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ABSTRACT

In this paper, a CNN architecture for object recognition is proposed, aiming at achieving a good pro-
cessing-quality at the lowest computation-cost. The work includes the design of SdcBlock, a convolu-
tion module, for feature extraction, and that of SdcNet, an end-to-end CNN architecture. The module
is designed to extract the maximum amount of high-density feature information from a given set of
data channels. To this end, successive depthwise convolutions (Sdc) are applied to each group of data
to produce feature elements of different filtering orders. To optimize the functionality of these con-
volutions, a particular pre-and-post-convolution data control is applied. The pre-convolution control
is to organize the input channels of the module so that the depthwise convolutions can be performed
with a single channel or a combination of multiple data channels, depending on the nature of the data.
The post-convolution control is to combine the critical feature elements of different filtering orders to
enhance the quality of the convolved results. The SdcNet is mainly composed of cascaded SdcBlocks.
The hyper-parameters in the architecture can be adjusted easily so that each module can be tuned to
suit its input signals in order to optimize the processing-quality of the entire network. Three different
versions of SdcNet have been proposed and tested using CIFAR dataset, and the results demonstrate
that the architecture gives a better processing-quality at a significantly lower computation cost, com-
pared with networks performing similar tasks. Two other versions have also been tested with samples
from ImageNet to prove the applicability of SdcNet in object recognition with images of ImageNet
format. Also, a SdcNet for brain tumor detection has been designed and tested successfully to illus-
trate that SdcNet can effectively perform the detection with a high computation efficiency.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Object recognition is widely used in computer-vision-based
applications, such as security and medical systems (Hampapur
et al., 2005; Wang et al., 2019; Pontil and Verri, 1998; Brunelli
and Poggio, 1993). In general, it is performed by (i) extracting
various features and (ii) classifying the objects based on the
extracted features. It is a challenging task since there can be
a huge amount of feature variations for the same object class,
whereas similar feature elements can appear in different object
classes.

Object recognition systems can be designed by two ap-
proaches, knowledge-based filtering and machine learning.
The knowledge-based approach (Lowe, 2004; Sutton and Hall,
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1972; Chapelle et al., 1999), using specially designed filters for
specific feature elements, is normally computation-efficient, but
has a limitation on handling a large number of variations in ob-
ject features. Machine learning approach, in particular convo-
lutional neural networks(CNNs) (LeCun et al., 1998), can be
promising. This kind of networks uses a large number of sam-
ples to progressively determine the system parameters in order
to be able to detect various features corresponding to target ob-
jects (Polyak and Wolf, 2015; Yang et al., 2017; Simonyan and
Zisserman, 2014; He et al., 2016). However, CNN normally
requires a large number of parameters to deal with feature vari-
ations in order to achieve good performance, which, in con-
sequence, leads to a huge computation volume and limits its
implementation and applications.

Since the development of object recognition systems is
highly demanded, a lot of research efforts have been made to
improve the performance. The convolutions in VGGNet (Si-
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monyan and Zisserman, 2014) are performed with simple 3 × 3
kernels to reduce the complexity in computation. ResNet uses
residual modules to extend the depth of CNNs for better perfor-
mance (He et al., 2016). In XceptionNet, for a better computa-
tion efficiency, the convolutions are made depthwise, assuming
that the cross-channels correlations and spatial correlations in
the feature maps can be decoupled (Chollet, 2016). Pruning a
trained network (Li et al., 2016; Liu et al., 2017; He et al., 2017)
can reduce the computation volume in the testing process, but
training the un-pruned network can be very much computation-
consuming. In MobileNetV2 (Sandler et al., 2018), a combi-
nation of 1 × 1 convolution and 3 × 3 depthwise convolution,
instead of 3 × 3 standard convolution, is used to make both
testing and training processes computation efficient. ShuffleNet
(Zhang et al., 2018) also features similar combinations, but the
1 × 1 convolutions are specified to be group-wise and channels
are shuffled before the 3×3 depthwise convolution. In Squeeze-
and-Excitation Networks (Hu et al., 2018), a dynamic channel-
wise feature recalibration is performed to improve the represen-
tational capacity, and Deep Expander Networks (Prabhu et al.,
2018) use expander graphs that give strong theoretical guaran-
tees on connectivity.

The objective of the work presented in this paper is to
develop a computation-efficient CNN architecture for object
recognition tasks. It seeks to use simple architectures to achieve
a good recognition quality with a view to enabling the imple-
mentation in diverse applications. As the recognition quality
is closely related to the quality of the image features extracted,
it is important to design the convolution layers with the princi-
ple of 2-D filtering for efficient feature extraction. The work is
composed of two parts, (i) the design of CNN modules for fea-
ture extraction, and (ii) end-to-end CNN architectures for object
recognition and other processing tasks. The module and the ar-
chitecture are designed following an investigation of different
convolution modes in CNNs and an analysis of the data in the
different computation stages.

The paper is structured as follows. A detailed description
of the proposed module SdcBlock is presented in Section 2.
The design of five versions of the CNN architecture SdcNet
with different emphases on performance is presented in Section
3. The performance evaluation of these networks is presented
in Section 4. In Section 5, a design example of SdcNet for
brain tumor detection is presented to illustrate the applicability
of SdcNets for processing tasks other than object recognition.

2. Proposed Module SdcBlock

The convolution module is designed to generate feature vec-
tors from the input data in a way that the information relevant to
the object features is extracted, composed, strengthened, and/or
concentrated, while filtering out those irrelevant. A good use of
different convolution modes can improve the processing quality
while reducing computation volume. In general, an input data
of NI channels can be transformed to an output data of NO chan-
nels by a convolution with NO kernels in one of the following
three modes.

• Standard convolution(S-Conv). In this mode, each of the
NO convolution kernels is applied to all the NI input chan-
nels to generate one output channel, and mathematically it
can be expressed as

∨ j ∈ [1, 2, ...,NO] :

S -Conv(I,K)m,n, j =

NI∑
i=1

a∑
p=−a

a∑
q=−a

Im+p,n+p,iKp,q,i, j (1)

where K is a set of NO convolution kernels, each of which
is sized (2a + 1) · (2a + 1) · NI . If K is applied to the in-
put I, sized HI ·WI · NI , with stride = 1, the computation
volume, measured by MACs (multiply-accumulate opera-
tions), will be

(2a + 1)2 · HI ·WI · NI · NO (2)

Standard convolutions are often used when all the input
channels are correlated.

• Depthwise convolution (DWConv). It is, in fact, the con-
ventional 2-D spatial convolution with the weights pro-
gressively updated in the training process. Each kernel,
sized (2a+1) · (2a+1), is applied to a single input channel.
The size of K is (2a+1) · (2a+1) ·1 ·NO. Its mathematical
expression can be written as follows.

