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Abstract—Pore detection for fingerprint recognition has gained much research attention in recent years, in view of the existence of large 
number of pores in a small fingerprint segment and availability of high-resolution acquisition devices. Current research efforts have focused 
on developing two-part hybrid schemes comprising a CNN architecture to produce a pore intensity map and then use it to determine the pore 
centroids in view of the capabilities in extracting automatic and useful pore features by using a CNN architecture and exploiting the 
knowledge base on pores. However, recent works lack extracting representational features of pores at a reasonable complexity of the CNN 
architecture and using efficiently the available knowledge base on fingerprint pores. In this paper, a new two-part fingerprint pore detection 
scheme is proposed, wherein the first part focuses on developing a CNN architecture capable of extracting highly representational pore 
features and the second part on accurately determining the pore centroids by taking into consideration the inadequacies in fingerprint 
acquisition and distinguishing the spatial characteristics of true and false pores. Extensive experiments are performed to demonstrate the 
distinct characteristics to show the superiority of the proposed scheme in performance and complexity over the existing state-of-the-art pore 
detection schemes. 

Index Terms— Biometrics, convolutional neural network-based pore detection, high-resolution fingerprint image, pore feature extraction.  
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1 INTRODUCTION

urrently, the demand for reliable personal identification 
systems has increased because of concerns about security, 

privacy and identity fraud. Fingerprint has become one of the 
most widely used bio-signatures for personal recognition due to 
its uniqueness, permanence and convenience of use [1]. Finger-
print recognition has been widely used in both civilian and fo-
rensic applications. Fingerprints are identified based on their 
features, which can be divided into three levels [1]: Level 1 
refers to the ridge flow and pattern type. Level 2 is the minutiae 
points, such as bifurcations and endings of the ridges. Level 3 
includes the fine details associated with the ridge, such as ridge 
edge contour, pores, dots and incipient ridges.  

Fingerprint pores are one of the qualitative features that can 
be detected to improve fingerprint recognition precision [2], 
given their immutability and uniqueness in terms of their loca-
tion coordinates. Pores reside on the ridges of the fingertip and 
they differ in shape, size and their positions on the ridges [3]. It 
has been stated in [3] that only around 20-40 pores are suffi-
cient to establish human identity. It has also been observed in 
[3] that in a small segment of the fingerprint image, the number 
of pores along a 1-cm length of a ridge varies from 9 to 18. 
Thus, only a small segment of the fingerprint image is needed 
to have a sufficient number of pores to establish human identity. 
This contrasts to only a few or even none of the minutia points 
that may exist in a small segment of a fingerprint image. This 
fact is a compelling reason for using fingerprint pores as op-
posed to the other levels of fingerprint features, such as ridge 
patterns and minutia points, for fingerprint recognition. Howev-
er, an essential step for carrying out a pore-based fingerprint 
recognition [3], [4], [5], [6], [7], [8], [9], [10], [11], [12] is to 

design an accurate and efficient pore detection scheme. Finger-
print images may have pores that are distorted or may not be 
clearly visible, due to the fully or partially broken ridges, result-
ing from permanent damage in the finger or an imperfect acqui-
sition of the fingerprint image. Consequently, pores can be clas-
sified into two types, either closed pores, i.e., those that entirely 
lies within a ridge or open pores, i.e., those that partially lies 
within a ridge [13], as can be seen in Fig. 1 marked with green 
and yellow circles, respectively. Detecting open pores is more 
challenging than detecting closed pores. The open pores have 
more variations in terms of shape, gradient and orientation. As 
seen from Fig. 1, such pores may be open to the valley from 
one side (such as those marked as 1), two sides (such as that 
marked as 2) or may even exist at a location that looks like the 
beginning and the end of two different ridges (such as that 
marked as 3). These imperfections make detecting the open 
pores more challenging and may result in detecting false pores. 

The process of pore detection used in various schemes can, in 
general, be divided into two parts. In the first part, a pore inten-
sity map is obtained by extracting pore features from a gray-
level input fingerprint image. A pore intensity map is essentially 
a collection of gray-level blobs characterizing the pores of a 
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Fig. 1. Example of a fingerprint image patch with incomplete ridges. Open 

and closed pores are marked by yellow and green circles, respectively. 
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fingerprint image. In the second part, first, the locations of the 
candidate pores are found from the pore intensity map by locat-
ing the coordinates of their centers, and then, by using some 
prior knowledge about the true fingerprint pores, spurious pores 
are removed from the set of candidate pores in order to obtain 
the final set of true pores.  

The most critical step in the first part of pore detection is the 
feature extraction step. Traditionally, in the first part, the pore 
features generated and extracted are handcrafted features. The 
works in [14] and [15] are the two earliest methods of generat-
ing handcrafted pore features, in which the ridges of a binary 
skeletonized version of the fingerprint image are tracked and 
any discontinuity along the ridges are considered to represent 
the presence of a pore when certain criteria are satisfied. In the 
first part of other traditional schemes for pore detection, the 
pore features are first modeled in terms of the orientations of 
the ridges containing the pores and the pore shapes and sizes, 
and then a filter, such as Gabor [3], adaptive DOG and DAPM 
[16], is designed to extract the true pores from the fingerprint 
images. The pore detection performance of the schemes in 
which the pore feature extraction in the first part is based on the 
handcrafted features is very much limited by the modeling ca-
pability of the pore features.  

In view of the fact that convolutional neural networks (CNN) 
have provided a capability of automatically generating and ex-
tracting features, these networks have been used in a wide vari-
ety of applications [17], [18], [19], [20], [21]. This powerful 
characteristic of CNNs has prompted researchers in the bio-
metric community to develop CNN architectures for the task of 
human recognition. Recently, in [22], [23], and [24], authors 
have designed CNN architectures to automatically produce pore 
intensity maps of fingerprint images. The pore intensity maps 
so generated have been shown to provide a pore detection per-
formance that is much superior to those provided by the tech-
niques based on handcrafted features. However, in these 
schemes, little attention has been paid to the design of the net-
work architectures in providing a rich set of pore features, as 
well as to the number of layers and filters employed by the net-
works, which are very important considerations in determining 
the network performance and complexity.  

As mentioned earlier, in the second part of a pore detection 
scheme, the coordinates of the centers of the true pores are de-
termined from the pore intensity map obtained in the first part. 
It is in this part of the pore detection scheme where our 
knowledge of some important characteristics of pores and pore 
fingerprint images can be utilized more efficiently without us-
ing a CNN network in order to obtain accurate values for the 
centroids of true fingerprint pores. In the pore detection 
schemes of [3], [14], [15], [16] and [22], the pore intensity map 
is first binarized using a global threshold value, which converts 
the pore intensity map into a map of white and black regions. 
Then, the center of each white region in the binary map is com-
puted and it is considered to be the coordinates of the center of 
a fingerprint pore. In the pore detection schemes of [23] and 
[24], the pore intensity map is first partitioned into windows. 
Then, a pixel with a maximum intensity inside a window is 
considered to be the center of a fingerprint pore if its intensity is 
found to be larger than a threshold value. In the second part of 
the schemes of [3] and [16], the pore detection process is fur-
ther refined by identifying and removing the false pores. A ma-

jor disadvantage of the second part of all the existing pore de-
tection schemes, traditional or non-traditional, is that all the 
available knowledge regarding the fingerprint pores are not 
taken into consideration and even the knowledge that is taken 
into consideration is not used optimally.  

Personal identification or recognition is required in applica-
tions such as online banking using mobile devices. Thus, a low-
power architecture is necessarily a requirement for the deploy-
ment of a fingerprint biometric identification scheme. In other 
biometric identification applications, such as forensic applica-
tions, the algorithm must be run in real-time. These require-
ments of the biometric applications need the development of 
biometric identification schemes, including those based on the 
pores of fingerprint images, with very low complexity. 

It is in a hybrid (non-traditional) pore detection scheme where 
one can more efficiently exploit the strength of CNNs in ex-
tracting automatic pore features and also use the knowledge 
base on the characteristics of the pores and fingerprint images. 
The objective of this paper is to develop a two-part pore detec-
tion scheme in which for the first part a low complexity deep 
neural network is designed to produce a pore intensity map by 
focusing on the connectivity of its various hierarchical parts 
that result in the extraction of meaningful features leading to a 
highly representational pore intensity map, and for the second 
part, a method is developed for the pore detection by making 
efficient use of the knowledge base on fingerprint pores.  

