License Plate Detection and Character Recognition using Deep Learning and Font Evaluation

Zahra E.Vargoorani

A Thesis
In
The Department
of

Computer Science and Software Engineering

Presented in Partial Fulfillment of the Requirements
For the Degree of Master of Science (Computer Science) at
Concordia University

Montreal, Quebec, Canada

August 2024

© Zahra Ebrahimi Vargoorani, 2024



CONCORDIA UNIVERSITY
School of Graduate Studies

This is to certify that the thesis prepared

By: Zahra Ebrahimi Vargoorani

Entitled: License Plate Detection and Character Recognition using Deep Learning and Font Evaluation

and submitted in partial fulfillment of the requirements for the degree of

Master of Science (Computer Science)

complies with the regulations of the University and meets the accepted standards with
respect to originality and quality.

Signed by the final examining committee:

Chair

Dr. Joey Paquet
Examiner

Dr. Tse-Hsun (Peter) Chen
Examiner

Dr. Yang Wang
Supervisor

Dr. C. Y. Suen

Approved by
Dr. Juergen Rilling Chair of Department or Graduate Program Director

Dr. Mourad Debbabi ~ Dean Gina Cody School of Engineering

Date August 27, 2024

i



ABSTRACT

License Plate Detection and Character Recognition using Deep
Learning and Font Evaluation

Zahra Ebrahimi Vargoorani

License plate detection and character recognition pose challenges due to environmental
sensitivity, such as lighting, dust, and the impact of the chosen font type on recognition
tasks. Automatic License Plate Detection and Recognition (ALPR) are -crucial
in practical applications such as traffic control and parking, vehicle tracking, toll
collection, and law enforcement. While much research has been done using image
processing and machine learning algorithms, deep learning methods need further
exploration due to their recent advances in reliable performance in various scenarios.
Moreover, current proposals are limited to specific regions and dataset applicability.

This study has a dual focus: firstly, we suggest utilizing a Deep Learning technique,
specifically using Faster R-CNN for the license plate detection task and a CNN-RNN
model with CTC loss, and a MobileNet V3 backbone for recognition task. We also
utilized You Only Look Once (YOLO) for license plate detection and recognition tasks.
Secondly, we aim to assess font features within the LP context. This work uses Brazilian
dataset and datasets from two different provinces in Canada and two different states in
the United States of America, including Ontario, Quebec, California, and New York
State. We suggest employing an adaptive algorithm based on Faster R-CNN and CTC
network along with YOLO, fine-tuned with optimized parameters to improve its
effectiveness using two different approaches, including domain generalization.
Alongside presenting the recall ratio findings, this study will perform a thorough error
analysis to gain insights into the nature of false positives. The proposed model
demonstrated a commendable recall ratio of 94% using a single YOLO network.

Specific fonts pose readability challenges for humans, while others present difficulties
for computer systems regarding recognition. In this study, we provide five sets of
outcomes for font assessment: results about font anatomy and those related to the
recognition of commercial products. The font anatomy analysis focuses on five specific
fonts: Driver Gothic, Dreadnought, California Clarendon, Zurich Extra Condensed, and
Mandatory. Additionally, we assess the impact of these fonts in the context of a dataset
made of five different license plates using a commercial product, OpenALPR. The font
anatomy findings unveil significant confusion cases and quality features associated with
chosen fonts.
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Chapter 1. Introduction

Automatic License plate recognition system (ALPR) with high accuracy is challenging due to
environmental factors such as light conditions, rain, and dust. Moreover, other factors make the
detection task harder, like the car’s speed, pictures taken from different angles, and low-quality
and low-resolution pictures. Additionally, the selected font style on the License Plate (LP)
significantly influences the recognition task. License Plate Detection is crucial for different
applications, including but not limited to traffic and parking control, enhancing security, and law
enforcement. Although many techniques have been applied to license plate detection tasks,
including traditional image processing techniques and machine learning algorithms, there is
always room for improvement and proposing a method with higher accuracy. Achieving
Automatic License Plate Detection and Recognition (ALPR) involves completing distinct phases.
Hence, this study takes a dual approach. Firstly, we propose utilizing Deep Learning (DL)
techniques in license plate detection and character recognition using two solutions. Secondly, we
suggest evaluating font characteristics within the license plate detection and character recognition
task. Subsequent sections will delve into detailed explanations of license plates, license plate

detection and character recognition, fonts, and font evaluation.

