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ABSTRACT 

 

Automated Progress Monitoring and Reporting for Construction Projects 

Dena Shamsollahi, Ph.D. 

Concordia University, 2024 

 

In complex and dynamic construction sites, efficient progress monitoring and reporting play an 

important role in minimizing schedule delays and cost overruns. Such reporting requires detailed 

and accurate records from job sites to help project managers in comparing project’s current state 

to its as-planned state. Manual traditional progress reporting is time-consuming, costly, labour-

intensive, and error-prone. In recent years, advancements in technologies and methods have been 

introduced in an effort to overcome the challenges of manual methods and to automate the 

processes of progress monitoring and reporting. These introduced levels of automation still lack 

capabilities to provide complete and accurate information about the project’s current status and 

available resources on job sites. To address these challenges, this thesis introduces a novel 

framework for automated progress reporting in construction. This framework provides detailed 

information for each tracked building element, enabling the identification of its current status and 

the generation of timely progress reports. The developments integrated into the framework focus 

on challenges associated with congested mechanical components in indoor environments. 

Monitoring these components is crucial because their complex and time-consuming installation 

procedures can lead to project delays. 

The developed framework consists of three main modules: (i) Object Recognition (ii) Object 

Localization, (iii) Integrated Object Recognition and Localization. In the “Object Recognition” 

module, two deep learning algorithms, YOLACT++ and Mask R-CNN, were utilized in processing 

digital images captured at construction sites for the automated recognition of tracked building 

elements. YOLACT++ proved superior to Mask R-CNN and was accordingly utilized in the 

developed framework. In the “Object Localization” module, a Real-time Locating System (RTLS) 

is utilized to identify the location of each recognized element along with its ID. The Ultra-

wideband (UWB) system was selected as an RTLS, and different laboratory and field experiments 

were conducted to validate the UWB system’s localization performance. Finally, in the “Integrated 

Object Recognition and Localization” module, a user-friendly application was developed to 
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integrate the outputs from the YOLACT++ model and the UWB system and automatically generate 

status reports of tracked elements. These reports include visual and location information, along 

with the unique ID of each element. 

The framework was tested and validated using 3,632 images. The results demonstrate good 

performance and effectiveness of the developed framework under challenging conditions; yielding 

recognition accuracy of close to 85% in precision and recall for HVAC duct and slightly less than 

that for pipes. Similar performance was achieved in localization, yielding errors ranging from 0.03 

to 1.22 meters in two-dimensional (2D) coordinates and from 0.15 to 1.6 meters in three-

dimensional (3D) coordinates in the field test. The developed framework can be easily extended 

to other building elements, and the excel format of its output can facilitate linkage with Building 

Information Modeling (BIM) systems.  



v 

 

ACKNOWLEDGMENTS 

 

I would like to thank my supervisors, Prof. Moselhi and Prof. Khorasani, for their invaluable 

guidance, support and supervision throughout my PhD studies. Their continuous mentorship, 

insight, and encouragement have made me feel truly honored to be their student, teaching me life 

lessons I will never forget.  

 

I would also like to express my appreciation to my examining committee members – Dr. Amin 

Hammad, Dr. Sang Hyeok Han, Dr. Mazdak Nik-bakht and Dr. Jeff Rankin for their insightful 

comments and feedback, which significantly contributed to the improvement of my work.  

 

Special thanks go to my parents, whose unconditional love and guidance have been my constant 

support. Their encouragement has lightened my every day and helped me stay positive and strong 

through different stages of my life. Special thanks to my uncles, Ardeshir and Babak, for all their 

support and motivation. I am very grateful for my grandparents’ endless kindness, and care from 

when I remember. It is with deep regret that they are not here to see this achievement. Lastly, I 

extend my deepest thanks to Ashkan Baadi, who stood by my side during this journey with love, 

encouragement and support.  

 

 

 

 

 

 

 

 

 

 

 

 



vi 

 

 

 

 

 

Dedicated to my loved ones: my dear parents, my uncles, my grandparents 

for all love, courage and support. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

Table of Contents 
LIST OF FIGURES ....................................................................................................................... ix 

LIST OF TABLES ........................................................................................................................ xii 

LIST OF ABBREVIATIONS ...................................................................................................... xiii 

CHAPTER 1: INTRODUCTION ...................................................................................................1 

1.1 Problem Statement and Motivations ............................................................................... 2 

1.2 Objectives ....................................................................................................................... 3 

1.3 Research Methodology ................................................................................................... 4 

1.4 Thesis Organization ........................................................................................................ 5 

1.5 Summary and Conclusions ............................................................................................. 6 

CHAPTER 2: LITERATURE REVIEW ........................................................................................8 

2.1 Overview ......................................................................................................................... 8 

2.2 Construction Progress Monitoring and Reporting .......................................................... 8 

2.2.1 Computer Vision Techniques ................................................................................... 10 

2.2.2 Application of Location Tracking Technologies in Construction ............................ 24 

2.2.3 Application of BIM in Monitoring Construction Sites ............................................. 42 

2.3 Summary and Conclusions ........................................................................................... 45 

CHAPTER 3: RESEARCH METHODOLOGY...........................................................................48 

3.1 Introduction ................................................................................................................... 48 

3.2 Object Recognition Module .......................................................................................... 49 

3.2.1 Image collection and labeling ................................................................................... 52 

3.2.2 Model Training ......................................................................................................... 55 

3.2.3 Model Evaluation ...................................................................................................... 64 

3.3 Object Localization Module ......................................................................................... 66 

3.3.1 The UWB System ..................................................................................................... 66 

3.3.2 The UWB System’s Configurations ......................................................................... 71 

3.4 Integrated Object Recognition and Localization .......................................................... 73 

3.4.1 The Integrated Model Process .................................................................................. 75 

3.5 Summary and Conclusions ........................................................................................... 77 



viii 

 

CHAPTER 4: MODEL IMPLEMENTATION and VALIDATION ............................................79 

4.1 Automated Recognition of MEP Components in Indoor Job Sites. ............................. 79 

4.1.1 Overview ................................................................................................................... 79 

4.1.2 Object Recognition with Synthetic Image Datasets .................................................. 80 

4.1.3 Object Recognition Using Mixed Synthetic and Real Images with Two Deep 

Learning Models .................................................................................................................... 83 

4.1.4 MEP Recognition using YOLACT++ ...................................................................... 88 

4.1.5 Summary and Conclusions ....................................................................................... 95 

4.2 Object Localization using the UWB System ................................................................ 96 

4.2.1 Overview ................................................................................................................... 96 

4.2.2 Laboratory Experiments under Line-of-Sight (LOS) Conditions ............................. 96 

4.2.3 Field Experiments under Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) 

Conditions ............................................................................................................................ 108 

4.2.4 Summary and Conclusions ..................................................................................... 122 

4.3 Integrated Object Recognition and Localization ........................................................ 123 

4.3.1 Overview ................................................................................................................. 123 

4.3.2 The Developed Application for Data Integration ................................................... 127 

4.3.3 Summary and Conclusions ..................................................................................... 130 

4.4 Limitations .................................................................................................................. 131 

CHAPTER 5: SUMMARY AND CONCLUDING REMARKS ...............................................134 

5.1 Conclusions ................................................................................................................. 134 

5.2 Research Contributions ............................................................................................... 136 

5.3 Future works ............................................................................................................... 137 

APPENDICES .............................................................................................................................140 

REFERENCES ............................................................................................................................148 

 

  



ix 

 

LIST OF FIGURES 

Figure 1-1. The research methodology. .......................................................................................... 6 

Figure 2-1. Construction progress monitoring and reporting process (Shamsollahi et al. 2022) ... 9 

Figure 2-2. a) Original Image b) Object detection result c) Semantic segmentation result d) 

Instance segmentation result (Shamsollahi et al. 2022). ............................................................... 14 

Figure 2-3. Comparison between the two techniques: a) Feature-based algorithms, b) Deep 

learning models (Wang et al. 2018). ............................................................................................. 16 

Figure 2-4. Synthetic composite image sample (Hwang et al. 2023). .......................................... 21 

Figure 2-5. Virtual synthetic image sample. ................................................................................. 21 

Figure 2-6. Indoor localization technologies and their performance metrics. .............................. 27 

Figure 2-7. RFID hardware components including the reader and different types of tags and 

RFID tag printer (Montaser and Moselhi 2014). .......................................................................... 31 

Figure 2-8. Sample of (a) UWB receivers and (b) tag from the DecaWave Company 

(DWM1000) (Yao et al. 2021). ..................................................................................................... 32 

Figure 2-9. Line-of-sight and non-line-of-sight conditions, and multipath effects (Sang et al. 

2020). ............................................................................................................................................ 34 

Figure 2-10. Samples of different UWB commercial products: a) Ubisense, b) BeSpoon and c) 

DecaWave (Ruiz and Granja 2017). ............................................................................................. 36 

Figure 2-11. Sample of integration of BIM, RTLS and cloud-based system (Fang et al. 2016). . 44 

Figure 3-1. Overview of the research methodology. .................................................................... 48 

Figure 3-2. Overview of the object recognition module. .............................................................. 51 

Figure 3-3. Generated synthetic images under different conditions: (a) Lighting condition; (b) 

Complexity level; (c) Scale level; (d) Occlusion degree; (e) Viewpoint level (Shamsollahi et al. 

2024) ............................................................................................................................................. 54 

Figure 3-4. Mask R-CNN network architecture (Shamsollahi et al. 2021). ................................. 56 

Figure 3-5. Samples of applied data augmentation techniques..................................................... 58 

Figure 3-6. 3*3 Standard and deformable convolution architecture (Shamsollahi et al. 2024). .. 60 

Figure 3-7. YOLACT++ network architecture (Shamsollahi et al. 2024). ................................... 61 

Figure 3-8. Original images and the Protonet outputs (Shamsollahi et al. 2024). ........................ 62 

Figure 3-9. Sample of applied data augmentation techniques for the YOLACT++ model 

(Shamsollahi et al. 2024). ............................................................................................................. 63 



x 

 

Figure 3-10. Box IoU and mask IoU (Shamsollahi et al. 2024). .................................................. 65 

Figure 3-11. Process of implementing the UWB system for object localization.......................... 69 

Figure 3-12. Sample of the UWB output file. ............................................................................... 70 

Figure 3-13. Trek1000 tags and receivers’ components. .............................................................. 72 

Figure 3-14. User interface of the UWB application. ................................................................... 73 

Figure 3-15. Overview of the integrated method. ......................................................................... 75 

Figure 3-16. Steps of the integrated framework. .......................................................................... 76 

Figure 4-1. 3D BIM models and their MEP networks. ................................................................. 80 

Figure 4-2. Training and validation losses during 90 epochs in the Experiment #2 (Shamsollahi 

et al. 2021) .................................................................................................................................... 82 

Figure 4-3. Results of the Mask R-CNN prediction ..................................................................... 83 

Figure 4-4. The presence of a different number of HVAC ducts in each image. ......................... 84 

Figure 4-5. Loss curves of Mask R-CNN: (a) Without data augmentation (b) With data 

augmentation. ................................................................................................................................ 85 

Figure 4-6. Examples of inaccurate recognition of objects by Mask R-CNN. ............................. 86 

Figure 4-7. Output images from Mask R-CNN and YOLACT++ models. .................................. 88 

Figure 4-8. The types and numbers of images within the dataset. ................................................ 89 

Figure 4-9. Comparison of bounding box and mask mAP values across different datasets 

(Shamsollahi et al. 2024) .............................................................................................................. 90 

Figure 4-10. Output results of YOLACT++ trained on two different datasets (Shamsollahi et al. 

2024) ............................................................................................................................................. 92 

Figure 4-11. Examples of failures in the MEP recognition using YOLACT++ (Shamsollahi et al. 

2024) ............................................................................................................................................. 94 

Figure 4-12. (a) Lab area (b) Layout plan and location of the receivers. ..................................... 98 

Figure 4-13. Placement of the tags in the test area: a) Experiment #1 and b) Experiment #2.... 101 

Figure 4-14. UWB data readings for tags on 2D and 3D planes in (a) Experiment #1 and (b) 

Experiment #2. ............................................................................................................................ 102 

Figure 4-15. 2D and 3D errors of the tags in Experiment #1 and Experiment #2. ..................... 103 

Figure 4-16. Placement of the tags in the test area: a) Experiment #3 and b) Experiment #4.... 104 

Figure 4-17. UWB data readings for three tags on 2D and 3D planes in (a) Experiment #3 and (b) 

Experiment #4. ............................................................................................................................ 107 



xi 

 

Figure 4-18. Mechanical room at Concordia University. ........................................................... 108 

Figure 4-19. Mechanical room plan and the locations of the receivers in the room. .................. 110 

Figure 4-20.  Distribution of the tags in the mechanical room. .................................................. 112 

Figure 4-21. Examples of conditions between tags and receivers. ............................................. 114 

Figure 4-22. The tags’ actual locations, UWB average locations, and data points on a 3D Plane in 

(a) Test #1 and (b) Test #2 .......................................................................................................... 117 

Fig 4-23. Histogram of 2D and 3D errors of the UWB tags: (a) Tag-7 and (b) Tag-6. .............. 119 

Figure 4-24. Histogram of 2D and 3D error values for Experiments #1- Experiments #4. ........ 121 

Figure 4-25. An overview of the integrated framework. ............................................................ 126 

Figure 4-26. Sample images taken from the mechanical room and their corresponding predicted 

images by YOLACT++. ............................................................................................................. 127 

Figure 4-27. Visual studio environment for designing the application user interface. ............... 128 

Figure 4-28. The application user interface. ............................................................................... 129 

 

  



xii 

 

LIST OF TABLES 

Table 2-1. Applied object recognition algorithms in the construction industry. .......................... 18 

Table 2-2. Overview of object recognition models for construction monitoring. ........................ 22 

Table 2-3.  Different applications of location tracking technologies in construction ................... 28 

Table 2-4. Comparison between different UWB manufacturers’ system configurations (Jiménez 

& Seco, 2016; Ruiz & Granja, 2017; J. Wang et al., 2015). ......................................................... 34 

Table 2-5. Summary of the research studies that utilized the UWB system in construction 

projects. ......................................................................................................................................... 39 

Table 2-6. Capabilities and limitations of RTLS technologies. .................................................... 41 

Table 3-1. Data augmentation techniques and selected parameters for Mask R-CNN training. .. 57 

Table 3-2. Applied data augmentation techniques, their parameters, and values. ........................ 62 

Table 4-1. Results of HVAC duct recognition with synthetic test dataset. .................................. 81 

Table 4-2. The results of Mask R-CNN and YOLACT++ algorithms for HVAC duct recognition.

....................................................................................................................................................... 87 

Table 4-3. Distribution of synthetic and real images in each dataset and the number of instances.

....................................................................................................................................................... 89 

Table 4-4. The results of YOLACT++ with two object classes ................................................... 93 

Table 4-5. Collected datapoints in each experiment. .................................................................... 99 

Table 4-6. True location of tags, mean and standard deviation of UWB data. ............................. 99 

Table 4-7. UWB localization errors on 2D and 3D planes. ........................................................ 106 

Table 4-8. Tagging details of each tracked component. ............................................................. 113 

Table 4-9. Actual locations of tags within the mechanical room. .............................................. 114 

Table 4-10. Distances between the tags and receivers. ............................................................... 114 

Table 4-11. Captured datapoints in Test #1 and Test #2. ........................................................... 115 

Table 4-12. Mean, standard deviation and error of the UWB system for Test #1 and Test #2. . 118 

Table 4-13. The tags’ information in each experiment. .............................................................. 122 

Table 4-14. YOLACT++ detection performance for HVAC ducts and pipes ............................ 127 

Table 4-15. Record samples from the generated reports. ........................................................... 129 

 

  



xiii 

 

LIST OF ABBREVIATIONS 

2D Two Dimensional 

3D Three Dimensional 

ACID Alberta Construction Image Data Set 

AI Artificial Intelligence  

AOA Angle of Arrival 

AP50  Average Precision at 50% Overlap. 

BCE Binary Cross Entropy 

BIM Building Information Modeling 

BLE Bluetooth Low Energy 

BRIEF Binary Robust Independent Elementary Features  

C# C-sharp 

CLAHE Contrast Limited Adaptive Histogram Equalization 

CV Computer Vision 

DCN Deformable Convolutional Neural Networks  

DCNv2 Deformable Convolutional Neural Networks Version 2 

DSOD Deeply Supervised Object Detector 

Fast R-CNN Fast Region-based Convolutional Network 

Faster R-CNN Faster Region-based Convolutional Neural Network 

FCN Fully Convolutional Network 

FN False Negative 

FP False Positive 

FPN Feature Pyramid Network 

FPS Frames Per Second 

GPS Global Positioning Systems 

HOG Histogram of Gradients 

HSV Hue, Saturation, and Value  

ID Unique Identifier 

IoU Intersection over Union 

IR Infrared 



xiv 

 

ISeg Instance Segmentation Capability 

KNN K-Nearest Neighbors 

LBP Local Binary Pattern 

LOS Line-of-Sight 

mAP mean Average Precision 

mAPbbox Bounding Box mean Average Precision 

mAPmask  Mask mean Average Precision 

Mask R-CNN Mask Region-based Convolutional Neural Network 

MEP Mechanical, Electrical, and Plumbing 

MOCS Moving Objects in Construction Site 

MS COCO Microsoft COCO 

NIBS National Institute of Building Sciences 

NLOS Non-Line-of-Sight  

PCB Printed Circuit Board 

M Predicted Masks 

Mgt Ground Truth Annotations 

RANSAC  RANdom SAmple Consensus 

R-CNN Region-based CNN  

ResNet Residual Neural Network 

RFID Radio Frequency Identification  

RGB Red, Green and Blue 

RoIs Regions of Interest 

RPN Region Proposal Network 

RSSI Received Signal Strength Indicator 

RTLS Real-Time Locating System 

SFM Structure From Motion 

SIFT Scale Invariant Feature Transform 

SODA Site Object Detection Dataset 

SOLOv2 Segmenting Objects by Locations, version 2 

SSD Single-Shot Multi-box Detector 

SURF Speeded Up Robust Features 



xv 

 

SVM Support Vector Machine 

TDOA Time Difference of Arrival 

Ttag Timestamp of the UWB System 

Timage “Date taken” Metadata from Each Image 

TOA Time of Arrival 

ToF Time of Flight 

TP True Positive 

TWR Two-Way Ranging 

UAVs Unmanned Autonomous Vehicles 

USB Universal Serial Bus 

UWB Ultra-Wideband 

VIA VGG Image Annotator 

VOC Visual Object Classes  

YOLACT++ You Only Look At CoefficienTs++ 

YOLO You Only Look Once 

YOLOv3 You Only Look Once, version 3 

YOLOv4  You Only Look Once, version 4 



1 

 

 

CHAPTER 1:  INTRODUCTION 

Efficient progress monitoring systems in construction projects assist management teams to 

successfully meet their objectives, minimizing cost overruns and delays (T. Omar & Nehdi, 2016; 

W. Wei et al., 2023). These systems provide accurate and timely information about the project’s 

current status, allowing for comparison with the planned state to identify progress deviations (Reja 

et al., 2022). Once deviations are identified at an early stage, problems can be addressed before 

they develop into more complex issues that necessitate costly remedies (Navon & Shpatnitsky, 

2005). However, numerous projects have experienced cost overruns and delays during the 

construction phase due to inefficient monitoring systems. These systems are often incapable of 

collecting and processing data from construction sites in an accurate and timely manner (H. Omar 

et al., 2018). These issues arise from traditional approaches that are highly dependent on the 

expertise of site personnel, including manual site monitoring, assessments, and the preparation of 

reports (Kopsida et al., 2015; H. Omar et al., 2018). The required information is then extracted 

from these reports and submitted along with other documents, including paper-based drawings, 

sheets and charts (Kropp et al., 2012). As a result, manual progress reports can be unreliable and 

misinterpreted due to possible errors and delays in report submissions (Kopsida et al., 2015; H. 

Omar et al., 2018).  

Progress monitoring in indoor construction sites is critical due to the involvement of 

various activities and their significant impact on the project schedule (Ekanayake et al. 2021; 

Hamledari et al. 2017). However, indoor progress monitoring is more challenging than in outdoor 

environments due to the presence of numerous detailed building elements (Ekanayake et al., 2021; 

Kopsida et al., 2015). Indoor construction activities often contain complex and interrelated 

components within congested spaces, which makes visual assessments significantly complicated. 

Therefore, developed monitoring systems suitable for outdoor environments may not be sufficient 

for indoor job sites (Ahmed et al., 2012; Koo & Fischer, 2000; Kopsida et al., 2015; Kopsida & 

Brilakis, 2020). 

In recent years, new technologies and methods have been applied in construction projects to 

improve the performance of progress monitoring and reporting systems through innovative 

solutions. These technologies can enhance efficiency of collecting, recording, analyzing, and 
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displaying data captured from construction sites. Camera-based systems, Artificial Intelligence 

(AI), Computer Vision (CV), Real-time Locating System (RTLS), Building Information Modeling 

(BIM), and Cloud-based applications are some examples of these technologies. Additionally, these 

technologies can be integrated to mitigate their individual shortcomings and ensure that required 

information about tracked resources such as location and visual information is obtainable (Ibem & 

Laryea, 2014; Noruwa et al., 2020; Pour Rahimian et al., 2020; Rafiee et al., 2013). Such integrated 

systems can provide timely, accurate, and reliable information, assisting project managers in 

understanding project progress. 

1.1 Problem Statement and Motivations 

Monitoring progress in construction sites should be conducted repetitively to timely evaluate the 

ongoing development of projects (Alaloul et al., 2021; W. Wei et al., 2023). This repetitive process 

applies to data collection, analysis and reporting to determine deviations between the as planned 

and actual status of projects (Patel et al., 2021). However, traditional approaches such as manual 

field visits and reporting have led to issues like inconsistent and infrequent updates and reports 

which can contribute to project delays (Pal et al., 2023).  

Technological advancements in data collection, recording and analysis has enhanced the efficiency 

of automated progress monitoring and reporting systems in construction (Pal et al., 2024). Laser 

scanners and camera-based systems provide visual data from construction sites. Laser scanners 

deliver precise 3D point clouds of the as-built status (Moselhi et al., 2020), however, they cannot 

provide the required information in a timely manner. They have challenges with reflective 

materials, and their hardware is expensive (Hamledari et al., 2017; Maalek & Sadeghpour, 2013; 

Z. Wang et al., 2021). In contrast, camera-based monitoring systems, are cost-effective, practical, 

and reliable alternative (Teizer, 2015). These systems capture images from construction sites, 

providing visual information essential for understanding the as-built state (M. W. Park & Brilakis, 

2016; J. Yang et al., 2016). Advances in computer vision (CV) techniques and deep learning 

algorithms allow automated analysis of images for extracting needed information about the 

project’s current status (Pal & Hsieh, 2021; Seo et al., 2015; J. Yang et al., 2016). Particularly, 

object detection and segmentation techniques have shown highly improved performance with deep 

learning algorithms (Pal & Hsieh, 2021). However, the following problems are associated with 

digital imaging and deep learning models: (1) Optimal performance from deep learning algorithms 
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requires a large, high-quality image dataset for model training (J. Kim et al., 2020), which is 

challenging in the construction industry due to lack of open datasets and confidentiality concerns, 

(2) Achieving adequate accuracy in the recognition of complex objects with irregular geometric 

or selenderical shapes within indoor environments, remains a challenge, (3) The complex 

computational requirements of some image processing techniques can be time-consuming and 

require high levels of hardware and software resources, and (4) Object recognition models are 

unable to accurately localize recognized objects within a 3D plane based on images (Zhou et al., 

2021). 

RTLS is another advanced technology which is mainly used for object localization and 

tracking in construction sites. These systems are differentiated by their localization accuracy, cost, 

scalability, level of consistency, robustness, and data protection (Alarifi et al., 2016). However, 

RTLS technologies have several limitations: (1) They lack visual information about tracked 

resources, which is a critical factor for the monitoring and validation of project progress, (2) 

Monitoring metallic elements which can cause signal blockage and reflections as well as high multi 

path environments are challenging for some RTLS types, especially Radio Frequency 

Identification (RFID) and Bluetooth Low Energy (BLE) systems (Moselhi et al., 2020; C. Zhang 

et al., 2020), and (3) They may fail to deliver accurate 3D location information at the centimeter 

level. This level of accuracy depends on the objects being localized and the specific applications. 

Lastly, there is an absence of integrated vision-based technologies and RTLS that provide 

comprehensive information about the status of tracked components. This becomes even more 

critical when a BIM model is not available to provide information about the elements. An 

integrated system significantly increases capabilities as compared to using each system 

individually. This approach not only enhances the strengths of the entire monitoring system but 

also effectively minimizes their individual constraints. Additionally, the lack of organized and 

unified reporting of collected information prevents project managers from making timely and 

appropriate decisions. 

1.2 Objectives 

The main objective of the research is to develop a method for automated progress monitoring and 

reporting to timely recognize and localize the tracked building elements in indoor construction 

sites. The method aims to provide comprehensive information about these elements for identifying 
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their as-built status so that decision-making can be supported. This objective is divided into the 

following sub-objectives: 

1- To strategically employ different data collection and analysis methods to gather comprehensive 

data from tracked objects in construction sites, thereby improving monitoring systems and 

supporting data-driven decisions. 

2- Implement and evaluate novel object recognition models using digital imaging and deep 

learning algorithms to obtain visual data and recognize tracked building elements at 

construction sites in a timely manner.  

3- Improve the performance of object recognition models in identifying complex objects in 

challenging construction environments through enhanced dataset quality. This includes 

generating synthetic images that represent actual indoor scenarios and finding the optimum 

mix of synthetic and real images for efficient model training. 

4- Implement a reliable RTLS to accurately localize tracked elements within complex and 

dynamic job sites in real-time. Assess different factors that may affect its performance in 

construction sites and its integration capability with other available techniques. 

5- Develop a model to integrate the outcomes of object recognition models and localization 

systems. This integration will report the required information about each component including 

its specific ID, location, visual information in an organized and understandable format. This 

assists in understanding their quantity, installation status and consequently understanding the 

actual progress of the project. 

 

1.3 Research Methodology 

Figure 1-1 shows the research methodology to meet the objectives stated in the previous section. 

This study started with a problem statement and the objectives. Then a comprehensive literature 

review was accomplished in the following domains: 

• Recent advances in construction progress monitoring and reporting. 

• Application of vision-based techniques for construction progress monitoring. 

• Application of location tracking technologies in construction projects. 

• Application of integrated monitoring methods and BIM in construction projects. 
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In the next step, shortcomings and limitations in the literature are identified to develop the 

research methodology which consists of three modules including “Object Recognition”, “Object 

Localization” and “Integrated Object Recognition and Localization”. Then the developed method 

is implemented and evaluated in different case studies. Finally, the results, conclusion, and future 

works are described in the last chapter. 

1.4 Thesis Organization 

This research study includes five chapters. Following Chapter 1, the chapters are as follows: 

Chapter 2 provides an overview of the previous works focusing on automated progress monitoring 

and reporting, vision-based techniques, RTLS, integrated approaches and BIM within the 

construction industry. This chapter identifies advances in automated progress monitoring through 

the utilization of different technologies and methods. Finally, a summary of existing gaps in the 

literature is provided at the end of this chapter. This chapter assists in identifying the techniques 

and tools that have the capabilities to be implemented in this research study and highlights domains 

for possible improvements.  

Chapter 3 describes the overview of the research methodology to support automated progress 

monitoring and reporting systems in construction projects. Three main modules were defined 

including “Object Recognition”, “Object Localization” and “Integrated Object Recognition and 

Localization”.  

Chapter 4 implements and evaluates the methods described in Chapter 3 using different laboratory 

and field experiments. Section 4.1.4 of this chapter is a modified version of “Automated Detection 

and Segmentation of Mechanical, Electrical, and Plumbing (MEP) Components in Indoor 

Environments by Using the YOLACT++ Architecture” published by Journal of Construction 

Engineering and Management (Shamsollahi et al. 2024). Moreover, Sections 4.2 and 4.3 are 

extended versions of “A Data Integration Method Using a Deep Learning Algorithm and Real-

Time Locating System (RTLS) for Automated Construction Progress Monitoring and Reporting” 

published by Automation in Construction (Shamsollahi et al. 2024).  

Chapter 5 provides a summary and conclusion of this study and highlights its contributions along 

with recommendations for future improvements. 
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Figure 1-1. The research methodology. 