Since different kinds of features are very important in detect-
ing the pores, the strategy in designing the network is to gener-
ate hierarchically low, middle and high level features and to 
concatenate them to produce a very rich set of pore features. 
The features at each of the three levels are learnt locally in a 
residual framework, which helps in curtailing the gradient van-
ishing problem [25], [26], [27]. By placing emphasis on the 
architecture design of the network for generating an enriched 
set of features, it is possible to keep the number of filters and 
layers low, which results in a low complexity network.     

The second part of the pore detection scheme aims at elimi-
nating the false pores and determining the coordinates of all the 
true pores accurately from the pore intensity map obtained in 
the first part in conjunction with the fingerprint image itself. In 
this part of the pore detection scheme, the knowledge on fin-
gerprint images, such as the pores intensity, their variation from 
one region to another region of the fingerprint image and the 
minimum distance between two neighboring pores, is used to 
accurately detect the pores of a fingerprint image.  

The accuracy of a neural network-based pore detection 
scheme is highly dependent on its ability to extract a very rich 
set of pore features and augmenting this ability with the known 
attributes of fingerprint pores in determining their true locations 
in the image. In this regard, the main contributions of our pro-
posed pore detection scheme are as follows. (i) A new CNN 
architecture is developed to extract low, middle and high level 
features in a residual framework and then concatenate them to 
generate a very rich set of pore features, which leads to a highly 
representational pore intensity map. (ii) The first part of the 
proposed pore detection scheme is essentially a pixel classifica-
tion problem to determine whether or not a fingerprint pixel 
belongs to a pore. The use of depthwise convolution which is 
known to provide a superior classification accuracy [28] is used 
in the design of the CNN architecture of the proposed scheme. 
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In addition, the use of depthwise convolution has led to the 
design of an ultralightweight network. (iii) Since the intensity 
of a pore pixel relative to that of a non-pore pixel varies from 
region to region of a fingerprint image, a locally adaptive 
threshold rather than a global threshold is used to binarize the 
pore intensity map. (iv) Since the center of a pore is affected by 
the intensities of the pixels belonging to the pore, the center of a 
pore is obtained as the mean of the intensity-weighted coordi-
nates of the pixels belonging to the pore region. (v) In order to 
distinguish between a true pore and a false pore, a locally adap-
tive intensity threshold that is determined based on the local 
mean and the variance of the intensities of the pixels belonging 
to the local pore regions is used. (vi) Since a pair of true pores 
observe a certain minimum distance between them, this mini-
mum distance is used to distinguish between true and false 
pores in a pair of neighboring pixels.               

The paper is organized as follows.  In Section 2, a literature 
review of the existing works on the CNN-based pore detection 
schemes is presented. In Section 3, the proposed two-part 
scheme for pore detection are systematically developed, and the 
motivation and rationale behind ideas used in the two parts are 
provided. Section 4 provides experimental results of the pro-
posed and other pore detection schemes when applying it to a 
bench-mark high-resolution fingerprint database. In this section, 
the contribution and the impact of each part of the proposed 
scheme on the overall performance are investigated and the 
results are compared with those of the existing pore detection 
schemes. Finally, some concluding remarks on the study under-
taken in this paper are given in Section 5. 

2 RELATED WORKS IN CNN-BASED PORE 

DETECTION  
As mentioned earlier, all the pore detection schemes have two 

parts, in which the second part is always based on some 
knowledge of the pore characteristics in fingerprint images. 
Based on the first part in which the pore features are extracted 
using a traditional method or a CNN architecture, the pore de-
tection schemes can be categorized as traditional or CNN based 
schemes. Since our proposed scheme belongs to the second 
category, in this section, we briefly review all the existing 
CNN-based pore detection schemes so as to have a better ap-
preciation of the ideas and rationale behind the proposed pore 
detection scheme to be presented in the next section and to un-
derstand the differences between the proposed and these exist-
ing schemes. 

The pore detection scheme of [22] is the first CNN-based 
scheme, in which the first part is based on a simple CNN archi-
tecture. In this architecture, two convolutional layers are em-
ployed using, respectively, 30 filters and one filter, each of ker-
nel size 5×5, and a max-pooling layer with a 3×3 kernel in be-
tween the two layers. For determining the pore centroids in the 
second part of this scheme, a global binary threshold using 
Otsu’s algorithm [29] is first used to convert the gray-level pore 
intensity map into a binary map and then each white region in 
this map is considered to be a pore region if its area is larger 
than a threshold area, which is determined empirically. Finally, 
the coordinates of a pore center are obtained as the mean of the 
coordinates of all the pixels in the respective pore region. In this 
pore detection method, there are a number of factors that lead to 

its performance, which has little improvement over the tradi-
tional schemes. First of all, this scheme uses only a shallow 
network, which relies only on its width to extract the pore fea-
tures. Hence, it is not able to learn the deep high-level features 
of the pores. Since the intensities of the pores vary from one 
region to another region of a fingerprint image, the use of a 
single global binary threshold is not appropriate for the binari-
zation of a pore intensity map, since it will result in inaccurate 
estimation of the pore regions, and therefore, incorrect determi-
nation of the pore centroids. Another factor that affects the ac-
curacy of the pore centroids is due to the fact that a pore cen-
troid is determined using only the coordinates of the pixels in 
the pore region and ignoring the intensity values of the pixels.  

The scheme of [23] is another CNN-based pore detection 
scheme in which a deep network, referred to as DeepPore, con-
sisting of 10 convolution layers is used. Each of the layers in 
this network with the exception of the last one (the reconstruc-
tion layer) uses 64 filters of kernel size 3×3. In the second part 
of the scheme, a spatial filtering-based approach is used to de-
tect the coordinates of the pores directly from the gray-level 
pore intensity map. A pore intensity map is first divided into 
11×11 windows and then the coordinates of the pixels within a 
window with maximum intensity are considered to be the cen-
ters of the pores within that window provided this maximum 
intensity is equal to or larger than a threshold intensity value. 
The same threshold is used for all the windows and its value is 
empirically determined to be 0.25.  In view of the fact that this 
scheme uses a deep network, it is capable of extracting high-
level pore features and provide performance superior to that 
provided by the scheme of [22]. However, this scheme is not 
able to improve the performance further by making the network 
deeper, since the network cannot handle the gradient vanishing 
problem associated with a very deep network. The use of a sin-
gle global threshold for all the blocks and the maximum intensi-
ties of the individual blocks for determining the pore centroids 
should result in ignoring the true pores in fingerprint blocks 
with very low intensity. Also, the use of a single maximum in-
tensity for a given block may result in ignoring some of the true 
pores in that block that do not have their intensities equal to that 
maximum intensity of the block.    

The pore detection scheme of [24] uses a very deep CNN, re-
ferred to as DeepResPore, in its first part. This network em-
ploys a total of 18 convolutional layers, with the first one using 
64 filters each of kernel size 7×7 and the last one (the recon-
struction layer) employing a single filter with kernel size 3×3. 
The main body of this network consists of 8 residual blocks 
each containing two convolutional layers. The kernel size of 
each of the filters used in the residual blocks is also 3×3. The 
number of filters employed in each of the convolutional layers 
of the first two residual blocks is 64 and these numbers are 
doubled in the convolutional layers of the succeeding pairs of 
the residual blocks. The second part of this scheme is the same 
as the one used in the scheme of [23] with the only difference 
of using a smaller size window for the partitioning the pore 
intensity map. The network of this scheme is able to handle the 
gradient vanishing problem in view of its residual architecture. 
Thus, by using a larger number of filters for each layer, this 
network is able to provide a performance much superior to that 
provided by DeepPore. However, this improvement in perfor-
mance is achieved at the expense of very large complexity in 
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terms of the number of parameters and multiply-add operations. 
The disadvantages of this scheme resulting from the second part 
are the same as in the scheme of [23] since they both used the 
same methods in their second parts. 

