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Abstract 

 

The Applicability of a Machine Learning Methodology to Generate TMY Weather Files 

 

Ashleigh Papakyriakou 

To effectively decarbonize buildings accurate energy models must be created to predict building 

energy performance. Typical meteorological year (TMY) weather files represent long-term 

weather conditions and are used in energy modelling to help evaluate energy performance. This 

thesis explores generating TMY files using machine learning to improve accuracy, which can 

significantly influence energy simulation results. The current TMY generation approach relies on 

expert judgment, often overlooking seasonal, climate and application-based variations. 

Manuscript #1 introduces a machine learning methodology using feature importance to determine 

the relevant generation parameters used in the Sandia method to enhance the current TMY 

generation approach. The proposed methodology is applied to a medium office building in 

Montreal. The results reveal an improved representativeness of the long-term average building 

energy demand for the TMY generated using the proposed methodology. 

Manuscript #2 aims to (1) assess the applicability of the methodology across Canadian climates; 

(2) investigate the feasibility of using standardized climate zone-based weighting factors to reduce 

the computational time associated with extracting location-based weighting factors to facilitate 

wider adoption of the proposed methodology. The methodology is applied to 18 cities across six 

Canadian climate zones and generates two weather files for each location. TMYSTATION uses 

location-based weighting factors while TMYCZ uses climate zone-based weighting factors. The 

CV(RMSE) and NMBE indicate the proposed weather files outperform the conventional weather 

files in predicting the long-term energy performance of buildings. Although the TMYSTATION files 

performed marginally better, the convenience of standardized climate zone-based weighting 

factors can enhance the methodology’s adaptability.  
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Chapter 1 Introduction 

1.1 Background 

The buildings sector is the third-largest source of greenhouse gas (GHG) emissions in Canada [1]. 

Canada has an ambitious goal of reaching net-zero emissions by 2050 [1]. Achieving this goal 

involves the decarbonization of both existing and new buildings. Energy modelling is an important 

tool used to evaluate the energy consumption of various design alternatives and is frequently used 

to assess design alternatives in buildings. Energy modelling aids in selecting the most cost-

effective and impactful design decisions, thereby reducing a building's energy consumption, 

carbon emissions, and operating costs.  

Designers and engineers typically use a typical meteorological year (TMY) weather file in energy 

modeling, rather than multiple years of historical weather data, to facilitate comparison and 

evaluate different designs. A TMY weather file is a synthetic file created for a specific location to 

represent typical long-term weather conditions.  The TMY weather file is composed of 12 typical 

months of hourly historical weather data and does not include extreme weather data. Typically, a 

minimum period of ten years is analyzed to create these files. 

The Sandia method [2] [3] is a common method used to generate TMY weather files, other well-

known TMY generation methods are the Danish method [4] and the Festa and Ratto method [5], 

however, these generation methods can be more complex to apply [6].    The Sandia method uses 

the Finkelstein-Schafer (FS) statistical method and weighting factors to select individual months 

from long-term historical weather data that represent the most typical month for a given location. 

The weighted sum is determined for each month and the month with the lowest weighted sum is 

selected. The complete Sandia method is outlined in Chapter 2. 

Provinces across Canada such as Ontario [7] and British Columbia [8], as well as municipalities 

such as the City of Toronto [9], have sustainability requirements that must be met, which are 

typically verified using an energy model with a TMY weather file such as the Canadian Weather 

Year for Energy Calculation (CWEC) [10].  The CWEC TMY weather file datasets were developed 

by Environment Canada and are commonly used to represent Canadian locations. Many other 

commonly used TMY weather files use universal weighting factors which were assigned based on 
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the intended use of the weather file using expert judgement. The original Typical Metrological 

Year ([TMY]1) [11], dataset was designed to be used for solar heating systems [2] while TMY2 

[12] and TMY3 [13] were designed to be used for energy conversion and building systems [12]. 

Furthermore, the CWEC, International Weather for Energy Calculation (IWEC) [14], and IWEC2 

[14] [15], weighting factors were selected to best represent the building systems [10].  

The conventional practice of assigning universal weather parameters and annual weighting factors 

based on expert judgement is inadequate in capturing the diverse requirements of different 

applications and the variation in the climatic characteristics of a location. Given that TMY weather 

files exert a significant influence on the simulation results, it is imperative to use TMY weather 

files that accurately represent long-term weather conditions.  

1.2 Literature Review 

1.2.1 Impact of Weather Data on Results  

Weather has a significant influence on building energy consumption. Using a TMY weather file 

produced with poor data quality or TMY weather files that do not accurately represent a location 

can skew simulation results.  A study by Bhandari et al. [16] compared two sources of third-party 

historical weather data from different providers with measured data (referred to as Meas) for the 

study location, Oak Ridge Tennessee in the US.  The authors observed significant variation 

between the data sets, with differences in individual hourly reaching as high as 90%. This variation 

can be attributed to the raw data and processing techniques used to produce the weather parameters. 

Additionally, the authors used building simulation to compare the three data sources with a TMY3 

weather file for Oak Ridge. The study found significant variation in heating and cooling loads, 

with monthly loads varying by up to 40%, however, the annual energy consumption only varied 

by up to 7%. The study highlights the importance of the quality of the historical data used to 

generate TMY weather files and the influence using poor data can have on simulation results. 

 

1 [TMY]: Used to denote the Typical Meteorological Year file format originally presented in [2] 
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Furthermore, the study highlights, how weather files produced by different organizations can yield 

different results.  

There have been studies completed to determine if TMY weather files can accurately reflect the 

annual fluctuations in long-term weather data. A study by Hong et al. [17] compared simulation 

results for 30 years of historical weather data with TMY3 weather file results for three different 

sizes of prototypical office buildings (small, medium, large) at two different design efficiency 

levels across 17 ASHRAE climate zones. The study concluded with four main findings: 1. The 

variation in annual weather data has a larger impact on peak demand compared to building energy 

consumption; 2. Building simulations completed with TMY3 weather files can significantly under- 

or overestimate energy consumption and do not provide a good representative of the average 

energy use using AMY data across a 30-year period; 3. Buildings in colder climates tend to be 

more sensitive to annual variations in weather data; 4. The medium office building was most 

sensitive to variations in annual weather data compared to large and small offices. The study 

highlights the need to improve TMY weather files to better represent the long-term average data. 

Furthermore, the study demonstrates how different locations and different building types can have 

varying sensitivity to weather data. A study by Cui et al. [18] compared TMY weather files with 

historical long-term weather data for major cities in China to determine if TMY weather files can 

represent the annual seasonal variation. The study concluded 1. Colder climates have more 

significant variation in annual weather data, 2. The TMY weather file provided a good 

representation in terms of the long-term average but did not represent the variation in weather data 

3. TMY weather files tended to over and under-estimate the peak load and energy consumption 4. 

The peak demand was more sensitive to variations in weather data than energy consumption. The 

study advocates for TMY weather files to be generated with customized weighting factors that 

account for the individual climate characteristics of a given location. 

Lastly, a few studies compared the impact on results of using the different TMY generation 

methods to create TMY weather files. A study by Janjai and Deeyai [6]. compared the Sandia 

method, the Danish method, and the Festa and Ratto method to generate TMY weather files in 

Thailand. The study found the three methods produced similar results; however, the authors 

recommended the use of the Sandia method due to its simplicity in application. However, a study 

by Skeiker [19], compared the three methods by generating TMY weather files with 10 years of 
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hourly data for Damascus, Syria, and found the Sandia method best represented the long-term 

average performance. These differences in results between the two studies may be attributed to the 

different climates between the locations. Thailand is characterized by a year-round tropical climate 

[6] whereas Syria is characterized by a Mediterranean climate and experiences very dry summers 

and mild winters [20].  

The studies summarized above emphasize the following: 

 Weather data has a significant impact on building simulation results.  

 The data quality, and how organizations process the data can impact the results. 

 The current TMY weather files may not adequately reflect the fluctuations seen in the long-

term weather data.  

 Not all TMY weather files perform the same. 

Based on the following points, there is a need to improve TMY weather files to reflect long-term 

weather data more accurately. 

1.2.2 TMY Weather File for Different Applications 

TMY weather files can be used for various applications such as building energy simulation, 

renewable energy systems, daylighting, hydrology, hygrothermal, climatology, meteorology, and 

biometeorology. However, the weather parameters and weighting factors must be determined 

based on the application of the TMY weather file, as stated in the original [TMY]1 weather file 

manual [2].  

Georgiou et al. [21] conducted a parametric analysis in Cyprus, assessing the influence of 

weighting factors on TMY generation for various applications, including residential solar thermal 

systems, wind turbines, and typical dwellings in Cyprus. The study demonstrated the influence the 

weighting factors have on the typical months selected to create the TMY weather file.   

Several studies have modified the weighting factors used to generate TMY weather files based on 

the application using the Sandia method and saw an improved representation with the long-term 

average compared to the typical weighting factors used.  Kambezidis et al [22] created TMY 

weather files for five different applications which were meteorology-climatology, biometeorology, 

agro-meteorology-hydrology, photovoltaics, and building energy models. They found the 
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generated TMY weather files to provide a good representation of the long-term average however, 

the authors selected the weights based on judgment for each application.  

Two studies used a genetic algorithm to optimize the weighting factors used to generate TMY 

weather files based on the intended use of the weather files.  A study by Sun et al. [23] used a 

genetic algorithm (GA) to optimize weighting factors for a TMY weather file to be used for both 

daylighting and energy simulation. Chan [16] also used a GA to optimize weighting factors to 

create TMY weather files for each of the following applications: a fully air-conditioned office 

building, a building-attached non-concentrating photovoltaic (BaPV) system, a wind turbine 

power generation system, and a concentrating solar power (CSP) system. In the study, Chan [16] 

found the optimized weights for each application to vary compared to the original IWEC weather 

file weights, however, found the weights for the office buildings to be closest to the IWEC weights.   

The above studies indicate the importance of determining weightings for the TMY weather files 

based on the intended use of the weather file. However, in the above studies, the weather 

parameters are manually assigned, and the weightings are either manually assigned or optimized 

using GA. A drawback of using GA to optimize weighting factors is that it can be time-consuming 

to determine the optimized weights.  

1.2.3 TMY Weather Files for Different Climates 

Many studies have evaluated the impact of TMY weather files on different climates. A study by 

Kalamees et al. [24] conducted a sensitivity analysis on different weather parameters and assigned 

monthly weights based on the amount of influence each parameter had on the heating and cooling 

demand. The study was conducted on an office building and a detached house in a cold climate. 

The study highlighted the seasonal variation in the influence of the weather parameters, 

demonstrating the need for monthly weighting factors.  

In a study by Meng et al. [25], office buildings were simulated in China’s three major climate 

zones to determine which climatic variables had the most significant impact on heating loads. The 

study found dry bulb temperature to have the largest influence on heating demand across the three 

climate zones however the magnitude of influence varied based on the climate zone as well as the 

influence from the other weather parameters. The study highlighted how the influence of weather 

parameters varies based on the climate zone.  
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A study by Qian et al. [26] proposed a methodology to generate new weighting factors for TMY 

weather files. The study was conducted on a multi-family low-rise apartment building for three 

cities in China with distinct climate zones: a severe cold climate zone, a cold climate zone, and a 

hot summer and cold winter climate zone. The TMY weather files for each location were 

generated using customized weighting factors determined using correlation. The study simulated 

the building energy model with the long-term weather data and compared the correlation using 

the normalized Pearson correlation coefficient between the simulated indoor temperature and the 

meteorological weather parameters to determine the weighting factors. Once the weights were 

determined, the study created TMY weather files using the Sandia method for each location and 

compared them with the original TMY datasets.  The study found that TMY weather files 

generated using customized weighting factors had a better fit to the long-term average compared 

to the original TMY dataset and improved thermal comfort. Furthermore, the study found the 

correlation between indoor temperature and both wind speed and relative humidity varied based 

on the climate zone, further indicating the need for climate-specific weighting factors. One 

limitation of the proposed methodology is the use of the Pearson correlation coefficient to 

determine weighting factors. The methodology assumes a linear relationship between indoor 

temperature and each weather parameter.  As a result, correlation may not be suitable to determine 

weighting factors for certain weather parameters. Additionally, the study is only evaluating 

correlation and does not consider multi-collinearity. 

A study by Li et al. [27] used a new method to generate TMY weather files. The authors applied 

an entropy-based Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) 

method to generate unique weighting factors and TMY files for different climate zones in China. 

The authors found the results to align better with the long-term average compared to using the 

Sandia method with fixed weighting factors.  However, the study did not highlight whether the 

improvement was a result of the proposed generation method or the use of customized weighting 

factors. Furthermore, although a novel approach, the TOPSIS method is more complex than the 

commonly used Sandia method.  

The following studies demonstrate the need for weighting factors to consider location-specific 

climatic characteristics however there still lacks a sufficient methodology to develop these 

weighting factors.  
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1.3 Objective 

The objective of this thesis is to: 

1. Determine if integrating machine learning into the generation of typical meteorological 

year (TMY) weather files improves the representativeness of how building energy models 

will perform over the long term compared to the current TMY generation approach. 

2. Determine if the machine learning methodology is applicable to various climates. 

3. Determine if the use of standardized climate zone-based weighting factors can enhance the 

adaptability of the proposed machine learning approach. 

1.4 Thesis Structure 

This manuscript-based thesis consists of four chapters: 

 Chapter 1 introduces the thesis background, literature review, thesis objectives, thesis 

structure, and the manuscript executive summary.  

 Chapter 2 is the first manuscript titled “Defining generation parameters with an adaptable 

data-driven approach to construct typical meteorological year weather files”.   

 Chapter 3 is the second manuscript titled, “Evaluating the applicability of a machine 

learning methodology to improve TMY weather file generation for different Canadian 

climate zones”.  

 Chapter 4 consists of the conclusions and future works. 

1.5 Manuscript Executive Summary  

1.5.1 Manuscript 1: Defining generation parameters with an adaptable data-driven 

approach to construct typical meteorological year weather files. 

Chapter 2 introduces a methodology to systematically define the relevant weather parameters and 

calculate their corresponding weighting factors using machine learning and feature importance. 

The weather parameters and weighting factors are then integrated into the Sandia method to 

generate the TMY weather file. The methodology aims to improve the current approach of TMY 

weather file generation by providing a data-driven approach that is adaptable to different 

applications and climate zones.  
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The methodology uses a gradient-boosted tree regression model. The use of machine learning to 

determine the relevant weather parameters and weighting factors tailored to specific applications 

and locations minimizes the uncertainty associated with assigning weighting factors based on 

experts’ judgement. The methodology was applied to a prototypical medium office building 

located in Montreal, Quebec. 20 years of hourly historical weather data was obtained, and a 

building energy model was created based on the National Energy Code of Canada for Buildings 

2020 requirements for Montreal’s climate zone. The methodology determined the relevant weather 

parameters that had the most influence on building energy demand and a set of 12 monthly 

weighting factors were generated using feature importance. Monthly weighting factors were 

obtained instead of annual weighting factors to account for seasonal fluctuations. The relevant 

weather parameters and weighting factors were then integrated into the Sandia method to generate 

the TMY weather file.  

The generated TMY weather file was evaluated against the CWEC weather file for the same 

location, and both were compared to the long-term average historical weather data. The root-mean-

square error (RMSE) was used as the performance indicator and the generated TMY weather files 

had lower RMSE values indicating a better representation of the long-term average energy 

demand. The generated TMY weather file improved the performance by 16% compared to the 

CWEC weather file.  Although the proposed methodology performed better than the CWEC 

weather file, the methodology still has a few limitations such as being location-dependent, the 

accuracy of the machine learning model, and requiring continuous data inputs. 

1.5.2 Manuscript 2: Evaluating the applicability of a machine learning methodology to 

improve TMY weather file generation for different Canadian climate zones. 

Chapter Chapter 3 applies the methodology proposed in Chapter 2 to 18 locations across Canada 

to represent the six diverse Canadian climate zones. The purpose of the study is to: 

1. Determine the applicability of the proposed machine-learning methodology across various 

climates.  

2. Determine if the use of a standardized set of climate zone-based weighting factors is 

feasible to enhance the adaptability of the proposed methodology.  
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The study produces two TMY weather files for each location, a TMYSTATION weather file produced 

with location-based weighting factors, and a TMYCZ weather file produced with climate zone-

based weighting factors. The location-based weighting factors are produced using the 

methodology outlined in Chapter 2. The climate zone-based weighting factors are determined by 

taking the average of the location-based weighting factors generated for each city within the 

climate zone. 

Six prototypical medium office building energy models are developed based on the NECB 2020 

requirements for each climate zone and are simulated with the hourly historical weather data for 

each location. An ideal air loads model is used to assess the building energy demand. The 

TMYSTATION and TMYCZ weather files are compared to the CWEC weather files using the long-

term average weather data and two performance indicators, the coefficient of variation of the root 

mean square error (CV(RMSE)) and normalized mean bias error (NMBE) to evaluate the results. 

The CV(RMSE) evaluates the variation in the model and the NMBE evaluates the bias in the 

model. Furthermore, the ASHRAE Guideline 14 provides acceptable ranges for both the 

CV(RMSE) and NMBE to determine if the results are acceptable.  

The TMYSTATION and TMYCZ weather files performed better than the CWEC weather files in 

representing the long-term average for the majority of the locations as indicated by lower 

CV(RMSE) and NMBE values. In the few cases where CWEC had a lower NMBE value compared 

to the TMYSTATION and TMYCZ weather files, the CV(RMSE) value was lower for the proposed 

TMY weather files indicating the outliers in the CWEC results may have cancelled out to provide 

a better NMBE value. Additionally, CWEC had a total of three locations with a lower CV(RMSE) 

however the performance was at most 0.3% better while the generated TMY weather files were up 

to 5.1% better.  

