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Abstract

Advancements in Topic Modeling: Integrating Bi-Directional Recurrent Attentional Models,
Neural Embeddings, and Flexible Distributions

Pantea Koochemeshkian, Ph.D.

Concordia University, 2024

A primary objective in natural language processing is the classification of texts into discrete cat-

egories. Topic models and mixture models are indispensable tools for this task, as they both acquire

patterns from data in an unsupervised manner. Several extensions to established topic modeling

frameworks are introduced by incorporating more flexible priors and advanced inference methods

to enhance performance in text document analysis. The Multinomial Principal Component Analysis

(MPCA) framework, a Dirichlet-based model, is extended by integrating generalized Dirichlet (GD)

and Beta-Liouville (BL) distributions, resulting in GDMPCA and BLMPCA models. These priors

address the limitations of the Dirichlet prior, such as its independent assumption within components

and restricted covariance structure. Efficiency is further improved by implementing variational

Bayesian inference and collapsed Gibbs sampling for fast and accurate parameter estimation.

Enhancements to the Bi-Directional Recurrent Attentional Topic Model (bi-RATM) are made by

incorporating GD and BL distributions, leading to GD-bi-RATM and BL-bi-RATM models. These

models leverage attention mechanisms to model relationships between sentences, offering higher

flexibility and improved performance in document embedding tasks.

Extensions to the Dirichlet Multinomial Regression (DMR) and deep Dirichlet Multinomial

Regression (dDMR) approaches are achieved by incorporating GD and BL distributions. This inte-

gration addresses limitations related to handling complex data structures and overfitting, with col-

lapsed Gibbs sampling providing an efficient method for parameter inference. Experimental results

on benchmark datasets demonstrate enhanced topic modeling performance, particularly in handling
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complex data structures and reducing overfitting.

Novel approaches are developed by integrating embeddings derived from Bert-Topic with the

multi-grain clustering topic model (MGCTM). Recognizing the hierarchical and multi-scale nature

of topics, these methods utilize MGCTM to capture topic structures at multiple levels of granularity.

By incorporating GD and BL distributions, the expressiveness and flexibility of MGCTM are en-

hanced. Experiments on various datasets show superior topic coherence and granularity compared

to state-of-the-art methods.

Overall, the proposed models exhibit improved interpretability and effectiveness in various nat-

ural language processing and machine learning applications, showcasing the potential of combining

neural embeddings with advanced probabilistic modeling techniques.
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UMAP Uniform Manifold Approximation and Projection
dGDMR Deep Generalized Dirichlet Multinomial Regression
dBLMR Deep Beta-Liouville Multinomial Regression
BLMR Beta-Liouville Multinomial Regression
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Chapter 1

Introduction

1.1 Introduction

In the fast-paced world of technological advances, the emergence of various digital data forms

has significantly opened numerous opportunities for gathering valuable information. Every day,

massive amounts of digital data, including a substantial portion of textual data, are stored in archives

and available on the Internet, necessitating the development of effective and scalable statistical mod-

els to extract hidden knowledge from such rich data sources [1]. Advances in information technol-

ogy combined with social media, where people now share knowledge and skills, have created an

information revolution. Daily created websites are becoming great resources for data science and

analytics, in addition to being stores of important information generally hidden in documents. One

crucial task in machine learning is modeling documents into a vector space, making it essential

to carefully analyze document components, including words, phrases, and paragraphs. Due to the

complexity and variability of massive data collections, processing such unstructured records neces-

sitates efficient machine learning techniques. In topic modeling, such collections are summarized

as documents that use the bag-of-words method [2] to perform on count data, aiming to efficiently

generate topics to make accurate predictions on unseen documents in tasks like retrieval and classi-

fication.

One of the main challenges in the statistical analysis of textual data is capturing and represent-

ing its complexity. Various approaches have been applied to address this issue, leveraging the rapid
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development of information technology. Vast quantities of scientific documents are now freely avail-

able for mining, making the analysis and mining of these documents active research areas for many

years. Data projection and clustering are crucial for document analysis. Projection aims at creat-

ing low-dimensional, meaningful data representations, while clustering groups similar data patterns

[3, 4]. Traditionally, these methods have been studied separately, but they intersect in many appli-

cations [4]. K-means clustering, although widely used for creating compact cluster representations,

does not fully capture document semantics. This gap has led to the adoption of machine learning

and deep learning techniques to address text mining challenges, including text classification [5],

summarization [6], segmentation [7], topic modeling [8], and sentiment analysis [9].

In this thesis, we focus specifically on topic modeling aspects. Topic models are generally clas-

sified into two categories: those based on matrix decomposition, like singular value decomposition

(SVD), and generative models [10]. The matrix decomposition approach, such as probabilistic la-

tent semantic analysis (PLSA) [11, 12], analyzes text by mining and requires a deep understanding

of the corpora structure. PLSA, also known as probabilistic latent semantic indexing (pLSI) [12],

represents documents as a mix of topics by performing matrix decomposition on the term-document

matrix and is effective in identifying relevant words for each topic. In contrast, the generative ap-

proach of topic modeling focuses on the context of words across the entire document corpus. These

models use latent variable models, treating a document as a combination of various topics, each

represented by a random vector of words [4].

However, research by [13] indicates that while the probabilistic latent semantic indexing (pLSI)

model offers some insights, it falls short in clustering and as a generative model due to its inability

to generalize to new documents. To address these limitations, Latent Dirichlet Allocation (LDA)

[13] was introduced, enhancing pLSI by using Dirichlet distribution for topic mixtures. LDA stands

out as a more effective generative model, though it still lacks robust clustering capabilities [4]. The

integration of clustering and projection into a single framework has been a recent focus in this field,

recognizing the need to combine these two approaches [14, 15].

The main issue with current text analysis models is their failure to clearly define a probability

model encompassing hidden variables and assumptions [12, 16, 17, 18]. To address this, varia-

tional Expectation-Maximization (EM) has been utilized, notably in Multinomial PCA (MPCA),
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which links topics to latent mixture proportions in a probabilistic matrix factorization framework

[18, 19]. Extensions of LDA, like its hierarchical [20] and online versions [21], have been devel-

oped, although they lack the integration of Dirichlet priors in modeling. Researchers have explored

alternative models using conjugate priors and methods like Gibbs Sampling and Markov Chain

Monte Carlo (MCMC) [22], which, despite their effectiveness, require longer convergence times

compared to the variational Bayes approach.

A significant constraint in topic modeling is the reliance on the bag-of-words framework, which

simplifies texts to mere word counts, often sidelining the nuanced semantic connections that ex-

ist between words. This limitation has led to the adoption of text embedding techniques such as

Bidirectional Encoder Representations from Transformers (BERT), which generates contextually

enriched vector representations of words and sentences, capturing semantic intricacies and allowing

for deeper topic discernment [23, 24].

Embedding techniques have permeated various natural language processing tasks, from classi-

fication to powering sophisticated neural search engines. Their application in topic modeling has

drawn increasing attention, with methods like Top2Vec, which uses document clustering to iden-

tify central themes, demonstrating the effectiveness of embedding techniques in representing topics

[25, 26]. The integration of embeddings with topic models has shown significant improvements in

capturing the nuanced semantics of text data.

The intricate domains of document clustering and topic modeling share a symbiotic relation-

ship, each enriching the other’s capabilities. Topic models discern subtle, underlying semantics in

documents, offering a refined lens for delineating distinct document groups. This process involves

transforming the document corpus into a topic-centric space, effectively filtering out extraneous

noise and allowing for more precise and coherent clustering [4]. Conversely, clustering documents

can reveal both local and global topics, enhancing the overall understanding of the document col-

lection [27, 28].

Despite these advancements, traditional topic modeling methods often fail to capture the intri-

cate dynamics within document groups. Current models lack the capacity to encapsulate evolv-

ing dynamics within document collections, yielding generalized topics that obscure both local and
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global thematic nuances [13, 12, 16]. A more sophisticated approach acknowledges the symbi-

otic relationship between document clustering and topic modeling, leveraging enhanced clustering

methodologies to inform more precise topic modeling outcomes [29].

1.2 Motivation for topic Modeling

Assume that our goal is to identify the main patterns found in the given text sample. A highly

efficient and versatile approach to text analysis involves examining the frequencies of words within

the text [30]. This method, known as frequency analysis, counts the number of times each word

appears in the document, providing a foundational understanding of the text’s content and structure.

Consider the following paragraph:
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Chapter 2

Background and Preliminary Concepts

2.1 Related Work

In this section we explore the extensive range of literature on different approaches to topic

modeling. The basis of this discipline relies on conventional topic modeling techniques [11, 12], but

has also been greatly influenced by topic-class modeling [31, 32, 33] and the detailed examination

of global and local document characteristics [34, 35].

Innovative strides have been made with the introduction of a two-stage topic extraction model

for bibliometric data analysis, employing word embeddings and clustering for a more refined topic

analysis [36]. This approach provides a nuanced lens to view the thematic undercurrents of scholarly

communication. In recent times, numerous models have emerged to handle diverse types of data

such as videos, images, and documents in various tasks, such as object detection, content detection,

data management, and representation learning for words, phrases, and texts [37]. Undirected graph-

ical models and directed graphical models are the most used representation learning approaches

for documents. The replicated softmax model (RSM) produces distributed representations of texts

using a two-layer undirected graphical model [38]. Many neural network-based techniques have

recently been presented to handle collections of unlabeled documents or data containing different

modalities [39, 37].
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The landscape of sentiment analysis is similarly evolving, with breakthroughs like a term-

weighted neural language model paired with a stacked bidirectional LSTM (Long short-term mem-

ory) framework, enhancing the detection of subtle sentiments like sarcasm in text [40]. Such ad-

vancements offer deeper insights into the complexities of language and its sentiments.

Cross-modal sentiment analysis also takes center stage with deep learning techniques, as seen

in works that identify emotions from facial expressions [41, 42]. These studies, which utilize con-

volutional neural networks and Inception-V3 transfer learning [43], pave the way for multimodal

sentiment analysis, potentially influencing strategies for textual sentiment analysis.

A hybrid deep learning method has been introduced to analyze sentiment polarities and knowl-

edge graph representations, particularly focusing on health-related social media data, like tweets on

monkeypox [44]. This underscores the importance of versatile and dynamic models in interpreting

sentiment from real-time data streams.

Collectively, these contemporary works highlight the expansive applicability and dynamic na-

ture of deep learning across various domains and data types. Their inclusion in our review under-

lines the potential for future cross-disciplinary research, expanding the scope of sentiment analysis

to include both text and image data.

Alongside these emerging approaches, well-established techniques such as principal component

analysis (PCA) and its text retrieval counterpart, latent semantic indexing [45], continue to be piv-

otal. Probabilistic latent semantic indexing (pLSI) [12] and Latent Dirichlet allocation (LDA) [13]

further enrich the discussion on discrete data and topic modeling. Non-negative matrix factoriza-

tion (NMF) [16] has also demonstrated effectiveness, emphasizing the need for models that can

simultaneously handle clustering and projection. Addressing a gap in the literature, a multinomial

PCA model has been proposed to offer probabilistic interpretations of the relationships between

documents, clusters, and factors [18].

Moreover, several probabilistic topic models have been proposed as directed graphical models,

and they have been employed to address various challenges. Some of these models include Latent

Dirichlet Allocation (LDA) [13], Latent Generalized Dirichlet Allocation (LGDA) [46, 47], Latent

Beta-Liouville Allocation (LBA) [48], and Correlated Topic Model (CTM) [49]. They are used to

represent unstructured documents under the assumption that the words in a document arise from a
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mixture of latent topics, with each topic being a distribution over the vocabulary [37].

Existing topic models only address word-level document sequentially. Sequential LDA [50]

evaluates a document’s sequential structure using a hierarchical two-parameter Poisson–Dirichlet

process [51].

Many academics are interested in the lifelong topic model [52, 53, 54]. RNNs [55] are an ef-

fective method for dealing with sequentiality for texts at the word and sentence levels [56, 57]. The

recurrent mechanism implemented in neural networks has achieved remarkable success in the field

of language modeling. However, few subject modeling efforts have investigated the recurring mech-

anism. Several Bayesian models [58, 59] employ the recurrent process to address topic dynamics.

Much research [60, 61] integrates Bayesian models with deep neural networks. These models

are considered deep Bayesian models, and they work with text directly, without considering more

comprehensive details of the text, such as the word sequence in a document. Other studies use neural

networks to generate topic models [62, 63], although these models require word embeddings.

Though few Bayesian models concentrate on language modeling with attention signals, all of

the models that utilize attention mechanisms are neural network-based. Therefore, the authors of

[37] introduced the attention mechanism into the bi-directional recurrent Bayesian topic model for

documents.

This innovation is significant as it merges the strengths of traditional probabilistic models with

modern neural network-based attention mechanisms, potentially enhancing the interpretability and

performance of topic modeling. Directed graphical models have been widely used as probabilistic

topic models to solve various problems. Latent Dirichlet allocation (LDA) [13], correlated topic

model (CTM) [49], collapsed Gibbs sampler scheme for latent GD allocation (CGS-LGDA) [64],

and collapsed Gibbs sampling Beta-Liouville multinomial (CGSBLM) [65] are examples of such

models. These models and their adaptations are employed to model unstructured documents by as-

suming that the words in the document are a mixture of latent topics, and each topic is a distribution

over the vocabulary [37].

The authors in [66] proposed sLDA, a supervised topic model that integrates topic and log-linear

models. Instead of conditioning observed features and predicting topic variables, sLDA uses topic

variables as inputs to the log-linear model to create observed features. sLDA needs to estimate
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probability distributions over all possible feature values by fully specifying the link and dispersion

functions for a GLM, which adds modeling complexity. To tackle the issue, Mimno and Andrew

[67] proposed the Drichlet multinomial regression (DMR) topic model. DMR has an advantage

over sLDA in many applications because it is fully conditional with respect to the observed features.

DMR topic models are readily available and can be used with any set of features without requiring

additional model specifications. Moreover, training a DMR model with complex and dependent

features is as simple as training a model with a single real-valued feature.

As neural networks have become widely used, researchers have explored integrating topic mod-

els with neural models. One approach involves replacing traditional generative, LDA-based topic

models with discriminatively trained models based on neural networks [68]. For instance, the au-

thors in [68] and [69] use neural networks with softmax output layers and learn network parameters

to maximize data likelihood. The authors of [69] also learn n-gram embeddings to identify topics

whose elements are not limited to unigrams. Wan [70] takes a similar approach to dDMR, using a

neural network to extract image representations for image classification, not document exploration

as is typical of topic models. These models avoid approximating the posterior distribution of topic

assignments given tokens by dropping the assumption that topic and word distributions are drawn

from Dirichlet priors. In contrast, this study employs neural networks to learn feature representa-

tions for documents while keeping the core of the topic model unchanged, making dDMR agnostic

to many other LDA extensions [71]. The integration of neural networks with topic models repre-

sents a significant advancement in the field, as it allows for the capture of more complex patterns in

data. However, this approach still maintains the essence of traditional topic models, ensuring that

the foundational principles of topic discovery remain intact. This blend of old and new techniques

exemplifies the ongoing evolution in the field of natural language processing, where combining

methods can yield superior results. Topic modeling has been a fundamental tool in natural language

processing, enabling the discovery of latent themes within large collections of text. Traditional

models such as Latent Dirichlet Allocation (LDA) [13] and NMF [72] describe documents as mix-

tures of latent topics, with each topic characterized by a distribution over words. However, these

models often rely on bag-of-words representations, which fail to capture the semantic relationships

between words, potentially limiting their ability to represent documents accurately [73].
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To address the limitations of conventional models, recent advancements have incorporated neu-

ral embeddings to enhance topic modeling. Embedding techniques, such as Bidirectional Encoder

Representations from Transformers (BERT) [23, 24], generate contextualized word and sentence

embeddings, capturing semantic nuances more effectively than bag-of-words approaches. Mod-

els like Top2Vec and those proposed by [25] leverage these embeddings to cluster documents and

extract topics by identifying words that are semantically close to cluster centroids.

BERTopic represents a significant advancement in this field by integrating state-of-the-art em-

bedding techniques with topic modeling [24]. The model uses pre-trained transformer-based lan-

guage models to generate document embeddings, clusters these embeddings, and extracts coherent

topic representations through a class-based TF-IDF procedure [24]. BERTopic’s workflow involves

three key steps: generating document embeddings with Sentence-BERT (SBERT) [74], reducing

the dimensionality of these embeddings using Uniform Manifold Approximation and Projection

(UMAP) [75], and clustering the reduced embeddings with Hierarchical Density-Based Spatial

Clustering of Applications with Noise (HDBSCAN) [76, 77]. This approach allows for the cre-

ation of flexible and dynamic topic models that can be adjusted based on the embedding techniques

and clustering methods used.

The synergy between document clustering and topic modeling has been explored in models

such as MGCTM [27]. MGCTM integrates document clustering with topic modeling, discovering

both global topics shared across clusters and local topics specific to each cluster. This integration

allows for the simultaneous enhancement of clustering and topic modeling, as the discovery of latent

groups in the document collection facilitates more accurate topic extraction and vice versa.

Compared to traditional models, both BERTopic and MGCTM demonstrate significant improve-

ments in generating coherent and semantically meaningful topics. By leveraging modern embedding

techniques and integrating clustering with topic modeling, these models enhance topic coherence

and provide more representative topics aligned with the underlying document clusters. This integra-

tion is crucial for applications requiring accurate topic discovery and document organization, such

as document summarization, classification, and retrieval [24, 27].

The evolution of topic modeling techniques, as exemplified by BERTopic and MGCTM, under-

scores the importance of integrating advanced neural embeddings and clustering methods to improve
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the semantic coherence and representational accuracy of topics. These advancements highlight the

potential for further research to enhance the interplay between clustering and topic modeling, lever-

aging the latest developments in machine learning and natural language processing.

2.2 Preliminary Concepts

2.2.1 Multinomial PCA

Our focus on the MPCA model and its extensions aims to consolidate these disparate strands

of research, presenting a comprehensive framework for topic modeling that accounts for both clus-

tering and projection, and reflecting the ongoing dialogue within the research community on these

topics.

Multinomial PCA Topic model

Probabilistic approaches to reducing dimensions generally hypothesize that each observation xi

corresponds to a hidden variable, referred to as a latent variable θi. This latent variable exists within

a subspace of dimension K. Typically, the relationship involves a linear mapping (β) within the

latent space coupled with a probabilistic mechanism.

In the probabilistic PCA (pPCA) framework, as detailed in the work by [78], it is posited that

each observation xi originates from a standard Gaussian distributionNK(0K ;ZK). The assumption

of a Gaussian distribution is also employed for the conditional distribution of the observations.

xi|θi ∼ Nv(βθi + µ, σ2ZV ) (1)

where Z is a ”standard” normal distribution, (β, µ) are the model parameters, and σ2 is the

variance that are learned by maximum likelihood inference.

The Gaussian assumption is suitable for real-valued data, yet it is less applicable to non-negative

count data. Addressing this, [18] introduced a variant of pPCA where the latent variables are

modeled as a discrete probability distribution, specifically using a Dirichlet distribution, where as

m ∼ Dir(α):
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D(m;α) =
1

Z(α)

K∏
k=1

mαk−1
k (m) (2)

where α = (α1, . . . , αk) ≥ 0.

Next, the probabilistic function is presumed to follow a multinomial distribution:

• m is modeled as a Dirichlet distribution with parameter α, representing a vector of probabili-

ties that sum to one.

• C is drawn from a Multinomial distribution with m as the probability vector and L as the

number of trials, indicating counts of various outcomes.

• Each wk follows a Multinomial distribution with Ωk as the probability vector and ck the

number of trials, counting the outcomes based on Ωk.

The variables m and w assumed as hidden parameters for each document. For the parameter

estimation of MPCA, first the variable Ω was estimated by the Dirichlet prior onm using parameters

α [18]. The likelihood model for the MPCA is given as follows [19]:

p(m,w|α,Ω) =
η(
∑

k αk)∏
k η(αk)

Cw1,1,w1,2...

∏
K

mak−1
K

∏
k,j

m
wk,j

k Ω
wk,j

k,j (3)

In the MPCA model, each observation xi is conceptualized as a probabilistic combination of

K topics that encapsulate the entire corpus. Here, m represents the mixture weights for the obser-

vation within the latent space, and Ω acts as a global parameter that contains all the corpus-level

information.

As a result, the following equation is derived when the hidden variables have Dirichlet prior

[18]:

m ∼ Dirichlet(α)

Ωk ∼ Dirichlet(2f)

(4)

The following updated formula converges to the local maximum, where η(
∑

k αk)∏
k η(αk)

is a normalizing
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constant for the Dirichlet and r is the total row wise number of words in the document representation

with the k component [18]:

ηj,k,[i] =
η(
∑

k αk)∏
k η(αk)

1

Ωk,jmk,[i]
(5)

mk,[i] =
η(
∑

k αk)∏
k η(αk)

(
− 1 + αk +

∑
j

ηj,k,[i]rj,[i]
)

(6)

Eqs. 7 and 8 are the parameters for a multinomial and a Dirichlet respectively.

Ωk,j =
η(
∑

k αk)∏
k η(αk)

(
2f +

∑
i

ηj,k,[i]rj,[i]
)

(7)

Ψ(ak)−Ψ(
∑
k

ak) =
log(1/k) +

∑
i log(mk,[i])

1 + I
(8)

According to exponential family definition (Appendix 8.1), Eq. 8 reformulates α using its dual

representation. Minka’s approach is used to derive α,where nk is the number of times the outcome

was k [79]:

nk =
∑
i

ϑ(xi − k)

ni =
∑
k

nik

(9)

αnew
k = ak

∑
iΨ(nik + ak)−Ψ(ak)∑

iΨ(nik +
∑

k ak)−Ψ(
∑

k ak)
(10)

Connection between MPCA and LDA

The multinomial PCA model is closely connected to LDA [13] and forms the foundation over

several topic models.

In text analysis, an observation typically refers to a document represented by a sequence of

tokens or words, denoted as wi = win, n = 1 . . . Li. Each word win within a document i is initially
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linked to a topic, which is specified by a vector zin that is derived from a Multinomial(1, βk)

distribution. The model for any given document i can be described as follows:

θk ∼ Dirichlet(α)

z|θ ∼Multinomial(1, θ)

w|z ∼Multinomial(1, βk)

(11)

At the word-level, marginalizing on zin yields a distribution :

win|θi ∼Multinomial(1, βθi) (12)

Furthermore, the distinction between LDA and MPCA is that LDA is a word-level model, whereas

MPCA is a document-level model. Since the GDMPCA and BLMPCA are new variations of the

MPCA, both new models are assumed to be document-level in the following proposed approaches.

2.2.2 Bi-Directional Recurrent Attentional Topic Model

Topic models usually assume that words are interchangeable, which is beneficial for efficient

inference on large datasets [80]. Consequently, certain research has represented text as a sequence

of words, using techniques such as n-gram language modeling [81] and recurrent neural networks

for language modeling [82, 55, 37].

The bi-directional Recurrent Attention Topic Model (bi-RATM) is capable of modeling se-

quences of sentences using attention signals and taking into account sentence dependencies from

two directions. To extend the model’s ability to handle sequential data, a new model called bi-

directional Recurrent Attention Bayesian Process (bi-RABP) has been proposed. The bi-RABP

combines the Bayesian process with an attention mechanism to describe sequential data using re-

current local information. This model is particularly useful for analyzing bi-directional text data

sequences. [37] also proposed a bi-RATM model to represent a probabilistic language model of bi-

directional sentence sequences. The bi-RATM model, which employs bi-directional phrases, was

introduced to acquire superior quality document representations. The performance of the proposed
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model was evaluated through experiments, which demonstrated its effectiveness in document mod-

eling and classification tasks. The bi-RATM model seamlessly integrates recurrent Bayesian tech-

niques with attention signals, thereby enabling the adaptive learning of two-directional sentence

sequences. The Bayesian attention technique can improve the modeling capacity of documents with

bidirectional sentence sequences [37]. To handle large documents, efficient variational inference

and an online bi-RATM algorithm have been devised. This approach allows bi-RATM to handle

stream documents, making it useful for large corpora [37].

2.2.3 bi-RABP Model

Recurrent Chinese Restaurant Process

The Recurrent Chinese Restaurant Process (RCRP) [58], an extension of the Dirichlet Process,

is a distribution over a Dirichlet distribution that models temporal coherence and variation of dis-

tributions over time in documents [58, 83]. In clustering models, the RCRP can be used as a prior

for parameters, including a combination of the RCRP and the bag-of-words model for document

modeling, as illustrated in Fig 2.1a. However, the prior’s importance at the current time needs to be

addressed in this approach. To tackle this issue, the Recurrent Attentional Bayesian Process (RABP)

[37] is presented.

(a) RCRP Model. (b) RABP Model. (c) bi-RABP Model.

Figure 2.1: RCRP, RABP and bi-RABP models with the bag-of-words assumption.
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Recurrent Attentional Bayesian Process

In [37], the Recurrent Attentional Bayesian Process (RABP) model is introduced asRABP (G0, π),

where a base measure G0 and a concentration parameter π are defined. The generative process for

the RABP is provided below.

(1) Draw θ1 from G0

(2) For t > 1

(a) Sample ϵ from a Dirichlet distribution with parameter π, denoted by Dir(π), where ϵ = (ϵ1, ..., ϵc+1)T ;

(b) Assuming ϵi is the probability of drawing θt from δθ(t−i) , where i is between 1 and C, and δa represents a discrete

distribution with probability mass function equal to 1 at point a;

(c) The value of θt is drawn from G0 with probability ϵc+1.

G0 is the basis distribution in this generating process, and C is the length of the timeframe. The

attention signal is defined as ϵ = (ϵ1, ..., ϵc+1), a (C + 1)-dimensional vector. The importance of

a previous neighbor θt−i to θt is represented by it. The sum of ϵ from i = 1 to C + 1 equals 1, as

it is distributed according to the Dirichlet distribution. Fig. 2.1b demonstrates the RABP graphical

model. θt can be represented as follows, based on the generative process, where K is the length of

each θi [37]:

θt|θt−C:t−1, G0, π ∼
C∑
i=1

ϵi · θt−i + ϵC+1 ·G0 (13)

The attention signal ϵi denotes the importance of the preceding parameter within the sequence.

While the Recurrent Chinese Restaurant Process (RCRP) takes into account both the position

and content information, the Recurrent Attentional Bayesian Process (RABP) considers multiple

previous time points with varying attentional weights. On the other hand, the RABP models recur-

rent sequences in discrete space with attention signals [37].

Bi-Directional Recurrent Attentional Bayesian Process

To model sequential data in both directions, the bi-RABP was developed as an extension of the

RABP. In the bi-RABP, θt within bi−RABP (G0, π) can be expressed as follows [37]:

θ|θt−c:t−1, θt+c:t+1, G0, π ∼
C∑
i=1

ϵi · θt−i +

c∑
j=1

ϵj + c · θt+j + ϵ2c+1 ·G0 (14)
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The impact of the backward sequence on θt is calculated in the second term. In contrast to RABP,

bi-RABP generates the current node by considering both the previous and the next nodes simultane-

ously. This approach could be advantageous for sequential data like text, as it allows for capturing

local information from both directions [37]. Fig. 2.1c illustrates the bi-RABP graphical model.

Bi-Directional Recurrent Attentional Topic Model

In linguistics, coherence refers to how closely a sentence’s subject distribution relates to sen-

tences and subsequent sentences. The preceding phrases influence the sentence topics in the forward

direction, which corresponds to the RABP’s motivation. From the backward direction, the subse-

quent sentences, which can be represented by another RABP, have an impact on the sentence topic.

Thus, a sentence’s topic distribution is derived from its preceding and subsequent sentences. For

each sentence, a simple bag-of-words language model is used in same way as the other models

[13, 37].

θsj signifies the topic distribution over K latent topics of the jth sentence sj in document D.

θsj is generated by θt−C:t−1,θt+1:t+C
and G0 using Eq. 14 based on the bi-RABP. Therefore, the

bi-RATM generating process is defined as follows:

(1) To generate each topic k, sample βk from a Dirichlet distribution with parameter vector µ of dimension V.

(2) For each document di, i ∈ {1, ...,M}

(a) Draw νd ∼ Dir(α)

(b) For the sentence sj , j ∈ {1, ..., Si} in the document d:

i. Draw θsj ∼ bi−RABP (δνd , π)

ii. For each word wn, n ∈ {1, ..., Nj} in sentences sj :

A. Draw zn ∼ Mult(θsj )

B. Draw wn ∼ Mult(βzn )

2.2.4 Dirichlet Multinomial Regression

Several topic models consider the relationships between various documents. One such model is

the relational topic model (RTM) [84], which represents the link between a pair of documents by

using a binary random variable, based on the latent topic assignments of both documents[84, 32].
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xLDA [85], on the other hand, is a variation of DMR-based models that incorporates relational

information. It achieves this by employing a relational Gaussian process prior on document-specific

Dirichlet parameters, thereby enabling the model to capture both metadata and document relations.

This kernel-based method is highly adaptable, but it requires effort to make optimization scalable

and to choose a sparse subset of specified relation types [32].

DMR encompasses a wide range of conditional topic models, which provide users with con-

siderable flexibility to define novel features. To represent each document d, a vector, denoted as

xd, is constructed. This vector captures the relevant metadata values as features. To illustrate, if

the presence or absence of authors is a metadata feature, then xd will include a value of 1 in each

position corresponding to the author(s) listed for document d, and a value of 0 in all other positions.

Additionally, to consider the mean value of each topic, a default feature is included in the model,

which always has a value of 1 [67]. A vector, denoted as λt, is assigned to each topic t, with the

length of the vector being equal to the number of features. The generative process for the feature

matrix X is as follows, where X represents the data matrix [67].

Firstly, for each topic, denoted as t, we randomly draw from a normal distribution N (0, σ2I),

assigning the result to λt, and from a Dirichlet distribution D(β), assigning the outcome to ϕt.

Then, for each document d, we compute αdt for every topic t, out of a total of T topics, as the

exponential of the dot product of the document’s metadata vector xd and λt. Next, we make a

random draw from a Dirichlet distribution D(αd), assigning the result to θd, which symbolizes the

document’s topic distributions. Lastly, for each word i in the document, we draw randomly from a

multinomial distribution M(θd), assigning the outcome to zi (the topic allocated to the word), and

from a multinomial distribution M(ϕzi), assigning the result to wi (the actual word generated given

the topic zi). This procedure forms the cornerstone of various topic modeling techniques, essential

in discovering the latent themes in a set of documents.

The model involves three fixed parameters, namely, σ2, which represents the variance of the

prior on parameter values, β, which is the Dirichlet prior on the topic-word distributions, and |T |.

The model is trained using a stochastic EM sampling technique, which involves alternating between

sampling topic assignments from the current prior distribution conditioned on the observed words

and features, and numerically optimizing the parameters based on the topic assignments [67]. To
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implement this, the standard L-BFGS optimizer [86] and Gibbs sampling–based LDA trainer are

used [67].

2.2.5 Deep Dirichlet Multinomial Regression

The dDMR (deep Dirichlet multinomial regression) model is an extension of DMR. It incorpo-

rates a deep neural network to convert input metadata into features, which are then utilized to form

the Dirichlet hyperparameter. DMR uses a log-linear function to parameterize document-topic pri-

ors based on document features. In contrast, dDMR jointly learns a feature representation for each

document and a log-linear function that captures the distribution over topics. As the neural network

maps document features to topic priors, the topic model and neural network parameters are jointly

optimized using gradient ascent and back-propagation [71, 67].

In dDMR, the log-linear model is replaced by an arbitrary function that maps a real-valued

vector of a certain dimension to another representation of a different dimension. The preference

for neural networks stems from their powerful expressive capacity, their proficiency in effectively

generalizing to novel data, and their unique capability for joint training.

Dirichlet multinomial regression (DMR) and dDMR topic modeling are powerful tools in nat-

ural language processing for analyzing text data. DMR models the relationship between a set of

predictor variables and a set of categorical response variables using a multinomial distribution with

a Dirichlet prior. dDMR extends this approach by introducing a neural network layer to capture

nonlinear relationships between predictor and response variables [71, 67].

Inspired by the success of DMR and dDMR, as well as the need for more flexible and robust

approaches, we propose a novel extension that leverages the GD and Beta-Liouville distributions to

further enhance the model’s performance in capturing complex distributions in data.

2.2.6 BERTopic Embedding

In BERTopic, the process begins with generating document embeddings using pre-trained transformer-

based language models, such as SBERT [74]. SBERT transforms sentences and documents into

dense vector representations that capture their semantic content, positioning semantically similar

texts close to each other in the vector space, which is essential for effective clustering. This step
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leverages SBERT’s Siamese network structure to produce embeddings optimized for semantic simi-

larity tasks. While SBERT is commonly used, BERTopic’s design allows for the integration of other

embedding techniques, ensuring adaptability to advancements in embedding technologies [24]. Fol-

lowing the generation of high-dimensional embeddings, the next step involves reducing their dimen-

sionality to facilitate efficient clustering. This is achieved using Uniform Manifold Approximation

and Projection (UMAP), a non-linear dimensionality reduction technique that preserves both lo-

cal and global structures of the data [75]. UMAP projects the high-dimensional embeddings into a

lower-dimensional space, making the clustering process more effective and computationally feasible

by addressing the challenges posed by the high-dimensional space, such as the curse of dimensional-

ity. This combination of generating rich, contextual embeddings and reducing their dimensionality

ensures that BERTopic can produce coherent and contextually relevant topics, leveraging the lat-

est developments in natural language processing while maintaining efficient and accurate clustering

capabilities [24].

2.2.7 Multi-grain clustering topic model

The Multi-Grain Clustering Topic Model (MGCTM) is a sophisticated framework that integrates

document clustering and topic modeling into a cohesive system, enhancing the performance of both

tasks. This model operates under the assumption that a document corpus can be divided into several

latent groups, each characterized by unique local topics and shared global topics. Local topics are

specific to each group, capturing the distinct semantics of the documents within that group, while

global topics represent common themes that span across all groups in the corpus [27].

MGCTM’s generative process begins by assigning each document to a latent group based on a

multinomial distribution parameterized by a prior probability vector π. For each document, two sets

of topic proportions are sampled: local topic proportions θ(l) from a group-specific Dirichlet prior

α(l) and global topic proportions θ(g) from a global Dirichlet prior α(g). To generate words in a

document, a Bernoulli variable δ determines whether each word is generated from a local or global

topic. If δ equals 1, the word is drawn from a local topic distribution β(l); if δ equals 0, the word is

drawn from a global topic distribution β(g) [27].
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To approximate the posterior distribution of latent variables, MGCTM employs variational infer-

ence, which is necessary due to the intractability of exact inference. The model defines a variational

distribution to minimize the Kullback-Leibler (KL) divergence between the true posterior and the

variational distribution. During the Expectation Step (E-Step), the model updates variational pa-

rameters by maximizing the lower bound of the data likelihood while keeping the model parameters

fixed. In the Maximization Step (M-Step), the model parameters are optimized by maximizing the

lower bound with fixed variational parameters.

Key parameter updates in MGCTM include adjusting the multinomial parameters (ζ) to reflect

the probability of a document belonging to each group, refining the Dirichlet parameters (µ(l),

µ(g)) for local and global topic proportions, and optimizing the Bernoulli parameters (τ ) to decide

between local and global topic generation for words. The topic distributions (ϕ(l), ϕ(g)) are also

refined to improve the assignment of words to topics, enhancing the model’s accuracy [27].

By jointly modeling clustering and topic extraction, MGCTM achieves more coherent and dis-

criminative topic representations. This integrated approach distinguishes between fine-grained local

details and broad global themes, significantly improving the meaningfulness of document clusters.

The model’s ability to leverage topic information for clustering results in more precise and relevant

topic representations, making it a powerful tool for analyzing complex document corpora.

21



Chapter 3

Hidden variable models in text

classification and sentiment analysis

3.1 Introduction

Digital data has greatly improved information gathering across many fields in today’s fast-paced

technological world. Effective and scalable statistical models are needed to uncover hidden insights

in massive amounts of digital and textual data created daily [1].

Analyzing textual data is difficult due to its complexity. This issue has been addressed in various

ways. The rapid advancement of information technology has made massive amounts of scientific

documents available for mining, making their analysis an increasingly popular subject for study.

Data projection and clustering are crucial for document analysis, with projection aimed at creat-

ing low-dimensional, meaningful data representations and clustering grouping similar data patterns

[3, 4]. Traditionally, these methods are studied separately, but they intersect in many applications

[4]. K-means clustering, though widely used for creating compact cluster representations, does not

fully capture document semantics. This gap has led to the adoption of machine learning and deep

learning for text mining challenges, including text classification [5], summarization [6], segmenta-

tion [7], topic modeling [8], and sentiment analysis [9].

In this chapter, we will focus on topic modeling aspects specifically matrix decomposition-based

and generative models [10]. PLSA and other matrix decomposition methods mining text require
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corpus structure knowledge to identify relevant words for each topic [11, 12]. Using latent variables,

generative models like LDA analyze word context and view documents as topic mixtures [4]. LDA

enhances PLSA with Dirichlet distributions for enhanced generative capabilities [13]. However,

current models often lack clear probability models with hidden variables [12, 16, 17, 18]. Models

such as variational EM in MPCA, extensions of LDA, Gibbs Sampling, and MCMC methods have

been developed to address this issue, but they require longer convergence times [22].

