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Abstract 

Assessing Urban Overheating Under Climate Change through Representative Methods on 

Large Spatial and Temporal Scales 

Jiwei Zou, Ph.D. 

Concordia University, 2024 

 

Climate change has led to prolonged, more frequent, intense, and severe extreme weather events, 

such as summertime heatwaves, creating many challenges on the economy and society and human 

health and energy resources. For example, the 2010 and 2018 heatwave in Quebec, Canada, 

resulted in about 280 and 93 heat-related deaths, and there were around 500 fatalities due to 

overheated indoor environments in 2021 around entire Canada. Therefore, it is imperative to 

evaluate historical urban overheating conditions as well as predict the future scenarios. 

Considering a large temporal scale when assessing future climates (up to hundred years) and a 

large spatial scale when assessing the microclimate of an entire urban area, this thesis developed 

a representative method which could serve for both large temporal and spatial scale to select typical 

and extreme scenarios for overheating assessment.  

Firstly, future indoor and outdoor overheating conditions are evaluated in Canadian cities by 

assessing the effectiveness of a reference year selection method. Onsite long-term climate data 

sourced from the Coordinated Regional Climate Downscaling Experiment (CORDEX) is bias-

corrected and analyzed to evaluate overheating conditions in Montreal, Toronto, and Vancouver 

under various future climate scenarios.  Secondly, the typical and extreme days are selected from 
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reference year as the input of CityFFD-CityBEM co-simulation for assessing climate change 

impacts on urban overheating in downtown Montreal. The analysis points out a shift from mild 

thermal stress to extreme heat stress under future climate conditions, highlighting the critical need 

for interventions in urban design and infrastructure to maintain outdoor comfort. Last but not least, 

this thesis expands the scope by developing a spatial and temporal representative method combined 

with Weather Research and Forecasting (WRF) and CityFFD simulations to evaluate overheating 

across Montreal. The results emphasize the importance of selecting representative locations for 

simulations to accurately capture the varying microclimate conditions across the city. Findings 

suggest significant increases in urban heat, necessitating targeted mitigation strategies. 

The contributions of this thesis are significant in advancing the understanding of urban overheating 

dynamics and mitigation strategies. It provides municipalities and urban planners with validated 

tools and methods to forecast and counteract the adverse effects of urban overheating. This 

research underscores the critical role of detailed, localized climate simulations in urban planning 

and highlights innovative strategies to enhance urban resilience against climate change-induced 

overheating.  
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1. Chapter 1 

Introduction and Literature Review  
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1.1 Introduction 

Climate change, defined as a long-term alteration in average weather patterns, particularly changes 

in temperature, precipitation, and wind, largely due to increased concentrations of greenhouse 

gases in the atmosphere. Due to the climate change, recent decades have witnessed significant 

climate shifts globally, which have triggered more frequent, severe, and prolonged extreme 

weather events, including devastating heatwaves that pose a direct threat to human health and 

safety. For instance, the European summer of 2003, one of the hottest on record, resulted in over 

30,000 deaths, illustrating the acute impact of extreme temperatures [1]. Similarly, in Canada, the 

2021 heatwave led to approximately 500 fatalities, underscoring the ongoing risk associated with 

such events [2]. The increasing frequency and intensity of these heat events are projected to 

escalate further, with deadly heatwaves expected to occur around 60 days annually by 2100, 

affecting up to 74% of the global population [3]. This rising trend highlights the urgent need for a 

deeper understanding of multiscale urban overheating under climate change impacts to develop 

effective mitigation and adaptation strategies. 

Urban overheating, defined as "the exceedance of locally-defined thermal thresholds that lead to 

negative impacts on people and urban systems," occurs predominantly in urban areas, which are 

vulnerable hotspots due to their dense infrastructures and heat-absorbing materials [4]. This 

phenomenon significantly influences the urban microclimate, thereby affecting air quality, energy 

demand, and public health [5, 6]. Although various mitigation strategies have been proposed to 

reduce urban overheating in recent years, the intensity and frequency of such events have increased 

due to climate change, rendering current strategies less effective. This escalating trend underscores 

the importance of not only understanding historical overheating events but also predicting future 

conditions. Therefore, focusing on urban overheating necessitates robust methodologies for 
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evaluating and predicting thermal conditions under future climate scenarios, which is crucial for 

ensuring sustainable urban development and protecting urban populations from the adverse effects 

of heat extremes.  

Projected climate data or future climate data, derived from Global Climate Models (GCMs) and 

Regional Climate Models (RCMs), serve as foundational elements in this research. GCMs are 

complex computer models that simulate the Earth’s climate system, including the atmosphere, 

oceans, land surface, and ice, to project changes in climate at a global scale [7]. RCMs, on the 

other hand, provide more detailed climate projections within specific regions by refining the coarse 

data obtained from GCMs, allowing for better resolution and accuracy at a regional level [8]. These 

models, although effective at a broader spatial and temporal scale, present challenges such as high 

computational demands and the need for downscaling to capture local urban microclimates 

accurately [9, 10]. 

Computational Fluid Dynamics (CFD) simulations, on the other hand, emerges as a pivotal 

approach for detailed microclimate analysis [11, 12]. CFD, a method that employs numerical 

analysis to model fluid flows and heat transfer, enables the nuanced assessment of local thermal 

conditions and airflow patterns, crucial for the detailed assessment of outdoor thermal comfort [13, 

14], which refers to the degree to which external environmental conditions contribute to a person's 

subjective satisfaction with the surrounding thermal environment. By integrating broader-scale 

and low-resolution climate projections with CFD, this study aims to provide a comprehensive 

understanding of future urban overheating risks, focusing on both steady-state and dynamic 

thermal comfort across multiple urban scales. 
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1.2 Literature review 

This section is prepared based on published paper: Multiscale numerical assessment of urban 

overheating under climate projections: a review. 

Abstract 

The interactions between climate change and urbanization have generated mounting concerns 

regarding outdoor and indoor overheating within urban populations, impacting thermal comfort, 

heat-related mortality, and energy consumption, particularly during heat waves that are becoming 

more frequent, intense, and prolonged. Various strategies have been proposed to mitigate 

overheating in urban environments among the past few years. To effectively examine the impacts 

of overheating and evaluate mitigation strategies in both current and future climates, it is first 

necessary to produce reliable climate projections that can accurately describe the state of the urban 

climate; which is a complex system comprising of unique microclimate phenomena connected to 

regional and global. This chapter presents a systematic review of the application of climate model 

projections for future indoor and outdoor overheating impact assessments, divided into four 

primary stages: (1) Mesoscale raw future climate data generation using GCM-RCMs; (2) Local-

scale future climate input preparation through bias-correction and reference year data generation; 

(3) Microscale indoor and outdoor simulations with building performance models or 

computational fluid dynamics (CFD) software; (4) Overheating evaluation based on various 

overheating criteria. These stages are essential for advancing our understanding of overheating and 

informing future studies in this area. With the target keywords of above four stages, the 

methodology applied to identify and select articles from search results as suitable candidates was 

shown in Section 1.2.2. Key research gaps illustrated by this review include challenges in 

generating climate data, improving projected data reliability, and addressing indoor/outdoor 
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climate simulation complexities. Additionally, incorporating social-economic factors into 

overheating evaluation methods is crucial for a comprehensive assessment. Although the focus is 

future urban overheating assessment, the general methodologies and procedure of future climate 

projections may also apply to other building performance simulations considering the climate 

change impacts. Notable research gaps were then identified as avenues for future research. 

Keywords: Climate change; future projection; bias correction; reference year data; multiscale 

simulation; overheating 

1.2.1 Introduction 

Anthropogenic-induced climate change is one of the greatest challenges that society faces. Around 

the world, the impacts of climate change are already being felt [15] in the form of increased 

intensity, frequency, and duration of extreme weather events such as warm spells and heat events, 

drought, heavy rainfall, storm surges, and sea-level rise. Even if international efforts to limit global 

warming to 1.5 °C are met according to the 2015 Paris Agreement, there will still be significant 

ramifications to the climate requiring considerable adaptations [16]. In 2003, Europe experienced 

one of the hottest summers in the past 500 years, with more than 30000 deaths [17, 18] and record-

high temperatures of 5 to 10 °C above the average of June to mid-August [19]. In the Netherlands, 

around 2000 heat-related deaths occurred during summer with a maximum temperature of 35 °C 

[20]. The 2010 heatwave in Quebec, Canada, resulted in a significant increase of 33% in the crude 

death rate (about 280 extra deaths) [21] and the 2018 heatwave in Quebec caused 93 deaths. 

Although outdoor and indoor overheating have garnered much attention in recent years around the 

world, the heatwave in 2021 still caused about 500 deaths across Canada [22]. More recently, from 

June to August 2022, temperatures of 40–43 °C were recorded in parts of Europe, with the highest 

temperature recorded as 47.0 °C in Pinhão, Portugal [23]. During the 2022 heatwave in Germany, 
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1636 probable heat-related deaths were attributed to temperatures reaching 39.2 °C during the June 

heatwave, and around 6500 excess deaths were caused by the July heatwave [24]. As a 

consequence of global warming, the frequencies, magnitudes, and intensities of heat events around 

the globe are expected to keep increasing in the future [25, 26]. The deadly heatwaves are expected 

to occur about 60 days annually in the mid-latitudes and affect from 48% to74% of the world’s 

population by 2100 [3]. Thus, substantial changes to the urban environment are required to support 

a growing urbanized population under an increasingly hot climate, and a better understanding of 

the urban overheating conditions for evaluating the hazards is needed.   

There have been some existing reviews on the overheating hazards but focusing on different 

aspects such as the overheating criteria, mitigation strategies, chronic year-round overheating [27-

29], and the impacts of overheating on energy consumption [30, 31], indoor and outdoor air quality 

[31], and human health [4, 31, 32]. Overheating criteria are a standardized set of thresholds used 

to evaluate indoor overheating in buildings based on human comfort, health, and safety [28, 33]. 

They are crucial for conducting overheating assessments and enable the comparison of severity 

levels across different buildings, locations, and climates, making it the most important and one of 

the first steps when conducting the overheating assessment. Rahif, et al. [27] reviewed the 

overheating evaluation methods in eleven international standards and five national building codes, 

and compared three promising overheating indices. They also provided suggestions and 

recommendations for overheating criteria under different scenarios. Evaluating overheating 

hazards makes it possible to test the effectiveness of various mitigation strategies, such as the urban 

green infrastructure, including cool materials, green roofs, vertical gardens, urban greenery, and 

water-based technologies [12, 30]. According to Pisello, et al. [12], it has been shown that the 

ambient outdoor air temperature could be reduced by 1 °C with trees and hedges, by 0.2 °C with 
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green roofs and green walls, by 0.3 °C by reflective roofs and pavements, and by 1.5 °C when 

applying two or more techniques at the same time. Besides, the increase in the ambient temperature 

during summer overheating will impact the supply and demand of electricity used for cooling 

purposes [31]. Santamouris [31] critically reviewed the actual and future impact of urban 

overheating on the energy demand of buildings and cities. The increase in the cooling load was 

found to vary between 0.5 to 8 kWh/(m2·℃·year).  

An essential part of future overheating assessments is to prepare future climate projections which 

will be treated as the inputs for indoor and outdoor climate simulations. Projected climate data are 

usually from global climate models (GCMs), which is a combination of an atmospheric model, 

ocean model, land surface scheme, and a sea ice model [34]. However, there are many uncertainties 

inherent in using GCMs. For instance, there are many different climate models, each with many 

different physics options, and the preceding simulations may follow multiple greenhouses gas 

emission scenarios creating many options and complexities. For the Coupled Model 

Intercomparison Project Phase 5 (CMIP5), forty GCMs from 20 research groups were proposed 

and publicly available [35]. The Intergovernmental Panel on Climate Change (IPCC) has four 

Representative Concentration Pathways (RCPs) representing different future greenhouse gas 

emission scenarios, including RCP 2.6, RCP 4.5, RCP 6.0, and RCP 8.5. More recently, led by the 

IPCC, the energy modeling community developed a new set of emission scenarios driven by 

different socioeconomic assumptions, the so-called ‘Shared Socioeconomic Pathways (SSPs). A 

number of these SSP scenarios have been selected to drive climate models as part of the Coupled 

Model Intercomparison Projects 6 (CMIP6). The previous RCP scenarios have been updated in 

CMIP6 in the form of SSP1-2.6, SSP2-4.5, SSP4-6.0, and SSP5-8.5, each of which results in 

similar 2100 radiative forcing levels as their predecessors in RCPs. Additionally, several new 
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scenarios were applied in CMIP6, such as SSP1-1.9, SSP4-3.4, SSP5-3.4OS, and SSP3-7.0, to 

account for more socioeconomic drivers. 

However, while GCMs can take into account the effects of urban areas on a large scale, these 

results should not be considered as reliable on a local scale. The coarse spatial resolution of GCMs 

is one of the reasons why downscaling methods are necessary. Moreover, due to the bias in the 

climate model, which is defined as ‘the systematic difference between a simulated climate statistic 

and the corresponding real-world climate statistics’ [36], it is necessary to perform bias correction 

for calibration purposes when using climate model projections for smaller scale impact 

assessments. Last but not least, such a large number of climate models and RCP scenarios may 

complicate the process of applying their different combinations to one specific assessment with 

potentially high computational costs. Therefore, a representative or reference future-year method 

is often needed. Different and inconsistent methods of choosing reference years were found based 

on the literature. In summary, from the generation of future climate data, processing climate inputs 

to conducting the actual overheating assessment, there is a lack of a collective and comparative 

review study specifically for the future overheating assessments of indoor and outdoor conditions. 

Recently. Du, et al. [37] conducted a comprehensive review on the modeling, assessment, and 

improvement methods of the urban thermal and wind environment (UTWE) across various scales, 

providing valuable insights into the current state of the field. To expand former work, our review 

offers a novel and complementary perspective by specifically focusing on the application of 

climate model projections for future indoor and outdoor overheating impact assessments in the 

context of climate change and urbanization. This targeted approach allows for a more in-depth 

understanding of urban overheating in a changing climate. 
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This chapter presents a systematic review of the application of climate model projections for future 

indoor and outdoor overheating impact assessments, divided into four primary stages as depicted 

in Fig. 1.1. Section 1.2.2 presents the scope of the review as well as the methodology of collecting 

paper. Section 1.2.3 focuses on generating raw future climate data at the mesoscale using GCM-

RCMs. In Section 1.2.4, the review discusses two main preparation steps of future climate input 

files for simulation which are bias-correction and reference year data generation, utilizing data 

from GCM-RCMs to generate local climate data input. Section 1.2.5 examines microscale indoor 

and outdoor simulations conducted using building performance models or other tools, such as 

computational fluid dynamics (CFD) software, drawing upon the input data obtained in Section 

1.2.3. Furthermore, Section 1.2.6 examines overheating evaluation based on various overheating 

criteria, including the emulation technique that relies on the numerical outcomes derived from the 

indoor and outdoor simulations. This review aims to provide a clear structure and detailed 

procedure assessing urban overheating conditions under the impacts of future climate projections. 

Although the focus is future urban overheating assessment, the general methodologies and 

procedure of future climate projections may also apply to other building performance simulations 

considering the climate change impacts. 
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Fig. 1.1 Structure of the current review [34, 38-40]. 

1.2.2 Scope of the review and methodology of collecting paper 

The main focus of the present work is to a systematic review of the application of climate model 

projections for future indoor and outdoor overheating impact assessments which aims to provide 

a clear structure and detailed procedure assessing urban overheating conditions under the impacts 

of future climate projections. There are following four main topics to be reviewed in this chapter: 

1. Future climate data generation: GCM-RCMs and their corresponding downscaling methods; 

2. Future climate data input preparation: Bias-correction and Reference year data selection; 

3. Indoor and Outdoor simulation: Building performance simulation and CFD simulation 

4. Overheating evaluation: Overheating standards and criteria 

Fig. 1.2 showcases the methodology we applied to identify and select articles from search results 

as suitable candidates. The search results, generated based on the target scope's keywords, 

produced a considerable number of papers. Nevertheless, not every paper was pertinent to the 
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focus of our review. By adhering to the illustrated guidelines in the figure, we successfully 

compiled the final papers for our analysis. Furthermore, while the primary emphasis of this chapter 

is on future urban overheating, we have included papers in this systematic review that may not 

specifically address overheating but contribute significantly to the targeted method. 

 

Fig. 1.2 The methodology of collecting papers. 

Although plenty of reviews have covered different aspects of overheating studies, our literature 

search found that the prediction and assessment of future overheating still seems inadequate, 

considering its importance when studying climate change. This can be shown by a temporal and 

spatial comparison of the studies using “overheating” and “future overheating” as keywords, as 

reported in Fig. 1.3. The search is performed by inputting “overheating” and “future overheating” 

in the search field of the Scopus scientific database, including the article title, abstract, and 

keywords, and all the results were updated by September 2022. Although the Scopus database may 

not be considered completely exhaustive of the whole literature in the field, it has been selected 

for assessing the qualitative trends in a similar field based on the former literature [12]. Fig. 1.3 (a) 
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shows that since 2015 there has been a dramatic increase in the number of publications on 

“overheating”, and most overheating studies were conducted in China, Europe, and the US, as 

shown in Fig. 1.3 (b). However, despite its importance, only 9% of these studies focused on “future 

overheating” for all regions summing all time period from 2010 to 2021. Therefore, it could be 

concluded that there is a significant remaining area to be investigated regarding “future 

overheating”, and more research are estimated [41] to focus on the “future overheating” in the 

following decades.  
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Fig. 1.3 Statistic information of overheating and future overheating publications in the Scopus 

database for (a) publication year and (b) country and region.  

1.2.3 Future climate data generation 

There are many methods to modeling the climate in an urban environment. The way in which the 

built environment is depicted in an urban climate model depends heavily on the spatial scales used 

in the model. Therefore, selecting appropriate spatial scales is crucial for accurately representing 

the urban environment and its impact on climate. The availability of climate models allows 

researchers to study the current and future climate of a city. On the largest scale, GCMs are 

commonly used to provide projections of climate change over the long term [42, 43]. These 
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numerical models are employed to simulate the major processes and interactions that govern the 

climate across a spatial resolution of a few hundred kilometers, allowing the study of various 

degrees of climate change induced by different representative concentration pathways on a global 

scale [44]. The grid resolution of GCMs can be considered absolutely adequate at higher level of 

the atmosphere boundary layer, where it is not necessary to catch small scale phenomena. However, 

the spatial resolution of GCMs is often insufficient for resolving city-scale mechanisms, and their 

large time-step is usually unsuitable for studying overheating evaluations at hourly resolutions. 

Besides, these models are too coarse in spatial resolution to simulate the microclimate inside the 

urban boundary layer and urban canopy layer adequately, where most of the human activities take 

place. Additionally, most climate models do not include parameterizations of the urban land cover 

in their surface schemes [45, 46].   

Therefore, studying the urban climate, especially under the evolution of climate change, requires 

high-resolution climate data in both time and space [47]. To enhance the applicability of climate 

projections to the scale of buildings, communities, and urban areas, a method called “downscaling” 

is applied to refine global climate data to a higher resolution by translating large-scale climate 

model output into finer spatial and temporal scales. Researchers have proposed statistical (section 

1.2.3.1), dynamic (section 1.2.3.2), and statistical-dynamical downscaling (SDD) methods (section 

1.2.3.3). These methodologies are quite versatile as they can be applied to a large set of climate 

projections, including different greenhouse gas emission scenarios and long-term periods. This 

allows various model and scenario uncertainties to be considered. 
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Fig. 1.4 Portion of paper using different downscaling method 

Based on our review of the various downscaling methodologies with a total number of 53 paper, 

we found that a large portion of the existing literature is based on statistical downscaling 

methodologies (72%) while dynamical and SDD methods make up the remaining 24% and 4%, 

respectively, as shown in Fig. 1.4. The main reason for this large count of statistical downscaling 

methods in the literature is due to the fact that this field has begun much earlier than the other 

methods and is still an active area of research. On the other hand, accurate and reliable dynamical 

methods that are appropriate in the urban context have only relatively recently been introduced. 

Consequently, the portion of literature discussing dynamical downscaling methods are increasing 

rapidly due to advances in methodology and improvements in computing. As a result, the hybrid 

approach that combines the strengths of both statistical and dynamical downscaling methods 

makes up the smallest portion of research so far. In recent years, while the body of literature on 

statistical downscaling is still growing, there is increasingly more focus towards dynamical and 

statistical-dynamical downscaling methodologies as a means to generate high-resolution long-term 

climate data for urban environments in the context of climate change. 
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1.2.3.1 Statistical downscaling method 

Statistical downscaling can be divided into three broad categories: regression models, weather 

classification, and weather generators [48-51]. Statistical downscaling assumes that the regional 

climate is governed by the large-scale state of the climate and regional/local geographic features 

such as proximity to water, topography, and land use [52]. By linking large-scale climate variables 

(predictors) to regional/local variables (predictands) through a statistical model, outputs from 

GCMs can be used as inputs to the statistical model to estimate regional climate characteristics. 

Since the statistical downscaling method is relatively easy to implement and computationally 

inexpensive, it can be easily applied to different climate models. Fig. 1.5 shows an application of 

a simple statistical downscaling which captures the difference between the fine-resolution 2-km 

data from the Weather Research and Forecasting (WRF) model and coarse-resolution 50-km data 

from the NARCCAP (North American Regional Climate Change Assessment Program). The 

statistical downscaling method was then applied to a series of regional climate models to directly 

predict high-resolution precipitation [53]. However, statistical downscaling assumes that statistical 

relationships derived for the present climate must also hold under different future forcing scenarios, 

which is not a verifiable assumption [54]. Consequently, when used to conduct impact assessments, 

downscaled climate data needs to be combined with results from multiple climate model outputs 

to account for the uncertainties in the models’ projections. Even with these caveats, the accuracy 

of statistically downscaled data remains questionable, which challenges their usefulness in 

evaluating adaption scenarios [55]. Therefore, statistical downscaling methods may not be as 

reliable as other methods in generating urban climate data projections. 

Regression models represent a relatively simple quantitative relationship between the predictors 

and predictands. The most straightforward method is to produce a model where one variable is 
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regressed upon others. Multiple regression introduces more complexity by relating multiple 

predictors to a single predictand based on large-scale atmospheric forcing [56]. Canonical 

correlation analysis extends the idea further by locating the optimal linear combination of 

predictors that results in the most variance in the predictand [57, 58]. This allows the model to use 

a wider field of information and determine the most related patterns between predictors and 

predictands. Alternatively, artificial neural networks can be used to model systems with complex 

non-linear relationships between predictors and predictands [58, 59]. Subsequently, this approach 

can be used to study the regional urban climate by downscaling temperature and precipitation data 

[60]. For instance, Hoffmann, et al. [61] used a linear statistical model to downscale climate data 

for Hamburg, Germany, to investigate the regional urban climate under two climate change 

scenarios.  
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Fig. 1.5 Statistical downscaling of a time series of accumulated precipitation at three WRF 2-km 

grid cells (blue), with 50-km NARCCAP (North American Regional Climate Change Assessment 

Program) data (red) [53]. 

Weather generators are a stochastic model where the statistical attributes of the local climate 

variable, such as the mean and variance, are replicated but not the specific sequence of events [62]. 

Most of these methods focus on precipitation frequency and intensity, but time series for other 

variables such as temperature, relative humidity, and solar radiation can be produced as well [63]. 

Alternatively, the parameters of the weather generator can be conditioned based on the large-scale 

climatic state or the relationship between large-scale predictors and local predictands [62]. Future 

climate projections can then be obtained by perturbing the weather generator parameters by delta 

change factors, which can be calculated by comparing trends between historical and future climate 

projections [64]. Lindberg, et al. [65] used a similar method to study the heat stress present in 

Gothenburg, Sweden, by calculating the variation in temperature and solar radiation and 

subsequently applying the trends to future projections to examine the changes in heat stress in the 

context of climate change.  

Weather classification methods group local weather patterns with large-scale predictands into a 

limited number of weather types [66-68]. Projections for the local climate are obtained by 

reconstructing the time series day by day, according to the weather types defined by the climate 

projections, and by matching an analogous day from the reference data of local weather events 

[69]. Changes in the climate due to global warming can then be estimated by calculating the change 

in frequency of different weather types. Hoffmann, et al. [70] adapted this approach to improve 

climate data used to study the local urban climate by introducing high-resolution dynamical 

simulations as the basis to reconstruct a long time series.  
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Several issues with statistical downscaling affect its ability to estimate the climate accurately. 