I. License Plates

A license plate, often a metal rectangle, is essential for vehicle identification. Mounted on a
vehicle's rear, front, or both sides, it aids in easy recognition and registration. Possessing a license
plate is a legal requirement for any vehicle to operate on public streets, playing a pivotal role in
maintaining regulatory standards, ensuring safety, and enhancing the transportation system's
effectiveness. Globally, designated official bodies are responsible for overseeing vehicle
registration and creating license plate designs. This framework is pivotal for adhering to
regulations, facilitating accurate documentation, and confirming identities on public
thoroughfares.

Additionally, each jurisdiction employs varied background colours, graphics, and fonts on license

plates to impart uniqueness and enhance recognition. This distinctive aesthetic serves as a means



of identification and functions as a representation of the jurisdiction. As such, the intentional
design of license plates becomes a critical element of regional identity, contributing to practical
recognition and a sense of local character on the roadways.

The significance of license plates (LPs) becomes evident in critical situations such as car theft,
drug trafficking, speeding, running red lights, or parking offences, emergency alerts, border
security and control, and managing parking lots. In such scenarios, deploying a license plate
detection system with high accuracy plays a pivotal role in promptly and efficiently identifying
the vehicle and its owner. Recognizing the need for enhanced detection and recognition,
jurisdictions establish and enforce unique designs for license plates. This contributes to improved
efficiency in emergency responses and ensures the proper functioning of automatic license plate

recognition systems.

The LP design outlines the following aspects:

e Alphanumeric Characters: License plates contain a combination of letters and numbers.
These alphanumeric characters serve as a unique identifier for each vehicle. The format
and arrangement of characters can vary by jurisdiction.

® Colour Scheme: License plates often have a specific colour scheme that is associated

with the issuing jurisdiction. Different colours may be used for different types of

vehicles.

Jurisdictional Information: License plates typically display information about the issuing

jurisdiction, such as the state or country. This helps identify where the vehicle is

registered.

e Material: License plates are commonly made of materials like aluminum or plastic. The
choice of material can impact the plate's durability and resistance to weather conditions.

e Reflectivity: Many license plates have reflective coatings to enhance visibility,
especially during low-light conditions. This improves the plate's readability for law

enforcement and automated license plate recognition (ALPR) systems.



e Size and shape: License plates come in various sizes and shapes. The dimensions are
often standardized within a jurisdiction to ensure uniformity and compatibility with
vehicle mounting spaces.

e Font and typeface: The style, size, and readability of the font used for alphanumeric
characters are essential design considerations. Clear and legible fonts are crucial for
easy identification.

The choice of typeface plays a pivotal role in identification. Historically, typefaces were
specifically selected to ensure clear and accurate readability by the unaided human eye,
particularly in natural daylight and from a considerable distance. This deliberate selection aimed
to optimize visibility and recognition, emphasizing the importance of legibility for effective
identification under typical daytime conditions.

This work considers five datasets. The first dataset is from California/United States, the second is
from New York State, and the third and fourth are from Ontario and Quebec. The fifth dataset is

Brazilian[5] dataset.

1. California License Plates

In the state of California, United States, license plates for private vehicles typically adhere to the
format of three letters followed by three numbers, such as ABC 123 or one digit followed by
three letters and then three digits, such as 1 ABC 234 also people can customize the combination
of letters and numbers and choose their pattern. California license plates often include the state
name ("California") and a distinctive slogan, "SESQUICENTENNIAL — 150 YEARS," for some
license plates since this slogan was added only three years ago. The designs may also incorporate
additional elements that reflect the state's rich cultural and natural diversity. Figure 1 depicts an
LP in the state of California.

The size of California license plates for regular vehicles is standardized, but the exact dimensions
may vary slightly. The size is generally around 12 inches by 6 inches in width for cars and 7
inches in height by 4 inches in width for motorcycles. The background colour of California
license plates is dark blue on white with a red state name graphic and slogan printed in red at the
bottom. The typeface used in the LPs is California Clarendon. This dataset uses a combination of

white, yellow, and black colours since these pictures are taken from different time periods.
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Figure 1. Sample California State License Plate

2. New York State License Plates

License plates for private vehicles in New York adhere to a pattern commonly comprised of three
letters followed by a dash and concluded with three numbers (e.g., ABC-1234). The license plates
proudly display the state name, "New York," and incorporate the motivational slogan "Excelsior,"
signifying "ever upward" in Latin. Figure 2 provides a representation of a New York state license
plate.