In this chapter, we introduce two novel models, GDMPCA and BLMPCA, that significantly

improve text classification and sentiment analysis by combining Generalized Dirichlet (GD) and

Beta-Liouville (BL) distributions for a more in-depth understanding of text data complexities [87,

88, 89]. Both models employ variational Bayesian inference and collapsed Gibbs sampling for

efficient and scalable computational performance which is critical for handling large datasets.

The Generalized Dirichlet (GD) distribution, introduced by [90], exhibits a more flexible co-

variance structure than its Dirichlet counterpart. Similarly, the Beta-Liouville (BL) distribution,

enriched with additional parameters, offers improved adjustments for data spread and modeling

efficiency. Our contribution is validated by rigorous empirical evaluation on real-world datasets,

which demonstrates our models’ superior accuracy and adaptability. This work represents a sig-

nificant step forward in text analysis methodologies, bridging theoretical innovation with practical

application, with experimental results demonstrating the relationships between these models.

3.2 Models

In this section, we present two pioneering models, Generalized Dirichlet Multinomial Principal

Component Analysis (GDMPCA) and Beta-Liouville Multinomial Principal Component Analysis

(BLMPCA), designed to revolutionize text classification and sentiment analysis. At the core of

our approach is the integration of GD and BL distributions, respectively, into the PCA framework.

This integration is pivotal, as it allows for a more nuanced representation of text data, capturing the

inherent sparsity and thematic structures more effectively than traditional methods.

The GDMPCA model leverages the flexibility of the Generalized Dirichlet distribution to model
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the variability and co-occurrence of terms within documents, enhancing the model’s ability to dis-

cern subtle thematic differences. On the other hand, the BLMPCA model utilizes the Beta-Liouville

distribution to precisely capture the polytopic nature of texts, facilitating a deeper understanding of

sentiment and thematic distributions. Both models employ variational Bayesian inference, offering

a robust mathematical framework that significantly improves computational efficiency and scalabil-

ity. This approach not only aids in handling large datasets with ease but also ensures that the models

remain computationally viable without sacrificing accuracy.

To elucidate the architecture of our proposed models, we delve into the algorithmic underpin-

nings, detailing the iterative processes that underlie the variational Bayesian inference technique.

This includes a comprehensive discussion of the optimization strategies employed to enhance con-

vergence rates and ensure the stability of the models across varied datasets. Moreover, we provide a

comparative analysis, drawing parallels and highlighting distinctions between our models and exist-

ing text analysis methodologies. This comparison underscores the superior performance of GDM-

PCA and BLMPCA in terms of accuracy, adaptability, and computational efficiency, as evidenced

by extensive empirical evaluation on diverse real-world datasets.

Our exposition on the practical implications of these models reveals their broad applicability

across numerous domains, from automated content categorization to nuanced sentiment analysis in

social media texts. The innovative aspects of the GDMPCA and BLMPCA models, coupled with

their empirical validation, underscore their potential to set a new standard in text analysis, offering

researchers and practitioners alike powerful tools for uncovering insights from textual data.

Table 3.1 summarizes the relevant variables for the proposed models.
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Table 3.1: Parameters of Generalized Dirichlet and Beta-Liouville Distributions

Parameter Generalized Dirichlet (GDMPCA) Beta-Liouville (BLMPCA)

ξ Parameters of GD distribution Not applicable
Υ Not applicable Parameters of BL distribution
m Mixture weights (GD) Mixture weights (BL)
z Topic assignments Topic assignments
w Words in documents Words in documents
Ω Multinomial parameters (words) Multinomial parameters (words)
L Count of words present in a document Count of words present in a document
C,Ωk, ck Multinomial parameters for topics Multinomial parameters for topics

3.3 Generalized Dirichlet Multinomial PCA

Bouguila [91] demonstrated that when mixture models are used, GD distribution is a reasonable

alternative to the Dirichlet distribution for clustering count data.

The GD distribution, like the Dirichlet distribution, is a conjugate prior for the multinomial

distribution, as mentioned above. In addition, the GD distribution includes a covariance matrix that

is more broad [91].

Hence, the variational Bayes method will be employed to create an expansion of the MPCA

model that includes the GD assumption. The GDMPCA is expected to function efficiently due to

the fact that the Dirichlet distribution is a particular example of the GD [92]. GDMPCA, similar

to MPCA, is a comprehensive generative model that is utilized on a corpus. The corpus, defined

by D = {w1, w2, . . . , wM}, represents a collection of M documents. Each document, denoted

as wm, is comprised of a sequence of Nm words. The words in a document are represented by

binary vectors from a vocabulary of V words. If the j-th word is selected, it is represented by

wn
j = 1, otherwise it is represented by wn

j = 0 [46]. The GDMPCA model thereafter delineates

the production of each word in the document via a sequence of stages that encompass c, a d + 1

dimensional binary vector of topics:
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m ∼ GD(ξ)

z ∼Multinomial(m,L)

wk ∼Multinomial(Ωk, ck)

(15)

If the i-th topic is chosen zni = 1 in other cases zni = 0. m = (m1, . . . ,md+1) , where md+1 =

1−
∑d

i=1mi.

The multinomial probability p(wn | zn,Ωw) is conditioned on the variable zn. The distribution

GD(ξ) is a d-variate Generalized Dirichlet distribution characterized by the parameter set ξ =

(a1, b1, . . . , ad, bd), with its probability distribution function denoted by p, where ηi = bi − ai+1 −

bi+1 [46]:

p(m1, . . . ,md|ξ) =
d∏

i=1

η(al + bl)

η(al)η(bl)
mal−1

i (1−
i∑

j=1

mj)
ηi (16)

The GD distribution simplifies to a Dirichlet distribution when bi = a(i+1) + b(i+1).

The mean, variance and the covariance matrix of the GD distribution are as follows [92] :

E(mi) =
al

al + bl

i−1∏
k=1

bk
ak + bk

(17)

var(mi) = E(mi)

(
al + 1

al + bl + 1

i−1∏
k=1

bk + 1

ak + bk
+ 1− E(θi)

)
(18)

and the covariance between mi and mj is given by :

cov(mi,mj) = E(mj)

(
al

al + bl + 1

i−1∏
k=1

bk + 1

ak + bk
+ 1− E(mi)

)
(19)

The covariance matrix of the GD distribution offers greater flexibility compared to the Dirichlet

distribution, due to its more general structure. This additional complexity allows for an extra set

of parameters, providing d − 1 additional degrees of freedom, which enables the GD distribution

to more accurately model real-world data. Indeed, the GD distribution fits count data better than
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the commonly used Dirichlet distribution [93]. The Dirichlet and GD distributions are both mem-

bers of the exponential family (Appendix 8.1). Furthermore, they are also conjugate priors to the

multinomial distribution.

As a result, we can use the following method to learn the model.

The likelihood for the GDMPCA is given as follows:

p(m,w|ξ,Ω) = η(ai + bi)

η(ai)η(bi)
zLw1,1,w1,2...,wk,1,w1,J ...wK,J

m
bk−1−1
k

k−1∏
i=1

[
m

ai−1

i

( k∑
j=1

mj

)bi−1+(ai+bi)]∏
k,j

m
wk,j

k Ω
wk,j

k,j

(20)

Hence, when hidden variables are assigned GD priors, and given a defined universe of words, we

use an empirical prior derived from the observed proportions of words in the universe, denoted by

f , where
∑

k fk = 1. The equation then is structured as follows:

m ∼ GD(ξ)

Ωk ∼ GD(2f)

(21)

where 2 shows the small size of the prior sample size.

First, we will calculate the parameters of GD by utilizing the Hessian matrix as stated in Ap-

pendix 8.2.1, by utilizing equations 20 and 21. In order to determine the most effective variational

parameters, we want to minimize the KL divergence between the variational distribution and the

posterior distributions p(m,w|Ω, ξ). This is accomplished using an iterative fixed-point algorithm.

The variational parameters are specified as follows:

q(m, c|η,Φ) = q(m|η)
K∏
k=1

q(ck|Φk) (22)

As an alternative to the posterior distribution p(m, c, w, ξ,Ω), we determine the variational

parameters η and Φ through a detailed optimization process outlined subsequently. To simplify,

Jensen’s inequality is applied to establish a lower bound on the log-likelihood, which allows us to
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disregard the parameters η and Φ [94]:

log p(w|ξ,Ω) = log

∫ ∑
z

p(m, c, w|ξ,Ω)dm

= log

∫ ∑
z

p(m, c, w|ξ,Ω)q(m, c)
q(m, c)

dm

≥
∫ ∑

z

log p(m, c, w|ξ,Ω)q(m, c)dm

−
∫ ∑

z

q(m, c) log q(m, c)dm

= E[log p(m, c, w|ξ,Ω)]− E[log q(m, c)]

(23)

Consequently, Jensen’s inequality establishes a minimum value for the log likelihood of a spe-

cific variational distribution q(m, c|η,Φ).

The expression L(η,Φ; ξ,Ω) in Eq. 23 represents the second side of the equation. The differ-

ence between both sides of this equation corresponds to the KL divergence between the variational

distribution and the real posterior probability. This reaffirms the significance of the variational vari-

ables, resulting in the subsequent equation:

log p(w|ξ,Ω) = L(η,Φ; ξ,Ω) +D(q(m, c|η,Φ))|p(m, c|x, ξ,Ω) (24)

As shown in Equation 24, the process of maximizing the lower bound L(η,Φ; ξ,Ω) with respect

to η and Φ is analogous to reducing the Kullback-Leibler (KL) divergence between the variational

posterior probability. A lower limit can be described by factorizing the variational distributions:

L(η,Φ; ξ,Ω) = Eq[log p(m|ξ)] + Eq[log p(c|m)] + Eq[log p(w|c,Ω)]

− Eq[log q(m)]− Eq[log q(c)]

(25)
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After that, we can extend Eq. 25 in terms of the model parameters (ξ,Ω) and variational param-

eters (η,Φ).

L(η,Φ; ξ,Ω) =
d∑

l=1

[log η(al + bl)− log η(al)− log η(bl)]

+

d∑
l=1

[al(Ψ(ηl)−Ψ(ηl +Φ))

+ (Ψ(Φ)−Ψ(ηl +Φ))(al − al+1 − bl+1)]

+

N∑
n=1

d∑
l=1

mnl(Ψ(ηl)−Ψ(ηl +Φ))+

N∑
n=1

mn(d+1)(Ψ(Φ)−Ψ(Φ + ηd))

+
N∑

n=1

d+1∑
l=1

v∑
j=1

mnlw
j
n log(Ωij)

−
d∑

l=1

(log η(ηl +Φ) log η(ηl)− log η(Φ))

−
d∑

l=1

[ηl(Ψ(ηl)−Ψ(ηl +Φ)) + (Ψ(Φ)−Ψ(Φ + ηl))

(Φ− ηl+1 − Φl+1)]

(26)

In order to find ϱnl, we proceed to maximize with the respect to ϱnl, so we have the following

equations:

L[mnl] = mnl(Ψ(ηl)−Ψ(ηl +Φ)) +mnl log Ωw(lv) −mnl logmnl

+ τn(

d+1∑
ll=1

mn(ll) − 1)
(27)

Consequently, we include the following:

∂L
∂ϱnl

= (Ψ(ηl)−Ψ(ηl +Φ)) + logΩlv − log ϱnl − 1 + τn (28)

Setting the aforementioned equation to zero results in:
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mnl = Ωlve
(τn−1)e(Ψ(ηl)−Ψ(ηl+Φ)) (29)

Following that, we enhance Eq. 26 with regard to ηi. The terms containing ηi are:

L[ξq] =
d∑

l=1

[al(Ψ(ηl)−Ψ(ηl +Φ)) + (Ψ(ηl)−

Ψ(ηl +Φ))(bl − al+1 − bl+1)]

+
N∑

n=1

mnl(Ψ(ηl)−Ψ(ηl +Φ) +
N∑

n=1

mn(d+1)(Ψ(ηd)−Ψ(ηd +Φd))

−
d∑

l=1

(log η(ηl +Φl)− log η(ηl)− log η(Φl))

+
d∑

l=1

(Ψ(ηl)− ηl(Ψ(ηl +Φl))

+ (Ψ(Φ)−Ψ(Φ + ηl))(Φ− ηl+1 − Φl+1)))

(30)

By equating the derivative of the given equation to zero, we obtain the following updated parame-

ters:

ηl = al +

N∑
n=1

mnl (31)

Φl = bl +
N∑

n=1

d+1∑
l=l+1

mn(l) (32)

The challenge of obtaining empirical Bayes estimates for model parameters ξ and Ω entails uti-

lizing the variational lower bound as an approximation for the marginal log probability, employing

variational parameters η and Φ. The estimations are derived by optimizing this lower bound with

respect to ξ and Ω. Previously, our attention was directed towards the log likelihood of an individual

document. The total variational lower limit is obtained by adding all the lower bounds from each

document. In the M-step, we aim to maximize the bound for the parameters ξ and Ω, which is sim-

ilar to conducting coordinate ascent as seen in Equation 33. The equation for updating Ω is derived

by isolating terms and applying Lagrange multipliers to optimize the constraint related to Ω.
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L[Ω] =
M∑
d=1

Ns∑
n=1

K+1∑
l=1

V∑
j=1

mdnlw
j
dn log Ω(lj) +

K+1∑
l=1

τl
( V∑
j=1

Ωw(ij)

)
(33)

To derive the update equation for Ω(lj), we compute the slope of the variational lower limit with

regard to Ω(lj) and set this derivative to zero. This step guarantees that we identify the exact point

at which the lower limit reaches its maximum value with regard to the parameter Ω(lj).

Ω(lj) ∝
M∑
d=1

Nd∑
n=1

mdnlw
j
dn (34)

The updates mentioned lead to convergence at a local maximum of the log p(Ω, ξ|r), which is the

most efficient choice for all product approximations of the form q(m)q(w) for the joint probability

p(m,w|Ω, ξ, r). This approach ensures that the variational parameters are adjusted to optimally

approximate the true posterior distributions within the constraints of the model.

Φl =
η(ai + bi)

η(ai)η(bi)
mnl(Ψ(ηl)−Ψ(ηl +Φ)) (35)

ηl = al +
N∑

n=1

mnl (36)

Ω(lj) =
η(ai + bi)

η(ai)η(bi)
(2fj

M∑
d=1

Nd∑
n=1

mdnlw
j
dn) (37)

3.3.1 Collapsed Gibbs Sampling Method

Utilizing the fundamental procedure of the GD distribution as delineated in the all-encompassing

generative formula p(c, z, θ, φ, w|,Ω, ξ, µ) within our innovative methodology, we can express it in

the following manner:

p(c, z, θ, φ, w|,Ω, ξ, µ) = p(w|µ)p(θ|Ω)p(φ|ξ)×
N∏

n=1

p(zn|θ)p(xn|znn, φ) (38)

Here, p(θ|Ω) signifies the GD document prior distribution, where Ω = (a1, b1, . . . , an, bn)

serves as the hyperparameter. Simultaneously, p(φ|ξ), with ξ = (α1, β1, . . . , αd, βd) as its hyper-

parameters, represents the GD corpus prior distribution. The process of Bayesian inference seeks
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to approximate the posterior distribution of hidden variables z by integrating out parameters, which

can be mathematically depicted as:

p(c, z|w,Ω, ξ) =W

∫
θ

∫
φ
p(c, z, θ, φ, |Ω, ξ)dφdθ (39)

Crucially, the joint distribution is expressed as a product of Gamma functions, as highlighted in

prior research [13, 95, 64]. This expression facilitates the determination of the expectation value for

the accurate posterior distribution:

p(zij = k|c, w,Ω, ξ) = Ep(z−ij |w,c,Ω,ξ)[p(zij = k|z−ij , c, w,Ω, ξ)] (40)

Employing the GD prior results in the posterior calculation as outlined below:

p(zij = k|z−ij , c, w,Ω, ξ) ∝
[
(N−ij

jk + αwk)(βwk +
∑K+1

l=k+1N
−ij
jl )

(αwkβwk +
∑K+1

l=k+1N
−ij
jl )

]

×
[(N−ij

kvij
+ av)(bv +

∑V+1
d=v N

−ij
kdij

)

av + bv +
∑V+1

d=v N
−ij
kdij

)

]
= A(K)

(41)

This leads to a posterior probability normalization as shown:

p(zij = k|z−ij , x,Ω, ξ) =
A(k)∑K

k′=1A(k
′)

(42)

The sequence from Eq. 40 to Eq. 42 delineates the complete collapsed Gibbs sampling proce-

dure, encapsulated as:

p(zij = k|c, w,Ω, ξ) = Ep(z−ij |w,c,Ω,ξ)

[
A(k)∑K

k′=1A(k
′)

]
(43)

The implementation of collapsed Gibbs sampling in our GD-centric model facilitates sampling

directly from the actual posterior distribution p, as indicated in Eq. 43. This sampling technique

is deemed more accurate than those employed in variational inference models, which typically

approximate the distribution from which samples are drawn [96, 64]. Hence, our model’s precision
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is ostensibly superior.

Upon completion of the sampling phase, parameter estimation is conducted using methodolo-

gies discussed in [96, 97]

3.4 Beta-Liouville Multinomial PCA

For Beta-Liouville Multinomial PCA (BLMPCA) model, we define a corpus as a collection

of documents with the same assumption described in the GDMPCA section. Hence, we have the

following procedure for the model on every single word of the document. The BLMPCA model

generates each word in the document using the following processes, where c is a binary vector of

topics with d+ 1 dimensions:

m ∼ BL(Υ)

z ∼Multinomial(m,L),

wk ∼Multinomial(Ωk, ck)

(44)

The model described utilizes binary variables to represent topics for each word, where a chosen

topic is indicated by zni = 1 and not chosen by zni = 0. The vector zn represents topic assignments

across all topics for a word. Another vector, m, captures the distribution of topic proportions across

the document. Each chosen topic is associated with a multinomial prior over the vocabulary, allow-

ing words to be drawn randomly based on assigned topics. The probability p(wn|zn,Ωw) models

the likelihood of each word given topic assignments and topic-word distributions [98].

Additionally,BL(Υ) represents a d-variate BL distribution with parameters Υ = (κ1, ..., κD, κ, ι).

The probability distribution function of this Beta-Liouville distribution encapsulates the prior beliefs

about the distribution of topics across documents, accommodating complex dependencies among

topics and allowing for flexibility in modeling topic prevalence and co-occurrence within the cor-

pus.
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P (θ1, . . . , θD|Υ) =
η(
∑D

d=1 κd)η(κ+ ι)

η(κ)η(ι)

D∏
d=1

θκd−1
d

η(κd)
×

( D∑
d=1

θd

)κ−
∑D

l=1 κl

×
(
1−

D∑
l=1

θl

)ι−1
(45)

Dirichlet distribution is the special case of BL if ιd = κd+1 + ιd+1 [?, 46].

The statistical measures of the mean, variance, and covariance for the BL distribution are [95]:

E(θd) =
κ

κ+ ι

κd∑D
d=1 κd

(46)

var(θd) = (
κ

κ+ ι
)2

κd(κd + 1)

(
∑D

m=1 κm)(
∑D

m=1 κm + 1)

− E(θd)
2 κ2d
(
∑D

m=1 κm)2

(47)

The covariance between θl and θk is determined by:

Cov(θl, θk) =
κlκk∑D
d=1 κd

( (κ+1)(κ)
(κ+ι+1)(κ+ι)∑D

d=1 κd + 1
−

κ
κ+ι∑D
d=1 κd

)
(48)

The earlier equation illustrates that the covariance matrix of the BL distribution offers a broader

scope compared to the covariance matrix of the Dirichlet distribution. For the parameter estimation

of BLMPCA first the parameter Ω was estimated by the Beta Liouville prior on m using parameters

Υ [18]. The likelihood model for the BLMPCA is given as follows:

p(m,w|Υ,Ω) = η(κ)η(ι)

η(
∑D

d=1 κd)η(κ+ ι)
zLw1,1,w1,2...,wk,1,w1,J ...wK,J

[ 1

η(κd)
mκd−1

k +

∑
k

m
κ−

∑
d κd

k + (1−
∑
k

mk)
ι−1
]∏
k,j

m
wk,j

k Ω
wk,j

k,j

(49)

For the BL priors, we have the following:

m ∼ BL(Υ)

Ωk ∼ BL(2f)

(50)
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In the following step, we will estimate the parameters for Ω using the Beta Liouville prior and the

Hessian matrix (Appendix 8.3). As we explained in the previous section 3.3, we should estimate the

model parameters (Υ,Ω) and the variational parameters (η,Φ), according to Eqs. 22, 23 and 25 to

find mnl and we proceed to maximize with the respect to mnl so we have following equations:

L(η,Φ;Υ,Ω) = log(η(

D∑
d=1

κd)) + log(η(κ+ ι))− log(η(κ))

− log(η(ι))−
D∑

d=1

log η(κd) +
D∑

d=1

κd(Ψ(ηd)−Ψ(
D∑
l=1

ηl)

+ κ(Ψ(κη)−Ψ(κη + ιη)) + ι(Ψ(ιη)

−Ψ(κη + ιη)) + ι(Ψ(ιη)−Ψ(κη + ιη))

+
N∑

n=1

D∑
d=1

mnd(Ψ(ηd)−Ψ(
D∑
l=1

ηl) + Ψ(κη)−Ψ(κη + ιη))

+
N∑

n=1

mn(D+1)(Ψ(ιη)−Ψ(κη + ιη))

+
N∑

n=1

D+1∑
l=1

V∑
j=1

mnlw
j
n log(Ωlj)

−
(
log(η(

D∑
l=1

κl)) + log(η(κ+ ι))− log η(κ)− log η(ι)

−
D∑
i=1

log η(κi)

+

D∑
i=1

κi(Ψ(ηmi)−Ψ(

D∑
l=1

ηm(l))) + κ(Ψ(κmη)

−Ψ(κmηιmη)) + ι(Ψ(ιmη)−Ψ(κmη + ιmη))
)

−
( N∑
n=1

D+1∑
l=1

mnl log(mnl)
)

(51)

35



To find mnl , we proceed to maximize with respect to ϱnl:

L[mnl] = mnl(Ψ(ηi)−Ψ(
D∑
l=1

ηl)) +mnl log ιw(iv) −mnl log(mnl)

+ τn(

D∑
l=1

mnl − 1)

(52)

Therefor we have:

∂L
∂ϱnl

= (Ψ(ηd)−Ψ(
D∑
l=1

ηl)) + log ιw(iv) − log ϱnl − 1 + τn (53)

The next step is to optimize Eq. 51, to find the update equations for the variational; we separate the

terms containing the variational Beta-Liouville parameters once more.

L[ξq] = κd(Ψ(ηd))−Ψ(

D∑
l=1

ηl) + κ(Ψ(κη)−Ψ(κη

+ ιη)) + ι(Ψ(κη)−Ψ(κη + ιη))

+

N∑
n=1

ϱn(Ψ(ηl)−Ψ(

D∑
l=1

ηl) + Ψ(κη)−Ψ(κη + ιη))

+
N∑

n=1

ϱn(D+1)(Ψ(ιη)−Ψ(κη + ιη))

− (log(η(
D∑
l=1

ηl)) + log(η(κη + ιη)− log(η(κη))

− log(η(ιη))− log(η(ηl))

+ ηl(Ψ(ηl) + Ψ(κη)−Ψ(κη + ιη))−Ψ(

D∑
l=1

ηl)

+ κη(Ψ(κη)−Ψ(κη + ιη))

+ ιη(Ψ(ιη)−Ψ(κη + ιη)))

(54)

By choosing the terms that contain variational BL parameters ηi, κη, ιη, we obtain:
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L(ηi) = κi(Ψ(ηi))− (
D∑
l=1

κl)(Ψ(
D∑
l=1

ηl)) +
N∑

n=1

ϱni(Ψ(ηi)−Ψ(
D∑
l=1

ηl))

− (log η(
D∑
l=1

)− log η(ηi) + ηi(Ψ(
D∑
l=1

ηl)
D∑

d=1

ηd)

(55)

and

L[κη] = κ(Ψ(κη)−Ψ(κη + ιη)) + ι(−Ψ(κη + ιη))

+ (Ψ(κη)−Ψ(κη + ιη))

N∑
n=1

D∑
i=1

ϱni

N∑
n=1

ϱn(D+1)(−Ψ(κη + ιη))

− (log(κη + ιη)− log(η(κη)) + κη(Ψ(κη)−Ψ(κη + ιη))

+ ιη(−Ψ(κη + ιη)))

(56)

Setting Eqs. 54, 55 and 56 to zero we have the following update parameters:

ηi = κ+
N∑

n=1

ϱni (57)

κη = κ+
N∑

n=1

D∑
d=1

ϱnd (58)

ιη = ι+

N∑
n=1

ϱn(D+1) (59)

We address the challenge of deriving empirical Bayes estimates for the model parameters Υ and

Ω by utilizing the variational lower bound as a substitute for the marginal log likelihood. This ap-

proach fixes the variational parameters η and Φ at values determined through variational inference.

We then optimize this lower bound to achieve empirical Bayes estimates of the model parameters.

To estimate Ωw, we formulate necessary update equations. The process of maximizing Eq. 54

with respect to Ω results in the following equation:
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L[Ωw] =

M∑
d=1

Ns∑
n=1

D+1∑
l=1

V∑
j=1

ϱdnlw
j
dn log(Ωw(lj)) +

D+1∑
l=1

τl(

V∑
j=1

Ωw(lj) − 1) (60)

Taking the derivatives with the respect to ιw(lj) and setting it to zero gives 8.3.1 :

Ωw(lj) ∝
M∑
d=1

Nd∑
n=1

mdnlw
j
dn (61)

Beta-Liouville Parameter

The objective of this subsection is to determine estimates of the model’s parameters using vari-

ational inference techniques [99].

L[ξ] =
M∑

m=1

(log(η(

D∑
l=1

κl)) + log(η(κ+ ι))− log η(κ)− log η(ι)

−
D∑
i=1

log η(κi) +
D∑
i=1

κi(Ψ(ηmi)−Ψ(
D∑
l=1

ηm(l)))

+ κ(Ψ(κmη)−Ψ(κmηιmη)) + ι(Ψ(ιmη)−Ψ(κmη + ιmη)))

(62)

The derivative of the above equation with respect to the BL parameter is given by:

∂L[ξ]
∂κl

=M(Ψ(
D∑
l=1

)−Ψ(κl)) +
M∑

m=1

(Ψ
′
(ηml)−Ψ(

D∑
l=1

ηm(l)))

∂L[ξ]
∂κ

=M [Ψ(κ+ ι)−Ψ(κ)] +
M∑

m=1

(Ψ(κmη)−Ψ(κmη + ιmη))

∂L[ξ]
∂ι

=M [Ψ(κ+ ι)−Ψ(ι)] +
M∑

m=1

(Ψ(ιmη)−Ψ(κmη + ιmη))

(63)

From the equations presented earlier, it is evident that the derivative in Eq. 54 with respect

to each of the BL parameters is influenced not only by their individual values but also by their

interactions with one another. Consequently, we utilize the Newton-Raphson method to address this

optimization problem. To implement the Newton-Raphson method effectively, it is essential to first

calculate the Hessian matrix for the parameter space, as illustrated below [48]:
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∂2L[ξ]
∂κlκj

=M(−ϑ(i, j)Ψ′
(κi) + Ψ

′
(

D∑
l=1

κl))

∂2L[ξ]
∂κ2

=M(Ψ
′
(κ+ ι)−Ψ

′
(κ))

∂2L[ξ]
∂κ∂ι

=MΨ
′
(κ+ ι)

∂2L[ξ]
∂ι2

=M(Ψ
′
(κ+ ι)−Ψ

′
(ι))

(64)

The Hessian matrix shown above is very similar to the Hessian matrix of the Dirichlet parame-

ters in the MPCA model and the GD parameters in GDMPCA. The matrix mentioned above can be

partitioned into two distinct matrices based on the parameters κd, κ, and ι. The parameter derivation

for each of the two halves will be identical to the Newton-Raphson model offered by MPCA and

GDMPCA.

3.4.1 Inference via Collapsed Gibbs Sampling

The CGS contributes inference by utilizing a Bayesian network to estimate posterior distri-

butions. These distributions are determined by sampling hidden variables through a process of

conditional probabilities.

The CGS provides considerably faster estimation compared to the conventional Gibbs sampler,

which operates in the joint space of latent variables and model parameters. The CGS operates in

the latent variable space, where the model parameters θ and ϱ are marginalized out in the joint

distribution p(X, z, θ, ϱ, w|Ω,Υ, µ). The process of marginalization results in the formation of the

marginal joint distribution p(X, z,w|Ω,Υ, µ), which is precisely defined as follows:

p(x, z, w|Ω,Υ) =W

∫
θ

∫
φ
p(X, z, θ, φ, w|Ω, ξ)dφdθ (65)

Using Eq. 65, the method computes the conditional likelihoods of the hidden variables zij by

taking into account the present state of all other variables, ignoring the specific variable zij itself

[97]. Simultaneously, the CGS algorithm uses the conditional probability of the latent variables

to assign topics to the observed words. In this context, ”−ij” denotes counts or variables without
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including zij [97]. The definition of this particular conditional probability is as follows [100]:

p(zij = k|z−ij , X,w,Ω,Υ) =
p(zij , z

−ij , X,w|Ω,Υ)

p(z−ij , X,w|Ω,Υ)
(66)

The sampling method employed in the collapsed Gibbs approach can be briefly described as an

expectation problem:

p(zij = k|X,w,Ω,Υ) = Ep(z−ij |w,X,Ω,Υ)[p(zij = k|z−ij , X,w,Ω,Υ)] (67)

The collapsed Gibbs sampling Beta-Liouville multinomial procedure consists of two phases for

assigning documents to clusters. First, each document is assigned a random cluster for initialization.

After that, each document is assigned a cluster based on the BL distribution after a set number of

iterations.

The goal is to employ a network of conditional probabilities for each class to extract the latent

variables from the aggregate distribution p(X, z|w,Ω,Υ). The assumption of conjugacy enables

the estimation of the integral in Equation 65.

p(X, z|w, υ) = C
M∏
j=1

[
η(
∑k

i=1 κi)η(κ+ ι)∏k
i=1 η(κi)η(κ)η(ι)

]
×
∏k

i=1 η(κ
′
i)η(κ

′
)η(ι

′
)

η(κ′ + ι′)η(
∑K

i=1 κ
′
i)

(68)

The probability of the multinomial distribution, characterized by the parameter Υ, and the prob-

ability density function of the BL distribution can be represented as:

p(X|Υ) =

∫
p(X|θ)p(θ|κ1, . . . , ι, κ)dθ

=

∫ k∏
k=1

θmk
k

η(
∑k

k=1 κk)η(κ+ ι)

η(κ)η(ι)

K∏
k=1

θκk−1
k

η(κk)

× (
K∑
k=1

θk)
κ−

∑
κk(1−

K∑
k=1

θk)
ι−1dθ

(69)

By evaluating the integral of the probability density function of the Beta-Liouville distribution
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with respect to the parameter θ and adding the updated parameters obtained from the remaining

integral in Eq. 71, we may represent it as a ratio of Gamma functions.

The following shows the updated parameters, where Njk represents counts corresponding vari-

ables [?, 100]:

κ
′
K = κk +

k∑
j=1

Njk

κ
′
= κ+Njk

ι
′
= ι+Njk

(70)

The Eq. 69 then corresponds to:

p(k|κ1, . . . , κk, ι, κ) =
η(
∑K

k=1 κk)η(κ+ ι)η(κ+
∑k−1

k=1mk)η(ι+mk)

η(κ)η(ι)
∏K

k=1 η(κk)η(
∑K

k=1(κk +mk))∏K
k=1 η(κk +mk)

η(κ+
∑K−1

k=1 mk + ι+mk)

(71)

The parameters κ1, . . . , κk, κ, and ι correspond to the Beta-Liouville distribution, while mk

represents the count of documents within cluster k.

After the sampling process, parameter estimation is performed. Subsequently, the empirical

likelihood method [96] is utilized to validate the results using a held-out dataset. Ultimately, this

process leads to the estimation of the class conditional probability p(X|w,Ω,Υ) within the context

of CGS:

p(X|w,Ω,Υ) =
∏
ij

K∑
k=1

1

S

S∑
s=1

θ̃jksφ̃kws (72)

The variables are then calculated as follows:

θ̃jks =
(Njk + κk)(κjk +

∑K+1
l=k+1Njl)(Njk + ιk)

(akbk +
∑K+1

l=k+1Njl)(κj +
∑K+1

l=k+1Njl)
(73)
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φ̃kws =
(Njk + κw)(κjw +

∑K+1
l=k+1Njl)(Njk + ιw)

(κwbw +
∑K+1

l=k+1Njl)(κwj +
∑K+1

l=k+1Njl)
(74)

where S is the size of sample.

3.5 Experimental Results

In this section, we assess the effectiveness of our proposed algorithms through two rigorous

applications: topic modeling for medical texts and sentiment analysis. We evaluate each model by

examining its success rate for each dataset and its perplexity [37, 10, 4, 101], a standard metric in

language modeling, defined as follows:

prep(tdata) = exp
(− ln p(tdata)∑

d |ld|

)
(75)

where |ld| is the length of document d. A lower perplexity score indicates better generalization per-

formance. In addition to the perplexity metric, the success rate is employed as a key performance

indicator to evaluate our models, reflecting the proportion of correctly identified topics within a cor-

pus in topic modeling. The success rate serves as a straightforward measure of a model’s efficacy,

capturing its ability to accurately classify documents into the correct topical categories, which is

essential for effective information retrieval and knowledge discovery in the domain of text analysis.

The main goal of both applications is to compare the GDMPCA, BLMPCA, and MPCA perfor-

mances. The choice of these datasets is pivotal to our research as they offer a broad spectrum of

analytical scenarios, from topic modeling for medical text to sentiment dataset, thus enabling a

thorough investigation into the models’ adaptability and accuracy. By encompassing datasets with

distinct characteristics, we are able to demonstrate the strengths of our proposed models in varied

contexts, highlighting their potential as a versatile tool in the field of text analysis.

3.5.1 Topic Modeling

The objective of text classification is to categorize documents into pre established subject cate-

gories, a problem extensively researched with various approaches [102, 103, 46]. Topic Modeling, a
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common application in natural language processing, is used for analyzing texts from diverse sources

and for document clustering [104]. It identifies key ”topics” in a text corpus using unsupervised sta-

tistical methods, where topics are keyword mixtures with a probability distribution, and documents

are composed of topic mixtures [13]. The ”CMU Book Summary Dataset” was used to validate

model performance, containing plot summaries and metadata for 16,559 books [105]. The models’

accuracy was tested by training on various document numbers and observing the impact of latent

topics on classification accuracy. Using variational Bayes inference, the models showed similar

performances, but BLMPCA excelled, particularly in classifying similar classes.

In Tables 3.2, 3.3 and 3.4, we present the first three topics, the perplexity measurements and

time complexity across all models compared in this study. The success rates obtained using GDM-

PCA, BLMPCA, and MPCA are depicted in Figure 1. These examples demonstrate that our pro-

posed models, which incorporate Generalized Dirichlet and Beta-Liouville distributions, yield more

accurate classifications in scenarios where distinct classes exhibit similarities, in contrast to the tra-

ditional MPCA which is a Dirichlet-based model. Additionally, in Tables 3.5 and 3.6, we showed

the results for the collapsed Gibbs sampling.

Figure 3.1: Success rate for CMU Book data
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Table 3.2: Common topics identified with BLMPCA model in the CMU Book dataset, each defined
by a set of keywords

Topic No Topics
Topic 1 girl, tells, find, two, man, when, return, after, also,

finds, time, kill, later, help, killed
Topic 2 he, one, back, man, time, house, father, police, story,

mother, young, school, love, time, first
Topic 3 tells, they, return, find, girl, back, one, house, story,

after, dragon, find, schools, boy, jack
Topic 4 earth, world, one, human, ship, book, planet, space, human,

systems, time, years, in, people, would
Topic 5 war, novel, new, world, army, story, one, group, book,

states, general, british, president, first, american

Table 3.3: Comparison of the perplexity of MPCA, GDMPCA, and BLMPCA models, indicating
model fit quality across different topic numbers (K) on the CMU Book dataset

K 5 10 15 20

MPCA 1455 1422 1320 1215
GDMPCA 1326 1430 1190 1178
BLMPCA 1319 1203 1198 1177

3.5.2 Topic modeling for medical text

Topic modeling plays a crucial role in navigating the complexities of health and medical text

mining, despite the inherent challenges of data volume and redundancy in this domain. [106] marks

a significant advancement, offering an optimized topic modeling approach that utilizes ensemble

pruning. This method significantly improves the categorization of biomedical texts by enhancing

precision and managing the computational challenges posed by the extensive data typical of medical

documents. With vast amounts of health-related data, specialists struggle to find pertinent informa-

tion, exemplified by the millions of papers on PubMed and hospital discharge records in the United

States in 2015. This study utilizes the TMVAr corpus from PubMed and the TMVAr-Dataset con-

taining health-related Twitter news to evaluate models [107, 108, 109, 110, 111, 112].

TMVAr-Dataset

The TMVar Corpus dataset, comprising 500 PubMed papers with manual annotations of various

mutation mentions, is utilized to evaluate our models. Tables 3.8 and 3.9 elucidate the perplexity
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Table 3.4: Time complexity comparison for MPCA, GDMPCA, and BLMPCA at varying topic
levels (K) on the CMU Book dataset.