Regression has difficulty replicating the temporal variability of variables [71], such as daily 

precipitation, where the distribution is not normal. Therefore, statistically, downscaling 

precipitation often requires large amounts of observational data to fit a more complex non-linear 

model. Additionally, the choice of predictors is extremely important in determining the accuracy 

of the downscaled data. For instance, Hewitson and Crane [72] found that downscaled precipitation 

projections can vary significantly if humidity is included as a predictor. Similarly, Huth [73] 

compared a relatively large number of predictors’ ability to estimate local daily mean temperature 

and concluded that temperature fields result in a more accurate representation than circulation 

variables among the predictors. Lastly, evaluating statistical downscaling models is problematic 

as validation techniques rely on comparing available observational data with the performance of 

statistically modeled predictions [74]. However, the accuracy of the statistical downscaling model 

in representing the present day does not signify that it will be as competent under climate change 

conditions [54, 75]. 

1.2.3.2 Dynamical downscaling method 

Due to the limitations of statistical downscaling methods, many researchers have used the fully 

dynamic downscaling method. It is known as a limited-area, high-resolution model (a regional 

climate model, or RCM) driven by boundary conditions from a GCM to reproduce the local climate 

at a higher resolution [76]. Dynamical downscaling adopts similar physical equations and 

parameterizations as GCMs but employs them at a much higher spatial resolution. In addition to 

the higher resolution, RCMs need to explicitly include representations of urban areas and processes 

to accurately simulate the urban climate, as shown in Fig. 1.6.  
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Recent advances in climate science and climate models, such as the WRF model, allow researchers 

to downscale data to a resolution of 1 km, accounting for urban parameterizations and land use. 

For instance, Gaur, et al. [77] examined the sensitivity of the WRF model in Ottawa, Canada, with 

different urban parameterization schemes and land cover data. Climate data from similar 

experiments can be used to study local urban impacts on urban climate and its population [78-80]. 

For example, Kusaka, et al. [81] used the WRF model coupled with an urban canopy model to 

examine the future heat stress in several Japanese cities due to climate change.  

 

Fig. 1.6 Schematic description of the dynamical downscaling technique. A refinement of the 

topography and coastlines is obtained by using the RCM [76].  

More recent experiments couple a Single Layer Urban Canopy Model (SLUCM) with WRF model 

[82], which has resulted in numerous studies validating the accuracy of such a model when 

compared to observational data in various climates [83-85]. Although SLUCMs add much-needed 

complexity to the climate model, they only represent general aspects of the urban environment and 
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do not consider microscale characteristics such as individual buildings [86]. Multi-level UCMs 

provide more details about the urban environment and divide the building facades into several 

patches, each with its parameters and energy exchanges modeled [87]. Multi-level UCMs are 

useful in studying the interactions in cities, but the complexity comes with a high computational 

cost. Fortunately, later studies have found that simpler models perform as well as these more 

complex schemes [88]. Consequently, using SLUCMs has become prevalent in studying the urban 

climate with RCMs. 

1.2.3.3 Statistical-dynamical downscaling method 

Downscaling methods used for urban climate predictions need to satisfy several criteria in order 

to be practical and useful. First, the downscaling method needs to be physically realistic and 

accurately represent the complex interactions between the urban environment and the atmosphere. 

This requires an understanding of the underlying physics and dynamics of the urban climate system, 

as well as accurate representations of the urban geometry, land cover, and surface characteristics. 

Secondly, it needs to have a high spatial and temporal resolution to adequately capture the fine-

scale features and short-term variability of urban climate conditions. Lastly, it needs to be 

computationally efficient to allow for the simulation of large areas and long time periods to be of 

any practical use. Ideally, dynamical downscaling would be the best approach as these models 

physically simulate interactions between large-scale and local phenomena and do indeed produce 

physically consistent data. However, to estimate the uncertainty of long-term climate projections, 

it is necessary to build a database consisting of an ensemble of climate simulations spanning a few 

decades. Consequently, dynamical downscaling is not often used in this context as it is 

computationally too expensive, limiting subsequent analyses’ scope. 
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Fig. 1.7 Simplified flow chart of the statistical-dynamical downscaling (SDD) methodology used 

to study excess urban heat [89]. 

Statistical dynamical downscaling (SDD) techniques provide an approach that combines the 

benefits of relatively low computational costs of statistical downscaling and the efficacy of 

dynamical models. To reproduce the effects of the urban environment, SDD techniques 

statistically combine the relationship between large-scale and local-scale interactions with 

dynamical simulations that resolve urban characteristics. For example, Le Roy, et al. [89] 

developed an SDD method incorporating local weather types and short-term high-resolution urban 

climate simulations, as shown in Fig. 1.7. Subsequently, to calculate the impacts of the urban 

morphology, two high-resolution simulations of the local climate were performed, where one 

includes urban parameterizations while the other replaced it with natural land covers. By doing so, 

the differences can be superimposed on coarse climate projections while correcting them for urban 

effects. Gaur, et al. [90] validated a physical scaling downscaling model to downscale future 
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surface temperature projections from three GCMs and two extreme Representative Concentration 

Pathways in the urban and rural areas of the cities. In the physical scaling downscaling model, the 

local climate is modeled considering both global scale climate dynamics and local scale 

geophysical characteristics of a location. Large-scale climatic interactions are incorporated into 

the model formulation by including a large-scale climate model as one of the predictors. Local-

scale geophysical characteristics are incorporated by considering the elevation and land-cover 

properties of the location of interest as additional predictors. According to their validation results, 

the performance of the physical scaling downscaling model is found most superior during the 

summer months in the nighttime and worst during the summer months in the daytime. 

This section mainly describes the progress of future climate data generation, from the raw climate 

data of GCM to three main downscaling methods. It could be concluded that conducting multi-

decadal urban climate simulations at high resolutions with multiple global climate models under 

multiple greenhouse emission scenarios for different cities remains a daunting task. At the same 

time, long-term urban climate projections incorporating the effects of urban form at climatological 

timeframes are necessary for accurately evaluating the long-term risk of overheating in cities. 

Therefore, the statistical-dynamical method is suggested for urban climate applications since it 

takes advantage of developing long-term urban climate projections incorporating the effects of 

urban form by combining short-term high-resolution urban climate simulations with advanced 

statistical and data-driven modeling techniques. 

1.2.4 Future climate input preparation 

1.2.4.1 Bias correction 

According to Maraun [36], climate model bias is defined as ‘the systematic difference between a 

simulated climate statistic and the corresponding real-world climate statistics’. There are various 
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reasons for the bias in climate model simulations, and the primary among them is the coarse 

resolution of climate models at which several local scale climate processes cannot be resolved [91-

94]. As such, it is crucial to correct for bias in climate model simulations to ensure accurate 

assessments of overheating in cities both presently and under future projections. Bias correction is 

a method used to adjust climate model outputs by reducing systematic discrepancies between 

modeled and observed climate data, enhancing the accuracy of simulations at local and regional 

scales. Although it may not be possible to completely eliminate bias, using bias correction 

techniques can significantly reduce its impact on the results, thereby improving the accuracy of 

the assessment. 

A fundamental assumption of bias correction is that the climate model under consideration 

produces inputs for a bias correction, including a plausible representation of climate change [36]. 

The origin of bias correction is the model output statistics (MOS) [95] in numerical weather 

prediction, which applied the prognosis statistical downscaling approach [96]. Due to its simplicity 

and limited computational cost under a rapidly growing database of multiple global and regional 

climate model simulations, bias correction has become one of the most important steps in climate 

impact research [36]. Over the last decade, various methods have been developed for different 

purposes [80, 85, 86] which were widely applied to post-process climate projections [40, 97-99]. 

From the literature [36, 92, 100-102], a bias correction is often performed when using climate 

model projections for local scale impact assessments, and the bias-correction step significantly 

reduces the bias associated with climate models. Many bias-correction methods, such as simple 

scaling and additive corrections [103-105], advanced histogram equalization [101, 106, 107], 

multivariate methods [108, 109], and multivariate quantile mapping bias correction method 

(MBCn) [108] exist in the literature. Fig. 1.8 [40, 99] shows that by applying MBCn, the average 



 

25 

 

errors between observational data and RCM data for Montreal reduced from 2.78 ℃ to 0.05 ℃ for 

outdoor air temperature, from 68.3 W/m2 to 0.1 W/m2 for global solar radiation, from 0.9 m/s to 

0.001 m/s for wind speed, and from 14.5% to 0.01% for relative humidity. Thus, the bias-

correction method is one of the most important steps to conduct impact assessments of climate 

changes by significantly improving the reliability of future projected data. 

 

Fig. 1.8 Cumulative distribution function comparison of observational, raw RCM, and bias-

corrected RCM data of dry-bulb outdoor air temperature (tas), relative humidity (hurs), wind 

speed (sfcWind), and global solar radiation (rsds) (City: Montreal; GCM: MPI-M-MPI-ESM-

LR; Time periods: 1998-2017) [40, 99]. 
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1.2.4.2 Reference year selection 

Due to multiple GCMs and RCMs, considerable uncertainties exist in future climate projections 

[94]. To account for the uncertainties, ideally, the ensemble of climate projections needs to be 

considered when performing future overheating assessments. However, this is time-consuming 

and computationally expensive. Furthermore, climate change assessments are performed over 

multidecadal timescales, which makes climate projections from multiple GCMs and RCMs even 

more challenging [110, 111].  

The reference year method, also known as, representative year selection method, synthesizing 

weather datasets, or typical weather year, usually generate one or a few years as the reference to 

capture aspects of interest from the long-term datasets (decades to few decades) [40]. By applying 

the reference year data method, studies on assessing future climate impacts could focus on the 

climate data of the reference year instead of every single year inside the time period of interest, 

significantly reducing the computational cost as well as repetitive labor work. Table 1.1 is created 

to show the widely applied reference year selection methods. 

Table 1.1 Summary of widely applied reference year selection methods 

Name of 

reference year 

Abbreviation Method Target variable Reference 

Typical 

Meteorological 

Year  

TMY This method is developed by selecting 12 months of 

weather data from a long-term dataset that best 

represent the typical weather conditions for a 

location, based on statistical criteria including 

temperature, humidity, wind speed, and solar 

radiation. 

Temperature, 

Humidity, Solar 

Radiation, Wind 

Speed 

[112-

118] 
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Weather Year for 

Energy 

Calculations 

WYEC This method is developed by determining the 

individual month with the average dry-bulb 

temperature, closest to the long-term monthly 

average. 

Dry-bulb 

Temperature 

[119-

122] 

International 

Weather Year for 

Energy 

Calculations 

IWEC This method applied a selection process similar to 

TMY but with different weighting factors. 

Temperature, 

Humidity, Solar 

Radiation, Wind 

Speed 

[119, 

120, 

123, 

124] 

Canadian 

Weather year for 

Energy 

Calculations 

CWEC This method applied a selection process similar to 

TMY but with different weighting factors. 

Temperature, 

Humidity, Solar 

Radiation, Wind 

Speed 

[119, 

120, 

125, 

126] 

Test Reference 

Year 

TRY This method is developed by eliminating those years 

that contain months with extremely high or low 

monthly mean dry-bulb air temperature until only 

one year 

Dry-bulb 

Temperature 

[125, 

127-

129] 

Design Summer 

Year 

DSY This method ranks the average dry bulb temperature 

from April to September of each year and then 

selects the year that falls in the top 12.5% quartile of 

the rank (i.e., the 3rd warmest year in a set of 20 

years) 

Dry-bulb 

Temperature 

[129-

132] 

Actual 

Meteorological 

Year 

AMY This method was created from actual hourly data for 

a particular calendar year. 

Field 

Measurement 

Data 

[133] 
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Summer 

Reference Year 

SRY This method adjusts the TRY of a given site with 

meteorological data in order to represent near-

extreme conditions. 

Dry-bulb 

Temperature 

[134] 

Reference 

Summer Weather 

Year 

REWY This method includes generating historical climate 

data, developing a heat stress metric for the 

definition, and characterizing heat events. A 

modified Standard Effective Temperature (t-SET) 

considering both environmental and psychological 

factors was used to generate RSWY for selected 

Canadian cities. 

Temperature, 

Humidity, Solar 

Radiation, Wind 

Speed 

[135-

137] 

Typical 

Downscaled Year 

 

Extreme Cold 

Yea 

r 

Extreme Warm 

Year 

TDY 

 

ECY 

 

EWY 

Typical/extreme year data are selected by 

identifying twelve typical/extreme meteorological 

months and combining them as one year of 

continuous data. For each month, the cumulative 

distribution function (CDF) of the outdoor air 

temperatures for each year is compared with the 

CDF of the outdoor air temperatures from all years. 

The month of the year with the least absolute 

difference is identified as the typical month. Extreme 

cold and warm year data are prepared in a similar 

way while selecting the month with the least absolute 

difference. The month with the maximum and 

minimum difference between CDFs is selected as the 

extremely warm and cold months, respectively. 

Dry-bulb 

Temperature 

[34, 40, 

99, 138-

141] 

 

The typical meteorological year (TMY) [118] is often used for building energy applications, which 

is a combination of multiple typical meteorological months (TMM). TMY was widely applied to 
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evaluating building energy performance [112-117] and the overheating assessment [112-117, 142-

144]. In comparison, Weather Year for Energy Calculations (WYEC), International weather for 

energy calculations (IWEC) and Canadian weather year for energy calculations (CWEC) were 

developed by the American Society of Heating, Refrigerating, and Air-conditioning Engineers 

(ASHRAE) [119, 120]. The test reference year (TRY) from were intended to capture typical or 

average aspects of climatic variables of the long-term datasets [125, 127, 128].  

There are also reference year methods for assessing overheating aiming to capture extreme summer 

conditions from long-term data as the reference datasets, like the design summer year (DSY) from 

Levermore and Parkinson [130], actual meteorological year (AMY) from Hong, et al. [133], 

summer reference year (SRY) from Jentsch, et al. [134]. For a cold climate, such as Canada, 

several studies have focused on overheating assessment in different cities [135, 136, 145-147]. 

Baba and Ge [146] evaluated the performance of existing buildings under a current extreme year 

and projected future climates. Studies from Laouadi [135-137] developed a new reference year 

method called reference summer weather years (RSWY) to evaluate indoor overheating. This 

method includes generating historical climate data, developing a heat stress metric for the 

definition, and characterizing heat events. A modified Standard Effective Temperature (t-SET) 

considering both environmental and psychological factors was used to generate RSWY for 

selected Canadian cities. This method was also applied to evaluate future climate change impacts 

on indoor overheating [148].  
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Fig. 1.9 Reference year method by Nik [34] generating extreme warm year, typical downscaled 

year, and extreme cold year 

Recently, Nik [34] developed an approach for selecting reference years for climate change impact 

assessment on buildings where three reference years, as shown in Fig. 1.9: typical downscaled year 

(TDY), extreme cold year (ECY), and extreme warm year (EWY), were selected to capture the 

typical, coldest and warmest conditions within a climate time-series. Typical/extreme year data 

are selected by identifying twelve typical/extreme meteorological months and combining them as 

one year of continuous data. For each month, the cumulative distribution function (CDF) of the 

outdoor air temperatures for each year is compared with the CDF of the outdoor air temperatures 

from all years. The month of the year with the least absolute difference is identified as the typical 

month. Extreme cold and warm year data are prepared in a similar way while selecting the month 

with the least absolute difference. The month with the maximum and minimum difference between 

CDFs is selected as the extremely warm and cold months, respectively. They are combined to 

prepare the extremely cold and warm year data. 
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This method selects the limited number of hourly weather datasets from RCMs considering the 

climate uncertainties, extremes, and variations in different time scales without weighting weather 

parameters in time series. The selected three reference years are found to efficiently capture the 

range of climatic projections and building energy response from an ensemble of regional climate 

projections. The approach has since been applied in many studies to prepare reference datasets for 

building energy and building hygrothermal applications [138, 139, 141, 149]. More recently, Nik 

[34] method was also applied to the future projected changes in indoor thermal comfort and degree-

days evaluation of a European city [71]. It is found that cooling degree days increase by 45% for 

typical weather conditions and even up to 500% for an extremely warm July from one 30-year 

period to another. Zou, et al. [40] evaluated the reference year selection method based on future 

climate datasets to assess both outdoor and indoor overheating in the future in three Canadian cities. 

Their studies [40, 99] found that the reference year selection method could efficiently capture 

maximum and minimum monthly outdoor and indoor overheating conditions as the upper and 

lower boundaries of future overheating conditions. 

1.2.5 Indoor and outdoor climate simulations 

After future climate projection mentioned in the above sections are obtained as the boundary 

conditions, it was then be applied to the indoor environment simulations (Section 1.2.5.1) and 

outdoor climate simulations (Section 1.2.5.2) for evaluating the urban overheating problem. 

1.2.5.1 Indoor climate simulation 

Building thermal models can be developed based on building energy simulation models that 

include the heat transfer processes or based on heat, air, and moisture transfer (HAMT) analysis 

of the building envelope and indoor environment. With the boundary conditions from building 

thermal models, the detailed indoor airflow and temperature distribution can be simulated with 



 

32 

 

CFD analysis or other alternatives. By calibrating and validating the models based on monitored 

indoor climate data or thermal comfort surveys, building energy models such as EnergyPlus [150], 

ESP-r [151], TRNSYS [152], and Pleiades-Comfie [153] can be used to study the indoor thermal 

condition [154-156]. Because ventilation and infiltration produce heat transfer related to airflows, 

airflow network models are often integrated with the building energy models to develop combined 

thermal and airflow calculations [157-164]. In such models, the thermal condition in a zone is 

considered uniform. Thus, a thermal zone should be divided into smaller cells to capture the spatial 

variations of indoor temperature in a room [165]. IDA Indoor Climate and Energy (ICE) is another 

tool widely used to simulate indoor climate, which can model indoor air flows, thermal conditions, 

and energy performance [166-169]. In addition, it can model buildings with multiple zones and 

variable time steps [170].  

The hygrothermal analysis takes into account the HAMT of building envelope and indoor spaces 

and, therefore, can specifically model the indoor thermal conditions under the effect of the outdoor 

climate. Whole building hygrothermal models such as WUFI+ [171] and DETECt [172] were 

developed by integrating HAMT through the building envelope with indoor heat and moisture 

balances [173]. Simplified indoor climate models were also developed to predict the dynamic 

indoor situation in response of outdoor climate and building operation. Building an indoor model 

can be developed based on the analytic solution of Fourier’s equation to consider the heat transfer, 

but the moisture was ignored [174, 175]. The benefit of the simplified building physics models is 

that they could be continuously recalibrated with the operation of buildings to capture the time-

dependent change of building characteristics for more efficient indoor climate control [176].  

The surface temperatures outputted from building thermal models can be used as boundary 

conditions for the CFD to simulate air movements and temperature distribution [166, 177], and the 
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results can then be validated with measured indoor thermal data. This way, indoor climate 

distribution can be predicted and evaluated in different usage conditions such as seasons, 

occupancy densities, and air diffusers [178]. Considering the computationally time-consuming 

CFD, an alternative simplified way to simulate indoor air temperature distribution is based on the 

contribution ratio of indoor climate (CRI), which indicates the individual impact of all factors and 

can achieve similar accuracy with CFD, making the simulation more time efficient [179, 180]. 

Modelica-based room thermal modeling is another way to simulate the detailed indoor climate, 

which can consider the view factors for arbitrary polygon for radiation calculation, vertical 

temperature gradient, and airflow under the effect of other room features [181, 182].  

Data-driven methods like Artificial neural networks (ANNs) were also used to simulate the indoor 

climate [183-186]. Because of unclear connections to physical parameters, this method had limited 

usage, which did not apply to renovated buildings with modified thermal characteristics or 

different building types. The parameters of Linear Time Invariant (LTI) models can be determined 

with physical data, which was suitable for predicting the indoor climate of building insensitive to 

short-term disturbances [187].  

The indoor climate and overheating problems under the impact of climate change were evaluated 

in previous research, and consistent conclusions about the increased indoor heat stress were made. 

Zou et al. [40, 99] proposed and evaluated a new reference year selection method in terms of 

typical and extreme reference years based on future climate datasets to assess indoor overheating 

in the future, considering three Canadian cities. It is found that the reference year selection method 

could reasonably capture typical and extreme indoor overheating conditions. In their study, 

overheating hour is used to evaluate indoor and outdoor overheating, which is defined as the 

number of hours when the air temperature difference between the baseline and simulated 
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temperature is greater than or equal to one degree following the concept of hours of exceedance 

from the guideline of CIBESE TM52. Through the simulation of an archetype building model of 

a typical single-detached Canadian home, they found that due to climate change, average monthly 

indoor overheating hours typically increase by around one time until the mid-term future (2041-

2060) and by around two to three times (even up to nine times for some scenarios) during the long-

term future (2081-2100).  

Dodoo [188] studied the overheating risk and indoor thermal comfort of a modern multi-story 

residential building in Sweden and found that without cooling intervention, the overheating hours 

and Predicted Percentage of Dissatisfied (PPD) in the living area of the building increased 

significantly under the future climate scenarios. Hosseini et al. [140] simulated the indoor climate 

of residential buildings in Sweden under climate change and microclimate effects. The buildings 

were built before 1930s and partially renovated. For the building with a cooling system, 17% rise 

in cooling degree-day (CDD) and 25% increase in daily peak cooling load on an extremely warm 

day were found when considering microclimate. For the building without cooling system, the 

overheating hours would increase by 140% in the future climate. Lei et al. [189] studied the current 

and future indoor overheating situation in bedrooms of heritage apartments in China. Without 

cooling intervention of the buildings, at least 41% increase in overheating hours was found in 2050 

than the current climate. Fiorito et al. [190] evaluated the thermal comfort in naturally ventilated 

historic buildings in Italy under current and future climates. They found that the discomfort levels 

would not be acceptable in the 2050 and 2080 scenarios because of the rising temperature caused 

by climate change. Escandón et al. [191] studied the overheating situation of social housing stock 

in Spain. It was found that by 2050, without upgrading the buildings, according to the Chartered 

Institution of Building Services Engineers (CIBSE) criteria, 100% of social housing would be 
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overheated due to global warming. Rahif et al. [192] assessed the discomfort in a nearly zero-

energy dwelling in Brussels and found that overheating risk would increase to 528% by the end of 

this century without new cooling intervention.  

1.2.5.2 Outdoor microclimate simulation 

In addition to the climate data downscaled at a regional to city scale, the future urban climate could 

be directly simulated under a microclimate scale through some detailed models such as CFD based 

models. These models provide the capacity to reproduce the microclimate in a city district, 

neighborhood, or street canyon.  

CFD models can be coupled with solar radiation models, heat conduction and moisture transfer 

models so that the physical environment in the city can be resolved in detail, scaled from the 

buildings to the neighborhood, even to the entire city. Therefore, the computational domain should 

be carefully defined to avoid oversimplification. The environmental fluid flow simulation [193, 

194] requires professional expertise. The best practice guidelines (BPG) and related studies have 

been extensively reviewed [13, 195]. The most well-known BPGs come from the Architectural 

Institute of Japan (AIJ) [196] and the European Cooperation in Science and Technology (COST) 

[197], which specify the requirements of how the computational domain, boundary conditions, 

wind profiles, and turbulence models should be defined to ensure the quality of the simulation. 

Blocken, et al. [194] also raised a framework to use CFD to design and optimize pedestrian wind 

comfort. To consider the thermal effects in urban areas, the grid size of the microclimate models 

can be simulated down to a sub-meter scale, which allows researchers to resolve physical 

phenomena in detail. To that end, Tsoka, et al. [198] summarized the publication trend and global 

distribution of the studies using ENVI-met, which reported 280 papers before March 2018, most 
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of which came from Europe and Asia. The studies also cover a wide range of Koppen climate zone 

types.  

One of the challenges of microclimate modeling is that urban climate models are normally 

oversimplified [199]. CFD enhances predictions within the lower segment of the Atmospheric 

Boundary Layer (ABL), specifically in the Urban Boundary Layer (UBL) and Urban Canopy 

Layer (UCL), where the majority of human activities occur [5, 6, 200]. Mesoscale models, such as 

the WRF model, despite incorporating parametrization schemes for UCL effects, struggle to 

accurately predict small-scale and localized effects caused by buildings and other structures. To 

address this issue, CFD, with its high-resolution grid, is frequently integrated with mesoscale 

models or field measurements to precisely simulate microscale (i.e., local scale) phenomena. 