The size of New York State license plates for cars is typically around 12 inches in height by 6
inches in width. These plates are known for their clean and recognizable aesthetic, with a

prevalent background colour of white, contributing to their appealing look.

NEW YORK

ABC+1234

o EXCELSIOR |- i,

Figure 2. Sample New York State License Plate

A Zurich Extra Condensed font is employed in the design of these license plates, ensuring a
modern and legible appearance. Notably, the dataset from which these details are derived may
include colour variations, incorporating a combination of white and yellow hues due to the
diverse periods from which the images originate. This amalgamation of colours adds a layer of

historical context to the visual representation of New York State license plates.



3. Ontario License Plates

Ontario has witnessed diverse license plate designs throughout history, each crafted to
incorporate distinctive and visually striking elements. In Ontario, the alphanumeric format
usually adheres to a structured pattern, such as ABCD 123, with variations contingent on the
specific series. Also, residents have the option to have their personalized license plate.

These license plates often bear the symbolic slogan "Yours to Discover," serving as a captivating
reflection of the province's enduring appeal. Maintaining adherence to standard North American
dimensions, these license plates typically measure approximately 12 inches in height by 6 inches
in width, with a prevailing background colour of white complemented by contrasting lettering,
contributing to their distinctive and easily recognizable visual identity. The typeface used in the
Ontario license plate is Dreadnought. Figure 3 showcases a representative sample of the latest

license plates designed for Ontario vehicles.
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Figure 3. Sample Ontario License Plate

4. Quebec License Plates

Throughout the years, Quebec has embraced numerous license plate designs, each reflecting
distinct visual elements. Notably, the diversity extends to various categories of license plates,
each designated for specific vehicle types and purposes. A significant recent advancement
involves the approval of personalized license plates, commonly referred to as vanity plates. This
allows vehicle owners to incorporate a personalized and unique element into their license plates.

Quebec license plates for private passenger cars have followed the A12-BCD alphanumeric
format since 2010, featuring the enduring slogan "Je me souviens," translating to "I remember."

The standard size adheres to typical North American dimensions, approximately 12 inches in



height by 6 inches in width, with a specific background colour of white and blue lettering. The
typeface used in the Quebec license plate is Driver Gothic.

Figure 4 showcases a representative sample of the latest license plates designed for Quebec
commercial vehicles. This exemplifies the province's commitment to tailoring license plate
designs to suit different vehicle categories, maintaining a dynamic and visually appealing

approach to vehicle identification.

Queébec

612 MCH

=Je me souviense

Figure 4. Sample Quebec License Plate

5. Brazilian License Plates

In Brazil, license plates (LP) follow the format ABC.1234. Once assigned to a vehicle, this
combination cannot be transferred to another vehicle. Each plate features a metallic band
displaying the state abbreviation (e.g., RJ for Rio de Janeiro) and the municipality's name
positioned above the plate number.

The dimensions of license plates differ between cars and motorcycles. Car plates measure 400
mm x 130 mm, whereas motorcycle plates are 200 mm x 170 mm. Additionally, the color of the
plates varies according to the vehicle category. For instance, private vehicles have gray plates,
while public vehicles, such as buses and taxis, use red plates. The typeface employed for these
plates is called Mandatory.

Brazil introduced a new license plate design starting in 2018, with the expectation that all
vehicles will adopt this new design by 2023. Despite this transition, the dataset referenced here
still uses the old license plate design for all vehicles. Figure 5 showcases a representative sample

of the latest license plates designed for Brazilian vehicles.
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Figure 5. Sample Brazilian License Plate

II. License Plate Detection and Character Recognition

Recently, numerous researchers have utilized deep neural networks to tackle various challenges
spanning diverse domains such as image and natural language processing. Among these tasks,
object detection is a significant area within image processing where researchers leverage deep
learning methodologies to address issues. However, recently, a new version of the model called
YOLOJ1], which stands for "You Only Look Once," has shown promising results in contrast to
conventional object detection systems, which typically examine a predefined grid of cells or
suggest regions of interest, YOLO takes a distinctive approach.

