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ABSTRACT 
 
Development of An Integrated AI-Based Online System for Lake Chlorophyll-a Concentration 
Modeling and Monitoring (CMMOS) 
 
Yanbin Zhuang 
 
Concordia University, 2024 

This study presents the development of the Chlorophyll-a (Chl-a) Modeling and 

Monitoring Online System (CMMOS), an innovative artificial intelligence (AI)-based tool 

designed to enhance the monitoring and prediction of Chl-a concentrations in lake ecosystems. 

Traditional methods of monitoring these concentrations face limitations in real-time data 

processing and handling complex environmental interactions. CMMOS addresses these challenges 

by integrating a sophisticated array of machine learning models, including Support Vector Machine 

(SVM), Random Forest (RF), Decision Tree (DT), Gradient Boosting Tree (GBT), Multi-Layer 

Perceptron (MLP), Long Short-Term Memory (LSTM), K Nearest Neighbors (KNN), Multiple 

Linear Regression (MLR), and Extreme Gradient Boosting (XGBoost). The system's efficacy was 

rigorously evaluated using comprehensive datasets from Lake Champlain and Lake Simcoe. In 

Lake Champlain, the RF model demonstrated high predictive accuracy with a Root Mean Squared 

Error (RMSE) of 1.4667 µg/L and a Mean Absolute Percentage Error (MAPE) of 27.89%. For 

Lake Simcoe, the R F model also showed superior performance with an RMSE of 0.2671 µg/L and 

a MAPE of 6.01%. These results highlight the robustness and reliability of the system across 

different environmental contexts. 

 
Data preprocessing techniques such as Missing Value Imputation, Outlier Detection, and 

Feature Selection proved critical in enhancing the accuracy and reliability of these models. 

CMMOS contributes to the field of environmental science by offering a real-time, data-driven 

approach to lake water quality management. The system facilitates dynamic monitoring and 

predictive analysis, enabling stakeholders to make informed decisions promptly. It illustrates the 

substantial advantages of utilizing AI in ecological monitoring and management. 

Recommendations for future work include further optimization of machine learning models, 

exploration of ensemble techniques to refine predictive accuracy, expansion of the system to 

include more diverse environmental variables, and enhancements to the user interface to better 
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serve various stakeholders. This thesis lays a robust foundation for future advancements in AI 

applications for environmental monitoring, aiming to improve the sustainability and effectiveness 

of lake management practices. 
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Chapter 1 Introduction 

 
1.1 Problem Statement 
 

Chlorophyll-a (Chl-a), a pigment crucial for photosynthesis in algae, serves as a key 

indicator of algal biomass and harmful algal bloom (HAB) intensity. It is synthesized through a 

complex biochemical pathway starting with glutamate and involves multiple enzymes, resulting 

in Chl-a production (Whitton & Potts, 2000). Environmental factors such as nutrient loading, 

temperature, light intensity, water clarity, and climate change significantly influence its synthesis 

and accumulation (Deng et al., 2023; Paerl & Huisman, 2020; Zamyadi et al., 2019). HABs, driven 

by these factors, are expected to intensify globally with climate change and extreme weather events 

(Whitton & Potts, 2000; Zamyadi et al., 2019). Chl-a concentrations are widely used to gauge 

HAB intensity in aquatic systems (Protecting Florida Together, n.d.). 

 
The monitoring and modeling of Chl-a concentration in lakes is crucial for assessing the 

ecological health and water quality of these aquatic systems. Chl-a, a primary pigment in 

phytoplankton, serves as an indicator of overall productivity and eutrophication levels. Accurate 

and timely modeling of Chl-a concentration is essential for effective environmental management 

and informed decision-making (Zhu et al., 2022). However, traditional modeling methods, such as 

field sampling and laboratory analysis, are labor-intensive, costly, and limited in their ability to 

capture real-time variations in chlorophyll levels. These methods often produce data that are 

spatially and temporally sparse, thereby hampering a comprehensive understanding of the 

dynamics and distribution patterns of Chl-a concentrations in lakes (Park et al., 2020). 

 
The complexity and non-linear nature of the relationships between Chl-a concentration and 

various environmental factors pose additional modeling and prediction challenges. Traditional 

statistical models frequently fail to capture the intricate interdependencies and nonlinearities 

present, resulting in less accurate predictions (Cruz et al., 2021; Tu, 1996). In response to these 

challenges, there is a critical need for an integrated AI-based online system capable of effectively 

addressing the shortcomings associated with traditional Chl-a modeling and monitoring methods.  
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The proposed system will utilize advanced machine learning algorithms—including 

Multiple Linear Regression, Support Vector Machines, Decision Trees, Random Forests, Gradient 

Boosting Trees, K-nearest Neighbors, Multiple Layer Perceptron, and Extreme Gradient 

Boosting—to model the complex relationships between Chl-a concentration and environmental 

variables. It will feature automated data preprocessing, efficient model training and optimization, 

real-time modeling and prediction capabilities, and user-friendly visualization tools, thereby 

enhancing the accuracy and usability of Chl-a predictions (Yang et al., 2022). 

 
Furthermore, the system will incorporate eutrophication risk assessment methodologies to 

comprehensively evaluate potential environmental impacts associated with varying Chl-a 

concentrations. This integration will provide a scalable and adaptable framework suitable for 

various lakes and environmental settings, merging data from field measurements, and other 

relevant environmental parameters. By overcoming the limitations of traditional methods and 

leveraging the capabilities of AI, this research aims to significantly advance lake ecosystem 

research and environmental decision-making processes. It will provide a more effective, efficient, 

and sustainable approach to managing lake ecosystems globally. 

 
1.2  Objectives of the Study 
 

The main objective of the thesis is to develop an AI based Chl-a modelling and monitoring 

system. The system is capable of data preprocessing, data management, eight different machine 

learning models, eutrophication risk evaluation, and Chl-a quality prediction, and the results will 

be displayed in the form of contour maps and colour-coded maps with spatial information. 

Specifically, this thesis has the following objectives: 

 
(1) To develop an AI-based Chl-a modelling and monitoring system that integrates an online user 

interface to visualize the whole process, data management including preprocessing algorithm and 

machine learning modelling and validation, and database to save model and prediction results. 

Two case studies are conducted. One is the prediction of Chl-a concentration in Lake Champlain, 

and the other is the Chl-a concentration in Lake Simcoe. 

 
(2) To develop four different data preprocessing algorithms to deal with the general issues in real- 
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time datasets. These algorithms include missing value imputation, feature selection, data 

normalization and outlier detection. 

(3) To develop eight different regression models for a group of lake data to complete the task of 

model testing, model training, model fine-tuning, and predicting the concentration of Chl-a. These 

models include multiple linear regression (MLR), random forest model (RF), decision tree model 

(DT), gradient boosting tree model (GBT), k-nearest neighbours regression model (KNN), 

multiple layer perceptron model (MLP), support vector machine model (SVM), long shot term 

memory model (LSTM) and Extreme Gradient Boosting model (XGBOOST). 

 
(4) The eutrophication risk assessment will be applied in each case to compare and validate the 

results of each model. A map will be applied to visualize the results of each case with each model. 

 
1.3 Organization of the Thesis 
 

This thesis is organized into six chapters to provide a structured presentation of the research 

on developing an integrated AI-based online system for lake Chl-a quality modelling and 

monitoring. Each chapter focuses on specific aspects of the study and contributes to the overall 

understanding of the system and its implementation. 

 
Chapter 1 presents the problem statement, highlighting the significance of developing an 

AI-based system for Chl-a modelling and monitoring. The study's objectives are outlined to 

provide a clear direction for the research. Additionally, the organization of the thesis is described, 

providing a roadmap for the subsequent chapters. 

 
Chapter 2 comprehensively reviews the literature related to Chl-a prediction, machine 

learning techniques, eutrophication risk assessment, and integration with geographical information 

online systems. This review serves as a foundation for understanding the background, current state 

of research, and relevant methodologies in the field. 

 
Chapter 3 details the study's methodology. It encompasses an overview of the developed 

system, data preprocessing techniques, various machine learning models employed, model 

performance evaluation methods, and eutrophication risk assessment. Thus, the chapter provides 
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a comprehensive understanding of the techniques and approaches utilized in the research. 

Chapter 4 presents a specific case study conducted on Lake Champlain. It includes details 

about the study area, data sources, system implementation, obtained results, and subsequent 

discussions. The case study provides empirical evidence of the system's effectiveness in predicting 

Chl-a concentrations and assessing eutrophication risks in Lake Champlain. 

 
Chapter 5 focuses on a case study conducted on Lake Simcoe. It describes the study area, 

data sources, system implementation, results obtained, and the corresponding discussions. The 

case study enables the evaluation of the system's performance and applicability to different lake 

environments. 

 
The final chapter summarizes the key findings of the research and presents the conclusions 

derived from the study. It highlights the contributions of the developed AI-based system for lake 

Chl-a quality modelling and monitoring. Furthermore, recommendations for future work are 

provided to guide further advancements and enhancements in the field. 
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Chapter 2 Literature Review 

 
2.1 Chl-a Prediction 
 

Accurate prediction of Chl-a concentration in lakes is of great importance for 

understanding these aquatic ecosystems' ecological health and water quality (Zhu et al., 2022). 

Chl-a is a primary pigment in phytoplankton and is closely associated with the overall productivity 

and eutrophication levels in lakes. Monitoring and modelling Chl-a concentration provides 

valuable insights into phytoplankton populations' dynamics and spatial distribution and the 

potential environmental impacts associated with changes in Chl-a levels (Kalff and Knoechel, 

1978). Traditional approaches for Chl-a prediction mainly rely on field sampling and laboratory 

analysis, which are labour-intensive, time-consuming, and costly (Park et al. 2020). These methods 

often provide limited spatial and temporal coverage, making it challenging to capture the complex 

variations and patterns of Chl-a concentration in lakes (Stumpf et al. 2016). Moreover, the non- 

linear and intricate relationships between Chl-a and environmental factors further complicate 

traditional statistical models' prediction process (Cruz et al. 2021). 

The prediction of Chl-a levels using AI models has become a significant area of research 

due to the crucial role of Chl-a in indicating water quality and algal bloom potential. Machine 

learning techniques have emerged as a valuable tool for Chl-a prediction in recent years. These 

techniques leverage the power of data-driven algorithms to establish complex relationships 

between Chl-a concentrations and environmental variables (Tahmasebi et al. 2020). MLR, SVM, 

DT, RF, GBT, KNN, MLP, LSTM and XGBoost are among the machine learning models 

commonly employed for Chl-a prediction (Sundararajan et al. 2021). These models allow for the 

incorporation of various water quality features, such as water temperature, Secchi depth, total 

phosphorus, and total nitrogen, in the prediction process, enabling a more comprehensive 

understanding of the factors influencing Chl-a concentrations in lakes (Tung and Yaseen, 2020). 

Machine learning models such as Support Vector Regression, Bagging, Random Forest, Extreme 

Gradient Boosting, RNN, and LSTM have been successfully used to predict Chl-a levels, 

demonstrating the importance of selecting appropriate explanatory variables and recursive 

prediction methods to enhance model accuracy (Shin et al., 2020). Studies have shown that models 
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like Extreme Gradient Boostings (XGBoost) combined with genetic algorithms provide effective 

predictions and optimize conditions for processes like electro-oxidation, impacting water 

treatment and quality (Picos et al., 2018). The use of RF and feature selection methods can 

significantly improve the predictive ability of models for Chl-a concentration, highlighting the 

model's utility in environmental management (Li et al., 2018). Transfer learning has been applied 

to optimize neural network models for Chl-a prediction, enhancing the model's generalization 

ability and maintaining high performance in long-term applications (Tian et al., 2019). 

 
AI models, particularly those incorporating machine learning and neural networks, have 

shown great promise in accurately predicting Chl-a levels, which is vital for modelling water 

quality and managing eutrophication in aquatic systems. These models not only offer precise 

predictions but also aid in the optimization and management of environmental conditions. 

 
2.1.1 Machine Learning Techniques 

 
This section discusses various machine learning techniques utilized in Chl-a prediction. 

Each technique, including MLR, SVM, DT, RF, GBT, KNN, MLP, and Extreme Gradient Boosting 
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(XGBOOST), is described in detail. The strengths and weaknesses of each technique in capturing 

the complex relationships between Chl-a concentration and environmental factors are analyzed. 

 

2.1.2 Multiple Linear Regression (MLR) 
 

Chl-a is a crucial indicator of water quality and phytoplankton biomass in aquatic 

environments. MLR is a widely used statistical technique for modelling the relationship between 

dependent and multiple independent variables. In the context of Chl-a prediction, MLR is often 

employed to establish a quantitative relationship between Chl-a concentration and various 

environmental factors (Çamdevýren et al. 2005). One of the critical advantages of MLR is its 

simplicity and interpretability. The regression coefficients obtained from MLR provide insights 

into the magnitude and direction of the relationship between each independent variable and Chl-a 

concentration. It also identifies potential collinearity among independent variables (Coops et al., 

2003). 

 
Predicting its concentrations using MLR models has been a focal point in environmental 

research, given the simplicity and interpretability of MLR. This review summarizes the 

applications of MLR models in various aquatic settings to predict Chl-a concentrations, 

incorporating findings from several studies. MLR assumes a linear relationship between the 

dependent and independent variables, which may not always hold in the case of Chl-a prediction 

(Filstrup et al. 2014). If the relationship is nonlinear, MLR may provide less accurate predictions. 

Many cases prove that more advanced machine learning techniques, such as decision trees or 

neural networks, are more suitable for modelling nonlinear relationships (Mamun et al., 2019; Wei 

et al., 2019; Rajaee and Boroumand, 2015). 

 
Hybrid approaches combining MLR with Extreme Gradient Boostings (XGBoost) have 

shown enhanced prediction capabilities compared to standalone MLR models due to reduced 

errors and increased correlation coefficients, suggesting a synergistic benefit in complex water 

systems like the offshore Kuala Terengganu, Terengganu, Malaysia (Lola et al., 2016). Integrating 

principal component analysis (PCA) with MLR, known as PCS-MLR, has effectively improved 

predictive success by reducing collinearity among variables in marine ecosystems, aiding in better 



8 
 

management of coastal waters (Franklin et al., 2020). MLR models, despite their simplicity, have 

effectively predicted Chl-a concentrations with satisfactory accuracy when appropriate 

environmental variables were selected, as demonstrated in the South San Francisco Bay study 

(Rajaee & Boroumand, 2015). The predictive performance of MLR models has also been evaluated 

using high-resolution Landsat imagery to estimate Chl-a in water bodies, highlighting the utility 

of remote sensing data in enhancing MLR predictions for smaller and coastal water bodies (Matus- 

Hernández et al., 2018). MLR has been successfully applied in reservoirs, where principal 

component scores significantly improved the predictive accuracy, as evidenced by studies in 

Turkey demonstrating how MLR can be utilized effectively in freshwater environments 

(Çamdevýren et al., 2005). Studies like those conducted on the Yeongsan Reservoir, Korea, have 

shown how parameter optimization can significantly improve the predictions of MLR models, 

ensuring greater reliability in forecasting Chl-a levels in dynamic and nutrient-rich water bodies 

(Cho et al., 2009). 

 
MLR models remain a robust tool for predicting Chl-a concentrations in diverse aquatic 

environments. Their effectiveness is enhanced when combined with other computational tools or 

when used in conjunction with robust variable selection methods, making them invaluable in water 

quality management and ecological modelling efforts. 

 
2.1.3 Support Vector Machines (SVM) 

 
SVM is a robust supervised learning algorithm widely used in Chl-a prediction for lake 

water quality modelling. Researchers have applied SVM as a regression model to establish a 

nonlinear relationship between environmental variables and Chl-a concentrations. It has gained 

prominence in predicting Chl-a concentrations in various aquatic environments. Their ability to 

handle non-linear and high-dimensional data makes them particularly useful for modeling complex 

environmental phenomena such as algal blooms. This review compiles significant research 

employing SVM for Chl-a predictions, reflecting on methodologies, advancements, and outcomes. 

 
Liu found SVM could perform better than neural networks in Taihu Lake in China (Liu et 

al., 2009). Park demonstrated the effectiveness of the support vector machine (SVM) model in 

predicting Chl-a concentrations for early warning in freshwater and estuarine reservoirs (Park et 



9 
 

al. 2015). Shin investigated the role of Support Vector Regression and other machine learning 

models in predicting Chl-a concentrations in the Nakdong River, Korea (Shin et al., 2020). SVM 

offers flexibility in handling nonlinear relationships and can capture complex patterns and 

dependencies in the data (Ifenthaler and Widanapathirana, 2014; Stanimirova et al., 2010). By 

utilizing kernel functions, SVM can map data to a higher-dimensional space, enabling the capture 

of intricate relationships that linear regression models may overlook (Otchere et al., 2021). SVM 

is also advantageous for handling small sample sizes and noisy data, as it is less prone to overfitting 

than other algorithms. Its margin maximization principal aids in generalizing new data well, even 

with limited training sets (Wujek et al., 2016). 

 
SVM models optimized with genetic algorithms have shown superior performance in 

predicting Chl-a concentrations, demonstrating higher accuracy than traditional models in various 

reservoirs and lakes (Hua-jun & Defu, 2009). Studies have utilized SVM for early warning systems 

in reservoirs, where they outperformed Extreme Gradient Boostings due to better handling of non- 

linear relationships between environmental variables and Chl-a concentrations (Park et al., 2015). 

The combination of remote sensing and SVM has proven effective in estimating Chl-a from 

Landsat 8 OLI images, with models achieving substantial accuracy across different seasons, 

thereby facilitating broader application in water quality modelling (Zhang, Huang, & Wang, 2020). 

A hybrid approach using SVM and genetic algorithms significantly improved prediction accuracy 

by optimizing feature selection, demonstrating the model’s robustness in complex systems like the 

Miyun Reservoir in China (Su et al., 2015). The implementation of SVM with support vector 

regression (SVR) has been noted for its high predictive ability, especially using radial basis 

function (RBF) kernels, which provide a more nuanced interpretation of environmental data inputs 

(Guang-ren, 2012). Incorporating SVM with particle swarm optimization (PSO) has enhanced the 

predictive accuracy of Chl-a concentration models, reflecting the model’s capacity to adapt to 

different input variables and complex ecological dynamics (Nieto et al., 2016). Remote sensing 

data coupled with SVM has been effective in producing real-time, reliable Chl-a predictions in 

lake systems, showing that SVM can handle the variability introduced by changing seasonal 

factors (Wu et al., 2023). 
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However, SVM does have limitations. Selecting the appropriate kernel function and tuning 

hyperparameters significantly impacts model performance. Careful parameter tuning and model 

selection are necessary for accurate predictions (Demir and Şahin, 2022). Additionally, SVM can 

be computationally intensive, especially with large datasets, as it involves solving a quadratic 

optimization problem during training (Cervantes et al., 2020). Despite these limitations, SVM has 

shown promising performance in Chl-a prediction and has been successfully utilized in studies 

modelling the relationship between environmental factors and Chl-a concentrations in lakes. 

 
SVM models are a powerful tool for predicting Chl-a levels in diverse aquatic 

environments, from small lakes to large reservoirs. Their ability to integrate with various 

optimization algorithms and handle multi-dimensional data efficiently makes them indispensable 

for water quality modelling and management strategies. The adaptation of SVM models to 

incorporate real-time data and advanced feature selection algorithms further enhances their 

applicability and accuracy, making them a preferred choice for environmental scientists and 

managers. 

 
2.1.4 Random Forests (RF) 

 
Predicting Chl-a concentrations is vital for managing water quality and monitoring 

ecological health in aquatic environments. The RF model, a powerful ensemble learning technique 

that utilizes multiple decision trees, has been widely adopted for this task due to its robustness, 

ease of use, and ability to handle complex datasets with high accuracy. This review compiles recent 

studies that demonstrate the effectiveness of RF models in predicting Chl-a levels across various 

water bodies. Li et al. suggested that the RF model is valuable for determining significant stressors 

and accurately predicting Chl-a concentration in a shallow lake (Li et al., 2018). Shen et al. found 

that the RF model demonstrated robustness and reliability in accurately estimating Chl-a 

concentrations in optically complex waters, overcoming the uncertainties in atmospheric 

correction (Shen et al., 2022). Huang et al. discovered the effectiveness of the Random Forest 

model in predicting Chl-a concentrations in Chinese lakes using data from various databases 

(Huang et al., 2022). 
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One advantage of RF is its ability to capture complex patterns and interactions in the data. By 

constructing decision trees using random subsets of training data and input features, RF can 

model intricate relationships, enhancing predictive accuracy compared to single decision tree 

models (Ahmad et al., 2017; Shen et al., 2022). RF is also robust in overfitting and can handle 

noisy data due to bootstrapping and random feature selection during tree construction (Fox et al., 

2017). Moreover, it measures feature importance, identifying vital environmental factors 

influencing Chl-a concentrations. This information offers insights into the underlying processes 

governing Chl-a dynamics in lakes (Ly et al., 2021). RF models have been successfully applied to 

predict Chl-a concentrations in fresh and brackish waters in Japan, showing the model's 

adaptability to different water chemistries and environmental settings (Yajima & Derot, 2018). In 

the study of plant leaves, RF was utilized to predict chlorophyll content from reflection spectra, 

indicating its potential beyond aquatic applications (Urbanovich, Afonnikov, & Nikolaev, 2021). 