3 PROPOSED METHODOLOGY 
Fig. 2 shows the block diagram of a neural network-based 

pore detection scheme (hybrid scheme) depicting its two-parts. 
The first part is the pore feature extraction part using a convolu-
tional neural network, and the second part is a postprocessing 
part that determines the centroids of the true pores. The input to 
the pore detection system is a grey-level fingerprint image 𝑿𝒊, 
and the output is a map 𝑿𝒕 showing the centroids of the detect-
ed pores. The first part of the pore detection scheme extracts the 
features at various levels using a neural network from the input 
fingerprint image 𝑿𝒊 and then uses them to constructs a single 
grey-level pore intensity map 𝑿𝒐. The postprocessing part of the 
pore detection scheme is divided into two steps, Step 1 and Step 
2. Step 1 is a pore centroid detection step, which receives the 
pore intensity map 𝑿𝒐 as input and first transforms it into a 
binary pore map in which a value of 1 indicates that the pixel in 
question belongs to one of the pore regions, whereas a value of 
zero indicates that it does not. Using this binary pore map, the 
centroid of each candidate pore is determined. Thus, the output 
of step 1 of the second part of the scheme is the map 𝑿𝒄 giving 
the coordinates of the centroids of each candidate pores. Step 2 
is a pore refinement scheme, in which some of the candidates 
pores falsely detected as pores are discarded to yield a pore map 
𝑿𝒕 representing the coordinates of the centroids of the detected 
true pores. We next develop the proposed neural network-based 
scheme in the framework of the block diagram of Fig. 2. 

 
3.1 Part 1: Pore Feature Extraction 

In this subsection, a CNN model for pore extraction is pro-
posed. The design of this model aims at developing a feature 
extraction process that is robust enough to extract a very rich 
set of pore features in a computationally efficient manner. This 
is achieved through hierarchical feature extraction locally using 
convolutional layers in a residual framework and through their 
concatenative fusion globally.  
   Our objective of developing a very lightweight network with 
the capability of providing a rich set of pore features leading to 
a highly representational pore intensity map is based on the 
following principles. 
1. The network is designed to have three stages, stages 1 to 3, 

that produce, respectively, low, middle and high levels of 
hierarchal pore features. 

2. A concatenative fusion of the three levels of features must 
produce a very rich set of pore features for the construction 
of a highly representational pore intensity map.   

3. Recognition that the generation of a pore intensity map is 
essentially a classification problem, in which each pixel is 
classified to belong or not to belong to a pore region. A 
classification problem can be better served in a convolu-
tional network by using depthwise convolution rather than 
the standard convolution.  

4. A major consequential advantage of depthwise convolution 
is that its use leads to the development of a CNN architec-
ture with a dramatically reduced complexity.  

The proposed network model consists of four stages, as 
shown in Fig. 3. The first three stages carry out the processes of 
feature extraction and their fusion using a local skip connection. 
The last stage performs a global feature fusion of the features 
extracted locally at three hierarchal levels by the first three 
stages. Each of the three feature extraction stages consists of 
two convolution layers, and a module to residually learn the 
features locally. The skip connections used in each of the three 
stages curtail the gradient vanishing problem of a deep network 
[25], [26], [27] leading to better training of the network parame-
ters, and hence, generation and extraction of more accurate 
features. The features produced by stages 1, 2 and 3 can be con-
sidered to be, respectively, the low, middle and high level pore 
features in view of the hierarchical levels of the convolutional 
layers used in these stages. 

In order to achieve sufficient diversity among the extracted 
features of different channels and yet to keep the complexity 
low, we apply eight different 3×3 kernels on the input image 𝑿𝒊 
to obtain eight distinct channels in the first layer of stage 1. 
Each of the eight resulting feature maps of the first layer of this 
stage is operated on by another 3×3 kernel. Thus, the second 
layer of this stage also employs eight different kernels to pro-
duce eight distinct maps. The additive residual fusion of the 
corresponding maps of the two layers then yield the output fea-
ture maps 𝑿𝟏 of the first stage. 

In order to provide further diversity in the extracted features 
while keeping the complexity of the network low, we double 
the number of filters, in each of the other two feature extraction 
stages from that in the previous stage. Specifically, in the first 
layer of stage 2, we apply two 3×3 kernels on each of the eight 
maps of 𝑿𝟏 resulting from stage 1 and one 3×3 kernel in the 
second layer to each of the extracted maps from the first layer 
of this stage. Thus, each of the two layers of stage 2 uses 16 
3×3 different kernels. Similarly, in stage 3, two kernels are ap-

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. The general structure of a neural network-based pore detection 

scheme. The approach takes a fingerprint image as an input and detects the 

true pore coordinates.  
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plied to each of the 16 maps of 𝑿𝟐 and one 3×3 kernel to each 
of the extracted maps from its first layer. Hence, each of the two 
layers of stage 3 employs a total of 32 3×3 different kernels, a 
number that is twice that used by the layers in stage 2. In the 
first three stages, the batch normalization (BN) [30] and the 
non-linear activation function (ReLU) [31] are performed after 
each convolution operation in order to normalize the distribu-
tion of the features produced by the previous layer. 

The main function of the last stage, stage 4, is two-fold. First, 
it should suitably combine the feature maps produced by the 
first three stages so that the significance of the individual fea-
tures is taken into account to produce a pore map. Second, the 
values of the individual features should provide a reasonable 
indication of its likelihood of belonging to a pore. The feature 
maps produced by the different feature extraction stages are 
comparatively more diverse than the feature maps produced 
locally by a single stage. Therefore, a weighted combination of 
the feature maps 𝑿𝟏 , 𝑿𝟐 and 𝑿𝟑 should be carried out. This 
purpose is effectively served by performing a point-wise convo-
lution of the feature map 𝑿𝑪𝒊

=  (𝑿𝟏  𝑿𝟐  𝑿𝟑 )𝑻, since this type 
of convolution provides a mechanism of summation of the cor-
responding pixels in the maps of 𝑿𝑪𝒊

 with weights that are 
learnable. Thus, in our proposed scheme, a point-wise convolu-
tion is performed on 𝑿𝑪𝒊

 using a single filter of kernel size 
1×1×56 pixels in order to produce a single map 𝑿𝑪𝒐

. Now, as 
mentioned earlier, each pixel value of the network output 𝑿𝒐 
must be indicative of its likelihood of belonging to a pore. 

Therefore, a pixel with a large positive value can be regarded to 
belong to a pore with high certainty, whereas a pixel with a 
negative value but a large magnitude can be regarded to belong 
to a pore with very low certainty. On the other hand, the pixel 
values of 𝑿𝑪𝒐

in the neighborhood of zero need some amplifica-
tion for further consideration of their likelihood of belonging to 
a pore. Essentially, this last step of stage 4 in going from 𝑿𝑪𝒐

to 
𝑿𝒐 is a classification problem in which the likelihood of a pixel 
belonging to a pore is determined. In our proposed scheme, we 
achieve this goal by applying a sigmoid activation function [32] 
on 𝑿𝑪𝒐

 to yield 𝑿𝒐. Thus, each pixel value of 𝑿𝒐 lies in the 
range 0 to 1 indicating its likelihood of belonging to a pore. 

 
3.2 Part 2: Postprocessing  

In this subsection, a method is presented for accurately de-
termining the coordinates of all the true pores from the pore 
intensity map 𝑿𝒐 obtained from the proposed pore feature ex-
traction network presented in the previous subsection, while 
attempting to discarding the false pores. This postprocessing 
part of the proposed pore detection scheme consists of two steps 
as shown in the block diagram of Fig. 4. Step 1 consists of an 
image binarization module that transforms the pore intensity 
map 𝑿𝒐 into a binary map 𝑿𝒃 and a pore determination module 
that obtains a candidate pore centroid map 𝑿𝒄 from 𝑿𝒃. Step 2 
consists of a pore refinement process that identifies the true 
pores and removes false pores from 𝑿𝒄 leading to a final pore 
map 𝑿𝒕 containing the centroids of the true pores in the finger-
print image.  

