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Abstract 

 

Coin Detection and Classification using a Few-Shot Learning method based on Siamese 

Network 

Mahsa Vahed 

Coins are used in our daily lives for a long time with less depreciation than paper currency. 

Detecting counterfeit coins visually is a challenging way with lots of errors. This thesis investigates 

advanced machine-learning techniques to differentiate between counterfeit and genuine coins with 

a small dataset. It focuses on the implementation of few-shot learning. This study is applied to two 

different types of datasets. The first dataset contains the images converted to grayscale, and the 

second dataset contains the four slopes images. As the detection of counterfeit coins is challenging 

due to their high similarity with genuine coins, more features are required before pre-training the 

neural network.  

For this study, 2,474 labeled images from the CENPARMI dataset belonging to 22 different classes 

were used. To enable experimentation, the dataset was split into two parts: a Main Dataset (Dm) 

and a Target Dataset (Dt). We used a pre-trained model, which learns from the Dm and adapted it 

to Dt. The Inception V3 network was fine-tuned in the main dataset to learn general coin 

characteristics. This knowledge was transferred to the target dataset to learn new coin types from 

a few images. FSL using Siamese networks and contrastive loss was used. The algorithm 

performance was evaluated using the total accuracy with different epochs and different batch sizes 

to earn the optimum of them, and also the precision and recall and F.score per class. 

It is shown that the accuracy of our method in epoch 20 is optimal. At this point, the model achieves 

a high level of accuracy (92.13% for grayscale images and 94.73% for SMMIG images). the model 

trained with a batch size of 32 achieves the highest accuracy of 92.13% for the grayscale dataset 

and 94.73% for the SMMIG dataset, indicating that moderate batch sizes contribute to optimal 

performance. 
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Chapter 1 

Introduction 
 

1.1 Motivation 

 

Coins are generally used in our life such as retail kiosks, supermarket self-checkout machines, 

arcade gaming machines, payphones, launderette washing machines, car parking meters, automatic 

fare collection machines, public transport ticket machines, and vending machines for soft drinks, 

cigarettes, candies, etc. [1]. Coins can be used for a long time with less depreciation than paper 

currency and can be used for extended periods of time. People enjoy collecting coins not only 

because they usually have artistic value but also valuable antique coins. Based on the Royal Mint 

website[2], any amount of counterfeiting is concerning because it has the potential to erode public 

trust in a nation's money. Furthermore, it's against the law to use fake coins [2]. Based on a paper 

[3] published by Royal Mint in 2017, there are around 1.6 billion round pound coins in circulation 

in the UK, and the Royal Mint estimates that 2.55 percent of them about 40 million pounds are 

fake. 

Detecting and eliminating counterfeit coins has several benefits, such as promoting economic 

stability, building trust in currency, protecting collectors, supporting law enforcement, and 

maintaining market integrity [4]. The primary idea behind coin detection is to compare the physical 

attributes of a coin to the accepted standards for legitimate coins. After assessing the coin's weight, 

diameter, thickness, metal composition, and magnetism, the coin acceptor sends an appropriate 

electrical signal through its output connection for coin detection [5]. Several researchers have 

invested significant effort into coin identification and counterfeit coin detection [1, 6-11]. This 

research focuses on two issues: coin classification and counterfeit coin detection. The detection of 

counterfeit coins is a current area of study, with various approaches developed by different 

academics to address this issue.  

The primary motivation for switching from physical features to machine learning and computer 

vision approaches to detect counterfeits is due to the same physical attributes and metal type in 

coins from different countries. A metal item that precisely matches weight, size, and type of metal 
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can confuse the system, which is the primary disadvantage of the two systems based on physical 

characteristics. Therefore, by concentrating on design elements, errors can be removed, and a 

stronger categorization system can be produced. Computer-designed automated solutions are less 

expensive, more methodical, and able to be implemented remotely without the need for human 

interaction [12].  

Coins can be photographed under various conditions, with different contrasts, lighting, and 

backgrounds. These factors can significantly interfere with coin recognition. Deep learning 

models, which require a fixed, relatively small size of the input image, may lose essential coin 

features due to naive resizing of the input image. Therefore, before feeding the image to the coin 

recognition model, it's crucial to locate the coin and remove its background [13]. Figure 1.1 (a) 

shows the samples of Canadian Coins year 1996, (b) shows the samples of Danish Coins year 

1990. (c) shows the samples of Chinese Coins – Memento year 1927 and shows (d) the samples 

of Chinese Coins – China-Year3 1911-G-One-Dollar-Color. All images are captured with Keyence 

scanner at the CENPARMI lab.  

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 1.1: (a) Samples of Canadian coins year 1996, (b) Samples of Danish coins year 1990. (c) 

Samples of Chinese coins – Memento year 1927, and (d) Samples of Chinese coins – china-year3 

1911-G-one-dollar- color. All images were captured by Keyence scanner in the CENPARMI lab. 

 

1.2 Challenges  

 

Counterfeit coin detection, a key component of digital imagery and numismatics, is essential to 

many areas of economic and historical study. 

Various automatic fake machine detectors are used in coin detection as an initial device for 

assessing a distinct component of the coin's features [14]. However, these technologies cannot 

distinguish the difference between counterfeit and genuine coins when their physical features are 

identical. The scientific field has been overflowing with studies on image-based techniques for 

detecting counterfeit coins in recent years [7, 15, 16]. 

The widespread use of object identification technology has been driven by the quick advancements 

in digital image processing, pattern recognition, machine vision, and machine learning. Even with 
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these developments, it is surprisingly difficult to create a system that can accurately identify a 

specific coin because most coins have a similar appearance. Neural networks are mostly used in 

coin identification techniques to extract different picture characteristics and categorize the feature 

vectors using classifiers [17]. 

 

1.2.1 Size of the coins  

The challenges in distinguishing between genuine and counterfeit coins are worsened by their tiny 

size, as most coins are similar in size. This intrinsic property makes it difficult for people to detect 

microscopic differences in minute characteristics that serve as differentiating qualities between 

genuine and counterfeit coins. In this situation, experts play a critical role, depending on their 

tactile senses to distinguish minute distinctions in surface, edges, letters, size, and texture—a skill 

set beyond the common person's grasp. Furthermore, the lack of specialist instruments to help in 

recognizing these discrepancies adds to the difficulty of differentiating real from counterfeit coins. 

As a result, expertise in coin authenticity validation remains crucial, especially in the absence of 

accurate sizing technologies. 

1.2.2 High quality of counterfeit coins  

When counterfeit coins are meticulously constructed to closely resemble the qualities of genuine 

coinage, traditional techniques of identification encounter major challenges. Well-made 

counterfeits frequently mimic the weight, look, and even tactile features of real coins, making it 

difficult for people and even automated systems to distinguish the tiny variations. Counterfeiters' 

sophisticated skills contribute to the seamless absorption of these reproductions into circulation, 

aggravating the difficulties of correct detection. Given these issues, there is a growing need for 

stronger security measures, innovative technology, and professional expertise to properly identify 

and struggle with the rise of well-produced counterfeit coins in circulation. 

1.2.3 Coin images  

Establishing a dataset of counterfeit and genuine coin images posed challenges, primarily centered 

around the search for a proper scanner. Because of the reflecting nature of the metallic, bright coin 

surfaces, as well as their small size, necessitated the use of a specific instrument for image 
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scanning. This task proved to be inherently challenging due to the characteristics of coins. To 

address this, careful consideration of the scanning environment became imperative to minimize 

light reflections and ensure optimal results. Creating an environment to reduce glare emerged as a 

critical aspect in overcoming the challenges with scanning coins, ultimately contributing to the 

successful compilation of a comprehensive dataset for further analysis and research. 

1.2.4 Lack of fake coin images 

In the world of coin collecting, distinguishing genuine from counterfeit coins can be challenging. 

Some counterfeit coins are easily identified, others are expertly crafted to mimic the real thing. 

The possession of counterfeit coins is strictly prohibited by the government, and legal 

consequences await those found in possession of them. The government does not release images 

of fake coins due to security concerns, making it challenging for researchers to have meaningful 

investigations. This lack of data in existing literature presents a significant obstacle, particularly 

in the realm of counterfeit coins. 

