracy F1-score Accuracy F1-score Accuracy F1-score

Central 0.5254 ± 0.0253 0.4759 ± 0.1241 0.5853 ± 0.0602 0.5674 ± 0.0502 0.5641 ± 0.0430 0.6400 ± 0.0397
CWT 0.5200 ± 0.0253 0.4821 ± 0.0837 0.5918 ± 0.0542 0.5726 ± 0.0495 0.5653 ± 0.0356 0.6400 ± 0.0292

DITTO 0.5236 ± 0.0241 0.4985 ± 0.0586 0.5918 ± 0.0575 0.5749 ± 0.0455 0.5669 ± 0.0389 0.6387 ± 0.0262
FedAvg 0.5291 ± 0.0217 0.4925 ± 0.0898 0.5863 ± 0.0634 0.5673 ± 0.0452 0.5738 ± 0.0428 0.6458 ± 0.0308
FedMiss 0.5334 ± 0.0202 0.4729 ± 0.1486 0.5876 ± 0.0561 0.5577 ± 0.0709 0.5639 ± 0.0440 0.6362 ± 0.0301
FedProx 0.5305 ± 0.0207 0.5049 ± 0.0632 0.5994 ± 0.0528 0.5813 ± 0.0429 0.5714 ± 0.0366 0.6430 ± 0.0214

PW 0.5169 ± 0.0302 0.4824 ± 0.0673 0.5990 ± 0.0543 0.5825 ± 0.0450 0.5773 ± 0.0344 0.6490 ± 0.0260
FedSimple 0.5175 ± 0.0222 0.4911 ± 0.0603 0.5953 ± 0.0628 0.5795 ± 0.0538 0.5733 ± 0.0312 0.6447 ± 0.0250

Mean 0.5172 ± 0.0216 0.4773 ± 0.0897 0.5833 ± 0.0527 0.5747 ± 0.0315 0.5589 ± 0.0502 0.6243 ± 0.0279
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clinical utility is based on extensive analyses on a distributed model’s performance using seven FL

aggregation algorithms. To the best of our knowledge, we are the first group evaluating imputation

solutions of PPMI data in a FL setting.

In alignment with Tuladhar et al.’s findings in [142], we demonstrate that better generalization

and lower MSE errors can be obtained with FL algorithms, compared to centralized learning and

traditional imputation strategies. More recently, Danek et al. also demonstrated small performance

gains (2% better AUC-PR than central models) with FL algorithms for the task of multi-omics

Parkinson’s disease prediction. In terms of the advantages obtained with learning from distributed

data sources, we show that good performance across MDS-UPDRS subparts can be obtained while

imposing data privacy. In this study, FL methods resulted in lower reconstruction and imputation

errors compared to a centralized learning strategy.

An important outcome from the present study is that multi-center studies can be performed with

FL. First, we can increase the models’ generalization when independent models learn from multi-

center clinical data, which is never transferred or pooled at a single medical, or research, center.

Second, FL strives for unbiased learning from heterogeneous data sources. It is estimated that an

ordinary medical center produces about 15TB to 20TB of new data every year [143], however it is

a challenging task to consolidate raw biomedical data using traditional learning methods. With FL

approaches the collaboration is enabled across different clinical centers. This is especially valuable

for the analysis of rare diseases, where very few patients with rare conditions are seen at any single

institution [144, 142]. Third, the iterative scheme in FL can benefit new medical centers joining

the learning process at any point of the training or evaluation phase. This is possible since the

intrinsic independence of distributed machine/deep models enables real-time continual learning as

the aggregation of SGD updates and communication operations are synchronized and orchestrated

by the server. Therefore, the learning cycle can be enriched with the new information provided by

the joining center, leading to less biased decisions at any given iteration. These conclusions are

consistent with the recent study performed with multi-omics data by Danek et al. [145]

We also highlight the improvements in the performance of distributed models trained from

multi-institutional clinical assessments using FL. Our study utilized real clinical records, includ-

ing longitudinal imaging, genetic, biosamples and clinical assessment data from the PPMI database

66



to explore the power and limitations of different FL frameworks. We demonstrated that lower recon-

struction and imputation errors may be obtained with models trained in a FL setting. Furthermore,

we observed higher accuracy, F1-scores, PR-AUC, and ROC-AUC when clinical assessments were

imputed using FL algorithms. However, with 50 most important clinical assessments, a statisti-

cally significant improvement in imputations was only observed for non-motor symptoms in MDS-

UPDRS I, using the centralized learning approach compared to the FL algorithm. Future research

is needed to verify the effect of a different combination of features.

This study has potential limitations. The imputation scores and the prediction of the target vari-

ables were based on the same database. This limits the scalability of the predictive task to be applied

to other datasets. Also, the data partitions contain a small number of patients, with a minimum of

12 patients. This limitation could bias and, subsequently, prevent local models from effectively

learning a representation of the feature space. Further, our predictions may underestimated patient’s

disease trajectory since the experiments in this imputation task were carried out with numerical

variables only. To learn meaningful categorical variables, we suggest the use of one-hot encoding

or an entity embedding technique [146, 116]. For datasets with categorical features, embeddings

or techniques like entity embeddings can be used to represent categorical variables in a continuous

space, facilitating imputation. Similar to the study in [115], our study also exhibits a limitation in

the use of MDS-UPDRS measurements having a mixture of ON and OFF medication effects. We do

not adjust for medication status, instead we use unadjusted MDS-UPDRS scores in the prediction

task.

Future work could extend these studies to complement the analyses of complex imaging modal-

ities, such as X-ray, CT, PET, MRI or fMRI imaging. This exploration could be valuable, as the

different images modalities might provide additional information needed to better understand the

etiology and pathogenesis of the disease. This is particularly important for early identification of

disease subtypes and trajectories, and planning of treatment strategies.
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4.5 Conclusions

This chapter presents a systematic study assessing the performance of FL aggregation algo-

rithms for handling missing clinical assessments, including evaluations with an independent subset

of the PPMI database. We imputed data using seven aggregation algorithms and compared their

performance against models trained using a centralized learning strategy. To validate the results of

the imputation task, we performed a downstream analysis, aiming at predictions of PD symptoms

progressions.

The results of the comparisons demonstrate better imputation performance with FL algorithms

compared to the centralized counterpart. This is particularly important in sensitive domains where

data privacy is a priority and evaluation of heterogeneity data sources is significant for an accurate

prognosis, identification sub-typing, and personalized treatment plans.
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Chapter 5

Game On: How Human Perception of

AI Uncertainty Shapes Decision-Making

Preface

After proposing a solution for technical and legal privacy issues in AI adoption in clinical trials

and workflows (Chapter 3) and demonstrating its clinical utility in Chapter 4, the next two chapters

focus on exploring how to visualize data to improve clinical decision support systems. We con-

centrate on visualizing uncertainty of AI models, emphasizing factors that can help understand and

interpret the AI’s model outcomes. Prior to studying decision-making in high-risk medical scenarios

(in Chapter 5), we build a foundational understanding to identify effective visualization techniques

and potential pitfalls in low-risk scenarios in this Chapter. Specifically, we utilized classic gaming

scenarios as a proxy to investigate human-AI collaboration in decision-making. By using different

visual methods with games, we explore individual’s ability to better perceive AI uncertainty. We

examined the impact of AI uncertainty on trust in AI, confidence in decisions, and decision changes

among individuals with varying attitudes towards AI in situations with minimal potential harm.

This chapter contributes to human–computer interaction (HCI) research by revealing factors

that influence trust in AI among people with different attitudes towards it. Based on our findings,

we recommend designing AI outputs to cater to individuals’ varying attitudes towards AI. First, AI
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model outputs should be more transparent and provide informative feedback to ensure accountabil-

ity in decision-making. Second, AI designers should take into account a person’s specific attitudes

towards AI to create personalized and engaging experiences. We demonstrate that more transparent

AI solutions can increase trust in AI technologies in low-risk scenarios.

This chapter is based on the journal paper Reyes, J.., Ludera, D., Batmaz, A., & Kersten-Oertel,

M. Game On: How Human Perception of AI Uncertainty Shapes Decision-Making. Submitted to

PLOS ONE (June 2024).
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Abstract

Decision-making based on AI can be challenging, particularly when factoring in the uncertainty

associated with AI predictions. To investigate the impact of visualizing uncertainty in AI solutions,

we considered human factors (e.g., visual perception and cognition) during the design of model

outputs. We conducted a user study with 147 participants using static classic gaming scenarios as

a proxy to show human-AI collaboration in decision-making. Our study measures changes in deci-

sions, trust in AI, and decision-making confidence when uncertainty is visualized in a continuous

format in comparison to a binary output of the AI model. We found that visualizing uncertainty

significantly strengthens trust in AI for 58% of participants with negative attitudes towards AI, and

31% of these participants found the visualization of uncertainty useful. Additionally, size was iden-

tified as the visualization method that most impact in individuals’ trust in AI and confidence in their

decisions. We also found a strong association between gaming experience and decision changes

when uncertainty was visualized, and a strong association between trust in AI and individuals’ at-

titudes towards AI. Our study provides insights into understanding the psychology of participants,

specifically how individuals perceive uncertainty in AI models. These findings provide significant

implications for the design of human-AI based decision support systems.

5.1 Introduction

Artificial intelligence (AI), a field where computers are leveraged to mimic or reproduce the

problem-solving and decision-making capabilities of the human mind, is having significant impacts

on people’s work and lives. The adoption of AI models for decision-making is significantly in-

creasing in our daily lives from leisure, entertainment [147] and serious gaming [148, 149] to more

sensitive domains, such as criminal justice, banking, or healthcare [150, 151, 152].

Until recently, the development of AI systems has mainly been driven by a “technology-centered

approach”, which focuses on algorithms rather than the development of useful AI systems that

meet actual user needs [153, 25, 154]. However, neglecting the adoption of a “user-centered de-

sign” [155], “human-centered design” [26] or “human-AI” [25] approach, which prioritizes the

usability and usefulness of these systems by focusing on users, their needs, and requirements, can
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lead to limited use and uptake of these systems. One specific aspect of human-AI design is to con-

sider how to display an AI model’s information. Yet, few researchers have focused on how best

to convey AI information to the user and how different visualizations can impact perception and

cognition.

From the user perspective, users often rely on AI models without understanding the confidence

of the AI’s prediction almost to the point of delegating decisions to the automated systems com-

pletely [156, 157]. This can result in a false sense of confidence, ineffective decision-making and

incorrect conclusions. Indeed, a clear interpretation of AI predictions’ uncertainty (e.g., recommen-

dation) is not trivial and can pose a challenge for many experts and non-experts, particularly in areas

where there is high uncertainty. This is more evident when human factors (e.g., visual perception

and cognition) are not considered in the design choices of presenting model results, which can lead

to decision errors that can cause adverse effects on the users of those systems.

In this chapter, we sought to understand how visualizing an AI model’s uncertainty affects

decision-making, to identify common traits among people who accept machine judgment as support

for their decisions, and to explore the ways humans manage decision-making under the exposure of

algorithmic advice. Specifically, we focus on exploring the impact of visualization of uncertainty

on people’s decisions, trust in AI model’s reliability, and confidence in decisions among people with

different attitudes towards AI [158]. To answer these questions, we conducted a large exploratory

study via online surveys using classical games. We designed a number of gaming scenarios, with

and without visualization of AI uncertainty, where participants assessed situations to determine a

move for a character in a game. We then measured the number of decision changes (when uncer-

tainty visualization was used in a specific scenario versus when it was not used), and fluctuations

in trust in AI and confidence in their decisions. In the last part of the study, we evaluated users’

perceptions regarding the utility and preference of various visual representations of AI uncertainty,

as a way to highlight the limitations of AI model outputs and promote transparency.

This chapter makes the following contributions: (1) We provide empirical evaluations on how

visualizing AI uncertainty affects human factors, particularly trust in AI, confidence in decisions,

and decision changes, considering individuals with varying attitudes towards AI. (2) We use static
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classic game scenarios as proxies to study human-AI interaction in decision-making, through evalu-

ations about the utility and preference of visual representations of AI uncertainties by using simple

visual techniques like size, color saturation, and transparency.

5.2 Related Work

There are a number of research works that investigate new algorithms, improvements, appli-

cations, and the influence of AI. Indeed, recent studies have addressed questions about AI-based

decision-support systems from the angle of human perceptions, including evaluations of factors

such as risk, anxiety, fairness, usefulness, and trustworthiness [156, 159, 160, 161, 162]. The work

in this chapter builds upon prior research at the intersection of data visualization, human-AI design,

and decision support systems.

