
 

 

 

Adaptive Correction Strategy in Robotic Gas Tungsten Arc Welding for Additive Manufacturing 

 

Marzieh Masoodi Nia 

 

 

A Thesis 

in 

The Department 

of 

Mechanical, Industrial & Aerospace Engineering 

 

Presented in Partial Fulfillment of the Requirements 

for the Degree of Master of Applied Science (Mechanical Engineering) at 

Concordia University 

Montréal, Québec, Canada 

 

 

 

 

August 2024 

© Marzieh Masoodi Nia, 2024 



ii 

 

 

This is to certify that the thesis prepared 

By:  Marzieh Masoodi Nia 

Entitled:  
Adaptive Correction Strategy in Robotic Gas Tungsten Arc 

Welding for Additive Manufacturing 

and submitted in partial fulfillment of the requirements for the degree of 

Master of Applied Science (Mechanical Engineering) 

complies with the regulations of this University and meets the accepted standards with respect to 

originality and quality. 

Signed by the Final Examining Committee: 

 
Chair 

Dr. Tsz Ho Kwok 

 
Examiner 

Dr. Tsz Ho Kwok 

 
Examiner 

Dr. Chunyan Lai 

 
Supervisor 

Dr. Wen-Fang Xie 

 
Co- Supervisor 

Dr. Javad Gholipour Baradari 

 

Approved by 

 

 

 

 

 

 

Martin D. Pugh, Chair  

Department of Mechanical and Industrial Engineering 

 

Mourad Debbabi, Dean 

Faculty of Engineering and Computer Science 

September 2024 



iii 

 

 

ABSTRACT 

 

 
Adaptive Correction Strategy in Robotic Gas Tungsten Arc Welding for Additive 

Manufacturing 

Marzieh Masoodi Nia 

 

 
Wire arc additive manufacturing (WAAM) is one of additive manufacturing (AM) methods 

and owns notable advantages like enabling production of large-scale components. However, the 

current WAAM has inherent drawbacks, such as heat accumulation and near-net-shape production 

issues that can lead to defects like geometrical deviations, porosity inside the weld and/or surface 

irregularities. It is noted that various process parameters are directly related to the above-

mentioned production issues. Therefore, it is crucial to set various process parameters (based on 

geometry, processing changes when depositing, etc.) appropriately for achieving a good quality of 

product 

In this project, we aimed to investigate the influence of various process parameters on the 

product quality and to automate the WAAM process using a vision system. To realize the 

objectives, we have developed an adaptive correction strategy to control the robotic welding 

machine, i.e.  a Nertamatic power source that centralize the welding cycle while considering 

various welding parameters such as the robot path, deposited layer height, surface contamination, 

etc.  To minimize operator intervention, a Cognex 3D A5000 series camera was employed to 

scan/monitor the deposited object layer by layer. The camera’s ASCII output was used for mesh 

processing. An on-line control scheme has been developed to control the robot path according to 

the dimensions of previous layers and thus the robot’s height was adaptively adjusted. An 
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algorithm was proposed to process the mesh data to detect and correct the inconsistencies by 

commanding the robot to stop in case of collisions or fill cavities in the case of insufficient height 

or underfills. 

An experiment has been designed  on a robotic WAAM machine where a TopTig gun was 

attached to the end effector of a 6-degree-of-freedom (DOF) ABB robot IRB4600, equipped with 

a 2-DOF IRBP_A500 table, to deposit material layer by layer. A nozzle is mounted with different 

diameter tungsten electrodes and fed with various wire materials. In this study, we tested a 3 mm 

diameter tungsten electrode and stainless-steel filler wire to assess the effects of overlap between 

the beads on the integrity of the deposited part. Simulations have been conducted in RobotStudio 

software to validate the recognizing deposited layer inconsistencies and the effectiveness of the 

path planning and welding machine settings, demonstrating the potential for deploying the 

adaptive correction strategy in the WAAM process. 
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Chapter 1 

 

1 Introduction  

1.1 Overview 

Manufacturing of metallic parts can be divided into three distinct categories which are: i) 

machining or subtractive manufacturing, ii) forming, and iii) additive manufacturing (AM) [1]. In 

the context of machining, it is a common traditional practice to remove material from the bulk of 

substrate to shape the desired end-user product, called subtractive manufacturing.  The forming 

method is centered on the utilization of mechanical, chemical or thermal forces to shape the metal 

to the desirable profile.  These two methods possess a footprint belonging to history over a 

millennium [1]. However, certain drawbacks and barriers, including design constraints, longer 

production times, material waste, and limitations in handling complex geometries, have 

necessitated the development of a more flexible technology known as AM. In the 1980s, a new 

method was introduced in which a 3D object could be produced via adding materials following a 

systemized approach. There was ongoing debate to assign name on such method; 3D printing, 

rapid prototyping, or rapid manufacturing were commonly used. Finally, in 2013, two main 

institutions of Standards, ISO and ASTM settled the case by calling this method, AM. Since then, 
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AM technology, i. e. the layer-by-layer material deposition has become a widely used technique 

to build final products in the manufacturing industry. 

AM is classified into seven major categories as illustrated in Figure 1-1, offers several 

advantages over subtractive manufacturing, both intrinsic and extrinsic. These include optimized 

waste reduction. Additionally, it allows to produce near-net-shape objects, leading to cost and time 

efficiency. It is compatible with a wide range of materials and facilitates the production of large 

components and media [2]. From an economic perspective, AM does not require the costly tooling 

or dies needed for traditional forming processes. Furthermore, AM enhances deposition rates and 

enables the creation of diverse object morphologies. The improved buy-to-fly ratio [2] and 

aerospace-approved features [3], [4] are among its most notable benefits [3], [4]. All in all, it can 

be anticipated that AM is a kind of bidirectional process.  Compared to forming methods, AM 

offers greater design flexibility, enabling the production of complex geometries with fewer post-

processing steps, addressing one of the main challenges of traditional methods. 

Despite these advantages, AM still has inherent drawbacks, such as heat accumulation and 

near-net-shape production issues that can lead to defects like geometrical deviations, porosity 

inside the weld and/or surface irregularities. It is noted that various process parameters are directly 

related to the above-mentioned production issues. Therefore, it is crucial to control various 

parameters during the production process. 
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Figure 1-1 Classification of polymers, ceramic or wax, and metal AM [1]. 

Robots play a vital role in automation of industrial processes including AM, pick and place, 

welding, coating, machining etc. [5]. A robot of six-degree freedom enables the users to process 

WAAM autonomously and functions as a cornerstone step towards automation (Figure 1-2). The 

remaining barriers were to introduce quality control of end product and parameter tuning of the 

robot control system. By introducing a vision system in the robot control, these barriers are 

overcome with the best of its ability. 

To minimize the human error, the vision system was introduced to the system for the first time 

in 1996 and its evolution initiated from two charge-coupled device (CCD) camera to three- 

dimensional (3D) camera scanner as of today industrial examples [6].  Different types of vision 

systems have been employed into the industrial manufacturing with respect to the dimension of 
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exposure (i.e. field of view and/or size of sample) which are: i) single dot laser[4], ii) line laser 

[7], [8], iii) two CCD camera [6], and iv) 3D scanner [9]. 

   

Figure 1-2. Apparatus of six-degree freedom 4600ABB robot (adopted from 

https://www.turbosquid.com/ko/3d-models/3d-abb-irb-4600-industrial-robot-02-1915018)  

The aforementioned vision systems are mostly installed on robotic arm except 3D scanner. To scan 

the entire surface, the sample rate of these lasers is synchronized with the speed of robot. 2D 

cameras can be equipped with stationery or installed on the robot.  Stationary ones are frequently 

used to determine the height of the sample.  

Another breakthrough of AM is the ability to repair components. Thanks to its aerospace 

approved feature, a vast application to the repair of aerospace components is the emerged added 

value of such method (see Figure 1-3 [10]. In this thesis, we will focus on one of AM methods, i. 

e., robotic WAAM machine guided by a 3D scanning camera and to investigate an adaptive 

correction strategy to improve the quality of product. 

https://www.turbosquid.com/ko/3d-models/3d-abb-irb-4600-industrial-robot-02-1915018
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Figure 1-3. (a & b) pre-repair of defected blade; (c & d) post-repair of the blade [10] 

1.2 Problem Statement 

The introduction of vision system to AM was a great breakthrough in the manufacturing 

industry. However, experts are still faced the following challenges: i) low resolution and demand 

of post-processing, ii) the limitations imposed by inbuilt offline control in robotic software, which 

restricts real-time path planning, process feature correction, and adjustment of process parameters 

[11].  

Taking these concerns into account, it is possible that cavity and irregularities would be 

created through deposition and such a trend is extended to the next layer of deposition that may 

introduce the robot gun’s  collision as well as causing generation of unfavorable porosity (See 

Figure 1-4).  The schematic of irregularities and cavity is illustrated in Figure 1-5 in which the 

blue region represents cavity and red one describes the irregularities. 
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Another barrier is the heat accumulation [11], [12]. In case this effect occurs, the deposited 

layers would not build up and droplets formation for one side might take place instead of increase 

in height of deposited layers (Figure 1-6).  

 

 

Figure 1-4 Examples of creation of (a) irregularity; (b) cavity.   

         Additionally, the present technologies of welding can operate under passive and offline 

control. Therefore, the preliminary experiments are imperative in order to find the optimal 

parameters which will be used and maintained constant during AM process.  

         Path planning is another issue that conventional practices are facing. The programming of 

the robots does not define inherited and built-in path planning and the common missing feature is 

the absence of path planning add-on. An add-on is a package of codes or modules that is integrated 

into pre-existing software to address its drawbacks, eliminate limitations, and enhance its 

capabilities, all without altering the original software’s core code. This thesis aims to fill the gap 

by designing a path planning add-on to determine the path based on the measured data from the 

vision system.  

Oxygen and other elements such as nitrogen, carbon and hydrogen may play a role as 

contamination species in the terms of exposing to reach melted first layer. With an increase in 

height of gun head, the torch may be exposed to such contaminants from the atmosphere to higher 

extent causing the generation of turbulence (Figure 1-7). Consequently, atmospheric elements 

contaminates the melting pool which results in undesirable porosity [13] and also discoloration of 

the surface. In laser and especially electron beam methods, it is vital to undertake the additive 

process in a vacuum chamber, whereas WAAM can be operated at ambient pressure and in an 
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open chamber. However, the torch requires shielding gas and separate shielding for the head of the 

welding gun. Laser systems can also operate with just shielding gas, whereas electron beam 

systems require more stringent conditions; however, a special electron beam gun has recently been 

developed for low vacuum environments. Typically, laser operations occur within a chamber due 

to the eye hazards associated with class 4 lasers. In contrast, WAAM (Wire Arc Additive 

Manufacturing) differs in this regard, as the hazards from the arc can be effectively mitigated using 

curtains and appropriate eyewear 

To meet the above-mentioned challenges, the research community is seeking the correlation 

between various process parameters and the quality of the welding product and an adaptive 

correction scheme to automate the WAAM process to enhance the quality of the manufactured or 

repairing products.  
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Figure 1-5 Schematic of irregularities (red) and cavity (blue) 

 

Figure 1-6 Droplet formation during layer deposition  
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Figure 1-7 Schematic of generated turbulence due to increase in height of gun head (adopted from:  

https://www.twi-global.com/technical-knowledge/job-knowledge/defects-imperfections-in-welds-

porosity-042) 

 

1.3 Scope and Objectives  

 

The scope of this research is focusing on developing a scheme to automate the WAAM process 

to enhance the quality of the manufactured parts. The research work will be conducted 

throughthree phases which are: Phase I: Programming, Phase II: Operation of process, and Phase 

III: Experimental Test. The initial point of the project is assessing the performance of an offline 

open-loop control system of AM and the final aim is to transform the system to an online closed-

loop control one. The rationale of this research is to tackle the barriers of an offline system such 

as the demand for the time and instrument to measure the height of each deposited layer as well as 

any cavities, irregularities, surface contaminations, etc. (described in detail in Section 1.2). 

Automation of the AM process is the missing chain and acts as the motivation of this research.  

To begin with, Phase I focuses on programming different devices and modules which are: 

robot, vision system, and Graphical User Interface (GUI).  To run the process, it is essential to 

synchronize the parameters of the welding system with robot ones where Phase II comes in. The 

https://www.twi-global.com/technical-knowledge/job-knowledge/defects-imperfections-in-welds-porosity-042
https://www.twi-global.com/technical-knowledge/job-knowledge/defects-imperfections-in-welds-porosity-042
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novelty of operation lies in implementing programming to one of the state-of-the-art technologies 

of WAAM which is patented TOPTIG device located at National Research Council, Canada. 

Then, the algorithm validation emerges as the critical step to ascertain whether the height of 

each layer can be autonomously adjusted with the previous deposited layer or not. In such context, 

the essence of Phase III: Experimental tests comes into consideration.  

The main research objective of this thesis is to develop a fully automated WAAM process 

using a vision system. The adaptive correction strategy includes the determination of the optimized 

position, number and the type of clamps to minimize the probability of collision between the gun 

and clamps and prevent warping of the base materials. Also, the path planning needs to be 

integrated with online programming of the robot and an algorithm for mesh analysis is expected 

to find the cavities and irregularities.  

1.4 Achieved Contributions 

The major contributions of this research work are summarized as follows: 

• Optimization of Welding Machine Inputs: We optimized the inputs of the welding 

machine, leading to three predefined settings for infilling large, medium, or small size 

objects. This optimization improves process efficiency and consistency. 

• Path Planning Methodology: We identified a feasible method for path planning, 

applicable even for complex shapes. This methodology enhances the precision and 

adaptability of the manufacturing process. 

• Offline RobotStudio Programming: We developed an offline RobotStudio robot 

program capable of depositing multi-line, multi-layer objects for basic shapes such as 

rectangular and hollow cylinders. This program facilitates the creation of consistent and 

high-quality components. 

• Nozzle Shield Development: We designed a shield for the nozzle to prevent contamination 

of the weld pool and oxidation of the object and tungsten. This shield extends the lifespan 

of the nozzle and improves weld quality. 
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• G-Code Conversion: We identified the program for converting G-codes to RAPID 

language, streamlining the process of translating design files into executable robot 

instructions. 

• Virtual Testing Environments: We developed virtual environments in RobotStudio for 

testing codes and in RoboDK for testing planned path. These environments allow for 

collision avoidance and the identification of singularities, enhancing safety and reliability. 

• Gripper Design: We designed a gripper for the calibration object, used for calibrating the 

3D camera with respect to the robot workspace. This design improves the accuracy and 

repeatability of the calibration process. 

• 3D Camera Programming: We programmed the 3D camera to integrate with the 

manufacturing process, enabling real-time monitoring and adjustments. 

• Mesh Processing Program: We developed a mesh processing program for analyzing the 

point cloud of the scanned object to correct the next layer path plan. This program enhances 

the accuracy and quality of the final product. 

• Adaptive Correction Strategy: In simulation, we dynamically adjusted parameters, to 

reduce errors and enhance overall quality, with the potential to expand the method's 

applicability to complex manufacturing environments. 

1.5 Thesis Structure 

This thesis consists of five chapters. The outline of the thesis is given as follows. 

• Chapter 1 provides a comprehensive overview of the research topic and the problem statement. 

It sets the stage for the thesis by defining the scope of the study and outlining the key objectives 

to be achieved. 

• In Chapter 2, a thorough review of the existing literature is presented. It covers the current AM 

techniques, path planning methods, simulation software, and vision systems. This review 

establishes the context for the research by identifying gaps and opportunities in the existing 

literature. 

• Chapter 3 details the materials used, and the methodologies adopted for all steps of the project, 

from deposition to path planning. It includes descriptions of experimental setups, protocols, and 
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the software or tools utilized in the research. This provides the foundation for the experimental 

work. 

• Chapter 4 discusses the results obtained from mesh analysis programming and microstructure 

examinations. It includes a detailed analysis of the data, interpretation of findings, and 

comparison with existing literature. The discussion highlights the significance of the results and 

their implications for the field of study. 

• Chapter 5 summarizes the key findings of the research, highlighting the conclusions drawn from 

the study. Additionally, recommendations for future studies are provided, suggesting potential 

areas for further investigation to build on the work presented in this thesis. 
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Chapter 2 

 

2 Literature review:  

2.1 Additive Manufacturing  

Additive manufacturing (AM) is one of the most closely aligned tools with bottom-up 

manufacturing methods, where a structure can be constructed based on a design using a 'layer-by-

layer' approach [1]. Traditional methods such as casting, forging, and machining do not offer the 

same degree of unprocessed freedom in manufacturing versatile objects, including composite, 

complex, and hybrid structures that require immediate precision and control [1–3]. AM broadens 

its applicability to a diverse range of materials, including ceramic, polymeric, and metallic 

substances, as well as combinations thereof, in the fabrication of hybrid, composite, or functionally 

graded materials (FGMs)[1].  

It is crucial to evaluate how ASTM standards integrate with current AM technologies. There 

are seven ASTM categories to consider: i) binder jetting (BJ); ii) directed energy deposition 



14 

 

(DED); iii) material extrusion (ME); iv) material jetting (MJ); v) powder bed fusion (PBF); vi) 

sheet lamination (SL); and vii) vat photopolymerization (VP). These categories are listed in Table 

2.1. In this study, DED and PBF will be thoroughly discussed, as both methods involve the melting 

of material. 

2.1.1  Power bed fusion  

PBF process enables the user to import 3D solid CAD model data and fabricate parts following 

the concept of layer-by-layer addition. Heat energy sources of this method play a pivotal role in 

classifying PBF processes. These sources can be electron or laser beam where lasers are more 

commonly used in industry. The types of PBF processes are:  

• Selective Heat Sintering (SHS)  

• Selective Laser Melting (SLM) 

• Electron Beam Melting (EBM) 

• Selective Laser Sintering (SLS) 

• Direct Metal Laser Sintering (DMLS) 

Sintering processes by laser (e.g. DMLS, SLS) also includes two subcategories which are 

metal laser sintering (mLS) and polymer laser Sintering (pLS). The mechanism underlaying all 

PBF processes is spreading powder over previously formed layers. A roller or blade mechanism 

carries out such a role. Briefly, the first step is spreading the powder and involves fusing the 

powders via as beam to solidify them layer-by-layer into the final components.  

EBM stands as one of the most effective methods of PBF thanks to six major merits [1,3] 

that can bring to the AM process.  

• Higher Energy Efficiency: Electron beams are far more energy-efficient compared to 

laser-based methods. This feature can predominantly contribute to lessening operating cost 

• Reduced Residual Stresses: Operation at higher temperatures due to lower heat transfer 

in vacuum environment, required in EBM processing, leads to minimizing the residual 

stress through the built parts. Subsequently, the demand of post-processing can be 

pronouncedly decreased. 



15 

 

• Material Utilization: High-melting-point materials such as titanium and nickel-based 

superalloys are the most suited to incorporate EBM with. This property turns EBM to an 

adaptable method for aerospace and medical applications. 

• Faster Build Speeds: Rapid reflection of electron beam permits to build part much faster 

compared to laser-based ones. 

• Less Need for Support Structure: Thanks to the higher process temperature, the demand 

of support structures faces significant decrease for the built parts with EBM. Consequently, 

material waste and post-processing can be remarkably decreased.  

• Homogeneous Material Properties: The porosity of parts would be pronouncedly 

reduced and the composition of the parts are homogenized due to complete melting of 

powders through EBM. Reduced porosity poses remarkable enhancement in durability of 

the parts and the overall strength.  

• Vacuum environment: minimizes oxidation of powder within the build chamber, 

allowing for improved powder reuse, which is crucial for high-value materials. 

Although EBM is one of the most effective methods, its high cost can be a barrier for scale-

up and future use compared to DED methods such as WAAM. The higher cost of EBM is primarily 

due to the requirement of a vacuum chamber, which significantly increases both operational and 

capital expenses, whereas DED methods do not require vacuum conditions, leading to lower costs 

[4]. The key to WAAM lies in its low capital costs, due to arc technology, and reduced operational 

costs, thanks to local shielding. 

2.1.2 Direct energy deposition 

DED process is a reliable method for creating tailored surfaces and arbitrary shapes through 

line-by-line deposition of metallic materials. This capability allows for the fabrication of 

heterogeneous materials with desirable characteristics and properties by using different materials 

simultaneously for deposition. The simpler apparatus of DED, compared to PBF, facilitates the 

development of hybrid processes. Consequently, DED processes have garnered significant 

attention from researchers in recent years [5]. DEDs can be classified based on two criteria of: i) 

type of feedstock and ii) type of energy source  (See Figure 2-1) [6].  
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Table 2.1. Summary of ASTM category adaptation with AF, modified from [1]. 