In recent coin detection investigations, the Concordia University (CENPARMI) lab in Montreal, 

Quebec, has developed numerous unique ways for identifying counterfeit coins. They progressed 

from two-dimensional to three-dimensional image processing for coin recognition [8, 18], 

capturing height and depth rather than color levels. The authors of [19] focused their research on 

coin weights and employed an autoencoder to identify coins. It has been studied how to identify 

fake anomalous coins using an autoencoder.  

Large datasets are necessary for most machine learning algorithms for effective training and 

performance. However, there is a noticeable lack of images, especially for ancient coins, which 

makes developing robust models for coin recognition difficult [20]. As a result, coming up with a 

technique to reliably detect counterfeit coins in a small dataset is not only technologically 

necessary but also extremely useful. In the case of rare and antique coins, when picture resources 

are few and counterfeiting is a serious concern, this method would be extremely helpful for 

identification and categorization, and this remains an open area of research. 
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1.3 Objective 

 

This research uses machine-learning techniques to differentiate between counterfeit and genuine 

coins. Its uniqueness lies in its focus on achieving this objective with a smaller dataset. With the 

increasing sophistication of counterfeit coins, a detection system that can adapt and be precise is 

crucial. The intentional decision to work with a smaller dataset acknowledges the challenges of 

not having a vast array of diverse counterfeit coin images. 

 

1.4 Contribution of the thesis 

 

Deep learning approaches need the collection and annotation of enormous image datasets, which 

is either technically or economically impractical. This research proposes a new ground of 

counterfeit coin recognition by introducing and implementing few-shot learning techniques, 

specifically the Siamese algorithm with a small dataset. 

This is one of the first studies to investigate the use of Siamese architecture in the context of coin 

authentication, tackling the inherent challenges.  

There are several methods have been developed for coin classification and coin detection in recent 

years, However, this study is the first research to implement a method to classify and detect 

counterfeit coins by using Few-shot learning algorithms and specifically the Siamese network with 

a small dataset. These methods have not been performed on coin detection before. 

As part of our research, we collected and scanned new Chinese coins, Danish Coins, and Canadian 

coins with the Keyence 3D scanner in the CENPARMI Lab at Concordia University. The Keyence 

system is a 3D measurement system that uses high-intensity LED light and a 4-megapixel 

monochrome CMOS. This system is specifically designed to provide highly measurements images. 

A total number of 2,474 images were scanned. All steps to scan the images were completed by 

CENPARMI students and me. We set up the proper conditions including light reflection and 

scanner placement to ensure that there are no side effects on the images, and we have the optimal 

image quality. Each coin in this dataset was carefully scanned from both front and back views, 
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covering both counterfeit and genuine coins. All the coins were captured with two resolutions, 12X 

and 40X. This is a high resolution to scan the 3D images and address the challenges posed by the 

small size of coins.  This research is the second study using 3D images for detection of counterfeit 

coins, and all the previous ones were used 2D images. 

To conduct our research, we obtained coins from the Law Enforcement Office provided to the 

CENPARMI students at Concordia University in Montreal, which includes their entire collection. 

It's important to note, however, that access to additional counterfeit coins is limited, hindering our 

investigative efforts. To address this limitation, we utilized a common augmentation technique as 

a compensatory measure. We will discuss this in detail in future chapters. 

The data was split into a main, dateset containing 19 classes, and a target one with 3 classes. The 

Inception V3 network was fine-tuned in the main classes to learn general coin characteristics. In 

case the number of samples is insufficient for training a deep neural network, severe overfitting, 

and disappearance of the deep network gradient may happen. To address this issue, the Inception 

structure uses smaller convolution blocks instead of larger ones, thereby increasing the nonlinear 

expression ability of the model and making better use of parameters. 

InceptionV3 is a powerful CNN architecture that is specifically designed for image classification 

tasks. It is well known for its ability to capture complex hierarchical features in images. 

InceptionV3 comes pre-trained on a large dataset, typically ImageNet, which enables the model to 

learn generic features from a diverse set of images. This pre-training can be advantageous when 

only a small dataset is available for a specific task [21, 22]. The information was transferred to the 

target classes. A few-shot learning using Siamese networks and contrastive loss was used. The 

main and target sets were each divided into a training set of 80% for developing the method and a 

test set of 20% for obtaining the results. 
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1.5 Outline  

 

The rest of the thesis is structured as follows:  

● Chapter 2 presents a comprehensive discussion of computer vision methods for dealing with 

various coin research problems and applications, including coin recognition, and counterfeit coin 

detection. 

 ● Chapter 3 discusses image preprocessing methods and dataset preparation. 

 ● Chapter 4 presents our proposed design and model, feature extraction methods, and the 

procedure of training the model. 

 ● Chapter 5 provides experimental results.  

● Chapter 6 concludes the thesis, summarizing the work completed and providing some insights 

and suggestions for the future work. 
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Chapter 2 

Literature review 
 

2.1 Coin detection 

 

In recent years, numerous studies have been conducted to determine the difference between 

counterfeit and genuine coins. Several papers based on image processing techniques and 

classification algorithms have been published for counterfeit coin detection with different methods 

such as the Hough Transform, Gabor filter, Heuristics, and Artificial Neural Networks. 

Identifying the counterfeit and genuine coins is an important task. However, it can be very 

challenging for those who are new to the field, especially in the case of rare or damaged coins. 

Even computer-based methods may face difficulties. Due to practical and inherent issues [23].  

A mature recognition system typically consists of four main components: image capturing, pre-

processing, feature extraction, and classification. Some prior studies also include a verification 

phase [24-26]. 

CENPARMI students at Concordia University in Montreal have developed several methods for 

detecting counterfeit coins. 

The authors of [7] proposed a method for isolating individual letters and numbers on coins to study 

their features separately. Once the segmentation of letters was completed, four attributes were 

extracted from them, including letter width, smoothness, height, and width. Additionally, two 

characteristics between adjacent letters were investigated, such as relative distance and relative 

angle. The authors conducted experimental tests on two groups of coins to demonstrate the 

effectiveness of these features. They analyzed the lettering, images, and texture of coin faces to 

identify potential fake features. To separate the letters and digits from the image background and 

extract their features, they applied a novel shape feature, and a distinct region feature called the 

Maximally Stable Extremal Region (MSER) for texture analysis. 
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After capturing an image of a coin [7], the next step is segmentation. This involves separating the 

image into two parts. The background and the foreground. The background is usually a dark area 

that does not contain any useful information. To extract the foreground from the background, the 

image is detected and segmented using a technique called Hough Transform. This is the most used 

technique for this purpose. 

• The steps of the hough transform method are as follows: 

1. Obtain a binary edge image. 

2. Specify the sub-divisions in x-y-r-plane. 

3. Examine the counts of accumulator cells for high pixel concentration. 

4. Search for the local maxima cells. 

After segmentation, it is necessary to binarize it. All letters and digits are distributed in a circle in 

the center of the coin. To separate the letters, it is better to limit the image of the coin to the size 

of the ring, which contains only the letters. They tested sixteen coins. Eight coins are from the year 

1990, and the others are from the year 1996. They faced some challenges during this project. The 

project posed several challenges, including detecting subtle patterns that differentiate similar 

objects. This is particularly difficult in pattern recognition applications where there are many 

similarities and differences between classes. The size of the coin was another challenge. 

Counterfeit coins are often indistinguishable from genuine ones based on size alone. Even visual 

inspections may not reveal fine details in texture and design, and there are no direct measurement 

tools for these features. Different forging techniques also create unique challenges. Fake coins do 

not have uniform features that differentiate them from genuine coins. However, counterfeit coins 

from the same source tend to share similar characteristics, whereas those from different sources 

do not. 

Finally, the development of advanced counterfeiting technologies and the lack of expert knowledge 

make it more difficult to distinguish between counterfeit and genuine coins. 

The method proposed in the paper [18] worked with a 3D approach. Most current methods for 

detecting fake coins are based on 2D images, which only provide statistical information about 

length and width and lose important characteristics like height and depth. Therefore, 3D techniques 

have become more popular in recognition, biometrics, security, and image processing. In this 
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paper, the authors suggested a 3D method to detect and analyze the coin surface and extract 

important features. They introduced the Precipice Border Detection Algorithm (PBDA), which is 

not considered in previous methods. The authors extracted effective features based on the depth 

and height of a coin. For detecting the border of the coins, they used the Fuzzy C-Means algorithm 

[8, 27]. 