An integrated RF approach was applied to coastal water management, where it was used to predict 

seasonal Chl-a variations with high precision, demonstrating the model's effectiveness in handling 

seasonal data shifts (Jia, Cheng, & Hu, 2020). RF combined with feature selection techniques has 

significantly enhanced the prediction of Chl-a in various studies, proving the importance of 

selecting relevant environmental predictors (Li, Sha, & Wang, 2018). The versatility of RF models 

was showcased in their application to warning systems for water blooms, where they were found 

to be more accurate than other machine learning methods (Liu & Wu, 2017). RF models have been 

extended to predict other related parameters, such as water bloom events and nutrient levels, 

further underscoring their utility in comprehensive water quality management (Hollister, Milstead, 

& Kreakie, 2016). 
 

However, RF models are a robust and versatile tool for predicting Chl-a concentrations, 

capable of handling complex and heterogeneous data while providing high accuracy and reliability. 

Careful tuning of hyperparameters is required to prevent overfitting, considering factors such as 

the number of trees and maximum tree depth (Oyedele et al., 2021; Li et al., 2018). Additionally, 

RF models may have limited interpretability compared to simpler models like linear regression. 

Nevertheless, the feature importance measure helps understand variable importance in the model 

(Chen et al., 2020). Their ability to integrate various data types and perform feature selection 
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makes them an indispensable tool in the field of environmental modelling and water quality 

management. Despite these considerations, RF has demonstrated promising results in Chl-a 

prediction and is widely used in the field. Various studies have successfully demonstrated its 

effectiveness in capturing complex relationships and providing accurate predictions. 

 

2.1.5 Decision Tree (DT) 
 

DT models have been widely used in predicting Chl-a concentrations, a key indicator of 

water quality and algal biomass in aquatic systems. These models are favored for their simplicity, 

interpretability, and effectiveness in handling complex ecological data. This review aggregates 

research findings from various studies employing DT models for Chl-a prediction across different 

environmental settings. 

DT model constructs a hierarchical tree structure based on input features to make decisions 

(Zhu et al., 2022). DT excels at handling nonlinear relationships and interactions among variables 

by recursively splitting the data. It captures complex decision boundaries and reveals patterns in 

the data (Kotsiantis, 2013). The interpretability of DT allows researchers to gain insights into the 

influential factors and understand the decision-making process. A c-fuzzy model tree, integrating 

fuzzy clustering with a DT approach, demonstrated superior performance in predicting Chl-a 

concentrations, highlighting the potential of hybrid models in enhancing prediction accuracy (Lee 

et al., 2006). Ensemble learning algorithms, including DT methods, have been effectively used to 

predict cyanobacterial blooms, which are closely related to Chl-a levels in the lower Han River, 

South Korea. These methods outperformed single DT models, indicating the strength of ensemble 

approaches (Shin, Yoon, & Cha, 2017). DT models have also been applied in predicting gene 

functions and could be adapted to predict Chl-a by managing complex biological and 

environmental datasets (Schietgat et al., 2010). Research on improved prediction models based on 

DT for educational data emphasized the versatility of DTs in various predictive contexts, which 

could be extended to environmental data (Yang, Chen, & Zhang, 2022). DT methods were used to 

develop early-warning systems for predicting Chl-a concentration in Korean reservoirs, 

showcasing their utility in real-time water quality modelling (Park et al., 2015). In a broader 

context, DTs have been applied to model ecological dynamics, including the prediction of habitat 
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suitability and species distribution, which are indirectly related to Chl-a levels as they affect and 

are affected by aquatic ecosystems (Debeljak & Džeroski, 2011). Additionally, DT can handle 

numerical and categorical data without extensive preprocessing, simplifying the modelling process 

(Merghadi et al., 2020). 

However, DT has limitations. It tends to overfit the training data when the tree depth is 

unconstrained. Techniques like pruning or setting a maximum depth can be applied to mitigate 

overfitting. Another limitation is its instability in small changes in the training data. To address 

this, ensemble methods like RF combine multiple decision trees to improve predictive performance 

and reduce variance (Fratello and Tagliaferri, 2018). Zounemat-Kermani et al. also reviewed that 

ensemble methods like gradient boosting trees perform better than single decision trees 

(Zounemat-Kermani et al., 2021). Nevertheless, DT has demonstrated promising results in Chl-a 

prediction. Various studies have successfully employed it, providing valuable insights into the 

relationships between environmental factors and Chl-a dynamics in lakes (Li et al., 2018; Barzegar 

et al., 2020; Liu and Wu, 2017). 

In all, decision tree models are a robust tool for predicting Chl-a concentrations, with 

applications ranging from water quality modelling to ecological modeling. Their ability to handle 

diverse datasets and integrate with other machine learning techniques makes them particularly 

effective in environmental science. The use of DT models in conjunction with ensemble methods 

and hybrid approaches can significantly enhance predictive performance, supporting more 

accurate and timely environmental management decisions. 

 
2.1.6 Gradient Boosting Trees (GBT) 

 
GBT is a versatile machine learning technique that has been effectively utilized for 

predictive modeling in various domains, including environmental science. Specifically, GBT has 

shown significant potential in predicting Chl-a concentrations, a crucial metric for assessing water 

quality and algal biomass in aquatic ecosystem. This review compiles findings from several studies 

that explore the application of GBT models for Chl-a prediction. 

GBT combines multiple weak prediction models, typically decision trees, to create a strong 

predictive model. It captures complex relationships and interactions among independent variables 
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(Haggerty, 2023). Yao discovered the effectiveness of the Gradient Boosting Tree (GBT) model in 

Chl-a prediction by employing it to estimate Chl-a concentrations in coastal waters using Landsat 

8 OLI image data and field measurements (Yao et al., 2021). Kim conducted a study focusing on 

predicting the concentration of Chl-a (Chl-a) in seawater using a gradient-boosting tree model 

(Kim et al., 2022). Moreover, Hu investigated the role of the Gradient Boosting Tree (GBT) model 

in Chl-a prediction and found that it showed excellent fitting ability compared to other machine- 

learning models, providing a reliable prediction method for eutrophication based on monthly 

modelling data (Hu et al., 2021). GBT models have been effectively applied to predict Chl-a 

concentrations in various aquatic environments, demonstrating robust performance and 

adaptability to different data characteristics and environmental conditions (Zhang & Haghani, 

2015). Research indicates that integrating GBT with other models like LSTM enhances the 

predictive accuracy for dissolved oxygen, which is closely related to Chl-a concentrations in 

aquaculture settings (Huan et al., 2020). GBT has been employed to develop models for Chl-a 

estimation from satellite imagery, showing significant promise in remote sensing applications for 

water quality modelling (Cao et al., 2020). Studies have also explored the use of GBT for modeling 

Chl-a dynamics in complex and turbid water bodies, where the model's ability to handle non-linear 

relationships and high-dimensional data was particularly beneficial (Mustapha & Saeed, 2016). 

The predictive performance of GBT models has been further enhanced by incorporating advanced 

feature selection techniques, leading to more accurate predictions of Chl-a levels (Salditt et al., 

2023). 

 
GBT iteratively builds an ensemble of decision trees, correcting errors made by previous 

trees. This sequential approach enables GBT to capture intricate patterns and dependencies in the 

data, improving prediction accuracy (Smith et al., 2021; Haggerty et al., 2023). Besides, GBT 

provides interpretability by assigning weights to each tree, allowing researchers to identify critical 

variables influencing Chl-a concentrations (Park et al., 2022). Moreover, GBT is also robust in 

dealing with outliers and noisy data. It assigns lower weights to outliers, reducing their impact on 

predictions (Yao et al., 2021). However, GBT requires careful consideration. Overfitting can occur 

if the number of trees in the ensemble is excessive or model complexity is not controlled (Bentéjac 

et al., 2021). Parameter tuning, such as the learning rate and maximum depth, is necessary to 
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prevent overfitting and optimize performance. Training GBT can be computationally intensive, 

especially for large datasets and complex models (Zennaro et al., 2018). Nevertheless, 

advancements in computing power and optimization algorithms have improved training efficiency. 

 
GBT models represent a powerful tool for predicting Chl-a concentrations, offering high 

accuracy and robustness across diverse aquatic environments. Their ability to integrate complex 

data sets and handle non-linear relationships makes them particularly effective for environmental 

modelling and management. It has demonstrated promising results in Chl-a prediction, 

successfully modelling and predicting lake concentrations. Its ability to capture complex 

relationships and provide accurate predictions makes it a valuable tool in this domain. 

 
2.1.7 K-nearest Neighbors (KNN) 

The KNN algorithm, a simple yet robust machine learning method, has been extensively 

utilized across various domains, including environmental modelling and ecological forecasting. 

This review explores the application of the KNN model specifically for predicting Chl-a 

concentrations in aquatic systems, a critical indicator of water quality and phytoplankton biomass. 

 
KNN classifies or predicts new data points based on their proximity to the training data. 

KNN's simplicity and lack of assumptions about data distribution make it easy to understand and 

implement (Ray 2019). Its main advantage lies in its ability to capture local patterns by considering 

data points with similar features and their proximity. This makes it robust to outliers and noise in 

the data. It can handle numerical and categorical data without extensive preprocessing 

(Alexandropoulos et al., 2019). However, there are considerations to address. The number of 

nearest neighbours is essential for optimal performance when choosing the appropriate value for 

K. A small K increases sensitivity to noise, while a large K over smoothies diminishes local 

patterns (Tjärnberg, 2021). KNN models have been successful in predicting water quality 

parameters by leveraging spatial and temporal data, demonstrating their versatility and 

effectiveness in environmental applications (Tomppo et al., 2009). The adaptability of KNN in 

predicting Chl-a concentrations has been highlighted through its ability to integrate various types 

of environmental data, making it a reliable choice for researchers and practitioners (Parry et al., 

2010). Studies have shown that the KNN model, when optimized with feature selection techniques, 
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can significantly enhance prediction accuracy for Chl-a, underlining the importance of 

methodological fine-tuning in environmental modeling (Nigsch et al., 2006). The flexibility of 

KNN is evident in its application across different ecological and biological datasets, proving its 

efficacy in scenarios with complex data interactions and where traditional modeling techniques 

might fall short (Mubarok et al., 2023). Moreover, the computational cost of KNN can be high 

with large datasets. Calculating distances between the query point and all training data points is 

time-consuming. Efficient data structures and algorithms, such as kd-trees or ball trees, can speed 

up the nearest-neighbour search (Jia et al., 2020). 

KNN models are a potent tool for predicting Chl-a levels in aquatic systems, offering robust 

predictions that are crucial for water quality management and ecological research. The simplicity 

in its application, coupled with its ability to produce accurate predictions, makes KNN a preferred 

method in environmental science. Despite these considerations, KNN has shown promising results 

in Chl-a prediction. It has been successfully applied in various studies, especially when local 

patterns and neighbourhood information are crucial for accurate predictions. 

 
2.1.8 Multiple Layer Perceptron (MLP) 

 
The MLP, a type of Extreme Gradient Boosting, has been increasingly applied in the prediction of 

Chl-a concentrations in various aquatic systems. This review synthesizes findings from several studies 

employing MLP models, highlighting their effectiveness and adaptability in modeling complex ecological 

data for Chl-a prediction. 

 
MLP consists of interconnected layers of neurons, enabling it to capture complex relationships 

between environmental variables and Chl-a concentrations (Golhani et al., 2018). A study conducted by 

Rybka demonstrated the efficacy of the MLP model in predicting Water Saturation Deficit (WSD) values 

based on Chl-a fluorescence parameters. The MLP model achieved a precision of 82% and a correlation 

coefficient of 0.98, indicating its potential for developing a new screening test for plant tolerance to 

temporary water shortages (Rybka et al., 2019). Jeong discovered that the MLP model exhibited superior 

predictability and outperformed statistical regression models in predicting Chl-a concentrations in a 

regulated river ecosystem (Jeong et al., 2006). As the advantages of the model, MLP excels at capturing 

non-linear relationships and complex patterns in the data. Its hidden layers allow it to learn intricate 

dependencies between input features and the target variable (Rajaee and Boroumand, 2015; Jeong et al., 
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2006; Rybka et al., 2019). MLP can approximate complex functions and capture the non-linearities inherent 

in Chl-a prediction by employing non-linear activation functions and adjusting weights during training. It 

can handle numerical and categorical data without extensive preprocessing, automatically extracting 

relevant features from the raw input data (Talib, 2006). 

 
MLP models have been successfully used to predict Chl-a concentrations in rivers, showing high 

accuracy and the ability to handle non-linear relationships in environmental data (Shin et al., 2020). 

Enhanced MLP models incorporating genetic algorithms have demonstrated improved prediction accuracy 

by optimizing the weighting coefficients in the neural network structure (Altunkaynak, 2013). Studies using 

MLP with environmental variables have successfully modeled Chl-a dynamics in coastal waters, 

emphasizing the significance of feature selection and model training methods (Jia et al., 2020). The 

integration of MLP models with other machine learning techniques has shown potential in enhancing the 

predictive performance for Chl-a, especially in complex aquatic environments (Moustafa & Elsheikh, 2023). 

However, several studies concluded that it is essential to consider various factors when using the 

MLP model. Determining the optimal network architecture, including the number of hidden layers 

and neurons, is crucial and depends on the problem's complexity and dataset size (Karsoliya, 2012). 

Overfitting is a concern, especially with limited training data, but regularization techniques like 

dropout and L2 regularization can mitigate this issue (Phaisangittisagul, 2016). Training MLP can 

be computationally intensive, but hardware advancements and optimization algorithms have 

improved efficiency (Li et al., 2016). 

 
MLP models are a robust tool for predicting Chl-a concentrations, capable of processing 

complex and non-linear ecological data effectively. Their adaptability to various environmental 

contexts and integration with optimization algorithms make MLP a valuable model in water quality 

modelling and management. Despite these considerations, MLP has demonstrated promising 

results in Chl-a prediction. It has been successfully employed in various studies to model and 

predict Chl-a concentrations in lakes, showcasing its ability to capture complex relationships and 

provide accurate predictions. 

 
2.1.9 Long Short Term Memory Network (LSTM) 

 
Long Short-Term Memory Networks (LSTM) have become a critical tool in time series 
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prediction due to their ability to remember information for extended periods. In the context of 

environmental sciences, LSTM models have been extensively utilized for predicting Chl-a 

concentrations, a key indicator of algal biomass and water quality in aquatic systems. This review 

synthesizes findings from several studies that demonstrate the effectiveness of LSTM models in 

this domain. 

 
LSTMs have proven effective in predicting Chl-a concentrations in rivers, leveraging their 

ability to model time-series data dynamically (Shin et al., 2020). In coastal waters, LSTMs have 

been utilized to forecast seasonal variations of Chl-a, showing a superior performance in capturing 

complex seasonal patterns (Chen & Xu, 2020). The integration of LSTM networks with other 

machine learning techniques, such as genetic algorithms, has further enhanced the accuracy of 

Chl-a predictions, indicating the robustness of hybrid approaches (Fan, Xiao, & Dong, 2020). 

LSTM networks have also been applied successfully in modeling the nutrient removal processes 

in sewage treatment plants, which correlates with Chl-a dynamics, demonstrating the broad 

applicability of LSTM in environmental systems modeling (Yaqub et al., 2020). Research has 

explored the potential of LSTMs in predicting Chl-a from high-dimensional chaotic systems, 

showcasing the model’s capability in dealing with complex ecological data sets (Liang et al., 2020). 

 
While LSTM networks are powerful tools for modeling time series data, including Chl-a 

concentration predictions, they also present several challenges and limitations. This review 

identifies key disadvantages associated with the use of LSTMs in predicting Chl-a, synthesizing 

insights from recent research. LSTMs are complex models that can easily overfit, especially when 

training on datasets with limited temporal variability or when the data do not have strong temporal 

dependencies (Gers, Schmidhuber, & Cummins, 2000). The training process for LSTMs is 

computationally expensive due to their complex architectures, which can be a significant drawback 

in real-time prediction scenarios or when using limited computational resources (Shin et al., 2020). 

LSTMs require careful tuning of parameters and extensive training to capture the dynamics of Chl- 

a accurately, which can be time-consuming and requires substantial expertise (Chung & Shin, 

2018). 

 
LSTM networks are a valuable tool for predicting Chl-a concentrations, offering significant 
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advantages in terms of learning complex temporal patterns and handling large datasets. Their 

flexibility and efficiency make them a promising approach for ongoing and future applications in 

water quality modelling. While LSTM networks offer robust capabilities for modeling time-series 

data such as Chl-a concentrations, their practical application is hindered by issues related to model 

complexity, computational demands, training difficulties, sensitivity to hyperparameters, and 

substantial data needs. Addressing these challenges is crucial for improving the usability of LSTMs 

in environmental modeling and prediction. 

 
2.1.10 Extreme Gradient Boosting (XGBoost) 

XGBoost is a powerful, scalable machine learning algorithm that has been extensively 

applied in various domains, including ecological modeling and prediction of Chl-a levels in aquatic 

environments. In Chl-a prediction, Extreme Gradient Boosting has handled nonlinear relationships 

and complex interactions between environmental factors and Chl-a concentrations. This review 

synthesizes the application of XGBoost for predicting Chl-a, a critical indicator of algae biomass 

and water quality. 

 
XGBoost has demonstrated high accuracy in predicting Chl-a concentrations, leveraging 

its robust handling of non-linear relationships and large datasets. Its performance in predicting 

Chl-a has also been enhanced by feature selection techniques that help in identifying the most 

influential variables, thereby optimizing the prediction models for better accuracy. This is 

particularly evident in studies conducted on rivers and coastal areas where traditional models often 

fall short (Shin et al., 2020). The application of XGBoost in marine environments shows its 

capability to integrate and analyze complex environmental data sets, resulting in highly accurate 

Chl-a predictions. The versatility of XGBoost is demonstrated in its ability to integrate various 

types of environmental data to improve the accuracy of Chl-a predictions. This integration is 

critical in settings where data are derived from complex aquatic systems This is supported by 

integrated approaches that enhance feature selection and model robustness (Jia et al., 2020). 

XGBoost's effectiveness is also apparent in its application across different ecosystems, including 

both freshwater and marine environments, where it helps in predicting algal blooms and assessing 

nutrient cycles, which are closely linked to Chl-a levels (Kim et al., 2022). Further, the algorithm's 
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flexibility and scalability make it suitable for real-time modelling systems, offering a practical tool 

for environmental scientists and policy makers to manage water quality effectively (Li et al., 2019). 

 
However, like all models, XGBoost has limitations, especially when applied to specific 

tasks such as Chl-a prediction in aquatic environments. XGBoost can easily overfit especially 

when the hyper-parameters are not correctly tuned. This is a common issue in complex models 

where there are many features relative to the number of observations (Shin et al., 2020). Despite 

its effectiveness, XGBoost often acts as a black box, making it difficult to interpret the model's 

decisions. This is particularly problematic in scientific fields where understanding the model's 

decision-making process is crucial (Li, Yin, & Quan, 2019). XGBoost requires high computational 

resources, especially when handling large datasets or performing grid search for hyper-parameter 

tuning. This can be a limitation in scenarios with restricted computational resources (Budholiya, 

Shrivastava, & Sharma, 2020). The performance of the XGBoost model heavily depends on the 

tuning of its parameters. Finding the right set of parameters can be time-consuming and requires a 

deep understanding of how the parameters interact with each other and the data (Moore & Bell, 

2022). 

 
Overall, while XGBoost is a powerful and efficient algorithm, it presents challenges such 

as overfitting, difficulty in interpretation, and computational demands, especially when applied to 

Chl-a prediction in aquatic environments. Their combined capabilities allow for a more nuanced 

understanding and prediction of Chl-a dynamics in various aquatic environments. It is a potent and 

versatile tool for Chl-a prediction, capable of processing complex and diverse datasets efficiently. 

Its application in aquatic environments helps in precise water quality modelling and management, 

providing a reliable method for environmental scientists to predict and address ecological 

challenges. 

 
2.2 Eutrophication Risk Assessment 
 

Eutrophication is a widespread environmental issue in many lakes worldwide, primarily 

caused by excessive nutrient inputs, particularly nitrogen and phosphorus (Khan and Mohammad, 

2014). It leads to the overgrowth of algae and other aquatic plants, reducing water clarity, oxygen 



21 
 

depletion, and negative impacts on marine organisms (Chislock et al., 2013). Eutrophication poses 

a significant threat to lakes' ecological health and water quality, making its assessment crucial for 

effective management and conservation strategies (Oliver et al. 2019). Eutrophication risk 

assessment provides a framework for evaluating the potential impacts of nutrient enrichment on 

lake ecosystems (Smith and Schindler, 2009). It involves analyzing various indicators and metrics 

to assess the degree of eutrophication and identify vulnerable areas. By understanding current and 

potential future eutrophication trends, decision-makers can implement targeted mitigation 

measures and adaptive management strategies. 

 
Multiple ecological models, including Fuzzy Logic, Recurrent Extreme Gradient Boosting, 

and Hybrid Evolutionary Algorithm, have been assessed for predicting Chl-a in tropical lakes. 

These models help in understanding algal biomass as an indicator of the trophic status, crucial for 

managing eutrophication (Malek et al., 2011). Spatial analysis of catchment variables has shown 

that Random Forest models can effectively predict Chl-a concentrations, serving as a proxy for 

eutrophication status in lakes and reservoirs. This highlights the importance of catchment 

characteristics in eutrophication risk assessment (Catherine et al., 2010). Regression models 

relating nutrient levels and water renewal rates to Chl-a levels have been developed for coastal 

embayments, aiding in the assessment of eutrophication risk and potential management strategies 

(Arhonditsis et al., 2003). Early-warning protocols using machine learning models, including 

Neural Networks and Support Vector Machines, have been developed for predicting Chl-a 

concentration in reservoirs, enhancing eutrophication management schemes (Park et al., 2015). 