ASTM 

Cat. 
Basic Principle Example technology Advantages Disadvantages Materials 

Build volume 

(mm×mm×mm) 

DED 

Focused thermal 

energy 

melts materials 

during 

deposition 

Laser deposition (LD) 

Laser Engineered Net Shaping 

(LENS) 

Electron beam 

•Plasma arc melting 

High degree control of 
grain structure 

High quality parts 
Excellent for repair 

applications 
 

Surface quality and 
speed requires a 

balance 
Limited to 

metals/metal based 
hybrids 

 

Metals 
Hybrid 

Versatile 

X = 600–3000 

Y = 500–3500 

Z = 350–5000 

PBF 

Thermal energy 

fuses a small region 

of the powder bed of 

the build material 

Electron beam melting (EBM) 
Direct Metal Laser Sintering 

(DMLS) 
Selective Laser Sintering/Melting 

(SLS/SLM) 

Relatively inexpensive 
Small footprint 

Powder bed acts as an 
integrated support 

structure 

Large range of material 
options 

Relatively slow 
Lack of structural 

integrity 
Size limitations 

High power required 
Finish depends on 
precursor powder 

size 

Metals 
Ceramics 
Polymers 

Composites 
Hybrid 

Small 

X = 200–300 

Y = 200–300 

Z = 200–350 

 

BJ 

Liquid binder/s jet 

printed onto thin 

layers of powder. 

The part is built up 

layer by layer By 

glueing the particles 

together 

3D inkjet technology 

Free of 

support/substrate 

Design freedom 

Large build volume 

High print speed 

Relatively low cost 

Fragile parts with 
limited mechanical 

properties 
May require post 

processing 
 

Polymers 
Ceramics 

Composites 
Metals 
Hybrid 

 

Versatile (small to 

large) 

X = <4000 

Y = <2000 

Z = <1000 

 

ME 

Material is 

selectively pushed 

out through a nozzle 

or orifice 

Fused Deposition Modelling 

(FDM)/Fused 

Filament Fabrication (FFF), Fused 

Layer Modelling (FLM) 

 

Widespread use 
Inexpensive 

Scalable 
Can build fully 
functional parts 

 

Vertical anisotropy 
Step-structured 

surface 
Not amenable to 

fine details 

Polymers 
Composites 

 

Small to medium 

X = <900 

Y = <600 

Z = <900 

 

VP 
Liquid polymer in a 

vat is light-cured 

Digital Light Processing (DLP) 
 

Large parts 
Excellent accuracy 

Excellent surface finish 
and details 

 

Limited to 
photopolymers only 
Low shelf life, poor 

mechanical 
properties of 

photopolymers 
Expensive 

precursors/Slow 
build process 

Polymers 
Ceramics 

 

Medium 

X < 2100 

Y < 700 

Z < 800 

 

SL 

Sheets/foils of 

materials are 

bonded 

Laminated Object Manufacturing 

(LOM) 

Ultrasound 

consolidation/Ultrasound Additive 

Manufacturing 

(UC/UAM) 

Stereo Lithography (SLA) 

High speed, 
Low cost, 

Ease of material 
handling 

 

Strength and 
integrity of parts 

depend on adhesive 
used 

Finishes may 
require post 
processing 

Limited material use 
Limited to 

photopolymers 
 

Polymers 
Metals 

Ceramics 
Hybrids 

 

Small 

X = 150–250 

Y = 200 

Z = 100–150 

 

MJ 

Droplets of build 

materials are 

deposited 

3D inkjet technology 
Direct Ink writing 

 

High accuracy of 
droplet deposition 

Low waste 
Multiple material parts 

Multicolour 

Support material is 
often required 

Mainly 
photopolymers and 
thermoset resins 

can be used 
 

Polymers 
Ceramics 

Composites 
Hybrid 

Biologicals 

Small 

X = <300 

Y = <200 

Z = <200 
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Figure 2-1 Classification of DED processes via type of feedstock and type of energy source [6]. 

 

2.1.2.1 Wire Arc Additive Manufacturing (WAAM) 

The overall mechanism of Directed Energy Deposition (DED) involves fusing materials by 

melting them during the deposition process. This focused thermal energy, necessary for melting 

and depositing the material simultaneously, can be supplied via laser, electron beam, electric arc, 

or plasma. The melted material is then regulated to be deposited according to a pre-defined CAD 

model through a layer-by-layer mechanism. Once deposited, the material solidifies into the desired 

structure. 

The focus of this research was WAAM. This method uses the energy source of electric arc 

and metal wire as feedstock and is known as one of the modern methods of AM [7]. WAAM can 

be competitive with other AM methods thanks to [8–11]: 

1. Lower Equipment Costs and Material Utilization: the cost of the device using for electric 

arc as a source of energy is much more cost effective than available DED methods with the 

source of electron beam and laser. Equally important, the wire used for WAAM is 

commonly less costly than metal powders that are typically used for other DED methods 

[7]. 
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2. Structural Integrity: The components that would be produced through WAAM pose 

competitive mechanical properties and meets high structural integrity and there would be 

room to post-process via heat treatments to enhance these properties[12]. 

3. Scalability: The most notable benefit of WAAM is its ability to produce large structures 

via a means of cost-effective technology and complex parts can be built without constraints 

defined for size in PBDs. 

4. High Deposition Rate: Such properties result in lessening production times and be 

particularly advantageous for large parts. 

5. Repair and Maintenance: WAAM is an effective refurbishing and repairing tool by adding 

material to damaged or worn parts. At some point that replacing parts can be costly, repair 

turns out to be crucial for enduring the service life.  

6. Reduced Material Waste: Compared to machining, WAAM led to remarkably less waste. 

7. Hybrid Manufacturing: The ability to combine WAAM and robotic machining can 

remarkably enhance the strength of each method for production of parts. It points out that 

WAAM is a compatible method with different manufacturing techniques [11].  

8. Material Flexibility: It is feasible to produce metal composite materials by simultaneous 

feeding of vast range of materials such as nickel-based alloys, aluminum, steels, and 

titanium. 

Overall, these properties facilitate the application of WAAM in industries that require 

precise and structurally sound materials, including aerospace, maritime, and automotive sectors. 

2.2 Vision system 

In AM technology, accurately scanning and reconstructing the point cloud is crucial. This step 

is essential for both building a model from scratch and for repair processes. Noisy or inaccurate 

scanning can result in deviations that require parts to be redeposited or ground down, and in repair 

processes, it can lead to failures in mechanical properties or, in the worst-case scenario, significant 

divergence between the repaired part and the original intended part. Three factors determine the 

accuracy of the point cloud [13] (see Table 2.2): 

1. The type of scanner selected for scanning. 
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2. The point extraction method used to identify the object's points relative to the 

environment. 

3. The alignment method employed to reconstruct the 3D point cloud from the scans. 

Table 2-2. 3D scanning technology advantages and drawbacks. 

Technology 
Time of 

acquisition 
Resolution Resilience Handling 

Contact based High High Very High Low 

Photogrammet

ry 
Medium Low Low Very High 

Laser Low Very High Low Low 

Time-of-flight Very Low Medium Medium High 

Structured 

light 
Very Low High Low Low 

 

2.2.1  Contact based 3D scanning 

In this method, a touch probe attached to the robot head or another robotic arm contacts the 

object to determine its coordinates in space. For example, a contact-based 3D scanner, such as a 

coordinate measuring machine (CMM) [39], operates on this principle. Each time the probe 

touches the object, a point is recorded. The main advantage of this method is its flexibility, 

especially for shiny or transparent objects, as it does not rely on cameras or laser beams. 

Consequently, lighting conditions in the environment are not a concern. However, because the 

resolution depends on the number of points acquired, this process can be time-consuming  [13]. 

2.2.2  Photogrammetry 

Photogrammetry can be performed using a single 2D camera [14], operating in passive mode, 

or with a combination of two cameras to create a stereo vision system, which allows for the 

recognition of a region of interest [15]. When using multiple images from different views, they 

must be stitched together in the final step. A simple camera or a charge-coupled device (CCD) can 

be used to capture the images. After capturing the images, software merges them by matching 

pixels that correspond to the same physical points. The resolution of the images determines the 

accuracy of this method. However, the process can be time-consuming, depending on the number 

and size of the images [16]. 
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2.2.3  Laser 3D scanning 

We have three different types of laser systems. In point laser applications, the quality of the 

point cloud depends on the speed and interval of sampling from the surface [17]. In this method, 

the laser should be installed on the gun or another robotic arm to scan the surface [17]. Another 

method is the laser line, which offers greater accuracy [18]. 

The 3D laser scanner operates using trigonometric triangulation to generate point cloud data 

for the scanned surface of deposited objects. The principle behind this method involves projecting 

a point onto the surface of an object, with a sensor capturing the reflected beam from the surface. 

Given the predefined distance between the laser and the sensor, and knowing the angle of the laser 

beam's reflection, the coordinates of the points are calculated. Although 3D scanners provide 

higher precision, they are not suitable for highly reflective surfaces on materials like aluminum 

[19] 

2.2.4  3D Scanning with combination of two cameras and a laser 

By adding a laser to two angled CCD cameras, stereovision scanning is achieved. In this 

method, the torch is controlled using an ant colony algorithm. A linear laser beam detects the 

position and orientation of the weld seam [20]. 

2.2.5  Structured Light 3D Scanning 

One of the most popular 3D scanning methods widely used in industries is structured light 3D 

scanning. According to 3DINSIDER, structured light 3D scanning is “a 3D scanning technology 

that uses a single light source to project multiple lines onto an object, all of which are tracked 

simultaneously by one or more cameras.” The key difference between this system and 

conventional laser scanning is that structured light projects multiple lines simultaneously, while 

traditional lasers emit individual dots of light one by one. The lines can be white, blue, or green, 

and the pattern typically consists of multiple parallel stripes [21]. 

The cameras capture the shape of these patterns, and the distance between the points and the 

sensor is used to generate the 3D model. The complex calculations required for this process are 

performed within the 3D scanning device. Among the advantages of this method are its high 
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accuracy and fast scanning speed. Unlike traditional laser scanners, which need to launch the laser 

multiple times to gather point cloud data, structured light 3D scanning collects all this information 

in a single shot. 

However, this method also presents challenges that must be addressed. Shadows or light 

sources can interfere with the scanning process, as this method relies on optical sensors. 

Reflections from shiny and reflective materials can lead to data loss and incorrect triangulation or 

point coordinate placement. Applying a dark, non-reflective coating to the object can help mitigate 

these issues. 

Table 2.2 outlines the different characteristics of scanning technologies. The repair and build 

process of a 3D object requires a scanning method that is both fast and accurate. Consequently, a 

structured light 3D scanner represents the best solution for this purpose. 

2.3 Volume identification and 3D Model Reconstruction 

After gathering information from the 3D model, the next step is to rebuild the object. This 

process can be challenging due to the massive amount of data, with millions of scanned points and 

their characteristics stored in a matrix containing their coordinates. For some predefined 

geometries, some methods have been developed to isolate the object's point cloud from the 

background. Bokhabrine et al. applied the Gaussian Image (GI) method to find the normal vectors 

of each point within a unit sphere [21]. Subsequently, the RANSAC (Random Sample Consensus) 

algorithm was used to extract the normal vectors. By selecting only specific normal vectors from 

the start, the impact of noise and environmental errors was minimized. In the final step, the 

Iterative Closest Point (ICP) algorithm was employed to align the scans, define overlaps, and 

recreate the object's point cloud. This method generates an accurate and robust point cloud within 

the region of interest (ROI) but is limited to predefined geometries introduced in a Gaussian 

environment [13]. 

To overcome the limitations of the Gaussian algorithm, machine learning tools can be utilized. 

Machine learning algorithms are widely used in face recognition and object detection in the 

automotive and shipbuilding industries. These algorithms can identify and extract complex shapes 

and geometries from point clouds. Huang et al. applied a support vector machine (SVM) for 

segmenting the point cloud [22]. The classifier was defined by a 33-dimensional Fast Point Feature 
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Histogram (FPFH). The algorithm was trained offline on over 200,000 points labeled as planes, 

pipes, edges, and thin pipes, and then used for clustering. In the next step, the Flood-Fill algorithm 

grouped sets of points, assigning them to specific lists. Through this process, specific object points 

can be identified and extracted, reducing the effects of noise by selecting neighboring points 

associated with a specific object. However, SVM algorithms are limited to the shapes they were 

trained on and are only effective for those specific shapes. Additionally, this method only works 

on a single scan to extract points on the object's surfaces and cannot handle reconstruction from 

multiple scans. 

2.4 Online control 

Conventional control methods are not well-suited to today's industrial needs because they 

lack flexibility and are computationally intensive. Therefore, industries require more adaptable 

and efficient control strategies that can meet the demands of hybrid and complex environments. 

2.4.1 Online Robot Trajectory Planning and Programming Support 

System 

Robot trajectory and programming are divided into three categories: traditional, offline 

programming, and online programming. The traditional approach to robot trajectory planning 

relies immensely on manual mathematical computations to determine the precise path of the robot. 

This method often requires significant expertise and time, making it less efficient for complex or 

dynamic environments. Offline programming involves writing the robot's program, uploading it 

to the robot controller, testing the code in a simulator or the real world, and then stopping the 

process to make modifications and corrections. In contrast, online programming allows the 

operator to access the controller in real-time and edit the code while the robot is running, without 

the need to stop the process. 

A trajectory planner combined with Voronoi generation creates a support system that 

minimizes the need for manual programming, enhances real-time control, and improves path 

planning [23]. 
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2.4.2 Incremental Online Sparsification for Real-Time Model Learning 

To achieve successful real-time robot control, the method must quickly adapt to changes, 

support instant learning, and be computationally efficient. Gaussian Processes Regression (GPR) 

is highly accurate but requires significant computational resources, which can lead to instability in 

the process. 

Local Gaussian Processes Regression (LGP) addresses this by using multiple local models for 

different regions of space. This approach offers the advantage of maintaining high accuracy while 

keeping computational costs low. In this method, real-time control of the robot is enhanced through 

data assignment, model learning, and prediction. 

The results demonstrate a significant improvement in tracking accuracy, fast computation, and 

high stability in real-time control [24]. 

2.4.3 Online Control Programming Algorithm  

The system components include a pretraining online module that gathers and analyzes the 

gesture features of operators, creating an individual library for each user. For real-time gesture 

recognition, the system employs a cascade classification algorithm that delivers acceptable 

precision. This method allows the user to rewrite the robot's path planning while the process is 

running.  

Building on the gesture recognition library, the system captures real-time images and, after 

analyzing them, replans the task accordingly. The flexibility of path planning in dynamic 

environments and the ability to accommodate various operator inputs are key advantages of this 

method [25]. 

2.4.4 Neural Network System for Online Controller Adaptation 

The system structure contains both real and imaginary worlds, with a Forward Model (FWD) 

based on a neural network used for simulating robot movement. This setup allows the control 

system to adapt in real-time without interruption. 
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In the imaginary training phase, the error signal from the simulation is used for continuous 

adjustment, enabling real-time adaptation without halting the ongoing process. Experimental 

results demonstrate the system's effectiveness in handling disturbances and trajectory adjustments 

[26]. 

2.4.5 Local Gaussian Processes Regression for Real-Time Model-Based 

Robot Control 

To achieve successful real-time control, an algorithm is needed that can precisely predict 

both robot movements and changes in a dynamic environment. Local Gaussian Process (LGP) 

[24], by combining the regression capabilities of both local and global methods, provides high 

accuracy and strong computational performance. Since LGP can easily adapt to new data in real-

time, it is an ideal choice for dynamic industries [24]. 

2.4.6 Controlling an Industrial Robot Using a Graphic Tablet 

The system utilizes a graphical tablet to convert path coordinates into robot trajectories, 

enabling intuitive and impulsive robotic programming. This setup includes an embedded digital 

section for offline testing and real-time compensation, facilitated through Ethernet 

communications. Users command the robots by drawing paths on the tablet, which are then 

analyzed by the robot controller's processors. These paths are translated into control commands 

that the controller executes, demonstrating high accuracy and responsiveness in both simulation 

and real-world tests [27]. 

Despite the advantages, real-time and online robot control presents challenges that are 

currently being addressed, such as ensuring user safety, accommodating new inputs, and managing 

the high computational demands. The proposed systems enhance the versatility and precision of 

the process. However, future studies should focus on improving system stability, particularly as 

the integration of vision systems and online control can introduce instability. 

2.5 Mechanical Properties 

One of the biggest challenges in the AM process is achieving the required mechanical 

properties, especially since many parts produced by this method are used in critical and sensitive 
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industries. Additionally, the selected materials must be weldable. Common materials for this 

purpose include steel, stainless steel, aluminum, and titanium  [28–30]. 

The thermal cycle experienced by the deposited material can be summarized as heating the 

wire by tungsten, melting, solidification, cooling, and then remelting [31,32]. Numerous studies 

have attempted to observe and test the factors affecting the welding process, such as the 

microstructure of the weld and the resulting mechanical properties. Key factors include shielding 

gas, path planning, and post-heat treatment. 

Research indicates that the required tensile strength can be achieved by performing a heat 

treatment after the welding process [33]. According to Suryakumar's studies [34], hardness is not 

significantly affected by thermal treatment, except for the last layers where thermal cycles 

influence hardness. Increasing the welding machine's current does not alter the tensile strength in 

any direction. In the case of steel, cold metal transfer (CMT) outperforms gas metal arc welding 

(GMAW) by exhibiting greater hardness and higher ultimate tensile strength [28]. Moreover, a 

combination of hot-formed parts and WAAM deposited parts from the titanium alloy Ti-6Al-4V 

yields properties identical to those produced by standard forging processes [30]. 

2.6 Tool-Path Generation Strategies for Additive Manufacturing 

AM technology provides an efficient method for generating complex structures layer by layer. 

To achieve high deposition rates and cost efficiency in WAAM, the tool path plays a vital role in 

determining the weld bead characteristics, which in turn impacts the quality of the deposited 

surface, mechanical properties, and microstructure of the object [35–37]. The path plan is 

specifically defined as the movement of the tungsten relative to the base plate. Figure 2-2 illustrates 

six different types of path plans. 

The line or raster infilling method covers regions with parallel beads, which can deviate by 

90, 60, or 45 degrees relative to the base material. This is the most common 3D printing method 

due to its capacity for filling arbitrary models with simple path planning codes. However, its 

disadvantage is low accuracy at the edges because the deposition paths are inconsistent at the edges 

and do not align well with the nozzle movement [35,38]. 



26 

 

The zigzag pattern is an improvement over the raster pattern, linking the lines along the x- 

and y-axis to create a continuous line [38,39]. This consistency results in better displacement of 

the robotic arm, reduces the stop-and-start syntax, and minimizes the likelihood of creating 

irregularities at each start point [38,40]. However, it still suffers from a lack of accuracy along the 

border lines, and there remains a possibility of overfilling at turning points [35,38,41]. 

To address border accuracy, the contour path plan is applied. It prevents overfilling and 

enhances outline accuracy, making it ideal for shapes with complex boundaries [35,38]. However, 

the gaps between beads and inefficient movement make the contour pattern less suitable for 

WAAM applications, which require continuous paths [35,41]. 

A spiral tool path, commonly used in NC machining, is beneficial for removing material in 

2D geometries. Although applicable to AM, it is limited to fractal space-filling curves like Hilbert 

curves, which cover areas without intersecting themselves. This tool path reduces shrinkage and 

distortion but is not ideal for WAAM due to its uneven directional paths [42]. 

By combining zigzag and contour patterns, the benefits of both can be leveraged to enhance 

the quality of the deposited part. For example, inner paths can be deposited using the zigzag 

method, which promotes better joint formation between weld beads, increases production speed, 

and improves utility. Meanwhile, outer border lines can be produced using the contour pattern for 

its inherent accuracy, resulting in better surface quality. This hybrid pattern effectively meets 

WAAM production requirements by optimizing the number of passes, simplifying the process, 

and increasing speed [37]. 

WAAM, with its high deposition rate, is particularly suited for large-scale objects, making it 

ideal for producing components with rib-web structures in the aerospace industry. These 

lightweight structures, typically produced by machining methods, often result in a high buy-to-fly 

ratio and significant material waste [43]. Rib structures, used in heat transfer equipment, chemical 

processes, and synthetic processes, are traditionally forged, incurring high tool costs due to the 

need for specialized dies [44,45]. The advantages of the WAAM process include reducing material 

waste, tool investment, and production time, making it a viable alternative to conventional 

production methods [35]. 
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Constant path planning reduces both the number of code lines and the actual travel distance 

of the tool, thereby improving surface quality. Hilbert path planning algorithms unlock patterns 

that can achieve constant deposition but may increase heat accumulation and distortion of the base 

material and the object itself [35]. Another approach involves breaking down 2D geometries into 

monotone polygons, producing closed zigzag patterns for each polygon, and then merging them 

into a single continuous path. 

 

 

Figure 2-2 Six filling patterns: (a) line; (b) zigzag; (c) contour-parallel; (d) spiral [29,30]; (e) Fermat 

spiral [31]; (f) Hilbert [32]. The red line represents the boundary of [46]. 