The major advantages of the method in [18] as follows: 

• Suggesting a 3D Precipice Boundary Detection Algorithm (PBDA), Instead of the normal 

edge detection in 2D methods that can detect the precipice border of the coin's surface and 

be used for the technique of feature extraction. 

• Degraded images don't require image enhancement or restoration. 

• Binned Borders in Spherical Coordinates (BBSC) includes analyzing the direction and area 

of curved precipice borders. This method uses triangulation and fuzzy clustering to 

examine different border parts. By triangulating coin height images and extracting features 

from these triangles, a matrix of triangle samples is created. 

The authors of [28] aimed to enhance the detection of counterfeit coins by utilizing deep learning 

techniques. They used a Generative Adversarial Network to generate fake coins for training 

purposes. To make the height-map images compatible with pre-trained networks, they proposed 

representing relief maps with three channels: Steep, Moderate, and Gentle slope (SMG). This 

generated a new channel for height-map images that can be utilized to train the pre-trained 

network. To increase the accuracy of the system, they proposed a hybrid method that combines 

fine-tuning pre-trained deep neural networks with a rejection option. The system delivered 

impressive results in coin classification. Additionally, the method can be utilized to detect coins 

that have not been previously seen by the model, whether they are genuine or counterfeit. 

The authors of [14] proposed a technique for recognizing counterfeit 2-Euro coins that utilizes an 

optical mouse to take images. By comparing these images with a set of reference coins, the 

researchers were able to successfully identify counterfeit coins. The authors noted that the use of 

an optical mouse has many benefits, including its small size, affordability, and user-friendliness, 

which do not require specialized expertise. Nevertheless, it should be noted that the optical mouse 

only captures a portion of the coin's image, which may impact the accuracy rate and lead to 

misclassification. 
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The authors in [19] propose a method for detecting counterfeit coins based on image content and 

evaluate the effectiveness of different descriptors such as SIFT, SURF, and MSER. The study used 

the CENPARMI Danish coin dataset for experimentation and preprocessing was done to create 

counterfeit coins with slight shape differences from the original coins. The paper addressed some 

challenges, such as the complexity of processing color images and the need to convert RGB coin 

images to grayscale for certain steps. The authors proposed an autoencoding-based anomaly 

method that eliminates the need for fake data in training counterfeit coin detection models [29]. 

An autoencoder was trained to find anomalies in the coin images. The trained autoencoder received 

a coin image as input and generated a new image, which was compared with a basic image using 

the selected criterion. 

Coins can be photographed under various conditions, with different contrasts, lighting, and 

backgrounds. These factors can significantly interfere with coin recognition. Deep learning 

models, which require a fixed, relatively small size of the input image, may lose essential coin 

features due to unskilled resizing of the input image. Therefore, before feeding the image to the 

coin recognition model, it's crucial to locate the coin and remove its background [13]. 

The authors of [1] proposed a method for detecting counterfeit coins using image-based 

techniques. The approach uses the dissimilarity space to represent the images of coins. This space 

is constructed by comparing the image with a set of prototypes. Local key points on each coin 

image are detected and described to measure the dissimilarity between the two images. Matched 

key points between the two images are identified based on the characteristics of the coin, enabling 

efficient detection. A post-processing procedure is used to eliminate mismatched key points. The 

proposed method uses only genuine coins for one-class learning, making it effective for fake coin 

detection. Extensive experiments have been conducted to evaluate the proposed approach on 

various datasets, demonstrating its validity and effectiveness. The paper also compares the 

clustering-based prototype selection with the random selection method and the RBF kernel with 

the linear kernel for one-class SVM. Additionally, experiments with different values of RBF kernel 

width and training error rate are presented. 

The authors of [30] proposed a mechanism for detecting counterfeit coins, utilizing two distinct 

feature extraction techniques - Scale Invariant Feature Transform (SIFT) and Rotation and 

Flipping invariant Regional Binary Patterns (RFR). Additionally, the researcher developed an 
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Automatic Coin Grading system to identify and eliminate low-quality coins from the dataset. The 

approach involved acquiring digital images and applying computer vision and machine learning 

algorithms to analyze them.  

In [30], the RGB images were first converted to grayscale, as grayscale images contain more 

information than black-and-white images. Subsequently, the images were segmented using hough 

transform to separate the foreground from the background. Then, some preprocessing was done to 

eliminate any redundant information. The author uses SIFT algorithm with a four-stage filtering 

process. Scale-space extrema detection stage obtains the location and scale of the object. In key 

point localization stage, any keypoint that has a low contrast from the extracted keypoints is 

removed. Orientation assignment, This stage considers the local image properties, assigns 

consistent orientation to keypoints, and represents each key point relative to it, making it 

rotationally invariant. Then key point descriptor creates keypoint descriptors using local gradient 

data, which are rotated and weighted by a Gaussian to align with the keypoint's orientation. 

The author utilized a pattern recognition approach to identify the authenticity of coins based on 

their wear and tear over time. However, there were several challenges they encountered during this 

process. These included the small size of some coins, which made it difficult to differentiate 

genuine coins from counterfeit ones with precision. In addition, inconsistencies in the design of 

counterfeit coins posed another challenge, as different manufacturers use various methods to 

produce them. Furthermore, the quality of counterfeit coins and the advancement in counterfeit 

technologies are increasing every day, making it harder to identify them. Lastly, due to government 

restrictions, there is insufficient data available on fake coins, which makes research in this area 

more challenging for researchers. 

The authors in [21] delved into the implementation of deep learning to classify plant leaves and 

emphasized the importance of a substantial number of samples for supervised training. The 

proposed approach employed the Siamese network framework, utilizing a parallel two-way 

convolutional neural network with weight sharing to extract features from distinct images. By 

training the network with a loss function, it learned a metric space where similar leaf samples are 

clustered together while dissimilar ones are separated. Through experimentation, the results 

demonstrate remarkable classification accuracy despite the limited number of supervised samples. 
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The process involved extracting features from two distinct images utilizing a parallel two-way 

convolutional neural network with weight sharing. 

 

2.2 Classification 

 

Coin classification is a crucial task in the field of numismatics with applications in historical 

research, coin grading, and automated coin sorting. Traditional methods relied on manual 

inspection and expert knowledge, but recent advances in computer vision and machine learning 

have enabled automation. The field has made significant progress through various machine 

learning and deep learning techniques. especially, siamese networks have emerged as an effective 

method for fine-grained visual recognition tasks, particularly when faced with limited data 

availability. 

Siamese networks, first introduced by [31], refer to neural networks specifically engineered for the 

identification of similar or dissimilar image pairs. This is accomplished through a distinct 

architecture featuring twin networks with shared weights. Their efficacy lies in metric learning, 

rendering them particularly advantageous in discriminating between coins exhibiting subtle 

differences in coin classification. An increasingly promising approach to coin classification 

involves the utilization of siamese neural networks. Siamese neural networks represent a type of 

deep learning architecture that is well-suited for tasks centered on image similarity and 

comparison[32]. Siamese networks are characterized by a specialized architecture that enables 

them to acquire a representation of the input data that is sensitive to the intrinsic features of the 

images, as opposed to solely their superficial characteristics. This characteristic makes them well-

suited for tasks such as coin classification, where the subtle distinctions between different types of 

coins pose a challenge for traditional classifiers[33]. 

Guo et al.[23] employed siamese networks in the classification of ancient coins, achieving high 

accuracy through the focused analysis of distinctive features in coin images. Their method 

involved establishing a feature embedding space to optimize the distances between similar and 

dissimilar coin images. Furthermore, research by Lorente et al.[34] provides additional evidence 

of the efficacy of siamese networks in coin classification. Collectively, these studies highlight the 
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capability of siamese networks to achieve high levels of accuracy in coin classification, even when 

facing with challenging conditions such as low-resolution or noisy input images. The capacity of 

siamese networks to discern subtle differences in coin images makes them particularly suitable for 

this task, ensuring reliable classification across a diverse array of coin types and conditions. 