∨ j ∈ [1, 2, ...,NO] :

DWConv(I,K)m,n, j =

a∑
p=−a

a∑
q=−a

Im+p,n+p, jKp,q,1, j (3)

To generate NO output channels from the same number of
the inputs, the computation volume required for the depth-
wise convolution is

(2a + 1)2 · HI ·WI · NO (4)

which is only 1/NI of that needed for the standard convo-
lution.

Depthwise convolutions, if performed successively to a
single input channel, can generate feature maps of differ-
ent filtering orders.

• Group convolution (G-Conv). The NI input channels are
divided into g groups and each of them gets convolved
with a kernel sized (2a+ 1) · (2a+ 1) ·NI/g to produce one
out channel. The size of K is (2a+ 1) · (2a+ 1) ·NI/g ·NO.
A standard convolution can be seen as a special case with
g = 1, whereas a depthwise convolution is another special
case with g = NI . A group convolution reduces computa-
tion volume by a factor of g, compared with the standard
convolution. It also gives a flexibility to select and to group
input channels according to their properties.
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2.1. Processing in SdcBlock

The basic scheme of the proposed convolution module, Sd-
cBlock (Successive Depthwise Convolution Block), is illus-
trated in Fig. 1. A preliminary version of the work has been
presented at a conference (Ma and Wang, 2018). In this mod-
ule, three functions, Successive Depthwise Convolutions (Sdc),
data preparation for the convolutions and arrangement of the
convoluted data to form the output, are performed.

2.1.1. Successive Depthwise Convolutions(Sdc)
Object recognition needs feature information of different na-

tures that can be generated by filtering operations of different
orders. Successive convolutions are used in this module to ef-
ficiently generate such features. These convolutions must be
applied exclusively to the same set of data, for which only the
depthwise convolution mode is suitable. Hence the Succes-
sive Depthwise Convolutions(Sdc) make the pivotal part in this
module. They are indicated by the two boxes of 3×3 DWConv
shown in Fig. 1. Let I denote the input of the module, X de-
note the input of the first depthwise convolution, X′ and X′′ the
results of the first and second order filtering operations, respec-
tively. The features of the input I are represented in different
ways in X, X′ and X′′, and the output of the module are pro-
duced based on them. It should be mentioned that each channel
in X can be formed either from a single channel or a group of
multiple channels in I.

If the module is placed in an early processing part of a net-
work to handle raw image data, the successive depthwise con-
volutions will generate the first and second order gradient maps
in order to obtain various low-level features. If the module is
placed in middle or final stages of a CNN, these operations will
produce vectors containing higher order feature information.

In the basic version of SdcBlock illustrated in Fig. 1, the ker-
nel size of the two successive depthwsise convolutions is 3×3.
It can, however, be extended to other sizes if needed.

2.1.2. Data Preparation for the Successive Depthwise Convo-
lutions(Sdc)

The component of data preparation is to convert the input
data I to the data set X to meet the requirements of the succes-
sive depthwise convolutions. It is done by an 1×1 group con-
volution applied to I, as illustrated in Fig. 1, for the purposes
stated as follows.

• Scaling the input elements. This 1×1 convolution provides
a scaling function to the input channels of the module and
the weights can be adjusted to facilitate the feature extrac-
tion in the succeeding convolutions.

• Adjustment of the number of data channels. By applying
the 1×1 group convolution, the input data I with NI chan-
nels can be expanded to E × NI channels, if E >1, for the
succeeding successive depthwise convolutions.

• Grouping the input channels. As mentioned previously,
the output of the two successive convolutions, namely X′

and X′′, are produced exclusively from the input set X.
Each channel in X can be formed by a single channel, or a

Fig. 1. Basic SdcBlock. G Conv denotes group convolution and DWConv
denotes dethwise convolution.

group of multiple channels, from the input data I. It should
be mentioned that by grouping multiple channels from I,
more input information is involved in each channel in X
and the succeeding depthwise convolutions can generate
feature maps containing information of higher density.

This component of 1×1 group convolution allows the data
scale and format to be changed easily. In particular, by grouping
and expending the input channels, it is possible to effectively
involve multiple input channels in each depthwise convolution
to optimize the filtering process.

2.1.3. Data Arrangement to Generate the Output
This part of the SdcBlock is used to handle the three sets of

data, i.e. I, the input of the module, X′ and X′′, produced respec-
tively by the two successive depthwise convolutions. The data
X′ and X′′ are combined by means of concatenation followed
by an 1×1 group convolution, as shown in Fig. 1, to generate
Xp. This group convolution is used to perform, from math-
ematic point of view, additions of weighted channels. From
signal processing point of view, it is to implement a series of
modulations of the data of X′ by those of X′′, or vice versa,
with learnable modulation depths, if channels from both X′ and
X′′ are involved in each of the additions. The channels of Xp
can thus carry enhanced features from X′ and X′′.

It should be mentioned that, as the data of X′ and X′′ are
concatenated, they are sequenced naturally in Xc. A channel
reordering is performed to re-index the sequence of these chan-
nels to make it possible that each group in this group convolu-
tion has channels from both X′ and X′′.
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The output data of the module is generated from I and Xp.
In general, it can be done in two different ways.

• Addition. The convolved data are added to the input data of
the block, which can result in another feature enhancement
and/or a generation of new features.

• Concatenation. The two sets of data are concatenated to
preserve feature information of the three different orders
for further processing.

The decision to use the addition or concatenation is based on
the nature of the input data I and the purposes of the process-
ing in the block. In order to implement the combination, the
two sets of data, I and Xc, need to have the same dimensions
and formats. Hence, the 1×1 group convolution is also used to
compress or extend the concatenated data Xc to a desirable data
form Xp. Also, a similar process is applied to I, in order to
meet the requirements of dimensions and channel sequences.

2.2. Variations of SdcBlock

As convolutions with stride = 1 normally give more precise
filtering results than those with stride = 2 and the dimension
of feature map in each channel remains unchanged in the op-
erations, stride = 1 is used in the basic version of SdcBlock.
However, in some cases, the module with stride = 2 is needed
to downsize the feature maps. Since there is information redun-
dancy in the feature maps, the size can be reduced without a
high risk of information loss. Meanwhile, this down-sizing de-
creases overall computation cost and increases the convergence
speed in the training process. Hence SdcBlock with stride = 2
is used in CNN processes to improve the computation efficiency
and the concentration of feature information in each channel.

In SdcBlock-S2 shown in Fig. 2, the dimension down-sizing
by means of stride = 2 is used only in the first 1 × 1 group
convolution, whereas stride = 1 is applied in the other convo-
lutions. The input channels of the module and the convolved
data, i.e., Ip and Xp, are merged by concatenation to better pre-
serve the feature information in these channels. For this con-
catenation, the input channels need a dimension down-sizing
while maintaining the nature of the data. To this end, an aver-
age pooling is applied to the input channels to convert I to Ip,
as shown in Fig. 2. It should, however, be mentioned that other
pooling methods can also be used for the conversion, depending
on the nature of the feature data.