 

2.7 K-Means Algorithm 

The rapid advancements in techniques for scientific data collection in the era of big data have 

led to the systematic accumulation of vast quantities of data across numerous data-capturing sites. 
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There has been exponential growth in the development of various data analysis methodologies, 

among which the K-means algorithm stands out as one of the most popular and straightforward 

clustering techniques [47]. The widespread applicability of the K-means algorithm across 

numerous clustering application domains can be attributed to its straightforward implementation 

and low computational complexity. However, despite its advantages, the K-means algorithm faces 

several challenges that can negatively impact its clustering performance. 

2.7.1   Challenges of the K-Means Algorithm 

One of the primary challenges of the K-means algorithm is the need for users to specify the 

number of clusters in a given dataset a priori during the initialization process. This requirement 

can be particularly problematic for large datasets where determining the optimal number of clusters 

to start with is complex and challenging. Additionally, the initial cluster centers in the K-means 

algorithm are selected randomly, which makes the algorithm’s performance highly sensitive to this 

initial selection. Random initialization frequently leads to limited local convergence because of 

the algorithm's inherently greedy behavior. 

Moreover, the K-means algorithm uses the Euclidean distance metric to determine the 

similarity between data objects. While this is effective for spherical clusters, it limits the 

algorithm's robustness in detecting clusters of other shapes and poses significant challenges in 

identifying overlapping clusters. These limitations have prompted numerous research efforts 

aimed at improving the performance and robustness of the K-means algorithm. 

2.7.2   Enhancements and Variants of K-Means 

Over the years, researchers have proposed various enhancements and variants to address the 

limitations of the K-means algorithm. These efforts are aimed at improving the algorithm’s 

initialization process, enhancing its robustness to different cluster shapes, and increasing its ability 

to detect overlapping clusters. Some of the notable enhancements include methods for better 

initialization of cluster centers, alternative distance metrics, and hybrid approaches that combine 

K-means with other clustering techniques. 

2.7.3   Overview and Taxonomy of K-Means and Its Variants 

The current work provides a comprehensive overview and taxonomy of the K-means 

clustering algorithm and its variants. It covers the historical development of the K-means 
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algorithm, current trends in its application and development, open issues and challenges faced by 

the algorithm, and recommended future research perspectives. 

2.7.4   Historical Development and Current Trends 

The K-means algorithm has a long history, dating back to its initial development in the 1950s. 

Since then, it has undergone numerous modifications and improvements to enhance its 

performance and applicability. Current trends in K-means research focus on addressing its 

limitations through various innovative approaches, including advanced initialization methods, the 

incorporation of different distance metrics, and the integration of K-means with other clustering 

techniques. 

2.7.5   Open Issues and Challenges 

Despite the numerous enhancements, several open issues and challenges remain in the 

application of the K-means algorithm. These include the need for a priori specification of the 

number of clusters, the algorithm’s sensitivity to initial cluster centers, and its limitations in 

detecting clusters of non-spherical shapes and overlapping clusters. Addressing these challenges 

requires ongoing research and development efforts. 

2.7.6   Recommended Future Research Perspectives 

Future research on the K-means algorithm should focus on developing more robust 

initialization methods, exploring alternative distance metrics, and designing hybrid clustering 

approaches that can address the algorithm’s current limitations. Additionally, there is a need for 

more research on methods for determining the optimal number of clusters in large datasets and 

improving the algorithm’s scalability. 

2.8 Comparative Analysis of Existing WAAM Systems 

Adaptive correction strategies have been explored through various methods and concepts. 

This section outlines recent advancements in the field and identifies existing research gaps that 

this thesis aims to address. Yuan et al. [48] utilized offline robot programming and a pre-

determined algorithm for collision-free path planning; however, the absence of real-time control 

presents a key research gap. Incorporating a 3D camera for closed-loop control could dynamically 

adjust the deposition process, enabling real-time monitoring and correction. Integrating a second 
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robot for machining and automating mesh analysis for clustering are forward-thinking 

enhancements that could add significant value to the strategy proposed by Yuan et al. [48], which 

primarily focused on layer planning and collision avoidance.  

In a study conducted by the Reisch research group at the Technical University of Munich [49], 

a post-process was developed utilizing a multivariate sensor framework to gather data on gas flow, 

voltage, current, acoustics, and thermal imaging. While this approach offers significant 

contributions to the field, it lacks dynamic, real-time layer adjustments during deposition. 

Additionally, the research does not adequately address material stability or clamping methods. The 

primary gap to be addressed is the development of a real-time adaptive system, as opposed to a 

pre-planned multivariate sensor framework and fixed path planning. Although the authors 

incorporate thermal imaging into their monitoring system, real-time visual monitoring of the 

nozzle tip remains absent. This could be improved by integrating a transparent shield to facilitate 

continuous observation. 

Coutinho et al. [50] also focused on a post-process technique using the Robot Operating 

System (ROS), where process variables such as wire feed, voltage, current, and travel speed are 

monitored. While effective, this method relies on predefined trajectories and sensor data, limiting 

its adaptability to irregularities that require real-time vision systems. The controller system 

employed by the authors primarily depended on joint position and velocity adjustments, which, 

although allowing for online trajectory corrections, does not enable real-time detection and 

correction of surface imperfections. Such capabilities remain unfeasible with the current controller 

setup. 

Dharmawan et al. [51] implemented a reinforcement learning framework where the model 

iteratively learned to predict and correct surface height errors during the process. This approach 

addresses the challenges of Multi-Layer Multi-Bead (MLMB) deposition by offering a solution 

for correcting geometric errors between layers. While the strategy proved effective, the 

optimization process is time-consuming due to the required training period and iterative learning 

nature of the model. Additionally, suboptimal performance may occur during the early layers as 

the model adapts to making accurate adjustments. The method also heavily relies on the initial 

setup and multiple iterations to become fully operational. Integrating a real-time vision system 
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with a 3D Cognex camera could enable immediate error correction, offering a more efficient and 

responsive solution to process deviations as they arise. 

In another study on online control, Lizarralde et al. [52] focused on a coordinated motion 

control approach using a positioning table to align the torch and surface along a pre-planned 

trajectory. While this system offers room for improvement in terms of real-time adaptability and 

the potential for multi-robot coordination, their process relied on task-priority kinematic control to 

ensure adherence to pre-planned trajectories, which notably increased stability. However, the 

system still lacks a real-time closed-loop control to enable dynamic performance. Additionally, 

clamping and stability were not parameters addressed in their research 

2.9 Summary 

This chapter presents a comprehensive literature review on main topics related to this thesis, 

including AM, vision systems, and online robot path planning. It investigates the advantages and 

challenges of AM methods such as PBF and WAAM, emphasizing their potential in producing 

complex, high-integrity structures. The chapter also discusses advanced 3D scanning technologies 

and real-time control strategies, highlighting their critical role in enhancing precision and 

efficiency in AM processes. The potential research work in this thesis project is pointed out. 
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Chapter 3 

 

3 Material and methods 

3.1 Introduction 

In this Chapter, different parts of the hardware and software of the setup and operation are 

discussed with the aim of providing a full methodological picture for online control of process 

with the use of 3D scanner. First, the parameters of welding are optimized, then the offline 

programming of the robot is developed. Consequently, the best method of path planning is 

determined. Finally, the robot is transformed to be operational one by online control system. 

Thanks to the implemented vision system, the path plan of the robot is modified autonomously 

and online without any interruptions in the process.  

3.2 Equipment 

3.2.1 Welding machine 

The power source of welding machine used in this study is Nertamatic plus machine (Figure 

3-1), Air Liquide, Montreal, Canada. The controllable and adjustable parameters of welding 

machine are: current decrement time [s], wire retraction time [s],  post-gas time [s], torch pre-gas 
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[s], wire feed rate [cm/min], current keep time [s], wire stop time [s], wire start time [s], current 

increment time [s], time of wire slope [s], current [A], reverse pre-gas time [s] prewelding time 

[s], and prewelding current [A]. Prior to parameter adjustment, a preliminary step existed for 

assigning current regime (AC, DC, or pulse), programming # to providing interface with welding 

robot, and finally the command for I/O of wire feed.  

The welding gun that was used in this study was TOP-TIG device, Montreal, Canada located 

at National Research Council, Montreal, Canada. The head of TOP-TIG gun is mounted with two 

narrow pipes providing coolant with a groove for wire feeding and a tungsten core positioned 

perpendicular to the inert cylinder of the gun in center. As illustrated in   Figure 3-2, a black pipe 

is also connected to the gun for introducing the shielding gas to concentrate the heat and to prevent 

the oxidation and contamination taking place through welding pool. The function of core is to 

provide potential difference between the tip and surface and consequent heat generation. Such heat 

would be used to melt the wire.  In addition, the wire feeds at a 45° angle corresponding to core.  

It is noteworthy to mention that wire can be fed in a wide range of materials selection (e.g., Al. Ti. 

Stainless steel etc.) which will be fed from a spool (Figure 3-3).    

 

 

Figure 3-1 Nertamatic plus machine used for welding.  
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Figure 3-2 TOP-TIG gun equipped with two pipes for coolant. 

 

 

Figure 3-3 Wire spool connected to gun and Nertamatic plus machine. 
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3.2.2 Robot 

The utilized robot in this study was IRB 4600-45/2.05 (ABB, Västerås, Sweden) and the 

specifications were six-degree of freedom (DOF) plus two more degree of freedom provided from 

robotic table (IRBP A-500, ABB, Västerås, Sweden), capable of carrying 45 kg load, short cycle 

time, and ultra-wide working range. Figure 3-4 displays the working range of the robot as well as 

its singularity. The extreme positions of the robot arm are specified at the wrist center. 

The calibration of robots was carried out by synchronization marks and synchronization 

position for the axes (Figure 3-5). Th robotic table (IRBP A-500, ABB, Västerås, Sweden), 

provides two degrees of freedom through tilting around the x axis and rotation around the z axis 

(Figure 3-6). In addition, the controller that used for the robot was IRC5, ABB, Västerås, Sweden. 

The robot is controlled by RobotStudio software with programming language of RAPID 

programming stand on C sharp coding.  

 

Figure 3-4 Working range floor mounted robot (adopted from 

https://search.abb.com/library/Download.aspx?DocumentID=3HAC040585-

001&LanguageCode=en&DocumentPartId=&Action=Launch).  

https://search.abb.com/library/Download.aspx?DocumentID=3HAC040585-001&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3HAC040585-001&LanguageCode=en&DocumentPartId=&Action=Launch
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Figure 3-5 Illustration of calibration synchronization method (adopted from 

https://search.abb.com/library/Download.aspx?DocumentID=3HAC040585-

001&LanguageCode=en&DocumentPartId=&Action=Launch)  

                                                             

Figure 3-6 ABB robotic table, IRBP A-500, ABB, Västerås, Sweden (adopted from 

https://search.abb.com/library/Download.aspx?DocumentID=ROB10080EN_R3&LanguageCode=en&D

ocumentPartId=&Action=Launch).  

 

https://search.abb.com/library/Download.aspx?DocumentID=3HAC040585-001&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=3HAC040585-001&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=ROB10080EN_R3&LanguageCode=en&DocumentPartId=&Action=Launch
https://search.abb.com/library/Download.aspx?DocumentID=ROB10080EN_R3&LanguageCode=en&DocumentPartId=&Action=Launch
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3.2.3 Human Machine Interface (HMI) 

Synchronization of welding machine and robot requires an interface called Human Machine 

Interface (HMI). The advantages of HMI can be summarized as i) controlling robot, welding 

machine and dust collector and ii) diagnosing the fault and errors taken place in the control loop. 

HMI permits to perform at a preliminary run known as dry run in which the motion of robot could 

be examined with disabling the welding deposition commands. 

As described in Section 3.2.2, each program would be assigned to a number and by calling 

these numbers via HMI, we can run the welding gun and robot with the predefined setting. It can 

turn on and off the dust collector which served as collecting any toxic gaseous effluents and smoke 

producing during welding (Figure 3-7). 

 It is noteworthy to mentioning that the robot is placed in a cell which is divided into two 

sections and these two sections can collaborate with each other. Therefore, the HMI controls both 

sections of the cell and the rearm come into play once we plan to start a process (Figure 3-8) 

 

Figure 3-7 The photo of HMI screen. 
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Figure 3-8 The photo of rearming the cell in HMI. 

This section of HMI (rearming) checks the doors (open/close) and the door remains open 

under collaboration mode of two sections of the cell. On the other hand, in the mode singular run 

of a section, the door is maintained closed for safety purposes. The state of robot motors and I/O 

signals would be checked by this module as well. If there is an error, it permits the user to check 

the details of the signals.  

3.2.4 Vision system 

A 3D camera scanner was used as an area scanner in this study (3D-A5030, Cognex, Natick, 

Massachusetts, USA) and the technology of such camera is 3D light burst that enables the user to 

capture the photos rapidly (maximum 1000 ms). This technology creates a blue light pattern for 

scanning the object and providing the output of full field of view (FOV) 3D point cloud image 

with more than 1.5 million data points.  

This camera is comprised of a light projection and two GigE vision cameras. A software, 

called A3D, would be used for adjusting variables of image capture. Another software that would 

be used for image and mesh processing is VisionPro. The format of output data that was used in 
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this research was 3D cloud of point in ASCI format. The working range specifications of the vision 

system is illustrated in Figure 3-9 and the inert structure can be found in Figure 3-10. 

 

Figure 3-9 Working range and specification of the camera (revisualized from instructions of the Cognex 

device, Cognex Copr.). 

 

Figure 3-10 Insert structure of vision system.  (revisualized from instructions of the Cognex device, 

Cognex Copr.). 
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3.3 Programming 

3.3.1 Robot programming 

Robot programming is included as two parts which are: i) offline programming that carried 

out by RobotStudio 2020, and ii) online control of the system that programmed via PC SDK, which 

allows end users add their own interface to the controller of the robot to develop custom 

applications.  

 In RobotStudio (offline programming), the codes are divided to three sections of i) control of 

robot motions, ii) control of welding gun, and iii) communication to HMI. One of the methods 

used for deposition of a part is the predefined “teach” method. In such a method, two points for 

the start and end point of a line would be defined for a robot and the line generated by these points 

are extended in y axis and z axis by serval sublayers (first in y-axis then z-axis for the next layer).  

Another method to generate a path plan is to use machining in RoboDK. The robot and utilized 

table are al inbuilt simulated model in RoboDK and it is only required to call these models. 

However, the welding gun requires customization, and it should be designed in an individual CAD 

software (e.g. Catia) then it would be imported to RoboDK software. The next step is to initiate 

path plan by importing the CAD file in the format of .SDL on a proposed zone of deposition placed 

on the table. The software of RoboDK can detect singularity of robot and prevent them from taking 

place. In addition, the predefined barrier can be avoided upon activation of collision detector 

(codes can be found in Appendix 1).  

As mentioned in Chapter 1, it is not feasible to correct dimensions and path planning in the 

course of  the process in offline control. To make such correction possible in real time, it is required 

to implement the Application Programming Interface (API). APIs act like telephone lines and 

SDKs are like houses which permit to connect with ABB controller in order to control the robot in 

the soft real-time application. To set up the PC to robot controller, we can use two techniques: i) 

ethernet network and ii) direct connection to controller service port. The latter can be assigned by 

fixed or automatic IP. In addition, the PC SDK provides APIs for developing PC applications 

based on C# and all codes were developed by Visual Studio 2019 Software.  

Equally important, it is mandatory to control the controller resources by a single client at a 

time in order to modify the RAPID data The two means of access are read-only (default) or write 
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access and Mastership is essentially used to have the leverage of write access. To secure the write 

access and Mastership simultaneously, it is crucial to run in automatic mode to maintain first come, 

first served priority without additional permission requirements. The reason for this is the priority 

for write access is given to flexPendant in the manual mode which is not favorable due to the 

consistent need to give permission for the access. Figure 3-11  displays a part of Controller 

Application Programming Interface (CAPI) object model as a part controller API. 

 

Figure 3-11 Components of CAPI object model (adopted from help center of ABB robot: 

https://developercenter.robotstudio.com/api/robotstudio/articles/How-To/Add-Ins/Creating-a-

RobotStudio-Add-In.html). 

 

Communication between clients and codes can be built by a GUI. The user interface of the 

application is illustrated in Figure 3-12. 

https://developercenter.robotstudio.com/api/robotstudio/articles/How-To/Add-Ins/Creating-a-RobotStudio-Add-In.html
https://developercenter.robotstudio.com/api/robotstudio/articles/How-To/Add-Ins/Creating-a-RobotStudio-Add-In.html
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Figure 3-12 The user interface of the application. 

The first step for programming is to add the required ABB libraries with the extension of .dll 

to the reference section of the C# programming. The required libraries are all provided in Appendix 

1. The addition of these libraries enables us to search the network in order to find all available 

controllers, as well as operate the commands. It is essential to consider whether the selected 

controller is virtual or real, though the desirable one for programming is the real controller. 

Creation of an object per each component such as NetworkScanner, controller, and the structure 

of ABB robot library is mandatory due to the fact that C# programming is an object-oriented 

language.  

To establish a link from a PC SDK software to the controller, it is required to utilize the 

Netscan feature within the Discovery domain. It is essential to generate a NetworkScanner entity 

and execute a scan command. 

For the PC SDK to connect, the user either needs RobotStudio or Robot Communications 

Runtime set up on the PC that houses the PC SDK program. If RobotStudio is not present, one 

can set up Robot Communications Runtime from 

<PCSDK>\Redistributable\RobotCommunicationRuntime. 
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To determine available controllers in the network, a user can employ the NetworkScanner's 

functions like Scan, Find, GetControllers, and GetRemoteControllers. Utilizing a Controller object 

allows the user to tap into various sectors of the robot controller, such as I/O signals, RAPID, the 

file system, and log notifications. 

To access a robot controller, the PC SDK software needs to sign in to the controller first. The 

Logon method's UserInfo parameter provides a DefaultUser attribute that can be utilized. Every 

robot system is typically set up with this user by default. 

To obtain writing permissions for certain controller areas, the application must seek 

Mastership. The Rapid domain, encompassing tasks, programs, modules, routines, and variables 

in the robot system, is an example. The Configuration domain is another such area. 

It is crucial to relinquish Mastership following a modification action. One method to achieve 

this is by means of the 'using' statement, leading to the Mastership object's automatic disposal after 

the block concludes. Alternatively, the Mastership can be released within a Finally block, which 

runs post the Try and Catch segments. 

To interact with RAPID data, the user first needs to establish a RapidData object, using the 

data's declaration path in the controller as an argument. If one is unsure of this path, the 

SearchRapidSymbol function can be employed to find the RAPID data. We have two models to 

access the RAPID data which are Direct Access and Hierarchical Access. 

Direct Access is more memory-efficient and quicker, making it the preferred choice if there 

is no subsequent need for task and module objects. For instance, to craft a RapidData object 

referring to the "reg1" instance within the USER module, one would use direct access. 

Hierarchical Access: Should one require the task and module objects, a hierarchical approach 

might be more effective. The GetRapidData function is available in the Rapid, Task, and Module 

classes. 

To implement the path plan on the selected robot, a user clicks on load Robot file in the layer, 

Tab. Consequently, a set of functions would be run and the mod file generated from RoboDK 

would be called and modified. As a result, a modified file labelled “.mod” would be sent directly 
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to the robot controller which has the required command for robot motions and controlling robot 

torch. The next step is to start the robot by clicking on Start Robot button. 

3.3.2 Path analysis 

Upon pressing the Start button (See Figure 3-12) upon establishing connection, the first layer 

would be deposited based on the first robot path planning assigned to the .stl file of the object. 

Consequently, the layer tab enables the user to adjust the table height, base height, and the number 

of the layer (Figure 3-13). Under the layer tab and the section of ‘Select a Task’, the selection of 

Load Robot File is feasible and would be applicable for the case of running the robot path file 

which is generated based on the .stl. The other available selection under this section is ‘Load 

Correction File’   and enables the user to run a file thar can carry out the correction of the path 

plan based on the previous layer analysis. The reason that it is possible to change the layer# is the 

fact that at some instances there is no need to rectify and correct the path plan and the next layer 

can directly proceed with a redo the previous layer. The intelligence of this program is established 

in a way that the robot could select the desired layer based on its number.  

 

Figure 3-13 The layer of robot connection. 
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3.3.3    Mesh analysis 

After the deposition of one layer, the robot should wait for the next command for the next 

layer. During this wait time, the user captures the picture of the surface of the material using the 

Cognex camera. With the selection of ‘Read Congex File’ under ‘Analyze’ Tab, the program 

would display the cavities and collisions in the windows illustrated in Error! Reference source not f

ound.. The experimental results aid in the approximation of the range of height for detection of 

cavities and collisions. 

 

Figure 3-14  The interface for mesh analysis of each layer. 
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3.4 Summary 

Chapter 3 describes the materials and methods utilized in this research, centering on the 

integration of hardware and software components for achieving online control with a 3D scanner. 