5.2.1 Data Visualization and Uncertainty

Data visualization is a representation technique that transforms datasets into visual components

in order to obtain actionable insights. Mackinlay [163] addressed the importance of leveraging the

human visual system and its perceptual capabilities and visual variables to create effective visual

expressions of information. In our context, we use different visual representation of the AI model’s

output and measure people’s perception of AI uncertainty as a way to improve decision-making

confidence and alleviate the challenge of reasoning with uncertainty.

Previous research studies suggest three main categories for perceiving data uncertainty: color-

oriented approaches (hue, saturation, or brightness), focus-based methods (mapping uncertainty to

contour crispness, transparency, or resolution), and geometric mapping (e.g., sketchiness in render-

ing, distorting line marks) [164]. Blur has also been used to guide attention to in-focus regions in

images, which can be considered to have more certainty. Also, heat maps are a commonly used

color-oriented approach that is specifically useful in identifying regions of interest. Generally, the

range between blue-green indicates low-interest regions, and the range between yellow-red indicates

regions of high interest. Despite the benefits generated by heat maps, several researchers argued that

such maps can be confusing due to the lack of perceptual ordering [165]. In addition, according to
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Breslow et al.[166], an alternative to color heat maps is to use changes in contrast or luminance in

a single hue, which allows one to compare relative values between high and low interest regions

or regions with more or less certainty. Based on these previous works, we chose to use size, color

saturation, and transparency as means to represent varying levels of uncertainty in AI’s outputs.

5.2.2 Human-AI Decision Support Systems

As described by Jarrahi [23], human-AI research primarily aims to augment human capabil-

ities and enhance decision-making processes rather than simply replacing humans in those de-

cisions. To support this vision, a substantial body of research has explored the practical use of

AI-driven decision support systems across various domains, including healthcare, productivity, per-

formance evaluations, negotiation, law and civic affairs, finance, business, education, leisure and

arts [167, 168, 169, 170, 171, 172, 173]. Although some research has focused on improving human-

AI collaboration to support decision-making by building trust in AI, others have integrated visual

representations of AI uncertainty.

Trust is defined as the degree to which a person or group of people relies on or has confidence

in the dependability of someone or something to fulfill their promise [48]. Thus, establishing trust

in AI is crucial for achieving the adoption of AI systems as decision support systems. While there

is no consensus on how the broad conceptualization of trust should be measured, some works either

utilize Mayer et al.’s dimensions of trust [174], or build their own self-assessment questions to

measure trust.

Online surveys, specific-purpose applications, and simulations have been created as instruments

for evaluating trust in AI. For example, Liu et al.’s work [159] investigated people’s perception

of trust, experience, and attitudes towards AI with emails written by AI language models. Trust

was measured with Mayer et al.’s dimensions of trust [174], and the attitudes towards AI with the

General Attitudes towards Artificial Intelligence Scale (GAAIS) [158]. Their findings suggested

that trust in emails weakens when people are aware of AI’s intervention, but it grows stronger when

the content of the email involves relations between people. No significant correlations were found

between AI attitudes and trust. Similarly, Zhang et al. [151] used an online survey to explore user’s

perceptions of trust, performance expectancy, and intentions regarding the quality of financial advice
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provided by AI-driven advisors. Trust was measured with a Likert scale for the first part of the study

and with a self-assessment based on three dimensions: cognitive trust in competency, cognitive trust

in integrity, and emotional trust in the last part. The outcomes of the study suggested that human

financial advisors were trusted more than AI-advisors, regardless of their expertise level and sex.

Also, no significant differences between human and AI-advisors were found regarding performance

expectancy and intention to hire. Cai et al. [161] developed an AI-system to assist clinicians in

the search of anatomical images. Participants were assessed based on their trust in AI, perceived

utility, workload, and preference between two interfaces were measured. Trust was measured with

Mayer et al.’s dimensions of trust [174]. The study found a perceived increase in utility, trust in

AI, and preference for the AI system over traditional interfaces. In the military domain, Gurney et

al. [175] adapted an online simulation where an AI-agent provided recommendations to wear or not

protective gear during reconnaissance missions. Trust was evaluated indirectly through compliance

(participants followed the AI’s recommendation at early stages of the mission) and directly with a

subjective scale for attitudinal trust, namely the inventory (DTI) [176]. DTI measures perceptions

of users in the AI-agent’s abilities, safety promotion, and limitation. The study showed that early

human behavior within the mission was a predictor of later compliance and mission success.

Another line of research focuses on improving decision-making by helping users understand

the limits of AI through the visualizing of uncertainty in the predictions. This has been accom-

plished through interaction with the user interface and with the addition of visual cues into the

AI output. Daradkeh and AbulHud [55] developed an interactive system that allows users to ex-

plore and compare the uncertainty and risk of AI predictions through adjustable bars. While this

work highlights the importance of visualizing uncertainty through interactions, it does not delve

into examining users’ perceptions. Doula et al.’s work [56], compared the effect of displaying AI’s

uncertainty in an augmented reality (AR) environment. In this study, an AI-powered mobile appli-

cation predicted the locations of sound sources behind walls and participants decided whether or

not to follow the AI recommendations. Post-interviews revealed that the majority of participants

would trust AI systems more when uncertainty is shown to the user. Marusich et al. [57]’s study

assesses the utility of well-calibrated uncertainty in decision-making. With an online user study, the

authors compared participant’s accuracy and confidence in decisions, as well as the accuracy of AI
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predictions using visual representations, such as needles and dotplots. Cassenti et al. [58]’s study

aimed at identify the best ways to represent uncertainty. In an online survey, compliance with the AI

recommendations for a convoy to pass or not a risky road were measured. Different representations

of verbal and visual uncertainty were presented: text-based with probabilities, with frequencies,

and graphical representation using a subjective logic triangle and beta distributions. This study also

measured user’s perceptions of trust in AI prediction with the Trust in Automation scale [177], a

tool developed to measure the level of trust in automated systems.

5.2.3 Decision Making under Uncertainty in Gaming

In the context of gaming, uncertainty information has been studied from different perspectives.

In Greis et al.’s work [178], the authors designed a web-based game to model risky situations in

a farm and used four visual representations of the uncertainty in weather prediction probabilities.

In their work, the authors conclude that more information presented on the screen leads people to

take unnecessary risks. Alternatively, the gamification of real-life events has been used to explore

the effects of uncertainty through simulations of natural disasters. Schueller et al. [148] designed

three serious games with the objective of understanding how uncertainty in simulated crisis situa-

tions impacts the processing of early warnings and subsequent decision-making. The uncertainty

information provided during the simulation was used to make predictions about the time and place

of a hurricane touching down. Further, uncertainty in raw data has also been considered in the

optimization of gaming applications. Jagtap et al. [149] designed an uncertainty-based decision

support system, where the probability for the selection of the next move in a game increases as the

uncertainty of the data is fed as input to the model.

5.3 Materials and Methods

We created an online survey to assess how visualizing AI uncertainty affects individuals with

different attitudes towards AI. The study was approved by the Office of Research and Ethics and

the Human Research Ethics Committee of our institution and complied with all requirements estab-

lished by the corresponding governmental agencies overseeing research and ethics.
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Prior to describing the study, we define a few key concepts that will remain consistent through-

out this study:

• Decision change: a metric indicating whether a participant changes their response when pre-

sented with a different visual stimulus (e.g., visualization of uncertainty).

• Trust: the perceived amount of trust in AI solutions. We define solutions as the predictions,

recommendations and decisions made by AI-based systems.

• Confidence: the perceived degree of confidence in decisions. Individuals with a higher degree

of confidence will find decisions correct or appropriate given the available information.

5.3.1 Research Questions

We were interested in understanding the role of uncertainty visualization in decision-making

from the angle of people’s attitudes towards AI. As such, this study aimed to answer the following

research questions:

• RQ1: Does visualization of uncertainty impact decision-making, trust, and confidence among

people with different attitudes towards AI?

• RQ2: Do attitudes towards AI influence decision-making, trust in AI, and confidence in the

decisions made differently?

• RQ3: How is the visualization of uncertainty perceived by people when making decisions?

To answer these questions, we developed an online survey where respondents chose the next

gameplay move in one of three games (Pac-man, Minesweeper, and Soccer). Participants evaluated

a total of 9 sets of gaming scenes with different levels of risk, each with and without uncertainty

visualization. The order of games was randomly for each participant. Then, participants rated how

visual cues support the perception of uncertainty and their overall experience with the visualiza-

tion of uncertainty while making decisions. We believed that AI uncertainty information would

impact people differently depending on their baseline opinions towards AI, leading to differences in

decision-making and trust levels. To assess individual’s opinions towards AI, we used the General
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Attitudes towards Artificial Intelligence Scale (GAAIS) [158]. The GAAIS scale is used to measure

extreme perspectives on AI systems. The original scale identifies two sub-scales: a positive scale

including 20 items and a negative scale with 8 items.

Survey Study Design

The survey was designed in Qualtrics 1 and distributed it through Amazon Mechanical Turk

2. Qualtrics is a system that facilitates data collection through online surveys, while Amazon Me-

chanical Turk is a crowdsourcing marketplace that allows a distributed workforce to perform virtual

tasks. The survey had four parts: (1) Study purpose and consent, (2) a pre-test survey, including

demographics and questions pertaining to AI, (3) a testing session with game scenarios visualized

with and without uncertainty information, and (4) a post-test questionnaire. Specifically, partici-

pants were first informed about the purpose of the study and engaged in a user study where they

completed self-reported assessments. To minimize the collection of missing data, we used built-in

features on Qualtrics to verify each question was answered before continuing to the next page and

set exactly to one answer per question. No time limit was imposed.

Pre-test Questionnaire

We collected information about the demographics of participants (age, gender, current occupa-

tion, and level of education), perception of risk as well as their experience with the usage of AI

systems and specific arcade games. We also asked questions as to their attitudes towards AI using

the General Attitudes towards Artificial Intelligence Scale (GAAIS) [158]. Similar to the work in

[159], we used a short version of the GAAIS scale with two questions that highly correlate to each

(positive and negative) attitude in the GAAIS scale and one more question, for each attitude, that

is representative of the everyday use of AI. We determine the average for each category, classify-

ing participants as having positive attitudes if their average positive score exceeds their average

reversed negative score, and as having negative attitudes if it is the opposite.
1https://www.qualtrics.com
2Amazon.com, Inc. Bellevue, Washington, United States
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Given this categorization, we can clearly distinguishing the impact of AI uncertainty on individ-

uals who are either favorable or unfavorable towards AI. In addition, responses were recorded using

a 5-point Likert scale with options in this configuration: left-to-right “strongly disagree; somewhat

disagree; neutral; somewhat agree; strongly agree”. Table 5.1 shows the questions in this question-

naire.

Table 5.1: Questions in the pre-test questionnaire
Category Questions
AI I am experienced with the use of AI systems

AI systems used for decision-making are always accurate
I am confident about using AI systems in my daily life

GAAIS Positive There are many beneficial applications of AI
I would trust an AI investment system with life savings
AI can have positive impacts on people’s well-being

GAAIS Negative I find AI frightening
AI might take control of people’s lives
People like me will suffer if AI is used more and more

Gaming Scenarios

We utilized classic games in the testing session as a proxy to show human-AI interaction in

decision making. All gaming scenarios were constructed by humans, but we told participants that

were generated by an AI-system. This design choice was motivated by previous works that aimed

to control the quality of the output as a potential factor in human evaluations [159]. As such, we

designed gaming scenarios with situations that motivate players to survive or win the game, while

considering “the game’s AI” probabilities and uncertainties associated with the opponent’s actions,

rather than suggestions for player’s next gameplay moves. As a pre-condition for establishing trust,

we informed participants that predictions are as reliable as the systems typically encountered in

everyday life, such as movie recommendations, traffic updates, or weather forecasts.