The effectiveness of deep learning algorithms is significantly dependent on the calibre and
variety of the training dataset. In this study, we utilized the License Plate dataset provided by the
CENPARMI at Concordia University in Montreal. This dataset focuses explicitly on license
plates in complex scenes and comprises many images from Quebec, Ontario, New York, and
California. The photos were captured using a mobile phone camera and were collected and
annotated by the authors of this research. We also used Brazilian dataset[5] to compare the
results.

For our study, a comprehensive dataset of license plates from cars was carefully labelled with the
DINO (DlIstillation with NO labels) approach, a self-supervised learning technique that utilizes
Vision Transformers (ViT) to train models without labelling data.

We employed two solutions to conduct our experiments on the license plate detection and
character recognition tasks. In our first solution, to separate the license plate from the image, we
employed the Faster R-CNN][2] (Region-based Convolutional Neural Network) model, renowned

for its exceptional performance in object detection tasks. This model is built upon the powerful



ResNet-101 (Residual Network) architecture, effectively capturing intricate features and
hierarchies in visual data. The Faster R-CNN model provides a unified framework for accurate
object detection by seamlessly integrating region proposal generation and object classification.
After detecting license plates using Faster-RCNN[2], we utilized Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs) with Connectionist Temporal Classification
(CTO)[3] Loss to recognize the letters on the plates. This model significantly enhances the
accuracy and efficiency of automatic license plate recognition systems. The system is adept at
handling complex scenarios by leveraging CNNs for spatial data processing and RNNs for
sequence prediction. Including CTC Loss[3] helps align input sequences with their corresponding
outputs, marking a substantial improvement over traditional methods. This advancement
broadens the applications of such systems in areas like autonomous driving and surveillance,
making them more effective in automation and intelligent monitoring.

In our second solution, we implemented the latest version of YOLO[1], YOLOVS, to detect
license plates and recognize letters. This model is renowned for its real-time performance and
efficient computational processing; YOLOvVS is particularly advantageous for license plate
recognition tasks. Its lightweight architecture balances speed and accuracy, making it suitable for
deployment on resource-constrained devices. With its ability to generalize across various
scenarios and ease of integration into existing systems, YOLOvS8 stands out as a compelling
choice for developers and researchers in the field of license plate recognition.

To assess the outcomes derived from the experiments outlined earlier, we suggest employing the
subsequent metrics for evaluation:

1. Recall ratio: The recall ratio, pivotal in classification tasks, is a fundamental measure for
assessing the model's ability to identify pertinent objects within a given dataset
accurately. It quantifies the ratio of true positives, denoting correctly identified
instances, to the combined total of true positives and false negatives, representing
instances the model missed. Consequently, a higher recall value indicates the model's
efficacy in capturing a more substantial portion of relevant objects in the dataset,
thereby emphasizing its proficiency in object detection and classification tasks. This

metric holds particular significance in scenarios where comprehensive coverage of



relevant objects is crucial for the success of the classification process, such as in medical
diagnosis or security surveillance applications.

2. Error analysis: it is crucial for understanding false positives (FP)[8], instances where the
model incorrectly identifies objects. FP represents the count of erroneously detected
objects. Conducting error analysis provides insights into common sources of errors and
facilitates targeted improvements in model performance, ultimately enhancing accuracy

and reliability.

III. Fonts

A font is a cohesive collection of text characters, including letters, numbers, and symbols, defined
by unique style and size characteristics. At the same time, a typeface represents a family of fonts
sharing common design traits. Each font's identity is shaped by various attributes, such as style,
weight, width, and decorative elements, alongside the specific designer or foundry behind its
creation. Conversely, a typeface consists of glyphs for individual letters, numbers, and symbols
designed to convey text with both readability and aesthetic appeal. Some typefaces are crafted for
specialized uses, like mathematical notation or music scores, illustrating the role of typography in
enhancing the visual presentation and interpretation of text. This intricate relationship between
font and typeface highlights the significance of typography in communication, allowing for a
nuanced expression beyond the written word itself. Table 1 lists some of the most important
characteristics and their definition [6]. Figure 6 shows an example of these features and how they
relate to sample letters. The figure is extracted from [7]. Selecting the right font is essential for
ensuring a system can accurately and efficiently interpret text, boosting its reliability and overall
performance. Thus, the font choice goes beyond just visual appeal and becomes a crucial element
in the effectiveness and success of computer-based text recognition systems. This decision
impacts the accuracy with which these systems process information, highlighting the importance

of font selection in the operational functionality of such applications.