3.2.1 Step 1: Centroid Detection  

A. Image binarization  
Since the pore intensity map 𝑿𝒐 gives only a measure of the 

likelihood of its individual pixels to belong to a pore, it is nec-
essary to differentiate more clearly whether or not a pixel of 𝑿𝒐 
belongs to a pore region by assigning it a distinct binary value. 
Therefore, in order to obtain a binary map 𝑿𝒃 from the pore 
intensity map 𝑿𝒐, we need a suitable threshold 𝑇 so that a pixel 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. The proposed network architecture. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. The structure of the proposed postprocessing part.  
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with a value equal to or greater than 𝑇 could be classified as a 
candidate belonging to a pore region by assigning them a value 
of 1. On the other hand, if a pixel in 𝑿𝒐 has a value less than 𝑇, 
it is assigned a value of 0 and, therefore, regarded not to belong 
to a pore region.  

First of all, it is to be noted that the intensity values in 𝑿𝒐 are 
directly related to the intensity distributions of the various pores 
within a fingerprint image 𝑿𝒊. Even though the majority of the 
pores in the input image 𝑿𝒊 have the same shape and intensity 
pattern, there are always some pores whose shapes and intensity 
values may differ, and hence, the intensity patterns of such 
pores may be different from that of a typical normal pore. The 
distribution of the pixel values in 𝑿𝒐 is necessarily affected by 
such a nonuniformity of the pore shapes and intensity values in 
𝑿𝒊. Thus, if a fixed threshold 𝑇 is chosen for the entire map 𝑿𝒐 
to convert it to a binary map 𝑿𝒃, it may result in classifying 
some of the pixels of 𝑿𝒐 to be falsely classified to belong or not 
to belong to a pore region. Hence, a method for determining the 
threshold must take into account the non-identically distributed 
nature of the pore distribution across the pore intensity map 𝑿𝒐. 
In the following, we describe a scheme for determining a spa-
tially adaptive threshold 𝑇  to binarize the pore intensity map 
𝑿𝒐, that is, it is adaptive from one window to another window 
of 𝑿𝒐. When this threshold 𝑇  is used for the window 𝑙 of 𝑿𝒐, 
then 𝑿𝒐 is converted to a binary map  𝑿𝒃. 

Window-based locally adaptive binarization methods, which 
compute a threshold value for all the pixels within a given win-
dow, based on the information contained on the pixels value 
within the window, exist for applications other than pore detec-
tion. The Niblack algorithm [33] has been successfully used to 
determine a locally adaptive threshold 𝑇  to identify the region 
of an object in document images. In this algorithm, the mean 
𝑚  and the standard deviation 𝜎  in the window 𝑙 are used to 
determine a local value for the threshold 𝑇  to be used for all the 
pixels within the window 𝑙, as 
 
                                     𝑇 = 𝑚 + 𝛽𝜎                               (1) 
 
with the parameters  𝑚  and 𝜎  computed as 

 
𝑚 =  ∑ 𝑝                              (2) 

 

𝜎 =
∑ (𝑝 − 𝑚 )

𝑁                            (3) 

 
where 𝑝  is the gray value of the 𝑘  pixel in the 𝑙  window of 
𝑿𝒐, 𝑁  is the number of pixels in the 𝑙  window, and β, called 
the Niblack factor, is a parameter that controls the effect of the 
local standard deviation in determining the boundary of an ob-
ject. In [33], the value for β was empirically determined to be -
0.2. The use of this fixed value of β (i.e. a non-adaptive value) 
in determining the threshold 𝑇  leads to a successful determina-
tion of the object regions in images that are purely text docu-
ments. In [34], the Niblack factor was also made locally adap-
tive by selecting its value using the expression given by  
 

𝛽 =  −0.3 ×
( )

 , 
                          (4) 

where 𝑚  and 𝜎  are the global mean and standard deviation of 
the entire map. Thus, the Niblack factor 𝛽  is made to change 
from window to window but it remains fixed within a window. 
In this paper, for the purpose of transforming the pore intensity 
map 𝑿𝒐 to a binary map 𝑿𝒃, we employ the adaptive threshold 
𝑇  given by (1) with the adaptive Niblack factor 𝛽  of (4). For 
the sake of simplicity, we use windows of fixed size 𝑁 × 𝑁 for 
the entire pore intensity map 𝑿𝒐, i.e., 𝑁 = 𝑁. The intensity and 
the pore shapes in a typical fingerprint image vary more global-
ly than locally. Therefore, choosing a large window size would 
fail to capture this global variation in the fingerprint image. On 
the other hand, choosing a small size window would result in 
classifying the regions of the fingerprint image with noise as 
pore regions. Also, a small window size would adversely im-
pact the processing time. Hence, the window size should be 
chosen suitably. 
 
B. Determination of centroids of candidate pores 

A single pore belongs to a specific region in the fingerprint 
image. The pixels belonging to this region cannot be discon-
nected. Therefore, typically a region of the binary map 𝑿𝒃 that 
has, say, 𝑁  pixels with the values of 1 and are connected can 
be considered to be a single pore region. However, it should be 
pointed out that this definition of pore region is not absolutely 
accurate, since for instance, if 𝑁  is too small, the region may 
or may not considered to be a pore region, in view of the fact 
that a connected region of 𝑿𝒃 with too few pixels could possi-
bly be noise. On the other hands, if 𝑁  is too large, it may be a 
situation where the region in question may be a region corre-
sponding to two or more pores merged together. As to how such 
regions of the binary map are dealt with will be discussed in the 
next subsection. For the time being, we will consider a set of 
pixels of 𝑿𝒃 that have a binary value of 1 and are connected to 
represent the region of a single pore. Detection of a pore means 
finding the coordinates of a pixel in the corresponding pore 
region that can be used to describe the physical location of the 
pore. In the previous works, pore centroids have been used to 
describe the locations of the pores. The centroid of a pore has 
been computed using only the coordinates of the pixels that 
belong to the pore region. However, the human visual system 
while determining the location of a pore focuses not only on the 
geometric center of the pore but it is also influenced by the in-
tensity variation of the pixels in the pore region. Hence, the 
pore centroid is not a very accurate representation of the pore 
location. Consequently, in our scheme, the pore location is rep-
resented by its weighted centroid. We compute the weighted 
centroid by using the physical geometry of the pore region de-
fined as a set of pixels that have a value of 1 and are connected 
in the binary map 𝑿𝒃 as well as the pore intensity information 
of the underlying pixels from the fingerprint image itself. Ac-
cordingly, the weighted centroid (𝑋, 𝑌) of a candidate pore is 
computed as 

(𝑋, 𝑌) =  
∑ ( )

∑
,

∑ ( )

∑
                (5) 

 
where(𝑋 , 𝑌 ) represents the coordinates of the 𝑣  pixel in the 
pore region of the candidate pore from the binary map 𝑿𝒃, 𝑃  is 
the pixel gray value of the corresponding pixel in the input im-
age 𝑿𝒊, and 𝑁  is the number of pixels within the pore region of 
the candidate pore. This process of determining the weighted 
centroids of the candidate pores results in the map 𝑿𝒄 which 
consists of the locations of the detected candidate pores. 
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3.2.2 Step 2: Pore Refinement Process 

In principle, one would expect that a fingerprint image has as 
many pores as the number of pore centroids in the map 𝑿𝒄. 
However, in practice each centroid in 𝑿𝒄 does not necessarily 
represent a true pore. In order to distinguish between true and 
false pores, we first make certain observations on the true pores 
in ground truth fingerprint images that will help in distinguish-
ing a true pore from a false one.  

The first observation is that a true pore has a distance from its 
nearest neighbor which varies from pore to pore. Fig. 5 shows 
an example of a ground truth fingerprint image. In this figure, 
the nearest neighbor of pore 1 is pore 2 and that for pore 3 is 
pore 4. It is seen from this example that the distance between 1 
and 2 is different from that between 3 and 4.  Fig. 6 shows the 
histograms of the frequency (numbers) of pores whose Euclidi-
an distance from its nearest neighbor falls in a given range in all 
the 30 ground truth images of the Poly High-Resolution Finger-
print database [35]. For example, there are 1,287 pores in all the 
fingerprint images in this database that have Euclidian distances 
that lie in the range [11,12) from their nearest neighbors. It is 
seen from Fig. 6 that in none of the fingerprint images in this 
database there is a pore with a Euclidian distance less than 4.12 
from its nearest neighbor.  We denote this minimum distance by 
𝑑 . Hence, in a weighted centroid map 𝑿𝒄,  if a pair of neigh-
boring pores is detected with Euclidian distance less than 𝑑 , 
both the pores in the pair cannot be simultaneously regarded to 
be true pores. Note that the conclusion of 𝑑 = 4.12 is reached 
based on 12,767 pores contained in the images of Poly High-
Resolution Fingerprint database. We believe that the same con-
clusion would be valid for the pores in the fingerprint images 
from any other dataset with the value of  𝑑  multiplied by a 
factor equal to the ratio between the resolution level of the im-
ages in the dataset considered in our study and that of the imag-
es in the other dataset. 