Improved algorithms using MODIS imagery data have been utilized to estimate Chl-a 

concentrations, aiding in modelling eutrophication processes in tropical coastal waters (Ha et al., 

2013). Hybrid models combining Least Squares Support Vector Regression and Radial Basis 

Function Neural Networks have shown high accuracy in predicting Chl-a content, crucial for 

evaluating eutrophication in reservoirs (Wang et al., 2016). Overall, eutrophication risk assessment 

provides a comprehensive framework for evaluating the potential environmental impacts of 

nutrient enrichment in lakes. The combination of nutrient concentration measurements, trophic 

state indices, ecological status assessments, modelling approaches, and geospatial analysis allows 

for a holistic evaluation of eutrophication risks (Kitsiou and Karydis, 2011). This knowledge serves 
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as a basis for implementing targeted management strategies to mitigate eutrophication and restore 

the ecological balance of lake ecosystems. 

 
Nutrient concentration measurements, such as total nitrogen (TN) and total phosphorus 

(TP), are commonly used indicators for assessing eutrophication. These indicators provide insights 

into the nutrient status of a lake and help identify areas with excessive nutrient loads (Winter and 

Duthie, 2000). Additionally, trophic state indices, such as the Carlson Trophic State Index (TSI) 

and the Trophic Level Index (TLI), integrate multiple factors, including nutrient concentrations, 

Chl-a levels, and water clarity, to provide an overall assessment of eutrophication levels (El-Serehy 

et al. 2018). These indices enable comparisons between different lakes and facilitate the 

identification of lakes at high risk of eutrophication. In recent years, integrating modelling 

approaches with eutrophication risk assessment has enhanced the understanding of nutrient 

dynamics and predicting future eutrophication scenarios (Bhagowati and Ahamad, 2019). 

Dynamic models, such as the Water Quality Analysis Simulation Program (WASP) and the 

Environmental Fluid Dynamics Code (EFDC), simulate the transport and fate of nutrients in lakes, 

allowing for the assessment of the effectiveness of different nutrient reduction strategies. These 

models enable decision-makers to explore various management scenarios and optimize the 

allocation of resources for eutrophication control (Burigato et al. 2019). 

 
The Trophic State Index (TSI) is a critical tool used in assessing the nutrient status of 

aquatic environments, which can help predict the concentration of Chl-a—a key indicator of algal 

biomass and potential algal blooms. A study introduced a hybrid algorithm for estimating Chl-a 

across different trophic states, from oligotrophic to hypertrophic conditions. The model used a 

combination of algorithms designed for clear, turbid, and highly turbid waters, showing good 

performance across diverse water types (Matsushita et al., 2015). Assessment of Chl-a 

concentration and TSI in Lake Chagan using Landsat TM and field spectral data revealed the 

potential of remote sensing in eutrophication studies. The study successfully mapped Chl-a 

distribution and assessed the trophic state, demonstrating remote sensing's capability in large-scale 

modelling (Duan et al., 2007). The Normalized Difference Chlorophyll Index (NDCI) was 

proposed to predict Chl-a in turbid productive waters, showing high correlation coefficients and 

low mean square error, emphasizing its applicability across geographic regions (Mishra & Mishra, 
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2012). An empirical study using Landsat 8 OLI data to estimate Chl-a concentrations in East 

Kolkata Wetland, India, provided strong correlation between laboratory and predicted TSI values, 

reinforcing the use of satellite imagery in continuous modelling of trophic states (Patra et al., 2016). 

The Fuzzy BP method was applied to predict Chl-a content in seawater, demonstrating how 

advanced machine learning techniques can effectively address the complex nonlinear relationships 

between Chl-a and various environmental factors (Zhang, Li, & Hu, 2011). A novel approach using 

PCA and MLR for predicting Chl-a in coastal-marine ecosystems was explored, achieving 

significant predictive success. This method reduced collinearity issues, making it a viable option 

for understanding and managing coastal environments (Franklin et al., 2020). 

 
The relationship between TSI and Chl-a prediction is well-established, with various 

methodologies demonstrating effectiveness in different aquatic environments. From hybrid 

algorithms to advanced remote sensing techniques, these approaches provide essential insights into 

the trophic dynamics of water bodies, aiding in the management and mitigation of eutrophication. 

The integration of these methods into regular modelling can significantly enhance our ability to 

predict and manage water quality in diverse aquatic ecosystems. 

 

2.3 Integration with Modeling and Monitoring Online System 
 

Integrating modeling and monitoring online systems for Chl-a prediction is crucial for 

managing aquatic ecosystems effectively. Such integrations often leverage advanced predictive 

models and online modelling systems to provide real-time or near-real-time data for early warning 

and management of eutrophication and algal blooms. This review discusses the various approaches 

and technologies used in the integration of these systems for Chl-a prediction. 

 
XGBoost models optimized for predicting chlorophyll dynamics have shown improved 

performance by focusing on changes in chlorophyll value rather than absolute values, enhancing 

bloom forecasting accuracy and reducing in-situ modelling costs (Tian, Liao, & Zhang, 2017). 

Integrating satellite-derived chlorophyll data into ensemble simulations for the North Atlantic 

Ocean demonstrates how data assimilation can enhance surface analysis and chlorophyll forecast 

accuracy, although improvements depend on the reliability of the ensemble (Santana-Falcón et al., 
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2020). The use of Auto-Regressive Integrated Moving Average (ARIMA) models for online 

forecasting of Chl-a concentrations has shown promise in freshwater systems, providing a practical 

tool for algal bloom early warning systems (Chen, Guan, Yun, Li, & Recknagel, 2015). Hybrid 

models combining simulation and deep learning-based prediction methods have been developed 

to predict Chl-a concentration at non-modelling spots, demonstrating effective integration of data- 

driven and model-based approaches (Jang et al., 2020). Assimilating SeaWiFS chlorophyll data 

into a 3D-coupled physical-biogeochemical model highlights the importance of refining model 

uncertainties according to regional biogeochemical characteristics, improving predictions in 

coastal zones (Fontana et al., 2009). Multistep-ahead forecasting using wavelet nonlinear 

autoregressive networks (WNARNet) for Chl-a emphasizes the effectiveness of advanced 

computational methods in handling complex time series data, thus aiding in more accurate and 

extended forecasting (Du et al., 2018). Geographical information online systems further 

enhance the accessibility and usability of Chl-a modelling and monitoring data. These systems 

allow users to access and visualize Chl-a data through web-based interfaces, making the 

information readily available to various stakeholders, including researchers, policymakers, and the 

general public. Online systems can provide interactive tools for querying and analyzing Chl-a data, 

enabling users to explore spatial patterns, generate custom maps, and extract relevant information. 

Integrating modeling and monitoring systems for predicting Chl-a concentration is a crucial 

step in managing aquatic ecosystems effectively. However, several limitations impact the 

efficiency and accuracy of these integrated systems. The process of assimilating chlorophyll data 

into stochastic ensemble simulations demonstrates that improvements in predictions depend on the 

reliability of prior ensemble models. Regional diagnoses indicate that model instabilities can arise 

from mismatches in ensemble spread and observational variability, complicating the integration 

process (Santana-Falcón et al., 2020). Integrating feature selection and regression models for Chl- 

a prediction reveals the complexity of establishing relationships between environmental variables 

and Chl-a. The integration process is hindered by the high dimensionality and multicollinearity of 

environmental data, which complicates model training and prediction accuracy (Li, Sha, & Wang, 

2018). The integration of various predictive models shows inconsistencies in performance metrics 

such as RMSE and AUC values, indicating variability in model reliability across different 

environmental conditions and data sets. Such inconsistencies challenge the robustness and 
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generalizability of integrated systems (Malek et al., 2011). The computational intensity required 

for real-time data processing and predictive modeling often exceeds the capacity of routine 

modelling systems. This limitation is significant in systems requiring high-frequency data updates 

for accurate Chl-a prediction (Jang et al., 2020). The effectiveness of integrated models is highly 

sensitive to the settings of various parameters, including data assimilation techniques and model 

configurations. This sensitivity can lead to significant prediction errors if not properly managed, 

affecting the system’s ability to provide reliable forecasts (Du et al., 2018). Scaling integrated 

systems to different geographic regions or varying conditions often requires extensive 

customization, which can be resource-intensive and technically challenging. The adaptation of 

models to new regions may not always capture local biogeochemical processes accurately, 

reducing the effectiveness of the system (Fontana et al., 2009). 

 
The integration of modeling and monitoring systems for Chl-a prediction faces several 

challenges, including data assimilation difficulties, computational demands, and sensitivity to 

model parameters. Addressing these limitations is crucial for enhancing the reliability and 

applicability of these systems in environmental management and monitoring. But integrating Chl- 

a modelling and monitoring online systems offers significant advantages in data visualization, 

spatial analysis, accessibility, and collaboration. The combination of Chl-a data with spatial 

information and the availability of online interfaces provide valuable tools for understanding, 

managing, and communicating Chl-a dynamics in lakes. This integration contributes to more 

informed decision-making processes and supports the sustainable management of lake ecosystems 

(Turner et al., 2010). 

 
2.4 Summary 
 

The literature review in Chapter 2 presents a comprehensive overview of the current 

methodologies and advancements in predicting Chl-a concentrations in lakes, emphasizing the 

significant transition from traditional approaches to advanced machine learning techniques. This 

shift addresses the limitations of conventional methods, notably their inability to process real-time 

data and manage the complex, non-linear interactions between environmental factors and Chl-a 

levels. 
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The review highlights several key points: 

 
• Machine Learning Superiority: Advanced machine learning algorithms like SVM, RF, DT, 

GBT, KNN, MLP, LSTM, and XGBoost demonstrate superior capability in handling the 

complexities of environmental data compared to traditional statistical models. These methods 

offer robust solutions for accurately predicting Chl-a levels, which is crucial for timely and 

effective environmental management and decision-making. 

• Eutrophication Risk Assessment: Incorporating machine learning into eutrophication risk 

assessment allows for more precise predictions and better management strategies, helping to 

mitigate one of the most pressing issues in lake management. 

• Integration with Online Systems: The integration of these predictive models into online 

modelling systems represents a critical advancement in environmental management practices. 

Such systems provide real-time or near-real-time data that are essential for the early detection 

and management of potential ecological issues, such as algal blooms and eutrophication. 

 
In summary, the literature underscores the need for and effectiveness of integrating 

machine learning techniques into Chl-a prediction and modelling frameworks. This integration not 

only enhances the accuracy of predictions but also improves the responsiveness of environmental 

management practices to potential ecological threats. The review sets the stage for the proposed 

research by establishing the context in which these technologies can be further developed and 

optimized for practical application in lake management. 
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Chapter 3 Methodology 
 
3.1 Overview of the Online System Developed in This Thesis 
 

The CMMOS developed in this thesis represents a sophisticated integration of AI, ML, and 

web technologies to provide a robust platform for the real-time modelling and predictive modeling 

of Chl-a concentrations in lakes. This system is designed to address the limitations of traditional 

water quality modelling methods, offering a comprehensive, efficient, and user-friendly solution 

to environmental scientists, policymakers, and lake management authorities. 

 
Figure 3-1 depicts the comprehensive framework of the CMMOS, designed to integrate 

various stages of data handling, processing, modeling, and monitoring into a cohesive workflow. 

The process begins with the data input stage, where field measurements and relevant 

environmental parameters are systematically collected. This stage is followed by an elaborate data 

processing phase structured into five essential steps: missing value imputation, outlier detection, 

feature selection, data normalization, and data splitting. These preprocessing steps are crucial for 

enhancing the quality and integrity of the data, preparing it for effective modeling. 
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Fig 3-1 Framework of CMMOS 
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In the modeling phase, CMMOS employs a diverse array of machine learning models, 

including MLR, SVM, DT, RF, KNN, GBT, MLP, and Extreme Gradient Boosting (XGBOOST). 

These models are rigorously trained and tested on processed data to develop robust predictive 

algorithms. A continuous cycle of training and testing ensures that the models are meticulously 

fine-tuned for optimal performance. 

 
The final component of the framework, the modelling stage, operationalizes the online 

system. This stage includes a backend database that stores the processed data and a frontend 

interface crafted using HTML, CSS, and JavaScript, with server-side operations facilitated by the 

Django framework. Geospatial data visualization is enhanced through the use of the Google Maps 

API, allowing end-users to monitor Chl-a concentrations in a user-friendly and accessible format. 

The modelling phase also encompasses model reliability assessments based on performance 

metrics, ensuring the continuous accuracy and reliability of the system's predictions. 

 
3.2 Data Preprocessing 
 

Data preprocessing is a critical phase in the Chl-a Modeling and Monitoring Online System 

(CMMOS) where raw data is transformed into a clean dataset suitable for efficient and accurate 

analysis. This stage is fundamental in ensuring the quality and integrity of the data used for 

modeling and prediction. Raw data, especially in environmental modelling, often contains 

inconsistencies such as missing values, outliers, or incorrect entries, which can significantly affect 

the reliability of any predictions made from the data. Thus, effective data preprocessing not only 

improves the accuracy of the model outcomes but also enhances the system’s overall performance 

by ensuring that the input data is consistent, normalized, and truly representative of the real-world 

conditions. 

 
3.2.1 Missing Value Imputation 

Missing values in the dataset can hinder the performance of machine learning models and 

lead to biased results. Therefore, it is crucial to handle missing values appropriately before training 

the models. One commonly used method for missing value imputation is mean imputation, which 
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replaces missing values with the mean value of the corresponding feature. Mean imputation is a 

simple and intuitive approach that assumes the missing values are missing at random (MAR). The 

mean value of the available data is used as a substitute for the missing values, thereby preserving 

the feature's overall distribution and central tendency. The imputed value is calculated using the 

following formula: 
 

𝑋𝑋�𝑖𝑖 =
∑ 𝑋𝑋𝑗𝑗𝑛𝑛
𝑗𝑗=1

𝑛𝑛
                                                                  (1) 

• 𝑋𝑋�𝑖𝑖represents the imputed value for the missing value at position 𝑖𝑖. 

• 𝑋𝑋𝑗𝑗 represents the observed values of the feature. 

• 𝑛𝑛 the number of observed values. 

Mean imputation ensures that the imputed dataset retains the feature's original mean value 

by replacing missing values with the mean. However, it is essential to note that mean imputation 

may underestimate the feature's variance since it does not account for the uncertainty introduced 

by imputing missing values. Mean imputation is a straightforward and computationally efficient 

method, especially when dealing with large datasets. However, it has limitations. It assumes that 

missing values are missing completely at random (MCAR) or missing at random (MAR), which 

may not always hold in real-world scenarios. Additionally, mean imputation may introduce bias 

and distort the relationships between variables if the missingness mechanism is not MAR. Despite 

these limitations, mean imputation remains a popular choice for handling missing values due to its 

simplicity and ease of implementation. It can reasonably estimate disappeared values judiciously 

and with other preprocessing techniques and model evaluation methods. 

 
3.2.2 Outlier Detection 

Outliers are data points that significantly deviate from the expected pattern or distribution 

of the dataset. They can arise due to measurement errors, data entry mistakes, or represent extreme 

observations. Detecting and handling outliers is essential to ensure the robustness and reliability 

of machine learning models. One commonly used method for outlier detection is the Interquartile 

Range (𝐼𝐼𝐼𝐼𝐼𝐼) method. 
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The 𝐼𝐼𝐼𝐼𝐼𝐼 method identifies outliers by calculating the range between the 75th percentile 

(𝐼𝐼3) and the 25th percentile (𝐼𝐼1) of a feature's values. The 𝐼𝐼𝐼𝐼𝐼𝐼 is calculated using the following 

formula: 

 
𝐼𝐼𝐼𝐼𝐼𝐼 = 𝐼𝐼3 − 𝐼𝐼1                                                                      (2)  

• 𝐼𝐼𝐼𝐼𝐼𝐼represents the interquartile range. 

• 𝐼𝐼3 represents the 75th percentile (third quartile). 

• 𝐼𝐼1represents the 25th percentile (first quartile). 

 
To identify outliers using the 𝐼𝐼𝐼𝐼𝐼𝐼 method, the lower threshold is computed as 𝐼𝐼1 − 

1.5 × 𝐼𝐼𝐼𝐼𝐼𝐼 and the upper threshold as 𝐼𝐼3 + 1.5 × 𝐼𝐼𝐼𝐼𝐼𝐼. Any data point below the lower threshold 

or above the upper threshold is considered an outlier. Using the 𝐼𝐼𝐼𝐼𝐼𝐼 method, outliers that fall 

beyond a certain threshold are identified and can be further analyzed or treated accordingly. 

Depending on the specific application and the nature of the data, outliers can be removed from the 

dataset, transformed, or replaced with more representative values. It is important to note that the 

choice of the 1.5 multiplier in the 𝐼𝐼𝐼𝐼𝐼𝐼 method is somewhat arbitrary and can be adjusted based on 

the analysis's specific requirements or the data's characteristics. A higher multiplier will be more 

lenient in identifying outliers, while a lower multiplier will be more stringent. 

 
3.2.2 Feature Selection 

Feature selection is a crucial step in data preprocessing. It aims to identify the most 

informative and relevant features for the prediction task. It helps reduce dimensionality, improve 

model performance, and enhance interpretability. One widely used method for feature selection is 

the chi-square test. 

 
The chi-square test measures the independence between two categorical variables and is 

commonly used to assess the relationship between each feature and the target variable. It calculates 

the chi-square statistic, quantifying the difference between the observed and expected frequencies 

of the feature's categories about the target variable. 

 
The chi-square statistic is calculated using the following formula: 
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𝜒𝜒2 = ∑ �𝑂𝑂𝑖𝑖𝑗𝑗−𝐸𝐸𝑖𝑖𝑗𝑗�
2

𝐸𝐸𝑖𝑖𝑗𝑗
                                                                 (3)  

• χ2 represents the chi-square statistic. 

• 𝑂𝑂𝑖𝑖𝑗𝑗 represents the observed frequency of the 𝑖𝑖𝑡𝑡ℎ category of the feature and the 𝑗𝑗𝑡𝑡ℎ category of 

the target variable. 

• 𝐸𝐸𝑖𝑖𝑗𝑗 represents the expected frequency of the 𝑖𝑖𝑡𝑡ℎ category of the feature and the 𝑗𝑗𝑡𝑡ℎ category of 

the target variable, assuming independence. 

 
The chi-square statistic follows a chi-square distribution, and its significance level 

determines the importance of the feature. By comparing the computed chi-square statistic to a 

critical value from the chi-square distribution table or calculating the p-value associated with the 

statistic, it is possible to determine if the feature is significantly associated with the target variable. 

The chi-square test can be performed for each feature independently, and features with high chi- 

square statistics or low p-values are considered more relevant and informative. These features are 

likely to impact the target variable significantly and can be selected for further analysis or model 

training. However, it is essential to note that the chi-square test is applicable only for categorical 

features and categorical target variables. Other feature selection methods, such as correlation 

analysis or mutual information, may be more appropriate for numerical features or continuous 

target variables. Additionally, the chi-square test assumes that the observations are independent 

and that the expected frequencies are sufficiently large. If the assumptions are violated, the test 

results may be less reliable. Therefore, it is essential to consider the limitations and assumptions 

of the chi-square test when applying it for feature selection. 

 
3.2.3 Data Normalization 

Data normalization is an essential step in data preprocessing. It aims to transform the data 

into a standardized range and eliminate the influence of different scales or units. One commonly 

used method for data normalization is Min-Max scaling. 

 
Min-max or feature scaling rescales the data to a specified range, typically between 0 and 

1. It works by subtracting the minimum value of the feature and dividing it by the range of the 

feature. The formula for Min-Max scaling is as follows: 
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𝑋𝑋normalized = 𝑋𝑋−𝑋𝑋min
𝑋𝑋max−𝑋𝑋min

                                                             (4) 

• 𝑋𝑋normalized represents the normalized value of the data point. 

• 𝑋𝑋 represents the original value of the data point. 

• 𝑋𝑋minrepresents the minimum value of the feature. 

• 𝑋𝑋max represents the maximum value of the feature. 

 
By applying Min-Max scaling, the feature's minimum value is transformed to 0, and the 

maximum value is transformed to 1. The values in between are linearly scaled proportionally. This 

normalization technique ensures that all features have the same scale, making them directly 

comparable and preventing features with larger values from dominating the analysis. 

 
Min-max scaling is particularly useful when the data distribution is known to be 

approximately linear or when the data needs to be constrained within a specific range. However, 

it is sensitive to outliers, as they can significantly affect the scaling of the feature. Therefore, it is 

often recommended to handle outliers before applying Min-Max scaling or to consider alternative 

normalization methods, such as Z-score normalization, which is more robust to outliers. In addition 

to its simplicity and ease of implementation, Min-Max scaling preserves the relationships between 

the data points and maintains the interpretability of the features. The transformed values retain the 

relative ordering and proportions of the original data. 

 
It is important to note that data normalization should be performed separately for each 

feature, ensuring it is scaled independently. This prevents one feature from dominating the analysis 

due to a larger scale. In all, Min-Max scaling is a widely used method for data normalization, 

allowing for data transformation into a standardized range between 0 and 1. Applying this 

technique makes the scales of features comparable, facilitating meaningful comparisons and 

preventing features with larger values from overwhelming the analysis. However, it is essential to 

handle outliers appropriately and consider alternative normalization methods based on the specific 

characteristics of the data. 



34  

3.2.4 Data Splitting 

Data splitting is a crucial step in machine learning and model development. It involves 

dividing the dataset into separate training, validation, and testing subsets. The commonly used 

method for data splitting is the random split, which ensures a representative distribution of data 

across the subsets. 