Martilli [201] conducted a comprehensive review on statistical and dynamical downscaling 

including CFD. The paper [201] focuses on the positive feedback that occurs among experimental 

investigations and numerical modeling in mesoscale urban studies, exploring the current state-of-

the-art techniques to parameterize urban-induced dynamical and thermal effects in mesoscale 

models and their future developments. More recently, Ricci, et al. [202] presented a novel method 

for downscaling from mesoscale using onsite measurements to microscale by employing CFD 

models. The static downscaling approach, as outlined in this chapter, incorporates onsite 

measurements into the UCL by determining transfer coefficients, which are calculated using 3D 

steady RANS simulations for two distinct spatial extents of the urban texture. This innovative 

technique facilitates accurate wind flow prediction within the UCL and has been thoroughly 

verified against field measurements in a realistic UCL environment. 

Besides, it is necessary to consider the various environmental elements in the study area, such as 

anthropogenic heat emission [203], vegetation [204], and water bodies (blue infrastructure) [205]. 
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Despite these challenges, case studies in existing publications further demonstrate the capability 

of CFD models. For example, Antoniou, et al. [206] performed an unsteady-state RANS 

(Reynolds-averaged Navier–Stokes model) simulation for a highly heterogeneous district in 

Nicosia, Cyprus, over four days in July 2020. The simulation was validated by a high-resolution 

experimental dataset with measured outdoor air temperature, wind speed, and surface temperature 

in the same area. Mortezazadeh, et al. [39] evaluated the 2017 heatwave in Montreal by coupling 

WRF and CityFFD and investigated the impacts of three canyon aspect ratios and three 

anthropogenic heat regimes, i.e., surface temperature differences, on the boundary conditions 

setups. Their study shows the importance of microclimate simulations for regional climate models 

when studying urban heatwaves. 

The use of CFD models to simulate the whole city is limited because the number of mesh grids 

required would be enormous to capture the city's geometry with all the buildings. Some other 

challenges are known as preserving the mesoscale meteorological effects during the CFD 

simulation and upscaling the CFD model for a much larger area under the mesoscale 

meteorological impacts [207]. Also, the availability of multiple years of future climate data raises 

a new challenge regarding how to simulate the “climatological” time periods of 30 years and longer 

with limited computing resources which raises the need of the reference year method. In recent 

days, some new research adopted Fast Fluid Dynamics (FFD) to run the CFD simulation on a high-

end video card (GPU) to accelerate the simulation [208] and a new software focusing on the urban-

scale CFD simulation is developed named CityFFD [39, 208-212]. They adopted a semi-

Lagrangian approach with high-order temporal and spatial schemes [210], which is feasible for 

coarse grid meshes and large timesteps while ensuring accuracy. 
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The geographic information system (GIS) allows users to create, manage, analyze, and map 

different data types, as shown in Fig. 1.10. GIS has become a critical tool in modeling detailed 

characteristics of a city. Vuckovic, et al. [213], [214] first adopted the GIS tool to collect the urban 

environment's salient geometric and physical features in Vienna, Austria. Two representative 

locations were selected in the city, including the most developed part of the city and an abandoned 

industrial site on the periphery of the urban center, to perform microclimate simulations in ENVI-

met. Demuzere, et al. [215] used the World Urban Database and Access Portal Tools (WUDAPT) 

platform to combine the building and district morphology from GIS and remote sensing 

information to classify the local climate zones (LCZ) for Al Ain City in the United Arab Emirates. 

Six districts of different types were selected for microclimate evaluation in ENVI-met, and the 

simulation was validated with site measurements. The results exhibited a similar temperature 

pattern shown by the LCZ map (Fig. 1.11).  

 

Fig. 1.10 Example of geographical information system (GIS) mapping in environmental studies 

[216]. 
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Fig. 1.11 The scheme of the local climate zone [217]. 

The geometry of the urban canopy can significantly affect urban microclimate conditions, as 

illustrated in a review conducted by Shafaghat, et al. [218]. To solve this problem, Pađen, et al. 

[219] developed a tool to automatically reconstruct 3D city models for use in computational fluid 

dynamics simulations and ultimately generate geometric models without errors to enhance the 

accuracy and efficiency of fluid dynamics simulations. This research introduces innovation 

through the significant reduction in preparation time for error-free geometry models, while also 

ensuring a high degree of automation and controllability within the workflow process. 

Allegrini, et al. [220] assessed the performance of six different urban morphologies on the climate 

in Zurich, Switzerland. The thermal boundary conditions of the buildings are determined by 

coupling with a building energy model (BES), and the short and longwave radiation 

convective/conductive heat transfer of the surfaces is also considered. They found a more complex 

geometry may lead to a lower facade temperature because of the shading effect, which affects the 

local microclimate and the cooling and heating demand of buildings. This CFD and BES coupled 

simulation method is also used to evaluate the heat flux from the building in the microclimate that 

is affected by the building morphology and the urban wind conditions [221, 222]. Where they 

found that the heat flux from the upstream building blocks may affect the downstream environment. 
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This effect is less important when low wind speed and the buoyancy effect mainly drive the flow. 

To evaluate the impact of the variation of building heights and [222] designed generic urban 

geometry configurations, they found the building height topologies may not change the mean 

temperature in the whole area, but the distribution can vary a lot which may cause a local 

overheating effect. To further verify their study in a real urban configuration, Allegrini and 

Carmeliet [221] selected a specific district in Zurich with relatively dense buildings to evaluate the 

building geometry, material, and the wind and buoyancy effect on urban microclimate. 

CFD models can also take the boundary conditions from the Regional Climate Modelling data and 

simulate the sub-grid environment. Zheng, et al. [223] adopted a coupled WRF-CFD simulation 

to analyze the airflow and pollutant dispersion on a university campus in Shenyang, China. The 

wind and turbulence information simulated in WRF has been used as the initial and boundary 

conditions of the CFD model to perform detailed aerodynamic analysis. In contrast, the thermal 

environment was not simulated and analyzed in this study. Mortezazadeh, et al. [39] explored the 

method to integrate WRF simulation results in a CFD model to reproduce the thermal environment 

in the Greater Montreal Area during a heatwave in 2017. Berardi, et al. [224] selected two 

vulnerable locations from the Greater Toronto Area (GTA), and the results from the WRF 

simulation are used as inputs to the microclimate model, ENVI-met, to test the effectiveness of 

greenery scenarios. They found that by increasing the tree canopy in the local area, the temperature 

can be reduced by 0.5°C and 1.4°C at the two locations. Similarly, to study a period of extreme 

heat in San Jose, California, McRae, et al. [225] also integrated WRF results with ENVI-met 

simulations to measure the cooling effects of vegetation.  

There are also attempts to incorporate the climate data from the regional climate model or CFD 

simulation for the whole building simulation. Wong, et al. [226] developed a multiscale simulation 
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framework to couple WRF, OpenFOAM, and EnergyPlus for evaluating the microclimate and the 

building energy performance of the National University of Singapore campus. The method has 

been verified to estimate the energy saving of the buildings with the urban heat island measures 

applied in the microscale model. Shu, et al. [147] proposed using high-resolution convection-

permitting climate data for city-scale overheating assessment. The data was provided to a building 

energy model using EnergyPlus to perform the indoor overheating assessment. It was found that 

the conventional regional climate model (RCM) in a coarse resolution at 25 km may highly 

underestimate the overheating in cities. 

Resolving the interactions between global and urban climates is necessary to generate information 

on a scale relevant to urban overheating. The ability to produce detailed information regarding 

global climate change and urban areas will aid practitioners in implementing urban overheating 

mitigation strategies. Previous studies have done so by coupling large-scale climate models with 

microscale CFD models to study the local climate in extremely high resolution [227]. For example, 

Tumini and Rubio-Bellido [228] evaluated the climate change effect on the microclimate of a park 

square with its surrounding buildings in Concepcion, Chile. The future climate was obtained 

through a “morphing” method [131, 229] regarding the GCM scenario of A2 ‘medium-high’ 

Greenhouse Gas (GHG) emissions. The microclimate simulation is conducted in ENVI-met, and 

an increase in the average temperature of 1.02°C, 1.60°C, and 2.70°C was found for 2020, 2050, 

and 2080, respectively. However, statistical downscaling methods such as that implemented by 

Tumini, et al. [230] are with limitations, as they can only be calculated based on historical 

observations and, therefore, cannot account for the potential variability in future climates [231]. 

Consequently, to generate data necessary to study climate change, Conry, et al. [232] used WRF 

to dynamically downscale climate projections in Chicago produced by the Community Climate 
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System Model. Subsequently, from a spatial resolution of 0.333km, the data is used to drive an 

ENVI-met model with a grid resolution of 2 m to study the pedestrian level thermal comfort. The 

added benefit of dynamically downscaling to such a degree provides a robust source of spatially 

averaged initial conditions for the microscale CFD model. 

Undoubtedly, climate change will significantly impact the urban environment, building energy 

consumption for heating and cooling [233], air pollution, and human health and well-being. For 

instance, many researchers [34, 234-236] analyzed the change in building energy use due to 

climate change under various global warming scenarios. By gradually dynamically downscaling 

GCM climate data to a regional scale and finally to a neighborhood scale through CFD models, 

climate data suitable for building simulations can be produced. Subsequently, this data is input to 

EnergyPlus to calculate heating and cooling loads for buildings in Madrid, Milan, and London, 

where results indicate a relative decrease in heating energy demand while a significant increase in 

cooling should be expected. A similar procedure is used by San José, et al. [237] to generate 

climate data to study the effects of climate change on air pollution and human health in London. 

Additionally, the downscaled microscale data was validated against existing air quality stations in 

the city, which showed good agreement between the model and observed data. Subsequent 

analyses showed that concentrations of atmospheric pollutants would not change significantly in 

the future. However, the rise in temperatures is a significant concern regarding human morbidity. 

1.2.6 Overheating evaluation method 

Evaluating overheating risks inside and outside buildings requires the determination of appropriate 

overheating criteria [27, 40, 99, 238, 239]. There have been many reviews focusing on the various 

aspects of overheating criteria which provide a good scope when evaluating overheating under 

different scenarios [4, 27, 28, 30, 32]. This section of the review will cover the most commonly 
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employed methods for assessing indoor and outdoor overheating, and also outline crucial criteria 

for studying overheating in future research. 

The PMV/PPD thermal comfort model [240] (PMV stands for predicted mean vote and PPD stands 

for predicted percentage dissatisfied) developed by Fanger and the two-node model developed by 

Gagge [241], [242] is widely applied to the overheating assessment. According to various 

standards such as EN [243], ISO [244], ASHARE [245], and CIBSE [246], different PMV/PPD 

static comfort limits were suggested under different building operation types. Due to the difficulty 

of measuring PMV in various indoor environments, some standards convert the PMV/PPD ranges 

into operative temperature scales. In CIBSE TM52 [247], the PMV/PPD ranges were based on 

specific relative humidity  (=50%), air velocity (<0.1m/s), metabolic rate (1.2 met), and clothing 

factor (0.5 clo for summer). Accordingly, the temperature thresholds of the residential building are 

determined as 26 ℃ and 28 ℃ for the living room and bedroom, respectively. With the threshold 

temperature, the overheating risks could then be evaluated by the hours of exceedance [247], 

overheating degree hour [248, 249], and heat exposure index [250]. Besides, Robinson and Haldi 

[251], [252] also developed a mathematical model for predicting overheating risk under various 

environmental conditions, considering the analogy between the charging and discharging of 

human’s tolerance to overheating stimuli. Compared with the data from the field survey, the 

application of this analytical model provided encouraging results.  

Based on Hamdy, et al. [20] and Rahif, et al. [27], a climate change-sensitive overheating 

evaluation method based on Indoor Overheating Degree, Ambient Warmness Degree (AWD) and 

Overheating Escalation Factor was proposed for a multi-zonal and climate change-sensitive 

overheating assessment. The Indoor Overheating Degree index is the summation of the 
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temperature difference between the indoor operative temperature and a preferred comfort 

temperature averaged over the total number of zonal occupied hours, as shown in Equation (1.1). 

 𝐼𝑂𝐷 =  
∑ ∑ [(𝑇𝑓𝑟,𝑖,𝑧 − 𝑇𝐿𝑐𝑜𝑚𝑓,𝑖,𝑧)

+
× 𝑡𝑖,𝑧]

𝑁𝑜𝑐𝑐(𝑧)
𝑖=1

𝑍
𝑧=1

∑ ∑ 𝑡𝑖,𝑧
𝑁𝑜𝑐𝑐(𝑧)
𝑖=1

𝑍
𝑧=1

 (1.1) 

Where, z is the building zone counter, i is the occupied hour counter, t is the time step (typically it 

is 1 hour), Z is the total number of zones in a building, 𝑁𝑜𝑐𝑐(𝑧) is the total occupied hours in a 

given calculation period, 𝑇𝑓𝑟,𝑖,𝑧 is the free-running indoor operative temperature at the time step i 

in the zone z, and 𝑇𝐿𝑐𝑜𝑚𝑓,𝑖,𝑧 is the comfort temperature limits at the time step i in the zone z, 

(𝑇𝑓𝑟,𝑖,𝑧 − 𝑇𝐿𝑐𝑜𝑚𝑓,𝑖,𝑧)
+

 is the positive differences between 𝑇𝑓𝑟,𝑖,𝑧 and  𝑇𝐿𝑐𝑜𝑚𝑓,𝑖,𝑧 and only positive 

differences are taken into summation. Both static and adaptive temperature limits can be used as 

the thresholds (𝑇𝐿𝑐𝑜𝑚𝑓,𝑖,𝑧). The IOD allows for considering the occupancy profiles of each zone, 

making it possible to reflect the occupant behavior and adaptation opportunities based on the zone 

type by applying zone-specific comfort models. The disadvantage of IOD is its neglect of the 

personal and environmental factors in determining thermal comfort since it is only calculated 

through the operative temperature.  

The Ambient Warmness Degree (AWD) averages the cooling Degree hours calculated for a base 

temperature of 18 °C during the summer hours when the outdoor air temperature is not lower than 

18 °C. It could represent the severity of outdoor warmness. The equation of AWD is shown below: 

 𝐴𝑊𝐷 =  
∑ [(𝑇𝑎,𝑖 − 𝑇𝑏)

+
× 𝑡𝑖,𝑧]𝑁

𝑖=1

∑ 𝑡𝑖
𝑁
𝑖=1

 (1.2) 
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 𝛼𝐼𝑂𝐷 =
𝐼𝑂𝐷

𝐴𝑊𝐷
 (1.3) 

Where, 𝑇𝑎,𝑖 is the outdoor dry-bulb air temperature, 𝑇𝑏 is base temperature set at 18 °C, N is the 

number of occupied hours such that 𝑇𝑎,𝑖 ≥ 𝑇𝑏 in the summer season, and t is the time step (1 h), 

and (𝑇𝑎,𝑖 − 𝑇𝑏)
+

 is the positive difference between 𝑇𝑎,𝑖 and 𝑇𝑏. Solar radiation is not considered 

in AWD, which means the same AWD index will be obtained under two different climates with 

the same temperature files but different solar irradiance levels. By coupling the IOD index and 

AWD index, the Overheating Escalation Factor (αIOD) was established as shown in Equation (1.3). 

The αIOD > 1 means that indoor thermal conditions get worse when compared to outdoor thermal 

stress, and on the contrary, αIOD < 1 means that the building could suppress some of the outdoor 

thermal stress. Thus, the αIOD could show the sensitivity of a building to the progressive rise in 

outdoor air temperature due to the impact of climate change. 

To be concluded, for evaluating both indoor and outdoor overheating, the threshold temperature 

of the residential building is the most widely used standard for evaluating overheating not only 

because it is convenient and easy to apply, but also it could be easily transformed into other indexes 

to quantify the overheating risk under different scenarios, such as hours of exceedance, overheating 

degree hour, and heat exposure index. The combination of overheating criteria of Indoor 

Overheating Degree, Ambient Warmness Degree (AWD), and Overheating Escalation Factor has 

a more systematic understanding of both indoor and outdoor overheating and could reveal the 

impacts of climate change. However, due to its complexity, this criterion only suits limited 

scenarios and cannot be applied to urban-scale overheating studies which will involve complex 

outdoor and indoor climates. 
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Various overheating evaluation methods can be applied at different scales such as building, 

neighborhood, or city level. The choice of scale depends on the specific goals and requirements of 

the study, as well as available resources and data. Applying methods at the building scale allows 

for detailed assessments of individual building performance and tailored design solutions but can 

be time-consuming and may not capture broader urban microclimate interactions [4, 40, 99, 253-

255]. The neighborhood scale considers interactions between buildings and the surrounding 

environment, better representing the actual urban microclimate experienced by occupants, but may 

require more computational resources and provide less detailed assessments of individual 

buildings [256-259]. The city scale offers a comprehensive understanding of the urban heat island 

effect and helps prioritize large-scale heat mitigation strategies, but requires significant 

computational resources and may not account for local variations in microclimate and building 

performance [147, 260-265]. Ultimately, each scale provides unique insights into overheating, and 

a combination of scales can help develop a more comprehensive understanding of the issue and 

inform effective mitigation strategies. 

1.2.7 Conclusion 

This chapter presents a systematic review of the application of climate model projections for future 

indoor and outdoor overheating impact assessments, divided into four primary stages. Several 

prominent research gaps have been identified and are summarized as follows for each stage: 

• Future climate data generation: Although progress has been made in generating future 

climate data using downscaling methods, challenges remain in conducting high-resolution, 

multi-decadal urban climate simulations under various greenhouse emission scenarios. 

Moreover, the accuracy and versatility of statistical and dynamical downscaling methods 

are limited by their reliance on historical data and high computational costs, respectively. 
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Statistical-dynamical methods offer a promising compromise, allowing urban 

environments to be physically parameterized while maintaining versatility through 

advanced statistical and data-driven modeling techniques. 

• Future climate input preparation: Bias correction and reference year data methods are 

crucial for improving the reliability of projected data and streamlining climate change 

impact assessments. However, there is a lack of consensus on the weighting of climatic 

variables in reference year data methods. Using thermal comfort indices like SET or UTCI 

instead of individual climatic variables could be a potential solution. 

• Indoor climate simulation: Neighborhood-scale urban climate modeling is essential for 

studying future overheating. Challenges include modeling spatially dynamic indoor 

climate and incorporating real occupancy patterns in building energy models.  

• Outdoor climate simulation: Simplifications in computational fluid dynamics (CFD) 

models raise concerns about accuracy and validity. Future research should focus on 

quantifying the sensitivity of input parameters to better understand the impacts of these 

simplifications. 

• Overheating evaluation methods: Although widely used standards for outdoor and indoor 

overheating assessments exist, they fail to consider social and economic vulnerabilities. As 

specific populations, such as the elderly, poor, and minority groups, are disproportionately 

affected by extreme heat events, using thermal-only overheating standards is insufficient. 

A more comprehensive approach should incorporate social-economic components, such as 

the percentage of vulnerable populations and the accessibility of heat mitigation methods. 
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1.3 Challenges and Research objectives 

The aim of this thesis is to evaluate the effects of climate change on multiscale urban overheating 

and to pinpoint outdoor heat-vulnerable zones across varying scales. There are three key 

challenges of this study: 

1. Future climate data (low-resolution) VS Outdoor heat stress or thermal comfort 

(high-resolution) 

First of all, outdoor thermal comfort or heat stress evaluation requires fine resolution 

microclimate data. However, long-term future urban climate data are normally under global 

or regional scale which are too coarse for thermal comfort evaluation. 

2. Future climate data (long-term) VS CFD simulation (short-term) 

To resolve the first conflict, the assessment needs to be conducted under micro-scale which 

requires CFD simulation. Then, the second challenge appears which is using long-term 

climate data as CFD simulation input. Due to the limitation of computational resource, 

CFD simulation could not be conducted for a long time period. 

3. Whole city urban climate (large-scale) VS CFD simulation (micro-scale) 

Besides, CFD simulation could not be conducted for an entire city with a promising 

accuracy. Thus, another challenge would be which location should be chosen for 

conducting CFD simulation to represent general urban overheating. It is important to 

determine the best location which could represent the urban climate in general. 

In alignment with these challenges, the objectives of the study have been outlined: 

• Develop a comprehensive framework that integrates the application of climate model 

projections specifically tailored for evaluating future outdoor overheating impacts. This 
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framework will provide a systematic approach to assess outdoor urban overheating under 

the impacts of climate changes; 

• Address the reliability concerns related to future climate data through a statistical method. 

This method could capture the bias between observational and simulated climate data for 

current time period and then apply it to the future climate data for improving the reliability; 

• Develop a statistical method to select typical and extreme future climate inputs from long-

term climate data for CFD simulation. This method could significantly decrease the 

computational cost and labor work when simulating long-term climate data while keeping 

the representative features of future climate conditions by selecting typical and extreme 

scenarios; 

• Develop a statistical method to select typical and extreme locations from entire urban area 

for CFD simulation. This method could significantly decrease the computational cost and 

labor work when simulating local urban microclimate while keeping the representative 

features of urban climate conditions by selecting typical and extreme scenarios; 

To address the challenges and objectives above, the focuses of the following chapters are listed as 

below: 

• Chapter 2 – Representative future climate data for regional urban overheating assessment: 

This chapter applied a reference year selection method in terms of typical and extreme 

reference years based on future climate datasets for assessing regional urban overheating 

of three Canadian cities, Montreal, Toronto, and Vancouver among 2010s, 2050s, and 

2090s. This chapter contains 1) Raw climate data acquisition at the mesoscale through 

GCM-RCMs, 2) Data processing through bias correction for improving the reliability of 
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climate data, 3) Regional urban overheating assessment with temperature thresholds. 

• Chapter 3 – Microscale urban overheating assessment using representative future climate 

data through CFD simulations: This chapter assesses the effects of climate change on 

outdoor thermal comfort in downtown Montreal using CityFFD-CityBEM co-simulations 

through steady-state (Universal Thermal Climate Index - UTCI) and dynamic (Discomfort 

Capacitor Model - PDISC) outdoor thermal comfort models under both typical (TDD) and 

extreme warm (EWD) future climate scenarios.  

• Chapter 4 – Representative spatial and temporal method for assessing broader spatial and 

temporal scale future urban overheating: This chapter developed a representative location 

method to select typical and extreme locations with climatic outputs from WRF simulation 

of a historical heatwave. With the representative locations selected by representative 

location selection method, CFD simulations were performed to assess the climate change 

impacts on representative urban overheating using climate input of TDD and EWD from 

reference year method.  

The framework of this thesis is shown as follow which is developed to evaluate urban 

overheating under regional, neighborhood scale, and neighborhood scale representing the 

whole city. 
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2. Chapter 2 

Assessment of future overheating conditions in 

Canadian cities using a reference year selection 

method 

 

 

 

This chapter is prepared based on published paper: Assessment of future overheating conditions 

in Canadian cities using a reference year selection method. 
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Abstract 

Climate change has led to prolonged, more frequent, intense, and severe extreme weather events, 

such as summertime heatwaves, creating many challenges on the economy and society and human 

health and energy resources. For example, the 2010 and 2018 heatwave in Quebec, Canada, 

resulted in about 280 and 93 heat-related deaths, and there were around 500 fatalities due to 

overheated indoor environments in 2021 around entire Canada. Therefore, it is imperative to 

understand and evaluate the overheating conditions in buildings, for which selecting suitable future 

reference weather data under climate change is one of the first critical steps. This study evaluated 

a reference year selection method in terms of typical and extreme reference years based on future 

climate datasets to assess both outdoor and indoor overheating in the future. The future climate 

data were collected from the Coordinated Regional Downscaling Experiment (CORDEX) program. 

Three Canadian cities (Montreal, Toronto, Vancouver) were selected for the overheating 

evaluation during three selected periods (2001-2020, 2041-2060, 2081-2100). The CORDEX 

climate projections were first bias-corrected by the multivariate quantile mapping correction 

method with the observational data. Then, the typical and extreme reference year data were 

generated as well as climate data from the design summer year for comparison. The performance 

of the reference year selection method was evaluated by comparing the maximum, minimum, and 

average overheating hours for the 20-years data of each period. This study demonstrates that the 

multivariate quantile mapping bias correction method can improve the reliability of future climate 

data making it one of the most important steps for any future weather projection study. Besides, 

the reference year selection method could efficiently capture maximum and minimum monthly 

overheating hours providing the upper and lower boundary of possible outdoor and indoor 

overheating conditions. In contrast, neither the severest nor the typical monthly outdoor and indoor 
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overheating conditions could be predicted by the design summer year method. Finally, owing to 

the effects of climate change, average monthly overheating hours normally increase by around one 

time (from 50% to 150%) until the mid-term future (2041-2060) and by around two to three times 

(even up to nine times for some scenarios) during the long-term future (2081-2100). 