The second observation is that, in different windows of a fin-
gerprint image, there could be significant differences in the 
average intensities of their pores as well as in the variation of 
the intensities of the pores from the average intensity of the 
pores within the window. Fig. 7 shows two windows each of 
size 40×40 of a fingerprint image. It is seen from the fingerprint 
window in Fig. 7 (a) that the mean intensity of its pores is 77.3 
and the variation of the pore intensities from this mean, repre-
sented by the standard deviation, is large. On the other hand, it 
is seen from the fingerprint window of Fig.7 (b) that the mean 
intensity of its pores is smaller, and the variation of the pore 
intensities is also larger. 

Both of the above observations could be used to distinguish 
true and false pores in a fingerprint image, and therefore, the 
weighted centroid map 𝑿𝒄 could be refined by eliminating from 
it some of the centroids that correspond to false pores. The first 
observation that gives rise to the parameter 𝑑  can be used to 
require the Euclidian distance between a pair of centroids in 
𝑿𝒄 to have a minimum value 𝑑  for both the pores in the pair 
to be true pores. Based on the second observation, the mean and 
standard deviation values of the pore intensities in a given win-
dow in 𝑿𝒄 have values that vary from window to window. 
Therefore, if the intensity of a pore in any given window has a 
value that is much smaller than the mean intensity of the pores 
in the window, then such a pore cannot be regarded to be a true 
pore, and hence, its centroid must be removed from 𝑿𝒄. For the 
purpose of deciding whether the intensity of the pore is much 

 
Mean = 77.3, STD = 9.85 

(a) 

 
Mean = 65.9, STD = 10.1 

(b) 
Fig. 7. Input fingerprint images with the intensity values of the true pores 

from the ground truth.  

 
Fig. 5. Two different pairs of true pores and their corresponding Euclidian 

distance value in the ground truth fingerprint image.  

 
Fig. 6. A histogram of the minimum distance between two nearest pores in all 

fingerprint images of Poly High-Resolution Fingerprint database.  
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smaller than the mean intensity of the pores within the window, 
its local standard deviation can be used. We now develop a cri-
terion for each of the two observations to use it for refining 𝑿𝒄. 
 
A. Procedure for identifying and removing false pores from 𝑋  

using the 𝑑  criterion 
In this section, we develop a systematic procedure for identi-

fying as many false pores as possible in the pore map 𝐗𝐜 based 
on the minimum distance criterion between a pair of pores. We 
describe our procedure through an illustrative example. For this 
purpose, we make use of a manually constructed pore map 𝐗𝐜 
rather than a pore map corresponding to a natural fingerprint 
image so that all the different possibilities of pores can be illus-
trated through a single example.  Fig. 8 (a) shows one such pore 
map 𝐗𝐜 with 16 centroids numbered 1 to 16. 

 
Our objective is to construct from this pore map 𝐗𝐜 a refined 
pore map 𝐗𝒅𝒎𝒊𝒏

(Fig. 8(c)) from which all the candidate pores in 
𝐗𝐜 that do not satisfy the minimum distance requirement are 

removed. Initially 𝐗𝒅𝒎𝒊𝒏
is set to be 𝐗𝐜. Then, starting from pore 

1, we determine its Euclidian distance ED (1, j) to all the other 
pores j ( j=2,…,16) and choose the pore that has the minimum 
distance from pore 1 as its nearest neighbor using the centroid 
values Pck (k=1,..,16). In the example considered, the nearest 
neighbor of pore 1 is found to be pore 5. This is shown in Fig. 
8(b) by connecting pore 1 to pore 5 with a green arrow directing 
from the former pore to the latter with the minimum distance of 
5.9 indicated on the arrow. Since ED (1,5) between these two 
pores is larger than 𝑑 = 4.12, both these pores are retained 
in 𝐗𝒅𝒎𝒊𝒏

. The same procedure is followed for pores 2 and 3 to 
find their nearest neighbors, pores 4 and 5, with ED (2,4) = 9 
and ED (3,5) =5.1. It is noted that these pairs of pores also do 
not violate the minimum distance criterion, and hence, they are 
also retained in 𝐗𝒅𝒎𝒊𝒏

.  For the next pore, i.e., pore 4, the nearest 
neighbor is found to be pore 7 with ED (4,7) = 3.5, which is less 
than  𝑑 . Therefore, one of these pores in this pair must be 
removed from 𝐗𝒅𝒎𝒊𝒏

. In order to decide as to which pore in the 
pair has to be removed, we determine their pore intensities γ4 

and γ7. The intensity of a pore j is found to be the average of the 
intensities of all the pixels in a 3×3 window centered at the 
centroid of pore j in the original fingerprint image 𝐗𝒊 corre-
sponding to 𝐗𝐜. The intensity values γ4 and γ7 for pores 4 and 7 
are, respectively, found to be 61.6 and 52.4, as indicated in Fig. 
8(b). Since γ7 is less than γ4, pore 7 is removed from 𝐗𝒅𝒎𝒊𝒏

 of 
Fig. 8(c). As pore 7 was the nearest neighbor of pore 4 and it 
has been removed, we need to find a new nearest neighbor of 
this latter pore. The new nearest neighbor of pore 4 is found to 
be pore 2 with ED (4,2) =9 indicated by a blue arrow in Fig. 
8(b).  Since ED (4,2) >𝑑 , pore 4 is still retained in 𝐗𝒅𝒎𝒊𝒏

. 
Next, since pore 5 does not violate the minimum distance crite-
rion, it is retained in 𝐗𝒅𝒎𝒊𝒏

. As for pore 6, its nearest neighbor is 
pore 9 with ED (6,9) = 2.7 < 𝑑 . Since γ6 =65.1 and γ9 =50.4, 
pore 9 is removed from 𝐗𝒅𝒎𝒊𝒏

 and the new nearest neighbor of 
pore 6 is found to be pore 8. However, since ED (6,8) = 3.8 is 
also less than 𝑑 , the pore in the pair with the lower intensity, 
i.e., pore 8, is removed from 𝐗𝒅𝒎𝒊𝒏

. Thus, we find the third 
nearest neighbor of  pore 6, which is pore 3 with ED (6,3) =10.5 
>𝑑 , indicated by a purple arrow, and consequently, both 
pores 6 and 3 are retained in 𝐗𝒅𝒎𝒊𝒏

. Since pores 7, 8 and 9 are 
already removed from 𝐗𝒅𝒎𝒊𝒏

, next, we consider pore 10. For 
this pore, the nearest neighbor is pore 11 with ED (10,11) =3.3 
<𝑑 , and since γ11 < γ10, pore 11 is removed from 𝐗𝒅𝒎𝒊𝒏

. 
Thus, we find the next nearest neighbor of  pore 10, which is 
pore 16 with ED (10,16) =7 >𝑑 , and consequently, both 
pores 10 and 16 are retained in 𝐗𝒅𝒎𝒊𝒏

. For the next pore, i.e., 
pore 12, the nearest neighbor is pore 13 with ED (12,13) =5.2 
>𝑑 , and thus, it is retained in 𝐗𝒅𝒎𝒊𝒏

. Next, the nearest 
neighbor of pore 13 is found to be pore 15 with ED (13,15) =3.4 
<𝑑 , thus, the pair of pores in question violating the mini-
mum distance criterion. However, since in this case γ13 = γ15 = 
46.6, we remove the first pore in the pair, i.e., pore 13, from 
𝐗𝒅𝒎𝒊𝒏

. The last three pores, i.e., pores 14, 15 and 16, as seen 
from Fig. 8(b), do not violate the minimum distance criterion, 
and hence, retained in 𝐗𝒅𝒎𝒊𝒏

. After taking into consideration all 
the pores in Fig. 8(b) and removing all those that violate the 
minimum distance criterion, 𝐗𝒅𝒎𝒊𝒏

 shown in Fig. 8(c) is the 
final composition of the refined pore map. 

