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Abstract—Pedestrian detection is an important task in au-
tonomous surveillance systems. Despite the rapid progress in
pedestrian detection field, detecting occluded pedestrians remains
a challenging task due to the great variations in occluded pedes-
trians appearance and the drastic loss of pedestrian information
in some severe cases. In this paper, we tackle the occlusion
problem by proposing a multi-branch pedestrian detection model
based on center and scale prediction framework. The proposed
model employs features extracted from full pedestrian’s body
as well as its upper, middle, and lower body parts using four
detection branches. This multi-branch approach ensures that
data representing the true pedestrian appearances, whether they
are partially or completely visible, can dominate final decision-
making, minimizing the interference of non-pedestrian data in the
detection. Furthermore, to implement the proposed model, the
visibility of different pedestrian parts is appropriately annotated,
which facilitates the training process. The final decision is
made based on the four MB-CSP branches outputs, using a
proposed fusing method, named Boosted Identity Aware-Non
Maximum Suppression. On heavy occlusion settings, the proposed
model resulted in the miss rates of 27.83%, 47.29% and 33.3%
for Caltech-USA, Citypersons and EuroCity Persons datasets,
respectively.

Index Terms—Pedestrian detection, occluded pedestrians,
multi-branch model, pedestrian body parts, part fusing.

I. INTRODUCTION

UMAN detection is an important research subject con-

sidering its many applications in surveillance, robotics,
self-driving cars and video gaming. In particular, accurate
pedestrian detection is a challenging task because of the
great variations in humans pose and appearance. Besides,
pedestrians are frequently occluded in reality, as a result
of obstacles such as trees/cars (inter-class occlusion), or the
presence of other pedestrians in the scene, usually in crowded
areas (intra-class occlusion). Although recent advances in
deep learning, supported by the availability of large-scale
labelled datasets, helped to improve the performance of some
pedestrian detectors, detecting occluded pedestrians remains a
challenging task.

Part-based methods [1]-[5], have been developed to improve
the detection of occluded pedestrians. Their common approach
is to divide a pedestrian target into small parts, e.g., 3x6 grid
[3]. By doing so, the data in these parts can be processed more
precisely for feature extraction, and networks can be trained
specifically to detect these parts, thus improving the detection

Fig. 1. Detection results of a group of four pedestrians. (a)
Using CSP model [12]. (b) Using the proposed MB-CSP
model.

of occluded pedestrians. It should be mentioned that the diffi-
culty in detection is partially due to the relatively limited data
representing occluded pedestrians. A good detector should be
able to select features representing real pedestrians and reject
those that are irrelevant to the targets, while not significantly
increasing the overall model complexity.

Some algorithms target crowded pedestrians by defining
new loss functions [6], [7], which lowers the distance between
detection boxes belonging to the same pedestrian and increases
the distance between boxes of adjacent pedestrians in crowded
scenes. This step renders the detector less sensitive to the
Non-Maximum Suppression (NMS) threshold in the post-
processing stage.

Most pedestrian detectors generate candidate locations for
potential pedestrians at different scales. This can be achieved
using a sliding window method [8], which is usually slow and
opposes the real time constraint in most pedestrian detection
applications. Recent pedestrian detection approaches such as
R-CNN [9] use region proposal model, where a separate
network is designed to generate candidates locations, that are
then processed via a classification network. Another approach
is based on a single neural network that directly detects
pedestrians locations without the need for region proposal
model. This approach is used in algorithms such as YOLO
[10], SSD [11] and CSP [12], and it is usually faster and
reduces the complexity of the overall detector.

In this paper, a new model referred to as Multi Branch
Central and Scale Prediction (MB-CSP) is introduced. The
proposed model adopts part-based approach and is based
on Center and Scale Prediction (CSP) framework. MB-CSP
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model involves four detection branches that simultaneously
detect upper, middle and lower body parts as well as full
pedestrian box. The detection branches are trained with the
data, in which visible parts of pedestrian samples are pre-
cisely annotated. Moreover, a branch for full-body detection
is included in the proposed model in order to learn holistic
pedestrian structure and facilitate parts learning process. The
losses calculated in the branches are combined into a single
loss that is then used to update the network parameters in
a joint fashion. Finally, the detection outputs of the four
proposed branches are fused using a novel proposed algo-
rithm referred to as Boosted-Identity-Aware-Non-Maximum-
Suppression (BIA-NMS).

In Fig. 1, pedestrian detection examples show the im-
provement in the detection of occluded pedestrians using the
proposed MB-CSP model, compared to CSP detector [12].
Moreover, on heavy occlusion settings, the proposed model
resulted in the miss rates of 27.83%, 47.29% and 33.3%
for Caltech-USA, Citypersons and EuroCity Persons datasets,
respectively.

The contribution of this paper can be summarized as fol-
lows:

1) Proposing an anchor-free multi-branch detection model
with four detection branches. Although the branches
are configured identically, each of them is learned,
specifically, to detect various patterns of a particular kind
of body parts.