Keywords: Climate change; future projection; bias correction; reference year data; urban 

overheating 

2.1 Introduction 

Due to greenhouse gas emissions, the global climate system has been significantly affected, which 

resulted in more intense and frequent extremely hot outdoor conditions in recent years all around 

the world [20, 27, 90, 143, 266]. Human daily life was affected by these extreme weather 

conditions in diverse aspects, including economy, health, society, energy, and infrastructure 

systems [5, 6, 266, 267]. In 2003, Europe experienced one of the hottest summers in the past 500 

years with more than 30000 deaths [17, 18] and record-high temperatures of 20–30% above the 

average of June to mid-August [19]. In the Netherlands, around 2000 heat-related deaths occurred 

during summer with a maximum temperature of 35 ℃ [20]. The  2010 heatwave in Quebec, 

Canada, resulted in a significant increase of 33% in the crude death rate (about 280 extra deaths) 

[21] and the 2018 heatwave in Quebec caused 93 deaths. Although both outdoor and indoor 

overheating has garnered much attention during recent years in Canada, the most recent heatwave 

in 2021 still caused about 500 deaths across the country [22]. As a consequence of global warming, 

the frequencies, magnitudes, and intensities of heat events in Canada, and indeed around the globe, 

are expected to keep increasing in the future [25, 26]. It is expected that the deadly heatwaves 

would occur about 60 days annually in the mid-latitudes and affect 48%~74% of the world’s 

population by 2100 [3]. 
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Building environments provide shelters from weather extremes and ensure the quality of life for 

residents [268, 269]. This has been greatly challenged in recent decades [147, 270]. Although there 

are limited studies on the epidemiological evidence that high-temperature exposures indoors 

contribute to adverse health effects  [271, 272], it could be self-evident that the above-mentioned 

heat-related deaths were not only caused by the intolerable outdoor conditions but also the inability 

of buildings to moderate extreme temperatures indoors [273]. It has also been reported that 

exposure to elevated indoor temperatures reduces the ability of a human body to recover from 

outdoor heat stress [274, 275], causing sleep fragmentation [276, 277], poor work performance 

[278], and possibly impairing the mental health  [279, 280].  

Free-running residential buildings are one of the most vulnerable building types to the risks of 

overheating [281]. There have been many studies assessing indoor conditions of buildings across 

various countries and climate zones, such as the United Kingdom [282-284], the Netherlands [20, 

285, 286], Sweden [287, 288], and Canada [145, 146, 148] in respect to temperate climates, 

Honduras [289], Taiwan [265], and Hong Kong [143, 290] for tropical and subtropical climates. 

Most previous studies focused on existing overheating conditions [135, 143, 283, 288, 289]. In 

contrast, increasing attention started towards the future overheating scenarios [20, 287, 290], and 

the prediction of future overheating effects relying on building simulation models with current and 

future projected climatic conditions.  

An essential part of future overheating assessments is to prepare projected future climate files as 

inputs to a building simulation model. They are usually from global climate models (GCMs), 

including an atmospheric model, ocean model, land surface scheme, and a sea ice model [34]. 

However, the major challenges of using GCMs are various existing climate models and multiple 

greenhouses gas emission scenarios creating many options and complexities for users to choose 
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from. For the Coupled Model Intercomparison Project Phase 5 (CMIP5), forty GCMs from 20 

research groups were proposed and publicly available [35]. The Intergovernmental Panel on 

Climate Change (IPCC) has four Representative Concentration Pathways (RCPs) that represent 

different future greenhouse gas emission scenarios, including RCP 2.6, RCP 4.5, RCP 6.0, and 

RCP 8.5. More recently, led by the IPCC, the energy modeling community developed a new set 

of emission scenarios driven by different socioeconomic assumptions, the so-called ‘Shared 

Socioeconomic Pathways (SSPs). A number of these SSP scenarios have been selected to drive 

climate models as part of the Coupled Model Intercomparison Projects 6 (CMIP6). The previous 

RCP scenarios have been updated in CMIP6 in the form of SSP1-2.6, SSP2-4.5, SSP4-6.0, and 

SSP5-8.5, each of which results in similar 2100 radiative forcing levels as their predecessors in 

RCPs. Several new scenarios were also applied in CMIP6, such as SSP1-1.9, SSP4-3.4, SSP5-

3.4OS, and SSP3-7.0, to take into account more socioeconomic drivers. Such a large number of 

climate models and RCP scenarios complicate the process of applying their different combinations 

to one specific assessment and enormous computational costs. Moreover, a building overheating 

assessment for future projected years is expected to cover a long-term period of at least 20-30 years 

[34], which results in high computational costs when evaluating every year. Therefore, one of the 

computationally effective solutions is to select a few reference years as the subsets of the long-

term time-series climates while encompassing the uncertainties associated with future climate 

projections. 

Reference years are one year (or a few years) prepared from the climate time series to capture 

aspects of interest from the long-term datasets. For building energy applications, the typical 

meteorological year (TMY) defined by Hall, et al. [118] is often used by combining multiple 

typical meteorological months (TMM). TMY was widely applied to evaluating building energy 
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performance [112-117] as well as the overheating assessment [112-117, 142-144]. In comparison, 

Typical reference year (TRY), Weather Year for Energy Calculations (WYEC), and International 

Weather Year for Energy Calculations (IWEC) were developed by the American Society of 

Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE). The test reference year from 

Hui and Lok [119] and typical meteorological year 2 (TMY2) from the National Solar Radiation 

Data Base (NSRDB) [291] were intended to capture typical, or average, aspects of climatic 

variables of the long-term datasets [125, 127, 128].  

There are also reference year methods for building overheating assessments, the intention of which 

is to capture extreme summer conditions from long-term data as the reference datasets, like the 

design summer year (DSY) from Levermore and Parkinson [130], actual meteorological year 

(AMY) from Hong, et al. [133], summer reference year from Jentsch, et al. [134]. For a cold 

climate, such as Canada, several studies have focused on the overheating assessment in different 

cities [135, 136, 145-147]. Baba and Ge [146] evaluated the performance of existing buildings 

under a current extreme year and projected future climates. Their results showed that the thermal 

conditions of a single-family detached house built in 1964 and 1990 are more comfortable than 

the house built to meet the current National Energy Code of Canada for Buildings (NECB), and 

the overheating risk of Canadian buildings will be increased in the future. In a recent study, Chang 

et al. [147] evaluated the external overheating within the urban areas of Ottawa and Montreal by 

Weather Research and Forecasting (WRF) simulations with two resolutions (1 km and 25 km). 

Besides, the WRF simulation data were then used for the indoor overheating assessment by 

EnergyPlus simulations. It was shown that the 1-km grid resolution is essential for assessing indoor 

overheating conditions because the 25-km resolution could lead to an underprediction of the 

overheating hours in about 95% of the urban grids within either of these two cities. Studies from 



 

58 

 

Laouadi [135-137] developed a new reference year method called reference summer weather years 

(RSWY) to evaluate indoor overheating. This method includes generating historical climate data, 

developing a heat stress metric for the definition, and characterizing heat events. A modified 

Standard Effective Temperature (t-SET) considering both environmental and psychological 

factors was used to generate RSWY for selected Canadian cities. This method was also applied to 

evaluate future climate change impacts on indoor overheating [148].  

Recently, Nik [34] developed an approach for selecting reference years for climate change impact 

assessment on buildings where three reference years: typical downscaled year (TDY), extreme 

cold year (ECY), and extreme warm year (EWY), were selected to capture the typical, coldest and 

warmest conditions within a climate time-series. This method aims at selecting the limited number 

of hourly weather data sets out of regional climate models (RCMs) without neglecting the climate 

uncertainties, extremes, and variations in different time scales without weighting weather 

parameters in time series. The selected three reference years are found to efficiently capture the 

range of climatic projections and building energy response from an ensemble of regional climate 

projections. The approach has since been applied in a wide range of studies to prepare reference 

datasets for building energy and building hygrothermal applications [138, 139, 141, 149].  

More recently, Nik’s method is also applied to the future projected changes in indoor thermal 

comfort and degree-days evaluation of a European city [292]. It is found that cooling degree days 

increase by 45% for the typical weather conditions and even up to 500% for an extreme warm July 

from one 30-year period to another. According to their study, the annual overheating hours can 

increase by up to 140% in the future time under extreme summer months in the city.  In this study, 

the suitability of Nik [44] method towards selecting typical and extreme reference years for indoor 

and outdoor overheating applications is evaluated over three Canadian cities. This study, therefore, 
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evaluates the method in an overheating context, which is a relatively less explored area of 

investigation of the method in the past. At the same time, the evaluation is performed over 

Canadian cities which have different climates than European cities over which previous 

overheating study [67] with the method has been performed.      

The study is described in the following sections. Section 2.2 provides detailed descriptions of the 

tasks and workflow process of the study and includes the locations and period of time of interest, 

the collection of climate data, methods of data processing, building model configurations, and 

overheating criteria. Results and discussions of data processing, as well as the outdoor and indoor 

overheating conditions, are reported in Section 2.3, and the conclusions are provided in Section 

2.4. 

2.2 Methodology 

The following steps were conducted to select reference years for the three Canadian cities in an 

overheating context, and evaluate future projected changes in the overheating of buildings in these 

locations: 

Step one - Collection of observational and climate model simulation data (details described in 

Section 2.2.2): 

The observations were collected from the airport locations for each city and for the time period of 

1998-2017 from the CWEEDS database (hereafter referred to as observational time-period). The 

three sets of regional climate projections were collected from the Coordinated Regional 

Downscaling Experiment (CORDEX) program for the observational, contemporary, mid-term 

future, and long-term future time periods and for the grids encompassing the airport locations of 

the three cities. 
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Step two - Bias correction of climate model simulations (details described in Section 2.2.3 and 

2.3.1):  

The regional climate model data were used to calibrate the multivariate bias correction algorithm 

(MBCn) bias-correction function, which was then used to prepare bias-corrected climate 

simulations for the contemporary, mid-term future, and long-term future time periods.  

Step three - Preparation of typical and extreme climate datasets (details described in Section 2.2.4 

and 2.3.2):  

The typical downscaled year (TDY), extreme warm year (EWY), and extreme cold year (ECY) 

were prepared for the three time periods. In addition, the Design Summer Year (DSY) was selected 

for the same periods. 

Step four - Building simulations with current and future projected climate (details described in 

Section 2.2.5):  

The indoor environment in the single-detached home when exposed to the climate in contemporary, 

mid-term future, and long-term future time periods were simulated using EnergyPlus simulation 

software. 

Step five - Assessment of future outdoor and indoor overheating (describe in Section 2.3.3): 

Future overheating assessment in the cities was performed by comparing the overheating 

conditions in the mid-term and long-term future to those of the contemporary time period. 
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2.2.1 The region and time-periods of interest  

Three Canadian cities were selected for the overheating assessment in this study, including 

Montreal (Quebec), Toronto (Ontario), and Vancouver (British Columbia). These three cities were, 

in 2016, the three largest urban agglomerations, by population, in Canada [293]. Demographic and 

geographic details of these three cities are provided in Table 2.1. For the overheating evaluation, 

three time periods: contemporary (2001-2020), mid-term future (2041-2060), and long-term future 

(2081-2100) are considered. Fig. 2.1 shows the average monthly summary of daily observations 

of temperature, humidity, and wind speed for the three cities collected from Environment and 

Climate Change Canada (ECCC) [294].  

Table 2.1 Information of three selected Canadian cities 

City 

Latitude 

and 

longitude 

Elevation 

above sea 

level (m) 

City 

Area 

(km2) 

Population 

density 

(person/km2) 

Climate 

Prevailing 

wind 

direction 

Montreal 

45°30′N 

73°33′W 

36 431.5 4,828.3 

Semi-

continental 

West 

Toronto 

43°44′N 

79°22′W 

76.5 630.2 4434.1 

Semi-

continental 

West 

Vancouver 

49°15′N 

123°06′W 

2 115.2 5749.9 

Western 

maritime 

East 

 

The daily average (solid line) and daily maximum (dash line) temperature over 1981-2010 are 

reported in Fig. 2.1. The average temperature varies from -11.5 ℃ to 19.8 ℃ for Montreal, -3.7 ℃ 

to 22.3 ℃ for Toronto, and 3.6 ℃ to 18 ℃ for Vancouver. The daily maximum temperature varies 
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from 12 ℃ to 36.1 ℃ for Montreal, 16.1 ℃ to 40.6 ℃ for Toronto, and 14.9 ℃ to 34.4 ℃ for 

Vancouver. The historical hottest month for three Canadian cities based on the average and 

maximum daily temperature is normally found in July or August. It is clear that Toronto has the 

highest temperature during the summer periods, and Montreal tends to have the coldest winter. 

Compared with Montreal and Toronto, Vancouver is more likely to have a cool summer and 

slightly cold winter. Besides, Toronto and Montreal are climate locations where overheating is 

more likely to occur as compared to Vancouver, considering the historical daily maximum 

temperature for these locations. Average humidity varies from 73.2% to 90.4% for Montreal, 76.1% 

to 89.6% for Toronto, and 81.3% to 89.2% for Vancouver. It could be found that Montreal and 

Toronto have similar climate patterns where wet summers and dry winters are evident, whereas 

Vancouver has a different climate pattern from the other two eastern Canadian locations. 

Regarding the wind velocity, average wind speed varies from 7.2 m/s to 12.3 m/s for Montreal, 10 

m/s to 14 m/s for Toronto, and 11.2 m/s to 13.2 m/s for Vancouver. Across the twelve months, the 

wind speeds are higher in winter in Montreal and Toronto, whereas the difference in monthly wind 

speeds in Vancouver is relatively small over the twelve months.  
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Fig. 2.1 Climatic variables of three Canadian cities from 1981 to 2010  

2.2.2 Climate models and observational data  

The climate data to undertake simulations during the contemporary and future periods were 

collected from the Coordinated Regional Downscaling Experiment (CORDEX) database [295], 

which provides multi-modal regional climate simulations for many state-of-the-art regional 

climate models (RCMs) forced by different global climate models (GCMs) [296]. A review of data 

available in the CORDEX is conducted, and a total of three RCM-GCM combinations are found 

to have three hourly climate projections with all the climatic variables for building simulations 

available for the North American domain. These three GCM-RCM combinations are selected for 

this study. The GCMs associated with the selected projections are: 

(1) MPI-ESM-LR [297]: Climate projections based on the components of ECHAM6 for 

atmosphere and MPIOM for the ocean and JS ACH for the terrestrial biosphere, and 
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HAMOCC for the ocean biogeochemistry. 

(2) NCC-NorESM1-M [298]: Climate projections of the first generation model developed by the 

Norwegian Climate Centre (NCC). 

(3) MOHC-HadGEM2-ES [299]: Climate projections of the second version of the Hadley Centre 

Global Environment Model (HadGEM2) by the Met Office Hadley Centre (MOHC). 

The regional climate models associated with all three climate simulations were the hydrostatic 

version of the Regional Model [300] (version REMO 2015), which dynamically downscales the 

GCM projections to a horizontal resolution of 0.22° (25 km). The future projections as applied in 

this study correspond to RCP 8.5, which represents the high range of non-climate policy scenarios 

[44, 301], assuming that by 2100, atmospheric concentrations of CO2 will be three to four times 

higher than the pre-industrial levels. The global warming increases for RCP 8.5 are 2.0 ℃ (around 

1.4–2.6 ℃) during mid-term future and 3.7 ℃ (around 2.6–4.8℃) during long-term future [301]. 

For the selected GCM-RCM combinations, four climatic variables required for conducting 

building simulations were collected, including dry-bulb air temperature (tas), relative humidity 

(hurs), wind speed (sfcWind), and global solar radiation (rsds).  

Besides, the observational data from local weather stations during the historical period are also 

collected. These observation data are downloaded from Canadian Weather Energy and 

Engineering Datasets (CWEEDS) [302] by Environment and Climate Change Canada from 1998 

to 2017 for all three Canadian cities. 

2.2.3 Bias correction of climate simulations 

According to Maraun [36], the climate model bias is defined as ‘the systematic difference between 

a simulated climate statistic and the corresponding real-world climate statistics’. There are various 
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reasons for the bias in climate model simulations, and the primary among them is the coarse 

resolution of climate models at which several local scale climate processes cannot be resolved [91-

94]. Therefore, failure to eliminate the bias from climate model simulations can result in an 

inaccurate assessment of overheating in the cities over contemporary and future projected time 

periods. 

Based on the literatures [36, 92, 100-102], it could be found that bias-correction is performed 

frequently when using climate model projections for local scale impact assessments and the bias 

associated with climate models are significantly reduced by the bias-correction step. Many bias-

correction methods such as simple scaling and additive corrections [103-105], advanced histogram 

equalization [101, 106, 107], and multivariate methods [108, 109] exist in the literature. In this 

study, climate projections are bias-corrected with the multivariate quantile mapping bias correction 

method: MBCn proposed by Cannon [108]. This method used an image processing technique 

which is N-dimensional probability density function transform, to transfer the observed continuous 

multivariate distribution to the corresponding multivariate distribution of variables from climate 

simulations [303, 304].  

2.2.4 Reference year selection  

Owing to the existence of multiple GCMs and RCMs, considerable uncertainties exist in future 

climate projections [94]. To account for the uncertainties, ideally, the ensemble of climate 

projections needs to be considered when performing future overheating assessments. However, 

this is time-consuming and computationally expensive. Furthermore, climate change assessments 

are performed over multidecadal timescales, which makes the task of considering climate 

projections from multiple GCMs and RCMs even more challenging [110, 111].  
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As discussed before, Nik [34] developed a method to select one typical and two extreme years of 

data to capture the range of climatic conditions present in an ensemble of future climate projections. 

Typical/extreme year data are prepared by identifying twelve typical/extreme meteorological 

months and combining them as one year of continuous data. For each month, the cumulative 

distribution function (CDF) of the outdoor air temperatures for each year is compared with the 

CDF outdoor air temperatures from all years, and the year with the least absolute difference 

between them is identified as the typical month. Extreme cold and warm year data are prepared in 

a similar way. However, instead of selecting the month with the least absolute difference, the 

month with the maximum and minimum difference between CDFs is selected as the extremely 

warm and cold months, respectively. They are then combined to prepare the extremely cold year 

and extremely warm year data. 

In this study, to evaluate the performance of the reference year data method, a Design Summer 

Year (DSY) by Levermore and Parkinson [130] is also prepared. The DSY was introduced in 2002 

[305] by CIBSE to determine the warm weather data for assessing overheating risk in naturally 

ventilated and passively cooled buildings with dynamic simulation programs that represent a ‘near 

extreme’ warm weather [306]. The DSY is a selected one whole-year actual weather data from the 

multiple-year datasets within a given time period, normally around 20 years. The procedure to 

identify DSY first ranks the average dry bulb temperature from April to September of each year 

and then selects the year that falls in the top 12.5% quartile of the rank (i.e., the 3rd warmest year 

in a set of 20 years), assuming a uniform probability distribution as the DSY.  

2.2.5 Building model and overheating criteria 

An archetype building model of a typical single-detached Canadian home created by Laouadi, et 

al. [135] is used in this study for the indoor simulation using EnergyPlus [307]. The home contains 
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four thermal zones, which are the basement, first floor, second floor, and attic. Fig. 2.2 shows the 

geometry outline of this building. A uniform distribution of air leakage over home surfaces is 

considered when windows are closed. The attic space has four intentional openings with a total 

area of 1/150 of the attic floor surface area for ventilation. The typical internal horizontal venetian 

blinds and exterior applied grey screen shades were applied with an openness factor of 5%. 

Windows are open by 25% when the indoor temperature is higher than the outdoor temperature 

and a set-point temperature of 24 ºC. The window size for South and North is 2 m × 4 m, and the 

window size for East and West is 2 m × 2 m. Besides, there is no external obstructions around the 

building and no night cooling design. For brevity, this chapter does not include all the building 

details.  

 

Fig. 2.2 Archetype of the single-detached house [135] 

To evaluate the effects of extreme hot and cold climate conditions on the indoor temperature, the 

home is assumed to be free-running for the entire year. Detailed information about the 

characteristics of the construction is shown in Fig. 2.2. More details for all the building models 
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can be found from in the National Building Code of Canada (2015). The numbers of people for 

bedroom and living room are set as three and the fraction of room occupancy will change based 

on the schedule (Bedroom: 0.9 for 0:00-6:00, 0 for 6:00-21:00, 0.9 for 21:00-24:00; Living room: 

0 for 0:00-6:00, 0.7 for 6:00-7:00, 0.4 for 7:00-8:00, 0.3 for 8:00-16:00, 0.5 for 16:00-17:00, 0.9 

for 17:00-21:00, 0 for 21:00-24:00). The solar radiation data for building simulation include three 

components, which are global solar radiation obtained from CORDEX database and bias-corrected 

using MBCn method, and direct normal and diffuse solar radiation calculated from the bias-

corrected global radiation [308].  

Table 2.2 Characteristics of construction practice of the single house building [135] 

Envelope 2015 construction practice [309] 

Roof 

Asphalt shingles with attic insulation (8.2 

Km2/W) 

Walls 

Wood stud with Vinyl cladding (4.5 

Km2/W) 

Basement wall Insulated concrete (1.7 Km2/W) 

Basement slab Insulated concrete (1.6 Km2/W) 

Windows with wooden frames 

Double clear with low-e (U = 1.58 

W/(m2K); Visible transmittance = 73%; 

Solar heat gain coefficient = 0.67; Window 

to wall ratio = 15%) 

Evaluating overheating risks of buildings requires the determination of appropriate overheating 

criteria [27]. The PMV/PPD thermal comfort model [240] (PMV stands for predicted mean vote 
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and PPD stands for predicted percentage dissatisfied) developed by Fanger is widely applied to 

the overheating assessment.by various standards such as EN [243], ISO [244], ASHARE [245], 

and CIBSE [246], suggesting different PMV/PPD static comfort limits under different building 

operation types. Due to the difficulty of measuring PMV in various indoor environments, some 

standards translate the PMV/PPD ranges into the operative temperature scales. In CIBSE TM52 

[247], the PMV/PPD ranges is translated by assuming specific relative humidity  (=50%), air 

velocity (<0.1m/s), metabolic rate (1.2 met), and clothing factor (0.5 clo for summer). Accordingly, 

the temperature thresholds of the residential building are determined as 26 ℃ and 28 ℃ for the 

living room and bedroom, respectively. With the thresholds temperature, the overheating risks 

could then be evaluated by the hours of exceedance [247], indoor overheating degree [20], and 

heat exposure index [250]. Besides, Robinson and Haldi [251], [252] also developed a 

mathematical model for predicting overheating risk under various environmental conditions, 

considering the analogy between the charging and discharging of human’s tolerance to overheating 

stimuli. Comparing with the data from the field survey, the application of this analytical model 

provided encouraging results.  

In this work, a fixed temperature threshold value was used for the overheating assessment. For the 

indoor scenario, the overheating baseline temperatures are chosen as 28 ℃ for the living room and 

26 ℃ for the bedroom  following previous studies [246, 247, 310]. For the outdoor scenario, the 

threshold value is selected as 28 ℃ based on the previous work by Chang et al. [147]. The 

overheating hours were defined as the number of hours when the air temperature difference 

between the baseline and simulated temperature is greater than or equal to one degree following 

the concept of hours of exceedance from the guideline of CIBESE TM52 [247]: 
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 ℎ𝑜𝑢𝑡𝑂𝐻 = ∑ ℎ𝑇𝑜𝑢𝑡−28≥1 (2.1) 

 ℎ𝑙𝑖𝑣𝑂𝐻 = ∑ ℎ𝑇𝑙𝑖𝑣−28≥1 (2.2) 

 ℎ𝑏𝑒𝑑𝑂𝐻 = ∑ ℎ𝑇𝑏𝑒𝑑−28≥1 (2.3) 

where, ℎ𝑜𝑢𝑡𝑂𝐻  is the outdoor overheating hours, ℎ𝑙𝑖𝑣𝑂𝐻  is the indoor overheating hour for the 

living room, ℎ𝑏𝑒𝑑𝑂𝐻 is the indoor overheating hour for the bedroom, ℎ𝑇𝑜𝑢𝑡−28≥1 is the hour of 

exceedance for the outdoor scenario, ℎ𝑇𝑙𝑖𝑣−28≥1is the hour of exceedance for living room, and 

ℎ𝑇𝑏𝑒𝑑−28≥1 is the hours of exceedance for bedroom. 