Sets of gaming scenarios were configured as follows. First, participants assessed a situation

within a designated gaming scenario with the AI’s prediction shown in the binary format (without

uncertainty information). Subsequently, participants decide their next gameplay move. After this,

we presented the same gaming scene with uncertainty information visible on the screen and, based

on the additional information, we recorded their next gameplay move. To illustrate uncertainty in
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the AI’s prediction, each scenario used a specific visualization method to signal probabilities. As

mentioned above, there are three main categories of visualizing data and their uncertainty: color-

oriented approaches, focus-based methods, and geometric mapping (e.g., sketchiness in rendering,

distorting line marks) [164]. We used a mix of size, color saturation, and transparency as visual

representations for uncertainty, a decision motivated by the work of Guo et. al [160](see Figure 5.1),

and conducted an in-the-wild study. We selected 3 different classic games to showcase diverse

gameplay styles: Pac-Man demands quick reflexes within a dynamic setting, Minesweeper requires

logical deduction, and the Soccer game requires intuitive decision-making rather than prior gaming

expertise. Figure 5.2, shows examples of three sets of gaming scenarios (Pac-Man, Minesweeper,

and Soccer).

Figure 5.1: A binary visualization gives a model’s output with only one label, number, or output.
Alternatively, confidence/probability can be depicted with visuals cues (e.g., size, saturation, or
transparency) in a non-binary format.

Pac-Man: In this game, the player controls the main character, Pac-Man. The ghosts, which try to

kill Pac-Man, are controlled by the “computer”. In a binary format, the AI shows the path with the

highest probability for a ghost to take. Alternatively, when uncertainty is visualized, the AI presents

up to four predictions, showing the range of probabilities using size as a visual cue. The thicker

the arrows, the higher the probability of ghosts taking that path. We designed 4 sets of scenarios

based on the Pac-Man game. Depending on the grid position, the player is then asked what direction

Pac-Man should move in (up, down, left, right).

Minesweeper: In the Minesweeper game, the player needs to identify and avoid the location of

mines, which were placed randomly on a static grid-based board. In this version, the “AI agent”
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Figure 5.2: Examples of game scenes shown in the testing session. Top row: We show the prediction
in a binary format; Bottom row: We convey uncertainty using different visual representations: size,
color saturation, and transparency for Pac-Man, soccer game, and Minesweeper, respectively.

suggests safe and dangerous locations. Specifically, the AI will paint the squares using colors repre-

senting the likelihood of the presence or absence of a mine. In a binary format, squares are painted

with only two colors representing the probable presence (green) or absence (purple) of a mine. In

the uncertainty format, transparency is used as a visual cue to identify the confidence level of said

prediction. The more vivid the color is, the more confidence the agent has in its prediction. In

contrast, the duller the color is, the less confident the agent is about its prediction. We constructed

2 sets of scenarios.

Soccer Game: In the soccer game, the player is the striker and the computer controls the goal-

keeper. The player must select one of the six targets (A-F) to attempt a penalty shot. Here, the

“AI agent” monitors the goalkeeper’s placement and movement in the net and makes predictions on

where to kick the ball to have the highest chance to score. In a baseline case, images are shown

with two shades of green, bright paths are more likely to score, while darker paths are less likely to

score. Uncertainty is visualized with multiple shades of green. The brighter the path of the color
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is, the higher the chances the player will score. Here, color saturation is used as the visual cue. We

designed 3 soccer scenarios.

After making their selection for the next gameplay move, participants are required to answer

three questions related to their decision. Table 5.2 shows the questions and metrics used in the

study: “decision change” is the action of altering a previously made decision based on a different

visualization; “trust” relates to the degree of reliability one can possess towards AI systems; “con-

fidence” is the degree of self-assurance in the decision; and “usability”, which quantifies whether

participants found visual cue informative while performing the task. The questions in this assess-

ment used a 10-point scale.

Table 5.2: Questions measuring decision change, trust in AI, confidence in decisions, and usability
of visualization of uncertainty in the testing session.

Category Questions
Decision Pac-Man: in which direction would you move next?

Minesweeper: consider the square with the question mark, would you
mark it as safe?
Soccer: which target are you shooting at?

Trust How much trust do you have in this AI prediction?
Confidence How confident are you with your decision?
Usability Did you find the visualization of uncertainty informative in this task?

5.3.2 Post-test Questionnaire

Lastly, participants were asked about their opinions on the utility, intuition, and impression of

the different visual cues. We also asked them to rank their preferred visualization method. The

questions in this part of the assessment used a 10-point scale, which were averaged to compute the

final score for each of these questions. Table 5.3 shows the questions in this questionnaire.

5.3.3 Recruitment

Data was compiled between February and June 2023 using Qualtrics 3, a cloud-based appli-

cation that allows data collection through online surveys. For the dissemination of invitations of
3https://www.qualtrics.com
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Table 5.3: Questions in the post-test questionnaire
Category Questions
Visualization of The visualization of uncertainty was useful when making decisions.
Uncertainty The visualization of uncertainty was confusing when making decisions

The visualization of uncertainty made me feel more confident in my deci-
sion.
The visualization of uncertainty helped me take objective decisions.

Visual Representations How intuitive was size as a visual cue?
How intuitive was color saturation as a visual cue?
How intuitive was transparency as a visual cue?
Rate your preference towards size as a visual cue?
Rate your preference towards color size as a visual cue?
Rate your preference towards transparency as a visual cue?

participation, we used our institution’s mailing lists and online communication mediums, such as

LinkedIn and Twitter. In addition, to get a diverse and random population of users, we recruited

workers using Amazon Mechanical Turk. We paid $1.00 USD for participation after the survey

completion. JASP 0.17.2.1 software 4 was used to build contingency tables, measure relative fre-

quencies, and report statistical analyses in this study.

5.4 Results

We collected data from 277 participants across the United States, Canada, Mexico, Australia,

Turkey, Thailand, France, Poland, Norway, Germany and the United Kingdom. To ensure data

quality, we removed responses from 86 Amazon Turk participants because they did not pass our

validation checkpoints, suggesting that their responses could not be trusted. These checkpoints con-

sisted of age verification according to the provided birth year and visual attention checks located

at different points in the survey. An example of a visual attention checkpoint is the scenario where

the Pac-Man is surrounded by ghosts with only one way to escape. We also removed 36 records as

these did not meet the minimum completion time of 9 minutes, a threshold we set to exclude pos-

sible responses lacking careful consideration. Lastly, we removed 8 responses with missing values.

In total, we analyzed responses from 147 participants. We analyzed participants’ general character-

istics using frequency analysis and descriptive statistics. Table 5.4 summarizes the demographics of
4https://jasp-stats.org
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Table 5.4: Demographics of participants included in the study.
Characteristic Quantity Characteristic Quantity
Participants 147 Education
Age Limited/No schooling completed 3

Min 19 Trade/technical/vocational training 8
Max 69 High school graduate/some college

credit
15

Mean 32.3 Bachelor’s degree 72
SD 9.9 Master’s degree 43

Gender Doctorate degree 6
Male 77
Female 69
Non-binary 1

the participants.

5.4.1 Decision change

To look at decision change, we computed a binary adjustment score that indicates when a person

made a change in their decisions in more than half of the scenarios. With this information, we create

a contingency table that allows us to quantify and compare participant’s who changed or did not

change their decisions among attitudes towards AI.

Table 5.5 shows that 71% of participants hold a positive attitude towards AI (n=104) and 29% a

negative attitude towards AI (n=43). Also, we noticed that 33% of all participants adjusted their re-

sponses after seeing the uncertainty of the AI prediction, among these 23% with a negative GAAIS

attitude and 37% a positive GAAIS attitude. This tendency was expected as it was believed that the

majority of people with a positive attitude towards AI would adhere to the AI model’s recommen-

dation, even in the absence of supplementary information. To measure the statistical significance of

our findings, we analyze the observed frequencies of our binary data and perform a chi-square (χ2)

test. No significant associations were found between participant’s attitude towards AI and decision

change (χ2(1) = 2.441, p = 0.118).

Figure 5.3 summarizes the impact of the different types of visualization in decision change.

Generally, we observe that size and transparency are the visual methods representing AI uncer-

tainty with small number of changes in decisions, 24% and 11% decision change rate respectively,
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Table 5.5: Shows the number of people, for each of the examined attitudes, who changed or not
their decisions as a response of the visual uncertainty of the AI predictions.

GAAIS Attitude
Negative Positive Total

Change 10 38 48
No Change 33 66 99

Total 43 104 147

compared to 56% found when the method used was color saturation. Figure 5.3 (left) shows that

27% individuals with a positive GAAIS attitude and 16% with a negative GAAIS attitude changed

their responses with size as the visual cue. Figure 5.3 (middle) presents higher rates of decision

change with color saturation among people with positive attitude towards AI (58%) and individu-

als with negative attitude towards AI (51%). With Figure 5.3 (right), we can observe that 13% of

participants with positive GAAIS attitude updated their responses and only 5% of the individuals

with negative GAAIS attitude also changed their responses after seen the uncertainty with the trans-

parency method. A (χ2) test showed no significant association between size and decision change,

(χ2) (1) = 1.359, p = 0.243), between color saturation and decision change (χ2) (1) = 0.294, p =

0.587) and between transparency and decision change (χ2) (1) = 1.611, p = 0.204). Despite the trend

in our results, we did not observe a statistical relationship between the types of representations of

uncertainty and changes in decisions among individuals with different opinions towards AI.

Figure 5.3: Illustrates the impact of the different types of visualization in decision change among
GAAIS attitudes.
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5.4.2 Trust

To evaluate trust in AI, we compute a trust score, which quantifies the impact strength of trust

in AI for each participant based on the average differences observed between the pre- and post-

uncertainty conditions.

A contingency table (not shown here) revealed that trust in AI increased in 58% among those

with a negative attitude towards AI and in 43% of individuals with a positive attitude towards AI.

We also compared trust strengths within groups of GAAIS attitudes. Figure 5.4 (top) demonstrates

the impact of visualizing the uncertainty of predictions on trust in AI for each GAAIS attitude.

Interestingly, we observe a more prominent impact in trust among those negatively inclined towards

AI (M = 0.39, Mdn = 0.33, SD = 0.76) compared to participants with a positive GAAIS attitude (M =

0.05, Mdn = 0.0, SD = 0.56). A Welch two-samples t-test showed that trust in AI was significantly

reinforced among participants with a negative GAAIS attitude than those with a positive GAAIS

attitude, t(61.291) = 2.651, p < .01. Cohen′s d(0.51).

To complement these findings, we further explore the impact of the different visual representa-

tions of uncertainty (e.g. size, color saturation, and transparency) on participant’s trust in AI. Each

point in Figure 5.4 (bottom) represents a participant color-coded according to their GAAIS attitude.

The point’s position indicates whether participant’s trust in AI increased (above zero) or decrease

(below zero), and the magnitude of this change. We observed a greater impact in trust in AI among

individuals with a negative GAAIS attitude when size (M = 1.00, Mdn = 0.00, SD = 3.472) and

color saturation (M = 0.374, Mdn = 0.00, SD = 3.046) are used as visual representations, compared

to transparency (M = -0.020, Mdn = 0.00, SD = 2.696). An independent one-way ANOVA found

a statistically significant main effect, F (2, 438) = 4.375, p < .001, ω2 = 0.214. Post-hoc testing

using Sheffe’s correction revealed that size resulted in a greater impact compared to transparency

(p < .05). However, there were no significant main effects between color saturation and either size

(p = .630) or transparency (p = .193).

We conclude that using size as an indicator of the uncertainty in AI predictions, significantly

impacts trust in AI, particularly among participants with a negative attitude towards GAAIS.
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5.4.3 Confidence

We quantified the number of individuals whose confidence in their decisions increased when the

uncertainty of the AI agent was displayed and found that 42% participants (n = 44) had a positive

attitude towards AI, while 49% had a negative attitude towards AI (n = 21). Further, Figure 5.5

(top) illustrates the overall strength of confidence levels in participant’s decisions when uncertainty

is visualized. We notice a subtle difference between the means of confidence and GAAIS attitudes,

where confidence in decisions has a larger impact on participants with negative attitudes towards

AI (M = 0.12, Mdn = 0.0, SD = 0.59) than in the other group (M = 0.03, Mdn = 0.0, SD = 0.65).

A Mann-Whitney U test was used to evaluate the significance of our findings. The results of the

statistical analysis suggest that there is no significant differences between the means of the compared

groups, U = 2392.5, p = 0.505.

Alternatively, we investigate the impact of the different types of visualization in confidence in

people’s decisions. Figure 5.5 (bottom) distinguishes differences across visual representations. We

observe that confidence in decisions grows weaker (below zero) among participants, regardless of

their attitudes towards AI. Specifically, we observe stronger confidence in decisions with size (M =

0.639, Mdn = 0.0, SD = 3.705), and color saturation (M = 0.279, Mdn = 0.0, SD = 3.201), compared

to transparency (M = -0.401, Mdn = 0.0, SD = 2.640). An independent one-way ANOVA found a

statistically significant main effect (F (2, 438) = 4.375, p < .001, ω2 = 0.214). Post hoc testing

using Sheffe’s correction revealed that representations with size resulted in significantly greater

impact compared to transparency (p < .05). However, no significant differences in the strength

of confidence in decision were observed between color saturation and either size (p = .630) or

transparency (p = .193).