2) Implementing new parts annotation that recognises up-
per, middle and lower pedestrian parts. Each part is con-
sidered positive if it is visible for the specific pedestrian.

3) Introducing Boosted Identity Aware Non Maximum
Suppression (BIA-NMS) to fuse different branches out-
puts. In particular, BIA-NMS targets intra-class occlu-
sion by suppressing duplicated detection boxes of a
single pedestrian, while preserving boxes of adjacent
pedestrians.

The rest of the paper is organised as follows: Section II
highlights the main approaches of handling occlusion, and
presents an overview of CSP framework. In Section III, a
detailed description of the design of the proposed model and
its composition is presented. Section IV is dedicated to the
presentation of the experiments and the results. The conclusion
of the work presented in this paper is found in Section V.

II. RELATED WORK

The related work to the proposed model is presented in this
section. First, different approaches to target occluded pedes-
trians are discussed, followed by an illustration of anchor-free
detectors and the CSP framework.

A. Occlusion-Handling Algorithms

One of the most commonly used approaches to tackle
occlusion is part-based approach [1], [2], [13], where the full
pedestrian body is divided into multiple parts, usually based
on different occlusion patterns. During occlusion, some body
parts remain visible, hence detecting these parts is more conve-
nient compared to detecting the full body with mixed features

of the pedestrian and the barrier. Earlier part-based approaches
used ensembles models, in which separate part detectors are
used independently. This approach is not suitable for real-
time processing, as the system complexity grows linearly
with the addition of every part detector. Moreover, ensembles
models ignore the correlation between different parts during
learning, resulting in a non context-aware part detectors. Other
methods build parts models using joint frame work [4], where
different body parts are trained collaboratively using a single
convolutional neural network (CNN). This approach reduces
the complexity presented in ensemble models, however it lacks
accurate parts annotation. In [5], authors introduced multi
label learning with separate labels assigned to different body
parts, however their approach uses part pool of 20 parts, and
requires region proposal network (RPN), which adds to the
complexity of the final detector. Authors in [14] introduced
occlusion-handling algorithm based on full and visible body
information, however, their definition of visible body is rather
broad, since it includes different parts of the body based
on different occlusion patterns, making the training process
more challenging. Zhang et al proposed an attention guided
model [15] to reweigh convolutional channels that represent
varying occlusion patterns. Other authors integrated additional
features to improve pedestrian detection, for example Du et al
[16] applied features from a pixel-wise semantic segmentation
network, and Song et al [17] integrated temporal information
from adjacent video frames. Different track of work focuses on
improving crowded pedestrian detection by introducing new
loss functions [6], [7], their goal is to minimize the distance
between duplicate detection boxes of the same pedestrian and
maximize the distance between adjacent pedestrians boxes,
eventually preventing over elimination by Non-Maximum Sup-
pression (NMS).

B. Anchor-Based-Detectors Vs Anchor-Free-Detectors

Anchor-based detectors overcome the increase in detectors
complexity when using sliding window or region proposal
models, by introducing pre-defined anchors at different scales,
locations and aspect ratios. Despite the significant reduction
in the complexity associated with applying anchor-based ap-
proaches, they limit the generality of detectors, since the
design of anchor boxes varies to meet the requirements of
different datasets. To overcome this problem, researchers in-
troduced anchor-free-detectors [10], [12], [17], [18], in which
the network predicts pedestrian locations directly without the
need for defining and matching anchor boxes.

Center and Scale Detector (CSP) [12] outputs the center
and the scale of pedestrians directly, without the need for
predefined anchor boxes. During training, bounding boxes
information provided with the dataset, is used to calculate
pedestrian center (center point of the bounding box), scale
(function of the bounding box height and width) and offset
(to compensate for the drop in localization accuracy as the
detection is performed in a lower resolution compared to the
original image size). CSP model is trained by minimizing the
summation of center, scale and offset losses.
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Fig. 2. MB-CSP architecture consisting of three blocks, namely Feature Generation Block, UMLF Block and Post-processing

Block.

III. PROPOSED MODEL

Detecting individual pedestrians in crowded areas is a
challenging task, as people are often occluded. A pedestrian
can be partially obstructed by objects of other classes such as
vehicles and trees, which is referred to as inter-class occlusion.
An intra-class occlusion occurs when a pedestrian is partially
occluded by other pedestrians. In general, there are two hurdles
when detecting occluded pedestrians.

o Real pedestrian features are mixed with features of the
occluding barrier. This hurdle is present in both inter-
class and intra-class occlusions and can result in confu-
sion when learning pedestrian characteristics, eventually
leading to wrong detections. To overcome this hurdle,
the proposed model utilizes part-based detectors, each of
which is exclusively learned from visible pedestrian parts.

o Multiple-detection of a single pedestrian is a common
problem in most detection models. The proposed multi-
branches CSP model may exacerbate this problem by
creating duplicates from its different branches. To address
this issue, the proposed model utilizes non-maximum
suppression to eliminate duplicates within the same
branch, and proposes a novel post-processing algorithm
for removing duplications across the different branches.