2.3 Results and discussion 

2.3.1 Bias correction of climate simulations 

The cumulative distribution function (CDF) of observations (gray curve), raw RCM data (blue 

curve), and RCM data bias-corrected using MBCn method (red curve) is shown in Fig. 2.3. The 

results for the other two driving models, and their results share the same pattern as given in Fig. 

2.3, so they are not included here for the sake of brevity. The comparison of CDFs for Toronto and 

Vancouver can be found in Appendix A.1. It is clear that the bias-corrected climate data shares a 

similar pattern to the observational data.  

Here, by using the historical weather data, the importance of conducting bias correction of the 

projected/estimated weather data could be shown. Without the bias correction, the average errors 

between observational data and RCM data for Montreal are 2.78 ℃ for air temperature, 68.3 W/m2 

for global solar radiation, 0.9 m/s for wind speed, and 14.5% for relative humidity. With the bias 

correction, these errors respectively decrease to: 0.05 ℃, 0.1 W/m2, 0.001m/s and 0.01%. The 

MBCn bias correction method calibrated over the observational time-period is used to correct 
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RCM data in the future time periods. By applying this bias correction method, the reliability of 

future bias-corrected RCM data will be increased and therefore, for any future weather projection 

study, bias correction is one of the most important steps. 

 

Fig. 2.3 Cumulative distribution function comparison of observational, raw RCM, and bias-

corrected RCM data of dry-bulb air temperature (tas), relative humidity (hurs), wind speed 

(sfcWind), and global solar radiation (rsds) (City: Montreal; GCM: MPI-M-MPI-ESM-LR; Time 

periods: 1998-2017) 

 

2.3.2 Assessment of selected reference years in an overheating context 

As has been illustrated in Section 2.2.4, the bias-corrected climate data generated were used to 

obtain reference year climate data. Here, an example case for Montreal is given, whose data were 
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collected from the contemporary climate data set term, using three driving models (MPI, NCC, 

MOHC). Then, the reference years (TDY, EWY, ECY) were generated by combining the reference 

calendar months from the selected year and the designated driving model as shown in Fig. 2.3. In 

Fig. 2.4, a comparison is given of the distribution of outdoor temperature between the original 20-

years and reference year data sets from three driving models. The reference year climate data sets 

are single-year data as shown by the blue curve (extreme cold year), black curve (typical 

downscaled year), and red curve (extreme warm year). The yellow curve represents the 

temperature distribution of the DSY for the same time period. It is obvious that the temperature 

distribution of TDY is similar to that of the general distribution for the 20-year data set for all three 

driving models which means TDY can represent the general temperature distribution of 20-year 

data. Besides, the distribution of ECY and EWY provides the upper and lower boundary for the 

20-year data set. Therefore, the reference year datasets could be used to represent both the general 

trend of multiple years temperature distribution as well as its upper and lower temperature limit.  

Table 2.3 Selected years and models for reference year climate data sets in Montreal for all time 

periods 

 

EWY TDY ECY 

Year model year model year model 

2010s 

Jan 2019 NCC 2012 MOHC 2007 MPI 

Feb 2011 NCC 2019 MOHC 2019 MPI 

Mar 2015 NCC 2008 MPI 2017 MPI 
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Apr 2018 MPI 2007 MOHC 2002 MPI 

May 2008 MPI 2012 MPI 2019 NCC 

Jun 2014 MPI 2015 MOHC 2018 NCC 

Jul 2020 MPI 2015 MOHC 2003 NCC 

Aug 2020 MPI 2002 MOHC 2016 NCC 

Sep 2020 MOHC 2017 MOHC 2009 NCC 

Oct 2003 MOHC 2012 MPI 2011 MPI 

Nov 2020 NCC 2020 MOHC 2013 MPI 

Dec 2012 NCC 2007 MOHC 2013 MOHC 

2050s 

Jan 2044 NCC 2052 MOHC 2049 MPI 

Feb 2051 NCC 2042 MOHC 2058 MOHC 

Mar 2059 NCC 2056 MOHC 2058 MPI 

Apr 2044 MOHC 2043 MPI 2046 MPI 

May 2055 MOHC 2057 MPI 2046 NCC 

Jun 2054 MOHC 2059 MOHC 2050 NCC 

Jul 2051 MOHC 2043 MPI 2051 NCC 

Aug 2051 MOHC 2055 MPI 2049 NCC 
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Sep 2051 MOHC 2055 MPI 2041 NCC 

Oct 2041 MOHC 2055 MOHC 2043 MPI 

Nov 2058 NCC 2052 MOHC 2056 MPI 

Dec 2056 NCC 2056 MOHC 2041 MPI 

2090s 

Jan 2088 NCC 2098 MOHC 2089 MPI 

Feb 2097 NCC 2098 MOHC 2096 MPI 

Mar 2088 NCC 2087 MOHC 2085 MPI 

Apr 2085 MOHC 2095 MOHC 2083 MPI 

May 2086 MOHC 2092 MOHC 2086 NCC 

Jun 2082 MOHC 2082 MPI 2087 NCC 

Jul 2082 MOHC 2085 MPI 2081 NCC 

Aug 2097 MOHC 2088 MPI 2088 NCC 

Sep 2082 MOHC 2088 MOHC 2099 MPI 

Oct 2087 MOHC 2099 MPI 2094 MPI 

Nov 2093 MOHC 2084 MOHC 2092 MPI 

Dec 2086 NCC 2096 MOHC 2090 MPI 

A similar trend could also be found for the other time periods and the other Canadian cities. The 

temperature distribution for DSY is more similar to that of the TDY that might be because DSY is 
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generated as the third-warmest year. Compared with DSY, the EWY would likely capture a 

relatively extreme hot climate with the same temperature database. On the contrary, ECY would 

represent a relatively extreme cold climate. More detailed information of the nonparametric 

comparison for three Canadian cities over the three time periods investigated in this study can be 

found in Appendix A.2. 

  

Fig. 2.4 Cumulative distribution function comparison of the hourly temperature from 20 years, 

DSY and 1-year reference year climate data sets of TDY, ECY, and EWY in Montreal for the 

contemporary term, mid-term and long-term future 

The validation of the selected reference years is performed by comparing monthly outdoor and 

indoor overheating hours over the summer season from: 1) the data from the entire 20-years; 2) 

data from the three reference years: TDY, ECY, EWY; and 3) data from DSY. The cumulative 

yearly outdoor overheating hours of TDY (black line), EWY (red line), ECY (blue line), DSY 

(yellow line), and 20-year climate data (gray lines) for Montreal is presented in Fig. 2.5 while the 

results for Toronto and Vancouver are presented in Appendix B.1. It can be seen that the ECY and 

EWY are able to encompass the range of yearly overheating values simulated in the entire 20-year 
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climate data. This is consistently observed for both contemporary and future time-periods, and the 

three cities.    

 

Fig. 2.5 The yearly outdoor overheating hours of TDY, EWY, ECY, DSY, and 20-year climate 

data for Montreal 

Table 2.4 presents outdoor overheating hours during the summer months from the reference years: 

TDY, ECY, EWY, DSY along with the maximum (max.), minimum (min.), and average (avg.) 

yearly 20-year values. The results for Toronto and Vancouver can be found in Appendix B.2. In 
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general, the maximum overheating values over the 20-years are close to the values of EWY for all 

cities and time-periods. The maximum outdoor overheating hours found in 20-years data of three 

Canadian cities considering both contemporary and future time-periods is 532 hours (Toronto, July, 

2081-2100) which is same as the maximum outdoor overheating hours found in the synthesizing 

data (EWY, Toronto, July, 2081-2100).  

The average differences in overheating hours between TDY and average yearly 20-year values are 

32.61% for Montreal, 1.89% for Toronto, and 47.31% for Vancouver. The average differences in 

in overheating hours between EWY and maximum yearly 20-year values are 9.5% for Montreal, 

8.83% for Toronto, and 22.51% for Vancouver. The average differences in overheating hours 

between ECY and min. yearly 20-year values are relatively small, generally less than 10 hours. On 

the other hand, the differences between DSY and max. yearly 20-year values are larger than 20% 

in most cases, and in some cases even larger than 60%. 

Table 2.4 Outdoor overheating hours during the summer months in Montreal from TDY, ECY, 

EWY, entire 20-year data, and DSY.  

Time 

periods 

Model May June July August September 

2010s 

ECY 0 1 0 0 0 

TDY 3 24 13 15 0 

EWY 36 56 99 107 22 

20-year 

(max.) 
36 74 123 107 65 
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20-year 

(avg.) 
4 21 37 26 7 

20-year 

(min.) 
0 0 0 0 0 

DSY 2 45 83 79 14 

2050s 

ECY 0 0 0 0 0 

TDY 2 23 63 68 7 

EWY 103 184 219 271 136 

20-year 

(max.) 
103 184 219 271 136 

20-year 

(avg.) 
10 34 74 78 26 

20-year 

(min.) 
0 0 0 0 0 

DSY 16 51 129 169 51 

2090s 

ECY 0 0 8 5 23 

TDY 12 80 146 186 83 

EWY 123 264 494 316 290 

20-year 

(max.) 
161 264 494 347 290 

20-year 

(avg.) 
27 82 165 168 70 
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20-year 

(min.) 
0 0 3 0 0 

DSY 123 150 238 203 106 

Above results suggest that TDY, EWY and ECY could efficiently capture average, maximum and 

minimum monthly outdoor overheating conditions simulated in the entire 20-year data. The EWY 

and ECY are able to provide upper and lower boundaries of possible outdoor overheating 

conditions in the cities. The EWY is able to better capture outdoor overheating conditions than the 

DSY and hence is more suitable to represent extreme overheating conditions in the cities. 

To assess the efficacy of the reference year selection method in indoor overheating context, this 

study firstly simulated the indoor temperature in a free-running single house building model and 

compared indoor overheating from the entire 20-years climate data with the TDY, EWY, ECY, 

and DSY reference years. Fig. 2.6 reports the yearly cumulative indoor overheating hours for 

Montreal whereas the results for Toronto and Vancouver can be found in Appendix B.3. The 

results for basement and attic are not presented in this chapter as these areas are typically not 

frequently occupied by the home occupants as compared to other areas.  
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Fig. 2.6 Yearly cumulative indoor overheating hours in Montreal of reference year, DSY, and 

20-years climate data 

Table 2.5 presents indoor overheating hours in the living room (liv) and bedroom (bed) during the 

summer months from the reference years: TDY, ECY, EWY, DSY along with the maximum, 

minimum, and average yearly 20-year values. The results for Toronto and Vancouver can be found 

in Appendix B.4. The average difference between TDY and avg. yearly 20-year values is -18.42% 

for Montreal, -1.01% for Toronto, and 27.66% for Vancouver. The average difference in 

percentage between EWY and Max is 5.98% for Montreal, 2.82% for Toronto, and -9.05% for 
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Vancouver. On the other hand, the average difference between DSY and Max is -37.92% for 

Montreal, -37.42% for Toronto, and -63.73% for Vancouver.  

Table 2.5 Indoor overheating hours in the living room (liv) and bedroom (bed) during the 

summer months in Montreal from TDY, ECY, EWY, entire 20-year data, and DSY.  

Time 

periods 

Model 

May June July August September 

Liv Bed Liv Bed Liv Bed Liv Bed Liv Bed 

2010s 

ECY 0 0 1 5 0 11 0 3 0 0 

TDY 9 26 28 69 35 129 30 107 0 27 

EWY 58 101 79 135 141 260 148 250 49 131 

20-year 

(max.) 

58 102 101 180 158 265 148 250 91 153 

20-year 

(avg.) 

7 22 33 76 59 138 47 117 13 39 

20-year 

(min.) 

0 0 0 0 0 2 0 2 0 0 

DSY 5 34 73 150 127 222 96 149 27 84 

2050s 

ECY 0 0 0 0 2 7 0 10 0 0 

TDY 1 11 22 78 64 170 66 157 4 35 

EWY 95 161 181 267 218 351 285 410 130 223 

20-year 

(max.) 
95 162 182 267 222 354 289 412 132 225 
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20-year 

(avg.) 
93 273 327 787 773 175 84 179 26 62 

20-year 

(min.) 
0 0 0 0 0 6 0 10 0 0 

DSY 28 69 77 138 177 317 231 350 71 137 

2090s 

ECY 0 0 0 21 30 78 33 136 43 94 

TDY 19 76 122 208 202 366 242 408 127 231 

EWY 154 240 313 433 577 681 393 569 348 478 

20-year 

(max.) 
195 289 313 433 577 681 414 605 348 485 

20-year 

(avg.) 
373 717 1117 204 225 369 228 384 99 185 

20-year 

(min.) 
0 0 0 11 17 79 29 137 0 10 

DSY 153 240 193 317 318 487 269 443 179 311 

It can be deduced from the above results that EWY and ECY are able to efficiently capture upper 

and lower bounds of indoor overheating hours effectively. The EWY is able to represent the upper 

end of the overheating spectrum more effectively than DSY. A similar conclusion could be 

achieved for TDY that the average difference in yearly indoor overheating hours between TDY 

and Ave for three Canadian cities is relatively low, only around 0.9%. 

2.3.3 Use of reference years to assess future projected changes in overheating 

In this section, both outdoor and indoor overheating hours of TDY and EWY of mid-term and 

long-term future are compared with those of contemporary term to evaluate the impacts of climate 
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change on future overheating in the cities. Fig. 2.7 shows an example of changes in both outdoor 

and indoor overheating hours for Montreal among three different time periods. A similar trend is 

also found in Toronto and Vancouver, but due to the limit of chapter, the graphical results are not 

reported.  

 

Fig. 2.7 Outdoor and indoor overheating hours of EWY and TDY for Montreal among three time 

periods 

Due to the impacts of climate change, a similar increase trend could be found in overheating hours 

in the three Canadian cities according to the results shown in Table 2.4 and Table 2.5; average 
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monthly overheating hours increase by normally around one time (from 50% to 150%) until the 

mid-term future and by normally around two to three times (even up to 8 times for some scenarios) 

during the long-term future. For instance, the most obvious increase in outdoor overheating hours 

among two future terms is found in Montreal; the overheating hours of TDY increase by two times 

by mid-term future and by nine times for long-term future and that of EWY increase by two times 

and three and a half times by mid-term and long-term future. In opposite, the increase in both 

indoor and outdoor overheating hours for Vancouver is relatively small, and only around half time 

by mid-term future and one time by long-term future. It could also be clearly found in Appendix 

B.1 and B.3 that it is more likely to find extra indoor and outdoor overheating hours appearing in 

the months not in the defined summer period (such as April and October) for the mid-term and 

long-term future. 

2.4 Conclusion 

This chapter evaluates outdoor extreme heat events and indoor overheating conditions for a 

representative residential building located in three Canadian cities (Montreal, Toronto, and 

Vancouver) over contemporary (2001-2020), near-term future (2041-2060), and long-term future 

(2081-2100) time periods. The regional climate simulations forced by three GCMs were bias-

corrected with reference to historical observations recorded at the airport location of the cities. 

Regard that although the analysis is performed for airport locations which may not be 

representative of fully developed urban areas, the methodology used is generalized enough to be 

used in urban locations.  

Thereafter, a reference year selection method is used to generate three representative climate data 

years: typical downscaling year (TDY), extreme cold year (ECY), and extreme warm year (EWY).  
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The performance of TDY, ECY, and EWY climate data sets in capturing the range of overheating 

conditions present in the entire 20-year long contemporary and future projected time-periods is 

assessed. At the same time, the projected changes from the selected reference years and 20-year 

datasets are compared. The results are also compared with a widely used metric of overheating: 

the design summer year (DSY). Based on the results, given in Sections 2.3.1, 2.3.2, and 2.3.3, 

following deductions from the study were obtained: 

(1) The multivariate quantile mapping bias correction method is able to improve the reliability of 

future climate data by capturing the distribution pattern of climatic variables as well as 

reducing errors and therefore, for any future weather projection study, bias correction is one of 

the most important steps. 

(2) For both outdoor/indoor overheating evaluation, EWY and ECY could efficiently capture 

maximum and minimum monthly overheating hours providing the upper and lower boundary 

of possible outdoor and indoor overheating conditions. TDY could be used to simulate the 

typical yearly overheating condition. The EWY captures the extreme overheating conditions 

better than the DSY. 

(3) Owing to the effects of climate change, a similar increase could be found in both indoor and 

outdoor overheating hours in the three Canadian cities; average monthly overheating hours 

increase by normally around one time (from 50% to 150%) until the mid-term future and by 

normally around two to three times (even up to nine times for some scenarios) during the long-

term future. 

As concluded in this study, it is recommended to use an accurate and time-saving method 

(reference year data set) to evaluate the future outdoor and indoor overheating conditions by 
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generating the representative year climate data as the typical and extreme scenarios. The 

limitations of the current work are: 

(1) Only considering three Canadian cities for analysis; 

(2) Only the projections from three GCMs and one RCP scenario (RCP 8.5) was considered for 

preparing the climate data sets; 

(3) Only testing this method with the single-house building and assuming the features of the 

single-house building stay constant in all future years. In reality, the features of existing 

buildings will change based on age. 

(4) Only applying a fixed temperature threshold as the indoor and outdoor overheating criteria. 
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3. Chapter 3 

Evaluating climate change impacts on building level 

steady-state and dynamic outdoor thermal comfort in 

Montreal 

 

 

 

This chapter is prepared based on published paper: Evaluating climate change impacts on 

building level steady-state and dynamic outdoor thermal comfort in Montreal. 
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Abstract 

Recent decades have seen an alarming rise in urban overheating due to climate change, 

increasingly threatening lives worldwide. A number of studies have evaluated outdoor overheating 

in cities around the globe under a changing climate. The spatial scale of assessment conducted in 

them is coarse and is unable to reflect street-level changes in projected climate and its consequence 

on the thermal comfort of the population. This study assesses the effects of climate change on 

steady-state (Universal Thermal Climate Index - UTCI) and dynamic (Discomfort Capacitor 

Model - PDISC) outdoor thermal comfort in downtown Montreal using CityFFD-CityBEM co-

simulations under both typical (TDD) and extreme warm (EWD) future climate scenarios. Raw 

future climate data for three distinct 20-year periods: 2001-2020 (2010s), 2041-2060 (2050s), and 

2081-2100 (2090s) is obtained from CORDEX. The raw climate data is bias-corrected with local 

field measurements, followed by the selection of reference scenarios through a reference year data 

selection method. Thereafter, a 1.25 km by 1.25 km neighborhood of Montreal's downtown area 

is selected for a detailed assessment of overheating with a spatial resolution of 2 m. Our findings 

indicate a shift from "Slight cold stress" to "Extreme heat stress" from the 2010s to the 2090s under 

TDD, with "Extreme heat stress" becoming increasingly common under EWD. Additionally, 

PDISC analysis indicates that pedestrians will experience no discomfort walking along the route 

in the 2010s and 2050s under TDD conditions. However, by the 2090s, tolerable discomfort may 

arise after 5 minutes of walking. Under EWD conditions, intolerable thermal discomfort becomes 

inevitable at noon, and the duration of time for which discomfort remains tolerable is expected to 

be reduced from 6 minutes in the 2010s to 4 minutes in the 2090s for a brisk walk (1.7m/s).   
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3.1 Introduction 

Driven by increased greenhouse gas emissions, the global climate system has undergone 

unprecedented changes, manifesting in the form of extreme weather events such as heatwaves, 

floods, and droughts that have widespread impacts on human societies. For instance, the 2003 

European summer, one of the hottest in half a millennium, resulted in over 30,000 fatalities, while 

Canada's 2021 heatwave claimed around 500 lives [17, 19, 21, 22]. Such events underscore the 

escalating challenges associated with global warming. Projections suggest that by 2100, deadly 

heatwaves could affect up to 74% of the global population annually [3]. Zou, et al. [40] found that 

average monthly overheating hours could surge by up to nine times by the end of the 21st century. 

As urban environments bear the brunt of these predicted changes, a deeper understanding of urban 

overheating under climate change is imperative to safeguard the growing urban populations and 

ensure resilience in an increasingly warmer world. 

According to a recent review [11] on urban overheating impact assessments under climate change, 

the number of studies on future overheating published in 2021 is 4 times large than that in 2010, 

which shows a significant increase in attention to this topic. A significant portion of previous 

research on future overheating has primarily centered on indoor conditions, including residential 

buildings [41, 140, 191, 311, 312], office structures [313-316], and public establishments [317-

320]. In contrast, there are limited studies addressing future outdoor scenarios [11, 40, 99, 321, 

322]. Huang, et al. [321] examined the outdoor thermal environment under the effects of climate 

change. Their method incorporated risk identification, evaluating facets such as thermal stress 

effects, exposure levels of individuals, and local vulnerability. Even though they employed ENVI-

met [323] in tandem with RayMan [323] to discern the current spatial distribution of thermal stress, 

the future outdoor conditions were not directly simulated and scrutinized.  
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Zou, et al. [40], [99, 322] evaluated future outdoor overheating on three Canadian cities under two 

future time periods through a reference year selection method. Their study found that average 

monthly outdoor overheating hours normally increase by around one time (from 50% to 150%) 

until the mid-term future (2041–2060) and by around two to three times until long-term future 

(2081-2100). However, their approach oversimplified outdoor climate conditions by leveraging 

bias-corrected GCM-RCM data based on the local airport, which typically offer broader regional-

scale projections. While RCMs downscale the course GCM data to finer regional scales, intricate 

details of urban microclimates still cannot be captured [66, 67, 89]. In contrast, CFD simulations 

could provide detailed and precise information of local urban microclimate for the target urban 

areas [5, 200, 324-326] with a promising grid resolution down to 1 m, allowing for a more nuanced 

understanding of thermal comfort, energy use, and potential overheating risks in urban settings. 

Additionally, CFD simulations can illustrate detailed airflow patterns, turbulence, and vortices 

within urban canyons, around buildings, and over other urban features, which directly influence 

how heat is dispersed or trapped in urban areas [326-330]. This level of detail is crucial for 

accurately understanding and predicting local climate conditions, which is neglected by GCM-

RCM. Therefore, there's a pressing demand for research that focuses on forecasting urban 

overheating in designated urban regions through CFD simulations, leveraging projected climate 

data. 

Directly evaluating future outdoor microclimates using CFD simulations presents several distinct 

challenges. Firstly, there is a notable lack in simulating building-level microclimate using future 

climate data for evaluating outdoor thermal comfort under climate change impacts. Secondly, due 

to the bias in future climate prediction models, the direct use of climate data as CFD simulation 

inputs raises concerns about their reliability. Thirdly, the vast temporal span of climate model data 
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can be unwieldy for microscale CFD simulations, especially considering the limitations posed by 

computational resources. To address the aforementioned challenges, it's imperative to preprocess 

future climate datasets prior to their integration into CFD simulations.  

Maraun [36] emphasizes that biases inherently exist in future climate simulations, arising from the 

systematic discrepancies between simulated climate statistics and actual climate metrics. Therefore, 

rectifying these biases in climate model simulations is essential for ensuring precise evaluations 

of both current and future urban overheating [11]. While it might be challenging to entirely 

eradicate these biases, employing bias-correction techniques, such as simple scaling and additive 

corrections [103-105], advanced histogram equalization [101, 106, 107], and multivariate 

approaches [108, 109], can markedly mitigate their influence on the outcomes which enhances the 

reliability of assessments. Moreover, to refine the temporal resolution of future climate data to 

align with microscale CFD simulations and to curate representative future climate scenarios, the 

reference year selection method [34, 40, 138] can be applied for optimizing computational 

efficiency. This method extracts both typical and extreme conditions from extensive climate 

datasets, offering a concise and representative input for CFD simulations. Although this method 

has been applied to evaluate yearly overheating conditions in our previous studies [40, 99, 322], it 

still requires further development before implementing with CFD simulation. Therefore, while 

data preprocessing methodologies are established, there exists a research gap in developing a 

cohesive workflow that integrates these techniques specifically for direct CFD simulations of 

future conditions.  

In this chapter we aim to evaluate climate impacts on both steady-state and dynamic outdoor 

thermal comfort of Montreal downtown areas through CFD simulation. Section 3.2.1 briefly 

describes the study region and its historical climate conditions. Section 3.2.2 illustrates the 
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procedure of collecting and processing future climate data, including raw future climate data 

collection from CORDEX, bias-correction using local field measurement, and reference year data 

method for getting reference year scenario. Section 3.2.3 presents the process of CityFFD-

CityBEM co-simulation, design of the domain, and the independence test of mesh and time step 

size. Two outdoor thermal comfort indices UTCI and PDISC were explained in Section 3.2.4, and 

then applied to evaluate the climate change impacts on outdoor overheating (Section 3.3.1 and 

Section 3.3.2). Fig. 3.1 shows the flow chart of the present research procedure. 