 
The random split involves shuffling the dataset and assigning a portion of the data to each 

subset. The typical splitting proportions are as follows: 

 
• Training set: This subset trains the model and establishes the relationships between the input 

features and the target variable. It should contain most data, usually around 70% to 80% of the 

dataset. 

• Validation set: This subset is used to tune the model's hyperparameters and assess its 

performance during the training process. It helps prevent overfitting and select the best model 

configuration. The recommended proportion is around 10% to 15% of the dataset. 

• Test set: This subset evaluates the final model's performance and assesses its generalization 

ability on unseen data. It provides an unbiased estimate of the model's performance. The test 

set should be kept separate from the training and validation sets until the model development 

process is complete. The remaining portion of the dataset, usually around 10% to 20%, is 

allocated for the test set. 

 
The random split can be performed using a random sampling function or by shuffling the 

dataset and sequentially assigning data points to each subset. The split can be stratified, meaning 

the class distribution in the target variable is preserved across the subsets. This is particularly useful 

when dealing with imbalanced datasets to ensure each subset contains representative samples from 

each class. 

 
3.3 Machine Learning Models 
 

This section explores various machine-learning models commonly used for regression 

tasks. Regression models aim to predict continuous numerical values based on input features. 
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These models leverage the power of algorithms and mathematical techniques to learn patterns and 

relationships from training data, enabling accurate predictions on unseen data. 

 
The machine learning models discussed in this section include Multiple Linear Regression 

(MLR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF), Gradient 

Boosting Tree (GBT), KNN, Multilayer Perceptron (MLP), LSTM and Extreme Gradient Boosting 

(XGBOOST). Each model has its unique characteristics and is suitable for different scenarios, 

providing a diverse range of options for regression tasks. 

 
3.3.1 MLR Model 

MLR is a statistical technique used to model the relationship between two or more 

explanatory variables and a response variable by fitting a linear equation to observed data. Every 

value of the independent variable x is associated with a value of the dependent variable y. MLR is 

widely used across scientific disciplines for forecasting, predictions, and inferential statistics. In 

Multiple Linear Regression, the relationship between the dependent variable 𝑦𝑦 and the 

independent variables 𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 is represented by the following linear equation (Montgomery 

et al. 2012): 

 
𝑦𝑦 = 𝑤𝑤0 + 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 +⋯+ 𝑤𝑤𝑛𝑛𝑥𝑥𝑛𝑛 + 𝜀𝜀                                             (5) 

• 𝑦𝑦 represents the dependent variable (the variable to be predicted). 

• 𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 represent the independent variables (features). 

• 𝑤𝑤0,𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛 are the regression coefficients that represent the weights assigned to each 

independent variable. 

• ε is the error term, representing the deviation between the predicted and actual values. 

 
Multiple Linear Regression aims to estimate the regression coefficients that minimize the 

sum of squared errors. This is achieved by solving the following optimization problem 

(Montgomery et al. 2012): 
 

𝑚𝑚𝑖𝑖𝑛𝑛𝑤𝑤0,𝑤𝑤1,𝑤𝑤2,…,𝑤𝑤𝑛𝑛
∑ �𝑦𝑦𝑖𝑖 − (𝑤𝑤0 + 𝑤𝑤1𝑥𝑥𝑖𝑖1 + 𝑤𝑤2𝑥𝑥𝑖𝑖2 + ⋯+𝑤𝑤𝑛𝑛𝑥𝑥𝑖𝑖𝑛𝑛)�2𝑚𝑚
𝑖𝑖=1                      (6) 

• 𝑚𝑚 is the number of training samples. 
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• 𝑦𝑦𝑖𝑖 is the actual value of the dependent variable for the 𝑖𝑖-th training sample. 

• 𝑥𝑥𝑖𝑖1, 𝑥𝑥𝑖𝑖2, … , 𝑥𝑥𝑖𝑖𝑛𝑛 are the values of the independent variables for the  𝑖𝑖-th training sample. 

 
Various techniques, such as ordinary least squares (OLS) or gradient descent, can be used 

to solve the optimization problem. Multiple Linear Regression offers several advantages. It is 

simple to understand and interpret and can handle both numerical and categorical independent 

variables. It also provides insights into the importance and direction of the relationships between 

the independent and dependent variables through the regression coefficients. However, Multiple 

Linear Regression assumes a linear relationship between the independent variables and the 

dependent variable, which may not always hold true in real-world scenarios. It may not capture 

complex nonlinear relationships. In such cases, more advanced machine learning algorithms, such 

as decision trees or neural networks, may be more suitable. 

 
In this thesis, the MLR model is employed to predict Chl-a concentrations based on 

environmental variables such as temperature, pH, and turbidity. Data on Chl-a concentrations and 

environmental variables are collected through both field measurements and remote sensing 

technologies. This data is then preprocessed to handle missing values, outliers, and to ensure 

normalization, facilitating effective model training and predictions. The MLR model is developed 

using statistical software. This involves selecting relevant environmental variables based on their 

correlation with Chl-a concentrations and assessing their multicollinearity. The model's 

performance is evaluated using statistical metrics such as R2 and Root Mean Squared Error 

(RMSE). These metrics help determine how well the model explains the variability in Chl-a 

concentration and the accuracy of its predictions. Once validated, the MLR model is integrated 

into the online modelling system. This integration enables the continuous prediction of Chl-a levels, 

providing real-time insights into the lake's ecological health and eutrophication risk. The 

predictions from the MLR model are visualized through a user-friendly interface in the online 

system, allowing environmental managers and policymakers to make informed decisions based on 

the current and predicted states of water quality. 
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3.3.2 SVM Model 

The Support Vector Machine (SVM) model is an essential component of the integrated AI- 

based system developed in this thesis for modeling and monitoring Chl-a concentration in lakes. 

SVM is renowned for its effectiveness in classification and regression tasks, particularly in high- 

dimensional spaces. In this thesis, SVM is utilized for the regression task of predicting Chl-a levels, 

a key indicator of water quality and ecological health in lake environments. SVM aims to find a 

hyperplane that maximizes the margin between the training data points and the hyperplane while 

minimizing the prediction error. In regression tasks, the goal is to find a hyperplane that best fits 

the data points with a maximum margin. The hyperplane is defined by a linear equation: 

 
𝑓𝑓(𝑥𝑥) = 𝑤𝑤𝑇𝑇𝑥𝑥 + 𝑏𝑏                                                             (7) 

 

• 𝑓𝑓(𝑥𝑥) represents the predicted value for the input data point 𝑥𝑥. 

• 𝑤𝑤 is the weight vector.  

• 𝑏𝑏 is the bias term. 

The weight vector 𝑤𝑤 and the bias term 𝑏𝑏 are determined by solving the optimization problem 

(Wujek et al., 2016): 

𝑚𝑚𝑖𝑖𝑛𝑛𝑤𝑤,𝑏𝑏
1
2

|| 𝑤𝑤 ||2 + 𝐶𝐶 ∑ �𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖)�
2𝑛𝑛

𝑖𝑖=1                                     (8) 

Subject to:  

𝑦𝑦𝑖𝑖 − 𝑓𝑓(𝑥𝑥𝑖𝑖) ≤ ϵ                                                             (9) 

𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝑦𝑦𝑖𝑖 ≤ ϵ                                                            (10) 

• 𝑛𝑛 is the number of training samples. 

• 𝑦𝑦𝑖𝑖  is the target value for the 𝑖𝑖-th training sample. 

• 𝑓𝑓(𝑥𝑥𝑖𝑖) is the predicted value for the 𝑖𝑖-th training sample. 

• ε is the parameter that controls the width of the error tube. 

• 𝐶𝐶 is the regularization parameter that balances the trade-off between the margin and the error. 

 
The optimization problem is solved using quadratic programming techniques. By solving 

the problem, the weight vector 𝑤𝑤 and the bias term 𝑏𝑏 can be obtained, and the prediction can be 

made using the linear equation. 
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SVM offers several advantages in regression tasks. It can capture complex relationships 

and handle high-dimensional data effectively. SVM is less prone to overfitting due to the margin 

maximization principle. It can also handle both numerical and categorical features by employing 

appropriate kernel functions. However, SVM's performance may be affected by the choice of the 

kernel function and the regularization parameter. The kernel function determines the type of 

decision boundary that can be learned, and the regularization parameter controls the balance 

between margin maximization and error minimization. Proper parameter tuning is necessary to 

achieve optimal performance. 

 
By applying SVM within the comprehensive AI-based system, this thesis advances the 

predictive accuracy and operational efficiency of Chl-a concentration modelling in lake 

ecosystems. 

 
3.3.3 DT Model 

The Decision Tree (DT) model is an integral part of the AI-based system developed in this 

thesis for modeling and monitoring Chl-a concentrations in lakes. Decision Trees are popular due 

to their simplicity, interpretability, and ease of use in classification and regression tasks. In this 

research, DTs are utilized for regression purposes to predict Chl-a levels, crucial for assessing the 

ecological health of lakes. Decision Trees involve splitting the data into subsets based on the value 

of the input features that result in the greatest reduction of variance (or another metric) in the target 

variable. For regression tasks, a typical Decision Tree can be represented as a series of decisions 

leading to predictions (Loh, W-y, 2011): 
 

𝑓𝑓(𝑥𝑥) = ∑ 𝑤𝑤𝑖𝑖𝑦𝑦𝑖𝑖𝑛𝑛
𝑖𝑖=1  ϵ                                                            (11) 

• 𝑓𝑓(𝑥𝑥) represents the predicted value for the input data point 𝑥𝑥. 

• 𝑛𝑛 is the number of leaf nodes in the Decision Tree. 

• 𝑤𝑤𝑖𝑖 is the weight assigned to the 𝑖𝑖-th leaf node. 

• 𝑦𝑦𝑖𝑖 is the predicted value at the 𝑖𝑖-th leaf node. 

 
The weights assigned to the leaf nodes can be determined based on different criteria. For 

example, in the case of minimizing the variance, the weight 𝑤𝑤𝑖𝑖 can be calculated as the fraction of 
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training samples that belong to the 𝑖𝑖-th leaf node. Alternatively, if the goal is to minimize the SSE, 

the weight 𝑤𝑤𝑖𝑖 can be determined as the average of the target values within the 𝑖𝑖-th leaf node. 

 
Decision Tree offers several advantages. It is easy to interpret and visualize, as the resulting 

tree structure provides insights into the decision-making process. Decision Tree can handle both 

numerical and categorical features without extensive preprocessing. It is also robust to outliers and 

can handle missing values by employing appropriate strategies for splitting and imputing. However, 

Decision Tree may suffer from overfitting, especially when the tree depth is unconstrained. To 

mitigate overfitting, techniques like pruning or setting a maximum depth can be applied. 

Additionally, Decision Tree models may have limited interpretability compared to simpler models 

like linear regression. Nevertheless, the interpretability can be enhanced by considering feature 

importance measures derived from the Decision Tree structure. 

 
A Decision Tree model is constructed using the selected features. The tree is grown by 

repeatedly splitting the training data into subsets, starting from the root node, based on the feature 

that provides the best split according to a given metric (commonly variance reduction for 

regression). To avoid overfitting, the tree is pruned back from its fullest depth. This involves 

removing sections of the tree that provide little power in predicting the target variable, thereby 

enhancing the model’s generalization capabilities. The Decision Tree is trained on the preprocessed 

dataset, and its performance is validated using techniques such as k-fold cross-validation. 

Performance metrics, like Mean Absolute Error (MAE) and R-squared, are used to evaluate the 

accuracy of the model. Once validated, the Decision Tree model is integrated into the online 

modelling system. This allows for continuous and automated prediction of Chl-a levels based on 

real-time data feeds from various sensors and data sources. Predictions from the Decision Tree 

model are displayed through a user-friendly dashboard that provides actionable insights into water 
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quality trends and potential ecological risks. This interface facilitates easy interpretation and 

decision-making for lake management. 

 
By integrating the Decision Tree model into the broader AI-based system, this thesis 

enhances the predictive capabilities for modelling Chl-a levels, providing a robust tool for 

environmental scientists and lake managers to assess and manage water quality effectively. 

 
3.3.4 RF Model 

The Random Forest (RF) model is a key component of the AI-based system developed in 

this thesis for modeling and monitoring Chl-a concentrations in lakes. Random Forest is an 

ensemble learning method that utilizes multiple decision trees to improve predictive accuracy and 

control over-fitting. This methodology is particularly suitable for handling complex and non-linear 

relationships between multiple environmental predictors and Chl-a levels. 

 
The algorithm starts by creating a set of decision trees using bootstrap samples of the 

original training data. Each decision tree is trained on a different subset of the data, known as a 

bootstrap sample, which is created by randomly sampling the training data with replacement. 

Additionally, at each split in the decision tree, only a random subset of features is considered for 

splitting. This introduces randomness and diversity in the ensemble of decision trees. The 

prediction process in Random Forest involves aggregating the predictions of all the decision trees. 

For classification tasks, the class label with the majority vote from the decision trees is chosen as 

the final prediction. Mathematically, the prediction can be represented as (Breiman, L. 2001): 

𝑓𝑓(𝑥𝑥) = argmax𝑦𝑦(∑ 𝐼𝐼(𝑦𝑦𝑖𝑖 = 𝑦𝑦)𝑛𝑛
𝑖𝑖=0 ) ϵ                                            (12) 

• 𝑓𝑓(𝑥𝑥) represents the predicted class label for the input data point 𝑥𝑥. 

• 𝑛𝑛 is the number of decision trees in the Random Forest ensemble. 

• 𝑦𝑦𝑖𝑖 is the class label predicted by the 𝑖𝑖-th decision tree. 

• 𝐼𝐼(𝑦𝑦𝑖𝑖 = 𝑦𝑦) is an indicator function that returns 1 if the predicted class label of the 𝑖𝑖-th decision 

tree is equal to 𝑦𝑦 and 0 otherwise. 
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A RF model is constructed using the prepared dataset. Parameters like the number of trees 

in the forest (n_estimators), the number of features to consider for each split (max_features), and 

the minimum number of samples required at each leaf node (min_samples_leaf) are optimized to 

enhance model performance. The Random Forest model is trained on the dataset. During training, 

bootstrap samples of the data are used to build each tree, and random subsets of features are 

considered for splitting at each node, ensuring diverse trees and reducing the variance of the model. 

The performance of the Random Forest model is validated using cross-validation techniques. 

Metrics such as the Mean Squared Error (MSE) and the Coefficient of Determination (R²) are used 

to assess the accuracy and explanatory power of the model. The trained Random Forest model is 

integrated into the AI-based online monitoring system. This integration allows the model to utilize 

real-time data for continuous prediction and modelling of Chl-a levels. Predictive results and 

insights generated by the Random Forest model are visualized through interactive dashboards. 

These visualizations support decision-making processes for lake management and environmental 

modelling. 

 
By applying the Random Forest model within the comprehensive system developed in this 

thesis, the methodology enhances the predictive accuracy and real-time modelling capabilities for 

Chl-a concentrations in lakes, thus supporting sustainable water quality management and 

ecological assessments. 

 
3.3.5 GBT Model 

GBT is a robust machine learning technique that enhances predictive accuracy through the 

ensemble of decision trees. In this thesis, GBT is employed to predict Chl-a concentrations, a 

critical indicator of water quality and algal biomass in lakes. GBT is particularly effective in 

handling complex datasets with non-linear relationships and interactions among predictors. 

 
Mathematically, the prediction �̂�𝑦 of a Gradient Boosting Tree model can be represented as 

(Friedman, J. H. 2001): 
 

𝑦𝑦� = ∑ 𝑓𝑓𝑖𝑖(𝑥𝑥)𝑁𝑁
𝑖𝑖=1                                                                          (14) 

• 𝑁𝑁 is the number of trees in the ensemble. 

• 𝑓𝑓𝑖𝑖(𝑥𝑥) represents the prediction of the 𝑖𝑖-th tree for the input 𝑥𝑥. 
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The objective of Gradient Boosting Tree is to minimize a loss function by finding the optimal values 

of the tree parameters. The loss function is typically a differentiable function that measures the difference 

between the predicted values and the actual values. A commonly used loss function for regression tasks is 

the mean squared error (MSE): 

MSE = 1
𝑚𝑚
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2𝑚𝑚
𝑖𝑖=1                                                                (15) 

• 𝑚𝑚 is the number of training samples. 

• 𝑦𝑦𝑖𝑖 is the actual value of the dependent variable for the 𝑖𝑖-th training sample. 

• 𝑦𝑦𝚤𝚤�  is the predicted value of the dependent variable for the 𝑖𝑖-th training sample. 

 
The algorithm optimizes the loss function by iteratively fitting decision trees to the negative 

gradient of the loss function. This process is known as gradient boosting. The trees are added one 

at a time, and each tree is trained to minimize the loss function with respect to the residuals of the 

previous predictions. 

 
Gradient Boosting Tree offers several advantages. It can capture complex nonlinear 

relationships and interactions among variables. It is also robust to outliers and noisy data. 

Additionally, it handles missing values and can handle both numerical and categorical features 

without extensive preprocessing. However, Gradient Boosting Tree can be prone to overfitting if 

not properly tuned. Careful selection of hyperparameters, such as the learning rate, number of trees, 

and maximum tree depth, is necessary to prevent overfitting and achieve optimal performance. 

 
The application of GBT in this thesis represents a significant advancement in predictive 

modeling for aquatic environments, providing a powerful tool for real-time and accurate prediction 

of Chl-a concentrations, thereby supporting effective water quality management and ecological 

preservation efforts. 



43  

3.3.6 KNN Model 

KNN is a simple yet effective machine learning algorithm for regression tasks. It is a non- 

parametric algorithm that makes predictions based on the k nearest neighbors of a given data point. 

The algorithm works by calculating the distances between the data point to be predicted and all 

other data points in the training set. It then selects the k nearest neighbors based on these distances. 

The predicted value for the data point is obtained by averaging the values of its k nearest neighbors. 

 
Mathematically, the prediction �̂�𝑦 of a KNN model for a given input 𝑥𝑥 can be represented 

as (Altman, N. S. 1992): 
 

𝑦𝑦� = 1
𝑘𝑘
∑ 𝑦𝑦𝑖𝑖𝑘𝑘
𝑖𝑖=1                                                                   (16) 

• 𝑘𝑘 is the number of nearest neighbors to consider. 

• 𝑦𝑦𝑖𝑖 represents the target value of the 𝑖𝑖-th nearest neighbor. 

 
The choice of the appropriate value for 𝑘𝑘 is important and depends on the dataset and the 

problem at hand. A smaller 𝑘𝑘 value results in a more flexible model that is sensitive to local 

patterns, but it may also be more prone to noise. On the other hand, a larger 𝑘𝑘 value smooths out 

the predictions but may fail to capture local patterns. 

 
KNN offers several advantages. It is simple to understand and implement. It can capture 

local patterns and nonlinear relationships. It is also robust to outliers. Moreover, it can handle both 

numerical and categorical features without extensive preprocessing. However, KNN has 

considerations to be aware of. The choice of 𝑘𝑘 is crucial, and it may require tuning to achieve 

optimal performance. Additionally, KNN can be computationally expensive, especially for large 

datasets, as it involves calculating distances between the test sample and all training samples. 

 
By leveraging the KNN model within the broader AI-based system, this thesis enhances 

the capability for accurate and real-time modelling of Chl-a concentrations in lakes, providing an 

essential tool for effective environmental management and research. 
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3.3.7 MLP Model 

The MLP is a popular type of Extreme Gradient Boosting that can be used for regression 

tasks. It consists of multiple layers of interconnected neurons and is capable of learning complex 

nonlinear relationships between input features and target variables. 

 
In MLP, the input layer receives the input features, and each neuron in the input layer is 

connected to every neuron in the next hidden layer. The hidden layers perform intermediate 

computations, and the output layer produces the final prediction. Each neuron applies a nonlinear 

activation function to the weighted sum of its inputs. 

 
Mathematically, the output of an MLP can be represented as (Goodfellow, I., et. al, 2016): 

 
𝑦𝑦� = 𝑓𝑓�∑ 𝑤𝑤𝑗𝑗𝑛𝑛

𝑗𝑗=1 ⋅ 𝑥𝑥𝑗𝑗 + 𝑏𝑏�                                                           (17) 

• 𝑦𝑦� represents the predicted value. 

• 𝑓𝑓 is the activation function, which introduces nonlinearity into the model. 

• 𝑤𝑤𝑗𝑗 are the weights associated with the input features 𝑥𝑥𝑗𝑗. 

• 𝑏𝑏 is the bias term. 

 
The weights and biases in the MLP are learned during the training process using 

optimization algorithms such as backpropagation. The backpropagation algorithm calculates the 

gradients of the model's parameters with respect to a loss function and updates the weights and 

biases to minimize the loss. 

 
MLP offers several advantages. It can model complex relationships and learn nonlinear 

patterns in the data. It is also capable of handling both numerical and categorical features. 

Additionally, MLP allows for flexible network architectures, including the number of hidden layers 

and neurons, which can be adjusted based on the complexity of the problem. However, MLP has 

considerations to be aware of. It requires careful selection of the activation function, as it can affect 

the model's convergence and performance. The choice of the number of hidden layers and neurons 

also requires tuning to prevent overfitting or underfitting. Additionally, training an MLP can be 

computationally expensive, especially for large datasets and complex architectures. 
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By employing the MLP model, this thesis contributes significantly to the field of 

environmental science by providing a robust predictive tool for Chl-a concentration, aiding in the 

effective management and modelling of water quality in lakes. 

 
3.3.8 LSTM Model 

Long Short-Term Memory (LSTM) networks, a type of recurrent neural network (RNN), 

are well-suited for modeling time-series data due to their ability to remember information over 

long periods. This capability makes LSTMs ideal for predicting Chl-a concentrations in lakes, 

where the data exhibits temporal dependencies influenced by seasonal variations and 

environmental factors. 