We conclude that fluctuations in confidence in decisions may be due to different factors rather

than the individual’s attitudes towards AI. We suspect that gaming experience may have caused

the changes in confidence perceived, however this needs to be further explored. Interestingly, we

found that certain visual representations of AI uncertainty can lead to more confidence in people’s

decisions, as we observe that significant stronger decisions were perceived when the uncertainty

was represented with size.
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5.4.4 Correlations

Inspired by the experimental design in Liu et al. [159], we constructed two separate regression

models and evaluate each of the following dependent variables: changes in decisions, trust in AI and

confidence in participant’s decisions. The baseline model includes only demographic aspects (e.g.

age, education, and gender). Model 2 introduces two supplementary factor, the GAAIS score and

gaming experience. We compute the GAAIS score as the average positive and negative (reverse-

coded) GAAIS attitudes and gaming experience was obtained from the pre-test questionnaire.

Table 5.6 shows the results of the two logistic regression models assessing the effects of GAAIS

and gaming experience scores on the likelihood that participants have a change in decisions. For

Model 1, the logistic regression was not statistically significant, χ2(143) = 4.444, p = 0.931. How-

ever, Model 2 shows to be statistically significant χ2(141) = 14.313, p < .05. It was also found that

holding all other predictor variables constant, the odds of change in decision is higher (odds ratio =

1.859, p < .01) for those with more gaming experience when uncertainty is available. These results

confirm our previous findings about the lack of association between GAAIS attitudes and changes

in decisions. More importantly, they highlight a strong association between gaming experience and

decision change.

Table 5.7 provides the results of the regression models predicting trust in AI. Model 1, was

not statistically significant χ2(143) = 1.172, p = 0.760. On the contrary, Model 2 was statistically

significant χ2(141) = 12.289, p < .05. It was also found that holding all other predictor variables

constant, the odds of trust in AI predictions when uncertainty is available was 37% higher (odds

ratio = 2.023, p < 0.01) for those with strong overall positive opinions towards AI (agree or strongly

agree to the positive items and disagree or strongly disagree to the negative items in the GAAIS scale

questions). We conclude that there exists a significant relationship between GAAIS scores, which

is positively correlated to the increases of perceived trust in AI.

The results of the logistic regression models predicting confidence in participant’s decisions

(not shown here) found no significant associations between the variables under investigation in

either model. Model 1, χ2(143) = 3.659, p = 0.301. and Model 2 χ2(141) = 7.362, p = 0.195. This

absence of correlation suggests that the neither gaming experience nor GAAIS attitudes exhibit a
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Table 5.6: Coefficients table from two logistic regression models predicting changes in decision
after the uncertainty is visualized.

Model R2 Variables Estimate Standard Error Odds Ratio p
1 0.008 (Intercept) −1.230 1.022 0.292 0.229

Age 0.001 0.018 1.001 0.937
Education 0.019 0.082 1.019 0.820
Gender 0.202 0.345 1.224 0.558

2 0.077 (Intercept) −2.256 1.890 0.105 0.233
Age 0.006 0.019 1.006 0.748
Education −0.014 0.089 0.986 0.879
Gender 0.385 0.365 1.470 0.292
GAAIS Score −0.404 0.380 0.668 0.288
Gaming Experience 0.620 0.222 1.859 0.005

Table 5.7: Coefficients table showing the results of the logistic regression models predicting trust in
AI as a result of the uncertainty visualized.

Model R2 Variable Estimate Standard Error Odds Ratio p
1 0.006 (Intercept) −0.760 0.955 0.468 0.426

Age −0.001 0.017 0.999 0.964
Education 0.026 0.076 1.026 0.736
Gender 0.316 0.326 1.372 0.332

2 0.060 (Intercept) −5.471 1.870 0.004 0.003
Age −0.005 0.018 0.995 0.774
Education −0.011 0.081 0.989 0.893
Gender 0.402 0.348 1.495 0.247
GAAIS Score 1.162 0.372 3.196 0.002
Gaming Experience 0.307 0.187 1.359 0.102

relationship with the apparent trend in people’s confidence in decisions.

Visual Perceptions of AI Uncertainty

To assess how AI uncertainty is perceived among individuals with different attitudes towards AI,

we created a utility score based on the post-test questionnaire. This score includes the perception

of uncertainty as useful, confusing (reverse-coded), and supportive of both objective and confident

decisions.

Figure 5.6 presents the impact of the perceived utility of AI uncertainty among participants. We

notice a lower perceived utility for the visualization of uncertainty in participants with a positive

attitude towards AI (M = 6.91, Median = 6.875, SD = 1.10) compared to those with a negative

attitude towards AI(M = 7.25, Median = 7.25, SD = 1.36). A Mann-Whitney U test showed that
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participants with negative GAAIS attitudes perceive the visualization of uncertainty statistically

with greater utility (M = 7.372,Median = 8.0, SD = 2.65) than people with a positive GAAIS

attitude (M = 5.09,Median = 5.00, SD = 2.56), U = 3302.5, p < .001. Therefore, we

conclude that the visualization of uncertainty in AI’s predictions can be of greater utility to people

with negative GAAIS attitude.

Further, we assessed the perceived value of the different visualization techniques. Table 5.8

presents our findings based on intuition, preference, and the amount of information perceived given

the different GAAIS attitudes. We found that color saturation yielded higher intuition and prefer-

ence; this is followed by transparency and size. We also observe that participants can perceive more

information with size, followed by transparency.

We ran three two-way independent ANOVA tests, one for each factor measured. For intuition,

we found a significant main effect for the specific visual representation of uncertainty (F (2, 435) =

8.34, p < .001, ω2 = 0.032). No significant difference was found for GAAIS attitudes, or signifi-

cant interaction between GAAIS attitudes and visual representations. Scheffe’s post hoc correction

revealed that intuition was significantly higher in the representation of uncertainty with color sat-

uration compared to size (t = 4.059, p < .001). Post hoc testing shows no significant difference

between transparency and either color saturation or size.

For preference of representations of uncertainty, there were significant main effects for both

GAAIS attitudes (F (1, 435) = 5.279, p < .05, ω2 = 0.009) and the types of visual representations

of uncertainty (F (2, 435) = 8.191, p < .001, ω2 = 0.031). No significant significant interaction

were found between GAAIS attitudes and visual representations. Post hoc testing with Scheffe’s

correction revealed a statistically significant difference between individuals with positive and nega-

tive GAAIS attitudes (t = −2.298, p < .05) as well as significant differences between using color

saturation and size to represent uncertainty (t = 4.044, p < .001). Post hoc testing shows no

significant difference between transparency and either color saturation or size.

Lastly, we assessed the level of information perceived with different representations of uncer-

tainty and found a significant main effect for GAAIS Attitude (F (1, 435) = 3.955, p < .05, ω2 =

0.007). No significant difference was found for visual representations, or significant interactions
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between GAAIS attitudes and visual representations. Scheffe’s post hoc correction showed the per-

ceived level of information to be significantly higher for individuals with a positive attitude towards

AI compared to those with a negative attitude (t = −1.989.044, p < .05).

Table 5.8: Shows how intuitive the different representations of uncertainty were perceived.
GAAIS Size Color Saturation Transaprency

Intuition Positive 6.35± 2.42 7.00± 2.10 6.70± 2.24
Negative 5.65± 2.81 7.42± 2.11 6.28± 2.40

Preference Positive 6.41± 2.61 7.20± 1.92 6.80± 2.32
Negative 5.37± 3.26 7.17± 2.31 6.16± 2.61

Informative Positive 7.58± 1.82 7.36± 1.78 7.37± 1.71
Negative 7.37± 2.12 6.83± 2.25 6.92± 2.15

5.5 Discussion

To highlight the importance of visualizing uncertainty in human-AI collaboration, a few studies

have investigated the effects of uncertainty in games and simulations [148, 149] and the humanistic

factors that enable the utility and adoption of AI-based technologies [156, 160, 161, 162]. Our paper

expands this line of research by examining participants’ attitudes toward uncertainty in AI and its

impact on the decision-making process. We utilize classic games as a tool to assess the impact of

the visual perception of the uncertainty of AI outputs into decision change, trust and confidence in

decisions, using simple simple techniques such as size, color saturation and transparency. Table 7.1

summarizes the findings of our study in relation to our research questions.

5.5.1 Decision Change, Trust in AI and Confidence in Decisions

According to our findings, the visualization of uncertainty has a noticeable impact on decision-

making, leading at least one-forth of people in each group, regardless of their attitudes towards AI,

to make a change. In general, up to 33% of all participants re-evaluated their choices based on the

different visual representations. However, with the observed data, we could not verify a significant

relationship between these decision changes and individuals’ opinions towards AI. The visualization

of uncertainty had a significant impact on people’s trust in AI. We observed a significant higher

impact in trust in AI among people with negative attitude towards AI relative to those with positive
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attitude towards AI, when size was used to show AI uncertainty. We also observed an apparent

impact on confidence in decisions among people with different attitudes towards AI, but could not

confirmed a significant effect. Instead, further analysis revealed that significantly more confident

decisions can be made when AI uncertainty is represented by size.

5.5.2 Correlations

Another important finding in our study is the identification of the factors that affect decision-

making and trust in AI. We utilized logistic regression algorithms to explore the correlation between

demographic information, GAAIS attitudes and gaming experience and each of the variables of

interest. Our results indicate that gaming experience is a significant predictor variable for decision

change. Increasing gaming experience was positively associated with an increase in decision change

when uncertainty is visualized. This suggests that people with higher gaming skills are able to

combine the visual information produced by the AI agent and their gaming experience to better

recognize behavior patters in the explored domain and make informed decisions. Alternatively, we

observed how personal traits (GAAIS attitudes) influence the way trust can be perceived when the

uncertainty in AI predictions is evaluated. We found that high levels of positive opinions towards

AI were associated with an increase in trust in AI predictions. These findings are reinforced by the

idea that trust in human information interaction is influenced by individual characteristics such as

memories, assumptions, perceptions, and heuristics of the trusting individuals (first pillar of trust)

[179].

5.5.3 Usability

Based on feedback regarding the usability of AI’s uncertainty representations in decision-making,

we found that visual elements were considered helpful by many, particularly those with a negative

GAAIS attitude. We discovered that 31% of participants with a negative GAAIS attitude found un-

certainty visualization more useful, relative to the groups of people with positive GAAIS attitude. In

addition, we examined the perceived value of different visual method to represent uncertainty based

on intuition, preference and the amount of information provided. We found that color saturation

was the most significantly intuitive and preferred approach, while size was perceived as providing

92



the most information about the degree of uncertainty. We believe that the high percentages of util-

ity observed in the study reflects both the potential of representing uncertainty of AI solutions and

people’s appreciation of the additional information in their decision-making. This motivates us to

perform more in-depth explorations of this research within a specialized domain, where both the

scenarios and decisions involve higher risk and complexity.

5.5.4 Limitations

A limitation of our work is the use of static gaming scenarios as toy experiments. Since, the

visual recommendations presented across these gaming scenarios were not generated by AI, a proper

calibration of the uncertainty could not be estimated. Despite this, this design choice still allowed

us to identify subtle differences between user’s perceptions of AI’s uncertainty and its effects in

decision making. As such, the aforementioned implications might be somewhat limited due to the

lack of AI and future research using well-calibrated uncertainty estimates is deemed.

5.5.5 Implications

These findings have multiple implications for AI designers. First, considering human factors,

such as visual perception, to communicate the uncertainty of AI predictions can offer individuals

more transparent and informative feedback. This encourages informed decision-making throughout

their tasks. For example, this may be of particular relevance to serious and health games. AI de-

signers should pay attention to determine what visual representations maximize the impact in the

decision-making process and whether or not a combination of visual representations is necessary

to achieve a similar effect. Further, designers can leverage the effectiveness of visualization of

uncertainty among the different attitudes towards AI to create unique experiences that encourage

engagement and satisfaction. For those individuals with positive attitudes towards AI, the use of

visual representations to show the uncertainty associate with the AI prediction can increment trust

levels. This is important in health-oriented applications. A person can be persuaded to change their

exercise habits to reach their wellness goals given a range of possible outcomes and a confidence

level accompanying AI’s suggestions. On the other hand, to accommodate people who hold negative
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attitudes toward AI, designers may need to incorporate additional features to alleviate any skepti-

cism. Lastly, the strong association observed between gaming experience and decision changes

highlights the importance of presenting the optimal level of uncertainty to people with different

skills levels. By doing this, designers can leverage the adaptive capabilities of AI-based systems to

enhance individual’s experiences for both expert and non-expert.