1.5 Summary and Conclusions 

The purpose of this chapter is to establish the focus of this research, which is automated progress 

monitoring and reporting in construction environments, to improve efficiency and address the 

problems associated with manual monitoring methods. Next, the problem statement is identified, 
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including challenges related to monitoring tracked elements in indoor environments and 

limitations of current technologies utilized for automated progress monitoring.  

Following the problem statement, the research objectives were outlined. These objectives 

include developing a method that can accurately recognize and localize tracked building elements 

in indoor job sites in a timely manner. This method aims to provide detailed and comprehensive 

information about these elements for identifying their current status and supporting the decision-

making process. The methodology to achieve these objectives is then provided. Finally, the 

organization of the thesis was presented, encompassing a comprehensive literature review in 

Chapter 2, the research methodology in Chapter 3, the model implementation and validation in 

Chapter 4, and the summary and concluding remarks in Chapter 5. 
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CHAPTER 2:  LITERATURE REVIEW 

2.1 Overview 

In this chapter, related research on automated progress monitoring and reporting in construction 

projects is reviewed. The application of different technologies to enhance construction progress 

monitoring is discussed. These technologies include digital cameras and computer vision (CV) 

techniques for collecting and analysing visual information, Real-time Locating System (RTLS) for 

object localization, and integrated methods using both visual and location data. Furthermore, the 

role of Building Information Modeling (BIM) for further analysis of collected data from 

construction sites is detailed. The chapter ends by identifying the existing gaps in these methods. 

2.2 Construction Progress Monitoring and Reporting 

Construction progress monitoring and reporting are key managerial tasks for timely project 

completion and staying within budget. Through these tasks, discrepancies or unsatisfactory 

performance between the as-built and as-planned states of the project can be identified, allowing 

corrective actions to be taken at the right time (Golparvar-Fard et al., 2011; Moselhi et al., 2020). 

Inefficient progress monitoring has brought more than 53% delays and 66% over budget in 

construction projects (Alaloul et al., 2021; K. Han et al., 2018).  

Monitoring the construction sites in a consistent manner assists the project managers in 

avoiding unforeseen expenses derived from schedule delays, poorly performed tasks, revisions, 

conflicts and improper resource management (Kopsida et al., 2015; Yates & Epstein, 2006). 

Nevertheless, in complex construction sites, identifying the actual status of the project provides 

challenges for decision-makers due to reliance on traditional systems which are manual, 

inaccurate, and slow. In such systems, humans are responsible for data collection from job sites 

and information extraction from both as-planned and as-built states. This information is derived 

from different documents such as drawings, surveys, schedules and site reports which all of them 

are submitted by different responsible parties in the project. Moreover, reports from job sites are 

often based on human assessments, which may not represent real site conditions. To address the 

above stated issues, it is crucial to have an automated system to collect and analyze data accurately, 

visualize and report the findings in an interpretable format for different responsible parties 

(Golparvar-Fard et al., 2015).  
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Recently, new technologies have been introduced and applied in the construction industry to 

automate the processes of progress monitoring and reporting. These processes are: (a) data 

collection from as-built/as-is scenes, (b) data analysis, (c) progress estimation by comparing as-

built and as-planned information, (d) visualization of the results (Kopsida et al., 2015) as shown 

in Figure 2-1.  

 

Figure 2-1. Construction progress monitoring and reporting process (Shamsollahi et al., 2022). 
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For evaluating automated progress monitoring systems, Kopsida et al. (2015) defined eight 

criteria, including: 

1. Utility: The system’s applicability and generalizability to both outdoor and indoor 

environments and encompass different objects for monitoring purposes. 

2. Time efficiency: The duration of time spent using the system. 

3. Accuracy: The level of accuracy and reliability the system provides for tasks involved in 

progress monitoring, from data collection to progress estimation. 

4. Automation Level: The degree of human involvement in completing the required tasks. 

5. Preparation requirements: The time required to set up the system. 

6. Requirements for training the user: The level of expertise needed to operate the system. 

7. Cost: All expenses related to the system’s equipment, deployment, and maintenance. 

8. Mobility:  The capability to move the system without restrictions and effort. 

2.2.1 Computer Vision Techniques 

In recent years, low-priced and high-resolution digital cameras with high-capacity memory have 

enabled construction companies to effectively capture data from construction operations. Digital 

cameras can produce a large number of images and videos on a daily basis from as-built scenes 

containing useful and detailed information (Golparvar-Fard et al., 2015; Hou et al., 2020). 

However, due to challenges in image analysis tools such as computation time, accuracy and cost, 

images are analysed manually only for documentation and data recording purposes. As a result, 

only a small portion of this information is utilized, while the rest becomes unusable (Hou et al., 

2020; Nieto et al., 2012; Paneru & Jeelani, 2021). 

With developments in hardware platforms and algorithms, CV technology improved 

significantly (Feng et al., 2019). CV is a branch of artificial intelligence that uses computers to 

obtain high-level understanding from visual data, like human visual systems. During the last 

decade, CV has attracted many researchers due to its wide range applications in enhancing 

automation in construction. It can be applied for different project management purposes such as 

safety monitoring, quality control, productivity analysis and progress monitoring (Xu et al., 2020).  

In progress monitoring systems using CV techniques, the collected visual data from job sites 

are analyzed to understand the project’s current state. Computer vision techniques can be 

categorized into 3D scene reconstruction, object tracking, object detection and image segmentation 
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(Paneru & Jeelani, 2021). In recent years, the number of research studies related to automated 

progress monitoring and computer vision techniques in the construction industry has increased. 

Kopsida et al. (2015) provided an in-depth review of automated progress monitoring steps and 

their related technologies and methods. Patel et al. (2021) explored recent developments, existing 

challenges, and future works for automated progress monitoring in the construction industry. Reja 

et al. (2022) and Sami Ur Rehman et al. (2022), described the current computer vision algorithms 

that are applicable in construction projects and conducted a detailed comparison of them. 

Additionally, they discussed how CV techniques can be integrated with other technologies, 

including BIM, augmented reality, and virtual reality.  

Gharib and Moselhi (2023), conducted a review of current practices for automated progress 

monitoring and reporting using CV techniques. As part of this research, devices for capturing 

visual data were described, including depth cameras, drones, and laser scanners. Ekanayake et al. 

(2021), described the challenges associated with indoor progress monitoring and reviewed various 

computer vision techniques that have been used in recent research studies for indoor job sites.  

An in-depth literature review reveals that three major computer vision techniques are used 

for construction progress monitoring and reporting using digital images, namely (i) 3D scene 

reconstruction, (ii) object detection, (iii) image segmentation. In this section, recent algorithms 

and technologies in these areas are discussed and the challenges are highlighted.  

2.2.1.1 3D Scene Reconstruction  

In this technique, 3D representations (mesh models, point clouds and geometric models) are 

generated from one or multiple images taken from construction sites (Lu & Lee, 2017; Xue et al., 

2021). These 3D representations contain critical information pertinent to the current state of the 

project, which can then be compared to the as-planned state to track and report the project progress. 

For this purpose, collected data from cameras (monocular, stereo, video, panoramic, and RGB-

Depth) is required to generate the point cloud models (Ma & Liu, 2018; Xue et al., 2021). Many 

review papers have been published in the past few years that provide more information about the 

recent advancements in 3D reconstruction techniques, their capabilities, and limitations (Ham et 

al., 2019; Kang et al., 2020; Mirzaei et al., 2022; Wang et al., 2020; Wang & Kim, 2019; Xu et al., 

2021; Xue et al., 2021). 



12 

 

Computer vision techniques and algorithms for generating 3D scene reconstruction are 

different due to the characteristics of the input images. The input images are categorized into single 

and multiple images (Ham et al., 2019). Single images can be taken using regular cameras or RGB-

Depth cameras such as Azure Kinect. The Azure Kinect camera can easily create as-built 3D 

scenes using streams of depth and color images. However, for creating 3D reconstruction scenes 

using regular cameras, there is a need to calculate the depth of pixels in the images using computer 

vision techniques (Kang et al., 2020). Eder et al. (2019) developed and trained convolutional neural 

networks with a dataset containing RGB-D images to predict depth estimation of a single 360° 

image of an indoor scene that provides all information for creating the 3D as-is model. 

The multiple images are divided into (i) multi-perspective 2D images and (ii) video 

sequences. In general, 3D scene reconstruction using multiple images have fewer challenges and 

is studied more frequently in the literature since they are more accurate with a higher level of detail 

compared to approaches using single images. In multi-perspective 2D images, several images with 

different perspectives of the objects are taken and create 3D scene representations based on 

parameters and poses of cameras (Ham et al., 2019; Kang et al., 2020). Fathi et al. (2011) proposed 

a framework to create 3D point clouds using two calibrated cameras. The feature points captured 

from two video frames were detected using the Speeded Up Robust Features (SURF) algorithm. 

Automatic point matching between two video frames using Euclidean distance was applied and 

the outliers were removed using the RANdom SAmple Consensus (RANSAC) algorithm. Then 

triangulation was used to estimate spatial coordinates of the points in the frames and create point 

clouds of the construction objects on site. 

Video sequences can be utilized as an input for computer vision techniques to reconstruct 

3D scenes. One of these techniques is the structure from motion (SFM) method that uses the shared 

information between consecutive frames by repeatedly extracting and matching features between 

two images, filtering outliers, and estimating poses of images and point clouds through image 

registration and triangulation (Ham et al., 2019; Jiang et al., 2020; Kang et al., 2020). In the study 

done by Golparvar-Fard et al. (2011) unordered daily photographs were used to reconstruct the as-

built environment by using the SFM technique. Creating 3D point cloud models, enabled project 

management team to visualize the project’s current state through different viewpoints.  
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Despite many advances in 3D scene reconstruction techniques, still some limitations exist 

that need to be discussed. Some related issues are (1) Lack of automation level in all the required 

steps for creating as-built models such as data collection and removing outliers. This increases, the 

operation time, and errors in the models (Lu & Lee, 2017; Ma & Liu, 2018); (2) Lighting 

conditions, occlusions, and cluttered backgrounds are unavoidable in construction sites which 

make 3D representations incomplete and noisy (Han et al., 2021; Xue et al., 2021); (3) Limited 

operating spaces in indoor environments (Xue et al., 2021); (4) Incapability of existed techniques 

in reconstructing of building elements with complicated geometric shapes (cylindrical, spherical, 

L-shaped, etc.) which mostly are in indoor environments (Kang et al., 2020). 

2.2.1.2 Object Detection Algorithms 

Due to numerous construction activities which use a wide variety of resources including materials, 

equipment, and workers, it is important to identify which resources are in the scene and which 

ones are involved in performing the task of interest (Seo et al., 2015).  Object detection is used to 

identify tracked building components automatically on site from the captured images and videos. 

This technique facilitates analysis of tracked activities and material allocation to support progress 

monitoring and reporting (Lin & Golparvar-Fard, 2020). Object detection is a computer vision task 

that performs both classification and localization. Meaning that it classifies the objects in the 

captured image into pre-defined categories and predicts the location of each object in the image as 

shown in Figure 2-2.b (Athira & Khan, 2020; Seo et al., 2015; Wu et al., 2020).  
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Figure 2-2. a) Original Image b) Object detection result c) Semantic segmentation result d) 

Instance segmentation result (Shamsollahi et al., 2022). 

In the early stages of object detection, many researchers used traditional (feature-based) 

algorithms which are essentially performed in a step-by-step process, requiring a specific model 

for each task. In these algorithms, the image features are extracted using feature descriptors such 

as Scale Invariant Feature Transform (SIFT), Local Binary Pattern (LBP), Binary Robust 

Independent Elementary Features (BRIEF) and Histogram of Gradients (HOG). Next, these feature 

descriptors are combined with machine learning classifiers such as Support Vector Machine 

(SVM), K-Nearest Neighbors (KNN), naive Bayes classifiers and neural networks for 

classification tasks (Murphy et al., 2006; Seo et al., 2015; Wu et al., 2020). The performance of 

these models highly relies on the optimization of implemented algorithms and the selection of 

image features  (Lee, 2015; Wang et al., 2018; Wang et al., 2021). 

Several research studies have implemented feature-based object detection algorithms to 

detect construction resources from visual data for various construction applications (Wang et al., 

2021). For instance, to improve productivity in construction projects, Zou and Kim (2007) used 

feature-based algorithms for automatic excavator detection and analysis of its idle time in job sites. 
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In this study, the excavators were extracted from images using the Hue, Saturation, and Value 

(HSV) color space and simple thresholding methods. Next, to determine if the excavator was 

moving, the centroid coordinates of the object were calculated and compared with those of the 

previous image frame. 

Hamledari et al. (2017) utilized different feature extraction and classification techniques 

such as color space selection, thresholding, edge extraction, and support vector machine to detect 

partitioned elements such as drywall, insulation, studs, and electrical outlets to report their actual 

state. While the proposed model can detect different components, its generalization is challenging 

because it requires different preprocessing and model-based techniques that require specialized 

expertise in the CV domain. Hui et al. (2015) proposed a framework to detect and localize bricks 

in video frames using image processing techniques such as color thresholding and edge detection. 

They then estimated the number of bricks on the building façade automatically to improve 

performance of progress monitoring. Traditional methods have limitations in model generalization 

for detection since they are based on hand-crafted features and require significant expertise for 

feature selection and extraction (Kim et al., 2018; Nath & Behzadan, 2019).  

In recent years, deep learning algorithms consisting of neural networks with many hidden 

layers, have provided solutions with better performance and reduced human involvement. This is 

achieved by introducing end-to-end learning process, which means that for completing feature 

learning, classification and regression tasks only a dataset of annotated images or video frames is 

required (Kim et al., 2018; O’Mahony et al., 2019; Wang et al., 2018). In these models, the features 

such as edges, corners, and contours are transferred from the input layer to higher layers. This 

transfer results in a more abstracted feature representation that allows the system to learn complex 

inherent structures (Nath & Behzadan, 2019; Wang et al., 2018). The differences between 

traditional and deep learning algorithms are depicted in Figure 2-3. 

The deep learning algorithms are classified into two main groups: two-stage and one-stage 

algorithms. In two-stage algorithms, object classifications and detections are based on a set of 

generated region proposals then, each proposal is classified, and the bounding box coordinates are 

refined (Carranza-García et al., 2021; Ekanayake et al., 2022; Pal & Hsieh, 2021; Ren et al., 2015). 

These algorithms include region-based CNN (R-CNN) and its extensions, Fast Region-based 

Convolutional Networks (Fast R-CNN) (Girshick, 2015), Faster Region-based Convolutional 
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Neural Network (Faster R-CNN) (Ren et al., 2015), and Mask Region-based Convolutional Neural 

Network (Mask R-CNN) (He et al., 2017). In contrast, one-stage detection algorithms consist of a 

single fully convolutional neural network to perform classification and predict bounding boxes 

without relying on proposal-based tasks (Carranza-García et al., 2021; Ekanayake et al., 2022). 

Single-shot multi-box detector (SSD) (Liu et al., 2016) You Only Look Once (YOLO) (Redmon 

et al., 2016) and its subsequent versions belong to one-stage algorithms. Generally, two stage 

algorithms are more accurate compared to the one-stage algorithms, but the latter are faster and 

can be applied for real-time purposes (Pal & Hsieh, 2021).  However, an important challenge for 

both of these algorithms is their capability in handling objects with small scale in the image. This 

limitation has been observed in algorithms such as YOLO and Mask R-CNN (Pal & Hsieh, 2021; 

Q. Yang et al., 2020) which demonstrate a need for exploring other algorithms. 

 

 

Figure 2-3. Comparison between the two techniques: a) Feature-based algorithms, b) Deep 

learning models (Wang et al., 2018). 

Advances in deep learning algorithms and developments in hardware such as processing 

power, memory capacity, and high-resolution cameras have led to the rapid spread of CV 

techniques for various applications (O’Mahony et al., 2019). Many studies have applied deep 

learning-based object detection algorithms for construction progress monitoring and reporting. For 

example, Hou et al. (2020) trained Deeply Supervised Object Detector (DSOD) deep learning 

algorithm and detected building components including columns and beams automatically. 

Martinez et al. (2021) proposed a framework to track progress of construction tasks automatically 
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in offsite jobsites. In this research, Faster R-CNN is applied to detect and classify the construction 

resources that are utilized in each task. Pour Rahimian et al. (2020) developed a framework using 

CV techniques for building elements identification, integrating BIM and virtual reality to provide 

as-built information. Ekanayake et al. (2022) utilized You Only Look Once version 4 (YOLOv4), 

a real-time object detection model, in a cloud-based platform to automatically determine the wall 

partitions’ status in indoor construction environments.  

2.2.1.3 Image Segmentation Algorithms 

In image segmentation, which is also named as pixel-level classification, a digital image is 

separated into different meaningful regions to find how objects are displayed in the image (Feng 

et al., 2019). Image segmentation can be divided into semantic segmentation and instance 

segmentation (Paneru & Jeelani, 2021). 

Semantic segmentation refers to assigning a class label to each pixel in the image as shown 

in Figure 2-2.c (Hao et al., 2020). In instance segmentation, detection and segmentation are joined 

in one model, making detected objects distinguishable by pixel-wise masks. Compared to semantic 

segmentation, objects here from the same class, can be distinguished as separate instances as 

shown in Figure 2-2.d (Feng et al., 2019; Liu et al., 2019; Wu et al., 2020). Through segmenting 

objects of interest by predicted masks, shape and size of objects in the image can be identified. In 

addition, the object boundaries can be extracted, providing spatial information for further geometry 

analysis, localization, and tracking which can assist progress monitoring systems (Kang et al., 

2022; Wang et al., 2021; Ying & Lee, 2019). Hence, as compared to object detection, instance 

segmentation is a harder task (Bolya et al., 2020).  

Wang et al. (2021) developed an integrated framework using different CV tasks including 

instance segmentation and object tracking to monitor the progress of precast walls. Mask R-CNN 

was utilized for detecting and segmenting the walls and DeepSORT for tracking walls through 

consecutive frames. Wei et al. (2023) utilized Improved Segmenting Objects by Locations, version 

2 (SOLOv2) which is a novel instance segmentation model to automatically monitor the progress 

of soil-foundation construction. Shamsollahi et al. (2021) implemented Mask-RCNN for automatic 

detection and segmentation of HVAC ducts from synthetic images. To overcome the overfitting 

problem and enhance the generalization of the model a set of data augmentation techniques was 
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applied during training the model. Table 2-1 provides more research studies that utilized deep 

learning-based object detection and segmentation algorithms for different construction domains 

such as safety management, productivity estimation, progress monitoring, and maintenance.  

In recent years, many research studies focused on object recognition from point clouds as 

well (Mirzaei et al., 2023; Wei et al., 2022; Xie et al., 2023). For example, for automated 

monitoring of industrial facilities and implementing preventative maintenance, Agapaki and 

Brilakis (2020) developed and trained a deep learning algorithm called CLOI-NET in a cloud-

based platform to automatically segment different types of industrial facilities from point clouds. 

Ma et al. (2020) investigated the performance of two novel deep learning models called PointNet 

and DGCNN for the automated recognition of different interior building components such as 

structural, openings, and furniture from point clouds. Both synthetic and real point cloud datasets 

were used for training of the models and DGCNN performed better in both cases. In addition, a 

mixture of synthetic and real dataset was used to train the DGCNN model, which yielded better 

results than using only real point cloud dataset.   

Table 2-1. Applied object recognition algorithms in the construction industry. 

Author Objective Training set Test set Key 

Algorithms 

Object 

Type 

Results 

P R F1 AP50 

Kang et al. 

(2022) 

 

Safety 

 

938 

(Real images) 

 

235 

(Real images) 

 

YOLACT Excavator - - - 0.86 

Truck - - - 0.88 

Worker - - - 0.89 

Safety Vest - - - 0.88 

Hardhat - - - 0.91 

Techasarntikul 

and Mashita 

(2022) 

Operation 

and 

Maintenance 

 

529 

(Real images) 

 

95 

(Real images) 

 

Mask R-

CNN 

T-Rod 0.96 0.95 0.96 - 

Cable 0.86 0.92 0.88 - 

Metal bar 0.88 0.90 0.89 - 

Pipe 0.89 0.70 0.79 - 

Duct 0.59 0.83 0.69 - 

HVAC-E 0.82 0.82 0.82 - 

Chen et al. 

(2020) 
Productivity 

and Safety 

10,000 

(Real images) 

1,500 

(Real images) 

IFaster R-

CNN 

Excavator 0.99 0.81 - 0.95 

Worker 0.98 0.79 - 0.91 

Golkhoo (2020) Progress 

Monitoring 

560 

(Real images) 

62 

(Real images) 

Mask R-

CNN 

Duct 0.70 0.74 - 0.61 
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804 

(Synthetic/Re

al images) 

62 

(Real images) 

Mask R-

CNN 

Duct 0.73 0.77  0.66 

Wei Wei et al. 

(2022) 

Progress 

Monitoring 

500 

(Real images) 

 

78 

(Real images) 

 

Improved 

Mask 

RCNN 

Plaster - - - 0.93 

Person - - - 1.00 

Putty - - - 0.97 

YOLACT Plaster - - - 0.94 

Person - - - 0.96 

Putty - - - 0.94 

PointRend Plaster - - - 0.96 

Person - - - 0.96 

Putty - - - 0.94 

Hou et al. (2020) Site 

Monitoring 

4,378 

(Synthetic 

images) 

100 

(Synthetic 

images) 

DSOD Column 96.3 95.5 - - 

Beam 95.8 95.1 - - 

Note: P = Precision, R = Recall, F1 = F1 Score, and AP50 = Average Precision at 50% overlap. 

2.2.1.4 Image Datasets for Training Deep Learning Models 

Although deep learning algorithms are capable of robust performance, they require large image 

datasets for training. The limited availability of real images from construction projects makes the 

development of such datasets challenging (Xiao et al., 2021). Large-scale datasets like Microsoft 

COCO (MS COCO) (Lin et al., 2014), PASCAL Visual Object Classes (VOC) (Everingham et al., 

2007), and ImageNet (Deng et al., 2010), lack construction-related objects and are not directly 

suitable for model training in the construction domain. However, they are helpful for transfer 

learning to pass basic image features to the models trained on specialized, smaller datasets 

containing the target objects (Nath & Behzadan, 2020; Oquab et al., 2014). There have been a 

number of research studies in the past few years that have created open image datasets specific to 

construction objects and made them available to the public.  

Duan et al., (2022) created an image dataset named Site Object Detection Dataset (SODA) 

from different phases of construction sites. They developed a comprehensive annotated dataset 

consisting of 15 object classes related to material, labor, equipment, and layout with around 20,000 

images. Xuehui et al. (2021) collected 41,668 images referred to Moving Objects in Construction 

Site (MOCS) with thirteen object classes presented in construction sites including workers and 
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machines. Xiao and Kang (2021), created a dataset consisting of 10,000 annotated images 

containing 10 object classes from construction machines referred to as the Alberta Construction 

Image Data Set (ACID). The dataset consists of images taken from construction sites using 

unmanned autonomous vehicles (UAVs), installed cameras, manual imaging, and downloading 

images from online sources. Czerniawski and Leite (2018), created a dataset consisting of 2D 

image frames and their corresponding depth images for a variety of indoor object classes, including 

HVAC ducts and plumbing.  

Although construction image datasets have been released in recent years, they do not contain 

all types of construction components with enough images and viewpoints (Xiao & Kang, 2021). 

Moreover, the high-quality datasets created by construction companies are not publicly available 

due to confidentiality concerns. Without sufficient images for training the algorithms, a number of 

problems can arise, such as overfitting, poor performance, and limited generalizability (Kim et al., 

2023). In such cases, synthetic images can be utilized in order to create construction-related 

datasets for training the deep learning models (Barrera-Animas & Davila Delgado, 2023). 

There are two types of synthetic images: synthetic composites and virtual synthetic images. 

Synthetic composite images refer to real images that are digitally modified in a way that 

incorporates objects that are not initially included in the image. These objects can be either 

synthetically generated or obtained through splicing from various real images and subsequently 

added to the original image (Man & Chahl, 2022). A sample of these images is depicted in Figure 

2-4. However, superimposing objects onto backgrounds can result in unrealistic images due to 

inconsistencies in geometry (e.g., mismatched size and orientation), lighting conditions, and 

semantic information that can negatively affect the model’s performance (Niu et al., 2021). 

Conversely, virtual synthetic images are entirely generated artificially with no real elements (Man 

& Chahl, 2022) as shown in Figure 2-5. 

Typically, 3D BIM models are utilized to generate synthetic images by capturing viewpoints 

within three-dimensional space containing the target objects (Soltani et al., 2016). Although object 

recognition algorithms using real, synthetic or mixed datasets have been investigated in many 

research papers, several challenges remain.  

Regarding synthetic image generation, complex indoor objects are not investigated, and the 

images often fail to represent different real site conditions. Enhancing the diversity of synthetic 

images is crucial to improve model generalization across various construction site scenarios. In 
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addition, a more in-depth investigation of different synthetic and real ratios within datasets for 

training is required. Table 2-2 summarizes the gaps in the literature. 

 

Figure 2-4. Synthetic composite image sample (Hwang et al., 2023). 

 

Figure 2-5. Virtual synthetic image sample.  
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Table 2-2. Overview of object recognition models for construction monitoring.  

Author Training set Indoor/ 

Outdoor 

Target 

Objects 

Key 

Algorithm 

ISeg Computing 

Platform 

Limitations 

Zheng et 

al. (2020) 

Virtual and 

real images 

Outdoor Prefinished 

modules 

Mask R-

CNN 

 

√ Physical 1- Synthetic images lack diversity in 

real scenarios, such as lighting, 

weather, and occlusion. 

2- Recognition is limited to simple 

objects (boxes). 

3- Did not optimize the mix of synthetic 

and real images. 

Wei Wei 

et al. 

(2022) 

Real images 

 

Indoor Worker, 

wall 

elements 

Improved 

Mask 

RCNN 

 

√ Physical 1- Cannot apply the preprocessing 

model to all objects. 

2- Test data is limited (78 images). 

3- Recognition is limited to simple 

objects (walls). 

4- Carried out for ideal conditions; did 

not consider indoor scenarios like 

lighting, occlusion, and clutter. 

Hwang et 

al. (2023) 

Composite 

and Real 

images 

Outdoor Equipment Faster R-

CNN 

 

- N.A 1- Unrealistic synthetic images 

(mismatch equipment with 

background in size, orientation, 

color, and semantic information). 

2- Synthetic images lacked diversity in 

3D-modeled objects and background 

images with lighting and weather 

variations. 

Ekanaya

ke et al. 

(2022) 

Real images Indoor Wall 

partition 

elements 

YOLOv4 

 

- Cloud 1- Recognition is limited to simple 

objects (walls). 

2- Improving the dataset quality or 

approaches to handle challenges in 

indoor sites are not investigated. 

Kim et 

al. (2023) 

Composite 

and Real 

images 

 

Outdoor Workers YOLOv3 

 

- N.A 1- Unrealistic synthetic images due to 

discrepancies in pose, orientation, 

and scale of the target object 

(worker) with the background. 

2- Did not optimize the mix of synthetic 

and real images. 
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3- Synthetic images lacked diversity in 

occlusion and weather variation. 

4- Concentrating on a class (workers) 

prevalent in datasets and did not 

consider less-represented, crucial 

construction elements. 

Li and 

Chen 

(2022) 

Real images Outdoor Pipes YOLOv3 

 

- Physical 1- Only considered objects (pipes) in 

storage sites not installed which is 

easier to identify as opposed to 

objects in challenging environments. 

2- Images were taken from only limited 

shooting angles, failing to represent 

the variety of viewpoints found on 

construction sites. 

(Hou et 

al., 2020) 

Virtual 

images 

 

Indoor Structural 

elements 

DSOD 

 

- Physical 1- Only synthetic data were considered. 

2- Lack of diverse visual attributes for 

target objects (shape, size, details). 

3- Synthetic images fail to reflect real 

indoor conditions such as lighting 

and clutter conditions. 

Note: ISeg = instance segmentation capability. 
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2.2.2 Application of Location Tracking Technologies in Construction 

Tracking resources efficiently in complex construction environments requires identifying and 

localizing them accurately (Shahi et al., 2012). As construction projects become larger and the 

number of high-cost assets increases, the localization of resources becomes more serious and 

important (Cho et al., 2010). 

Resource localization is required to be reliable in a consistent way to assist stakeholders in 

decision-making. For this purpose, RTLS technologies are introduced for tracking resources in job 

sites. These systems are used to overcome the challenges of traditional manual data collection 

methods in construction sites which are inaccurate, unreliable, and expensive (Shahi et al., 2012). 