 
LSTM networks address the vanishing gradient problem common in traditional RNNs by 

incorporating memory cells that regulate the flow of information. Each cell in an LSTM layer has 

three types of gates: input, forget, and output gates, which control the cell state and the hidden 

state passed along the sequence. The basic equations governing these processes include (Hochreiter, 

S., & Schmidhuber, J. 1997): 

 
• Forget Gate 

𝑓𝑓𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑓𝑓 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑓𝑓)                                           (18) 

• Input Gate 
𝑖𝑖𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑖𝑖 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑖𝑖)                                           (19) 

 
𝐶𝐶𝑡𝑡� = 𝑡𝑡𝑡𝑡𝑛𝑛ℎ(𝑊𝑊𝐶𝐶 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝐶𝐶)                                    (20) 

 
• Cell State Update 

𝐶𝐶𝑡𝑡 = 𝑓𝑓𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡 + 𝑖𝑖𝑡𝑡 ∗ 𝐶𝐶𝑡𝑡�                                                  (21) 
 

• Output Gate 
𝑜𝑜𝑡𝑡 = 𝜎𝜎(𝑊𝑊𝑜𝑜 ⋅ [ℎ𝑡𝑡−1,𝑥𝑥𝑡𝑡] + 𝑏𝑏𝑜𝑜)                                      (22) 

 
ℎ𝑡𝑡 = 𝑜𝑜𝑡𝑡 ∗ tanh (𝐶𝐶𝑡𝑡)                                           (23) 
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Where 𝜎𝜎 represents the sigmoid activation function, 𝑡𝑡𝑡𝑡𝑛𝑛ℎ is the hyperbolic tangent 

function, 𝑊𝑊 and 𝑏𝑏 are the weights and biases associated with each gate, ℎ𝑡𝑡 is the hidden state at 

time 𝑡𝑡, 𝐶𝐶𝑡𝑡 is the cell state at time 𝑡𝑡, and 𝑥𝑥𝑡𝑡 is the input at time 𝑡𝑡. 

In this thesis, the Long Short-Term Memory (LSTM) model is developed to predict Chl-a 

concentrations in lakes, harnessing its capacity to handle sequential data and long-term 

dependencies. The process begins with collecting historical data on Chl-a and relevant 

environmental variables like nutrient levels, temperature, and sunlight exposure, followed by 

meticulous data preprocessing which includes scaling, managing missing values, and formatting 

data for LSTM compatibility. An appropriate LSTM architecture is designed, focusing on the 

number of layers and units, while incorporating strategies like dropout to mitigate overfitting. 

Feature engineering enhances the model’s input by creating features that effectively capture 

temporal and seasonal trends. Training the LSTM involves backpropagation through time using 

optimizers like Adam or RMSprop to minimize errors, with hyperparameters such as learning rate 

and epoch number optimized through methods like grid search. The model’s performance is 

validated using metrics like RMSE and MAE, and visual assessments of predicted versus actual 

values. Finally, the trained model is integrated into the modelling system for real-time predictive 

analysis, complemented by interactive visualizations that facilitate user interpretation and 

decision-making based on the predictive outputs. 

 
By applying LSTM networks, this thesis provides a sophisticated approach to modeling 

and predicting Chl-a concentrations in lakes, enhancing the capabilities of modelling systems to 

manage water quality effectively. 

 
3.3.9 XGBoost Model 

XGBoost is an advanced implementation of gradient boosting algorithms known for its 

speed and performance. In this thesis, XGBoost is utilized for predicting Chl-a concentrations in 

lakes, a critical indicator of algal biomass and water quality. XGBoost is particularly effective due 

to its ability to handle various types of data, manage missing values, and capture complex nonlinear 

patterns in large datasets. 
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XGBoost improves upon the gradient boosting framework by regularizing the objective 

function to control overfitting, making it robust and efficient. The objective function of XGBoost 

for regression tasks includes both a loss function and a regularization term: 
 

Obj(Θ) = ∑ 𝑙𝑙(𝑦𝑦𝑖𝑖 ,𝑦𝑦𝚤𝚤�)n
i=1 +∑ Ω(𝑓𝑓𝑘𝑘)K

k=1                                            (24) 

Where: 

• 𝑙𝑙(𝑦𝑦𝑖𝑖 ,𝑦𝑦𝚤𝚤�)is the loss function that measures the difference between the predicted 𝑦𝑦𝚤𝚤�  and the actual 𝑦𝑦𝑖𝑖 

values. 

• Ω(𝑓𝑓𝑘𝑘) represents the regularization term that penalizes the complexity of the model. 

• 𝑓𝑓𝑘𝑘 are the functions corresponding to the individual trees in the model. 

 
In this thesis, the XGBoost (Extreme Gradient Boosting) model is meticulously developed 

to predict Chl-a concentrations in lakes, capitalizing on its advanced algorithmic capabilities. The 

process begins with the collection and preprocessing of extensive datasets, which include Chl-a 

levels and related environmental variables like temperature, pH, and nutrient concentrations. This 

data is carefully prepared by handling missing values, normalizing features, and encoding 

categorical variables to optimize it for the XGBoost framework. Feature engineering is a critical 

step where influential predictors are identified and refined to enhance the model's performance. 

The XGBoost model is then configured with specific parameters such as the number of trees, 

maximum depth of trees, learning rate, and regularization parameters, all tuned to best fit the 

regression task at hand. Training involves the sequential building of decision trees, each correcting 

errors from the previous ones, effectively minimizing prediction errors through robust gradient 

boosting techniques. Hyperparameter tuning is conducted via methods like grid search to ensure 

optimal model settings, and the model's effectiveness is validated using cross-validation, assessing 

its accuracy through metrics like RMSE and R². Finally, the trained model is seamlessly integrated 

into an AI-based modelling system, providing real-time predictive insights into Chl-a 

concentrations. This integration supports continuous modelling and effective management of water 

quality, backed by interactive visualization tools that enable straightforward interpretation and 

decision-making by environmental managers and researchers. 
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The use of XGBoost in this thesis not only advances the predictive analysis of Chl-a 

concentrations but also contributes to the broader field of environmental modelling by providing 

a reliable, efficient, and scalable solution. 

 
3.4 Model Evaluation Metrics 

 

Model performance evaluation is a crucial step in machine learning to assess the 

effectiveness and accuracy of the developed models. Various evaluation metrics are used to 

measure the performance of regression models. In this section, we will discuss some commonly 

used metrics for evaluating the performance of regression models (Hyndman & Koehler, 2006). 

 
3.4.1 Root Mean Squared Error (RMSE) 

 

The Root Mean Squared Error (RMSE) is derived from MSE and provides the measure of 

the average magnitude of the prediction errors. It is calculated as the square root of the MSE 

(Hyndman, R. J., & Koehler, A. B., 2006).: 

RMSE = �1
𝑛𝑛
∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤�)2𝑛𝑛
𝑖𝑖=1                                                      (25) 

RMSE is widely used as it has the same unit as the target variable, making it easily 

interpretable. 

 

3.4.2 Mean Absolute Error (MAE) 
 

The Mean Absolute Error (MAE) is another commonly used metric that measures the 

average absolute difference between the predicted values and the actual values. It is less sensitive 

to outliers compared to MSE. The formula for MAE is as follows (Hyndman, R. J., & Koehler, 

A. B., 2006).: 

MAE = 1
𝑛𝑛
∑ |𝑦𝑦𝑖𝑖 − 𝑦𝑦𝚤𝚤� |𝑛𝑛
𝑖𝑖=1                                                         (26) 

3.4.3 Mean Absolute Percentage Error (MAPE) 
 

The Mean Absolute Percentage Error (MAPE) measures the average percentage 

difference between the predicted values and the actual values. It is commonly used when the 
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target variable has a significant variation in magnitude. The formula for MAPE is as follows 

(Hyndman, R. J., & Koehler, A. B., 2006).: 

MAPE = 1
𝑛𝑛
∑ �𝑦𝑦𝑖𝑖−𝑦𝑦𝚤𝚤�

𝑦𝑦𝑖𝑖
�𝑛𝑛

𝑖𝑖=1 × 100                                                (27) 

3.4.4 Coefficient of Determination (R²) 
 

R² provides an indication of goodness of fit and explains the proportion of variance in the 

dependent variable that is predictable from the independent variables. R² values closer to 1 

indicate a better explanatory ability of the model (Hyndman, R. J., & Koehler, A. B., 2006).. 

𝐼𝐼2 = 1 −  ∑ (𝑦𝑦𝚤𝚤� −𝑦𝑦𝑖𝑖)2𝑛𝑛
𝑖𝑖=1
∑ (𝑦𝑦𝑖𝑖−𝑦𝑦�)2𝑛𝑛
𝑖𝑖=1

                                                          (28) 

This comprehensive approach to model evaluation ensures that the predictive models 

developed for chlorophyll-a concentration are robust, accurate, and suitable for supporting 

decision-making in lake management and environmental monitoring. 

 
3.5 Development of the Online Chl-a Content Prediction System 
 

The development of CMMOS marks a significant advancement in ecological data analytics, 

integrating sophisticated web technologies with environmental science for real-time modelling and 

prediction of Chl-a levels. This section outlines the comprehensive development process of 

CMMOS, including system architecture, front-end and back-end development, data processing, 

and the use of Python packages. 

 
The Figure 3-2 displayed in the Water Quality Monitoring System illustrates the 

concentration trends of Chl-a over a selected time period across various monitoring points in Lake 

Simcoe. The x-axis of the graph represents the timeline, marked by specific years and months, 

indicating the period of data collection. The y-axis denotes the Chl-a concentration in micrograms 

per liter (µg/L). Data points are plotted as blue dots connected by line segments, highlighting the 

fluctuating levels of Chl-a. Each point on the graph corresponds to a specific sampling location 

and time, as indicated by identifiers like N31, C9, and E50, with their respective Chl-a values listed 

alongside the map. This visualization serves as a crucial tool for analyzing the spatial and temporal 

variation of Chl-a concentrations, offering insights into the ecological health of the lake and the 

effectiveness of ongoing environmental management strategies. 
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Fig 3-2 Monitoring Interface of CMMOS 
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Fig 3-3 Modelling Interface of CMMOS 
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The Fig 3-3 is part of a machine learning platform designed to facilitate the selection and 

evaluation of different predictive models. The interface is divided into three main sections: 

 
• Model Selection Panel: 
 

On the left side, users can select from a list of models, including SVM (Support Vector 

Machine), DT (Decision Tree), MLR (Multiple Linear Regression), XGBT (Extreme Gradient 

Boosting Tree), RF (Random Forest), MLP (Multilayer Perceptron), GBT (Gradient Boosting 

Decision Tree), and KNN (K-Nearest Neighbors). There is also an option to 'Deselect All' for 

convenience. 

 
• Model Performance Comparison Charts: 
 

The center of the interface features two sets of bar charts comparing the performance of the 

selected models based on three metrics: MAE (Mean Absolute Error), MAPE (Mean Absolute 

Percentage Error), and RMSE (Root Mean Square Error). The first chart shows the performance 

on training data, while the second chart depicts the performance on test data, allowing for an 

evaluation of both fitting and generalization capabilities. 

 
• Historical Best Model Results: 
 

On the right, there is a panel displaying the historical best model results, with metrics 

provided for the model that has historically performed the best on the data set. In this instance, 

the Random Forest (RF) model shows a MAE of 1.278, a MAPE of 0.327, and an RMSE of 

1.590. 

This interface is instrumental in allowing researchers and analysts to quickly assess and 

compare the efficacy of different machine learning models in a visually intuitive manner, 

facilitating better decision-making in model selection based on empirical data performance. 

 
• Detailed Development Process 

 
Front-End Development involves the creation of an interactive user interface using HTML5, 

CSS3, and JavaScript. Additionally, it integrates the Google Maps API for geospatial data 

visualization and employs Google Charts for dynamic data representation. Back-End 

Development is built on the Django framework, known for rapid development and pragmatic 
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design. Django REST framework is utilized to construct a powerful API, ensuring seamless 

interaction with the front end. Data Collection and Management are achieved through automated 

data collection scripts written in Python. These scripts fetch data from various environmental 

databases, and data storage and management are efficiently handled using PostgreSQL for 

robustness and scalability. 

 
The detailed development process consists of several key components: 

 
i. Front-End Design: The focus here is on creating a responsive user interface that enhances 

user experience through HTML5, CSS3, JavaScript, and AJAX for dynamic updates. 

ii. Interactive Map and Data Visualization: Integration of the Google Maps API and custom 

marker implementation enables the display of geographic data. Google Charts is used for 

visually appealing and interactive graphing and charting. 

iii. Back-End Infrastructure: Django serves as the core framework for managing requests, data 

processing, and view rendering. RESTful APIs built with Django REST framework enable 

seamless communication with the front-end. 

iv. Asynchronous Tasks and Data Processing: Celery, an asynchronous task queue, is 

implemented for efficient background processing, while Redis serves as a message broker, 

facilitating communication between Django and Celery. 

v. Predictive Modeling and Analysis: Python libraries like Pandas are employed for data 

manipulation and analysis. Scikit-learn is used for building predictive models, and 

TensorFlow is integrated for more complex deep learning models. 
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Chapter 4: Study Case and Field Investigation - Lake Champlain 
 
4.1 Study Area 
 

Lake Champlain, located in North America, spans across the borders of the United States 

and Canada, with the majority of its surface area lying within the states of Vermont and New York. 

It is a natural freshwater lake known for its ecological importance and recreational opportunities. 

Lake Champlain covers approximately 1,269 square kilometers (490 square miles) and stretches 

about 193 kilometers (120 miles) in length, with a maximum width of around 19 kilometres (12 

miles). The lake's geographic coordinates range from approximately 44.0°N to 44.7°N latitude and 

73.2°W to 73.5°W longitude. 

 

 
Fig 4-1 Location of Monitoring Stations in Lake Champlain 



55  

The lake has a diverse hydrological system and receives freshwater inflows and sediment 

loads from tributary rivers such as the Ausable River, Lamoille River, and Winooski River. It is 

also connected to the Richelieu River, which flows northward into the St. Lawrence River in 

Canada. Lake Champlain consists of several distinct basins, including the Main Lake, Northeast 

Arm, Northwest Arm, and South Lake, each with unique physical and ecological characteristics. 

It has a mean depth of approximately 19 meters (62 feet) and a maximum depth of around 122 

meters (400 feet). The water residence time in the lake is approximately three years, indicating a 

relatively slow turnover rate. Moreover, the lake supports a diverse range of plant and animal 

species, providing essential habitats for fish such as lake trout, walleye, and smallmouth bass. It is 

also home to threatened or endangered species like the spiny softshell turtle and the lake sturgeon. 

Additionally, Lake Champlain serves as a critical stopover and breeding site for migratory birds 

during their annual journeys. 

 
However, Lake Champlain faces water quality challenges, primarily related to nutrient 

enrichment and eutrophication. Excessive inputs of phosphorus and nitrogen from sources like 

agricultural runoff, urban stormwater, and wastewater treatment plants contribute to increased 

algal growth and degraded water quality. Harmful algal blooms, reduced water clarity, and oxygen 

depletion are among the negative impacts observed in certain areas of the lake. Extensive research 

and management efforts have been undertaken to address these challenges. Collaborative 

initiatives involving governmental agencies, research institutions, and non-profit organizations 

focus on modelling water quality, conducting ecological studies, and developing management 

strategies. These efforts involve sampling water quality, analyzing nutrient concentrations, 

measuring algal biomass, and utilizing remote sensing technologies to monitor the lake's 

ecological dynamics. Modelling approaches and stakeholder engagement also play essential roles 

in informing decision-making processes for the sustainable management of Lake Champlain. 

 
In conclusion, Lake Champlain serves as an important study area for investigating 

eutrophication and water quality issues. Its unique geographic and hydrological characteristics, 

ecological significance, and ongoing research and management efforts provide a valuable context 

for understanding and addressing the challenges associated with this freshwater ecosystem. 
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4.2 Data Source 
 

The data used in this study was sourced from the Lake Champlain Long-term Modelling 

Project. Lake Champlain is a large freshwater lake located in North America, spanning across the 

borders of the United States (Vermont and New York) and Canada (Quebec). It is a vital water 

resource, supporting various ecological habitats and serving as a recreational and economic asset 

for surrounding communities. The Lake Champlain Long-term Monitoring Project is a 

comprehensive research initiative that aims to monitor and assess the water quality and ecological 

health of Lake Champlain over an extended period. The project involves the collection of various 

environmental data, including physical, chemical, and biological parameters, from multiple 

monitoring stations distributed across the lake. These monitoring stations are strategically located 

to capture spatial variations in water quality and to provide representative data for different regions 

of the lake. Data collection is carried out at regular intervals, ensuring temporal coverage and 

facilitating the analysis of long-term trends and seasonal variations. 

 
The dataset from the Lake Champlain Long-term Monitoring Project comprises a rich and 

extensive collection of water quality measurements, including parameters such as temperature, 

dissolved oxygen, pH, nutrient concentrations (e.g., phosphorus, nitrogen), Chl-a levels, and other 

relevant variables. The data spans multiple years, providing a valuable resource for studying the 

dynamics of water quality and the factors influencing Chl-a concentrations in Lake Champlain. 

The data from the Lake Champlain Long-term Monitoring Project is widely recognized and 

utilized by researchers, policymakers, and environmental managers. Its availability and reliability 

make it an ideal source for conducting comprehensive studies and informing management 

decisions related to the ecological health and water quality of Lake Champlain. 

 
In the following sections, we will describe the data preprocessing steps and the machine 

learning models applied to analyze and predict Chl-a concentrations based on the Lake Champlain 

Long-term Monitoring Project dataset. 
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4.3 Results 
 

The performance of various machine learning models was evaluated using the Lake 

Champlain dataset, and the results are presented in this section. 

 
4.3.1 Data Preprocessing Result 

In this section, we present the results of the data preprocessing techniques applied to the 

Lake Champlain dataset. Table 4-1 showed that the dataset was divided into six distinct sets: Set 

1, Set 2, Set 3, Set 4, Set 5, and Set 6, each obtained through specific preprocessing steps including 

MSI (Missing Value Imputation), OD (Outlier Detection), FS (Feature Selection) and TTS (Train 

Test Split) 

 
Table 4-1 Differences between each dataset 

 

Data Set With MSI With OD With FS TTS 

Set 1 Yes No No Train 
Set 2 Yes No No Test 
Set 3 Yes Yes No Train 
Set 4 Yes Yes No Test 
Set 5 Yes Yes Yes Train 
Set 6 Yes Yes Yes Test 

 

 
Set 1 and Set 2 were obtained after performing missing value imputation and representing 

the training and test data, respectively. Set 3 and Set 4 include the data after missing value 

imputation and outlier detection, serving as the training and test datasets. Set 5 underwent missing 

value imputation, outlier detection, and feature selection and was further divided into training and 

testing subsets. Similarly, Set 6 mirrored Set 5 and will be used to evaluate the performance of the 

trained models. These sets allow for a comprehensive analysis of the impact of each preprocessing 

step on the machine learning models' performance. 
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4.3.2 Data Standardization Results 
Figure 4-2 illustrates the impact of data standardization on the performance of the Gradient 

Boosting Decision Tree (GBT) model across six datasets. The performance metric used is the 

coefficient of determination (R²), which quantifies the proportion of variance explained by the 

model. In Set 1, the R² values for standardized and non-standardized data are comparable, 

indicating minimal effect from standardization. Sets 3, 4, and 5 also show little to no change in R² 

values between standardized and non-standardized data, suggesting that standardization does not 

significantly impact these datasets. However, Set 2 shows a clear improvement in R² with 

standardized data, indicating that standardization enhances model performance for this dataset. Set 

6 also exhibits a slight improvement in R² with standardization, though the effect is less 

pronounced than in Set 2. These results indicate that while data standardization does not uniformly 

improve GBT model performance across all datasets, it can lead to enhancements in certain cases, 

underscoring the importance of incorporating standardization in data preprocessing. 
 
 

 
 
Fig 4-2 Effect of Data Standardization on GBT Model Performance Across Datasets 

 
Figure 4-3 illustrates the impact of data standardization on the performance of the Long 

Short-Term Memory (LSTM) model across six datasets, using the coefficient of determination (R²) 
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as the performance metric. In Set 1, the R² values for standardized and non-standardized data are 

comparable, indicating minimal impact from standardization. Set 2 shows a slight improvement in 

R² with standardized data, suggesting a positive influence on model performance. However, Sets 

3 and 4 exhibit a significant decline in R² values with standardized data, indicating that 

standardization adversely affects the model's predictive accuracy for these datasets. This decline 

is particularly pronounced in Set 3, where the R² value drops below zero, suggesting poor model 

fit. For Sets 5 and 6, the R² values for both standardized and non-standardized data are close to 

zero, indicating that the LSTM model struggles to predict accurately regardless of standardization. 

These results demonstrate that data standardization can have varying effects on the LSTM model's 

performance across different datasets, highlighting the need for a case-by-case approach in data 

preprocessing. 
 
 
 

 
Fig 4-3 Effect of Data Standardization on LSTM Model Performance Across Datasets 

 
 

Figure 4-4 illustrates the impact of data standardization on the performance of the Decision 

Tree (DT) model across six datasets, using the coefficient of determination (R²) as the performance 

metric. In Set 1, the R² values for standardized and non-standardized data are comparable, 

indicating minimal impact from standardization. Set 2 shows no difference in R² between 
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standardized and non-standardized data, suggesting that standardization does not affect the model's 

performance for this dataset. Set 3 reveals a negative R² value for both standardized and non- 

standardized data, indicating poor model performance regardless of standardization. Set 4 shows 

a slight improvement in R² with standardized data, highlighting a positive effect of standardization. 