Table 1. Font Characteristics [6]

Characteristics Definition
Weight Thickness of the character outlines relative to their height
Slope Used to represent italic type or oblique type to emphasise important
words
Width Represents the character’s width or stretch

Serif and sans serif

A small line attached to the end of a stroke in characters. Fonts can
be either serif or sans serif

Baseline The optical line on which type sits

Mean line An optical line created by the eye moving across the top of a set of
lowercase letters

Ascender The stem of a lowercase letter which extends past the mean line

Descender The stem of a lowercase letter which extends below the baseline

x-height The height of the lowercase letters without descenders or ascenders

Cap line An optical line created by the eye moving across the top of a set of
uppercase letters

Bowl Fully or modified rounded forms found in letters such as C

Counter Negative space fully or partially enclosed by the stroke of a letter
form
like in B

Tail Short downward strokes

Crossbar Horizontal stroke connecting two parts of a letterform like in H

Apex Juncture of a stem like in letters A and M

Spur A projection smaller than a serif, that reinforces the point at the end

of

curved stroke. It can be found in G

10
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Upper and lower-case small caps lining figures non-lining figures

Figure 6. Example of Font Characteristics [7]
IV. Digital Font Evaluation

Automatic license plate systems are based on detecting the license plate and recognizing the
letters. In the detection phase, the system identifies the presence of a license plate within an
image and in the recognition phase, segmented characters are analyzed and interpreted into
readable text. It's important to acknowledge that even advanced segmentation algorithms
sometimes fail to isolate letters and digits perfectly from their segments, leading to recognition
errors. The font choice plays a critical role in the success of license plate recognition. A well-
chosen font can significantly enhance the system's ability to recognize license plate numbers
accurately by ensuring each character remains legible and intact despite potential segmentation
flaws.

This work proposes the following contributions:
1. Study the characteristics of 5 different fonts: Driver Gothic, Dreadnought, California

Clarendon, Zurich Extra Condensed, and Mandatory. Confusing cases will be

considered for each font separately.
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2. Analyze the impact of different fonts in specific contexts using two datasets: the
CENPARMI dataset for Driver Gothic, Dreadnought, California Clarendon, and Zurich
Extra Condensed fonts, and the UFPR-ALPR][5] dataset for the Mandatory font.

We assessed our work by comparing our results with a commercial product called OpenALPR
[4]. OpenALPR is a software solution designed to identify license plates from videos and photos
of vehicles. This software comes in both open-source and commercial versions, with the
commercial variant featuring advanced capabilities and support suitable for enterprise use.

From the results we have gathered, we propose a series of recommendations regarding suitable

font characteristics that could improve real-time recognition accuracy.

V. Thesis Structure
The remainder of this thesis is structured as follows: Chapter 2 reviews some related works
regarding ALPR systems. Chapter 3 describes the different models that have been proposed.

Chapter 4 details and analyzes the results acquired in this project. Chapter 5 font analysis and

results. Chapter 6 concludes the study and proposes directions for future research.

12



Chapter 2. Literature Review

Vehicle license plate recognition is a critical topic in automatic transportation systems due to its
importance in creating intelligent and safe cities. Researchers focus on various techniques to
achieve high detection ratios, broadly categorized into machine learning and deep learning
approaches. License plate recognition typically involves detecting the vehicle, locating the
license plate, and recognizing characters. However, challenges like varying license plate designs,
diverse angles, unpredictable fonts, and image quality make these steps difficult. While
technology has made plates more legible, limitations persist due to controlled conditions like
fixed illumination and monochrome backgrounds. This chapter reviews license plate detection
techniques using machine learning in section (I) and deep learning techniques in section (II).

Section (III) presents some related work for font evaluation.

I. Machine Learning Based Techniques

In this section, we delve into various machine learning (ML) methods for detecting license plates.
The work in [10] used the K-means algorithm to recognize license plate characters. They
improved the traditional K-means method by introducing an automatic cluster number
determination system using scale-invariant feature transform (SIFT) key points.