The chapter outlines the optimization of welding parameters, development of offline robot 

programming, and the transition to online control, ensuring continuous and precise operations. It 

also provides a comprehensive overview of the equipment used, including the welding machine, 

robot, and vision system, all of which are synchronized through a developed interface to facilitate 

seamless and autonomous path adjustments during the process. 
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Chapter 4 

 

4 Developed Methodologies 

4.1 Introduction 

In this chapter, the aim is to present the developed adaptive correction strategy in WAAM 

process. The correlation between various process parameters with the cavities and irregularities 

are fully investigated. On-line identification of cavities and irregularities using a vision system is 

developed and new paths are generated based on the previous layer's topography data.  The results 

of the microstructure tests and the analysis of the programming are presented. Additionally, the 

effectiveness of setting small beads in terms of their penetration into the base material is validated 

and their role in the fabrication of an object is discussed. 

4.2 Adaptive Correction Strategy 

4.2.1 Optimization of Welding Device Setting 

One of the fundamental steps to ensure that the WAAM process yields superior quality is to 

optimize the welding device settings. Each bead size (small, medium, large) requires specific and 

distinct settings to maintain consistency throughout the deposition process. For example, small 



48 

 

beads need more precise control to prevent defects such as incomplete fusion and porosity. This 

control involves adjusting the wire feed speed and welding current to appropriate settings to avoid 

the aforementioned defects. In contrast, medium and large beads require optimized travel speeds 

and relatively higher energy inputs to ensure satisfactory bonding between layers. Achieving 

consistency and repeatability in the manufacturing process depends on identifying and 

documenting the appropriate settings. Such actions ensure that the end products meet the desired 

mechanical and structural properties. 

4.2.2 Post-processing 

Another crucial step is post-processing, which is as important as the deposition process itself. 

Converting CAD models into G-codes and data is a multi-stage process that directly impacts the 

quality of the end products. Open-source 3D printer software provides the opportunity to optimize 

and customize the post-processing stages required for the project. For instance, implementing a 

model using a line-directional path with a 90-degree angle and a 0.5 mm overlap results in a smooth 

and uniform surface finish. This approach enhances the aesthetic, dimensional quality, and surface 

integrity of the final product.  

Additionally, the selection of Cura software is a pivotal stage in refining the post-processing 

phase. This software enables the definition and control of several parameters throughout the 

manufacturing process, offering greater flexibility. Equally important, it allows fine-tuning of 

parameters such as deposition speed, cooling rates, and layer thickness, as well as customization 

of post-processing steps. The structured approach of Cura software ensures meticulous planning 

and execution of each stage of post-processing, leading to superior quality finished products that 

meet industry standards. In this research, we used Cura software as a slicer to generate G-code for 

the robot path. Cura demonstrated superior performance compared to other slicers, such as Slic3R, 

Simplify3D, and Tinkercad. 

4.2.3 Obtaining precise 3D point clouds 

Precise and accurate dimensional data are criteria to guarantee that the manufactured parts 

meet design specifications. Obtaining detailed 3D point clouds is a technology that provides 

measurements of the length, width, and depth, which are crucial for quality verification and 

control. The tool used to obtain these 3D point clouds is the Cognex A Series 3D Camera, thanks 

to its superior ability to generate them. 3D scanners can obtain high-resolution data, aiding in the 
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detection of any deviations from target dimensions and permitting timely corrections. This level 

of accuracy is vital in industries like automotive and aerospace, where precision is paramount. 

The next important stage is calibrating the 3D camera with the ABB robot, an essential step 

to provide seamless integration between the sensing and deposition systems. Appropriate 

calibration ensures that the robot accurately interprets the 3D camera data, leading to precise path 

planning and material deposition. The desired layer-by-layer build is a result of this successful 

integration. Successful calibration underscores the significance of compatibility between different 

components of the WAAM system, as any misalignment or error in calibration can compromise 

structural integrity and result in defects. 

4.2.4 Calibration 

To successfully guide a robot using a vision system, calibration plays a crucial role. This is 

especially important in welding processes, where the required accuracy is on the order of microns, 

as compared to the pick-and-place industries. Calibration ensures that the working spaces of the 

camera and robot are aligned by performing transformations and rotations on the vision system's 

data. The two most common methods of calibration are hand-eye and stereo vision systems. 

4.2.4.1   Traditional Hand-Eye Calibration Methods 

4.2.4.1.1   Classic Approach: Homogeneous Transformation Equation 

The primary method for hand-eye calculations involves solving the following homogeneous 

equation [53]: 

AX=XB (4.1) 

 

where: 

X = Represent the unknown hand-eye transformation matrix 

A = Represents the robot's forward kinematics 

B = Represents the camera's extrinsic parameters.  
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After applying these formulas, we obtain a set of linear equations resulting from the 

decoupling of rotation and translation. Instabilities may arise due to the interaction of translation 

and rotation matrices during multiplication [54,55]. 

4.2.4.1.2    Low-Cost Hand-Eye Calibration Method 

One of the advantages of the hand-eye calibration method is its low cost. The aim of this 

method is to align the frames of the object and camera with the robot frame (the base coordinate 

frame). This process involves calculating the robot-world transformation using a point laser on the 

robot end-effector, followed by determining the hand-eye transformation matrix [54]. 

For calibration, the following steps must be followed to calibrate each piece of equipment 

and derive the required parameters: 

1. Camera Calibration: The intrinsic and extrinsic parameters of the camera are obtained 

using the Caltech Matlab toolbox. A calibration object with a grid pattern is used for 

this purpose.  

2. Coordinate System Convention: The right-hand rule is used to define the coordinate 

systems for the world, camera, robot wrist flange, and robot base. This step ensures 

consistency in the convention, and transformation matrices between the frames are 

determined. 

3.   Robot-World Calibration: The robot-world transformation matrix is derived by 

moving the robot to three touchpoints on the calibration object. 

4.  Hand-Eye Calibration: This step involves using the robot-world transformation matrix 

and images captured by placing the robot in different positions. The rotational and 

translational components are averaged to obtain the final transformation matrix [31,32]. 

The accuracy of this method is 1mm. 

4.2.4.1.3    Simultaneous Calibration of Stereo Vision System 

The proposed method for the simultaneous calibration of a stereo vision system begins with 

the concurrent calibration of both the vision system and the welding robot. This method is ideal 

for industrial applications due to its high accuracy. 

The methodology for this approach is as follows: 
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1. Camera Calibration: The intrinsic and extrinsic parameters of both cameras are 

obtained using the same Matlab toolbox. Calibration is performed using a 

patterned platform for both cameras. 

2. Stereo Calibration: The transformation between the left and right cameras, 

known as stereo calibration, is calculated using 3D triangulation of points in 

space. To execute the calculations in 3D, the width, length, and height of the 

points in the world frame are determined based on pixel coordinates from the 

stereo camera images. 

3. Radial Distortion Correction: By removing radial distortion from the pixel values, 

the accuracy is significantly improved, enhancing the precision of the 3D location 

data. 

The remaining steps are the same as those used in the calibration with a single camera.  

4.2.5 Path Correction Programming 

The final and most crucial stage is developing path correction software using ABB robot’s 

APIs, which represents a significant advancement in adaptive manufacturing. This path correction 

software allows for real-time adjustments to the path plan, addressing any discrepancies that may 

occur during the deposition process. By enabling on-the-fly corrections, the software can ensure 

that each layer is accurately deposited, enhancing the overall quality and reliability of the 

manufactured products. This capability offers a new perspective and tool on producing complex 

geometries and large-scale components, particularly where even minor imperfections and 

deviations can have a substantial impact on the final product. 

To assess the overlap between the beads, an experiment was designed to understand how this 

overlap affects the integrity of the deposited part and to what extent optimal conditions can be 

found to meet desirable dimensions and integration. In this experiment, the deposition of five, six, 

and seven beads was assessed (Figure 4-1). The characterization metrics were determined as 

follows: top bead, penetration, top-bottom, cavity, bead width, max top bead, bead spacing, max 

penetration, and welding area width. The definitions of these key metrics are presented below: 

i) Top-Bottom: Measurement of the total height from the top of the top bead to the 

bottom of the bottom bead.  

ii) Cavity: Size of any cavities present within the deposition. 
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iii) Bead Width: Measurement of the width of individual beads deposited. 

iv) Max Top Bead: Maximum height of the top bead.  

v) Bead Spacing: Distance between adjacent beads.  

vi) Max Penetration: Maximum depth of penetration.  

vii) Welding Area Width: Width of the welding area. 

In this chapter, the results of microstructure tests on the deposited material are presented, 

highlighting the impact of bead size on penetration into the base material and its role in the 

fabrication process. These findings were crucial in optimizing the welding process parameters for 

our programming. 

As illustrated in Figure 4-1, the bead width for five beads ranges from 4.4 to 5.8 mm. This 

variability in penetration and bead height suggests potential inconsistencies in the deposition 

process. Additionally, the presence of cavities indicates the areas with poor material fusion. 

In contrast, the deposition of six beads shows more consistency with a slightly lower 

average bead width. The assessments of penetration and top bead height demonstrate better 

control throughout the deposition process and significantly fewer cavities. 

For the deposition of seven beads, while the bead width and penetration variability increase, 

the presence of cavities is noticeably reduced. This suggests that using a higher number of beads 

may effectively minimize void formation. 

To summarize, there is a trade-off with increased variability in bead width and penetration 

when using seven beads. Optimizing the deposition pattern and the number of beads is crucial for 

achieving consistent results and superior quality. 
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Figure 4-1 Deposition process, focusing on the number of beads deposited. Left: illustration of six-bead 

multiline multi-layer deposition. Right: comparison of number of beads.  

The effect of different slicers was studied for varying numbers of beads (Table 4-1), using 

UtilMaker Cura and Simplify 3D software. For five beads, it was observed that the sliced width 

and the deposited width increased when using the Cura slicer, indicating better integration for this 

study. The number of preheat passes refers to the number of times the base material is heated 

without feeding wire into the melting pool. Additionally, the temperature values in Tables 4-1 to 

4-5 represent the temperature of the base material at the start of the object's deposition. 
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Table 4-1 Effect of slicer on bead width and penetration. 

Slicer 
Number of 

Beads 

One bead 

width 

(mm) 

Cad Sample 

Width(mm) 

Sliced 

Width 

(mm) 

Deposited 

Width (mm) 

Number of 

Preheat 

Temp 

(C°) 

Simplify3D 5 5-6 28 15.36 22.5 2 200 

Cura 5 5-6 28 20 25-27 2 200 

Cura 6 5-6 28 20 26-27 2 240 

Cura 7 5-6 28 21 27-28 2 300 

 

Figures 4-2 and 4-3 highlight the importance of consistency in bead width for achieving 

uniform material deposition. The quality of layer bonding is indicated by the height of the top bead 

and the depth of penetration. In the case of five beads, cavities are present, suggesting that this 

configuration may not effectively fill all voids. Figure 4-3, which illustrates the depth and width 

of penetration, shows that in some areas, the material may not have fully bonded with the 

neighboring layers. Additionally, the characteristics of each bead concerning key metrics for the 

five-bead configuration are presented in Table 4-3. 

 

 Figure 4-2 Microscopic image of five-bead microstructure. Beads can be counted from left to 

right in the bottom figure. Refer to Table 4-3 for dimensions. 
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Figure 4-3 Depth and width of penetration of five-bead microstructure (please see Table 4-3 for the 

dimensions). 

 

Figures 4-4 and 4-5 prove the findings presented in Figure 4-1 regarding the six-bead deposition 

pattern. These figures provide both quantitative (Table 4-4) and qualitative evidence that the top 

bead height and penetration are significantly improved compared to the five-bead microstructure. 

As shown in Table 4-2, the average bead width decreased from 5.04 mm for the five-bead structure 

to 4.42 mm for the six-bead structure. This improvement is accompanied by a substantial 

enhancement in the bonding between layers, leading to a more cohesive structure. 

Table 4-2 Comparison of key parameters across bead configurations. 

Bead 

Configuration 

Avg 

Bead 

Width 

(mm) 

Max 

Bead 

Width 

(mm) 

Min 

Bead 

Width 

(mm) 

Std Dev 

Bead 

Width 

(mm) 

Average 

Penetra

tion 

(mm) 

Max 

Penetration 

(mm) 

Min 

Penetration 

(mm) 

Std Dev 

Penetration 

(mm) 

5 Beads 5.04 5.85 4.44 0.46 1.39 1.52 1.28 0.09 

6 Beads 4.42 6.75 3.70 1.07 1.00 1.43 0.67 0.10 

7 Beads 3.72 6.26 3.20 1.01 1.17 1.70 0.93 0.08 

 

The analysis reveals a significant decrease in the presence of cavities, which indicates that the six-

bead deposition pattern is more effective in achieving a uniform fill. This pattern ensures that the 

material is more evenly distributed and better bonded, reducing the likelihood of weak points 
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within the structure. The six-bead approach demonstrates a superior balance between deposition 

efficiency and quality, highlighting its effectiveness in producing a more robust and reliable 

material deposition. 

These results suggest that the six-bead pattern is optimal for achieving high-quality, consistent 

results, making it a preferable choice over the five-bead configuration. The improved bonding and 

reduced cavities are crucial for applications requiring strong, durable materials, underscoring the 

advantages of the six-bead deposition pattern in practical use cases. 

 

Table 4-3 The characteristics of five-bead microstructure for each bead  

5 

beads 

Bead 

width 

(mm) 

Top 

Bead 

(mm) 

Penetration 

(mm) 

Top-

Bottom 

(mm) 

Cavity 

(mm) 

Max 

Top 

Bead 

(mm) 

Max 

Penetration 

(mm) 

Welding 

Area 

Width 

(mm) 

Bead 

Spacing 

(mm) 

Bead 

1 
5.85 0.89 1.28 2.18 0.22 0.93 1.32 

25.53 0.05 

Bead 

2 
4.44 0.89 1.42 2.31 0.56 0.91 1.52 

Bead 

3 
4.92 0.83 1.28 2.11 0.61 0.84 1.33 

Bead 

4 
4.88 0.90 1.49 2.39 0.61 0.90 1.50 

Bead 

5 
5.11 0.94 1.48 2.42 - 0.94 1.48 
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Figure 4-4 Microscopic image of six-bead microstructure. Beads can be counted from left to right in the 

bottom figure. Refer to Table 4-4 for dimensions. 

 

Figure 4-5 Depth and width of penetration of six-bead microstructure (please see Table 4-4 for the 

dimensions). 

Figures 4-6 and 4-7 illustrate that the seven-bead microstructure introduces increased variability 

in bead width, which can significantly affect the overall uniformity of the deposition. This 

increased variability in bead width can lead to inconsistencies in the final structure, which may 

impact its mechanical properties and performance. Additionally, the bead penetration and height 

exhibit more variability compared to the five- and six-bead configurations (see Table 4-2). This 
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inconsistency in bead penetration and height raises concerns about maintaining consistent layer 

bonding, which is crucial for the structural integrity and durability of the material. 

Despite these challenges, there are notable benefits to the seven-bead deposition pattern. The 

presence of cavities is markedly reduced, indicating improved material fusion and better filling of 

voids. This reduction in cavities suggests that the seven-bead configuration can achieve a more 

thorough and complete material deposition, potentially leading to fewer weak points and a stronger 

overall structure. This enhanced material fusion is a significant advantage, as it can improve the 

performance and longevity of the deposited material. 

The key metrics of the seven-bead deposition pattern, as detailed in Table 4-5, support these 

microscopic observations. These metrics provide quantitative evidence of the increased variability 

in bead width, penetration, and height, as well as the reduced presence of cavities. Together, these 

findings highlight both the benefits and challenges of the seven-bead configuration. While it offers 

improved material fusion and reduced cavities, the increased variability in bead dimensions 

underscores the need for careful optimization and control to ensure consistent and high-quality 

deposition. 
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Table 4-4 The characteristics of six-bead microstructure for each bead. 

6 

beads 

Bead 

width 

(mm) 

Top 

Bead 

(mm) 

Penetration 

(mm) 

Top-

Bottom 

(mm) 

Cavity 

(mm) 

Max 

Top 

Bead 

(mm) 

Max 

Penetration 

(mm) 

Welding 

Area 

Width 

(mm) 

Bead 

Spacing 

(mm) 

Bead 

1 
6.75 0.78 1.10 1.88 0.21 0.89 1.17 

26.49 0.04 

Bead 

2 
4.05 0.96 0.73 1.69 0.17 0.97 1.43 

Bead 

3 
3.70 0.97 0.95 1.92 0.27 0.97 1.45 

Bead 

4 
4.05 0.90 0.67 1.57 0.18 0.90 1.32 

Bead 

5 
3.71 1.02 1.03 2.05 0.17 1.02 1.39 

Bead 

6 
3.97 0.83 1.14 1.96 - 0.90 1.25 
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Figure 4-6 Microscopic image of the seven-bead microstructure. Beads can be counted from left to right 

in the bottom figure. Refer to Table 4-5 for dimensions 

 

 

Figure 4-7 Depth and width of penetration of seven bead microstructure (please see Table 4-5 for the 

dimensions).  
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Table 4-5 The characteristics of seven-bead microstructure for each bead. 

7 

beads 

Bead 

width 

(mm) 

Top 

Bead 

(mm) 

Penetration 

(mm) 

Top-

Bottom 

(mm) 

Cavity 

(mm) 

Max 

Top 

Bead 

(mm) 

Max 

Penetration 

(mm) 

Welding 

Area 

Width 

(mm) 

Bead 

Spacing 

(mm) 

Bead 

1 
6.26 1.09 1.26 2.35 0.19 1.16 1.60 

26.83 0.03 

Bead 

2 
3.32 0.93 0.93 1.86 0.10 0.98 1.54 

Bead 

3 
3.44 1.01 1.22 1.01 0.21 1.01 1.44 

Bead 

4 
3.49 0.97 1.183 2.15 0.07 0.99 1.52 

Bead 

5 
3.39 1.09 1.31 2.40 0.17 1.09 1.64 

Bead 

6 
3.20 0.97 1.02 1.99 0.08 0.97 1.60 

Bead 

7 
3.54 0.70 1.56 2.26 - 0.79 1.70 

 

4.3 On-Line Height Adjustment and Mesh Analysis 

In this section we discuss the steps that are necessary to take for analyzing each deposited 

layer in order to modify the next layer path plan if necessary. For this purpose, we used the API 

of RoboDK and the program was developed in C#. 
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4.3.1 Flowchart of Programming 

Flowchart of Programming 

The flowchart of the programming and its components is illustrated in Figures 4-8 to 4-10. 

Pressing the start button initiates the network search block, which begins searching for the robot 

controller. Once the controller is located and a connection is established, the uploaded task is 

executed. In the layer manager block, the number of layers to be deposited can be controlled. The 

Cognex scanner block accesses the point cloud data, and by executing the extracting points block, 

the mesh processing is managed. The cluster block identifies cavities, and this data is sent through 

the path correction block to manually modify the next layer's data. 

Convex Hull 

A convex hull is the smallest convex polygon that can enclose a set of points in a plane. If you 

imagine stretching a rubber band around a set of points, the shape that the band takes is the convex 

hull. Mathematically, it is defined as the minimal convex set that contains all the points. 

Finding the borders of a point cloud using the concept of a convex hull is a common technique 

in computational geometry. A point cloud is a set of data points in a coordinate system, typically 

representing the external surface of an object. The convex hull is used to identify the outermost 

boundary that encloses all the points in the point cloud. 

Characteristics of a Convex Hull 

1. Convexity: A shape is convex if, for any two points within the shape, the line segment 

connecting them lies entirely within the shape. The convex hull of a set of points is always convex 

by definition. 

2. Minimality: The convex hull is the smallest convex shape that can contain all the points in 

the set. No other convex shape that contains the points can have a smaller perimeter or area. 

Applications of Convex Hull 

Convex hulls are used in various fields and for numerous applications: 

1. Computer Graphics: Used for object recognition and collision detection. 

2. Geographic Information Systems (GIS): Used for finding the boundary of a geographic 

region. 
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3. Robotics: Helps in path planning and motion planning for robots. 

4. Statistics: Used in data analysis and pattern recognition. 

5. Computational Geometry: Fundamental for solving many problems related to geometry. 

Using this algorithm, we were able to draw polygons with arbitrary shapes, allowing us to remove 

extra points and noise from the display window.  



64 

 

 

Figure 4-8 Flowchart of programming 
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Figure 4-9 Zoom in flowchart of programming part 1. 
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Figure 4-10 Zoom in flowchart of programming part 2. 

We start to read the points coordinates from an .asci file and save them in two point data. The 

backup one is to be used as a reference for translating the points position after the mesh analysis 

has been completed. 

Picturewidth-Yof point clouds 

 PictureHeight-Xof point clouds 

Picture width and height refers to the visualization screen of the C# program 
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Finding the width and length of the point cloud 

Variables and Initialization 

• SumX: Sum of all x-coordinates of the points. 