Sets 5 and 6 exhibit high R² values for both standardized and non-standardized data, indicating 

that the model performs well irrespective of standardization. These results suggest that while data 

standardization may not consistently improve the performance of the DT model across all datasets, 

it can lead to performance enhancements in specific cases, underscoring the importance of 

considering standardization in the preprocessing pipeline. 
 
 
 

 

 
Fig 4-4 Effect of Data Standardization on DT Model Performance Across Datasets 

 
Figure 4-5 illustrates the impact of data standardization on the performance of the KNN 

model across six datasets, using the coefficient of determination (R²) as the performance metric. 

In Set 1, the R² values show a slight improvement with standardized data, indicating a positive 

effect of standardization. Set 2 also exhibits higher R² values for standardized data, suggesting 

enhanced model performance. In Set 3, standardization leads to a notable increase in R², indicating 
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that the model benefits significantly from this preprocessing step. Similarly, Set 4 shows a marked 

improvement in R² with standardized data, highlighting the positive impact of standardization. 

Sets 5 and 6 both exhibit higher R² values for standardized data compared to non-standardized 

data, though the difference is less pronounced than in Sets 2 and 4. These results suggest that data 

standardization generally improves the performance of the KNN model across various datasets, 

underscoring the importance of incorporating standardization in the data preprocessing pipeline to 

enhance model accuracy and reliability. 
 
 
 

 
Fig 4-5 Effect of Data Standardization on KNN Model Performance Across Datasets 

 
 
 
 

Figure 4-6 illustrates the impact of data standardization on the performance of the Support 

Vector Machine (SVM) model across six datasets, using the coefficient of determination (R²) as 

the performance metric. In Set 1, the R² values show a slight improvement with standardized data, 

indicating a positive effect of standardization. Set 2 also exhibits a significant increase in R² with 

standardized data, suggesting enhanced model performance. In Set 3, standardization leads to a 

noticeable improvement in R², demonstrating the benefits of this preprocessing step. Set 4 reveals 
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a dramatic increase in R² with standardized data, highlighting the substantial positive impact of 

standardization on the model's predictive accuracy. Sets 5 and 6 also show considerable 

improvements in R² with standardized data compared to non-standardized data, further 

emphasizing the importance of standardization. These results indicate that data standardization 

consistently enhances the performance of the SVM model across various datasets, underscoring 

the critical role of standardization in the data preprocessing pipeline to achieve better model 

accuracy and reliability. 
 
 
 

 

 
Fig 4-6 Effect of Data Standardization on SVM Model Performance Across Datasets 

 
 

 
Figure 4-7 illustrates the impact of data standardization on the performance of the Random 

Forest (RF) model across six datasets, using the coefficient of determination (R²) as the 

performance metric. In Set 1, the R² values for standardized and non-standardized data are 

comparable, indicating minimal impact from standardization. Set 2 shows no difference in R² 

between standardized and non-standardized data, suggesting that standardization does not affect 

the model's performance for this dataset. Set 3 reveals similar R² values for both standardized and 
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non-standardized data, indicating that standardization has little to no effect. Set 4 shows a slight 

improvement in R² with standardized data, highlighting a positive effect of standardization. Sets 5 

and 6 exhibit higher R² values for standardized data compared to non-standardized data, though 

the difference is less pronounced than in other datasets. These results suggest that while data 

standardization may not consistently improve the performance of the RF model across all datasets, 

it can lead to performance enhancements in specific cases, underscoring the importance of 

considering standardization in the preprocessing pipeline. 
 
 
 

 

 
Fig 4-7 Effect of Data Standardization on RF Model Performance Across Datasets 

 

 
Figure 4-8 illustrates the impact of data standardization on the performance of the MLR 

model across six datasets, using the coefficient of determination (R²) as the performance metric. 

In Set 1, the R² values for standardized and non-standardized data are nearly identical, indicating 
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that standardization has minimal effect on the model's performance. Similarly, Sets 2 through 6 

also show comparable R² values between standardized and non-standardized data, suggesting that 

standardization does not significantly impact the MLR model's performance across these datasets. 

These results indicate that data standardization does not provide a noticeable benefit for the MLR 

model, highlighting that its effectiveness may vary depending on the type of model and the 

characteristics of the data. 
 
 
 

 

 
Figure 4-8 Effect of Data Standardization on MLR Model Performance Across Datasets 

 
 

 
Figure 4-9 illustrates the impact of data standardization on the performance of the Multi- 

Layer Perceptron (MLP) model across six datasets, using the coefficient of determination (R²) as 

the performance metric. In Set 1, the R² values for standardized and non-standardized data are 

comparable, indicating minimal impact from standardization. Set 2 shows a decrease in R² with 

standardized data, suggesting a negative effect on model performance. Similarly, Sets 3 and 5 also 

exhibit lower R² values with standardized data, highlighting a detrimental impact of 

standardization on these datasets. In contrast, Set 4 shows a significant improvement in R² with 
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standardized data, indicating a positive effect. Set 6 also demonstrates a notable decrease in R² 

with standardized data, further emphasizing the variability in the impact of standardization. These 

results suggest that the effect of data standardization on the MLP model's performance is highly 

dataset-dependent, with standardization sometimes enhancing and other times diminishing the 

model's predictive accuracy. 
 
 
 

 
 
Figure 4-9 Effect of Data Standardization on MLP Model Performance Across Datasets 

 
Figure 4-10 illustrates the impact of data standardization on the performance of the 

Extreme Gradient Boosting Trees (XGBT) model across six datasets, using the coefficient of 

determination (R²) as the performance metric. In Set 1, the R² values for standardized and non- 

standardized data are nearly identical, indicating minimal impact from standardization. Set 2 

shows no difference in R² between standardized and non-standardized data, suggesting that 

standardization does not affect the model's performance for this dataset. Set 3 reveals similar R² 

values for both standardized and non-standardized data, indicating that standardization has little to 

no effect. Set 4 shows comparable R² values for standardized and non-standardized data, 

highlighting minimal impact. Sets 5 and 6 exhibit higher R² values for standardized data compared 

to non-standardized data, though the differences are marginal. These results suggest that data 
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standardization does not significantly alter the performance of the XGBT model across the datasets, 

highlighting that its effectiveness may vary depending on the specific dataset characteristics. 

 
 
 

 

 
Figure 4-10 Effect of Data Standardization on XGBT Model Performance Across Datasets 

 
Overall, as seen in various datasets, the effect of standardization can vary. For instance, 

decision trees and random forests might not always benefit significantly from standardization, as 

these models are inherently capable of handling varying feature scales. In summary, while 

standardization is generally beneficial and often critical for many models, it is essential to evaluate 

its impact based on the context and specific needs of the data and the model to decide its necessity 

and effectiveness in any given scenario. 

 
4.3.3 Data Preprocessing Results 

The results of the machine learning models applied to the Lake Champlain dataset after 

different data preprocessing techniques are visualized in Figure 4-11, Figure 4-12 and Figure 4-13. 

 
Figure 4-11 presents the comparison of R² values for the training and testing sets of the 
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Support Vector Machine (SVM), Decision Tree (DT), and MLR models across three datasets (Set 

2, Set 4, and Set 6) using standardized data. The first subplot shows the R² values for the SVM 

model. In Set 2, the R² value for the training set is slightly lower than that for the testing set, 

indicating a good generalization performance. In Set 4, the testing set R² is significantly higher 

than the training set R², suggesting that the model may be overfitting to the training data. In Set 6, 

the testing set also has a higher R² than the training set, again indicating possible overfitting. The 

second subplot shows the R² values for the DT model. In Set 2, the training set R² is considerably 

lower than the testing set R², suggesting that the model generalizes well. In Sets 4 and 6, the testing 

set R² values are notably higher than those for the training sets, which may indicate overfitting or 

a discrepancy between the training and testing data distributions. The third subplot shows the R² 

values for the MLR model. Across Sets 2, 4, and 6, the training and testing R² values are relatively 

similar, indicating consistent performance and suggesting that the model generalizes well without 

significant overfitting or underfitting. These comparisons highlight that while the MLR model 

shows consistent performance across the datasets, both the SVM and DT models exhibit higher R² 

values on the testing sets than on the training sets for some datasets, indicating potential issues 

with model generalization and overfitting. This analysis underscores the importance of evaluating 

model performance on both training and testing sets to ensure robust generalization. 
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Fig 4-11 Comparative Performance of SVM, DT, and MLR Models on Training and Test Data 
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Figure 4-12 compares the R² values for training and testing sets of the Extreme Gradient 

Boosting Trees (XGBT), Random Forest (RF), and Multi-Layer Perceptron (MLP) models across 

three datasets (Set 2, Set 4, and Set 6) using standardized data. For the XGBT model, Set 2 reveals 

higher R² values for the testing set compared to the training set, indicating that the model performs 

better on unseen data. Set 4 shows nearly equal R² values for both training and testing sets, 

suggesting a well-balanced model. In Set 6, the testing set also outperforms the training set, 

highlighting effective generalization. The RF model demonstrates a noticeable difference in Set 2, 

where the testing R² value exceeds the training R², potentially indicating overfitting. Set 4 shows 

similar R² values for both sets, which indicates stable model performance. In Set 6, the testing R² 

is again higher than the training R², suggesting a better fit on the test data. The MLP model displays 

consistent R² values across Sets 2, 4, and 6 for both training and testing sets. This consistency 

suggests that the MLP model maintains reliable performance without significant overfitting or 

underfitting across these datasets. This analysis highlights that the XGBT and RF models 

occasionally show higher testing R² values, which could imply potential overfitting or superior 

performance on the test data. In contrast, the MLP model exhibits stable and consistent results, 

emphasizing its robustness across different datasets. 
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Fig 4-12 Comparative Performance of XGBT, RF, and MLP Models on Training and Test Data 
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Figure 4-13 compares the R² values for training and testing sets of the Gradient Boosting 

Decision Tree (GBT), KNN, and Long Short-Term Memory (LSTM) models across three datasets 

(Set 2, Set 4, and Set 6) using standardized data. For the GBT model, Set 2 shows that the testing 

set R² is higher than the training set R², indicating that the model generalizes well to new data. In 

Set 4, both training and testing R² values are similar, suggesting balanced model performance. Set 

6 follows a similar trend, with the testing R² slightly higher, indicating good generalization. In the 

case of the KNN model, Set 2 reveals almost equal R² values for both training and testing sets, 

suggesting consistent model performance. Set 4 displays similar R² values, indicating stable 

performance across both datasets. Set 6 also shows comparable R² values, suggesting that the KNN 

model performs consistently on both training and testing data. For the LSTM model, Set 2 

demonstrates close R² values for training and testing sets, indicating minimal overfitting or 

underfitting. Set 4 shows near-zero R² values for both sets, suggesting poor model performance on 

this dataset. In Set 6, the R² values are again similar and close to zero, indicating that the LSTM 

model does not perform well on this dataset. These results demonstrate that the GBT model 

generally shows good generalization across datasets, while the KNN model maintains consistent 

performance. However, the LSTM model struggles with low R² values, indicating poor predictive 

performance on the given datasets. This analysis underscores the importance of evaluating model 

performance on both training and testing sets to ensure robust and reliable predictions. 
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Fig 4-13 Comparative Performance of GBT, KNN, and LSTM Models on Training and Test Data 
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4.3.4 Model Performance Result 

In this section, we present the performance results of various machine-learning models on the Lake 

Champlain dataset. The evaluation metrics used include the coefficient of determination (R2), mean squared 

error (MSE), mean absolute error (MAE), and mean absolute percentage error (MAPE). 

 
Figure 4-14 showcases the performance of several machine learning models, each evaluated on 

metrics including R², MSE, MAE, and MAPE for both training and test sets. The Gradient Boosting Tree 

(GBT) and Random Forest (RF) models stand out with high R² scores in both training and test sets, 

indicating superior accuracy and predictive capabilities. Specifically, GBT models show nearly perfect R² 

values and low error metrics across both datasets, reflecting strong predictive performance. Similarly, the 

RF models exhibit high R² scores with correspondingly low MSE, MAE, and MAPE values, demonstrating 

robust performance. 
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Fig 4-14 Model Evaluation Result 
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The Support Vector Machine (SVM) models present moderate R² values for both training and test 

sets, coupled with relatively low MSE, MAE, and MAPE values, suggesting reasonable predictive 

performance. The Decision Tree (DT) models, although achieving high R² values in the training set, show 

lower R² values in the test set, indicating potential overfitting. or neural network models, the Multi-Layer 

Perceptron (MLP) shows relatively high R² values for both training and test sets, with low error values, 

indicating effective predictions. The Long Short-Term Memory (LSTM) models, while performing well in 

the training set, exhibit slightly lower R² values and higher error metrics in the test set, suggesting room for 

improvement in predictive accuracy. he K Nearest Neighbors (KNN) models display moderate performance 

with lower R² values in both training and test sets, and higher MSE, MAE, and MAPE values compared to 

other models, indicating less predictive strength. The MLR models achieve consistent R² values for both 

training and test sets, with moderate error metrics, suggesting reasonable predictive ability but not as strong 

as some of the other models. The XGBoost models show high R² scores and low error values across both 

datasets, reflecting excellent predictive performance. 

 
GBT and RF models exhibit the best performance on the Lake Champlain dataset, achieving the 

highest R² values and the lowest error metrics. The SVM, DT, MLP, LSTM, MLR, and KNN models also 

show commendable performance, each with varying levels of precision and predictive strength. 

 
4.3.5 Model Validation Result 

To ensure the reliability and accuracy of the developed models, a comprehensive model validation 

was conducted using Lake Champlain's data spanning from 2018 to 2020. This validation aimed to assess 

how well the models' predictions aligned with the actual observed values during this period. The validation 

dataset, collected from the years 2018 to 2020, was not included during the initial model training to ensure 

an unbiased evaluation. 
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Table 4-2 Model Validation Result From Different Models – Case Lake Champlain 

 

Model R2 RMSE MAE MAPE 

DT 0.1243 1.9762 1.3947 0.3343 

GBT 0.5955 3.5698 2.4247 0.4329 

KNN 0.5027 3.9584 2.5348 0.4618 

LSTM 0.3145 4.6474 2.8138 0.4926 

MLP 0.6047 3.5292 2.1794 0.3569 

MLR 0.6273 3.4266 2.2384 0.3951 

RF 0.5177 1.4667 1.0915 0.2789 

SVM 0.4019 4.3409 2.6305 1.0892 
XGBT 0.4942 1.5020 1.1368 0.3106 

 

 
Table 4-2 presents a detailed comparison of various machine learning models based on key 

performance metrics: R-squared (R²), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and 

Mean Absolute Percentage Error (MAPE). This evaluation highlights each model's accuracy and ability to 

minimize prediction errors. mong the models, Random Forest (RF) and Gradient Boosting Decision Tree 

(GBT) demonstrate robust performance. RF exhibits relatively high R² values and the lowest error metrics, 

indicating superior accuracy and precision in modeling. GBT also shows commendable predictive 

capabilities, handling complex nonlinear relationships effectively. he Multi-Layer Perceptron (MLP) model 

performs well, with high R² values and moderate error metrics, making it a competitive option for tasks 

requiring a balance between accuracy and computational efficiency. Similarly, the XGBoost model reflects 

strong predictive performance, showcasing high R² values and low error metrics. upport Vector Machine 

(SVM) shows reasonable performance with moderate R² values and error metrics, suitable for scenarios 

prioritizing generalization over nonlinear relationships and model interpretability. n contrast, models like 

KNN and MLR display moderate to low performance metrics. KNN shows the highest error rates among 

all models, indicating potential overfitting or an inability to capture the dataset's underlying patterns. While 

MLR offers better performance than KNN, it still falls short compared to more complex models, evidenced 

by its moderate R² and higher error rates. he Long Short-Term Memory (LSTM) model demonstrates the 

least effective performance, with low R² values and high error metrics, suggesting it might be unsuitable or 

improperly configured for this type of data. he analysis emphasizes that tree-based models (RF, GBT) and 

advanced algorithms like MLP and XGBoost are best suited for this dataset due to their superior 
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performance. Traditional methods such as MLR and simpler approaches like KNN do not perform as well. 

The inadequate fit of the LSTM model highlights potential issues with either model setup or dataset 

compatibility. Selecting the appropriate model depends on the complexity and specific requirements of the 

predictive task at hand. 
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4.4  Discussion 
 

In this section, we discuss the results obtained from the machine learning models applied to the 

Lake Champlain dataset. The performance of each model, as described in Section 4.4.2 provides insights 

into their effectiveness in predicting Chl-a concentrations and understanding the water quality of Lake 

Champlain at different stations. 

 
Figure 4-15 illustrates the performance of a Random Forest (RF) model by comparing its 

predicted values (blue line) against actual observed values (orange dashed line) from October 2018 

to May 2020. Both lines show a clear seasonal pattern, suggesting the model effectively captures 

the underlying periodic trends. Notably, the RF model tracks closely with actual values, 

particularly in the middle of the timeline around mid-2019 to early 2020, indicating a high degree 

of model accuracy during this period. However, discrepancies are evident at the beginning and end 

of the timeline, where the model predictions deviate from actual measurements, possibly due to 

model overfitting or unaccounted external variables affecting the results. These deviations, 

particularly the underprediction in early 2020, highlight areas where the model could be further 

refined to improve its predictive performance. Figure 4-16 displays the performance of a 

Multilayer Perceptron (MLP) model by plotting its predicted values (blue line) against the actual 

observed values (orange dashed line) from October 2018 to May 2020. This graph reveals the MLP 

model's capability to closely mirror the seasonal fluctuations and general trends in the data, with 

both lines rising and falling in sync across the examined period. While the model aligns well with 

the actual values during most intervals, particularly around mid-2019, there are noticeable 

discrepancies at the peaks and troughs, where the MLP predictions tend to slightly overshoot or 

undershoot the actual measurements. These variances suggest a potential for calibration or 

refinement in the model to better handle extreme values or sudden changes in the data, which could 

improve its accuracy and reliability in practical applications. 
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Fig 4-15 Comparison of Actual Value and Prediction Value at Station 36 by RF Model 

 

 

 
Fig 4-16 Comparison of Actual Value and Prediction Value at Station 36 by MLP Model 
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Figure 4-17 illustrates the comparison between actual observed values (orange dashed line) 

and predictions made by a Long Short-Term Memory (LSTM) model (blue line) from October 

2018 to May 2020. This graph demonstrates the LSTM model's capability in capturing the general 

seasonal trends, although it struggles with accuracy in peak and trough predictions. Throughout 

the timeline, the LSTM model consistently underestimates both the peaks and the troughs of the 

actual values, leading to significant divergence, especially noticeable during the peaks around mid- 

2019 and early 2020. These discrepancies suggest that while the LSTM model can follow the 

overall trend, its parameter settings or the feature inputs might need adjustment to improve 

precision and to better capture the amplitude of fluctuations in the data series. This fine-tuning 

could potentially enhance the model's predictive performance and reliability for practical 

applications in real-world scenarios. This graph illustrates the performance of the KNN model over 

a series of monthly observations from October 2018 to May 2020. The KNN model's predictions 

(blue line) and the actual values (orange dashed line) mostly follow similar patterns, indicating 

that the model captures the general trend of the data. However, the KNN predictions show some 

inconsistencies, particularly in estimating peak values, where it tends to underestimate the actual 

peaks observed in the data. For example, in June 2019 and June 2020, the KNN model significantly 

underpredicted the peak values. Additionally, the KNN model shows some overestimation during 

the lows, particularly noticeable in late 2019 and early 2020. These discrepancies suggest that 

while the KNN model can approximate the seasonal trends, its sensitivity to the local neighborhood 

in the dataset might limit its accuracy, especially in capturing extreme values more precisely. Fine- 

tuning the number of neighbors or incorporating weighted distance metrics might improve its 

performance. 
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Fig 4-17 Comparison of Actual Value and Prediction Value at Station 36 by LSTM Model 

 

 
Fig 4-18 Comparison of Actual Value and Prediction Value at Station 36 by KNN Model 
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Figure 4-19 demonstrates the performance of the Gradient Boosted Decision Tree (GBT) 

model across a series of time points from October 2018 to May 2020. The GBT model's predictions 

(blue line) closely mirror the actual observed values (orange dashed line), indicating a strong 

alignment in capturing the cyclical patterns and fluctuations within the dataset. The model displays 

particularly good accuracy in following the general trends and reaching the peaks, such as those 

observed in mid-2019 and mid-2020. However, there are minor discrepancies in some valleys 

where the model does not perfectly match the actual lows, slightly overestimating values, such as 

in early 2019 and late 2019. Overall, the GBT model shows a robust capability in forecasting with 

high precision, suggesting its effectiveness in handling complex patterns and seasonal variations, 

making it a reliable choice for predictive tasks requiring nuanced understanding of time series data. 