K 5 10 15 20
MPCA 107.803 140.1439 150.9242 161.7045

GDMPCA 225.04 230.544 347.056 408.064
BLMPCA 251.64 327.132 352.296 377.46

Table 3.5: Comparison of perplexity scores of MPCA, GDMPCA, and BLMPCA, reflecting model
fit as topic count (K) increases on the CMU Book dataset with CGS inference.

K 5 10 15 20

MPCA 1391.5 1448.6 1516 1580
GDMPCA 1291.2 1316 1428 1413
BLMPCA 1310.4 1324.8 1416 1483.2

comparison and time complexity for the TMVAR dataset, offering insight into the performance of

our proposed methods. Moreover, as shown in Table 3.7, the BLMPCA model successfully extracts

pertinent topics, which are indicative of the model’s nuanced analytical capabilities. Figure 3.2

further illustrates the success rate of our proposed models in comparison to the traditional MPCA,

highlighting the enhanced classification accuracy achieved by our methods.

Moreover, Tables 3.10 and 3.11 present the outcomes of the collapsed Gibbs sampling. As

indicated in the tables, the time complexity of this method is higher, yet the perplexity is lower.

Figure 3.2: Success rate for Tmvar corpus data
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Table 3.6: Time complexity comparison for MPCA, GDMPCA and BLMPCA with increasing top-
ics (K) using CGS inference on the CMU Book dataset

K 5 10 15 20
MPCA 431.212 536.57 634.69 687.818

GDMPCA 19125.2 1138.264 2429.392 2964.51
BLMPCA 1998.84 2289.924 3018.368 3497.14

Table 3.7: Common topics identified with BLMPCA model in the TMVAR dataset, each defined by
a set of keywords

Topic No Topics
Topic 1 mutations, mutation, gene, family, patients, iron, exon,

novel, autosomal, associated
Topic 2 gene, p, cancer, polymorphism, expression, patients,

associated, deletion, study, region
Topic 3 gene, patients, dna mutation, polymorphism, detected,

samples, family, study, results, dna
Topic 4 dna mutation, mutations, homozygous, variants, family, ct,

position, methods, associated, substitution
Topic 5 gene, patients, protein mutation, dna, exon, study, genetic

, cancer, substitution, genotype

3.5.3 Sentiment Analysis

Sentiment analysis, crucial for interpreting emotions in texts from various sources, benefits from

advanced methodologies beyond mere word analysis [113, 114]. Recent studies [115, 116] demon-

strate the effectiveness of deep learning and text mining in capturing nuanced sentiment expressions

[117]. Additionally,[118] highlights the potential of ensemble classifiers in improving sentiment

classification accuracy. These innovations showcase the shift towards more complex analyses that

consider semantics, context, and intensity for a more accurate sentiment understanding.

The ”Multi-Domain Sentiment Dataset” containing Amazon.com product reviews across vari-

ous domains, was used for analysis [119]. This dataset, with extensive reviews on books and DVDs,

Table 3.8: Comparison of the perplexity for MPCA, GDMPCA, and BLMPCA models, indicating
model fit quality across different topic numbers (K) on TMVAR dataset with variation EM inference

K 5 10 15 20

MPCA 2115 2083 1984 1977
GDMPCA 1996 1989 1968 1959
BLMPCA 1983 1965 1954 1949
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Table 3.9: Time complexity comparison for MPCA, GDMPCA and BLMPCA with increasing top-
ics (K) using variation EM inference on TMVAR dataset

K 5 10 15 20
MPCA 9.53 22.543 26.092 28.458

GDMPCA 11.83 24.843 28.392 30.758
BLMPCA 18.57 38.997 44.568 48.282

Table 3.10: Comparison of the perplexity for MPCA, GDMPCA, and BLMPCA models, indicating
model fit quality across different topic numbers (K) on TMVAR dataset with CGS inference

K 5 10 15 20

MPCA 2132.5 2232.8 2376.0 2460
GDMPCA 1360.9 1182.4 1345.6 1938
BLMPCA 1938.5 11350.5 1340.5 1440

provided data for basic analysis. The applied model, using K = 8 topics, assumes each topic com-

prises a bag of words with specific probabilities, and each document is a mix of these topics. The

model’s goal is to learn the distributions of words and topics in the corpus.

We demonstrated that the overall sentiment of the dataset tends to be positive, influenced by

the presence of high-frequency words with positive connotations within the corpus. This obser-

vation is substantiated by the sentiment analysis framework we employed. Tables 3.12 and 3.13

provide a detailed explanation of the perplexity measures and time complexity tested for sentiment

analysis. Furthermore, the findings from the topic modeling of eight emotions and two sentiments

are displayed in Tables 3.19 and 3.20. Fig. 3.3 shows that our proposed models outperform the

previous model. Fig. 3.3 shows success rates for MPCA, GDMPCA, and BLMPCA on sentiment

analysis, with GDMPCA and BLMPCA outperforming MPCA as the number of emotions analyzed

increases. This suggests their better suitability for complex emotion detection tasks in practical

applications.

Additionally, Table 3.16 and Table 3.17 display the accuracy and recall of various classifiers uti-

lized for emotion detection. Furthermore, Tables 3.14 and 3.15 present the results for the collapsed

Gibbs sampling. Table 3.18 shows the F1-scores for various classifiers, indicating the balanced har-

monic mean of precision and recall for SVM, Naive Bayes, and MLP classifiers when applied with

MPCA, GDMPCA, and BLMPCA models in sentiment analysis.
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Table 3.11: Time complexity comparison for MPCA, GDMPCA and BLMPCA with increasing
topics (K) using CGS inference on the TMVAR dataset

K 5 10 15 20
MPCA 45.74 62.89 108.20 200.63

GDMPCA 56.74 163.95 252.35 273.70
BLMPCA 165.57 336.93 376.45 392.71

Table 3.12: Comparison of the perplexity for MPCA, GDMPCA, and BLMPCA models, indicating
model fit quality across different topic numbers (K) on sentiment data with variation EM inference

K 5 10 15 20

MPCA 1551 1531 1542 1529
GDMPCA 1549 1539 1524 1521
BLMPCA 1448 1540 1531 1518

Table 3.13: Time complexity comparison for MPCA, GDMPCA and BLMPCA with increasing
topics (K) using variational EM inference on the sentiment analysis application

K 5 10 15 20
MPCA 130.54 169.702 182.756 195.81

GDMPCA 142.876 185.7388 200.0264 214.314
BLMPCA 158.23 205.699 221.522 237.345

Table 3.14: Comparison of the perplexity for MPCA, GDMPCA, and BLMPCA models, indicating
model fit quality across different topic numbers (K) on sentiment data with CGS inference

K 5 10 15 20

MPCA 1451 1511 1589 1639
GDMPCA 1332 1393 1422 1502
BLMPCA 1316 1401 1413 1498

Table 3.15: Time complexity comparison for MPCA, GDMPCA and BLMPCA with increasing
topics (K) using CGS inference on the sentiment analysis application

K 5 10 15 20
MPCA 830.54 1069.702 1282.756 1495.81

GDMPCA 924.451 1258.78 1319.46 1383.17
BLMPCA 1085.42 1264.24 1390.12 1473.623

Table 3.16: Accuracy comparisons for sentiment analysis classifiers

Classifier SVM NaiveBayes MLP

MPCA 0.62 0.68 0.67
GDMPCA 0.80 0.85 0.87
BLMPCA 0.83 0.88 0.88
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Table 3.17: Recall metrics for SVM, Naive Bayes, and MLP classifiers using MPCA,GDMPCA
and BLMPCA in sentiment analysis.

Classifier SVM NaiveBayes MLP

MPCA 0.61 0.59 0.66
GDMPCA 0.79 0.76 0.85
BLMPCA 0.85 0.82 0.89

Table 3.18: F1-score metrics for SVM, Naive Bayes, and MLP classifiers using MPCA, GDMPCA,
and BLMPCA in sentiment analysis.

Classifier SVM Naive Bayes MLP
MPCA 0.6195 0.6041 0.6697
GDMPCA 0.7999 0.7701 0.8593
BLMPCA 0.8593 0.8313 0.8999

Figure 3.3: Success rate for Sentiment Dataset

Table 3.19: Frequency of emotions identified in text data via topic modeling

Emotions Count

satisfied 78901
angry 21345
happy 6521
joy 82345
disgust 7125
Perfect 45459
Tearful 3451
sad 4387
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Table 3.20: The counts of positive, negative, and unlabeled sentiments identified through sentiment
analysis.

Sentiment Count

Positive 213232
Negative 36308
Unlabeled 23451
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Chapter 4

Bi-Directional Recurrent Attentional

Topic Model Using Flexible Priors

4.1 Introduction

Advances in information technology combined with social media, where people now share

knowledge and skills, have created an information revolution. Daily created websites are becoming

great resources for data science and analytics in addition to being stores of important information

generally hidden in documents. One crucial task in machine learning is modeling documents into

a vector space. Therefore, it is essential to carefully analyze how to use document components,

including words, phrases, and paragraphs. Due to the complexity and variability of massive data

collections, processing such unstructured records necessitates efficient machine learning techniques.

In topic modeling, such collections are summarized as documents that use the bag-of-words method

[120] to perform on count data. The goal is to efficiently generate topics to make accurate predic-

tions on unseen documents in tasks like retrieval and classification.

Capturing and accurately reflecting the complexity of textual data is a significant difficulty in

statistical analysis. To address this issue, scientific document analysis and mining have used ap-

proaches like data projection [3, 4] and clustering. Recently, machine learning and deep learning

have been used for text classification [5], summarization [6], segmentation [7], topic modeling [8],

and sentiment analysis [9]. Probabilistic topic models, such as PLSA [11, 12] and LDA [13], offer
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effective document representation by analyzing word distributions within document corpora, with

LDA improving on PLSA by incorporating Dirichlet distribution variables [121].

In summary, using the bag-of-words assumption, documents comprise collections of words with

varying frequencies. Therefore, much effort has concentrated on obtaining improved representa-

tions for documents in a variety of real-world applications. When confronted with a collection of

documents, probabilistic topic models give a suite of algorithms for obtaining appropriate repre-

sentations. However, when the document set is noisy, topic models can lead to errors in document

representation [37]. Additionally, topic models commonly assume that words are interchangeable,

which facilitates fast inference on extensive collections of text [37]. A document is composed of

a hierarchical arrangement of words, sentences, and paragraphs. Some methods, including n-gram

language modeling [81] and recurrent neural networks (RNN) [56] for language modeling, have

depicted a document as a sequence of words [82, 55].

It is significant to mention that sentence sequences can be found in the documents; therefore, if

the sequential information between sentences is accessible, simply evaluating word information is

insufficient [37]. As a result, a document might be perceived as a forward and backward-moving

sentence sequence. Besides coherence among sentences on a particular topic, it is reasonable to

assume that a sentence has different degrees of association with its neighboring sentences. The

integration of sequential nature and weight signals of sentences in a text for topic coherence at the

sentence level is a vital and essential aspect of the topic model’s architecture [37]. Recurrent neu-

ral networks (RNNs) and their derivatives, such as long short-term memory (LSTM) [122], have

achieved significant success in document modelling by utilizing sequence information [123], in

which texts are seen as word sequences. Furthermore, deep neural networks have used the atten-

tional process to obtain data from the relevant parts of text data [124, 37].

Techniques like LDA [13] are utilized to create models for unstructured texts, which are based

on the concept that the words found in a document are a result of a combination of hidden top-

ics. Each topic is represented by a distribution of the vocabulary used in the text. The authors in

[37] proposed the ”Bi-Directional Recurrent Attentional Bayesian Process (bi-RABP)” [37] model

to eliminate the discrepancy in sequential data handling and authorize local recurrent information

52



transmission across a sequence. The bi-RATM can model sentence sequences by taking into ac-

count sentence dependencies as well as attention signals from two successive sentences [37]. The

common issue of these models is using the Dirichlet prior in their framework. To overcome the

constraints of the Dirichlet prior, more flexible priors like GD and BL can be utilized as alternatives

to reconstruct the generative process. It is noteworthy that the topic components are independent

under the Dirichlet distribution, which removes topic correlation from the model. Since it does not

allow any dependency between distinct topics, the LDA was unable to provide a natural method of

arranging documents [49]. This structure improves the smoothness of grouping and compression

procedures. While conjugate priors have been employed in generating closed-form posteriors due

to their simple structure, some topic modelling methodologies, such as the correlated topic model

[49], have advocated the use of non-conjugate priors as alternatives [125, 126].

This chapter discusses the proposed models, which include the GD-bi-RATM and BL-bi-RATM.

We first describe the properties of the fitting distribution for each proposed model, then estimate the

parameters of each distribution using variational inference, and finally provide the complete learning

algorithm.

4.2 Generalized Dirichlet Bi-Directional Topic Modeling

According to [91], when clustering count data using mixture models, the generalized Dirichlet

(GD) distribution can be a suitable alternative to the Dirichlet distribution. This is because the GD

distribution is also a conjugate prior to the multinomial distribution, and it has a more general co-

variance matrix [127]. To extend the bi-RATM model based on the GD assumption, the variational

Bayes method will be employed. It is expected that the GD-bi-RATM will perform better than the

Dirichlet-based model because the Dirichlet distribution is a special case of the more general GD

distribution, as stated in [92].

The preceding phrases have a forward influence on the sentence contents, which matches with

the RABP’s motivation. The future sentences, which can be represented by another RABP, have an

impact on the sentence contents when read backward. Thus, the method used to derive the topic

distribution of a sentence involves analyzing the sentences that precede and follow it. Similar to the
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other models, a basic bag-of-words language model is used for each sentence[13, 37].

In our analysis, a corpus refers to a group of M documents represented asD = {w1, w2, . . . , wM}.

Each individual document wm is composed of a sequence of Nm words, which can be denoted as

wm = (wm1, . . . , wmNm).

θsj signify the topic distribution over K latent topics of the jth sentence sj in document D.

The binary vector wn is selected from a vocabulary that contains V words [46]. In order to

generate each word in the document using the GD-bi-RATM model, the following steps are taken,

where c is a binary vector with d+ 1 dimensions representing topics.

m ∼ GD(ξ)

ν ∼ GD(ζ)

z ∼Multinomial(m,L)

wk ∼Multinomial(Ωk, ck)

(76)

If the ith topic is chosen, zni = 1; in other cases, zni = 0. m = (m1, . . . ,md+1), where md+1 =

1−
∑d

i=1mi.

The multinomial probability p(wn|zn,Ωw) is conditional on zn. GD(ξ), and GD(ζ) is a d-

variate GD distribution with parameters ξ = (a1, b1, . . . , ad, bd), and (ζ) = (aa1, bb1, . . . , aad, bbd)

and probability distribution function p, where γi = bi − ai+1 − bi+1 [46]:

p(m1, . . . ,md|ξ) =
d∏

i=1

Γ(ai + bi)

Γ(ai)Γ(bi)
mai−1

i (1−
i∑

j=1

mj)
γi (77)

When bi is equal to a(i+1) + b(i+1), the GD distribution can be converted into the Dirichlet

distribution. The GD distribution has a mean and variance as shown below [92]:

E(mi) =
ai

ai + bi

i−1∏
k=1

bk
ak + bk

(78)
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var(mi) = E(mi)

(
ai + 1

ai + bi + 1

i−1∏
k=1

bk + 1

ak + bk
+ 1− E(θi)

)
(79)

The covariance between mi and mj can be expressed as follows

cov(mi,mj) = E(mj)

(
ai

ai + bi + 1

i−1∏
k=1

bk + 1

ak + bk
+ 1− E(mi)

)
(80)

The GD distribution’s covariance matrix is more flexible than the Dirichlet distribution’s; ac-

cordingly, compared to the Dirichlet distribution, the generalized Dirichlet distribution is character-

ized by more significant variability. Additionally, it includes an extra set of parameters that provide

d− 1 more degrees of freedom, making it more suitable for real-world data. Indeed, the GD distri-

bution fits count data better than the commonly used Dirichlet distribution [93].

4.2.1 Model Inference

Inference in the GD-bi-RATM model involves a significant challenge in accurately estimating

the posterior distribution of latent variables based on the observed data. For instance, consider a sen-

tence sj within a document d consisting of a set of words Nj . In the proposed method, calculating

the posterior distribution of latent variables can be achieved through the following steps:

P (ϵj , z|sj , µ, π, ζ) =
P (ϵj , z, sj |µ, π, ζ)
P (sj |µ, π, ζ)

(81)

Based on the conjugate relationship between the prior over-the-topic distribution and the topic

assignment distribution, Gibbs sampling methods can be utilized to train common topic models.

However, bi-RATM makes the posterior distribution computationally intractable because the prior

topic distribution of a phrase is incompatible with this condition. Consequently, variational in-

ference is utilized to provide an approximation of the posterior of a sentence to lower the Kull-

back–Leibler (KL) divergence between the variational and real posterior distributions [94, 128].

The variational technique reinterprets the inference problem as an optimization challenge to come

up with an approximation of the posterior distribution [21]. According to the author in [66], it is pos-

sible to increase the evidence lower bound (ELBO) [129, 37] by increasing the variational posterior
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probability and decreasing the KL divergence between the variational probability and the true pos-

terior probability. In variational inference, the posterior distribution is approximated using a set of

variational distributions with free variational parameters. The purpose is to bring various variational

distributions as close to the true posterior as possible. However, variational inference is employed

to approximate the posterior distribution of the sentence and minimize the Kullback-Leibler (KL)

divergence between the true posterior distribution and the approximate posterior distribution. To

estimate the posterior distribution of each sentence sj containing Nj words in document d, the fully

factorized variational distribution is applied in the following [37]:

q(ϕ, ϵ, z|Ω, ξ, γ) = q(ϕ|Ω)
sj∏
j=1

q(ϵ|ξ)
Nj∏
n=1

q(zn|γn) (82)

Instead of using the posterior distribution p(ϵj , z, sj |µ, π,A), we employ an optimization method

to determine the variational parameters γ and Φ. The process of optimization will be explained in

detail in the following. Jensen’s inequality is used to bound the log-likelihood and eliminate the

parameters γ and Φ for simplicity [94]:

log p(sj |ξ,Ω) = log

∫ ∑
z

p(ϵ, z, sj |ξ,Ω)dm

= log

∫ ∑
z

p(ϵ, z, sj |ξ,Ω)q(ϵ, z)
q(ϵ, z)

dϵ

≥
∫ ∑

z

log p(ϵ, z, sj |ξ,Ω)q(ϵ, z)dm

−
∫ ∑

z

q(ϵ, z) log q(ϵ, z)dm

= E[log p(ϵ, z, sj |ξ,Ω)]− E[log q(ϵ, z)]

(83)

Thus, the lower bound on the log-likelihood for any variational distribution q(ϵ, z|γ,Φ) can be

obtained using Jensen’s inequality.

To measure the difference between the variational and actual posterior probabilities, the KL

divergence is calculated as the disparity between the expressions on the left and right-hand sides of

equation 83. If we denote L(µ, π, ϕ; ξ, γ,Ω) the right side of Eq. 83, to incorporate the variational

parameters dependency, we obtain:

56



Ld(µ, π, ϕ; ξ, γ,Ω) =

sj∑
j=1

Lsj (µ, π; ξ, γ) + Eq[log p(ϕ|ζ)]− Eq[log q(Ω)]

=

sj∑
j=1

Eq[log p(ϵ|π)] +
sj∑
j=1

Nj∑
n=1

Eq[log p(z|ϵ, θ2C+1)]

+

sj∑
j=1

Nj∑
n=1

Eq[log p(wn|zn, µ)]

−
sj∑
j=1

Eq[log q(ϵ)]− sj · Eq[log q(z)] + Eq[log p(ϕ)]

(84)

The first term in the equation can be broken down into the log probability of sentence sj :

Lsj (µ, π; ξ, γ) = Eq[log p(ϵ|π)]− Eq[log q(z)] +

Nj∑
n=1

Eq[log p(zn|ϵ, θj−c:j−1, θj+1:j+c, ϕ)]

+

Nj∑
n=1

Eq[log p(wn|zn, µ)]− Eq[log q(ϵ)]

=

Nj∑
n=1

K∑
k=1

γnk

2c+1∑
l=1

log θ2c+1
lk

ξl∑2c+1
l′=1 ξl′

+ log Γ

( 2c+1∑
l=1

πl

)

+

2c+1∑
l=1

(πl − 1)

(
Ψ(ϵl)−Ψ

( 2c+1∑
l′=1

ξl′

))
−

2c+1∑
l′=1

log Γ(πl′)

+

Nj∑
n=1

K∑
k=1

V∑
v=1

γnkw
v
n log µkv −

Nj∑
n=1

K∑
k=1

γnk log γnk − log Γ

( 2c+1∑
l=1

ξl

)

+

2c+1∑
l=1

log Γ(ξl)−
2c+1∑
l=1

(ξl − 1)

(
Ψ(ξl)−Ψ

( 2c+1∑
l′=1

ξl′

))

(85)

where V is the size of dictionary.

It should be noted that while computing Eq[log p(zn|ϵ, θ2c+1)k] is challenging, we can obtain
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its lower bound for sentence sj as follows:

Nj∑
n=1

Eq[log p(zn|ϵ, θ2c+1)] =

Nj∑
n=1

K∑
k=1

γnkEq[log(ϵ× θ2c+1)k]

≥
Nj∑
n=1

K∑
k=1

2c+1∑
l=1

log θ2c+1
lk Eq[ϵ]

=

Nj∑
n=1

K∑
k=1

γnk

2c+1∑
l=1

log θ2c+1
lk

ξl∑
l′ ξl′

(86)

In order to simplify the inference process, we introduce an augmented matrix notation for the

term Eq[log p(zn|ϵ, θj−c:j−1, θj+1:j+c, ϕ)]. Here, θj−c:j−1 and θj+1:j+c refer to the topic matrices

of the preceding and succeeding sentences for the sentence sj :

Nj∑
n=1

Eq[log p(zn|ϵ, θj−c:j−1, θj+1:j+c, ϕ)] = Eq[log p(zn|ϵ, (θj−c:j−1/θj+1:j+c/ϕ))] (87)
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Finally, by plugging in Eqs. 86 and 84, Ld(µ, π, ζ; ξ, γ,Ω) can be computed as:

Ld(µ, π, ζ; ξ, γ,Ω) = si · log Γ
( 2c+1∑

l=1

πl

)
−

si ·
2c+1∑
l′=1

log Γ(πl′) + si ·
2c+1∑
l=1

(πl − 1)

(
Ψ(ξl)−Ψ

( 2c+1∑
l′=1

ξl′

))

+

sj∑
j=1

Nj∑
n=1

K∑
k=1

γnk

2c+1∑
l=1

log θ2c+1
lk

ξl∑2c+1
l′=1 ξl′

+

sj∑
j=1

Nj∑
n=1

K∑
k=1

V∑
v=1

γnkw
v
n log µkv

− si · log Γ
( 2c+1∑

l=1

ξl

)
+ si ·

2c+1∑
l=1

log(ξl)

− si ·
2c+1∑
l=1

(ξl − 1)

(
Ψ(ξl)−Ψ

( 2c+1∑
l′=1

ξl′

))

−
sj∑
j=1

Nj∑
n=1

K∑
k=1

γnk log γnk + log Γ

( K∑
k=1

ζk

)
−

K∑
k=1

log Γ(ζk)

+
K∑
k=1

(ζK − 1)

(
Ψ(Ω)−Ψ

( K∑
k=1

Ω

))

− log Γ

( K∑
k=1

Ωk

)
+

K∑
k=1

log Γ(Ωk)

−
K∑
k=1

(Ωk − 1)

(
Ψ(Ω)−Ψ

( K∑
k=1

Ω

))

(88)

The attention signal is connected to its corresponding sentence. Therefore, for each sentence, we

aim to maximize ξ as shown in Equation 88. Based on Eq. 88, the equivalent objective function for

phrase sj is as follows:

Lsj
[ξ] =

2c+1∑
l=1

(πl − 1)

(
Ψ(ξl)−Ψ

( 2c+1∑
l′=1

ξl′

))
− log Γ

( 2c+1∑
l=1

ξl

)

+

2c+1∑
l=1

log Γ(ξl)−
2c+1∑
l=1

(ξl − 1)

(
Ψ(ξl)−Ψ

( 2c+1∑
l′=1

ξl′

))

+

Nj∑
n=1

K∑
k=1

γnk

2c+1∑
l=1

log θ2c+1
lk

ξl∑2c+1
l′=1 ξ

′
l

(89)
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We will ignore sj , and then we compute the derivative of ξ as:

L′
(ξl) = Ψ

′
(ξl)

( 2c+1∑
i=1

πi − ξl

)
+

Nj∑
n=1

K∑
k=1

γnk

(
log θ2c+1

lk (
∑2c+1

j=1 ξj)−
∑2c+1

i=1 log θ2c+1
ik ξi∑2c+1

j′=1 ξ
2
j′

)

−Ψ
′
( 2c+1∑

i=1

ξi

) 2c+1∑
l=1

( 2c+1∑
i=1

πi − ξl

)
(90)

Our goal is to optimize Eq. 88 concerning γ. To achieve this, we define the objective function

for γ as:

L′
(ξl) =

Nj∑
n=1

K∑
k=1

γnk

2c+1∑
l=1

log θ2c+1
lk

ξl∑2c+1
l′=1 ξl′

−
Nj∑
n=1

K∑
k=1

γnk log γnk

+

Nj∑
n=1

K∑
k=1

V∑
v=1

γnkw
v
n log µkv

(91)

To optimize ξ with respect to γ, the objective function is constructed as shown in Eq. 88.

The digamma function Ψ, which is the logarithmic derivative of the Gamma function, is used in

the function. The gradient descent method is utilized to compute the estimate of ξ. The topic

distribution θj for the sentence sj can be updated once the attention signals are learned for that

sentence:

θjk =
2c+1∑
l=1

ξl∑
l′ ξ

′
l

θ2c+1
lk (92)

Variational Update for Word Assignment

By applying variational inference to optimize the lower bounds on Equation 89, we obtain the

subsequent updating equations for the variational multinomial. In order to find ϕnl, we proceed to

maximize with respect to ϕnl so we have following equations [46]:
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L[ϕnl] = ϕnl(Ψ(γl)−Ψ(γl + δl)) + ϕnl log βw(lv) − ϕnl log ϕnl+

λn(

d+1∑
ll=1

ϕn(ll) − 1)
(93)

and

L[ϕn(d+1)] = ϕn(d+1)(Ψ(δd)−Ψ(δd + γd) + ϕn(D+1) log β(d+1)v

− ϕn(d+1) log ϕn(d+1) + λn(
d+1∑
ll=1

ϕn(ll) − 1)
(94)

and therefore we have:

∂L

∂ϕnl
= (Ψ(γl)−Ψ(γl + δl)) + log βlv − log ϕnl − 1 + λn (95)

and
∂L

∂ϕn(d+1)
= (Ψ(γd)−Ψ(γd + δd)) + log β(d+1)v − log ϕn(d+1) − 1 + λn (96)

Setting the above equation to zero leads to

ϕnl = βlve
(λn−1)e(Ψ(γl)−Ψ(γl+δl)) (97)

ϕn(d+1) = β(d+1)ve
(λn−1)e(Ψ(δd)−Ψ(δd+γd)) (98)

Considering that
∑d+1

ll=1 ϕn(ll) = 1 for the normalization factor, we have:

eλn−1 =
1∑d

l=1 βlve
(Ψ(γl)−Ψ(γl+δl)) + β(d+1)ve(Ψ(δd)−Ψ(δd+γd))

(99)

For each word wn in sentence sj , a topic index zn is assigned, and γl and δl represent the

variational parameters associated with the likelihood that the word wn is assigned to topic k.

The updated equations are as follows:
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γl = αl +

N∑
n=1

ϕnl
ξl∑
l ξl

(100)

δl = βl +
N∑

n=1

d+1∑
ll=l+1

ϕn(ll)
ξl∑
l ξl

(101)

Variational Update for Document Embedding

The focus of bi-RATM as a topic model is to extract each document’s topic distribution for

document embedding. G0 = δζ is defined in the preceding variational inference and update the topic

distribution for the document, ζ, which is the embedding of one document, is updated. As mentioned

in [37], ϵ2c+1 is considered as the attention signal for νd. The maximization of Ld(µ, π, ζ; ξ, γ,Ω)

with respect to ζd and Ω is performed when µ, π, ξ, γ are fixed in the alternating optimization. The

following equation is derived by setting the derivative with respect to Ω to 0, where αl and βl are

initialized by GD [37].

Λ = αl +

N∑
n=1

ϕnl
ξl∑
l ξl

(102)

Θ = βl +
N∑

n=1

d+1∑
ll=l+1

ϕn(ll)
ξl∑
l ξl

(103)

According to Eqs. 102 and 103, ν may be obtained as a normalized Ω:

ν =
Γ(Λ)Γ(Θ)

Γ(Λ + Θ)
(104)

Parameter Estimation

The terms of Eq. 84 containing the GD parameters ξ are chosen:

L[ξ] =
M∑

m=1

(log(Γ(αl + βl))− log Γ(αl))− log(Γ(βl)))

+
M∑

m=1

(αl(Ψ(γml −Ψ(γml + δml)) + βl(Ψ(δml)−Ψ(δml − γml)))

(105)

62



The above equation’s derivative with respect to GD parameters yields:

∂L[ξ]
∂αl

=M(Ψ(αl + βl)−Ψ(αl)) +
M∑

m=1

(Ψ(γml)−Ψ(γml + δml)) (106)

and
∂L[ξ]
∂βl

=M(Ψ(αl + βl)−Ψ(βl)) +
M∑

m=1

(Ψ(δml)−Ψ(γml + δml)) (107)

In order to solve the Newton-Raphson equation, it is necessary to obtain the Hessian matrix in the

parameter space, which can be used in the optimization process:

∂2L[ξ]
∂α2

l

=M [Ψ
′
(αl + βl)−Ψ

′
(αl)] (108)

∂2L[ξ]
∂β2l

=M [Ψ
′
(αl + βl)−Ψ

′
(βl)] (109)

∂2L[ξ]
∂αlβl

=M [Ψ
′
(αl + βl)] (110)

The update equation of µ is:

µ =
M∑
d=1

Nd∑
n=1

ϕdnl
wj
dn

(111)

4.3 Beta-Liouville Bi-Directional Topic Modeling

For the Beta-Liouville Bi-Directional model (BL-bi-RATM), we define the same scenario as a

collection of documents with the same assumption described in the GD-bi-RATM section. Hence,

we have the following procedure for the model on every single word of the document. The BL-bi-

RATM model proceeds with generating every single word, given a sentence sj from the document

d, with the following steps, where the vector c is a binary vector of topics with (d+ 1) dimensions,

and it is defined as follows:
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τ ∼ BL(Υ)

Ωk ∼ BL(ι)

z ∼Multinomial(τ, L)

wk ∼Multinomial(Ωk, ck)

(112)

If the ith topic is chosen, zni = 1; in other cases, zni = 0. zn is a (D + 1)-dimensional binary of

topics. τ is defined as τ = (τ1, τ2, ..., τD+1) and τD+1 = 1−
∑D

i=1 τi.

For a selected topic, a multinomial prior w over the vocabulary of words is chosen such that

Ωwij = p(wj = 1|zi = 1), from which each word is randomly selected. The probability p(wn|zn,Ωw)

is a multinomial probability based on zn, and BL(Υ) is a d-variate Beta-Liouville distribution that

has parameters Υ = (α1, ..., αD, α, β) and a probability distribution function that can be expressed

as:

P (θ1, . . . , θD|Υ) =
Γ(
∑D

d=1 αd)Γ(α+ β)

Γ(α)Γ(β)

D∏
d=1

θαd−1
d

Γ(αd)
×

( D∑
d=1

θd

)α−
∑D

l=1 αl

×
(
1−

D∑
l=1

θl

)β−1
(113)

The Dirichlet distribution is the special case of BL if βd = αd+1 + βd+1 [?, 46].

To describe the BL distribution, the following statistical properties are used: mean, variance,

and covariance.

E(θd) =
α

α+ β

αd∑D
d=1 αd

(114)

var(θd) = (
α

α+ β
)2

αd(αd + 1)

(
∑D

m=1 αm)(
∑D

m=1 αm + 1)

− E(θd)
2 α2

d

(
∑D

m=1 αm)2

(115)
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and the covariance between θl and θk is given by:

Cov(θl, θk) =
αlαk∑D
d=1 αd

( (α+1)(α)
(α+β+1)(α+β)∑D

d=1 αd + 1
−

α
α+β∑D
d=1 αd

)
(116)

The preceding equation demonstrates that the covariance matrix of the Beta-Liouville distribution

is more general compared to the covariance matrix of the Dirichlet distribution.

4.3.1 Model Inference

For the parameter estimation of BL-bi-RATM, first the parameter Ω was estimated by the Beta-

Liouville prior on τ using parameters Υ [48]. The likelihood model for the BL-bi-RATM is given

as follows:

p(τ, w|Υ,Ω) = Γ(α)Γ(β)

Γ(
∑D

d=1 αd)Γ(α+ β)
zLw1,1,w1,2...,wk,1,w1,J ...wK,J

[ 1

Γ(αd)
ταd−1
k +

∑
k

τ
α−

∑
d αd

k + (1−
∑
k

τk)
β−1
]∏
k,j

τ
wk,j

k Ω
wk,j

k,j

(117)

For the Beta-Liouville priors, we have the following:

τ ∼ BL(Υ)

Ωk ∼ BL(ι)

(118)

In the following step, we will estimate the parameters for Ω using the Beta-Liouville prior and the

Hessian matrix.

As we explained in Section 4.2, we should estimate the model parameters (Υ,Ω) and the vari-

ational parameters (γ,Φ), according to Eqs. 84 and 83, to find τnl. We then proceed to maximize
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with the respect to τnl so we have following equations:

L(γ,Φ;Υ,Ω) = log(Γ(
D∑

d=1

αd)) + log(Γ(α+ β))− log(Γ(α))

− log(Γ(β))−
D∑

d=1

log Γ(αd) +

D∑
d=1

αd(Ψ(γd)−Ψ(

D∑
l=1

γl)

+ α(Ψ(αγ)−Ψ(αγ + βγ)) + β(Ψ(βγ)

−Ψ(αγ + βγ)) + β(Ψ(βγ)−Ψ(αγ + βγ))

+
N∑

n=1

D∑
d=1

τnd(Ψ(γd)−Ψ(
D∑
l=1

γl) + Ψ(αγ)−Ψ(αγ + βγ))

+

N∑
n=1

τn(D+1)(Ψ(βγ)−Ψ(αγ + βγ))

+

N∑
n=1

D+1∑
l=1

V∑
j=1

τnlw
j
n log(Ωlj)

−
(
log(Γ(

D∑
l=1

αl)) + log(Γ(α+ β))− log Γ(α)− log Γ(β)

−
D∑
i=1

log Γ(αi)

+
D∑
i=1

αi(Ψ(γmi)−Ψ(
D∑
l=1

γτ(l))) + α(Ψ(ατγ)

−Ψ(ατγβτγ)) + β(Ψ(βτγ)−Ψ(ατγ + βτγ))
)

−
( N∑
n=1

D+1∑
l=1

τnl log(τnl)
)

(119)

To find τnl, we proceed to maximize with respect to ϕnl:

L[τnl] = τnl(Ψ(γi)−Ψ(

D∑
l=1

γl)) + τnl log βw(iv) − τnl log(τnl)

+ λn(
D∑
l=1

τnl − 1)

(120)
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Therefore we have:

∂L
∂ϕnl

= (Ψ(γd)−Ψ(
D∑
l=1

γl)) + log βw(iv) − log ϕnl − 1 + λn (121)

The next step is to optimize Eq. 119 to find the updated equations for the variational; we separate

the terms containing the variational Beta-Liouville parameters once more.

L[ξq] = αd(Ψ(γd))−Ψ(
D∑
l=1

γl) + α(Ψ(αγ)−Ψ(αγ

+ βγ)) + β(Ψ(αγ)−Ψ(αγ + βγ))

+
N∑

n=1

ϕn(Ψ(γl)−Ψ(
D∑
l=1

γl) + Ψ(αγ)−Ψ(αγ + βγ))

+
N∑

n=1

ϕn(D+1)(Ψ(βγ)−Ψ(αγ + βγ))

− (log(Γ(
D∑
l=1

γl)) + log(γ(αγ + βγ)− log(Γ(αγ))

− log(Γ(βγ))− log(Γ(γl))

+ γl(Ψ(γl) + Ψ(αγ)−Ψ(αγ + βγ))−Ψ(
D∑
l=1

γl)

+ αγ(Ψ(αγ)−Ψ(αγ + βγ))

+ βγ(Ψ(βγ)−Ψ(αγ + βγ)))

(122)

To choose the words that involve Beta-Liouville variables with variations, including γi, αγ , and βγ ,

we obtain:

L(γi) = αi(Ψ(γi))− (

D∑
l=1

αl)(Ψ(

D∑
l=1

γl)) +

N∑
n=1

ϕni(Ψ(γi)−Ψ(

D∑
l=1

γl))

− (log Γ(
D∑
l=1

)− log Γ(γi) + γi(Ψ(
D∑
l=1

γl)
D∑

d=1

γd)

(123)
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and

L[αγ ] = α(Ψ(αγ)−Ψ(αγ + βγ)) + β(−Ψ(αγ + βγ))

+ (Ψ(αγ)−Ψ(αγ + βγ))
N∑

n=1

D∑
i=1

ϕni

N∑
n=1

ϕn(D+1)(−Ψ(αγ + βγ))

− (log(αγ + βγ)− log(Γ(αγ)) + αγ(Ψ(αγ)−Ψ(αγ + βγ))

+ βγ(−Ψ(αγ + βγ)))

(124)

Setting Eqs. 122, 123, and 124 to zero, we have the following update parameters:

γi = α+
N∑

n=1

ϕni (125)

αγ = α+
N∑

n=1

D∑
d=1

ϕnd (126)

βγ = β +
N∑

n=1

ϕn(D+1) (127)

We address the issue of obtaining empirical Bayes estimates of the model parameters Υ and

Ω by employing the variational lower bound as a substitute for the marginal log-likelihood, we

maintain the variational parameters γ and Φ at the values obtained through variational inference.