The procedure for identifying the false pores by applying the 
minimum distance criterion and removing the corresponding 
centroids from 𝑿𝒄 is given in Algorithm 1.  This algorithm pre-

 
(a) An example of a pore map 𝑋  with 16 candidate pores. 

 
(b) Pore graph corresponding to 𝑋  of the example in (a) with the distances 

of the nearest neighbors specified. 

 
(c) Pore map 𝑋  corresponding to the pore map 𝑋  in (a) after applying 

the 𝑑  criterion. 
 

Fig. 8. Illustrations of the proposed refinement of the first criterion.  
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sents our procedure for identifying and removing the false pores 
from 𝑿𝒄 by applying the 𝑑  criterion. The input to this algo-
rithm is 𝑿𝒊 , 𝑿𝒄 and 𝑑 , and the output is the refined pore 
map 𝐗𝒅𝒎𝒊𝒏

 in which the centroids in 𝑿𝒄 corresponding to the 
pores not satisfying the 𝑑  criterion has been removed.  

 
B. Procedure for identifying and removing the false pores from 

𝑋  based on the criterion of local mean and standard devi-
ation 

In this section, we develop a procedure for identifying as 
many false pores as possible in the pore map 𝐗𝒅𝒎𝒊𝒏

 based on the 
local means and standard deviations of the pores corresponding 
to the centroids still remaining in the map 𝐗𝒅𝒎𝒊𝒏

 after carrying 
out the procedure of Section 3.2.2.A. Generally, the intensity of 
a false pore is lower than that of a true pore in a given neigh-
borhood of the fingerprint image. The standard deviation of the 
pore intensities is an indication of the degree by which the in-
tensity of a true pore could be lower than the mean intensity in 
the neighborhood. In our method for removing a false pore, we 
require that its intensity must be less than a threshold value 
given by 𝑡 =  ɱ − 𝑐б, where ɱ and б are the mean and stand-
ard deviation of the pore intensities within a given neighbor-
hood of the fingerprint image and 𝑐 is a parameter that needs to 
be determined suitably. We determine the value of 𝑐 empirically 
for the entire dataset. The images of the dataset are divided into 
𝑊 × 𝑊 windows. First, for a given image in the dataset, we 
determine a value of 𝑐 so that the accuracy that all the pores 
removed from that image are indeed false pores is more than 
96%. Then, a value 𝑐 =1.12 that is the average of the values 
of 𝑐 so determined for the individual images is used to remove 
pores from each of the windows of a test image. Removing all 
the false pores from 𝐗𝒅𝒎𝒊𝒏

 using this procedure results in the 
final pore map 𝐗𝒕.  

4 EXPERIMENTAL RESULTS  
In this section, first, the dataset used and the procedure for the 

training of the proposed network along with the software and 
hardware platforms and the figures of merit for the evaluation 
procedure of the proposed and other schemes considered are 
described. Then, the results of the various experiments per-
formed using the proposed pore detection scheme are presented 
and analyzed, and its performance is compared with that of the 
existing state-of-the-art schemes for pore detection. 

4.1 Training Details and Evaluation Procedure 
In our experiments, images from the PolyU High-Resolution-

Fingerprint (HRF) database [35], are used for the training and 
testing of the proposed network and for the comparison of its 
performance with that of the other networks. The images in this 
database are acquired using an optical touch-based sensor de-
vice. The database has 30 fingerprint images of size 240×320 
pixels with a resolution of 1200 dpi. The database also has a 
ground truth set containing the coordinates of the central posi-
tion of each pore of the fingerprint images, as perceived by 
human experts. This ground truth set contains a total of 12767 
coordinates of the pores in all the fingerprint images in the da-
tabase. 

The fingerprint images are divided into training and testing 
sets using k-fold cross-validation [36] with k = 5. Therefore, in 
our experiments, we have five different training and testing 
sets. As in [22], [23] and [24], we make sure that none of the 6 
fingerprint images in each of the 5 testing sets are repeated and 
they are different from those in other testing sets. Thus, we have 
five different training models of the proposed network each of 
which is evaluated using a unique testing set. The results of the 
five evaluations are then averaged to obtain the performance of 
the network.  

In the proposed network, we generate a labeled pore intensity 
map corresponding to a ground truth fingerprint image by set-
ting all the pixel values in the 3×3 window centered at the co-
ordinates of each true pore of the ground truth image to 1, and 
setting all the remaining pixels in the ground truth image to a 
value of 0. The fingerprint images in the training set as well as 
in their corresponding labels are partitioned into 𝑝 × 𝑝  patches 
using a random patch extraction with overlapping method [37], 
which ensures that each patch stays inside the image and all the 
patches together in an image cover the entire image. Therefore, 
in this method, regardless of the value of p, there does not exist 
a boundary problem. A set of 142,800 patches is obtained by 
randomly extracting 5,950 patches in each of the training fin-
gerprint images. Some of the patches of a fingerprint image 
may overlap, i.e., the patches may contain the same part of a 
fingerprint image. During the testing phase, however, each test 
image is partitioned into non-overlapping patches of size 𝑝 × 𝑝. 
In this case, depending on the value 𝑝, there may exist a situa-
tion in which a patch may not lie totally inside the image in 
order for all the pixels of the image to be covered by one or 
more patches. If in the formation of a patch on the boundary, 
there are not sufficient number of pixels within the image, then 
the boundary pixels are simply repeated to complete the for-
mation of that patch. It should be pointed out that the same val-
ue of 𝑝 is used both in the training and testing phases of the 
network. In the testing phase, the network outputs a pore map 
corresponding to a single patch of the given input test image. 
When the pore maps of all the patches of a test image have been 
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obtained, they are placed in a non-overlapping manner to com-
pose a pore intensity map corresponding to that test input im-
age. Data augmentations [38] of the patches through their rota-
tions by 90o and 180o, flipping and Gaussian blurring are uti-
lized to enrich the training dataset and boost the network per-
formance. The convolution kernels with spatial support of 𝑠 × 𝑠 
are randomly initialized with a Gaussian distribution having a 

zero mean and a variance of  , where n is the layer width. A 

binary cross-entropy loss function is optimized to train the pa-
rameters of the network. The binary cross-entropy loss function 
given by [39] 
 

𝐿 = − ∑ (𝑦 ⋅ log(𝑦 ) + (1 − 𝑦 ) ⋅ log(1 − 𝑦 ))     (6) 

 
where  𝑦  represents the ith labeled patch in a batch of size 
𝑁  and 𝑦  represents the corresponding predicted patch, is used 
to train the network. We employ the stochastic gradient descent 
(SGD) algorithm with the Nesterov acceleration scheme [40] to 
update the parameters and minimize the loss. In our training, 
the momentum parameter and initial learning rate are set as 0.9 
and 0.1, respectively, and the learning rate is decreased by 0.01 
after every 10 epochs until the rate becomes 0.01, beyond 
which it is not decreased farther. The network is trained with a 
batch size of 34 and a maximum number of 100 epochs. The 
facts that the proposed network is not very deep, it contains a 
modest number of parameters, the high-resolution training im-
ages help the training process [41], [42], [43], and that each 
training image is undergone through different kinds of augmen-
tations, a training set constructed using the 24 fingerprint imag-
es is sufficient to adequately train the proposed pore detection 
network. The experiments are performed in a Python environ-
ment on a supercomputer with 2.2 GHz Intel E5-2650 v4 
Broadwell CPU, 125 GB RAM and NVIDIA P100 Pascal (12G 
HBM2 memory) GPU.  

The figures of merit that are used for the performance evalu-
ation are as follows:  
1. True detection rate (RT), which represents the ratio of the 

number of the true pores detected to the number of actual 
true pores present in the ground truth of a fingerprint image 
[16].  