The block diagram of the proposed model, referred to
as Multi-Branch Center and Scale Predictor (MB-CSP), is
illustrated in Fig. 2. It is composed of the following three
blocks.

1) Feature Generation Block to convert the input images
into suitable feature maps for pedestrian detection at
different scales.

2) UMLF Block to process features data in its four
branches, each of which produces data maps indicating
the location/scale/offset of potential pedestrian targets.

3) Post-Processing Block to fuse the data produced by the
UMLF branches and determine the final detections.

Each block is discussed in detail in the following sections.

A. Feature Generation Block

Feature Generation Block is used to extract the basic
features for pedestrian detection. The block is based on
ResNet50 [19] and is pre-trained on ImageNet database in
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order to facilitate the learning process. The input images
of the feature generation block are sized HxW. As shown
in Fig. 2, the feature maps generated by stages 3, 4 and
5 are sized (W/8)2, (W/16)? and (W/16)?, respectively.
These maps are processed by deconvolutional layers followed
by L2-normalization in order to unify their dimensions to
(H/r) x (W/r), where r = 4 is the downsampling factor.
The upsampled feature maps, carrying context information at
different scales, are then concatenated to form the input to the
UMLF block.

B. UMLF Block

If pedestrians appear partially occluded in an image, the
pixel data in the occluded part carry the features of the
occluding barriers, which can contribute adversely to the
detection of the pedestrians. UMLF block is designed to
mimic human perception of a partially occluded pedestrian
by extracting the relevant features from visible pedestrian parts
and ignoring data variations in the occluding barrier. To do so,
one needs to partition the view of a pedestrian into parts so
that visible areas containing actual features of real pedestrians
are separated from the occluded areas, making it possible to
exclude non-pedestrian features in the training process. As a
result, the features of pedestrian parts will be processed in
separate branches of the block, and each branch will learn
features of its corresponding part.
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A pedestrian appearance can be obstructed differently,
and the patterns of occlusion are not unique. To partition
a pedestrian view appropriately, the following elements are
considered.

o The designed partitions must have recognizable and dis-
tinguishable patterns that discriminate pedestrians from
irrelevant objects.

o Partitions must suit the different occlusion patterns so
that each pedestrian has at least one visible part, without
significant interference of occluding element, in most of
the occlusion scenarios.

o The number of partitions must be reasonable, as more
partitions implies more branches, therefore increasing the
complexity of the overall system.

Taking the above-stated points into consideration, a pedes-
trian view is partitioned into overlapped upper, middle, lower
and full body parts. Corresponding to these partitions, the
proposed UMLF block has four branches to detect the four
parts, respectively.

o Upper Part Branch. This branch is dedicated to de-
tecting pedestrians face and shoulders using their distin-
guishable contours. The upper part detection is crucial
in detecting highly occluded pedestrians, where face and
shoulders might be the only visible part.

o Middle Part Branch. The features of the middle part,
including the torso, of a pedestrian’s view are very
different from the upper or lower parts. This branch is
trained to identify the patterns of the middle part, and
its output data help to detect reasonable and partially
occluded pedestrians.

« Lower Part Branch. This branch is specialized to detect
the unique shape of the lower part, i.e. the trunk and legs
of a pedestrian. If this part is visible, this branch will
detect it and contribute to the correct final decision.

o Full Body Branch. In case of fully visible pedestrians, a
full-body detection is evidently more advantageous than
that of part-based, particularly when there are many fully
visible pedestrians in the training samples. Hence, this
full-body branch is placed to minimize the risk of missing
fully visible pedestrian targets.

A good pedestrian detection needs a good identification
of the patterns distinguishing the pedestrian targets from the
rest of the image. The four-branch structure of the proposed
UMLF Block permits each branch to be trained specifically
to identify the distinguished patterns of the designated part.
If the part is visible, the branch will generate a significant
output, otherwise, no target patterns will be detected and the
output will be weaker. The final detection decision is based
on the outputs of all the four branches, dominated by the data
generated from the visible parts.

The detailed structure of the UMLF block is illustrated in
Fig. 3. The input data, i.e., the 2D maps carrying features
extracted in different scales, are first fused by means of a
convolutional layer of 256 kernels. The outputs of this layer
are then applied to each of the four branches for the detections
of the upper, middle, lower and full-body parts, respectively.

In each of the four branches, as shown in Fig. 3, the
detection of the designated part is performed by two convo-
lutional layers, each of which has 256 kernels. It should be
noted that a standard 3x3 convolution is applied in the first
layer, whereas the second layer is a 3x3 separable convolution
(consisting of depth-wise filter of size 3x3 followed by 1x1
classical convolution filter). The separable convolution acts as
a channel-wise attention mechanism to highlight the important
features in each map. The output data containing information
on targets centers, scales and offsets are then processed by
1x1 convolutions to generate the final center, scale and offset
maps.