Afterwards, we calculate the empirical Bayes estimates by maximizing this lower bound in terms

of the model parameters.

We obtain the equations for updating Ωw. When we maximize Eq. 122 in relation to Ω, we

obtain the subsequent equation:

L[Ωw] =

M∑
d=1

Ns∑
n=1

D+1∑
l=1

V∑
j=1

ϕdnlw
j
dn log(Ωw(lj)) +

D+1∑
l=1

λl(

V∑
j=1

Ωw(lj) − 1) (128)

By calculating the derivative with respect to Ωw(lj) and equating it to zero, we obtain:

Ωw(lj) ∝
M∑
d=1

Nd∑
n=1

τdnlw
j
dn (129)
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The updates described below aim to reach a local maximum of a lower bound on log p(Ω,Υ|r),

which is the best possible lower bound for any product approximations q(τ)q(w) of p(τ, w|Ω,Υ, r).

Φl =
Γ(α)Γ(β)

Γ(
∑D

d=1 αd)Γ(α+ β)
τnl(λn − 1)(Ψ(γl)−Ψ(

D∑
l=1

γl) (130)

γl = αl +
N∑

n=1

τnl (131)

Ω(lj) =
Γ(α)Γ(β)

Γ(
∑D

d=1 αd)Γ(α+ β)
(ι

M∑
d=1

Nd∑
n=1

τdnlw
j
dn) (132)

Due to the fact that τ is defined in terms of the KL approximation, the variable Ω disappears

in this scenario. In the second step, the algorithm now optimizes for τ . Since q(w|γ, r, τ) can

be precisely modeled with multinomials, the minimum KL divergence is zero. As a result, the

subsequent updates reach a local threshold of log p(Ω, τ |r)

γl =
Γ(α)Γ(β)

Γ(
∑D

d=1 αd)Γ(α+ β)
Ωτnl (133)

τnl =
Γ(α)Γ(β)

Γ(
∑D

d=1 αd)Γ(α+ β)
Ωlve

(λn−1)e(Ψ(γi)−Ψ(
∑D

ii=1 γii) (134)

Ωij =
Γ(α)Γ(β)

Γ(
∑D

d=1 αd)Γ(α+ β)
(ι+ (

∑
n

e(λn−1)e(Ψ(γi)−Ψ(
∑D

ii=1 γii)) (135)

Considering that
∑D+1

d=1 ϕn(d) = 1, for the normalization factor we have:

eλn−1 =
1

τ(D+1)ve(λn−1)e(Ψ(βγ)−Ψ(αγ+βγ)) + τlve(λn−1)e(Ψ(γi)−Ψ(
∑D

ii=1 γii))
(136)
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Variational Beta-Liouville for Word Level

In order to derive the update equations for the variational Bayesian learning, we follow the

procedure of separating the terms that involve the variational Bayesian learning parameters.

L[ξq] = αd(Ψ(γd))−Ψ(

D∑
l=1

γl) + α(Ψ(αγ)−Ψ(αγ + βγ))

+ β(Ψ(αγ)−Ψ(αγ + βγ))

+
N∑

n=1

ϕni(Ψ(γi)−Ψ(
D∑
l=1

γl) + Ψ(αγ)−Ψ(αγ + βγ))

+
N∑

n=1

ϕn(D+1)(Ψ(βγ)−Ψ(αγ + βγ))

− (log(Γ(

D∑
l=1

γl)) + log(γ(αγ + βγ)− log(Γ(αγ))

− log(Γ(βγ))− log(Γ(γi))

+ γi(Ψ(γi) + Ψ(αγ)−Ψ(αγ + βγ))

−Ψ(
D∑
l=1

γl) + αγ(Ψ(αγ)−Ψ(αγ + βγ))

+ βγ(Ψ(βγ)−Ψ(αγ + βγ)))

(137)

By choosing the terms that involve the variational Bayesian learning BL variables γi, αγ , βγ ,

we have:

L(γi) = αi(Ψ(γi))− (
D∑
l=1

αl)(Ψ(
D∑
l=1

γl)) +
N∑

n=1

ϕni(Ψ(γi)−Ψ(
D∑
l=1

γl))

− (log Γ(
D∑
l=1

)− log Γ(γi) + γi(Ψ(
D∑
l=1

γl)
D∑

d=1

γd)

(138)

and
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L[αγ ] = α(Ψ(αγ)−Ψ(αγ + βγ)) + β(−Ψ(αγ + βγ))

+ (Ψ(αγ)−Ψ(αγ + βγ))
N∑

n=1

D∑
i=1

ϕni

+

N∑
n=1

ϕn(D+1)(−Ψ(αγ + βγ))− (log(αγ + βγ)− log(Γ(αγ)) + αγ(Ψ(αγ)

−Ψ(αγ + βγ)) + βγ(−Ψ(αγ + βγ)))

(139)

Taking the derivative of the above equations with respect to their Bayesian learning parameters

gives:

∂L[γi]

∂γi
= αiΨ

′
(γi)−Ψ

′
(

D∑
l=1

γl)

D∑
l=1

αl +Ψ
′
(γi)

N∑
n=1

ϕni −DΨ
′
(

D∑
l=1

γl)

N∑
n=1

ϕni

− (Ψ(
D∑
l=1

γl) + γiΨ
′
(γi)−Ψ

′
(

D∑
l=1

γl)
D∑

d=1

γl − ψ(
D∑
l=1

γl))

(140)

and

∂L[γi]

∂αγ
= α(Ψ

′
(αγ)−Ψ

′
(αγ + βγ))− β(Ψ

′
(αγ + βγ))

+ (Ψ
′
(αγ)−Ψ

′
(αγ + βγ))

N∑
n=1

D∑
d=1

ϕnd

−
N∑

n=1

ϕn(D+1)(Ψ
′
(αγ + βγ))− (αγ(Ψ

′
(αγ)−Ψ

′
(αγ + βγ))

− βγ(Ψ
′
(αγ + βγ))

(141)

The variational BL update equations are obtained by setting the aforementioned equations to

zero.

γi = α+
N∑

n=1

ϕni (142)
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αγ = α+

N∑
n=1

D∑
d=1

ϕnd (143)

βγ = β +
N∑

n=1

ϕn(D+1) (144)

Variational Parameter for Document Level

As we mentioned in Section 4.2.1, bi-RATM is a form of topic model that focuses on extracting

each document’s topic distribution for document embedding. ϵ2c+1 is interpreted as the attention

signal for Φd, as per [37] description of the bi-RABP. G0 = δΦd is defined in the preceding vari-

ational inference and updates the topic distribution for the whole document, Φd, which represents

the encoding of a single document. As detailed in the paper by [37], ϵ2c+1 is used as the attention

signal for Υd. When {Υ, π, ξ, γ} During the alternating optimization process, these parameters are

assumed constant, L(τ,Φ;Υ,Ω) is maximized with respect to Φd and Ω [37].

The following equation is derived by setting the derivative with respect to Ω to 0, where αd, α,

and β are initialized by BL [48].

κ = αd +
N∑

n=1

ϕni (145)

Υ = α+

N∑
n=1

D∑
d=1

ϕnd (146)

ϱ = β +

N∑
n=1

ϕn(D+1) (147)

According to Eqs. 145, 146, and 147, ν may be obtained as a normalized Ω:

ν =
Γ(
∑D

d=1 αd)Γ(α+ β)

Γ(α)Γ(β)
(148)
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Beta-Liouville Parameters

The aim of this subsection is to compute the parameter estimates of the model using variational

inference.

L[ξ] =
M∑

m=1

(log(Γ(
D∑
l=1

αl)) + log(Γ(α+ β))− log Γ(α)

− log Γ(β)−
D∑
i=1

log Γ(αi) +
D∑
i=1

αi(Ψ(γmi)

−Ψ(

D∑
l=1

γm(l))) + α(Ψ(αmγ)−Ψ(αmγβmγ)) + β(Ψ(βmγ)

−Ψ(αmγ + βmγ)))

(149)

The derivative of the equation above with respect to the Bayesian learning parameter is expressed

as:

∂L[ξ]

∂αl
=M(Ψ(

D∑
l=1

)−Ψ(αl)) +
M∑

m=1

(Ψ
′
(γml)−Ψ(

D∑
l=1

γm(l)))

∂L[ξ]

∂α
=M [Ψ(α+ β)−Ψ(α)] +

M∑
m=1

(Ψ(αmγ)−Ψ(αmγ + βmγ))

∂L[ξ]

∂β
=M [Ψ(α+ β)−Ψ(β)] +

M∑
m=1

(Ψ(βmγ)−Ψ(αmγ + βmγ))

(150)

The preceding equations clearly demonstrate that each BL parameter’s derivative in Eq. 122 is

influenced by not only its own value but also the values of the other Bayesian learning parameters.

As a result, the optimization problem is addressed using the Newton-Raphson method. For this, we

need to calculate the Hessian matrix in terms of the parameter space, as illustrated below:

∂2L[ξ]

∂αlαj
=M(−δ(i, j)Ψ′

(αi) + Ψ
′
(

D∑
l=1

αl))

∂2L[ξ]

∂α2
=M(Ψ

′
(α+ β)−Ψ

′
(α))

∂2L[ξ]

∂α∂β
=MΨ

′
(α+ β)

∂2L[ξ]

∂β2
=M(Ψ

′
(α+ β)−Ψ

′
(β))

(151)
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By differentiating with respect to τw(lj) and equating it to zero, we obtain:

τw(lj) ∝
M∑
d=1

Nd∑
n=1

ϕdnlw
j
dn (152)

4.4 Experimental results

In this part, we demonstrate the effectiveness of our suggested techniques on two different

and complex tasks, which are medical text topic modeling and text classification. We evaluate

the performance of each model using standard metrics such as time complexity, log-likelihood, and

perplexity [37, 10, 101]. Perplexity is a widely used measure in language modeling, and it is defined

as follows:

prep(Dtest) = exp
(− ln p(Dtest)∑

d |wd|

)
(153)

where d is the length of the page and |wd| is its width. The average performance is better when

the perplexity score is lower.

Comparison of the bi-RATM, GD-bi-RATM, BL-bi-RATM, LDA, and Seq-LDA performances

is the major objective of both applications.

4.4.1 Topic Modeling for Medical Text

The objective of text classification is to assign documents to one or more predetermined subject

categories [102]. Much research has been done on this problem, and many solutions have been pro-

posed [103, 46]. In natural language processing, topic modelling is one of the most used methods.

Topic models can be used for a wide range of applications, from analyzing different kinds of texts

like news articles and tweets to making graphs of related topics and documents.

Topic modeling is an interesting technique for dealing with problems that have high dimension-

ality and sparsity, like health and medical text mining. However, despite the abundance of data

available, there is still a requirement to improve the effectiveness of this method [107]. This method

was first shown to analyze text, with documents as the objects and the number of times a phrase
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was used as the feature. The term ”topic modelling” generally refers to a set of statistical learn-

ing techniques used to uncover latent topics in a large corpus of text data, without the need for

supervision.

Therefore, a topic refers to a combination of keywords that follows a probability distribution,

and a document consists of a combination of topics, also following a probability distribution. It is

worth noting that a topic model only provides a set of keywords for each topic, according to [13].

Although topic modeling is a useful technique for mining health and medical text, there is still room

for improvement given the vast amount of available data [107].

To evaluate our models, we chose the medical transcription dataset [130], mental health dataset

[131], Genia dataset [132], nematode biology abstract and TMVAr corpus from the PubMed website

[111].

4.4.2 Medical Transcription Dataset

Medical data is challenging to obtain due to the Health Insurance Portability and Accountability

Act (HIPAA) privacy regulations. However, the MTSamples dataset presents a remedy by providing

samples of medical transcriptions.

MTSamples dataset provides access to a large library of transcribed medical reports for a wide

range of medical specialties and employment types. These example reports are offered exclusively

for reference purposes by various transcriptionists and users.

Table 4.1 shows the result for the GD-bi-RATM for the topics, and Fig. 4.1 shows the time

complexity for the bi-RATM, GD-Bi-RATM and BL-Bi-RATM models. Also, Table 4.2 compares

the perplexity of mentioned approaches, and all the results illustrate that the BL-bi-RATM algorithm

outperforms the medical transcription dataset.

Mental Health Dataset

Our mental health is influenced by our emotional health as well as our psychological and social

well-being. Therefore, a healthy mental state is necessary in order to live a balanced and healthy

existence. It affects the way that we think, feels, and behave as a result. In addition, it influences

how we respond to stressful events, interact with others, and make ultimate decisions. Emotional
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Table 4.1: Common topics identified with BL-bi-RATM model in the Medical Transcript dataset,
each defined by a set of keywords

Topic No Topics
Topic 1 ‘normal’, ‘skin’, ‘incision’, ‘stable’, ‘preoperative’, ‘using’,

‘performed’, ‘point’, ‘pulmonary’, ‘evidence’
Topic 2 ‘history’, ‘patient’, ‘blood’, ‘removed’, ‘artery’, ‘right’,

‘weight’, ‘pressure’, ‘obtained’, ‘tissue’
Topic 3 ‘patient’, ‘wound’, ‘history’, ‘abdominal’, ‘abdomen’,

‘general’,’closed’, ‘surgery’, ‘bleeding’, ‘surgery’
Topic 4 ‘laparoscopic”, ‘placed’, ‘incision’, ‘removed’, ‘performed’,

’approximately’, ‘normal’, ‘yearold’, ‘brought’, ‘femoral’
Topic 5 ’right’, ‘history’, ‘performed’, ‘patient’, ‘lower’, ‘anterior’,

‘procedure’, ‘pulmonary’, ‘heart’, ‘present’

Table 4.2: Comparison for the perplexity for different models, indicating model fit quality across
different topic numbers (K) on the MT dataset

K 5 10 15 20

Seq-LDA -2437.02 -2218.03 -2197.86 -1769.49
bi-RATM -335229.04 -326538.03 -314397.13 -302863.32
GD-bi-RATM -1341231.01 -1274679.18 -1362211.57 -1195597.23
BL-bi-RATM -5422819.15 -4957706.67 -4119113.31 -3846521.56

and mental health are significant since they affect ideas, habits, and emotions and are vital to life

[131]. Being emotionally healthy can increase productivity and effectiveness in tasks such as jobs,

school, and caregiving. Maintaining good mental health is crucial for healthy relationships, as it

helps to cope with life changes and difficulties. Although mental health issues are common, there is

help available, and people with mental illnesses can recover. A dataset containing frequently asked

questions (FAQs) related to mental health is used to validate our models [131].

The BL-bi-RATM algorithm’s top 5 topics are shown in Table 4.3, and a comparison of other

methods based on perplexity is presented in Table 4.4. According to the tables, the BL-based model

has the lowest perplexity among all the tested models, indicating superior performance in this re-

gard.

Fig. 4.2 displays the time complexity of three algorithms bi-RATM, GD-bi-RATM and BL-bi-

RATM. We can conclude from the figure that the BL-based bi-RATM has the lowest time complex-

ity.
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Figure 4.1: Time Complexity for MT dataset (min)

Genia Dataset

Biomedical texts contain a wealth of information that can be applied to medical advancements.

Previously, domain specialists would manually extract such information. Automating this infor-

mation extraction operation can aid in field progress. As an illustration, a biomedical text might

demonstrate the impact of medications on a person. They can also be used to diagnose medical is-

sues in people. As a result, automated event extraction from biomedical texts is quite advantageous.

It includes the original biomedical text, labeled trigger words, the location of the trigger word in-

side the text, and the event type associated with the trigger word. Table 4.5 shows the result for

the BL-bi-RATM for the topics, and Table 4.6 illustrate the BL-bi-RATM model has less perplexity

compared to other models. Also, Fig. 4.3 shows the time complexity of bi-RATM, GD-bi-RATM

and BL-bi-RATM models.

4.4.3 Topic Modeling

Topic models are frequently used in document clustering and organizing text data collections.

These models can also assist in the classification of text [104].

Given the volume of documents, it is inefficient to analyze each one manually. Instead, one

technique is identifying the terms that best characterize the corpus, such as the most frequent words.
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Table 4.3: Common topics identified with GD-bi-RATM model in the Mental health dataset, each
defined by a set of keywords

Topic No Topics
Topic 1 ‘family’, ‘health’, ‘disorder’, ‘support’, ‘mental’, ‘anxiety’,

‘depression’, ‘loved’, ‘child’, ‘selfhelp’
Topic 2 ‘health’, ‘depression’, ‘people’, ‘information‘, ‘mental‘,

‘think’, ‘physical’, ‘illness’, ‘problems’, ‘thinking’
Topic 3 ‘symptoms’, ‘people’, ‘disorder’, ‘different’, ‘loved’,

‘information’,’problem’, ‘health’, ‘friends’, ‘illness’
Topic 4 ‘mental’, ‘people’, ‘health’, ‘services’, ‘disorder’, ‘things’,

‘important’, ‘young’, ‘learn’, ‘support’
Topic 5 ‘important’, ‘mental’, ‘support’, ‘health’, ‘learn’, ‘people’,

‘feelings’, ‘illness’, ‘anxiety’, ‘different’

Table 4.4: Comparison of the perplexity for different models, indicating model fit quality across
different topic numbers (K) on the Mental health dataset

K 5 10 15 20

Seq-LDA -1968.56 -1886.64 -1768.47 -1589.54
bi-RATM -4531.27 -4389.31 -4299.87 -4120.03
GD-bi-RATM -5896.65 -5370.23 -4961.31 -4512.12
BL-bi-RATM -17811.21 -13708.67 -12517.36 -12718.17

Another approach would be to break the documents into words and phrases and then organize the

words and phrases into groups according to similarity. Then, the generated word and phrase clusters

can be used to gain a more profound knowledge of the corpus. Intuitively, the corpus is the collection

of words chosen by selecting one from each category. The rule-based text mining techniques that

utilize regular expressions and the dictionary-based keyword searching strategies differ from topic

modelling. Instead, it attempts to identify the essential words or subjects in a text corpus without

prior knowledge [13].

In order to verify the effectiveness of our proposed models, we selected a set of 2246 documents

from the Associated Press [13].

The results for topic selection and perplexity of each model for this dataset are shown in Ta-

bles 4.9 and 4.10. According to the results, BL-bi-RATM and GM-based bi-RATM models have

a smaller perplexity. Furthermore, as Fig. 4.5 illustrates, the time complexity values using the

proposed BL-based model are smaller than other models.
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Figure 4.2: Time complexity for dataset

We also applied the mentioned models (Seq-LDA, bi-RATM, GD-bi-RATM, BL-bi-RATM) in

another dataset, namely the ”CMU Book Summary Dataset” [105], to validate our proposed model.

The dataset consists of plot summaries for 16,559 books collected from Wikipedia, along with

aligned metadata from Freebase, which includes information such as author, title, and genre.

The top 5 topics for the GD-bi-RATM approaches are presented in Table 4.11, and the success

rates of using these models on the dataset are shown in Table 4.12. As per the results, it is ob-

served that the GD-bi-RATM outperforms the other models in this case. Fig. 4.6 displays the time

complexity of the three models under different training conditions.
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Table 4.5: Common topics identified with BL-bi-RATM model in the Genia dataset, each defined
by a set of keywords

Topic No Topics
Topic 1 expression’, ‘activation’, ‘transcription’, ‘cells’, ‘nuclear’,

’binding’, ‘activity’, ‘analysis’, ‘kappa’, ‘results’
Topic 2 ‘human’, ‘cells’, ‘activity’, ‘nfkappab’, ‘activation’, ‘kappa’, ’protein’,

‘nfkappa’, ‘expression’, ‘factor’
Topic 3 activation’, ‘expression’, ‘factor’, ‘positiveregulation’, ‘transcription’,

’human’, ‘promoter’, ‘nfkappa’, ‘binding’, ‘geneexpression’
Topic 4 ‘binding’, ‘protein’, ‘activation’, ‘mediated’, ‘region’, ‘induced’,

‘monocytes’, ‘level’, ‘sites’, ‘function’
Topic 5 ‘cells’, ‘transcription’, ‘nfkappa’, ‘activation’, ‘proteins’,’induced’,

‘transcriptional’, ‘activity’, ‘nuclear’, ‘specific’

Table 4.6: Comparison of the perplexity for different models, indicating model fit quality across
different topic numbers (K) on the Genia dataset

K 5 10 15 20

Seq-LDA -989.89 -902.03 -823.92 -751.97
bi-RATM -1001.98 -984.11 -843.65 -752.23
GD-bi-RATM -1107.98 -1089.13 - 972.63 -892.31
BL-bi-RATM -1261.91 -1150.29 -1021.15 -958.99

Figure 4.3: Time complexity for Genia dataset
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Table 4.7: Common topics identified with BL-bi-RATM model in tmVar dataset, each defined by a
set of keywords t

Topic No Topics
Topic 1 ‘novel’, ‘associated’, ‘mutation’, ‘dnamutation’, ‘patients’, ‘deletion’,

‘genes’, ‘allele’, ‘chinese’, ‘results’
Topic 2 ‘proteinmutation’, ‘variants’, ‘allele’, ‘analysis’, ‘polymorphisms’,

’expression’, ‘results’, ‘family’, ‘patient’, ‘mutation’
Topic 3 ‘patients’, ‘mutations’, ‘genes’, ‘results’, ‘mutant’, ‘deletion’,

’mutation’, ‘proteinmutation’, ‘identified’, ‘cells’
Topic 4 ‘polymorphism’, ‘dnamutation’, ‘mutations’, ‘genetic’, ‘association’,

’proteinmutation’, ‘analysis’, ‘deletion’, ‘genotype’, ‘patient’
Topic 5 ‘patients’, ‘mutations’, ‘study’, ‘compared’, ‘nucleotide’, ‘allele’,

‘proteinmutation’, ‘dnamutation’, ‘genetic’, ‘codon’

Table 4.8: Comparison of the perplexity for different models, indicating model fit quality across
different topic numbers (K) on tmVar dataset

K 5 10 15 20

Seq-LDA -210.67 -201.51 -184.34 -175.67
bi-RATM -253.98 -236.33 -204.98 -192.02
GD-bi-RATM - 321.17 -287.71 -259.31 -218.92
BL-bi-RATM -441.21 -314.78 -292.28 -249.15

Figure 4.4: Time complexity for tmVar dataset
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Table 4.9: Common topics identified with GD-bi-RATM model in the Associated press dataset, each
defined by a set of keywords

Topic No Topics
Topic 1 ‘million’, ‘percent’, ‘billion’, ‘state’, ‘government’, ‘company’,

‘international’, ‘workers’, ‘department’, ‘president’
Topic 2 ‘percent’, ‘government’, ‘including’, ‘program’, ‘police’, ‘united’,

south’, ‘political’, ‘service’, ‘party’
Topic 3 ‘house’, ‘states’, ‘police’, ‘money’, ‘business’, ‘federal’, ‘soviet’,

including’, ‘lower’, ‘allowed’
Topic 4 ‘federal’, ‘market’, ‘american’, ‘percent’, ‘later’, ‘million’,

president’, ‘think’, ‘billion’, ‘increase’
Topic 5 ‘police’, ‘workers’, ‘percent’, ‘officials’, ‘state’, ‘minister’,

official’, ‘group’, ‘called’, ‘government’

Table 4.10: Comparison of the perplexity for different models, indicating model fit quality across
different topic numbers (K) on Associated press dataset

K 5 10 15 20

Seq-LDA -1249.67 -1195.67 -1120.07 -1006.91
bi-RATM -12114.54 -11953.36 -10034.66 -1489.68
GD-bi-RATM -2954197.21 -2703086.19 -2311242.12 -1986589.45
BL-bi-RATM -167289.44 -135154.30 -121314.45 -111032.89

Figure 4.5: Time complexity for Associated Press dataset
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Table 4.11: Common topics identified with BL-bi-RATM model in the CMU Book dataset, each
defined by a set of keywords

Topic No Topics
Topic 1 ’people’, ‘states’, ‘united’, ‘percent’, ‘family’, ‘soviet’, ‘government’,

‘president’, ‘germany’, ‘country’
Topic 2 ’percent’, ‘soviet’, ‘american’, ‘yearold’, ‘police’, ‘government’,

‘including’, ‘million’, ‘expected’, ‘people’
Topic 3 ’defense’, ‘federal’, ‘south’, ‘military’, ‘department’, ‘house’, ‘called’,

‘children’, ‘union’, ‘national’
Topic 4 ’million’, ‘people’, ‘chief’, ‘market’, ‘black’, ‘troops’, ‘committee’,

‘earlier’, ‘government’, ‘department’
Topic 5 ’state’, ‘people’, ‘million’, ‘united’, ‘billion’, ‘years’, ‘campaign’,

‘national’, ‘prices’, ‘nations’

Table 4.12: Comparison of the perplexity for different models, indicating model fit quality across
different topic numbers (K) on the CMU Book dataset

K 5 10 15 20

Seq-LDA -20001.92 -19685.05 -19031.11 -18329.57
bi-RATM -21567.33 -20891.59 -20091.02 -18979.59
GD-bi-RATM -29847.19 -25551.35 -22386.53 -21663.15
BL-bi-RATM -259174.91 -225062.91 -221131.02 -218795.39

Figure 4.6: Time complexity for CMU dataset
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Chapter 5

Flexible Distribution Approaches to

Enhance Regression and Deep Topic

Modelling Techniques

5.1 Introduction

The past two decades have seen an explosion of digital content, resulting in an unprecedented

amount of text data generated daily. This surge has created a need for efficient and accurate text

analysis technologies. Machine learning and deep learning have become powerful tools for different

type of applications [5, 9, 133]

Text mining and topic modeling are vital for processing the vast amounts of text data gener-

ated daily. The Bag of Words (BoW) model [120] simplifies text structure for easier algorithmic

processing. Topic modeling, a subfield of text mining, identifies themes in documents, with latent

Dirichlet allocation (LDA) [13] using BoW to learn topics by assuming documents are mixtures of

topics characterized by word distributions. Topic models are split into generative models, like LDA,

and matrix decomposition techniques, like probabilistic latent semantic analysis (pLSA) [11, 12],

which uses maximum likelihood to find topics. LDA improves on pLSA by treating topic mixtures

as Dirichlet variables, offering a robust generative model [13].
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Many collections of documents come with additional information, such as metadata [134] and

annotations. For instance, a book might have information about the author, or an article could

have tags describing its topic. Images may be included with product reviews, and clinical records

might have structured information about the patient. These annotations can help guide the learning

of topic models [135]. Incorporating this extra information into the topic model is possible using

either downstream [136] or upstream models [137].

By incorporating additional information, downstream and upstream models can be used to im-

prove topic modeling accuracy [136, 138]. Downstream models, including supervised LDA [66],

use annotations to guide the topic model learning process directly. For example, in the analysis

of product reviews, downstream models may incorporate information such as ratings, comments,

and images associated with the reviews [71, 67]. Meanwhile, upstream models, such as Dirichlet

multinomial regression (DMR) [67], use annotations to preprocess the data before topic modeling.

An example of upstream modeling is using named entity recognition to identify entities within the

documents, then using these entities as additional features in the topic modeling process. Both

downstream and upstream models can enhance the accuracy of topic modeling and provide deeper

insights into the underlying themes and patterns in the document collection [139].

Although DMR is a flexible approach to incorporating document features, it is often limited to

a few features. There are several reasons for this. First, many text corpora have a limited number

of document-level features available. Second, as the dimensionality of the model grows, the hy-

perparameters become increasingly difficult to interpret. Finally, when the dimensionality of the

document features is high, DMR is prone to overfitting the hyperparameters [71]. As a result, in

practice, DMR is typically applied in settings with a limited number of features or where the analyst

hand-selects a few relevant features. Despite these limitations, DMR remains a powerful tool for

analyzing text data, offering an efficient approach to topic modeling that can be adapted to various

applications[67].

A possible solution to DMR’s document feature limitation is to use low-dimensional represen-

tations of those features. In recent years, neural networks have shown exceptional learning suc-

cess in generalizable representations, which can eliminate the need for manually designed features

[140]. Furthermore, neural networks can handle different data types, including text, images, and
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other metadata features, making them suitable for addressing dimensionality reduction in DMR

[57, 141]. To that end, the deep Dirichlet multinomial regression (dDMR) model has been proposed

[71]. This model extends DMR by incorporating a deep neural network that can learn a transforma-

tion of the input metadata into features that are then used to form the Dirichlet hyperparameter. By

jointly learning a feature representation for each document and a log-linear function that captures

the distribution over topics, dDMR provides a powerful approach for modeling complex relation-

ships between document features and topics [71].

DMR and dDMR topic modeling are powerful tools in natural language processing for analyzing

text data; however, both have limitations [71, 136]. The standard Dirichlet distribution [79] assumes

that the response variables are independent, which is often not the case in real-world applications.

Additionally, the Dirichlet distribution cannot model over- or underdispersion in the data. These

limitations can result in poor model fit and inaccurate predictions. To address these issues, we

propose an extension of DMR and dDMR using the collapsed Gibbs sampling algorithm [142] with

two alternative distributions, namely, the GD distribution [64] and the Beta-Liouville distribution

[65].

In this chapter, we present our proposed models, namely generalized Dirichlet multinomial

regression (GDMR), deep generalized Dirichlet multinomial regression (dGDMR), Beta-Liouville

multinomial regression (BLMR), and deep Beta-Liouville multinomial regression (dBLMR). Firstly,

we describe the characteristics of the fitting distribution associated with each proposed model. Next,

we use Gibbs sampling to estimate the parameters of each distribution. Finally, we provide the com-

plete learning algorithm for our models.

5.2 The Considered Distributions

5.2.1 Generalized Dirichlet Multinomial Regression

The generalized Dirichlet distribution was introduced in [90], and its covariance structure is

more extensive than that of the Dirichlet distribution. The GD distribution solves the Dirichlet dis-

tribution’s restrictions, which include the assumptions of negative correlation and equal confidence.

Thus, it has become a suitable option as a prior in Bayesian learning settings [91, 143].
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The GDMR assigns the probability mass for a count vectorX = (x1, . . . , xd) given a parameter

set ξ = (α1, . . . , αd−1, β1, . . . , βd−1) where all αi, βi values are positive, and it is described in

[91, 144].

GDM(X|ξ) =
(
m

X

) d−1∏
i=1

Γ(αi + xi)

Γ(αi)

Γ(βi + zi+1)

Γ(βi)

Γ(αi + βi)

Γ(αi + βi + zi)

=

(
m

X

) d−1∏
i=1

(αi)xi(βi)zi+1

(αi + βi)zi

(154)

where zi =
∑d

l=i xl is the cumulative sum.

To connect the covariates X to the parameters, [144] employed the subsequent link functions:

αi = ey
Tαi , and βi = ey

T βi . Assuming that the parameter set ξ = {α, β} includes all the regression

coefficients, the log-likelihood is described in [144].

Ln(X|ξ) =
n∑

j=1

ln

(
mj

Xj

)
+

d∑
i=1

n∑
j=1

( xij−1∑
k=0

ln(ey
T
j αi + k)+

zi,j+1−1∑
k=0

ln(ey
T
j βi)−

zi−1∑
k=0

ln(ey
T
j αi + ey

T
j βi + k)

) (155)

where k is altered from j to zij , and zij =
∑n

i=1

∑d
l=i xil.

The GDMR is better suited for modeling count data than the DMR, as it has a more flexible

covariance structure and additional parameters. Several studies have been conducted on both distri-

butions, as mentioned in the literature [91, 144, 145].

Link Functions for Generalized Multinomial Dirichlet Distribution

For the GD distribution, the parameter ϑ = {αi, βi} can be linked to the p-dimensional covari-

ates vector X as:

αi = λ1(αix1 + αix2 + . . .+ αixp) (156)

βi = λ2(βix1 + βix2 + . . .+ βixp), i = 1, . . . , d (157)
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For finding ρ(µi), the following procedure has been followed:

ρ(µi) = XT
i ϑ, i = 1, . . . , d (158)

then we have:

ρ1(µi) = XT
i αi (159)

ρ2(µi) = XT
i βi (160)

Hence, for the remainder of this paper, for the GDMR, we symbolize ai as ex
T
j αi and bi as ex

T
j βi .

5.3 Generalized Dirichlet Multinomial Regression Topic Modeling

Previously, we mentioned that the GD distribution, much like the Dirichlet distribution, serves

as a conjugate prior to the multinomial distribution. However, the GD has a more comprehensive

covariance matrix compared to the Dirichlet distribution, as stated in [91]. Due to this characteristic,

we will be utilizing the collapsed Gibbs sample approach to establish an extension to DMR founded

on the assumption of the GD.

To generate the document representation, a vector X is employed in d dimensions, encapsulat-

ing vital metadata values as characteristics. If a metadata attribute denotes the existence or non-

existence of chosen features, the respective elements in xd will be allocated a value of 1 for every

specified feature, whereas other locations will hold a value of 0. Further, the model integrates a

default feature set at 1 to accommodate for the average value of each topic [67].

The generative process is detailed below, where X embodies the data matrix, N indicates the

normal distribution, GD symbolizes the GD distribution, and M represents the multinomial distri-

bution. A graphical representation of the GDMR topic model is shown in Fig. 5.1.

(1) For any topic t:

(a) Draw m ∼ GD(ξ).

(2) For any d documents:
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(a) ρ = ρ(µi)

(b) Draw Ω ∼ GD(ρ).

(c) for each word i:

i. Draw zi ∼ M(m)

ii. Draw wi ∼ M(Ω)

Figure 5.1: Graphical representation of “upstream” GDMR model

GD(ξ) is a GD distribution in d dimensions, where the parameters are denoted by ξ and are

represented as (a1, b1, . . . , ad, bd). The probability distribution function is indicated by p. The

variable Λi is calculated as the difference between bi, ai+1, and bi+1 ( Λi = bi − ai+1 − bi+1) [46]:

p(m1, . . . ,md|ξ) =
d∏

i=1

Γ(al + bl)

Γ(al)Γ(bl)
mal−1

i (1−
i∑

j=1

mj)
Λi (161)

.

With our GD prior available, we move forward by establishing the word topic probability ma-

trix, denoted as Ω. By assuming the variable’s conditional independence, we can derive the joint

distribution as follows:

p(m, z,w, |ξ,Ω) = p(m|ξ)p(w|z,Ω)p(z|m) (162)

where z denotes the set of latent topics.

Integrating over the m parameters and the topic space gives the following:
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p(w|ξ,Ω) = Γ(ai + bi)

Γ(ai)Γ(bi)

∫
mai−1(1−

i∑
j=1

mj)
Λi

×
N∏

n=1

d+1∏
j=1

V∏
j=1

(mΩij)
wj

ndθ

(163)

In Eq. 163, ξ and Ω are the corpus-level parameters andm is a document-level parameter, while

z and w are word-level parameters.

5.3.1 Inference via Collapsed Gibbs Sampling

Based on the generative process of the GD distribution in 5.6.1 the full generative equation

p(X, z, θ, φ, w|,Ω, ξ, µ) of our new approach is also expressed as:

p(X, z, θ, φ, w|,Ω, ξ, µ) = p(w|µ)p(θ|Ω)p(φ|ξ)×
N∏

n=1

p(zn|θ)p(xn|znn, φ) (164)

The GD document prior distribution with hyperparameter

Ω = (α1, β1, . . . , αn, βn) is denoted by p(θ|Ω), while the GD corpus prior distribution with hyper-

parameters ξ = (a1, b1, . . . , ad, bd) is denoted by p(φ|ξ). The Bayesian inference process involves

approximating the posterior distribution of the latent variables z, after marginalizing out the param-

eters:

p(X, z|w,Ω, ξ) =W

∫
θ

∫
φ
p(X, z, θ, φ, |Ω, ξ)dφdθ (165)

It is significant to note that the joint distribution can be represented as a product of Gamma

functions, as indicated in previous studies [13, 95, 64]. This allows for the formulation of the

expectation for the true posterior distribution, as shown below:

p(zij = k|X,w,Ω, ξ) = Ep(z−ij |w,X,Ω,ξ)[p(zij = k|z−ij , X,w,Ω, ξ)] (166)
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Thus, using the GD prior, the posterior is computed as follows:

p(zij = k|z−ij , X,w,Ω, ξ) ∝
[
(N−ij

jk + awk)(bwk +
∑K+1

l=k+1N
−ij
jl )

(awkbwk +
∑K+1

l=k+1N
−ij
jl )

]

×
[(N−ij

kvij
+ αv)(βv +

∑V+1
d=v N

−ij
kdij

)

αv + βv +
∑V+1

d=v N
−ij
kdij

)

]
= A(K)

(167)

where N ij refers to counts where the superscript −ij indicates the associated variables excluding

xij and zij .