2. False detection rate (RF) indicates the ratio of the number 
of false pores detected to the total number of detected 
pores [16].  

3. The number of the parameters used in the CNN and the 
number of FLOPs, which indicate the computational cost 
of the CNN network. 

The optimal values for RT and RF are one and zero, respec-
tively. High true detection rate and low false detection rate are 
indicative of a superior performance of the pore detection sys-
tem, and small standard deviations of RT and RF represent a 
good robustness of the system.  

4.2 Performance Evaluation 
The objective of this section is to study the performance of 

the proposed pore detection scheme and compare it with that of 
other schemes in the literature. We conduct this study in three 
parts. In the first part, we study the impact of the patch size of 
the images and the depth of the network on the performance of 
the proposed scheme. In the second part, we study the influence 
of replacing either the proposed network or the proposed post-
processing method with the one used in other neural network-
based schemes. In the third part, we compare both the quantita-
tive and qualitative performance of the proposed scheme with 
those of the other schemes that are neural network-based or 
otherwise. The computational times of the network part and the 
postprocessing part of the proposed scheme along with its net-
work complexity are also compared with those of the other 
network-based schemes. 

In the first part of the performance evaluation, we first per-
form experiments on the proposed scheme by using different 
patch sizes of the input images in the dataset as input to the 
proposed network. Once the pore intensity maps for all the test 
images have been obtained, we move on to the second part of 
the proposed scheme that uses the hyperparameters 𝑁 ( the 
window size used in the binarization step) and 𝑊 (the window 
size used in the refinement step). In this part of the scheme, for 
a test image, the pore intensity map obtained from the network 
patches trained by using the patches of a given size 𝑝 is then 
used to obtain 𝐗𝒕 using a given value of the parameter 𝑁 and a 
given value of the parameter 𝑊. Using this final map of pore 
centroids, the values of RT and RF are obtained for a given test 
image. These values of the metrics are averaged over 30 test 
images. We have performed the experiments on the proposed 
scheme using different values for the patch size 𝑝 (10, 20, 30, 
40, 50, 60, 70, 80, 90, and 100) in Part 1 of the scheme and for 
each value of 𝑝 with various values of the hyperparameters 𝑁 
(20, 30, 40, 50, and 60) and 𝑊 (40, 50, 60, 70, and 80) in Part 
2. Table 1 lists the average values of RT and RF and their stand-
ard deviations for each of the patch sizes used for the network 
training and testing, but only for those particular values of 𝑁 
and 𝑊 that provide the best performance in terms of RT and RF 
for that patch size. From this table, it is seen that the proposed 
scheme of pore detection provides the best performance in 
terms of RT and RF for 𝑝 =40, 𝑁 =40 and 𝑊 =60.  Table 1 also 

TABLE 1 
PERFORMANCE OF THE PROPOSED SCHEME WITH DIFFERENT PATCH SIZES OF THE IMAGES INPUT TO THE NETWORK 

Patch size 10 × 10 20 × 20 30 × 30 40 × 40 50 × 50 60 × 60 70 × 70 80 × 80 90 × 90 100 × 100 

Hyperparameters 𝑁 =  50 

𝑊 = 60 

𝑁 =  40 

𝑊 = 60 

𝑁 =  50 

𝑊 = 70 

𝑁 =  40 

𝑊 = 60 

𝑁 =  60 

𝑊 = 80 

𝑁 =  60 

𝑊 = 80 

𝑁 = 40 

𝑊 = 60 

𝑁 =  40 

𝑊 = 80 

𝑁 =  40 

𝑊 = 60 

𝑁 = 60 

𝑊 = 70 

RT 
 

(σ) 

91.84 

 (1.32) 

93.16 

(1.48) 

95.97 

(1.49) 

96.69 

(1.52) 

96.51 

(1.83) 

96.43 

(1.99) 

95.93 

(2.57) 

95.51 

(2.74) 

94.22 

(3.2) 

93.96 

(3.51) 
RF  

 
(σ) 

10.02 

 (3.22) 

6.55 

(1.97) 

4.15 

(1.41) 

4.18 

(1.44) 

4.2 

(1.9) 

4.68 

(1.83) 

5.33 

(2.41) 

5.87 

(2.6) 

6.05 

(3.95) 

7.04 

(4.02) 
Number of 

FLOPs 0.495M 0.99M 1.485M 1.98M 2.475M 2.97M 3.465M 3.96M 4.455M 4.95M 
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provides the network complexity in terms of the number of 
floating-point multiplication-addition operations (FLOPs). It is 
worth noting that the increase in the number of FLOPs by using 
a patch size beyond 40 × 40 actually results in deteriorating the 
performance of the scheme. Therefore, 40 × 40 is the optimum 
patch size for the best performance of the proposed scheme.  

Next, we perform an experiment on the proposed network in 
which its depth is increased by adding additional feature extrac-
tion stages.  The results are shown in Table 2. It is seen from 
this table that as the number of feature extraction stages in the 
network is increased beyond three stages, the improvement in 
its performance is only minimal. However, its complexity in 
terms of the number of FLOPs increases very significantly. 
Specifically, the number of FLOPs increases by more than 4 
and 11 times when the number of feature extraction stages is 
increased to 4 and 5, respectively. On the other hand, if the 
number of feature extraction stages is reduced to two, the per-
formance of the network is severely affected. Thus, the network 
provides optimum performance with three feature extraction 
stages.  

In the second part of the performance evaluation, we examine 
the impact of the proposed network and the proposed postpro-
cessing method individually on the performance of the pro-
posed pore detection scheme, as well as on the performances of 
the neural network-based schemes of [22], [23] and [24]. Table 
3 provides the results of this study in terms of the performance 
metrics RT and RF. The results in this table are divided into four 
blocks corresponding to the proposed and the schemes of [22], 
[23] and [24]. In each of the blocks 2, 3 and 4, the performance 
results of the corresponding scheme along with that of the same 
scheme in which either its network or its postprocessing method 
is replaced by the one proposed in our scheme. By comparing 
the first lines in each of the blocks of this table, it is observed 
that the proposed scheme gives the best performance among all 
the neural network-based schemes. By comparing the results of 
the first and second lines of the blocks 2, 3 and 4 of this table, it 
is seen that each of the schemes of [22], [23] and [24] can sig-
nificantly benefit if the networks of these schemes are replaced 
by the proposed network. Similarly, by comparing the results of 
the first and third lines of the blocks 2, 3 and 4, it is seen that 
each of the schemes of [22], [23] and [24] can improve the per-
formance if its postprocessing method is replaced by the pro-
posed postprocessing method. In summary, the study of this 
experimental part clearly shows that both the proposed network 
and the postprocessing method have a significant impact on the 
performance of the proposed pore detection scheme.  

In the third part of our experimental study, we compare the 

quantitative and qualitative performance of the proposed pore 
detection scheme with that of both the traditional schemes and 
neural network-based schemes. The traditional schemes that are 
used for comparison are those reported in [3] and [16], whereas 
the neural network-based schemes are the same as those used in 
Table 3, i.e., the schemes of [22], [23] and [24].  Table 4 gives 
the pore detection accuracy in terms of RT and RF provided by 
the various schemes. It is seen from this table that, as in the 
case of other neural network-based schemes with the exception 
of that reported in [22], the proposed scheme outperforms the 
traditional schemes by significant margins. It is to be pointed 
out that, since the network in [22] relies only on the network 
width to extract the pore features, it is not able to learn the high-
level features, and hence, this network is not able to provide 
much improvement over the non-neural network-based meth-
ods. As already noted from Table 3, the proposed scheme pro-
vides performance much superior to that provided by the other 
neural network-based schemes. Table 4 provides the perfor-
mance results using both with and without the pore refinement 
process introduced in Section 3.2.2. Note that the pore refine-
ment process was intended to reduce the number of false pores. 
It is seen from the performance results given in Table 4 that this 
objective is achieved by providing the value of RF that is almost 
one-half of that provided without using the pore refinement 
process while maintaining almost the same value for RT. 