• SumY: Sum of all y-coordinates of the points. 

• MinX: Minimum x-coordinate value among the points. 

• MaxX: Maximum x-coordinate value among the points. 

• MinY: Minimum y-coordinate value among the points. 

• MaxY: Maximum y-coordinate value among the points. 

• lengthX: Length of the bounding box in the x-direction. 

• lengthY: Length of the bounding box in the y-direction. 

Loop to Process Points 

The code iterates through each point in the list and updates the variables: 

1. Sum of Coordinates: 

𝑆𝑢𝑚𝑋 =∑𝑥𝑖

𝑛

𝑖=1

 (4.2) 

𝑆𝑢𝑚𝑌 =∑𝑦𝑖

𝑛

𝑖=1

 (4.3) 

 

 

 

where 𝑛 is the number of points, 𝑥𝑖 and 𝑦𝑖 are the x and y coordinates of the 𝒾-th point, 

respectively. 

2. Minimum and Maximum Coordinates: 
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Min𝑋 = min(𝑥1, 𝑥2, … , 𝑥𝑛) (4.4) 

𝑀𝑎𝑥𝑋 = max(𝑥1, 𝑥2, … , 𝑥𝑛) (4.5) 

Min𝑌 = min(𝑦1, 𝑦2, … , 𝑦𝑛) (4.6) 

𝑀𝑎𝑥𝑌 = max(𝑦1, 𝑦2, … , 𝑦𝑛) (4.7) 

 

Length Calculation 

The length of the bounding box in the x and y directions is calculated using the distance 

formula: 

1. Length in the x-direction: 

𝑙𝑒𝑛𝑔𝑡ℎ𝑋 = √(𝑀𝑎𝑥𝑋 −𝑀𝑖𝑛𝑋)2 (4.8) 

 

 

Simplifying this, since squaring and then taking the square root are inverse operations: 

𝑙𝑒𝑛𝑔𝑡ℎ𝑋 =  |𝑀𝑎𝑥𝑋 −𝑀𝑖𝑛𝑋| (4.9) 

 

 

 

2. Length in the y-direction: 

𝑙𝑒𝑛𝑔𝑡ℎ𝑌 = √(𝑀𝑎𝑥𝑌 −𝑀𝑖𝑛𝑌)2 (4.10) 

 

Similarly: 
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𝑙𝑒𝑛𝑔𝑡ℎ𝑌 =  |𝑀𝑎𝑥𝑌 −𝑀𝑖𝑛𝑌| (4.11) 

 

Transformation and Scaling of Points Based on Bounding Box Coordinates 

We have to scale and transform the positions of points within a bounding box, so that the scan 

of any objects with any sizes would fit the visualization screen and would be placed in the middle 

of the screen. This transformation is based on the distances of the points from the minimum x and 

y coordinates in the dataset. The process ensures that the points are appropriately adjusted relative 

to a defined picture or drawing area. Below, we describe the mathematical derivation and the 

reasoning behind each step in the code. 

Variables and Initialization 

Before diving into the loop that processes each point, several key variables are initialized: 

• MinX, MinY: These represent the minimum x and y coordinates among all points in the 

dataset. These values serve as reference points for calculating distances. 

• lengthX, lengthY: These denote the lengths of the bounding box in the x and y 

directions, respectively. These lengths are critical for scaling the points proportionally. 

• PicItemSizeWithd, PicItemSizeHeight: These are the dimensions of the picture or 

drawing area where the transformed points will be plotted. 

Processing Points 

The core of the transformation process occurs within a loop that iterates over each point in 

the dataset. For each point, the following steps are executed: 

1. Transform Coordinates: The initial coordinates of the point are transformed relative to 

the picture size. This step ensures that the points are scaled correctly within the new 

coordinate system. 

𝐿𝑒𝑛𝑔𝑡ℎ𝑃𝑜𝑖𝑛𝑡𝑋 = √(𝑀𝑖𝑛𝑋 − 𝑝𝑥)
2 = |𝑀𝑖𝑛𝑋 − 𝑝𝑥| (4.12) 

 

 where 𝑝𝑥 is the x-coordinate of point 𝒫. 
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2. Calculate X Ratio: 

𝑋𝑅𝑎𝑡𝑖𝑜 =
𝑙𝑒𝑛𝑔𝑡ℎ𝑋 × 1.1

𝑙𝑒𝑛𝑔𝑡ℎ𝑋 − 𝐿𝑒𝑛𝑔𝑡ℎ𝑃𝑜𝑖𝑛𝑡𝑋
 (4.13) 

 

This ratio scales the x-coordinate based on its distance from the minimum x-coordinate. The 

reason for 1.1 multiplication is that, so the points will not attach to the edge of the screen, and 

they would be drawn by a distance. 

3. Calculate Length Point Y: 

𝐿𝑒𝑛𝑔𝑡ℎ𝑃𝑜𝑖𝑛𝑡𝑌 = √(𝑀𝑖𝑛𝑌 − 𝑝𝑦)
2 = |𝑀𝑖𝑛𝑌 − 𝑝𝑦| (4.14) 

 

where 𝑝𝑦 is the y-coordinate of point 𝒫. 

4. Calculate Y Ratio: 

𝑌𝑅𝑎𝑡𝑖𝑜 =
𝑙𝑒𝑛𝑔𝑡ℎ𝑌 × 1.1

𝑙𝑒𝑛𝑔𝑡ℎ𝑌 − 𝐿𝑒𝑛𝑔𝑡ℎ𝑃𝑜𝑖𝑛𝑡𝑌
 (4.15) 

 

This ratio scales the y-coordinate based on its distance from the minimum y-coordinate. 

5. Transform Point Coordinates: 

𝑝�́� =
𝑃𝑖𝑐𝐼𝑡𝑒𝑚𝑆𝑖𝑧𝑒𝑊𝑖𝑡ℎ𝑑

𝑋𝑅𝑎𝑡𝑖𝑜
+
𝑙𝑒𝑛𝑔𝑡ℎ𝑋

10
 (4.16) 

𝑝�́� =
𝑃𝑖𝑐𝐼𝑡𝑒𝑚𝑆𝑖𝑧𝑒𝐻𝑒𝑖𝑔ℎ𝑡

𝑌𝑅𝑎𝑡𝑖𝑜
+
𝑙𝑒𝑛𝑔𝑡ℎ𝑌

10
 (4.17) 

 

where 𝑝�́� and 𝑝�́� are the new coordinates of the point 𝒫. 

Transformation and Scaling of Points Based on Bounding Box Coordinates 

The Points from IntersectionFinder.NewLines, which contains Vector4 elements representing 

coordinates, are transformed into a new coordinate system. The goal is to transform these points 
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into a new coordinate system by scaling and translating them based on specified dimensions 

(PicItemSizeWithd, PicItemSizeHeight, lengthX, and lengthY) and minimum coordinate values 

(MinX, MinY). Below, we detail the mathematical derivations and the logic behind each step in 

the code, providing a comprehensive understanding suitable for inclusion in a thesis. 

Variables and Initialization 

Before processing each point, several key variables are initialized: 

• MinX, MinY: These variables represent the minimum x and y coordinates among all the 

points in the dataset. These values serve as reference points for calculating distances from 

the boundaries of the bounding box. 

• lengthX, lengthY: These denote the lengths of the bounding box in the x and y 

directions, respectively. These lengths are crucial for proportional scaling of the points. 

• PicItemSizeWithd, PicItemSizeHeight: These are the dimensions of the picture or 

drawing area where the transformed points will be plotted. They determine the new 

coordinate system's boundaries. 

Loop to Process Points 

The core of the transformation process occurs within a loop that iterates over each point in 

the dataset. For each Vector4 point 𝒫 in IntersectionFinder.NewLines, the following steps are 

executed: 

1. Transform Coordinates: The initial coordinates of the point are transformed relative to 

the picture size. This step ensures that the points are correctly positioned within the new 

coordinate system. 

𝑝𝑥 = 𝑃𝑖𝑐𝐼𝑡𝑒𝑚𝑆𝑖𝑧𝑒𝑊𝑖𝑡ℎ𝑑 − 𝑝𝑦 (4.18) 

𝑝𝑦 = 𝑃𝑖𝑐𝐼𝑡𝑒𝑚𝑆𝑖𝑧𝑒𝐻𝑒𝑖𝑔ℎ𝑡 − 𝑝𝑥 (4.19) 

𝑝𝑧 = 𝑃𝑖𝑐𝐼𝑡𝑒𝑚𝑆𝑖𝑧𝑒𝑊𝑖𝑡ℎ𝑑 − 𝑝𝑤 (4.20) 
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𝑝𝑤 = 𝑃𝑖𝑐𝐼𝑡𝑒𝑚𝑆𝑖𝑧𝑒𝐻𝑒𝑖𝑔ℎ𝑡 − 𝑝𝑧 (4.21) 

 

Where 𝑝𝑥, 𝑝𝑦, 𝑝𝑧 are the coordinates of the points transformed from the original Vector4 

point. This transformation flips the coordinates based on the dimensions of the picture area. 

The remaining calculations are as same as in the previous section. 

 

4.3.2 Mesh Analysis Results 

 

This subsection outlines the steps for identifying irregularities and cavities in the deposited 

layer using a developed program. The program preprocesses scanned images to diagnose surface 

features and applies a surface analysis algorithm to detect deviations, marking peaks as 

irregularities and troughs as cavities. It measures their dimensions, ignoring cavities smaller than 

0.5 mm² while locating irregularities of any size. The program then compares the findings with 

welding reference standards to ensure accuracy. Finally, it generates a detailed report, including 

visual representations, statistical summaries, and recommendations for improving deposition 

quality. 

Figure 4-11 Illustrates a graphical user interface defined by the cavity clustering software 

used in the WAAM process. The interface highlights points in red that are below a predefined 

height and were sliced for further processing. Slicing is crucial for segmenting the part into 

manageable layers that can be processed individually later on. The software also allows users to 

manually draw polygons, and through a sequence of clustering, creating centroids, clearing 

centroids, and forming clusters, it enables effective slicing. Consequently, identifying and isolating 
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these points helps maintain the quality of the AM process. Any irregularities and defects can be 

diagnosed and corrected early. 

 

Figure 4-11 Slicing points below a predefined height for further processing. 

Another step is identifying areas for refinement by drawing polygons around them. This 

functionality allows for the elimination of unnecessary points through a selective process, 

removing parts that could cause noise in the data (Figure 4-12). This process can be applied 

multiple times, iteratively removing undesired points. Such features enable users to retain only the 

relevant points for subsequent processing, thereby improving the quality and precision of the 

WAAM process. Equally important, the added precision can prevent significant defects in the final 

project, where even small inaccuracies may dramatically affect the final product. 

 

Figure 4-12 Interface allowing multiple uses of a polygon tool to remove unnecessary points. 
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Cavity clustering is identified in Figure 4-13, resulting from the removal of extraneous points 

using the “Remove Point” button. This action leaves behind only the necessary cavity clusters, 

eliminating points that are not required for further processing. The elimination of unnecessary 

points significantly reduces computational load and substantially enhances the efficiency of the 

path planning process. 

 

Figure 4-13 Extra points can be removed by clicking the ‘Remove Point’. 

In the next step, the center of each cluster is approximately chosen by the user, and the 

program refines this centroid. These markers serve as initial guesses for the center of each cluster, 

combining human intuition with computational accuracy. This step helps ensure that the centroids 

are properly located for the subsequent processing stages (Figure 4-14). By leveraging both user 

input and automated refinement, the process maintains a balance between flexibility and precision, 

ultimately enhancing the accuracy and quality of the clustering results. 

 

Figure 4-14  The center of the cluster is approximately chosen by the user and then corrected by 

the program. 
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Following this, the identification of cluster centers and the number of cavities within the 

clusters can be carried out by clicking the "Make Clusters" button, as depicted in Figure 4-15. 

Each cluster is identified by a distinct color (e.g., green and red), making them visually 

distinguishable. The number of cavities and temporary points is vital for understanding the internal 

structure of clusters and recognizing any potential voids or gaps that need to be addressed. 

Then, the cavity clustering software tests the cloud of points for each layer for cavities and 

collisions. The interface (Figure 4-16) displays a warning if collisions are detected. This step is 

essential to ensure that the integrity of the manufactured part is not compromised due to collisions 

and to prevent material waste. Additionally, it can detect cavities within the layer, which is crucial 

for the structural soundness of the final product. Effective troubleshooting and process control are 

facilitated by halting the WAAM process when a warning message appears, allowing for corrective 

actions before proceeding. 

 

Figure 4-15 By clicking "Make Clusters," the program accurately identifies the exact locations of 

the cluster centers. 
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Figure 4-16  In this step, the point cloud of each layer is tested for collisions and cavities. If a collision is 

detected, the process stops; if cavities are found, the subsequent steps are followed. 

Figure 4-17 illustrates the generation of a new path plan for corrections made by the cavity 

clustering software. The cluster borders are aligned with the path plan, shown as blue lines. This 

path plan is created based on the alignment between the cluster borders and the original path plan. 

By generating correction paths, the need for manual adjustments is reduced, process efficiency is 

improved, and the likelihood of errors is decreased. This proactive approach significantly enhances 

the overall quality of the manufactured parts. Following this step, the program can distinguish the 

borders of each cluster, automatically identifying and drawing them to show the extent of each 

cluster's separation (Figure 4-18). This visual clarity is essential for understanding the spatial 

distribution and organization of the points within each cluster, helping isolate regions that require 

specific attention throughout the process. 
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Figure 4-17 The program distinguishes the border of each cluster. 

 

 

Figure 4-18  The new path plan for corrections has been generated in correspondence to the original path. 

The blue lines represent the alignment of the cluster borders with the new path plan. 

In the following updated example of mesh analysis, after capturing the image using the 

camera, a slice of the mesh at a predetermined height is extracted for detailed examination. The 

process begins by removing noise and unwanted data points, ensuring that only relevant 

information remains. The centroids of each cluster are now automatically defined to account for 

more complex deposition patterns, improving the accuracy and efficiency of the analysis. Any 

sections below a specified area threshold are filtered out using software, reducing computational 

load and focusing on significant regions. Once the data is filtered, the precise centroids of the 
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remaining clusters are calculated, and their boundaries are clearly defined. Finally, the overlap 

between the correction robot's path and the identified clusters is mapped, demonstrating the 

system's ability to handle intricate patterns and ensure accurate adjustments in these more complex 

settings. 

 

Figure 4-19 Slicing points below a predefined height for further processing. 

 

 

Figure 4-20 Removing extra points  
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Figure 4-21  The center of the cluster is approximately chosen by the user and then corrected by the program. 

 

Figure 4-22 By clicking "Make Clusters," the program accurately identifies the exact locations of the 

cluster centers. 
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Figure 4-23 The program distinguishes the border of each cluster. 

 

Figure 4-24 The new path plan for corrections has been generated in correspondence to the original 

path. The blue lines represent the alignment of the cluster borders with the new path plan. 
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4.4 Concluding Remarks 

The developed methodologies provide a comprehensive approach to improving the WAAM 

process through adaptive correction strategies, microstructure analysis, and optimized welding 

device settings. The integration of a vision system enables real-time identification and correction 

of defects such as cavities and irregularities, ensuring that each subsequent layer is accurately 

deposited. The calibration of the 3D camera with the robot, combined with the development of 

path correction software, allows for precise and reliable material deposition. These advancements 

not only enhance the overall quality and consistency of the manufactured components but also 

contribute significantly to the efficiency and adaptability of the WAAM process. 
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Chapter 5 

5 Conclusion and Recommendations for future works:  

5.1 Conclusion 

AM technology has become prevalent in various industries, including aerospace, marine and 

shipbuilding, power generation and oil and gas. These industries have adopted AM due to its 

capability to produce complex geometries, reduce material waste, and shorten production times. 

To further improve efficiency, the automation of processes stands as a paramount demand. 

Particularly in aerospace, minimizing operator error is crucial due to the high standards and 

precision required. To meet these requirements, the application of a vision system comes into play. 

The incorporation of a vision system into the AM process addresses inherent barriers such as 

cavities and geometrical irregularities. 

In this thesis, we propose a closed-loop vision guided robotic WAAM system. This system is 

capable of diagnosing the inconsistencies on the deposited surface and adapting subsequent layer 

deposition based on detected imperfections. It is noteworthy that this program is expected to be 

implemented in an online control of the robot, ensuring real-time adjustments and monitoring.  

In the presence of issues such as irregularities and cavities, which are common and significant 

challenges in WAAM, our algorithm can detect these problems and apply adaptive correction 
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strategies by adjusting the deposition path for the next layer. First, the existing limitations in 

literature and the contributions to the anticipated knowledge made by this thesis will be addressed. 

Each contribution will then be discussed in detail. 

• Limitation in Offline Programming and Pre-Determined Path Planning: 

Limitation: Previous WAAM systems often relied on offline robot programming and pre-

determined algorithms for collision-free path planning but lacked real-time control mechanisms 

[48]. This limitation restricted their ability to adjust dynamically during the deposition process, 

leading to inconsistent layer quality. 

Contribution: This research introduces a real-time, closed-loop control system using the Cognex 

A5000 3D camera, which enables dynamic adjustments to the deposition path. By monitoring 

surface irregularities in real time, the system can correct defects immediately, offering a significant 

improvement over pre-determined static approaches. 

• Lack of Real-Time Adaptive Layer Adjustments: 

Limitation: A research conducted by Reisch et al. [49] utilized multivariate sensor frameworks to 

gather process data such as gas flow, voltage, and thermal imaging, but lacked real-time adaptive 

layer adjustments. These systems also did not focus on material stability or proper clamping 

techniques, which can lead to warping or distortions. 

Contribution: In contrast, this work employs a vision-based system to monitor and adapt to 

surface defects during deposition. It also addresses material stability by introducing effective 

clamping techniques that prevent warping, ensuring a higher degree of dimensional accuracy and 

structural integrity in the final product. 

• Predefined Trajectories Limiting Adaptability: 

Limitation: In another research conducted by Coutinho et al. [50]  rely on predefined trajectories 

and sensor-based feedback systems, limiting the ability to adapt to surface irregularities in real 

time. These methods do not support real-time detection and correction of imperfections during the 

deposition process. 

Contribution: This research integrates real-time vision-based monitoring, allowing the system to 

dynamically correct surface imperfections as they arise. By offering real-time surface correction, 



84 

 

the system surpasses the limitations of predefined trajectory methods, enhancing process 

adaptability. 

• Time-Consuming Optimization with Iterative Learning Models: 

Limitation: Lizarralde et al. [52] implemented reinforcement learning models to correct geometric 

errors, but these approaches required lengthy training phases and iterative learning, which often 

led to suboptimal performance during the early stages of deposition. 

Contribution: This research avoids the time-consuming learning phase by utilizing a real-time 

vision system. This approach provides immediate error correction and faster, more accurate 

adjustments during the deposition process, significantly improving the efficiency of multi-layer, 

multi-bead deposition. 

The research work yielded several important developments: 

• Optimal Welding Path for Small-Scale Objects: For the geometry in this study, the 

optimal number of beads was determined through experimental methods and slicing 

software. This is essential for optimizing material usage and maintaining structural 

integrity in similar geometries. In the case of small-scale objects, a six-bead coverage for 

a rectangular shape is determined to be the most effective. This finding is crucial for 

optimizing material usage and ensuring structural integrity. 

• Management of Heat Accumulation: Continuous process operation is not feasible due to 

heat accumulation. After three layers are deposited, a pause is necessary until the object's 

temperature returns to an acceptable range. This step is vital to prevent overheating and 

material degradation. 

• Clamping and Securing Base Material: During the experimental procedure, it was noted 

that appropriate clamping and securing the movement of the base material are essential to 

prevent warping of the base plate during the additive manufacturing process. This measure 

ensures dimensional accuracy and stability of the final product. 

• Vision System Selection: The Cognex A5000 camera was utilized for the vision system in 

this study. It functions both as a camera and a scanner, providing high-resolution imaging 
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and accurate 3D scanning capabilities that helped finding the geometrical irregularities 

within the deposited material. 

• Mesh Analysis Program: Developing an in-house mesh analysis program is necessary due 

to the limitations of the camera software, which is not an open access system and does not 

provide full API access. The existing software of the camera could not deliver the required 

output for our specific needs. 

• Temperature Control: Controlling the temperature of the object is crucial for maintaining 

process stability and ensuring the quality of the deposited layers. 

• Real-Time and Online Process Control: To achieve full automation, it is essential to 

control the process in real-time and online. This capability enables immediate adjustments 

and corrections during the manufacturing process. This project took the initial steps for 

addressing this need for a successful WAAM process. 

• Software for Robot Path Transfer: Cura and RoboDK are identified as the appropriate 

software of choice for transferring the .cad file to the robot path. These tools facilitate the 

conversion and optimization of design files for robotic execution. 