The authors in [35] proposed the topic of Few-Shot Learning (FSL) algorithms applied to plant 

leaf classification using deep learning with small datasets. Through comparison with classical fine-

tuning transfer learning, the paper concluded that FSL outperforms traditional methods when 

dealing with small training sets. To achieve this, the study employed the Inception V3 network, 

which is fine-tuned in the source domain to gain a better understanding of general plant leaf 

characteristics. This understanding is then carried over to the target domain to learn new leaf types 

from only a few images. The plant leaf image classification algorithm's architecture involves a 

general-purpose CNN image classification network that is fine-tuned to extract leaf image features 

or image embeddings. Following this, a shallow SVM classifier was trained to identify differences 

between the feature mappings for various plant leaf classes. 
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Chapter 3  

Dataset preparation and image preprocessing  
 

3.1 Dataset preparation  

 

In this chapter, we will discuss how to create our datasets, the preprocessing steps involved, and 

the process of converting images into four slope images. 

3.1.1 Keyence 3-D scanner  

 

The Keyence VR-5000 is a 3D Scanner system developed by Keyence Corporation, a Japanese 

manufacturer of automation and inspection equipment. The VR-5000 Series is a 3D measurement 

system that uses high-intensity LED light and a 4-megapixel monochrome CMOS to capture a 

single fringe projection image of a wide area. This system is specifically designed to provide highly 

precise 3D measurements in various industrial applications. It uses laser technology to capture 

detailed three-dimensional data of objects, allowing for accurate measurements and inspections. 

Figure 3.1 shows the Keyense Scaner. 

The VR-5000 Series uses scan optics to create fringe projection light via high-intensity LEDs built 

into the projection units. The structured (fringe projection) light passes through the telecentric 

projection lens and hits the object diagonally from above. When there are differences in height on 

the object's surface and when light is applied diagonally, the fringe projection image becomes 

distorted. The VR-5000 Series captures the distorted fringe projection image from directly above 

using the camera and measures the object's height from the distortion. To minimize the impact of 

the object's shape and orientation, the VR-5000 Series applies light from both the right and left 

projection units. Figure 3.2 shows the VR-5000 Series applies the light from both right and left 

projection units. 
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Figure 3.1: Keyence VR-5000 Scanner 

 

 

Figure 3.2: The VR-5000 Series applies the light from both right and left projection units. This 

reduces the impact of the shape and orientation of the object. 
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This study relied on both the dataset obtained using the Keyence 3-D scanner and the dataset 

based on IBIS TRAX  scanner provided by CENPARMI. 

3.1.2 Dataset with Keyence 3-D scanner 

For the dataset captured with the Keyence 3-D scanner, we used the VR-5000 scanner from 

KEYENCE CANADA INC. This dataset includes a wide range of coins, such as Chinese coins 

like Dr. Sun Yat-sen-Memento 1927, Fat Man 1914, Phoenix and Dragon 1923, and One Dollar-

Dragon 1911, Danish coins from 1996, and Canadian toonies coins from 1996. Table 3.1 shows 

the coins’ dataset captured with the Keyence 3D. All steps to scan the images were completed by 

CENPARMI students and myself in the CENPARMI lab. We set up the proper conditions for light 

reflection and the scanner placement. 

All the coins in this dataset were carefully scanned from both front and back views, covering both 

counterfeit and genuine coins.  

 

Table 3.1: Coins’ dataset captured with the keyence 3D 

 

3.1.3 Dataset with IBIS TRAX 

In this study, we also used the CENPARMI coin dataset [18] to investigate the authenticity of 

Danish coins from 1990, and 1996, as well as Canadian Toonies from 1996, and Half Yuan Chinese 

coins from 1942. The dataset was sourced from the Danish police, who provided both genuine and 

Coin Type\Name Year Number of Coins 

Canadian Toonie 1996 57 

Chinese Dr. Sun-Yat-sen-Memento 1927 14 

Chinese Fat Man 1914 35 

Chinese One Dollar-Dragon 1911 6 

Chinese Phoenix and Dragon 1923 8 

Danish 20 Kroner 1996 132 
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counterfeit coins to a local company, which subsequently submitted them to the CENPARMI 

laboratory for analysis. The images of the coins were captured by a very precise 3-D scanner in 

the name of IBIS TRAX, equipped with a built-in microscope and five groups of adjustable LEDs 

to facilitate the acquisition of high-quality images from various perspectives. The patent for this 

device is held by Ultra Electronics Forensic Technology Ltd. Company in Montreal. Table 3.2 

shows a selection of coin images captured using the IBIS TRAX. 

 

Table 3.2: CENPARMI coins’ dataset captured with the IBIS TRAX scanner. 

Coin Type\Name Year Number of Coins 

Canadian Toonies 1996 75 

Danish 20 Kroner 1990 125 

Danish 20 Kroner 1996 109 

Chinese Half Yuan 1942 10 

 

 

3.2 Image preprocessing  

 

Data preprocessing, also known as data cleansing, is an essential phase in the machine learning 

process, and most ML engineers spend a significant amount of time on it before developing a 

model. Outlier detection, missing value treatments, and removing undesired or noisy data are a 

few examples of data preprocessing. 

Image preprocessing refers to the processing of images that are performed at the most basic level 

of abstraction. If entropy is used as a measure of information, then these actions diminish rather 

than increase the information content of the image. Pre-processing aims to improve the picture 

data by reducing unwanted distortions or enhancing specific visual properties that are important 

for subsequent processing and analysis tasks [36]. 
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Our dataset contains a lot of degraded and noisy coins, Therefore, to enhance the image quality 

and ensure better representation in our dataset, we implemented the following preprocessing 

techniques. 

 

3.2.1 Data cleaning and resizing  

It is common to encounter inaccuracies, defects, and errors that lead to inconsistencies when 

dealing with datasets. Therefore, a dataset is never entirely ready for processing. To achieve a 

perfect dataset, some action is necessary. In this study, none of the scanned coins were in perfect 

condition. Some coins were entirely damaged and had degraded to a point where they were difficult 

to process. For instance, some coins had a completely worn-out edge, and the image was not in 

perfect condition for preprocessing techniques and feature extraction in the upcoming steps. 

We decided to remove some corrupted coin images from our dataset to ensure that we have an 

ideal training set for our proposed method. In our dataset, all coin images in the provided dataset 

were captured at high resolution. The original size of the Danish coins was 3550x3550 pixels and 

1991x1982 pixels, the original size of the Canadian coins was 2976x2976 pixels and 1600x1274 

pixels, and the original size of Chinese coins varied from 1755x1748 pixels for One Dollar Dragon 

to 1383x1373 pixels for Memento, and 1878x1803 pixels for Fatman. However, working with 

these large dimensions requires a lot of memory and is time-consuming. Therefore, to improve 

processing time and avoid memory issues, we reduced the size of the coin images to 128x128 

pixels.  

 

3.2.2 Transformation of the RGB images to grayscale and hough transform 

The purpose of using filters is to change or improve the qualities of the images and to extract 

important data from the images, such as edges, corners, and blobs. A kernel, which is a tiny array 

applied to each pixel and its neighbors inside a picture, defines a filter. Brightness transformations 

improve pixel brightness, and it depends on the properties of a pixel, and it is important for both 

human and computer vision. Brightness corrections and grayscale transformations are two types 

of brightness transformations and in most of the recognition systems, gray or binary images are 



21 
 

used because processing color images is computationally high. Also, some images contain 

backgrounds and watermarks that could make the recognition process difficult [37]. 

All the coins used in this study have circular shapes. Therefore, the Hough transform for circle 

recognition proposed by Reisert, et al. [38] is employed to segment round of coin images with the 

gray level of 0 to 255. Figure 3.3 shows the images of a Danish coin from 1996 and a fake ONE 

DOLLAR Dragon and the converted images to grayscale. 

 

 

Figure 3.3: (a) Sample of colored coin images, and (b) gray images 
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3.2.3 Transformation of the grayscale images to four slopes  

3.2.3.1 Background and preliminary concepts 

 

A height-map is a grayscale image that stores information about the distance or height of a surface 

from its background. The darker shades in the image represent shorter heights, while brighter 

shades represent longer heights. The minimum and maximum heights are represented in black and 

white respectively. A depth map is an image that shows the distance of objects in a scene from the 

camera's view and shows varying intensities that indicate the distance of each pixel. On the other 

hand, a surface normal is a set of three channels that show the orientation of each pixel in a scene. 