In this version, the output contains both the sampled input
information and the successive depthwise convolution results.
By adjusting the number of kernels to generate Xp, one can
determine the proportion of the convolved data in the output
of the module. If the number of channels of Xp is made more
than that of Ip, Xp will be dominant in the output.

One can create another version of SdcBlock with stride = 2
by removing Ip. In this version, the output is generated ex-
clusively by the successive depthwise convolutions. It can be
useful in some specific filtering processes.

Fig. 2. SdcBlock with Stride=2

3. SdcNet Design

SdcNet is a CNN architecture proposed with a view to opti-
mizing the processing for object recognition tasks. It is com-
posed of cascaded SdcBlocks. One can use a number of hyper-
parameters in each SdcBlock to achieve the optimization. The
basic scheme of SdcNet was presented very briefly in (Ma and
Wang, 2018). As more work in the network design has been
carried out after it, the presentation of the SdcNet design in this
section is, hopefully, insightful to provide readers with precise
information about the networks in detail.

The general scheme of the proposed SdcNet architecture is
shown in Fig. 3. From an input image, it generates the data rep-
resenting classification decisions, such as object classification
labels. The network can be divided into three functional parts
for early processing, feature extraction and decision making.
The first part is to extract low-level features and is designed to
suit the characters of the input images. The high-level features
are extracted by the feature extraction part, and are used in the
third part to generate the final decisions. The decision making
part is composed of a conversion layer and a fully connected
layer, as shown in Fig. 3.

Since the quality of the extracted feature information can
make a significant difference in the final decision making, it
is critical to design the early processing and feature extraction
parts to extract varieties of feature information and to present it
in a high-density form. The design of SdcNet is to make good
use of SdcBlock by determining a number of hyper-parameters
in each block according to its input signal and its specific com-
putation purpose. These hyper-parameters are listed as follows.

• The group number g. In a SdcBlock, it is used to organize
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the data channels in the group convolution, and should be
determined according to the nature and correlation of the
data channels in each layer. Meanwhile, it is one of the el-
ements determining the total computation cost since con-
volutions with a larger value of g require a smaller amount
of computation.

• The number of output channels. In each SdcBlock, this
number should be sufficiently large to extract enough va-
rieties of feature elements for further processing. How-
ever, it should be mentioned that excessively increasing
the number of output channels may have adverse effect,
such as increasing the computation volume, reducing the
information density and decreasing the rate of convergence
in the training process.

• The hyper-parameter stride. SdcBlocks with stride = 1
are used in the stages where precise convolution results
are required. In SdcBlocks with stride = 2, the channel
dimension is down-sized by three quarters, which reduces
the computation volume and helps to make the feature in-
formation more concentrated if such blocks are used in an
appropriate manner to minimize data loss.

• The combinations of the data from different filtering oper-
ations. As mentioned previously, it can be either concate-
nation or addition.

• The expansion parameter E is the ratio of the number of
the output channels over that of the inputs of a convolution
layer. It is applied to the first 1 × 1 group convolution in a
SdcBlock to expand the number of input data channels of
the succeeding 3 × 3 depthwise convolutions.

• The rearrangement of the convolved data X′ and X′′ by
means of the second 1 × 1 group convolution in the mod-
ule. These data channels can be re-indexed by randomly
shuffling or in a specific way based on the nature, such as
color, of the data in each SdcBlock.

3.1. Processing in SdcNet

The early processing part of a SdcNet contains an initial con-
volution layer and one SdcBlock, as shown in Fig. 3. A group
convolution is performed in the initial convolution layer. As
the input image is composed of three color channels, the hyper-
parameter g is chosen to be 3 so that each group of convolu-
tion kernels is applied to an individual color channel to gen-
erate monochromatic features. The SdcBlock used in this part
is to organize and enhance these early feature elements for the
succeeding feature extraction.

The feature extraction part is a stack of SdcBlocks, as shown
in Fig. 3. The input channels of this part are low-level fea-
ture maps of large-dimension generated by the early processing
part. The feature elements, which may contribute to the final
decisions, are normally dispersed widely in the input channels.
This part is to perform layers of filtering operations to generate,

Fig. 3. General scheme of SdcNet.

from these low-level feature maps, condensed high-level fea-
tures represented in small-dimension channels that will be ap-
plied to the final decision part. The number of the output chan-
nels of the feature extraction part should be sufficiently large
to accommodate different kinds of specific feature information.
Hence, the stack of SdcBlocks are used to convert a small num-
ber of large feature maps into a large number of small-format
data channels.

In order to implement the process of the feature extraction,
the number of the output channels in each stage increases pro-
gressively, and SdcBlocks with stride = 2, instead of pooling,
are applied in particular stages to downsize the feature maps.
However, in general SdcBlokcs with stride = 2 are not cas-
caded successively to minimize the risk of information loss.

Based on the principles described above, three SdcNets,
namely SdcNet-S, SdcNet-M and SdcNet-L, have been devel-
oped with different emphases for CIFAR classification tasks.
The network SdcNet-S is considered as the standard version of
SdcNet and it has the lowest computation cost among the three.
SdcNet-M and SdcNet-L are designed to achieve higher pro-
cessing quality.

Besides the three above-mentioned SdcNets aiming at im-
ages of small-format and low-resolution, two other versions of
SdcNet are also designed to process images of larger format,
such as those in ImageNet, and to have a finer classification.

3.2. Three Versions of SdcNet for CIFAR Datasets
3.2.1. SdcNet-S

The detailed configuration of SdcNet-S is shown in Table 1.
As mentioned previously, this network can be divided into three
functional parts. The early processing part consists of a group
convolution layer with 3 × 3 kernel size and a SdcBlock. The
succeeding feature extraction part is composed of sixteen Sd-
cBlocks divided into six stages, namely Stage 1 to Stage 6, as
shown in Table 1. A global average pooling layer and a fully
connected layer are used to generate the final decisions.
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Table 1. Details of SdcNet-S Configuration
Input image: sized 32x32 pixels and having 3 channels.

Stride Repeat
Times

Group No.
g

No. of Output
Channels

Size of Output
Channels

No. of Weights Computation
Complexity(Flops)

G-Conv* 1 1 3 36 32x32 3.2K 2.91M
SdcBlock 1 1 3 24 32x32 7.0K 6.19M
Stage 1 1 2 3 24 32x32 12.7K 8.39M
Stage 2 2 1 3 36 16x16 39.1K 7.24M1 2 3 36 16x16
Stage 3 2 1 3 72 8x8 173.4K 10.40M1 3 3 72 8x8
Stage 4 1 3 3 96 8x8 198.8K 10.54M
Stage 5 2 1 3 150 4x4 313.8K 4.85M1 2 3 150 4x4
Stage 6 1 1 3 300 4x4 247.2K 3.86M
Avg Pool** 2 1 300 1x1 0 0.02M
FC 1 10 1x1 48.6K 0.72M
Complexity*** No. of Weights: 1.04 M 55.12 M Flops

* G-Conv stands for group convolution with 3x3 kernel and g = 3.
** The kernel size of this average pooling is 4x4.
***The complexity is evaluated on images of 10 classes.