The TMYSTATION weather files had the most instances where both the CV(RMSE) values and 

NMBE values were the smallest. The improved representation of the long-term average weather 

data across the varying climates demonstrates that the methodology proposed in manuscript #1 is 

versatile and can be applied to various climates. The TMYCZ weather files present a viable 

alternative, with the NMBE and CV(RMSE) values being very similar to the TMYSTATION weather 

files for most locations, with up to a 0.9% difference in performance between the two proposed 
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weather files. The time saved by using the climate zone-based weighting factors to generate TMY 

weather files may be worth the marginal trade-off in performance between the TMYSTATION and 

the TMYCZ weather files. Although the TMYCZ weather files demonstrated an improved 

representation in the long-term average compared to the CWEC weather files, for locations with 

weather patterns which significantly differ from other cities within the same climate zone it is 

recommended to use the TMYSTATION files for these locations until the climate zone definitions are 

improved.  

Although both proposed TMY weather files performed better than the CWEC weather files, the 

study had a few limitations. The study focused on one building type and was limited to Canadian 

climate zones. Furthermore, the standardized climate zone-based weighting factors were 

calculated based on a small sample for each climate zone. The limitations present opportunities for 

future work which may improve the methodology proposed in Manuscript #1 for cases of varying 

applications and climates. Lastly the definitions of Canadian climate zones should be improved to 

account for other variables such as cooling degree days. While climate zone-based weighting 

factors enhance the potential adoption of the proposed methodology, further research is crucial to 

redefine the climate zone definitions and expand the study to encompass diverse building types, 

sizes, and a broader spectrum of cities. 
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Chapter 2 Defining generation parameters with an adaptable 

data-driven approach to construct typical meteorological year 

weather files. 

2.1 Contribution of Authors 

This manuscript is published in the Journal of Energy and Buildings. The journal paper proposes 

a machine learning methodology to improve the current process of TMY weather file generation 

by using a data-driven approach to determine the weather parameters and relevant weighting 

factors used in the Sandia method. Ashleigh Papakyriakou is the second author of the paper. 

Ashleigh’s contributions include the conceptualization, development and validation of the energy 

model, writing, editing and review. Anahita Bigtashi (first author) contributions include the 

conceptualization, development of the methodology and proposed weather files, data curation, 

formal analysis, writing, editing and review. Dr. Bruno Lee contributed to conceptualization, and 

review.  

A. Bigtashi, A. Papakyriakou, and B. Lee, “Defining generation parameters with an adaptable 
data-driven approach to construct typical meteorological year weather files,” Energy and 
Buildings, vol. 303, p. 113781, 2024. doi:10.1016/j.enbuild.2023.113781  

2.2 Introduction 

A significant emphasis has been placed on energy efficiency and reliability due, in part, to the shift 

in the climatic condition brought on by anthropogenic climate change. This increase in demand 

has drove the building industry to shift towards creating high-performance buildings which focus 

on reducing building energy consumption. In order to adequately design high-performance 

buildings, a thorough evaluation of the building envelope, and the mechanical, electrical and 

renewable energy systems, is required. As a result, energy simulation tools, often referred to as 

energy models, have become widely adopted by designers to estimate the energy performance of 

renewable energy systems and buildings. Weather files are a critical component in energy 

simulation as they provide essential information on the environmental conditions to which the 

building or system is exposed. 
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2.2.1 Typical Meteorological Year Weather Files 

Energy simulations are typically performed using reference year (RY) weather files to reduce the 

computational time associated with multi-year simulations. These weather files are created from 

long-term weather data which is synthesized into a single year using different statistical methods. 

The use of RY weather files allows designers to evaluate different design configurations in a timely 

manner. However, the accuracy of the simulation results relies heavily on the selected RY weather 

file and its ability to adequately reflect the intricacies of the long-term weather data. 

RY weather files may be generated to reflect extreme weather conditions, known as extreme year 

weather files, or to represent the average weather conditions, known as typical meteorological year 

(TMY) weather files. Extreme weather files are often used to determine how a design will perform 

under extreme weather conditions. TMY weather files are meant to reflect the average condition 

for the selected period, disregarding extreme weather conditions, with the intent to show the long-

term average performance [1]. RY weather files may be generated using historical weather data or, 

future weather data obtained from existing climate change models. 

In building energy simulation, typical meteorological year weather files are generated using, 

historically, a 30-year period, which is synthesized into a single year. There are a few common 

methods used to generate TMY weather files, such as the Danish method [2], the Festa and Ratto 

method [3], the Sandia National Laboratories method [4] [5] and the ISO 15927-4 standard [6]. 

The Sandia method is one of the most frequently used methods to generate TMY weather files. 

Many studies conducted at the start of the industry’s push in building energy simulation have found 

the Sandia method to be an adequate representation of the long-term average weather data  [7] [8] 

[9] [10]. The Sandia method is used to generate many commonly used RY weather files, including; 

Typical Meteorological Year ([TMY]1, TMY2, TMY3) [4] [11] [12], International Weather Year 

for Energy Calculations (IWEC, IWEC2) [13] [14] and Canadian Weather Year for Energy 

Calculation (CWEC) [1] [15]. 

 

1 [TMY]:Used to denote the Typical Meteorological Year file format originally presented in [2]. 
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The Sandia method is an empirical approach that selects individual months from different years 

within the long-term weather dataset to create the TMY weather file [12]. Each month within the 

long-term weather dataset is evaluated on a pre-defined set of weather parameters, referred to as 

decision weather parameters. The decision weather parameters are attributed a weight based on 

their perceived importance. The months found to be the most statistically similar to the long-term 

average weather dataset are retained and concatenated into a single year [12]. The decision weather 

parameters and their corresponding weights vary between different TMY weather file formats. The 

detailed outline of the Sandia method is presented below, with specific terminology outlined in 

Table 2.1.  

For each month of a year: 

i. The average/total daily long-term and short-term (candidate month) cumulative 

distribution function (CDF) is obtained for each of the decision weather parameters 

outlined in Table 2.2.   

ii. For each candidate month within the long-term dataset, the corresponding short-term CDF 

is compared to the long-term CDF using the Finkelstein-Schafer (FS) statistic, as outlined 

in equation (2.1). In this equation, the sum of the absolute difference between the short-

term (candidate month) and long-term CDF is obtained. The process is repeated for each 

decision weather parameter. 

𝐹𝑆௝  =   ൬
1
𝑛൰ ෍ 𝛿௜

௡

௜ୀଵ

 (2.1) 

 𝐹𝑆௝: FS value for decision weather parameter j 

𝛿௜: Absolute difference between the short-term (candidate month) and long-term CDF 

𝑖: Day of the month 

𝑗: Decision weather parameter 

𝑛: Total days in the month 
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iii. The weighted sum (WS) is calculated for each candidate month according to equation (2.2). 

The weighting factor assigned to each decision weather parameter, as outlined in Table 2.2 

is multiplied by the FS value obtained in step ii.  

𝑊𝑆 = ෍ 𝑤௝𝐹𝑆௝

௡

௝ୀଵ

 (2.2) 

𝑗: Decision weather parameter 

𝑛: Total number of weather parameters 

𝐹𝑆௝: FS value for decision weather parameter j 

𝑤௝: Weighting factor for weather parameter j 

 

iv. The candidate months are ranked in ascending order of their WS and the top five candidate 

months are retained.  

v. The five candidate months are re-ranked according to the proximity to the long-term mean 

and median values for dry-bulb temperature and global horizontal irradiance.   

vi. The persistence of mean dry-bulb temperature and daily global horizontal radiation are 

evaluated by determining the frequency and length of consecutive days with measurements 

outside the fixed long-term percentiles. Each candidate month is evaluated based on the 

number of consecutive days outside of the following three cases:  

a) below the 33rd for dry-bulb temperature 

b) above the 67th percentile for dry-bulb temperature and 

c) below the 33rd percentile for global horizontal irradiance. 

The first candidate month that meets the persistence criteria is selected as the final 

candidate month. 

Each of the outlined steps is repeated for each month in a calendar year until all 12 selected 

candidate months are concatenated into a single year.  
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Table 2.1: Sandia method terminology for TMY weather file generation 

Table 2.2 presents the decision weather parameters used for different TMY weather file formats 

and their corresponding weighting factors. The weights presented in Table 2.2 have been 

normalized to facilitate comparison.  

  

Terminology Description 

Candidate month 
The month of each individual year within the long-term dataset currently being evaluated. 

(ex: January 2001, January 2002, January 2003) 

Decision weather 

parameter 

The weather parameters considered in the FS statistical method and WS to generate the 

TMY weather file. 

Long-term CDF 
The cumulative distribution function for the entire period of the weather dataset for the 

calendar month currently being evaluated. (ex: all January’s within the 20 year dataset) 

Generation 

parameters 

The weather parameters and their corresponding weights considered in the FS statistical 

method and the WS to generate the TMY weather file, as outlined in Table 2. 

Short-term CDF 
The cumulative distribution function for the candidate month currently being evaluated. 

(ex: January 2001) 
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Table 2.2: Typical meteorological year weather file weighting factors 

 

The weighting factors used for CWEC, IWEC, IWEC2, TMY2 and TMY3, have been modified 

from the original [TMY]1. The original [TMY]1 weighting factors were selected for a solar heating 

system and assigned according to experts’ judgement [4]. In their study, Hall et al. [4] further 

stipulated that the decision weather parameters and their corresponding weights are application 

specific. Therefore, different weather parameters and/or weights may be required for different 

applications, such as building energy simulation. TMY2 modified the weighting factors for dry-

bulb temperature, dew point temperature, and wind speed to place a greater emphasis on both dry-

bulb and dew point temperature [11]. Direct normal irradiance was added as it was found to 

improve the comparison between the TMY2 and the 30-year annual average [11]. The TMY2 

user’s manual indicates that these weather files are intended to be used for simulations of solar 

energy conversion systems and building systems. The manual further specifies that these files may 

not be appropriate for simulations of wind energy conversion systems. The CWEC weather file 

weighting factors were assigned based on the assumed influence that various weather parameters 

have on building energy usage [1][15].   
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2.2.2 TMY Generation Limitations and Constraints 

Numerous studies have investigated the impact of generation parameters on simulation results for 

different applications and climate. Current TMY generation methods rely on universal weighting 

factors defined based on expert judgement, which often neglects variations in climate and 

application. Furthermore, for most generation methods, the generation parameters used to produce 

TMY weather files are often pre-defined, which poses a significant constraint for regions with 

limited weather data. 

2.2.2.1 Varying applicaƟons 

As outlined by Hall et al. [4] in their original publication, the importance attributed to decision 

weather parameters may vary based on the purpose of the application and the type of investigation. 

Chan [16] used a genetic algorithm (GA) to develop weighting factors to generate TMY weather 

files using the Sandia method. The decision weather parameters selected for the study were those 

used to generate IWEC weather files. The study evaluated four different applications: a fully air-

conditioned office building, a building attached non-concentrating photovoltaic (BaPV) system, a 

wind turbine power generation system, and a concentrating solar power (CSP) system. Chan [28] 

[16] determined the set of weighting factors obtained for the fully air-conditioned building to be 

closest to those used in the IWEC file generation. In contrast, the weights obtained for the three 

other applications significantly differed from the IWEC weighting factors. Furthermore, the 

simulation results for the application specific TMY weather files were determined to better reflect 

the long-term mean than the IWEC simulation results [16]. The results of the study further 

highlight the potential need for weighting factors tailored for different applications. 

Additionally, Georgiou et al. [17] completed a sensitivity analysis of the impact of weighting 

factors on TMY weather file generation for various applications. The investigation was 

implemented for a residential solar thermal system, a wind turbine generator, and the heating and 

cooling analysis of a typical dwelling in Cyprus. The study found that TMY weather file datasets 

can significantly vary due to the assigned weighting factors. The authors concluded that weighting 

factors should be optimized for the intended use.  

Kambezidis et al. [18] conducted a study in which TMY weather files were generated for different 

applications using the modified Sandia National Laboratories method for 33 different locations in 
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Greece. The TMY weather files were generated for five different applications: meteorology-

climatology, biometeorology, agro-meteorology-hydrology, PV applications, and building energy. 

The different weighting factors used to generate the TMY weather files for each application were 

selected based on experts’ judgment and previous studies. The results showed good agreement 

between the application specific TMY weather files and the long-term average simulation results, 

further demonstrating the impact of application-based weighting factors on simulation accuracy. 

Yang, H and Lu, L [19] investigated the impact of different typical meteorological year (TMY) 

and example weather year (EWY) weather files on simulation results for building energy and 

renewable energy systems. The investigation was performed for a commercial building and a 

hybrid solar – wind power system in Hong Kong. The TMY and EWY weather files were generated 

for Hong Kong using variations of the Sandia method. The decision weather parameters and 

weights used to generate the weather files were selected based on existing publications. Yang, H 

and Lu, L [19] concluded that different applications require different weighting factors as each 

case exhibited varying degrees of deviations, with the solar – wind system being the most 

significant.  

Finally, in their study, Sun et al. [20] highlighted the lack of TMY weather files developed for 

daylight-utilized building energy simulation. As current TMY weather files are not adequate for 

daylighting analysis, the authors use a genetic algorithm to create optimized weighting factors. 

The resulting TMY weather files are generated using the Sandia method and the optimized 

weighting factors. In addition to the existing weather parameters used in the Sandia method, the 

daily mean and maximum global solar irradiance, direct normal irradiance and horizontal diffuse 

irradiance were added.  

2.2.2.2 Varying climates 

As previously established, most commonly available TMY weather files are generated using 

decision weather parameters with weights assigned based on expert judgment. Despite differences 

in the climatic condition for different regions around the world, standard TMY weather files adopt 

universal weighting factors. These universal weighting factors not only disregard the differences 

in climate between different regions, but also ignore seasonal variations present in weather data.   
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A study by Meng, F et al. [21] investigated the impact of different weather parameters on the 

heating energy consumption of an office building for different climate zones across China. The 

study determined dry-bulb temperature as having the greatest influence on the building heating 

energy consumption for all considered climate zones. Furthermore, although other weather 

parameters were noted to have a slight influence on the consumption, the significance was found 

to vary depending on the climate zone [21]. Kalamees et al. [22] conducted a similar study 

investigating the impact of different weather parameters on building energy demand for different 

cold boreal climates. Sensitivity tests were used to determine the influence of the different weather 

parameters for various seasons. The study determined dry-bulb temperature as having the greatest 

influence for all climates. Furthermore, in summer, solar irradiance was found to have a significant 

impact of building energy consumption. Both studies highlight the differences in significance 

attributed to certain weather parameters for varying climates and seasons. 

Hong et al. [23] employed large-scale building simulation to investigate the impact of climate data 

on peak electricity demand and energy use for 17 ASHRAE climate zones. In this study, the 

simulation results obtained using 30 years of historical weather data are compared to those 

obtained using TMY3 for three types of office buildings. The study found significant discrepancies 

between the TMY weather file and long-term weather data simulation results. The impact was 

found to vary based on the office building size, energy efficiency level, and climate; with 

significant discrepancies noted for cold climates. In a similar study, Seo et al. [10] completed a 

sensitivity analysis on the impact of different TMY weather file selection procedures on building 

energy analysis for varying U.S. climates. The study assessed different TMY weather file 

generation procedures, weighting factors and historical weather data periods using building energy 

simulation. The difference in building energy use and peak demand between the long-term average 

historical weather data and the investigated TMY weather files simulation results were compared. 

The study found the largest differences to be for heating energy use and warm climates. In the case 

of both studies, the results further demonstrated the variability in performance of TMY weather 

files for different climates. Therefore, to improve the accuracy of TMY weather files for different 

climate zones, optimized weighting factors are required. 

As a means to address the issue of universal weighting factors adopted by most readily available 

TMY weather files, Li et al. [24] proposed a new method to generate TMY weather files using the 
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entropy-based Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) theory. In 

this study, the authors generated TMY weather files for five different climate zones in China using 

the same decision weather parameters outlined in the Sandia method. In the method outlined by Li 

et al. [24], both the weights and resulting weather file are generated using the objective weather 

data and, therefore, account for climate-dependent variations. The results obtained in the study 

found that the TMY weather files generated using their proposed method more closely reflected 

the long-term average historical weather data. This study demonstrates the potential improvement 

in accuracy associated with climate-based weighting factors and further highlights the issue 

associated with judgement-based generation parameters.  

2.2.2.3 TMY GeneraƟon Constraints 

Most TMY weather files generated using the Sandia method use universal generation parameters 

defined based on expert judgement, which often disregard variations in applications and climate. 

Furthermore, the use of generalized decision weather parameters and weighting factors poses a 

significant constraint for areas with limited weather data. While satellite data has become widely 

available, access to long-term historical weather data with adequate temporal resolution for all 

expert-defined weather parameters may be limited in some regions.  

Many studies have proposed different modifications of the Sandia method to address some of the 

presented issues, as well as improve the resulting TMY weather file. A preliminary investigation 

presented by Gai et al. [25] proposed a simplified method, in which, only the mean daily value for 

each decision weather parameter is considered. The method was proposed to address the issue of 

inadequate temporal resolution of historical weather data for certain rural regions in China. 

Ohunakin et al. [26] sought to generate TMY weather files tailored to the climate of north-east 

Nigeria using the Sandia method. The study relied on expert judgement to define a new set of 

weighting factors considered to adequately reflect the designated climate and application. Finally, 

Zang et al. [27] proposed a hybrid method using a combination of the Danish method, Festo-Ratto 

method, and a modified Sandia method to generate improved TMY weather files. In this approach, 

the candidate months obtained for all three generation methods are evaluated based on their 

proximity to the long-term average data. The candidate months found to have the least difference 

to the long-term average are then selected to create the TMY weather file.  
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2.2.3 Machine Learning Applications 

The uncertainty associated with the use of judgement-based generation parameters is partly due to 

the absence of a data-driven approach for defining decision weather parameters and weighting 

factors. Therefore, it is crucial to develop a data-driven approach that systematically identifies 

weather parameters and their respective importance which considers climate variations and 

application-specific considerations.  

As previously mentioned, a limitation of current TMY generation methods is their reliance pre-

defined decision weather parameters. In the case of varying applications, weather parameters 

considered to have a significant impact on simulation results may be disregarded in the TMY 

generation process. Therefore, decision weather parameters should be selected based on their 

relevance to the investigated application.  