Normalizing the aforementioned distribution now yields a posterior probability denoted as:

p(zij = k|z−ij , x,Ω, ξ) =
A(k)∑K

k′=1A(k
′)

(168)

From Eq. 166 to Eq. 168, the collapsed Gibbs sampling computes the entire sampling procedure

as follows:

p(zij = k|X,w,Ω, ξ) = Ep(z−ij |w,X,Ω,ξ)

[
A(k)∑K

k′=1A(k
′)

]
(169)

The use of collapsed Gibbs sampling in our GD-based model allows us to sample from the actual

posterior distribution p, as shown in Eq. 169. This sampling method is more precise compared to the

approach used in variational-based models, where samples are typically drawn from an estimated

distribution [96, 64]. Therefore, we can conclude that our model is more accurate.

After sampling, the parameter estimation process uses the techniques presented in [96, 97].

Next, the empirical likelihood method [96] is used to validate the results for the held-out dataset.

This process ultimately leads to the estimation of the class conditional probability p(X|w,Ω, ξ)

within the collapsed Gibbs sampling framework:

p(X|w,Ω, ξ) =
∏
ij

K∑
k=1

1

S

S∑
s=1

θ̃jksφ̃kws (170)
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The parameters are subsequently calculated as:

θ̃jks =
(Njk + awk)(bwk +

∑K+1
l=k+1Njl)

(awkbwk +
∑K+1

l=k+1Njl)
(171)

φ̃kws =
(Nkvij + αv)(βv +

∑V+1
d=v Nkdij )

αv + βv +
∑V+1

d=v Nkdij )
(172)

where S is the size of sample.

5.4 Deep Generalized Dirichlet Multinomial Regression

Our method enhances the GDMR by using a deep neural network to transfer input metadata into

features that comprise the GD hyperparameter. Unlike DMR models that use a log-linear function

of document features for document-topic priors, our proposed model, which we call deep general-

ized Dirichlet multinomial regression (dGDMR), simultaneously learns a feature representation for

each document as well as a log-linear function that accurately captures topic distribution. Further-

more, because the neural network is in charge of mapping document features to topic priors, we use

gradient ascent and back-propagation [146, 147] to improve performance by optimizing both the

topic model and the neural network parameters.

DGDMR replaces the log-linear model used in GDMR with an arbitrary function denoted f

that maps a real-valued vector with dimension F to a K-dimensional representation. We make no

assumptions about the precise form of this function, focusing instead on minimizing the output cost

through gradient ascent optimization. In actual implementation, we employ a neural network tai-

lored to the particular category of document characteristics, such as a convolutional neural network

for images. We prefer neural networks because they can express intricate functions, generalize well

to new data, and facilitate joint training via gradient ascent and back-propagation.

The vocabulary size is denoted as V and the number of topics as K. It is worth noting that

in practical applications, the document features do not need to be limited to fixed-length feature

vectors. For example, the function f could be implemented as a recurrent neural network that maps

from a sequence of characters to a fixed-length vector in RK . The GDMR model is actually a special
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case of our proposed model, dGDMR, where the function f is chosen to be linear.

In dGDMR, the log-linear model is supplanted by an arbitrary function referred to as f . This

function transforms a real-valued vector of dimension F into a representation of dimension K. The

selection of neural networks is favored due to their potent expressive capabilities, their capacity to

adapt effectively to unobserved data, and their unique advantage in joint training. Below we show

the generative process of dGDMR [71].

(1) Define the f ∈ RF → RK .

(2) Define the topic-word prior parameters w ∈ RV .

(3) Generate document priors for each document m with features θm ∈ RF :

(a) Draw θ̃m = exp(f(αm, βm)) .

(b) θm ∼ GD(θ̃m).

(4) Word distribution generated for each topic K:

(a) ϕ̃k = exp(w)

(b) ϕ̃k ∼ GD(ϕ̃k)

(5) Generate data for each token (m,n)

(a) Unobserved topic: zmn ∼ θm

(b) Observed word: wmn ∼ ϕzmn

5.4.1 Parameter Estimation

The random variables of the topic model are inferred using collapsed Gibbs sampling, and the

model parameters are estimated using gradient ascent with back-propagation. To maximize the

log-likelihood of token and topic assignments, we use alternating optimization: one iteration of

collapsed Gibbs sampling (sample topics for each word) and then an update of the parameters of

f by gradient ascent. According to Eq. 155, log-likelihood can be expressed as follows, where

θ̃α,k = ey
T
j αi and θ̃β,k = ey

T
j βi :
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Ln(X|ξ) =
n∑

j=1

ln

(
mj

Xj

)
+

d∑
i=1

n∑
j=1

( xij−1∑
k=0

ln(θ̃α,k + k)

+

zi,j+1−1∑
k=0

ln(θ̃β,k)−
zi−1∑
k=0

ln(θ̃α,k + θ̃β,k + k)

) (173)

The sampling step in dGDMR remains the same as in GDMR when the parameters are given.

We estimate the network parameters by employing back-propagation through the network for a fixed

sample. The gradient of the data log-likelihood, denoted as L, is expressed in Eq. 173, where ψ

represents the digamma function (the derivative of the log-gamma function), nm denotes the number

of tokens in document m, and nm,k represents the count of tokens that were assigned to topic k in

document m.

∂L
∂θ̃

= ψ(
K∑
k=1

θ̃α,k) + ψ(
K∑
k=1

θ̃β,k)− ψ(
K∑
k=1

θ̃β,k

K∑
k=1

θ̃α,k + nm)

+ ψ(θ̃β,k + θ̃α,k + nm)− ψ(θ̃β,k)− ψ(θ̃β,k)

(174)

5.5 Multinomial Beta-Liouville Regression

As outlined in [148], the Liouville family of distributions, specifically of the second kind, en-

compasses the Dirichlet distribution as a specific instance, given certain conditions. Notably, the

Dirichlet distribution is seen as a particular case of the Beta-Liouville if βd = αd+1 + βd+1 [?, 46].

These conditions involve maintaining the same normalized variance for all components in the Li-

ouville random vector and employing a Beta distribution as the variate generating the density. The

Beta-Liouville distribution is the term given when the Beta distribution is used for generating den-

sity, as articulated in [149]. Like the Dirichlet distribution, the Beta-Liouville distribution can serve

as a conjugate prior to the multinomial distribution. However, it also has the ability to overcome

the Dirichlet distribution’s main limitations. Furthermore, the Beta-Liouville distribution has two

additional parameters that can be used to adjust its spread, making it more practical and allowing
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for better modeling capabilities. Using the Beta-Liouville distribution as a prior for the multino-

mial distribution yields a flexible joint distribution known as the multinomial Beta-Liouville (MBL)

distribution, [95, 93].

5.6 Beta-Liouville Multinomial Regression Topic Modeling

The Beta-Liouville multinomial regression (BLMR) model is established with the same under-

lying scenario, where a collection of documents is assumed to follow a similar pattern as described

in the GDMR section. This allows us to capture the relationships between documents and topics,

while taking into account the additional parameters and flexibility offered by the Beta-Liouville

distribution. By leveraging the properties of the Beta-Liouville distribution within the framework

of multinomial regression and topic modeling, the BLMR model provides a unique and versatile

approach for analyzing and understanding document collections in a wide range of applications.

A multinomial prior w is chosen for a particular topic, representing the probability that each

term in the vocabulary is associated with that topic. This prior, denoted by Ωwij , is used to calculate

the probability that a given word, wj , is assigned to a specific topic, zi, i.e., p(wj = 1|zi = 1). First,

the syllables are sampled at random following this multinomial prior. Then, using a multinomial

probability distribution, the probability of observing a specific word, wn, given its topic assignment,

zn, and the multinomial prior Ωw is calculated as p(wn|zn,Ωw).

In addition, the topic assignment distribution, denoted by BL(Υ), follows a d-variable Beta-

Liouville distribution with parameters Υ = (η1, ..., ηD, η, τ). The probability distribution function

of this distribution can be expressed as:

P (θ1, . . . , θD|Υ) =
Γ(
∑D

d=1 ηd)Γ(η + τ)

Γ(η)Γ(τ)

D∏
d=1

θηd−1
d

Γ(ηd)
×

( D∑
d=1

θd

)η−
∑D

l=1 ηl

×
(
1−

D∑
l=1

θl

)τ−1
(175)

The mean, variance, and covariance are used to depict the distribution of the Beta-Liouville
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distribution.

E(θd) =
η

η + τ

ηd∑D
d=1 ηd

(176)

var(θd) = (
η

η + τ
)2

ηd(ηd + 1)

(
∑D

m=1 ηm)(
∑D

m=1 ηm + 1)

− E(θd)
2 η2d
(
∑D

m=1 ηm)2

(177)

and the covariance between θl and θk is given by:

Cov(θl, θk) =
ηlηk∑D
d=1 ηd

( (η+1)(η)
(η+τ+1)(η+τ)∑D

d=1 ηd + 1
−

η
η+τ∑D
d=1 ηd

)
(178)

In the preceding equation, the covariance matrix of the Beta-Liouville distribution is more in-

clusive than the covariance matrix of the Dirichlet distribution.

5.6.1 Proposed Link Functions for MBL Regression

We can express the relationship between the parameters and the p-dimensional covariate vector

Y = (y1, . . . , yp) in the following forms for regression based on the MBL distribution [93]:

ηi = g1(ηiy1 + ηiy2 + . . .+ ηiyp), i = 1, . . . , d

η = g2(ηy1 + ηy2 + . . .+ ηyp), (179)

τ = g3(τy1 + τy2 + . . .+ τyp)

To determine the value of g(µj), the following approach is employed:

g(µj) = Y T
j Υ j = 1, . . . , n (180)

where µj represents the average of Yj , while Υ denotes a vector of regression parameters. As such,

the relationship can be expressed as follows:
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logit(µj) = log
( µj
1− µj

)
, (181)

and for logit link function we have the following:

Πj(y) =
exp(ΥTYj)

1 +
∑n−1

j=1 exp(Υ
TYj)

(182)

Therefore, in the case of the MBL model, we have the following:

g1(µj) = Y T
j ηi

g2(µj) = Y T
j η (183)

g3(µj) = Y T
j τ

Therefore, from the rest of this paper, for the BLMR, we symbolize ηi as ex
T
j αi , η as ex

T
j α and

τ as ex
T
j β .

Considering the parameter set Υ as including all the regression coefficients, denoted as (α1, . . . , αd−1, α, β),

the complete log-likelihood can be expressed as follows:

Ln(X|θ) =
n∑

j=1

ln

(
mj

Xj

)
+

d∑
i=1

n∑
j=1

[ xij−1∑
k=0

ln(αi + k)

+

zij∑
k=0

ln(β + k) +

xi−1∑
k=0

ln(α+ k)

−
xi,m−1∑
k=0

ln(αi + k)−
xi+1∑
k=0

ln(α+ β + k)

]
(184)

The generative procedure is described as follows, where X stands for the data matrix, N des-

ignates the normal distribution, BL signifies the Beta-Liouville distribution, and M typifies the

multinomial distribution. An illustrative diagram of the BLMR topic model can be seen in Fig. 5.2:

(1) For any topic t:

97



(a) Draw m ∼ BL(Υ).

(2) For any d documents:

(a) g = g(µi)

(b) Draw Ω ∼ BL(g).

(c) for each word i:

i. Draw zi ∼ M(m)

ii. Draw wi ∼ M(Ω)

Figure 5.2: Graphical representation of “upstream” BLMR model

5.6.2 Inference via Collapsed Gibbs Sampling

The Collapsed Gibbs Sampler (CGS) contributes to inference by estimating posterior distribu-

tions through a Bayesian network of conditional probabilities, which are determined via a sampling

process of hidden variables. When compared to the traditional Gibbs sampler that functions in

the combined space of latent variables and model parameters, the CGS offers significantly faster

estimation. As CGS operates in the collapsed space of latent variables, in the joint distribution

p(X, z, θ, ϕ, w|Ω,Υ, µ), the model parameters θ, ϕ are marginalized out to obtain the marginal joint

distribution p(X, z,w|Ω,Υ, µ) defined as:

p(x, z, w|Ω,Υ) =W

∫
θ

∫
φ
p(X, z, θ, φ, w|Ω, ξ)dφdθ (185)
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By employing Eq. 185, the method estimates the conditional probabilities of the latent variables

zij based on the current state of all variables, while excluding the individual variable zij [97]. The

collapsed Gibbs sampler, on the other hand, estimates the topic assignments for the observed words

by utilizing the conditional probability of latent variables, where −ij refers to counts or variables

with zij removed [97]. This particular conditional probability is defined as [100]:

p(zij = k|z−ij , X,w,Ω,Υ) =
p(zij , z

−ij , X,w|Ω,Υ)

p(z−ij , X,w|Ω,Υ)
(186)

The sampling mechanism of the collapsed Gibbs approach can be summarized as an expectation

problem:

p(zij = k|X,w,Ω,Υ) = Ep(z−ij |w,X,Ω,Υ)[p(zij = k|z−ij , X,w,Ω,Υ)] (187)

The collapsed Gibbs sampling Beta-Liouville multinomial procedure consists of two phases for

assigning documents to clusters. First, each document is assigned a random cluster for initialization.

After that, each document is assigned a cluster based on the Beta-Liouville distribution after a

specified number of iterations.

The goal is to use a network of conditional probabilities for individual classes to sample the

latent variables from the joint distribution p(X, z|w,Ω,Υ). The assumption of conjugacy allows

the integral in Eq. 185 to be estimated.

p(X, z|w, υ) = C

M∏
j=1

[
Γ(
∑k

i=1 αi)Γ(α+ β)∏k
i=1 Γ(αi)Γ(α)Γ(β)

]
×
∏k

i=1 Γ(α
′
i)Γ(α

′
)Γ(β

′
)

Γ(α′ + β′)Γ(
∑K

i=1 α
′
i)

(188)

The likelihood of the multinomial distribution, defined by the parameter Υ, and the probability
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density function of the Beta-Liouville distribution can be expressed as follows:

p(X|Υ) =

∫
p(X|θ)p(θ|α1, . . . , β, α)dθ

=

∫ k∏
k=1

θmk
k

Γ(
∑k

k=1 αk)Γ(α+ β)

Γ(α)Γ(β)

K∏
k=1

θαk−1
k

Γ(αk)

× (
K∑
k=1

θk)
α−

∑
αk(1−

K∑
k=1

θk)
β−1dθ

(189)

By integrating the probability density function of the Beta-Liouville distribution over the param-

eter θ and incorporating updated parameters derived from the remaining integral in Eq. 191, we are

able to express it as a fraction of Gamma functions. The following shows the updated parameters,

where Njk represents counts corresponding variables. [95, 100]:

α
′
K = αk +

k∑
j=1

Njk

α
′
= α+Njk

β
′
= β +Njk

(190)

The Eq. 189 is then equivalent to:

p(k|α1, . . . , αk, β, α) =
Γ(
∑K

k=1 αk)Γ(α+ β)Γ(α+
∑k−1

k=1mk)Γ(β +mk)

Γ(α)Γ(β)
∏K

k=1 Γ(αk)Γ(
∑K

k=1(αk +mk))∏K
k=1 Γ(αk +mk)

Γ(α+
∑K−1

k=1 mk + β +mk)

(191)

The parameters α1, . . . , αk, α, and β correspond to the Beta-Liouville distribution, while mk

represents the number of documents in cluster k.

After the sampling process, parameter estimation is performed. Subsequently, the empirical

likelihood method [96] is utilized to validate the results using a held-out dataset. Ultimately, this

process leads to the estimation of the class conditional probability p(X|w,Ω,Υ) within the frame-

work of collapsed Gibbs sampling:
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p(X|w,Ω,Υ) =
∏
ij

K∑
k=1

1

S

S∑
s=1

θ̃jksφ̃kws (192)

The parameters are then computed as follows:

θ̃jks =
(Njk + αk)(αjk +

∑K+1
l=k+1Njl)(Njk + βk)

(akbk +
∑K+1

l=k+1Njl)(αj +
∑K+1

l=k+1Njl)
(193)

φ̃kws =
(Njk + αw)(αjw +

∑K+1
l=k+1Njl)(Njk + βw)

(αwbw +
∑K+1

l=k+1Njl)(αwj +
∑K+1

l=k+1Njl)
(194)

where S is the size of sample.

5.7 Deep Beta-Liouville Multinomial Regression

Our proposed method, deep Beta-Liouville multinomial regression (dBLMR), improves on

BLMR by converting input metadata into features for the Beta-Liouville hyperparameter using a

deep neural network. Like GDMR, it simultaneously learns a feature representation for each docu-

ment and a log-linear function for accurate topic distribution. The topic model and neural network

parameters are optimized using gradient ascent and back-propagation. The deep version, dGDMR,

replaces the log-linear model with an arbitrary function denoted as f and optimizes it using gradient

ascent. Because of their ability to express complex functions, generalize well, and facilitate joint

training, neural networks are preferred.

5.7.1 Inference

The assumptions for BLMR are similar to those for GDMR, with vocabulary size denoted as

V and the number of topics denoted as K. It is also worth noting that document features can be

more adaptable in practical applications than fixed-length feature vectors. In our proposed topic

model, the random variables are inferred using collapsed Gibbs sampling, which is a Markov chain-

Monte Carlo (MCMC) method commonly used for topic modeling. This sampling method permits

us to estimate each document word’s posterior distribution of topic assignments. Gradient ascent
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with back-propagation, a prominent optimization algorithm for training neural networks, is used to

estimate the model parameters.

An alternating optimization strategy is implemented to maximize the log-likelihood of token

and topic assignments. Each iteration includes one round of collapsed Gibbs sampling to generate

topic samples for each document word. This enables us to revise the topic assignments based on

the current model parameter estimations. Gradient ascent is then used to update the parameters of

the function f by computing the gradients of the log-likelihood with respect to the parameters and

updating them accordingly. This procedure of alternating optimization is repeated until convergence

is achieved.

Using a combination of collapsed Gibbs sampling, gradient ascent, and back-propagation, our

model can effectively learn both the topic assignments and the parameters of the function f in a mu-

tually advantageous technique. The Gibbs sampling phase assists in refining the topic assignments

based on the current estimate of the parameters. At the same time, the gradient ascent step modi-

fies the parameters of f to capture the underlying patterns in the data more accurately. This joint

optimization strategy improves the performance of our model by maximizing the log-likelihood of

token and topic assignments. According to Eq. 184 , the following equation holds if ζ̃αi = ey
T
j αi ,

ζ̃β = ey
T
j β and ζ̃α = ey

T
j α:

Ln(X|ζ) =
n∑

j=1

ln

(
mj

Xj

)
+

d∑
i=1

n∑
j=1

[ xij−1∑
k=0

(ζ̃αi + k)

+

zij∑
k=0

(ζ̃β + k) +

xi−1∑
k=0

(ζ̃α + k)

−
xi,m−1∑
k=0

(ζ̃αi + k)−
xi+1∑
k=0

(ζ̃α + ζ̃β + k)

]
(195)

In our proposed model, dBLMR, the sampling phase remains the same when parameters are

fixed. Therefore, we estimate the network parameters by back-propagating a fixed sample through

the network. The data log-likelihood gradient, denoted by L, is mathematically expressed in Eq.

195, where ψ represents the digamma function, the derivative of the log-gamma function.
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∂L
∂ζ̃

= ψ(
K∑
k=1

ζ̃αi,k) + ψ(
K∑
k=1

ζ̃β,k) + ψ(
K∑
k=1

ζ̃α,k)− ψ(
K∑
k=1

ζ̃αi,k +
K∑
k=1

ζ̃β,k

+
K∑
k=1

ζ̃α,k + nm) + ψ(ζ̃αi,k + ζ̃β,k + ζ̃α,k + nm)− ψ(ζ̃αi,k)− ψ(ζ̃β,k)

− ψ(ζ̃β,k)

(196)

5.8 Experimental Results

In this section, we demonstrate the efficacy of our suggested methodologies by experimenting

with two complex tasks: medical text topic modeling and text classification. Standard evaluation

metrics such as time complexity, log-likelihood, and perplexity are commonly used in language

modeling to evaluate the performance of our models [37, 10, 101]. Perplexity is generally defined

as follows, where the page length, denoted as d, and its width, represented by |wd|, are factors in

our model. Lower perplexity scores indicate adequate average performance.

prep(Dtest) = exp
(− ln p(Dtest)∑

d |wd|

)
(197)

5.8.1 Topic Modeling for Medical Texts

The primary goal of text classification is to systematically assign various documents into one or

more previously determined subject categories, as elucidated by previous research [102]. This area

has been extensively studied, and a multitude of potential solutions have been suggested [103, 46].

Topic modeling, a prevalent method in the field of natural language processing, has emerged as an

exceptionally effective strategy for this purpose. It is versatile and finds applications in the analysis

of various types of texts such as news articles and tweets, and even in the creation of graphical

representations of interconnected topics and documents.

Topic modeling serves as a fascinating approach for addressing problems characterized by high

dimensionality and sparsity, which are common in areas like health and medical text mining. De-

spite the vast amount of data currently accessible, there remains a necessity to enhance the efficacy
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of this method [107]. Initially, this approach was developed to analyze text, where documents served

as the subject matter and the frequency of phrase usage constituted the feature.

The phrase ”topic modeling” refers to a collection of statistical learning techniques aimed at

discovering hidden or ’latent’ topics within a sizable body of text data, all without requiring explicit

supervision. Thus, in the context of topic modeling, a ’topic’ signifies a set of keywords that adhere

to a probability distribution, and a ’document’ comprises a blend of such topics, also abiding by a

similar probability distribution.

According to [13], it is important to note that a topic model merely provides a set of keywords

corresponding to each topic. Topic modeling proves instrumental for mining health and medical

text, contributing to better understanding and extraction of useful insights from such data. However,

given the enormous volume of data available, there is a clear need for continued improvements and

advancements in topic modeling techniques [107].

In the domain of BioNLP [150], or biological natural language processing, topic modeling car-

ries notable advantages. It allows for the processing and understanding of complex and domain-

specific biological texts, facilitating more efficient information extraction and enabling more tar-

geted and efficient research. Furthermore, in the context of biological data, topic modeling could

reveal hidden thematic structures or latent topics, which could potentially unearth new correlations

and insights in the field of biology. This also aids in the categorization and organization of large

volumes of biological data, making it more accessible and easier to analyze for researchers and

professionals in the field.

To evaluate our models, we chose the Covid-Tweet, Mental Health Tweet, Symptom for Disease,

and Drugs Side Effects metadata.

Covid-Tweet

This dataset originates from Twitter, a renowned social media platform. It comprises a variety of

tweets which have been manually labeled for the purpose of facilitating text classification. Privacy

is of paramount importance and hence, identifiable information such as names and usernames have

been anonymized using unique codes. The structure of the data includes four key features: location,

which provides the geographical location of the Twitter user; Tweet Atthat, which shows when
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the tweet was posted; Original Tweet, which has the content of the tweet itself; and Label, the

assigned tag or category for the tweet. To validate the proposed models, we decided to focus on the

’Location’ feature as the basis for our analysis. We aimed to uncover hidden topic models based

on the geographical location of the tweets. This approach can help in detecting location-specific

trends, sentiments, or patterns which could provide insight for various applications. Specifically,

we have demonstrated this by focusing on tweets from New York City and Canada, and performing

topic modeling on these subsets of data. The resulting tables detail our findings, illustrating the

unique topics and patterns we discovered within the tweets originating from these two geographical

locations.

The prediction results for this dataset are shown in Tables 5.1, 5.2, Fig. 5.3 and Fig. 5.4. We

can see from their relatively higher perplexity that LDA and DMR are not the best fitted to the

data. Furthermore, DBLMR has a lower perplexity; we can thus conclude that a dBLMR-based

regression model is better for Covid-Tweet dataset.

(a) Canada (b) New York

Figure 5.3: Log-likelihood comparison for Covid Tweet

Mental Health Tweet

The Mental Health Corpus represents a collection of textual data, pertaining specifically to in-

dividuals suffering from various mental health conditions such as anxiety and depression. The
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(a) Canada (b) New York

Figure 5.4: Perplexity comparison for Covid Tweet

structure of this corpus is twofold: one column is dedicated to the comments or discussions sur-

rounding mental health issues, and the other serves as a categorical indicator, labeling whether

these comments are deemed toxic or not. This dataset provides an ample ground for a broad range

of analytical applications including sentiment analysis, detection of harmful or toxic language, and

the study of language patterns associated with mental health discussions. The information in this

corpus can serve as a valuable resource for diverse stakeholders such as researchers, mental health

professionals, and any individual keen on delving deeper into the discourse and sentiments related

to mental health matters. In our research, we focused our experimental analysis on determining the

presence or absence of mental health conditions based on the text data from the Mental Health Cor-

pus. Our methodology involved implementing topic modeling to extract hidden patterns or themes

from the dataset. Topic modeling is a type of statistical modeling used for discovering the abstract

”topics” that occur in a collection of documents. In this context, these ”documents” are the com-

ments or discussions in the Mental Health Corpus. Through this technique, we aimed to extract

meaningful and significant information from the textual data, thereby enhancing our understanding

of the language dynamics surrounding mental health issues.

The results for topic selection and perplexity of each model for this dataset are shown in Table

5.3 and Fig. 5.6. The results show that dGDMR and dBLMR models have a smaller perplexity. Fur-

thermore, as Table 5.4 illustrates, the time complexity values using the proposed BL-based model
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Table 5.1: Common topics identified with BLMR model in the Canada and New York subcategories
, each defined by a set of keywords

Topic Canada New York
Topic1 ’starting”grocery’, ’turbo’, coronavirus’, ’grocery’, ’negative’

’positive’, ’pandemic’, ’working’, ’people ’prices’, ’store’, ’crisis’, ’retail’,
’covid’, ’coronavirus’ , ’consumer’ ’spending’, ’consumer’, ’additive’,

Topic2 ’prices’, ’negative’, ’small’, ’sanitizer’, ’grocery’, ’consumer’,
’store’, ’positive’, ’workers’, ’retail’, ’prices’, ’online’, ’stores’, ’spending’

’working’, ’customers’, ’crisis’ ’coronavirus’, ’behavior’, ’economy’,
Topic3 ’covid’, ’grocery’, ’customers,’ ’negative’, ’store’, ’covid’, ’grocery’,

’situation’,’prices’, ’farmers’, ’turbo’, ’lysol’, ’retail’,’pandemic’
’coronavirus’, ’positive’ , ’consumer’ ’coronavirus’, ’business’, ’amazon’

Topic4 ’coronavirus’, ’positive’, ’grocery’, ’consumer’, ’positive’, ’store’, ’sanitizer’,
’customers’, ’march’, ’retail’, ’online’, ’americans’,
’customers’, ’march’, ’retail’, ’online’, ’americans’,

’providing’,’negative’, ’online’, ’store’ ’covid’,’coronavirus’, ’disinfectant’
Topic5 ’positive’, ’covid’, ’store’, ’supermarket’, ’store’, ’consumer’, ,

’business’, ’demand’, ’working’, ’covid’, ’coronavirus’, , ’positive’
’online’, ’turbo’, ’consumer’, ’march’ ’online’, ’laundry’, ’additive’, ’negative’

Table 5.2: Time complexity comparison for different model at varying topic levels (K) on sub-
datsset Canada (min)

K 5 10 15 20 25
LDA 45 58.5 63 67.5 71.1
DMR 23 29.9 32.2 34.5 36.34

GDMR 11.83 24.843 28.392 30.758 31.941
BLMR 9.53 22.543 26.092 28.458 29.641

dGDMR 255.04 280.544 357.056 408.064 433.568
dBLMR 251.64 327.132 352.296 377.46 397.5912

are smaller than other models.

Symptom for Disease

This dataset comprises 1200 entries, each attributed to a specific disease label and accompanied

by a descriptive text detailing the associated symptoms in natural language. The ’label’ column sig-

nifies the disease while the ’text’ column provides symptom descriptions pertinent to that disease.

The data incorporates 24 distinct diseases, each represented by 50 unique symptom descriptions.

Therefore, we have an equal distribution of data points for all diseases, which totals up to 1200 data

points. The spectrum of diseases covered in this dataset is broad, encompassing conditions such as

psoriasis, varicose veins, typhoid, chicken pox, impetigo, dengue, fungal infection, common cold,
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Table 5.3: Common topics identified with d BLMR model in the Mental Health Tweet dataset, each
defined by a set of keywords

Topic No Topics
Topic1 ’azarkansero’, ’youre’, ’autism’, ’difference’, ’sleep’, ’depression’

’michaelsos’, ’watch’, ’learn’, ’better’
Topic2 ’depression’, ’genevieveverso’, ’misslusyd’, ’really’, ’right

’think’, ’overcome’, ’amazing’, ’sosdaily’
Topic3 ”overcome’, ’depression’, ’happened’, ’friend’, ’treatments’,

’making’, ’start’, ’break’, ’story’, ’birthday’
Topic4 ’thefuxedos’, ’happy’, ’overcome’, ’birthday’, ’misslusyd’,

’friends’, ’treatments’, ’thinking’, ’school’, ’autism’
Topic5 ’people’, ’depression’, ’misslusyd’, ’great’, ’world’, ’comes’,

’therapy’, ’treatments’, ’really’, ’support’

Table 5.4: Time complexity comparison for different model at varying topic levels (K) on Mental
Health Tweet dataset (min)

K 5 10 15 20 25
LDA 142.32 185.01 199.24 213.48 224.86
DMR 135.67 176.37 189.93 203.50 214.35

GDMR 120.26 156.33 168.36 180.39 190.01
BLMR 119.03 154.73 166.64 178.54 188.06

dGDMR 137.06 150.76 191.88 219.29 233.00
dBLMR 135.86 176.68 190.20 203.79 214.65

pneumonia, dimorphic hemorrhoids, arthritis, acne, bronchial asthma, hypertension, migraine, cer-

vical spondylosis, jaundice, malaria, urinary tract infection, allergy, gastroesophageal reflux disease,

drug reaction, peptic ulcer disease, and diabetes. Our analytical approach with this dataset revolves

around the ’label’ feature, that represents each disease. We employed topic modeling to uncover

hidden themes or patterns related to each disease based on the symptom descriptions provided in

the ’text’ column. Topic modeling is an unsupervised machine learning method that discovers ab-

stract themes or ”topics” from a collection of documents. Here, these ”documents” correspond to

the symptom descriptions for each disease. This strategy helps us in deciphering and elucidating the

language and patterns associated with each disease, thus enhancing our understanding of symptom

descriptions and their implications in the field of medical text analysis.

The top 5 topics for the dBLMR approaches are presented in Table 5.5, and the perplexity of

using these models on the dataset are shown in Fig. 5.8. As per the results, it is observed that the
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Figure 5.5: Log-likelihood for Mental Health Tweet dataset

dBLMR outperforms the other models in this case. The figure presented in Fig. 5.7 displays the

log-likelihood of the five models under different training conditions.

Table 5.5: Common topics identified with GDMR model in the Symptom for Disease (Cancer)
dataset, each defined by a set of keywords

Topic No Topics
Topic1 radiation, ’effects’, ’vomiting’, ’breathing’, ’temporary’, ’malignant’,

’cramps’, ’problems’, ’hands’, ’blood’
Topic2 ’unnamed’, ’sores’, ’chills’, ’malignant’, ’cancer’, ’mouth’,

’uncontrolled’, ’fluorouracil’, ’growth’, ’names’
Topic3 thiotepa, medical, ’trouble’, ’disease’, ’throat’, ’resulting’,

’growth’, ’cancer’, ’vomiting’, ’balance ’
Topic4 ’effects’, ’tumour’, ‘permanently’, ’growth’, ’carcinoma’, ’nausea’,

’unusual’, ’short’, ’names’, ’trouble’
Topic5 ’bruising’, ’unusual’, ’bleeding’, ’breath’, ’growth’, ’urine’,

’burning’, ’common’, ’abnormal’, ’uncontrolled’

Drugs Side Effects

The metadata comprises comprehensive details regarding a wide range of pharmaceuticals used

to treat conditions ranging from acne to cancer and heart disease. It also provides an insight into

their possible side effects. These details are not limited to the generic name of the drug but also
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Figure 5.6: Perplexity comparison for Mental Health Tweet dataset

Table 5.6: Time complexity comparison for different model at varying topic levels (K) on the Symp-
tom for disease (cancer) dataset. (min)

K 5 10 15 20 25
LDA 13.67 17.771 19.138 20.505 21.5986
DMR 10.12 13.156 14.168 15.18 15.9896

GDMR 8.96 11.648 12.544 13.44 14.1568
BLMR 8.16 10.608 11.424 12.24 12.8928

dBDMR 27.19 35.347 38.066 40.785 42.9602
DGMR 28.17 30.987 39.438 45.072 47.889

extend to its drug class, the different brand names it may be sold under, its activity level, whether it

is a prescription drug or not, its categorization concerning pregnancy safety, its schedule under the

Controlled Substances Act, possible interactions with alcohol, and its user ratings.

Our analysis was focused primarily on the features pertaining to medical conditions, and we

employed topic modeling to discern patterns and topics based on the side effects linked to various

drugs. We have provided the outcomes of our topic modeling for a few conditions, such as hyper-

tension, in Tables 5.7,5.8 and Fig. 5.9 and 5.10. Fig. 5.10 illustrates that the dGDMR model has

less perplexity compared to other models.
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Figure 5.7: Log-likelihood for Symptom for Disease (Cancer)

Figure 5.8: Perplexity comparison for Symptom for Disease (Cancer)

Table 5.7: Common topics identified with BLMPCA model in the Drugs Side Effects (hypertension)
dataset, each defined by a set of keywords

Topic No Topics
Topic1 ’concentrate’, ’chest’, ’balance’, ’trouble’, ’hypertensioni’,

’concentrate’, ’issues’, ’started’, ’dizziness’, ’challenging’
Topic2 ’dizziness’, ’hypertensioni’, ’chest’, ’headache’, ‘challenging’, ’trouble’,

’focus’, ’experiencing’, ’feeling’, ’morning’
Topic3 ’chest’, ’headache’, ’balance’, ’dizzy’, ’concentrate’, ’issues’,

’feeling’, ’dizziness’, ’having’, ’developed’
Topic4 ’focus’, ’headache’, ’issues’, ’hypertensionive’, ’experiencing’,

’focusing’, ’balance’, ’feeling’, ’challenging’, ’experienced’
Topic5 ’dizziness’, ’focus’, ’balance’, ’trouble’, ’chest’,

’hypertensionalong’, ’focusing’, ’symptom’, ’experiencing’, ’morning’
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Figure 5.9: Log-likelihood for Drugs Side Effects (Hypertension)

Figure 5.10: Perplexity comparison for Drugs Side Effects (Hypertension)

Table 5.8: Time complexity comparison for MPCA, GDMPCA, and BLMPCA at varying topic
levels (K) on Drugs Side Effects (hypertension) dataset (min)

K 5 10 15 20 25
LDA 14.2 18.46 19.88 21.3 22.436
DMR 12.5 16.25 17.5 18.75 19.75

GDMR 3.62 4.70 5.06 5.43 5.71
BLMR 2.22 2.88 3.10 3.33 3.50

dGDMR 12.25 13.47 17.15 19.65 20.82
dBLMR 10.57 13.74 14.79 15.85 16.70
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Chapter 6

Integration of Neural Embeddings and

Probabilistic Models in Topic Modeling

6.1 Introduction

The pervasive inundation of digital textual data in today’s information era underscores the im-

perative need for robust analytical methodologies. As diverse sectors, from academia to industry,

grapple with vast swathes of unstructured text, the quest for tools capable of deciphering, organiz-

ing, and extracting meaningful insights has gained paramount importance. At the intersection of this

quest lies the domain of document clustering and topic modeling, which have emerged as pivotal

techniques in the arsenal of textual data analytics [1].

In the expansive domain of text, document clustering and topic modeling stand out as two pro-

foundly researched problems due to their multifarious applications. Document clustering, which

endeavors to aggregate similar documents into cohesive groups, serves as an indispensable tool for

document organization, browsing, summarization [6], classification [5], and retrieval [151]. Con-

currently, topic modeling employs probabilistic generative models to unearth the latent semantics

permeating a collection of documents, a technique that has garnered significant accolades for its

prowess in text analysis [8]. Among the suite of tools designed for revealing common themes and

narratives in text, topic models, especially prominent ones like Latent Dirichlet Allocation (LDA)

[13] and Non-Negative Matrix Factorization (NMF) [72], have been particularly influential. These
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conventional models characterize documents as a ”bag of words” [120], envisioning each as a com-

posite mixture of latent topics. However, this paradigm is not without its caveats.

A notable drawback of these models arises from their reliance on the bag-of-words framework.

This representation simplifies texts to mere word counts, often sidelining the nuanced semantic

connections that exist between words. Consequently, because such models do not factor in the

contextual positioning and interplay of words within a sentence, there’s a palpable risk that the

bag-of-words input might not capture the true essence and intricacies of the document’s content

[152].

In response to the limitations posed by traditional models, the field of natural language process-

ing has witnessed a surge in the adoption of text embedding technique s[153]. At the forefront of this

transformative shift is the Bidirectional Encoder Representations from Transformers (BERT) frame-

work and its assorted derivatives [23]. These methodologies have garnered significant attention and

acclaim for their capability to generate contextually enriched vector representations of both words

and sentences. Unlike their predecessors, BERT and its variations delve deeper by considering the

positional interplay of words, thereby yielding embeddings that capture the nuanced semantics and

intricacies inherent within a language structure [154, 23].

Embedding techniques, with their advanced capabilities, have permeated a wide array of tasks in

the domain of natural language processing [155]. These tasks span from classification endeavors to

the powering of sophisticated neural search engines. Given the enhanced contextual representations

these techniques afford, their application in topic modeling has drawn increasing attention from the

research community [156]. An instance of the effectiveness of clustering embeddings can be seen in

the use of centroid-based techniques. Their findings indicated that these techniques provide a com-

pelling substitute for conventional methods such as LDA in terms of efficient topic representation.