UMLF branches are configured identically. However, the
convolution kernel parameters in each branch are designed to
learn the associated features of each part. Fig. 4 illustrates two
detection examples, each having an original input image and
its associated upper, middle, lower and full-body center heat
maps generated by the four UMLF branches. The first example
involves two fully visible pedestrians, with their corresponding
four center heat maps, indicating clearly and coherently the
locations of their parts and full-bodies. The second example
is a challenging heavy occlusion case, as one of the three
pedestrians is severely occluded. Accordingly, the full-body
branch can only detect two pedestrians, as shown in Fig. 4(j).
So do the branches for the middle and lower parts. However,
the center heat map in Fig. 4(g) produced by the upper part
branch clearly indicates three pedestrian locations, which is
crucial to detect the severely occluded third pedestrian. These
two examples demonstrate the effectiveness of the UMLF
branches in enhancing detection quality in the presence of
significant heavy occlusion, without jeopardizing other cases.

As shown in Fig. 3, there is a decoder in each of the four
UMLF branches. Each decoder converts the center, scale, and
offset maps in each branch to a list of bounding boxes based
on their predefined aspect ratios, illustrated in Fig. 5. It should
be mentioned that a single pedestrian target can be detected
multiple times in each of the four UMLF branches, which
results in multiple overlapped full-length bounding boxes per
branch, creating a type of redundancy referred to as intra-
branch redundancy. Moreover, the same pedestrian may be
detected by more than one branch, especially if a pedestrian
is fully visible in the image, this type of redundancy is
referred to as inter-branch redundancy. The post-processing
block, presented in the following sub-section, is intended for
bounding boxes refinement and redundancy elimination.

C. Post-Processing Block

The post-processing block is designed to eliminate dupli-
cated pedestrian boxes, and to identify/preserve one bounding
box per detected pedestrian. It is performed in two steps
to eliminate intra-branch redundancy and inter-branch redun-
dancy, respectively.

For intra-branch redundancy, the duplicated boxes generated
in the same branch are removed by means of Non-Maximum
Suppression (NMS). It is known that a single pedestrian can
be indicated by highly overlapped boxes. The degree of over-
lapping reflects the likeness of the case, which is measured by
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Fig. 4. Two detection examples of the proposed MB-CSP model. (a) (f) Input images. (b) (g) Center heat maps of the Upper
Parts. (c) (h) Center heat maps of the Middle Parts. (d) (i) Center heat maps of the Lower Parts. (e) (j) Center heat maps of
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Fig. 5. Detection boxes of the three parts and their extension.
(a) Upper part. (b) Middle part. (c) Lower part.

Intersection Over Union (IOU) index representing an overlap
between 0% and 100%. If IOU value of two bounding boxes
is higher than a threshold, they are considered to indicate the
same pedestrian and the one having the lower confidence score
will then be eliminated.

The above-mentioned threshold should be chosen very care-
fully. As NMS is performed in each of the four branches, the
thresholds can be selected differently based on the detection
criteria of different body parts. To decrease the risk of false
eliminations, the IOU threshold of the upper part is set more
cautiously to be 0.6, compared to 0.5 for the other branches. In
case of detecting pedestrians that are heavily occluded by other
pedestrians, only the upper parts of the occluded pedestrians
can be differentiated, while their full-length boxes may highly
overlap. In this case, setting the IOU threshold for the upper
branch to 0.6 allows to preserve the two individual pedestrian
upper parts.

The NMS performed in each of the four branches re-
moves most of intra-branch redundant bounding boxes, and
the remaining bounding boxes represent potential pedestrian
candidates detected in each branch. The bounding-boxes lists
generated by the four branches are then examined together, in
the second step, to eliminate inter-branch redundancy.

The inter-branch redundancy can be caused by the detection
of a single fully visible, or mostly visible, pedestrian in
multiple branches, where the redundant bounding-boxes are
usually highly overlapped. However, if two pedestrians are
heavily occluded by each other, their boxes generated in the

same branch or different branches, can also be overlapped. In
order not to falsely eliminate the bounding boxes representing
heavily occluded pedestrians, one needs to look into not only
the overlap rate, but also other indications from the four
bounding boxes lists. The operation, referred to as Boosted
Identity Aware Non-Maximum Suppression (BIA-NMS), is
to check if a group of overlapped boxes represent a single
pedestrian or multiple heavily occluded ones.

BIA-NMS is proposed with a view to minimizing the risk
of merging heavily overlapped boxes belonging to different
pedestrians, while suppressing duplicated pedestrian boxes.
The following two points are used to develop BIA-NMS
algorithm.

1) BIA-NMS aims at eliminating duplicated detection
boxes, generated by different branches, of the same
pedestrian target. Hence, no boxes of the same branch
can be merged in this procedure, to eliminate the risk
of missing occluded targets. To be more specific, at a
given location, the boxes to be checked must be from
different branches and are eventually merged to be one.