 

Fig. 3.1 Flow chart of the research procedure of the chapter. 

3.2 Methodology 

3.2.1 Study region 

Montreal (Quebec, Canada) is chosen to study future outdoor thermal comfort projections. With 

the second largest population after Toronto and the second highest population density after 
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Vancouver in Canada, Montreal falls within climate zone 6A, characterized as cold and humid. 

Based on Zou, et al. [40], historical data from 1981 to 2010 indicate that Montreal's temperatures 

range from −11.5 °C to 19.8 °C, with peak daily temperatures stretching from 12 °C to 36.1 °C 

during summer season. The city experiences average humidity levels between 73.2% and 90.4%, 

while wind speeds fluctuate between 7.2 m/s and 12.3 m/s. In this study, an area of 1250 m by 

1250 m inside Montreal downtown with high population and building density is selected for 

predicting its future thermal comfort as shown in Fig. 3.2. The black line shown in Fig. 3.2 (c) 

represents the selected route for dynamic thermal comfort evaluation, which will be explained in 

Section 3.2.4.2. The tallest building inside this area is 120 m high.  

 

Fig. 3.2 Selected urban area in Montreal downtown and its building geometry. (a) Map of 

Montreal downtown. (b) Map of interest area. (c) Building geometry of interest area. 

3.2.2 Future climate data preparation 

To facilitate the assessment of outdoor thermal comfort across various temporal spans, climate 

data sets were gathered and prepared in Montreal for three distinct 20-year periods: 2001-2020 

(2010s), 2041-2060 (2050s), and 2081-2100 (2090s). The climate data from the Coordinated 

Regional Downscaling Experiment (CORDEX) databased, which collects numerous combinations 
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of regional climate models (RCMs) and global climate models (GCMs) [295]. Three GCM models 

were identified (MPI-ESM-LR [331], NCC-NorESM1-M [298], MOHC-HadGEM2-ES [299]) 

downscaled through one specific RCM model (REMO 2015 [300]), providing three-hourly climate 

projections encompassing the requisite climatic variables. For an in-depth understanding, our prior 

work [40] outlines the specifics of these combinations. 

Raw climate model outputs have a known bias [100, 332]. To address this, Cannon's multivariate 

quantile mapping bias correction technique [108, 109] was applied which is a method rooted in 

the N-dimensional probability density function transform. This procedure aligns the observed 

continuous multivariate distribution to its climate simulation counterpart [303, 304]. Previous 

findings highlighted significant deviations between observed data and RCM data, which, post bias-

correction, saw a dramatic reduction. This accentuates the pivotal role bias correction plays in 

future climate research. Additionally, given the intrinsic uncertainties in climate projections due 

to the variety of GCMs and RCMs, a reference year data method is integrated which is explained 

in a previous work [40]. Here, a typical year and two extreme years (coldest and warmest) were 

extrapolated to encapsulate the climatic variations inherent in future climate projections [34, 40, 

99]. These typical and extreme years were formulated by amalgamating twelve representative 

months, identified based on their cumulative distribution function (CDF) of outdoor air 

temperatures. Fig. 3.3 provides a visualization of this selection, illustrating multi-year data versus 

the reference year data sets. For more detailed results of bias-correction as well as reference year 

selection methods, please refer to our former publications [40, 99, 322]. 
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Fig. 3.3 Cumulative distribution function comparison of the hourly temperature from 20 years 

and 1-year reference year climate data sets of TDY, ECY, and EWY in Montreal for the 

contemporary term, mid-term and long-term future 

Four climate variables are extracted from the future climate set for evaluating future outdoor 

thermal comfort which are air temperature, wind speed, humidity, and solar radiation. Two 

extreme and one typical condition were generated from each time periods for CFD simulation, 

which are the hottest day (with the maximum daily temperature) in the EWY, typical day (with 

the medium daily temperature) in the TDY, and coldest day (with the minimum daily temperature) 

in the ECY, as shown in the Fig. 3.4. The hottest day in the EWY (EWD), and typical day in the 

TDY (TDD), was then used as the climate input of CityFFD-CityBEM co-simulation for 

overheating assessment. Instead of using the hottest day of 20 years, EWD ensures the selected 

day represents not just an isolated extreme but a condition that aligns with projected climate trends. 

Moreover, the hottest day of 20 years could be an outlier not reflective of changing climate pattern. 

Similarly, TDD reflects not just the mean or median conditions of 20 years but also embodies the 

climatic conditions that characterize the typical climatic behavior over the period of interest.  
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Fig. 3.4 Input climate variables of extreme and typical conditions among three time periods 

3.2.3 Co-simulation by CityFFD and CityBEM 

3.2.3.1 Co-simulation process 

CityFFD is based on a 3D fractional step method and Fast Fluid Dynamics (FFD) solver running 

on the Graphics Processing Unit (GPU) to predict local microclimate features for modeling large-

scale urban aerodynamics. The governing conservation equations in CityFFD are dimensionless 

as follows: 

 ∇ · 𝑉 = 0 (3.1) 
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𝜕𝑉

𝜕𝑡
+ (𝑉 · ∇)𝑉 = −∇𝑃 + (

1

𝑅𝑒
+ 𝑣𝑡) ∇2𝑉 −

𝐺𝑟

𝑅𝑒2
𝑇 (3.2) 

 
𝜕𝑇

𝜕𝑡
+ (𝑉 · ∇)𝑇 = (

1

𝑅𝑒 · 𝑃𝑟
+ 𝛼𝑡)∇2𝑇 (3.3) 

where 𝑉, 𝑇, 𝑃 and 𝑡 are the velocity, temperature, pressure and time, respectively; 𝑅𝑒, 𝐺𝑟 and 𝑃𝑟 

are the dimensionless Reynolds number, Grashof number, and Prandtl number, respectively; and 

𝑣𝑡  and 𝛼𝑡  are turbulence-related parameters, i.e., turbulent viscosity and turbulent thermal 

diffusivity. CityFFD adopts the semi-Lagrangian method for the advection term in Eqs. (3.2), (3.3). 

Therefore, no iteration is needed to calculate the velocity field, and computing costs are reduced.  

CityBEM [212, 333-335] is an urban building energy model covering all essential heat and mass 

transfer mechanisms for calculating building heating/cooling loads, energy consumption, and 

indoor air and building surface temperature. In CityBEM, every building is represented by a single-

zone model. For this study, CityBEM is utilized to simulate the surface temperature of each 

building. This approach provides a more accurate input for CityFFD, allowing for a more precise 

prediction of the urban microclimate, compared with using a constant temperature input. 

In this study, the urban microclimate was modeled using a co-simulation between CityFFD and 

CityBEM. As illustrated in Fig. 3.5, the co-simulation process initiates with CityBEM, which uses 

a day's worth of weather data for initialization. After that, the building surface temperature 

predicted by CityBEM becomes the input for the CityFFD simulation, paired with the air 

temperature and wind speed taken from the weather data. The microclimate produced by CityFFD 

in this iteration is then assessed for spatial outdoor thermal comfort evaluation. In the subsequent 

iterations, rather than sourcing the air temperature and wind speed directly from the weather data 
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file like in the first cycle, CityBEM utilizes the values simulated by CityFFD from the previous 

loop to model the building surface temperature for each individual structure. 

 

Fig. 3.5 (a) Simulated results from CityFFD and CityBEM (Tabi is air temperature surrounding 

the building i, Tbsi is the surface temperature on building i, Vwbi is the wind speed surrounding 

the building i) (b) Flowchart of UTCI prediction process through CityFFD and CitBEM 

simulation 

3.2.3.2 Case design and independence test 

With the building geometries in Montreal downtown area shown in Fig. 3.2, the computational 

domain is designed accordingly, as shown in Fig. 3.6, which follows the AIJ [196] and COST 

guidelines [197]. Here, H is the highest building inside domain, which is 120m.  
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Fig. 3.6 Design of the computational domain for urban microclimate CFD simulation following 

AIJ [196] and COST guidelines [197] (H is the highest building inside the interest area) 

To determine an appropriate mesh size and CFL number for CityFFD simulation, this study 

designs different combinations of mesh size and CFL number to see their impacts on numerical 

accuracy. The AIJ CaseF (Building complexes with complicated building shape in actual urban 

area (Shinjuku)) was selected for testing. There are in total 33 monitoring points inside the domain, 

with two points at the rooftop of high-rise buildings and the remaining ones are distributed at the 

height of 10 m. Here, the minimum mesh size refers to the size of the mesh inside the area of 

interest, where the sizes of the meshes are all constant. For the mesh size of the remaining 

computational domain, a growing rate of 1.2 is applied. The CFL number is calculated by wind 

speed, time step size, and minimum mesh size. Due to the ability of CityFFD, it could use CFL 

large than 1 to conduct CFD simulation with promising accuracy. Here, three CFL number were 

tested which are 10, 5, and 1.  

Table 3.1 Independence test of mesh size and CFL number 

Independence test parameters Coarse Medium Fine 
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Minimum mesh size (m) 5 × 5 × 1 2 × 2 × 1 1 × 1 × 1 

CFL (wind speed × time step size/minimum mesh size) 10 5 1 

 

Here, Fig. 3.7 (a) and (d) are designed to compare the numerical results from different mesh and 

CFL design with the experimental results. Two error bars of 30 percentage were used to show the 

general accuracy. It could be found that, with the increasing mesh size and CFL number, the 

numerical results tend to be underestimated compared to experiment data. Both fine and medium 

design of mesh size and CFL number provide promising accuracy. From Fig. 3.7 (b), (c), (e) and 

(f), it is clear that the difference between fine and medium design is relatively small. Thus, to 

achieve a compromise between numerical accuracy and efficiency, the minimum mesh size is set 

to 2 m and the CFL number is set to 5 in the following CtiyFFD simulation. The validation of co-

simulation between CityFFD and CityBEM inside the same domain has been done in our previous 

work for an entire historical heatwave period, and more details could be found in Katal, et al. [334]. 
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Fig. 3.7 Results of mesh and CFL independence test (mesh size = 1 m, 2 m, 5 m; CFL = 1, 5, 10). 

(a), (b), (c) are designed for mesh independence test. (d), (e), (f) are designed for CFL 

independence test. 

Independence tests of mesh size and CFL number are conducted to determine appropriate mesh 

size and time step size which as illustrated above. In this study, considering a compromise between 

the numerical accuracy and computational efficiency, the horizontal mesh size is set as 2 m and 

the vertical mesh size is set as 1 m for the interest area. A growing ratio of 1.2 is applied for mesh 

design of the remaining computational domain, as shown in the following Fig. 3.8. According to 

the results of independence test, CFL number is set as 5 for the following simulation. 

 

Fig. 3.8 Mesh design of computational domain. 

3.2.4 Overheating evaluation index  

3.2.4.1 Universal Thermal Climate Index (UTCI) 

In the context of urban microclimate research, the Universal Thermal Climate Index (UTCI) would 

best capture the temporal variability of thermal conditions than other thermal comfort indices [336]. 

Compared with other thermal comfort indices having a stronger correlation with ambient air 

temperature, like the Heat Index (HI), Humidex, Apparent Temperature (AT), Physiological 
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Equivalent Temperature (PET), and Perceived Temperature (PT), UTCI is adept at accurately 

portraying a wide range of climates, weather scenarios, and is highly responsive to changes in 

environmental factors such as temperature, sunlight exposure, humidity, and particularly wind 

velocity [337]. The thermal stress catalogue corresponding to UTCI (◦C) values was listed in Table 

3.2. 

Table 3.2 Thermal stress category based on the value of UTCI. 

 

 

Based on its definition [337-339], UTCI is a function of air temperature (𝑇𝑎), wind speed (𝑉𝑤_10), 

relative humidity (𝑅𝐻), and mean radiant temperature (𝑇𝑚𝑟𝑡). 

 𝑈𝑇𝐶𝐼 = 𝑓(𝑇𝑎; 𝑉𝑤_10; 𝑅𝐻; 𝑇𝑚𝑟𝑡) (3.4) 

In addition, UTCI requires the wind speed at the elevation of 10 m above the ground. Thus, in this 

study, the wind speed (𝑉𝑤) extracted from CFD is transformed into the wind speed at 10 m height 

through the power law equation: 
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𝑉𝑤

𝑉𝑤_10
= (

ℎ𝑝𝑑

ℎ𝑟𝑒𝑓
)𝛼 (3.5) 

Here, 𝑉𝑤 is the wind speed extracted from CFD at the pedestrian level height (ℎ𝑝𝑑) of 2 m. 𝑉𝑤_10 

is estimated wind speed at 10 m height (ℎ𝑟𝑒𝑓 ) for the same location, which is normally the 

reference height of power law wind profile. 𝛼 is the exponent of power law wind profile, set as 0.3 

for a dense urban area [340-342]. 

The mean radiant temperature (𝑇𝑚𝑟𝑡) could be calculated through Equation (3.6), as a function of 

global temperature ( 𝑇𝑔 ), wind speed (𝑉𝑤)  and air temperature  (𝑇𝑎)  [336], where the global 

temperature (𝑇𝑔) could be estimated by air temperature (𝑇𝑎), wind speed (𝑉𝑤) and solar radiation 

𝑆0 by equation (3.7): 

 
𝑇𝑚𝑟𝑡 = [(𝑇𝑔 + 273.15)

4
+ 2.47 × 108 × 𝑉𝑤

0.6 × (𝑇𝑔 − 𝑇𝑎)]0.25

− 273.15 

(3.6) 

 𝑇𝑔 = 𝑇𝑎 +
𝑆0 − 30

0.0252𝑆0 + 10.5𝑉𝑤 + 25.5
 (3.7) 

In these equations, the air temperature and wind speed are obtained by the co-simulation of 

CityFFD and CityBEM, while the solar radiation and relative humidity are directly extracted from 

the input climate file described in Section 3.2.2.  

3.2.4.2 Dynamical thermal comfort index 

The current outdoor thermal comfort indices, including the Universal Thermal Climate Index 

(UTCI) discussed earlier, are based on steady-state conditions and may not accurately reflect the 

real-world experiences of pedestrians. These experiences are often characterized by dynamic, 
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short-term exposure to a variety of micro-environments during activities like walking and cycling 

for daily commutes.  

To address this limitation and better quantify the thermal discomfort that accumulates during active 

travel, we have implemented the discomfort capacitor model (PDISC) [343]. The PDISC 

effectively captures the variable nature of thermal exposure and provides a more representative 

measure of discomfort. Details of the PDISC scale are presented in Table 3.3. 

Table 3.3 Practical thermal discomfort scale (PDISC) and the physiological criteria (∆𝑇𝑏, 

change in mean body temperature) for the majority (75%) of participants. 

PDISC  ehaviour impact ∆Tb (℃) 

0 – Comfortable and pleasant   

1 – Slightly uncomfortable but 

acceptable 

Aware of but not bothered by this discomfort. 0.14 

2 – Uncomfortable but 

tolerable 

Can still live with this discomfort, but may 

adjust behaviour to better adapt, such as 

walking faster or choosing to walk in the 

shade if possible [344]. 

0.26 

3 – Very uncomfortable and 

intolerable 

Feeling of discomfort is strong enough to 

force a temporary stop for a break, to grab a 

cold drink to cool down, before considering 

continuing. 

0.39 

The change in mean body temperature is calculated as: 
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 ∆Tb =  Tb − Tb0 (3.8) 

Where, Tb0 is the initial mean body temperature, and Tbis the real time mean body temperature. 

The mean body temperature combines changes in mean skin temperature (Tskin)and body core 

temperature (Tcore) as, 

 Tb = 0.1 ∗ Tskin + 0.9 ∗ Tcore (3.9) 

Previous experiments (Table 3.3) revealed most participants began reporting slight discomfort 

after a 0.14 ℃ increment in mean body temperature. After another 0.26 ℃ rise, most participants' 

(75%) thermal discomfort capacitor became fully charged (from ‘pleasant’ to ‘intolerable 

discomfort’). 

This study models the experience of a pedestrian traversing a 1 km route, beginning in a state of 

neutral thermal comfort. The designated path, depicted as a black line in  Fig. 3.2 (c), runs from 

the southwest to the northeast. To predict dynamic thermal comfort, we examine three walking 

speeds: 0.9 m/s, 1.3 m/s, and 1.7 m/s. Environmental parameters (derived in Section 3.2.2) along 

this route are processed with a one-minute averaging window before being fed into the JOS3 model 

[345].  

A typical summer clothing with a total insulation value of 0.51 clo is assumed. Metabolic rates 

corresponding to three different walking speed are set as 2.0 Met, 2.6 Met, 4.0 Met [346]. The 

open-source JOS3 code [345] was used to iterate the skin and core temperature over time, with the 

model generating local skin and core temperature results at one minute intervals.  
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3.3 Results and discussion 

To evaluate the climate change impacts on steady-state outdoor thermal comfort, the future climate 

data from the RCM (described in Section 3.2.2) is used as the input data for CityFFD-CityBEM 

co-simulation (described in Section 3.2.3) for simulating the urban thermal and wind field among 

the Montreal downtown area (described in Section 3.2.1) with the horizontal mesh resolution of 2 

m. Section 3.3.1 shows the procedure of obtaining temporal and spatial historical steady-state and 

dynamic thermal comfort conditions with co-simulation results. Sections 3.3.2 and 3.3.3 will focus 

on evaluating the climate change impacts on steady-state and dynamic thermal comfort 

respectively, by comparing between 2010s, 2050s, and 2090s. 

3.3.1 Historical outdoor thermal comfort evaluation 

Fig. 3.9 shows example of the UTCI distribution at the height of 2 m of Montreal downtown area 

at 12 pm under extreme hot condition of 2010s (Fig. 3.9 (c)) with the simulated air temperature 

field (Fig. 3.9 (a)) and wind speed field (Fig. 3.9 (b)) by CityFFD-CityBEM co-simulation. The 

relative humidity and solar radiation are obtained from local measurement in each hour and are 

assumed evenly distributed among the urban area for UTCI calculation. As could be found in Fig. 

3.9 (c), due to the absorption of solar radiation and heat release from the building, the temperature 

of building surface will be higher than that of the far flow field, and thus, the urban area close to 

the buildings will be significantly heated.  
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Fig. 3.9 UTCI distribution at the height of 2 m of Montreal downtown area at 12 pm under 

extreme hot condition of 2010s. (a) Air temperature distribution. (b) Wind speed distribution. (c) 

UTCI distribution. 

Fig. 3.10 presents a thermal stress distribution at a height of 2 meters in downtown Montreal during 

a day under extreme warm conditions for the 2010s. The color bar chart represents the percentage 

of space, categorised by hour, that falls under various thermal stress categories, ranging from 

extreme cold stress to extreme heat stress. The entire downtown area is subjected to different level 

of heat stress (ranging from moderate to severe heat stress) for the daytime hours (from 6 am to 
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8pm), suggesting a substantial risk of outdoor overheating and potential discomfort for individuals 

exposed to these conditions. The highest level of heat stress is observed at 2pm, with 82% of the 

downtown area falling into the extreme heat stress category during that time.  

 

 

Fig. 3.10 Thermal stress distribution at the height of 2 m of Montreal downtown among the day 

under extreme warm condition of 2010s. 

To calculate the dynamic thermal comfort index, known as PDISC, for the specified route depicted 

in  Fig. 3.2 (c), wind velocity and air temperature data were extracted from the CityFFD-CityBEM 

simulation corresponding to the route, as illustrated in  Fig. 3.9 (a) and (b). These simulated 

climatic factors, together with solar radiation and humidity, were inputted into the JOS3 model 

[345] to estimate the mean skin and core body temperatures experienced along the route. 

Subsequently, Eqs. (8) and (9) were utilized to determine the variation in average body temperature. 

The three PDISC levels (1-slightly uncomfortable but acceptable, 2-uncomfortable but tolerable,3-

very uncomfortable and intolerable) are categorized based on the corresponding change in mean 

body temperature, as shown in  Table 3.3 Practical thermal discomfort scale (PDISC) and the 

physiological criteria ( ∆𝑇𝑏 , change in mean body temperature) for the majority (75%) of 

participants.. PDISC at each time step is then calculated by linear interpolation of physiological 
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data between the two neighbouring PDISC levels. Fig. 3.11 (c) presents the change in mean body 

temperature and PDISC values at noon, under TDD of the 2010s for three different walking speeds: 

0.9 m/s, 1.3 m/s, and 1.7 m/s. 

 

Fig. 3.11 Air temperature (a) and wind speed (b) of 1 km route inside Montreal downtown area 

at 12 pm under EWD of 2010s, and calculated mean skin temperature and PDISC at the route 

(c) under three walking speed 0.9 m/s, 1.3 m/s, and 1.7 m/s. 

3.3.2 Impacts of climate change on steady-state outdoor thermal comfort  

Fig. 3.12 and Fig. 3.13 highlight the UTCI distributions during three specific times of the day—9 

am, 12 pm, and 5 pm—when city dwellers typically commute to work, take their lunch breaks, 

and return home. These times represent the peak outdoor activity periods for most residents. In the 



 

110 

 

2010s TDD, the downtown Montreal area predominantly experiences "Slight cold stress" in the 

early morning and late afternoon, and even midday shows no heat stress, denoting a comfortable 

environment for outdoor activities. Moving into the 2050s TDD, slight cold stress was replaced by 

neutral no heat stress conditions, indicating a noticeable warming trend in the local climate 

possibly attributed to climate change effects. By the 2090s TDD, however, there is a significant 

change towards warmer conditions. Moderate to severe heat stress cover most of downtown at 9 

am and 12 pm, with instances of "Very strong and Extreme heat stress"(in red) occurs locally, 

signaling an increased risk of severe overheating. 

Analyzing the early morning hours of EWD across the decades, we see a stark rise in "Extreme 

heat stress" from less than 20% in the 2010s to over 40% in the 2050s, soaring nearly to 75% by 

the 2090s. This trend is a clear indication of intensifying heat stress conditions. At midday, 

"Extreme heat stress" becomes the primary condition in the 2050s EWD and 2090s EWD, while 

this only covered less than 20% of the areas in the 2010s. Lastly, for the late afternoon, a marked 

escalation in "Very strong heat stress" is evident when comparing the 2010s to the 2050s, with the 

2090s showing more than half of the area grappling with "Extreme heat stress." These findings 

underscore a dramatic shift towards higher thermal stress inside Montreal downtown area due to 

climate change. 
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Fig. 3.12 Comparison of UTCI distribution at three selected hours (a) 9 am, (b) 12 pm, and (c) 

17 pm under TDD for 2010s, 2050s and 2090s. 

 

Fig. 3.13 Comparison of UTCI distribution at three selected hours (a) 9 am, (b) 12 pm, and (c) 

17 pm under EWD for 2010s, 2050s and 2090s. 

Comparing the TDD and EWD conditions within the same time period highlights the importance 

of considering both average and worst-case scenarios. The TDD conditions suggest a baseline level 
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of heat stress that urban dwellers may frequently encounter, with a noticeable increase in thermal 

discomfort from the 2010s to the 2090s. The EWD conditions, representing more extreme 

temperature events, exhibit an even more significant increase in "Extreme heat stress" across all 

examined hours. This underscores the necessity of including both typical and extreme scenarios in 

urban overheating studies, as the EWD conditions could have catastrophic health implications if 

not adequately prepared for. In conclusion, the analysis demonstrates a trend of increasing outdoor 

overheating due to climate change, with significant implications for urban living and public health. 

It highlights the need for adaptive measures tailored to both typical and extreme conditions to 

ensure a resilient urban future. 

3.3.3 Impacts of climate change on dynamic outdoor thermal comfort  

Universal Thermal Climate Index (UTCI) considers steady-state conditions and may not fully 

capture the complex and dynamic nature of real-world pedestrian experiences which is often 

fluctuating and short-term. The analysis of the Practical Discomfort Scale (PDISC) vividly 

illustrates the impact of climate change on outdoor pedestrian dynamic thermal comfort. Under 

TDD conditions, pedestrians will not encounter any discomfort along the route during the 2010s 

and 2050s, regardless of walking speed. However, by the 2090s, pedestrians are likely to feel 

slightly uncomfortable halfway through the route and may reach tolerable discomfort by the route's 

end, depending on the walking speed. Under EWD conditions which represent extreme scenarios 

(Fig. 3.14), the discomfort experienced by pedestrians becomes more severe and also intensified 

more rapidly. The data from the 2010s to the 2090s demonstrates a significant reduction in the 

amount of time before pedestrians begin to feel discomfort when walking in downtown area, and 

this is consistent across different walking speed. 
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Fig. 3.14 Comparison of PDISC at 12 pm under EWD for 2010s, 2050s and 2090s with walking 

speed of (a) 0.9 m/s, (b) 1.3 m/s, and (c) 1.7 m/s. 