Table 5 demonstrates the average run times per image of the 
various CNN-based pore detection schemes for Parts 1 and 2 of 
the schemes individually as well as together. All the schemes 
have been implemented in the same software and hardware 
environment of the proposed scheme as stated in Section 4.1. It 
is seen from this table that the time complexities of the second 
part of all the four schemes are about the same. On the other 
hand, the proposed scheme takes a significantly lower time for 
its first part in comparison to the times taken by the other three 
schemes. This table also provides information on the complexi-

TABLE 3 
COMPARISON OF PERFORMANCES OF THE PROPOSED AND OTHER NEURAL 

NETWORK-BASED SCHEMES 

 

TABLE 4 
PERFORMANCE COMPARISON AGAINST STATE-OF-THE-ART METHODS 

 

TABLE 2 
PERFORMANCE OF THE PROPOSED SCHEME WITH VARIOUS NETWORK 

DEPTHS  

Scheme Detail of the scheme RT (σ) RF (σ) 

Proposed scheme Proposed network + proposed postprocessing 96.69 (1.52) 4.18 (1.44) 

Scheme [22] 

Modified scheme [22] – 1 

Modified scheme [22] - 2 

Network of [22] + postprocessing of [22] 

Proposed network + postprocessing of [22] 

Network of [22] + proposed postprocessing 

84.69 (7.81) 

93.19 (3.04) 

88.21 (6.03) 

15.31 (6.2) 

7.88 (3.55) 

5.46 (2.74) 

Scheme [23] 

Modified scheme [23] – 1 

Modified scheme [23] – 2 

Network of [23] + postprocessing of [23] 

Proposed network + postprocessing of [23] 

Network of [23] + proposed postprocessing 

93.09 (4.63) 

95.47 (2.58) 

94.81 (3.05) 

8.64 (4.15) 

6.52 (3.56) 

4.53 (2.07) 

Scheme [24] 

Modified scheme [24] – 1 

Modified scheme [24] - 2 

Network of [24] + postprocessing of [24] 

Proposed network + postprocessing of [24] 

Network of [24] + proposed postprocessing 

94.49 (5.41) 

95.89 (2.42) 

95.22 (3.15) 

8.5 (4.4) 

6.42 (3.41) 

4.38 (2.10) 

Scheme RT (σ) RF (σ) 
Gabor Filter [3] 75.90 (7.5) 23.00 (8.2) 

DoG [16] 80.80 (6.5) 22.20 (9.0) 

DAPM [16] 84.80 (4.5) 17.60 (6.3) 

Labati et al. [22] 84.69 (7.81) 15.31 (6.2) 

DeepPore [23] 93.09 (4.63) 8.64 (4.15) 

DeepResPore [24] 94.49 (5.41) 8.5 (4.4) 

Proposed without Refinement 96.85 (1.53) 8.69 (2.12) 

Proposed with Refinement 96.69 (1.52) 4.18 (1.44) 

Number of 
Feature extraction 

stages 

RT (σ) RF (σ) Number of 
FLOPs 

2  91.68 (4.93) 6.62 (5.10) 0.86M 

3  96.69 (1.52) 4.18 (1.44) 1.98M 

4  96.89 (1.5) 4.03 (1.41) 9.49M 

5  96.95 (1.49) 3.95 (1.40) 22.15M 
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ty of the various neural network-based schemes in terms of the 
number of parameters and the number of FLOPs. Note that the 
number of parameters and the number of FLOPs refers only to 
the numbers used by the network parts of these schemes. It is 
particularly important to note that the superiority in perfor-
mance by the proposed scheme is achieved along with its very 
significantly lower complexity. Specifically, the number of pa-
rameters and the number of FLOPs of the network in the pro-
posed scheme are several orders of magnitude lower than those 
of the network in the scheme of [24], the best performing 
scheme in the literature. 

Fig. 9 shows the qualitative performance of the proposed 
scheme and the schemes of [23] and [24] by providing visual 
illustrations of the pores detected. Fig. 9 (a) shows an original 
fingerprint image from the HRF dataset, whereas Figs. 9 (b), (c) 
and (d) show the results of the pore detection by the three 
schemes. In this figure, the pores shown in green, red and yel-
low colors represent, respectively, true positive, false positive 
and false negative pores. It is seen from this figure that the pro-
posed scheme is more successful in detecting the true pores by 
providing only one false positive pore and much fewer false 
negative pores than that provided by the other two schemes. 

5 CONCLUSION 
The process of pore detection can be divided into two parts. 

In the first part, a pore intensity map is obtained by extracting 
the pore features from a gray-level input fingerprint image, 
whereas in the second part, the centroids of all the true pores in 
a fingerprint image are obtained from the pore intensity map. In 
recent years, pore detection schemes have been developed using 
a hybrid approach, in which a convolutional neural network 
architecture is used to obtain the pore intensity map in the first 
part of the schemes to provide a detection accuracy much high-
er than that provided by the traditional schemes. However, these 

schemes do not perform well in the presence of incomplete and 
distorted pores in the fingerprint image, in view of the fact that 
(i) the networks, despite their large complexity, are still not able 
to learn all the relevant pore features, and (ii) the second part, 
i.e., the postprocessing part is not able to take into consideration 
fully and efficiently the existing knowledge on the pores and 
pore fingerprint images. In this paper, a high-performance ul-
tralight hybrid pore detection scheme has been developed. In 
the first part, a neural network architecture has been developed 
to generate and extract low, middle and high level hierarchical 
features in a residual framework and then to fuse them to obtain 
a very rich set of pore features that lead to a highly representa-
tional pore intensity map. In this part, the goals of high-

TABLE 5 
COMPARISON OF AVERAGE TIME PER IMAGE AND NETWORK COMPLEXITY OF THE PROPOSED AND OTHER NEURAL NETWORK-BASED 

SCHEMES 

 
 
 
 
 
 
 
 
 
 
 
 

        
(a)                                                                              (b) 

 
 
 
 
 
 
 
 
 
 
 
 

        
(c)                                                                              (d) 

 
Fig. 9. (a) Original fingerprint image. The pore detection results of (b) DeepPore (c) DeepResPore (d) Proposed work. The green, yellow and red dots in 

these images represent the true positive, false negative and false positive, respectively. 
 

Scheme parts 
𝑇𝐶𝑁𝑁  (ms) 

Part 1: 
Neural Network 

𝑇𝑃 (ms) 
Part 2: 

Postprocessing 
𝑇𝑇  (ms) 

Number of 
Network Parameters 

Number of 
FLOPs used by Network 

Labati et al. [22] 2.76 15.54 18.3 1,531 50.03M 

DeepPore [23] 29.85 16.1 46.36 297,361 335.12 M 

DeepResPore [24]  218.02 16.24 234.67 11M 70,438.1M 

Proposed scheme 1.08 15.92 17 1,288 1.98M 
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performance and low complexity have been achieved by de-
signing the network based on depthwise convolutional layers. 
The focus in the second part of the pore detection scheme has 
been on efficient use of the existing knowledge on fingerprint 
pores, such as the pore intensity, their variations from one re-
gion to another region of the fingerprint image and the mini-
mum distance between two neighboring pores, in order to accu-
rately determine the pore centroids from the pore intensity map.  

The proposed pore detection scheme has been extensively ex-
perimented on the fingerprint images of the PolyU High-
Resolution-Fingerprint database to evaluate its objective per-
formance in terms of the true and false pore detection rates as 
well as the subjective quality of the detected pores. It has been 
shown that both the designed network and the postprocessing 
method devised for the proposed scheme have a significant 
impact on its performance. The performance of the proposed 
scheme has been compared to that of the traditional schemes as 
well as to that of the state-of-the-art convolutional neural net-
work-based schemes and has been shown to outperform all of 
them very significantly. In terms of the subjective quality, it has 
been shown that the proposed scheme detects almost no false 
positive pores and very few false-negative pores in comparison 
to the detections provided by the other schemes. It has also been 
shown that other schemes can benefit in improving their per-
formance by replacing their network part or the postprocessing 
part individually with the corresponding part of the proposed 
scheme. Finally, it is worth mentioning that the much superior 
performance of the proposed scheme has been achieved with 
the number of the parameters and the number of arithmetic op-
erations employed by the proposed network that are only very 
small fractions of those employed by the other state-of-the-art 
schemes.  
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