SdcNet-S has the simplest structure among the three net-
works. It is designed to target a wide range of users. Of the sev-
enteen SdcBlocks used in this network, fourteen are the basic
SdcBlocks with stride = 1 shown in Fig. 1. Among the hyper-
parameters, the most important ones are determined based on
the principles stated as follows.

1). Group number g. The group number g = 3 is carefully
chosen and kept identical throughout the network for the
sake of simplicity. In the early processing, g = 3 matches
the number of the input color channels, corresponding to
the three kinds of monochromic information. In the feature
extraction part, it is also appropriate to use 1×1 group con-
volutions with a fixed g = 3 in the SdcBloks. It should be
noted that as the correlation among the data channels gets
stronger stage by stage, the number of channels in each
group also increases progressively with the fixed group
number g = 3. Hence, there is always a sufficient num-
ber of channels involved in each convolution in different
stages to satisfy the processing quality.

2). The number of output channels of each SdcBlock. The
initial group convolution with stride = 1 generates 36 fea-
ture channels, 12 from each of the three input color chan-
nels. The 12 channels are adequate to accommodate ba-
sic monochromic feature elements. The number of out-
put channels increases from 36 to 300 progressively, as
shown in Table 1, meanwhile the size of each channel is
decreasing. In other words, the number of channels con-
taining high-level features for decision making is 300. In
this network, this number is considered to be large enough
to accommodate various features critical to produce a re-
sult with acceptable accuracy.

3). The hyper-parameter stride of each SdcBlock. Since the

size of each channel needs to be reduced from 32 × 32 to
4 × 4 in the feature extraction part, as shown in Table 1, 3
SdcBlock-S2s with stride = 2 are used in Stage 2, Stage
3 and Stage 5 to downsize the feature maps progressively.
There are at least 3 SdcBlocks with stride = 1 between
two SdcBlock-S2, in order to minimize the risk of infor-
mation loss.

4). Expansion number E. In this network, E = 6 is used in
all the SdcBlocks, except the first one where E = 1, so
that there are enough channels to accommodate various
intermediate feature data during the process of SdcBlock.

5). The combinations of the data from different filtering oper-
ations. In all the SdcBlocks with stride = 1, the convolved
data are added to the input data in order to enhance the fea-
tures and generate new feature maps. In all the SdcBlocks
with stride = 2, the data of different orders are concate-
nated for feature-reusing.

6). Data conversion in the decision part. In order to facili-
tate the process in the decision making part, an average
pooling layer is placed before the fully connected layer to
compress the 4×4 feature elements in each feature map to
one value.

SdcNet-S has the simplest network configuration among the
three SdcNets. It uses a small computation amount of 55.12M
Flops and 1.03M weights. However, a good processing quality
of the network can be predicted since the hyper-parameters in
this network are determined to achieve appropriate signal filter-
ing.

3.2.2. SdcNet-M
The detailed configuration of SdcNet-M is presented in Ta-

ble 2. This network is an updated version of SdcNet-S, aiming
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at improving the processing quality without an excessively in-
crease in computation volume. The updates are found in the
first SdcBlock of the network and the first two stages of the
feature extraction part, namely Stages 1 and 2. The rest of the
network is identical to that in SdcNet-S. The updates in design-
ing SdcNet-M are made in the following aspects, with respect
to SdcNet-S.

1). As the quality of the feature extraction is related to the
number of feature maps produced in each stage, SdcNet-
M has a relatively larger number of output channels in
the early stages, indicated by the bold number in Table
2, compared to those in SdcNet-S, to accommodate more
features.

2). In order to effectively use the larger number of the data
channels, the hyperparameter g is not uniform in the net-
work. To be specific, g is chosen to be 12 in the first Sd-
cBlock, 6 in Stage 1, and 3 in the rest of the network.
Increasing the number of channel groups in a convolu-
tion layer implies fewer channels per group and, in conse-
quence, less computation required to perform the convo-
lution, which partially cancels the rise in the computation
cost resulting from the increased number of the data chan-
nels. Moreover, a large value of g allows more flexibility
in channel grouping.

3). Data channel grouping is particularly explored in the de-
sign of this network. In the first filtering stages, the in-
put data channels can be grouped to form monochromic
groups, or specifically-weighted polychromatic groups,
and they are then convolved to produce varieties of fea-
tures with different chromic emphases. This fashion of
channel grouping is referred to as Specific Color Reorder-
ing (SCR). It can be seen as a specific data channel index-
ing, in contrast to the channel indexing by shuffling used
in the 6 stages of the feature extraction part of the network.

Understandably, channel grouping can be based on various
characters of the data channels. For example, one group can
consist of the data produced by the filtering operations of the
same order and another group of different orders with a specific
proportion.

In this network, the very first convolution layer produces 36
data channels, 12 from each original RGB channel. SCR is
performed in the first SdcBlock. The 36 channels are divided
into 12 groups, 3 per group, by the first 1×1 group convolution.
After concatenating the results of the 2 successive depthwise
convolutions, the number of the data channels is doubled. Then
the 72 channels are divided into 12 groups, 6 per group, by the
special color Reordering layer, i.e. the SCR layer, before the
second 1× 1 group convolution layer in the SdcBlock shown in
Fig. 1. Of the 12 groups, 6 are monochromic groups, i.e., the
channels in each group originated from the same color channel.
The other 6 are full-color groups, i.e., each group consisting of
3 data channels originated from the RGB input. Meanwhile,
each of the 12 groups contains both the first and the second
filtering results.

The Specific Color Reordering (SCR) method can help to
make good use of the early features by combining, in a rational
manner, data channels in order to generate useful varieties of
feature information. It should be noted that, if the convolved
data channels are arranged by SCR and they are then combined
with the input data by addition, the input data should also be
rearranged in the same manner to have the same data sequence
as the convolved data.

SdcNet-M is designed to obtain a better processing quality,
with respect to that of SdcNet-S, by improving the quality of
the basic features in the early stages. The total computation
amount of the network is 73.41M Flops with 1.11M weights,
which is still a modest amount compared to those reported for
similar tasks.

3.2.3. SdcNet-L
The configuration of SdcNet-L is shown in Table 3. Based on

SdcNet-S, SdcNet-L is designed to obtain a better processing
quality by applying more convolution kernels in Stages 2 to 6
and thus generating more data channels. As shown in Table 3,
the number of output channels of Stage 6 is 600, twice of that in
SdcNet-S, providing the decision part with more precise feature
information.