A 6-layer cascaded classifier was employed for license plate localization, utilizing global edge
detection and local Haar-like features. Various image processing techniques, such as binarization,
vertical edge detection, horizontal and vertical projections, and a modified K-means segmentation
algorithm, were also implemented to refine character segmentation.

The researchers demonstrated the effectiveness of their methods by achieving an impressive
94.03% accuracy rate on a dataset of 578 images containing 3502 characters from Chinese
license plates. This was accomplished by combining their innovative methods with the Tesseract
Optical Character Recognition (OCR) software, enabling them to convert image text into

machine-readable characters with exceptional precision.

13



However, it's worth noting that the methodologies required multiple preprocessing steps, which
made the process time-consuming. The study demonstrates that advanced segmentation
techniques, such as this improved K-means algorithm and layered classifiers, can enhance license
plate recognition accuracy. Despite the high computational demand and the time-intensive nature
of preprocessing, these results indicate the potential of sophisticated machine-learning
approaches to improve recognition in practical applications.

In [11], the authors introduced a K-Nearest Neighbors (KNN) algorithm with pre-training steps to
recognize numbers and letters on multi-style license plates. These included single-line and
double-line plates with complex backgrounds and various character colours, explicitly focusing
on Korean and U.S. plates.

The algorithm's performance was rigorously evaluated using a substantial dataset. A 50-minute
video, featuring 138 vehicles with a diverse range of license plate styles, was analyzed. The
system demonstrated exceptional results, achieving character recognition accuracy of over 99%
and maintaining a processing time of less than 50 milliseconds per character.

Despite its impressive speed and accuracy, the system had a limitation: it could only effectively
identify Korean and U.S. license plates.

In reference [12], the authors introduced a novel method for locating and recognizing text in
natural scene images with complex backgrounds. Their multi-step approach began with
identifying superimposed text regions using various character descriptor features, including
bounding boxes, perimeter, Euler numbers, and horizontal crossings. Once these text regions
were isolated, Support Vector Machine (SVM) classifiers were used to determine if the region
contained letters.

Line segmentation was then conducted using horizontal profiles, and individual characters were
separated through vertical profiles. The researchers utilized Optical Character Recognition (OCR)
tools for accurate character recognition. The method achieved different accuracy rates depending
on the algorithms used: 64.4% with the Otsu algorithm, 75.04% with AdaBoost, and 78.8% with
SVM.

14



While this approach performed well even with complex backgrounds, it emphasized the need for
a more specialized license plate character recognition system. Nevertheless, this technique
demonstrated the potential to enhance character detection in visually challenging environments.
In reference [13], the authors employed a Histogram of Oriented Gradients (HOG) feature-based
Support Vector Machine (SVM) classifier to detect and recognize license plates. The training data
came from Google Images, providing a diverse set of clear and visible license plates for the
model's training process. The methodology effectively extracted license plates with high
precision using the HOG-SVM detector.

However, the approach needed more design considerations for more challenging real-world
scenarios, potentially limiting its application in practical settings. Moreover, although the authors
claimed that their classifier achieved high accuracy, they needed to provide more qualitative or
quantitative data to verify this claim. More detailed results that raise questions regarding the
classifier's performance across varied conditions need to be produced, emphasizing the need for
further validation in different real-world scenarios.

In reference [14], the researchers developed a novel approach for detecting and recognizing
Indian license plates using template matching. This method identified characters within an image
by comparing them to predefined templates, incorporating English and Hindi characters to reflect
India's multilingual landscape. Before applying template matching, the researchers used
morphological and thresholding operations to enhance character clarity, improving recognition.
The license plate was flagged as invalid if any detected characters did not match the templates.
This stringent approach yielded impressive results, achieving localization, segmentation, and
recognition rates of 92%, 97%, and 98%, respectively.

One of the significant challenges in machine learning (ML)[15] involves feature extraction,
which must occur before any model training begins. Selecting relevant features is crucial,
dramatically influencing the model's performance. Proper feature selection can enhance a model's
accuracy, efficiency, and generalization ability. Conversely, choosing irrelevant or noisy features

can result in overfitting, higher computational costs, and subpar results.
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II. Deep Learning Based Techniques

In this section, we delve into various deep learning techniques for detecting license plates.