In machine learning (ML), variables deemed to have little significance on the target variable are 

typically disregarded in order to enhance the performance of the model. In supervised learning, a 

machine learning algorithm analyzes the relationship between predictor variables and the target 

variable to construct a predictive model. In this process, known as training, datasets are fed to the 

ML algorithm to build the model. The training datasets are typically divided into two parts: the 

training input, consisting of independent variables known as features, and the training output, 

comprising the target variable. A common misconception in machine learning is that larger input 

datasets with numerous features will result in a better model. However, this approach can often 

introduce excess non-contributive features, also known as noise, which can degrade the model's 

performance. Feature selection is the process of filtering the training input dataset to retain only 

relevant features, thereby reducing noise and improving the quality of the data. Certain tree 

ensembles, such as bagging, random forest and boosting, have been found effective in retaining 

relevant features, however, these types of algorithms are also vulnerable to noise [28]. 

Another limitation of current TMY generation methods is the use of judgement-based universal 

weighting factors, which fail to consider variations in climate and applications. By contrast, the 

use of machine learning (ML) provides a data-driven approach to determine the importance of 

variables in predicting outcomes, known as feature importance. ML algorithms such as gradient 

boosted tree algorithms and Random Forest are particularly effective in identifying predictor-
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response relationships and assessing the importance of each feature [29] [28][29]. Thus, ML 

algorithms may be used to develop a data-driven approach to obtain weighting factors which 

account for changes in climate and application. For instance, Hosseini et al. [30] devised a ML-

based approach to define weighting factors using tree ensembles. In the proposed approach, a 

Random Forest regression model is used to extract the feature importance for the nine decision 

weather parameters used to generate CWEC files. The study investigated five different training 

approaches using building energy demand to determine the most suitable training output parameter 

and weighting factor resolution. The findings revealed that the TMY weather files generated using 

the extracted weights better reflected the long-term average building energy demand compared to 

CWEC for regions with significant temperature fluctuations [30]. Additionally, although the five 

approaches yielded similar results, the TMY weather files generated using monthly weighting 

factors demonstrated slightly better performance. While the presented approach offers a systematic 

way of determining weighting factors, the methodology remains difficult to adapt for varying 

applications due to the use of pre-defined weather parameters. Furthermore, the issue of limited 

weather data, both in terms of available weather parameters and resolution, remains unaddressed.  

Current TMY generation methods rely on judgement-based universal generation parameters. 

Machine learning provides a data-driven approach to determine both the relevant weather 

parameters and their corresponding weights. The purpose of this study is to improve the current 

approach to TMY weather file generation by providing a data-driven framework to define the 

generation parameters which account for climate and application. Building upon the study by 

Hosseini et al. [30], the proposed methodology utilizes a ML regression algorithm to 

systematically identify the decision weather parameters and weighting factors used in the TMY 

generation process. The weather parameters and weighting factors are subsequently integrated into 

the Sandia method to generate the TMY weather files. The data-driven approach is applied in a 

case study investigating building energy demand of a prototypical office building in Montreal, 

Canada.  

The methodology aims to overcome the uncertainty associated with judgement-based generation 

parameters for diverse climates and applications, as well as to address existing constraints related 

to weather data availability. In order to improve weather file adaptability, the proposed 

methodology leverages machine learning and simulation results to define the generation 
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parameters.  Consequently, while the present case study centers on building energy demand for a 

specific locale, the data-driven approach may be applied for a variety of climates and applications 

by utilizing corresponding simulation results to train the ML regression model. 

2.3  Methodology 

The presented methodology uses a data-driven ML approach to define the generation parameters 

used to produce TMY weather files. The proposed approach is divided into four stages as outlined 

in Table 2.3. Each stage is presented in a flowchart at the beginning of each corresponding section. 

A flowchart outlining the entire combined methodology is provided in Appendix A.  

In Stage 1, long-term weather data and building energy demand results are acquired and processed. 

In Stage 2, the decision weather parameters are obtained using feature selection. In this stage, the 

datasets obtained in Stage 1 are evaluated using a gradient boosted tree regression model to identify 

the weather parameters that have the greatest influence on building energy demand. In Stage 3, the 

feature importance of each weather parameter from Stage 2 is extracted and used as weighting 

factors, in Stage 4, to generate a TMY weather file.  

Table 2.3: Outline of proposed methodology 

Stage 2 and 3 of the proposed methodology constitute the primary contribution of this study by 

presenting a systematic data-driven approach to selecting decision weather parameters and 

Stage    

1 Training dataset acquisition and processing 
  Step  
  1.1 Acquire long-term weather data 
  1.2 Simulate long-term building energy demand 
  1.3 Filter weather data and remove multicollinearity 
2 Generation parameters: decision weather parameters 
  2.1 Train the gradient boosted tree regression model 
  2.2 Select decision weather parameters  
3 Generation parameters: monthly weighting factor 
  3.1 Retrain the gradient boosted tree regression model 
  3.2 Select monthly weighting factors 
4 Typical meteorological year weather file generation 
  4.1 Generate the TMY weather file using the Sandia method 
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weighting factors. The purpose of this section is to present the methodology in generic terms to 

facilitate reproducibility for varying climate and applications. Additional details are provided on 

the exact procedures implemented in this study in section 2.4 by means of a case study. 

2.3.1 Stage 1: Training Dataset Acquisition and Processing 

The purpose of Stage 1 is to acquire and process the datasets used to train the machine learning 

regression model presented in Stage 2 and 3. Figure 2.1 presents an overview of each step in Stage 

1, including the resulting outputs used in Stage 2 and 3. 

 

Figure 2.1: Stage 1 from the proposed methodology flowchart 

2.3.1.1 Step 1.1: Weather data 

The proposed methodology uses long-term weather (LTW) data to perform multi-year energy 

simulations, train the machine learning regression model, and generate the TMY weather files. 

Therefore, hourly long-term weather data for the location of study is required. The suggested 

minimum period is 15 years, however, in cases of limited data, shorter periods may be used.  

Furthermore, the dataset must include all weather parameters required by the selected simulation 

software for the application of choice. In this case, long-term hourly weather data, which includes 

all weather parameters required for building energy simulation, is acquired for a period of 20 years. 

Additional information is provided on the long-term weather dataset in section 2.4.1.  
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2.3.1.2 Step 1.2: Building energy simulaƟon 

Building energy simulation is performed using the long-term weather (LTW) data acquired in step 

1 and the resulting hourly heating and cooling energy demand is extracted. The hourly energy 

demand results are used as output datasets to train the regression model, as presented in section 

2.3.2 and 2.3.3. 

2.3.1.3 Step 1.3: Data filtering and mulƟcollinearity 

As previously mentioned, certain machine learning algorithms, are vulnerable to noise [28]. In 

order to address this issue, as well as model-specific issues, an initial filtering process is conducted 

to remove excess features (weather parameters) from the long-term weather data. The filtering 

process is performed in three phases. In each phase, the previously retained features (weather 

parameters) are evaluated and removed based on the below-outlined criteria. 

Phase I: Simulation Variables 

Long-term weather datasets often include additional weather parameters which are, depending on 

the application, unnecessary for simulation. Moreover, the inclusion of categorical and discrete 

variables can significantly impact the performance of ML regression models. Therefore, in Phase 

I, weather parameters categorized as discrete variables or deemed unnecessary for simulation are 

considered as excess features and removed. In other words, to minimize noise within the training 

input dataset, the long-term weather data is initially filtered to only retain weather parameters with 

continuous data which are considered by the selected simulation software. 

Phase II: Correlation Matrix 

As briefly mentioned, the present study seeks to use a gradient boosted tree regression model to 

determine the feature importance scores for each predictor variable (weather parameter). Although 

an initial filtering is performed to remove noisy data from the training input dataset, the issue of 

multicollinearity remains. In the case of tree-based models, the presence of highly correlated 

predictors within a dataset creates a redundancy which dilutes their importance scores [28]. To 

address this issue, the Phase I dataset is filtered, once again, using a combination of Pearson’s 

correlation coefficient (Phase II) and variance inflation factor (Phase III). In Phase II, weather 

parameters with an absolute correlation of 0.75 or above are deemed to be highly correlated and 

are removed. 
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Phase III: Variance Inflation Factor (VIF) 

In Phase III, the remaining weather parameters are evaluated using the variance inflation factor 

(VIF). While Phase II addressed the issue of collinearity, the variance inflation factor is used to 

detect multicollinearity, as it considers the relationship between a single variable to a group of 

variables. An initial evaluation is made using all remaining weather parameters. A VIF score 

exceeding 10 is considered to indicate high correlation. The weather parameter with the highest 

VIF score above the threshold of 10 is removed. The process is repeated until all remaining 

parameters fall below the defined threshold. 

Following Phase III, a subset of the long-term weather data is created using the remaining weather 

parameters. The resulting long-term weather dataset subset (LTWS1) is used in Stage 2 to train the 

regression model. Additional details on the filtering results obtained in this study are presented in 

step 3 of section 2.3.2.1. 

2.3.2 Stage 2: Generation Parameters: Decision Weather Parameters 

The purpose of Stage 2 is to identify the weather parameters which have a significant impact on 

building energy demand using feature selection. The identified weather parameters are used as the 

decision weather parameters to generate the TMY weather files outlined in section 2.2.1. The 

retained decision weather parameters are used in Stage 3 to retrain the regression model. An 

overview of the procedures and datasets considered in this stage is presented in Figure 2.2. 
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Figure 2.2: Stage 2 from the proposed methodology flowchart 

2.3.2.1 Step 2.1: Decision tree regression model training 

In Stage 2, a gradient boosted tree regression model is trained using long-term hourly weather data 

and, for this study, building energy demand. In the case of varying applications, alternative 

simulation results, considered continuous in nature and suited to the application of study, may be 

used. The model is used to extract the feature importance for each of the weather parameters 

obtained in Stage 1 (LTWS1). The purpose of the feature importance scores, at this stage, is to 

evaluate and help identify the relevant or “important” weather parameters within LTWS1. In other 

words, the feature importance is obtained for each weather parameter and used for feature 

selection.  

Given the absence of a universal cut-off value for feature importance scores, a threshold must be 

established to identify the relevant features within the dataset. As such, an additional feature, 

comprised of a set of randomly generated numbers, is incorporated into the training input dataset. 

The purpose of the additional feature, referred to as Feature A, is to set a minimum threshold for 

the feature importance scores.  

As a result, the gradient boosted tree regression model is trained using LTWS1 and Feature A as 

training input datasets and total hourly energy demand (Etotal) as the training output dataset. 

Additional details on Feature A are provided in Appendix A. 

2.3.2.2 Step 2.2: Decision weather parameters 

Once the model is trained, the monthly feature importance score is extracted for Feature A and 

each weather parameter within LTWS1. In other words, a separate feature importance score is 

obtained for each month.  

As previously established, the purpose of Feature A is to establish a minimum threshold or “cut-

off” to identify the relevant features. Thus, the monthly feature importance scores obtained for 

each weather parameter are compared to those obtained for Feature A. The weather parameters 

with feature importance scores exceeding those of Feature A are retained to create a new long-term 

weather data subset (LTWS2). 



 

 

28 

2.3.3 Stage 3: Generation Parameters: Monthly Weighting Factor 

In Stage 3, the model is retrained using only the retained features (decision weather parameters) 

from Stage 2 (LTWS2) to obtain undiluted features importance scores, as outlined in Figure 2.3. 

The purpose of this stage is to determine the appropriate weights to attribute each decision weather 

parameters using their corresponding feature importance score.  

 

 

Figure 2.3: Stage 3 from the proposed methodology flowchart 

2.3.3.1 Step 3.1: Decision tree regression model retraining 

In this step, the gradient boosted tree model is retrained using the long-term weather data subset 

LTWS2. As previously done in Stage 2, the hourly building energy demand is used as the training 

output dataset. However, in Stage 3, the training output dataset is separated into heating (Eheat) and 

cooling (Ecool) demand.  

2.3.3.2 Step 3.2: Monthly weighƟng factors 

As previously mentioned, in Stage 3, the model is trained using heating and cooling energy 

demand, resulting in two models. In both cases, a monthly importance score is obtained from each 

model using the built-in feature importance function. This results in two sets of 12 feature scores, 

one for heating and one for cooling, for each feature. 
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In order to generate a single set of monthly weighting factors for each of the decision weather 

parameters, a subset of the 24 feature scores must be selected. In this case, the average long-term 

heating and cooling demand is obtained for each month. The months are then classified as either 

heating or cooling dominant. The feature scores are then selected for each month based on the 

month’s heating or cooling demand classification, and output into a single file. In other words, 

based on the classification of the month, the corresponding (heating or cooling) feature score is 

selected. The resulting file is composed of monthly weighting factors (feature scores) for each of 

the decision weather parameters. The resulting monthly weighting factor file is used in Stage 4 as 

the attributed weights for the decision weather parameters to calculate the weighted sum. 

2.3.4 Stage 4: Typical Meteorological Year Weather File Generation 

In this stage, the decision weather parameters defined in Stage 2, and their corresponding monthly 

weighting factors determined in Stage 3, are integrated into the Sandia method to generate a typical 

meteorological year weather file (Figure 2.4). 

 

Figure 2.4: Stage 4 from the proposed methodology flowchart 

2.3.4.1 Step 4.1: Sandia method integraƟon 

The typical meteorological year weather file is generated using the original long-term weather data 

(LTW). The long-term weather data is synthesized into a single-year weather file using the steps 

outlined in the Sandia method, as presented in section 2.2.1. 
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The decision weather parameters and their corresponding monthly weighting factors, outlined in 

Stage 2 and 3, are used in steps i to iii of the Sandia method. In the Sandia method, each month is 

evaluated individually. Therefore, although the initial Sandia method publication utilizes only a 

single set of weighting factors, no modification to the procedure is needed to accommodate the use 

of monthly weighting factors. 

 

2.4  Case Study 

The case study used to present the proposed methodology is for a medium office building located 

in Montreal, Canada. In this section, details are provided regarding the specific datasets, statistical 

tests and software used for each step of the proposed methodology, as well as an overview of the 

performance indicator used to evaluate the generated TMY weather files. 

2.4.1 Stage 1: Montreal Medium Office Simulation and CWEEDS Filtering 

In this study, the historical long-term weather (LTW) data for the Montréal-Pierre Elliott Trudeau 

International Airport is obtained from the Canadian Weather Energy and Engineering Datasets 

(CWEEDS). The CWEEDS dataset is composed of hourly data for a period of 20 years, spanning 

between 1998 to 2017.  The CWEEDS data was selected to facilitate the comparison between 

CWEC and the proposed TMY weather file generated in this study. Furthermore, the use of 

CWEEDS allows to avoid potential discrepancies stemming from using different long-term 

weather data which may result in differing periods, resolutions, and measurements.  

The building energy simulation of a prototypical medium office building is performed in 

EnergyPlus v.23.1.0 using the unfiltered CWEEDS data. The building geometry was modelled 

after the DOE medium office building prototype [31] and modified according to the 2020 National 

Energy Code of Canada for Buildings (NECB) [32] requirements to adhere to Canadian building 

standards. The building model parameters are presented in Table 2.4. The heating and cooling 

setpoints were set to 21°C and 24°C, respectively. Finally, an ideal air loads system was modelled 

to represent an ideal HVAC system.  The building energy demand results obtained using the long-

term weather (LTW) data is used to train the regression model, as well as provide a baseline to 

compare the performance between CWEC and the proposed TMY weather file.  
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Table 2.4: Medium office building model parameters [32]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this stage, an initial filtering of the training input dataset (CWEEDS) is performed in three 

phases, as outlined in section 2.3.1. The results of the filtering process are presented in Table 2.5. 

Building Parameter Value Units 

Wall U-value 0.240 W/m2K 

Roof U-value 0.138 W/m2K 

Slab on Grade U-value 0.757 for 1.2m W/m2K 

Window U-value 1.73 W/m2K 

WWR 0.39 - 

Infiltration 0.25 L/s/m2 at 5 Pa 

Lighting 10.00 W/m2 

Receptacle Equipment 7.50 W/m2 

Occupancy 25.00 m2/person 

Schedule Schedule A - 

Conditioned Floor Area 6,898.00 m2 
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Table 2.5: Long-term weather data parameter and filtering overview 

In Phase I, the LTW data extracted from CWEEDS is first filtered to only retain continuous weather 

parameters considered by EnergyPlus. From this phase, the following seven weather parameters 

are retained and further evaluated in Phase II: dry-bulb temperature, dew point temperature, 

relative humidity, atmospheric pressure, direct normal irradiance, diffuse horizontal irradiance and 

wind speed. 

In Phase II, a correlation matrix (Figure 2.5) is constructed using Pearson’s correlation coefficient 

for the weather parameters retained in Phase I. The correlation coefficient obtained for dry-bulb 

temperature and dew point temperature was determined to be 0.94, which exceeds the previously 

established threshold of 0.75. As a result, the dew point temperature is removed from the dataset 

prior to Phase III. 

Weather Parameter Abbreviation Phase I: 

EnergyPlus Variables 

Phase II: 

Correlation Matrix 

Phase III: 

VIF 

Dry-bulb temperature DBT    

Dew point temperature DWPT  X X 

Relative humidity RH    

Atmospheric Pressure ATM   X 

Direct normal irradiance DNI    

Diffuse horizontal irradiance DHI    

Wind Speed WS    
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Figure 2.5: Pearson correlation matrix of long-term weather data 

In Phase III, the variance inflation factor (VIF) scores are obtained for the remaining six weather 

parameters and presented in Table 2.6. In this case, atmospheric pressure is found to have the 

greatest VIF score and, as a result, is removed from the dataset. The VIF scores are re-calculated 

for the remaining weather parameters, the results of which are presented in Table 2.5. The resulting 

VIF scores obtained for the filtered predictors fall below the pre-set threshold of 10. 
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Table 2.6: VIF Scores for Phase III weather parameters 

 

Following Phase III, a subset of the CWEEDS data is created to solely include the five retained 

weather parameters: dry-bulb temperature, relative humidity, direct normal irradiance, diffuse 

horizontal irradiance and wind speed. The newly created CWEEDS subset is referred to as LTWs1 

and used as the training input dataset for the machine learning regression model in Stage 2. 