RTLS is described as the integration of hardware components and software systems to 

automatically identify the position of an object in a device-installed monitored area in real-time. 

The data collected during this process can be used in real-time applications or analyzed later (Li 

et al., 2016).  

Materials and equipment costs can account for 50-60% of the total cost of industrial 

construction projects (Kini, 1999). Hence, it is crucial to organize and control materials in 

construction projects to save unnecessary expenses (Georgy & Basily, 2008). Materials used in 

the construction industry are categorized into off-the-shelf, bulk, and engineered components. The 

materials in each category differ based on expense, procurement lead time, and exchangeability. 

In general, engineered components with specific properties are more costly and require more lead 

time and advanced scheduling. Mechanical, Electrical and Plumbing (MEP) components, such as 

pipe spools, are considered as engineered materials with a significant and expensive procedure 

(Song et al., 2006). 

The importance of RTLS becomes higher in large projects, in which tracking thousands of 

material components such as MEP components (e.g., pipe spools and valves) and structural 

components on large area sites is required. In addition, components like pipe spools, due to their 

specific small shape and weight, are at a higher risk of being lost or not easily found compared to 

larger materials (Grau et al., 2009). Using RTLS technologies, different construction resources 

such as materials can be tagged for monitoring purposes, even in obstructed environments or from 

considerable distances (Teizer et al., 2008a).  
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RTLS enhances construction progress monitoring by increasing awareness of resource 

location and status, controlling activities for better planning, and implementing required actions in 

a timely manner (Teizer et al., 2008a). There are different types of RTLS technologies such as 

Global Positioning Systems (GPS), Infrared (IR), Radio Frequency Identification (RFID), UWB, 

and Bluetooth (Huang, Hammad, & Zhu, 2021). An experimental study conducted by Grau et al. 

(2009), compared traditional and automated materials tracking, and the benefits of an automated 

system were elaborated. For the automated system, they utilized 400 RTLS tags to track materials 

over a three-month period, demonstrating remarkable time and cost savings. The system could 

save 88% of the time spent per component on site, reducing it from 36.8 minutes to 4.56 minutes. 

Additionally, it showed an 8.98% enhancement in mitigating information loss about missing 

materials compared to traditional tracking systems. 

The GPS system, a satellite based RTLS technology is used in construction projects to 

provide real-time object location information. The GPS consists of satellites placed above the 

Earth by the U.S. Department of Defense in the 1970s. The satellites emit radio signals to receivers 

attached to objects to identify their location. This system works based on the concept of 

trilateration, which needs four satellites to accurately determine an object’s position through the 

geometric intersection of four spheres. The application of GPS in the construction industry is for 

safety management, activity tracking, site acquisition, and surveying (Kumar & Moore, 2002; Li 

et al., 2005; Moselhi et al., 2020; Omar & Nehdi, 2016). Due to the requirement of direct line-of-

sight (LOS), GPS is most often applied in activities that take place outdoors such as earthwork 

operations. For this reason, other technologies are being considered for localizing objects in indoor 

construction environments such as RFID, Bluetooth, UWB, and IR (Moselhi et al., 2020; Teizer 

et al., 2020; Xu et al., 2018; Zhang et al., 2012, 2020). These systems are differentiated by their 

localization accuracy, cost, scalability, level of consistency, robustness, and data protection. 

Therefore, from available RTLS systems, one can be selected that meets the specific requirements 

of each project, such as being economical or providing high accuracy (Alarifi et al., 2016).  

Recently, indoor localization has received considerable attention for identifying the location 

of workers, equipment, and materials continuously and in real time. However, localization in 

indoor job sites is more challenging and requires higher accuracy (Alarifi et al., 2016). This is due 

to the presence of different objects including equipment, structures, walls, and humans that densely 
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exist and cause signal reflections and scattering, degrading the performance of RTLS. Hence, the 

presence of different objects within the indoor environment can prevent signals from transmitting 

in a direct path resulting in non-line-of-sight (NLOS) conditions  (Alarifi et al., 2016; Mautz, 

2012). The other challenge in indoor localization is signal interference by other sources which 

impacts the RTLS and degrades the signals' stability. These sources include mobile devices, 

wireless networks, microwave systems and fluorescent lighting (Alarifi et al., 2016).  

Different research studies introduced performance metrics to evaluate the RTLS in indoor 

environments. Wu et al. (2007) introduced six attributes of localization systems in indoor 

environments that can be used to evaluate their performance, which are: (1) accuracy and precision, 

(2) system coverage, (3) latency of location updates, (4) the building’s infrastructure impact, (5) 

system calibration, and (6) random errors’ impacts derived from multipath effects. Gu et al. (2009) 

introduced other attributes to evaluate these systems including (1) system cost, (2) data security, 

(3) complexity, and (4) robustness. They highlighted the importance of system cost, which is not 

limited to the cost of hardware components but also the costs of installation and maintenance. 

Other parameters involved in determining the cost of RTLS include time and space costs. Time 

costs relate to the time needed for the installation and calibration of the system and the time 

required for corrections when problems in the system occur. Space costs refer to the size of the 

components and their physical space requirements. Alarifi et al. (2016) emphasized the importance 

of systems’ scalability and availability, in addition to the previously mentioned metrics. Figure 2-6 

demonstrates the main performance metrics required to assess the performance of RTLS for 

different applications.  
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Figure 2-6. Indoor localization technologies and their performance metrics. 
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Table 2-3.  Different applications of location tracking technologies in construction 

Reference Objectives Tracked object Method 

Montaser et al. (2012) Productivity Estimation Equipment GPS 

Li et al. (2013) Safety Management Workers & Equipment GPS / RFID  

Song et al. (2015) Material Management Materials GPS/Barcode 

Teizer et al. (2015) Safety Management Workers & Equipment GPS 

Alshibani and Moselhi 

(2016) 

Productivity Estimation Equipment GPS 

Park et al. (2017a) Safety Management Workers Bluetooth 

Huang et al. (2021b) Safety Management Workers Bluetooth 

Zhao et al. (2019) Production Control Workers Bluetooth 

Fang et al. (2016) Safety Management Workers RFID 

Montaser and Moselhi 

(2014) 

Material Management Workers and Materials RFID 

Montaser and Moselhi 

(2012a) 

Productivity Estimation Equipment RFID 

Montaser and Moselhi 

(2012b) 

Progress Monitoring Materials RFID 

Chin et al. (2005) Progress Management Materials  RFID 

One of the RTLS technologies appropriate for indoor object localization is Bluetooth Low 

Energy (BLE), which was introduced in 2010 and uses 2.4 GHz radio frequency (Huang, Hammad, 

& Zhu, 2021; Park et al., 2017). Due to its advantages such as being economical, having low 

energy use, internet connectivity, scalability, and the ability for signal penetration into walls, the 

BLE system is suitable for different construction applications. This system contains tags that can 

communicate with the reader. Mobile devices such as smartphones, and tablets that contain BLE 

can work as the reader for the tags (Topak et al., 2018).  
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There are two main methods for distance measurement using BLE including the Received 

Signal Strength Indicator (RSSI) and the fingerprint technique (Sergi et al., 2022). Different 

research studies utilized BLE technology to track the location of workers and equipment in indoor 

and outdoor job sites. For instance, Mohanty et al. (2020) implemented BLE technology in the 

field environment to track the location of workers for productivity monitoring. In another study 

done by Park et al. (2017b), BLE tags were attached to workers and equipment to identify 

hazardous situations and increase safety in construction sites. Khazen et al. (2023) conducted 

laboratory experiments to assess the developed proximity detection framework using BLE for 

improving safety and productivity monitoring in indoor environments. Furthermore, there are other 

research studies that used BLE for different construction applications which can be found in Table 

2-3. However, since the accuracy of the BLE system is between 2-5 meters (Schjørring et al., 

2022), and has a coverage limitation of up to 30 meters (Rao et al., 2022), it may not be accurate 

enough for all the applications in the construction projects and other technologies are required to 

be investigated.  

RFID is another RTLS technology that is widely used for object tracking and localization in 

construction sites. In the RFID system, data transmission is achieved via radio frequency signals 

transmitted between RFID tags and readers (Montaser & Moselhi, 2014). While it is not as accurate 

and easy to implement as other technologies, it has received considerable attention (Li et al., 2016). 

In large-scale projects, RFID is recognized as the most common technology for localization 

objectives (Alarifi et al., 2016). RFID uses radio frequencies, ranging from low to super-high 

frequencies for automated data collection. RFID tags can be utilized to track and localize materials, 

workers, and equipment in construction projects (Li et al., 2016).  

Each RFID tags consists of a microchip and an internal antenna with a predefined ID. The 

tags are scanned by a mobile reader handled by an inspector or by a fixed reader to collect and 

store the data (Lu et al., 2011; Moselhi et al., 2020; Omar & Nehdi, 2016; Song et al., 2006). 

Subsequently, the reader passes the captured data to the core computer for further analysis and 

specific application use. There are various types of RFID that have different properties such as 

power supply, signal frequency, reading range, data rate, service life, price, memory space, size, 

and shape (Song et al., 2006). According to the type of material and the conditions of the work 
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environment, appropriate RFID type and configuration can be selected (Valero et al., 2015). A 

sample of RFID tags and a mobile reader is depicted in Figure 2-7. 

The RFID system is categorized into active and passive tags (Teizer et al., 2008a). Active 

tags utilize batteries and are capable of high reading range, data rates and memory storage. 

However, passive tags that do not require batteries are more economical and can be smaller in size 

(Song et al., 2006; Teizer et al., 2008). RFID systems can be used to track objects in construction 

sites without requiring line-of-sight (Song et al., 2006). Many studies have investigated the 

benefits and limitations of RFID, its use cases, future trends, and potential integration with other 

technologies (Sardroud, 2014; Sun et al., 2013; Valero et al., 2015; Wing, 2006) 

RFID is used in many construction applications such as material management, safety 

management, and progress monitoring. Ghanem and Abdelrazig (2006), utilized RFID technology 

to track the progress of work in construction sites. Montaser and Moselhi (2012) used economical 

RFID tags, attached to the hauling units, and fixed RFID readers at specified gates to capture near 

real-time data for tracking earthmoving operations. Song et al. (2006) utilized active RFID tags to 

identify and track pipe spools using mobile and fixed readers. This study demonstrated that RFID 

is practical in complex environments and that the tags could work in congested areas filled with 

metallic objects. In addition, they determined the benefits of using RFID for tracking pipe spools 

during shipment, reception, and storage. These benefits include reduced identification time and 

errors, minimized search time, and fewer reproductions of misplaced items.  

Razavi and Moselhi (2012) investigated the application of RFID in indoor job sites. In this 

study, economical passive RFID tags and a reader were used for localization purposes. Motamedi 

et al. (2013) studied the utilization of active RFID for localizing static and movable assets during 

the operational phase in indoor environments. Other studies that used RFID for construction 

applications can be found in Table 2-3. The RFID system has limitations, such as not being fully 

automated and not being accurate enough for 3D localization. Therefore, they are primarily used 

for 2D localization (Awolusi et al., 2018; Moselhi et al., 2020; Omar & Nehdi, 2016; Rao et al., 

2022; Shahi et al., 2012; Zhang et al., 2020).  
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Figure 2-7. RFID hardware components including the reader and different types of tags and 

RFID tag printer (Montaser & Moselhi, 2014). 

2.2.2.1 The UWB System 

Between 1960 and 1990, the UWB system has been confined to military applications and the US 

Department of Defense (Kshetrimayum, 2009). The UWB was subsequently made available for 

commercial sale to the public (Alarifi et al., 2016). The UWB system is a promising technology 

for providing real-time, secure, and accurate distance and location estimations. The hardware 

components of the UWB system include tags and receivers. The receivers are static and fixed in 

predefined locations, while the tags can be installed in moving or static objects (Liu et al., 2022). 

Depending on the type of receivers used, the UWB system can have a range between 200 meters 

to 1000 meters, allowing users to utilize fewer receivers while covering a large space (Liu et al., 

2022; Teizer et al., 2008). The UWB system has the capability to provide accurate 3D localization 

that can be beneficial for 3D material tracking on construction sites to improve decision-making 

(Teizer et al., 2008).  

Moreover, the UWB system offers a longer range and better stability in different 

environmental conditions than RFID. The UWB tags and receivers communicate consistently over 

a bandwidth that exceeds 500 MHz (Awolusi et al., 2018; Bardareh & Moselhi, 2022; Moselhi et 

al., 2020; Omar & Nehdi, 2016; Rao et al., 2022; Shahi et al., 2012; Zhang et al., 2020). The broad 

bandwidth enables a high rate of data transfer, and the low frequency of UWB pulses allows signals 
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to penetrate objects such as walls (Alarifi et al., 2016). The other advantages of the UWB system 

are its anti-interference capability and high multipath resolution (Zhang et al., 2020).  

 

 

Figure 2-8. Sample of (a) UWB receivers and (b) tag from the DecaWave Company 

(DWM1000) (Yao et al., 2021). 

UWB tags can be activated by operators and then attached to tracked objects for localization 

and tracking so that the system can collect data from them (Shahi et al., 2013a). In the UWB 

system, the tags send radio signals to the receivers and the location of tags can be determined by 

the utilization of various techniques such as Time of Arrival (TOA)/Time of Flight (ToF), Time 

Difference of Arrival (TDOA), Angle of Arrival (AOA) (Liu et al., 2022; Shahi et al., 2013; Zhang 

et al., 2020). Each of these techniques can be used separately or in combination for localization of 

the tags (Zhang et al., 2020).  

Range measurements between tags and receivers can be based on ToF estimation. Several 

parameters that exist on job sites can reduce the accuracy of ToF estimation, leading to errors in 

range measurements and tag localizations. These parameters include non-line-of-sight conditions, 

multipath effects, synchronization difficulties and signal interference (Liu et al., 2022). In indoor 

environments, the impact of these parameters is higher on range measurement estimations, leading 

to outliers that may exceed 1 meter (Ruiz & Granja, 2017).  

The concepts of line-of-sight, non-line-of-sight and multipath effects become important in 

improving the performance of these systems since they have direct impact on range measurement 
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accuracies (Sang et al., 2020). A line-of-sight condition is when a signal propagates through a 

direct path between the tag and receiver without any present obstacles (Dardari et al., 2009).  A 

non-line-of-sight condition occurs when a clear and direct path between the tag and the receiver 

does not happen due to obstacles. In this condition, the signals pass through longer distance 

between the tag and receiver compared to the direct line-of-sight path (Kristensen et al., 2019). 

Through the multipath effect, radio frequency signals propagate from tags to receivers through 

various paths, with time delays caused by obstacles in the environment (Mautz, 2012; Sabri et al., 

2012). Moreover, these multipath propagations can also be caused by obstacles that are not 

necessarily between the tag and the receiver (Sang et al., 2020). Figure 2-9 demonstrates the 

sample of the line-of-sight, non-line-of-sight conditions and multipath effects.  

In indoor job sites, UWB localization accuracy can be reduced from centimeter-level in line-

of-sight conditions to meter-level in non-line-of-sight conditions (Liu et al., 2022). Various 

obstacles can cause signal reflections, diffractions, and scattering within indoor environments. 

These include structures, walls, workers, and components (Sabri et al., 2012; Sang et al., 2020). In 

addition, human presence, and communication devices such as cordless phones can cause signal 

interference that can negatively affect the UWB system (Cho et al., 2010). It is also possible that 

signal interference occurs between different UWB systems (Jiménez & Seco, 2016). 

The most recognized manufacturers that provide the UWB systems for commercial purposes 

are Ubisense, BeSpoon, Decawave, Time Domain, Sewio and Pozyx. Different research studies 

have utilized Ubisense (Cho et al., 2010; Shahi et al., 2013b; Siddiqui et al., 2019; Umer & 

Siddiqui, 2020; Xia et al., 2010) or Decawave (Bardareh & Moselhi, 2022; Jin et al., 2019a; Yao 

et al., 2021) as part of their experiments, specifically for localization and tracking purposes. 

Depending on their application, UWB tags may have compact, cubic, or microrectangular shapes, 

and their weight may be less than 12 grams (Teizer et al., 2008a). According to the manufacturer’s 

information (BeSpoon; Decawave; Ubisense) and the details provided in (Jiménez & Seco, 2016; 

Ruiz & Granja, 2017; Wang et al., 2015), the configurations of some of these products are provided 

in Table 2-4. 
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Figure 2-9. Line-of-sight and non-line-of-sight conditions, and multipath effects (Sang et al., 

2020). 

Table 2-4. Comparison between different UWB manufacturers’ system configurations (Jiménez 

& Seco, 2016; Ruiz & Granja, 2017; Wang et al., 2015). 

System Origin Founded 

Date 

Channel 

(GHz) 

Range 

(m) 

Technique Range 

Update 

(Hz) 

Price 

Ubisense 

7000 

United 

Kingdom 

2002 6–8 >160 AOA -

TDOA 

N. A 26,900 

Euros 

- 6 receivers 

-10 tags 

BeSpoon France 2010 3.99 <=880 TOA 2.5  1,699 euros 

-6 tags 

-hardware 

system 

DecaWave 

DW1000 

Ireland 2007 3.99 & 

6.489 

<=300 TWR- 

TOF 

3.5  925 U.S. 

Dollars 
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-4 tags 

In some research studies, these products have been compared to evaluate their performance 

under the same environment and conditions to provide useful information for the users. Jiménez 

and Seco (2016) compared the localization and range measurement performance of BeSpoon and 

Decawave products under both line-of-sight and non-line-of-sight conditions. To conduct an 

experiment under line-of-sight condition, an outdoor environment without any obstacles was 

chosen, and for non-line-of-sight conditions, another experiment was conducted in an indoor 

laboratory with presence of walls, furniture, and humans as obstacles. Their findings indicated that 

the ranging errors in both line-of-sight and non-line-of-sight conditions for BeSpoon are larger 

than those for Decawave. Moreover, the performance of Decawave in positioning is better than 

BeSpoon. They found that operating both systems simultaneously would have a negative effect on 

each system due to signal interference, causing increased noise in range measurements. Moreover, 

in the Decawave system, communication between some nodes was disrupted.  

They also expanded their work in Ruiz and Granja (2017), comparing the performance of 

three UWB system products including DecaWave, Ubisense and BeSpoon, under the same 

conditions in an industry-like environment. They demonstrated that, in a real job site where non-

line-of-sight conditions exist, Decawave had superior performance to BeSpoon and Ubisense in 

terms of accuracy and outliers. Moreover, Ubisense had the poorest performance among the three. 

Schjørring et al. (2022) summarized the findings of recent research papers which applied UWB 

commercial products across different applications. Pertinent details regarding each conducted 

experiment and its outcomes were provided, encompassing the experimental area, the number of 

receivers used, the heights of the tags, and 2D/3D localization accuracy. 
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Figure 2-10. Samples of different UWB commercial products: a) Ubisense, b) BeSpoon and c) 

DecaWave (Ruiz & Granja, 2017). 

Shahi et al. (2012) implemented different experiments to evaluate the performance of UWB 

technology based on occlusions, location dependency and time duration in indoor construction 

sites for material tracking and progress reporting. Siddiqui et al. (2019) implemented the UWB 

system in outdoor construction sites, highlighted different factors affecting the system and 

concluded with practical guidelines for its implementation on sites. In this study factors affecting 

the UWB system are categorized based on different aspects including the type of UWB system 

(e.g., wired or wireless), tag type and its setting (e.g., shape, update rate, number of tags), UWB 

system setting (e.g., number of receivers, calibration and measurement quality) and environmental 
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conditions (e.g., presence of electromagnetic devices and radio frequency noises, materials of 

objects existed within the environment and line-of-sight conditions). Following the experiments, 

they emphasized the importance of analyzing the UWB system during the planning phase to ensure 

high-quality installation at construction sites. The importance of collaboration with team entities 

and site managers to achieve optimal performance from the system was highlighted. Further, they 

indicated that increasing the number of receivers could increase the possibility of line-of-sight 

conditions between tags and receivers, improving localization accuracy. Finally, they 

recommended integrating additional data collection sources such as camera-based and computer 

vision techniques to enhance object localization performance.  

Maalek and Sadeghpour (2013) conducted a series of experiments to determine the impact 

of several factors on the accuracy of the UWB system in an indoor environment with static tracked 

elements. These factors are (1) clear line-of-sight condition, (2) presence of metallic elements in 

the testing area, (3) signal blockage by elements, (4) metallic tracked elements, (5) the utilization 

of timing cables and AOA measurements, (6) the number of installed tags within the testing area, 

(7) the number of active UWB receivers. Another study by Umer and Siddiqui (2020) was 

conducted to assess the 2D and 3D localization performance of the UWB system in an outdoor 

environment. Several experiments were carried out, focusing on: (1) the number of tags in the 

testing area, (2) the locations of receivers (3) static and dynamic tags (4) the utilization of TDOA-

AOA and AOA measurements only. They concluded that activating all tags in the experimental 

area degraded UWB localization performance. Moreover, using only AOA measurements for 

localization decreased the system’s accuracy. They observed that sensor placements impact the 

system's accuracy. To reach optimal performance they suggested the following items: (1) installing 

the receivers outside the experimental area boundary, (2) adjusting the placement of receivers 

according to changes in the condition of the construction site during its lifecycle, (3) placing the 

receivers at the highest possible locations and (4) attaching the tags on the top of tracked resources 

to maintain direct line-of-sight with receivers.  

The exploration of optimized UWB receiver installation is one of the key research directions 

(Liu et al., 2022). Yao et al. (2021) investigated the effect of receiver positions on tag localization 

accuracy and provided insights into the underlying reasons for this effect. Since the estimation of 

a tag’s location is based on the measured distances between the tag and its receivers, the positions 
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of installed receivers significantly affect localization accuracy. Different experiments were 

conducted to assess the impact of receiver placements on 2D and 3D localization errors under both 

line-of-sight and non-line-of-sight conditions.    

For real-time tracking of moving resources in harsh construction sites, Cheng et al. (2011) 

carried out several experiments on three outdoor sites. In these experiments, UWB tags with 

different frequencies between 1 Hz and 60 Hz were attached to the labor, materials, and equipment. 

It was recorded that the average error of the tags was between 0.36 meters and 1.82 meters 

depending on the type of construction site and the frequency of the tag. Cho et al. (2010) evaluated 

the performance of an untethered UWB system for tracking assets in indoor sites, in both static 

and dynamic modes of tags. They conducted different experiments to evaluate the accuracy of 

static tags at different heights in various indoor environments, such as wood and steel-framed 

buildings. In their experiments, the localization accuracy of tags improved at elevated positions 

due to better line-of-sight with the receivers, compared to when the tags were placed at ground 

level. In addition, an experiment was conducted in the furnished office lab to examine whether 

human traffic and devices could interfere with UWB signals.  

Shahi et al. (2013b) implemented the UWB system for progress tracking of activities in 

indoor job sites. In an area filled with MEP components, they tracked pipeline-related activities in 

3D by attaching UWB tags to pipelines. Many research studies have investigated the application 

of the UWB system in construction sites as depicted in Table 2-5. However, many of these studies 

have applied the UWB system in laboratory tests and outdoor field areas, which may not have the 

actual challenges in complex indoor environments where many occlusions and objects are present 

in limited spaces. Consequently, the application of the UWB system in real indoor environments 

requires further consideration to assess its performance in such scenarios and areas. Other RTLS 

technologies can be integrated with the UWB system for object localization to save cost and time 

in construction projects (Xia et al., 2010), however, it may affect the localization accuracy 

(Bardareh & Moselhi, 2022).  

The integration of RTLS with vision-based technologies enhances monitoring systems’ 

efficiency in construction sites by reducing data loss and inaccuracies that are derived from using 

a single technology for data acquisition (Ekanayake et al., 2021; Soltani et al., 2018). Soltani et al. 

(2018) introduced a data fusion framework that utilizes GPS, calibrated cameras, and computer 
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vision techniques to compute the 3D pose of an excavator in a construction field for improving 

productivity and safety. Cai and Cai (2020) presented a hybrid method that uses calibrated cameras 

and Faster R-CNN along with BLE technology to accurately detect and track workers in 3D for 

safety monitoring. Rafiee et al. (2013) proposed a data fusion model using a BIM model, a single 

fixed surveillance camera and a UWB system to detect and localize persons for enhancing security 

in indoor sites. In this model, the KNN algorithm was used to timely identify intruders and their 

location among verified individuals. Shahi et al. (2015) implemented a 3D object recognition 

model and a UWB system to facilitate the identification of construction activities’ progress 

including piping by providing comprehensive information from vision-based and positioning 

technologies. 

Table 2-5. Summary of the research studies that utilized the UWB system in construction 

projects. 

Study Method 

Indoor/ 

Outdoor 

Tagged 

object 

Tag 

Status 

Test area 

type 

Accuracy 

(m) 
UWB 

Product 

UWB 

Technique 

 

D* S* Lab Field 2D 3D 
Research Limitations 

(Zhang et al., 

2020) 

UWB 

 

Indoor 

and 

Outdoor 

Test 

points, 

Vehicles, 

and 

Workers 

√ √ √ 

  

√ - 0.17-

0.45 

N.A N.A 1. Indoor experiments were 

conducted in lab settings, not in 

congested and occluded 

environments. 

2. Tags were not attached to 

challenging materials like metal in 

indoor environments. 

3. 2D Accuracy was not reported. 

4. Significant data loss occurred. 

(Umer & 

Siddiqui, 

2020) 

UWB Outdoor Test points √ √ √ - 0.18-

1.99 

0.32- 

2.65 

Ubisense TDOA and 

AOA  

1. Only lab experiments under ideal 

conditions were performed. 

2. Localization in indoor environment 

was not considered. 

3. Tags were not attached to actual 

objects existed in job sites. 

4. The wired UWB system is not 

practical in congested indoor 

environments. 

(Shamsollahi 

et al., 2023) 

UWB Indoor Test points - √ √ - - 0.05-

0.13 

Decawave 

(Qorvo) 

TOF 1. Experiments were conducted in lab 

settings under ideal LOS conditions. 

2. 2D accuracy was not reported. 

3. Tags were not attached to 

challenging objects. 
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4. A limited number of experiments 

were conducted under restricted 

conditions. 

(Siddiqui et 

al., 2019) 

UWB Outdoor Equipment √ √ - √ 0.13-

1.37  

- Ubisense AOA 1. The UWB system for 3D 

localization was not considered. 

2. It was applied in an outdoor 

environment with fewer obstructions 

than indoor. 

3. Challenging conditions where 

obstructions between tags and 

receivers occur were not addressed. 

4. Calibration and sensor placement 

issues occurred. 

5. Tags were attached to only one 

component, not across different areas 

of the site. 

(Bardareh & 

Moselhi, 

2022) 

UWB-

RFID 

Indoor Test points √ √ √ - 0.52  1.15  

 

Decawave 

(Qorvo) 

TOF 

 

1. Experiments conducted only in lab 

settings under ideal conditions. 

2. Tags were not attached to 

challenging objects. 

3. Limited experiments under 

restricted conditions were performed. 

4. System implementation is 

complex. 

5. Tag placements at various heights 

were not explored. 

6. RFID tags are susceptible to 

multipath effects. 

(Xia et al., 

2010) 

UWB-

GPS 

Indoor Test points 

and 

Human 

√ √ √ √ - ≤1  Ubisense TDOA and 

AOA 

1. Tags were not attached to actual 

objects. 

2. The wired UWB system is not 

practical in congested indoor 

environments. 

3. Indoor field environments were not 

obstructed. 

4. Experienced calibration difficulty. 

5. Significant data loss occurred. 

(Jin et al., 

2019) 

UWB Indoor Test points √ √ √ - 0.10  0.15-

0.20  

 

Decawave 

(Qorvo) 

TOF 

 

1. Only indoor lab experiments were 

conducted, and the system was not 

applied under real conditions. 

2. Tags at different heights or 

positions were not considered. 

3. All static experiments were 

conducted under LOS conditions or 

limited NLOS conditions with few 

obstacles. 

4. Tags were not attached to actual 

objects. 
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(Shahi et al., 

2013) 

UWB Indoor Pipes and 

Ducts 

- √ - √ 0.07-

0.10  

0.10-

0.15  

 

Ubisense TDOA and 

AOA 

1. The wired UWB system is not 

practical in congested indoor 

environments. 

2. Error analysis for tags at various 

locations was not conducted. 

3. Errors associated with tags at 

different construction stages were 

reported. 

4. Effect of NLOS conditions and 

multipath on tags were not provided. 