• RobotStudio Externally Guided Motion (EGM): The RobotStudio EGM add-on has 

limitations in path planning corrections since the external device must be mounted on the 

robot. Correction is only applied in the path coordinate system, and only position 

corrections in the y and z axes can be performed. 

The research work proposes online control of a robotic welding process using a 3D scanner. 

This unified approach involved optimizing welding parameters, developing offline robot 

programming, and establishing an effective path planning strategy. Each component of the 

configuration was successfully tested offline, and the entire system was virtually validated through 

online configuration. However, when transitioning to the physical apparatus, the Human-Machine 

Interface (HMI) prevented the configuration from functioning as intended. Despite this challenge, 

the work laid a strong foundation for future integration and testing, highlighting the potential for 

precise and adaptive control in enhancing the efficiency and reliability of the welding process. 
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5.2 Future Works 

Further investigations are recommended in the following areas: 

• Transparent Shield for Nozzle: Producing the shield of the nozzle from transparent 

materials would allow users to monitor the tip of the nozzle or wire during the process 

using a proper camera capable of monitoring the melt pool. This transparency would 

enhance the ability to monitor and troubleshoot the welding process in real-time. 

• Cooling Methods for Base Material and Object: Developing a cooling method for the 

object is essential to build up and preventing meltdown. Additionally, finding a cooling 

method for the base material is necessary since clamping alone cannot completely prevent 

the warping of the base material. 

• Automatic Clustering: Currently, the number of clusters is defined by the operator based 

on the chosen cluster centers during mesh processing. Automating this process is a priority 

to reduce operator dependency and improve efficiency. 

• Solving HMI Issues: The HMI is defined as a safety device in the PLC program of the 

robot, giving it priority for system Mastership. We need to find a method to overcome the 

issue where the HMI prevents our C# program from gaining Mastership. This solution is 

crucial for ensuring seamless integration and control of the manufacturing process. 

• Adding a Second Robot for Machining: Presently, irregularities are manually ground by 

an operator. In the near future, a second robot could be linked to cooperate, using the same 

mesh process data to remove irregularities automatically. This addition would enhance 

process automation and reduce manual intervention. 

• Adding a Thermal Camera: Incorporating a thermal camera would automate the control 

of object temperature and pause times between layers. This enhancement would improve 

the consistency and quality of the manufacturing process by providing real-time 

temperature monitoring and control. 

These future works will significantly enhance the automation, efficiency, and reliability of the 

additive manufacturing process, making it more adaptable and capable of meeting the high 

standards required by various industries. 
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Appendix A 

 

 

!CYLINDER OFFLINE RAPID PROGRAM 

PROC CylinderWelding() 

wobTable:= wobj0; 

MoveJ ClctWeldAprch, v5, z10, tProd\WObj:= wobTable;  

MoveL reltool(ClctWeldStart, 0, 0, -5), v5, z10, tProd\WObj:= wobTable; 

WaitTime 5; 

numLayer:= 0; 

FOR numLayer FROM 0 TO nLayer DO 

TPWrite "numLayer before layer loop =" \num:= numLayer; 

numLine:= 0; 

FOR numLine FROM 0 TO nLine DO 

TPWrite "numLayer inside line loop=" \num:= numLayer; 

SlicingCal numLine, numLayer; 

Set pdoTigWeldingStart; 

MoveL ClctWeldStart, v5, fine, tProd\WObj:= wobTable; 

IF numLayer = 0 OR arret=TRUE THEN 

    WaitTime 3; 

    arret:= FALSE; 

ENDIF 

 

Movec ClctScndpCrcl,ClctthrdpCrcl, v5, z20, tProd\WObj:=wobTable; 

Movec ClctfrthpCrcl, ClctWeldStart, v5, fine, tProd\WObj:=wobTable; 

reset pdoTigWeldingStart; 

ENDFOR 

 

IF cooling=4 AND numLayer>=1 AND (numLayer mod 2)=1 THEN 

arret:=TRUE; 

!stop; 

!WaitTime Attente; 

!Set pdoTigWeldingStart; 

MoveL ClctWeldStart, v5, fine, tProd\WObj:= wobTable; 

Movec ClctScndpCrcl,ClctthrdpCrcl, v5, z20, tProd\WObj:=wobTable; 

Movec ClctfrthpCrcl, ClctWeldStart, v5, fine, tProd\WObj:=wobTable; 

!reset pdoTigWeldingStart; 

!Stop; 

ENDIF 

 

ENDFOR 

MoveL ClctWeldRtrct, v5, z50, tProd\WObj:= wobTable; 

prMoveHome; 

WaitRob \InPos; 

ENDPROC 

!MULTI LINE MULTI LAYER OFFLINE RAPID PROGRAMMING 

PROC prMultiSoudage() 

    !MoveJ rtHome,vHome,z100,tool0\WObj:=wobj0; 

     

    wobTable:=wobj0; 

    !tProd:=tTopTig; ! The tool is loaded and offsetd for angles in the routine prcMultiInitCalc 

     

    MoveJ pProgM230WeldAppr,vTrans,z10,tProd\WObj:=wobTable; ! Rough Approach 

 

    ! Loop for the multiple layer 

  

    FOR nIndexLayer FROM 0 TO nLayer DO 

        TPWrite "nIndexLayer before layer loop= " \num:=nIndexLayer;      

        ! If this is turned on, the approach and the retract will be inverted in the alculation 

routine prCalcMulti 

        IF bEtageInv THEN 

        IF (nIndexLayer MOD 2)=1 THEN 

          bAlt:=FALSE; 
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        ELSE 

          bAlt:=TRUE; 

        ENDIF 

      ELSE 

        bAlt:=TRUE; 

      ENDIF 

       

      ! Loop for the multiple lines 

      nIndexLine:=0; 

      FOR nIndexLine FROM 0 TO nLine DO 

          TPWrite "nIndexLayer inside line loop= " \num:=nIndexLayer; 

        prCalcMulti nIndexLine,nIndexLayer; 

         

        MoveL reltool(pProgM230WeldStart,0,0,-5),vTrans,z10,tProd\WObj:=wobTable; ! Final 

Approach 

         

        Set pdoTigWeldingStart; 

         

        MoveL pProgM230WeldStart, v5, fine, tProd\WObj:=wobTable; 

         

        WaitTime 3; 

        MoveL pProgM230WeldEnd, v5, fine, tProd\WObj:=wobTable; ! Weld end 

         

        reset pdoTigWeldingStart; 

        WaitTime 3; 

         

        MoveL RelTool(pProgM230WeldEnd,0,0,-5), v5, fine, tProd\WObj:=wobTable; 

         

      ENDFOR 

       

    ENDFOR 

     

    MoveL pProgM230WeldRet, v5, z50, tProd\WObj:=wobTable; 

 

    prMoveHome; 

 

    WaitRob \InPos; 

         

  ENDPROC 
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Appendix B 

 

' ****************************************************************************** 

' C# Online Program, Robot Connections 

' ****************************************************************************** 

  

// EmergencyPanel 

            //  

            this.EmergencyPanel.Anchor = 

((System.Windows.Forms.AnchorStyles)(((System.Windows.Forms.AnchorStyles.Top | 

System.Windows.Forms.AnchorStyles.Bottom)  

            | System.Windows.Forms.AnchorStyles.Right))); 

            this.EmergencyPanel.AutoSize = true; 

            this.EmergencyPanel.BackColor = System.Drawing.SystemColors.ControlLight; 

            this.EmergencyPanel.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle; 

            this.EmergencyPanel.Controls.Add(this.Unload_BTN); 

            this.EmergencyPanel.Controls.Add(this.Stop_BTN); 

            this.EmergencyPanel.Controls.Add(this.PPToMain_BTN); 

            this.EmergencyPanel.Controls.Add(this.Emergency_Panel); 

            this.EmergencyPanel.Location = new System.Drawing.Point(634, -6); 

            this.EmergencyPanel.Name = "EmergencyPanel"; 

            this.EmergencyPanel.Size = new System.Drawing.Size(122, 444); 

            this.EmergencyPanel.TabIndex = 0; 

            //  

            // Unload_BTN 

            //  

            this.Unload_BTN.Location = new System.Drawing.Point(6, 174); 

            this.Unload_BTN.Name = "Unload_BTN"; 

            this.Unload_BTN.Size = new System.Drawing.Size(106, 65); 

            this.Unload_BTN.TabIndex = 3; 

            this.Unload_BTN.Text = "Unload"; 

            this.Unload_BTN.UseVisualStyleBackColor = true; 

            this.Unload_BTN.Click += new System.EventHandler(this.Unload_BTN_Click); 

            //  

            // Stop_BTN 

            //  

            this.Stop_BTN.Location = new System.Drawing.Point(6, 104); 

            this.Stop_BTN.Name = "Stop_BTN"; 

            this.Stop_BTN.Size = new System.Drawing.Size(106, 65); 

            this.Stop_BTN.TabIndex = 2; 

            this.Stop_BTN.Text = "Stop"; 

            this.Stop_BTN.UseVisualStyleBackColor = true; 

            this.Stop_BTN.Click += new System.EventHandler(this.Stop_BTN_Click); 

            //  

            // PPToMain_BTN 

            //  

            this.PPToMain_BTN.Location = new System.Drawing.Point(6, 34); 

            this.PPToMain_BTN.Name = "PPToMain_BTN"; 

            this.PPToMain_BTN.Size = new System.Drawing.Size(106, 65); 

            this.PPToMain_BTN.TabIndex = 1; 

            this.PPToMain_BTN.Text = "PP2Main"; 

            this.PPToMain_BTN.UseVisualStyleBackColor = true; 

            this.PPToMain_BTN.Click += new System.EventHandler(this.PPToMain_BTN_Click); 

            //  

            // Emergency_Panel 

            //  

            this.Emergency_Panel.AutoSize = true; 

            this.Emergency_Panel.Location = new System.Drawing.Point(16, 14); 

            this.Emergency_Panel.Name = "Emergency_Panel"; 

            this.Emergency_Panel.Size = new System.Drawing.Size(87, 16); 

            this.Emergency_Panel.TabIndex = 0; 

            this.Emergency_Panel.Text = "Emergencies"; 

            //  

            // LogPanel 

            //  
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            this.LogPanel.Anchor = 

((System.Windows.Forms.AnchorStyles)(((System.Windows.Forms.AnchorStyles.Bottom | 

System.Windows.Forms.AnchorStyles.Left)  

            | System.Windows.Forms.AnchorStyles.Right))); 

            this.LogPanel.BackColor = System.Drawing.SystemColors.ControlLight; 

            this.LogPanel.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle; 

            this.LogPanel.Controls.Add(this.LogTextBox); 

            this.LogPanel.Location = new System.Drawing.Point(1, 372); 

            this.LogPanel.Name = "LogPanel"; 

            this.LogPanel.Size = new System.Drawing.Size(636, 66); 

            this.LogPanel.TabIndex = 1; 

            //  

            // LogTextBox 

            //  

            this.LogTextBox.Anchor = 

((System.Windows.Forms.AnchorStyles)((((System.Windows.Forms.AnchorStyles.Top | 

System.Windows.Forms.AnchorStyles.Bottom)  

            | System.Windows.Forms.AnchorStyles.Left)  

            | System.Windows.Forms.AnchorStyles.Right))); 

            this.LogTextBox.BackColor = System.Drawing.SystemColors.ControlLightLight; 

            this.LogTextBox.HideSelection = false; 

            this.LogTextBox.Location = new System.Drawing.Point(4, 6); 

            this.LogTextBox.Multiline = true; 

            this.LogTextBox.Name = "LogTextBox"; 

            this.LogTextBox.ScrollBars = System.Windows.Forms.ScrollBars.Vertical; 

            this.LogTextBox.ShortcutsEnabled = false; 

            this.LogTextBox.Size = new System.Drawing.Size(623, 55); 

            this.LogTextBox.TabIndex = 0; 

            this.LogTextBox.MouseDown += new 

System.Windows.Forms.MouseEventHandler(this.LogTextBox_TextChanged); 

            //  

            // MainTabControl 

            //  

            this.MainTabControl.Controls.Add(this.RobotTab); 

            this.MainTabControl.Controls.Add(this.LayerTab); 

            this.MainTabControl.Controls.Add(this.AnalyzeTab); 

            this.MainTabControl.Location = new System.Drawing.Point(1, 1); 

            this.MainTabControl.Name = "MainTabControl"; 

            this.MainTabControl.SelectedIndex = 0; 

            this.MainTabControl.Size = new System.Drawing.Size(632, 372); 

            this.MainTabControl.TabIndex = 2; 

            this.MainTabControl.TabStop = false; 

            this.MainTabControl.SelectedIndexChanged += new 

System.EventHandler(this.MainTabControl_SelectedIndexChanged); 

            //  

            // RobotTab 

            //  

            this.RobotTab.Controls.Add(this.MotorOn_BTN); 

            this.RobotTab.Controls.Add(this.Scan_BTN); 

            this.RobotTab.Controls.Add(this.RobotList); 

            this.RobotTab.Location = new System.Drawing.Point(4, 25); 

            this.RobotTab.Name = "RobotTab"; 

            this.RobotTab.Padding = new System.Windows.Forms.Padding(3); 

            this.RobotTab.Size = new System.Drawing.Size(624, 343); 

            this.RobotTab.TabIndex = 0; 

            this.RobotTab.Text = "Robot"; 

            this.RobotTab.UseVisualStyleBackColor = true; 

             

            // RobotList 

            //  

            this.RobotList.AutoArrange = false; 

            this.RobotList.BackColor = System.Drawing.SystemColors.Window; 

            this.RobotList.Columns.AddRange(new System.Windows.Forms.ColumnHeader[] { 

            this.IP_Field, 

            this.Virtual_Field, 

            this.SystemName_Field, 

            this.Mode_Field, 

            this.Motor_Status_Field}); 

            this.RobotList.ForeColor = System.Drawing.SystemColors.InfoText; 

            this.RobotList.GridLines = true; 

            this.RobotList.HideSelection = false; 
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            listViewItem1.StateImageIndex = 0; 

            listViewItem1.UseItemStyleForSubItems = false; 

            this.RobotList.Items.AddRange(new System.Windows.Forms.ListViewItem[] { 

            listViewItem1}); 

            this.RobotList.Location = new System.Drawing.Point(4, 62); 

            this.RobotList.Margin = new System.Windows.Forms.Padding(5, 6, 5, 6); 

            this.RobotList.MultiSelect = false; 

            this.RobotList.Name = "RobotList"; 

            this.RobotList.Size = new System.Drawing.Size(624, 213); 

            this.RobotList.TabIndex = 1; 

            this.RobotList.UseCompatibleStateImageBehavior = false; 

            this.RobotList.View = System.Windows.Forms.View.Details; 

            this.RobotList.SelectedIndexChanged += new 

System.EventHandler(this.RobotList_SelectedIndexChanged); 

            //  

            // IP_Field 

            //  

            this.IP_Field.Text = "IP Address"; 

            this.IP_Field.Width = 100; 

            //  

            // Virtual_Field 

            //  

            this.Virtual_Field.Text = "Virtual"; 

            this.Virtual_Field.Width = 70; 

            //  

            // SystemName_Field 

            //  

            this.SystemName_Field.Text = "System name"; 

            this.SystemName_Field.Width = 110; 

            //  

            // Mode_Field 

            //  

            this.Mode_Field.Text = "Mode"; 

            this.Mode_Field.Width = 70; 

             

             Motor_Status_Field 

              

            this.Motor_Status_Field.Text = "Motor Status"; 

            this.Motor_Status_Field.Width = 100; 

              

             LayerTab 

             

            this.LayerTab.BackColor = System.Drawing.Color.Transparent; 

            this.LayerTab.Controls.Add(this.LayerPanel2); 

            this.LayerTab.Controls.Add(this.LayerPanel1); 

            this.LayerTab.ForeColor = System.Drawing.SystemColors.ActiveCaptionText; 

            this.LayerTab.Location = new System.Drawing.Point(4, 25); 

            this.LayerTab.Name = "LayerTab"; 

            this.LayerTab.Padding = new System.Windows.Forms.Padding(3); 

            this.LayerTab.Size = new System.Drawing.Size(624, 343); 

            this.LayerTab.TabIndex = 1; 

            this.LayerTab.Text = "Layer"; 

              

             LayerPanel2 

             

             

            //  

            // TableHeightField 

            //  

            this.TableHeightField.Location = new System.Drawing.Point(98, 29); 

            this.TableHeightField.Name = "TableHeightField"; 

            this.TableHeightField.Size = new System.Drawing.Size(77, 22); 

            this.TableHeightField.TabIndex = 6; 

            this.TableHeightField.Text = "1"; 

            this.TableHeightField.TextAlign = System.Windows.Forms.HorizontalAlignment.Center; 

            //  

            // BaseHeightField 

            //  

            this.BaseHeightField.Location = new System.Drawing.Point(98, 57); 

            this.BaseHeightField.Name = "BaseHeightField"; 

            this.BaseHeightField.Size = new System.Drawing.Size(77, 22); 
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            this.BaseHeightField.TabIndex = 5; 

            this.BaseHeightField.Text = "1"; 

            this.BaseHeightField.TextAlign = System.Windows.Forms.HorizontalAlignment.Center; 

            //  

            // TableHeightLable 

            //  

            this.TableHeightLable.AutoSize = true; 

            this.TableHeightLable.Location = new System.Drawing.Point(3, 32); 

            this.TableHeightLable.Name = "TableHeightLable"; 

            this.TableHeightLable.Size = new System.Drawing.Size(85, 16); 

            this.TableHeightLable.TabIndex = 4; 

            this.TableHeightLable.Text = "Table Height"; 

            //  

            // BaseHeightLable 

            //  

            this.BaseHeightLable.AutoSize = true; 

            this.BaseHeightLable.Location = new System.Drawing.Point(3, 63); 

            this.BaseHeightLable.Name = "BaseHeightLable"; 

            this.BaseHeightLable.Size = new System.Drawing.Size(81, 16); 

            this.BaseHeightLable.TabIndex = 3; 

            this.BaseHeightLable.Text = "Base Height"; 

            //  

            // LayerNumTextBox 

            //  

            this.LayerNumTextBox.Location = new System.Drawing.Point(98, 88); 

            this.LayerNumTextBox.Name = "LayerNumTextBox"; 

            this.LayerNumTextBox.Size = new System.Drawing.Size(77, 22); 

            this.LayerNumTextBox.TabIndex = 2; 

            this.LayerNumTextBox.Text = "1"; 

            this.LayerNumTextBox.TextAlign = System.Windows.Forms.HorizontalAlignment.Center; 

            //  

            // LayerNumLabel 

            //  

            this.LayerNumLabel.AutoSize = true; 

            this.LayerNumLabel.Location = new System.Drawing.Point(3, 91); 

            this.LayerNumLabel.Name = "LayerNumLabel"; 

            this.LayerNumLabel.Size = new System.Drawing.Size(48, 16); 

            this.LayerNumLabel.TabIndex = 1; 

            this.LayerNumLabel.Text = "Layer#"; 

            //  

            // StartTask_BTN 

            //  

            this.StartTask_BTN.Location = new System.Drawing.Point(236, 50); 

            this.StartTask_BTN.Name = "StartTask_BTN"; 

            this.StartTask_BTN.Size = new System.Drawing.Size(135, 43); 

            this.StartTask_BTN.TabIndex = 0; 

            this.StartTask_BTN.Text = "Start Robot Task"; 

            this.StartTask_BTN.UseVisualStyleBackColor = true; 

            this.StartTask_BTN.Click += new System.EventHandler(this.StartTask_BTN_Click); 

            //  

            // LayerPanel1 

            //  

            this.LayerPanel1.BackColor = System.Drawing.Color.WhiteSmoke; 

            this.LayerPanel1.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle; 

            this.LayerPanel1.Controls.Add(this.TaskLable); 

            this.LayerPanel1.Controls.Add(this.CorrectModul); 

            this.LayerPanel1.Controls.Add(this.LoadRobotFile_BTN); 

            this.LayerPanel1.Location = new System.Drawing.Point(7, 6); 

            this.LayerPanel1.Name = "LayerPanel1"; 

            this.LayerPanel1.Size = new System.Drawing.Size(611, 121); 

            this.LayerPanel1.TabIndex = 1; 

            //  

            // LoadRobotFile_BTN 

            //  

            this.LoadRobotFile_BTN.Location = new System.Drawing.Point(41, 37); 

            this.LoadRobotFile_BTN.Name = "LoadRobotFile_BTN"; 

            this.LoadRobotFile_BTN.Size = new System.Drawing.Size(224, 44); 

            this.LoadRobotFile_BTN.TabIndex = 0; 

            this.LoadRobotFile_BTN.Text = "Load Robot File"; 

            this.LoadRobotFile_BTN.UseVisualStyleBackColor = true; 
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            this.LoadRobotFile_BTN.Click += new 