Two measures are taken to compensate for the increase of
computation volume caused by the additional channels. Firstly,
the number of channels in the initial convolution or Stage 1 is
kept the same as that in SdcNet-S before downsizing the map
dimension. The increasing of the channel number starts from
Stage 2, where the feature map size is reduced from 32 × 32 to
16 × 16. The second measure is to increase the group number
g in all the stages, except the initial group convolution, from
g = 3 to g = 4, reducing the number of parameters in order to
decrease the computation volume. It should be noted that this
change does not reduce the numbers of channels per convolu-
tion group as the total numbers of the channels are increased,
which avoid the degradation of the processing quality.

In this design, SdcNet-L is built to achieve the best process-
ing quality among the three SdcNets by a larger number of the
channels. It requires 103.3M Flops and uses 2.53M weights.
Compared with the reported CNNs for similar tasks, the com-
putation volume is still a modest amount.

3.3. Two Versions of SdcNet for ImageNet Datasets

3.3.1. SdcNet-IS
SdcNet-IS is another version of SdcNet, developed to test

the applicability of SdcNet for images of large format, such as
those from ImageNet.

Comparing the image samples from CIFAR and those from
ImageNet, one can see that, though the latter have a higher res-
olution, the object in each image, no matter it is from CIFAR
or ImageNet, occupies a dominant portion of the space. Hence,
image downsizing can be used to reduce the image format with-
out serious concern of missing the object. However, it should
be applied appropriately to minimize the loss of image details.

The configuration of SdcNet-IS is shown in Table 4. Like
the three SdcNets described in previous sub-sections, it consists
mainly of SdcBlocks, and some of its details are, nevertheless,
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Table 2. Details of SdcNet-M Configuration
Input image: sized 32x32 pixels and having 3 channels.

Stride Repeat
Times

Group No.
g

No. of Output
Channels

Size of Output
Channels

No. of Weights Computation
Complexity(Flops)

G-Conv* 1 1 3 36 32x32 3.2K 2.91M
SdcBlock 1 1 12 36 32x32 9.1K 7.96M
Stage 1 1 2 6 36 32x32 21.3K 12.80M
Stage 2 2 1 3 66 16x16 91.4K 19.86M1 2 3 66 16x16
Stage 3 2 1 3 72 8x8 173.4K 10.40M1 3 3 72 8x8
Stage 4 1 3 3 96 8x8 198.8K 10.54M
Stage 5 2 1 3 150 4x4 313.8K 4.85M1 2 3 150 4x4
Stage 6 1 1 3 300 4x4 247.2K 3.86M
Avg Pool** 2 1 300 1x1 0 0.02M
FC 1 10 1x1 48.6K 0.72M
Complexity*** No. of Weights: 1.11 M 73.41 M Flops

* G-Conv stands for group convolution with 3x3 kernel and g = 3.
** The kernel size of this average pooling is 4x4.
***The complexity is evaluated on images of 10 classes.

adjusted to handle the input images of 224x224. Compared to
SdcNet-S, SdcNet-IS has more convolutions with stride = 2
applied in different layers to reduce the image size, while ex-
tracting the features of different levels. Also, more filtering
kernels are used in the convolution layers to have a finer classi-
fication.

3.3.2. SdcNet-IM
SdcNet-IM is also a version of SdcNet for images of format

ImageNet. Its configuration, shown in Table 5, is similar to
that of SdcNet-IS, but the number of output channels in most
convolution layers is extended in order to process more varieties
of feature data. Hence, a better classification result is expected.

4. Performance Evaluations of SdcNets

In this section, the performance evaluation of different ver-
sions of SdcNet for object recognition is presented. The dataset,
training/testing information and an ablation study are found in
Subsections 4.1, 4.2 and 4.3, respectively. The comparison of
the test results of SdcNets with the CNNs performing similar
tasks is found in Subsections 4.4.

4.1. Datasets

Datasets CIFAR-10 and CIFAR-100 (Krizhevsky and Hin-
ton, 2009) have been used to evaluate the performance of the 3
SdcNets, SdcNet-S, SdcNet-M and SdcNet-L. CIFAR-10 con-
sists of 60000 color images of 32x32 pixels in 10 classes, 6000
per class. The testing pool of 10000 images is built by randomly
selecting 1000 from each class. The remaining 50000 images
are for training. CIFAR-100 has the same number of images as
CIFAR-10, but the number of classes is 100. Thus, the number
of images per class is 10 times smaller than that in CIFAR-10.

ImageNet-1K (Deng et al., 2009) dataset has been used to
assess the applicability of SdcNet-IS and SdcNet-IM for images
of large format. ImageNet-1K has 1.2 million samples in its
training pool and 50,000 samples in its testing pool, and they
are in1000 classes. All these images are resized to 224 x 224
pixels to train and test the 2 SdcNets.

4.2. Training Details

The training elements are as follows.

• Training epochs and batch size. As the computation vol-
umes in the SdcNets are modestly ranged from 55M to
202M Flops, a relatively small number of epochs to com-
plete the training procedure can be expected. The SdcNets
have been trained for 300 epochs with a batch size of 128
for CIFAR dataset, and for 90 epochs with a batch size of
384 for ImageNet dataset.

• Optimizer. Stochastic gradient descent (SGD) (LeCun
et al., 1989) has been chosen to minimize the loss in the
experiments. Moreover, in order to increase the conver-
gence rate, Nesterov momentum (Nesterov, 1983) with a
momentum weight of 0.9 and a weight decay of 0.0001
has also been adopted.

• Learning rate. Cosine-shape decreasing method
(Loshchilov and Hutter, 2016) has been used to make
the learning rate decrease, starting from 0.1, during the
training process.

• Loss function. Cross entropy loss function (LeCun et al.,
2015) has been used to calculate the loss in this work.

• Training data augmentation. It has been done by padding
the original training images with four zero pixels per side,
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Table 3. Details of SdcNet-L Configuration
Input image: sized 32x32 pixels and having 3 channels.

Stride Repeat
Times

Group No.
g

No. of Output
Channels

Size of Output
Channels

No. of Weights Computation
Complexity(Flops)

G-Conv* 1 1 3 36 32x32 3.2K 2.91M
SdcBlock 1 1 4 24 32x32 7.0K 6.19M
Stage 1 1 2 4 36 32x32 23.1K 14.90M
Stage 2 2 1 4 72 16x16 91.1K 18.79M1 2 4 72 16x16
Stage 3 2 1 4 96 8x8 235.9K 14.16M1 3 4 96 8x8
Stage 4 1 3 4 144 8x8 362.3K 18.16M
Stage 5 2 1 4 300 4x4 898.0K 14M1 2 4 300 4x4
Stage 6 1 1 4 600 4x4 719.4K 11.32M
Avg Pool** 2 1 600 1x1 0 0.04M
FC 1 10 1x1 187.2K 2.89M
Complexity*** No. of Weights: 2.53 M 103.3 M Flops

* G-Conv stands for group convolution with 3x3 kernel and g = 3.
** The kernel size of this average pooling is 4x4.
***The complexity is evaluated on images of 10 classes.

cropping the padded images randomly and flipping half of
the cropped images horizontally. All the cropped samples
have been used as training samples.