The evaluation of dynamic thermal comfort begins by examining the time it takes to reach the '1-

Slightly uncomfortable but acceptable' level during various periods and at different walking speeds. 

In the 2010s, pedestrians walking at 0.9 m/s began to feel slight discomfort after approximately 

2.5 minutes, which decreased to 2 minutes in the 2050s and further to 1.5 minutes in the 2090s. At 

a faster walking speed of 1.3 m/s, the time to reach slight discomfort remains consistent across the 

2010s, 2050s, and 2090s. However, at 1.7 m/s, this period shortens to 2 minutes in the 2010s and 

to merely 1.5 minutes for both the 2050s and 2090s. Over time, from the 2010s to the 2090s, there 

is a consistent reduction of approximately half a minute to reach this level of discomfort, across 

all walking speed. 

In the case of '2 – Uncomfortable but tolerable' conditions, the influence of climate change on 

dynamic thermal comfort is more pronounced. At 0.9 m/s, the time taken to become this tolerable 

discomfort decreases from 5 minutes in the 2010s to 4 minutes in the 2050s, and to 3.5 minutes in 

the 2090s. For a walking speed of 1.3 m/s, this duration shortens from 4.5 minutes in the 2010s to 



 

114 

 

3.5 minutes in the 2050s, and further to 3 minutes in the 2090s. At 1.7 m/s, the time reduces from 

4 minutes in the 2010s to 3 minutes in the 2050s and to 2.5 minutes in the 2090s. As we move 

from the 2010s to the 2050s, there's a general reduction of one minute to reach tolerable discomfort, 

and from the 2050s to the 2090s, there is a further half-minute reduction. 

The trend is even more stark when considering the '3 – Very uncomfortable and intolerable' 

category. At 0.9 m/s, the time to reach this intolerable discomfort decreases from 9.5 minutes in 

the 2010s to 7 minutes in the 2050s, and to 6 minutes in the 2090s. At 1.3 m/s, it takes 8.5 minutes 

in the 2010s but drops to 6.5 minutes in the 2050s and 5.5 minutes in the 2090s. Finally, at the 

speed of 1.7 m/s, the duration shortens from 6 minutes in the 2010s to 5 minutes in the 2050s and 

4 minutes in the 2090s, indicating an average decrease of about two minutes to reach this 

intolerable discomfort, with an additional minute's reduction as we progress from the 2050s to the 

2090s. 

To conclude, under the EWD, discomfort evolve much slower in 2010s, allowing pedestrians more 

time to adapt their behavior or seek relief. However, with each successive decade, the onset of 

discomfort occurs increasingly earlier, suggesting that the individuals’ capacity to adaptive maybe 

overwhelmed by the rapid progression climate change. By the 2090s, even at this slowest walking 

pace, discomfort escalates to intolerable levels within only 6 minutes (around 300 meters), 

emphasizing an urgent need for proactive cooling strategies to mitigate these effects.  

3.4 Conclusion 

This chapter aims to evaluate climate impacts on both steady-state and dynamic outdoor thermal 

comfort of an urban area, i.e., Montreal downtown, through CityFFD-CityBEM simulations with 

a spatial resolution of 2 m. As detailly presented in our previous publication, raw future climate 
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data obtained from CORDEX is bias-corrected with local field measurements, followed by the 

selection of reference year scenarios through the reference year data method. This research 

represents an initial effort to predict future steady-state and dynamic thermal comfort at the 

neighborhood scale by simulating the outdoor urban microclimate. The climate change impacts on 

steady-state and dynamic thermal comfort in downtown Montreal are quantified by conducting 

comparisons across the 2010s, 2050s, and 2090s. 

A 1.25 km by 1.25 km of Montreal downtown area is selected, due to its high population and 

building density, for performing CityFFD-CityBEM co-simulation with prepared future climate 

inputs. Based on the independence test of mesh size and CFL number for CityFFD simulation, the 

minimum mesh size is set to 2 m and the CFL number is set to 5. Two outdoor thermal comfort 

indices UTCI and PDISC were applied to evaluate the climate change impacts on future outdoor 

overheating. 

The results of our study clearly illustrate the profound impact of climate change on both steady-

state and dynamic aspects of outdoor thermal comfort, particularly during typical commuting times 

(9 am, 12 pm, and 17 pm) in downtown Montreal. Under the typical condition (TDD), early 

mornings (9 am) and late afternoons (17 pm) in the 2010s were characterized by "Slight cold 

stress," transitioning to "No thermal stress" by midday (12 pm), indicating comfortable conditions 

for outdoor activities. However, by the 2050s, a shift towards warmer conditions emerges, with 

"No heat stress" observed throughout the day, culminating in "Extreme heat stress" instances by 

the 2090s, highlighting a significant increase in overheating risks. The trend towards heightened 

thermal stress is further accentuated under extreme weather conditions (EWD), with "Extreme heat 

stress" becoming more prevalent across all time periods, showing an escalating threat of severe 

overheating. 
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This escalation is also quantified through the dynamic thermal comfort analysis, revealing a 

marked decrease in the amount of time before pedestrians begin to feel discomfort when walking 

at various speeds, from the 2010s through to the 2090s. Pedestrians will experience no discomfort 

walking along the route in the 2010s and 2050s under TDD conditions. However, by the 2090s, 

tolerable discomfort may arise after 5 minutes of walking. Under EWD conditions, intolerable 

thermal discomfort becomes inevitable at noon, and the duration of time for which discomfort 

remains tolerable is expected to be reduced from 6 minute in 2010s to 4 minute in 2090s for a brisk 

walk. This consistent reduction in discomfort onset times—regardless of walking speed/across all 

walking speed—underscores the urgency for strategic urban cooling design interventions. 

This study also acknowledges a few limitations that merit attention for future research. Firstly, 

because of lack of future city terrain information, it is assumed that no alterations in urban terrain 

and building morphology over time, overlooking potential developments or renovations that could 

impact thermal comfort. The focus on a single route for the Practical Discomfort Scale (PDISC) 

analysis may also limit the generalizability of our findings across the entire downtown area. 

Furthermore, the current work does not account for the potential benefits of urban greening, which 

might help decrease local overheating. As part of the research contributions from this study, 

despite of these assumptions, the proposed research method and procedure in this study will still 

apply, given this information would become available, and the integrated model developed, such 

as CityFFD-CityBEM, will be made available for other researchers upon request. 

In future studies, there is a critical need to explore mitigation strategies that can address the 

escalating issue of overheating in urban environments. Specifically, nature-based solutions should 

be investigated for their effectiveness in mitigating extreme heat conditions, considering their 

potential to enhance urban resilience to climate change. Expanding the application of our analytical 
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framework to other cities across different climate zones would also provide valuable insights into 

the varying impacts of climate change on urban thermal comfort globally. Such research would 

not only broaden our understanding of urban heat dynamics but also inform more holistic and 

adaptable urban planning and design strategies to ensure sustainable and livable cities. 
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4. Chapter 4 

Assessing climate change impacts on urban 

overheating through Representative Methods on 

Spatial and Temporal Scales by implementing WRF 

and CityFFD 
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4.1 Introduction 

In Chapter 2, we evaluate the climate change impacts on indoor and outdoor overheating at the 

regional scale. Chapter 3 assesses the impacts of climate change on outdoor overheating at the 

building level through CFD simulation. The reference year generation method used in the previous 

chapters significantly reduces labor and computational costs when processing long-term climate 

data, allowing for predictions of typical and extreme future overheating conditions. However, 

evaluations of future outdoor overheating in Chapters 2 and 3 are limited to either regional scales 

or specific urban areas (downtown Montreal), which may not represent the general or extreme 

conditions of an entire city. Thus, in this chapter, to assess climate change impacts under both 

representative temporal and spatial conditions, we aim to develop a representative location method. 

This method will help identify typical and extreme locations for more precise microclimate 

assessments through CFD simulation. Initially, the NARR dataset is used to perform a WRF 

simulation considering urban effects for the entire city during a historical heatwave. Subsequently, 

the representative location method is employed to select the typical and extreme hot and cold 

locations based on the WRF simulation output throughout the city during the heatwave. After 

demonstrating the significance of this representative location, we collect historical (1996-2015) 

and future (2080-2099) CONUS II WRF data for the entire Montreal area and select the typical 

location under the same heatwave period. Then, the reference year selection method is applied to 

obtain typical and extreme hot historical and future climate inputs for the typical location from 

long-term CONUS II WRF data. Finally, we perform CFD simulations for this typical location 

using the typical and extreme hot climate inputs. The workflow of this chapter is shown as Fig. 

4.1. 
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Fig. 4.1 Workflow of the chapter. (a) Demonstration of representative location method through 

WRF simulation using NARR input. (b) Implementing temporal and spatial representative 

method for predicting future urban overheating using CONUS II WRF data. 

4.2 Methodology 

4.2.1 Study region 

The city of Montreal is selected for performing representative location selection, as shown in red 

box of Fig. 4.2. The detailed description of Montreal could be found in Section 2.2.1 and Section 

3.2.1.  
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Fig. 4.2 City of Montreal for representative location selection 

4.2.2 Climate data collection 

• NCEP North American Regional Reanalysis (NARR) 

The NCEP North American Regional Reanalysis (NARR) employs the Eta model (32 km 

resolution with 45 vertical layers) to produce comprehensive reanalysis products on the Eta 221 

grid across 29 pressure levels. This dataset incorporates a wide range of observational inputs and 

is noted for its detailed three-hourly output analyses, which include additional variables to reflect 

accumulations or averages over the period. In this study, NARR datasets will be then used as the 

input climate data for WRF to simulate the urban climate of Montreal during 2013 heatwave. 
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Typical representative location and extreme hot location during 2013 heatwave will then be 

selected using WRF simulation results. 

• CONUS (Continental U.S.) II High Resolution Present and Future Climate Simulation 

The CONUS II simulations utilize the mean of the CMIP5 models as the boundary forcing for a 

high-resolution (4km) WRF model to simulate the mesoscale hydro-climate for two 20-year 

periods (1996-2015 and 2080-2099). These simulations are designed to capture both climate 

internal variability and greenhouse gas-induced changes, providing a realistic depiction of 

mesoscale terrain features and precipitation patterns over the CONUS. The WRF output of 

CONUS during 2013 heatwave will firstly be extracted for selecting typical representative location. 

Then, the climate data of the typical representative location will be extracted for both historical 

(1996-2015) and future (2080-2099) time period to perform reference year selection. 

4.2.3 Numerical simulation of urban climates 

4.2.3.1 WRF simulation with NARR 

Urban climate modeling was conducted using the WRF model version 4.3.3 [347]. For 2013 

heatwave period, simulations included a preliminary 24-hour spin-up phase; data from this phase 

were excluded from the analysis. As depicted in Fig. 4.3, the simulation setup featured three two-

way nested domains designed for the Ottawa-Montreal region. These domains were configured 

with grid resolutions of 9 km, 3 km, and 1 km, corresponding to dimensions of 276 × 296, 250 × 

283, and 391 × 364 grid points, respectively. The reason of using 1 km in this study could be 

referred to our former publication [348]. The National Centers for Environmental Prediction 

(NCEP) North American Regional Reanalysis (NARR) 3-hourly product (#ds608.0) [349] were 

used as the initial and boundary conditions for the WRF simulations.  
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Fig. 4.3 WRF model domain for the city of Montreal (blue) 

The physical options are described in Table 4.1, based on the test of the previous studies [84, 348, 

350, 351], which yields the highest overall accuracy. 

Table 4.2 WRF physics options 

Parameterization Option 
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Microphysics WRF Single-Moment 3 

Long Wave Radiation RRTM 

Short Wave Radiation Dudhia 

Surface Layer Eta Similarity 

Land Surface Model Unified Noah 

Planetary  oundary Layer  ouLac 

Cumulus Kain-Fristch (domain 1 only) 

Urban  EP +  EM 

 

In a previous study on the Ottawa-Montreal region [77], researchers evaluated different urban 

parameterizations and land use datasets to find the best WRF model setup for simulating urban 

climate. Initially, urban areas were represented by a single urban class in the WRF model. The 

current study extends this by incorporating Local Climate Zones (LCZs) [352] and examining the 

benefits of using the multilayer urban canopy model, Building Environment Parameterization 

(BEP) linked with the Building Energy Model (BEM). The BEP+BEM model simulates three-

dimensional heat, moisture, and momentum transfer and allows direct interactions with the 

planetary boundary layer. BEP effectively models complex urban phenomena such as the urban 

heat island effect [82]. BEM, while simpler, significantly enhances urban energy budget estimates 

by accounting for heat diffusion through buildings, radiation exchange through indoor surfaces 

and windows, and heat generation from occupants [353]. 
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For detailed urban land use and land cover data, we used the 100m resolution global LCZ map 

created by Stewart and Oke [352]. This map categorizes urban areas into 10 built and 7 natural 

land cover types, developed by training random forest models across numerous global regions. 

The urban categories from this LCZ dataset, along with the modified IGBP MODIS Noah land-

use classification [354], were input into the WRF model.  

4.2.3.2 CFD simulation 

Different from Chapter 3, this chapter only use CityFFD for CFD simulation. The building surface 

temperature and ground temperature is obtained through WRF outputs, instead of running 

CityBEM simulation. CityFFD is based on a 3D fractional step method and Fast Fluid Dynamics 

(FFD) solver running on the Graphics Processing Unit (GPU) to predict local microclimate 

features for modeling large-scale urban aerodynamics. The governing conservation equations in 

CityFFD are dimensionless as follows: 

 ∇ · 𝑉 = 0 (4.1) 

 
𝜕𝑉

𝜕𝑡
+ (𝑉 · ∇)𝑉 = −∇𝑃 + (

1

𝑅𝑒
+ 𝑣𝑡) ∇2𝑉 −

𝐺𝑟

𝑅𝑒2
𝑇 (4.2) 

 
𝜕𝑇

𝜕𝑡
+ (𝑉 · ∇)𝑇 = (

1

𝑅𝑒 · 𝑃𝑟
+ 𝛼𝑡)∇2𝑇 (4.3) 

where 𝑉, 𝑇, 𝑃 and 𝑡 are the velocity, temperature, pressure and time, respectively; 𝑅𝑒, 𝐺𝑟 and 𝑃𝑟 

are the dimensionless Reynolds number, Grashof number, and Prandtl number, respectively; and 

𝑣𝑡  and 𝛼𝑡  are turbulence-related parameters, i.e., turbulent viscosity and turbulent thermal 
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diffusivity. CityFFD adopts the semi-Lagrangian method for the advection term in Eqs. (4.2), (4.3). 

Therefore, no iteration is needed to calculate the velocity field, and computing costs are reduced.  

4.2.4 Spatial and temporal representative method 

Representative method is designed for reducing repeatable labor work as well as computational 

cost, however at the same time, determine the typical and extreme scenario to represent the general 

condition. The detailed explanation and evaluation of temporal representative method has been 

clearly clarified in previous Section 2.2.4 and Section 3.3.2, where typical and extreme years were 

formulated by amalgamating twelve representative months, identified based on their cumulative 

distribution function (CDF) of outdoor air temperatures. The hottest day in the EWY (EWD), and 

typical day in the TDY (TDD) were selected for performing CFD simulation.  

Representative location method is developed following a similar logic, where typical and extreme 

locations were identified based on their cumulative distribution function (CDF) of outdoor air 

temperatures during a historical heatwave based on the WRF outputs. For each location, the 

cumulative distribution function (CDF) of the outdoor air temperatures of that location is compared 

with the CDF outdoor air temperatures from all locations, and the location with the least absolute 

difference between them is identified as the typical representative location. Extreme cold and hot 

locations are selected in a similar way. However, instead of selecting the location with the least 

absolute difference, the location with the maximum and minimum difference between CDFs is 

selected as the extreme hot and cold location, respectively. The detailed workflow of representative 

location method is shown in Fig. 4.4. 
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Fig. 4.4 Workflow of selecting typical representative, extreme hot, and extreme cold location 

with WRF outputs during 2013 heatwave 

4.3 Results and discussion 

4.3.1 Validation of implementing WRF and CityFFD 

To assess the accuracy of using WRF outputs and CityFFD simulations for local urban 

microclimate evaluation, this study focuses on a specific area within downtown Montreal, depicted 

in Fig. 4.5. Here, field measurements were taken during the 2013 heatwave. Two sets of 

simulations were validated: (1) NARR+WRF+CityFFD, which involves conducting a WRF 

simulation with NARR input followed by a CityFFD simulation using the WRF output; (2) 

CONUS+CityFFD, which directly utilizes CONUS output data for the CityFFD simulation. It's 

important to note that urban effects are incorporated in the NARR+WRF+CityFFD simulations 
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through the use of BEM and BEP models during the WRF simulation, whereas the CONUS dataset 

does not account for urban effects. 

 

Fig. 4.5 Selected urban area in Montreal downtown for validation. (a) Map of Montreal 

downtown. (b) Building geometry of Montreal downtown (red triangle: filed measurement site) 

According to the validation results shown in Fig. 4.6, the RMSE for wind speed between 

CONUS+CityFFD and field measurements is 0.52 m/s, and for NARR+WRF+CityFFD it is 0.77 

m/s. For air temperature, the RMSE is 4.6 ℃  for CONUS+CityFFD and 3.5 ℃  for 

NARR+WRF+CityFFD. Based on Yang, et al. [355], an error around 0.5 m/s in wind speed is 

deemed acceptable, although the air temperature prediction error in this study exceeds the 

recommended value of 2.5 ℃ . Given that this study uses WRF outputs as inputs for CFD 

simulations instead of direct, real-life measurements from the local airport, it is expected and 

acceptable for the numerical errors to be slightly higher than the suggested value. Additionally, it 

is clear from the analysis that CityFFD simulations incorporating WRF outputs with urban effects 
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tend to underestimate wind speeds in downtown areas, while concurrently overestimating air 

temperatures. On the other hand, CityFFD simulations using WRF outputs without urban effects 

show a closer alignment between predicted and actual wind speeds, but they tend to underestimate 

air temperatures. 

 

Fig. 4.6 Validation results of implementing WRF outputs and CityFFD. (a) Validation of wind 

speed. (b) Validation of air temperature. 
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4.3.2 Evaluation of representative location during heatwave with NARR+WRF+CityFFD 

This section will focus on evaluating the representative location method, demonstrating the 

significance of selecting representative locations for accurately generating typical and extreme 

urban overheating conditions across the entire urban landscape. As illustrated in Section 4.2.4, the 

cumulative distribution function (CDF) of temperatures for all locations during the heatwave 

period is shown in Fig. 4.7 (a). The typical location, chosen from NARR+WRF outputs, is 

identified as a residential area distant from the downtown core, predominantly featuring low-rise 

and mid-rise residential buildings, as shown in Fig. 4.8 Fig. 4.7 (b). This selection reflects typical 

urban residential settings, which generally exhibit more dispersed building layouts and include 

natural cooling elements such as vegetation. Conversely, Fig. 4.7 (c) illustrates the selected 

extreme hot location within the dense downtown area of Montreal, characterized by compact high-

rise and mid-rise commercial buildings. This area's urban structure, typified by its dense, heat-

retaining building materials and minimal vegetative cover.   
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Fig. 4.7 Representative location selected from NARR+WRF. (a) cumulative density function 

figure of all locations (gray), typical (black), extreme hot (red), and extreme cold (blue) 

locations. (b) Map of typical location. (c) Map of extreme hot location. 

CityFFD simulation is then conducted on the selected typical representative (Fig. 4.7 b) and 

extreme hot (Fig. 4.7 c) locations with the air temperature, wind speed, wind direction, and surface 

temperature extracted from NARR+WRF outputs. The air temperature fields of these two locations 

during 9 am, 12 pm, and 9 pm are shown in Fig. 4.8. It is obvious to find in figure that, the extreme 

hot location is generally 3 to 4 degrees higher than the typical representative location. At 9 am, the 

typical location exhibits relatively moderate temperatures with a uniform distribution, suggesting 

effective overnight cooling. Conversely, the extreme hot location demonstrates considerably 
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higher temperatures even in the early morning, indicative of dense urban structures and heat-

retaining materials such as dark pavements or building facades, which compromise the comfort 

levels and escalate energy consumption for cooling from the start of the day. 

By noon (12 pm), as solar radiation peaks, the differences between the two locations become even 

more pronounced. The typical location, though warmer than in the morning, still shows cooler 

temperatures. In stark contrast, the extreme hot location displays a significant increase in high-

temperature zones, highlighting intense solar absorption and a lack of sufficient mitigating 

infrastructure. By 9 pm, a substantial decrease in temperatures is found due to the absence of solar 

radiation. However, the extreme hot location still shows elevated temperatures compared to the 

typical location. This persistence of heat indicates that the built environment in the extreme hot 

location retains heat for longer durations. Such conditions extend the need for cooling well into 

the night, which can significantly impact energy consumption and resident comfort. 

This detailed temporal analysis accentuates the profound differences between typical and extreme 

urban hot spots, emphasizing the necessity of selecting both types of locations for comprehensive 

urban microclimate evaluations. Such distinctions in air temperature conditions between typical 

and extreme locations are crucial for accurately assessing the overall urban area microclimate. 

Specifically, the typical location tends to maintain more moderate temperatures during a heatwave, 

benefiting from more effective overnight. This provides a relatively comfortable environment for 

residents, reducing the reliance on energy-intensive cooling systems. In contrast, the extreme hot 

location exhibits significantly elevated temperatures throughout the day, failing to dissipate the 

heat effectively even during night-time hours. The elevated temperatures at these hot spots directly 

impact residents' thermal comfort, potentially exacerbating health risks during heatwaves and 
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leading to increased energy consumption for air conditioning. Such conditions underline the 

importance in identifying and focusing on these extreme conditions. 

 

Fig. 4.8 Simulated air temperature distribution of typical representative and extreme hot 

location on 2013 July 15th 9 am, 14 pm, 21 pm 

4.3.3 Evaluate climate change impacts on typical spatial and temporal conditions 

The typical representative location is firstly selected using outputs from CONUS during 2013 

heatwave. The CDF figure of all locations, and the selected typical representative location is shown 

in Fig. 4.9. The selected typical location is an industrial area, with less dense low-rise and mid-

rise industrial buildings.  
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Fig. 4.9 Typical representative location selected from CONUS. (a) cumulative density function 

figure of all locations (gray), typical (black), extreme hot (red), and extreme cold (blue) 

locations. (b) Map of typical location. 

With selected typical representative location, the climate data at this location is extracted for both 

historical (1996-2015) and future (2080-2099) period from CONUS datasets. The reference year 

selection method is then conducted to select typical (TDD) and extreme hot (EWD) scenario for 

CFD simulation, as described in Section 3.2.2. Here, CDF figures are generated in Fig. 4.10 to 

show the representative years generated from both historical and future period. It could be found 

that the typical downscaled year could represent the general condition of multiple years.  
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Fig. 4.10 Cumulative density function figure for reference year selection – typical downscaled 

year (black), extreme hot year (red), extreme cold year (blue). (a) Historical period (1996-2015). 

(b) Future period (2080-2099) 

With the typical representative location selected through representative location method and TDD 

and EWD generated by reference year method, CityFFD simulation is conducted to predict urban 

microclimate under typical (TDD) and extreme hot (EWD) conditions for historical and future 

time periods on the typical location of Montreal. With the UTCI calculation method mentioned in 

Section 3.2.4.1, the simulated wind and temperature field are then used for UTCI calculation with 

relative humidity from climate files, as well as radiation field calculated by Grasshopper Ladybug.  
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Fig. 4.11 Outdoor UTCI prediction under TDD for (a) historical and (b) future period. 