It is also important to note that we do not endorse a specific type of visualization technique for

communicating uncertainty nor do we intend to convince participants or users to place their trust in

AI. Instead, this chapter encourages the evaluation of visual factors into the design of AI systems to

alleviate the challenge of reasoning with uncertainty. Moreover, the findings here provide evidence

demonstrating the influence of uncertainty visualization on decision-making in everyday situations.

With this in mind, we understand that the problem and level of risk described in this study does

not compare to those experienced in sensitive domains, as decisions are more complex, and a direct

application might not be smooth. However, we hypothesize that the detection of large fluctuations

in decision-making, trust, and confidence in low-risk situations suggests that they will be even more

prominent in complex and risky decisions.

5.6 Conclusion

Recent improvements in AI have enabled machines with human-level perception capabilities,

allowing their acceptance into many domains. However, many of these applications offer solutions

that are not always transparent, accurate, or trustworthy. To address these shortcomings, we encour-

age the adoption of visual methods for a better interpretation of AI uncertainty, which can lead to

more informed and grounded decision-making .

This chapter investigates human responses to algorithmic advice throughout the decision-making

process in classic games, offering insights into how the visual representation of uncertainty impacts

decision-making, trust in AI, and confidence in decisions among individuals with different attitudes

towards AI. We demonstrated that the consideration of human factors into the representation of

AI outputs impacts trust of people differently, but also leads to different outcomes depending on

their experience. These findings motivate designers of decision-making systems to communicate
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AI decision information to users (via visualization of uncertainty) and explore effective visual rep-

resentations that may bring higher impact to perception and cognition. These efforts will result in

AI systems and agents that are not only trustworthy but useful.
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Figure 5.4: Illustrates the impact of visualization of uncertainty on trust in AI according to GAAIS
attitudes (top). We show the impact of the different visual cues of uncertainty on participant’s trust
in AI (bottom).
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Figure 5.5: Illustrates the impact of visualization of uncertainty on trust in AI according to GAAIS
attitudes (top). We show the impact of the different visual cues of uncertainty on participant’s trust
in AI (bottom).
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Figure 5.6: Box plot illustrating the average utility score of participants after seen the uncertainty
of the model. This score considers how the uncertainty is perceived as useful, confusing (reverse-
coded), and supportive of both objective and confident decisions
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Chapter 6

Towards Trustworthy Predictions of

Alzheimer’s Disease under AI

Uncertainty

Building on the analysis described in Chapter 5, we extend our investigation to human-AI col-

laboration in high-risk clinical decision-making. Specifically, we conduct a mixed-methods study

with two tasks: (1) identifying factors needed for building trustworthy AI applications and (2)

minimizing over-reliance on AI technologies by highlighting their limitations through uncertainty

visualization. Both tasks focused on AI-generated predictions of Alzheimer’s disease prognosis. In

the first task, we used these predictions to elicit user opinions about the utility of AI uncertainty and

their trust in the AI’s predictions. We also examined whether the amount of information provided to

the user about the AI’s model development impacted trust. In the second task, we explored which

visual method best conveys AI uncertainty to individuals with varying skill levels to determine the

optimal representation of uncertainty.

This chapter makes contributions to the field of human–computer interaction (HCI), AI, and

Alzheimer’s disease research. Our findings revealed that providing information about the AI model

development significantly enhances individual’s perception of reliability. In addition, we confirmed
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that AI uncertainty improves trust in high-stake decision-making and serves as a form of trans-

parency in disease prognosis the evaluations. We also observed that individuals perceive uncertainty

better with simple traditional visual methods, such as bar charts. Lastly, an important finding is that

individuals tend to be overconfident when unaware of the AI model’s uncertainty but start to ques-

tion the AI’s reliability when informed about it. This insight is critical in clinical decision-making

and warrants further research.

This chapter was based on a paper that was submitted to the MICCAI UNSURE (June 2024)

workshop and is in preparation for a journal paper Reyes, J.., Masoumi, M., Batmaz, A., & Kersten-

Oertel, M. Towards Trustworthy Predictions of Alzheimer’s Disease under AI Uncertainty.
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Abstract

Dementia research, coupled with artificial intelligence (AI), has significantly advanced the dis-

covery of disease etiology and biomarker in its early stages, offering the possibility of diagnosis

and treatment before symptom onset. However, AI models are prone to biases and inconsistencies

during the learning process, resulting in varying degrees of uncertainty in predictions, and ulti-

mately, leading clinicians to automation bias. With a mixed-methods study, we train an AI model

with clinical assessments and neuroimaging data from 1,123 patients to assess (1) how the level of

detail about the AI model impacts the human-AI decision-making process and (2) how uncertainty

impacts decision-making in high-stake decisions, such as Alzheimer’s disease prognosis. Our find-

ings indicate that human-AI decision-making process is perceived to be 42% more reliable, based

on four facets of trust, when AI uncertainty is expressed in a continuous format rather than a bi-

nary format. When comparing representation methods, people showed 13% more trust in the binary

(color/no color) than continuous (color saturation) format. These results confirm that information

about AI uncertainty improves high-stake decision-making. Our findings suggest that people tend

to be overconfident when they are unaware of the model’s uncertainty, but they start to question the

AI’s reliability when they are informed about it.

6.1 Introduction

Artificial intelligence (AI) is increasingly being integrated into Alzheimer’s disease (AD) re-

search due to its potential to enhance patient care, prognosis, personalize treatments, and streamline

clinical decision-making process [180, 181]. Particularly at earlier stages of the disease, it is vital

to assess the degree of neurodegeneration with precision and confidence for timely intervention and

treatment planning, potentially leading to the slowing of disease progression. AI-based systems,

have gained attention in the dementia research community for their ability to automatically identify

abnormal neurodegeneration, such as volume loss in the hippocampus or abnormal amyloid plaques

deposits, that are believed to result in AD progression [182]. An automatic detection of pathologic

signatures in early stages of the disease could enhance the reliability of the prognosis, facilitating

early access to intervention [71]. Several clinical data-driven algorithms have been developed to au-

tomatically detect biomarkers for accurate AD diagnosis and prognosis. Typically, these AI-based
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methods are trained and validated with longitudinal and cross-sectional data from the Alzheimer’s

Disease Neuroimaging Initiative (ADNI), the most comprehensive public dataset [183]. ADNI pro-

vides information from various modalities, magnetic resonance imaging (MRI), positron emission

tomography (PET), cognitive assessments, and cerebrospinal fluid (CSF) testsacross its four ver-

sions (ADNI1, ADNI2, ADNI-GO, ADNI3). Given that the nature of clinical data which is highly

heterogeneity and complex, AI models face limitations and uncertainties from the training data. As

a result, the adoption of these algorithms in clinical practice has been slower compared to other

domains. For a review of the contribution of AI-based systems in the classification of MCI and AD

using the ADNI dataset, we direct the reader to Tanveer et al.’s work [180] and Zhao et al.’s work

[181]. Although AI models outperform traditional algorithms using single or multiple biomarker

modalities, they still face limitations and uncertainties in the input data [71]. Uncertainty, the lack

of knowledge about an outcome, is classified into aleatoric (irreducible, noise in training data) and

epistemic (due to inadequate or incomplete data) [184]. Popular techniques for quantifying uncer-

tainty in AI include Monte Carlo sampling and Markov chain Monte Carlo. Alternatively, HCI

and human-AI communities assess uncertainty by considering human factors such as visual cogni-

tion [56, 58]. In AD studies, inherent uncertainty in diagnoses, heterogeneity in pathological signa-

tures, and the imbalance between progressive and non-progressive MCI individuals introduce biases

during training, reducing prediction sensitivity and compromising accuracy and reliability [185, 71].

Decision-making based on AI can be challenging due to prediction uncertainty, the lack of trans-

parency in model decisions, or an over-reliance on algorithmic advice. Uncertainty can serve as a

proxy for scientific transparency, potentially increasing trust in high-stake decisions such as AD

prognosis[186], but also a reduction on the over-reliance and over trust in the AI technology. Vi-

sualizing AI uncertainty alongside predictions provides users with an accurate representation of the

AI model facilitating the adoption of AI-based tools by clinicians for high-stake decisions, making

the statistical power of each prediction more transparent. This may lead to fewer false positives,

mitigation of over-reliance and under-utilization of AI systems, and improvements in risk factor

assessments.

In this study, we seek to facilitate the adoption of AI technologies in the clinic. To do so, we

train Eslami et al.’s AI model to generate color-coded images depicting uncertainty using binary
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(color/no color) and continuous (color saturation) formats. With these images, we measure individ-

ual’s visual perceptions of AI uncertainty and its impact in high-stake decision-making, in particular

with predictions of AD prognosis. We also measure the impact of different levels of details about

the AI model on trust and assess various visual methods to find an optimal representation of AI

uncertainty in predictions of AD trajectory. Given a number of AI-generated predictions of AD

progression in an online survey, participant determine patient’s AD predicted disease stage and de-

scribe their level of trust in the AI prediction and own decisions. The main contributions of the

paper are as follows:

(1) AD/AI: We extend Eslami’s et al. [187] qualitative exploration of visual AI uncertainty esti-

mation to enhance algorithmic transparency in the predicting of AD progression, and improve

the utility, safety, and reliance of AI solutions.

(2) AD/AI: We conduct an empirical analysis among clinicians and AI experts with the goal of

elucidating how decision makers in the AD/AI domains integrate uncertainty as supplemen-

tary information into their decision-making processes.

(3) HCI/AI: We explore the relationship between the visualization of AI uncertainty and the pro-

cesses of trust formation and decision reliance.

6.2 Previous Work

A number of studies have focused on the development of clinical decision support systems

aiming at facilitating decision-making under uncertainty. However assessments to identify the most

appropriate visual representations for AI uncertainty in high-stake decision-making, especially in

Alzheimer’s disease research, has not been fully explored. In this section, we present previous

research aimed at integrating visual components of AI uncertainty within the areas of AI, human-AI

and AD research.
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6.2.1 Clinical Decision Support Systems

Clinical decision support systems (CDSS) represent any type of software that is directly in-

volved in clinical decision-making, in which characteristics of individual patients are used to gener-

ate patient-specific assessments or recommendations that are then presented to clinicians for consid-

eration [43]. According to Sutton et al.’s review article[45], using CDSS can bring multiple benefits

at different levels of care (e.g. patient’s safety, clinical management, administrative functions, di-

agnostic and patient decision support), but can also induce an automation bias, which refers to an

over-reliance and over-trust in the AI solution.

As more AI applications are developed, the issue of over-reliance is gaining increasing attention.

This is particularly significant because automation bias can prevent users from acquiring the skills

and expertise that is typically developed with experience [188]. To empirically study this effect,

Wysocki et al. assessed decision-making for patient admissions based of their likelihood of needing

oxygen and the severity of COVID symptoms. The study revealed that respondents took less time

to make decisions when some degree of AI explanations were provided, indicating over-reliance on

the tool. This over-reliance led to a false impression of correctness, reducing a need to auditing the

output [189]. This finding underscores the risk of inappropriate trust in AI systems, highlighting the

potential dangers of over-reliance on AI in critical decision-making processes.

6.2.2 Human-AI and Decision-Making

Previous studies have addressed the problem of data visualization and representation of uncer-

tainty in multiple domains. Some research studies offer literature reviews describing the success

of integrating interactive visualizations to support decision-making, increase trust in AI models,

and describe multiple approaches and issues of uncertainty visualization [190, 191, 192]. A line

of research is concentrated on accurately estimating and communicating AI model’s reliability to

decision-makers, explainable AI (XAI). AI researchers have extended the focus from model explain-

ability to interpretability, in an area of AI called human-AI.