2.4.2 Stage 2: Decision Weather Parameters Selection Using XGBoost 

As outlined in step 4 of section 2.3.2 of the methodology, a gradient boosted tree regression model 

is trained in order to extract the feature importance scores for each of the weather parameters in 

LTWs1. In this case, the eXtreme Gradient Boosting (XGBoost) regression model is selected due 

to its reduced computational time and regularization parameters which help reduce overfitting. As 

presented in Table 2.7, LTWs1  and Feature A are used as the training input datasets to train the 

regression model. The total hourly energy demand (Etotal) for all 20 years of weather data is 

extracted from the medium office simulation results and used as the training output dataset for the 

XGBoost regression model.  

 

 

 

 

Weather Parameter Initial VIF Scores Filtered VIF Scores 

Dry-bulb temperature 1.60 1.58 

Relative humidity 23.95 3.45 

Atmospheric Pressure 31.96 - 

Direct normal irradiance 2.03 1.60 

Diffuse horizontal irradiance 1.99 1.97 

Wind Speed 4.16 3.63 
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Table 2.7: Stage 2 XGBoost regression model training datasets 

The decision weather parameters are selected using the extracted feature importance scores as 

described in step 5 of section 2.3.2. Thus, the monthly feature importance scores for each weather 

parameter are compared to the monthly feature importance scores obtained for Feature A. As 

presented in Table 2.8, all five weather parameters considered in Stage 2 are retained. Although no 

additional filtering occurred due to the use of Feature A in this case, different applications may 

yield different results. Therefore, the use of Feature A for filtering is recommended to ensure only 

relevant features are selected. 

Table 2.8: Retained weather parameters for Stages 1 and 2 

A subset of the CWEEDS data is created using the five retained features (LTWs2) and used as the 

training input dataset for Stage 3. 

Input Training Dataset Output Training Dataset 

 

DBT 

RH 

DNI 

DHI 

WS 

Total energy demand (Etotal) 

 Feature A 

Weather Parameter Abbreviation Stage 1  Stage 2 

Dry-bulb temperature DBT   

Relative humidity RH   

Direct normal irradiance DNI   

Diffuse horizontal irradiance DHI   

Wind Speed WS   

LTWs1 
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2.4.3 Stage 3: Energy Demand-based Monthly Weighting Factors 

The XGBoost regression model is retrained with the retained weather parameters to obtain the 

undiluted feature importance scores. The CWEEDS subset obtained in Stage 2 (LTWs2) is used as 

the training input dataset for both models. However, as presented in Table 2.9 and outlined in step  

6 of section 2.3.3, in Stage 3, the XGBoost regression model is trained using two different output 

datasets. In other words, the building energy demand is separated into heating (Eheat) and cooling 

(Ecool) demand, and each used as the output training dataset for one of the models.   

Table 2.9: Stage 3 XGBoost regression model training dataset 

Following this step, the monthly feature importance scores are obtained for both the XGBheat and 

XGBcool models for each of the five weather parameters. Prior to selecting the final set of feature 

importance scores to create the weighting factor file, the average monthly building energy demand 

is investigated. The final classification attributed to each month based on the procedure outlined 

in step 7 of section 2.3.3 is presented in Table 2.10.  

  

Input Training Dataset Output Training Dataset 

X
G

B
he

at
 

 

DBT 

RH 

DNI 

DHI 

WS 

Heating energy demand (Eheat) 

X
G

B
co

ol
 

 

DBT 

RH 

DNI 

DHI 

WS 

Cooling energy demand (Ecool) 

LTWs2 

LTWs2 
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Table 2.10: Monthly dominant demand type classification 

For each month, the feature importance score corresponding to the dominant demand type, outlined 

in Table 2.10 are extracted for each parameter. The extracted feature importance scores are 

concatenated into a single monthly weighting factor file. The monthly weighting factors obtained 

in this case are presented in Table 2.11.  The weighting factor values are further discussed in section 

2.5.1 of the results and discussion.   

  

Month Heating Dominant  Cooling Dominant 

January   

February   

March   

April   

May   

June   

July   

August   

September   

October   

November   

December   
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Table 2.11: Monthly weighting factors for generation of proposed TMY weather file 

2.4.4 Stage 4: Generation of Proposed TMY Weather File 

The monthly weighting factors presented in Table 2.11 are integrated in step iii of the Sandia 

method to generate the proposed TMY weather file. From the Sandia method, a set of 12 candidate 

months are selected to create the proposed TMY weather file. The 12 candidate months are 

extracted from the CWEEDS dataset and condensed into a single EPW file to perform building 

energy simulations. The output file includes all weather parameters found in CWEEDS, including 

weather parameters not currently used by EnergyPlus. The selected candidate months for the 

proposed TMY weather file are presented in Table 2.12. 

  

Weather Parameter Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 

DBT 34.63 30.54 30.53 23.63 45.03 24.57 17.68 17.99 34.82 43.32 25.51 34.75 

RH 12.95 11.35 10.30 11.00 10.82 10.26 11.09 10.35 11.05 11.29 13.80 13.21 

DNI 9.78 10.10 9.51 16.52 10.27 11.69 13.44 11.14 13.07 13.29 11.21 9.64 

DHI 29.66 36.98 40.09 39.20 24.28 43.46 46.05 51.02 31.48 17.34 36.38 29.17 

WS 12.97 11.03 9.57 9.64 9.61 10.01 11.73 9.50 9.58 14.76 13.10 13.23 
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Table 2.12: Proposed TMY weather file selected candidate months for Montreal 

Month Proposed TMY 

January 1999 

February 2000 

March 2011 

April 2013 

May 2014 

June 2017 

July 2015 

August 2011 

September 2001 

October 2000 

November 2016 

December 2016 

 

2.4.5 Performance Indicator 

The root-mean-square error (RMSE) is used to evaluate and compare the performance of the 

proposed TMY weather file to CWEC. As previously stated, TMY weather files are single-year 

files intended to represent the average long-term weather data. Therefore, the average monthly 

building energy demand, obtained from the long-term building energy simulation results, is used 

as the baseline for comparison. The RMSE is calculated using the monthly energy demand for both 

heating and cooling as outlined in equation ((2.3). 

𝑅𝑀𝑆𝐸 = ඨ∑ (𝑇𝑀𝑌௜  − 𝐿𝑇𝐴௜)ଶே
௜ୀଵ

𝑁  
(2.3) 

𝑇𝑀𝑌: Monthly heating or cooling demand results simulated using the typical meteorological year weather file. 

𝐿𝑇𝐴: Average monthly heating or cooling demand simulated using the long-term weather data. 

𝑁: Total number of months in a year 

 

The average monthly energy demand is used as the baseline to reduce the impact of outliers within 

the long-term weather dataset, which may skew the results, as RMSE penalizes larger errors. 
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Additionally, although employed in many studies, the use of annual energy demand as a baseline 

for comparison does not provide an adequate picture of the TMY file’s overall performance. 

Although the annual energy demand may closely reflect that of the long-term average, the 

possibility remains that the monthly demand results may exhibit significant deviations 

(under/overestimation). 

2.5  Results and Discussion 

The results and discussion section is divided into two main parts. First, an initial review of the 

generated proposed TMY weather file is presented in section 2.5.1. The proposed TMY file is then 

evaluated and compared to CWEC using building energy demand in section 2.5.2. 

2.5.1 Proposed Typical Meteorological Year Weather File Review 

2.5.1.1 Monthly weighƟng factors 

In Stage 3, the monthly weighting factors are extracted and used to generate the proposed TMY 

weather file.  As previously presented in Table 2.11, the weighting factors obtained for the decision 

weather parameters vary from month to month. Dry-bulb temperature is considered to have the 

greatest impact on building energy demand, followed by the combined solar irradiance parameters. 

As demonstrated in Figure 2.6, notable fluctuations in weighting factors occur between March and 

May, as well as between September and November. These significant changes are likely due to the 

seasonal shift in weather which occur in spring and autumn. These periods are referred to as 

shoulder seasons and often exhibit high fluctuations in temperature. Therefore, the variation in 

weight attributed to dry-bulb temperature is likely associated to the fluctuation in temperature 

occurring during both these periods.  



 

 

41 

 

Figure 2.6: Monthly weighting factors for each decision weather parameter. 

The impact of seasonal weather fluctuations on the weighting factors is further supported by the 

resulting weights extracted for the remaining weather parameters, which demonstrate significant 

fluctuations during the shoulder months. The jump in importance for direct normal irradiance 

relative to diffused horizontal irradiance, which occurs in March and October, is likely the result 

of these seasonal shifts. The fluctuations in weight occurring during the shoulder seasons 

demonstrates the need for seasonal weighting factors. However, further investigation into the 

impact of seasonal weather variations on building energy performance is required.   

2.5.1.2 Selected years 

As previously discussed, the proposed TMY file is generated following the steps outlined in the 

Sandia method, using CWEEDS. The purpose of using both the Sandia method and CWEEDS to 

generate the weather file is to facilitate the comparison between CWEC and the proposed TMY. 

The selected candidate months for both CWEC and the proposed TMY weather file are presented 

in Table 2.13. 
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Table 2.13: CWEC and proposed TMY weather file selected candidate months for Montreal 

 

Although both files have significant differences in weighting factors and decision weather 

parameters, in many cases, the same candidate month is selected. This is due to both the weather 

data distribution within the file, as well as the Sandia method selection process. In the Sandia 

method, the top five candidate months are selected based on the weighted sum, which considers 

the weighting factors attributed to each weather parameter. However, following the weighted sum 

calculation, the candidate months are reranked based on the mean and median error for dry-bulb 

temperature and global horizontal irradiance. The candidate months are then evaluated in 

succession using the persistence criteria until a month is selected. Therefore, although the initial 

ranking and selection of the top five candidate months are influenced by the weighting factors, the 

final candidate month is selected based on the results of the subsequent statistical tests. Further 

investigation is required to ascertain the impact of the persistence criteria on the resulting weather 

files.  

2.5.2 Energy Demand Comparison 

In this section, the energy demand simulation results for both CWEC and the proposed TMY file 

are evaluated and compared to the CWEEDS long-term average (LTA) simulation results.  

Month CWEC Proposed TMY 

January 1999 1999 
February 2009 2000 

March 2009 2002 
April 2013 2013 
May 2014 2014 
June 2017 2008 
July 2013 2015 

August 1998 1998 
September 2001 2001 
October 2000 2000 

November 2016 2005 
December 2003 2016 
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2.5.2.1 Annual energy demand 

In Figure 2.7, the annual energy demand results obtained for CWEC, the proposed TMY and the 

LTA are compared to the CWEEDS simulation results. The difference in annual energy demand is 

obtained for all three cases and presented in the figure. 

 

Figure 2.7: Comparison of annual energy demand results for reference year weather files and CWEEDS dataset. 

The importance in using the LTA to evaluate the reference year files stems from the large variations 

in energy demand which may occur on a year-by-year basis, as is demonstrated in Figure 2.7. As 

demonstrated in the figure, the heating and cooling energy demand obtained using CWEC appear 

to better reflect the long-term average. However, as previously discussed in section 0, the annual 

energy demand may not be an adequate baseline for comparison, as annual energy demand may 

mask significant deviations in the monthly energy demand. 
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2.5.2.2 Monthly energy demand 

The monthly energy demand for each case is presented in Figure 2.8 for both heating and cooling. 

As presented in Table 2.13, CWEC and the proposed TMY weather file have different candidate 

months for February, March, June, July, November, and December. In other words, the resulting 

monthly demand for both files will be relatively identical, except for the abovementioned six 

months. The difference in heating demand between the long-term average and the reference year 

weather files for February and December are quite similar. In March, a noticeable discrepancy in 

heating demand to the LTA is noted for CWEC, contrary to the heating demand obtained using the 

proposed TMY weather file. In the case of cooling demand, the proposed TMY results are closer 

to the LTA compared to the CWEC results for all months except June. A table of the monthly 

energy demand results for all three cases are presented in Appendix A. 

 

Figure 2.8: Monthly energy demand comparison for a. heating and b. cooling 
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The results presented in Figure 2.8 emphasize the impact of solely relying on total annual energy 

demand to evaluate typical meteorological year weather files. In this case, the CWEC total annual 

energy demand results, presented in Figure 2.7, showed strong similarities to the LTA results. 

However, as shown in Figure 2.8 the discrepancy in monthly demand appears to be greater for 

CWEC than the proposed TMY weather file. 

In order to quantify the discrepancy presented in Figure 2.8, the root-mean-square error is obtained 

following the procedure outlined in section 0 and presented in Table 2.14. To help interpret and 

compare the RMSE values obtained, a RMSE reduction value is included within the table. The 

RMSE reduction is based on the percentage of relative change formula and uses the CWEC RMSE 

as the baseline. In this case, a negative value indicates a reduction in the RMSE, whereas a positive 

value indicates an increase in error. 

Table 2.14: Root-mean-square error obtained for CWEC and the proposed TMY for monthly heating and cooling 

demand. 

The proposed TMY weather file yields simulation results with a smaller RMSE than CWEC for 

both monthly heating and cooling demand. The RMSE reduction values show a decrease in RMSE 

of 16.05% for total building energy demand.   

These results further highlight the inadequacy in using annual energy demand as the sole means to 

evaluate typical meteorological year weather files initially emphasized in Figure 2.8. The decrease 

in error is likely attributed to the use of monthly weighting factors, which allow to account for the 

impact of seasonal changes on building energy demand. 

Energy Demand Type CWEC  Proposed TMY RMSE Reduction 

Heating 1 675.28 1 278.98 -23.65 % 

Cooling 1 369.55 1 329.45 -2.93 % 

Total 2 100.94 1 763.76 -16.05 % 
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2.5.3 Limitations 

In this study, a ML regression model is employed to define the generation parameters in order to 

provide an adaptable approach. However, key limitations of the proposed framework stem from 

the ML regression model training requirements, which impose certain constraints on the training 

datasets.  

The first limitation arises from the ML regression model accuracy constraints, which often require 

the exclusion of certain variables within the training datasets. The current model requires variables 

with continuous data to preserve the performance. Although this issue is not prevalent for the 

current case study, the constraint may pose an issue when investigating different applications 

requiring discrete or categorical variables. An example of this issue occurs for natural ventilation, 

which is significantly impacted by wind direction, a discrete variable. Therefore, although the 

proposed framework may be used to define the generation parameters, the resulting weather files 

may not be optimized for the given application. 

Furthermore, the current framework is location dependent, as no generalized approach has been 

developed to group training datasets by climate. As such, climate-based investigations may require 

further research to adapt the current framework into a generalized approach. 

2.5.4 Future Research 

The primary contribution of this study is the introduction of a data-driven framework to define 

generation parameters which may be adapted for different investigations. The proposed approach 

relies on long-term weather data and simulation results to train the regression model to define the 

generation parameters. Therefore, the approach may be adapted for a variety of applications and 

file types by utilizing the corresponding simulation results.  

The present framework provides several future research opportunities including the 

implementation of the current work for varying applications such as hygrothermal analysis and 

solar energy systems. Further research may be conducted on the implementation of the proposed 

methodology for alternative reference weather file types, such as extreme weather files, by 

considering simulation variables in the training process. Furthermore, investigations into the 

impact of varying climates on the performance of the resulting TMY weather files should be 

conducted. 



 

 

47 

Although the current framework may be used for different applications and climates, additional 

research is required to address the limitations identified in this study. Potential research directions 

aimed at addressing these constraints include refining the framework to accommodate discrete 

variables without compromising the model performance, as well as developing a generalized 

approach suitable for climate-based investigations. 

2.6  Conclusion 

The current application of the Sandia Laboratory method to generate TMY weather files relies on 

universal generation parameters. The decision weather parameters, and their corresponding 

weights, are based on expert judgement and often neglect variations in climate and application. 

The purpose of the methodology presented in this study is to provide a data-driven approach to 

define the weather parameters and weighting factors, accounting for seasonal variations. 

Furthermore, the proposed methodology aims to provide a framework suitable for varying 

applications and for specific weather data limitation cases. 

The proposed methodology is divided into a four-stage process and adopts a gradient boosted tree 

regression model to define the generation parameters used in the Sandia method to construct the 

resulting TMY weather files. The regression model is used to determine the decision weather 

parameters and their corresponding weights by extracting the feature importance for each of the 

considered parameters. The TMY weather file is generated using a set of monthly weighting factors 

obtained for each of the selected decision weather parameters.  

The proposed approach was used to generate a TMY weather file for Montreal using the building 

energy demand of a prototypical medium office building. The resulting decision weather 

parameters obtained in the case study differed from those used to generate CWEC. Dry-bulb 

temperature and diffuse horizontal irradiance were found to have the greatest impact on energy 

demand. Furthermore, the resulting monthly weighting factors obtained for both parameters 

exhibited inversely proportional seasonal fluctuations.  

The TMY weather file generated using the defined generation parameters obtained from the 

presented methodology was evaluated against CWEC using the LTA building energy demand. The 

proposed TMY weather file demonstrated a good agreement with the LTA annual heating energy 

demand. Whereas CWEC was found to better demonstrate the LTA annual cooling demand. 
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However, when considering monthly energy demand, the TMY weather file outperformed the 

CWEC file for both heating and cooling with an improvement in RMSE of 23.65% and 2.93% 

respectively. These results correspond to a 16.04% improvement when considering total energy 

demand. These results demonstrate the inadequacy of universal annual weighting which fail to 

account for seasonal variations. Although annual energy demand may demonstrate good 

agreement, the use of annual weighting factors may lead to significant discrepancies in monthly 

energy demand.    

Presently, the procedures used to generate most of the widely available TMY weather files do not 

account for variations in climate and their associated seasonal changes. The presented 

methodology seeks to address this issue by considering the impact of the local weather data on 

energy demand to define the generation parameters. The presented approach offers a certain 

flexibility regarding the training data and may be used in instances with limited weather data or 

adapted for different applications. Further investigation is needed to ascertain the impact of varying 

climates and applications on the resulting TMY weather file using the abovementioned approach. 

Finally, additional research may be pursued to adapt the current methodology to address model 

constraints and to develop a more generalized approach. 
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Chapter 3 Evaluating the applicability of a machine learning 

methodology to improve TMY weather file generation for 

different Canadian climate zones. 