The UTCI values depicted in Fig. 4.11 and Fig. 4.12 illustrate the impacts of climate change on 

urban thermal comfort under typical and extreme warm conditions. Fig. 4.11 (a) with its cooler 

and more uniform UTCI values ranging from 6°C to 12°C, may represent a slightly cool weather 

conditions in the historical period. In contrast, Fig. 4.11 (b) shows a significant increase in UTCI 

values, reaching up to 16°C, with a notable spatial diversity including warmer regions compared 

with the historical period. Under EWD condition during historical period, UTCI values range from 

40.3°C to 45°C, the urban environment suffers from a relatively strong thermal state, allowing 

residents to conduct limited outdoor activities with low health risks. Conversely, the extreme 

warmth condition showcases UTCI values escalating from 65°C to an alarming 72°C, indicative 

of severe thermal stress that could drastically inhibit outdoor human activity, escalate cooling 

energy demands, and exacerbate public health risks.  
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Fig. 4.12 Outdoor UTCI prediction under EWD for (a) historical and (b) future period. 

Fig. 4.13 presented outdoor thermal stress distributions for historical and projected future scenarios 

under TDD and EWD, with the UTCI results from Fig. 4.11 and Fig. 4.12. The analysis reveals a 

pronounced shift towards higher thermal stress categories in the future scenarios for both typical 

and extreme conditions. Specifically, the complete change from ‘very strong heat stress’ to 

'extreme heat stress' under EWD indicates a significant rise in days where the thermal conditions 

could potentially compromise human health and comfort. This escalation in heat stress categories 

suggests an exacerbation of heat effects due to increasing mean temperatures. 

Furthermore, the comparison between typical and extreme conditions underscores the critical 

importance of selecting reference years that encompass both average and extreme climatic events. 

This approach is essential for accurately assessing the range of potential future thermal 

environments and their implications for urban planning and public health. By incorporating both 

TDD and EWD into climate impact studies, researchers and policymakers can better prepare for 
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the increasing frequency and intensity of extreme heat events. This dual-focus methodology 

supports the development of more effective adaptation and mitigation strategies, aiming to enhance 

urban resilience against the adverse effects of climate change and safeguard public health in the 

face of escalating urban heat stress. 

 

Fig. 4.13 UTCI thermal stress distribution for TDD and EWD under historical and future time 

periods 

4.4 Conclusion 

The research presented in this chapter meticulously assesses the impacts of climate change on 

urban overheating, utilizing a spatial and temporal representative method to integrate Weather 

Research and Forecasting (WRF) model with the City Fluid Dynamics (CityFFD) simulation. Two 

groups of simulation are performed in this study which are NARR+WRF+CityFFD and 

CONUS+CityFFD. Section 4.3.2 focuses on the evaluation of representative method under a 

historical heatwave period using NARR+WRF+CityFFD and Section 4.3.3 targets on evaluating 
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climate change impacts on typical microclimate with the numerical results from 

CONUS+CityFFD. Here are the main conclusions: 

• Selecting typical representative location and extreme hot location is necessary for 

comprehensive urban outdoor overheating evaluations: The typical location tends to 

maintain more moderate temperatures during a heatwave while the extreme hot location 

exhibits significantly elevated temperatures throughout the day. 

• An obvious increase in general UTCI values as well as thermal stress condition is found 

for the typical location under climate change impacts: UTCI increases from 8 °C to mostly 

around 15 °C under TDD, and increases from around 42 °C to around 70°C under EWD 

which indicates a complete change from ‘very strong heat stress’ to ‘extreme heat stress’ 

The study shows the effectiveness of using detailed urban microclimate simulations to predict 

general urban microclimate conditions among the whole urban area. These findings highlight the 

critical role of selecting appropriate reference years and locations for accurately simulating and 

predicting urban heat conditions, a methodological approach that enhances the capacity to forecast 

and mitigate the adverse effects of climate change on urban settings. 
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5. Chapter 5 

Conclusion and future work 

 

5.1 Major research outcome 

5.1.1 Multiscale numerical assessment of urban overheating under climate projections: a 

review 

This section presents a systematic review of the application of climate model projections for future 

indoor and outdoor overheating impact assessments, divided into four primary stages: (1) 

Mesoscale raw future climate data generation using GCM-RCMs; (2) Local-scale future climate 

input preparation through bias-correction and reference year data generation; (3) Microscale 

indoor and outdoor simulations with building performance models or computational fluid 

dynamics (CFD) software; (4) Overheating evaluation based on various overheating criteria. These 

stages are essential for advancing our understanding of overheating and informing future studies 

in this area. Key research gaps illustrated by this review include challenges in generating climate 

data, improving projected data reliability, and addressing indoor/outdoor climate simulation 

complexities. Additionally, incorporating social-economic factors into overheating evaluation 

methods is crucial for a comprehensive assessment. Although the focus is future urban overheating 

assessment, the general methodologies and procedure of future climate projections may also apply 

to other building performance simulations considering the climate change impacts. Notable 

research gaps were then identified as avenues for future research. Several prominent research gaps 

have been identified and are summarized as follows for each stage: 
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• Future climate data generation: Although progress has been made in generating future 

climate data using downscaling methods, challenges remain in conducting high-resolution, 

multi-decadal urban climate simulations under various greenhouse emission scenarios. 

Moreover, the accuracy and versatility of statistical and dynamical downscaling methods 

are limited by their reliance on historical data and high computational costs, respectively. 

Statistical-dynamical methods offer a promising compromise, allowing urban 

environments to be physically parameterized while maintaining versatility through 

advanced statistical and data-driven modeling techniques. 

• Future climate input preparation: Bias correction and reference year data methods are 

crucial for improving the reliability of projected data and streamlining climate change 

impact assessments. However, there is a lack of consensus on the weighting of climatic 

variables in reference year data methods. Using thermal comfort indices like SET or UTCI 

instead of individual climatic variables could be a potential solution. 

• Indoor climate simulation: Neighborhood-scale urban climate modeling is essential for 

studying future overheating. Challenges include modeling spatially dynamic indoor 

climate and incorporating real occupancy patterns in building energy models.  

• Outdoor climate simulation: Simplifications in computational fluid dynamics (CFD) 

models raise concerns about accuracy and validity. Future research should focus on 

quantifying the sensitivity of input parameters to better understand the impacts of these 

simplifications. 

• Overheating evaluation methods: Although widely used standards for outdoor and indoor 

overheating assessments exist, they fail to consider social and economic vulnerabilities. As 

specific populations, such as the elderly, poor, and minority groups, are disproportionately 
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affected by extreme heat events, using thermal-only overheating standards is insufficient. 

A more comprehensive approach should incorporate social-economic components, such as 

the percentage of vulnerable populations and the accessibility of heat mitigation methods. 

5.1.2 Assessment of future overheating conditions in Canadian cities using a reference year 

selection method 

This chapter evaluates outdoor extreme heat events and indoor overheating conditions for a 

representative residential building located in three Canadian cities (Montreal, Toronto, and 

Vancouver) over contemporary (2001-2020), near-term future (2041-2060), and long-term future 

(2081-2100) time periods. The regional climate simulations forced by three GCMs were bias-

corrected with reference to historical observations recorded at the airport location of the cities. 

Regard that although the analysis is performed for airport locations which may not be 

representative of fully developed urban areas, the methodology used is generalized enough to be 

used in urban locations.  

Thereafter, a reference year selection method is used to generate three representative climate data 

years: typical downscaling year (TDY), extreme cold year (ECY), and extreme warm year (EWY).  

The performance of TDY, ECY, and EWY climate data sets in capturing the range of overheating 

conditions present in the entire 20-year long contemporary and future projected time-periods is 

assessed. At the same time, the projected changes from the selected reference years and 20-year 

datasets are compared. The results are also compared with a widely used metric of overheating: 

the design summer year (DSY). Based on the results, given in Sections 2.3.1, 2.3.2, and 2.3.3, 

following deductions from the study were obtained: 

• The multivariate quantile mapping bias correction method is able to improve the reliability 
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of future climate data by capturing the distribution pattern of climatic variables as well as 

reducing errors and therefore, for any future weather projection study, bias correction is 

one of the most important steps. 

• For both outdoor/indoor overheating evaluation, EWY and ECY could efficiently capture 

maximum and minimum monthly overheating hours providing the upper and lower 

boundary of possible outdoor and indoor overheating conditions. TDY could be used to 

simulate the typical yearly overheating condition. The EWY captures the extreme 

overheating conditions better than the DSY. 

• Owing to the effects of climate change, a similar increase could be found in both indoor 

and outdoor overheating hours in the three Canadian cities; average monthly overheating 

hours increase by normally around one time (from 50% to 150%) until the mid-term future 

and by normally around two to three times (even up to nine times for some scenarios) 

during the long-term future. 

5.1.3 Evaluating climate change impacts on building level steady-state and dynamic outdoor 

thermal comfort in Montreal 

This chapter aims to evaluate climate impacts on both steady-state and dynamic outdoor thermal 

comfort of an urban area, i.e., Montreal downtown, through CityFFD-CityBEM simulations with 

a spatial resolution of 2 m. As detailly presented in our previous publication, raw future climate 

data obtained from CORDEX is bias-corrected with local field measurements, followed by the 

selection of reference year scenarios through the reference year data method. This research 

represents an initial effort to predict future steady-state and dynamic thermal comfort at the 

neighborhood scale by simulating the outdoor urban microclimate. The climate change impacts on 
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steady-state and dynamic thermal comfort in downtown Montreal are quantified by conducting 

comparisons across the 2010s, 2050s, and 2090s. 

A 1.25 km by 1.25 km of Montreal downtown area is selected, due to its high population and 

building density, for performing CityFFD-CityBEM co-simulation with prepared future climate 

inputs. Based on the independence test of mesh size and CFL number for CityFFD simulation, the 

minimum mesh size is set to 2 m and the CFL number is set to 5. Two outdoor thermal comfort 

indices UTCI and PDISC were applied to evaluate the climate change impacts on future outdoor 

overheating. 

The results of our study clearly illustrate the profound impact of climate change on both steady-

state and dynamic aspects of outdoor thermal comfort, particularly during typical commuting times 

(9 am, 12 pm, and 17 pm) in downtown Montreal, as listed below:  

• Under the typical condition (TDD), early mornings (9 am) and late afternoons (17 pm) in 

the 2010s were characterized by "Slight cold stress," transitioning to "No thermal stress" 

by midday (12 pm), indicating comfortable conditions for outdoor activities.  

• However, by the 2050s, a shift towards warmer conditions emerges, with "No heat stress" 

observed throughout the day, culminating in "Extreme heat stress" instances by the 2090s, 

highlighting a significant increase in overheating risks.  

• The trend towards heightened thermal stress is further accentuated under extreme weather 

conditions (EWD), with "Extreme heat stress" becoming more prevalent across all time 

periods, showing an escalating threat of severe overheating. 
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This escalation is also quantified through the dynamic thermal comfort analysis, revealing a 

marked decrease in the amount of time before pedestrians begin to feel discomfort when walking 

at various speeds, from the 2010s through to the 2090s:  

• Pedestrians will experience no discomfort walking along the route in the 2010s and 2050s 

under TDD conditions.  

• However, by the 2090s, tolerable discomfort may arise after 5 minutes of walking.  

• Under EWD conditions, intolerable thermal discomfort becomes inevitable at noon, and 

the duration of time for which discomfort remains tolerable is expected to be reduced from 

6 minute in 2010s to 4 minute in 2090s for a brisk walk.  

• This consistent reduction in discomfort onset times—regardless of walking speed/across 

all walking speed—underscores the urgency for strategic urban cooling design 

interventions. 

5.1.4 Evaluating climate change impacts on building level steady-state and dynamic outdoor 

thermal comfort in Montreal 

The research presented in this chapter meticulously assesses the impacts of climate change on 

urban overheating, utilizing a spatial and temporal representative method to integrate Weather 

Research and Forecasting (WRF) model with the City Fluid Dynamics (CityFFD) simulation. Two 

groups of simulation are performed in this study which are NARR+WRF+CityFFD and 

CONUS+CityFFD. Section 4.3.2 focuses on the evaluation of representative method under a 

historical heatwave period using NARR+WRF+CityFFD and Section 4.3.3 targets on evaluating 

climate change impacts on typical microclimate with the numerical results from 

CONUS+CityFFD. Here are the main conclusions: 
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• Selecting typical representative location and extreme hot location is necessary for 

comprehensive urban outdoor overheating evaluations: The typical location tends to 

maintain more moderate temperatures during a heatwave while the extreme hot location 

exhibits significantly elevated temperatures throughout the day. 

• An obvious increase in general UTCI values as well as thermal stress condition is found 

for the typical location under climate change impacts: UTCI increases from 8 °C to mostly 

around 15 °C under TDD, and increases from around 42 °C to around 70°C under EWD 

which indicates a complete change from ‘very strong heat stress’ to ‘extreme heat stress’ 

The study shows the effectiveness of using detailed urban microclimate simulations to predict 

general urban microclimate conditions among the whole urban area. These findings highlight the 

critical role of selecting appropriate reference years and locations for accurately simulating and 

predicting urban heat conditions, a methodological approach that enhances the capacity to forecast 

and mitigate the adverse effects of climate change on urban settings. 

5.2 Limitation of the study 

The limitations of work in ‘Assessment of future overheating conditions in Canadian cities using 

a reference year selection method’ are: 

• Only considering three Canadian cities – Montreal, Toronto, and Vancouver – for analysis; 

• Only the projections from three GCMs and one RCP scenario (RCP 8.5) was considered 

for preparing the climate data sets; 

• Only three GCMs are considered inside this study for urban overheating evaluation 

• Only testing this method with the single-house building and assuming the features of the 

single-house building stay constant in all future years. In reality, the features of existing 



 

147 

 

buildings will change based on age. 

• Only applying a fixed temperature threshold as the indoor and outdoor overheating criteria. 

The limitations of work in ‘Evaluating climate change impacts on building level steady-state and 

dynamic outdoor thermal comfort in Montreal’ are: 

• Because of lack of future city terrain information, it is assumed that no alterations in urban 

terrain and building morphology over time, overlooking potential developments or 

renovations that could impact thermal comfort; 

• The focus on a single route for the Practical Discomfort Scale (PDISC) analysis may also 

limit the generalizability of our findings across the entire downtown area; 

• The current work does not account for the potential benefits of urban greening, which might 

help decrease local overheating; 

• The spatial changes in relative humidity due to evaporation from greenings and local water 

body are not considered during CFD simulation. 

The limitations of work in ‘Assessing climate change impacts on urban overheating through 

Representative Methods on Spatial and Temporal Scales by implementing WRF and CityFFD’ are: 

• Only using NARR as the input dataset for WRF simulation, some more recent reanalysis 

project datasets are become available in recent years. 

• CONUS datasets did not consider urban effects, which limits the difference in air 

temperature between downtown and sub-urban areas. Thus, only typical location is selected 

and evaluated for assessing climate change impacts. 

• When assessing climate change impacts, the change in building morphology or urban 
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terrain is not considered. 

• Although urban greening is considered in WRF simulations, it is not considered inside 

CityFFD simulation which might affect the real-life detailed outdoor thermal comfort 

conditions. 

5.3 Future work 

Continuing with the current work, more efforts in the future will be devoted into the following 

aspects, addressing the limitation of former work and based on the research of interest: 

• Expanding overheating evaluation from Canadian cities only to global main cities around 

the world for better understanding the climate change impacts on urban overheating; 

• Considering the change in urban morphology when assessing future urban microclimate 

through CFD simulation; 

• Expand the results of the single route for the Practical Discomfort Scale (PDISC) analysis 

to multiple routes for best thermal comfort route selection; 

• Adding urban green infrastructures (trees, green roof, green wall, etc) inside current 

simulation to see how will it mitigate urban overheating; 

• Conduct representative location method on different types of local climate zone to refine 

the classification of urban areas; 

• Calculating urban morphology indices for multiple urban sites and building correlation 

with urban morphology indices and CFD simulation results; 

• Considering the change in energy consumption for maintaining sufficient thermal comfort 

level under climate change impacts. 



 

149 

 

Appendix 

Appendix A 

A.1 Cumulative distribution function comparison of observational (gray curve), raw RCM (blue 

curve) and bias-corrected RCM data (red curve) of sfcWind, tas, rsds, hurs (MPI, 1998-2017) 
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A.2 Cumulative distribution function comparison of the hourly temperature from 20 years and 

reference year climate data sets of TDY, ECY and EWY 
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Appendix B 

B.1 Yearly cumulative outdoor overheating hours in three Canadian cities 

 

B.2 Monthly outdoor overheating hours between reference year and 20-years data sets in three 

Canadian cities 

(a) Montreal 

Time 

periods 
Model May June July August September 

2010s 

ECY 0 1 0 0 0 

TDY 3 24 13 15 0 

EWY 36 56 99 107 22 
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20-year 

(max.) 
36 74 123 107 65 

20-year 

(avg.) 
4 21 37 26 7 

20-year 

(min.) 
0 0 0 0 0 

DSY 2 45 83 79 14 

2050s 

ECY 0 0 0 0 0 

TDY 2 23 63 68 7 

EWY 103 184 219 271 136 

20-year 

(max.) 
103 184 219 271 136 

20-year 

(avg.) 
10 34 74 78 26 

20-year 

(min.) 
0 0 0 0 0 

DSY 16 51 129 169 51 

2090s 

ECY 0 0 8 5 23 

TDY 12 80 146 186 83 

EWY 123 264 494 316 290 

20-year 

(max.) 
161 264 494 347 290 

20-year 

(avg.) 
27 82 165 168 70 

20-year 

(min.) 
0 0 3 0 0 

DSY 123 150 238 203 106 

 

(b) Toronto 
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Time 

periods 
Model May June July August September 

2010s 

ECY 0 0 0 0 0 

TDY 8 27 62 34 9 

EWY 21 120 154 96 31 

20-year 

(max.) 
39 120 165 108 56 

20-year 

(avg.) 
4 27 46 30 11 

20-year 

(min.) 
0 0 0 0 0 

DSY 29 30 80 69 18 

2050s 

ECY 0 0 0 0 0 

TDY 14 39 82 83 6 

EWY 63 195 181 243 129 

20-year 

(max.) 
69 195 206 243 133 

20-year 

(avg.) 
12 41 93 89 30 

20-year 

(min.) 
0 0 0 0 0 

DSY 30 72 157 227 25 

2090s 

ECY 0 0 9 27 3 

TDY 42 78 191 214 72 

EWY 159 208 532 429 356 

20-year 

(max.) 
159 208 532 429 356 

20-year 

(avg.) 
35 83 196 189 75 

20-year 

(min.) 
0 0 5 2 0 
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DSY 26 162 269 335 198 

 

(c) Vancouver 

Time 

periods 
Model May June July August September 

2010s 

ECY 0 0 0 0 0 

TDY 0 6 10 8 0 

EWY 27 69 145 162 84 

20-year 

(max.) 
50 78 145 162 84 

20-year 

(avg.) 
2 10 20 12 4 

20-year 

(min.) 
0 0 0 0 0 

DSY 0 26 44 28 3 

2050s 

ECY 0 0 0 0 0 

TDY 0 11 22 23 0 

EWY 11 217 332 176 23 

20-year 

(max.) 
102 217 341 191 73 

20-year 

(avg.) 
4 21 39 31 9 

20-year 

(min.) 
0 0 0 0 0 

DSY 0 33 108 37 21 

2090s 

ECY 1 0 0 0 0 

TDY 7 26 102 76 17 

EWY 49 250 278 459 75 

20-year 

(max.) 
162 246 295 435 133 
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20-year 

(avg.) 
10 31 88 74 24 

20-year 

(min.) 
0 0 0 0 0 

DSY 9 22 210 122 29 

 

B.3 Yearly cumulative indoor overheating hours in three Canadian cities 

(a) Montreal 

 

(b) Toronto 
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(c) Vancouver 
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B.4 Difference in monthly indoor overheating hours between synthesizing and 20-years data sets 

in three Canadian cities (Liv: Living room, Bed: Bedroom) 

(a) Montreal 

Time 

periods 
Model 

May June July August September 

Liv Bed Liv Bed Liv Bed Liv Bed Liv Bed 

2010s 

ECY 0 0 1 5 0 11 0 3 0 0 

TDY 9 26 28 69 35 129 30 107 0 27 

EWY 58 101 79 135 141 260 148 250 49 131 

20-year 

(max.) 
58 102 101 180 158 265 148 250 91 153 

20-year 

(avg.) 
7 22 33 76 59 138 47 117 13 39 

20-year 

(min.) 
0 0 0 0 0 2 0 2 0 0 
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DSY 5 34 73 150 127 222 96 149 27 84 

2050s 

ECY 0 0 0 0 2 7 0 10 0 0 

TDY 1 11 22 78 64 170 66 157 4 35 

EWY 95 161 181 267 218 351 285 410 130 223 

20-year 

(max.) 
95 162 182 267 222 354 289 412 132 225 

20-year 

(avg.) 
93 273 327 787 773 175 84 179 26 62 

20-year 

(min.) 
0 0 0 0 0 6 0 10 0 0 

DSY 28 69 77 138 177 317 231 350 71 137 

2090s 

ECY 0 0 0 21 30 78 33 136 43 94 

TDY 19 76 122 208 202 366 242 408 127 231 

EWY 154 240 313 433 577 681 393 569 348 478 

20-year 

(max.) 
195 289 313 433 577 681 414 605 348 485 

20-year 

(avg.) 
373 717 

111

7 
204 225 369 228 384 99 185 

20-year 

(min.) 
0 0 0 11 17 79 29 137 0 10 

DSY 153 240 193 317 318 487 269 443 179 311 

 

(b) Toronto 

Time 

periods 
Model 

May June July August September 

Liv Bed Liv Bed Liv Bed Liv Bed Liv Bed 

2010s 

ECY 0 11 0 0 0 4 0 6 0 0 

TDY 9 14 36 82 85 151 60 131 16 40 

EWY 31 88 141 208 183 303 135 256 48 119 

20-year 

(max.) 
45 93 141 208 194 316 155 293 73 137 
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20-year 

(avg.) 
6 20 37 81 66 144 49 116 17 46 

20-year 

(min.) 
0 0 0 0 0 4 0 6 0 0 

DSY 41 94 43 102 118 261 89 168 29 77 

2050s 

ECY 0 0 0 5 6 62 2 26 0 0 

TDY 19 41 53 118 128 255 125 240 20 83 

EWY 84 165 249 360 245 408 299 459 166 243 

20-year 

(max.) 
94 172 249 360 269 410 299 470 166 243 

20-year 

(avg.) 
16 39 55 114 136 261 128 243 43 88 

20-year 

(min.) 
0 0 0 0 0 41 1 26 0 0 

DSY 34 53 90 178 224 350 307 473 47 104 

2090s 

ECY 0 0 0 3 35 110 50 114 9 33 

TDY 48 72 113 207 240 383 283 416 93 167 

EWY 194 277 266 378 605 697 487 633 411 568 

20-year 

(max.) 
194 277 267 390 596 698 503 650 411 568 

20-year 

(avg.) 
45 85 115 209 255 402 253 405 101 188 

20-year 

(min.) 
0 0 0 3 27 110 29 114 0 2 

DSY 35 80 217 336 334 542 413 614 240 415 

 

(c) Vancouver 

Time 

periods 
Model 

May June July August September 

Liv Bed Liv Bed Liv Bed Liv Bed Liv Bed 

2010s ECY 0 0 0 0 0 0 0 0 0 0 
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TDY 0 0 9 29 27 73 22 87 1 20 

EWY 57 133 108 242 227 360 214 375 102 171 

20-year 

(max.) 
64 133 108 242 227 360 214 376 102 171 

20-year 

(avg.) 
3 10 15 39 35 89 25 72 6 20 

20-year 

(min.) 
0 0 0 0 0 0 0 0 0 0 

DSY 0 20 31 102 65 185 54 130 8 68 

2050s 

ECY 0 0 0 0 0 0 0 8 0 2 

TDY 0 10 12 57 41 149 42 129 4 37 

EWY 35 132 266 394 384 527 259 421 46 150 

20-year 

(max.) 
119 150 264 396 397 546 256 417 97 193 

20-year 

(avg.) 
7 19 30 64 64 149 54 135 16 47 

20-year 

(min.) 
0 0 0 0 0 0 0 0 0 0 

DSY 0 13 59 106 183 340 85 219 45 130 

2090s 

ECY 1 5 0 0 0 37 0 44 0 2 

TDY 10 34 42 98 167 298 117 238 25 85 

EWY 80 280 293 437 349 514 512 604 124 216 

20-year 

(max.) 
174 303 289 424 364 535 489 579 164 263 

20-year 

(avg.) 
135 30 47 107 133 271 118 260 38 91 

20-year 

(min.) 
0 0 0 0 0 37 0 44 0 0 

DSY 14 35 39 176 267 376 213 500 64 163 
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