(Zhang et al., 

2012) 

UWB Outdoor Crane √ √ √ - - 0.25-

0.30 

Ubisense TDOA and 

AOA 

1. The wired UWB system is not 

practical in congested indoor 

environments. 

2. The indoor environment was not 

investigated. 

3. The outdoor site was not a real 

construction field and was not 

occluded. 

To select the appropriate RTLS type for each project based on specific application, 

construction site characteristics and type of tracked resources, it is crucial to understand each 

system’s capabilities and limitations which are detailed in Table 2-6. 

Table 2-6. Capabilities and limitations of RTLS technologies. 

Technology Capabilities Limitations References 

RFID (1) No line-of-sight requirement 

(2) Economical 

(3) Easy tag installation 

(4) Supports a high number of tags 

(1) Additional tag maintenance cost 

(2) Low accuracy in 3D localization 

(3) Difficulties in calibration 

(4) Limited range 

(5) Weak anti-interference capability 

(6)  Not fully automated 

(Moselhi et al., 

2020; Omar & 

Nehdi, 2016; Song 

et al., 2006; Wang 

et al., 2021; Yao et 

al., 2021; Zhang et 

al., 2020) 

UWB (1) Longer reading range than 

other technologies. 

(2) Applicable in both indoor and 

outdoor construction 

(1) High cost 

(2) Calibration difficulties 

(3) Tagging difficulties 

(4) Limited range in non-line-of-sight 

conditions. 

(Chong et al., 

2023; Moselhi et 

al., 2020; Omar & 

Nehdi, 2016; 

Zhang et al., 2020) 

Note: D = Dynamic, S = Static. 



42 

 

(3) High positioning accuracy in 

2D and 3D planes 

(4) Resistance to Multipath effects 

(5) Anti-interference capability 

(5) Necessity for battery replacement 

(6) Occurrence of missing data 

Bluetooth (1) Economical. 

(2) Low-energy consumption 

(3) Easy to link with other 

technologies and devices 

(1) Signals susceptibility to obstacles 

(2) Limited coverage range 

(3) Weak anti-interference capability 

(4) Low accuracy 

(5) Signal strength fluctuations 

(Moselhi et al., 

2020; Yao et al., 

2021; Zhang et al., 

2020) 

GPS (1) Globally accessible 

(2) Precise positioning 

(3) Simple installation process 

(4) Cost-effective 

(5) Minimal computational effort 

for data analysis 

(1) Requires a clear line-of-sight  

(2) Limited to outdoor locations 

(3) Not economical for large-scale 

projects 

(4) Multipath errors caused by obstacles 

(5) Signal loss occurrences 

(6) High maintenance and installation 

cost 

(Moselhi et al., 

2020; Omar & 

Nehdi, 2016; 

Pradhananga & 

Teizer, 2013; 

Teizer et al., 

2008b) 

 

2.2.3 Application of BIM in Monitoring Construction Sites 

Over the last few years, the use of BIM in different phases of construction has considerably 

increased due to its capability to save cost and time in projects (J. Chen et al., 2014; Fang et al., 

2016). BIM enables stakeholders to develop 3D models and facilitates the documentation, analysis 

and management of construction-related information. Furthermore, it improves communication 

and collaboration between team members (Alizadeh Salehi & Yitmen, 2018; Deng et al., 2020; 

Oh et al., 2015; Wang & Love, 2012). Hence, using BIM to monitor construction sites has attracted 

many researchers in this domain. However, for construction projects, more complex systems that 

integrate BIM with other technologies are necessary to provide comprehensive information about 

the project’s status (Boje et al., 2020).  

4D simulation is one of the most commonly used BIM methods for progress monitoring, 

which allows project managers to visualize and compare as-planned and as-built information 
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through semantically enriched 3D models that are linked with project schedules (Alizadehsalehi 

& Yitmen, 2016; Braun et al., 2015; Campagna-Wilson & Boton, 2020). Many research studies 

integrated computer vision algorithms and 4D BIM for automated construction progress 

monitoring (Han & Golparvar-Fard, 2015; Kropp et al., 2013a, 2018; Tuttas et al., 2017). For 

example, Kropp et al. (2013b) utilized 4D BIM to find information related to the objects associated 

with specified activities as well as motion information to do a simple 2D classification. To evaluate 

the model, computer vision tasks including HOG features and SVM classifiers were applied to 

recognize heating devices in an indoor construction site from image frames. 

Integrating BIM with RTLS can improve the efficiency of monitoring resources in 

construction sites and facilitate the decision-making process by providing visual information about 

tracked resources in a timely manner (Fang et al., 2016). Chin et al. (2005) integrated RFID 

technology with a 4D BIM model to determine the progress of building components such as 

structural elements, curtain walls, and cast-in-place concrete. Huang et al. (2021), utilized 

computer vision techniques for activity recognition and used RTLS to collect location data of 

workers and equipment to obtain information needed about performing activities. Subsequently, 

they developed detailed 4D simulations that could improve productivity estimation, safety, and 

progress monitoring in construction projects.  

Cloud-based BIM technology is another BIM development that provides opportunities for 

users to have access to project progress information in real-time. It is also a cost-effective 

collaboration tool that enables project entities to share and exchange necessary information 

through devices such as tablets and smartphones in different locations. This allows decision-

makers to track the progress, organize schedules and apply early corrective actions (Afsari et al., 

2016; Matthews et al., 2015; Wong et al., 2014). 
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Figure 2-11. Sample of integration of BIM, RTLS and cloud-based system (Fang et al., 2016). 

Deng et al. (2020) developed a method using computer vision and BIM to automatically 

measure and visualize the progress status of tiles. Computer vision techniques including LBPs and 

SVM classifier were used to identify tiles and the improved edge detection algorithm was applied 

to extract boundaries of the installed tiles from images. By using camera calibration and BIM 

model information the real tile area was calculated and the results were transferred to the BIM 

cloud platform for progress visualization.  

Moreover, other integrated systems using BIM and computer vision techniques have the 

potential to support progress monitoring systems. Ying and Lee (2019) developed an automated 

framework that creates as-is BIM elements using images taken from construction sites. Mask R-

CNN, a deep learning-based object recognition algorithm were applied to detect and segment 
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walls, doors, and lifts from images. After the segmentation task, the mask boundaries of detected 

objects were extracted to generate surface geometries and construct IFC building objects.  

As mentioned in this section many studies used BIM models with different technologies to 

facilitate monitoring in construction sites. However, there is still a lack of automated link between 

sensor data and BIM models. The application of BIM in the construction industry can be increased 

significantly if it is linked with other devices to provide access to the latest information on the 

project automatically (Tomasi et al., 2015). Chen et al. (2014) highlighted the importance of 

“Dynamic BIM” which stores real-time accurate data derived from sensors to represent the 

project’s current state for applying necessary actions at the right time. They developed a 

framework to link data from temperature sensors to the BIM model for enhancing the facility 

management system. Natephra and Motamedi (2019) developed a framework using BIM, sensors, 

and virtual reality to visualize and analyze indoor thermal conditions such as humidity, 

temperature, and light intensity in real-time. Teizer et al. (2017) utilized BLE sensors and a cloud-

based platform to enrich the BIM model with real-time data for monitoring the project’s progress. 

2.3 Summary and Conclusions 

In this chapter, recent studies on automated monitoring and reporting at construction sites using 

new technologies were investigated. The applications of computer vision techniques, RTLS, BIM 

and integrated systems were reviewed. In summary, although earlier works have demonstrated the 

potential of new technologies and methods for automated progress monitoring, significant 

knowledge gaps still exist in the following three domains:  

• Digital imaging and object recognition algorithms:  

Previous studies have mainly focused on outdoor site elements, resulting in rich datasets for 

automated progress monitoring systems. However, in outdoor environments factors such as 

visibility, occlusion, and lighting conditions are generally better compared to those in indoor 

environments. Poor lighting conditions and high levels of occlusion and clutter degree in indoor 

environments have negative effects on object recognition performance. Hence, the developed 

models for outdoor construction sites may not be adaptable to complex indoor environments.  
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Object recognition in indoor sites is often limited to basic shapes and neglects complex 

elements and specific challenges of these environments. Additionally, the unavailability of enough 

real images from indoor elements for training deep learning models intensifies this problem. 

Consequently, this necessitates an in-depth investigation into complicated and detailed 

components existing in indoor environments. Although efforts have been made to create synthetic 

images to enhance the quality of construction datasets, there is a notable lack in generating images 

from complex indoor components such as MEP elements. In addition, real scenarios typical in 

indoor environments were not adequately represented in synthetic images, making them less 

realistic, which limits the effectiveness of training deep learning models. Most studies used high-

performance physical computing systems for model training and testing which are expensive and 

not accessible for everyone.  

Finally, although deep learning algorithms are capable of accurate object recognition, they 

fail to provide precise geolocations of these objects within construction sites. It is essential to 

identify the exact location of tracked components in order to accurately assess their installation 

progress. 

• RTLS technologies: 

RTLS provides precise location information and a unique ID for each element but lacks the 

visual data needed to validate the proper installation of tracked objects in jobsites and reduce 

uncertainty in construction operations. Also, tags can be damaged or detached from tracked 

elements, and data loss is possible. This demands careful RTLS selection based on specific 

application requirements, system design and the incorporation of complementary data acquisition 

techniques to improve system robustness. Many research studies using RTLS have been conducted 

in laboratory or outdoor areas, which may not represent the challenges of complex indoor 

environments. In indoor sites, numerous objects in limited spaces can cause signal interferences 

for RTLS. Therefore, the performance of RTLS in real indoor environments requires further 

exploration. Additionally, the ability of RTLS for accurate 3D localization of challenging objects, 

such as metallic items in highly occluded indoor environments was not fully explored. 
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• Integrated methods using vision based and RTLS techniques: 

Despite the advantages of vision-based systems and RTLS for monitoring tracked 

components, a single technology cannot provide the complete information needed to determine the 

status of elements on a job site. A review of existing studies demonstrates the great potential of 

integrating technologies to provide comprehensive data from resources in construction 

environments. However, few studies have applied such integrated models using vision-based 

models and RTLS to enhance the reliability and accuracy of monitoring systems. These studies 

were limited to ideal conditions where obstacles causing occlusion for vision-based techniques 

and creating multipath environments for the RTLS system are significantly less presented as 

compared to indoor field environments. Moreover, these integrated methods have not used the full 

advantage of each single technology. For example, fixed cameras were utilized in sites which may 

fail to monitor all required areas of a construction site where tracked components are located. 

Another challenge is the inefficiency of data analysis models in extracting necessary information 

from different sources, due to their complex computational requirements and the need for high-

level computing power and resources. Due to these shortcomings, decision-makers may not be 

able to obtain the necessary information to take timely actions.  

Based on the identified gaps, this study developed a method for automated progress 

monitoring and reporting that can timely collect and process data from tracked components to 

accurately provide their status information. The method employs digital imaging, novel deep 

learning-based object recognition algorithms and reliable RTLS for the automated recognition and 

localization of tracked components within challenging environments. In addition, a model was 

developed that can timely integrate data from the object recognition model and RTLS. It has the 

potential to deliver an organized and comprehensive report on the status of components. The 

research methodology and its modules are detailed in the following chapter. 
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CHAPTER 3:  RESEARCH METHODOLOGY 

3.1 Introduction 

This chapter provides a comprehensive explanation of the research methodology to accomplish 

the objectives and address problems outlined in Chapters 1 and 2. The research methodology aims 

to support automated progress monitoring and reporting systems in indoor job sites during the 

construction phase. It specifically focuses on monitoring complex elements in challenging indoor 

environments, particularly MEP components. This area is less explored in current research, which 

has mainly concentrated on outdoor or simpler indoor settings. The overview of the methodology 

is depicted in Figure 3-1. 

 

Figure 3-1. Overview of the research methodology. 
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The developed method encompasses three main modules:  

1) Object recognition: which trains deep learning-based instance segmentation algorithms to 

automatically process images of tracked components in indoor environments. The outputs of deep 

learning models are 2D images wherein tracked components are classified, detected, and 

segmented. 

 2) Object localization: which identifies and localizes the corresponding tracked components in 

real-time using the UWB system. Its output is a text file containing each element’s specific ID, its 

location in 3D coordinates and a timestamp.  

3) Integrated object recognition and localization: it integrates the outputs of the two previous 

modules based on a matching process to automatically generate a comprehensive report about the 

status of tracked components in job sites. The data integration process enables the simultaneous 

recognition and localization of objects, which cannot be achieved with a single source. This 

method can enhance data management from different sources and facilitate understanding the 

actual project progress status.  

The reasons for selecting these technologies for each module and the novelties of this 

research are elaborated in the following sections. 

3.2 Object Recognition Module 

Existing research on automated recognition in indoor environments typically focuses on simple-

shaped objects and neglects real indoor challenges in construction job sites. However, the 

recognition of more complex, and detailed elements such as MEP components in challenging 

indoor environments, demands considerable attention. This module is developed to automatically 

recognize these components and it consists of different steps as shown in Figure 3-2. Namely:  

• Image collection and labeling:  

According to the literature, digital cameras were selected for visual data collection in this 

research since they are economical, easy to use, and accessible in most construction projects. In 

addition to real images captured at construction sites, virtual synthetic images were generated 

using BIM models. Image labeling was then performed by selecting and classifying regions of 
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objects in the images used in this development. Lastly, different mixes of synthetic and real images 

were created to find the optimum mix for model training.  

 

• Model training and evaluation:  

For the analysis of images, instance segmentation algorithms were chosen since they are the 

most comprehensive form of object recognition models.  These algorithms are capable of object 

classification, detection, and segmentation simultaneously. In addition to detecting objects, they 

can apply pixel-wise segmentation for each instance separately. This segmentation allows 

predictions to be applied specifically to relevant regions of instances, providing more accurate 

recognition compared to using only bounding boxes. Furthermore, the models’ abilities in both 

detection and segmentation are complementary tasks that enhance overall performance. For 

example, in instances with complex shapes where segmentation may not be ideal, object detection 

can still localize approximate areas of instances using bounding boxes.   

 

This section's novelty lies in developing a methodology for the automated recognition of 

complex components in challenging indoor environments. It includes generating synthetic images 

using BIM models, which closely represent real indoor scenarios including lighting conditions, 

object complexity and scale, occlusion, clutter, and viewpoints to enhance dataset size and quality. 

In this research, two novel instance segmentation algorithms namely, Mask Region-based 

Convolutional Neural Network (Mask R-CNN) and You Only Look At CoefficienTs++ 

(YOLACT++) are employed. Particularly, YOLACT++ is a novel real-time instance segmentation 

algorithm in construction domain. It contains deformable convolutional neural networks version 2 

(DCNv2), which enhances the model’s ability to recognize objects with different scales, postures, 

rotations, and viewpoints in the images. This feature is essential for indoor construction 

environments due to the variety of components with different configurations. 

To further enhance the models’ performance in recognizing objects with different geometries 

and colour conditions, and mitigate overfitting problem, various data augmentation techniques 

were implemented. Lastly, different mixes of synthetic and real images were created to determine 

the optimum combination for effective model training.  
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Figure 3-2. Overview of the object recognition module. 
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3.2.1 Image collection and labeling 

For automated recognition of tracked objects using deep learning algorithms, a dataset containing 

a sufficient number of images from objects of interest is required. As a result, two datasets are 

created, one containing real images captured from construction sites and the other containing 

synthetic images. Similar to the recent research conducted in Golkhoo (2020), 3D BIM models are 

utilized to generate synthetic images. These synthetic images not only can generalize the datasets 

but also have the potential to support subsequent processes in construction progress monitoring. 

Autodesk Revit 2019 is used as a BIM software to define properties of the building elements 

such as shape, material, texture, and dimensions. A rendering tool called, Enscape which is a plugin 

in the Autodesk Revit software is used for real-time synthetic image generation. The synthetic 

images were created with different modifications to improve deep learning models in recognizing 

elements under different indoor conditions, addressing the challenges of object recognition in such 

environments. These modifications cover aspects such as geometry, surrounding environment and 

lighting conditions, as well as camera viewpoints which are crucial challenges in indoor sites. 

Samples of these images are shown in Figure 3-3.  

The considerations for image modifications are as follows. 

• Lighting conditions: lighting adjustments were accounted for by adding or removing lighting 

sources including artificial and natural lighting and changing their intensities within the 3D 

models. The purpose was to create images with different lighting levels that are found in real 

indoor environments. Additionally, by changing the lighting intensities, the level of shadows 

and reflections on the objects were also altered. 

 

• Complexity of components: this included changing the complexity of HVAC ducts and pipes 

in the images. This encompasses images with different network arrangements of HVAC ducts 

and piping. For instance, some images contain only a section of an HVAC duct or pipe while 

others encompass the entire complex network. Also, changes in objects’ shapes contribute to 

this factor as well.  
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• Scale: the scale of HVAC ducts and pipes in the images was varied to address the challenge in 

recognizing objects of different sizes. This diversity included scales from small to large, could 

all appear in a single image to reflect the real-world array-like arrangement of HVAC ducts 

and pipes, or represented individually across different images.  

 

• Occlusion and cluttered degree: this involved adding or removing elements within the BIM 

model, such as structural elements (e.g., beams and trusses), which are often located close to 

MEP components. By this consideration, we could mimic conditions where the HVAC ducts 

and pipes may be partially blocked or surrounded by other elements. These modifications are 

targeted to improve the model’s ability to recognize these objects in different levels of 

occlusion and clutter.  

 

• Viewpoints: images with different shooting angles of the objects were collected. In the 3D 

model, the viewpoints achievable in indoor locations were considered such as those from fixed 

cameras on walls or human perspectives. This approach enables the model to recognize objects 

from various viewpoints. 

 

Next, combinations of real and synthetic images were explored to create high-quality image 

datasets and overcome the lack of available real images for training deep learning models. The 

advantages of determining the optimum combination of real and synthetic images in the training 

set include: 

• Optimal model performance identification: this process facilitates identifying the model's 

peak performance for implementation in construction projects and works as a benchmark 

for future model implementations. 

• Enhanced efficiency in data collection: this strategy improves the image collection process 

by reducing the time and cost of generating synthetic images and collecting proper real 

images through construction site visits and extensive web searches. 

• Minimized data annotation effort: it can reduce manual annotation effort, which is time-

consuming and costly, while still achieving comparable results. 
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Figure 3-3. Generated synthetic images under different conditions: (a) Lighting condition; (b) 

Complexity level; (c) Scale level; (d) Occlusion degree; (e) Viewpoint level (Shamsollahi et al. 

2024). 
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Consequently, eight different training datasets using both synthetic and real images were 

evaluated to find the optimum mix for effective model training. For these datasets, the number of 

real images was fixed, but the proportion of synthetic images was altered from 60% to 25% to the 

total images. In the final step, images within the datasets were labeled using VGG Image Annotator 

(VIA) web tool and labeling files were exported in JSON format for Mask R-CNN and COCO 

format for YOLACT++. In this research, polygon labeling was applied to images, and each 

object’s boundary was meticulously determined. Polygon labeling has many advantages as 

compared to bounding box annotation, despite being more laborious. First, the predicted masks 

become accurate, closely aligning with the objects’ region. Second, the labeling strategy can be 

employed for complex scenarios such as MEP networks, where components within the network 

can be identified as separate objects based on criteria such as major joints, material, component 

intersection or semantic distinctions. Consequently, the model successfully recognizes these 

objects as distinct components. This labeling strategy can be adjusted to be either more detailed 

and precise or more generalized, depending on project demands. 

3.2.2 Model Training  

According to the literature, deep learning-based object recognition algorithms have superior 

performance compared to traditional feature-based algorithms. Hence, for the automated 

recognition of tracked materials, two novel instance segmentation algorithms based on deep neural 

networks were selected. In this research, Mask R-CNN (He et al., 2017), a two-stage algorithm 

and You Only Look At CoefficienTs++ (YOLACT++) (Bolya et al., 2020), a one stage algorithm, 

were selected to evaluate both types of algorithms for object recognition. 

 To minimize the overfitting problem and to improve the model’s generalization in 

recognizing instances with varying visual attributes (Liu et al. 2016), different sets of image 

augmentation techniques were implemented during the training of both algorithms. The 

augmentation techniques encompass geometric transformations such as flips, mirrors, and 

rotations as well as color transformations such as brightness and contrast. Geometric 

transformations were utilized to adapt the model to different geometry and spatial alternatives, 

while color transformations were applied to improve the model’s recognition under different 

lighting and color conditions. Moreover, to further enhance the model’s performance and avoid 

initiating training from the base level for learning image features (Nath & Behzadan, 2020; Zheng 
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et al., 2020) transfer learning was applied in both algorithms.  

Mask R-CNN and YOLACT++ were implemented using cloud-based services, offering 

several advantages in this study. These included on-demand access to large image datasets and the 

deep learning model as well as resources such as GPU servers and memory which are essential for 

the training and testing of the model. Moreover, these services provide unified integration of input 

data with the model and eliminate the need for specific high-cost hardware and software systems. 

In this study, Google Drive was used to store the image datasets and then linked to Google 

Colaboratory (pro version) for model training with a Tesla P100/V100, 16GB GPU and Python3.  

3.2.2.1 Mask R-CNN Network Architecture 

Mask R-CNN is one of the foundational algorithms in the instance segmentation field. It is an 

extension of the Faster R-CNN model which is an object detection algorithm. In Mask R-CNN, as 

compared to Faster R-CNN, a mask prediction branch is added to the prediction network in parallel 

with the classification and localization branches. The detail of Mask R-CNN architecture is 

depicted in Figure 3-4. 

 

 

Figure 3-4. Mask R-CNN network architecture (Shamsollahi et al., 2021). 

The model’s architecture comprises a convolutional backbone network based on ResNet-

101 and Feature Pyramid Network (FPN), for extracting feature maps from the input images. The 

feature maps are subsequently passed into the Region Proposal Network (RPN) to generate the 

Regions of Interest (RoIs) for the head network. Also, the Mask R-CNN is utilizing a quantization-
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free layer, called RoI Align for extracting predefined size feature maps from each RoI. In the head 

network, three parallel branches exist for classification, bounding box regression, and mask 

prediction. Fully connected layers are used for object classification and bounding box regression 

for each RoI.  In parallel a separate branch uses a fully convolutional network (FCN) to predict 

masks for each RoI and classifies each pixel in the image to a predefined object class. 

 The total loss function in the Mask R-CNN model is the sum of classification loss, the 

bounding-box regression loss, and the mask loss. The classification and bounding box loss 

functions are the same as the ones utilized in the Faster R-CNN model (Girshick, 2015), these loss 

functions, quantify the classification and detection errors of the model. In addition, the Mask loss 

measures pixel-level classification error which is described in He et al. (2017). 

Training the Mask R-CNN is based on the Matterport’s implementation (Abdulla W., 2017) 

using the open-source libraries Keras and Tensorflow. The model training was initialized by 

utilizing pre-trained weights on the MS COCO dataset (Lin et al., 2014) rather than training the 

model from scratch.  

The following hyperparameters were selected for training the model, as they achieved optimal 

performance after tuning and evaluating various values for each (a sample of trials is provided in 

Appendix D): (1) batch size = 2, (2) weight decay = 0.0001, (3) learning rate = 0.001, and (4) 

epoch = 90.  

Different sets of image augmentation techniques such as Horizontal Flip, Vertical Flip, 

Rotation, Gaussian Blur and Brightness are investigated to create modified copies of the existing 

data. Details of this investigation are provided in Table 3-1. Samples of output images generated 

by these techniques are depicted in Figure 3-5. The imgaug library (Jung et al., 2020) was utilized 

to augment images during model training. The effect of augmentation techniques on Mask R-CNN 

performance was examined using two models: one trained with these techniques and one without. 

Table 3-1. Data augmentation techniques and selected parameters for Mask R-CNN training. 

Data Augmentation Technique Parameters 

Flip Horizontal & Vertical 
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Rotation One of Ɵ=90°, 180°, 270° 

Brightness (Multiply) (Adding value) 

(0.8,1.5) 

Image smoothing (Gaussian blur) (σ value of Gaussian kernel) 

(0.0,5.0) 

 

 

Figure 3-5. Samples of applied data augmentation techniques. 

3.2.2.2 YOLACT++ Network Architecture 

YOLACT++ is a one-stage instance segmentation algorithm, capable of classifying, detecting, and 

segmenting objects with high-quality masks in real-time (Bolya et al., 2020). It is an extended 

version of YOLACT (Bolya et al., 2019) with several improvements. The YOLACT architecture 

consists of a backbone network, Protonet, and a prediction head. The backbone network utilizes 

ResNET-50 /101 (He et al., 2016) and FPN (Lin et al., 2017) for feature extraction. For final mask 

prediction for each instance within the image, two complementary parallel processes are applied 

(1) generating k prototype masks via Protonet and (2) predicting mask coefficients by the 

prediction head. Prototype masks are generic full image feature maps which are not specific to any 
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individual instances. Hence, mask coefficients are utilized to specifically align the features of 

instances in the prototype with each detected instance in the image. 

To produce k prototype masks, the Protonet, a FCN, with k channels in the last layer, is added 

to the network. It receives image feature maps from the deepest layer of FPN, the P3 layer, and 

then applies upsampling to create high-quality predicted masks and improve the model's 

performance when dealing with small objects. The prediction head, attached to the FPN, consists 

of three parallel branches for object classification, bounding box regression, and mask coefficient 

prediction on the outputs of P3 to P7 layers of the FPN. The prediction head network is not complex 

and consists of a 3*3 convolutional layer used by all branches as well as a 3*3 convolutional layer 

within each branch to enable faster prediction.  

The first two branches in the head network are for classification and bounding box regression 

tasks. The third branch generates k mask coefficients, each matching with one of the k prototypes 

from the Protonet. Fast NMS was used to select high-confidence detections according to IoU 

thresholds. Next, in the mask assembly process, the generated prototypes and mask coefficients 

were linearly combined to generate high-quality predicted masks. To clear predicted pixel masks 

that are out of the bounding box area and fit them into their bounding boxes, a cropping operation 

was applied to the final masks. During the training, this was obtained by using the ground truth 

bounding boxes, while during testing, the predicted bounding boxes were used. Following this, 

thresholding was applied to the cropped predicted masks to select which one should be kept as the 

final mask for each instance in the image.  

YOLACT++ enhances YOLACT with some improvements. Fast Mask Re-Scoring is added 

with six convolutional layers after mask cropping. This improves segmentation reliability by 

realigning the classification confidence with the accuracy of the predicted masks. DCNv2 (Zhu et 

al., 2019) was also included in the ResNet architecture where convolutional layers of 3*3 

dimensions in stages C3 to C5 are exchanged with deformable convolution layers of the same 

dimensions. Unlike standard convolution that use fixed grid structure, DCN (Dai et al., 2017) 

employs 2D offsets, allowing flexible and irregular sampling grids depending on input feature 

maps, as depicted in Figure 3-6. This improves the network adaptability to address instances with 

varying sizes, postures, and viewpoints leading to improved prediction performance. The 
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prediction head was also optimized by variations in anchor configurations, specifically scales, and 

sets of aspect ratios. The architecture of YOLACT++ is illustrated in Figure 3-7. 

 

 

Figure 3-6. 3*3 Standard and deformable convolution architecture (Shamsollahi et al. 2024). 
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Figure 3-7. YOLACT++ network architecture (Shamsollahi et al. 2024). 

As YOLACT++ performs multiple tasks, three loss functions were utilized. These include 

classification confidence loss (Lcls) for object classification, bounding box loss (Lbox) for object 

localization as described in (Liu et al., 2016) and mask loss (Lmask) for instance segmentation as 

outlined in (Bolya et al., 2020). The model’s total loss function (LTotal) is defined as follows: 

 
(1) 

The weight of each loss function is represented by ωcls, ωbox, and ωmask with values of 1, 1.5 

and 6.125 respectively, as specified in the YOLACT++ paper (Bolya et al., 2020). For Lmask, pixel-

level binary cross entropy (BCE) between predicted masks (M) and ground truth annotations (Mgt) 

was calculated as shown: 

𝐿mask = BCE(𝑀, 𝑀gt) 
(2) 

The YOLACT++ model was built based on Dbolya’s Implementation (Bolya et al. 2019) 

using the Pytorch framework (Paszke et al., 2019). ResNet-50 and FPN were used as the backbone 

network. The hyperparameters for training the model were set as the epochs of 90 and 116, batch 

sizes of 4 and 8, a learning rate of 0.001, momentum at 0.9, weight decay of 0.0005, and gamma 

at 0.1.  