3.1  Contribution of Authors 

This manuscript has been submitted and is currently under review with the Journal of Building 

Engineering.  The journal paper demonstrates the applicability of the methodology proposed in 

Chapter 2 to varying climates and proposes the use of a standardized set of climate zone-based 

weighting factors to allow for greater adoption of the proposed methodology.  Ashleigh 

Papakyriakou is the first author of the paper. Ashleigh’s contributions include the 

conceptualization, development and validation of the energy models, data curation, formal 

analysis, writing, editing and review. Anahita Bigtashi (second author) contributions include the 

conceptualization, development of the proposed weather files (TMYSTATION and TMYCZ), data 

curation, editing and review. Dr. Bruno Lee contributed to conceptualization, and review.  

3.2  Introduction 

Building energy modelling is used for many purposes such as meeting code compliance, or as a 

design tool to help with decision-making to create more sustainable buildings. Typically, building 

energy models use typical metrological year (TMY) weather files to reduce the computational time 

associated with multi-year simulations.  TMY weather files allow designers to be more efficient 

as they can run a single simulation instead of multiple simulations to illustrate how the building 

will perform over the long term. A TMY weather file is a single artificial year that is composed of 

typical months selected from historical data over a specified period to represent the long-term 

average weather data. The accuracy of the results of the simulation depends on how well the TMY 

weather file can represent the long-term average weather data.  Canadian cities with sustainable 

building requirements for mid-to-high rise, commercial and mixed-use buildings such as the City 

of Vancouver [1], and the City of Toronto [2] require the use of Canadian Weather Year for Energy 

Calculation (CWEC) [3] TMY weather files for building simulation to verify code compliance.  

Various organizations have developed TMY weather files which are commonly used for building 

energy modelling. These datasets include the CWEC [3], the International Weather for Energy 
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Calculation (IWEC [4] and IWEC2 [5]), as well as the Typical Metrological Year ([TMY]2 [6], 

TMY2 [7] and TMY3 [8]). CWEC files are created by Environment and Climate Change Canada, 

focusing on Canadian locations, IWEC, and IWEC2 files are produced by ASHRAE for locations 

outside of Canada and the United States, and [TMY]1 files are produced by NREL for locations in 

the United States. TMY2 and TMY3 are updated versions of the [TMY]1 file format. All these 

datasets use the Sandia method to generate the TMY weather files. Common TMY weather file 

datasets use different weighting factors to determine the typical months. Furthermore, the TMY2 

and TMY3 datasets include direct normal irradiance as a parameter. The weighting factors used to 

generate common TMY weather files have been assigned subjectively by an expert based on the 

intended use of the weather file [9].  

In a previous study, the authors [10] extensively reviewed the influence of weighting factors on 

the generation of TMY weather files, the key findings from the literature review are summarized 

as follows.  Georgiou et al. [11] conducted a study highlighting the impact the weighting factors 

have on the typical months selected to create the TMY weather file. Since building heating and 

cooling demand is greatly influenced by weather parameters, selecting different months to create 

the TMY weather file will impact the results.  Kalamees et al. [12] highlighted the seasonal 

variation in the influence of the weather parameters, demonstrating the need for monthly weighting 

factors. Hong et al. [13] found large discrepancies, particularly in colder climates, where TMY3 

results often under- or overestimated energy savings compared to the historical weather data 

results. The study demonstrated the need for developing weighting factors that consider local 

climate conditions. Meng et al. [14] found dry bulb temperature to have the largest influence on 

heating demand across the three climate zones however the magnitude of influence varied based 

on the climate zone as well as the influence from the other weather parameters. The study 

highlighted how the influence of weather parameters varies based on the climate zone. The studies 

demonstrate the need for monthly customized weighting factors that consider local climate 

conditions.   

 

2 [TMY]: Used to denote the Typical Meteorological Year file format originally presented in. 
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The use of universal weather parameters and weighting factors fail to account for variations in 

climate which can lead to significant discrepancies in the simulation results. To address this 

problem, Bigtashi et al. [10] proposed a methodology using machine learning to systematically 

determine relevant weather parameters and weighting factors based on local climate conditions to 

improve TMY weather file generation. The methodology used a machine learning regression 

model to select weather parameters and generate their respective weighting factors using feature 

importance.  The methodology by Bigtashi et al. [10] is divided into four stages: (1) the 

methodology uses long-term historical weather data and building simulation to obtain hourly 

energy demands; (2) the energy demands are subsequently used to train the machine learning 

regression model alongside the long-term weather data; (3) the relevant weather parameters and 

weighting factors are extracted using feature importance; (4) the weather parameters and their 

corresponding weights are integrated into the Sandia method to generate the TMY weather files. 

The approach was applied to a medium office building in Montreal, Canada. The results showed 

an improvement in the representativeness of the long-term average building energy demand for 

the weather file generated with the proposed methodology compared to the commonly used 

Canadian TMY weather file, CWEC. The monthly RMSE values for the total building energy 

demand indicated the proposed TMY weather file outperformed the CWEC weather file by 16%.  

Although the results demonstrated a significant improvement, a notable constraint outlined by the 

authors is the location-dependent nature of the methodology.  The methodology requires 

customized weighting factors to be generated for each TMY weather file location. This process 

can be very time-consuming and potentially limit the adoption of the proposed methodology.  

A few studies [13] [14] have emphasized the need for weighting factors to account for local climate 

conditions.  Widely recognized building energy standards, such as NECB [15], ASHRAE 90.1 

[16], and CaGBC Zero Carbon Building Design Standard [17], organize design requirements based 

on climate zones. Recognizing the time-intensive nature of generating location-dependent 

weighting factors, there exists a potential strategy to group these factors by climate zones, 

maintaining consideration for local climate conditions. The adoption of climate zone-based 

weighting factors, as opposed to location-dependent ones, presents an opportunity to streamline 

the process of generating TMY weather files while still capturing the nuanced effects of local 

climates.  
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The methodology proposed by Bigtashi et al. [10] demonstrated a significant improvement in 

weather file performance compared to the CWEC weather files, however, the study was limited to 

one location and the methodology requires location-dependent weighting factors which can be 

very time-consuming to generate for multiple locations. To address these limitations, the study has 

outlined two main objectives. The objectives of this study are: 

1. To assess the applicability of the methodology proposed by Bigtashi et al. [10] across 

varying Canadian climates, 

2. And to investigate the feasibility of using standardized climate zone-based weighting 

factors to reduce the computational time associated with extracting location-based 

weighting factors while still considering local climate conditions to facilitate wider 

adoption of the proposed methodology.  

3.3  Methodology  

The purpose of this study is to evaluate the applicability of Bigtashi et al.’s [10] methodology for 

different climate zones across Canada and to examine the feasibility of employing standardized 

climate zone-based weighting factors to produce TMY weather files. The adoption of climate zone-

based weighting factors streamlines the process and reduces the time required by eliminating the 

need to create location-specific weighting factors.  

To investigate the applicability of the methodology by Bigtashi et al. [10] and the feasibility of the 

standardized climate zone-based weighting factors, a case study is conducted using a prototypical 

medium-sized office building for 18 cities across the six different Canadian climate zones. Canada 

is selected for the case study due to the diverse range of climate zones, varying from mild to very 

cold. The performance of the TMY weather files is assessed using the hourly long-term building 

energy demand of a medium prototypical office building.  

The methodology is divided into five main sections which are displayed in Figure 3.1 along with 

a flow chart of the process.  Section 3.3.1 provides an overview of the 18 Canadian cities and the 

corresponding hourly long-term historical weather data for each location. Section 3.1.2 reviews 
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the six building energy models developed for the study which follow the National Energy Code of 

Canada for Buildings (NECB) requirements. Section 3.3.2 discusses the generation methods used 

to produce the two TMY weather files for each location. The TMY weather files generated with 

the location-based weighting factors are denoted as the TMYSTATION weather files, and the TMY 

weather files generated with the climate zone-based weighting factors are denoted as TMYCZ 

weather files. The total number of simulations are outlined in section 3.3.3.  Lastly, in section 3.3.4, 

the performance indicators used in this study are presented. The NMBE and the CV(RMSE) values 

for both the proposed TMY weather files and CWEC weather files will be calculated with the long-

term weather data to evaluate the results.  



 

 

57 

 

Figure 3.1: Case study methodology 

3.3.1 Long-Term Weather Datasets 

To generate the TMYSTATION and TMYCZ weather files, hourly long-term weather (LTW) data is 

acquired for different cities across Canada. Environment and Climate Change Canada provides the 
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Canadian Weather Energy and Engineering Datasets (CWEEDS) files for 564 Canadian locations. 

These files contain hourly weather data for at least 10 years, ranging between 1998 to 2017, and 

contain the weather parameters required for the building energy simulation software, Energy Plus 

[18]. The CWEEDS files are also used to generate the CWEC weather files using the Sandia 

method.  

There are six different climate zones in Canada which are defined based on heating degree days 

(HDD) at 18C [15]. The six climate zones and their corresponding HDD ranges are presented in 

Table 3.1. 

Table 3.1:  Canadian climate zones defined by HDD [15] 

 Climate Zone 
 4 5 6 7A 7B 8 

HDD < 3000 3000 to 3999 4000 to 4999 5000 to 5999 6000 to 6999 7000 
       

In this study, three cities are selected for each Canadian climate zone, resulting in a total of 18 

different cities. The CWEEDS file was obtained for each Canadian city as shown in Figure 3.2. 

The city markers are colour-coded based on their respective climate zone. 
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Figure 3.2: Map of the cities selected for weather file generation. 

Table 3.2 shows each city, and its respective climate zone, heating degree days, weather station, 

weather station name and the period of data available. The airport weather station was chosen to 

represent each city for consistency, as some locations only had the airport weather station available. 
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Table 3.2:  Case study cities  

Climate Zone City Province HDD [30] Station ID Station Name Period Range 

4 

Vancouver British Columbia 2825 1108395 Vancouver Intl. Airport 1998-2017 

Victoria British Columbia 2650 1018621 Victoria Intl.  Airport 1998-2017 

Abbotsford British Columbia 2860 1100031 Abbotsford Airport 1998-2017 

5 

Toronto Ontario 3520 6158731 Toronto Intl. Airport 1998-2017 

Hamilton Ontario 3460 6153193 Hamilton Airport 2000-2017 

London Ontario 3900 6144473 London Airport 1998-2017 

6 

Ottawa Ontario 4500 6106001 Ottawa Intl. Airport 1998-2017 

Montreal Quebec 4200 7025251 Montreal Intl. Airport 1998-2017 

St. John's Newfoundland and 
Labrador 4800 8403505 St. Johns Intl. Airport 1998-2017 

7A 

Calgary Alberta 5000 3031092 Calgary Intl. Airport 1998-2017 

Regina Saskatchewan 5600 4016566 Regina Intl. Airport 1998-2017 

Winnipeg Manitoba 5670 5023227 Winnipeg Intl. Airport 1998-2017 

7B 

Whitehorse Yukon 6580 2101303 Whitehorse Airport 2005-2017 

Fort 
McMurray Alberta 6250 3062697 Fort McMurray Airport 1998-2017 

Prince Albert Saskatchewan 6100 4056241 Prince Albert Airport 1998-2017 

8 

Kuujjuaq Quebec 8550 7113535 Kuujjuaq Airport 2005-2017 

Iqaluit Nunavut 9980 2402596 Iqaluit Airport 2005-2017 

Yellowknife Northwest 
Territories 8170 2204101 Yellowknife Airport 2005-2017 
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The data from the CWEEDS files for the outlined cities above is used in section 3.3.2 to generate 

the TMYSTATION and TMYCZ weather files for each city. The CWEEDS data is also used to evaluate 

the TMY weather files' performance by comparing the building energy demands.  

3.1.2 Building Energy Model 

For the case study, six energy models of a typical medium-sized office building are created, one 

for each Canadian climate zone as discussed in the previous section.  The medium office geometry 

is based on the DOE medium office parameters [19]. The building energy models are used to both 

generate the TMY weather files as well as to evaluate the weather file performance. The energy 

model was designed to the National Energy Code of Canada for Buildings (NECB) 2020 [15] code 

requirements. The internal gains and schedules are consistent between each energy model to 

facilitate comparison and are shown in Table 3.3. Furthermore, the heating set point is 21C and 

the cooling set point is 24C, which is consistent for all building energy models.   

Table 3.3:  NECB 2020 Office Internal Gains 

Space Type 
Lighting Receptacle Equipment Occupancy Schedule Infiltration 

[W/m2] [W/m2] [m2/person] [-] [L/s/m2 of façade at 5 Pa] 

NECB Office 10.00 7.50 25.00 Schedule A 0.25 

      

The envelope requirements outlined in NECB 2020 [15] for each climate zone are shown in Table 

3.4. The NECB 2020 [15] slab overall thermal transmittance is converted to the ASHRAE 90.1-

2022 [16] F-factor requirements for the energy models. 
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Table 3.4:  Climate zone envelope requirements [15] [16] 

Parameter 
Climate Zone 

4 5 6 7A 7B 8 

Walls USI [W/m2K] 0.29 0.27 0.24 0.22 0.19 0.17 

Roof USI [W/m2K] 0.16 0.16 0.14 0.12 0.12 0.11 

Window [W/m2K] 1.9 1.9 1.73 1.73 1.44 1.44 

Slab on Grade [W/m2K] 0.757 for 1.2 m 0.757 for 1.2 m 0.757 for 1.2 m 0.757 for 1.2 m 0.757 for 1.2 m 0.38 

ASHRAE F-factor [W/m2K] 1.13 1.13 1.13 1.13 1.13 0.52 

WWR [-] 0.4 0.4 0.39 0.33 0.23 0.2 

       

The model geometry of the medium office with a window-to-wall ratio (WWR) of 40% is shown 

in Figure 3.3.a). The energy model geometry shown is used for Climate Zone 4 and Climate Zone 

5, the energy models for the remaining climate zones have the same geometry but have a smaller 

WWR ratio. The office building used for all climate zones consists of three storeys and has a total 

area of 6,898 m2. Each level is broken up into five zones, four perimeter zones and one core zone, 

as shown in Figure 3.3 b).  

 
 

Figure 3.3: a) Model Geometry b) Model Zoning 
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3.3.2 TMY Weather File Dataset Generation 

The LTW data obtained in section 3.3.1 along with the building energy models developed in 

section 3.1.2 are used to determine the weather parameters and respective weighting factors by 

applying the methodology proposed by Bigtashi et al. [10] for each weather station outlined in 

section 3.3.1. The location-based weather parameters and weighting factors obtained through the 

methodology are integrated into the Sandia method to produce a TMY weather file for each 

location. The TMY weather files generated with the location-based weighting factors for each 

weather station are referred to as the TMYSTATION weather files. A total of 18 TMYSTATION weather 

files will be generated, one for each weather station.  

Since the proposed methodology is location-dependent, a standardized set of weighting factors 

based on the various Canadian climate zones are determined and used to generate an additional 

TMY weather file for each location. These weighting factors are referred to as the climate zone-

based weighting factors. The weather files generated with the climate zone-based weighting factors 

are referred to as the TMYCZ weather files. 

To generate the TMYCZ weather files, first, the climate zone-based weighting factors are obtained 

by averaging the TMYSTATION weighting factors for each weather parameter across the three cities 

within each designated climate zone, as shown in equation (3.1) 

𝑊𝐹஼௓,௜௝  =  𝐴𝑣𝑒𝑟𝑎𝑔𝑒 (𝑊𝐹ௌ்,௝) (3.1) 

Where:  
j is the weather parameter. 
WFST is the location-based weighting factor. 
i is the climate zone. 
WFCZ is the climate zone-based weighting factor. 

 

For example, to obtain the Climate Zone 4 dry bulb temperature climate zone-based weighting 

factor, the dry bulb temperature weightings generated for Vancouver, Victoria, and Abbotsford for 

the TMYSTATION weather files are averaged. The climate zone-based weighting factors are then 

integrated into the Sandia method and the TMYCZ weather files are generated using the historical 
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weather data for each weather station. A total of 18 TMYCZ weather files are generated using the 

climate zone-based weighting factors corresponding to the location’s climate zone. 

3.3.3 Building Simulation 

The TMYSTATION and TMYCZ weather files generated in section 3.3.2 are simulated in their 

corresponding climate zone energy model, along with the CWEC weather files. The building 

energy demands are obtained from the energy simulations and are compared to evaluate the 

suitability of the TMYSTATION and TMYCZ weather files. Table 3.5 shows the total number of 

simulations run for each climate zone.  

Table 3.5: Number of years simulated for each climate zone 

Climate Zone Abbreviation 
Weather Files 

Total 
TMYSTATION TMYCZ CWEC Long-Term 

4 CZ4 3 3 3 60 69 

5 CZ5 3 3 3 58 67 

6 CZ6 3 3 3 60 69 

7A CZ7A 3 3 3 60 69 

7B CZ7B 3 3 3 53 62 

8 CZ8 3 3 3 39 48 

       

The resulting monthly heating and cooling energy demands obtained from the simulations with the 

TMYSTATION, TMYCZ and the CWEC weather files are compared to the long-term average heating 

and cooling demands.  

3.3.4 Performance Evaluation 

The ASHRAE Guideline 14 [20] requires the use of normalized mean bias error (NMBE) and the 

coefficient of variation of the root mean square error (CV(RMSE)) to evaluate energy model 

performance. The NMBE measures the amount of bias in the regression model, which indicates 

how closely the annual energy demand generated with the TMY weather files corresponds to the 

annual energy demand generated with the long-term weather data [20].  However, offsetting errors 

can influence the NMBE [20], therefore the CV(RMSE) is also used to determine the amount of 

variance in the regression model between the energy demand generated with the TMY weather 
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files and the historical long-term data, indicating how well the TMY weather files and the long-

term weather data align with each other [20]. The ASHRAE guideline requires the monthly NMBE 

values to be within ±5% and the CV(RMSE) values to be within ±15% for the energy model to be 

considered acceptable [20]. 

For this study, NMBE and CV(RMSE) are used to evaluate the performance of the proposed TMY 

weather files and the CWEC weather files. These metrics were selected since acceptable ranges 

for results verification are provided for the NMBE and CV(RMSE) by ASHRAE Guideline 14. 

Additionally, Reddy and Henze [21] recommend the use of the CV(RMSE) over the other popular 

metric, RMSE since it is a normalized value, therefore simplifying the comparison of the results.  