In the study presented in [16], the researchers employed the Single Shot Detection (SSD)
algorithm to detect license plates, replacing the typical base algorithm, the VGG Network, with
the Residual Network (ResNet) to enhance detection performance. They chose ResNet due to its
architecture, which prevents gradient vanishing problems despite being a deep network, thus
allowing it to maintain high performance across multiple layers.

Their results demonstrated that ResNet substantially improved license plate detection, achieving
an average accuracy of 85.5%, compared to the VGG Network's slightly lower 83.6%. This
improvement illustrates how ResNet's design enables better detection outcomes by managing
gradients effectively and maintaining strong learning capabilities in deep networks.

These enhancements in detection accuracy highlight the significance of continuously refining
base algorithms to optimize computer vision tasks like license plate detection.

In reference [17], the researchers enhanced the FAST-YOLO network to detect both frontal
vehicle views and their corresponding license plates. They customized the FAST-YOLO model to
detect both cars and license plates simultaneously. For character detection and recognition, they
adapted the YOLO architecture and implemented a heuristic strategy to refine their results. This
modification improved the final detection and recognition outcomes.

The authors reported that their refined approach achieved a 63.18% accuracy rate for accurately
detecting and recognizing license plates, compared to Sighthound, a competing method, which
achieved only 55.47% accuracy.

These findings highlight the advantages of customizing neural network architectures and
incorporating heuristic techniques to enhance detection precision. By refining both the detection
and recognition phases, this approach demonstrated significant improvements in identifying
vehicles and their license plates, emphasizing the value of continuous refinement and network
customization in computer vision tasks.

In reference [18], the researchers used a Convolutional Neural Network (CNN) to extract relevant

features, utilizing convolutional layers to identify the distinct visual patterns in license plates.
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These features were then passed to a Recurrent Neural Network (RNN) with 36 hidden units,
which sequenced the detected characters to accurately reconstruct the license plate information.
By combining CNNs' spatial pattern recognition with RNNs' sequential learning capabilities, they
achieved a 76% accuracy rate for recognizing all characters on a license plate and a 95.1%
accuracy rate per individual character. This approach showcases the complementary strengths of
CNNs and RNNs: the CNN excels at capturing intricate visual details, while the RNN is adept at
processing sequences of characters in the correct order.

In reference [19], the authors employed a Generative Adversarial Network (GAN) to enhance
their system's accuracy by generating synthetic training images. This approach expanded their
dataset, enabling them to train a Convolutional Neural Network (CNN) and a Recurrent Neural
Network (RNN). The pre-trained network was subsequently fine-tuned on their specific dataset
for license plate recognition. Using synthetic images produced by the GAN, the researchers
achieved an impressive 92.1% overall accuracy in license plate recognition and a remarkable
98% accuracy in recognizing individual characters.

Using a pre-trained network significantly improved the performance of the final model,
illustrating the effectiveness of GANs in generating additional training data to address data
scarcity and bolster machine learning systems. Their approach demonstrates how GANs can
increase accuracy by supplying high-quality, varied data, resulting in more robust and reliable
license plate recognition systems adaptable to real-world scenarios.

In reference [20], the researchers designed a model that integrates Convolutional Neural
Networks (CNN) with Gated Recurrent Units (GRU). The CNN component was used to extract
features from images, while the GRU sequenced characters for recognition without requiring
segmentation. Suvarnam and colleagues trained a two-dimensional CNN model using resized
input images. Unlike traditional sliding window methods, their algorithm enabled hidden layers
to analyze features from the entire image.

Their study showed that this combination of CNN and GRU outperformed layout-matching
methods and standalone CNN models, demonstrating its effectiveness for automatic license plate
recognition (ALPR). The system achieved a 90% accuracy rate on a dataset of 5,000 training

images. However, the researchers acknowledged that this accuracy needed improvement for
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practical ALPR applications, suggesting that further refinement and additional data would be
necessary to ensure reliable, high-precision recognition.

In the research detailed in [21], the authors proposed a system structured as a three-stage pipeline.
The first stage involved training a basic CNN with five convolutional layers to detect vehicles by
identifying regions with the highest Intersection-over-Union (IoU) overlap relative to the ground
truth bounding box.

In the second stage, another CNN focused on accurately identifying candidate license plates from
high-confidence vehicle regions detected by the initial CNN.