Each channel represents a direction cosine of the orientation vector for that pixel. Obtaining these 

characteristics from a single RGB image is a challenging task in computer vision, but it is essential 

[39]. Figure 3.4, shows a RGB color image and the corresponding depth colormap image, where 

blue indicates closer objects and red indicates farther objects [40].  

 

Figure 3.4: (a) RGB image, and (b) depth map image[40] 

 

3.2.4 Transformation of the grayscale images to four slopes  

As the detection of counterfeit coins is challenging due to their high similarity with genuine coins, 

more features are required before pre-training the neural network for classification purposes. To 

use the pre-trained models and grayscale images for fine-tuning, we converted grayscale images 

to four slope images. Therefore, having four channels carrying significant information can enhance 

the capability of networks for classification. 
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Based on the method used in [28] to convert the grayscale images to three slopes, we proposed a 

method to convert the grayscale images to four slopes images.     

In this study with our image processing technique, we implement a procedure to analyze and 

categorize the slopes present within scanned images. The process applies through each pixel of the 

image repeatedly and forms triangles using neighboring pixels. By calculating the normal vector 

of these triangles, we determine the angle (𝛳) between the normal vector and a reference vector, 

allowing us to quantify the slope at each pixel location. Based on this angle (𝛳), pixels are 

categorized into specific slopes, including Steep slope displays with red color, Moderate slope 

displays with blue color, MId-moderate slope displays with light blue color, and Gentle slope 

displays with green color (SMMIG). According to the specifications listed in Table 3.3, a Gentle 

slope refers to any part of the coin surface where the angle is smaller than a threshold value called 

T1. On the other hand, a Moderate slope is defined by an angle between T1 and T2, while Mid-

Moderate is a slope where the angle is between T2 and T3. Finally, the Steep slope is a section 

where the angle exceeds T3. These slopes provide a valuable understanding of the characteristics 

captured within the images. Furthermore, we use color representations to visually represent each 

slope category. The objective is to make it simple to understand and analyze the features that are 

visible in the images.  

Table 3.3: Specification of the four classes 

Angles Slope 

𝛳 < T1 Gentle 

T1 ≤ 𝛳 < T2 Moderate 

T2 ≤ 𝛳 < T3 Mid-Moderate 

𝛳 ≥T3 Steep 

 

In figure 3.5 the structure of the converting grayscale images to SMMIG images is displayed. 
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Figure 3.5: Structure of the converting grayscale images to SMMIG images 

 

Figure 3.6 displays grayscale samples of both genuine and fake Danish 1996 coins, as well as 

the SMMIG result.  This image clearly illustrates the distinct slopes present in different parts 

of the coin and shows that S, M, MI, and G matrices have no overlap in their elements. It means 

that each pixel in the image is uniquely categorized into one of these slope categories and is 

assigned to only one slope category, therefore avoiding confusion in the classification process. 

 

 

(a)                                      (b) 
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(c)                                      (d) 

Figure 3.6: Fake and genuine Danish 1996 coins. (a) grayscale height-map image of a genuine 

Danish 1996 coin, (b) an SMMIG image for the genuine coin. (c) grayscale height-map image of 

a fake Danish 1996 coin, and (d) an SMMIG image of the fake coin. 

 

Figure 3.7 analyzes the normal vectors present on the surface of a coin to understand the variations 

in slope and categorize the slopes observed on the coin's surface into four types based on their 

steepness. Steep slopes are sharply inclined, moderate slopes have a moderate incline, mid-

moderate slopes have a mid-moderate incline, and gentle slopes have a slight incline. 

 

Figure 3.7: Normal vector distribution for the SMMIG channels 
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3.2.5 Augmentation 

As previously discussed, we are facing with a lack of coins specially in Chinese coins and some 

degraded coin images in our Danish dataset, and obtaining more fake coins is restricted, which has 

imposed a significant challenge for this study. To compensate for this issue, we used a standard 

augmentation technique in our study. 

Image augmentation is a technique widely used in computer vision tasks, especially for training 

deep learning models in tasks like image classification, object detection, segmentation, and more. 

This technique involves applying various transformations to the original images to create new 

training examples. Augmentation enriches the dataset and improves the model's ability to 

generalize [41, 42]. 

We applied various transformations such as random rotating an image by a certain degree angle of 

20 to help the model learn to recognize objects from different viewpoints. Flipping the images 

horizontally and vertically to create mirror images, to help the model with learning symmetrical 

patterns. Shearing is applied to the input images with the range of between -0.2 and 0.2, and 

zooming involves cropping and resizing the original image to focus on specific regions. These 

techniques are applied randomly and in combination to ensure that the model receives a diverse 

range of images. However, it's crucial to ensure that the augmented images retain their semantic 

content and do not introduce unrealistic variations that could potentially confuse the model. Table 

3.4 indicates six types of coins scanned by the Keyence 3-D scanner and IBIS TRAX scanner used 

in this model. Figure 3.8 shows the sample of input coin images in different types and Figure 3.9 

shows the generated images by Augmentation.  
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Table 3.4:  The specification of coins used in this study. 

Coin Type\Name 
Number of 

Augmented 

Chinese Half Yuan-1942 92 

Chinese Dr. Sun-Yat-sen-Memento 469 

Chinese Fat Man 431 

Chinese One Dollar-Dragon 250 

Chinese Phoenix and Dragon 209 

Danish 20 Kroner - 1996 27 

Danish 20 Kroner - 1990 158 

 

 

 

Figure 3.8: A selection of coin images which are provided as input to the augmentation. 

 

Figure 3.9: Coin images generated by augmentation. 
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Chapter 4 

A few-shot learning-based counterfeit coin detection method 
 

4.1 Few-shot learning and siamese network 

 

Few-shot learning (FSL) is one of the important topics in machine learning for training and 

developing a network with a few samples.  In few-Shot Learning, a similarity score between input 

data and examples from each class is commonly employed for object classification. Metric-based 

networks, such as matching networks, and siamese networks, are frequently used in different 

classification tasks[43, 44]. The Siamese network structure can map the similarity relationship 

between different images into a metric method so that the samples related to the same category 

can be as close as possible, and the samples related to different categories can be as far as 

possible[31]. 

 

4.2 Proposed method 

 

The method used in this project is trained in a supervised way, and the samples are extracted by a 

convolution neural network. Then, the Euclidean distance between features is calculated by a 

metric-based method. It means when the samples are more similar to each other the distance is 

closer. However, errors may occur in the formation of the measurement. The reason is that there 

are several similar types of coins in the training dataset, which makes it difficult to form a stable 

measurement space. For example, three similar samples will be in three different classes, and in 

the first stages of network training, a large number of samples match the requirements of 

acceptable samples. We will discuss more Euclidean distance in this project. 

This study used a dataset consisting of 2,474 coin images belonging to 22 different classes. The 

dataset includes both genuine and counterfeit coin images on both obverse and reverse sides, The 

images were resized to dimensions of 128 × 128 pixels to standardize the experimental conditions. 

A representative illustration of the 22 classes is provided in Figure 4.1 for grayscale images, and 
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Figure 4.2 for SMMIG images. Table 4.1 and Table 4.2 offer a comprehensive overview of the 

coin types included in the dataset. 

To enable experimentation, the dataset was split into two domains: a Main Dataset (Dm) and a 

Target Dataset (Dt). To reduce the complexity of training, we used a pre-trained model, which 

learned from the larger dataset (Dm) and obtained a better understanding of general coin 

characteristics. This understanding is then transferred to the target domain (Dt) to learn new coin 

types from a few images. The main dataset, which aimed to establish a baseline coin classification 

algorithm, included nineteen classes, totaling 2,143 images. In contrast, the target dataset 

comprised the remaining three classes, which include 331 images and served as the dataset for the 

development and evaluation of Few-Shot Learning (FSL) algorithms. 

Each dataset was randomly partitioned into the training set (80%) and validation set (20%). To 

prevent data leakage, images originating from the same coin but captured at different orientations 

and/or conditions were consolidated into the same partition. This approach aimed to ensure the 

integrity of the experimental design and the effectiveness of the developed algorithms. 