The NMBE and the CV(RMSE) have been selected to evaluate the applicability of the TMYSTATION 

and TMYCZ weather files. The performance indicators investigate the amount of variance and bias 

in the building energy demand obtained from the energy simulations with the various weather files. 

The NMBE is calculated for the monthly energy demand using equation (3.2). A lower NMBE 

indicates a better fit to the long-term data.  

𝑁𝑀𝐵𝐸 =
∑ (𝑇𝑀𝑌௜  − 𝐿𝑇𝐴௜)ே

௜ୀଵ
(𝑛 − 1) ∗ 𝜇 ∗ 100 (3.2) 

Where:  

TMY is the monthly energy demand results simulated using the typical meteorological 
year weather file.  
LTA is the average monthly energy demand simulated using long-term weather data. 

n is the total number of months in a year. 

µ is the average monthly energy demand for the typical meteorological year weather file.  

The CV(RMSE) is calculated for the monthly energy demand using equation (3.3). Additionally, 

a lower CV(RMSE) indicates a better fit to the long-term data. 

𝐶𝑉(𝑅𝑀𝑆𝐸) =
ට∑ (𝑇𝑀𝑌௜  − 𝐿𝑇𝐴௜)ଶே

௜ୀଵ
𝑛 − 1

𝜇
∗ 100 (3.3) 
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Where:  

TMY is the monthly energy demand results simulated using the typical meteorological 
year weather file.  
LTA is the average monthly energy demand simulated using long-term weather data. 
n is the total number of months in a year. 

µ is the average monthly energy demand for the typical meteorological year weather file. 

3.4  Results 

The Results section is divided into two main sections. The monthly weighting factors obtained 

from the proposed methodology used to generate the TMYSTATION weather files and the TMYCZ 

weather files are presented in section 3.4.1.  In section 3.4.2, the building energy demands obtained 

from the energy model simulations and the performance indicator values calculated based on the 

energy demands are shown for the TMYSTATION, TMYCZ, and CWEC weather files for each 

location.   

3.4.1 Monthly Weighting Factors 

The monthly weighting factors obtained from the machine learning model in Stage 3 of the 

proposed methodology are presented in this section. These monthly weighting factors will then be 

used to generate the TMYSTATION and TMYCZ weather files using the Sandia method.  

3.4.1.1 TMYSTATION 

The monthly weighting factors for each weather parameter were obtained using the proposed 

methodology for each weather station, as presented in Figure 3.4, and are organized by climate 

zone. The location-based weighting factors generated for each location can be found in Appendix 

B, Table B 1. All weather parameters exhibit variation, however distinct trends emerged when 

comparing the different climate zones.  

Dry bulb temperature (DBT) weighting factors exhibited the most variation compared to the other 

weather parameters. Moreover, DBT received the largest weight across all months and locations, 

indicating its significant influence on energy demand. In most cases, the DBT weighting factor 

obtained using the proposed methodology was found to exceed the CWEC dry bulb temperature 

weight of 40%. There was a total of three instances where the DBT weighting factor was either 
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less than or equal to 40%. This occurred for Vancouver in the month of October where DBT 

received a weighting of 30%, and for Iqaluit in June and August where the DBT weightings were 

39% and 40%, respectively.    

In Canada, winter extends from December to February, while summer spans from June to August. 

The remaining months, which occur during spring and autumn, serve as transitional periods, and 

are referred to as shoulder months. CZ4 has milder winters compared to the other climate zones 

and warm summers. In CZ4, DBT received higher weightings in the summer months and lower 

weightings during the winter months. The second most influential weather parameter for CZ4 was 

diffuse horizontal irradiance (DHI). The weight attributed to DHI was found to be inversely 

proportional to DBT, significantly increasing during the winter months. The weighting for direct 

normal irradiance (DNI) increased during the shoulder seasons compared to the other months. 

Wind speed (WS) and relative humidity (RH) received the lowest weightings, with a slight increase 

during the winter months.  Additionally, there was some variation in the weighting factors between 

the three cities. Abbotsford received a slightly greater weighting for DBT across all the months 

compared to Victoria and Vancouver. Furthermore, as mentioned previously, Vancouver received 

a significantly lower DBT weighting in October, with an increase in DNI and DHI.  

In CZ5 and CZ6, the weather parameters showed minimal variation between months compared to 

the other climate zones. These climate zones exhibit cold winters and hot summers, with CZ6 

having a colder winter than CZ5. CZ6 receives a slightly larger weight on DBT compared to CZ5. 

All the cities within CZ5 have similar weightings to each other. In the case of CZ6, Ottawa and 

Montreal receive similar weights while St. Johns had consistently different weights.  

CZ7A, CZ7B, and CZ8 exhibited similar trends to each other with CZ8 showing the most 

prominent trends. The trends were opposite to CZ4.  These climate zones have much colder 

winters, with CZ8 being the coldest, and have milder summers compared to the other Canadian 

climate zones.  The DBT weighting increased during the winter months, with CZ8 receiving the 

largest weighting for DBT compared to all other climate zones. Additionally, CZ8 has the largest 

amount of variation between the DBT weighting in the summer and winter. The remaining weather 

parameters received lower weightings during the winter months compared to the summer months. 

Furthermore, the cities within CZ7A and CZ7B received similar weighting factors. In CZ8, all the 
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cities received similar weighting factors during the winter months, however during the summer 

months there was significant variation with the weighting factors with Iqaluit receiving a much 

lower DBT weight during June and August compared to the other two cities. Additionally, 

Yellowknife showed variation in weights compared to the other two cities in April, May, July, and 

October. The distinct trends emerging between climate zones may indicate the need for customized 

weighting factors based on local climate conditions.  

Figure 3.5 further highlights the trends between the cities. As the climates get colder, the weights 

tend to increase during the winter months. Moreover, there is more variation in weights among the 

winter months between climate zones, with the weights ranging from 41% to 94%, while during 

summer they range from 39% to 78%, however the 39% and 40% weightings appear to be an 

outlier.  Additionally, the figure further emphasizes the difference in weighting factors for St. Johns 

compared to the other CZ6 cities. St. Johns may warrant consideration for a different climate zone. 

Additionally, in summer, the Iqaluit DBT weights significantly differ from the values obtained for 

the other cities within CZ8. These differences in weightings between cities potentially indicate a 

need for refined climate zone definitions. 
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Figure 3.4: Weighting factors for each location sorted by climate zone 
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Figure 3.5: Weighting factors for dry bulb temperature for each city 

3.4.1.2 TMYCZ 

As previously mentioned, a limitation of the framework, highlighted in [10], is the use of location-

based weighting factors. As a result, a preliminary investigation is conducted in this study to 

evaluate the performance of standardized climate zone-based weighting factors. Figure 3.6 

presents a heatmap of the averaged weighting factors for each climate zone organized by weather 

parameter. These average weighting factors will be referred to as climate zone-based weighting 

factors.  

The climate zone-based weighting factors were used to generate the TMYCZ weather file for each 

location using the location specific weather data in its respective climate zone. The climate zone-

based weighting factors further highlight the trends shown between climate zones. CZ4 received 

the lowest DBT weighting during the winter months compared to the other climate zones, where 

CZ8 received the highest weight. Although CZ6 cities typically have colder winters then CZ5, 

CZ5 received a greater average DBT weighting than CZ6, this is most likely due to St. Johns, 

which was a potential outlier in CZ6. Both the CZ5 and CZ6 average weighting factors exhibited 

a lower variation in DBT weights compared to the other climate zones. DHI receives the largest 

weights during the summer in CZ8 and during the winter in CZ4. DNI experienced higher 

weightings in CZ8 during the summer, however CZ4 received the largest weighting during the 

shoulder seasons and experienced a significant increase in October. RH and WS typically received 
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weightings under 10% except for in CZ8 where RH received a weight of 12% in September, and 

WS received a weight of 11% in June and September. Additionally, CZ8, receives both the 

minimum (2%) and maximum (12%) RH value. The climate zone-based weighting factors further 

highlight the monthly variation in weighting factors as well as the variation between the different 

climate zones.  

 

Figure 3.6: Average weighting factors per climate zone 

3.4.2 Energy Demand 

The monthly energy demands were obtained from the energy models simulated with the 

TMYSTATION, TMYCZ, and CWEC weather files, along with the hourly long-term weather datasets 
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for each location. The monthly energy demands were divided by the total building area and are 

displayed in Figure 3.7, Figure 3.8, and Figure 3.9. A difference in monthly energy demand 

between the TMYSTATION, TMYCZ and CWEC weather files indicates months where different years 

were selected in the TMY weather file. Table B 2 in Appendix B displays the years selected for 

each month of the TMY weather files, with the years in bold indicating differences between the 

weather files. Seven of the proposed TMYSTATION and TMYCZ weather files are identical in 

composition, where the rest have one month where a different year was selected to represent the 

typical month.  

The difference between each TMY weather file and the LTA varies across months and cities among 

the CWEC, TMYSTATION, and TMYCZ weather files. The TMYSTATION and TMYCZ demands are 

very similar as the TMY weather file composition is very similar between the two.  In most months 

across all cities, the proposed TMYSTATION and TMYCZ weather files appear to provide a better fit 

compared to the CWEC weather files. Moreover, discrepancies tend to be more pronounced in 

cases where the CWEC months demonstrate a poorer fit compared to the proposed TMYSTATION 

and TMYCZ weather files. 

 

Figure 3.7: TMYSTATION, TMYCZ, CWEC and LTA Energy Demand for CZ4 and CZ5 
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Figure 3.8: TMYSTATION, TMYCZ, CWEC and LTA Energy Demand for CZ6 and CZ7A 

 

Figure 3.9: TMYSTATION, TMYCZ, CWEC and LTA Energy Demand for CZ7B and CZ78 
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Table 3.6 displays the NMBE values and the CV(RMSE) values for CWEC, TMYSTATION, and 

TMYCZ weather files in comparison to the historical long-term average weather data. The 

ASHRAE Guideline 14 requires the monthly energy demands NMBE to be within ±5% and the 

CV(RMSE) to be within ±15% for the energy model to be acceptable [20].  In most cities, the 

NMBE for all weather files remained within the acceptable range, except for Regina, simulated 

with the CWEC file, and Calgary, simulated with the TMYSTATION and TMYCZ weather files. 

Regina and Calgary exceeded the acceptable range by 0.7% and 0.5%, respectively, indicating a 

larger discrepancy between the long-term energy demand and the TMY weather file energy 

demand for these cities. Although still within the acceptable CV(RMSE) range, Calgary also 

received the highest CV(RMSE) value of 8.8%, indicating a higher variance in the results 

compared to the other cities. All the cities generated with the three different weather files had a 

CV(RMSE) within the acceptable range. Overall, the TMYSTATION and TMYCZ weather files had 

lower NMBE values and CV(RMSE) values compared to the CWEC weather files. The 

TMYSTATION weather files had the most instances with the lowest NMBE and CV(RMSE) values, 

although the TMYCZ values were either the same value or very close for many locations.  These 

lower values represent a better performance with the TMYSTATION and TMYCZ weather files 

compared to the CWEC weather files, as they exhibited less bias and less variation in the results, 

indicating a better fit to the LTA weather data. 

Table 3.6: Performance metrics 

Climate 
Zone City 

NMBE CV(RMSE) 

CWEC TMYSTATION TMYCZ CWEC TMYSTATION TMYCZ 

[-] [-] [-] [-] [-] [-] 

4 

Vancouver 1.2% 0.0% 0.9% 5.5% 4.8% 4.9% 

Victoria -3.0% -2.6% -1.9% 6.7% 7.0% 7.0% 

Abbotsford -1.4% 1.2% 1.2% 6.4% 4.6% 4.6% 

5 

Toronto -1.1% -1.2% -1.2% 8.0% 6.1% 6.1% 

Hamilton -2.8% 2.7% 2.8% 7.6% 5.0% 4.9% 

London -2.8% 0.4% 0.3% 6.0% 6.1% 6.2% 

6 Ottawa 0.2% 2.5% 1.7% 6.2% 5.8% 5.0% 
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Montreal 0.1% 0.0% 0.0% 5.5% 4.6% 4.6% 

St. John's -0.4% 0.5% 0.3% 4.2% 4.5% 4.3% 

7A 

Calgary -3.0% -5.5% -5.5% 10.7% 8.8% 8.8% 

Regina -5.7% -2.0% -2.6% 6.9% 6.8% 6.4% 

Winnipeg 0.3% 0.5% 0.2% 7.6% 3.4% 3.5% 

7B 

Whitehorse 0.9% -3.9% -3.9% 13.4% 8.3% 8.3% 

Fort McMurray 1.4% -0.4% -0.6% 6.5% 3.3% 3.5% 

Prince Albert 2.8% -0.6% -0.6% 8.3% 5.9% 5.9% 

8 

Kuujjuaq -1.7% -0.6% -0.6% 3.9% 3.6% 3.6% 

Iqaluit 0.2% -0.7% -1.1% 5.0% 2.8% 3.3% 

Yellowknife 2.9% 0.8% 0.8% 6.5% 3.9% 3.9% 

        

3.5  Discussion  

As revealed in the Results section, DBT consistently received a larger weight when compared to 

the other weather parameters indicating DBT has the greatest influence on building energy 

demand. The outdoor air temperature influences the amount of heat loss in the building. 

Mechanical heating and cooling are typically required to offset these losses contributing to the 

building’s energy demand. The significance DBT has on the building’s energy demand can be 

explained through heat transfer.  Conduction can influence the heating and cooling demand of a 

building from heat loss or gains through the building envelope, such as the walls or roof. Fourier’s 

law states the rate of heat transfer by conduction is directly proportional to the temperature 

differential [22]. The outdoor air temperature heavily influences the amount of heat loss that occurs 

through the building envelope.  Additionally, heat loss or gain through convection occurs during 

infiltration. The amount of energy gained or lost from infiltration is partially influenced by the 

outdoor air temperature. Additionally, building ventilation requirements such as ASHRAE 62.1 

[23], require outdoor air to be delivered during occupied hours, the outdoor air needs to be 

conditioned and the amount of sensible energy required depends on the differential between the 

outdoor and supply air temperatures. The flowrate of air entering a building and the temperature 

differential between the outdoor temperature and the target temperature influence the amount of 

sensible energy required to condition the air. The outdoor DBT significantly influences a building’s 
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energy consumption due to the energy required to condition and maintain space temperatures. 

Space conditioning, ventilation and infiltration can significantly impact energy demand which are 

all linked to the outdoor DBT, causing DBT to receive a larger weighting compared to the other 

parameters.   

Table 3.7 provides the heating and cooling design day temperatures defined in NECB 2020 [15] 

for each weather station. Throughout the winter, the typical room temperature set point is 21°C. In 

Yellowknife, the temperature differential between outdoor and indoor conditions is -65°C, while 

in Vancouver it is -27°C. In cold climates, the large differential between the indoor and outdoor 

temperature, occurring during the winter months, may explain the significant increase in weight 

attributed to DBT compared to locations with milder winters. Similarly, a greater weighting is 

attributed to DBT during the summer months for climate zones which exhibit hotter summers. 

Furthermore, extreme cold climate zones like CZ7B and CZ8 also receive less hours of sunlight 

during the winter compared to the other climate zones, making temperature the primary driver of 

heating demand. Conversely, during summer, these zones receive more sunlight hours compared 

to the other climate zones and have lower summer temperatures, which slightly increases the solar 

weighting during these months.  In CZ7B and CZ8, all other parameters increase during summer 

and decrease in winter. The differences in weighting factors and the trends observed between 

climate zones further highlight the need for weighting factors that account for local climate 

conditions.  
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Table 3.7: NECB 2020 Design Day temperature for each selected city [15] 

Climate Zone City 

Design Day Temperatures 

Winter Summer 

[°C] [°C] 

4 

Vancouver -9 28 

Victoria -6 24 

Abbotsford -10 29 

5 

Toronto -20 31 

Hamilton -19 31 

London -20 30 

6 

Ottawa -27 30 

Montreal -26 30 

St. John's -16 24 

7A 

Calgary -32 28 

Regina -36 31 

Winnipeg -35 30 

7B 

Whitehorse -43 25 

Fort McMurray -40 28 

Prince Albert -40 28 

8 

Kuujjuaq -39 24 

Iqaluit -41 17 

Yellowknife -44 25 

    

The Results section also discussed monthly variations in the weighting factors, these fluctuations 

were most prominent for DBT. Although the month-to-month variation is considered minimal, the 

weighting factors demonstrate significant seasonal variation. Figure 3.10 displays monthly 

boxplots of the dry bulb temperatures for each city. The seasonal fluctuations in weighting factors 

are likely attributed to the seasonal differences in the Canadian climate zones, consisting of four 

distinct seasons: fall (September to November), winter (December to February), spring (March to 

May), and summer (June to August).  The seasonal variation in DBT, which can be seen in Figure 

3.10, aligns with the variation in weighting factors. For instance, in the climates with the coldest 

winters such as CZ8, the DBT weighting is greatest during the winter, and gradually decreases 
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during the summer, with the transition happening during the shoulder seasons. A similar trend is 

seen in CZ7A and CZ7B. CZ5 and CZ6 had minimal monthly and seasonal variation in weighting 

factors, possibly attributed to these climate zones experiencing hot summers and cold winters. 

Climate zones with the most pronounced seasonal variations, such as CZ4 and CZ8, experience a 

season that is more extreme than the other. The seasonal variation in the weighting factors for the 

various locations demonstrates the importance of monthly weighting factors. The current approach 

typically has one set of weighting factors that are applied for the whole year.  

 

Figure 3.10: Boxplots of dry bulb temperature for each city 

As previously discussed, distinct trends emerged when comparing the different climate zones. For 

instance, the colder climate zones receive a larger DBT weighting during the winter compared to 

the other climate zones. Similarly, the climate zones with the hotter summers receive a larger DBT 
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weighting during the summer compared to the other climate zones, which is further supported by 

reviewing the DBTs for each location in Figure 3.10. These trends were further emphasized when 

the climate zone-based weighting factors were calculated. Notably, CZ5 was found to have greater 

DBT weights during the winter compared to CZ6, despite CZ6 typically having colder 

temperatures. This discrepancy is attributed to St. Johns, evident in Figure 3.10, having 

significantly different DBTs compared to the other CZ6 cities, which may influence the average 

weightings. The variations in weighting factors observed across different climate zones highlight 

the need for customized weighting factors which account for the different climate conditions. 