2) At given location, relatively high scores of multiple
boxes from different branches indicate a detection of
multiple parts of the same pedestrian, implying a high
certainty of true detection. In this case, the final detec-
tion score will be boosted.

BIA-NMS is performed in the following steps.

1) Sort all the detected boxes in a descending order based
on their confidence scores.

2) Identify the box with the highest score and refer to it as
Bmaw~

3) Calculate the IOU between all the detected boxes and
BmaT

4) Identify the boxes with IOU greater than 0.6 and add
them to the new list Bgypiicate. make sure that only one
box per branch is added to Bgypiicate (the box with the
highest IOU per branch).

5) Define N as the number of boxes in Bgypiicate-

6) Modify the score of B,,,, as follows:
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Scoreg = (N — 1) x 8 x Scorep + Scorep (1)

where Scorep denotes the boosted score of By,
Scoreo is the original score of B;,,, and (3 is the
boosting weight set to 0.08.

7) Add B,,.. and its boosted score to the final detection
list.

8) Remove B4, and Bgypiicate from the initial list.

9) Repeat the process starting from step 1).

Fig. 6 presents an example of two pedestrians applied to
the proposed MB-CSP model. The pedestrian in green is fully
visible, hence the UMLF block can detect its upper, middle,
lower and full body parts (indicated by the green check-
marks). Meanwhile, the red pedestrian is highly occluded
and only the upper part can be detected (red check-mark),
and his middle, lower and full body parts are easily missed
(red-crosses). The five detected boxes are depicted in (b),
where the full-box for the green pedestrian is represented
by a black colour and has the highest score of 0.8. The
process of elimination starts by considering the IOU between
all the detected boxes and the box with the highest score (the
black box). In this example, the four boxes have IOU values
greater than 0.5 with the black box. However in (c), BIA-
NMS eliminates three of the four highly overlapped boxes
and preserves one box (violet box). This is because violet
boxes represent upper body boxes, and the black box is highly
overlapped with two violet boxes, hence only one of them is
eliminated (the one with highest IOU value). Finally, the score
of the black box is boosted to become 0.99 using equation 3.

In Fig.7(a), an image including three pedestrians with dif-
ferent degrees of occlusion is illustrated. If NMS is applied in
the second post-processing stage, one of the three pedestrians
will be missed in the detection due to the heavy occlusion,
as shown in Fig. 7(b). The proposed BIA-NMS helps to
capture the missed one, so that all the three pedestrians are
detected. Fig. 7(c) illustrates the detection result, indicated by
the three boxes, before the boosting. The scores of the detected
pedestrian boxes are boosted, by means of the calculation
defined by Equation 3, as shown in Fig. 7(d).

D. Parts Annotation

Most pedestrians datasets provide annotation information
that specify two bounding boxes for every pedestrian. Visible
bounding box that indicates visible area of a pedestrian, and
Full bounding box that describes the full pedestrian body in-
cluding its extension if it is occluded. Annotation information
is provided as follows:

Annotation = [xf,yr, W, Ry, Ty, Yo, Wo, hy) @)

where xf,ys and x,,y, are the coordinates of the top left
corner of the full box and the visible box, respectively. wy, hs
and w,, h,, are their corresponding width and height.

Since the proposed model has four detection ends, each
pedestrian in the image is assigned four bounding boxes,
namely BB,, BB,,, BB; and BBy, to describe the upper,

Black Box

Score =0.8 Black Box

Score =0.99

Upper Box

Lower Box

— Full Box

(b) ()

Fig. 6. (a) Example of input involving two pedestrians, of
whom one is severely occluded. (b) Boxes generated by the
four branches around the pedestrians locations. (c) Result
produced by the proposed BIA-NMS. The two boxes from
Upper part branch should not be merged.

(d)
Fig. 7. (a) Input Image. (b) Detection result by MB-CSP and

NMS, (c) by MB-CSP and BIA-NMS before boosting, and (d)
by MB-CSP and BIA-NMS after boosting.

middle, lower and full pedestrian parts, respectively. Algorithm
1 presents detailed explanation of the annotation algorithm.

E. Model Loss

To calculate the total loss (Losst) of the proposed MB-CSP
model, the four branches losses are combined as follows:

Losst = ay Lossy + asLossy; + azLossy, + asLossp (3)

where Lossy, Lossy;, Lossy, and Lossp indicate the model
loss of the upper, middle, lower and full branches, respectively.
For simplicity, a1, s, a3 and a4 are set to ls, however,
adapting different weights can be investigated.
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Algorithm 1 Parts Annotation
Input:

BBy=[zs,ys,wy, hy]
BB, =[xv7 Yv, Wy, hv}

Output:
BBu:[Iuv Yu, Wu, hu}
BB, =[:Em, Ym, Wm, hm}
BBy=[z, yi, wi, h]
BBy=[zs,ys,wy, hy]