 

Table 4.1: The properties of the main dataset 

No. Coin Type/Name Dataset Images 

1 Chinese Half Yuan-1942-(Genuine) Dm 48 

2 Danish 20 Kroner 1990-Queen-(Fake) Dm 143 

3 Danish 20 Kroner 1990-Back-(Fake) Dm 100 

4 Danish 20 Kroner 1990-Back-(Genuine) Dm 64 

5 Danish 20 Kroner 1990-Queen-(Genuine) Dm 101 

6 Danish 20 Kroner 1996-Back-(Fake) Dm 191 

7 Danish 20 Kroner 1996-Back-(Genuine) Dm 57 

8 Danish 20 Kroner 1996-Queen-(Fake) Dm 190 

9 Danish 20 Kroner 1996-Queen-(Genuine) Dm 55 

10 Chinese Fat Man-Back-(Fake) Dm 171 

11 Chinese Fat Man-Back-(Genuine) Dm 74 

12 Chinese Fat Man-(Fake) Dm 167 



30 
 

13 Chinese Fat Man-(Genuine) Dm 89 

14 Chinese Dr. Sun-Yat-sen-Memento-Back-(Fake) Dm 182 

15 Chinese Dr. Sun-Yat-sen-Memento-Back-(Genuine) Dm 83 

16 Chinese Dr. Sun-Yat-sen-Memento -(Fake) Dm 113 

17 Chinese Dr. Sun-Yat-sen-Memento-(Genuine) Dm 119 

18 Chinese One Dollar-Dragon-(Genuine) Dm 109 

19 Chinese Phoenix and Dragon-(Genuine) Dm 87 

 

Table 4.2: The properties of the target dataset 

No. Coin Type/Name Dataset Image 

20 Chinese Half Yuan-1942-(Fake) Dt 54 

21 Chinese One Dollar-Dragon-(Fake) Dt 147 

22 Chinese Phoenix and Dragon-(Fake) Dt 130 
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(a) Main Dataset, Dm      (b) Target Dataset, Dt 

Figure 4.1: Examples from the 22 classes in our grayscale images dataset 

 

 

(a) Main Dataset, Dm                            (b) Target Dataset, Dt 

Figure 4.2: Examples from the 22 classes in our SMMIG images dataset. 
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4.2.1 Baseline Convolutional Neural Networks (CNNs) 

 

The most effective image classification results are achieved through deep learning algorithms 

based on CNNs, which may contain thousands or even millions of tunable parameters [35]. CNNs 

have become a crucial component of modern image analysis, representing the essence of artificial 

intelligence in interpreting visual content. Resembling the intricate processes of the human visual 

system, CNNs operate through a series of layers that progressively extract and interpret 

hierarchical features from images. Starting with rudimentary elements such as edges and colors, 

CNNs navigate deeper layers to identify complex structures such as shapes, textures, and objects. 

By using convolutional operations and learned parameters, these networks encode elaborate 

representations of visual data, facilitating tasks such as image classification, object detection, and 

semantic segmentation [45]. 

We used CNN with the InceptionV3 model pre-trained on the ImageNet dataset [46] with the 

model architecture excluding fully connected layers and specifying input shape for images of 

128x128 pixels. InceptionV3 is known for its high performance in image classification tasks and 

models like inceptionV3 which has been pre-trained on large datasets like ImageNet, are often a 

good choice for small datasets [21, 35]. A global average pooling layer is added to the base 

InceptionV3 model output, creating a feature extractor model using the Keras Model. This is 

followed by another dense layer with ReLU activation and a predictions layer with SoftMax 

activation, producing predictions for 19 classes. The final model is constructed using the Keras 

Model, specifying the inputs and outputs. To retain learned representations, the layers of the base 

InceptionV3 model are frozen during the fine-tuning process. The network contains 311 layers and 

to fine-tune the network for Coins detection the first 249 layers were frozen, while 62 layers were 

set to be trainable. This decision arises from the specific architecture and configuration of the 

InceptionV3 model. This approach helps fine-tune the model for a specific classification task while 

preserving the learned representations. Generally, using neural network classifiers for optimization 

leads to serious overfitting because the number of features is insufficient and because the neural 

network classifier has a large number of parameters to be optimized. It is noteworthy to 

acknowledge that creating a suitable classifier is necessary.  
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Deep neural networks often contain many parameters. When a pre-trained network is fine-tuned 

or used as a feature extractor on a different but related task, it often outperforms an initialized 

network trained from scratch and the performance is particularly noticeable. Our pre-trained model 

(ImageNet) is a dataset with a large-scale computer vision benchmark that includes hundreds and 

thousands of images for the visual recognition challenge. According to the WordNet hierarchy, 

the ImageNet dataset contains 14,197,122 images. Pre-training is absolutely useful in the few-shot 

learning method due to the small size of the dataset. 

 

4.2.2 Siamese network architectures 

 

This study uses a training architecture that focuses on Siamese networks, a specialized neural 

network configuration designed for comparing and matching pairs of inputs that consist of two 

identical branches that share weights and parameters. The architecture comprises two identical 

subnets, drawn from the Inception V3 architecture, featuring 62 tunable layers, and constitutes the 

backbone of the Siamese network. The weight-sharing mechanism between these subnets 

facilitates a collaborative learning process, enabling the network to discern meaningful patterns 

and representations within the input images. Figure 4.3 is the architecture of the generic Siamese 

model. 

 

 

Figure 4.3: The architecture of the generic siamese model. 
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In order to improve the performance of the network, we use a cost function that can differentiate 

between pairs. This function encourages similar examples to be close to each other, and dissimilar 

ones to be placed at least a certain distance apart from each other, as measured by Euclidean 

distance. During training, the adoption of contrastive loss serves as a pivotal component, guiding 

the network to minimize the embedding distances between similar image pairs and maximize those 

between dissimilar pairs. This approach aims to enhance the siamese network with a discriminative 

ability crucial for tasks such as image similarity and matching. Figure 4.4 shows the architecture 

of the siamese network for the two input images based on the contrastive loss function. 

 

 

Figure 4.4: Architecture of the siamese network for the two input images based on the contrastive 

loss function. 

 

The chosen methodology does not only align with the baseline fine-tuning model but also provides 

a framework for a comparative analysis to evaluate the efficacy of siamese networks in learning 

image embedding. Notably, the methodology used in this study aligns with current research and 

extends the literature by demonstrating the effectiveness of siamese networks in learning image 

embeddings. 
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In a subnet siamese network, during the training phase, a pair of images Xi and Xj are fed to the 

network, and the contrastive loss function for the pair is calculated using the euclidean distance 

represented as ‖·‖2. The CNN learns how to map a coin image Xi to fi
 = f (Xi). The margin m is set 

to differentiate between the same class (y = 1) and different classes (y = 0). By minimizing the loss 

function, the network learns to reduce the distance between embeddings for similar classes and 

increase the distance between embeddings for different classes up to the margin m. To implement 

this, we use the margin-based contrastive loss function proposed in [47] which is defined in Eq 

(4.1) as follows: 

𝜑𝑐(𝑋𝑖, 𝑋𝑗) = 𝑦 ∙ ‖𝑓𝑖 − 𝑓𝑗‖
2
+ (1 − 𝑦) ∙ max(0,𝑚 − ‖𝑓𝑖 − 𝑓𝑗‖

2
)   Eq (4.1) 

 

4.2.3 Support Vector Machines (SVM) classifier 

 

Support vector machines are a collection of supervised learning techniques used for classification. 

SVMs select the decision boundary by maximizing the distance from the nearest data points of all 

classes. This decision is known as the maximum margin or gap classifier.  

One of the reasons why Support Vector Machines (SVMs) are used in our project is because they 

can identify and find complicated relationships within data without the need for a lot of data 

transformations. This makes SVM an excellent option especially when working with smaller 

datasets like our datasets that have several features, providing more precise results compared to 

other algorithms [48]. 

In this project, the SVM (Support Vector Machine) classifier is used as a binary classifier for the 

features extracted by a pre-trained neural network and is initialized with a linear kernel to find the 

linear decision boundary that best separates the classes in the feature space. 