Variations in weighting factors were also evident among cities within the same climate zone, 

potentially stemming from the diverse local weather conditions experienced by these cities. As 

shown in Figure 3.10,   St. Johns and Iqaluit have different distributions in dry bulb temperature 

compared to the other cities within the same climate zone. These variations likely contribute to 

their difference in weighting factors in contrast to the other cities. Additionally, St. Johns is a 

coastal city whereas Ottawa and Montreal are located inland. As a result, the geographical 

difference may contribute to the disparities in weighting factors.  Furthermore, the climate zones 

are defined based on heating degree days; therefore, the summer design day temperatures can vary 

significantly for each climate zone. Cities within the same climate zone which exhibit similar 

weighting factors were found to have similar design day temperatures, as is the case for cities 

within CZ5 and CZ7A. However, St. Johns and Iqaluit, have either different summer and/or winter 

design day temperatures. St. Johns consistently has different weighting factors compared to the 

other cities within CZ6 and has a significantly higher winter design day temperature and lower 

summer design day temperature compared to Montreal and Ottawa, as shown in Table 3.7. Iqaluit 

has different weightings during the summer months and has a significantly lower summer design 

day temperature compared to the other cities within CZ8. The variations in design day 

temperatures within a climate zone demonstrate the need for improved climate zone definitions.  

The significant disparities in weighting factors among cities within a climate zone highlight the 

limitations of employing an average weighting factor approach with the existing climate zone 

definitions.  

The performance metrics indicated the TMYSTATION and TMYCZ weather files generally 

outperformed the CWEC weather files except for a few instances. Although CWEC exhibited a 
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lower CV(RMSE) for Victoria, London, and St. Johns, the improvement was minor (within 0.3%), 

whereas the TMYSTATION and TMYCZ weather files showed up to a 5.1% improvement compared 

to the CWEC weather files. Overall, the TMYSTATION and TMYCZ weather files provided a more 

accurate representation of the monthly long-term average (LTA) energy demands, as supported by 

their lower CV(RMSE) values. The CWEC weather files had a total of five cities out of the 18 

with a lower NMBE, indicating a better representation of the annual energy demand compared to 

the LTA for these locations. The CWEC NMBE values were up to 3.0% better compared to the 

TMYSTATION and TMYCZ weather files for these locations, whereas for the remaining 13 locations 

the TMYSTATION and TMYCZ weather files had up to a 3.7% and 3.1% improvement respectively. 

Additionally, for the locations where CWEC had a better NMBE, the TMYSTATION and TMYCZ 

weather files had better CV(RMSE) values for these locations which indicate less monthly error. 

Although CWEC had lower NMBE values for these locations, its higher CV(RMSE) values imply 

that the monthly variation in energy demands might have counteracted to achieve a closer 

approximation to the annual LTA energy demand. Furthermore, there are no instances where 

CWEC exhibited both a lower CV(RMSE) value and a lower NMBE value, whereas there are 

several instances when the TMYSTATION and TMYCZ weather files have lower values for both 

metrics. The TMYSTATION weather files had the most instances where both the CV(RMSE) value 

and NMBE values were lowest compared to the other two files indicating a better performance. 

However, the performance of the TMYCZ weather files differed from the TMYSTATION weather files 

by at most by 0.9% for most locations. Lastly, all three weather files (TMYSTATION, TMYCZ, 

CWEC) each had one location which exceeded the ASHRAE Guideline 14 acceptable range 

requirements by 0.5%, 0.5% and 0.7% respectively. In the case of the TMYSTATION and TMYCZ 

weather files, Calgary surpassed the threshold, possibly due to weather distribution, as evidenced 

by several outliers in the DBT boxplots for Calgary.  

Although the TMYSTATION and TMYCZ weather files performed better than the CWEC weather 

files as indicated by the performance metrics, the amount of improvement across the cities within 

the same climate zone and in different climate zones was inconsistent. The CV(RMSE) values 

ranged from 2.8% to 8.8% and NMBE values ranged from 0% to 5.5% for the TMYSTATION and 

TMYCZ weather files. This variability in performance could be attributed to factors such as weather 

distribution, machine learning model accuracy, smoothing in the CWEC weather file, and the 
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Sandia method. Cities within the same climate zone may experience diverse local weather 

conditions, leading to variations in percentage improvements. These differences may be 

contributing to the variable performance in the weather files as well as the underperformance in a 

few. Moreover, the differences in dry bulb temperature within a climate zone further demonstrate 

the need for a refinement in the climate zone definitions. The machine learning model accuracy 

represents the machine learning algorithm’s ability to predict the energy demand based on the 

weather inputs, however this does not necessarily represent the accuracy of the weighting factors. 

These accuracies can differ between months and cities due to the distribution in weather, which 

may contribute to the variation in performance between cities and climate zones. Furthermore, 

when CWEC weather files are created, six hours at the start and end of each month are smoothed 

using interpolation to remove step changes in the hourly data [24]. This smoothing may cause 

slight variations in the performance between the proposed weather files and the CWEC weather 

files. Lastly, the Sandia method is very sensitive to variations in the input datasets, such as a slight 

variation in rounding or weather station measurements can cause a different month to be selected. 

All these factors may attribute to the variations in performance between the cities. However, the 

overall improvement of the TMYSTATION and TMYCZ weather files indicates the need to consider 

customized weighting factors that account for local climate conditions. 

The study found the methodology by Bigtashi et al. [10] to be effective in generating customized 

weighting factors for varying climates.  The NMBE and CV(RMSE) results indicated the 

TMYSTATION weather files better reflected the monthly long-term energy demand compared to 

CWEC for most of the cities.  The improvement highlighted the importance of customized monthly 

weighting factors which account for local weather conditions. However, the study had a few 

limitations, such as only evaluating one building type and using a location-dependent 

methodology. Another study should be conducted evaluating the methodology on various building 

types.  To reduce the time associated with generating location-dependent weighting factors, the 

study explored the use of a standardized set of climate zone-based weighting factors that were 

determined by taking the average of the weighting factors within each climate zone. The 

performance of the TMYCZ weather files indicates the potential for a standardized set of climate 

zone-based weighing factors. Although the TMYSTATION weather files performed slightly better 

than the TMYCZ weather files, the convivence of the standardized climate zone-based weighting 
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factors used in the TMYCZ weather files would allow for the methodology proposed by Bigtashi 

et al. [10] to be more widely adopted. However, further refinement in climate zone definitions is 

necessary before these standardized weighting factor sets are created. Further analysis should be 

completed to consider a broader range of cities and diverse building types for an enhanced set of 

climate zone-based weighting factors. 

3.6  Conclusion 

Developing universal annual weighting factors based on expert judgement neglects variations in 

local climate conditions and seasonal weather fluctuations. While Bigtashi et al. [10] introduced a 

methodology that significantly improved TMY weather file performance when compared to the 

CWEC weather file, the study was limited to a single location and requires location-dependent 

weighting factors which can be time-consuming to generate for thousands of weather station 

locations. This study aims to address these limitations, with two primary objectives: 

1. Assess the applicability of the machine learning methodology proposed by Bigtashi et al. 

[10] by applying it to various Canadian climates,   

2. And to investigate the feasibility of employing a standardized set of climate zone-based 

weighting factors to reduce the computational time associated with generating location-

based weighting factors. 

The results demonstrate that the methodology by Bigtashi et al. [10]  is versatile and can be applied 

to various climates. The TMYSTATION weather files exhibited superior performance, demonstrating 

up to a 3.7% and 5.1% improvement in NMBE and CV(RMSE) values, respectively, compared to 

the CWEC weather files. Furthermore, the weather files generated using the standardized climate 

zone-based weighting factors (TMYCZ) present a viable alternative, with the TMYCZ NMBE and 

CV(RMSE) values being very similar to the TMYSTATION weather files for most locations, with up 

to a 0.9% difference in performance between the two proposed weather files. The time saved by 

using the climate zone-based weighting factors to generate TMY weather files may be worth the 

marginal trade-off in performance between the TMYSTATION and the TMYCZ weather files. 

Moreover, the use of climate zone-based weighting factors can help reduce potential errors in 
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situations where some locations may have low model accuracy due to weather distribution. While 

the TMYCZ weather files provide a good representation of the long-term data, it is advisable to use 

the TMYSTATION files for locations with weather patterns which significantly differ from other cities 

within the same climate zone. Such is the case for Iqaluit, where substantial disparities in weather 

distribution during the summer months are observed compared to other locations within the same 

climate zone. 

Although both proposed TMY weather files performed better than the CWEC weather files, the 

study had a few limitations. The study focused only on a medium-sized office building and did not 

evaluate the methodology’s performance in a warm tropical climate as it was limited to Canadian 

climate zones. Furthermore, the standardized climate zone-based weighting factors were generated 

based on a small sample size of three locations per climate zone. The limitations present 

opportunities for future work which may improve the proposed methodology by Bigtashi et al. 

[10] for cases of varying applications and climates. Furthermore, improving the definition of 

Canadian climate zones may improve the accuracy of the generated TMYCZ weather files, as the 

climate zones are currently defined only based on heating degree days, and do not consider other 

variables such as cooling degree days. While climate zone-based weighting factors enhance the 

potential adoption of the proposed methodology, further research is imperative to redefine the 

climate zone definitions and expand the study to encompass diverse building types, sizes, and a 

broader spectrum of cities. 
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Chapter 4  Conclusions and Future Work 

The current approach to generating TMY weather files relies on weather parameters and weighting 

factors that are assigned based on expert judgement and often ignore seasonal variations and 

variations in climate and application. The proposed methodology provides a data-driven approach 

to define the weather parameters and weighting factors, accounting for seasonal variations by 

generating monthly weighting factors. The methodology was used to generate a proposed TMY 

weather file for Montreal using the building energy demand of a prototypical medium office 

building. The proposed TMY weather file outperformed the CWEC file by 16.04% with respect to 

total energy demand and the long-term average. These results demonstrate the importance of 

weighting factors that account for seasonal variations.  

The methodology was applied to various locations across Canada to determine its applicability for 

different climates. The TMYSTATION weather files demonstrated an improvement of representation 

in the LTA with up to a 3.7% and 5.1% improvement in NMBE and CV(RMSE) values, 

respectively, compared to the CWEC weather files for the majority of locations. The results 

confirm the proposed methodology is suitable for various climates.  

Since the proposed methodology is location-dependent it can be time-consuming to generate 

customized weighting factors for each location. Therefore, the feasibility of using a standardized 

set of climate zone-based weighting factors was investigated. The TMYCZ weather files also 

showed an improvement in the representation of the LTA for the majority of locations when 

compared to the CWEC weather files. The TMYSTATION weather files showed a marginal 

improvement when compared to the TMYCZ weather files with up to a 0.9% difference in 

performance. Although the location-based weather files performed slightly better for some 

locations, the convenience of using the standardized climate zone-based weighting factors to 

generate weather files may be worth the trade-off in terms of time efficiency. 

Overall, the results demonstrate using a machine-learning methodology to generate TMY weather 

files can improve the accuracy in representing the long-term average when compared to the 

conventional approach to TMY weather generation. Therefore, using a machine learning 

methodology to generate TMY weather files proves to be applicable.  
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4.1  Thesis findings  

1. Manuscript 1 demonstrates the improvement of TMY weather files in representing the 

LTA through integrating machine learning into the TMY weather file generation 

methodology. 

2. Manuscript 2 improves the current approach to TMY weather file generation by 

demonstrating the applicability of the methodology to different climates and demonstrates 

the machine-learning methodology is suitable for different climate zones. 

3. Manuscript 2 demonstrates the potential of using standardized climate zone-based 

weighting factors to help make the methodology more adaptable to industry applications.  

4.2  Future Work 

The TMY weather files generated with the proposed machine learning methodology demonstrated 

an improvement in performance across varying climates when compared to the conventional TMY 

weather file generation approach. To build upon the current research and further refine it, the 

following future work is recommended:  

 Evaluate the proposed methodology’s performance based on different applications.  

 Evaluate how different energy simulation software may influence the results. 

 Re-define Canadian climate zone definitions as they are currently only defined based on 

heating degree days. The new climate zone definitions should potentially consider cooling 

degree days, land use and the location such as coastal vs inland locations. 

 Further, investigate the climate zone-based weighting factors by expanding the study to 

account for different building types and more locations.  

References  

[1]  Government of Canada, "Green Building Principles," Government of Canada, 7 September 

2023. [Online]. Available: https://natural-resources.canada.ca/energy-efficiency/green-

buildings/green-building-principles/25301. [Accessed 14 February 2024]. 



 

 

89 

[2]  I. Hall, R. Prairie, H. Anderson and E. Boes, "Generation of Typical Meteorological Years 

for 26 SOLMET Stations," Sandia Laboratories, Albuquerque, 1978. 

[3]  National Climatic Center, "Typical Meteorological Year User’s Manual,," 1981. 

[4]  H. Lund, "The design reference year users manual," Thermal Insulation Laboratory - 

Technical University of Denmark, Kongens Lyngby, 1995. 

[5]  R. Festa and C. F. Ratto, "Proposal of a numerical procedure to select Reference Years," 

Solar Energy, vol. 50, no. 1, pp. 9-17, 1993.  

[6]  S. Janjai and P. Deeyai, "Comparison of methods for generating typical meteorological year 

using meteorological data from a tropical environment," Applied Energy , vol. 86, p. 528–

537, 2009.  

[7]  Ontario Building Code, O. Reg. 332/12, s.12.2.1.2.  

[8]  British Columbia Building Code, B.C. Reg. 264/12, s. 10.2.  

[9]  City of Toronto, Toronto Green Standard Version 4, Toronto: City of Toronto, 2022.  

[10]  Environment Canada, "Final Report - Updating CWEEDS Weather Files," Natural Resources 

Canada, Toronto, 2016. 

[11]  The National Renewable Energy Laboratory, "Typical Meteorological Year (TMY)," 

NSRDB: National Solar Radiation Database, [Online]. Available: 

https://nsrdb.nrel.gov/data-sets/tmy. [Accessed 24 September 2023]. 

[12]  W. Marion and K. Urban, "User's Manual for TMY2s," National Renewable Energy 

Laboratory , Golden, 1995. 



 

 

90 

[13]  S. Wilcox and W. Marion, "Users Manual for TMY3 Data Sets," National Renewable Energy 

Laboratory, Golden, 2008. 

[14]  ASHRAE, "American Society of Heating, Refrigerating, and Air-Conditioning Engineers," 

ASHRAE, [Online]. Available: https://www.ashrae.org/technical-

resources/bookstore/ashrae-international-weather-files-for-energy-calculations-2-0-iwec2. 

[Accessed 24 September 2023]. 

[15]  Y. J. Huang, F. Su, D. Seo and M. Krarti, "Development of 3012 IWEC2Weather Files for 

International Locations (RP-1477)," ASHRAE Transactions, vol. 120, no. 1, pp. 340-355, 

2014.  

[16]  M. Bhandari, S. Shrestha and J. New, "Evaluation of weather datasets for building energy 

simulation," Energy and Buildings, vol. 49, pp. 109-118, 2012.  

[17]  T. Hong, W.-K. Chang and H.-W. Lin, "A fresh look at weather impact on peak electricity 

demand and energy use of buildings using 30-year actual weather data," Applied Energy, vol. 

111, pp. 333-350, 2013.  

[18]  Y. Cui, D. Yan, T. Hong, C. Xiao, X. Luo and Q. Zhang, "Comparison of typical year and 

multiyear building simulations using a 55-year actual weather data set from China," Applied 

Energy, vol. 195, pp. 890-904, 2017.  

[19]  K. Skeiker, "Comparison of methodologies for TMY generation using 10 years data for 

Damascus, Syria," Energy Conversion and Management, vol. 48, no. 7, pp. 2090-2102, 2007.  

[20]  World Bank Group, "Syrian Arab Republic," Climate Change Knowledge Portal, 2021. 

[Online]. Available: https://climateknowledgeportal.worldbank.org/country/syrian-arab-

republic/climate-data-historical. [Accessed 2 March 2024]. 



 

 

91 

[21]  G. Georgiou, M. Eftekhari, P. Eames and M. Mourshed, "A study of the effect of weighting 

indices for the development of TMY used for building simulation," in 13th Conference of 

International Building Performance Simulation Association, Chambery, 2013.  

[22]  H. D. Kambezidis, B. E. Psiloglou, D. G. Kaskaoutis, D. Karagiannis, K. Petrinoli, A. Gavriil 

and K. Kvadias, "Generation of typical meteorological years for 33 locations in Greece; 

Adaptation to the needs of various applications," Theoretical and Applied Climatology, vol. 

141, no. 3-4, pp. 1313-1330, 2020.  

[23]  J. Sun, Z. Li, F. Xiao and J. Xiao, "Generation of typical meteorological year for integrated 

climate based daylight modeling and building energy simulation," Renewable Energy, vol. 

160, pp. 721-729, 2020.  

[24]  T. Kalamees, K. Jylhä, H. Tietäväinen, J. Jokisalo, S. Ilomets, R. Hyvönen and S. Saku, 

"Development of weighting factors for climate variables for selecting the energy reference 

year according to the EN ISO 15927-4 standard," Energy and Buildings, vol. 47, pp. 53-60, 

2012.  

[25]  F. Meng, M. Li, J. Cao, J. Li, M. Xiong, X. Feng and G. Ren, "The effects of climate change 

on heating energy consumption of office buildings in different climate zones in China," 

Theoretical and applied climatology, vol. 133, pp. 521-530, 2018.  

[26]  B. Qian, T. Yu, C. Zhang, P. Heiselberg, B. Lei and L. Yang, "A method of determining typical 

meteorological year for evaluating overheating performance of passive buildings," Building 

Simulation, vol. 16, no. 4, pp. 511-526, 2023.  

[27]  H. Li, J. Huang, Y. Hu, S. Wang, J. Liu and L. Yang, "A new TMY generation method based 

on the entropy-based TOPSIS theory for different climatic zones in China," Energy, vol. 231, 

p. 120723, 2021.  