Figure 4-20, the Decision Tree (DT) model's predictive performance is charted from October 2018 

to May 2020, displaying a solid alignment between its predicted values (blue line) and the actual 

observed values (orange dashed line). This model adeptly captures the cyclical fluctuations in the 

dataset, closely tracking both the seasonal peaks and troughs. It accurately mirrors the overall trend 

and reacts proportionally to the rises and dips, except for some overestimations noticeable around 

the peaks in mid-2019 and early 2020. While these discrepancies suggest slight model overfitting 

during high-value occurrences, the DT model generally demonstrates a high degree of accuracy 

and reliability in forecasting, showcasing its robustness in modeling complex patterns within this 

specific dataset. 
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Fig 4-19 Comparison of Actual Value and Prediction Value at Station 36 by GBT Model 

 

 
 
Fig 4-20 Comparison of Actual Value and Prediction Value at Station 36 by DT Model 



84  

In Figure 4-21, the graph illustrates the validation of the XGBoost model from October 

2018 to May 2020 at Station 36. The model predictions (blue line) and actual observations (orange 

dashed line) generally follow the same trends, displaying the model's capability to capture the 

seasonal variations effectively. The XGBoost model approximates the actual values well, 

maintaining a close trajectory with slight deviations at certain points, particularly in the peak 

values observed in mid-2019 and early 2020. Although there is a slight overestimation in predicting 

the highest peaks, such as in July 2019 and July 2020, the XGBoost model demonstrates strong 

predictive accuracy overall. These minor discrepancies suggest that while the model is highly 

effective in tracking the general pattern of the data, there could be room for fine-tuning its 

sensitivity to abrupt changes to enhance its forecasting precision further. Figure 4-22 displays the 

performance of the Support Vector Machine (SVM) model in predicting values at Station 36 from 

October 2018 through May 2020. The SVM predictions (blue line) closely follow the actual data 

values (orange dashed line), effectively capturing the cyclical patterns and fluctuations inherent in 

the dataset. The model shows good alignment, particularly in tracking the seasonal peaks and 

troughs, although it tends to slightly underpredict some of the peak values, such as those observed 

in mid-2019 and mid-2020. The consistency in capturing the low points suggests that the SVM 

model effectively handles the lower range of data variability. However, the slight discrepancies at 

the higher end of the data spectrum indicate that the SVM could benefit from parameter 

optimization or feature engineering to better capture extreme values in the dataset, thus improving 

its overall predictive accuracy. 
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Fig 4-21 Comparison of Actual Value and Prediction Value at Station 36 by XGBoost Model 

 

 
Fig 4-22 Comparison of Actual Value and Prediction Value at Station 36 by SVM Model 
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4.5 Summary 
 

In this chapter, we conducted an extensive analysis and evaluation of our developed 

integrated AI-based online system for Lake Chl-a concentration modeling and monitoring. The 

process began with a thorough exploration of the Lake Champlain dataset, followed by a detailed 

examination of the data preprocessing steps, which encompassed Missing Value Imputation (MVI), 

Outlier Detection (OD), Feature Selection (FS), and Train-Test Split (TTS). These steps were 

crucial in ensuring the data's quality and relevance for subsequent model development. 

 
We engaged in a comprehensive model training process utilizing an array of machine 

learning algorithms, including Support Vector Machine (SVM), Random Forest (RF), Decision 

Tree (DT), Gradient Boosting Tree (GBT), Multi-Layer Perceptron (MLP), LSTM, K Nearest 

Neighbors (KNN), MLR, and XGBoost, replacing the previously mentioned Extreme Gradient 

Boosting (XGBoost). Each model underwent meticulous training and validation phases to assess 

its predictive capabilities. The results presented in this chapter offer a comprehensive overview of 

the performance of each model. We explored the impact of various data preprocessing techniques 

on model training and examined the influence of standardized input features. Moreover, we 

discussed the validation outcomes of the models’ using data from Lake Champlain from 2018 to 

2020, providing insights into their real-world performance. The findings highlight the 

effectiveness of the developed integrated AI-based online system in predicting Lake Chl-a 

concentrations. Notably, models such as RF, DT, and GBT demonstrated consistent performance 

across various evaluation metrics. Additionally, SVM, MLP, and XGBoost exhibited respectable 

correlation, underlining their applicability for real-world scenarios. However, it is important to 

remain cautious of models with peculiar behaviors, such as the LSTM and MLR models, which 

displayed divergent trends during validation. 
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Chapter 5: Study Case and Field Investigation - Lake Simcoe 
 
5.1 Study Area 
 

Lake Simcoe, located in south-central Ontario, Canada, is a significant study area for 

examining various aspects of lake ecology and water quality, with a particular focus on 

eutrophication. The lake covers an area of approximately 722 square kilometers and has a shoreline 

spanning approximately 241 kilometers. It is positioned at approximately 44.5°N latitude and 

79.5°W longitude. Lake Simcoe is relatively shallow, with an average depth of about 15 meters 

and a maximum depth of approximately 41 meters. It is part of the Lake Simcoe Watershed, which 

includes smaller tributaries and wetlands that contribute freshwater inflows and sediment loads to 

the lake. The lake's hydrological system is influenced by precipitation, groundwater inputs, and 

surface runoff. It is connected to the Holland River, which serves as the primary outflow leading 

to Lake Ontario. 

 

 
Fig 5-1 Location of Monitoring Stations in Lake Simcoe 
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The lake's ecological importance is evident through its diverse range of aquatic plants and 

animal species. Various habitats, including wetlands, submerged vegetation beds, and rocky shoals, 

support essential breeding, foraging, and sheltering grounds for numerous fish species such as 

yellow perch, lake whitefish, and smallmouth bass. Lake Simcoe is also an important stopover site 

for migratory birds and provides critical nesting areas for waterfowl. The region is home to various 

reptiles, amphibians, and invertebrates, contributing to its overall biodiversity. One of the main 

challenges facing Lake Simcoe is nutrient enrichment, which can lead to eutrophication. 

Phosphorus and nitrogen inputs from agricultural activities, urban development, and shoreline 

erosion contribute to excessive algal growth and degraded water quality. These nutrient inputs can 

cause algal blooms, reduced water clarity, and oxygen depletion, negatively impacting fish 

populations and recreational activities. 

 
To address these challenges, extensive research and management efforts are underway. 

Governmental agencies, research institutions, and community organizations collaborate to monitor 

water quality parameters, study ecological dynamics, and develop management strategies. Regular 

monitoring of nutrient concentrations, algal biomass, and other indicators helps understand the 

sources and pathways of nutrient inputs. Additionally, research projects focus on the impacts of 

climate change on the lake's ecosystem and explore innovative solutions for sustainable water 

management. Stakeholder engagement and public participation are vital in shaping management 

strategies and ensuring the long-term protection of Lake Simcoe's ecosystem. Education and 

outreach initiatives raise awareness about the importance of preserving water quality and 

promoting responsible practices among residents, visitors, and local industries. 

 
In conclusion, Lake Simcoe provides a valuable study area for investigating water quality 

and eutrophication-related issues. Its geographic location, hydrological characteristics, ecological 

significance, and ongoing research and management efforts contribute to a comprehensive 

understanding of the lake's ecosystem and support initiatives for its sustainable management. 

 

 

 

 



89  

5.2 Data Source 
 

The data used for the study case and field investigation in Chapter 5 was obtained from the 

Lake Simcoe Monitoring Program. The Lake Simcoe Monitoring Program is a long-term initiative 

aimed at assessing and monitoring the water quality of Lake Simcoe, located in Ontario, Canada. 

The program collects comprehensive data on various parameters related to water quality, including 

temperature, dissolved oxygen, pH, nutrients, Chl-a concentration, and other relevant variables. 

The data used in this study includes measurements and observations collected from multiple 

monitoring stations strategically located throughout Lake Simcoe. These stations provide spatially 

distributed data, enabling a comprehensive understanding of the lake's water quality dynamics. 

The data is collected at regular intervals, allowing for temporal analysis and identification of long- 

term trends and patterns. 

 
5.3 Results 
 

This section presents the results of evaluating various machine learning models using the 

Lake Simcoe dataset. Prior to the analysis, the dataset underwent essential data preprocessing steps, 

including Missing Value Imputation (MVI), Outlier Detection (OD), Feature Selection (FS), and 

Train-Test Split (TTS). These steps were crucial in preparing the dataset, ensuring its quality, and 

making it suitable for analysis. 

 
5.3.1 Data Preprocessing Result 

Like the Lake Champlain dataset, the Lake Simcoe dataset underwent meticulous data 

preprocessing steps to ensure its quality and suitability for analysis. The dataset was divided into 

six distinct sets: Set 1, Set 2, Set 3, Set 4, Set 5, and Set 6, following the same methodology as 

applied in the Lake Champlain study. 
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5.3.2 Data Standardization Result 
 

Figure 5-2 illustrates the impact of data standardization on the performance of the Gradient 

Boosting Decision Tree (GBT) model across six datasets, using the coefficient of determination 

(R²) as the performance metric. In Set 1, the R² values for standardized and non-standardized data 

are nearly identical, indicating that standardization has minimal effect on the model's performance 

for this dataset. Set 2 shows slightly higher R² values for both standardized and non-standardized 

data, suggesting a marginal positive impact from standardization. For Set 3, the R² values are quite 

similar regardless of standardization, indicating negligible effect. Set 4 also exhibits similar R² 

values for both standardized and non-standardized data, further highlighting minimal impact. In 

Set 5, the R² values remain close between standardized and non-standardized data, indicating that 

standardization does not significantly affect the model's performance. Lastly, Set 6 shows 

comparable R² values for standardized and non-standardized data, suggesting that standardization 

has little to no effect on the GBT model for this dataset. These results indicate that data 

standardization does not consistently improve the performance of the GBT model across all 

datasets, highlighting the importance of considering dataset-specific characteristics when applying 

standardization. 
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Figure 5-2 Effect of Data Standardization on GBT Model Performance Across Datasets 

 
Figure 5-3 illustrates the impact of data standardization on the performance of the LSTM 

model across six datasets, using the coefficient of determination (R²) as the performance metric. 

In Set 1, the R² values for standardized data are slightly lower than for non-standardized data, 

indicating a negative impact of standardization on the model's performance for this dataset. In Set 

2, the non-standardized data shows a higher R² value compared to the standardized data, suggesting 

that standardization adversely affects the model's performance. Set 3 exhibits very low R² values 

for both standardized and non-standardized data, indicating poor performance overall, with no 

significant difference between the two. Set 4 shows that non-standardized data has a much higher 

R² value than standardized data, highlighting a detrimental effect of standardization. In Set 5, the 
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R² values are slightly better for non-standardized data, again indicating a negative impact from 

standardization. Finally, in Set 6, both standardized and non-standardized data yield similar R² 

values, suggesting minimal impact from standardization. These results demonstrate that data 

standardization generally does not improve and may even degrade the performance of the LSTM 

model across these datasets, emphasizing the need to carefully consider the use of standardization 

in preprocessing for LSTM models. 

 
 
 

Figure 5-3 Effect of Data Standardization on LSTM Model Performance Across Datasets 
 

Figure 5-4 illustrates the impact of data standardization on the performance of the Decision 

Tree (DT) model across six datasets, using the coefficient of determination (R²) as the performance 

metric. In Set 1, the R² values for standardized and non-standardized data are close, indicating that 

standardization has a minimal effect on model performance for this dataset. In Set 2, both 

standardized and non-standardized data achieve high R² values, suggesting that the DT model 

performs well regardless of standardization, although standardized data shows a slight edge. Set 3 

exhibits very low R² values for both standardized and non-standardized data, indicating poor 

performance overall, with standardization having minimal impact. In Set 4, the R² values for 

standardized and non-standardized data are nearly identical, suggesting that standardization does 
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not significantly affect model performance. Set 5 shows a slight improvement in R² values with 

standardized data, indicating a minor positive effect of standardization. Lastly, in Set 6, the R² 

values for standardized and non-standardized data are very similar, showing minimal impact from 

standardization. These results indicate that data standardization does not consistently improve the 

performance of the DT model across all datasets, highlighting that the effect of standardization 

may depend on the specific characteristics of each dataset. 
 
 
 

 
 
Figure 5-4 Effect of Data Standardization on DT Model Performance Across Datasets 

 
Figure 5-5 illustrates the impact of data standardization on the performance of the KNN 

model across six datasets, using the coefficient of determination (R²) as the performance metric. 

In Set 1, the R² values for standardized and non-standardized data are quite similar, indicating that 

standardization has a minimal effect on the model's performance for this dataset. Set 2 shows a 

noticeable improvement in R² with standardized data, suggesting that standardization enhances the 

model's predictive accuracy. In Set 3, the R² value for standardized data is slightly higher than that 

for non-standardized data, indicating a positive impact, although both values are relatively low, 

suggesting poor model performance overall. Set 4 exhibits higher R² values for standardized data 

compared to non-standardized data, highlighting a beneficial effect of standardization. Set 5 also 
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shows better performance with standardized data, as indicated by higher R² values. In Set 6, the 

R² values are higher for standardized data, suggesting that standardization positively influences 

the model's performance. These results suggest that data standardization generally improves the 

performance of the KNN model across various datasets, emphasizing the importance of 

incorporating standardization in the preprocessing pipeline to enhance model accuracy and 

reliability. 
 
 
 

 
 
Figure 5-5 Effect of Data Standardization on KNN Model Performance Across Datasets 

 
Figure 5-6 demonstrates the influence of data standardization on the performance of the 

Support Vector Machine (SVM) model across six datasets, evaluated using the coefficient of 

determination (R²) as the performance metric. In Set 1, standardization results in higher R² values 

compared to non-standardized data, suggesting a positive effect. For Set 2, both standardized and 

non-standardized data achieve high R² values, with the standardized data showing a marginal 

advantage. Set 3 exhibits low R² values for both standardized and non-standardized data, indicating 

poor model performance with little difference between the two. In Set 4, the standardized data 

yields higher R² values than non-standardized data, indicating an improvement in model 

performance due to standardization. For Set 5, although R² values are low for both types of data, 
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standardized data performs slightly better. Lastly, in Set 6, the R² values for standardized and non- 

standardized data are nearly identical, indicating minimal impact of standardization. These results 

imply that while data standardization generally benefits the performance of the SVM model, its 

effect varies across different datasets, highlighting the importance of considering dataset-specific 

characteristics when applying standardization. 
 
 
 

 
 
Figure 5-6 Effect of Data Standardization on SVM Model Performance Across Datasets 

 
Figure 5-7 displays the influence of data standardization on the Random Forest (RF) 

model's performance across six datasets, measured by the coefficient of determination (R²). In Set 

1, both standardized and non-standardized data yield almost identical R² values, suggesting that 

standardization has minimal impact. For Set 2, the RF model performs well with both types of data, 

with non-standardized data showing a slight advantage. Set 3 results indicate that R² values are 

similar regardless of standardization, implying negligible effect. In Set 4, the R² values are nearly 

the same for both standardized and non-standardized data, pointing to a minimal influence of 

standardization. Set 5 shows a marginally better performance with non-standardized data, though 

the difference is slight. Lastly, in Set 6, the R² values for standardized and non-standardized data 

are very close, indicating that standardization does not significantly alter the model's performance. 
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These findings imply that the effectiveness of data standardization on the RF model varies with 

the dataset and does not consistently improve performance. 
 
 
 

 
 
Figure 5-7 Effect of Data Standardization on RF Model Performance Across Datasets 

 
Figure 5-8 illustrates the impact of data standardization on the performance of the MLR 

model across six datasets, using the coefficient of determination (R²) as the performance metric. 

In Set 1, the R² values for both standardized and non-standardized data are very similar, indicating 

that standardization has a negligible effect on the model's performance. Set 2 shows high R² values 

for both data types, with standardized data showing a slight advantage. For Set 3, the R² values are 

low for both standardized and non-standardized data, suggesting poor performance overall, with 

minimal impact from standardization. Sets 4, 5, and 6 exhibit almost identical R² values for both 

standardized and non-standardized data, indicating that standardization does not significantly 

influence the model's performance. These results suggest that data standardization does not 

consistently improve the performance of the MLR model across different datasets, highlighting 

that its effectiveness may be dataset-dependent. 
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Figure 5-8 Effect of Data Standardization on MLR Model Performance Across Datasets 

 
Figure 5-9 demonstrates the impact of data standardization on the performance of the 

Multi-Layer Perceptron (MLP) model across six datasets, evaluated using the coefficient of 

determination (R²) as the performance metric. In Set 1, the standardized data shows a higher R² 

value compared to the non-standardized data, indicating a positive impact of standardization. For 

Set 2, standardized data also results in higher R² values, suggesting that standardization improves 

model performance significantly. Set 3, however, reveals a substantial decrease in R² for non- 

standardized data, indicating poor performance without standardization, while standardized data 

achieves a marginally better result. Set 4 exhibits a higher R² for standardized data compared to 

non-standardized data, highlighting the positive effect of standardization. In Set 5, the R² values 

are low for both standardized and non-standardized data, with standardized data performing 

slightly better. Finally, in Set 6, both standardized and non-standardized data yield similar R² 

values, suggesting minimal impact from standardization. These findings indicate that data 

standardization generally enhances the performance of the MLP model, though the extent of 

improvement varies across different datasets, underscoring the necessity to tailor preprocessing 

steps to specific dataset characteristics. 



98  

 

 
 
 
Figure 5-9 Effect of Data Standardization on MLP Model Performance Across Datasets 

 
Figure 5-10 illustrates the impact of data standardization on the performance of the 

Extreme Gradient Boosting Trees (XGBT) model across six datasets, using the coefficient of 

determination (R²) as the performance metric. In Set 1, the R² values for standardized and non- 

standardized data are almost identical, indicating minimal impact from standardization. Set 2 

shows high R² values for both standardized and non-standardized data, with the standardized data 

having a slight edge. For Set 3, the R² values are low for both standardized and non-standardized 

data, suggesting that the model struggles with this dataset, regardless of standardization. Set 4 

displays very similar R² values for both standardized and non-standardized data, indicating that 

standardization has little effect. In Set 5, the R² values are comparable, showing that 

standardization does not significantly influence performance. Finally, in Set 6, the R² values are 

nearly identical for both standardized and non-standardized data, suggesting minimal impact from 

standardization. These results suggest that data standardization generally does not significantly 

alter the performance of the XGBT model across these datasets, highlighting that its effectiveness 

may vary based on the specific dataset characteristics. 
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Figure 5-10 Effect of Data Standardization on XGBoost Model Performance Across Datasets 
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5.3.3 Data Preprocessing Result 
The results of the machine learning models applied to the Lake Simcoe dataset after 

different data preprocessing techniques are visualized in Figure 5-11, Figure 5-12 and Figure 5-13. 

 
Figure 5-11 compares the R² values for training and testing sets of the Support Vector 

Machine (SVM), Decision Tree (DT), and MLR models across three datasets (Set 2, Set 4, and Set 

6) using standardized data. The first subplot shows the SVM model's performance. In Set 2, the 

testing set R² is higher than the training set R², indicating that the model generalizes well to new 

data. Set 4 also reveals a higher R² for the testing set compared to the training set, suggesting 

robust generalization. In Set 6, the testing R² is again higher, pointing to effective performance on 

unseen data. The second subplot illustrates the DT model's results. In Set 2, the testing set R² 

significantly exceeds the training set R², suggesting possible overfitting or an unusual distribution 

of test data. Set 4 shows a similar pattern, with higher R² values for the testing set. In Set 6, the 

testing R² is notably higher than the training R², indicating overfitting or variance in data 

distribution. The third subplot displays the MLR model's outcomes. In Set 2, the training set R² is 

higher than the testing set R², indicating better performance on the training data. Sets 4 and 6 

exhibit similar R² values for both training and testing sets, suggesting consistent performance and 

good generalization. Overall, these comparisons reveal that while the SVM model shows strong 

generalization across all datasets, the DT model tends to overfit, particularly in Sets 2 and 6. The 

MLR model maintains consistent performance across datasets, highlighting its robustness. This 

analysis underscores the necessity of evaluating both training and testing set performances to 

ensure the models are generalizing well and not overfitting. 
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Fig 5-11 Comparative Performance of SVM, DT, and MLR Models on Training and Test Data 
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Figure 5-12 compares the R² values for training and testing sets of the Extreme Gradient 

Boosting Trees (XGBT), Random Forest (RF), and Multi-Layer Perceptron (MLP) models across 

three datasets (Set 2, Set 4, and Set 6) using standardized data. The first subplot presents the 

performance of the XGBT model. In Set 2, the testing set R² value is higher than the training set 

R², suggesting good generalization. In Set 4, both sets show similar R² values, indicating balanced 

performance. Set 6 follows a similar trend, with the testing set performing slightly better, 

demonstrating effective generalization. The second subplot shows the results for the RF model. In 

Set 2, the testing set R² exceeds the training set R², which may indicate overfitting or an anomaly 

in data distribution. Set 4 shows closely matched R² values for both training and testing sets, 

suggesting stable performance. In Set 6, the testing set outperforms the training set, again 

indicating possible overfitting or data variance. The third subplot displays the MLP model's 

performance. In Set 2, the training set R² is higher than the testing set R², pointing to better 

performance on the training data. In Sets 4 and 6, the R² values for both sets are quite close, 

suggesting consistent performance and good generalization. These comparisons reveal that the 

XGBT model generalizes well across datasets, while the RF model occasionally exhibits 

overfitting, particularly in Sets 2 and 6. The MLP model demonstrates consistent performance 

across datasets, highlighting its robustness. This analysis emphasizes the importance of evaluating 

both training and testing set performances to ensure models are generalizing effectively and not 

overfitting. 
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Figure 5-12 Comparative Performance of XGBT, RF, and MLP Models on Training and Test Data 



104  

Figure 5-13 presents a comparative performance analysis of the Gradient Boosting 

Decision Tree (GBT), KNN, and Long Short-Term Memory (LSTM) models, evaluated using R- 

squared (R²) values on standardized training and test datasets. The GBT model shows relatively 

high R² values for both training and test sets across all data sets (Set2, Set4, Set6). Specifically, 

the R² values for the training sets are consistently higher than those for the test sets, indicating a 

strong fit to the training data but suggesting potential overfitting issues. However, the test set R² 

values remain reasonably high, demonstrating good generalization performance. The KNN model 

exhibits moderate R² values for both training and test sets. The R² values for the test sets are slightly 

higher than those for the training sets across all data sets, which may indicate that the KNN model 

is less prone to overfitting compared to GBT. However, the overall performance is not as strong as 

that of the GBT model, as reflected by the lower R² values. The LSTM model shows variable 

performance with notably lower R² values for both training and test sets. In particular, the LSTM 

model displays poor performance on Set4, with negative R² values for the training set, indicating 

a poor fit to the data. This variability and the low R² values suggest that the LSTM model may not 

be well-suited for this specific prediction task, possibly due to inadequate configuration or the 

nature of the dataset. In summary, the GBT model demonstrates the best overall performance with 

high R² values, although it may be prone to overfitting. The KNN model shows moderate and 

consistent performance, with slightly better generalization on test data. The LSTM model performs 

poorly, highlighting the importance of careful model selection and tuning for effective predictive 

modeling. 
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Figure 5-13 Comparative Performance of GBDT, KNN, and LSTM Models on Training and Test Data 
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Overall, the choice of model largely depends on the specific characteristics of the dataset, 

the complexity of the problem, and the need for model interpretability. Ensemble models like RF, 

GBT, and XGBoost generally provide superior performance by effectively capturing complex 

patterns and interactions, making them highly suitable for challenging tasks like predicting 

environmental variables. However, simpler models like MLR and KNN can also be effective when 

applied to less complex problems or when interpretability is a critical factor. The results underscore 

the importance of model selection based on the task at hand and the characteristics of the data, 

alongside proper tuning and validation to achieve optimal performance. 
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5.3.4 Model Performance Result 

Figure 5-14 provides a comprehensive comparison of various machine learning models, 

evaluated based on R², MSE, MAE, and MAPE for both training and test datasets. The analysis 

reveals distinct patterns in the performance of these models, highlighting their strengths and 

weaknesses. The Random Forest (RF) and Gradient Boosting Decision Tree (GBT) models 

demonstrate strong predictive performance with high R² values in both training and test sets, 

indicating their superior ability to capture the underlying patterns in the data. The RF model 

exhibits the lowest error metrics (MSE, MAE, and MAPE) across both datasets, emphasizing its 

robustness and accuracy. Support Vector Machine (SVM) models show moderate R² values for 

both training and test sets. Although the error metrics for SVM are relatively low, they are not as 

minimal as those observed for the RF and GBT models, suggesting a reasonably good but not top- 

tier predictive performance. The Decision Tree (DT) models achieve high R² values in the training 

set but show a notable decrease in the test set R² values, indicative of overfitting. This discrepancy 

between training and test performance points to the need for further tuning to enhance 

generalization. Neural network models, such as the Multi-Layer Perceptron (MLP), display 

relatively high R² values and low error metrics, indicating effective prediction capabilities. 