 

4.2.4 Few-shots learning architecture and transfer learning 

 

Determining the number of trainable layers and the frozen layers in fine-tuning our neural network 
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was one of the important steps and it depended on the architecture of our model. Typically, our 

goal was to fine-tune the later layers which are closer to the output, and the layers that extract 

higher-level features related to the project and did not keep the earlier layers, which extract more 

general features. Due to the small size of our dataset, we first started by freezing more layers to 

prevent overfitting and help our model to learn specific features and not the general features and 

kept the late layers which allowed us to update during the training. In this case, the late layers are 

only the trainable layers and will update during computation, the frozen layers are set as 

untrainable and remained as fixed to prevent their weights from being updated. The second reason 

to freeze more layers was due to limited computational resources. Since fine-tuning more layers 

requires more computations and has a bad effect on the training speed. We experimented with the 

different balances between the frozen layers and trainable layers to find the optimal value and 

monitored the performance of the fine-tuned model on the validation set. 

The SVM classifier is designed to maximize the gap between the features of different classes [48]. 

For the proposed method, SVM with multiclass classification is used. Each SVM is trained to one 

particular class or positive class and the other classes are considered as negative classes. Each class 

is trained individually. Each classifier was assigned a decision value when all classes were trained. 

Then the final prediction is determined by selecting the class with the highest value [49, 50]. 

To transfer the knowledge from the main dataset Dm to the target dataset Dt, the SVM classifier 

was re-trained with the images of the target dataset. Each class includes a different number of 

images, and a typical fine-tuning was used. Transfer learning refers to training the pre-train model 

and using the knowledge gained in the smaller dataset or target dataset (Dt). Pre-training is essential 

for small datasets to prevent overfitting, and the network can be optimized quickly with less 

training. In the proposed method, the last frozen layers were trained on the Dm and then fine tuned 

with the Dt dataset. Using transfer learning techniques like gradually unfreezing, focusing on the 

particular layers and contrastive learning rates can help fine-tuning the model more efficiently. 
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Chapter 5 

Experimental result and discussion  
 

5.1 Performance metrics 

 

In the proposed algorithm, we implement the training of the network by transfer learning. The 

traditional methods suggest larger batch sizes and more epochs during model training, however, 

large batch sizes and more epochs are demanding computational resources more efficiently, 

particularly when training on GPUs. On the other hand, extremely large batch sizes may lead to 

memory restrictions. Batch sizes between 16 and 128 are commonly used. Smaller batch sizes can 

introduce more noise, while larger batch sizes may provide more stable gradients. During the 

process, monitoring the training and validation loss is important. If the model training and 

validation loss is high that means underfitting, training with more epochs may be beneficial, while 

if the model training and validation loss continues to decrease, overfitting may happen, so reducing 

the number of epochs is useful. Another technique we used to prevent overfitting is early stopping. 

It means that stop training when the validation loss stops improving or starts to degrade. Larger 

datasets may require more epochs for the model, while smaller datasets may converge faster and 

require less epochs. In general, finding the proper batch size and number of epochs requires 

balancing computational efficiency, convergence behavior, and generalization performance. 

Monitoring key metrics during training is essential for determining the optimal values for our 

scenario. 

 

5.2 Experimental setup 

 

The experiment is performed on the Concordia GPU Cluster environment. The cluster uses 

SLURM resource management and a job scheduling engine. We interacted with SLURM from the 

Submit node used to prepare and submit jobs. Jobs get executed on Compute nodes according to 

available resources. The hardware configuration is as follows: Seven nodes with 4x 80GB A100 

GPUs, sliced into 4x 20GB MIGs. Twenty-four, 32-core nodes, each with 512 GB of memory and 
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approximately 10 TB of volatile-scratch disk space. Twelve NVIDIA Tesla P6 GPUs, with 16 GB 

of memory. One AMD FirePro S7150 GPUs, with 8 GB of memory. One node with six (6) V100 

GPUs. Job Management is handled by the Slurm Workload Manager. The software platform is the 

Linux operating system, CUDA version 12.1.1. The programming language is Python version 

3.11, and the deep learning framework is Keras with a TensorFlow backend. 

 

5.3 Network optimization 

5.3.1 Impact of epoch 

 

 In this study, we conducted training experiments with different numbers of epochs to investigate 

the impact of epoch count on the performance of our counterfeit coin detection model. Specifically, 

we trained our model using five different epoch settings: 10, 15, 20, 25, and 30. The choice of 

these epoch values was motivated by the need to explore a range of training durations and assess 

how longer training periods affect the model's ability to learn discriminative features for 

counterfeit coin detection. By systematically varying the number of epochs, our goal was to 

identify the optimal training duration that maximizes model performance while avoiding 

overfitting the training data. The accuracy and loss calculated during the model's training and 

validation are used to evaluate the model. To evaluate the effectiveness of different epoch settings, 

we analyzed the performance metrics of our counterfeit coin detection model on both grayscale 

and SMMIG images across each epoch on the validation set. A summary of the performance 

metrics obtained for each epoch setting on grayscale and SMMIG (Steep, Moderate, Mid-

Moderate, Gentle) images are displayed in Table 5.1 and Table 5.2. 

Table 5.1: Comparison of training epochs vs. accuracy for grayscale images. 

 Trained with GrayScale Images 

Epoch 10 15 20 25 30 

Accuracy  

(%) 
51.18 79.54 92.13 92.31 92.55 

 

https://www.schedmd.com/
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Table 5.2: Comparison of training epochs vs. accuracy for SMMIG images. 

 Trained with SMMIG Images 

Epoch 10 15 20 25 30 

Accuracy  

(%) 
59.23 82.66 94.73 94.80 94.91 

 

 

In Tables 5.1 and 5.2 we demonstrated that the comparison highlights the effect of training epochs 

and dataset characteristics on model accuracy. For the model trained on grayscale images, there is 

a noticeable improvement in accuracy as the number of epochs increases. Particularly, the accuracy 

increases from 51.18% at epoch 10 to 92.13% at epoch 20. Beyond epoch 20, the accuracy remains 

relatively stable between 92.31% to 92.55%. Similarly, for the model trained on SMMIG images, 

there is a consistent improvement in accuracy with increasing epochs. The accuracy rises from 

59.23% at epoch 10 to 94.91% at epoch 30. Notably, accuracy surpasses 90% at epoch 15 and 

continues to improve, indicating the effectiveness of longer training durations. Across all epoch 

settings, the model trained on the SMMIG images consistently outperforms the model trained on 

grayscale images in terms of accuracy. This suggests that the SMMIG images, with their color 

information and additional features, provide more information for the model to learn from 

compared to grayscale images. 

Based on the observed accuracy improvement and computational efficiency, after analyzing the 

performance of our counterfeit coin detection model across different epoch settings, we observed 

that while there is a consistent improvement in accuracy with increasing epochs, the rate of 

improvement decreases significantly after epoch 20. Beyond this point, the incremental gains in 

accuracy become marginal, indicating decreasing returns in performance despite longer training 

durations. Furthermore, it's important to consider the computational resources required for training 

the model. As the number of epochs increases, so does the processing time and computational 

complexity. Given the trade-off between accuracy improvement and computational cost, we 

deemed epoch 20 as the optimal training duration. At this point, the model achieves a high level 

of accuracy (92.13% for grayscale images and 94.73% for SMMIG images), while minimizing the 

computational burden compared to training for longer durations. Therefore, by selecting epoch 20 

as the optimal training duration, we achieved a balance between model performance and 
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computational efficiency. This ensures that our proposed model achieves satisfactory accuracy 

without incurring excessive processing overhead. Figure 5.1 shows the impact of different epoch 

settings on the model performance. 

 

 

Figure 5.1: Impact of different epoch settings on the model performance. 

 

5.3.2 Impact of batch size 

 

Tables 5.3 and 5.4 present the accuracy (%) achieved by the proposed method when trained with 

grayscale and SMMIG images using different batch sizes. Across different batch sizes, we 

observed variations in accuracy. Notably, the model trained with a batch size of 32 achieves the 

highest accuracy of 92.13%, indicating that moderate batch sizes contribute to optimal 

performance. Batch sizes of 16 and 64 also yield relatively high accuracies of 69.19% and 86.92%, 

respectively, however a larger batch size of 128 results in a decrease in accuracy to 80.04%. 