1: procedure PARTS ANNOTATION(BBjy;, BByis)
2 for img in Images do
3 for ped in Pedestrians d(})L
4 BB, = [xfayfawfny]
hy h
5: BBm = |:'7jf7yf+ 3 sWE, 3f]
hy h
6 BB = [wf’nyr 5w, zf]
:p Area(BByNBBy)

7 if T Area(BBy) > 0.2 then
8: BB, < BB,
9: else
10: BB, «+ [0,0,0,0]

. A (BBmﬂBBv)
11: 1f%w>02then
12: BB’VV‘L ~— b m
13: else
14: BBy, + [0,0,0,0]

. . Area(BB;NBB,)
15: if W > 0.2 then
16: BB,
17: else
18: BB; + [0,0,0,0]
19: Return BB, BB, BB;, BBy

Furthermore, for branch P, the branch loss (Lossp) can be
expressed as:

Lossp = Lossc_p + Losss p + Losso_p 4

where Lossc_p, Lossg _p, and Lossp_p are the center, scale
and offset losses for branch P, respectively.

To calculate the center loss for every branch, the same
procedure presented in [12] is followed. The main difference
is, centers are calculated for every specific part instead of a
single center for the entire pedestrian body. Following this
procedure, the cross entropy center loss is defined as:

H

Lossc = _IZZ 12; (1 = pij)” log(pij), yij =1
~ N il 12;1(1_ Mi;)” p”log(l—pw) yi; =0

)

where IV is the number of objects (specific body part) in the
image, H, W and r are the height, width and downsampling
factor of the image, respectively. M;; is a 2d Gaussian map
built around the center of every part, based on the height
and width of the specific part, this is done to reduce the
uncertainty created by the negatives surrounding center points,
by reducing their effect on the total loss [12]. p;; is the
predicated probability for a center to be presented at location
1,7, and y;; is the ground truth value, equals to 1 if there is
a center at location %, j and O otherwise. v and 3 are hyper-
parameters, -y is set to 2 as recommended by [20], and [ is set
to 4 [21]. Scale and offset losses of every branch are calculated
using smooth L1 loss equation.

TABLE 1. Evaluation Settings For Caltech-USA, Citypersons
and EuroCity Persons Datasets

Setting Visibility Height
Bare (B) >90% >50 pixels
Reasonable (R) >65% >50 pixels
Partial Occlusion (P) | 65% to 90% >50 pixels
Heavy Occlusion (H) | 20% to 65% >50 pixels
All (A) >0% >20 pixels
Small (S) >65% 50 to 75 pixels

IV. EXPERIMENTS

In this section, the performance evaluation of the proposed
model is presented. To conduct the experiments for the evalu-
ation, image samples from the three datasets, namely Caltech-
USA [22], CityPersons [23] and EuroCity Persons [24], have
been used. The evaluation process and the results obtained,
in terms of detection miss-rate and processing time, are
presented, in comparison with the existing pedestrian models.

A. Datasets

1) Caltech-USA

The image samples of this dataset are extracted from an
approximately 10 hours video recorded by a car driving in the
greater Los Angeles area. Images are of size (640 x 480). The
dataset contains a total of 350,000 labelled bounding boxes
in 250,000 frames. For the experiments, one image has been
taken out of every 30 frames from the original sequence, and
4250 training images and 4024 testing images are obtained.
Furthermore, The improved annotation, presented in [25], is
adopted for the training and testing. The proposed model has
been evaluated using a log-average miss rate for false positive
per image in the range (1072 to 1). The evaluation settings
are presented in Table I

2) Citypersons

The dataset consists of 2975 training images, 500 validation
images and 1575 testing images captured in 27 different cities
in Germany and neighbouring countries. All images are of
size (2048 x 1024). The dataset has around 20K pedestrians,
where only less than 30% of them are fully visible. The great
variation in pedestrian scale, occlusion and background makes
Citypersons a challenging dataset for pedestrian detection. In
this paper, the validation images are used for testing.

3) EuroCity Persons (ECP)

The image samples are taken under more diverse weather,
illumination and background conditions than those in Caltech
and Citypersions datasets. Images are of size (1920 x 1024),
with over 200K annotated bounding-boxes. In this work, the
validation set of ECP is used for testing.