 

 

92 

[28]  A. L. S. Chan, "Generation of typical meteorological years using genetic algorithm for 

different energy systems," Renewable Energy, vol. 90, pp. 1-13, 2016.  

[29]  M. Kuhn and K. Johnson, Feature Engineering and Selection: A Practical Approach for 

Predictive Models, 1st ed., Boca Raton, Florida: Chapman and Hall/CRC, 2019.  

[30]  Canadian Commission on Building and Fire Codes, National Energy Code of Canada for 

Buildings: 2020, National Research Council of Canada, 2022.  

[31]  A. Bigtashi, A. Papakyriakou and B. Lee, "Defining generation parameters with an adaptable 

data-driven approach to construct typical meteorological year weather files," Energy & 

Buildings, vol. 303, 2024.  

 

 



 

 

93 

Appendix A – Chapter 2 Appendices 

A.1 Proposed Methodology Flowchart 

  

Figure A 1: Proposed methodology flowchart 
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A.2  Feature A 

Feature A is used as a minimum threshold to evaluate the monthly feature importance scores for 

each weather parameter. The feature is created using a random number generator and integrated 

into the training input dataset. The purpose of integrating Feature A into the dataset is to introduce 

a variable which we are certain has no influence on the training output dataset, since it was 

independently generated and not considered in simulation. Therefore, features (weather 

parameters) with resulting feature importance scores equal or below that of Feature A are likely to 

have little influence on building energy demand. 

However, although Feature A is independently generated, the probability that the randomly 

generated set of numbers demonstrates a significant correlation with the output dataset remains. In 

other words, there is always a possibility that two completely independent variables demonstrate 

a strong correlation. Therefore, to address this issue, the Stage 2 process is repeated for varying 

values of Feature A. Finally, the average feature importance scores from all repeated runs are used 

to evaluate and determine the relevant features (decision weather parameters). 
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A.3  Montreal Building Energy Demand 

Table A 1: Monthly building energy demand comparison 

Month Heating (kWh/m2) Cooling (kWh/m2) 

CWEC Proposed TMY LTA CWEC Proposed TMY LTA 

January 9.90 9.90 9.50 0.00 0.00 0.00 

February 7.08 7.09 7.28 0.01 0.01 0.01 

March 4.27 5.00 4.81 0.08 0.07 0.11 

April 1.57 1.57 1.35 0.59 0.59 0.70 

May 0.04 0.04 0.09 3.41 3.41 3.39 

June 0.00 0.00 0.00 6.08 6.78 6.27 

July 0.00 0.00 0.00 8.83 8.56 8.19 

August 0.00 0.00 0.00 8.05 8.02 7.89 

September 0.01 0.01 0.02 4.52 4.51 4.63 

October 1.12 1.12 0.99 0.94 0.94 1.00 

November 2.90 3.65 3.28 0.14 0.08 0.10 

December 7.57 7.32 7.45 0.00 0.00 0.00 
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Appendix B – Chapter 3 Appendices 

Table B 1 Location specific weighting factors 

Climate 

Zone 
City 

Weather 

Parameter 

Weighting Factor (%) 

January February March April May June July August September October November December 

4 

Vancouver 

DBT 51.72 41.78 50.13 52.10 63.93 69.10 67.80 68.60 54.84 29.89 58.44 51.86 
RH 8.19 8.22 9.88 8.16 6.73 5.48 5.57 5.36 6.45 8.67 7.84 8.68 
DNI 10.04 10.19 12.48 16.79 13.05 10.19 11.08 9.80 21.49 29.20 7.85 7.85 
DHI 22.41 31.83 17.95 12.73 9.27 10.15 10.02 10.72 11.23 23.92 18.67 24.10 
WS 7.64 7.97 9.57 10.22 7.02 5.08 5.54 5.52 6.00 8.32 7.19 7.51 

Victoria 

DBT 44.76 41.48 52.79 56.38 68.25 69.63 68.09 69.92 64.87 45.92 54.69 45.88 
RH 8.07 8.83 10.31 8.34 7.14 5.95 5.50 5.17 6.37 8.76 8.49 8.97 
DNI 11.00 8.19 8.42 12.76 9.00 8.91 9.66 9.60 10.49 15.86 8.20 8.65 
DHI 28.08 34.03 19.56 13.46 8.66 9.56 9.96 9.37 11.78 20.02 20.41 28.68 
WS 8.09 7.47 8.92 9.06 6.95 5.96 6.79 5.94 6.49 9.44 8.21 7.82 

Abbotsford 

DBT 55.03 46.24 60.12 67.49 72.97 75.92 76.89 78.48 74.30 55.50 59.76 59.04 
RH 7.79 8.32 9.56 7.00 6.02 4.85 4.63 4.57 5.42 7.25 8.01 8.54 
DNI 8.41 8.48 8.22 8.90 6.68 5.78 6.50 5.68 6.68 12.17 7.55 8.27 
DHI 21.49 29.61 12.83 9.59 7.26 6.93 6.36 6.22 8.18 16.66 17.41 17.39 
WS 7.28 7.35 9.27 7.02 7.07 6.53 5.63 5.06 5.43 8.42 7.27 6.76 

5 

Toronto 

DBT 75.18 67.56 72.49 69.47 73.18 71.81 68.43 70.47 67.31 62.21 65.06 70.34 
RH 4.00 3.99 5.51 8.99 5.27 4.60 5.91 5.20 5.44 7.33 6.43 5.11 
DNI 5.11 12.21 7.07 5.44 7.03 6.08 6.85 6.32 6.96 7.98 12.07 5.62 
DHI 12.59 12.62 10.60 9.38 9.11 12.12 13.56 13.70 14.33 15.83 10.67 14.80 
WS 3.13 3.61 4.33 6.72 5.41 5.39 5.25 4.31 5.96 6.65 5.77 4.13 

Hamilton 

DBT 75.08 66.53 70.62 69.21 76.44 72.29 71.55 74.30 67.79 59.96 69.08 68.85 
RH 4.18 4.20 5.45 9.32 4.84 5.11 6.02 4.91 6.00 7.21 6.33 5.57 
DNI 4.79 6.91 9.88 5.11 6.58 6.48 6.94 6.10 8.23 8.47 6.77 5.32 
DHI 12.28 18.44 9.79 9.61 7.02 10.51 10.63 10.25 12.45 16.33 12.17 15.66 
WS 3.67 3.91 4.27 6.76 5.11 5.61 4.86 4.44 5.53 8.02 5.66 4.60 

London 

DBT 73.75 69.65 73.70 70.53 75.35 72.93 71.00 74.69 69.31 65.69 67.89 68.71 
RH 3.90 3.60 4.77 7.90 5.31 4.74 5.43 5.03 6.26 6.83 6.42 4.93 
DNI 4.54 9.45 6.72 5.93 5.88 6.36 7.50 5.73 7.45 7.12 6.39 5.97 
DHI 14.37 13.64 10.63 8.89 8.41 10.87 10.83 10.19 11.79 13.17 13.18 16.04 
WS 3.45 3.66 4.18 6.75 5.05 5.10 5.23 4.37 5.19 7.19 6.11 4.35 

6 

Ottawa 

DBT 82.22 76.89 77.61 69.03 74.96 73.40 73.71 73.82 72.95 69.68 68.75 77.22 
RH 3.16 4.14 5.08 9.81 5.50 5.22 5.19 4.98 5.54 8.78 7.24 5.42 
DNI 4.35 5.92 9.38 5.85 5.82 6.03 6.58 6.24 6.43 5.81 7.92 4.22 
DHI 7.90 9.95 4.72 8.53 8.94 10.61 9.81 10.94 10.44 7.42 10.67 9.38 
WS 2.37 3.10 3.19 6.78 4.79 4.75 4.70 4.02 4.64 8.31 5.42 3.76 

Montreal 

DBT 78.89 74.64 76.22 67.57 71.67 71.14 68.82 68.58 69.65 58.68 68.01 75.02 
RH 3.19 4.26 5.03 9.06 5.92 5.12 5.51 5.23 5.66 9.79 7.71 4.89 
DNI 4.70 6.49 9.81 6.00 6.41 6.53 7.73 7.14 6.50 12.04 5.70 6.04 
DHI 10.50 11.15 5.24 9.89 10.75 12.40 12.95 14.45 13.66 10.80 12.53 10.10 
WS 2.71 3.46 3.70 7.48 5.26 4.81 4.99 4.60 4.53 8.69 6.04 3.95 

St. Johns 

DBT 58.10 59.18 54.40 55.70 57.63 63.90 62.88 58.02 50.26 63.01 60.82 58.11 
RH 6.77 6.74 7.23 10.48 10.65 8.12 7.46 8.04 9.60 10.74 9.29 7.28 
DNI 11.49 7.29 18.48 11.44 10.94 11.72 12.49 9.92 13.43 6.27 7.49 8.47 
DHI 17.34 20.67 13.29 12.86 10.83 9.09 10.37 17.15 18.80 10.09 14.53 19.49 
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WS 6.30 6.12 6.60 9.52 9.96 7.17 6.79 6.86 7.90 9.89 7.87 6.65 

7A 

Calgary 

DBT 85.44 79.43 84.99 73.76 71.07 70.00 68.60 70.70 68.92 77.70 82.06 83.28 
RH 2.36 2.90 2.77 6.40 6.20 6.24 6.44 5.84 5.84 6.22 3.37 2.97 
DNI 4.36 4.94 5.08 4.61 8.06 7.06 7.83 6.88 8.38 4.97 3.44 4.76 
DHI 5.61 9.91 4.49 8.67 8.27 10.51 10.75 10.79 10.81 6.14 8.05 6.33 
WS 2.24 2.82 2.67 6.56 6.40 6.19 6.37 5.80 6.05 4.97 3.08 2.66 

Regina 

DBT 86.59 82.38 85.54 79.22 72.62 74.85 73.20 75.13 71.14 76.48 83.62 85.97 
RH 2.01 2.31 2.38 5.04 6.00 5.33 5.48 4.83 5.92 7.00 3.00 2.25 
DNI 3.70 4.40 5.71 4.00 6.87 6.14 6.45 5.79 7.22 4.67 4.15 3.91 
DHI 5.84 8.72 4.23 6.66 8.62 9.02 9.65 10.10 10.40 6.42 6.46 5.83 
WS 1.87 2.19 2.14 5.08 5.90 4.66 5.23 4.14 5.32 5.43 2.77 2.05 

Winnipeg 

DBT 86.77 85.67 84.12 78.44 68.98 71.08 73.42 73.56 66.70 74.72 80.44 86.89 
RH 2.07 1.88 2.39 5.88 6.45 6.03 5.20 4.96 5.66 7.68 3.56 2.15 
DNI 5.16 3.68 6.50 5.44 7.59 6.75 6.71 6.37 8.19 4.69 5.62 2.23 
DHI 4.00 6.91 4.58 5.22 10.36 11.03 9.61 10.43 13.45 6.54 6.95 6.78 
WS 2.00 1.87 2.41 5.02 6.61 5.11 5.05 4.69 5.99 6.37 3.42 1.95 

7B 

Whitehorse 

DBT 89.01 86.49 83.19 72.65 69.92 66.01 62.12 70.07 64.46 62.61 82.67 89.44 
RH 2.07 2.02 3.04 8.01 6.89 6.89 7.66 6.05 10.76 7.12 2.90 2.30 
DNI 2.35 2.63 3.41 4.88 7.57 8.12 9.67 8.13 6.50 6.46 3.10 2.14 
DHI 4.53 6.77 7.65 7.64 8.80 12.04 13.42 10.13 8.83 16.58 8.45 3.82 
WS 2.04 2.08 2.72 6.83 6.82 6.93 7.14 5.62 9.46 7.24 2.89 2.30 

Fort 

McMurray 

DBT 92.10 89.03 90.11 80.91 72.21 68.07 65.75 71.30 70.10 74.78 84.72 91.11 
RH 1.63 2.01 2.05 4.76 7.26 7.23 6.91 6.26 5.89 6.42 3.06 1.92 
DNI 1.87 3.12 3.83 4.47 6.98 7.51 8.39 6.72 8.67 4.81 3.79 2.57 
DHI 2.93 3.94 2.32 5.25 7.68 11.29 12.49 10.06 8.97 8.67 5.87 2.72 
WS 1.47 1.90 1.69 4.62 5.87 5.90 6.46 5.66 6.37 5.32 2.57 1.68 

Prince Albert 

DBT 89.41 87.05 87.88 78.88 71.79 70.68 69.15 73.34 67.10 71.08 79.98 88.02 
RH 1.74 2.12 2.26 5.21 6.27 6.75 5.78 5.49 6.54 6.86 3.48 1.97 
DNI 2.03 2.68 5.42 4.73 6.99 6.99 7.79 6.23 8.75 5.86 4.05 3.27 
DHI 5.23 6.28 2.46 6.44 8.65 10.34 11.79 10.02 10.98 9.68 9.52 4.85 
WS 1.59 1.86 1.98 4.74 6.31 5.24 5.49 4.92 6.63 6.52 2.97 1.89 

8 

Kuujjuaq 

DBT 91.55 90.82 89.00 78.18 61.97 60.52 62.13 63.15 61.21 55.84 74.15 90.25 
RH 2.04 2.24 2.21 4.50 8.19 8.33 7.70 7.74 10.48 10.27 5.78 2.46 
DNI 2.06 2.55 3.88 7.83 9.95 9.95 9.78 10.32 7.38 10.76 5.60 2.01 
DHI 2.45 2.31 2.90 5.10 10.47 11.42 11.35 10.61 10.97 13.71 9.31 3.14 
WS 1.89 2.08 2.01 4.39 9.41 9.77 9.05 8.18 9.95 9.42 5.15 2.14 

Iqaluit 

DBT 92.88 90.84 88.89 76.87 60.27 39.16 62.28 40.46 45.54 55.73 83.96 93.07 
RH 1.70 2.37 2.07 3.96 7.40 13.43 7.61 15.25 12.75 8.76 3.50 2.01 
DNI 1.73 2.53 4.23 8.86 16.08 13.78 10.84 10.99 13.68 9.65 3.08 1.02 
DHI 1.96 2.01 2.65 6.05 8.84 17.99 9.23 16.95 15.93 17.44 6.14 1.90 
WS 1.73 2.25 2.16 4.26 7.41 15.64 10.04 16.34 12.10 8.41 3.32 2.00 

Yellowknife 

DBT 92.23 90.39 89.65 85.00 68.23 61.96 51.75 61.73 58.07 61.79 86.81 94.06 
RH 2.21 2.04 1.89 3.05 8.53 7.83 8.66 7.90 11.29 6.94 2.69 1.75 
DNI 1.63 2.70 3.84 5.37 6.71 9.14 12.41 9.85 10.23 7.31 2.36 0.94 
DHI 2.14 2.90 2.84 3.73 8.76 13.85 18.89 13.77 10.62 16.19 5.66 1.71 
WS 1.79 1.97 1.77 2.85 7.76 7.23 8.28 6.75 9.79 7.77 2.47 1.54 

 

 

Table B 2 Generated TMY weather file selected years 
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Climate 
Zone City File Type January February March April May June July August September October November December 

4 

Vancouver 

TMYSTATION 2011 2000 2011 2010 2006 2000 2002 2015 2006 2004 2004 2011 

TMYCZ 2011 2000 2011 2010 2006 2017 2002 2015 2006 2004 2004 2011 

CWEC 2011 2000 2006 2013 2017 2016 2016 2015 2002 2009 2017 2001 

Victoria 

TMYSTATION 2014 2012 2010 2010 2003 2017 2002 1999 2001 2000 2004 2000 

TMYCZ 2011 2012 2010 2010 2003 2017 2002 1999 2001 2000 2004 2000 

CWEC 2016 2008 2006 2015 2003 2000 2006 1999 2001 2000 2017 2003 

Abbotsford 

TMYSTATION 2016 2006 2014 2007 2009 2000 2002 2012 2006 2000 2004 2011 

TMYCZ 2016 2006 2014 2007 2009 2000 2002 2012 2006 2000 2004 2011 

CWEC 2016 2006 2014 2003 2009 2014 2010 2002 2006 2000 2017 2006 

5 

Toronto 

TMYSTATION 2010 2009 2007 2009 2006 2017 2015 2013 1999 2011 2004 1999 

TMYCZ 2010 2009 2007 2009 2006 2017 2015 2013 1999 2011 2004 1999 

CWEC 2007 2004 2002 2009 2006 2017 1998 2013 1998 2014 2017 2004 

Hamilton 

TMYSTATION 2010 2008 2007 2004 2006 2002 2015 2012 2009 2011 2017 2016 
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Table C2: Revisions to Table 2.11:  Monthly weighting factors for generation of proposed TMY weather file 

 

Weather Parameter Measurement 
Parameter 

CWEC [1][15] 
IWEC [13] [TMY]1[4] TMY2 [11], TMY3 [12], 

IWEC2 [14] 

Dry-bulb temperature 

Mean daily 30% 8.3% 10% 

Minimum daily 5% 4.2% 5% 

Maximum daily 5% 4.2% 5% 

Dew point temperature 

Mean daily 5% 8.3% 10% 

Minimum daily 2.5% 4.2% 5% 

Maximum daily 2.5% 4.2% 5% 

Wind Speed 
Mean daily 5% 8.3% 5% 

Maximum daily 5% 8.3% 5% 

Global horizontal irradiance Total daily 40% 50% 25% 

Direct normal irradiance Total daily - - 25% 

Weather 

Parameter 

Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec 

DBT 34.63% 30.54% 30.53% 23.63% 45.03% 24.57% 17.68% 17.99% 34.82% 43.32% 25.51% 34.75% 

RH 12.95% 11.35% 10.30% 11.00% 10.82% 10.26% 11.09% 10.35% 11.05% 11.29% 13.80% 13.21% 

DNI 9.78% 10.10% 9.51% 16.52% 10.27% 11.69% 13.44% 11.14% 13.07% 13.29% 11.21% 9.64% 

DHI 29.66% 36.98% 40.09% 39.20% 24.28% 43.46% 46.05% 51.02% 31.48% 17.34% 36.38% 29.17% 

WS 12.97% 11.03% 9.57% 9.64% 9.61% 10.01% 11.73% 9.50% 9.58% 14.76% 13.10% 13.23% 
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