𝐿Total = 𝜔cls𝐿cls + 𝜔box𝐿box + 𝜔mask𝐿mask  
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The aspect ratios were set at [1, 1/2, 2] and the IoU threshold for both box and mask at 0.5 

as a standard object recognition benchmark. Input images were resized to 550 * 550 pixels, 

prototype masks to 138 * 138 pixels, and k for prototypes was set to 32. Samples of the prototype 

masks developed by the Protonet are depicted in Figure 3-8, where yellow colors represent higher 

values, while blue signify lower ones (Bolya et al., 2020). The transfer learning technique was 

applied using pre-trained weights on the ImageNet dataset (Deng et al., 2010).  

 

Figure 3-8. Original images and the Protonet outputs (Shamsollahi et al. 2024). 

The data augmentation techniques utilized for training YOLACT++, along with their 

parameters, are included in Table 3-2. The selection of these techniques was based on Bolya et al. 

(2020) and Liu et al. (2016). It includes color transformations such as random contrast, brightness, 

lighting noise, hue, swap channel, and saturation and geometric transformations such as crop, 

resize, flip, mirror, and expand techniques. These techniques were implemented by using the 

Pytorch library (Paszke et al., 2019). Samples of these techniques are shown in Figure 3-9.  

Table 3-2. Applied data augmentation techniques, their parameters, and values. 

Augmentation Technique Parameters Values 

Saturation (Adding Value) (0.5,1.5) 

Hue (Adding Value) (-18,18) 
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Figure 3-9. Sample of applied data augmentation techniques for the YOLACT++ model 

(Shamsollahi et al. 2024). 

Overall, YOLACT++ offers a number of advantages that are appropriate for this research. 

First, YOLACT++ contains DCNv2 which enhance the model’s ability to recognize objects of 

varying sizes, poses, rotations and viewpoints. This feature is helpful in cluttered indoor 

Brightness (Adding Value) (-32,32) 

Contrast (Adding Value) (0.5,1.5) 

Lighting noise Channel Permutation (0, 1, 2), (0, 2, 1), (1, 0, 2), (1, 2, 0), 

(2, 0, 1), (2, 1, 0) 

Sample Crop Crop Size Range 

IoU Range 

(0.3, 1) of Image Width x Height 

[None, 0.1, 0.3, 0.7, 0.9] 

Expand Expansion Ratio Range (1,4) 

Mirror Horizontal - 

Flip Horizontal - 

Rotation Rotation angle 90,180,270 
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environments where building components can appear in numerous shapes and scales. Second, it is 

effective in handling small objects which is the limitation of many object recognition algorithms 

like Mask R-CNN and YOLO (Pal and Hsieh 2021; Yang et al. 2020). This is a great advantage 

for indoor environment since there are many small-scaled objects in indoor sites. Lastly, according 

to Bolya et al. (2020), YOLACT++ is the first real-time instance segmentation model capable of 

predicting at 30 frames per second (FPS) as evaluated on the MS COCO test dataset. While many 

real-time object detection algorithms exist, such as YOLO and SSD, however for instance 

segmentation achieving real-time prediction is more challenging. Speed is an important factor 

when integrating object recognition models with monitoring and reporting systems to ensure 

timely delivery of information to project managers.  

3.2.3 Model Evaluation 

Precision, Recall and F1-score were selected as three performance metrics to evaluate the 

performance of the object recognition models. Precision is calculated as the ratio of True Positives 

(TP) to the total positive predictions including TP and False Positives (FP). Recall is calculated as 

the ratio of TP to the total actual positive samples in the dataset including TP and False Negative 

(FN). The precision, recall and F1-score formulas are as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4) 

𝐹1− 𝑠𝑐𝑜𝑟𝑒 = 2(
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) (5) 

Precision identifies how many of the model’s detections are true and recall demonstrates the 

model’s ability in finding true positives of all predefined ground truths (Padilla et al., 2020; Zhang 

& Zhang, 2021). In the context of object recognition algorithms, mean Average Precision (mAP) 

is a metric that is used to evaluate the performance of bounding box and mask predictions across 

all object classes. It is calculated based on the mean of average precision values across all classes. 

According to the Pascal VOC2010–2012 benchmarks, for a given Intersection over Union (IoU) 
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threshold, AP is calculated as the area under the precision-recall curve, which ranges from 0 to 1 

(Everingham et al., 2012; Padilla et al., 2020). mAP is calculated as follows:  

𝑚𝐴𝑃 =  
1

𝑁
∑ 𝐴𝑃𝑖

𝑁

𝑖=1

 
(6) 

where APi equals the average precision of ith object class and N represents the total number 

of object classes considered for evaluation. More information about the calculation of AP can be 

found in Padilla et al. (2020). 

For calculating both mask mean Average Precision (mAPmask) and bounding box mean 

Average Precision (mAPbbox), Equation 6 is utilized with a key difference: for mAPmask, Mask IoU 

is measured based on the overlap between the predicted segmented mask and the actual mask. For 

mAPbbox, IoU measurement is based on the overlap of the predicted and actual bounding boxes. 

More details about the difference between Mask IoU and Box IoU are depicted in Figure 3-10. 

 

Figure 3-10. Box IoU and mask IoU (Shamsollahi et al. 2024). 
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3.3 Object Localization Module 

This section focuses on the localization and identification of static materials in an indoor 

environment. According to the literature, the UWB system was selected as the RTLS for this 

module due to its high accuracy in 2D and 3D localization in indoor environments. This system 

has two main advantages including high multipath resolution and anti-interference potential 

(Zhang et al., 2020), which makes it an appropriate solution for complex, high multipath 

construction environments. 

This research aims to evaluate the UWB system’s performance within indoor construction 

environments for supporting automated progress monitoring and reporting. Previous studies have 

implemented the UWB system in indoor laboratory areas or under ideal conditions. In contrast, 

this research, in addition to laboratory experiments, considers challenges of actual indoor 

environments including multipath effects, signal blockage and occlusions. The study focuses on 

the 2D/3D localization of challenging objects such as metallic MEP components located at various 

positions and heights within indoor environments. Additionally, it identifies factors that can affect 

the UWB system’s performance through indoor laboratory and field experiments.  

3.3.1 The UWB System 

The UWB system consists of three main components, namely:  

(i) UWB tags, which are attached to tracked elements to identify them with their specific 

ID and location in the site.  

(ii) Receivers, which are installed in fixed places around the test area. 

(iii) Software installed on a laptop for real-time data recording and visualization.  

Figure 3-11 demonstrates the steps required for object localization using the UWB system. 

In the first step, it is important to identify the installation requirements of the UWB system such 

as the distances between receivers and walls or ceilings. Next, a layout for the placement of 

receivers needs to be designed. This layout should consider different factors related to the 

conditions of the specific test area including the presence of obstacles and the locations of tracked 

objects.  
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The number of receivers is determined according to the layout design. It is needed to install 

the receivers properly in their predefined locations since the accuracy of the UWB system highly 

depends on the positions of receivers. According to the type and quantity of the tracked elements 

in the selected site, the number of tags is identified. The installation location of tags and receivers 

during the construction process can be determined using several approaches. Existing building 

drawings, which illustrate the locations of tracked elements can be utilized to identify placements. 

Moreover, BIM models can simulate various layouts and placements in a 3D environment. These 

simulations support optimizing the locations to ensure maximum LOS between receivers and tags 

at different stages of construction. Site visits and consultation with the field managers allow us to 

refine these placements by considering site conditions. Another factor for the successful 

implementation of the UWB system is adjusting the receivers layout at various construction stages, 

based on congestion levels, accessibility, and the number of tracked elements. Attaching tags on 

components can vary depending on the construction stage. For instance, tags may be attached at 

the manufacturing company before shipment, upon delivery to the site or at a comfortable height 

prior to installation. If the objects are already installed, it is necessary to reach elements to attach 

tags. 

After activation of tags and receivers within the site, data collection can be initiated using 

the software application installed on a laptop. The data collection process begins at time t0 in order 

to record the 3D coordinates of the tags. After gathering sufficient data, the collection is stopped 

at t0 + ∆t through the software application. Once data collection has been stopped, a report will 

automatically be generated. The report of the UWB system is a text file containing records of tags’ 

information including tag ID, timestamp, 3D coordinates (x, y, z), and range measurements as 

depicted in Figure 3-12.  

It is necessary to measure the true location of each tag and receiver within the site in order 

to assess the UWB system's error. In addition to the statistical analysis of the UWB data points, 

the 2D and 3D localization error of each tag is calculated as the Euclidean distance between the 

true location of each tag (X True, Y True, Z True) and its average UWB location estimation (X Mean, Y 

Mean, Z Mean) which are described below:  

𝐄𝐫𝐫𝐨𝐫 𝟐𝐃 =  √(𝑿𝑻𝒓𝒖𝒆  − 𝑿𝑴𝒆𝒂𝒏)𝟐 + (𝒀𝑻𝒓𝒖𝒆  − 𝒀𝑴𝒆𝒂𝒏)𝟐 (7) 
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𝐄𝐫𝐫𝐨𝐫 𝟑𝐃 =  √(𝑿𝑻𝒓𝒖𝒆  − 𝑿𝑴𝒆𝒂𝒏)𝟐 + (𝒀𝑻𝒓𝒖𝒆  − 𝒀𝑴𝒆𝒂𝒏)𝟐 + (𝒁𝑻𝒓𝒖𝒆  − 𝒁𝑴𝒆𝒂𝒏)𝟐 (8) 

To measure the actual locations of tags and receivers, one receiver was set as the reference 

point. The locations of the remaining receivers and tags were measured based on this reference 

using a measuring tape or laser distance measurer with an accuracy level of within ±0.0032 meters. 

To ensure the accuracy of measurements, the location measurements were repeated three times 

and then averaged. According to the findings presented by Maalek & Sadeghpour (2013), placing 

tags on top of components enhances the UWB system’s accuracy in object localization due to a 

better LOS with receivers. Therefore, in this study, the preferred location of tags on the tracked 

components was on the top. If access to the top of component was restricted, the tag would be 

placed below the component.  
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Figure 3-11. Process of implementing the UWB system for object localization. 
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Figure 3-12. Sample of the UWB output file. 

 To evaluate the UWB system, laboratory experiments are conducted in a controlled 

environment with LOS conditions. These experiments provide important information before the 

system’s implementation in real projects, helping to define baselines, installation requirements, 

and the layout of the receivers. Moreover, they validate the system’s hardware and software 

capabilities and identify parameters that might affect the UWB system’s performance. This leads 

to enhanced functionality, cost and time savings and improved accuracy when the system is 

deployed in real job sites. 

The objectives of the laboratory experiments are: 

• Assessing the impact of tags' heights: This includes evaluating the impact of tag 

placements at different heights on the system’s performance. This experiment helps to 

assess the applicability of the system in real construction job sites, specifically, when 

tracked elements are placed at different heights. These elements can be located at floor 

level, either awaiting installation or already installed at elevated heights.  
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• Exploring the effect of tag proximity to receivers: It includes assessing the UWB 

performance when the tags are located close to the receivers.  

The field experiments are implemented to evaluate the UWB system’s performance under 

both LOS and NLOS conditions in real indoor job sites and high multipath environments. 

Following are the objectives of the field experiments:   

• Localizing metallic objects such as MEP components in indoor environments. 

• Assessing the UWB system performance in challenging scenarios such as congested indoor 

environments filled with metallic objects which can cause signal blockage or reflection. 

• Studying the effect of LOS/NLOS conditions between tags and receivers on the system 

performance. 

• Determining the localization accuracy of tags located out of the enclosure area created by 

the UWB receivers. 

• Examining the number of active receivers on localization accuracy. 

• Assessing the effect of the number of active tags on the UWB localization accuracy. 

Each generated UWB report in a .txt format was imported in Google Colaboratory (pro 

version). Data cleaning, analysis and error assessment were conducted using Python and its 

frameworks including NumPy and Pandas. In data cleaning, unneeded information such as range 

measurements, receiver positions, and receiver-to-receiver distance reports was filtered out. The 

required information, such as the Tag ID, timestamp, and tag location in 3D coordinates, was 

retained for further analysis.  

3.3.2 The UWB System’s Configurations 

Based on the performance assessments by Jiménez and Seco (2016) and Ruiz and Granja (2017), 

detailed in Section 2.2.2.1, the UWB system from Decawave (Qorvo) achieved better results 

compared to other available alternatives. Hence, in this research, the Trek1000 UWB Evaluation 

Kit from this company is used for the localization of tracked elements. 

 In the Trek1000 unit, the location of each tag is identified by using the trilateration technique 

which uses the measured distances between the tag and the receivers. These distances were 

measured through the two-way ranging (TWR) ToF technique. The receivers and tags were 

powered by portable power banks chargers and universal serial bus (USB) cables. The UWB 
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output report was automatically stored to a local computer which is connected to one of the 

receivers with a USB cable.  

 

Figure 3-13. Trek1000 tags and receivers’ components. 

 Each receiver or tag component consists of a Printed Circuit Board (PCB) containing a 

configuration switch and display screen as well as an antenna that is fixed on the PCB. Through 

the configuration switch, the type of the PCB unit can be configured as a Tag or Receiver. In 

addition, the type of the channels (Channel 2: 3.993 GHz or Channel 5: 6.489 GHz), data rate (6.8 

Mbps or 110 kbps), and unit ID number can be set. After activation of the tag or receiver, the 

display screen demonstrates the unit type (tag or receiver) and its corresponding ID number. For 

these experiments, all tags and receivers were set to channel 2: 3.993 GHz with a 110-kbps data 

rate.  The main components of the Trek1000 tags and receivers are depicted in Figure 3-13.  

 Figure 3-14. shows the user interface of the UWB application. The actual location of the 

receivers in 3D coordinates needs to be manually entered into the application. The next step is 
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selecting the application settings based on the objectives of the experiments. In all experiments 

conducted in this research, the tracking mode was activated, and auto-positioning of receivers was 

deactivated. The UWB application displays active tags and receivers in the testing area in real-

time. The following recommendations from the manufacturer were considered for the experiments: 

• Install four receivers in the test area to estimate the locations of tags in 3D planes. 

• Install three receivers at the same height level and the fourth one higher, with the maximum 

possible distance. 

• Locate the receivers in a way to maintain a clear line-of-sight with each other. 

• Ensure that all receivers are installed at a minimum 15-centimeter distance from any wall 

or ceiling. 

 

Figure 3-14. User interface of the UWB application. 

3.4 Integrated Object Recognition and Localization 

This section introduces an integrated method for automated recognition and localization of tracked 

components using digital cameras, deep learning models, and the UWB system. This method 

generates a comprehensive report about the status of tracked components in job sites, essential for 
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assessing their installation progress. It integrates data derived from YOLACT++ and the UWB 

system for each tracked element, then automatically reports each element’s unique identifier (ID), 

location, visual data and capture time. The overview of the integrated method is depicted in Figure 

3-15. 

For this method, YOLACT++ was selected as the deep learning model due to its capabilities 

in recognizing elements under different visual configurations. Following the model’s prediction 

results, each predicted image is stored into distinct folders on the local computer based on its 

identified object class. Although the YOLACT++ model is selected, other deep learning models 

could also be applied. Furthermore, the integrated model is not limited to UWB systems alone and 

can be generalized to different types of RTLS. 

This method is designed to mitigate the limitations associated with each individual 

technique. Specifically, object recognition algorithms, while capable of recognizing building 

elements, fail to provide precise location information of the elements in construction sites. 

Conversely, RTLS can localize building elements but lacks the visual data needed to validate 

proper installation in jobsites. Consequently, the integrated method developed in this study 

provides visual and location information about tracked components for a more accurate and timely 

understanding of the project’s status. As compared to previous studies that integrate the vision-

based techniques and RTLS, this integrated method is not limited to fixed calibrated cameras with 

restricted fields of view and ideal conditions such as minimum obstruction and occlusions within 

job sites. Instead, it fully utilizes each system capability to capture data from different areas of 

construction sites under different conditions. This flexibility is crucial for progress monitoring in 

indoor environments where a variety of tracked components are installed throughout the building.  

It should be emphasized that the proposed method can be applied at different construction 

stages, from initiation to the final stage where all components are installed. However, as indoor 

construction progresses, the number of installed components increases, resulting in greater 

complexity due to higher obstructions. 
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Figure 3-15. Overview of the integrated method. 

3.4.1 The Integrated Model Process 

The integrated model utilized an automated matching process to match each predicted image with 

the UWB data of the corresponding building component. The integration is based on the alignment 

of the “captured time” as the matching attribute derived from the timestamp of the UWB system 

(Ttag) and the “date taken” metadata from each image (Timage). After each successful matching 

process, all the required attributes from both sources related to each tracked component are 

extracted and gathered into a report. It is important to note that, for implementation of the 

integrated model, it is necessary to collect images and UWB data simultaneously. In addition, the 

tags from the same class could not be activated at once.  Instead, once each component is installed 

in its location the tag will be activated for image capturing from the corresponding element and 

UWB data collection. Once image capturing was completed, the tag would be turned off, removed, 

renumbered, and attached to other building component that is set to be installed. This procedure is 

repeated for each subsequent component. 

As illustrated in Figure 3-16, the model works based on three main input files including the 

predicted images by YOLACT++, the UWB reports and a list of classified tags where each tag ID 

is assigned to a corresponding predefined YOLACT++ class. The matching approach processes 

each object class individually and only tags and images associated with that class are examined. 

After the first class is selected, the first image within the class is identified, and its captured time 

is determined. The model then searches the UWB report for the timestamp of Tag ID associated 
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with the same class. It looks for the closest timestamp match between the image’s and tag’s 

captured time based on the absolute value of the time difference within a 90-second margin. If a 

match is found, the model collects the required attributes from both sources for that element for 

the final report. The 90-second margin is considered for the duration the tag remains active for 

data collection before it is deactivated. This margin ensures that the data collection of the active 

tag aligns with the image capture time and adds a limit on the model’s search range within the 

UWB report. The margin value is adjustable based on the site conditions or UWB system 

configurations.  

 

Figure 3-16. Steps of the integrated framework. 
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Furthermore, the model was considered for an optional complementary solution when no 

valid tag ID match is found in the UWB output. During the experiments, a tag can be fixed to the 

camera which captures images. If the system failed to find any valid tag ID corresponding to an 

image’s captured time, the camera’s location at that time would be used as an approximate location 

of the captured image. Following the analysis of all images and UWB datapoints of the same object 

class, the process will be repeated with the next object class until the last class has been analyzed 

to generate the final report. The report contains required information about the status of each 

tracked element. The information from each image includes its image name and its path on the 

local computer to enable faster access to image, its captured date and time and for the UWB tag 

include its specific ID, timestamp and 3D coordinates. These reports provide project managers 

with timely updates that can facilitate the decision making process. 

Accurate visual and 3D location data enable precise tracking of elements at construction 

sites which enhances automated construction progress monitoring and reduces errors associated 

with manual data collection, correlation and reporting at jobsites. It also improves resource 

management and minimizes delays by timely identifying installed elements and any 

misplacements or incorrect installations. Additionally, the integration process does not require 

complex procedures, extensive mathematical computations, or specific requirements for image 

capturing, such as fixed calibrated cameras. These capabilities make the method easily applicable 

in construction projects, reducing manual efforts and the need for professional expertise. 

3.5 Summary and Conclusions 

In this chapter, an overview of the research methodology was elaborated to achieve the objectives 

of this research study. In summary, the main purpose of this study is the development of a method 

for automated construction progress monitoring systems in indoor environments. This method is 

capable of collecting, analyzing, and reporting essential information from tracked elements 

accurately. This helps project managers to identify the current status of the project and apply 

correct decisions in a timely manner. Unlike most research studies that focus on monitoring 

outdoor sites or indoor environments under ideal conditions, this research has considered 

challenging indoor environments containing complex elements installed across all the building. 

The methodology includes three main modules. The first module is object recognition, which 

uses digital imaging and deep learning models. In this module, Mask R-CNN and YOLACT++ 
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which are two novel instance segmentation algorithms were selected for model training. Instance 

segmentation algorithms are the most comprehensive algorithms in object recognition domain, due 

to their capability to perform classification, detection, and mask prediction of instances 

simultaneously. These algorithms were considered to automatically obtain visual data from tracked 

elements and recognize them from images collected at indoor job sites.  

The second module is object localization which the UWB system was selected for the 

automated identification and localization of tracked elements. This system is capable of accurate 

2D/3D object localization in real-time, even in high-multipath indoor environments. In this study, 

different factors that may affect the UWB system are considered during laboratory and field 

experiments. These include metallic objects, number of tags and receivers, LOS/NLOS conditions, 

Tags’ heights, etc. The last module is the integrated object recognition and localization, in which 

the data derived from the YOLACT++ and the UWB system for each tracked element are 

integrated based on a matching process. After the completion of the integration process, a report 

is automatically generated in a comprehensive and structured manner. This report provides all the 

required information from tracked elements that cannot be obtained from a single technology.  

These three modules are implemented and validated in Chapter 4.  
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CHAPTER 4:  MODEL IMPLEMENTATION and VALIDATION  

In this chapter, the performance of the methods outlined in Chapter 3 is evaluated through different 

laboratory and field experiments to determine their applicability for automated progress 

monitoring in construction projects. This chapter is divided into three main sections. The first 

section evaluates the performance of two deep learning-based instance segmentation algorithms, 

Mask R-CNN and YOLACT++, through different datasets and model configurations. The second 

section validates the performance of the UWB system for object localization in indoor 

environments and identifies the factors that affect its localization accuracy. Finally, the third 

section evaluates the developed integrated model in providing comprehensive information about 

each tracked object through a detailed report. 

 This research focuses on the Mechanical, Electrical, and Plumbing (MEP) components such 

as HVAC ducts and pipes in indoor construction environments to monitor their installation 

progress. MEP works are important indoor activities that can considerably affect project delays 

and cost overruns (Akhil & Das, 2019; Shekhar et al., 2021). MEP systems contain complex 

components, such as HVAC ducts and pipes, which are typically installed in confined spaces in 

built facilities, often at ceiling-level heights and in close vicinity to architectural and structural 

components. The installation of these systems is difficult and time-consuming resulting in reworks 

and project delays (Korman et al., 2003; Teo et al., 2022). Hence, efficient monitoring of MEP 

activities is essential to timely identify deviations between planned and as-built states, allowing 

the implementation of remedial measures prior to costly and complicated reworks (Bosché et al., 

2015; Navon & Shpatnitsky, 2005). 

4.1 Automated Recognition of MEP Components in Indoor Job Sites. 

4.1.1 Overview 

To create high-quality datasets, both real and virtual synthetic images were used for model 

training. The real images were manually captured by smartphones at two indoor construction sites, 

both hospital projects, in Montreal, Canada, and in Tehran, Iran. The set of Montreal based images 

were collected earlier by Golkhoo (2020). These sites were mostly illuminated by artificial lighting 

and in a few cases by indirect natural light. The image resolutions were 3024 * 4032 and 2448 * 

3264 pixels, containing HVAC ducts and pipes with different shapes, sizes, and orientations. 

Virtual synthetic images were also generated using 3D BIM models, containing MEP components. 
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Two publicly available 3D BIM models with rich existing elements obtained from the National 

Institute of Building Sciences (NIBS) and Tools (2017) were used in this study. The synthetic 

image sizes were set to high-quality resolution with 1920*1080 pixels. 

 Figure 4-1 demonstrates the two downloaded BIM models containing MEP components. 

These models contain a rich network of HVAC ducts and pipes with different sizes and shapes.  In 

the BIM model, unneeded components such as lighting fixtures and furniture were removed, and 

for remaining components, properties such as material specifications were selected. For generating 

synthetic images, the modifications mentioned in Section 3.2.1 were considered. The images were 

generated under different conditions including various lighting, complexity, scale, occlusion, 

clutter, and viewpoints. The Enscape plugin in Revit software was used to generate these images 

in real-time.  

 

Figure 4-1. 3D BIM models and their MEP networks. 

4.1.2 Object Recognition with Synthetic Image Datasets 

In this section, to initially assess the object recognition model’s performance, and the impact of 

data augmentation techniques, only synthetic images were used for model training. For this 

purpose, only HVAC ducts were selected to be monitored and selected as the only class.  
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 A total of 1,143 synthetic images were generated and used for network training. The dataset 

consisted of 1,887 HVAC duct instances across the images. The training set distribution shows 

that from 1,143 images, 56% of images contain only one HVAC duct in each image, 32% have 

two ducts, 9% three ducts, 2% four ducts, and 1% five ducts. 172 synthetic images were randomly 

selected for testing and validation purposes. The test set data follows nearly the same distribution 

of the training; 54% of images having one HVAC duct, 44% having two ducts, and 2% having 

three ducts. After data labeling and specifying the regions of HVAC ducts within the images, the 

training and testing datasets with data labeling files were fed into the deep learning model.  

 In this section, Mask R-CNN which is a fundamental instance segmentation algorithm was 

selected with the model’s configurations stated in Section 3.2.2.1. To assess the impact of data 

augmentation techniques on the model’s performance, two experiments were conducted. In the 

first experiment (Experiment #1), the model was trained without any data augmentation 

techniques, and in the second experiment (Experiment #2), data augmentation techniques were 

applied. Details of these techniques are described in Table 3-1. The results of the experiments are 

summarized in Table 4-1. The performance of Experiment #2 with a precision value of 80.87% 

and a mAP score of 90.6% is better than the Experiment #1 with a precision value of 75.08% and 

mAP value of 88.69%. The F-1 score also indicates the same, confirming that Experiment #2 is 

superior. 

 In Experiment #1, overfitting was observed, but this issue was not observed in Experiment 

#2. Figure 4-2 illustrates the downward trend of the loss function during the training process in the 

Experiment #2 which shows the success of the model in preventing overfitting since there is a 

desired convergence of the training and validation errors. It can be stated that data augmentation 

improved the model’s performance and mitigated the overfitting problem. The output images of 

Mask R-CNN are depicted in Figure 4-3. 

 Table 4-1. Results of HVAC duct recognition with synthetic test dataset. 

Training 

dataset  

TP FP FN Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

mAPbbox 

(%) 

Experiment 

#1 
223 74 32 75.08 87.45 80.79 88.69 
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Experiment 

#2 
224 53 31 80.87 87.84 84.21 90.60 

 

 

Figure 4-2. Training and validation losses during 90 epochs in the Experiment #2 (Shamsollahi 

et al., 2021) 
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Figure 4-3. Results of the Mask R-CNN prediction. 

To determine whether a model trained solely on synthetic images can accurately predict real 

images, 168 real images were added to the test dataset, bringing the total to 340 images. The 

model’s performance significantly decreased, with a precision of 42.26%, a recall of 68.42% and 

a mAPbbox of 48.0%. Based on the results, it can be concluded that training with synthetic images 

alone is insufficient for recognizing real HVAC ducts and pipes. To improve the recognition 

capabilities, real images from construction sites were added to the training dataset in the next 

section. 

4.1.3 Object Recognition Using Mixed Synthetic and Real Images with Two Deep 

Learning Models 

The objectives of this subsection are:  

• Determine the optimum mix of synthetic and real images in a dataset for training models.  

• Implement and validate Mask R-CNN and YOLACT++ and compare their performance to 

determine their applicability in construction projects. 

In this study, 782 real images with the size of 3024*4032 pixels that contained HVAC ducts 

were added to the synthetic training dataset described in the previous subsection. In total, the 

dataset reached 1,925 images with 3,011 HVAC duct instances. The dataset distribution is as 

follows: 60% of the images contain only one duct, 29% have two ducts, 8% have three ducts, while 
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2% and 1% contain four ducts and five ducts, respectively. Figure 4-4 demonstrates sample of 

images within the dataset containing different numbers of HVAC duct instances. The total number 

of images in the test set is 340, consisting of 168 real images and 172 synthetic images.  

 

Figure 4-4. The presence of a different number of HVAC ducts in each image. 

 Eight datasets using both synthetic and real images were evaluated as detailed in Table 4-2. 

Across all the eight datasets, the number of real images remained fixed at 782 images, while the 

number of synthetic images decreased sequentially starting from the first dataset (Dataset #1).  

 The evaluation of deep learning models began with Mask R-CNN. The model was evaluated 

with and without data augmentation techniques using Dataset #1. Similar to the results in the 

previous subsection, training the model without data augmentation techniques resulted in 

overfitting (Figure 4-5.a). This issue was resolved by using data augmentation techniques (Figure 

4-5.b). Consequently, these techniques were applied across all eight datasets during training. 