• Initialization of the weights. The weights of the network
have been initialized in such a way that the standard devi-
ation between inputs and outputs is the same in each layer
(He et al., 2015).

The characteristics of training loss versus training epochs,
obtained with the three SdcNets for CIFAR-format images are
shown in Fig. 4. It is illustrated that all the 3 networks have
approached their steady states, after the training of 256 epochs,
with the loss of around 0.002, demonstrating a fast convergence
and small residue error of the network. The characteristics of
validation error rate of the three SdcNets are illustrated in Fig.
5, demonstrating that the validation error rates follow the trend
of the loss, and there is no underfitting observed.

Fig. 4. Characteristics of training loss versus training epochs with CIFAR
dataset.

Fig. 5. Characteristics of validation error rate versus training epochs with
CIFAR dataset.

4.3. Ablation study

The ablation study has been conducted to assess the perfor-
mance of SdcNets from different aspects. Various tests have
been done to demonstrate how the structure of SdcBlocks and
hyperparameters concerning data handling can impact the qual-
ity of the processing and computation complexity.

SdcBlock distinguishes itself mainly with the two Successive
3x3 depthwise convolutions (Sdc). As shown in Fig. 1, these
convolutions allow to generate, from the same set of data X, 2
sets of filtered data X′ and X′′ representing different kinds of
feature data.

The first part in this ablation study is to test the effectiveness
in signal filtering of the Sdc structure. To this end, we have
created a block, referred to as dcBlock, by removing the first
3 × 3 depthwise convolution of SdcBlock. Evidently dcBlock
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Table 4. Details of SdcNet-IS Configuration
Input image: sized 224x224 pixels and having 3 channels.

Stride Repeat
Times

Expansion Group No.
g

No. of Output
Channels

Size of Output
Channels

No. of
Weights

Computation
Complexity(Flops)

G-Conv* 2 1 3 24 112x112 0.70K 8.43M
Stage 1 2 1 1 3 36 56x56 0.98K 5.04M
Stage 2 2 1 3 3 54 28x28 30.7K 25.15M1 2 3 3 54 28x28
Stage 3 2 1 3 3 108 14x14 270.6K 52.11M1 6 3 3 108 14x14
Stage 4 2 1 3 3 196 7x7 510.8K 26.05M1 3 3 3 196 7x7
Conv 1 1 3 1024 7x7 223.2K 10.89M
Avg Pool** 1 1 1024 1x1 0 0.05M
FC 1 1000 1x1 1025.0K 1.02M
Complexity No. of Weights: 2.06 M 128.69 M Flops

* G-Conv stands for group convolution with 3x3 kernel and g = 3.
** The kernel size of this average pooling is 7x7.

Table 5. Details of SdcNet-IM Configuration
Input image: sized 224x224 pixels and having 3 channels.

Stride Repeat
Times

Expansion Group No.
g

No. of Output
Channels

Size of Output
Channels

No. of
Weights

Computation
Complexity(Flops)

G-Conv* 2 1 3 24 112x112 0.70K 8.43M
Stage 1 2 1 1 3 36 56x56 0.98K 5.04M
Stage 2 2 1 3 3 72 28x28 48.3K 38.36M1 2 3 3 72 28x28
Stage 3 2 1 3 3 144 14x14 458.0K 89.29M1 6 3 3 144 14x14
Stage 4 2 1 3 3 288 7x7 883.2K 45.41M1 3 3 3 288 7x7
Conv 1 1 3 1024 7x7 296.9K 14.50M
Avg Pool** 1 1 1024 1x1 0 0.05M
FC 1 1000 1x1 1025.0K 1.02M
Complexity No. of Weights: 2.71 M 202.05 M Flops

* G-Conv stands for group convolution with 3x3 kernel and g = 3.
** The kernel size of this average pooling is 7x7.

does not have the character of Successive depthwise convolu-
tions (Sdc), as X′ = X and Xc is the combination of X and X′′.
Then, we have replaced SdcBlocks in the networks of SdcNet-
S, SdcNet-M, and SdcNet-L by dcBlocks and tested these net-
works using CIFAR dataset. The results are presented in Table
6, in comparison to those of SdcNets with SdcBlocks. One can
see that SdcNets with SdcBlocks perform better than those with
dcBlocks. By means of the successive depthwise convolutions,
more varieties of feature data can be extracted from the same
set of inputs, which leads to a visible decrease of the error rate
with only very small increase in computation volume.

Another element in SdcBlock is the channel reordering. It
is placed after the 2 successive depthwise convolutions. This
reordering is to re-index the sequence of the channels X′ and
X′′, produced by the 2 convolution layers, to prepare the input
data groups for the second 1x1 group convolution. By doing

Table 6. SdcNets With SdcBlocks and dcBlocks
Network config Block Error Rate Weights Flops

SdcNet-S* SdcBlock 5.60% 1.04M 55.12M
dcBlock 6.51% 0.96M 49.05M

SdcNet-M** SdcBlock 5.41% 1.11M 73.41M
dcBlock 6.23% 1.02M 64.08M

SdcNet-L*** SdcBlock 5.24% 2.53M 103.3M
dcBlock 5.78% 2.39M 94.31M

* Configuration details are shown in Table 1.
** Configuration details are shown in Table 2.
*** Configuration details are shown in Table 3.

so, each of the input group can have data from both X′ and
X′′ containing information of different filtering orders. Table 7
illustrates the test results of the SdcNets for CIFAR dataset, ob-
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tained with and without the reordering in the SdcBlocks. The
networks with the channel reordering outperform, with a sig-
nificant difference, those without reordering. It confirms that it
is important, not only to generate the data of different filtering
orders by means of successive depthwise convolutions, but also
to include them in the same group in the succeeding data pro-
cessing, and the channel reordering is an effective and simple
way to do it.

Table 7. SdcNets With/Without Reordering
Model Config Error Rate

SdcNet-S With Reordering 5.6%
Without Reordering 7.31%

SdcNet-M With Reordering 5.41%
Without Reordering 6.93%

SdcNet-L With Reordering 5.24%
Without Reordering 6.82%

In a SdcBlock, 1x1 group convolutions (G-conv) are used
to organize the data channels before and after the 2 succes-
sive depthwise convolutions. The input channels of the 1x1
G-conv are divided into g groups. For a given number of the
input channels, the smaller g, the more channels are involved in
the computation of each group convolution, i.e., more data be-
ing processed together to generate each output channel, which
is, however, at the expense of more learnable parameters and
more calculations. Hence, one needs to find a balance point
of the value of g. Based on SdcNet-S, we have created 3 vari-
ations, namely SdcNet-S-G1, SdcNet-S-G2 and SdcNet-S-G3,
and they differ from one another only on g. The test results of
SdcNet-S and its variations, with CIFAR dataset, are presented
in Table 8. One can observe that g = 3 is suitable to obtain good
processing results at a relatively low computation cost.