The authors of the study employed a methodology that involved creating topic representations by

embedding words and then identifying those words that were located near the centroid of a cluster

[25].

Top2Vec, a method that utilizes Doc2Vec, can be compared to the current topic. Top2Vec excels

at simultaneously embedding topics, documents, and word vectors. Following the methodology

proposed by [25], Top2Vec utilizes document clustering to identify the central theme of a topic by
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identifying words that are closely associated with the centroid of a cluster. A captivating aspect of

this methodology is its clustering strategy [26, 157].

The intricate domains of document clustering and topic modeling share a symbiotic relation-

ship, each enriching the other’s capabilities. When delving into the mechanisms of topic models,

one observes their adeptness at discerning the subtle, underlying semantics woven into a collection

of documents. This distilled semantic essence offers a more refined lens for delineating distinct

document groups compared to relying solely on crude term features. Traditional document clus-

tering techniques, for the most part, employ the bag-of-words (BOW) model. While this approach

is straightforward, basing representations purely on raw terms occasionally leaves them wanting in

terms of capturing the entirety of semantic nuances.

Topic modeling, on the other hand, exhibits a more sophisticated approach. It congregates

words bearing semantic resemblance under collective themes or ”topics”. An inherent advantage

of this method is its ability to perceive synonymous words as conceptually identical, obviating

the limitations of exact term matching. Furthermore, by transforming the document corpus into a

topic-centric space, topic models effectively filter out extraneous noise associated with similarity

measurements. As a result, the innate groupings within a corpus emerge more distinctly, paving the

way for more precise and coherent clustering [4].

Topic modeling benefits from reciprocal document clustering. It distills both localized topics

specific to document clusters and global topics that span multiple clusters. Google Scholar, for

example, contains academic papers from math, biology, computer science, and economics. Each

discipline or ”group” has its own topical themes in this vast expanse. Computer science literature

may cover machine learning, operating systems, and networking, while economics literature may

cover financial economics, entrepreneurial theories, or mathematical economics [27, 10].

Despite these domain-specific topics, ”global topics” exist that transcend disciplines. Academic

papers may include literature reviews, experimental results, and funding and support acknowledge-

ments. This scenario benefits from clustering, which reveals these document groups. After uncov-

ering these latent groupings, one can identify topics that are unique to each group and those that

are common to all. Granular topic demarcation opens many doors. Localized topics can be con-

cise summaries or browsing aids for document groups. In contrast, global topics can help identify
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common or background words, providing a complete document collection view [27, 28, 158].

The limitations of conventional topic modeling methods lie in their inability to capture the intri-

cate dynamics within document groups. The current iterations of such models often lack the capac-

ity to encapsulate the evolving dynamics within document collections. Consequently, they tend to

yield generalized topics that obscure both local and global thematic nuances, thereby constraining

comprehension and practical utility [13, 12, 16, 34].

A feasible strategy involves decoupling these two endeavors. Initially, topic models can be em-

ployed to map documents into thematic domains, followed by the application of K-means clustering

to delineate clusters [29]. Subsequently, conventional clustering techniques can identify clusters,

while topic modeling techniques can extract localized topics pertinent to each cluster and overarch-

ing topics unrelated to any specific cluster. Integration of cluster labels into the model’s framework

facilitates enhanced model performance [3, 4].

Nevertheless, a simplistic segregation of these tasks risks oversimplifying the intricate interplay

between document clustering and topic modeling. A more sophisticated approach acknowledges the

symbiotic relationship between these processes. Enhanced clustering methodologies can enrich the

sophistication of topic models, and conversely, refined topic modeling techniques can inform more

precise clustering outcomes. Treating these tasks in isolation may curtail their synergistic potential

and overall effectiveness [29].

The Bert-Topic embedding stands as a testament to the advancements in natural language pro-

cessing, employing the state-of-the-art capabilities of Bidirectional Encoder Representations from

Transformers (BERT) to generate rich contextual word and sentence vector representations [23, 24].

It captures semantic intricacies, allowing for deeper topic discernment and superior document rep-

resentation. On a parallel front, the Multi-Grain Clustering Topic Model (MGCTM) has been a

beacon in topic modeling, offering structured granularity to elucidate both micro- and macro-level

topics in text data [27]. By incorporating Generalized Dirichlet and Beta-Liouville distributions

alongside Bert-Topic embedding into the MGCTM framework, we enhance its modeling versatility,

extending the capabilities of the original model.
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In this chapter, we provide our proposed models, namely the multi-grain Generalized Dirich-

let Bert-Topic model (MGGDBTM) and the multi-grain Beta-Liouville Bert-Topic model (MG-

BLBTM). The initial step is delineating the characteristics of the fitting distribution associated with

each model. Following this, we utilize variational approaches in order to ascertain the parameters

of the distribution. This section is concluded by providing a comprehensive account of the learning

mechanism for these models.

6.2 Multi-grain Generalized Dirichlet Bert-topic Model

The generalized Dirichlet (GD) distribution, introduced in [90], offers a more expansive covari-

ance structure than the Dirichlet distribution and overcomes its constraints, including assumptions

of negative correlation and equal confidence [159]. As such, it stands out as a preferred prior in

Bayesian learning, as highlighted by [91, 143]. Moreover, [91] accentuates its viability as an alter-

native for the Dirichlet distribution when clustering count data with mixture models, given its role

as a conjugate prior for the multinomial distribution and its robust covariance matrix. Building on

the GD foundation, the multi-grain clustering topic model (MGCTM) [27] will be enhanced using

the variational Bayes method. Given insights from [92], it’s anticipated that the MGGDCTM model

will surpass the performance of Dirichlet-based models, especially since the GD encompasses the

Dirichlet distribution as a specific subset.

In the MGGDCTM model, we posit a corpus comprised of N documents, represented as d ∈

{1, 2, . . . , N}. These documents are inherently categorized into J groups, denoted as j ∈ {1, 2, . . . , J}.

Each group, j, is characterized by K local topics specific to that group, symbolized as β(l)j . These

local topics capture the unique semantics of each group. Additionally, every group j is associated

with its distinct local GD prior, ξ(l)j . For documents within group j, their local topic proportion vec-

tors are drawn from ξ
(l)
j . Beyond the group-specific local topics, we posit the existence of a single

collection ofR global topics, β(g)j , that are common across all groups. These global topics represent

the overarching semantics present throughout the entire dataset. All documents share a universal

GD prior, ξ(g), which determines the proportion vectors for these global topics. Additionally, a

global multinomial prior, π, determines the group affiliation of each document.
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Documents are linked to a specific group and have distributions related to both local and global

topics. We utilize a Bernoulli variable, sourced from a Beta prior, to determine if a word originates

from local or global topics. To produce a document, we select a group and then use various priors

and distributions to determine the word’s source, either local or global topics. The choice of topic

source dictates the distribution used to produce each word. The generative process of a document

in MGGDCTM model can be summarized as follows:

(1) ν ∼Multinomial(π)

(2) Local Topic ml
ν ∼ GD(ξlν)

(3) Global Topic mg ∼ GD(ξg)

(4) For each word w:

(a) Binary indicator δ ∼ bernouli(w):

i. If δ = 1

A. Local topic zlν ∼Multinomial(ml
ν)

B. w ∼Multinomial(Ωl)

i. If δ = 0

A. Global topic zg ∼Multinomial(mg)

B. w ∼Multinomial(Ωg)

In the process of applying a topic model prior to clustering, it is customary to assign predeter-

mined values to the latent variables of the topic model in the MGGDCTM framework, followed by

the optimization of the mixture model. When the clustering process is performed as the initial step,

the latent variables of the mixture model are established, allowing us to subsequently concentrate

on optimizing the topic model. However, when both components are conducted in conjunction, the

objective is to concurrently maximize the latent variables of both.

The Generalized Dirichlet distribution, denoted asGD(ξ), functions in a space of d dimensions.

This distribution has parameters symbolized by ξ. These parameters can be comprehensively ex-

pressed as a sequence:
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(a1, b1, . . . , ad, bd). When discussing the distribution, we refer to its probability distribution func-

tion using the notation p. One of the significant variables in this context is Λi. This variable is

deduced by computing the difference between certain parameters: specifically, bi, ai+1, and bi+1.

Mathematically, the relationship can be captured by the equation: Λi = bi − ai+1 − bi+1 [46].

p(m1, . . . ,md|ξ) =
d∏

i=1

Γ(al + bl)

Γ(al)Γ(bl)
mal−1

i (1−
i∑

j=1

mj)
Λi (198)

Having established our Generalized Dirichlet (GD) prior, our next course of action is to con-

struct the word-topic probability matrix, which we label as Ω. By operating under the presumption

of conditional independence among the variables, it becomes feasible to deduce the joint distribu-

tion. The mathematical representation for this distribution is:

p(m, z,w, |ξ,Ω) = p(m|ξ)p(w|z,Ω)p(z|m) (199)

In this formulation, the symbol z corresponds to the collection of underlying topics. The

strength of this representation lies in its ability to factor in different variables and their interrela-

tions.

The process of integrating across the m parameters and the topic space yields the following

outcome:

p(w|ξ,Ω) = Γ(ai + bi)

Γ(ai)Γ(bi)

∫
mai−1(1−

i∑
j=1

mj)
Λi

×
N∏

n=1

d+1∏
j=1

V∏
j=1

(mΩij)
wj

ndθ

(200)

In Equation 200, the variables ξ and Ω represent the parameters at the corpus level, whilst the

variable m represents the parameter at the document level. On the other hand, the variables z and

w represent the parameters at the word level.
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6.2.1 Variational Inference

In the MGGDCTM model, accurately estimating the posterior distributionP (ν, w,m(l),m(g), δ, z(l), z(g)|w,m)

of the latent variables B = {ν, w,m(l)

,m(g), δ, z(l), z(g)} is challenging. This estimation depends on observed data and the model param-

eters Θ = {π, λ, ξ(l), ξ(g), β(l), β(g)}.

P (ν, w,m(l),m(g), δ, z(l), z(g)|w,m) =
P (ν, w, δ, z(l), z(g)|m(l),m(g))

P (w|m(l),m(g)))
(201)

Given these premises, the joint distribution of the posterior can be expressed as follows:

p(W,Θ) = p(W |z(l),Ω(l), θ(l), σ, τ, y, z(g),Ω(g), θ(g), α, β)

= p(W |z(l),Ω(l), δ,Ω(g), z(g))p(z(l)|θ(l))p(θ(l)|σ, τ, y)p(y|π)p(σ|ν, ϑ)

× p(τ |s, t)p(θ(l)|ι, ϱ)p(z(g)|θ(g))p(θ(g)|β, α)p(α|g, h)p(β|a, b)

p(δ|ω)p(ω|γ)p(Ω(l)|λ)p(Ω(g)|κ)p(θ(g)|χ, s)

(202)

Eq. 202 describes the joint probability distribution of the observed words (W ) and the set of

all parameters in the model (Θ). The observed words are represented as W , while Θ encompasses

all model parameters. The local topic assignments for words in documents are denoted by z(l), and

the local word-topic probability matrix, which represents the probability of each word given a local

topic, is denoted by Ω(l). The local topic proportions for each document are represented by θ(l), and

these proportions are governed by the parameters σ and τ . The document group assignments are

denoted by y.

The global topic assignments for words in documents are represented by z(g), and the global

word-topic probability matrix, which represents the probability of each word given a global topic,

is denoted by Ω(g). The global topic proportions for each document are denoted by θ(g), with α and

β as the parameters for the global topic proportions distribution. The prior probability vector for the

group assignments is represented by π, and the hyperparameters for the prior distribution of σ are ν

and ϑ. Similarly, s and t are the hyperparameters for the prior distribution of τ .
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The local topic proportions are influenced by the hyperparameters ι and ϱ. The hyperparameters

for the prior distribution of α are g and h, while a and b are the hyperparameters for the prior

distribution of β. The binary indicator for local or global topic generation is represented by δ, with

ω as the hyperparameters for its prior distribution. The hyperparameters for the prior distribution

of ω are represented by γ. The prior distribution of Ω(l) is governed by the hyperparameters λ, and

the prior distribution of Ω(g) is governed by κ. Lastly, the global topic proportions are influenced

by the hyperparameters χ and s.

Gibbs sampling is typically used in traditional topic models due to a particular conjugate rela-

tionship. However, the estimation of the posterior distribution becomes complex due to a mismatch

in the prior topic distribution for phrases. To tackle this, variational inference is utilized for approx-

imating the distribution. The main objective is to minimize the Kullback-Leibler (KL) divergence

between the actual and variational posteriors, as indicated in various studies [94, 128, 27]. This

issue is approached as an optimization problem. Research suggests that enhancing the variational

posterior probability and reducing the KL divergence can lead to a better evidence lower bound

(ELBO). Ultimately, variational inference aims to align variational distributions closely with the

true posterior [66, 129, 37, 128].

Variational inference is chosen over traditional Bayesian methods like Gibbs sampling [160]

because, despite potentially providing more accurate parameter estimates, these algorithms can re-

quire an extended time to converge. In contrast, variational methods introduce a distribution Q(Θ)

as an approximate representation of P (W |Θ), the sought-after posterior distribution. This strategy

effectively addresses the limitations of classic Bayesian methods by estimating, rather than pre-

cisely calculating, the posterior. Our methodology involves assessing the closeness of the posterior

and variational distributions through the Kullback-Leibler (KL) divergence. A KL divergence of 0

indicates similarity between two distributions. The KL divergence between Q(Θ) and P (W |Θ) is

defined as,

KL(Q||P ) = −
∫
Q(Θ) ln

(p(W |Θ)

Q(Θ)

)
dΘ (203)
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Simplifying this equation yields:

KL(Q||P ) = ln p(W )− L(Q) (204)

where,

L(Q) =

∫
Q(Θ) ln

(p(W,Θ)

Q(Θ)

)
dΘ (205)

The principle underlying Eqs. 203, 204 and 205 is that maximizing the lower bound L(Q)

effectively reduces the KL divergence towards 0. Given the intractability of the true posterior,

mean-field theory [161] is introduced, assuming the parameters are independent and identically dis-

tributed. From this standpoint, the distribution of variational parameters can be represented as a

product of individual parameters, expressed as Q(Θ) =
∏J

j=1Θj , where J denotes the total num-

ber of parameters. The optimal solution for each parameter is then determined by the subsequent

equation,

Qj(Θj) =
exp(ln p(W,Θ)) ̸=j∫
exp(ln p(W,Θ)) ̸=jdΘ

(206)

Based on the given equation, it’s clear that the optimal solution for the parameter Θj is deter-

mined by computing the expectations with respect to all parameters except Θj . This necessitates

an appropriate initialization at the beginning of the algorithm. Subsequently, the variational solu-

tions for each parameter are iteratively updated, which contributes to the maximization of the lower

bound. Upon reaching convergence, the algorithm yields the optimal solution for all the parameters

in the model.

6.2.2 Variational solutions for MGGDCTM

All parameters used in the equations throughout this paper are defined in Table 6.1.

Determining the variational solutions for Eq 202, the subsequent equations are derived:

Q(y) =

D∏
d=1

L∏
l=1

rydldl (207)
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Table 6.1: Definitions of Parameters Used in the Equations MGGDCTM model

D Number of documents
L Number of document groups
Nd Number of words in document d
K Number of topics
V Vocabulary size
rdl Document-group assignment probability for document d and group l
ydl Indicator variable if document d is assigned to group l
ϕ
(g)
dnk Global topic assignment probability for word n in document d and topic k
z
(g)
dnk Indicator variable if word n in document d is assigned to global topic k
ϕ
(l)
dnk Local topic assignment probability for word n in document d and topic k
z
(l)
dnk Indicator variable if word n in document d is assigned to local topic k

σlk, τlk Parameters for the local topic proportions distribution
ϑ∗lk, ν

∗
lk Hyperparameters for the prior distribution of σlk

t∗lk, s
∗
lk Hyperparameters for the prior distribution of τlk

Ω
(l)
kv Local word-topic probability for word v given topic k
λ∗kv Hyperparameters for the prior distribution of Ω(l)

kv

αlk, βlk Parameters for the global topic proportions distribution
h∗lk, g

∗
lk Hyperparameters for the prior distribution of αlk

a∗lk, b
∗
lk Hyperparameters for the prior distribution of βlk

Ω
(g)
kv Global word-topic probability for word v given topic k
κ∗kv Hyperparameters for the prior distribution of Ω(g)

kv

θ
(l)
dk Local topic proportion for document d and topic k

ι∗dk, ϱ
∗
dk Hyperparameters for the local topic proportions

θ
(g)
dk Global topic proportion for document d and topic k

χ∗
dk, s

∗
dk Hyperparameters for the global topic proportions

ρdl, δ
(l)
dnk, δ

(g)
dnk Intermediate variables for probability calculations

R(l),R(g) Taylor series approximations for the digamma and trigamma functions
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Figure 6.1: Graphical representation of MGGDCTM

Q(z(g)) =
D∏

d=1

Nd∏
N=1

K∏
K=1

ϕ
(g)z

(g)
dnk

dnk , Q(z(l)) =
D∏

d=1

Nd∏
N=1

K∏
K=1

ϕ
(l)z

(l)
dnk

dnk (208)

Q(σ) =
L∏
l=1

K∏
k=1

ϑ∗
ν∗lk

lk

Γ(ν∗lk)
σ
ν∗lk−1

lk e−ϑ∗
lkσlk , Q(τ) =

L∏
l=1

K∏
k=1

t∗
s∗lk

lk

Γ(s∗lk)
τ
s∗lk−1

lk e−t∗lkτlk (209)

Q(Ω(l)) =
K∏
k=1

V∏
v=1

Γ
(∑V

v=1 λ
∗
kv

)
∏V

v=1 Γ(λ
∗
kv)

Ω
(l)λ∗

kv−1

kv , Q(Ω(g)) =
K∏
k=1

V∏
v=1

Γ
(∑V

v=1 κ
∗
kv

)
∏V

v=1 Γ(κ
∗
kv)

Ω
(g)κ∗

kv−1

kv

(210)
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Q(α) =
L∏
l=1

K∏
k=1

h∗
s∗lk

lk

Γ(g∗lk)
α
g∗lk−1

lk e−h∗
lkαlk , Q(β) =

L∏
l=1

K∏
k=1

a∗
b∗lk

lk

Γ(b∗lk)
β
b∗lk−1

lk e−a∗lkβlk (211)

Q(θ(l)) =
D∏

d=1

K∏
k=1

Γ(ι∗dk + ϱ∗dk)

Γ(ι∗dk)Γ(ϱ
∗
dk)

θ
(l)ι∗dk−1

dk

1−
k∑

j=1

θ
(l)
dj

ζ∗dk

(212)

Q(θ(g)) =

D∏
d=1

K∏
k=1

Γ(χ∗
dk + s∗dk)

Γ(χ∗
dk)Γ(s

∗
dk)

θ
(g)χ∗

dk−1

dk

1−
k∑

j=1

θ
(g)
dj

ζ∗dk

(213)

where,

rdl =
ρdl∑L
l=1 ρdl

, ϕ
(l)
dnk =

δ
(l)
dnk∑K

k=1 δ
(l)
dnk

, πl =
1

D

D∑
d=1

rdl,

ϕ
(g)
dnk =

δ
(g)
dnk∑K

k=1 δ
(g)
dnk

.

(214)

ρdl = exp

lnπl +Rl +

K∑
k=1

(σlk − 1)(ln θ
(l)
dk) + γlk(⟨)1−

k∑
j=1

θ
(l)
dj )

 (215)

δ
(l)
dnk = exp(lnΩ

(l)
kv + ln θ

(l)
dk ), δ

(g)
dnk = exp(lnΩ

(g)
kv + ln θ

(g)
dk ) (216)

In this context, R(l) and R(g) represent the Taylor series approximations of ln Γ(σ+τ)
Γ(σ)+Γ(τ) and

ln Γ(α+β)
Γ(α)+Γ(β) , respectively, which are expressed as follows:
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R(l) = ln
Γ(σ + τ)

Γ(σ)Γ(τ)
+ σ [Ψ(σ + τ)−Ψ(σ)] (⟨lnσ⟩ − lnσ)

+ τ [Ψ(σ + τ)−Ψ(τ)] (⟨ln τ⟩ − ln τ)

+ 0.5σ2
[
Ψ′(σ + τ)−Ψ′(σ)

]
⟨(lnσ − lnσ)2⟩

+ 0.5τ2
[
Ψ′(σ + τ)−Ψ′(τ)

]
(⟨ln τ − ln τ)2⟩

+ στΨ′(σ + τ) (⟨lnσ⟩ − lnσ) (⟨ln τ⟩ − ln τ)

(217)

R(g) = ln
Γ(α+ β)

Γ(α)Γ(β)
+ α

[
Ψ(α+ β)−Ψ(α)

]
(⟨lnα⟩ − lnα)

+ β
[
Ψ(α+ β)−Ψ(β)

] (
⟨lnβ⟩ − lnβ

)
+ 0.5α2

[
Ψ′(α+ β)−Ψ′(α)

]
⟨(lnα− lnα)2⟩

+ 0.5β
2 [

Ψ′(α+ β)−Ψ′(β)
] (

⟨lnβ − lnβ
)2⟩

+ αβΨ′(α+ β) (⟨lnα⟩ − lnα)
(
⟨lnβ⟩ − lnβ

)
(218)

v∗ik = vlk +
D∑

d=1

⟨ydl⟩[Ψ(σlk + τ lk)−Ψ(σlk)

+ τ lkΨ
′(σlk + τ lk) (⟨ln τlk⟩ − ln τ lk)σlk

(219)

s∗lk = slk +
D∑

d=1

⟨ydl⟩[Ψ(τ lk + σlk)−Ψ(τ lk)

+ σlkΨ
′(τ lk + σlk) (⟨lnσlk⟩ − lnσlk))τ lk

(220)

v∗lk = vlk −
D∑

d=1

ydl ln θdk, t∗lk = tlk −
D∑

d=1

⟨ydl⟩⟨ln

1−
K∑
j=1

θdj

⟩ (221)
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ι∗dk = ιdk +

Nd∑
n=1

⟨zdnk⟩+
L∑
l=1

⟨ydl⟩σlk, ϱ∗dk = ϱdk +
L∑
l=1

⟨ydl⟩τlk+

K∑
kk=k+1

ϕdn(kk)

(222)

λ∗kv = λkv +
D∑

d=1

Nd∑
n=1

V∑
v=1

ϕdnkwdnv, πl =
1

D

D∑
d=1

rdl (223)

a∗ik = alk +
D∑

d=1

[Ψ(αlk + τ lk)−Ψ(αlk)

+ βlkΨ
′(αlk + βlk)

(
lnβlk − lnβlk

)
αlk

(224)

g∗lk = glk +

D∑
d=1

[Ψ(βlk + αlk)−Ψ(βlk)

+ αlkΨ
′(βlk + αlk) (lnαlk − lnσlk))βlk

(225)

b∗lk = blk −
D∑

d=1

ln θ
(g)
dk , h∗lk = hlk −

D∑
d=1

ln

1−
K∑
j=1

θ
(g)
dj

 (226)

χ∗
dk = χdk +

Nd∑
n=1

z
(g)
dnk +

L∑
l=1

αlk, s∗dk = sdk +

L∑
l=1

βlk +

K∑
kk=k+1

ϕ
(g)
dn(kk) (227)

κ∗kv = κkv +

D∑
d=1

Nd∑
n=1

V∑
v=1

ϕ
(g)
dnkwdnv (228)

In the equations mentioned earlier, (.) symbolizes the average value of the variable. The esti-

mations of these expectations and the mean, as referenced in [162], are presented as follows:

ln θ
(l)
dk =

k∑
j=1

(Ψ(ιdk)−Ψ(ιdk + ϱdk)) (229)
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1−
k∑

j=1

θ
(l)
dj =

k∑
j=1

(Ψ(ϱdk)−Ψ(ιdk + ϱdk)) (230)

σlk =
v∗lk
ϑ∗lk

, lnσuk = Ψ(v∗lk)− lnϑ∗lk (231)

(lnσlk − lnσlk)
2 = [Ψ(v∗lk)− ln v∗lk]

2 +Ψ′(v∗lk) (232)

τ lk =
s∗lk
t∗lk
, ln τlk = Ψ(s∗lk)− ln t∗lk (233)

(ln τuk − ln τuk)
2 = [Ψ(s∗lk)− ln s∗lk]

2 +Ψ′(s∗lk) (234)

z
(l)
dnk = ϕdnk, ydl = rdl, lnΩ

(l)
kv = Ψ(λkv)−Ψ

 V∑
f=1

λkf

 (235)

θ
(g)
dk =

k∑
j=1

(Ψ(χdk)−Ψ(χdk + sdk)) (236)

1−
k∑

j=1

θ
(g)
dj =

k∑
j=1

(Ψ(sdk)−Ψ(χdk + sdk)) (237)

αlk =
b∗lk
a∗lk

, lnαlk = Ψ(b∗lk)− ln a∗lk (238)

(lnαlk − lnαlk)
2 = [Ψ(b∗lk)− ln b∗lk]

2 +Ψ′(b∗lk) (239)

βlk =
g∗lk
h∗lk

, lnβlk = Ψ(g∗lk)− lnh∗lk (240)
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(
lnβuk − lnβuk

)2
= [Ψ(g∗lk)− ln g∗lk]

2 +Ψ′(g∗lk) (241)

z
(g)
dnk = ϕdnk, lnΩ

(g)
kv = Ψ(κkv)−Ψ

 V∑
f=1

κkf

 (242)

In the aforementioned equations, the symbols Ψ and Ψ′ represent the digamma and trigamma

functions, respectively.

The optimization of the model parameters was achieved by maximizing the lower bound, as

demonstrated in the following:

Ω(l) =

D∑
d=1

Nd∑
n=2

V∑
v=1

ιϱθ
(l)
dnkwdnv, Ω(g) =

D∑
d=1

Nd∑
n=2

V∑
v=1

χsθ
(g)
dnkwdnv (243)

Parameter Estimation

The terms in Eq. 202 that contain the GD parameters ξ are chosen:

L[ξ] =
M∑

m=1

(log(Γ(αl + βl))− log Γ(αl))− log(Γ(βl)))

+

M∑
m=1

(αl(Ψ(γml −Ψ(γml + δml)) + βl(Ψ(δml)−Ψ(δml − γml)))

(244)

The derivative of the above equation with respect to the GD parameters yields:

∂L[ξ]
∂αl

=M(Ψ(αl + βl)−Ψ(αl)) +

M∑
m=1

(Ψ(γml)−Ψ(γml + δml)) (245)

and
∂L[ξ]
∂βl

=M(Ψ(αl + βl)−Ψ(βl)) +
M∑

m=1

(Ψ(δml)−Ψ(γml + δml)) (246)

To solve the Newton-Raphson equation, acquiring the Hessian matrix within the parameter space is

essential, as this matrix plays a crucial role in the optimization process:
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∂2L[ξ]
∂α2

l

=M [Ψ
′
(αl + βl)−Ψ

′
(αl)] (247)

∂2L[ξ]
∂β2l

=M [Ψ
′
(αl + βl)−Ψ

′
(βl)] (248)

∂2L[ξ]
∂αlβl

=M [Ψ
′
(αl + βl)] (249)

6.3 Multi-grain Beta-Liouville Bert-Topic Model

The MGBLBM model is built using the same principles as the MGGDBM model, with the key

distinction lying in the prior used for topic proportions and its respective parameters. Specifically,

the GD prior in the MGGDBM is substituted with the BL prior in the MGBLBM, resulting in an

altered set of equations.

p(θ(l) | y, µ, σ, τ ) =
L∏
l=1

K∏
k=1

(
p(θ

(l)
k | µlk, σl, τl)

)ydl
=

L∏
l=1

K∏
k=1

[
Γ
(∑K

k=1 µlk

)
∏K

k=1 Γ(µlk)

Γ(σl + τl)

Γ(σl)Γ(τl)

(
θ
(l)
dk

)µlk−1

×

(
K∑
k=1

θ
(l)
dk

)σl−
∑K

k=1 µlk
(
1−

K∑
k=1

θ
(l)
dk

)τl−1 ]ydl
(250)

This implies that θ(l) is considered a stochastic vector that follows a Beta-Liouville distribution

with specified parameters (µl1, µl2, ..., µlNd
, σl, τl). Expanding on this assumption, we can express

the Gamma priors for these parameters as follows: p(µlk) = G(µlk | υlk, νlk), p(σl) = G(σl | sl, tl),

and p(τl) = G(τl | Ωl,Λl). These priors exhibit the same characteristics as those in the case of GD.

Consequently, with these modifications, the variational distribution in Equation 250 will be replaced

by the following:
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p(θ(l)d | cd, Rd, Qd) =

K∏
k=1

Γ
(∑K

k=1 cdk

)
∏K

k=1 Γ(cdk)

Γ(Rd +Qd)

Γ(Rd)Γ(Qd)

(
θ
(l)
dk

)cdk−1

×

[
K∑
k=1

θ
(l)
dk

]Rd−
∑K

k=1 cdk
[
1−

K∑
k=1

θ
(l)
dk

]Qd−1
(251)

By implementing these modifications, we are able to build the combined probability distribution

of the posterior, assuming a BL prior for the topic proportions [163, 164], as follows:
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p(W,Θ) =
D∏

d=1

Nd∏
n=1

K∏
k=1

(
V∏

v=1

(
β
(l)
kv

)wdnv

)z
(l)
dnk

×
D∏

d=1

Nd∏
n=1

K∏
k=1

(
θ
(l)
dk

)z(l)dnk

×
D∏

d=1

L∏
l=1

 K∏
k=1

Γ
(∑K

k=1 µlk

)
∏K

k=1 Γ(µlk)

Γ(σl + τl)

Γ(σl)Γ(τl)

(
θ
(l)
dk

)µlk−1

×

(
K∑
k=1

θ
(l)
dk

)σl−
∑K

k=1 µlk
(
1−

K∑
k=1

θ
(l)
dk

)τl−1 ]ydl
×

D∏
d=1

L∏
l=1

πydll

×
D∏

d=1

K∏
k=1

Γ
(∑K

k=1 fdk

)
∏K

k=1 Γ(fdk)

Γ(gd + hd)

Γ(gd)Γ(hd)

(
θ
(l)
dk

)fdk−1
(

K∑
k=1

θ
(l)
dk

)gd−
∑K

k=1 fdk

×

(
1−

K∑
k=1

θ
(l)
dk

)hd−1

×
K∏
k=1

V∏
v=1

Γ
(∑V

v=1 λkv

)
∏V

v=1 Γ(λkv)

(
β
(l)
kv

)λkv−1

×
L∏
l=1

K∏
k=1

νυlklk

Γ(υlk)
(µlk)

υlk−1 e−νlkµlk ×
L∏
l=1

tsll
Γ(sl)

(σl)
sl−1 e−tlσl

×
L∏
l=1

ΛΩl
l

Γ(Ωl)
(τl)

Ωl−1 e−Λlτl

×
D∏

d=1

Nd∏
n=1

K∏
k=1

(
V∏

v=1

(
β
(g)
kv

)wdnv

)z
(g)
dnk

×
D∏

d=1

Nd∏
n=1

K∏
k=1

(
θ
(g)
dk

)z(g)dnk

×
D∏

d=1

L∏
l=1

[
K∏
k=1

Γ
(∑

k = 1KBlk

)∏K
k=1 Γ(Blk)

Γ(El +Al)

Γ(El)Γ(Al)

(
θ
(g)
dk

)Blk−1

×
(∑

k = 1Kθ
(g)
dk

)El−
∑

k=1KBlk
(
1−

∑
k = 1Kθ

(g)
dk

)Al−1
]ydl

×
D∏

d=1

L∏
l=1

πydll ×
D∏

d=1

K∏
k=1

Γ
(∑

k = 1Kcdk
)∏K

k=1 Γ(cdk)

Γ(Rd +Qd)

Γ(Rd)Γ(Qd)

(
θ
(g)
dk

)cdk−1

(
K∑
k=1

θ
(g)
dk

)Rd−
∑

k=1Kcdk

×
(
1−

∑
k = 1Kθ

(g)
dk

)Qd−1
×

K∏
k=1

V∏
v=1

Γ
(∑

v = 1V ρkv
)∏V

v=1 Γ(ρkv)

(
β
(g)
kv

)ρkv−1

×
L∏
l=1

K∏
k=1

θϱlklk

Γ(ϱlk)
(Blk)

ϱlk−1 e−θlkBlk

×
L∏
l=1

ball
Γ(al)

(El)
al−1 e−blEl ×

L∏
l=1

κιll
Γ(ιl)

(Al)
ιl−1 e−κlAl

(252)
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The complete set of parameters necessary for the model shown by Θ = {z(l), z(g), β(l), β(g), θ(g), θ(l), µ,B, σ,E, τ, A,Y}.

Fig. 6.2 provides a graphical representation of the model.