According to Table 4-2 the optimal result of the Mask R-CNN model was achieved using 

Dataset #6 containing 35% synthetic images and 65% real images. The model achieved a precision 

of 65.72% and a recall of 78.65%. This dataset performed better than Dataset #1, which had the 

highest number of synthetic images. This indicates that increasing the number of synthetic images 

in the dataset does not necessarily improve the model’s performance.  

The results from the Mask R-CNN model were not satisfactory for accurately recognizing 

HVAC ducts, especially in real images captured from construction sites. This was due to high 

occlusion levels, low lighting conditions, and different shapes and sizes of HVAC ducts. 

Specifically, the model had issues such as false positive and false negative detections, and 

inaccurate mask predictions as demonstrated in Figure 4-6. 
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Figure 4-5. Loss curves of Mask R-CNN: (a) Without data augmentation (b) With data 

augmentation.  
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Figure 4-6. Examples of inaccurate recognition of objects by Mask R-CNN. 

Consequently, YOLACT++ was trained with the same datasets. The model’s configurations 

and the utilized data augmentation techniques are explained in Section 3.2.2.2. Similar to Mask R-

CNN, YOLACT++ was trained up to epoch 90. According to Table 4-2, the best results for 

YOLACT++ were achieved from Dataset #5, which contained 40% synthetic images and achieved 

a precision of 81.25% and a recall of 82.20%. In terms of precision, it achieved 15.53% better 

performance compared to Mask R-CNN and its recall was 3.55% higher. 

Regarding computational time, training the Mask R-CNN model took approximately 4 to 8 

hours, while training YOLACT++ took between 21 to 24 hours, depending on the dataset’s size. 

Also, the average prediction speed for 340 images was 558.20 seconds for Mask R-CNN and 68.14 

seconds for YOLACT++. The prediction speed of YOLACT++ was eight times faster than Mask 

R-CNN in recognizing HVAC ducts, demonstrating its capability for near real-time applications. 

Samples of predicted images by Mask R-CNN and YOLACT++ for HVAC duct recognition 

are presented in Figure 4-7. Through a comparative analysis, it was identified that YOLACT++ 

demonstrated better performance than Mask R-CNN in terms of object detection and mask 

prediction. YOLACT++ could detect HVAC ducts that Mask R-CNN failed to detect. Moreover, 

YOLACT++ generated predicted masks that are more aligned to the ground truth. 
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Table 4-2. The results of Mask R-CNN and YOLACT++ algorithms for HVAC duct recognition.  

# Training Dataset  Algorithm Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

1 782 Real images + 1,143 

Synthetic images 

(Synthetic/Total ≃60%) 

Mask R-CNN 58.05 78.95 66.91 

YOLACT++ 80.57 76.04 78.24 

2 782 Real images + 956 

Synthetic images 

(Synthetic/Total ≃55%) 

Mask R-CNN 52.01 76.74 62.00 

YOLACT++ 78.44 76.63 77.52 

3 782 Real images + 782 

Synthetic images 

(Synthetic/Total ≃50%) 

Mask R-CNN 56.58 79.07 65.96 

YOLACT++ 75.32 72.82 74.05 

4 782 Real images + 640 

Synthetic images 

(Synthetic/Total ≃45%) 

Mask R-CNN 63.25 78.06 69.88 

YOLACT++ 77.36 72.22 74.70 

5 782 Real images + 522 

Synthetic images 

(Synthetic/Total ≃40%) 

Mask R-CNN 60.46 78.06 68.14 

YOLACT++ 81.25 82.20 81.72 

6 782 Real images + 422 

Synthetic images 

(Synthetic/Total ≃35%) 

Mask R-CNN 65.72 78.65 71.61 

YOLACT++ 77.77 73.29 71.61 

7 782 Real images + 336 

Synthetic images 

(Synthetic/Total ≃30%) 

Mask R-CNN 60.10 75.16 66.79 

YOLACT++ 76.38 75.73 76.05 

8 782 Real images + 260 

Synthetic images 

(Synthetic/Total ≃25%) 

Mask R-CNN 64.77 76.79 70.27 

YOLACT++ 72.25 70.92 71.58 
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Figure 4-7. Output images from Mask R-CNN and YOLACT++ models. 

4.1.4 MEP Recognition using YOLACT++  

This subsection is a modified version of “Automated Detection and Segmentation of Mechanical, 

Electrical, and Plumbing (MEP) Components in Indoor Environments by Using the YOLACT++ 

Architecture” published by Journal of Construction Engineering and Management (Shamsollahi 

et al. 2024). 

The objective of this section is to enhance YOLACT++'s generalizability for recognizing 

more building elements after identifying its superior performance over Mask R-CNN.  In order to 

incorporate more MEP components, the number of object classes has been set to two, including 
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HVAC ducts and pipes. The number of real and synthetic images in the dataset increased to include 

both pipes and HVAC ducts. The training dataset reached 3,135 images containing 1,881 synthetic 

and 1,254 real images. From 1,881 synthetic images, 1,143 included only HVAC ducts, 451 

included only pipes, and 287 images had both pipes and HVAC ducts. Also, from 1,254 real images 

782 contained HVAC ducts and 472 images had pipes. Samples of real and synthetic images are 

demonstrated in Figure 4-8. 

 

Figure 4-8. The types and numbers of images within the dataset. 

Similar to the previous subsection, eight training sets were created by decreasing the number 

of synthetic images from 60% of total images to 25%, while the number of real images was fixed. 

Table 4-3 presents the number of synthetic and real images along with the number of instances in 

each dataset. The validation set included 497 images including 229 synthetic images and 268 real 

images. The configuration of YOLACT++ was set to epoch 116 and batch size of 8. 

Table 4-3. Distribution of synthetic and real images in each dataset and the number of instances. 

Dataset Synthetic/Total 

(≃) 

Number of 

Synthetic Images  

Number of Real 

Images 

Number of 

Instances 

Dataset #1  60% 1881 1254 8533 

Dataset #2 55% 1533 1254 7351 

Dataset #3 50% 1254 1254 6674 

Dataset #4 45% 1026 1254 6019 

Dataset #5 40% 836 1254 5562 

Dataset #6 35% 676 1254 5158 

Dataset #7 30% 538 1254 4812 

Dataset #8 25% 418 1254 4507 
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YOLACT++ was trained using the eight datasets and its performance was assessed with the 

test dataset. The results are summarized in Table 4-4. The overall performance of the YOLACT++ 

in object detection and mask prediction across these datasets is shown in Figure 4-9. 

 

Figure 4-9. Comparison of bounding box and mask mAP values across different datasets 

(Shamsollahi et al. 2024). 

Analysis of the results reveals that in most cases (7 out of 8 datasets), the mAPmask was lower 

than the mAPbbox, highlighting a greater challenge in predicting the instance regions compared to 

bounding box prediction. Dataset #1, with the highest number of synthetic images (60%) including 

6501 HVAC duct and 2032 pipe instances achieved the highest performance in object detection, 

with a mAPbbox of 77.37%. Specifically, in detecting HVAC ducts, the model achieved a precision 

of 84.80% and a recall of 85.58%. For pipes, precision and recall were 86.87% and 73.93%, 

respectively.  

However, Dataset #1 could not achieve the best performance in mask prediction. Dataset #2, 

with 55% synthetic images, showed slightly lower detection performance with a mAPbbox of 

77.03% but outperformed in mask prediction with a mAPmask of 75.23%. In terms of per-class 

performance, Dataset #2 also achieved the highest APmask at 69.81% for pipe class. For HVAC 

ducts, its APmask was close to the highest at 80.65%.  
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Considering both detection and mask prediction criteria, Dataset #2 was identified as the 

most preferred, despite of Dataset #1’s higher detection rates. Conversely, Dataset #8 

demonstrated the lowest performance in both detection and mask prediction. Particularly, for 

HVAC duct detection, it obtained the lowest precision and recall rates at 72.49% and 79.18%, 

respectively. In pipe detection, this dataset had the lowest recall at 63.35%, and its precision, while 

not the lowest, was still comparatively low. Moreover, for mask prediction, Dataset #8 had the 

lowest performance among the others with mAPmask at 56.34%.  

The YOLACT++ model had superior performance in both detection and mask prediction of 

HVAC ducts compared to pipes with a better balance between precision and recall. This lower 

performance in pipe recognition can be attributed to the fewer pipe instances in the training 

datasets relative to HVAC duct instances. Moreover, the unique geometric properties of pipes 

being of slenderical shapes may present challenges for the model in accurately recognizing pipes. 

A notable observation from Figure 4-9 is the overall increase in the mAPbbox values corresponding 

with the rise in the number of synthetic images within the datasets.  

The above suggests that increasing the synthetic images enhances the model’s object 

detection ability. However, this increase in synthetic images does not have the same positive 

impact on mask prediction. This may be attributed to the inherent complexity in determining the 

region of instances in mask prediction which requires further investigation. Regarding the 

prediction speed of YOLACT++, for processing 497 images, the average frames per second (FPS) 

was between 4.69 to 4.91 across different datasets. 

This study assessed the effect of synthetic image quantity on recognition of objects from real 

images. Hence, Dataset #2 with 55% synthetic images and Dataset #8, with the least synthetic 

images at a rate of 25%, were evaluated, with the sample results depicted in Figure 4-10. The 

model, trained with Dataset #2, performed better in challenging indoor conditions such as low 

lighting, clutter, and occlusion, showing enhanced recognition of instances across various scales, 

shapes, and poses. For instance, Figure 4-10(c-1) and (c-2) demonstrate the model’s improved 

recognition of HVAC ducts with different scales trained on Dataset #2 which was not achieved 

with Dataset #8 Figure 4-10(b-1) and (b-2). Figure 4-10(c-3) also showcased that using Dataset 

#2, the model could accurately recognize HVAC ducts with different shapes and scales in a 

cluttered and low-lit scene. Conversely, the model trained with Dataset #8 Figure 4-10(b-3), 
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displayed weaker performance, inaccurately predicting the bounding box and a mask that covered 

nearly the entire image. The model’s ability enhanced with Dataset #2 in distinguishing target 

instances from similar non-target ones. For example, in Figure 4-10(c-4), it accurately 

differentiated HVAC ducts from a similarly shaped and sized column, unlike Dataset #8, Figure 

4-10(b-4), which misidentified a column as a duct.  

Moreover, Dataset #2's training resulted in enhanced recognition of slender objects, as 

shown in Figure 4-10(c-5), where it accurately detected and segmented a pipe even under low light 

conditions. In contrast, Dataset #8 had incorrectness, including incomplete masks, and a false 

positive for the non-present duct Figure 4-10(b-5). Lastly, Dataset #2 Figure 4-10(c-6) improved 

the identification of multiple varied-scale instances from both classes in high-density, cluttered 

scenes. However, Dataset #8 Figure 4-10(b-6) had false negatives, missing some HVAC ducts and 

pipes. 

 

Figure 4-10. Output results of YOLACT++ trained on two different datasets (Shamsollahi et al. 

2024). 

YOLACT++ efficiently performs detection and segmentation, offering faster predictions 

than algorithms like Mask R-CNN (Bolya et al., 2020). The resulting higher prediction speed 

makes YOLACT++ more suitable for integration with monitoring and reporting systems in order 

to provide project managers with timely needed information. Moreover, YOLACT++ backbone 
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network utilizes a DCNv2, which improves the model’s ability to handle objects of different scales 

and poses through non-grid sampling capability. This feature is aligned with the objectives of this 

research, which involves instances with different geometric variations. The outcomes of this 

section illustrate that the YOLACT++ model, when trained with a balanced dataset of synthetic 

and real images achieved promising performance in the recognition of HVAC ducts and pipes in 

indoor construction sites, especially in challenging locations where distinguishing them from 

surrounding objects is difficult. 

The above highlights the significance of generating synthetic images that closely reflect real 

indoor construction sites to enhance the model’s performance abilities. Analysis of the results 

reveals that the balanced dataset can increase mAPbbox by over 10% and mAPmask by more than 

18%. However, it is important to note that a dataset with the highest proportion of synthetic images 

do not necessarily has the optimal results in both mask prediction and object detection. The results 

highlight the need for further research to identify the ideal balance of synthetic and real images in 

training datasets to maximize performance across all evaluation criteria. 

Table 4-4. The results of YOLACT++ with two object classes 

Dataset  Object Class Precision Recall F1-score AP50
mask AP50

bbox FPS 

Dataset #1 
HVAC Duct 84.80 85.58 85.19 78.82 82.78 4.69 

Pipe 86.87 73.93 79.88 56.46 71.97 

Dataset #2 
HVAC Duct 81.79 85.65 83.68 80.65 82.21 4.72 

Pipe 85.98 73.77 79.41 69.81 71.83 

Dataset #3 
HVAC Duct 82.25 83.15 82.70 80.34 81.17 4.89 

Pipe 75.58 68.06 71.62 64.99 65.85 

Dataset #4 
HVAC Duct 81.85 82.75 82.30 76.53 80.30 4.82 

Pipe 70.78 63.63 67.01 62.80 60.20 

Dataset #5 
HVAC Duct 79.10 86.09 82.45 82.30 82.27 4.91 

Pipe 82.89 67.02 74.11 55.24 65.43 

Dataset #6 
HVAC Duct 79.74 85.00 82.29 80.84 82.41  4.73 

Pipe 76.92 67.01 71.62 63.53 64.35 

Dataset #7 HVAC Duct 78.87 81.95 80.38 78.92 78.79 4.80 
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Pipe 73.37 63.91 68.31 65.56 60.76 

Dataset #8 
HVAC Duct 72.49 79.18 75.69 65.19 72.89 4.70 

Pipe 75.15 63.35 68.75 56.34 60.56 

 

While the YOLACT++ model successfully recognized HVAC ducts and pipes in many 

images, it also had some failures that need to be improved in the future. For instance, in Figure 

4-11(a), the model failed to recognize all the HVAC ducts present in the image. In Figure 4-11(b), 

despite accurately detecting the pipes, the model was inefficient in segmenting all the pixels 

assigned to the pipe class. In Figure 4-11(c), the model could not differentiate between HVAC 

ducts and areas of the ceiling and walls that had similar color and texture. The model’s prediction 

speed reached around 5 FPS, lower than the over 30 FPS, stated in the original paper (Bolya et al., 

2020) with the COCO test datasets. This reduced speed is primarily due to the absence of high-

performance computing systems like GPUs, often not provided by cloud computing systems.  

 

Figure 4-11. Examples of failures in the MEP recognition using YOLACT++ (Shamsollahi et al. 

2024). 
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4.1.5 Summary and Conclusions 

Indoor construction environments, with their high density and detailed components and low-lit 

conditions, are complex areas for identifying the installation statuses of components for progress 

monitoring and reporting. Addressing this challenge requires the automated and timely recognition 

of these components within indoor environments.  

This section implemented a novel method for monitoring of construction operations, 

employing digital imaging and deep learning-based instance segmentation algorithms to 

automatically recognize MEP components in challenging indoor settings. Instance segmentation 

algorithms, in addition to detection, further specify regions of each instance by classifying pixels 

within the images (Athira & Khan, 2020; Hao et al., 2020; Shamsollahi et al., 2022; Wu et al., 

2020). The model's capabilities for detecting and segmenting tracked elements play a 

complementary role in enhancing the overall performance. 

To enhance the dataset quality for model training and overcome the lack of real images from 

construction sites, this research generated virtual synthetic images using BIM models and a 

rendering plugin. To reflect real indoor scenarios, different image modifications were considered 

during image generation to improve the model’s prediction performance. The image modifications 

included different lighting conditions, complexity of components, scale, degrees of occlusion and 

clutter, and viewpoints. Synthetic images were mixed with real images at various ratios across 

eight datasets to determine the optimum mix for model training. For these datasets, the number of 

real images was fixed, but the proportion of synthetic images varied from 60% to 25% of the total 

images. This integration provides a wide range of images with different visual conditions. To 

improve the models’ generalizability and adaptability, data augmentation techniques and transfer 

learning were applied. 

The selection of an appropriate instance segmentation algorithm initially involved evaluating 

the Mask R-CNN through various tests for recognizing HVAC ducts. This study investigated the 

effect of data augmentation on model performance and found that it improved performance and 

resolved the overfitting problem. However, the Mask R-CNN model did not achieve acceptable 

recognition performance. The best result for the model was a precision of 65.72% and a recall of 

78.65%.  Consequently, YOLACT++ was chosen for this study and was trained on the same eight 
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developed datasets. Through a comparative analysis, it was determined that YOLACT++ 

demonstrated better performance than Mask R-CNN in terms of object recognition and prediction 

speed. The best performance of YOLACT++ was achieved with a precision of 81.25% and a recall 

of 82.20%. Additionally, YOLACT++ predicted 340 images in 68.14 seconds, which is eight times 

faster than Mask R-CNN. 

Since YOLACT++ demonstrated better results, it was used for the final validation process. 

It was trained using two object classes, including both HVAC ducts and pipes. Similar to previous 

tests, mixes of synthetic and real datasets were created for training. A total of 497 images that 

included HVAC ducts and pipes were utilized for model evaluation. The results illustrate that the 

dataset with 55% synthetic images, exhibited a more balanced performance when evaluating both 

detection and mask prediction metrics. The detection performance showed 81.79% precision and 

85.65% recall for HVAC ducts; 85.98% precision and 73.77% recall for pipes, and with a mAPmask 

of 75.23%. The results demonstrated that YOLACT++ can recognize complex objects in 

challenging indoor environments. 

4.2 Object Localization using the UWB System  

4.2.1 Overview 

To evaluate the performance of the UWB system for 2D and 3D localization of tracked MEP 

objects within indoor job sites and understand the applicability of the system for progress 

monitoring and reporting, four laboratory and three field experiments were conducted. More 

details about each experiment are described in the following subsections.   

This section and Section 4.3 are extended versions of “Data Integration Method Using a 

Deep Learning Algorithm and Real-Time Locating System (RTLS) for Automated Construction 

Progress Monitoring and Reporting” published by Automation in Construction (Shamsollahi, et 

al., 2024).  

4.2.2 Laboratory Experiments under Line-of-Sight (LOS) Conditions 

For laboratory experiments, Construction Automation Lab on the 11th floor of the EV building at 

Concordia University was selected to implement the UWB system. For the layout of the system, a 

rectangular shape was selected and a test area with a dimension of 6.60*5.40 meters was 

determined to perform the experiments in the test area. Based on the manufacturer’s 
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recommendations, in these experiments four receivers were installed, three at the same height level 

and the fourth one higher than the others. Figure 4-12 illustrates the experiment area, the layout 

plan with its dimensions, and the 3D coordinates of each receiver.  

 The experiments were conducted in a controlled test area under line-of-sight conditions. In 

this area, no obstacle existed between the tags and receivers to obstruct the direct path between 

them. These experiments enabled to find the optimum performance of the UWB system for 2D 

and 3D localization. Furthermore, they allow for accurate observation and analysis of the UWB 

localization performance before implementation in real work environments.  

 For the system installation, four receivers were fixed to tripods using tapes and fixed in the 

corners of the rectangular area as depicted in Figure 4-12. Instead of placing the tripods on the 

ground, they were placed on tables to achieve the highest possible position for the receivers. The 

first three receivers (A0, A1, A2) had an equal height of 2.31 meters and the fourth one (A3) had 

a height of 2.75 meters. For the fourth receiver, 2.75 meters was the maximum height to maintain 

0.15 meters with the ceiling. To identify the actual locations of receivers and tags within the test 

area, a grid layout procedure was implemented. This procedure involved creating grid lines on the 

floor of the test area using adhesive tape, with the grid lines set at 0.6 meters apart.  

 Four laboratory experiments were conducted in the test area under different scenarios to 

assess the impact of tags' height and tag proximity to receivers on the UWB system’s performance. 

The following elements were repeated in all of the four experiments: 

• Three static tags were used within the test area for data collection. 

• All the tags were fixed on tripods for the tags’ safety and easy height adjustment. 

• The duration of each experiment was set to five minutes, ensuring uniformity in the 

collected data. 

• The locations of the receivers were the same in the experiments. 

• The first receiver (A0) was assigned as the origin point and set to (0,0) in 2D coordinates. 

• The first receiver (A0) was connected to the laptop by a USB cable for powering and 

execution of the UWB application for data acquisition.  

• The remaining receivers and tags are powered by USB batteries. 
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Table 4-5 demonstrates the total number of data points collected in each experiment, along 

with the number of data points captured from each individual tag. The number of data points in 

the four experiments was close to each other and ranged between 3,054 and 3,130 data points. 

Table 4-6 provides each tag’s true location, its UWB averaged location, and the corresponding 

standard deviations in meters. 

 

Figure 4-12. (a) Lab area (b) Layout plan and location of the receivers.  
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Table 4-5. Collected datapoints in each experiment. 

 Experiment #1 Experiment #2 Experiment #3 Experiment #4 

Tag-0 1,067 1,088 1,080 1,073 

Tag-1 920 942 971 963 

Tag-2 1,067 1,090 1,079 1,068 

Total Data points 3,054  3,120 3,130 3,104  

 

Table 4-6. True location of tags, mean and standard deviation of UWB data. 

Experiment Tag’s 

name 

True Position (m) UWB Average 

Position (m) 

Standard Deviation 

(m) 

X (m) Y (m) Z (m) X (m) Y (m) Z (m) X (m) Y (m) Z (m) 

1 Tag-0 4.20 3.60 1.57 4.19 3.61 1.47 0.018 0.017 0.017 

Tag-1 1.80 1.80 1.57 1.80 1.83 1.46 0.015 0.021 0.021 

Tag-2 5.40 1.80 1.57 5.42 1.82 1.48 0.021 0.020 0.020 

2 Tag-0 4.20 3.60 0.50 4.29 3.68 0.31 0.024 0.016 0.184 

Tag-1 1.80 1.80 1.57 1.83 1.87 1.46 0.012 0.034 0.056 

Tag-2 5.40 1.80 2.50 5.39 1.86 2.67 0.037 0.035 0.282 

3 Tag-0 1.20 4.20 1.57 1.25 4.13 3.36 0.019 0.306 1.103 

Tag-1 5.40 4.20 1.57 5.48 4.24 1.43 0.050 0.220 0.098 

Tag-2 1.20 1.20 1.57 1.21 1.24 1.59 0.015 0.029 0.054 

4 Tag-0 1.20 4.20 0.50 1.29 4.26 0.40 0.034 0.041 0.211 

Tag-1 5.40 4.20 1.57 5.51 4.21 1.65 0.028 0.011 0.678 

Tag-2 1.20 1.20 2.50 1.23 1.28 3.16 0.015 0.026 0.089 
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• Experiment #1 – Tags at the same height level. 

In this experiment, it was aimed to design an ideal scenario to be able to find the optimum 

performance of the UWB system. This experiment setup serves as a baseline for comparative 

analysis with the following experiments (Experiment #2 – Experiment #4). To implement this 

experiment, all three tags were placed at a height of 1.57 meters. The height selection corresponded 

to an intermediate level between the floor and the height of receivers as visually demonstrated in 

Figure 4-13.a. Therefore, these tags were placed at a lower height compared to the four receivers. 

The tags were positioned within the enclosure’s rectangular area created by the four receivers such 

that there was a clear Line-of-Sight (LOS) between each tag and the receivers. Table 4-6 provides 

the actual location of each tag within the test area. According to Table 4-5, 3,054 data points were 

collected during Experiment #1. During the 5-minute experiment, Tag-0 and Tag-2 each collected 

1,067 data points, while Tag-1 collected slightly fewer data points of 920.  

Based on the results presented in Table 4-6, it was shown that the standard deviation of all 

tags along the x, y, and z axes were remarkably small, each equal to or less than 0.02 meters. This 

demonstrates a clustered distribution of UWB points around their respective average for all three 

tags. This also can be visualized in Figure 4-14.a. which demonstrates true locations, UWB 

datapoints and UWB averaged locations for the tags in 2D and 3D planes. The average error for 

all three tags in this experiment was 0.018 meters in the 2D plane and 0.058 meters in the 3D 

plane. In addition, the individual error for each tag was calculated and represented in Table 4-7. 

This table shows that all three tags had relatively low errors. The 2D error values ranged from 

0.012 to 0.022 meters, while the 3D errors were between 0.052 to 0.064 meters.  

A centimeter-level error in UWB localization in 2D and 3D planes within an indoor 

laboratory area demonstrates the precision and reliability of the UWB system. This experiment 

serves as an ideal scenario with tags at the same height level and not close to the ground or ceiling. 
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Figure 4-13. Placement of the tags in the test area: a) Experiment #1 and b) Experiment #2. 

• Experiment #2 – Tags at different height levels. 

This experiment aims to investigate the UWB system’s performance when the tags are positioned 

at varied heights instead of a uniform intermediate level. In this experiment, compared to 

Experiment #1, the only alteration is changing the adjustments of the tags’ heights, while the 

placement of tags in the 2D plane remained the same.  

In Experiment #2, Tag-0’s height was adjusted close to the floor by changing the tripod’s 

height to a level of 0.5 meters. Tag-1’s height remained at 1.57 meters while Tag-2 was elevated 

to the height of 2.50 meters. The placement of tags is depicted in Figure 4-13.b. Due to tripod 

height limitations, Tag-2's tripod needed to be elevated further, so it was placed on a cardboard 

box to reach 2.50 meters, making it higher than the three receivers. Based on Table 4-5, the total 

collected data points in this experiment were 3,120 from which 1,088 points were from Tag-0, 942 

from Tag-1, and 1,090 from Tag-2. The UWB data points had higher standard deviations than 

those in Experiment #1 as shown in Table 4-6. The most increased standard deviation values were 

observed in Tag-0 and Tag-2, especially in the z-axis, which were located at very low and very 

high heights, respectively. This highlights the impact of the tags’ heights on the performance of 

the UWB system.  
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Figure 4-14. UWB data readings for tags on 2D and 3D planes in (a) Experiment #1 and (b) 

Experiment #2. 
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In this experiment, an average error of 0.064 meters was obtained in 2D and 0.102 meters in 

3D, showing an increase in error as compared to Experiment #1. Specifically, in Experiment #2 

compared to Experiment #1, for Tag-0 which was located near the ground level, the error increased 

by 0.08 meters in 2D and 0.07 meters in 3D. For Tag-2, situated close to the ceiling, the error 

increased by 0.02 meters in 2D and 0.053 meters in 3D. In addition, for Tag-1, which remained at 

the same height in both experiments, the error increased in Experiment #2, but not significantly as 

illustrated in Figure 4-15. 

The analysis of standard deviation values and errors indicates that changing the height of 

tags, whether located very close to the floor or higher than receivers can reduce the performance 

of the UWB system. In general, placing the tags at floor level or ceiling level might increase the 

likelihood of signal diffraction, and reflection by other objects present in the area. Despite the 

increased errors in this experiment, the localization error of each tag remained below 0.15 meters 

even on a 3D plane. It was demonstrated that the UWB system maintained its reliability and 

accuracy within this experiment in which the tags’ heights varied. 

 

Figure 4-15. 2D and 3D errors of the tags in Experiment #1 and Experiment #2. 
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• Experiment #3 – Tags at the same height level with proximity to receivers. 

Experiment #3 was conducted to determine the performance of the system when tags are 

close to receivers. All three tags were in the proximity of 1.2 meters to one of the receivers 

(Receivers 0, 2, and 3) as depicted in Figure 4-16.a. In this experiment, all the tags’ heights were 

equal to 1.57 meters. A total of 3,130 data points were collected and distributed as: 1,080 for Tag-

0, 971 for Tag-1, and 1,079 for Tag-2. According to the standard deviation values in Table 4-6, 

the UWB data points are more scattered compared to Experiment #1, where the tags also had the 

same height of 1.57 meters. The highest standard deviation values were observed for Tag-0 on the 

z-axis and y-axis as presented in Table 4-6. 

In this experiment, the average error was 0.053 meters in 2D and 0.388 meters in 3D. The 

most significant difference in error compared to Experiment #1 was observed with Tag-0, where 

the error increased to 1.040 meters in 3D. The other tags showed slight differences in their 3D 

errors.  

 

Figure 4-16. Placement of the tags in the test area: a) Experiment #3 and b) Experiment #4. 
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• Experiment #4 – Tags at different height levels with proximity to receivers. 

In this experiment, the location of the tags within a 2D plane remained the same as in 

Experiment #3. However, the heights of the tags were adjusted to reflect the changes made in 

Experiment #2. This included one tag close to the ground at 0.5 meters, another at 1.57 meters, 

and the third one at 2.5 meters.  