Table 8. SdcNet-S with Different Group No. g
Input image: sized 32x32 pixels and having 3 channels.

g SdcNet-
S

SdcNet-S-
G1

SdcNet-S-
G2

SdcNet-S-
G3

G-Conv* 3 3 3 3
SdcBlock 3 6 4 12
Stage 1 3 6 4 6
Stage 2 3 4 3 3
Stage 3 3 4 3 3
Stage 4 3 3 2 3
Stage 5 3 3 2 3
Stage 6 3 3 2 3
Avg Pool**
FC
Weights 1.05M 1.01M 1.38M 1.04M
Flops 55.12M 47.92M 62.53M 50.77M
Error Rate 5.6% 6.32% 5.83% 5.88%

Note: Parameters of stride, Repeat Times, Number of
Output Channels are the same as those presented in Table 1.

The expansion parameter E determines, in a SdcBlock, the
number of the output channels of the first 1x1 group convolu-
tion, and one can use it to adjust the capacity of feature gen-

eration/accommodation. A larger E implies more capacity to
generate and to accommodate the feature data, and may lead
to better classification results, but demanding more computa-
tion. The data presented in Table 9 are the test results of the 4
versions of SdcNets configured for the inputs from ImageNet.
Comparing the results given by SdcNet-IS and SdcNet-IS-E6,
one can find that the error rate is reduced from 38.4% to 36.2%
by increasing E from 3 to 6, while increasing significantly the
volume of computation, measure by the number of Flops, by al-
most 80%. Observing the results given by the two SdcNet-IM
versions that differ each other only in E, one can get the same
conclusion.

Table 9. Different SdcNet Architectures for ImageNet
SdcNet- SdcNet- SdcNet- SdcNet-
IS-E3 IS-E6 IM-E3 IM-E6

E NO* E NO* E NO* E NO*
G-Conv 24 24 24 24
Stage 1 1 36 1 36 1 36 1 36
Stage 2 3 54 6 54 3 72 6 72
Stage 3 3 108 6 108 3 144 6 144
Stage 4 3 196 6 196 3 288 6 288
Conv 1024 1024 1024 1024
Avg Pool 1024 1024 1024 1024
FC 1000 1000 1000 1000
Weights 2.06M 2.87M 2.71M 4.10M
Flops 128.69M 231.60M 202.05M 374.65M
ErrorRate 38.4% 36.2% 36.3% 34.5%
Note: Parameters of stride, Repeat Times of SdcNet-IS-E3 and
SdcNet-IS-E6 are found in Table 4, and those of SdcNet-IM-E3 and
SdcNet-IM-E6 in Table 5.
*: Number of Output Channels

In conclusion, by testing the networks with variations in
structure and in hyperparameters, one can observe the effects
produced by these elements. The test results confirm that the
successive depthwise convolutions play an important role in dif-
ferent stages of processing, and it is equally important to handle
the data produced by the 2 convolutions in an optimized man-
ner to make good use of the data. It is also shown that the two
hyperparameters, group number g and expansion parameter E,
can be used to find a good balance of processing quality and
computation.

4.4. Testing Results with Samples from CIFAR
The performance metrics include the processing quality mea-

sured by the classification error rate(ER), and the computation
volume, in terms of the number of Flops and the number of
weights. As mentioned previously, for the test with the dataset
of CIFAR-10 or CIFAR-100, the number of images used in the
test is 10000. Each test has been repeated 3 times. In order
to assess the computation efficiency of SdcBlock and to eval-
uate the performance of the three SdcNets, the test results are
compared with those reported recently and having similar com-
putation complexity, namely VGG-pruned and ResNet-pruned
networks (Li et al., 2016; Liu et al., 2017; He et al., 2017).

The test results are found in Table 10. As the error rates of
SdcNet-S, SdcNet-M and SdcNet-L are the average values ob-
tained from multiple tests, they are presented with the standard
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Table 10. Comparison of classification error rate and computation volume
Model FLOPs No. of

Weights
ER (C10)* ER (C10) STD** ER (C100)***

VGG-16-pruned (Li et al., 2016) 206M 5.40M 6.60% - 25.28%
VGG-19-pruned (Liu et al., 2017) 195M 2.30M 6.20% - -
VGG-19-pruned (Liu et al., 2017) 250M 5.00M - - 26.20%
ResNet-56-pruned (He et al., 2017) 62M - 8.20% - -
ResNet-56-pruned (Li et al., 2016) 90M 0.73M 6.94% - -
ResNet-110-pruned (Li et al., 2016) 213M 1.68M 6.45% - -
ResNet-164-B-pruned (Liu et al., 2017) 124M 1.21M 5.27% - 25.28%
SdcNet-S 55.12M 1.04M 5.60% 0.026 25.01%
SdcNet-M 73.41M 1.11M 5.41% 0.01 24.28%
SdcNet-L 103.3M 2.53M 5.24% 0 23.12%
* The Error Rates(ER) for CIFAR-10 dataset.
** Standard Deviation of Error Rates(ER) for CIFAR-10 dataset.
*** The Error Rates(ER) for CIFAR-100 dataset.

Table 11. Inference performance on a x86 CPU
Model Test

Image
Size

No. of
Images
in Test

Total
Infer-
ence
Time

Inference
Time
Per

Image

Peak
Mem
Usage

SdcNet-S
3x32x32 100

283ms 2.83ms 38MB
SdcNet-M 383ms 3.83ms 67MB
SdcNet-L 532ms 5.32ms 80MB

deviations. It is shown that SdcNet require significantly less
computation, with respect to the pruned networks, for a similar
or even better processing quality. In particular, in the case of the
test with CIFAR-10, one can find the evaluation details given as
follows.

• SdcNet-S. The total computation volume of this network
is 55.12 M Flops, the smallest among those listed in the
table, but it has, nevertheless, achieved a low error rate of
5.60%, among the best ones in the table.

• SdcNet-L. It has achieved the best processing quality, i.e.
the error rate of 5.24%, at a computation cost of 103
M Flops, with respect to 5.27% given by ResNet-164-B-
pruned using 124 M Flops.

• SdcNet-M. It achieves a low error rate of 5.41% using only
73.41 M Flops, a balance between the processing quality
and the computation complexity.

The inference performance of a CNN is related to the type of
processors used for computation. In case of GPU, as the modes
of data transfer can make a significant difference in computation
time, a GPU designed to suit a particular kind of network may
place other kinds at a disadvantage. To assess the inference per-
formance of the SdcNets for CIFAR data, the test is conducted
on an Intel i7 8700K CPU running at 4.6 GHz, with Python
3.7.7 and PyTorch v1.2.0. The result, presented in Table 11,
demonstrates that the computation of SdcNet can be performed
with one CPU core and a memory usage of less than 100 MB,
and the time required to complete an object recognition of an
image from CIFAR dataset is not more than 5.32 mS.