System.EventHandler(this.LoadRobotFile_BTN_Click); 

            //  

            // AnalyzeTab 

            //  

            this.AnalyzeTab.Controls.Add(this.CheckCavity_BTN); 

            this.AnalyzeTab.Controls.Add(this.CheckCollision_BTN); 

            this.AnalyzeTab.Controls.Add(this.CollisionLabel); 

            this.AnalyzeTab.Controls.Add(this.CavityLabel); 

            this.AnalyzeTab.Controls.Add(this.CavityPanel); 

            this.AnalyzeTab.Controls.Add(this.CollisionPanel); 

            this.AnalyzeTab.Controls.Add(this.ReadCognexFile_BTN); 

            this.AnalyzeTab.Location = new System.Drawing.Point(4, 25); 

            this.AnalyzeTab.Name = "AnalyzeTab"; 

            this.AnalyzeTab.Size = new System.Drawing.Size(624, 343); 

            this.AnalyzeTab.TabIndex = 2; 

            this.AnalyzeTab.Text = "Analyze"; 

            this.AnalyzeTab.UseVisualStyleBackColor = true; 

            //  

            // CheckCavity_BTN 

            //  

            this.CheckCavity_BTN.Location = new System.Drawing.Point(514, 44); 

            this.CheckCavity_BTN.Name = "CheckCavity_BTN"; 

            this.CheckCavity_BTN.Size = new System.Drawing.Size(75, 23); 

            this.CheckCavity_BTN.TabIndex = 5; 

            this.CheckCavity_BTN.Text = "Check"; 

            this.CheckCavity_BTN.UseVisualStyleBackColor = true; 

            this.CheckCavity_BTN.Visible = false; 

            this.CheckCavity_BTN.Click += new System.EventHandler(this.CheckCavity_BTN_Click); 

            //  

            // CheckCollision_BTN 

            //  

            this.CheckCollision_BTN.Location = new System.Drawing.Point(33, 44); 

            this.CheckCollision_BTN.Name = "CheckCollision_BTN"; 

            this.CheckCollision_BTN.Size = new System.Drawing.Size(75, 23); 

            this.CheckCollision_BTN.TabIndex = 4; 

            this.CheckCollision_BTN.Text = "Check"; 

            this.CheckCollision_BTN.UseVisualStyleBackColor = true; 

            this.CheckCollision_BTN.Visible = false; 

            this.CheckCollision_BTN.Click += new 

System.EventHandler(this.CheckCollision_BTN_Click); 

            //  

            // CollisionLabel 

            //  

            this.CollisionLabel.AutoSize = true; 

            this.CollisionLabel.Location = new System.Drawing.Point(126, 47); 

            this.CollisionLabel.Name = "CollisionLabel"; 

            this.CollisionLabel.Size = new System.Drawing.Size(65, 16); 

            this.CollisionLabel.TabIndex = 3; 

            this.CollisionLabel.Text = "Collisions"; 

            //  

            // CavityLabel 

            //  

            this.CavityLabel.AutoSize = true; 

            this.CavityLabel.Location = new System.Drawing.Point(438, 47); 

            this.CavityLabel.Name = "CavityLabel"; 

            this.CavityLabel.Size = new System.Drawing.Size(55, 16); 

            this.CavityLabel.TabIndex = 3; 

            this.CavityLabel.Text = "Cavities"; 

            //  

            // CavityPanel 

            //  

            this.CavityPanel.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle; 

            this.CavityPanel.Location = new System.Drawing.Point(320, 73); 

            this.CavityPanel.Name = "CavityPanel"; 

            this.CavityPanel.Size = new System.Drawing.Size(287, 207); 

            this.CavityPanel.TabIndex = 2; 

            //  

            // CollisionPanel 

            //  

            this.CollisionPanel.BorderStyle = System.Windows.Forms.BorderStyle.FixedSingle; 
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            this.CollisionPanel.Controls.Add(this.CollisionReportField); 

            this.CollisionPanel.Location = new System.Drawing.Point(16, 73); 

            this.CollisionPanel.Name = "CollisionPanel"; 

            this.CollisionPanel.Size = new System.Drawing.Size(287, 207); 

            this.CollisionPanel.TabIndex = 1; 

            //  

            // CollisionReportField 

            //  

            this.CollisionReportField.Location = new System.Drawing.Point(3, 3); 

            this.CollisionReportField.Multiline = true; 

            this.CollisionReportField.Name = "CollisionReportField"; 

            this.CollisionReportField.Size = new System.Drawing.Size(279, 199); 

            this.CollisionReportField.TabIndex = 0; 

            //  

            // ReadCognexFile_BTN 

            //  

            this.ReadCognexFile_BTN.Location = new System.Drawing.Point(223, 3); 

            this.ReadCognexFile_BTN.Name = "ReadCognexFile_BTN"; 

            this.ReadCognexFile_BTN.Size = new System.Drawing.Size(180, 36); 

            this.ReadCognexFile_BTN.TabIndex = 0; 

            this.ReadCognexFile_BTN.Text = "Read Congex File"; 

            this.ReadCognexFile_BTN.UseVisualStyleBackColor = true; 

            this.ReadCognexFile_BTN.Click += new 

System.EventHandler(this.ReadCognexFile_BTN_Click); 

            //  

            // LogMenuStrip 

            //  

            this.LogMenuStrip.ImageScalingSize = new System.Drawing.Size(20, 20); 

            this.LogMenuStrip.Items.AddRange(new System.Windows.Forms.ToolStripItem[] { 

            this.ClearLog, 

            this.CopyLog}); 

            this.LogMenuStrip.Name = "LogMenuStrip"; 

            this.LogMenuStrip.Size = new System.Drawing.Size(111, 52); 

            //  

            // ClearLog 

            //  

            this.ClearLog.Name = "ClearLog"; 

            this.ClearLog.Size = new System.Drawing.Size(110, 24); 

            this.ClearLog.Text = "clear"; 

            this.ClearLog.Click += new System.EventHandler(this.ClearLog_Click); 

            //  

            // CopyLog 

            //  

            this.CopyLog.Name = "CopyLog"; 

            this.CopyLog.Size = new System.Drawing.Size(110, 24); 

            this.CopyLog.Text = "copy"; 

            this.CopyLog.Click += new System.EventHandler(this.CopyLog_Click); 

            //  

            // labelSelectedController 

            //  

            this.labelSelectedController.Anchor = 

((System.Windows.Forms.AnchorStyles)((((System.Windows.Forms.AnchorStyles.Top | 

System.Windows.Forms.AnchorStyles.Bottom)  

            | System.Windows.Forms.AnchorStyles.Left)  

            | System.Windows.Forms.AnchorStyles.Right))); 

            this.labelSelectedController.AutoSize = true; 

            this.labelSelectedController.Location = new System.Drawing.Point(243, 347); 

            this.labelSelectedController.Name = "labelSelectedController"; 

            this.labelSelectedController.Size = new System.Drawing.Size(142, 16); 

            this.labelSelectedController.TabIndex = 5; 

            this.labelSelectedController.Text = "No Controller Selected"; 

            //  

            // CorrectModul 

            //  

            this.CorrectModul.Location = new System.Drawing.Point(349, 37); 

            this.CorrectModul.Name = "CorrectModul"; 

            this.CorrectModul.Size = new System.Drawing.Size(224, 44); 

            this.CorrectModul.TabIndex = 1; 

            this.CorrectModul.Text = "Load Correction File"; 

            this.CorrectModul.UseVisualStyleBackColor = true; 

            //  
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            // TaskLable 

            //  

            this.TaskLable.AutoSize = true; 

            this.TaskLable.Location = new System.Drawing.Point(266, 20); 

            this.TaskLable.Name = "TaskLable"; 

            this.TaskLable.Size = new System.Drawing.Size(84, 16); 

            this.TaskLable.TabIndex = 2; 

            this.TaskLable.Text = "Select a task"; 

            //  

            // RobotConnection 

            //  

            this.AutoScaleDimensions = new System.Drawing.SizeF(8F, 16F); 

            this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font; 

            this.AutoSize = true; 

            this.ClientSize = new System.Drawing.Size(750, 433); 

            this.Controls.Add(this.labelSelectedController); 

            this.Controls.Add(this.MainTabControl); 

            this.Controls.Add(this.EmergencyPanel); 

            this.Controls.Add(this.LogPanel); 

            this.FormBorderStyle = System.Windows.Forms.FormBorderStyle.FixedSingle; 

            this.MaximizeBox = false; 

            this.Name = "RobotConnection"; 

            this.StartPosition = System.Windows.Forms.FormStartPosition.CenterScreen; 

            this.Text = "Robot Connection"; 

            this.FormClosing += new 

System.Windows.Forms.FormClosingEventHandler(this.RobotConnection_FormClosing); 

            this.Load += new System.EventHandler(this.RobotConnection_Load); 

            this.EmergencyPanel.ResumeLayout(false); 

            this.EmergencyPanel.PerformLayout(); 

            this.LogPanel.ResumeLayout(false); 

            this.LogPanel.PerformLayout(); 

            this.MainTabControl.ResumeLayout(false); 

            this.RobotTab.ResumeLayout(false); 

            this.LayerTab.ResumeLayout(false); 

            this.LayerPanel2.ResumeLayout(false); 

            this.LayerPanel2.PerformLayout(); 

            this.LayerPanel1.ResumeLayout(false); 

            this.LayerPanel1.PerformLayout(); 

            this.AnalyzeTab.ResumeLayout(false); 

            this.AnalyzeTab.PerformLayout(); 

            this.CollisionPanel.ResumeLayout(false); 

            this.CollisionPanel.PerformLayout(); 

            this.LogMenuStrip.ResumeLayout(false); 

            this.ResumeLayout(false); 

            this.PerformLayout(); 
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Appendix C 

 

' ****************************************************************************** 

' C# Online Program, Design 

' ****************************************************************************** 

InitializeComponent() 

        { 

             

            this.button1 = new System.Windows.Forms.Button(); 

            this.button2 = new System.Windows.Forms.Button(); 

            this.button3 = new System.Windows.Forms.Button(); 

            this.button4 = new System.Windows.Forms.Button(); 

            this.button5 = new System.Windows.Forms.Button(); 

            this.button6 = new System.Windows.Forms.Button(); 

            this.richTextBox1 = new System.Windows.Forms.RichTextBox(); 

            this.LoadFile = new System.Windows.Forms.Button(); 

            this.label1 = new System.Windows.Forms.Label(); 

            this.label2 = new System.Windows.Forms.Label(); 

            this.ConvertCord_BTN = new System.Windows.Forms.Button(); 

            this.FindCollisionBTN = new System.Windows.Forms.Button(); 

            this.FindCavityBTN = new System.Windows.Forms.Button(); 

            this.LayerNumberText = new System.Windows.Forms.TextBox(); 

            this.label3 = new System.Windows.Forms.Label(); 

            this.UnloadBTN = new System.Windows.Forms.Button(); 

            this.panel1 = new System.Windows.Forms.Panel(); 

            this.SuspendLayout(); 

            //  

            // listView1 

            //  

            this.listView1.AutoArrange = false; 

            this.listView1.BackColor = System.Drawing.SystemColors.Window; 

            this.listView1.Columns.AddRange(new System.Windows.Forms.ColumnHeader[] { 

            this.columnHeader25, 

            this.columnHeader26, 

            this.columnHeader27, 

            this.columnHeader28, 

            this.columnHeader29, 

            this.columnHeader30, 

            this.columnHeader31, 

            this.columnHeader32}); 

            this.listView1.ForeColor = System.Drawing.SystemColors.InfoText; 

            this.listView1.FullRowSelect = true; 

            this.listView1.GridLines = true; 

            this.listView1.HideSelection = false; 

            listViewItem1.StateImageIndex = 0; 

            this.listView1.Items.AddRange(new System.Windows.Forms.ListViewItem[] { 

            listViewItem1}); 

            this.listView1.Location = new System.Drawing.Point(16, 23); 

            this.listView1.Margin = new System.Windows.Forms.Padding(5, 6, 5, 6); 

            this.listView1.MultiSelect = false; 

            this.listView1.Name = "listView1"; 

            this.listView1.Size = new System.Drawing.Size(732, 236); 

            this.listView1.TabIndex = 0; 

            this.listView1.UseCompatibleStateImageBehavior = false; 

            this.listView1.View = System.Windows.Forms.View.Details; 

            //  

            // columnHeader25 

            //  

            this.columnHeader25.Text = "IP Address"; 

            this.columnHeader25.Width = 150; 

            //  

            // columnHeader26 

            //  

            this.columnHeader26.Text = "ID"; 

            this.columnHeader26.Width = 47; 

            //  

            // columnHeader27 
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            //  

            this.columnHeader27.Text = "Availability"; 

            this.columnHeader27.Width = 100; 

            //  

            // columnHeader28 

            //  

            this.columnHeader28.Text = "Virtual"; 

            this.columnHeader28.Width = 70; 

            //  

            // columnHeader29 

            //  

            this.columnHeader29.Text = "System name"; 

            this.columnHeader29.Width = 120; 

            //  

            // columnHeader30 

            //  

            this.columnHeader30.Text = "Version"; 

            this.columnHeader30.Width = 80; 

            //  

            // columnHeader31 

            //  

            this.columnHeader31.Text = "Name"; 

            this.columnHeader31.Width = 88; 

            //  

            // columnHeader32 

            //  

            this.columnHeader32.Text = "Mode"; 

            this.columnHeader32.Width = 70; 

            //  

            // button1 

            //  

            this.button1.BackColor = System.Drawing.SystemColors.ActiveCaption; 

            this.button1.Font = new System.Drawing.Font("Microsoft YaHei UI", 16.2F, 

System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(134))); 

            this.button1.Location = new System.Drawing.Point(827, 61); 

            this.button1.Margin = new System.Windows.Forms.Padding(5, 6, 5, 6); 

            this.button1.Name = "button1"; 

            this.button1.Size = new System.Drawing.Size(144, 50); 

            this.button1.TabIndex = 1; 

            this.button1.Text = "Scan Network"; 

            this.button1.UseVisualStyleBackColor = false; 

            this.button1.Click += new System.EventHandler(this.button1_Click); 

            //  

            // button2 

            //  

            this.button2.BackColor = System.Drawing.SystemColors.Highlight; 

            this.button2.Font = new System.Drawing.Font("Microsoft YaHei UI", 16.2F, 

System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(134))); 

            this.button2.Location = new System.Drawing.Point(768, 196); 

            this.button2.Margin = new System.Windows.Forms.Padding(5, 6, 5, 6); 

            this.button2.Name = "button2"; 

            this.button2.Size = new System.Drawing.Size(250, 60); 

            this.button2.TabIndex = 2; 

            this.button2.Text = "PP to Main"; 

            this.button2.UseVisualStyleBackColor = false; 

            this.button2.Click += new System.EventHandler(this.button2_Click); 

            //  

            // button3 

            //  

            this.button3.BackColor = System.Drawing.SystemColors.Highlight; 

            this.button3.Font = new System.Drawing.Font("Microsoft YaHei UI", 16.2F, 

System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0))); 

            this.button3.Location = new System.Drawing.Point(768, 300); 

            this.button3.Margin = new System.Windows.Forms.Padding(5, 6, 5, 6); 

            this.button3.Name = "button3"; 

            this.button3.Size = new System.Drawing.Size(103, 60); 

            this.button3.TabIndex = 3; 

            this.button3.Text = "Start"; 

            this.button3.UseVisualStyleBackColor = false; 

            this.button3.Click += new System.EventHandler(this.button3_Click); 

            //  



105 

 

            // button4 

            //  

            this.button4.BackColor = System.Drawing.Color.FromArgb(((int)(((byte)(255)))), 

((int)(((byte)(128)))), ((int)(((byte)(128))))); 

            this.button4.Font = new System.Drawing.Font("Microsoft YaHei UI", 16.2F, 

System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0))); 

            this.button4.Location = new System.Drawing.Point(768, 372); 

            this.button4.Margin = new System.Windows.Forms.Padding(5, 6, 5, 6); 

            this.button4.Name = "button4"; 

            this.button4.Size = new System.Drawing.Size(103, 55); 

            this.button4.TabIndex = 4; 

            this.button4.Text = "Stop"; 

            this.button4.UseVisualStyleBackColor = false; 

            this.button4.Click += new System.EventHandler(this.button4_Click); 

            //  

            // button5 

            //  

            this.button5.BackColor = System.Drawing.SystemColors.Highlight; 

            this.button5.Font = new System.Drawing.Font("Microsoft YaHei UI", 13F, 

System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(134))); 

            this.button5.Location = new System.Drawing.Point(768, 114); 

            this.button5.Margin = new System.Windows.Forms.Padding(5, 6, 5, 6); 

            this.button5.Name = "button5"; 

            this.button5.Size = new System.Drawing.Size(120, 70); 

            this.button5.TabIndex = 5; 

            this.button5.Text = "Motors ON"; 

            this.button5.UseVisualStyleBackColor = false; 

            this.button5.Click += new System.EventHandler(this.button5_Click); 

            //  

            // button6 

            //  

            this.button6.BackColor = System.Drawing.Color.FromArgb(((int)(((byte)(255)))), 

((int)(((byte)(128)))), ((int)(((byte)(128))))); 

            this.button6.Font = new System.Drawing.Font("Microsoft YaHei UI", 13F, 

System.Drawing.FontStyle.Bold, System.Drawing.GraphicsUnit.Point, ((byte)(0))); 

            this.button6.Location = new System.Drawing.Point(898, 114); 

            this.button6.Margin = new System.Windows.Forms.Padding(5, 6, 5, 6); 

            this.button6.Name = "button6"; 

            this.button6.Size = new System.Drawing.Size(120, 70); 

            this.button6.TabIndex = 6; 

            this.button6.Text = "Motors OFF"; 

            this.button6.UseVisualStyleBackColor = false; 

            this.button6.Click += new System.EventHandler(this.button6_Click); 

            //  

            this.Controls.Add(this.panel1); 

            this.Controls.Add(this.UnloadBTN); 

            this.Controls.Add(this.label3); 

            this.Controls.Add(this.LayerNumberText); 

            this.Controls.Add(this.FindCavityBTN); 

            this.Controls.Add(this.FindCollisionBTN); 

            this.Controls.Add(this.ConvertCord_BTN); 

            this.Controls.Add(this.label1); 

            this.Controls.Add(this.LoadFile); 

            this.Controls.Add(this.richTextBox1); 

            this.Controls.Add(this.button6); 

            this.Controls.Add(this.button5); 

            this.Controls.Add(this.button4); 

            this.Controls.Add(this.button3); 

            this.Controls.Add(this.button2); 

            this.Controls.Add(this.listView1); 

            this.Font = new System.Drawing.Font("Microsoft YaHei UI Light", 10.2F, 

System.Drawing.FontStyle.Regular, System.Drawing.GraphicsUnit.Point, ((byte)(0))); 

            this.Icon = ((System.Drawing.Icon)(resources.GetObject("$this.Icon"))); 

            this.Margin = new System.Windows.Forms.Padding(5, 6, 5, 6); 

            this.Name = "RobotArmController"; 

            this.Text = "RobotArmController"; 

            this.ResumeLayout(false); 

            this.PerformLayout(); 

 

        } 
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        #endregion 

        private System.Windows.Forms.ColumnHeader columnHeader25; 

        private System.Windows.Forms.ColumnHeader columnHeader26; 

        private System.Windows.Forms.ColumnHeader columnHeader27; 

        private System.Windows.Forms.ColumnHeader columnHeader28; 

        private System.Windows.Forms.ColumnHeader columnHeader29; 

        private System.Windows.Forms.ColumnHeader columnHeader30; 

        private System.Windows.Forms.ColumnHeader columnHeader31; 

        private System.Windows.Forms.ColumnHeader columnHeader32; 

        private System.Windows.Forms.Button button1; 

        private System.Windows.Forms.Button button2; 

        private System.Windows.Forms.Button button3; 

        private System.Windows.Forms.Button button4; 

        private System.Windows.Forms.Button button5; 

        private System.Windows.Forms.Button button6; 

        private System.Windows.Forms.RichTextBox richTextBox1; 

        private System.Windows.Forms.ListView listView1; 

        private System.Windows.Forms.Button LoadFile; 

        private System.Windows.Forms.Label label1; 

        private System.Windows.Forms.Label label2; 

        private System.Windows.Forms.Button ConvertCord_BTN; 

        private System.Windows.Forms.Button FindCollisionBTN; 

        private System.Windows.Forms.Button FindCavityBTN; 

        private System.Windows.Forms.TextBox LayerNumberText; 

        private System.Windows.Forms.Label label3; 

        private System.Windows.Forms.Button UnloadBTN; 

        private System.Windows.Forms.Panel panel1; 
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Appendix D 

 

' ****************************************************************************** 

' C# Online Program, Extension 

' ******************************************************************************  

public static class Extensions 

    { 

        private static Random Rand = new Random(); 

 

        public static void DrawPoints(this Graphics gr, 

            List<PointF> points, Brush brush, Pen pen, float radius) 

        { 

            if (points == null) return; 

            foreach (PointF point in points) 

                gr.DrawPoint(point, brush, pen, radius); 

        } 

 

        public static void DrawRectangle(this Graphics gr, 

            Pen pen, RectangleF rect) 

        { 

            gr.DrawRectangle(pen,rect.X, rect.Y, rect.Width, rect.Height); 

        } 

        public static void DrawRect(this Graphics gr, PointF point, 

            Brush brush, Pen pen, float radius) 

        { 

            RectangleF rect = new RectangleF( 

                point.X - radius, point.Y - radius, 

                2 * radius, 2 * radius); 

            gr.FillRectangle(brush, rect); 

            gr.DrawRectangle(pen, rect); 

        } 

        public static void DrawPoint(this Graphics gr, PointF point, 

            Brush brush, Pen pen, float radius) 

        { 

            RectangleF rect = new RectangleF( 

                point.X - radius, point.Y - radius, 

                2 * radius, 2 * radius); 

            gr.FillEllipse(brush, rect); 

            gr.DrawEllipse(pen, rect); 

        } 

        public static void DrawCross(this Graphics gr, 

            Pen pen, PointF point, float radius) 

        { 

            gr.DrawLine(pen, point.X - radius, point.Y, point.X + radius, point.Y); 

            gr.DrawLine(pen, point.X, point.Y - radius, point.X, point.Y + radius); 

        } 

        public static void DrawCross(this Graphics gr, 

            Color outer_color, Color inner_color, PointF point, float radius) 

        { 

            using (Pen pen = new Pen(outer_color, 3)) 

            { 

                gr.DrawLine(pen, point.X - radius - 1, point.Y, point.X + radius + 1, point.Y); 

                gr.DrawLine(pen, point.X, point.Y - radius - 1, point.X, point.Y + radius + 1); 

            } 

            using (Pen pen = new Pen(inner_color, 1)) 

            { 

                gr.DrawLine(pen, point.X - radius, point.Y, point.X + radius, point.Y); 

                gr.DrawLine(pen, point.X, point.Y - radius, point.X, point.Y + radius); 

            } 

        } 

 

        // Pick a random item from the list. 

        public static T Random<T>(List<T> items) 

        { 

            return items[Rand.Next(items.Count)]; 

        } 
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        // Randomize an array. 

        public static void Randomize<T>(this T[] items) 

        { 

            // For each spot in the array, pick 

            // a random item to swap into that spot. 

            for (int i = 0; i < items.Length - 1; i++) 

            { 

                int j = Rand.Next(i, items.Length); 

                T temp = items[i]; 

                items[i] = items[j]; 

                items[j] = temp; 

            } 

        } 

 

        // Randomize a list. 

        public static void Randomize<T>(this List<T> items) 

        { 

            // Convert into an array. 