In this experiment, according to Table 4-5, 3,104 data points were collected across all three 

tags. Analysis of the data from Table 4-6, demonstrates that the standard deviation of all points in 

the x and y axis was less than 0.05 meters. This demonstrates that the points are closely clustered 

in a 2D plane which is depicted in Figure 4-17.b. However, the standard deviation values on the 

z-axis are higher, showing a more dispersed distribution of data points in this dimension.  

In Experiment #4, The alteration in tags’ heights resulted in a small increase in the 2D 

average error of all three tags compared to Experiment #3. This highlights the robustness of the 

UWB system for the 2D localization of materials in indoor job sites, even under scenarios where 

the tag heights are different from the ground floor to the ceiling. 

In this experiment, the average 3D error across all tags was 0.185 meters. When the height 

of Tag-2 was increased to 2.5 meters, the 3D error increased to 0.385 meters. This shows that 

increasing the height of tags above the receivers can negatively affect the performance of the UWB 

system, as also observed in Experiment #2. For Tag-1, the 3D errors remained relatively consistent 

compared to Experiment #3. However, the 3D error of Tag-0 in this experiment was significantly 

reduced to 0.086 meters when its height was lowered to floor level. This suggests that Tag-0 

communicates better with the receivers at floor level resulting in better localization estimation.  
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Table 4-7. UWB localization errors on 2D and 3D planes. 

Experiment Tag’s name Error in 2D (m) Error in 3D (m) 

1 Tag-0 0.012 0.057 

Tag-1 0.022 0.064 

Tag-2 0.021 0.052 

2 Tag-0 0.093 0.127 

Tag-1 0.057 0.076 

Tag-2 0.044 0.105 

3 Tag-0 0.060 1.040 

Tag-1 0.068 0.094 

Tag-2 0.031 0.030 

4 Tag-0 0.084 0.086 

Tag-1 0.083 0.085 

Tag-2 0.064 0.385 
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Figure 4-17. UWB data readings for three tags on 2D and 3D planes in (a) Experiment #3 and (b) 

Experiment #4. 
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4.2.3 Field Experiments under Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) 

Conditions 

Field experiments were conducted under both LOS and NLOS conditions in an indoor high 

multipath environment. Mechanical rooms are challenging workplaces due to the presence of 

numerous objects in a congested environment that can negatively affect signal communications in 

RTLS. For this study, the mechanical room, located on the 16th floor of the John Molson building 

at Concordia University was selected to evaluate the UWB system’s performance under the 

specified conditions. This mechanical room, with an area of 223.621 square meters, was occupied 

with metallic MEP components, including HVAC ducts, pipes, lighting, and fire components. 

Additionally, structural elements such as steel columns and beams, and other objects such as steel 

ladders, rails, and hangers were present in the room as shown in Figure 4-18.  

 

Figure 4-18. Mechanical room at Concordia University. 

The Trek1000 evaluation kit was selected for this experiment in order to localize HVAC 

ducts and pipes within the mechanical room. In a congested workplace like a mechanical room, 

selecting the location for receivers is essential to ensure accessibility, and maintain proper LOS 

with tags. The position of receivers and tags in the mechanical room was determined through site 

visits prior to setting up the experiments, available 2D drawings of the room and consultations 

with the facility management of Concordia University. The receivers were positioned to ensure 
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proper signal communication between each other, accessibility to their locations, and to maintain 

a minimum distance of 15 centimeters from any surrounding objects. Four receivers were mounted 

on tripods and taped for stability. The first three receivers were installed at the same height of 4.90 

meters while the fourth receiver was installed higher, at 5.40 meters, to ensure achieving more 

accurate results. Figure 4-19. shows the layout of the mechanical room and the locations of the 

receivers. In this study, UWB tags are assigned to critical components that require tracking. If 

additional tags are available, they can be placed at different locations on MEP components to 

identify variations and ensure alignment within the network. 

The experiments were conducted with all tags installed lower than the receivers based on the 

lab experiments in Section 4.2.2 where it was observed that tags located higher than the receivers 

had increased localization errors. In order to power and activate the receivers, Receiver-0 was 

connected to the laptop, while the other three receivers were powered by external USB batteries. 

Receiver locations were fixed for all the experiments conducted in the mechanical room. 

As a prerequisite for running the UWB application installed in the laptop, the 3D coordinates 

of the receivers in the mechanical room had to be measured and imported manually. Accurate 

measurement of the receivers’ locations has a direct impact on the accurate localization of the tags 

by the UWB system. Hence, a systematic measurement approach was followed. Receiver-0 was 

set as the reference point (0,0,4.90) within a three-dimensional plane. The locations of the 

remaining receivers were then measured using a laser distance measurer. To validate the accuracy 

of the receiver positions in the mechanical room, the location measurements were repeated three 

times, and the results were averaged.  

In total, eight locations were chosen for tagging components, with two tags attached to the 

HVAC ducts and the remaining tags attached to pipes. Figure 4-20. Provides a visual 

representation of the eight tags attached to components in the mechanical room. The tags were 

securely placed on the stands and fixed on the components using tape. They powered by USB 

batteries with accompanying USB cables. 
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Figure 4-19. Mechanical room plan and the locations of the receivers in the room. 

According to Maalek & Sadeghpour, (2013), most of the tags in this study were placed on 

top of HVAC ducts and pipes to obtain better LOS conditions. However, as a result of restricted 

access to the top surface of one HVAC duct, one tag (Tag-4) was placed below the element.  Due 

to the limited number of available tags (four), a sequential approach was employed. Initially, the 

four tags were attached to four predefined locations. After sufficient data collection from the tags, 

they were detached and relocated to the remaining four locations, and the data collection process 

was repeated. The tags were first numbered from 0 to 3 using switches located on the PCB of the 

tags. Then the tags were detached, renumbered from 4 to 7 and placed in other four locations. The 
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tag locations on tracked objects within the mechanical room were selected to evaluate the UWB 

system under different indoor conditions that commonly exist in job sites. These conditions include 

the presence of metallic objects between the tags and receivers, the tags being within an enclosure 

area, LOS, and NLOS conditions. 

 Table 4-8 describes the information on each tracked object class, the unique ID of the 

attached tag, the tagging location on the objects (either on top or below the object), whether the 

tag is located inside or outside the enclosure area formed by the four receivers and LOS/NLOS 

conditions with the receivers. Figure 4-21 demonstrates samples of different LOS/NLOS 

conditions that can happen between each tag and receiver. Figure 4-21(a), shows a clear LOS 

between a tag and a receiver, which is the ideal condition. However, in some conditions LOS exists 

but metallic objects are in close proximity to the tag or receiver, which may cause signal reflections 

as depicted in Figure 4-21(b). Additionally, high obstructions by numerous obstacles such as 

ladders or rails, can cause NLOS condition as depicted in Figure 4-21(c). NLOS conditions cause 

increased error in localization performance (Liu et al., 2022) since the signals pass through a longer 

distance between the tag and receiver as compared to the direct LOS path (Kristensen et al., 2019). 

The setup of the UWB system and the experiments were completed over three days in June 

2023. The tags' locations were determined using the same measurement process as receiver 

locations. Table 4-9 illustrates the actual locations of the tags within the mechanical room and 

Table 4-10 displays the distances between each tag and receiver. In the mechanical room, three 

tests were conducted following the installation and activation of tags and receivers which are 

described in the following subsections. 
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Figure 4-20.  Distribution of the tags in the mechanical room. 



113 

 

Table 4-8. Tagging details of each tracked component. 

Object 

class 

Tag 

ID 

Tagging 

location 

Enclosure 

Area 

LOS/NLOS condition between the tag and each receiver 

Pipe 0 Top Inside Clear LOS with Receiver-0 and Receiver-3. 

LOS with Receiver-1 and Receiver-2, but metallic objects are in proximity. 

HVAC 

duct 

1 Top Inside Clear LOS with Receiver-0 and Receiver-3. 

Blocked LOS with Receiver-1 due to complete blockage by the other 

section of the HVAC duct. 

NLOS with Receiver-2 due to obstructions from metallic components. 

Pipe 2 Top Inside Clear LOS with Receiver-2 and Receiver-0. 

LOS with Receiver-1 but metallic objects are in proximity. 

NLOS with Receiver-3 due to obstructions from metallic components. 

Pipe 3 Top Inside Clear LOS with Receiver-3. 

Blocked LOS with Receiver-0 due to complete blockage by the HVAC 

duct. 

NLOS with Receiver-2 and Receiver-1 due to obstructions from metallic 

components. 

HVAC 

duct 

4  Below Outside Clear LOS with Receiver-0 and Receiver-2. 

NLOS with Receiver-1 and Receiver-3 due to obstructions from metallic 

components. 

Pipe 5 Top Outside Clear LOS with Receiver-2 and Receiver-1. 

NLOS with Receiver-0 due to metallic components obstructions. 

Blocked LOS with Receiver-3 due to complete blockage by the HVAC duct. 

Pipe 6 Top Outside Clear LOS with Receiver-0. 

LOS with Receiver-1, but metallic objects are in proximity. 

NLOS with Receiver-2 and Receiver-3 due to obstructions from metallic 

components. 

Pipe 7  Top Inside Clear LOS with Receiver-0, Receiver-2 and Receiver-3. 

LOS with Receiver-1 with a few metallic objects in proximity. 
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Figure 4-21. Examples of conditions between tags and receivers. 

Table 4-9. Actual locations of tags within the mechanical room. 

Tag’s name X (m) Y (m) Z (m) 

Tag-0 0.197 2.925 3.061 

Tag-1 0.014 3.401 4.744 

Tag-2 2.870 1.620 3.381 

Tag-3 0.792 4.281 3.300 

Tag-4 4.087 6.521 4.584 

Tag-5 -1.296 4.472 3.300 

Tag-6 -0.197 2.255 3.056 

Tag-7 2.870 2.572 3.313 

 

Table 4-10. Distances between the tags and receivers. 

 Tag-0 Tag-1 Tag-2 Tag-3 Tag-4 Tag-5 Tag-6 Tag-7 

Receiver-0 3.460 3.404 3.628 4.638 7.702 4.923 2.919 4.167 

Receiver-1 7.567 7.708 4.627 7.652 7.120 9.498 7.699 5.061 

Receiver-2 4.593 3.906 5.243 3.172 1.865 4.434 5.316 4.373 

Receiver-3 4.360 3.265 6.092 3.227 4.168 3.258 4.940 5.368 
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4.2.3.1 Test #1 and #2 – Performance Analysis of the UWB System. 

To evaluate the UWB system with different number of receivers in indoor, high multipath 

environments two tests were conducted. Test #1 included four active receivers based on the 

manufacturer's recommendations for accurate 3D object localization. In Test #2, three receivers 

were activated, and the fourth receiver (Receiver-3) was deactivated. This test aimed to evaluate 

the system's ability in scenarios where one receiver may fail to function or when installing 

additional receivers is challenging in congested rooms. 

For each Test #1 and Test #2, data collection time was set to 40 minutes, with 20 minutes 

allocated to each set of four tags. A total of 29,210 and 30,208 data points were collected for Test 

#1 and Test #2, respectively as detailed in Table 4-11. Except Tag-1, the remaining tags in both 

tests obtained relatively constant number of data points between 3,749 and 4,592. However, Tag-

1 recorded significantly lower datapoints, with 112 in Test #1 and only 2 in Test #2, indicating 

communication issues due to a high level of obstructions between Tag-1 and two receivers, as 

mentioned in Table 4-8. The removal of the fourth receiver (Receiver-3) in Test #2, which had a 

clear LOS with the Tag-1, further weakened its communication with the UWB system. However, 

this removal did not impact on the data consistency for other tags. 

Table 4-11. Captured datapoints in Test #1 and Test #2. 

Test Total data 

points 

Tag-0 Tag-1 Tag-2 Tag-3 Tag-4 Tag-5 Tag-6 Tag-7 

Test #1 29,210 4,285 112 4,253 3,749 4,329 4,343 3,811 4,328 

Test #2 30,208 4,592 2 4,580 3,800 4,422 4,424 3,978 4,410 

The individual analysis of each tag’s performance is crucial due to the specific location and 

conditions between each tag and receivers. This analysis allows for future planning and 

deployment of UWB system in similar indoor areas. Table 4-12 presents the average location of 

UWB data points for each tag, along with their standard deviation in 3D coordinates and the UWB 

localization error in both 2D and 3D planes for Test #1 and Test #2. Figure 4-22 demonstrates the 

scatter of UWB data points, the average location of UWB datapoints and the actual location of 

each tag for both tests. 
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The analysis of Table 4-12 highlighted the significant impact of LOS conditions on the UWB 

localization performance. Tags with LOS to receivers, such as Tag-7 and Tag-2, achieved 

considerably lower localization errors as compared to those affected by obstacles which caused 

NLOS conditions. This was evident in both 2D and 3D localization errors, with 3D errors being 

more affected. According to Figure 4-22 in both tests, tags with proper signal communication have 

more clustered UWB data points, which indicates higher reliability of the UWB localization. In 

contrast, tags with NLOS conditions with the receivers such as Tag-3 and Tag-6, had more 

dispersed data points. 

In Test #1, the majority of tags (7 out of 8) had 2D localization errors between 0.036 and 

0.407 meters, with one tag which reached to 1 meter error. In Test #2, The 2D error range was 

between 0.034 to 0.388 meters with two tags exceeding a 1-meter error. For 3D localization in 

Test #1, errors were from 0.150 to 0.939 meters with one tag reaching to 1.277 meters. In Test #2, 

errors for six tags, had an error range of 0.151 and 0.916 meters, with two tags having errors above 

1 meter.  

The standard deviations of UWB points in Test #1, excluding Tag-1, on the x and y axes 

ranged from 0.041 to 0.378 meters. On the z-axis, standard deviations for five tags varied from 

0.049 to 0.602 meters excluding Tag-6 and Tag-5 which had deviations of 2.422 and 3.018 meters, 

respectively. In Test #2, without considering Tag-1, the standard deviations were smaller across 

all axes ranging from 0.019 to 0.30 meters. This shows that UWB points were more clustered with 

three receivers in Test #2 as compared to Test #1 as illustrated in Figure 4-22. The deactivation of 

the fourth receiver may have reduced multipath effects or simplified the system complexity that 

results in better clustering of datapoints. 

A comparative analysis between Test #1 and Test #2 revealed key observations. First, 2D 

localization errors for each tag in Test #1 were closely similar to those in Test #2, except for Tag-

1, which encountered data loss in Test #2. This suggests that adding a fourth receiver did not 

significantly reduce 2D errors. Thus, for 2D object localization even in complex environments, 

three receivers are sufficient for the UWB system’s reliable performance. This approach can 

mitigate extra costs and deployment challenges, provided that proper signal communication exists 

between tags and the receivers to prevent data loss. Second, tags with clear LOS to the first three 

receivers, including Tag-2 and Tag-7, showed no significant change in localization errors with the 
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removal of the fourth receiver. A comparison of error distributions of the UWB data points 

collected for Tag-7 in both 2D and 3D is shown in Fig 4-23(a), indicating similar UWB localization 

for the tag in both tests. 

In addition, the tags with NLOS or blocked conditions with Receiver-3 (Tag-2, Tag-4, and 

Tag-6), had reduced 3D errors by its deactivation in Test #2. This improvement is mainly due to 

the reduced multipath propagation, resulting in better localization in Test #2. This phenomenon is 

more observed in 3D errors than in 2D. Fig 4-23(b) demonstrates 2D and 3D error distribution of 

Tag-6 in both tests. Despite minimal differences in 2D errors, the 3D error distribution in Test #1 

showed an additional cluster of errors in a higher range. Similar additional clusters of errors were 

seen for Tag-2 and Tag-4, but the range and occurrence of these errors varied among the tags.  

 

 

Figure 4-22. The tags’ actual locations, UWB average locations, and data points on a 3D Plane in 

(a) Test #1 and (b) Test #2. Each color corresponds to a different tag ID.
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Table 4-12. Mean, standard deviation and error of the UWB system for Test #1 and Test #2. 

 
 

UWB Average Position  UWB Standard Deviation  UWB Error  

Tag ID X  

(m) 

Y  

(m) 

Z 

 (m) 

X  

(m) 

Y  

(m) 

Z  

(m) 

2D 

(m) 

3D 

(m) 

T
es

t#
1

 

0 -0.376 2.869 2.544 0.100 0.046 0.081 0.407 0.446 

1 0.238 3.736 4.589 1.564 0.120 0.374 0.285 0.249 

2 2.695 1.779 2.839 0.378 0.135 0.602 0.167 0.341 

3 -0.507 4.871 4.079 0.354 0.143 0.470 1.009 0.939 

4 4.277 6.977 5.263 0.041 0.076 0.149 0.349 0.485 

5 -0.930 4.845 3.955 0.052 0.197 3.018 0.369 0.483 

6 -0.246 2.158 5.266 0.046 0.220 2.422 0.076 1.277 

7 2.860 2.622 3.057 0.059 0.043 0.049 0.036 0.150 

T
es

t#
2

 

0 -0.337 2.854 2.525 0.026 0.019 0.031 0.381 0.438 

1 -0.099 5.122 2.579 2.147 1.941 2.694 1.219 1.598 

2 2.917 1.698 2.972 0.025 0.039 0.034 0.064 0.241 

3 -0.664 4.928 4.329 0.160 0.078 0.300 1.126 1.095 

4 4.270 6.984 4.532 0.043 0.080 0.131 0.352 0.289 

5 -0.944 4.894 1.810 0.043 0.030 0.072 0.388 0.916 

6 -0.238 2.293 2.559 0.052 0.187 0.197 0.040 0.288 

7 2.857 2.618 3.054 0.051 0.025 0.064 0.034 0.151 
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The results exhibited the UWB system’s capability to localize tags located outside the 

enclosure area created by the receivers, including Tag-4, Tag-5, and Tag-6. A deeper investigation 

is needed to determine the maximum distance from the tag to the enclosure area at which the UWB 

system can provide accurate 2D and 3D localization. This factor is crucial in construction sites as 

the tracked components may be located outside the area where receivers are placed, yet identifying 

their accurate location is necessary. Also, the placement of tags on the objects can be determined 

based on the installation location of the tracked component. For instance, for components installed 

at high heights and close to the ceilings, attaching the tags below them may improve the LOS 

between them and receivers, such as Tag-4 which is attached below the HVAC duct.  

 

Fig 4-23. Histogram of 2D and 3D errors of the UWB tags: (a) Tag-7 and (b) Tag-6. 
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4.2.3.2 Test #3 - Impact of the Number of Tags on UWB System Performance 

This section evaluates the effect of the number of active tags on the UWB system's localization 

performance at real job sites. For this purpose, a series of four experiments were conducted 

sequentially. In Experiment #1, a single tag (Tag-4) was activated for data collection. In 

Experiment #2, a second tag (Tag-7) was added and data from both tags were recorded. This 

process continued until four tags were activated in Experiment #4. The locations and numbering 

of the tags (Tag-4 to Tag-7) align with those described in Table 4-9. The data collection time for 

each experiment was set to 20 minutes. In these experiments, the four active receivers were 

maintained at the same locations as shown in Figure 4-19.  

Despite this factor being investigated in previous studies, the results were different. In one 

study, Maalek and Sadeghpour (2013) reported that increasing the number of tags within the test 

area led to decreased localization accuracy. In contrast, Jin et al. (2019) found that the quantity of 

tags does not affect the system performance. Hence, in this section, the effect of the number of 

tags on the performance of the UWB was reevaluated. Table 4-13 provides the number of collected 

data points for each tag in each experiment. The table also provides the UWB average position for 

each tag, as well as the UWB standard deviation along x, y and z axes. Figure 4-24 also illustrates 

the 2D and 3D errors of each tag in each experiment in meters. 

According to Table 4-13 and Figure 4-24, there is no significant difference in the 

performance of the UWB system for the localization of Tag-4 across all four experiments. Tag-7 

and Tag-5 also demonstrated consistent performance. These results suggest that the quantity of 

active tags does not influence the performance of the UWB system.  

Possible discrepancies in the results of the mentioned research studies could be due to the 

use of different commercial UWB products. Therefore, it is recommended that researchers 

evaluate the effect of the number of active tags on their specific UWB system prior to field 

implementation. 
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Figure 4-24. Histogram of 2D and 3D error values for Experiments #1- Experiments #4. 
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Table 4-13. The tags’ information in each experiment. 

Experiment Tag’s 

name 

Datapoints UWB Average Position (m) UWB Standard Deviation (m) 

X (m) Y (m) Z (m) X (m) Y (m) Z (m) 

Experiment 

#1 

Tag-4 4,266 4.276 6.974 5.230 0.043 0.137 0.218 

Experiment 

#2 

Tag-4 4,300 4.271 6.959 5.262 0.040 0.085 0.154 

Tag-7 4,280 2.858 2.619 3.057 0.067 0.027 0.052 

Experiment 

#3 

 

 

 

Tag-4 4,521 4.273  6.978 5.261 0.040 0.073 0.158 

Tag-7 4,519 2.849 2.622  3.044 0.080 0.032 0.061 

Tag-5 4,537 -0.9411  4.892 3.870 0.044 0.025 2.923 

Experiment 

#4 
Tag-4 4,329 4.277 6.977 5.263 0.041 0.076 0.149 

Tag-7 4,328 2.860 2.622 3.057 0.059 0.043 0.049 

Tag-5 4,343 -0.930 4.845 3.955 0.052 0.197 3.018 

Tag-6 3,811 -0.246 2.158 5.266 0.046 0.220 2.422 

 

4.2.4 Summary and Conclusions 

This section implemented and evaluated the UWB system for 2D/3D object localization through 

various laboratory and field experiments. These experiments aimed to assess the UWB system’s 

applicability in construction sites to support automated progress monitoring and reporting systems. 

Moreover, these experiments considered different factors that may affect the system’s performance 

in construction sites. 

The Laboratory experiments were conducted under LOS conditions, which are ideal 

scenarios. Based on the results obtained from the four laboratory experiments, the UWB system 

demonstrated to be reliable and robust for 2D and 3D localization of objects in indoor 

environments. Across all experiments, all the tags had errors less than 0.10 meters for 2D 

localization. In addition, in terms of 3D localization, 9 out of the 12 tag locations had errors equal 

to or below 0.10 meters. However, it’s worth noting that a 3D localization error of 1 meter was 

recorded when a tag was close to the receiver despite LOS conditions in an obstacle-free 

environment. Based on these experiments it was identified when the tags are located higher than 
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the receivers, both 2D and 3D localization performances are negatively affected. Consequently, 

for implementing the UWB system in real construction sites, it is recommended to avoid placing 

the tags higher than the receivers and to install receivers at the highest possible positions. In the 

future, additional laboratory experiments can be conducted to evaluate the UWB system under the 

following scenarios: 

1) Evaluating the effect of environmental parameters such as humidity and weather on the UWB 

system performance. 

2) Investigating the effects of surrounding metallic objects in the experimental area that may cause 

multipath effects. 

For the field experiments, a mechanical room containing numerous metallic objects was 

selected. HVAC ducts and pipes were chosen for monitoring because mechanical, electrical, and 

plumbing (MEP) components are identified as having complex and expensive procedures, which 

make their effective progress monitoring crucial (Bosché et al., 2015; Song et al., 2006; 

Yarmohammadi & Ashuri, 2015). 

In the field experiments, UWB localization errors ranged from 0.03 to 1.22 meters in 2D and 

from 0.15 to 1.6 meters in 3D. This range of errors was associated with the LOS condition between 

each tag and the receivers. Tags that have proper LOS with the receivers have maintained their 

localization error in the centimeter level in both 2D and 3D. However, the tags with the NLOS 

conditions with the receivers had higher localization errors.  

Based on the results, the UWB system is capable of localizing objects in indoor 

environments. The UWB system offers a solution for automated progress monitoring and reporting 

systems by providing real-time location information of tracked objects in construction sites. This 

information can assist in determining their status on job sites, whether they are in the process of 

installation, have already been installed, or are located in storage areas.  

4.3  Integrated Object Recognition and Localization  

4.3.1 Overview 

In this section, an application was developed to integrate the data from the deep learning-based 

object recognition model and the UWB system in an organized and unified format, providing 
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essential information about the tracked elements. The application’s capabilities and its outcomes 

were then presented. In this section, the case study remains consistent with the one described in 

Section 4.2.3, focusing on the mechanical room at Concordia University. Similarly, the tracked 

objects remained HVAC ducts and pipes. The mechanical room represents the final stage of 

construction with the highest level of occlusion and clutter. All processes applied in the mechanical 

room can be carried out during earlier stages, which typically have fewer objects such as less 

piping and HVAC ducts. Consequently, image capturing, UWB installation and data collection 

become less challenging. Moreover, attaching tags is easier at comfortable heights prior to their 

final destination. 

During the data collection period from the tracked HVAC ducts and pipes using the UWB 

system, images of these objects were also captured to be used in the developed application. Figure 

4-25 displays the outcomes of the object recognition and localization modules which are then 

organized and fed into the developed application to generate the final report. Despite in this study 

YOLACT++ and the UWB system was selected, other object recognition models and RTLS 

technologies could also be applied. 

Images from the HVAC ducts and pipes were manually captured using a smartphone with 

resolution of 2048 * 1536 pixels while the UWB system was active for data collection. To ensure 

comprehensive capture of all tracked HVAC ducts and pipe components, a sequential approach 

was employed, where images were taken in a series along the network of MEP components. 

Further detail was achieved by capturing images from various viewpoints, angles, and positions 

using different zoom levels at the job site. Despite the fact that the YOLACT++ model can 

recognize multiple components with different irregular shapes and sizes and account for the 

continuity and irregularity of MEP components within images. In this study, images were captured 

as close as possible to each component, ideally with one component per image or at most two 

components from different classes. This approach is developed and implemented for two main 

purposes: minimizing the effects of occlusion on object recognition performance and supporting 

the integration process which is based on a one-to-one matching basis.  

After collecting a sufficient number of images from the HVAC ducts and pipes within the 

mechanical room, 208 of the images were randomly added to the real and synthetic images 

previously collected in Section 4.1.4. The dataset included 1,462 real images and 668 synthetic 
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images of HVAC ducts and pipes. It contained 3,245 HVAC duct and 2,196 pipe instances. To 

save computational time while achieving good performance, transfer learning was used. Instead of 

training the model from scratch, the pre-trained weight from YOLACT++ using Dataset #8, as 

detailed in Section 4.1.4, was used to begin model training.  

For model evaluation, 328 real images of HVAC ducts and pipes including images captured 

from the mechanical room were randomly selected. The best performance was achieved with a 

weight obtained from epoch 268 as provided in Table 4-14. The model achieved a precision of 

95.68% and recall 97.08% for HVAC duct detection and a precision of 90.9% and recall 81.98% 

for pipes. The YOLACT++ prediction speed averaged 6.13 FPS. Predicted images were then 

categorized by object classes and were stored in separate folders which in this study were HVAC 

ducts and pipes. If an image contains multiple object classes, it will be repeated in both relevant 

folders. This ensures that all objects are included in the generated report following the integration 

process. Sample predicted images are illustrated in Figure 4-26. A separate folder is also created 

for storing the generated UWB files. 
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Figure 4-25. An overview of the integrated framework. 
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Table 4-14. YOLACT++ detection performance for HVAC ducts and pipes 

Object class TP FP FN Precision (%) Recall (%) 

HVAC duct 266 12 8 95.68 97.08 

Pipe 141 14 31 90.97 81.98 

 

Figure 4-26. Sample images taken from the mechanical room and their corresponding predicted 

images by YOLACT++. 

4.3.2 The Developed Application for Data Integration 

For integrating UWB and object recognition data into an organized and comprehensive report, an 

application was developed. The application was designed in the Visual Studio environment using 

the C-sharp (C#) programming language that once deployed, can be easily accessed and utilized 

by the users regardless of their programming expertise. The computer used for testing the 

integrated model was equipped with Corei7-1065G7 processor, 12GB DDR4 RAM, and Intel Iris 

Plus Graphics G7. 

In the initial step, users are requested to specify the location on the computer system where 

folders with predicted images exist. Each folder includes the predicted images assigned to a 
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specific class. The application automatically reads all the folders at the specified location and lists 

the folder names, which in this case study are HVAC ducts and pipes. In addition, a “Default Tag” 

name will be added to the list within the application which corresponds to the tag attached to the 

camera, if available. To obtain the list of classified tags, a text box next to each class allows the 

user to specify the list of tag IDs assigned to that class.  

 

Figure 4-27. Visual studio environment for designing the application user interface. 