Similarly, for the model trained with SMMIG images, we observed variations in accuracy across 

different batch sizes. The highest accuracy of 94.73% is achieved with a batch size of 32, indicating 

that moderate batch sizes are conducive to optimal performance. Batch sizes of 16, 64, and 128 

also yield relatively high accuracies of 72.49%, 88.20%, and 81.71%, respectively. Across all 
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batch sizes, the model trained on the SMMIG dataset consistently outperforms the model trained 

on grayscale images in terms of accuracy. This suggests that the SMMIG images provide richer 

information for the model to learn from compared to grayscale images. The difference in accuracy 

between grayscale and SMMIG models highlights the importance of dataset characteristics in 

model training. For both grayscale and SMMIG images, the highest accuracies are achieved with 

moderate batch sizes (32). This shows that a batch size of 32 achieves a balance between 

computational efficiency and model performance, making it possible for the model to effectively 

learn from the training data without very large computational resources. Figure 5.2 shows the 

impact of different epoch settings on the model performance. 

 

Table 5.3: Comparison of training batch sizes vs. accuracy for grayscale images. 

 Trained with GrayScale Images 

Batch Size 16 32 64 128 

Accuracy 

(%) 
69.19 92.13 86.92 80.04 

 

Table 5.4: Comparison of training batch sizes vs. accuracy for SMMIG images. 

 Trained with SMMIG Images 

Batch Size 16 32 64 128 

Accuracy 

(%) 
72.49 94.73 88.20 81.71 
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Figure 5.2: Impact of different batch size settings on the model performance. 

 

5.4 Comparison with other methods 

 

Table 5.5 shows the comparison between our proposed method and recent studies published in 

counterfeit coin detection methods. The data used for this comparison was the same as we used to 

train and evaluate our proposed method. First, we calculated the accuracy of the models trained by 

the five datasets and at the end the case of all our datasets. In this comparison, we trained the 

machine with grayscale, two slopes, three slopes[28], and four slope images. The SMMIG method 

has higher accuracy than other methods. 

Table 5.5: Comparison of the proposed method and some other methods in terms of accuracy 

Dataset 
 Grayscale 

images 

2 Slopes 

images 

[28] SMG 

images 
SMMIG images 

Half Yuan-1942 87.13 87.25 88.1 89.92 

20 Kroner 1990 98.31 98.44 98.5 99.25 

20 Kroner 1996 97.57 97.89 98.05 98.11 

Fat Man 92.78 93.1 93.9 95.73 

Dr. Sun-Yat-sen-Memento 89.45 89.11 90.8 94.28 

All Dataset 92.13 92.2 93.49 94.73 
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5.5 Performances of the proposed model 

 

To assess a classification system, there are several standard metrics. Precision measures the quality 

of model predictions for one specific class, and it focuses on the accuracy of positive predictions. 

On the other hand, Recall measures the model's performance for the actual observations of a 

specific class, and it focuses on the ability of the classifier to find all positive instances. These 

metrics are defined for one class at a time and emphasize a specific class. To calculate Recall (Ri), 

Precision (Pi), and F-score for each class, we followed these steps: first, we calculated True 

Positives (TP) number of samples correctly predicted as positive (belonging to the class), False 

Positives (FP) number of samples incorrectly predicted as positive (predicted to belong to the class, 

but actually belong to a different class), False Negatives (FN) number of samples incorrectly 

predicted as negative (predicted not to belong to the class, but actually belong to the class), and 

True Negatives (TN) the number of samples that are correctly predicted as negative (not belonging 

to the class). For our counterfeit coin detector, a TP shows that the system detects a genuine coin 

correctly. A TN shows that the counterfeit coin detector has correctly detected a counterfeit coin. 

The FP is when a counterfeit coin is falsely classified as a genuine one. The FN shows that when 

a genuine coin is classified as a counterfeit one incorrectly. F-Score provides a balance between 

precision and recall, considering both false positives and false negatives. Precision, Recall, and F-

Score can be computed as Eq (5.1), Eq (5.2), and Eq (5.3) respectively: 

 

Precision =
TruePositive

TruePositive+FalsePositive
                          Eq (5.1) 

 

Recall =
TruePositive

TruePositive+FalseNegative
                            Eq (5.2) 

 

𝐹 − Score = 2 ×
Precision×Recall

Precision+Recall
                                   Eq (5.3) 
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We evaluated our counterfeit coin detection methods by testing a different test set with the 

grayscale images and SMMIG images. in our test, each class includes 10 images. We repeated the 

process 10 times to ensure statistical robustness. For each test, we calculated recall, precision, and 

F-score to assess the model's performance. In this scenario, we compared our method using 

grayscale images with SMMIG. The results for precision, recall, and F-score are displayed in Table 

5.6.  

Figure 5.3 shows the precision, recall, and F-score for 19-class models in our test subset of the 

main dataset. The classes are sorted by ascending F-score values. The number of classes with F-

scores below 70% was 4 and it is shown in Figure 5.3 that recall and precision are above 50% for 

all classes.  
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Table 5.6: Comparing the results of grayscale images and SMMIG images in terms of precision, 

recall, and f-score 

Class 

number 

Grayscale SMMIG 

Recall% Precision% F-Score% Recall% Precision% F-Score% 

2 63.45 52.65 57.55 61.35 51 57.7 

15 58.39 61.7 60 59.9 61.89 60.88 

14 71.45 61.29 65.98 72.49 60.54 65.98 

13 68.09 65.08 66.55 73.45 65 68.97 

11 65.06 74.29 69.37 65.84 75.12 70.18 

1 71 74.47 72.69 71.85 75.2 73.49 

9 74.53 75.78 75.15 77.2 73.77 75.45 

18 88.13 68.35 76.99 88.09 68.53 77.09 

7 68.87 88 77.27 70.02 92.13 79.57 

3 83.92 77.13 80.38 84.62 78.38 81.38 

4 80.22 81.83 81.02 81.34 83.53 82.42 

10 80 83.88 81.89 84.06 83.8 83.93 

17 87.18 80.89 83.92 89.78 80.02 84.62 

16 84.18 90.03 87.01 83.65 92.82 88 

12 92.96 89.1 90.99 89.82 89 89.41 

6 94.07 95.62 94.84 93.48 95.62 94.54 

19 93.38 93.23 93.8 97.03 92.93 94.94 

8 96.33 95.79 96.06 96.13 98.01 97.06 

5 96.84 97 96.92 97.24 97.7 97.47 

 

 



46 
 

 

Figure 5.3: Performance metric per class for SMMIG dataset in the test set of the Dm. The classes 

are sorted by ascending F-score values.  
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Chapter 6  
 

Conclusion and future work 
 

6.1 Conclusion 

 

In this study, an improved network structure is proposed to solve the problem of coin detection 

and classification in the case of small samples. This is of great significance especially when 

addressing the challenge of sparse data samples or various classification tasks. This study is 

applied to two different images. The first set consists of the images converted to grayscale, and the 

second set consists of the SMMIG (Steep, Moderate, MidModerate, and Gentle) images. We 

converted the grayscale images to four slope images using the proposed method to provide the 

SMMIG dataset. This study shows that the few-shot learning method by using contrastive loss and 

efficient class boundary has improved the method for counterfeit coin detection. The few-shot 

learning architecture designed for this study is based on the InceptionV3 network. Other 

embedding extraction networks could also be used such as Resnet or VGG. In fact, the author of 

[51] compared the InceptionV3, ResNet, VGG, and MobileNet architectures for a coin 

classification, and showed that the InceptionV3 network produced the highest classification 

accuracies and the computationally efficient and higher-performance architecture was Inception 

V3. After training a general CNN to learn and extract coin characteristics, our method showed an 

accuracy above 92%. The machine that is trained with SMMIG images has a higher accuracy than 

grayscale images. This project demonstrates that it is possible to develop accurate new algorithms 

to identify coin detection methods with very few annotated training images. These few-shot 

learning methods can substantially reduce the cost of new developing methods for counterfeit coin 

detection. The proposed method is capable performing of coin detection and coin classification of 

any type of coin and has remarkable accuracy. Although deep learning techniques are growing so 

fast, they can be very effective in the proposed method. However, fake and genuine samples for 

each type of coin are required to train the model in this method. 
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6.2 Future work 

 

Although this method has achieved good results, for future work, it could be interesting and 

beneficial to extend the SMMIG images to more slopes, especially in medical images and face 

recognition projects. We can divide the coin images into several circular/annular sectors, and try 

with two or three rings to access more features. 
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