B. Experiments Setup

Simulations have been performed using NVIDIA V100
Volta GPUs with 64G memory. Following the training im-
plementation in [12], the backbone network is pre-trained
on ImageNet, and the total model is fine-tuned using Adam
optimizer. Furthermore, training images have been resized
to reduce the training computational complexity. However,
the full image size is used in the testing stage. Further, the
implementation details are presented in Table II.
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TABLE II. Training details

Images Resized Learnin Number

Dataset GPUs per gGPU Image rate ¢ of Iterations
Caltech-USA 2 8 336 x 448 1071 15K
EuroCity 2 6 512 x 960 | 2x 1077 166K
CityPersons 4 2 640 x 1280 | 2x10°° 37.5K

TABLE III. Trained on CityPersons tested on CityPersons

Method R H P B Test-Time
UF 12.6% | 46.62% | 11.32% | 8.87% | 0.40 s/img
UMF 10.35% | 46.82% | 9.64% | 6.74% | 0.44 s/img
UML | 10.71% | 47.12% | 1035 % | 6.95% | 0.44 s/img
UMLF | 10.08% | 47.29% | 10.22% | 6.12% | 0.48 s/img

C. Ablation Study

The proposed MB-CSP model is designed to use the in-
formation of the upper, middle, lower and full-body parts in
an optimized manner, in order to minimize the interference
of the features belonging to the occluding barriers. In this
section, three alternatives of UMLF model are investigated,
namely, Upper and Full body parts (UF) model, Upper
Middle and Full body parts (UMF) model and Upper, Middle
and Lower parts (UML) model. Extensive simulations have
been conducted in order to recognise and compare the pros
and cons of each model.

UF model is the simplest block to design MB-CSP detector,
in which, only upper body box and full pedestrian box are
considered. UF model reported the best results compared to
other models when tested on heavily occluded pedestrians with
miss-rate of 46.62%, as it is clear in Table III. This is expected
because lower and middle parts boxes carry no pedestrian
information in this case. However, UF performs poorly for
the remaining testing subsets.

On the other hand, UMF model, achieved better accuracy
compared to UF model on Reasonable, Partial and Bare
subsets with miss-rates of 10.35%, 9.64% and 6.74%, re-
spectively. These results indicate the importance of middle
body information for detecting visible and partially occluded
pedestrians. Finally, UML utilises the information in different
body parts and neglects full box information. Comparing UML
to UMLF model shows a drop in the detection accuracy for
all testing subsets when using UML. This observation sug-
gests the importance of the full box information in detecting
pedestrians at all occlusion patterns.

Table III presents the testing time required by the different
models to process a single image and output pedestrians
locations. UF model requires the minimum time of 0.4 seconds
per image, while UMF and UML need 0.44 seconds per image
compared to UMLF model with 0.48 seconds per image. In
general, the increment in UMLF processing time is minor, as
it only adds a few convolutional layers to predict the different
body parts.

D. Comparison with the state of the art methods

Testing on Caltech-USA Dataset

The proposed MB-CSP+BIA-NMS model has been com-
pared to the-state-of-arts detectors on Caltech-USA testing
sets. MB-CSP+BIA-NMS refers to the proposed model trained
on Caltech-USA training sets, and MB-CSP+BIA-NMS (City)

indicates the model pre-trained on Citypersons training sets
and fine-tuned on Caltech-USA training sets. Fig. 8 compares
the proposed model to the-state-of-arts detectors reported in
Caltech-USA dataset website !. All the algorithms are evalu-
ated on the improved annotated testing subsets, hence there is
a variation in their results compared to the ones reported on
Caltech-USA website.

In Fig. 8 (a), MB-CSP+BIA-NMS (City) achieved the
lowest miss-rate of 4.38% on Reasonable subset, Compared
to 5.11% for AdaptFasterRCNN [23] and 5.13% for AR-Ped
[26]. These results reflects the advantage of using the pro-
posed model for detecting fully visible and partially occluded
pedestrians, particularly by boosting pedestrians scores using
BIA-NMS method in post-processing.

For Heavy occlusion subset depicted in Fig. 8 (b). MB-
CSP+BIA-NMS (City) and MB-CSP+BIA-NMS reported su-
perior miss-rates of 27.83% and 30.55%, respectively. Lower
by 4.4% compared to the best reported method F-DNN2+SS
[27] with a miss-rate of 32.28%. This gain in performance
is attributed to the proper design of the multi-branch model.
Finally, the proposed methods showed decent performance on
Caltech-USA All subset in Fig. 8(c), with miss-rates of 50.18%
and 51.14%, respectively.

To further investigate the performance of the proposed
model. Table IV presents the results of recent state-of-arts
detectors that have not been included in Caltech-USA website.
The proposed model shows improvement over the Original
CSP [12] in all testing subsets. Furthermore, MB-CSP+BIA-
NMS surpassed all detectors in Reasonable and Heavy occlu-
sion subsets.

Testing on CityPersons Dataset

The performance of the proposed model is compared to
the state-of-the-arts methods on Cityperons validation set in
Table IV. The proposed model in this case, has been trained
on CityPersons Dataset. MB-CSP+BIA-NMS outperformed all
the reported methods at all testing subsets. For Reasonable
and Bare subsets, MB-CSP+BIA-NMS reported miss-rates of
10.08% and 6.12%, respectively. Surpassing the best reported
miss-rate by almost 1%. This improvement emphasizes the
benefits of using the proposed model in detecting highly
visible pedestrians. Furthermore, when detecting occluded
pedestrians, MB-CSP+BIA-NMS scored 47.29% and 10.22%
for Heavy and Partial occlusions, compared to 49.3% and
10.4% for CSP [12]. Proving the superiority of the proposed
model in detecting heavily occluded pedestrians with more
than 2% gain on Caltech-USA and Citypersons dataset.