However, the Long Short-Term Memory (LSTM) models present lower R² values and higher error 

metrics on the test set, suggesting that their predictive accuracy could benefit from additional 

optimization. The K Nearest Neighbors (KNN) models exhibit moderate performance, 

characterized by lower R² values and higher error metrics compared to other models. This indicates 

that KNN may not be as effective in capturing the complex relationships within the data. MLR 

models achieve consistent R² values with moderate error metrics across both datasets, reflecting 

reasonable predictive ability but falling short of the performance levels demonstrated by more 

sophisticated models. XGBoost models also show high R² values and low error metrics, 

confirming their strong predictive performance. As a conclusion, the RF and GBT models emerge 

as the most effective for the given dataset, achieving the highest R² values and the lowest error 

metrics. The SVM, DT, MLP, LSTM, MLR, and KNN models also exhibit varying levels of 

predictive strength, each offering distinct advantages depending on the specific requirements of 

the predictive task. 
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Figure 5-14 Model Evaluation Result 
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5.3.5 Model Validation Result 

To further assess the robustness and generalizability of our integrated AI-based online 

system, we conducted model validation using the Lake Simcoe dataset spanning the years 2019 to 

2021. The validation aimed to evaluate the models' performance on unseen data, thus providing 

insights into their predictive capabilities in real-world scenarios. 

 
Table 5-1 presents the validation results for various models, evaluated using R², Root Mean 

Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error 

(MAPE). The Random Forest (RF) model shows the best performance with the highest R² value 

of 0.7657, the lowest RMSE of 0.2671, MAE of 0.1438, and MAPE of 0.0601, indicating its 

superior predictive capability and accuracy. The Gradient Boosting Decision Tree (GBT) model 

also performs well with an R² of 0.6383, RMSE of 0.3319, MAE of 0.2780, and MAPE of 0.1177, 

demonstrating robust performance. The KNN model achieves good results with an R² of 0.6029, 

RMSE of 0.3478, MAE of 0.2791, and MAPE of 0.1100, suggesting reliable predictions. The 

Decision Tree (DT) model, with an R² of 0.1834, RMSE of 0.4987, MAE of 0.1958, and MAPE 

of 0.0857, shows moderate performance. 

 
Table 5-1 Model Validation Result From Different Models – Case Lake Simcoe 

 

Model R2 RMSE MAE MAPE 

DT 0.1834 0.4987 0.1958 0.0857 

GBT 0.6383 0.3319 0.2780 0.1177 

KNN 0.6029 0.3478 0.2791 0.1100 

LSTM 0.2367 0.6383 0.5208 0.2191 

MLP -0.3198 0.6340 0.5179 0.2085 

MLR -0.7238 0.9593 0.7854 0.3077 

RF 0.7657 0.2671 0.1438 0.0601 

SVM -1.5982 1.1777 1.0281 0.4450 
XGBT 0.1929 0.4958 0.4037 0.1587 
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On the other hand, models like the Support Vector Machine (SVM), MLR, and Multi-Layer 

Perceptron (MLP) exhibit poor performance. The SVM model has a negative R² of -1.5982, the 

highest RMSE of 1.1777, MAE of 1.0281, and MAPE of 0.4450, indicating it is not suitable for 

this dataset. The MLR and MLP models also show negative R² values of -0.7238 and -0.3198, 

respectively, with corresponding high error metrics. The Long Short-Term Memory (LSTM) 

model has a relatively low R² of 0.2367, with higher error metrics of RMSE 0.6383, MAE 0.5208, 

and MAPE 0.2191, indicating less reliable performance. The Extreme Gradient Boosting Trees 

(XGBT) model shows moderate performance with an R² of 0.1929, RMSE of 0.4958, MAE of 

0.4037, and MAPE of 0.1587. 

 
Among all the models evaluated, the RF model demonstrates the highest accuracy and 

reliability, making it the most suitable choice for the given dataset. Its superior R² value and lower 

error metrics highlight its ability to capture the underlying patterns in the data effectively, 

providing more accurate predictions compared to other models. 
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5.4 Discussion 
 

Figure 5-15 illustrates the performance of the Gradient Boosting Decision Tree (GBT) 

model at Station K45 by comparing actual observed values with the model's predictions over a 

timeline from February 2019 to November 2021. The GBT model appears to follow the trend of 

the actual values closely, demonstrating its effectiveness in capturing the underlying patterns of 

the dataset. Notably, the model shows a robust predictive capability, especially from mid-2020 to 

late 2021, where the predicted values tightly align with the actual measurements, indicating a high 

degree of accuracy. However, there are periods, particularly in the earlier phases around mid-2019, 

where the prediction diverges slightly from the actual values, suggesting some limitations in the 

model's performance during certain conditions or possibly underestimating sudden changes in the 

dataset. Overall, the GBT model exhibits strong predictive performance with minor deviations, 

showcasing its potential for reliable forecasting in this application area. Figure 5-16 displays the 

comparative analysis of actual values against the predictions made by the Decision Tree (DT) 

model at Station K45, spanning from February 2019 to November 2021. The graph demonstrates 

that the DT model closely follows the overall trends of the actual data, capturing the seasonal 

variations and peaks with reasonable accuracy. Particularly from mid-2020 onwards, the 

predictions align more closely with the actual values, suggesting that the DT model is effectively 

adapting to the underlying patterns in the data. However, there are periods, especially in the early 

months and around the peak values, where the prediction slightly deviates from the actual 

measurements. This indicates potential overfitting or the model's sensitivity to fluctuations in the 

data, which could be due to the inherent nature of decision trees to fit precise data points, 

sometimes at the expense of generalizability. Overall, the DT model exhibits a solid performance, 

but it may benefit from further tuning or ensemble methods to smooth out predictions and enhance 

accuracy. 
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Figure 5-15 Comparison of Actual Value and Prediction Value at Station K45 by GBT Model 

 

 
Figure 5-16 Comparison of Actual Value and Prediction Value at Station K45 by DT Model 
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Figure 5-17 illustrates the performance comparison between actual values and predictions 

made by the Multi-Layer Perceptron (MLP) model at Station K45 from February 2019 to 

November 2021. This graph demonstrates the MLP model's ability to approximate the cyclical 

patterns and trends in the dataset, indicating a solid understanding of the underlying dynamics of 

the data. The model effectively captures both the peaks and troughs, although it shows slight 

deviations at peak points, particularly around May 2019 and October 2020. These discrepancies 

suggest some challenges in capturing extreme values or sudden changes in data trends. 

Nonetheless, the model remains generally consistent with the actual data throughout the period, 

showing closer alignment in later dates, such as from mid-2020 onward. This progression might 

reflect the model's adaptiveness or improvements in learning from accumulating data over time, 

showcasing MLP's potential utility in applications requiring trend analysis and forecasting in 

dynamic environments. Figure 5-18 illustrates the comparison between actual values and 

predictions made by the KNN model at Station K45 over the period from February 2019 to 

November 2021. The graph shows that the KNN model captures the general trend and seasonality 

of the dataset with reasonable accuracy, although it exhibits some discrepancies, particularly in 

peak and trough predictions. The model tends to underestimate peaks (e.g., October 2020) and 

shows slight overestimations at some trough points (e.g., May 2021). Despite these variances, the 

KNN model maintains a close alignment with actual values most of the time, suggesting its 

usefulness in predicting trends with moderate fluctuations. However, the deviations at critical 

turning points could be indicative of the model's sensitivity to local data properties and the 

influence of its parameter settings, such as the number of neighbors, which might require 

optimization for improved accuracy. 



114  

 

 
 
Figure 5-17 Comparison of Actual Value and Prediction Value at Station K45 by MLP Model 

 

 
Figure 5-18 Comparison of Actual Value and Prediction Value at Station K45 by KNN Model 
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Figure 5-19 illustrates the comparison of actual values against the predictions from the 

Random Forest (RF) model at Station K45 from February 2019 to November 2021. The RF model 

demonstrates impressive predictive accuracy, closely mirroring the actual values throughout the 

observed period. It effectively captures the trends and fluctuations in the data, maintaining a 

consistent proximity to the actual values, even during peak fluctuations (e.g., October 2020 and 

October 2021) and significant troughs (e.g., May 2021). The model shows a particularly strong 

alignment during periods of rapid value changes, which indicates its robustness and capability to 

adapt to complex patterns in the data. The slight deviations seen are minimal, suggesting that the 

RF model is highly effective for predicting trends at this station, making it a reliable choice for 

tasks requiring high precision in similar settings. Figure 5-20 displays the comparison of actual 

values against the predictions made by the MLR model at Station K45 from February 2019 to 

November 2021. The MLR model demonstrates moderate predictive performance, capturing the 

overall trend of the dataset but with notable discrepancies at certain points, especially during peaks 

and troughs. The model starts with a significant underestimation and then stabilizes, tracking closer 

to the actual values but consistently lagging behind during sharp increases or decreases. For 

instance, the prediction in May 2019 significantly overestimates the actual value, and a similar 

pattern is observed in September 2019. Despite these discrepancies, the MLR model manages to 

approximate the general movement of the actual values towards the end of the observed period. 

This suggests that while MLR can provide a reasonable baseline understanding of the data trends, 

it may require additional refinement or incorporation of other predictive factors to enhance its 

accuracy for precise applications. 
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Figure 5-19 Comparison of Actual Value and Prediction Value at Station K45 by RF Model 

 
 
 
 

 
Figure 5-20 Comparison of Actual Value and Prediction Value at Station K45 by MLR Mode 
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Figure 5-21 depicts the performance of the XGBoost model in predicting values at Station 

K45, comparing actual observations with model predictions from February 2019 to November 

2021. This graph illustrates the XGBoost model's strong capability to approximate the true data 

trends, particularly in capturing the general fluctuations and seasonality present in the dataset. The 

model closely mirrors the actual values with slight deviations at peak points, such as in May 2019 

and May 2021, where it slightly overestimates the peaks. However, it effectively predicts the rising 

and falling trends throughout the observed period, demonstrating its robustness and the 

effectiveness of its ensemble learning methodology in handling complex patterns. The consistency 

of the predictions, particularly from late 2020 into 2021, suggests that XGBoost is a highly reliable 

model for forecasting in this context, with potential for precise and accurate predictions in similar 

future applications. Figure 5-22 illustrates the performance of the Support Vector Machine (SVM) 

model in tracking and predicting the actual values at Station K45 from February 2019 to November 

2021. The SVM model demonstrates reasonable alignment with the actual data, capturing the 

overall trend and seasonal fluctuations effectively. However, there are noticeable discrepancies, 

particularly in the peak predictions around May 2019 and May 2021, where the model significantly 

overshoots the actual values. This overshooting is also evident around October 2020, where the 

model's predicted value far exceeds the actual peak. Despite these issues, the model adapts well to 

the rising and falling trends throughout the timeline, indicating a robust understanding of the data 

dynamics over the long term. The overall pattern suggests that while the SVM model can reliably 

predict the general trends and seasonality, it may require tuning to improve accuracy at peak points 

and to minimize prediction errors for more precise forecasting needs. 
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Figure 5-21 Comparison of Actual Value and Prediction Value at Station K45 by XGBoost Model 

 

 
Figure 5-22 Comparison of Actual Value and Prediction Value at Station K45 by SVM Model 
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5.5 Summary 
 

This chapter presented an exhaustive exploration and evaluation of our integrated AI-based 

online system for monitoring water quality and modeling Chl-a concentration in Lake Simcoe. The 

analysis began with a detailed examination of the Lake Simcoe dataset and proceeded with critical 

data preprocessing steps including Missing Value Imputation (MVI), Outlier Detection (OD), 

Feature Selection (FS), and Train-Test Split (TTS), ensuring the data's accuracy and relevance for 

modeling. 

 
In our comprehensive study, we utilized a diverse array of machine learning algorithms 

such as Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), Gradient 

Boosting Tree (GBT), Multi-Layer Perceptron (MLP), Long Short-Term Memory (LSTM), K 

Nearest Neighbors (KNN), MLR, and Extreme Gradient Boosting (XGBoost). Each model was 

rigorously trained and validated to assess its predictive capabilities. The results depicted in this 

chapter offer a detailed review of each model's performance, enhancing our understanding of their 

effectiveness in real-world applications using data from Lake Simcoe spanning 2019 to 2021. 

 
The analysis underscored the superior performance of tree-based models such as RF, DT, 

and GBT, which consistently excelled across various evaluation metrics. The SVM and MLP 

models also showed robust performance, particularly in capturing complex patterns in the data, 

thereby confirming their practical utility in environmental modeling. However, caution is advised 

in the application of the LSTM and MLR models, which displayed inconsistent performance and 

may require further tuning or methodology adjustments to improve their predictive accuracy. The 

findings from this study affirm the capability of our integrated AI-based system to deliver reliable 

predictions of Chl-a concentrations in Lake Simcoe, demonstrating its potential for broader 

environmental modelling applications. 
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Chapter 6: Conclusion and Recommendations 

In the final chapter, the conclusions drawn from the research are presented. The 

contributions of the developed AI-based online system for lake Chl-a quality modeling and 

monitoring are summarized. Additionally, recommendations for future work are provided, 

suggesting areas for further improvement and exploration in the field of lake water quality 

monitoring and AI-based modeling. 

 
6.1 Conclusion 
 

In this thesis, we have developed an integrated AI-based online system for Lake Chl-a 

concentration modeling and monitoring. The system leverages various machine learning models, 

including Support Vector Machine (SVM), Random Forest (RF), Decision Tree (DT), Gradient 

Boosting Tree (GBT), Multi-Layer Perceptron (MLP), LSTM, K Nearest Neighbors (KNN), MLR, 

and Extreme Gradient Boosting (XGBoost), to predict and monitor Chl-a concentrations in lakes. 

 
Through the implementation and evaluation of these models on two different datasets, Lake 

Champlain and Lake Simcoe, we have gained valuable insights into their performance and 

applicability. The results indicate that the RF, GBT, and ANN models consistently demonstrated 

excellent predictive performance, while other models such as SVM, MLP, and MLR exhibited 

varying levels of performance that could be further optimized. 

 
Based on the results and discussions presented in earlier chapters, the following 

conclusions can be drawn: 

 
• Data preprocessing techniques, including missing value imputation, outlier detection, and 

feature selection, significantly improved the performance of machine learning models on the 

Lake Simcoe dataset. These preprocessing steps helped address data quality issues and enhance 

the models' predictive capabilities. 

• The Random Forest (RF), Gradient Boosting Tree (GBT), and XGBoost models exhibited 

excellent predictive performance on the Lake Simcoe dataset. These models demonstrated a 

high degree of accuracy in capturing complex relationships and making precise predictions. 
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• The Support Vector Machine (SVM), MLP, and MLR models showed good predictive 

performance but may require further optimization and tuning to maximize their potential. 

• The Decision Tree (DT), K Nearest Neighbors (KNN), and LSTM models displayed varying 

levels of performance, with strengths and limitations specific to each model. These models can 

benefit from additional improvements and fine-tuning for optimal performance. 

 
6.2 Contributions 
 

The development of the integrated AI-based online system for Lake Chl-a concentration 

modeling and monitoring makes significant contributions to the field of environmental science and 

water quality monitoring. This study examined the most recent data-driven AI models for large- 

scale lake water quality modeling and assessment, showcasing the potential of advanced AI 

techniques in this domain. New algorithms were developed to assess and select critical factors and 

data-driven models, ensuring realistic field-scale lake water quality modeling. Additionally, an 

online, user-friendly eutrophication modeling system was created to assess algae blooming in 

complex large-scale lake systems with high spatial and temporal resolution. 

 
The developed AI models, particularly the Random Forest (RF) model, outperformed 

traditional models by effectively handling data complexity and nonlinearity. The integration of 

advanced data preprocessing techniques, such as missing value imputation, outlier detection, and 

feature selection, significantly improved model accuracy and reliability. Furthermore, the online 

modelling system provides real-time data collection, processing, and prediction capabilities, 

making it a valuable tool for water quality management. This system allows for accurate 

predictions and real-time modelling, enabling stakeholders to make informed decisions and take 

timely actions for water quality management. 

 
6.3 Recommendations for Future Work 
 

The development of the Chl-a Modeling and Monitoring Online System (CMMOS) 

involves the integration of multiple sophisticated components, including various machine learning 

models, data preprocessing techniques, and real-time modelling capabilities. This complexity, 

while necessary for achieving high predictive accuracy and robustness, introduces challenges in 



122  

terms of system maintainability and scalability. Future work should focus on simplifying the 

system architecture where possible, without compromising performance, to facilitate easier 

maintenance and potential expansion. Exploring modular approaches that allow individual 

components to be updated or replaced independently could significantly enhance the system's 

flexibility and longevity. 

 
Machine learning models inherently carry uncertainties due to several factors, such as data 

quality, model selection, parameter tuning, and the underlying assumptions of the models. These 

uncertainties can impact the reliability of the predictions made by the CMMOS. Future research 

should aim to quantify these uncertainties more rigorously, perhaps through the use of advanced 

statistical techniques or ensemble modeling approaches that combine the strengths of multiple 

models. Additionally, incorporating uncertainty estimation into the system's output can provide 

users with a clearer understanding of the confidence levels associated with the predictions, thereby 

aiding more informed decision-making. 

 
In summary, future work can focus on extending the following aspects: 

 
• Data Dependency: The accuracy of the system heavily relies on the quality and quantity of the 

input data. Inconsistent or sparse data can lead to unreliable predictions. Future efforts should 

focus on enhancing data collection methods, possibly by integrating more diverse data sources, 

including remote sensing data, citizen science contributions, and automated sensors. 

• Scalability: While the system has been tested on specific lakes (Lake Champlain and Lake 

Simcoe), its scalability to other geographic locations and larger scales remains to be validated. 

Future work should explore the adaptability of the system to different environmental 

conditions and broader geographic areas, ensuring that the models can generalize well beyond 

the initial study sites. 

• Computational Resources: The implementation of multiple machine learning models and real- 

time data processing requires significant computational resources. This can be a barrier for 

deployment in resource-constrained environments. Investigating more efficient algorithms and 

leveraging cloud computing resources could help mitigate this limitation. 

• User Interface and Experience: Although the system includes a user interface for stakeholders, 

its usability and accessibility could be improved. Future development should prioritize user-
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centric design principles, incorporating feedback from end-users to enhance the interface's 

intuitiveness and functionality. This could involve the development of mobile applications or more 
interactive web-based tools. 

• Integration with Policy and Management: The current system primarily focuses on technical 

aspects of modelling and prediction. For the system to have a more substantial impact, it should 

be integrated with policy and management frameworks. Future work should explore 

collaborations with environmental agencies and policymakers to ensure that the system's 

outputs are aligned with regulatory requirements and management objectives. 

 
By addressing these complexities, uncertainties, and limitations, future enhancements to 

the CMMOS can lead to a more robust, scalable, and user-friendly system that significantly 

contributes to sustainable lake management and environmental modelling practices. 
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