Human-AI research aims at augmenting human capabilities by incorporating human factors (e.g.

visual perception and cognition) into the design of the AI solution. Generally, the literature shows a
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growing interest in transforming uncertainty into trustworthy systems. For example, Chatzimparm-

pas et al. [191] presented a review of 200 papers dating back to 2008, describing how interactive

visualization can be used to improve trust in AI models, including a few papers implementing in-

teractive approaches that enabled a visual analysis of uncertainty. Bhatt et al. [186] described how

uncertainty can serve as a useful form of transparency for decision makers. Zhao et al. [193] as-

sessed the impact of uncertainty visualizations on reliance, trust and dependency on AI models.

Prabhudesai et al. [157] explored perception, reasoning, and judgment of decision-makers with AI

predictions displaying their uncertainty associated. Doula et al. [56] built an augmented reality (AR)

mobile application to measure the impact of AI uncertainty on decision-making. These studies sug-

gest that designing AI solutions with human-AI considerations can provide more comprehensive

analysis of AI predictions as they become more usable solutions, where users can understand how

predictions are made, interact with the system when new input is added, and decide to trust or not

in the recommendation or prediction.

Recent studies have focused on human-AI collaboration to improve CDSS. Kniss [194] sug-

gested the incorporation of understanding to not only highlight regions of interest in the brain, but

to also provide a semantic meaning of the area of uncertainty highlighted. Lundström et al. [195]

integrates probabilistic animations methods to expand the decision support of clinicians through the

visualization of uncertainty into medical volumes. Yang et al. [196] revealed that model adoption

of AI models in clinical settings is often hindered by a lack of perceived need, trust in AI, and

insufficient user-centered human-computer interaction (HCI) considerations. More recent works

by [197] and [198] provide comprehensive overviews of uncertainty-aware visualization in medical

imaging and scientific analysis. They highlight the importance of visualizing uncertainty to improve

understanding, communication, and decision-making processes, while also identifying challenges

and proposing further research directions to advance the field.

In dementia research, only a limited number of studies have investigated the potential of AI-

based systems for the early prediction of the risk of patients converting to AD. Eslami et al.’s

study [187] stands out as a pioneering work in the visual assessment of the uncertainty of AI outputs

for AD research. The authors present an intuitive color-coded visualization system, which integrates

multiple biomarker modality information for the prediction of disease trajectory. The proposed AI
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model was trained with data from ADNI QT-PAD [183], which is a data freeze subset of the ADNI

1/Go/2 cohorts, and was evaluated by three experts. Interestingly, this system not only presents

the predictive outcomes of deep learning models, but also communicates the associated uncertainty

levels visually. This approach contributes to the AD research by leveraging the visual depiction of

uncertainty to improve the interpretability and reliability of AD predictions.

Lai et al. [1] suggested that AI predictions be accompanied by explanations detailing the ratio-

nale behind the solutions provided. More specifically, the authors recommended (1) displaying AI

uncertainty to convey information about the prediction and (2) expanding details about the train-

ing data to provide additional insights into the AI models. We adopted these recommendations in

designing our experiments, aiming to further explore visual AI uncertainty estimation to enhance

algorithmic transparency in predicting Alzheimer’s disease progression, building on Eslami et al.’s

work [187].

6.3 Materials and Methods

We conducted an online user study to assess level of trust in AI predictions when making high-

risk decisions under conditions of uncertainty, given different levels of model information. This

study was approved by the Office of Research and Ethics and the Human Research Ethics Commit-

tee of our institution.

We aimed to answer the following research questions:

• How does the level of detail about the AI model and AI’s uncertainty impact expert’s trust in

high-stake predictions?

• What visual format of uncertainty enhances interpretability of AI predictions in AD trajec-

tory?

To answer these questions, we developed a web application with two main experimental tasks

that presents different levels of detail about the AI model and predictions of AI disease progression.

In the first task, participants inspect various AI-generated images of AD trajectories to determine

the AD disease state at different clinical examinations. This is followed by questions about their

106



trust in the AI’s decision making the process and confidence in their decisions. In the second task,

participants assess different visual representations of uncertainty, provide feedback and rank their

preference. We hypothesized that varying levels of information about how the model was trained

and its uncertainty would impact individuals differently, resulting in differences in trust. Thus, we

formed the following hypotheses:

• (H1) Individuals presented with more detailed information about the AI model will exhibit

higher levels of trust in the AI’s prediction compared to those given less information,

• (H2) Individuals exposed to more transparent AI systems, based on uncertainty, will trust the

predictions more than those who receive less information about the model.

• (H3) Visual methods that continuously express AI uncertainty throughout the output are per-

ceived as more interpretable and trustworthy than methods that summarize the uncertainty..

6.3.1 Data and model setup

We utilized patient data from ADNI QT-PAD. This database includes information from MRI/PET

imaging, CSF biomarkers, genetic risk factors, and clinical assessments. Data can be obtained from

the “Test Data/Data for Challenges” section of the LONI website 1. We processed longitudinal

evaluations from 1,123 participants in the ADNI QT-PAD dataset. To make the data ready for AI,

we pre-processed, filtered, normalized, imputed, trained and evaluated clinical data as in Eslami et

al. [187]’s paper. In addition, we implemented an instance of the Machine Learning for Visualizing

AD (ML4VisAD) model to generate color-coded predictions, representing disease progression. The

architecture of the ML4VisAD model is available in a public repository 2.

6.3.2 AI Model Output / Stimuli

Images (23x23 pixels) representing AD progression are color-coded every 5 pixels, indicating

the diagnosis at the time of a each of the visits (e.g., green for cognitively normal patients, blue

for mild cognitive impairment, and red for Alzheimer’s disease). Images with a single color across
1ADNI QT-PAD data was downloaded on March 2024 from https://ida.loni.usc.edu. Additional information about the

QT-PAD Challenge can be found at www.pi4cs.org/qt-pad-challenge
2https://github.com/mohaEs/ML4VisAD
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all visits, represent patients with stable cognitive status (e.g., stable CN, stable MCI, and stable

AD as shown in the first three images left-to-right in Figure 6.4), while images with two or three

colors, indicate progression or conversion stages of the disease (4th image in Figure 6.4). In both

cases, AI uncertainty is depicted in a binary format, either with color or no color (on the last 3

pixels of the image). When these images are processed by the ML4VisAD model, it generated a

similar representation of the input image, showing the degree of uncertainty in the prediction. In this

case, the uncertainty is expressed continuously across each visit (e.g., color saturation as shown in

Figure 6.4 far right), where darker colors indicate greater uncertainty and more vivid colors indicate

higher certainty in the prediction.

Figure 6.1: Examples of stable cognitive status across examinations (three images to the left) and
converting stage (fourth image). These four images present uncertainty in a binary format (color/no
color). At the far right, an example of converting stage with uncertainty expressed throughout the
image using a continuous format (color saturation).

6.4 User-study design

We set up a user study where we used an explanatory sequential design, a variation of a mixed-

methods design [199]. The first part of the user study consists of a consent form, pre-test question-

naire, two tasks, and a post-test questionnaire. This is followed by a survey designed to understand

the rationale behind the responses provided during both tasks. Figure 6.2 shows an overview of our

user study.

Pre-test questionnaire: We collected demographic data, including age, gender, level of education,

current occupation and area of work/research. In addition, with a 10-point scale, we record the

user’s knowledge of AI development/use, data visualization, and Alzheimer’s Disease.
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Figure 6.2: Overview of our mixed-methods study.

6.4.1 Task 1

We aimed to assess changes in trust given different levels of detail about the AI model and vary-

ing amounts of uncertainty in the model. To do so, we designed situations that required participants

to determine state progression of AD based on the predictions provided by an AI system. With a

fixed threshold, we categorized predictions based on the level of uncertainty computed per image.

Uncertainty was quantified based on the accumulated L component of each image in a L-a-b for-

mat. In CIELAB space, this format expresses color space after a color-opponent theory, L-channel

refers to lightness normalized from zero to one, and a* and b* are chromaticity coordinates, where

a* represents the red/green, and b* the yellow/blue [200]. Figure 6.4 shows an example of predic-

tions under each category: low uncertainty (a narrow degree of uncertainty between 0% and 10%),

medium (a moderate level of uncertainty from 11% to 20%), and high (a wide amount of uncertainty

in the prediction above 21%). This categorization is motivated by the clinical practice of conducting

pre-screenings, where the computed degree of uncertainty determines whether expert intervention is

required for further inspection. We selected 3 predictions from each category. Figure 6.3 illustrates

a diagram of AI assistance elements considered in our study.

While all participants assessed the same visual stimulus, they were randomly presented with

varying levels of detail about the AI model. A summary of the level of information provided is
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Figure 6.3: Diagram of AI assistance elements inspired by Lai et al. [1].

below.

• Minimum Detail: No details about the AI model are given.

• Moderate Detail: AI model details given include the dataset name, the number of subjects

used to train the model, patient inclusion and exclusion criteria based on diagnosis at the first

visit, and details about the model’s hyper-parameters are available upon request.

The task followed a blocked within-subjects design to present two conditions of AI uncertainty.

The first condition included 6 predictions with uncertainty in a binary format and 6 predictions with

the uncertainty in a continuous format. Each prediction was followed by three questions: (1) At

which evaluation would you consider this patient to have transitioned to another state in Alzheimer’s

disease (6, 12, 24-month visit or stable status)? (2) How confident are you in your decision? and (3)

How much do you trust the human-AI decision-making process? Questions 2 and 3 were based on

a 10-point scale. We randomized the predictions at the block-level to avoid bias towards a specific

condition.

After each block, we measure overall trustworthiness at the condition-level by using an adapted

scale from Ashoori and Weisz’s paper [2]. This allows us to explore the different facets of trust

about the evaluated human-AI decision-making process either with a binary or continuous format.

We ignored the facet “understandability” as it showed poor reliability in the original study. The 4

facets of trust and questions we asked participants to rate with a 10-point scale are:
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Figure 6.4: From left to right, examples of images with low, medium, and high uncertainty.

• Trustworthiness: 1) I believe the decision-making process is trustworthy (i.e. the model’s

outputs or predictions are reliable, consistent, and can be depended upon) and 2) I need more

information about how the AI model was trained and tested in order to trust the design making

process.

• Reliability: The visualization of the predictions of the system effectively acknowledges the

AI model’s limitations.

• Technical Competence: I can clearly identify the limitations of the AI model.

• Personal Attachment: This decision-making process can be integrated into my own research/clinical

practice.

6.4.2 Task 2

The aim of this task is to explore different visual formats to represent AI uncertainty for predic-

tions of AD disease trajectory. We use a blocked within-subjects design for this task. Each block

consisted of 3 images that were selected based on their degree of uncertainty (low, medium, and

high). The uncertainty was encoded using 5 different visual formats, as described below. We con-

sidered it important to preserve the original color-coding mapping to each clinical diagnosis. An

example of each is shown in Figure 6.5. Following each visual rendering, we asked participants to

answer three questions, similar as in Task 1: 1) At which evaluation would you consider this patient

to have transitioned to another state in Alzheimer’s disease (6, 12, 24-month visit or stable status)?

2) How confident are you in your decision? and 3) How much do you trust the human-AI decision-

making process? At the end of each block, we asked participants to provide feedback about their

ability to perceive uncertainty each of the visual format based on how easy, efficient, clear, intuitive
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and informative they think the predictions are in that block. We randomized the blocks so that each

participant evaluates a different visual formats in different order to avoid presentation bias.

• 2D (stimuli in Task 1): We considered the 23x23 prediction from the DLML4VisAD model,

transformed in the L-ab-format. The amount of information per pixel from the L-component

is used to calculate the certainty and uncertainty of each image. In this case, if L is the

normalized sum of the L-component across all pixels representing certainty in the image, the

remaining (1-L) is used to represent its uncertainty.

• 3D model: The 3D representation from the 2D image above, based on the L-component in

the L-a-b format. The web app enabled users to interact with the 3D model through zoom,

pan, and translations.

• Bubbles: We built 2d bubbles in JavaScript with the package highcharts 3. The color of the

bubble indicates the diagnosis at the time of the visit and the size of the bubble determines

the amount of uncertainty estimated per visit. The bigger the bubble, the more uncertainty

accumulated across those pixels representing a specific visit.

• Bar chart: A 2D bar generated in JQuery using the package skill.bars 4. With the total cer-

tainty estimated from the L-a-b format, we create each bar per visit. In addition, to uncertainty

of the prediction is colored with gray.

• Gradients: To generate gradient images for each visit, we begin by analyzing the 3D model

and assign specific colors to individual pixels. Then, we group the pixels based on their

assigned colors and calculate the average certainty and uncertainty within each group. At this

point, we identify the number of color groups in each visit and create a corresponding colored

gradient image. With a single dot, we represent the maximum likelihood for the prediction

based on the average certainty.