Figure 6.2: Graphical representation of MGBLBM

6.3.1 Variational solutions for MGBLBM

The variational solutions for Equation 252 are largely similar to those in the previous section,

with some differences in the definitions of variables and the apparent change in Q(θ⃗). Table 6.2

summarizes the relevant variables for the MGBLBM model, and the variational solutions are as

follows:

Q(Y) =

D∏
d=1

L∏
l=1

rydldl (253)
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Table 6.2: Definitions of Parameters Used in the Equations MGBLBM model

D Number of documents
L Number of document groups
Nd Number of words in document d
K Number of topics
V Vocabulary size
rdl Document-group assignment probability for document d and group l
ydl Indicator variable if document d is assigned to group l
ϕ
(g)
dnk Global topic assignment probability for word n in document d and topic k
z
(g)
dnk Indicator variable if word n in document d is assigned to global topic k
ϕ
(l)
dnk Local topic assignment probability for word n in document d and topic k
z
(l)
dnk Indicator variable if word n in document d is assigned to local topic k

σlk, τlk Parameters for the local topic proportions distribution
ϑ∗lk, ν

∗
lk Hyperparameters for the prior distribution of σlk

t∗lk, s
∗
lk Hyperparameters for the prior distribution of τlk

Ω
(l)
kv Local word-topic probability for word v given topic k
λ∗kv Hyperparameters for the prior distribution of Ω(l)

kv

αlk, βlk Parameters for the global topic proportions distribution
h∗lk, g

∗
lk Hyperparameters for the prior distribution of αlk

a∗lk, b
∗
lk Hyperparameters for the prior distribution of βlk

Ω
(g)
kv Global word-topic probability for word v given topic k
κ∗kv Hyperparameters for the prior distribution of Ω(g)

kv

θ
(l)
dk Local topic proportion for document d and topic k

ι∗dk, ϱ
∗
dk Hyperparameters for the local topic proportions

θ
(g)
dk Global topic proportion for document d and topic k

χ∗
dk, s

∗
dk Hyperparameters for the global topic proportions

ρdl, δ
(l)
dnk, δ

(g)
dnk Intermediate variables for probability calculations

µlk Intermediate variable for the prior distribution
Blk Parameter related to R(g)

El, A Parameters for the Taylor series approximations
R(l),R(g) Taylor series approximations for the digamma and trigamma functions
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Q(z(l)) =

D∏
d=1

Nd∏
N=1

K∏
k=1

ϕ
(g)z

(l)
dnk

dnk , Q(z(g)) =

D∏
d=1

Nd∏
N=1

K∏
k=1

ϕ
(g)z

(g)
dnk

dnk (254)

Q(µ) =
L∏
l=1

K∏
k=1

ν∗lk
υ∗
lk

Γ(υ∗lk)
µ
υ∗
lk−1

lk e−ν∗lkµlk , Q(σl) =
L∏
l=1

t∗l
s∗l

Γ(s∗l )
σ
s∗l −1

l e−t∗l σl ,

Q(τl) =

L∏
l=1

Λ∗
l
Ω∗

l

Γ(Ω∗
l )
τ
Ω∗

l −1

l e−Λ∗
l τl

(255)

Q(B) =

L∏
l=1

K∏
k=1

ζ∗lk
ϱ∗lk

Γ(ϱ∗lk)
B

ϱ∗lk−1

lk e−ζ∗lkBlk , Q(El) =

L∏
l=1

b∗a
∗
l

Γ(a∗l )
E

a∗l −1

l e−b∗El

Q(A) =
L∏
l=1

κ∗l
ι∗l

Γ(ι∗l )
Aι∗l −1e−κ∗

l A

(256)

Q(β(l)) =
K∏
k=1

V∏
v=1

Γ(
∑V

v=1 λ
∗
kv)∏V

v=1 Γ(λ
∗
kv)

β
(l)λ∗

kv−1

kv ,

Q(β(g)) =

K∏
k=1

V∏
v=1

Γ(
∑V

v=1 ρ
∗
kv)∏V

v=1 Γ(ρ
∗
kv)

β
(g)ρ∗kv−1

kv

(257)

Q(θ(l)) =

D∏
d=1

K∏
k=1

Γ(
∑K

k=1 f
∗
dk)

Γ(f∗dk)

Γ(g∗d + h∗d)

Γ(g∗d)Γ(h
∗
d)
θ
f∗
dk−1

dk

×
[ K∑
k=1

θ
(l)
dk

]g∗d−∑K
k=1 f

∗
dk
[
1−

K∑
k=1

θ
(l)
dk

]h∗
d−1

(258)

Q(θ(g)) =
D∏

d=1

K∏
k=1

Γ(
∑K

k=1 c
∗
dk)

Γ(c∗dk)

Γ(R∗
d +Q∗

d)

Γ(R∗
d)Γ(Q

∗
d)
θ
(g)c∗dk−1

dk

×
[ K∑
k=1

θ
(g)
dk

]R∗
d−

∑K
k=1 c

∗
dk
[
1−

K∑
k=1

θ
(g)
dk

]Q∗
d−1

(259)
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where,

rdl =
ρdl∑L
l=1 ρdl

, ϕ
(l)
dnk =

δ
(l)
dnk∑K

k=1 δ
(l)
dnk

, πl =
1

D

D∑
d=1

rdl, ϕ
(g)
dnk =

δ
(g)
dnk∑K

k=1 δ
(g)
dnk

(260)

ρdl =exp

{
lnπl +Rl + Sl + (µlk − 1) ln θ

(l)
dk

+

(
σl −

K∑
k=1

µlk

)
ln

[
K∑
k=1

θ
(l)
dk

]

+ (τl − 1) ln

[
1−

K∑
k=1

θ
(l)
dk

]} (261)

δ
(g)
dnk = exp(ln β

(g)
kv + ln θ

(g)
dk ) (262)

Due to intractability, we use Taylor series expansions for Γ(
∑K

k=1 σlk)
Γ(σlk)

, Γ(
∑K

k=1 Elk)
Γ(Elk)

, ln Γ(σ+τ)
Γ(σ)Γ(τ)

and ln Γ(E+A)
Γ(E)Γ(A) denoted by R(l) , R(g), S(l) and S(g)respectively. The approximations are given as,

R(l) = ln
Γ(
∑K

k=1 µlk)∏K
k=1 Γ(µlk)

+
K∑
k=1

µlk

[
Ψ
( K∑

k=1

µlk

)
− Ψ(µlk)

][
lnµlk − lnµlk

]
+

1

2

K∑
k=1

µ2lk

[
Ψ ′( K∑

k=1

µlk
)
− Ψ ′(µlk)

]
− (lnµlk − lnµlk)

2

+
1

2

K∑
a=1

K∑
b=1,a ̸=b

µlaµlb

[
Ψ ′
( K∑

k=1

µlk

)(
lnµla − lnµla

)(
lnµlb − lnµlb

)]
(263)

R(g) = ln
Γ(
∑K

k=1Blk)∏K
k=1 Γ(Blk)

+
K∑
k=1

Blk

[
Ψ
( K∑

k=1

Blk

)
− Ψ(Blk)

][
lnBlk − lnBlk

]
+

1

2

K∑
k=1

B
2
lk

[
Ψ ′( K∑

k=1

Blk

)
− Ψ ′(Blk)

]
− (lnBlk − lnBlk)

2

+
1

2

K∑
a=1

K∑
b=1,a̸=b

BlaBlb

[
Ψ ′
( K∑

k=1

Blk

)(
lnBla − lnBla

)(
lnBlb − lnBlb

)]
(264)
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S(l) = ln
Γ(σ + τ)

Γ(σ)Γ(τ)
+ σ

[
Ψ(σ + τ)− Ψ(σ)

]
(lnσ − lnσ)

+ τ
[
Ψ(σ + τ)− Ψ(τ)

]
(ln τ − ln τ)

+ 0.5σ2
[
Ψ ′(σ + τ)− Ψ ′(σ)

]
(lnσ − lnσ)2

+ 0.5τ2
[
Ψ ′(σ + τ)− Ψ ′(τ)

]
(ln τ − ln τ)2

+ σ τ Ψ ′(σ + τ)(lnσ − lnσ)(
〈
ln τ
〉
− ln τ)

(265)

S(}) = ln
Γ(E +A)

Γ(E)Γ(A)
+ E

[
Ψ(E +A)− Ψ(E)

]
(lnE − lnE)

+A
[
Ψ(E +A)− Ψ(A)

]
(lnA− lnA)

+ 0.5E
2[
Ψ ′(E +A)− Ψ ′(E)

]
(lnE − lnE)2

+ 0.5A
2[
Ψ ′(E +A)− Ψ ′(A)

]
(lnA− lnA)2

+ E AΨ ′(E +A)(lnE − lnE)(
〈
lnA

〉
− lnA)

(266)

υ∗lk =υlk +
D∑

d=1

ydlµlk

[
Ψ
( K∑

k=1

µlk

)
− Ψ(µlk)

+ Ψ
( K∑

k=1

) K∑
a̸=k

(
lnµla − lnµla

)
µla

] (267)

ν∗lk = νlk −
D∑

d=1

ydl

[
ln θdk − ln

K∑
k=1

θdk

]
(268)

s∗l =sl +
D∑

d=1

ydl

[
Ψ
(
σl + τ l

)
− Ψ

(
σl
)

+ τ lΨ
′(σl + τ l

)(
ln τl − ln τ l

)]
σl

(269)
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t∗l = tl −
D∑

d=1

ydl

〈
ln
[ K∑
k=1

θdk

]〉
(270)

Ω∗
l =Ωlk +

D∑
d=1

ydl

[
Ψ
(
τ l + σl

)
− Ψ

(
τ l
)

+ σlΨ
′(τ l + σl

)(
lnσl − lnσl

)]
τ l

(271)

Λ∗
l = Λl −

D∑
d=1

ydl

〈
ln
[
1−

K∑
k=1

θdk

]〉
(272)

f∗dk = fdk +

Nd∑
n=1

zdnk +

L∑
l=1

ydlµlk, g∗d = gd +

Nd∑
n=1

K∑
k=1

zdnk +

L∑
l=1

ydl,

h∗d = hd +
L∑
l=1

ydlτl

(273)

ϱ∗lk =ϱlk +Blk

[
Ψ
( K∑

k=1

Blk

)
− Ψ(Blk)

+ Ψ
( K∑

k=1

) K∑
a̸=k

(
lnBla − lnBla

)
Bla

] (274)

ζ∗lk = ζlk −
[
ln θ

(g)
dk − ln

K∑
k=1

θ
(g)
dk

]
(275)

a∗l = al + Ψ
(
El +Al

)
− Ψ

(
El

)
+AlΨ

′(El +Al

)(
lnA− lnAl

)
El (276)

b∗ = b−
D∑

d=1

〈
ln
[ K∑
k=1

θ
(g)
dk

]〉
(277)

ι∗l = ιlk +

D∑
d=1

[
Ψ
(
Al + El

)
− Ψ

(
Al

)
+ ElΨ

′(Al + El

)(
lnEl − lnEl

)]
Al (278)
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κ∗l = κl −
D∑

d=1

〈
ln
[
1−

K∑
k=1

θ
(g)
dk

]〉
(279)

c∗dk = cdk +

Nd∑
n=1

zdnk +
L∑
l=1

Blk (280)

R∗
d = Rd +

Nd∑
n=1

K∑
k=1

zdnk +

L∑
l=1

El (281)

Q∗
d = Qd +

L∑
l=1

A (282)

The expectations in these equations are defined with respect to the BL distribution as follows:

ln θ
(l)
dk =Ψ(fdk)− Ψ

( K∑
k=1

fdk

)
+ Ψ(gd)− Ψ(gd + hd) (283)

k∑
k=1

θ
(l)
dk =

k∑
k=1

(
Ψ(gd)− Ψ(gd + hd)

)
(284)

1−
k∑

k=1

θ
(l)
dk =

k∑
k=1

(
Ψ(hd)− Ψ(gd + hd)

)
(285)

σlk =
υ∗lk
ν∗lk

, lnσlk = Ψ
(
υ∗lk
)
− ln ν∗lk (286)

(
lnσlk − lnσlk

)2
=
[
Ψ
(
υ∗lk
)
− ln υ∗lk

]2
+ Ψ ′(υ∗lk) (287)

σl =
s∗l
t∗l
, lnσl = Ψ

(
s∗l
)
− ln t∗l (288)

(
lnσl − lnσl

)2
=
[
Ψ
(
s∗l
)
− ln s∗l

]2
+ Ψ ′(s∗l ) (289)

τ lk =
Ω∗
l

Λ∗
l

, ln τl = Ψ
(
Ω∗
l

)
− ln Λ∗

l (290)

(
ln τl − ln τ l

)2
=
[
Ψ
(
Ω∗
l

)
− lnΩ∗

l

]2
+ Ψ ′(Ω∗

l

)
(291)

z
(l)
dnk = ϕ

(l)
dnk, ydl = rdl, lnβ

(l)
kv = Ψ(λkv)− Ψ(

V∑
f=1

λkf ) (292)
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ln θ
(g)
dk =Ψ(cdk)− Ψ

( K∑
k=1

cdk

)
+ Ψ(Rd)− Ψ(Rd +Qd) (293)

k∑
k=1

θ
(g)
dk =

k∑
k=1

(
Ψ(Rd)− Ψ(Rd +Qd)

)
(294)

1−
k∑

k=1

θ
(g)
dk =

k∑
k=1

(
Ψ(Qd)− Ψ(Rd +Qd)

)
(295)

Elk =
ϱ∗lk
ζ∗lk
, lnElk = Ψ

(
ϱ∗lk
)
− ln ζ∗lk (296)

(
lnElk − lnElk

)2
=
[
Ψ
(
ϱ∗lk
)
− ln ϱ∗lk

]2
+ Ψ ′(ϱ∗lk) (297)

El =
a∗l
b∗
, lnEl = Ψ

(
a∗l
)
− ln b∗ (298)

(
lnEl − lnEl

)2
=
[
Ψ
(
a∗l
)
− ln a∗l

]2
+ Ψ ′(a∗l ) (299)

Alk =
ι∗l
κ∗l
, lnA = Ψ

(
ι∗l
)
− lnκ∗l (300)

(
lnA− lnAl

)2
=
[
Ψ
(
ι∗l
)
− ln ι∗l

]2
+ Ψ ′(ι∗l ) (301)

z
(g)
dnk = ϕ

(g)
dnk, lnβ

(g)
kv = Ψ(ρkv)− Ψ(

V∑
f=1

ρkf ) (302)

We follow the same algorithm for the LBLMA, calculating equations 253 - 259 repeatedly until

convergence.

The optimization of the model parameters was achieved by maximizing the lower bound, as

demonstrated in the following:

β(l) =
D∑

d=1

Nd∑
n=2

V∑
v=1

f ∗ g ∗ hθ(l)dnkwdnv (303)

β(g) =

D∑
d=1

Nd∑
n=2

V∑
v=1

c ∗R ∗Qθ(g)dnkwdnv (304)
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Beta-Liouville Parameter

The goal of this subsection is to find the model’s parameter estimates based on variational infer-

ences.

L[θ] =
M∑

m=1

(log(Γ(
D∑
l=1

cl)) + log(Γ(R+Q))− log Γ(R)− log Γ(Q)

−
D∑
i=1

log Γ(c) +
D∑
i=1

c(Ψ(γmi)−Ψ(
D∑
l=1

γm(l)))

+R(Ψ(Cmγ)−Ψ(CmγQmγ)) +Q(Ψ(Qmγ)−Ψ(Cmγ +Qmγ)))

(305)

The derivative of the above equation with respect to the BL parameter is given by:

∂L[θ]
∂c

=M(Ψ(
D∑
l=1

)−Ψ(c)) +
M∑

m=1

(Ψ
′
(γml)−Ψ(

D∑
l=1

γm(l)))

∂L[θ]
∂R

=M [Ψ(R+Q)−Ψ(R)] +

M∑
m=1

(Ψ(cmγ)−Ψ(cmγ +Qmγ))

∂L[θ]
∂Q

=M [Ψ(R+Q)−Ψ(Q)] +

M∑
m=1

(Ψ(Qmγ)−Ψ(Rmγ +Qmγ))

(306)

It is clear from the preceding equations that the derivative in Eq. 305 with respect to each of the BL

parameters depends not only on their own values but also on each other. As a result, we employ the

Newton-Raphson method to solve the optimization problem. To use the Newton-Raphson method,

we must first compute the Hessian matrix with respect to the parameter space, as shown below:

∂2L[θ]
∂cRj

=M(−δ(i, j)Ψ′
(c) + Ψ

′
(

D∑
l=1

c))

∂2L[θ]
∂R2

=M(Ψ
′
(R+Q)−Ψ

′
(R))

∂2L[θ]
∂R∂Q

=MΨ
′
(R+Q)

∂2L[θ]
∂Q2

=M(Ψ
′
(R+Q)−Ψ

′
(Q))

(307)

The Hessian matrix shown above is very similar to the Hessian matrix of the Dirichlet parameters

in the MPCA model and generalized Dirichlet parameters in GDMPCA. In fact, the above matrix
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can be divided into two completely separate matrices by the parameters c, R and Q. Each of the

two parts’ parameter derivation will be identical to the Newton-Raphson model provided by MPCA

and GDMPCA.

6.4 Experimental Results

In this section, we assess the effectiveness of our proposed algorithms through two rigorous

applications: topic modeling for medical texts and sentiment analysis. We evaluate each model by

examining its success rate for each dataset and its perplexity [37, 10, 4, 101], a standard metric in

language modeling, defined as follows:

prep(Dtest) = exp
(− ln p(Dtest)∑

d |wd|

)
(308)

where d is the length of the page and |wd| is its width. A lower perplexity score indicates

better generalization performance. In addition to evaluating the perplexity metric, we also consider

time complexity and likelihood to assess our models. Our research aims to evaluate a variety of

models including MGMLMB, MGGDCTM, MGCTM, CTM, LDA, and NMF, to identify the local

topic. The datasets selected are critical for our study as they encompass a wide range of analytical

scenarios. From topic modeling in medical texts to broader applications, these datasets allow for

an in-depth evaluation of the models’ flexibility and precision. By analyzing datasets with unique

features, we can showcase the capabilities of our proposed models in different settings, emphasizing

their utility as a comprehensive tool in text analysis.

6.4.1 Topic Modeling for Medical Texts

The primary objective of text classification is to methodically categorize various documents

into predefined subject categories, as highlighted by earlier research [102]. This domain has been

thoroughly examined, yielding a wide array of solutions [103, 46]. Topic modeling, a prevalent

technique in natural language processing, stands out as a particularly effective method. It offers

versatility in analyzing diverse texts, from news articles and tweets to creating visual representations

of related topics and documents. Additionally, topic modeling addresses the challenges of high

142



dimensionality and data sparsity, commonly encountered in sectors like health and medical text

mining, despite the large volumes of data available [107]. Initially developed for text analysis

where documents are analyzed based on the frequency of phrase usage, topic modeling involves a

suite of statistical learning techniques that identify hidden or ’latent’ topics in extensive text data

without direct supervision. In this context, a ’topic’ is defined as a cluster of keywords that follows

a probability distribution, and a ’document’ consists of a mix of such topics, adhering to a similar

distribution pattern.

According to [13], topic modeling primarily produces a set of keywords per topic, which proves

to be highly effective especially in health and medical research by improving the extraction and

comprehension of essential data insights. However, the abundance of data still necessitates further

advancements in topic modeling methods [107]. In the field of biological natural language process-

ing (BioNLP) [150], topic models are particularly advantageous. They enhance the processing and

understanding of complex, domain-specific biological texts, thereby boosting information retrieval

and aiding in more precise scientific investigations. Additionally, topic modeling in biology helps

reveal underlying thematic structures or latent topics, which may lead to the discovery of new cor-

relations and insights. This function is also crucial for systematically organizing and categorizing

vast datasets, making biological data more manageable and easier to analyze for both researchers

and professionals in the industry.

To evaluate our models, we chose the medical transcription dataset [130], mental health dataset

[131], and Genia dataset [132].

Mental Health Tweet

The Mental Health Corpus [131] contains textual data related to mental health conditions like

anxiety and depression, structured into discussions and categorized as toxic or non-toxic. This

dataset is valuable for sentiment analysis, detecting harmful language, and studying language pat-

terns in mental health discourse. It is beneficial for researchers, practitioners, and those interested in

mental health discourse. Our study focused on detecting mental health conditions in the text using

topic modeling. This statistical method helps identify prevalent themes in the data, enhancing our

understanding of mental health discussions.
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Table 6.3 displays the initial five local topics identified using the MGDCTM.

Table 6.3: Common topics identified with MGDCTM model in the Mental Health Tweet dataset,
each defined by a set of keywords

Topic No Topics
Topic1 ’alcohol’, ’touched’, ’impulse’, ’happened’, ’learn’, ’honest’,

’follow’, ’obvious’, ’situation’, ’dizziness’
Topic2 ’friend’, ’injury’, ’anxiety’, ’follow’, ’worried’, ’happened’,

’lowcost’, ’groups’, ’trapped’, ’pharmacy’
Topic3 ’suicidal’, ’receive’, ’obvious’, ’pharmacy’, ’events’, ’member’,

’injury’, ’network’, ’pattern’, ’counselor’
Topic4 ’network’, ’dumbbell’, ’pharmacy’, ’matter’, ’unlike’, ’evidence’,

’response’, ’critical’, ’services’, ’swapping’
Topic5 ’health’, ’doctor’s’, ’employee’, ’selfhelp’, ’working’, ’attach’,

’online’, ’influence’, ’wellbeing’, ’health’

Fig. 6.3 illustrates the perplexity of various topic modeling algorithms applied to the Men-

tal Health Tweet dataset across different numbers of topics. LDA, NMF, MGCTM and CTM ex-

hibit increasing perplexity with more topics, suggesting difficulty in handling larger topic numbers.

In contrast, MGDCTM and MBLCTM maintain lower perplexity, indicating better performance.

These results suggest that MGDCTM, MBLCTM, and MGCTM might be more effective for ana-

lyzing complex data patterns in mental health discussions on social media.

Table 6.4 shows the time complexity in minutes for various topic modeling algorithms on the

Mental Health Tweet dataset across topic counts. Generally, as the number of topics increases, so

does the computational time for each model, highlighting the increasing demands of handling more

complex topic structures. This provides insight into each model’s efficiency at scaling with larger

datasets.

Table 6.5 presents the likelihood values for different topic modeling algorithms applied to the

Mental Health Tweet dataset, with topic counts K=5, 10, 15, 20 and 25. These likelihood values

measure how well each model fits the data; a value closer to zero indicates a better fit. As the

number of topics increases, the likelihood values become more negative, suggesting that model fit

generally decreases with more complex models across most algorithms, highlighting the challenges

of modeling larger topic spaces effectively.
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Figure 6.3: Perplexity for Mental Health Tweet dataset

Table 6.4: Time complexity comparison for for different model at varying topic levels (K) o Mental
Health Tweet dataset (min)

K 5 10 15 20 25
NMF 2.05 2.37 2.87 3.075 3.239
LDA 1.92 2.496 2.688 2.88 3.0336
CTM 1.4712 1.6812 2.05968 2.2068 2.324496

MGCTM 1.0512 1.314 1.7082 1.7739 2.12868
MGDCTM 1.7226 1.98 2.6136 2.6928 2.772
MBLCTM 1.3008 1.084 1.4092 1.874236 2.2490832

Genia Dataset

Texts in the field of biomedicine are invaluable resources for advancing medical knowledge.

Traditionally, extracting information from these texts required manual effort by domain experts, but

automation can dramatically accelerate progress in medical research. Biomedical texts, for exam-

ple, can reveal how drugs affect individuals and help diagnose health conditions. Thus, automated

event extraction from biomedical texts is extremely useful. This involves identifying the original

text, annotating trigger words, determining their exact locations within the text, and classifying the

types of events they signify. Automating this process enhances both the efficiency and accuracy of

information extraction from biomedical literature, facilitating quicker advancements in the medical

field [132].

The MGDCTM identified the initial five local topics, which are displayed in Table 6.6.
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Table 6.5: Likelihood comparison for different topic models approaches on Mental Health Tweet
dataset

K 5 10 15 20 25

NMF -122328887 -17040338.76 -32934820.18 -42730466.24 -81393075.8
LDA -122341234.32 -17127772.76 -33032133.18 -44042844.24 -85638863.8
CTM -82689087.2 -21424478.76 -30271575.68 -46517304.52 -49781525.44
MGCTM -70343409.2 -21103022.76 -28137363.68 -42206045.52 -49240386.44
MGDCTM -1013906442 -1165409704 -2074429273 -1538340809 -1619919488
MBLCTM -2527735331 -1209442742 -2297941210 -2987323573 -3943267117

Table 6.6: Common topics identified with MGDCTM model in the Genia dataset, each defined by
a set of keywords

Topic No Topics
Topic 1 ’syndromes’, ’increases’, ’renilla’, ’effector’, ’repressed’,

’retinoid’, ’induced’, ’supported’, ’ferritin’, ’control’
Topic 2 ’plasmids’, ’inducible’, ’objective’, ’inhibited’, ’resides’,

’presented’, ’complex’, ’activity’, ’domains’, ’showed’
Topic 3 ’plasmids’, ’visible’, ’resides’, ’inducible’, ’challenge’, ’events’,

’requires’, ’latently’, ’mediate’, ’replaced’
Topic 4 ’regulator’, ’removed’, ’distinct’, ’methyl’, ’aggarwal’, ’thtype’,

’little’, ’proximal’, ’expresses’, ’spread’
Topic 5 ’teflon’, ’methyl’, ’increased’, ’finger’, ’activates’, ’perforin’,

’depends’, ’lectin’, ’enhancer’, ’species’

Fig 6.4 displays the perplexity scores for various topic modeling algorithms applied to the Genia

dataset across different numbers of topics (K=5, 10, 15, 20, 25). The MGDCTM shows relatively

stable and low perplexity across the board. The MBLCTM exhibits a significant decrease in perplex-

ity as topic numbers increase. In contrast, the MGCTM and CTM demonstrate fluctuating scores,

with a general increase as more topics are added. Both LDA and NMF show increases in perplexity,

particularly at higher topic counts, indicating challenges in effectively modeling the complexity of

the dataset.

Table 6.7 presents a likelihood comparison for different topic modeling approaches applied

to the Genia dataset, across varying numbers of topics. The results show that as the number of

topics increases, the likelihood values generally become more negative for all models, indicating a

decrease in model performance with higher topic complexities.

Table 6.8 compares the computation times of several topic modeling techniques (NMF, LDA,
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CTM, MGCTM, MGDCTM, and MBLCTM) as the number of topics increases. MBLCTM consis-

tently shows the lowest computation times, indicating high efficiency, while NMF and LDA require

more time, especially for larger topic counts. This information is key for selecting efficient models

for processing large datasets like the Genia dataset.

Table 6.7: Likelihood comparison for different topic models approaches on Genia dataset

K 5 10 15 20 25

NMF -122346665 -18360985.76 -33108452.18 -44166141.24 -86873386.8
LDA -122341234 -17127772.76 -33032133.18 -44042844.24 -85638863.8
CTM -85590799.54 -1734949.991 -4810783.977 -34271553.82 -5221871.972
MGCTM -88806478.54 -1776129.571 -4440323.927 -35522591.42 -5328388.712
MGDCTM -1091654960 -1080846495 -2053608340 -2669690842 -3523991912
MBLCTM -1637211477 -1127556113 -1488374070 -1240311725 -1375618458

Figure 6.4: Perplexity for Genia dataset

Medical Transcription Dataset

Due to the stringent privacy regulations enforced by the Health Insurance Portability and Ac-

countability Act (HIPAA), accessing comprehensive medical data can be particularly challenging.

This often limits research and educational opportunities within the medical field. In response to this

limitation, the MTSamples dataset emerges as a significant resource. It offers a diverse collection of

medical transcription samples that encompass a wide array of medical specialties and employment

contexts.
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Table 6.8: Time complexity comparison for for different model at varying topic levels (K) on the
Genia dataset. (min)

K 5 10 15 20 25
NMF 14.87 15.0187 16.9518 18.7362 18.8849
LDA 13.67 17.771 19.138 20.505 21.5986
CTM 10.74 13.962 15.036 16.11 16.9692

MGCTM 10.26 13.338 14.364 15.39 16.2108
MGDCTM 6.624 8.28 10.764 14.31612 17.179344
MBLCTM 6.705 7.45 9.685 10.0575 10.3555

The MTSamples dataset is meticulously curated to provide researchers, educators, and medical

professionals with access to a substantial library of transcribed medical reports. These reports are

categorized by specialty—ranging from cardiology to dermatology—and type of employment, en-

hancing their utility for specific research and training needs. Each report within the dataset has been

transcribed by skilled transcriptionists and is provided exclusively for reference and educational

purposes. This availability allows users to explore and utilize real-world medical data in a manner

that adheres to privacy standards set forth by HIPAA, thereby facilitating a deeper understanding

of medical documentation practices and terminology without compromising patient confidentiality

[130]. Table 6.9 shows the first five local topics identified with the MGDCTM. Figure 6.5 presents

the perplexity scores for various topic modeling algorithms applied to the Medical Transcription

dataset across topic numbers ranging from K=5 to K=25. Perplexity, a measure of model prediction

quality where lower scores indicate better model performance, varies across the models: MGDCTM

shows consistently low perplexity, indicating strong model fit; MBLCTM starts low but increases at

higher topic numbers, suggesting possible inefficiencies; MGCTM and CTM (Green Line) exhibit

decreases in perplexity with increases in topics, potentially indicating improved fit; LDA remains

relatively stable; and NMF shows moderate but increasing perplexity at higher topic counts.

Moreover, Table 6.10 provides a likelihood comparison of various topic modeling algorithms on

the Medical Transcription dataset for different topic counts (K=5, 10, 15, 20, 25). These negative

likelihood values show how well each model fits the data, with less negative values indicating a

better fit. The models compared include NMF, LDA, CTM, MGCTM, MGDCTM, and MBLCTM.
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Generally, as the number of topics increases, the likelihood values become more negative, suggest-

ing reduced model performance with greater topic complexities. This table is useful for evaluating

which models are best suited for analyzing complex datasets.

Table 6.11 shows the time complexity in minutes for various topic modeling algorithms on the

Medical Transcription dataset across topic counts (K=5, 10, 15, 20, 25). The algorithms tested in-

clude NMF, LDA, CTM, MGCTM, MGDCTM, and MBLCTM. As the number of topics increases,

the computational time generally rises for all models, highlighting the increasing complexity. No-

tably, MBLCTM exhibits the lowest time complexity across all topic sizes, indicating its efficiency.

This table aids in evaluating each model’s time efficiency, crucial for selecting the most suitable

algorithm based on time constraints and computational resources.

Table 6.9: Common topics identified with MGDCTM model in theMedical Transcript dataset, each
defined by a set of keywords

Topic No Topics
Topic 1 ’degreesc’, ’ectopic’, ’alphapal’, ’abolished’, ’memory’, ’capable’,

’complete’, ’referred’, ’scurfy’, ’apobecf’
Topic 2 ’hyperige’, ’necrosis’, ’membranes’, ’isolated’, ’abolished’, ’mucida’,

’remaining’, ’product’, ’nuclease’, ’results’
Topic 3 ’tonsil’, ’identify’, ’adenylate’, ’present’, ’fermentas’, ’effect’,

’nuclear’, ’possibly’, ’subject’, ’provide’
Topic 4 ’driven’, ’control’, ’developed’, ’present’, ’compared’, ’stained’,

’analyzed’, ’retinoic’, ’antimouse’, ’peptide’
Topic 5 ’rested’, ’compared’, ’antimouse’, ’apospmut’, ’peptide’, ’ligated’,

’region’, ’sample’, ’receptor’, ’abolish’

Table 6.10: Likelihood comparison for different topic models approaches on Medical Transcription
dataset

K 5 10 15 20 25

NMF -12500109.68 -840911.041 -2600242.137 -9887223.478 -12613606.94
LDA -12376650.91 -742599.131 -2475330.91 -8663655.84 -8044822.44
CTM -1061612719 -202691745.7 -212980442.9 -394036705.2 -461917038.4
MGCTM -528617780.5 -100437378.3 -105723556.1 -195588578.8 -227305645.6
MGDCTM -1094492097 -1216102330 -2274111358 -1763348379 -1739026332
MBLCTM -1123607107 -1291502422 -387450726.5 -516600968.6 -774901453
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Figure 6.5: Perplexity for Medical Transcription dataset

Table 6.11: Time complexity comparison for for MPCA, GDMPCA, and BLMPCA at varying topic
levels (K) on the Medical Transcription dataset (min)

K 5 10 15 20 25
NMF 4.9 5.02 5.23 7.028 7.53
LDA 4.67 6.071 6.538 7.005 7.3786
CTM 4.2672 4.4772 5.82036 6.04422 6.223308

MGCTM 3.5472 4.61136 4.96608 5.3208 5.604576
MGDCTM 2.748 3.435 4.4655 4.63725 5.5647
MBLCTM 2.2272 2.56 2.816 3.584 4.096

6.4.2 Topic Modeling

Topic modeling is extensively utilized for the purpose of clustering and managing vast collec-

tions of text data, which plays a significant role in the classification of textual content [104].

Considering the substantial number of documents available in data collections, it is impractical

to analyze each document individually. To navigate this, one efficient approach involves identifying

the key terms that define the corpus. This typically includes the most frequently occurring words.

Alternatively, documents can be broken down into their constituent words and phrases. These el-

ements are then grouped based on their similarities to form clusters. These clusters of words and

phrases enable a deeper and more structured understanding of the underlying themes within the

corpus. Essentially, the corpus is conceptualized as a collection of representative words, each se-

lected from different clusters. This method stands in contrast to rule-based text mining techniques,
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which depend on regular expressions and dictionary-based keyword searches. Instead, topic model-

ing endeavors to discover the pivotal words or themes in a text corpus autonomously, without prior

assumptions [13].

To evaluate the performance and reliability of our proposed models, we utilized a comprehensive

set of 2246 documents obtained from the Associated Press [13], providing a robust basis for our

analysis.

Table 6.12 presents the first 5 local topics identified with the MGDCTM.

Table 6.13 compares perplexity scores for various topic modeling algorithms on the Associated

Press dataset with topic counts from K=5 to K=25. Lower perplexity indicates better model per-

formance. MGDCTM shows the lowest perplexity, suggesting the best fit, while NMF and LDA

have the highest perplexity, indicating poorer performance. CTM and MGCTM display moderate

perplexity, with MGCTM increasing significantly at higher topic counts. MBLCTM has lower per-

plexity than NMF and LDA but higher than MGDCTM, making it a moderately effective model.

This table helps in selecting the most effective model for complex data analysis.

Furthermore, Fig. 6.6 displays the perplexity scores for various topic modeling algorithms on

the Associated Press dataset across topic counts (K=5, 10, 15, 20, 25). Lower perplexity indicates

better model performance. MGDCTM shows the lowest perplexity, indicating strong model fit,

while MBLCTM also performs well but with slightly higher scores. MGCTM and CTM have

moderate perplexity, increasing at higher topic counts. LDA and NMF exhibit higher perplexity,

suggesting less effective performance. This graph helps identify which models are more effective

for analyzing the dataset’s complexity.

Moreover, Table 6.14 shows the time complexity, in minutes, for various topic modeling algo-

rithms applied to the Associated Press dataset across different topic counts (K=5, 10, 15, 20, 25).

The models include NMF, LDA, CTM, MGCTM, MGDCTM, and MBLCTM. As the number of

topics increases, the time complexity rises for all models, with MGDCTM and MBLCTM showing

the highest time complexity, especially at higher topic counts. NMF and LDA have relatively lower

time complexities, making them more time-efficient compared to the others. This table highlights

the computational demands of each model, aiding in the selection of efficient algorithms for large

datasets.
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Table 6.12: Common topics identified with MGDCTM model in the Associated Press dataset, each
defined by a set of keywords

Topic No Topics
Topic 1 ’telephone’, ’dealings’, ’crumbling’, ’killings’, ’brightly’, ’jersey’,

’damico’, ’belgium’, ’martin’, ’highway’
Topic 2 ’fatigue’, ’financial’, ’jersey’, ’guilders’, ’enters’, ’showing’,

’session’, ’takeover’, ’security’, ’candles’
Topic 3 ’grocery’, ’jersey’, ’sentence’, ’emotion’, ’takeover’, ’academy’,

’texas’, ’fatigue’, ’telephone’, ’nations’
Topic 4 ’damico’, ’crumbling’, ’dealings’, ’fruits’, ’financial’, ’sentence’,

’guilders’, ’harshly’, ’country’, ’rectory’
Topic 5 ’dollar’, ’included’, ’imposed’, ’brought’, ’theodore’, ’analysts’,

’recent’, ’savings’, ’raymond’, ’crisis’

Table 6.13: Perplexity comparison for different topic model approaches on Associated Press dataset

K 5 10 15 20 25

NMF -48927846.38 -14675674.41 -19570125.55 -29349042.83 -34253601.97
LDA -48914501.38 -14674350.41 -19565800.55 -29348700.83 -34240150.97
CTM -27347959.58 -4148410.425 -5217722.16 -6290030.703 -7969862.682
MGCTM -28583395.58 -3715841.425 -5430845.16 -6574180.983 -8003350.762
MGDCTM -1946680211 -1340688850 -1769709283 -1474757735 -1635640398
MBLCTM -964784949.7 -1108948218 -1973927828 -1463811648 -1541438023

Figure 6.6: Perplexity for Associated Press dataset
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Table 6.14: Time complexity comparison for for MPCA, GDMPCA, and BLMPCA at varying topic
levels (K) on Associated Press dataset (min)

K 5 10 15 20 25
NMF 19.24 21.164 22.3184 29.2448 30.3992
LDA 18.46 22.152 25.844 29.536 31.382
CTM 25.55 26.01 33.813 35.1135 36.1539

MGCTM 25.32 32.916 35.448 37.98 40.0056
MGDCTM 25.2945 28.105 36.5365 37.94175 39.06595
MBLCTM 25.7259 29.57 39.0324 40.2152 41.398
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Chapter 7

Conclusion and Future Work

In this thesis, we proposed and evaluated several novel models to enhance multi-topic mod-

eling and text classification, addressing key limitations of traditional methods. Our research in-

troduced the Generalized Dirichlet Multinomial PCA (GDMPCA) and Beta-Liouville Multinomial

PCA (BLMPCA) models, utilizing Bayesian analysis with generalized Dirichlet and Beta-Liouville

assumptions. These models demonstrated increased flexibility and superior performance, particu-

larly in text classification and sentiment analysis, as evidenced by higher prediction accuracy com-

pared to the MPCA model. Notably, the BLMPCA showed the most significant improvements

across various datasets.

Additionally, we enhanced the bi-RATM method by integrating flexible GD and BL priors. This

approach addressed the limitations of previous extensions, such as incomplete generative processes

and the use of Dirichlet priors. Applied to text classification and medical text topic modeling, our

models achieved superior results with lower perplexity, outperforming established approaches. The

BL-bi-RATM, in particular, exhibited remarkable improvements.

Our study further extended the DMR and dDMR models by incorporating GD and BL distri-

butions. This extension effectively handled complex data structures and mitigated overfitting. The

use of collapsed Gibbs sampling for parameter inference enhanced the computational capabilities of

our models, enabling them to discover latent topics more efficiently. The GD and BL multinomial

regression (GDBLMR) models outperformed competing approches, especially with complex and
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sparse data, demonstrating improved interpretability and effectiveness in high-dimensional docu-

ment feature fitting.

Moreover, we integrated GD and BL distributions with Bert-Topic models into the Multi-Grain

Clustering Topic Model (MGCTM). The resulting Multi-Grain Generalized Dirichlet Bert-Topic

Model (MGGDBTM) and Multi-Grain Beta-Liouville Bert-Topic Model (MGBLBTM) outper-

formed traditional models like LDA and NMF. These enhanced models better fit high-dimensional

document features, reduced overfitting, and improved topic coherence, making them suitable for

various applications in natural language processing and machine learning.

Future research could be devoted to modeling modifications and enhancements for greater preci-

sion in topic modeling. Potential directions include exploring additional probabilistic distributions,

applying models to diverse domains, and incorporating temporal dynamics to track topic evolution.

Enhancing scalability and efficiency, improving user interpretability, and integrating with neural

networks are crucial next steps. Developing real-time topic modeling systems and leveraging large

language models (LLMs) like GPT-3 or GPT-4 to cluster local topics and identify overarching global

topics will further enhance topic coherence and relevance. This comprehensive approach paves the

way for significant advancements in topic modeling, ensuring its applicability to a wide range of

data and real-time streaming scenarios.
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Chapter 8

Appendix

8.1 Exponential Family Distribution

The following introduces the general exponential family of distributions:

We have a collection of T functions t(x) and d parameters θ for each specific sample point, repre-

sented as a vector of measurements x. These vectors have a size of T and are likely to be influenced

by certain additional limitations. The probability distribution q(x|θ) is as follows [165]:

q(x|θ) = 1

Yt(x)Zt(θ)
exp(t(x)∓θ) (309)

Zt(θ) is modified to Z, or a distinguishing subscript is inserted. When y is distributed as q(y|ϱ),

the notation Eq(y|ϱ) is used to describe the expected value of the quantity A. There are two main

concepts that must be given [166]:

µt ≡ Eq(y|ϱ){t(x)} =
∂ logZt

∂θ
(310)

Σt ≡ Eq(y|ϱ){(t(x)− µt)(t(x)− µt)
∓)} =

∂2 logZt

∂θ∂θ
=
∂µt
∂θ

The average matrix µt has the same number of elements as θ, and the matrix Σt represents

the covariance of t(x) as mentioned in the reference [19]. Significantly, the variable µt acts as
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a corresponding element to the parameter set θ. More precisely, when µt is completely ordered,

it serves as the Hessian for variations in basis. Furthermore, µt denotes the anticipated Fisher

Information of the distribution. Both t and Σt can be obtained directly from Zt, demonstrating a

distinct relationship where µt serves as a complimentary parameter set to θ. In situations where µt

possesses maximum rank, it is instrumental in basis transformations and also signifies the intended

Fisher Information for the distribution.