Table 12. Comparison of classification error rate and computation volume
with ImageNet

Model FLOPs No. of
Weights

Top-1
ER

IGCV3-D (0.7) (Sun et al.,
2018)

210M 2.8M 31.5%

MobileNetV2 (0.7) (Sun et al.,
2018)

210M 2.8M 33.5%

Xception (Chollet, 2016) 145M - 34.1%
MobileNet-0.5 (Xie, 2018) 149M 1.3M 36.3%
IGCV2-0.5 (Xie, 2018) 156M 1.3M 34.5%
DenseNet (Huang et al., 2017) 142M - 45.2%
ShuffleNetV1 (Zhang et al.,
2018)

140M - 32.6%

SdcNet-IM 202M 2.71M 36.3%
SdcNet-IS 128M 2.06M 38.4%

Table 13. Result comparison - BTD – Dice scores and computation volumes

Systems Dice No. of
ET WT TC Weights

(Chen et al., 2019) 0.703 0.891 0.782 6.3M
(Zhou et al., 2020) 0.730 0.894 0.816 > 1M
(Zhou et al., 2021) 0.708 0.871 0.783 > 1M
(Aboelenein et al., 2020) 0.745 0.865 0.808 > 1M
SdcNet BTD 0.775 0.887 0.769 0.083M

4.5. Testing Results with Samples from IMAGENET

Two versions of SdcNet, namely SdcNet-IS and SdcNet-IM,
have been trained with the image samples of ImageNet, and
tested with objects of 1000 classes. The test results are pre-
sented in Table 12. They are comparable with those given by the
networks of similar computation complexity. It demonstrates
that, though the basic scheme of SdcNets has been proposed to
process images of small format, it can be extended for applica-
tions to images such as those from ImageNet.

5. SdcBlocks and SdcNet for Detection

SdcBlock has initially been designed for object recognition.
However, as it is able to extract effectively varieties of image
features, it can also be used for other tasks. In this section, as
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Fig. 6. SdcNet for brain tumor detection (BTD). In all the SdcBlocks, E = 1
and g = 1, except the very first SdcBlock where g = 4 is applied to the first
1 × 1 convolution and g = 1 to the second one.

a design example of SdcBlock and SdcNet for detection tasks,
a special SdcNet for brain tumor detection (BTD) is presented
and so are the test results.

5.1. SdcNet for Brain Tumor Detection

The input data of the SdcNet for brain tumor detection (BTD)
are 3D MRI brain images. Each patient case consists of four
MRI modalities, namely Flair, T1, T1c and T2. The objective of
BTD is to determine, with voxel-wise precision, the locations
of enhancing tumor (ET), tumor core (TC), and whole tumor
(WT).

As a 3D image can be sliced into 2D slices, the brain tumor
detection is often performed in 2D CNNs. The structure of the
SdcNet for BTD is illustrated in Fig. 6. Like the other Sdc-
Nets presented in this paper, in this SdcNet, the convolutions
are performed by cascaded SdcBlocks. However, as it needs
to deliver the result of multi-class detection with voxel-wise
precision, upsampling and skip connection are used, which is
commonly seen in SSD or Unet, so that detailed image feature
information produced by the first 3 SdcBlocks is included, step
by step, in the convolutions in the last 3 SdcBlocks, as shown
in Fig. 6.

5.2. Performance Evaluation of the SdcNet for BTD

The SdcNet for BTD has been trained and tested with
BRATS2018 dataset. As BRATS2018 does not disclose the
ground truth of the 66 test cases, the test results have been as-
sessed by CBICA Image Processing Portal (Menze et al., 2014;
Bakas et al., 2017, 2018). The processing quality of BTD sys-
tems is measured mainly by Dice score (Dice), defined as

Dice(P1,T1) =
P1ΛT1

(P1 + T1)/2
(5)

where P0 and P1 are the predicted results, indicating the num-
ber of voxels in the tumor-free regions and that in the tumor re-
gions, respectively, whereas T0 and T1 are those in the ground
truth. If all the predicted tumor voxels are completely over-
lapped with those in the ground truth, Dice = 1. There are 3
Dice scores for enhancing tumor (ET), tumor core (TC), and
whole tumor (WT), respectively, and the ET Dice score is con-
sidered the most important.

The test results are found in Table 13, in comparison with
those of 4 Unet-based CNNs that requiring moderate level of
computation and are reported in reputed research journals in re-
cent years. The SdcNet for BTD delivers its detection results
significantly better than the other 4 systems, which is, more-
over, achieved with a very small fraction of computation re-
sources needed by others. The computation efficiency of this
SdcNet has been demonstrated.

The data of each patient case are of four 3D images and
each has 155 2D slices. Under the same computing hard-
ware/software conditions specified in Subsection 4.4, the infer-
ence time is 2.64 S the peak memory usage is 352 MB. The
number of Flops required to complete the test of each patient
case is 1562.39M.

6. Conclusion

Aiming at achieving a good processing quality at the lowest
computation cost, SdcNet, a simple CNN architecture for object
recognition, has been proposed in this paper. In its basic block,
called SdcBlock, successive depthwise convolutions (Sdc) are
performed to extract the maximum amount of high-density fea-
ture information from each data channel. To optimize the
functionality of these convolutions, a particular pre-and-post-
convolution data control method has been applied. The pre-
convolution data control is to organize the input data channels
of the module in such a way that the depthwise convolutions
can be performed with a single channel, or multiple channels,
depending on the nature of the data. The post-convolution data
control is to handle the data of different filtering orders, i.e.,
feature data generated by the 2 convolutions and the data trans-
mitted from the input of the module, to enhance the quality of
the convolution results.

SdcNet is mainly composed of cascaded SdcBlocks. Its
structure can be adjusted easily so that each module can be
tuned to suit its input signals in order to optimize the process-
ing quality of the entire network. Six versions of SdcNets have
been developed. Three of them aim at processing input im-
ages of CIFAR format. The simulation results have confirmed
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that, to achieve a given recognition quality, these three SdcNets
require a significantly smaller computation volume than many
pruned networks. They can provide a good processing quality
and be implemented in a computation-restricted environment.
Two other versions have been developed to test the applicabil-
ity of the scheme of SdcNets for images of ImageNet. The test
results have illustrated that, with an adequate adjustment, Sdc-
Nets can be used to perform object recognition tasks with im-
ages of large format and deliver a processing quality in the same
level as those of similar computation complexity. The other ver-
sion of SdcNet is constructed for brain tumor detection. Its test
results confirm not only the applicability of SdcBlock/SdcNet
for the detection but also its superior computation efficiency,
i.e., significantly better processing quality achieved with much
less computation.
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