3https://www.highcharts.com/demo/highcharts/bubble
4https://github.com/umarwebdeveloper/jquery-css-skills-bar
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Figure 6.5: Visual formats used in Task 2. (top) 2D, 3D and bubbles, and (bottom) bars and gradi-
ents.

Post-test questionnaire and Survey:

At the end of both tasks, we ask participants to rank their preferred visual format and describe

the reasons behind the selection of the most and least favorite visualization methods. This was

followed by a survey, where participants completed a few open-ended questions: (1) How did the

visualization of uncertainty influence your decision-making, if at all? and (2) What factors influ-

enced your perception of uncertainty and trust in the AI predictions?

Recruitment, data collection and analysis:

We recruited participants with varying levels familiarity with Alzheimer’s disease, and experi-

ence with data visualization and AI. Data was collected in June 2024 using a web app built in our

laboratory 5. For the dissemination of invitations of participation, we used our institution’s mailing

lists and online communication mediums such as LinkedIn and X (formerly Twitter). Although the

survey was designed to be completed online, we invited participants to the lab to conduct it in a

Think-Aloud manner, allowing us to answer any questions they had about the test. JASP 6 0.17.2.1

was used to report statistical analyses.
5[link removed to preserve anonymity]
6https://jasp-stats.org
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6.5 Results

We recruited 37 participants and analyzed their general characteristics using frequency analysis

and descriptive statistics. The average participant age was 27.8 years (range: 21-38), with 59%

male and 41% female. We recruited clinical practitioners and graduate students specializing in

fields such as VR/AR, HCI, ML/DL, neuroimaging, psychology, computer vision, photonics, and

formal methods. We also assessed their experience levels on a scale of 1 (no experience) to 10 (very

experienced) in AI development (M=6.1, SD=2.63), AI usage (M=7.3, SD=1.77), data visualization

(M=6.1, SD=2.09), and Alzheimer’s Disease (M=3.08, SD=2.33).

6.5.1 Task 1

We report our findings about whether providing different levels of detail about the AI model

will impact trust in the AI prediction. Figure 6.6 shows how the two levels of information about

the AI model affect trust. We observed higher trust scores with a moderate level of information

(M = 6.99, Mdn = 7.08, SD = 1.64) than with less information( M = 6.44, Mdn = 6.58, SD =

1.66). An independent t-test shows no significant effect for the level on information provided. This

suggests that the level of information provided triggers certain confidence in the prediction, however

the amount of information seems not to be appropriate or enough to cause a significant effect.

Therefore, we cannot accept H1. To further understand this observation, we evaluated participant’s

opinions collected at the end of the user study. One participate expressed their need for more

information about the design of the output: “I’d trust the predictions more if I know more about

how the predictions are produced and visualized”. Other participants, who were presented with

the minimum amount of details, described the type of information that would have been helpful to

reinforce trust: “I would have liked to know more about the model and subject data... it is hard to

trust a model I know nothing about. ” and “I just trust that the colours are informative for the AI

prediction not knowing anything about the data, training and testing of the AI was not helpful.”

We also assess how the uncertainty of the AI model affects the four facets of trust. Figure 6.7

shows that trust is generally perceived higher with uncertainty represented in a continuous visual

format compared to binary, except in Personal Attachment. The highest increase in Reliability
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Figure 6.6: Comparing the impact of providing various levels of information on the human-AI’s
decision-making process.

(42%) was detected with a continuous format (M=6.919, Mdn=7.0, SD=1.991), compared to bi-

nary (M=4.865, Mdn=5.0, SD=2.830). Paired sample t-tests confirmed that there was a signif-

icant increase in the reliability of predictions with a continuous format over the binary format,

t(36) = −3.768, p < .001. No other significant effects were observed. A qualitative analysis

on participant’s opinions provide further insight about the fluctuations of perceived trust in the

human-AI decision-making process. One participant commented on model reliance: “If there is no

uncertainty visualized, it is easy to be overly confident in the model. The more it is visualized, the

more I can be trustworthy of the decisions”. Another participant shared their opinions about the use

of binary representations: “It caused me to think more thoroughly. Binary representation is very

uninformative and is hard to trust.”

Further, we analyzed individual’s perception of overall trust after seeing the output images gen-

erated by the AI model. In Figure 6.8, we noticed that participants trust (13% more) AI predictions

when the uncertainty is represented in a binary format (M = 7.19, Mdn = 7.33, SD = 2.52) rather than

in a continuous format (M = 6.22, Mdn = 6.17, SD = 1.36). A paired sample t-test showed that the

continuous format of AI uncertainty significantly decreases trust scores (t(36) = 2.550, p < .05)
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Figure 6.7: Multi-dimensional concept of trust facets according to Ashoori and Weisz [2].

compared to the binary representation. When looking at the qualitative results, we found that par-

ticipants negatively perceived the use of color saturation, “Factors like blurred transition due to

uncertainty being plotted, despite providing more information, made the decision boundaries vague

and reduced my confidence.”, “How noisy the [visual] data was affected my trust in the AI model

making a meaningful prediction.”

These results suggest that the representation of AI uncertainty in a 23x23 image using color

saturation as a medium to represent uncertainty in a continuous format raises more concerns about

the reliability of the prediction. Given that we observe more significant reliable predictions with

AI’s predictions shown in a continuous format, we partially accept H2.

6.5.2 Task 2

We present our findings on using various visual formats to represent AI uncertainty. We were

motivated to separate this analysis based on participants’ experience in data visualization due to the

multiple studies that describe difficulties for individuals to interpret uncertainty, including domain

experts [201]. Owing to this, we set a fixed threshold to classify participants based on their level

of experience in data visualization provided in the pre-test questionnaire, experienced individuals

(experience greater than 5) and inexperienced otherwise.

Figure 6.9 (top) shows how inexperienced participants in data visualization perceive trust across
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Figure 6.8: Comparing the effect of two visual methods for AI uncertainty on trust, while using a
23x23 image as stimulus.

different visual formats. We noticed that these participants trust more in the AI prediction with 3D

models (M = 7.1, Mdn = 7.0, SD = 2.25), followed by gradients (M = 6.95, Mdn = 7.0, SD =

1.84), bar charts (M = 6.95, Mdn = 6.0, SD = 2.03), 2D (M = 5.87, Mdn = 6.33, SD = 2.17) and

bubbles (M = 4.9, Mdn = 5.0, SD = 2.03). An independent one-way ANOVA, which showed a

significant effect on the type of visual format of AI uncertainty on trust (F (4, 60) = 2.671, p =.041),

however, no statistical significance between the groups was found with a post hoc test. On the

contrary, Figure 6.9 (bottom) shows that experienced participants trust more in the AI prediction

with bar charts (M = 7.25, Mdn = 7.33, SD = 1.59), followed by 2D (M = 6.8, Mdn = 6.67, SD =

1.4), gradients (M = 6.78, Mdn = 7.0, SD = 2.02), 3D model (M = 6.62, Mdn = 7.33, SD = 2.09)

and bubbles (M = 6.19, Mdn = 6.67, SD = 2.12). An independent one-way ANOVA did not report

a statistical significance. These results suggest that trust in AI can increase among inexperienced

people in data visualization, significantly with 3D models rather than with bubbles; however these

differences are not strong or consistent enough to be detected by more stringent post-hoc tests.

On the other hand, we found that the type of visualization method does not benefit nor harm an

individual’s trust in AI for those with more experience in data visualization.

We also investigate the preferred visual method to represent AI uncertainty. In Figure 6.10 (top),
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we observe that the majority of individuals with less experience in data visualization preferred the

2D method (N = 9, 47%), followed by 3D (N = 5, 26%), bubbles (N = 3, 16%), and bar charts

(N = 2, 11%). No one selected gradients as their first option. The least preferred methods were

bubbles (N = 8, 42%), 3D (N = 5, 26%), gradients (N = 4, 21%), and 2D (N = 2, 11%). We ran a

Friedman’s test to validate the results, but no significant effect was found. Alternatively, Figure 6.10

(bottom) presents how people experienced in data visualization ranked visual methods according to

their preference. We noticed that the majority of people in this group preferred 2D (N = 8, 33%)

and bar charts (N = 8, 33%) alike to represent AI uncertainty, followed by gradients (N = 4, 17%),

and 3D (N = 4, 8%) and bubbles (N = 4, 8%). The least preferred methods were bubbles (N = 10,

42%), 3D (N = 6, 25%), gradients (N = 5, 21%), 2D (N = 2, 8%), and bar charts (N = 1, 4%). A

second Friedman’s test did not find a significant effect. Our findings show that participants tend to

prefer visual methods that express AI uncertainty continuously throughout its output, such as 2D,

regardless of an individuals experience with data visualization. However, we could not confirm a

statistical effect in our analysis.

To investigate the reason behind participant’s preferences in visual methods, we explore the abil-

ity to perceive AI uncertainty based on the following factors: ease, efficiency, clarity, intuitiveness,

and informativeness. Figure 6.11 (top) shows how inexperienced participants in data visualization

perceive each of these factors. We observe that individuals in this group can perceive uncertainty

more easily with bar charts (M = 5.77, Mdn = 6.0, SD = 1.36), more efficiently with bar charts (M

= 5.38, Mdn = 6.0, SD = 1.61), clearer with gradients (M = 5.38, Mdn = 5.0, SD = 1.26), more in-

tuitively and informatively with 3D models (M = 5.92, Mdn = 6.0, SD = 1.61) and (M = 5.38, Mdn

= 6.0, SD = 1.04), respectively. We can also observe and compare those visualizations that rated

poorly on each of these factors. We noticed that inexperienced participants perceive less information

about the uncertainty of AI with bubbles, across all factors. A two-way independent ANOVA was

used to examine the effect of the type of visual format and the ability of inexperienced individuals

in data visualization to perceive uncertainty on trust. There was a significant main effect for on the

type of visual format used (F (4, 305) = 4.560, p=.001). A post hoc test did not detect a statistical

significant effect among the groups.

Figure 6.11 (bottom) shows that experienced individuals in data visualization can understand
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uncertainty more easily with bar charts (M = 5.04, Mdn = 6.0, SD = 1.99), more efficiently with

bar charts (M = 4.78, Mdn = 6.0, SD = 2.15), clearer with bar charts (M = 4.74, Mdn = 5.0, SD =

1.98), more intuitively with bar charts (M = 4.70, Mdn = 5.0, SD = 1.82) and more informatively

with 2D (M = 5.13, Mdn = 5.0, SD = 1.49). Notably, the visual method using 3D and bubbles was

rated low as it was perceived to provide less AI uncertainty information among those experienced

participants in data visualization, along with the visual format using gradients on the rest of the

factors for this group. Despite these apparent effects, a two-way independent ANOVA did not

report a significant difference. It should also be noted that none of the visualization methods tested

performed particularly well, receiving fairly neutral ratings (4-6 out of 10) across all aspects.

We conclude that the visualization of AI uncertainty is better perceived with simple representa-

tions by the group of individuals with higher experience in data visualization, but more elaborated

visual outputs seem to have the same effect on the group of people with less experience in data

visualization, which lead us to partially accept H3.

6.6 Discussion

Building on Eslami et al. [187]’s work on AI uncertainty estimations in Alzheimer’s disease

prognosis, we conducted a mixed-methods study to measure trust in AI predictions using binary

(color/no color) and continuous (color saturation) formats and assessed multiple visual formats to

represent AI uncertainty. We also surveyed participants to understand the reasons that drove their

choices. While some studies explore AI uncertainty in relation to user trust using Mayer et al.’s

dimensions of trust [174], our research goes further by assessing the multi-dimensional concept of

trust, according to Ashoori and Weisz [2] from the angle of human-AI decision-making processes.

In addition, our focus on AD predictions under uncertainty is a unique contribution to the field.

According to our findings the level of information about the AI model and AI’s uncertainty

makes a difference in trust among our participants, though it was not significant. However, we

posit that including more detailed references about model training and evaluation could make a

significant difference and plan to explore this in future work. Moreover, the results from the facets

of trust revealed that individuals reflected on both the benefits and limitations of each condition with
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an inclination to more transparent representations of AI.

Finding the balance between confidence and caution is crucial in clinical decision-making,

where over-reliance on AI without recognizing its limitations can have serious consequences. Our

findings indicate that representing AI uncertainty in a binary format enhances perceived reliability

of AI predictions, while continuous representations may introduce ambiguity and reduce user con-

fidence. In addition to our results, participant’s comments suggest that visualizing uncertainty may

help users avoid overconfidence in AI predictions.