We further detail the characteristics of the exponential family for the Dirichlet, GD, and BL dis-

tributions in Table 8.1. Another crucial characteristic of the exponential family is the calculation of

maximum a posteriori (MAP) estimations for parameters, obtained from a dataset of I observations.

This setup often reflects the structure of a conjugate prior, facilitating the estimation process. One

common approach involves the use of an ”effective” prior sample size, characterized by relevant

statistics νt and a prior sample size of St. This special method for calculating MAP for parameters

within the exponential family provides an approximation for their dual aspects, as explored in [19].

µ̂t =
νt +Σit(xi)

St + I
(311)
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8.2 Parameters for GDMPCA

Breaking down of the L parameter for GDMPCA: By factorizing,

log p(w|ξ,Ω) ≥ Eq[(θ, z, w)|ξ,Ω]− Eq[log q(z, θ)],

we have 25

In the following, we will derive each of the five factors of the above equation:

Eq[log p(θ|ξ)] =
d∑

l=1

[log η(αl + βl)− log η(αl)− log η(βl)]

+

d∑
l=1

[αl(Ψ(ηl)−Ψ(ηl + ϑl))

+ (Ψ(ϑl)−Ψ(ηl + ϑl))(βl − αl+1 − βl+1)]

(312)

Eq[log p(z|θ)] =
N∑

n=1

d∑
l=1

ϱnl(Ψ(ηl)−Ψ(ηl + ϑl))

+

N∑
n=1

ϱn(d+1)(Ψ(ϑd)−Ψ(ϑd + ηd))

(313)

Eq[log p(w|z,Ω)] =
N∑

n=1

d+1∑
l=1

v∑
j=1

ϱnlw
j
n log(Ω(lj)) (314)

we should mention that Ω(lj) = p(wj
n = 1|zl = 1)

Eq[log q(θ)] =

d∑
l=1

(log η(ηl + ϑl) log η(ηl)− log η(ϑl))

+
d∑

l=1

[ηl(Ψ(ηl)−Ψ(ηl + ϑl)) + (Ψ(ϑl)−Ψ(ϑl + ηl))

(ϑl − ηl+1 − ϑl+1)]

(315)

Eq[log q(z)] =

N∑
n=1

D+1∑
l=1

ϱnl log(ϱnl) (316)

Next, we will provide a more detailed explanation of Equation 25 by extending it in terms of
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both the model characteristics and the variational variables.

L(η,Φ; ξ,Ω) =
d∑

l=1

[log η(al + bl)− log η(al)− log η(bl)]

+

d∑
l=1

[al(Ψ(ηl)−Ψ(ηl +Φ))

+ (Ψ(Φ)−Ψ(ηl +Φ))(al − al+1 − bl+1)]

+
N∑

n=1

d∑
l=1

mnl(Ψ(ηl)−Ψ(ηl +Φ))+

N∑
n=1

mn(d+1)(Ψ(Φ)−Ψ(Φ + ηd))

+

N∑
n=1

d+1∑
l=1

v∑
j=1

mnlw
j
n log(Ωij)

−
d∑

l=1

(log η(ηl +Φ) log η(ηl)− log η(Φ))

−
d∑

l=1

[ηl(Ψ(ηl)−Ψ(ηl +Φ)) + (Ψ(Φ)−Ψ(Φ + ηl))

(Φ− ηl+1 − Φl+1)]

(317)

8.2.1 Variational generalized Dirichlet

To obtain revised formulas for the variational parameters in the GD model, you start by iso-

lating the terms in equation 25 that contain the variational parameters of the generalized Dirichlet.

This involves examining the equation to identify which parts specifically involve these parameters,

then focusing on manipulating these parts to derive expressions for updating the parameters during

the variational inference process. This method allows for iterative refinement of the parameters,
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enhancing model accuracy with respect to the data being analyzed.

L[ξq] =

d∑
l=1

[αl(Ψ(ηl)−Ψ(ηl + ϑl))

+ (Ψ(ηl)−Ψ(ηl + ϑl))(βl − αl+1 − βl+1)]

+

N∑
n=1

ϱnl(Ψ(ηl)−Ψ(ηl + ϑl) +

N∑
n=1

ϱn(d+1)(Ψ(ηd)−Ψ(ηd + ϑd))

−
d∑

l=1

(log η(ηl + ϑl)− log η(ηl)− log η(ϑl))

+

d∑
l=1

(Ψ(ηl)− ηl(Ψ(ηl + ϑl))

+ (Ψ(ϑl)−Ψ(ϑl + ηl))(ϑl − ηl+1 − ϑl+1)))

(318)

By approximating the derivative of the aforementioned equation to zero, we obtain the subsequent

modified parameters:

ηl = αl +
N∑

n=1

ϱnl (319)

ηl = βl +

N∑
n=1

d+1∑
ll=l+1

ϱn(ll) (320)

Topic based model

To derive the update equations for βw, maximize equation 25 with respect to βw. This involves

setting the derivatives to zero, mirroring the optimization process used in MPCA, resulting in similar

equations.

L[βw] =

M∑
d=1

Ns∑
n=1

K+1∑
l=1

V∑
j=1

ϱdnlw
j
dn log βw(lj) +

K+1∑
l=1

τl
( V∑
j=1

βw(ij)

)
(321)

By computing the derivative with regard to βw(lj) and equating it to zero, we obtain:

βw(lj) ∝
M∑
d=1

Nd∑
n=1

ϱdnlw
j
dn (322)

In this scenario, because there are latent variables present in the primary objective function, the
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situation isn’t fully addressed by Eqs. 35 and 36. However, the probability distribution q(w|η, r,m)

can be accurately modeled using multinomials, which ensures that the minimum Kullback-Leibler

(KL) divergence reaches zero. Consequently, the iterative updates will converge towards a local

extremum of the log probability log p(Ω,m|r).

ηl =
η(ai + bi)

η(ai)η(bi)
Ωmnl (323)

mnl =
η(ai + bi)

η(ai)η(bi)
Ωlve

(τn−1)e(Ψ(ηl)−Ψ(ηl+Φ)) (324)

Ωij =
η(ai + bi)

η(ai)η(bi)
(2fj + (

∑
n

e(τn−1)e(Ψ(ηl)−Ψ(ηl+Φ))) (325)

eτn−1 =
1∑d

l=1mnle(Ψ(ηl)−Ψ(ηl+Φl)) +m(d+1)ne(Ψ(Φd)−Ψ(Φd+ηd))
(326)

Generalized Dirichlet Parameter

We select the components of equation 25 that involve the GD parameters ξ.

L[ξ] =
M∑

m=1

(log(η(αl + βl))− log η(αl))− log(η(βl)))

+
M∑

m=1

(αl(Ψ(ηml −Ψ(ηml + ϑml)) + βl(Ψ(ϑml)−Ψ(ϑml − ηml)))

(327)

By differentiating the given equation with respect to the GD parameters, we obtain:

∂L[ξ]

∂αl
=M(Ψ(αl + βl)−Ψ(αl)) +

M∑
m=1

(Ψ(ηml)−Ψ(ηml + ϑml)) (328)

and
∂L[ξ]

∂βl
=M(Ψ(αl + βl)−Ψ(βl)) +

M∑
m=1

(Ψ(ϑml)−Ψ(ηml + ϑml)) (329)

The Hessian matrix of the likelihood function in this case assumes a particularly interesting

form, as detailed below:
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∂2L[ξ]

∂α2
l

=M [Ψ
′
(αl + βl)−Ψ

′
(αl)] (330)

∂2L[ξ]

∂β2l
=M [Ψ

′
(αl + βl)−Ψ

′
(βl)] (331)

∂2L[ξ]

∂αlβl
=M [Ψ

′
(αl + βl)] (332)

The non-diagonal entries of the Hessian matrix are zero, which imparts a block diagonal struc-

ture to the matrix. This configuration simplifies the calculation of the inverse Hessian matrix, as

it reduces to inverting the matrices along the diagonal. This simplification allows for an easier

derivation of the inverse.

8.3 Variational BLMPCA

In order to calculate the parameter ϱ, which indicates the likelihood that the n-th word is pro-

duced by the l-th hidden topic, we optimize the corresponding function by maximizing it with regard

to ϱ. This entails fine-tuning the parameter ϱ in order to maximize the probability of the observed

data, taking into account the model’s assumptions regarding topic distributions.

L[ϱnl] = ϱni(Ψ(ηi)−Ψ(
D∑
l=1

ηl)) + ϱni log ιw(iv) − ϱni log ϱni

+ τn(
D∑
l=1

ϱn(l) − 1)

(333)

and

L[ϱn(D+1)] = ϱn(D+1)(Ψ(ιη −Ψ(κη + ιη))) + ϱn(D+1) log ι(D+1)v

− ϱn(D+1) log ϱn(D+1) + τn(

D∑
i=1

ϱn(i) − 1)
(334)

Consequently, we have:
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∂L

∂ϱnl
= (Ψ(ηd)−Ψ(

D∑
l=1

ηl)) + log ιw(iv) − log ϱni − 1 + τn (335)

and
∂L

∂ϱn(D+1)
= (Ψ(ιη)−Ψ(κη + ιη)) (336)

Equating the preceding equation to zero yields:

ϱnl = ιlve
(τn−1)e(Ψ(ηi)−Ψ(

∑D
ii=1 ηii)) (337)

ϱn(D+1) = ι(D+1)ve
(τn−1)e(Ψ(ιη)−Ψ(κη+ιη)) (338)

considering that
∑D+1

d=1 ϱn(d) = 1 for the normalization factor we have:

eτn−1 =
1

ι(D+1)ve(τn−1)e(Ψ(ιη)−Ψ(κη+ιη)) + ιlve(τn−1)e(Ψ(ηi)−Ψ(
∑D

ii=1 ηii))
(339)

8.3.1 Variational Beta-Liouville

The updates mentioned are designed to converge to a local maximum of a lower bound of

log p(Ω,Υ|r), which is optimal for all product approximations such as q(m)q(w) for the joint prob-

ability p(m,w|Ω,Υ, r). This approach ensures that the variational parameters are fine-tuned to best

approximate the true posterior distributions within the constraints of the model.

Φl =
η(κ)η(ι)

η(
∑D

d=1 κd)η(κ+ ι)
mnl(τn − 1)(Ψ(ηl)−Ψ(

D∑
l=1

ηl) (340)

ηl = κl +
N∑

n=1

mnl (341)

Ω(lj) =
η(κ)η(ι)

η(
∑D

d=1 κd)η(κ+ ι)
(2f

M∑
d=1

Nd∑
n=1

mdnlw
j
dn) (342)

In this case, variable Ω vanishes because m is defined in terms of the KL approximation. In the

second step, the algorithm now optimizes for m. Since q(w|η, r,m) can be precisely modelled with

multinomials, the minimum KL divergence is zero. As a result, the updates that follow converge to
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a local threshold of log p(Ω,m|r).

ηl =
η(κ)η(ι)

η(
∑D

d=1 κd)η(κ+ ι)
Ωmnl (343)

mnl =
η(κ)η(ι)

η(
∑D

d=1 κd)η(κ+ ι)
Ωlve

(τn−1)e(Ψ(ηi)−Ψ(
∑D

ii=1 ηii) (344)

Ωij =
η(κ)η(ι)

η(
∑D

d=1 κd)η(κ+ ι)
(2f + (

∑
n

e(τn−1)e(Ψ(ηi)−Ψ(
∑D

ii=1 ηii)) (345)

considering that
∑D+1

d=1 ϱn(d) = 1 for the normalization factor we have :

eτn−1 =
1

m(D+1)ve(τn−1)e(Ψ(ιη)−Ψ(κη+ιη)) +mlve(τn−1)e(Ψ(ηi)−Ψ(
∑D

ii=1 ηii))
(346)

8.4 Parameters for GDMPCA

Breaking down of the L parameter for GDMPCA:

We can factor, log p(w|ξ, βw) ≥ Eq[(θ, z, w)|ξ, βw]− Eq[log q(z, θ)] to obtain the equation:

L(ξq,Φw; ξ, βw) = Eq[log p(θ|ξ)] + Eq[log p(z)] + Eq[log p(w|z, βw)]

− Eq[log q(θ)]− Eq[log q(z)]

(347)

The subsequent section will elaborate on how each of the five components in the previous equation

is obtained:

Eq[log p(θ|ξ)] =
d∑

l=1

[log Γ(αl + βl)− log Γ(αl)− log Γ(βl)]

+

d∑
l=1

[αl(Ψ(γl)−Ψ(γl + δl))

+ (Ψ(δl)−Ψ(γl + δl))(βl − αl+1 − βl+1)]

(348)
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Eq[log p(z|θ)] =
N∑

n=1

d∑
l=1

ϕnl(Ψ(γl)−Ψ(γl + δl))

+

N∑
n=1

ϕn(d+1)(Ψ(δd)−Ψ(δd + γd))

(349)

Eq[log p(w|z, βw)] =
N∑

n=1

d+1∑
l=1

v∑
j=1

ϕnlw
j
n log(βw(lj)) (350)

we should mention that βw(lj) = p(wj
n = 1|zl = 1)

Eq[log q(θ)] =

d∑
l=1

(log Γ(γl + δl) log Γ(γl)− log Γ(δl))

+

d∑
l=1

[γl(Ψ(γl)−Ψ(γl + δl)) + (Ψ(δl)−Ψ(δl + γl))

(δl − γl+1 − δl+1)]

(351)

Eq[log q(z)] =

N∑
n=1

D+1∑
l=1

ϕnl log(ϕnl) (352)

8.4.1 Varitional Multinomial

In order to find ϕnl we proceed to maximize with the respect to ϕnl so we have following

equations:

L[ϕnl] = ϕnl(Ψ(γl)−Ψ(γl + δl)) + ϕnl log βw(lv) − ϕnl log ϕnl

+ λn(
d+1∑
ll=1

ϕn(ll) − 1)
(353)

and

L[ϕn(d+1)] = ϕn(d+1)(Ψ(δd)−Ψ(δd + γd) + ϕn(D+1) log β(d+1)v

− ϕn(d+1) log ϕn(d+1) + λn(

d+1∑
ll=1

ϕn(ll) − 1)
(354)
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and therefore we have:

∂L

∂ϕnl
= (Ψ(γl)−Ψ(γl + δl)) + log βlv − log ϕnl − 1 + λn (355)

and
∂L

∂ϕn(d+1)
= (Ψ(γd)−Ψ(γd + δd)) + log β(d+1)v − log ϕn(d+1) − 1 + λn (356)

the equation can be solved by setting it to zero, which yields the value of:

ϕnl = βlve
(λn−1)e(Ψ(γl)−Ψ(γl+δl)) (357)

ϕn(d+1) = β(d+1)ve
(λn−1)e(Ψ(δd)−Ψ(δd+γd)) (358)

To ensure normalization, we have
∑d+1

ll=1 ϕn(ll) = 1, where n(ll) represents the ll-th word position

in the document, we have :

eλn−1 =
1∑d

l=1 βlve
(Ψ(γl)−Ψ(γl+δl)) + β(d+1)ve(Ψ(δd)−Ψ(δd+γd))

(359)

8.4.2 Variational generalized Dirichlet

In order to obtain the update equations for the variational generalized Dirichlet, we will separate

the terms that involve the variational generalized Dirichlet parameters in equation 347.

L[ξq] =

d∑
l=1

[αl(Ψ(γl)−Ψ(γl + δl)) + (Ψ(γl)−

Ψ(γl + δl))(βl − αl+1 − βl+1)]

+

N∑
n=1

ϕnl(Ψ(γl)−Ψ(γl + δl) +

N∑
n=1

ϕn(d+1)(Ψ(γd)−Ψ(γd + δd))

−
d∑

l=1

(log Γ(γl + δl)− log Γ(γl)− log Γ(δl)) +

d∑
l=1

(Ψ(γl)−

γl(Ψ(γl + δl)) + (Ψ(δl)−Ψ(δl + γl))(δl − γl+1 − δl+1)))

(360)
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to obtain the updated parameters, we can set the derivative of the above equation to zero:

γl = αl +
N∑

n=1

ϕnl (361)

γl = βl +

N∑
n=1

d+1∑
ll=l+1

ϕn(ll) (362)

Topic based model

To estimate the parameter βw, we obtain the update equations by maximizing the equation 347.

This process leads to the same set of equations as that of MPCA. The resulting equations are:

L[βw] =

M∑
d=1

Ns∑
n=1

K+1∑
l=1

V∑
j=1

ϕdnlw
j
dn log βw(lj) +

K+1∑
l=1

λl
( V∑
j=1

βw(ij)

)
(363)

To obtain the optimal value of βw(lj), we differentiate the equation with respect to βw(lj) and equate

it to zero, resulting in:

βw(lj) ∝
M∑
d=1

Nd∑
n=1

ϕdnlw
j
dn (364)

Generalized Dirichlet Parameter

We select the expressions of the equation 347 that include the generalized Dirichlet parameters

ξ.

L[ξ] =

M∑
m=1

(log(Γ(αl + βl))− log Γ(αl))− log(Γ(βl)))

+

M∑
m=1

(αl(Ψ(γml −Ψ(γml + δml)) + βl(Ψ(δml)−Ψ(δml − γml)))

(365)

To calculate the derivative of the given equation with respect to the generalized Dirichlet parameters,

we have:
∂L[ξ]

∂αl
=M(Ψ(αl + βl)−Ψ(αl)) +

M∑
m=1

(Ψ(γml)−Ψ(γml + δml)) (366)
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and
∂L[ξ]

∂βl
=M(Ψ(αl + βl)−Ψ(βl)) +

M∑
m=1

(Ψ(δml)−Ψ(γml + δml)) (367)

The Newton-Raphson method is utilized to solve the equation, and the Hessian matrix in respect to

the parameter space is required for this purpose. Interestingly, the Hessian matrix of the likelihood

takes a peculiar form which is as follows:

∂2L[ξ]

∂α2
l

=M [Ψ
′
(αl + βl)−Ψ

′
(αl)] (368)

∂2L[ξ]

∂β2l
=M [Ψ

′
(αl + βl)−Ψ

′
(βl)] (369)

∂2L[ξ]

∂αlβl
=M [Ψ

′
(αl + βl)] (370)

The Hessian matrix has only non-zero entries on its diagonal, as shown in the above equations.

This results in the Hessian matrix having a block diagonal form, and therefore the inverse Hessian

matrix can be derived easily as the inverse of the matrix on the diagonal.

8.5 Variational Bete-Louisville distribution

To obtain the parameter representing the probability that the nth word is generated by the l-th

hidden topic, we aim to maximize the expression with respect to ϕ:

L[ϕnl] = ϕni(Ψ(γi)−Ψ(
D∑
l=1

γl)) + ϕni log βw(iv)

− ϕni log ϕni + λn(

D∑
l=1

ϕn(l) − 1)

(371)

and

L[ϕn(D+1)] = ϕn(D+1)(Ψ(βγ −Ψ(αγ + βγ))) + ϕn(D+1) log β(D+1)v

− ϕn(D+1) log ϕn(D+1) + λn(

D∑
i=1

ϕn(i) − 1)
(372)
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and therefore we have:

∂L

∂ϕnl
= (Ψ(γd)−Ψ(

D∑
l=1

γl)) + log βw(iv) − log ϕni − 1 + λn (373)

and
∂L

∂ϕn(D+1)
= (Ψ(βγ)−Ψ(αγ + βγ)) (374)

setting the above equation to zero leads to:

ϕnl = βlve
(λn−1)e(Ψ(γi)−Ψ(

∑D
ii=1 γii)) (375)

ϕn(D+1) = β(D+1)ve
(λn−1)e(Ψ(βγ)−Ψ(αγ+βγ)) (376)

Given that the sum of ϕn(d) from d = 1 to D + 1 is equal to 1, which serves as the normalization

factor, we can conclude that:

eλn−1 =
1

β(D+1)ve(λn−1)e(Ψ(βγ)−Ψ(αγ+βγ)) + βlve(λn−1)e(Ψ(γi)−Ψ(
∑D

ii=1 γii))
(377)
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8.5.1 Variational Beta-Liouville

In order to derive the update equations for the variational BL, we will once again follow the

process of seprating the terms that involve the variation BL parameters.

L[ξq] = αd(Ψ(γd))−Ψ(

D∑
l=1

γl) + α(Ψ(αγ)−Ψ(αγ + βγ))

+ β(Ψ(αγ)−Ψ(αγ + βγ))

+
N∑

n=1

ϕni(Ψ(γi)−Ψ(
D∑
l=1

γl) + Ψ(αγ)−Ψ(αγ + βγ))

+
N∑

n=1

ϕn(D+1)(Ψ(βγ)−Ψ(αγ + βγ))

− (log(Γ(

D∑
l=1

γl)) + log(γ(αγ + βγ)− log(Γ(αγ))

− log(Γ(βγ))− log(Γ(γi))

+ γi(Ψ(γi) + Ψ(αγ)−Ψ(αγ + βγ))

−Ψ(
D∑
l=1

γl) + αγ(Ψ(αγ)−Ψ(αγ + βγ))

+ βγ(Ψ(βγ)−Ψ(αγ + βγ)))

(378)

By choosing the expressions that involve the variational BL parameters γi, αγ , and βγ , we can

obtain:

L(γi) = αi(Ψ(γi))− (
D∑
l=1

αl)(Ψ(
D∑
l=1

γl)) +
N∑

n=1

ϕni(Ψ(γi)−Ψ(
D∑
l=1

γl))

− (log Γ(

D∑
l=1

)− log Γ(γi) + γi(Ψ(

D∑
l=1

γl)

D∑
d=1

γd)

(379)
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and

L[αγ ] = α(Ψ(αγ)−Ψ(αγ + βγ)) + β(−Ψ(αγ + βγ))

+ (Ψ(αγ)−Ψ(αγ + βγ))
N∑

n=1

D∑
i=1

ϕni

+
N∑

n=1

ϕn(D+1)(−Ψ(αγ + βγ))− (log(αγ + βγ)− log(Γ(αγ))+

αγ(Ψ(αγ)−Ψ(αγ + βγ)) + βγ(−Ψ(αγ + βγ)))

(380)

If we differentiate the aforementioned equations with respect to their corresponding BL parameters,

we obtain:

∂L[γi]

∂γi
= αiΨ

′
(γi)−Ψ

′
(

D∑
l=1

γl)
D∑
l=1

αl +Ψ
′
(γi)

N∑
n=1

ϕni

−DΨ
′
(

D∑
l=1

γl)

N∑
n=1

ϕni − (Ψ(

D∑
l=1

γl) + γiΨ
′
(γi)

−Ψ
′
(

D∑
l=1

γl)
D∑

d=1

γl − ψ(
D∑
l=1

γl))

(381)

and

∂L[γi]

∂αγ
= α(Ψ

′
(αγ)−Ψ

′
(αγ + βγ))− β(Ψ

′
(αγ + βγ))

+ (Ψ
′
(αγ)−Ψ

′
(αγ + βγ))

N∑
n=1

D∑
d=1

ϕnd

−
N∑

n=1

ϕn(D+1)(Ψ
′
(αγ + βγ))− (αγ(Ψ

′
(αγ)−Ψ

′
(αγ + βγ))

− βγ(Ψ
′
(αγ + βγ))

(382)

The update equations for the variational BL can be obtained by equating the previously derived

equations to zero.

γi = α+
N∑

n=1

ϕni (383)

172



αγ = α+

N∑
n=1

D∑
d=1

ϕnd (384)

βγ = β +
N∑

n=1

ϕn(D+1) (385)

Topic Based Multinomial

In this section, we will obtain the required update equations for estimating βw. When we maxi-

mize the equation 347 with respect to βw, we arrive at the same equation as in the MPCA scenario.

L[βw] =

M∑
d=1

Ns∑
n=1

D+1∑
l=1

V∑
j=1

ϕdnlw
j
dn log βw(lj) +

D+1∑
l=1

λl(

V∑
j=1

βw(lj) − 1) (386)

By differentiating with respect to βw(lj) and equating to zero, we obtain:

βw(lj) ∝
M∑
d=1

Nd∑
n=1

ϕdnlw
j
dn (387)

Beta-Liouville Parameters

L[ξ] =
M∑

m=1

(log(Γ(
D∑
l=1

αl)) + log(Γ(α+ β))− log Γ(α)

− log Γ(β)−
D∑
i=1

log Γ(αi) +
D∑
i=1

αi(Ψ(γmi)

−Ψ(

D∑
l=1

γm(l))) + α(Ψ(αmγ)−Ψ(αmγβmγ)) + β(Ψ(βmγ)

−Ψ(αmγ + βmγ)))

(388)
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The expression for the derivative of the above equation with respect to the BL parameter can be

expressed as:

∂L[ξ]

∂αl
=M(Ψ(

D∑
l=1

)−Ψ(αl)) +

M∑
m=1

(Ψ
′
(γml)−Ψ(

D∑
l=1

γm(l)))

∂L[ξ]

∂α
=M [Ψ(α+ β)−Ψ(α)] +

M∑
m=1

(Ψ(αmγ)−Ψ(αmγ + βmγ))

∂L[ξ]

∂β
=M [Ψ(α+ β)−Ψ(β)] +

M∑
m=1

(Ψ(βmγ)−Ψ(αmγ + βmγ))

(389)

As evident from the aforementioned equations, the derivative of 347 with respect to the BL pa-

rameters depends on not only their own values but also on one another. To address this optimization

problem, we will employ the Newton-Raphson method. To execute the Newton-Raphson method,

it is necessary to calculate the Hessian matrix with respect to the parameter space in the following

manner:

∂2L[ξ]

∂αlαj
=M(−δ(i, j)Ψ′

(αi) + Ψ
′
(

D∑
l=1

αl))

∂2L[ξ]

∂α2
=M(Ψ

′
(α+ β)−Ψ

′
(α))

∂2L[ξ]

∂α∂β
=MΨ

′
(α+ β)

∂2L[ξ]

∂β2
=M(Ψ

′
(α+ β)−Ψ

′
(β))

(390)

174



Bibliography

[1] Charu C. Aggarwal. An introduction to cluster analysis. In Charu C. Aggarwal and Chan-

dan K. Reddy, editors, Data Clustering: Algorithms and Applications, pages 1–28. CRC

Press, 2013.

[2] Yin Zhang, Rong Jin, and Zhi-Hua Zhou. Understanding bag-of-words model: a statisti-

cal framework. International Journal of Machine Learning and Cybernetics, 1(1-4):43–52,

2010.

[3] Jianchang Mao and Anil K. Jain. Artificial neural networks for feature extraction and multi-

variate data projection. IEEE Trans. Neural Networks, 6(2):296–317, 1995.

[4] Shipeng Yu, Kai Yu, Volker Tresp, and Hans-Peter Kriegel. A probabilistic clustering-

projection model for discrete data. In European conference on principles of data mining

and knowledge discovery, pages 417–428. Springer, 2005.

[5] Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. Recurrent convolutional neural networks for

text classification. In Twenty-ninth AAAI conference on artificial intelligence, pages 2267–

2273, 2015.

[6] Advaith Siddharthan. Inderjeet mani and mark t. maybury (eds). Advances in Automatic Text

Summarization. MIT press, 1999. ISBN 0-262-13359-8, 442 pp. Nat. Lang. Eng., 7(3):271–

274, 2001.

[7] Doug Beeferman, Adam L. Berger, and John D. Lafferty. Statistical models for text segmen-

tation. Mach. Learn., 34(1-3):177–210, 1999.

175



[8] Hamed Jelodar, Yongli Wang, Chi Yuan, Xia Feng, Xiahui Jiang, Yanchao Li, and Liang

Zhao. Latent dirichlet allocation (LDA) and topic modeling: models, applications, a survey.

Multim. Tools Appl., 78(11):15169–15211, 2019.

[9] Ronen Feldman. Techniques and applications for sentiment analysis. Commun. ACM,

56(4):82–89, 2013.

[10] Ting Hua, Chang-Tien Lu, Jaegul Choo, and Chandan K. Reddy. Probabilistic topic mod-

eling for comparative analysis of document collections. ACM Trans. Knowl. Discov. Data,

14(2):24:1–24:27, 2020.

[11] David A. Cohn and Thomas Hofmann. The missing link - A probabilistic model of document

content and hypertext connectivity. In Todd K. Leen, Thomas G. Dietterich, and Volker

Tresp, editors, Advances in Neural Information Processing Systems 13, Papers from Neural

Information Processing Systems (NIPS) 2000, pages 430–436, 2000.

[12] Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd annual

international ACM SIGIR conference on Research and development in information retrieval,

pages 50–57, 1999.

[13] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation. J. Mach.

Learn. Res., 3:993–1022, 2003.

[14] Chris Ding, Xiaofeng He, Hongyuan Zha, and Horst D Simon. Adaptive dimension reduc-

tion for clustering high dimensional data. In 2002 IEEE International Conference on Data

Mining, 2002. Proceedings., pages 147–154. IEEE, 2002.

[15] Tao Li, Sheng Ma, and Mitsunori Ogihara. Document clustering via adaptive subspace iter-

ation. In Proceedings of the 27th annual international ACM SIGIR conference on research

and development in information retrieval, pages 218–225, 2004.

[16] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative matrix

factorization. Nature, 401(6755):788–791, 1999.

176



[17] Michael Collins, Sanjoy Dasgupta, and Robert E. Schapire. A generalization of principal

components analysis to the exponential family. In Thomas G. Dietterich, Suzanna Becker,

and Zoubin Ghahramani, editors, Advances in Neural Information Processing Systems 14

[Neural Information Processing Systems: Natural and Synthetic, NIPS 2001, December 3-

8,2001, Vancouver, British Columbia, Canada], pages 617–624, 2001.

[18] Wray Buntine. Variational extensions to em and multinomial pca. In European Conference

on Machine Learning, pages 23–34. Springer, 2002.

[19] Nicolas Jouvin, Pierre Latouche, Charles Bouveyron, Guillaume Bataillon, and Alain Li-

vartowski. Clustering of count data through a mixture of multinomial pca. arXiv preprint

arXiv:1909.00721, 2019.

[20] Thomas L Griffiths, Michael I Jordan, Joshua B Tenenbaum, and David M Blei. Hierarchical

topic models and the nested chinese restaurant process. In Advances in neural information

processing systems, pages 17–24, 2004.

[21] Matthew D. Hoffman, David M. Blei, and Francis R. Bach. Online learning for latent dirichlet

allocation. In Advances in Neural Information Processing Systems 23: 24th Annual Confer-

ence on Neural Information Processing Systems., pages 856–864, 2010.

[22] William J. Fitzgerald. Markov chain monte carlo methods with applications to signal pro-

cessing. Signal Process., 81(1):3–18, 2001.

[23] Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec:

Sequential recommendation with bidirectional encoder representations from transformer. In

Proceedings of the 28th ACM international conference on information and knowledge man-

agement, pages 1441–1450, 2019.

[24] Maarten Grootendorst. Bertopic: Neural topic modeling with a class-based tf-idf procedure.

arXiv preprint arXiv:2203.05794, 2022.

177



[25] Suzanna Sia, Ayush Dalmia, and Sabrina J Mielke. Tired of topic models? clusters

of pretrained word embeddings make for fast and good topics too! arXiv preprint

arXiv:2004.14914, 2020.

[26] Dimo Angelov. Top2vec: Distributed representations of topics. arXiv preprint

arXiv:2008.09470, 2020.

[27] Pengtao Xie and Eric P Xing. Integrating document clustering and topic modeling. arXiv

preprint arXiv:1309.6874, 2013.

[28] Wenxin Liang, Ran Feng, Xinyue Liu, Yuangang Li, and Xianchao Zhang. Gltm: A global

and local word embedding-based topic model for short texts. IEEE access, 6:43612–43621,

2018.

[29] Mohammad Alhawarat and M Hegazi. Revisiting k-means and topic modeling, a comparison

study to cluster arabic documents. IEEE Access, 6:42740–42749, 2018.

[30] Advaith Siddharthan. Christopher d. manning and hinrich schutze. Foundations of Sta-

tistical Natural Language Processing. MIT press, 2000. ISBN 0-262-13360-1, 620 pp.

$64.95/£44.95 (cloth). Nat. Lang. Eng., 8(1):91–92, 2002.

[31] Simon Lacoste-Julien, Fei Sha, and Michael Jordan. Disclda: Discriminative learning for

dimensionality reduction and classification. Advances in neural information processing sys-

tems, 21, 2008.

[32] Maxim Rabinovich and David M. Blei. The inverse regression topic model. In Proceedings

of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-

26 June 2014, volume 32 of JMLR Workshop and Conference Proceedings, pages 199–207,

2014.

[33] Daniel Ramage, David Hall, Ramesh Nallapati, and Christopher D. Manning. Labeled LDA:

A supervised topic model for credit attribution in multi-labeled corpora. In Proceedings of the

2009 Conference on Empirical Methods in Natural Language Processing, a Special Interest

Group of the ACL, pages 248–256, 2009.

178



[34] Chaitanya Chemudugunta, Padhraic Smyth, and Mark Steyvers. Modeling general and spe-

cific aspects of documents with a probabilistic topic model. In Bernhard Schölkopf, John C.

Platt, and Thomas Hofmann, editors, Advances in Neural Information Processing Systems 19,

Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems,

pages 241–248, 2006.

[35] Tao Ge, Wenzhe Pei, Heng Ji, Sujian Li, Baobao Chang, and Zhifang Sui. Bring you to the

past: Automatic generation of topically relevant event chronicles. In Proceedings of the 53rd

Annual Meeting of the Association for Computational Linguistics and the 7th International

Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 575–585,

2015.
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[40] Aytug Onan and Mansur Alp Toçoğlu. A term weighted neural language model and stacked

bidirectional lstm based framework for sarcasm identification. IEEE Access, 9:7701–7722,

2021.

179



[41] Gaurav Meena, Krishna Kumar Mohbey, Ajay Indian, Mohammad Zubair Khan, and Sunil

Kumar. Identifying emotions from facial expressions using a deep convolutional neural

network-based approach. Multimedia Tools and Applications, pages 1–22, 2023.

[42] Fatma Najar and Nizar Bouguila. Emotion recognition: A smoothed dirichlet multinomial

solution. Eng. Appl. Artif. Intell., 107:104542, 2022.

[43] Gaurav Meena, Krishna Kumar Mohbey, and Sunil Kumar. Sentiment analysis on images

using convolutional neural networks based inception-v3 transfer learning approach. Interna-

tional Journal of Information Management Data Insights, 3(1):100174, 2023.

[44] Gaurav Meena, Krishna Kumar Mohbey, Sunil Kumar, and K Lokesh. A hybrid deep learning

approach for detecting sentiment polarities and knowledge graph representation on monkey-

pox tweets. Decision Analytics Journal, 7:100243, 2023.

[45] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard

Harshman. Indexing by latent semantic analysis. Journal of the American society for infor-

mation science, 41(6):391–407, 1990.

[46] Ali Shojaee Bakhtiari and Nizar Bouguila. A variational bayes model for count data learning

and classification. Eng. Appl. Artif. Intell., 35:176–186, 2014.

[47] Koffi Eddy Ihou and Nizar Bouguila. A new latent generalized dirichlet allocation model

for image classification. In Seventh International Conference on Image Processing Theory,

Tools and Applications, IPTA 2017, pages 1–6, 2017.

[48] Ali Shojaee Bakhtiari and Nizar Bouguila. A latent beta-liouville allocation model. Expert

Syst. Appl., 45:260–272, 2016.

[49] David M. Blei and John D. Lafferty. Correlated topic models. In Advances in Neural Informa-

tion Processing Systems 18 [Neural Information Processing Systems, NIPS 2005, December

5-8, 2005, Vancouver, British Columbia, Canada], pages 147–154, 2005.

[50] Lan Du, Wray L. Buntine, Huidong Jin, and Changyou Chen. Sequential latent dirichlet

allocation. Knowl. Inf. Syst., 31(3):475–503, 2012.

180



[51] Jim Pitman and Marc Yor. The two-parameter poisson-dirichlet distribution derived from a

stable subordinator. The Annals of Probability, pages 855–900, 1997.

[52] Yong Chen, Junjie Wu, Jianying Lin, Rui Liu, Hui Zhang, and Zhiwen Ye. Affinity regular-

ized non-negative matrix factorization for lifelong topic modeling. IEEE Trans. Knowl. Data

Eng., 32(7):1249–1262, 2020.

[53] Zhiyuan Chen and Bing Liu. Topic modeling using topics from many domains, lifelong

learning and big data. In Proceedings of the 31th International Conference on Machine

Learning, ICML, volume 32 of JMLR Workshop and Conference Proceedings, pages 703–

711, 2014.

[54] Mingyang Xu, Ruixin Yang, Steve Harenberg, and Nagiza F. Samatova. A lifelong learning

topic model structured using latent embeddings. In 11th IEEE International Conference on

Semantic Computing, ICSC, pages 260–261, 2017.

[55] Ilya Sutskever, James Martens, and Geoffrey E. Hinton. Generating text with recurrent neural

networks. In Lise Getoor and Tobias Scheffer, editors, Proceedings of the 28th International

Conference on Machine Learning, ICML 2011, Bellevue, Washington, USA, June 28 - July 2,

2011, pages 1017–1024, 2011.

[56] Tomás Mikolov, Martin Karafiát, Lukás Burget, Jan Cernocký, and Sanjeev Khudanpur. Re-
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