            T[] item_array = items.ToArray(); 

 

            // Randomize. 

            item_array.Randomize(); 

 

            // Copy the items back into the list. 

            items.Clear(); 

            items.AddRange(item_array); 

        } 

    } 

} 
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Appendix E 

 

' ****************************************************************************** 

' C# Online Program, Cavities 

' ****************************************************************************** 

        private Brush[] PointBrushes = 

        { 

            Brushes.Pink, Brushes.LightGreen, Brushes.LightBlue, Brushes.Yellow, 

            Brushes.Orange, Brushes.Lime, Brushes.Cyan, Brushes.White, 

        }; 

        private Pen[] PointPens = 

        { 

            Pens.Red, Pens.Green, Pens.Blue, Pens.Black, 

            Pens.Red, Pens.Green, Pens.Blue, Pens.Black, 

        }; 

        private Brush[] CentroidBrushes = 

        { 

            Brushes.Red, Brushes.Green, Brushes.Blue, Brushes.Yellow, 

            Brushes.Orange, Brushes.Lime, Brushes.Cyan, Brushes.White, 

        }; 

                 

         

        private void CavityClustering_Load(object sender, EventArgs e) 

        { 

            MaxClusters = PointBrushes.Length; 

        } 

 

        private void picItems_Paint(object sender, PaintEventArgs e) 

        { 

             

            const float RADIUS = 3; 

            e.Graphics.SmoothingMode = SmoothingMode.AntiAlias; 

            //e.Graphics.DrawPoint(new PointF(50, 50), PointBrushes[5],PointPens [5], 5); 

            // Draw the points. 

            foreach (PointData point_data in Points) 

            { 

                e.Graphics.DrawPoint(new PointF(point_data.Location.X , point_data.Location.Y), 

                    PointBrushes[point_data.ClusterNum % MaxClusters], 

                    PointPens[point_data.ClusterNum % MaxClusters], RADIUS); 

            } 

 

            // Draw the centroids. 

            for (int i = 0; i < Centroids.Count; i++) 

            { 

                e.Graphics.DrawRect(Centroids[i], 

                    CentroidBrushes[i % MaxClusters], Pens.Black, RADIUS); 

            } 
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                //PointsBackUp = Points; 

            } 

            //float AvrageX = 0.0f; 

            //float AvrageY = 0.0f; 

            SumX = 0.0f; 

            SumY = 0.0f; 

            MinX = Points[0].Location.X; 

            MaxX = Points[0].Location.X; 

            MinY = Points[0].Location.Y; 

            MaxY = Points[0].Location.Y; 

            foreach (PointData p in Points) 

            { 

                SumX += p.Location.X; 

                SumY += p.Location.Y; 

                if(p.Location.X < MinX) 

                { 

                    MinX = p.Location.X; 

                } 

                else if (p.Location.X > MaxX) 

                { 

                    MaxX = p.Location.X; 

                } 

                if(p.Location.Y < MinY) 

                { 

                    MinY = p.Location.Y; 

                } 

                else if(p.Location.Y > MaxY) 

                { 

                    MaxY = p.Location.Y; 

                } 

            } 

            //MessageBox.Show((MinX).ToString() + " " + (MaxX).ToString()); 

            //MessageBox.Show((MinY).ToString() + " " + (MaxY).ToString()); 

 

            lengthX = Math.Sqrt(Math.Pow(Math.Abs(MinX - MaxX), 2)); 

            lengthY = Math.Sqrt(Math.Pow(Math.Abs(MinY - MaxY), 2)); 

            //MessageBox.Show("Length X = "+lengthX.ToString()+" "+"Length Y = "+ 

lengthY.ToString()); 

 

 

            //MessageBox.Show("Length X = "+lengthX.ToString(), "Length Y = " + 

lengthY.ToString()); 

            //AvrageX = SumX / Points.Count; 

            //AvrageY = SumY / Points.Count; 

            //float tempX = -(AvrageX - (picItems.Size.Width / 2)); 
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            //float tempY = -(AvrageY - (picItems.Size.Height / 2));        public static void 

MakePath() 

        { 

            Paths = new List<PointF>(); 

            //MessageBox.Show(); 

            foreach (Vector4 p in IntersectionFinder.NewLines) 

            { 

                //MessageBox.Show("MinX = " + MinX + " lengthX = "+ lengthX + " point.X = "+p.X +  

                    //"Math.Sqrt(Math.Pow(Math.Abs(MinX - (lengthX-p.X)), 2))"); 

                float px = PicItemSizeWithd - p.Y; 

                float py = PicItemSizeHeight - p.X; 

                float pz = PicItemSizeWithd - p.W; 

                float pw = PicItemSizeHeight - p.Z; 

                double LengthPointX1 = Math.Sqrt(Math.Pow(Math.Abs(MinX - (px)), 2)); 

                //MessageBox.Show("LengthPointX1 = " + LengthPointX1 + " MinX = " + MinX + " 

lengthX = "+ lengthX+ " px = "+ px); 

 

                double XRatio1 = (lengthX * 1.1f) / ((lengthX - LengthPointX1)); 

 

                double LengthPointY1 = Math.Sqrt(Math.Pow(Math.Abs(MinY - (py)), 2)); 

                double YRatio1 = (lengthY * 1.1f) / (lengthY - LengthPointY1); 

 

                double LengthPointX2 = Math.Sqrt(Math.Pow(Math.Abs(MinX - (pz)), 2)); 

                double XRatio2 = (lengthX * 1.1f) / ((lengthX - LengthPointX2)); 

 

                double LengthPointY2 = Math.Sqrt(Math.Pow(Math.Abs(MinY - (pw)), 2)); 

                double YRatio2 = (lengthY * 1.1f) / (lengthY - LengthPointY2); 

 

                PointF p1 = new PointF(PicItemSizeWithd / (float)XRatio1 + (float)(lengthX / 10), 

PicItemSizeHeight / (float)YRatio1 + (float)(lengthY / 10)); 

                Paths.Add(p1); 

                //MessageBox.Show(p1.X + ","+p1.Y); 

                PointF p2 = new PointF(PicItemSizeWithd / (float)XRatio2 + (float)(lengthX / 10), 

PicItemSizeHeight / (float)YRatio2 + (float)(lengthY / 10)); 

                //MessageBox.Show(p2.X + "," + p2.Y); 

                Paths.Add(p2); 

            } 

        } 

        private void MakePoints() 

        { 

            // Make sure there is at least one seed. 

            if (Seeds.Count < 1) 

            { 

                //MessageBox.Show("Please define at least one seed first."); 

                return; 

            } 

 

            // Clear the Centroids list. 
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            Centroids.Clear(); 

 

            // Make the points. 

            Random rand = new Random(); 

            double max_r = Math.Min( 

                PicItemSizeWithd, 

                PicItemSizeHeight)/* / 6*/; 

 

            picItems.Refresh(); 

        } 

 

        private double Score(List<PointF> centroids, List<PointData> points) 

        { 

            double total = 0; 

            foreach (PointData point_data in points) 

            { 

                total += Distance2(point_data.Location, 

                    centroids[point_data.ClusterNum]); 

            } 

            return total; 

        } 

 

        private double Distance2(PointF point1, PointF point2) 

        { 

            float dx = point1.X - point2.X; 

            float dy = point1.Y - point2.Y; 

            return dx * dx + dy * dy; 

        } 

        private double Distance(PointF point1, PointF point2) 

        { 

            float dx = point1.X - point2.X; 

            float dy = point1.Y - point2.Y; 

            return Math.Sqrt(dx * dx + dy * dy); 

        } 

 

        private void UpdateSolution() 

        { 

            // Find new centroids. 

            int num_clusters = Centroids.Count; 

            PointF[] new_centers = new PointF[num_clusters]; 

            int[] num_points = new int[num_clusters]; 

            //textBoxLog.Text += "Update"; 

            foreach (PointData point in Points) 

            { 

                double best_dist = Distance(point.Location, Centroids[0]); 

                int best_cluster = 0; 

                for (int i = 1; i < num_clusters; i++) 

                { 
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                    double test_dist = 

                        Distance(point.Location, Centroids[i]); 

                    if (test_dist < best_dist) 

                    { 

                        best_dist = test_dist; 

                        best_cluster = i; 

                        point.ClusterCount = i; 

                    } 

                } 

                point.ClusterNum = best_cluster; 

                 

                new_centers[best_cluster].X += point.Location.X; 

                new_centers[best_cluster].Y += point.Location.Y; 

                num_points[best_cluster]++; 

            } 

 

            // Calculate the new centroids. 

            List<PointF> new_centroids = new List<PointF>(); 

            for (int i = 0; i < num_clusters; i++) 

            { 

                new_centroids.Add(new PointF( 

                    new_centers[i].X / num_points[i], 

                    new_centers[i].Y / num_points[i])); 

            } 

 

            // See if the centroids have moved. 

            bool centroids_changed = false; 

            for (int i = 0; i < num_clusters; i++) 

            { 

                const float min_change = 0.5f; 

                if ((Math.Abs(Centroids[i].X - new_centroids[i].X) > min_change) || 

                    (Math.Abs(Centroids[i].Y - new_centroids[i].Y) > min_change)) 

                { 

                    centroids_changed = true; 

                    break; 

                } 

            } 

            if (!centroids_changed) 

            { 

                tmrUpdate.Enabled = false; 

                FinalizedCluster(); 

                Cursor = Cursors.Default; 

                return; 

            } 

            // Update the centroids. 

            Centroids = new_centroids; 

        } 

        private void btnMakeClusters_Click(object sender, EventArgs e) 
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        { 

            int num_clusters = Seeds.Count; 

            MaxClusters = Seeds.Count; 

            if (Points.Count < num_clusters)  

            { 

                //MessageBox.Show("No Centroid selected"); 

                return; 

            } 

            // Reset the data. 

            // Pick random centroids. 

            Centroids = new List<PointF>(); 

            Points.Randomize(); 

            for (int i = 0; i < num_clusters; i++) 

                Centroids.Add(Seeds[i]); 

            //foreach (PointData point_data in Points) 

            //    point_data.ClusterNum = 0; 

            //FinalizedCluster(); 

            NumSteps = 0; 

            picItems.Refresh(); 

            //lblScore.Text = ""; 

            Cursor = Cursors.WaitCursor; 

            tmrUpdate.Enabled = true; 

        } 

        private void tmrUpdate_Tick(object sender, EventArgs e) 

        { 

            NumSteps++; 

            UpdateSolution(); 

            picItems.Refresh(); 

        } 

        private int Score() 

        { 

            float score = 0; 

            foreach (PointData point in Points) 

            { 

                float dx = Centroids[point.ClusterNum].X - point.Location.X; 

                float dy = Centroids[point.ClusterNum].Y - point.Location.Y; 

                score += dx * dx + dy * dy; 

            } 

            return (int)score; 

        } 

        private void picItems_MouseClick(object sender, MouseEventArgs e) 

        { 

            if (e.Button == MouseButtons.Left && isCentroidEnabled) 

            { 

                Seeds.Add(e.Location); 

                Centroids.Clear(); 

                picItems.Refresh(); 

            } 
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            else if (e.Button == MouseButtons.Left && isPolygonalActive) 

            { 

                Vertis.Add(e.Location); 

                picItems.Refresh(); 

            } 

        } 

        private void btnClear_Click(object sender, EventArgs e) 

        { 

            ClearAll(); 

        } 

        private void CentroidActivator_Click(object sender, EventArgs e) 

        { 

            isCentroidEnabled = !isCentroidEnabled; 

            isPolygonalActive = false; 

        } 

        private void btnCleanCentroid_Click(object sender, EventArgs e) 

        { 

            Seeds.Clear(); 

            Centroids.Clear(); 

            picItems.Refresh(); 

        } 

        private void PolyDraw_Click(object sender, EventArgs e) 

        { 

            isPolygonalActive = !isPolygonalActive; 

            isCentroidEnabled = false; 

        } 

        bool IsPointInPolygon(PointF[] polygon, PointF testPoint) 

        { 

            int count = polygon.Length; 

            bool inside = false; 

 

            for (int i = 0, j = count - 1; i < count; j = i++) 

            { 

                if (((polygon[i].Y > testPoint.Y) != (polygon[j].Y > testPoint.Y)) && 

                    (testPoint.X < (polygon[j].X - polygon[i].X) * (testPoint.Y - polygon[i].Y) / 

(polygon[j].Y - polygon[i].Y) + polygon[i].X)) 

                { 

                    inside = !inside; 

                } 

            } 

 

            return inside; 

        } 

        private void RemovePoints_Click(object sender, EventArgs e) 

        { 

            TempPoints = new List<PointData>(); 

            //int counter = 0; 

            for (int i = 0; i < Points.Count; i++) 
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            { 

                if (!IsPointInPolygon(_points, new PointF(Points[i].Location.X, 

Points[i].Location.Y))) 

                { 

                    TempPoints.Add(new PointData(Points[i].Location.X, Points[i].Location.Y, 

Points[i].ClusterNum, Points[i].ID, Points[i].ClusterCount)); 

                    //counter++; 

                } 

            } 

            //textBoxLog.Text = "Counter: "+counter.ToString(); 

            Points.Clear(); 

            Points = TempPoints; 

            Seeds.Clear(); 

            Vertis.Clear(); 

            Centroids.Clear(); 

            //Points.Clear(); 

 

            picItems.Paint += new System.Windows.Forms.PaintEventHandler(this.picItems_Paint); 

            picItems.Refresh(); 

        } 

        void FinalizedCluster() 

        { 

            StreamWriter writer = new StreamWriter(Directory.GetCurrentDirectory() + 

"/Clusters.asc"); 

            TempPoints = new List<PointData>(); 

            foreach (PointData p in Points) 

            { 

                foreach (PointData pd in PointsBackUp) 

                { 

                } 

                 

            } 

            writer.Close(); 

            MyClustersPoint = new List<List<PointF>>(); 

             

            for (int i = 0; i < Seeds.Count; i++) 

            { 

                MyClustersPoint.Add(new List<PointF>()); 

                borderLinePoints.Add(new List<PointF>()); 

                for (int j = 0; j < Points.Count; j++) 

                { 

                    if (Points[j].ClusterNum == i) 

                    { 

                        MyClustersPoint[i].Add(Points[j].Location); 

                    } 

                } 

                borderLinePoints[i] = MakeBorderLine(MyClustersPoint[i]); 

            } 
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            IntersectionFinder.Convert2Coordinate(); 

            StreamWriter LineWriter = new StreamWriter(Directory.GetCurrentDirectory() + 

"/NewLines.asc"); 

            for(int l = 0 ; l < IntersectionFinder.NewLines.Count; l++) 

            { 

                LineWriter.WriteLine(IntersectionFinder.NewLines[l].ToString()); 

            } 

            LineWriter.Close(); 

            Seeds.Clear(); 

            Vertis.Clear(); 

            Centroids.Clear(); 

            Points.Clear(); 

            isCentroidEnabled = false; 

            isPolygonalActive = false; 

        } 

        public static List<PointF> MakeBorderLine(List<PointF> _MyClustersPoint) 

        { 

            List<PointF> convexHull = new List<PointF>(ConvexHull(_MyClustersPoint)); 

            List<PointF> borderPoints = new List<PointF>(); 

            for (int k = 0; k < convexHull.Count; k++) 

            { 

                PointF current = convexHull[k]; 

                PointF next = convexHull[(k + 1) % convexHull.Count]; 

                PointF prev = convexHull[(k - 1 + convexHull.Count) % convexHull.Count]; 

 

                if (current == prev || current == next) 

                { 

                    // Skip points that are adjacent to the same point 

                    continue; 

                } 

 

                if (!IsCollinear(current, next, prev)) 

                { 

                    borderPoints.Add(current); 

                    // Add the current point to the border line points 

                    //borderLinePoints[i].Add(current); 

                    //MyClustersPoint[i].Add(ClusterPoints[k].Location); 

                } 

            } 

            return borderPoints; 

        } 

            foreach (PointF p in sortedPoints) 

            { 

                while (upperHull.Count >= 2 && 

                       CrossProduct(upperHull[upperHull.Count - 2], upperHull[upperHull.Count - 

1], p) <= 0) 

                { 

                    upperHull.RemoveAt(upperHull.Count - 1); 
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                } 

                upperHull.Add(p); 

            } 

 

            // Find the lower hull 

            List<PointF> lowerHull = new List<PointF>(); 

            for (int i = sortedPoints.Count - 1; i >= 0; i--) 

            { 

                PointF p = sortedPoints[i]; 

                while (lowerHull.Count >= 2 && 

                       CrossProduct(lowerHull[lowerHull.Count - 2], lowerHull[lowerHull.Count - 

1], p) <= 0) 

                { 

                    lowerHull.RemoveAt(lowerHull.Count - 1); 

                } 

                lowerHull.Add(p); 

            } 

 

            // Combine the upper and lower hulls 

            lowerHull.RemoveAt(lowerHull.Count - 1); 

            upperHull.AddRange(lowerHull); 

            return upperHull; 

        } 

        static float CrossProduct(PointF A, PointF B, PointF C) 

        { 

            float crossP = (B.X - A.X) * (C.Y - A.Y) - (B.Y - A.Y) * (C.X - A.X); 

            //Console.WriteLine(crossP); 

            return crossP; 

        } 

        // Collinear function 

        static bool IsCollinear(PointF A, PointF B, PointF C) 

        { 

            return Math.Abs(CrossProduct(A, B, C)) < 0.000000000001; 

        } 

 

        private void CavityClustering_Load_1(object sender, EventArgs e) 

        { 

            PicItemSizeWithd = picItems.Width; 

            PicItemSizeHeight = picItems.Height; 

            //MessageBox.Show(picItems.Width + "," + picItems.Height); 

            GetPoints(); 

        } 

         

        void ClearAll() 

        { 

            Seeds.Clear(); 

            Vertis.Clear(); 

            Centroids.Clear(); 
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            Points.Clear(); 

            picItems.Refresh(); 

        } 

        private void CavityClustering_FormClosing(object sender, FormClosingEventArgs e) 

        { 

            ClearAll(); 

            e.Cancel = true; 

            this.Hide(); 

        } 

    } 

} 