When analyzing participants’ preferred visual methods, we found that experienced individuals

in data visualization consistently preferred 2D and bar charts for trusting, representing, and interpret

AI uncertainty. However, this effect was not consistent among inexperienced individuals in data

visualization. While this group did prefer the 2D method for visualizing AI uncertainty, they did

not find it to be the most understandable nor trustworthy. Instead, they reported that bar charts,

gradients, and 3D visuals enhanced their trust and ability to perceive AI uncertainty across the five

factors we evaluated. This inconsistency suggests that familiarity with the 2D method from Task 1,

or the interactions allowed onto the 3D model may have biased their preferences. Bubbles ranked

the lowest across all measurements on trust, preference, and their ability to perceive AI uncertainty.

This study has several limitations. First, our responses are biased as most respondents are

experienced in AI with limited knowledge of AD. Second, allowing participants to adjust their

responses could bias results. For example, when uncertainty in a single sample is high, participants

may adjust other responses as a result of that single experience. Third, the amount of information

about patients and models as well as the visual representations of AI uncertainty were limited.

Fourth, all visual methods in Task 2 are static expect the 3D model, which allows interactions (e.g.

zoom, pan, translation). This interactivity may have introduced an unintended bias towards the

3D visualization, potentially causing inexperienced participants to vary in their perceptions of AI

uncertainty, trust, and preferences.

Future research will involve collecting more responses from participants, in particular clinical

experts, and incorporating additional patient and AI model information to address previous limita-

tions. During our analysis of perceived trust among participants inexperienced in data visualization,

we found a significant effect using ANOVA. However, the lack of significance in post hoc tests
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suggests the need to increase sample sizes in each group to detect these differences. Therefore,

recruiting more participants will be a focus of our future work.

6.7 Conclusion

Our study examines perceptions of AI predictions under uncertainty in AD prognosis. Through

a user study, we assessed the impact of varying levels of AI model detail about and uncertainty on

trust. While different levels of information did not significantly affect trust, participants perceived

predictions as more reliable when uncertainty was represented in the output. In summary, AI un-

certainty enhances trust in predictions, potentially leading to more trustworthy and interpretable AI

solutions and greater adoption of AI technologies as high-stake decision support systems.

These findings highlight the importance of carefully balancing the amount and type of informa-

tion provided about AI models to build user trust, as merely increasing information is not always

effective. Representing AI uncertainty in a continuous format can enhance perceived reliability but

also risks introducing ambiguity, underscoring the need for clear and intuitive visualizations, such

as bar charts. Ultimately, human-AI design and context-specific customization are important for

improving trust and decision-making in human-AI collaborations.
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Figure 6.9: Users perceptions of trust given various visual formats among inexperienced participants
(top) and experienced participants (bottom) in data visualization.
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Figure 6.10: Comparing the preferred visual method to represent AI uncertainty between partici-
pants with low experience (top) and high experience (bottom) in data visualization.
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Figure 6.11: Comparing the ability to perceive AI uncertainty across various visual methods based
on a 10-point scale. Participants with low experience in data visualization are shown on the top, and
those with experienced participants are shown on the bottom.
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Chapter 7

Conclusions and Future Work

While many domains have significantly benefited from Industry 4.0, the impact of the trans-

formation in healthcare has been slower due to various technological, legal, and ethical issues. Al-

though DL-based technologies offer unprecedented opportunities for clinical solutions and decision-

making, addressing the aforementioned challenges is crucial for a successful digital transformation

in this domain. Without these measures, the transition of technologies from research laboratories

to daily practice will remain slow, limited, or even disregarded. Thus, further research is needed

to provide end-to-end solutions that are secure, trusted, and compliant with stringent data protec-

tion regulations and guidelines. This will enable a smoother adoption of AI technologies in clinical

practice.

Given the challenges of current deep learning methods, there is an opportunity to enhance clin-

ical acceptance of AI technologies through privacy-preserving mechanisms and trustworthy solu-

tions. This thesis addresses these aspects, first to leverage the potential of federated learning as

a privacy-preserving framework, with improvements on the core aggregation algorithm for better

handling the learning of distributed heterogeneous data sources, and second in its consideration of

human factors in the design of novel technologies to optimize the output in a transparent and inter-

pretable way. At the same time, the considerations of human factors in the design and development

of AI solutions can lead to usable, trustworthy, and interpretable AI systems, which is valuable for

enhancing confidence in AI support-decision systems particularly in the clinical domain.
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7.1 Summary of Findings

This thesis explored how to enhance the adoption of AI-based technologies through privacy-

preserving mechanisms and trustworthy solutions. To do so, our contributions addressed technical,

legal, and ethical challenges of AI innovations through the formulation of a Federated Learning

(FL)-based aggregation algorithm. In addition, we conducted thorough qualitative and quantitative

analyses to demonstrate that the transparency of AI outputs is needed to enhance the interpretability

and adoption of AI solutions. In addition to these contributions, a number of research questions were

answered. Table 7.1 summarizes all research questions explored in this thesis and their conclusions.

7.1.1 A privacy-preserving aggregation algorithm

The motivation behind the research in Chapter 3 is to address the technical and legal privacy

issues of deep learning (DL) methods, such as data volume, quality of data, and data privacy-

preservation. We turn to the FL framework to address these issues, since it enables fast and secure

collaboration. However, the core Federated Averaging (FedAvg) algorithm in FL, has been shown

to inadequately account for data heterogeneity across different clients, reducing the statistical power

and prediction quality of models trained in a Federated Learning setting. Our research focused on

developing an improved method, Precision-weighted Federated Learning (PW), which aggregates

models by the inverse of the estimated variance. The substantial advantage of the PW method lies

in its ability to handle heterogeneous data more efficiently, speeding up the training process and

leading to better generalizations, especially with diverse datasets. This is highly relevant to clinical

applications.

In Chapter 4, we applied the algorithm to a practical clinical use case: imputing missing clinical

data across multiple centers. Our evaluations compared seven FL aggregation algorithms against

centralized learning. To validate our findings, we performed a downstream analysis to classify

Parkinson’s disease patients based on symptom progression. The results demonstrated that FL al-

gorithms can achieve better generalization without pooling data from multiple clinical centers and

enable collaborative learning as data from additional centers is incorporated. Specifically, we con-

firmed that the PW algorithm leads to better generalizations, highlighting its clinical utility.
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Research Question Finding
Can a meta-analysis weighting
scheme be integrated to aggre-
gate summary statistics in a fed-
erated learning framework?

Yes. A novel method was designed, developed, tested with
benchmark datasets and found to obtain comparable results
in an IID distribution and, depending on the training set up,
better performance in non-IID distributions than the origi-
nal FL aggregation algorithm.

Can we improve the quality of
curated clinical data for more
consistent prediction of disease
progression status with a meta-
analysis weighting scheme?

Yes. We extended the evaluations of the proposed algo-
rithm to include training distributed models with clinical
data, demonstrating that better generalization can be ob-
tained with our proposed aggregation algorithm.

Does visualization of uncer-
tainty impact decision-making,
trust, and confidence among
people with different attitudes
towards AI?

Yes, partially. A particular view of AI technologies affects
trust differently. People with a negative attitude towards AI
have a tendency to trust more in AI with a particular visual
method. However, this effect did not hold for confidence
in decisions and decision change.

Do attitudes towards AI influ-
ence decision-making, trust in
AI, and confidence in the deci-
sions made differently?

Yes, partially. Personal traits is a driving factor for trust in
the AI technology. More positive attitude towards AI was
correlated to higher level of trust in the AI technology. We
did not observe this effect in our analysis of confidence in
decisions and decision change

How is the visualization of un-
certainty perceived by people
when making decisions?

People find the assistance of visual elements useful when
evaluating AI uncertainty, particularly those with a nega-
tive attitude towards AI.

How does the level of detail
about the AI model and AI’s un-
certainty impact expert’s trust in
high-stake predictions?

People tend to be overconfident when unaware of AI’s un-
certainty, but awareness of AI’s uncertainty leads to ques-
tioning its reliability. Providing information about AI’s
limits can improve output reliability with caution, as poorly
communicating visual methods can negatively affect trust.

What visual format of uncer-
tainty enhances interpretability
of AI predictions in AD trajec-
tory?

We observed that people favored visual methods express-
ing AI throughout its output. However, we could not con-
firm its significance.

Table 7.1: Summary of research questions and findings in this dissertation.
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7.1.2 Human-centered evaluations of transparency in clinical decision support sys-

tems

After addressing the technical and legal privacy issues in AI clinical acceptance, we tackle the

ethical challenges aiming at developing solutions to make AI decisions understandable and trans-

parent to clinicians. Thus, we focus this research to understand how to visualize data to improve

human-AI decision making. Since previous research indicated that visualizing uncertainty can in-

fluence the utility and adoption of AI-based technologies, Chapter 5 expands on this by examining

how participants’ attitudes towards AI and the visualization of its uncertainty affect their decision-

making, trust in AI, and confidence in their decisions. According to our findings, personal traits can

influence trust in AI. This becomes a strong case for conducting further evaluations in high-stake

decision-making.

The work presented in Chapter 6 builds on Eslami et al. [187]’s work on AI uncertainty in

Alzheimer’s disease prognosis, aiming to measure trust in AI predictions through various visual

formats. The goal is to understand how different representations of AI uncertainty affect human-

AI decision-making processes among experts, with a focus on improving trust and interpretability

in clinical practice. Our findings suggested that visualizing AI uncertainty can help users avoid

overconfidence and lead to more trustworthy AI solutions. More importantly, it highlights the need

for clear and intuitive visualizations to balance confidence and caution in clinical decision-making.

7.2 Future Work

Many open questions remain or build on the research provided in this manuscript. In this section,

we present several areas that warrant further exploration.

One avenue for future research is to enhance the performance and defense mechanisms of our

algorithm. We identified that our developed method is sensitive to the noise in the training data.

Specifically, PW’s performance diminishes with small batch sizes. This allows further investigation

on detection mechanisms that can be integrated to identify and correct noise before aggregation.

Other strategies such as constraints or penalties could serve as a form of regularization in these

scenarios. On the other hand, the FL framework faces challenges related to inference attacks. To
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address these security issues, various protocols have been proposed to provide an extra layer of

protection at the client-level [107, 108, 80], or at the framework-level [202] ensuring collaborative

learning with privacy guarantees. Strengthening these privacy measures is essential to comply with

data protection laws and conduct regular security audits.

Moreover, providing external validation to demonstrate the stability of our clinical analyses

could further strengthen our findings. Our current design choice, which involved using the same

database to split data into train, validation, and test sets, limited the scalability of the predictive

task. Future studies could replicate our research using the Parkinson’s Disease Biomarkers Program

(PDBP) databasee [203], which offers clinical data suitable for Federated Learning evaluations.

In addition, we have limited the evaluations of the proposed method to clinical data. We could

extend the evaluations of the proposed algorithm with distributed medical imaging data (e.g. X-ray,

CT, PET, MRI or fMRI). This would enable us to perform exploratory analysis in the identification

of symptomatic progression of Alzheimer’s disease using the available imaging data in the ADNI

dataset. Another interesting application could be to explore the introduction of unintended biases

into the learning process. It is important to develop discrimination-aware learning frameworks to

avoid potential biases towards a certain attribute (e.g. gender or racial) in the population. Failure in

accounting for these differences might result in discriminatory outcomes

Furthermore, incorporating feedback from clinicians, medical trainees, and neurodegeneration

researchers would strengthen our assessments of transparency in clinical decision support systems.

Their insights would ensure the provided visualizations address real-world clinical needs, making

our findings more applicable and relevant to clinical practice. Another interesting improvement to

this research work is to conduct longitudinal studies. This would allow a better understanding of the

long-term usage of the intended AI solution and identify areas that are useful in practice and those

needed improvement.

Finally, considering factors that prevent the adoption of AI technologies is crucial for a smooth

transition from research to daily practice. While this manuscript addresses common issues hinder-

ing AI adoption in clinics, AI developers and designers should also focus on integrating technology

without disrupting established clinical workflows. Additionally, improving AI uncertainty evalua-

tions could involve methods for well-calibrated uncertainty or those offering better interpretation
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of AI models, such as SHAP (SHapley Additive exPlanations), to provide clear explanations for

predictions.
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