EuroCity Persons (ECP) Dataset

Finally, Table V evaluates the proposed MB-CSP+BIA-
NMS algorithm, trained and tested on EuroCity dataset. In
the heavy occlusion setting, CSP+BIA-NMS obtained state-
of-the-arts results, similar to Cascade R-CNN [28] with miss-
rate of 33.3%, demonstrating the effectiveness of the proposed
model in detecting occluded pedestrians. Moreover, On small
setting, CSP+BIA-NMS outperformed all other models with a
miss-rate of 10.5%. Finally, MB-CSP+BIA-NMS produced a

Uhttp://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
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Fig. 8. Comparison of the proposed model and the state-of-the-art methods on Caltech-USA, using Average Miss Rate (MR %)

on (a) Reasonable, (c) Heavy and (C) All subsets.

TABLE IV. Comparison with the state-of-the-art on Caltech
and CityPersons Datasets

Method ‘ Dataset ‘ R ‘ H ‘ P ‘ B ‘ A
PAMS-FCN [29] Caltech | N.A. 47.4% N.A. N.A. 53.7%
CSP [12] Caltech | 4.5% 45.8% N.A. N.A. 56.9%
CircleNet [30] Caltech | 10.2% | 44.5% N.A. N.A. 46.4%
CSP (City) [12] Caltech | 3.8% 38.5 % N.A. NA. | 544 %
FRCN+A+DT [31] Caltech | 8.0% 37.9% N.A. N.A. N.A
Couple [32] Caltech | 4.7% 34.6% N.A. N.A. N.A.
MB-CSP+BIA-NMS Caltech | 5.30% | 30.55% | N.A. N.A. | 51.14%
MB-CSP+BIA-NMS (City) | Caltech | 4.38% | 27.83% N.A. N.A. | 50.18%
TLL [17] City 14.4% | 52.0% 159% | 9.2% N.A.
RepLoss [7] City 132% | 56.9% 16.8% | 7.6% N.A.
OR-CNN [33] City 12.8% | 55.7% 153% | 6.7% N.A.
Couple [32] City 122% | 49.8% N.A. N.A. N.A.
ALFNet [34] City 12.0% | 51.9% 114% | 8.4% N.A.
CircleNet [30] City 11.7% | 50.2% 122% | 7.1% N.A.
CSP [12] City 11.0% | 49.3% 104% | 7.3% N.A.
MB-CSP BIA-NMS City 10.08% | 47.29% | 10.22% | 6.12% N.A.

TABLE V.
Comparison with the state-of-the-art on EuroCity Persons
(ECP) Dataset

Method | Dataset | R | H | S
Faster R-CNN [24] | ECP | 73% | 52% | 16.6%
YOLOV3 [24] ECP | 85% | 37% | 17.8%
SSD [24] ECP | 105% | 42.0% | 20.5%
Cascade R-CNN [28] | ECP | 6.6% | 33.3% | 13.6%
MB-CSP BIA-NMS | ECP | 104% | 33.3% | 10.5%

miss-rate of 10.4% on Reasonable subset, which is comparable
to the best reported result using SSD model [24].

Moreover, the time required to process one image by
the proposed MB-CSP+BIA-NMS model is investigated and
compared to the processing time of CSP [12] and ALFNet [34]
models as shown in Table VI. On average, MB-CSP+BIA-
NMS requires 0.48 seconds to compute pedestrians locations
in one image compared to 0.33 seconds and 0.27 seconds
for CSP [12] and ALFNet [34] models, respectively. The
increment in the processing time is expected as the proposed

TABLE VL
Processing time comparison on Caltech-USA dataset
Method ‘ Test Time
ALFNet [34] | 027 s/img
CSP [12] 033 s/img
MB-CSP BIA-NMS | 0.48 s/img

model detects four body parts and has more convolutional
layers. However, the reported processing time, is still sufficient
for accurate pedestrian detection in real time.

V. CONCLUSION

In this paper, a multi-branch deep learning model to im-
prove the accuracy of occluded pedestrian detection has been
proposed. The proposed model, referred to as MB-CSP, is
based on Center and Scale Prediction (CSP) framework. MB-
CSP model involves four detection branches to detect upper,
middle, lower and full-body pedestrian parts, respectively. A
new post-processing algorithm called Boosted Identity Aware
Non-Maximum Suppression (BIAS-NMS) is utilized to merge
the four branch outputs and produce final detection results.
Furthermore, a new part annotation has been introduced based
on parts visibility for every pedestrian sample in order to
insure accurate part training. Finally, it is important to note
that the proposed model is able to function effectively under
the condition of the minimum pedestrian height of 50 pixels.
Beyond this limit, the information in partitioned pedestrian
parts is insufficient for the proposed model to operate well.
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