In the next step, to identify the actual captured time of each image, the user is asked to specify 

the location path where the original images, before processing by YOLACT++, are stored. This 

step is necessary since the “date taken” metadata of each image is changed after processing by the 

deep learning models to the time when the image is predicted by the models. Therefore, this 

metadata no longer provides an accurate “date taken” and it is required to take the correct one from 

the original image. The application achieves this by matching the image names of the predicted 

images with those in the folder that contains the original images.  

The user is requested to import the UWB output to begin the data integration process, as 

described in Section 3.4.1. The corresponding code section is provided in the Appendix. Following 

the processing of all data, the application automatically generates a structured report in an Excel 

(.xls) format. This report contains essential information for each tracked component necessary for 
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efficient monitoring such as visual information of the element from images, object class, precise 

3D location information, unique ID, and captured date and time. Table 4-15 presents samples of 

the generated report records. This organized report simplifies and facilitates the process for project 

managers to obtain needed information about tracked components by enhancing data management 

from multiple sources. 

 The application user interface is depicted in Figure 4-28. It requires data entry from users to 

automatically generate the report. The model was tested with two UWB data files each containing 

around 6,000 datapoints and 32 images from the mechanical room. The processing time for 

generating reports took around 11 seconds.  

 

Figure 4-28. The application user interface. 

Table 4-15. Record samples from the generated reports. 

Record 

No. 

Image Features UWB Features 

Image full path 

 

Date taken Image time 

(HH:MM:SS) 

Object 

class 

Tag 

ID 

UWB timestamp 

(HH:MM:SS:MS) 

Location x 

(m) 

Location y 

(m) 

Location z 

(m) 

1 C:\...\IMG_1691.JPEG 2023-06-08 10:37:24  Pipe 0 10:35:59:27 -0.35 2.88 2.55 

2 C:\...\IMG_1674.JPEG 2023-06-08 10:31:46 Duct 1 10:31:06:43 -1.12 3.65 4.52 



130 

 

3 C:\...\IMG_2527.JPEG 2023-06-09 14:23:46 Duct 4 14:23:46:26 4.27 6.94 5.30 

4 C:\...\ IMG_2543.JPEG 

 

2023-06-09 14:24:21 Duct 4 14:24:21:25 4.26 7.05 5.43 

5 C:\...\ IMG_2514.JPEG 2023-06-09 14:23:02 Pipe 7 14:23:02:18 2.89 2.62 3.09 

 In this context, this framework can be considered as a beneficial method for providing both 

visual information and location data about tracked elements simultaneously through an organized 

report. This report provides essential material for progress monitoring and reporting as it includes 

information about the status of installed elements. It allows for the automatic extraction of the 

actual number of installed elements, their unique IDs, locations, and installation dates, which can 

contribute to automated construction progress monitoring. The report can be used in progress 

completion percentage by comparing the number of actual installed components with the total 

planned. It also provides visual information for each component, ensuring correct installation and 

minimizing uncertainties. The capabilities of the developed integrated method in providing 

comprehensive data can be extended to different monitoring domains such as material and 

inventory management and safety monitoring. 

4.3.3 Summary and Conclusions 

The shift towards automated progress monitoring and reporting using new technologies for the 

efficient delivery of construction projects has received significant attention in recent years. The 

application of vision-based techniques and deep learning algorithms for automated object 

recognition and RTLS for object localization has been explored in many studies. However, an 

individual technology cannot provide all the information necessary to determine the status of 

tracked elements on a job site. Therefore, technologies such as vision-based systems and RTLS 

can be integrated to alleviate their individual shortcomings and ensure that sufficient information 

about tracked resources is obtainable (Ekanayake et al., 2021; Noruwa et al., 2020; Rafiee et al., 

2013).  

This section developed a user-friendly application that integrates the data from a deep 

learning model (YOLACT++) and the UWB system for automated progress monitoring and 

reporting in construction projects. YOLACT++ was implemented to automatically recognize and 

classify tracked components within images in a timely manner, while the UWB system provided 
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a unique ID and location of corresponding components in real-time. The output of this integration 

process is a report in an Excel (.xls) format that contains essential information from both sources 

for an accurate and reliable assessment of the installation status of each tracked component. This 

report delivers each element's unique ID, location in 3D coordinates, visual information, and the 

capture time. 

The developed method is validated in a highly occluded mechanical room filled with metallic 

objects in a confined space, a challenging environment for the UWB system and object recognition 

models due to signal interferences and occlusions. Similar to Sections 4.1.4 and 4.2.3, the 

developed application was implemented to monitor HVAC ducts and pipes.   

An advantage of this system is its user-friendly application, which does not require human 

expertise to operate. For all users, the application has been simplified and only requires data entry 

which are images and UWB files.  Moreover, this application is not limited to only HVAC ducts 

and pipes, and it can be generalized to different building elements in the job sites. The integrated 

model can deliver the necessary information to project managers in a timely manner, which is 

essential for efficient progress monitoring systems. The operation and computational processing 

of the developed method are fast, enabling reports to be generated timely on-site. The UWB 

generates reports in real-time and YOLACT++ offers real-time prediction capability. However, 

the prediction speed of the object recognition algorithm and the integrated model may be affected 

by computer specifications. Depending on project requirements and stakeholder needs, this report 

can be generated daily, weekly or monthly. 

4.4 Limitations  

Despite the contributions of this study, there are some limitations that need to be discussed.  

• The manual generation of synthetic images from BIM models, was a time-consuming 

process. In the future, automated approaches should be explored for image generation with 

considering scenarios to reflect the real conditions of indoor environments such as lighting 

variations, occlusion, object complexity and the scale of objects across multiple 

viewpoints.  

• The quality of synthetic and real image mixes within the datasets needs to be improved by 

taking into account not only the ratio of synthetic images, but also other factors such as 
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consistency in image modifications, lighting, complexity, scale, occlusion, clutter degree 

and viewpoints across all the datasets. This can be helpful in creating more consistent and 

higher quality datasets. Moreover, increasing the number of real images through advanced 

augmentation techniques before model training, such as flipping, rotation, cropping, and 

lighting variations needs to be considered. 

• Object recognition models are limited to two building classes and need to be more 

generalized and encompass more building elements in indoor environments. The details 

associated with each component, including various types of pipes and added features of 

HVAC ducts and pipes, as separate classes, are not investigated in this study. The dataset 

needs to be enhanced to cover different categories of these components and their specific 

details.  However, it is important to note that manual data labeling is labour-intensive, 

especially when dataset size increases. As a result, other algorithms that need less annotated 

data, such as semi-supervised or self-supervised learning, can be considered as potential 

alternatives for future studies. 

• The fine-tuning of object recognition algorithms was done manually. While the selected 

hyperparameters achieved good performance, advanced optimization techniques that could 

potentially improve model efficiency were not explored. 

• The conducted experiments using the UWB system were focused on static objects which 

are installed at their final installation locations, aligned with the study’s scope. Although 

the UWB system can localize moving objects in jobsites and support monitoring and 

tracking during the construction process, this capability was not explored in this study. 

Tracking moving objects introduces additional complexities, as they may be located in 

different areas with varying obstruction levels, which may cause data loss or higher errors 

from signal interference or blockages.  

• Optimizing the placement of UWB tags and receivers, as well as adjustments to the receiver 

layout at different construction stages, were not examined. The experiments need to be 

expanded in more indoor environments with varied settings to obtain a comprehensive 

performance assessment of the UWB system.  

• The number of UWB tags was limited in this study and the UWB system’s capability with 

a larger number of tags needs to be assessed. This consideration could affect the required 
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number of receivers, the procedure of attaching tags to elements, and the design of the 

layout plan to maintain the required performance.  

• The use of the UWB system as the RTLS for all tracked components is expensive. 

Therefore, only critical components can be tracked on construction sites. To alleviate this 

issue, the UWB system could be integrated with other RTLS systems to expand monitoring 

capabilities and improve cost efficiency. Tracked objects can be categorized based on 

criteria such as criticality, cost, or required accuracy. This categorization enables the 

selection of the most suitable RTLS type for each category. 

• For the integrated model, the current integration process works based on sequential, one to 

one matching basis for an element of each class at a time. The method needs to be 

generalized to enable integrating data from multiple elements of the same class 

simultaneously. Moreover, the integrated model is not connected to a cloud-based platform 

that would enable real-time data entry and output storage to be shared with responsible 

parties. 
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CHAPTER 5:  SUMMARY AND CONCLUDING REMARKS 

In this chapter, the conclusions of this research study are discussed. Its contributions are identified, 

and recommendations for potential future works are provided to improve automated progress 

monitoring and reporting in construction sites. 

5.1 Conclusions 

The main purpose of this research was to develop an automated framework for the recognition and 

localization of tracked objects in indoor construction environments. This can improve progress 

monitoring and reporting systems and facilitate decision-making during the construction phase. 

To achieve this, a framework consisting of three modules was developed. In the first module which 

is object recognition, two novel deep learning-based instance segmentation algorithms, Mask R-

CNN and YOLACT++, were selected to automatically recognize tracked objects from images. To 

train the models, synthetic images were generated and combined with real images from 

construction sites.  

The purpose of synthetic image generation is to overcome the lack of available real images 

and enhance the model’s generalizability. Hence, synthetic images with different viewpoints, 

lighting conditions, complexity, clutter and occlusion degree were generated. To identify the 

optimum mix of synthetic and real images for model training, datasets with different mixes of 

these images were created. Transfer learning and data augmentation techniques were applied to 

these deep learning models to improve their robustness and overcome the overfitting problem. 

Their performance was then evaluated in terms of precision, recall, and mAP. This module can 

alleviate the problems of manual site monitoring, which are time-consuming and error-prone, to 

better understand the as-built status of building elements. 

In addition to object recognition, it is crucial to identify the locations and unique IDs of 

tracked objects within construction sites in real-time. In the second module which is object 

localization, the UWB system was selected as RTLS that is capable of precise object localization 

even in high multipath environments. Different laboratory and field experiments were conducted 

to evaluate the system’s performance and identify factors that may affect it. These factors include 

the height of the tags, proximity of tags to receivers, the number of active tags and receivers, and 

LOS and NLOS conditions. The UWB system provides accurate 2D and 3D location information 
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about each tracked object in real-time, assisting project managers in determining the status of 

tracked objects.   

In the third module, a user-friendly application was developed that automatically integrates 

the data from both the object recognition model, YOLACT++, and the UWB system based on a 

matching process. This model provides comprehensive information about each tracked element, 

including its location information, unique ID, object class, captured time, and visual 

characteristics, in a detailed report. This application helps decision-makers to timely obtain 

required information about tracked elements in construction sites and apply corrective actions at 

the right time. 

The uniqueness of our research as compared to other integrated methods is the strategic 

utilization of vision-based techniques and the UWB system for enhanced monitoring coverage, 

flexibility, and reliability in complex indoor sites. Employing both systems within the environment 

allows for capturing comprehensive data from tracked elements at the same time. Other studies 

have relied on fixed cameras with restricted fields of view and ideal conditions such as minimum 

obstruction and occlusions within job sites. However, they did not address the challenges in 

congested environments with high levels of obstruction, which can adversely affect both vision-

based systems and RTLS. In contrast, this study fully utilizes each system’s capability to capture 

data from different areas of job sites under various conditions. This flexibility is crucial for 

progress monitoring in indoor environments where a variety of tracked components are installed 

throughout the building. In this study, the most appropriate object recognition algorithm among a 

wide range of alternatives was selected. The selected algorithm, YOLACT++, is an instance 

segmentation algorithm which can detect and segment objects of interest in the image 

simultaneously. The segmentation capability precisely determines the boundaries and shapes of 

objects which enables for further boundary extraction and geometry analysis (Shamsollahi et al., 

2022). In addition, YOLACT++ can recognize components under different viewpoints, shapes and 

scales due to its network architecture, making it suitable for recognizing irregular objects that exist 

in indoor environments. Moreover, the UWB system was selected among other available RTLS 

technologies because it is capable of accurate 2D/3D localization of metallic components in high 

multipath indoor environments. 
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5.2 Research Contributions 

The contributions of this research study for automated progress monitoring and reporting are 

indicated below:  

1) Implementing two deep learning-based instance segmentation algorithms, Mask R-CNN 

and YOLACT++, for automated recognition of tracked building elements from images and 

comparing their performance. These algorithms are capable of object classification, 

detection and segmentation which are complementary tasks and contribute to a more robust 

performance.  

2) Employing the novel YOLACT++, incorporating DCNv2, to enhance the model capability 

in dealing objects with different poses, sizes and viewpoints which is an existing challenge 

for recognition in indoor sites. This feature is helpful in cluttered indoor environments 

where components can appear in numerous shapes and scales across different viewpoints. 

The model's performance was evaluated using both detection and segmentation metrics on 

a large test dataset demonstrating the model’s capability in recognition of objects in 

different conditions.  

3) Enhancing dataset quality through synthetic image generation using BIM models, which 

consider actual indoor challenges such as different lighting conditions, object complexity 

and scale, occlusion, clutter, and viewpoints, addressing the lack of available real images. 

Such synthetic images reduce the manual efforts required for capturing images through 

construction site visits and extensive web searches for image collection that would result 

in saving time and resources. 

4) Training deep learning models on datasets with different ratios of synthetic to total images 

to determine the most effective mix of synthetic and real images for training. Meanwhile, 

to improve model generalization and mitigate overfitting, various data augmentation 

techniques, including color and geometric transformations were applied. Transfer learning 

was also applied to enhance the model’s robustness. The contributions of this study will 

enhance the model’s ability to achieve more accurate identification of tracked elements in 

difficult indoor conditions with images that reduce reliance on high-quality real datasets. 

This results in more precise progress quantification through efficient automated monitoring 

systems. 
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5) Assessing the UWB system for object localization in 2D and 3D planes by conducting 

different indoor lab and field experiments. Lab experiments focused on ideal conditions 

with LOS conditions to identify factors that may impact the UWB system’s localization 

performance. These factors were then considered in subsequent field experiments, which 

focused on localizing metallic objects within a dense and high multipath indoor 

environment. The field experiments explored how factors such as LOS and NLOS 

conditions, tag placement and the number of receivers affect the system’s localization 

performance. The findings demonstrated that the UWB system is capable of accurate 

localization in both 2D and 3D.  

6) Selecting the appropriate object recognition algorithm and RTLS suitable for tracking 

complex objects in high-density work areas, and introducing a method that strategically 

utilizes a deep learning-based instance segmentation model, with the UWB system as 

complementary and reliable data acquisition sources. These two systems are able to deliver 

accurate and timely required visual, identification and location information about the 

tracked components. Implementing these systems simultaneously can improve 

construction progress estimation by enhancing data-driven monitoring systems. 

7) Developing a user-friendly application that integrates data from the object recognition 

model and the UWB system for each tracked component and automatically creates a 

structured and comprehensive report. This report delivers each tracked element's unique 

ID, 3D location, visual data, and the capture time, which cannot be extracted solely by 

relying on one method. It facilitates the analysis process of different systems’ outputs and 

addresses monitoring systems’ challenges in data acquisition, documentation, and 

management.  The developed method is not limited to specific types of object recognition 

model and RTLS and it can be generalized to different building classes. The application’s 

ease of use allows users to import the input files and obtain the generated outputs without 

any technical expertise, which facilitates the comprehension of the project’s status for 

decision-makers.  

5.3 Future works 

The developed method conducted in this research study can be extended within the following 

areas: 
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1. Object recognition models using images and deep learning models:  

• The enhancement of images with blurriness and low-lighting conditions using pre-

processing techniques.  

• Utilizing automated methods for data collection from construction sites such as UAVs 

configured for indoor settings to mitigate manual data capturing which is time 

consuming and labor-intensive.  

• Investigating image labeling at the pixel level. For example, labeling strategies for 

complex scenarios, such as intersecting objects, are needed to prevent negative impacts 

on model training due to ambiguous labeled shapes lacking semantic information. Also, 

pre-processing methods such as harmonizing labeling across all datasets and removing 

labels for very small-scaled instances can be helpful (Poucin et al., 2021).  

2. Defining different classes based on the installation status of objects at the construction site 

to enable the model to differentiate between objects that are installed and those that are not 

yet installed.Object localization using the UWB system:  

• Designing a layout plan before implementing the UWB system in the BIM model. 

Optimizing the location and number of tags and receivers can be achieved within as-

planned BIM models which leads to time and cost savings, and improved system 

accuracy.  

• Developing guidelines for implementing the UWB system in construction projects 

based on implemented experiments. This includes identifying factors to consider during 

the system implementation such as UWB product specifications, site layout and 

environmental configurations. 

3. Integrated model based on deep learning-based object recognition model and the UWB 

system: 

• Improving the current integrated model to support continuous data flow, without the 

need for manual data entry from the deep learning model and the UWB system. 

• Linking the integrated model with the as-built BIM model. The format and fast 

generation of the reports make it suitable to be imported into a BIM model for timely 

updating the status of tracked components. This allows project managers to access 

reliable and up-to-date information of these components on job sites. In the future, there 

is an opportunity to integrate the developed model with progress measurement 
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frameworks, like percentage completion methods, to quantify the progress of MEP 

works.   
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APPENDICES 

Appendix A. Section of C-sharp (C#) Code: 

# Initialize result models and get file paths 

1: resultModels = new List<ResultModel>(); 

2: var txtTextFilePath = (TextBox)Controls.Find("txtTextFile", false).First(); 

# Read UWB text data from the file path 

3: var textData = readTextFile(txtTextFilePath.Text); 

4: var txtOriginalFolderPath = (TextBox)Controls.Find("txtOriginalImageFolder", 

false).First(); 

5: string originalFolder = txtOriginalFolderPath.Text; 

# Process each folder in the directory 

6: foreach (var folder in folders) 

7: { 

# ValidTags: tags specific to each object class. 

# DefaultTags: tags attached to the camera. 

8:     List<string> validTags = getValidTags(folder); 

9:     List<string> defaultTags = getDefaultTags(); 

10:    var files = Directory.GetFiles(folder); 

# Process each image file in the folder 

11:    foreach (var file in files) 

12:    { 

# Prepare the model for each image 

13:        var model = new ResultModel 

14:        { 

15:            ImageName = Path.GetFileName(file), 

16:            ImageFullPath = file, 

17:            OriginalImageFullPath = Path.Combine(originalFolder, Path.GetFileName(file)) 

18:        }; 

# Check if the original image exists 

19:        if (File.Exists(model.OriginalImageFullPath)) 
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20:        { 

21:   DateTime photoDate = GetDateTakenFromImage(model.OriginalImageFullPath) ?? 

throw new InvalidOperationException("Date taken data is missing or unreadable."); 

22:            DateTime photoTime = new 

DateTime(1970,1,1,photoDate.Hour,photoDate.Minute,photoDate.Second); 

 

# Find the related tag based on the closest timestamp 

23:           var relatedRow = textData 

24:                .Where(c => validTags.Contains(c.TagId) && (c.Date - photoTime).TotalSeconds 

< 90) 

25:                .OrderBy(c => Math.Abs((c.Date - photoTime).TotalSeconds)).FirstOrDefault(); 

 

 # If a tag is matched, update the model 

26:            if (relatedRow != null) 

27:            { 

28:                model.DateTaken = photoDate; 

29:                model.TimeTaken = photoTime; 

30:                model.TagId = relatedRow.TagId; 

31:                model.DateInTextFile = relatedRow.DateNumber; 

32:                model.Location = relatedRow.Location; 

33:                model.Class = getFolderName(folder); 

34:           } 

35:            else 

36:           { 

                # Handle cases where no tag is matched 

37:                var relatedDefaultRow = textData 

38:                    .Where(c => defaultTags.Contains(c.TagId) && (c.Date - 

photoTime).TotalSeconds < 90) 

39:                    .OrderBy(c => Math.Abs((c.Date - photoTime).TotalSeconds)).FirstOrDefault(); 

40:                if (relatedRow != null) 

41:                { 
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42:                    model.DateTaken = photoDate; 

43:                    model.TimeTaken = photoTime; 

44:                    model.TagId = relatedRow.TagId; 

45:                    model.DateInTextFile = relatedRow.DateNumber; 

46:                    model.Location = relatedRow.Location; 

47:                    model.Class = "Camera"; 

48:               } 

49:               else 

50:               { 

                    # Default comment if no data is found 

51:                    model.Class = "Not Found in Text File"; 

52:              } 

53:               

54:            } 

55:        } 

56:        resultModels.Add(model); 

57:  } 

58: } 

# Save results to an Excel file 

59: saveExcelFile(); 
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Appendix B. Synthetic Image Generation Procedure 

To generate synthetic images from BIM models the following steps are required: 

Step 1: Select a BIM model containing elements of interest (software example: Autodesk Revit). 

Step 2: Define properties of the elements in the BIM model such as shape, material, texture, and 

dimensions. 

Step 3: Select a rendering tool for synthetic image generation (software example: Enscape Plugin 

in Autodesk Revit). 

Step 4: Consider different image modifications to reflect real scenarios that may exist in indoor 

environments using BIM model and rendering tool. Sample of image modifications are: 

4.1 Lighting conditions: changing lighting adjustments by adding or removing lighting sources 

including artificial and natural lighting and changing their intensities within the 3D models. 

4.2 Complexity of elements: this included changing the complexity level of tracked elements 

across the images. For instance, generating images with different network arrangements of MEP 

elements. Some images can contain only a section of an element while others encompass the entire 

complex network. Also, changes in elements’ shapes in the BIM model contribute to this factor as 

well. 

4.3 Scale: scale of elements in the images can be varied to address the challenge in recognizing 

elements of different sizes. This diversity included scales from small to large, could all appear in 

a single image or represented individually across different images. Changing the scale of elements 

can be controlled by setting different capture points within the BIM model. 

4.4 Occlusion and cluttered degree: this involves adding or removing elements within the BIM 

model, which are often located close to elements of interest. By this consideration, we could mimic 

conditions where the elements may be partially blocked or surrounded by other objects. These 

modifications are targeted to improve the model’s ability to recognize these elements in different 

levels of occlusion and clutter. 

4.5 Viewpoints: images with different shooting angles of the elements needs to be collected in the 

3D BIM model, the viewpoints achievable in indoor locations were considered such as those from 
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fixed cameras on walls or human perspectives. This approach enables the model to recognize 

elements from various viewpoints. 
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Appendix C. Model Implementation Guideline 

Module 1: Object recognition 

Step 1: Collect real images which can be captured by sites visits, or web searches. 

Step 2: Generate synthetic images as described in Appendix B. 

Step3: Annotate all images using a labeling software (e.g. VGG Image Annotator) and extract 

labeling files in JSON or COCO format depending on the algorithm type. 

Step 4: Create different mixes of synthetic and real images across various datasets. 

Step 5: Store the generated image datasets in Step 4 into Google Drive. 

Step 6: Select an appropriate deep learning-based object recognition algorithm (e.g. Mask R-CNN 

or YOLACT++). 

Step 7: Select appropriate hyperparameters, with examples provided in Appendix D, for the deep 

learning model. 

Step 8: Select appropriate data augmentation techniques including geometric and color 

transformations to mitigate overfitting problem and improve generalization of the model. 

Step 9: Apply transfer learning using pretrained weights obtained from large datasets such as 

ImageNet or COCO dataset as described in Chapter 3. 

Step 10: Implement the deep learning model using cloud-based platforms such as Google Colab 

that can be easily linked with the datasets stored in Google Drive. 

Step 11: Train the model and select appropriate evaluation metrics to assess its performance. 

Module 2: Object localization using UWB system 

Step 1: Define tags ID numbers using Printed Circuit Board (PCB) unit. 

Step 2: Select appropriate configurations such as channel type and data rate using PCB unit. 

Step 3: The installation location of tags and receivers needs to be determined using several 

approaches. 1) Existing building drawings, which illustrate the locations of tracked elements can 

be utilized to identify placements. 2) BIM models can simulate various layouts and placements in 
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a 3D environment to ensure maximum LOS between receivers and tags. 3) Site visits and 

consultation with the field managers to refine these placements by considering site conditions.  

Step 4: Attach tags to the tracked elements. 

Step 5: Consider the following considerations for installing the receivers: 1- Ensure proper signal 

communication by maintaining a clear line of sight between receivers. 2- Have accessibility to 

their locations on the site. 3- Maintain a minimum distance of 15 centimeters from any surrounding 

objects. 4- Locate them higher than tags at the site. 

Step 6: Fix receivers into the predefined locations as described in Steps 3 and 5. 

Step 7: Connect a laptop to one of the receivers via a USB cable to initiate the UWB application. 

Step 8: Start UWB data collection and after obtaining sufficient data, stop collecting data manually 

using the UWB application. A report will be automatically generated in a text format containing 

information about each tag. 

Module 3: Integrated Object recognition and Localization 

Step 1: Collect images and UWB data simultaneously from each element once installed at the 

construction sites. In addition, the tags from the same class could not be activated at once. Instead, 

once an element is installed in its location the tag will be activated. Image capturing from the 

corresponding element and the UWB data collection are initiated concurrently. After the images 

are captured, the tag would be turned off, removed, renumbered, and attached to other building 

element that is set to be installed.  

Step 2: Images are analyzed by deep learning-based object recognition model. Following the 

model’s prediction results, each predicted image is stored into distinct folders on the local 

computer based on its identified object class. 

Step 3: An application was developed in C# within the Visual Studio environment, with a section 

of the computer code presented in Appendix A. 

Step 4: Once the application is initiated, it requires data entry from users (as explained in next 

steps) to automatically generate the report. 
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Step 5: Specify the location on the computer system where folders with predicted images exist. 

Each folder includes the predicted images assigned to a specific class.  

Step 6: The application reads all the folders at the specified location and lists the folder names. In 

addition, a “Default Tag” name will be added to the list within the application which corresponds 

to the tag attached to the camera, if available. 

Step 7: A text box next to each element class allows the user to specify the list of tag IDs assigned 

to that class to obtain the list of classified tags. 

Step 8: Specify the location path where the original images are stored before being processed by 

the deep learning model. This step is crucial because the “date taken” metadata of each image is 

changed after processing by the model, requiring the correct date to be retrieved from the original 

image. 

Step 9: Import the UWB output into the application to begin the data integration process. 

Step 10: Click the “process” button within the application, to begin the data integration process. 

The integration is based on an automated matching process that match each predicted image with 

the UWB data of the corresponding element. This matching is based on the alignment of the 

“captured time”, using the timestamp from the UWB system and the 'date taken' metadata from 

each image. 

Step 11: Following the processing of all data, the application automatically generates a structured 

report in an Excel (.xls) format. This report contains necessary information for each tracked 

element such as visual information of the element from images, object class, precise 3D location 

information, unique ID, and captured date and time. 
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Appendix D. Sample Trial for Selecting Hyperparameters 

 
Model specifications Results 

No. Training set Test set Epoch Batch 

size 

Learning 

rate 

Overfitting Precision Recall 

1 (60% synthetic images 

+ 40% real images) 

1143 S + 782 R 

(172 synthetic 

images + 168 

real images) 

All 

epochs 

32 and 

16 

0.001 

and 0.01 

- 

Colab 

error 

- 

Colab 

error 

- 

Colab 

error 

2 (60% synthetic images 

+ 40% real images) 

1143 S + 782 R 

(172 synthetic 

images + 168 

real images) 

Epochs 

70, 50 

and 30 

2 and 4 0.001 

and 0.01 

- Low Performance 

⪅ 50-60 

3 (60% synthetic images 

+ 40% real images) 

1143 S + 782 R 

(172 synthetic 

images + 168 

real images) 

90 2 0.01 Yes 63.48 76.68 

4 (60% synthetic 

images + 40% real 

images) 

1143 S + 782 R 

(172 synthetic 

images + 168 

real images) 

90 2 0.001 No 58.05 78.95 

5 (60% synthetic images 

+ 40% real images) 

1143 S + 782 R 

(172 synthetic 

images + 168 

real images) 

110 2 0.001 No 52.39 81.08 

6 (60% synthetic images 

+ 40% real images) 

1143 S + 782 R 

(172 synthetic 

images + 168 

real images) 

110 4 0.01 Yes 60.10 76.11 

7 (55% Real images + 

45% synthetic) 

782 R + 956 S 

(172 synthetic 

images + 168 

real images) 

Epochs 

70, 50 

and 30 

2 and 4 0.001 

and 0.01 

- Low Performance 

⪅ 50-60 
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8 (55% Real images + 

45% synthetic) 

782 R + 956 S 

(172 synthetic 

images + 168 

real images) 

110 2 0.01 Yes 54.95 62.89 

9 (55% Real images + 

45% synthetic) 

782 R + 956 S 

(172 synthetic 

images + 168 

real images) 

90 2 0.001 No 52.01 76.74 
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