The final stage involved refining the bounding boxes using the distinctive edge features of license
plates. Specifically, the borders of high-confidence bounding boxes were expanded by 30% on
each side, and the Canny edge detection algorithm was applied to this enlarged area to pinpoint
the precise contours of the license plates.

This detection system was evaluated using a dataset that included various vehicle types under
diverse real-world traffic scenarios and achieved a recall rate of 90.51%. However, the authors
noted that the three-stage methodology could result in longer processing times, potentially
slowing the overall detection process.

[22] describes a distinct CNN-based method for license plate detection that features a three-phase
process. The first phase, known as image partitioning, involves processing RGB images and
segmenting them into subregions measuring 120 by 180 pixels each. This ensures that each
subregion contains only one license plate while the entire plate fits within the specified
dimensions. This careful partitioning reduces the possibility of overlapping plates, simplifying
the identification process.

In the second phase, called region processing, each sub-region is analyzed by a Convolutional
Neural Network (CNN), which assigns a score between O and 1. This score indicates the
likelihood that a specific sub-region contains a license plate, providing a clear assessment of plate
presence and guiding subsequent steps toward the most promising areas.

The final phase, result integration, involves reviewing the CNN scores to pinpoint regions of
interest. This step determines which sub-regions will most likely contain license plates, refining

the detection process and improving accuracy.
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In [23], the researchers presented a license plate detection model designed to function effectively
in challenging environments. In [24], the YOLO algorithm was adapted to detect license plates in
complex scenarios. This study utilized two versions of YOLO: the original YOLO model and the
more advanced YOLO9000 model. Both versions were modified to include fully connected
layers that divided input images into 11x11 grids to improve detection accuracy.

Each model was trained on datasets of different sizes: 1500, 2861, 3161, and 1661 instances, but
all models were tested on a consistent dataset for accurate comparison. The results indicated that
the YOLO9000 model consistently outperformed the original YOLO model. The original model
performed poorly because the training dataset needed to represent the real-world variations
adequately. However, despite training on a smaller dataset than the second and third models, the
fourth model delivered the highest precision results. This suggests that the dataset used in the
fourth model was comprehensive enough to cover the critical aspects required for license plate

detection.

III. Font Evaluation

For font evaluation, we present some of the works in the literature that look at different aspects to
evaluate fonts and examine their impact on text readability.

The research in [25] investigates the role of fonts in digital publishing and display. Given the
various fonts available in different visual styles, understanding their impact on daily digital usage
is crucial. The study emphasizes that fonts play a significant role in letter identification, essential
for human word recognition. Font characteristics such as spacing influence reading and
comprehension by signalling pauses, grouping information, and revealing the complexities of the
reading process.

The authors propose a new shape descriptor to recognize ancient characters, analyzing the
graphic features of inscriptions. This descriptor is invariant to translation, rotation, and scaling.
Experimental results confirmed its effectiveness in character classification.

The study also illustrates how typography provides valuable insights into the relationship

between font legibility and design elements. The research highlights how typography influences
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the overall reading experience by demonstrating that design characteristics directly affect
readability.

The research presented in [26] describes a collaborative initiative between type design and
science, creating a new typeface called Sitka. This typeface was designed to assess font legibility
from the viewpoint of typographers. The authors stress that enhancing the recognizability of
individual characters is vital for improving word readability. Therefore, they developed Sitka, a
versatile typeface explicitly tailored for digital display. Sitka is a serif font in Roman, Italic, and
Bold, supporting Latin, Greek, and Cyrillic characters.

The primary goal of this design is to accelerate evaluation studies and facilitate iterative design
processes. Various letterforms were evaluated through several iterative stages, with the team
analyzing results at each stage to refine the design. The research prioritizes legibility,
emphasizing the importance of creating a readable typeface while conducting comprehensive
legibility studies.

The findings revealed a trade-off associated with a large x-height. While larger sizes benefit
neutral-height letters, they are less suitable for letters with ascenders and descenders.
Furthermore, the study corroborated previous research, particularly the inherent challenges of
narrow letters.

In [27], the researchers focused on designing legible fonts from a distance, explicitly identifying
the ideal characteristics for signage fonts. They emphasized that the viewing distance
significantly impacts the readability of more minor design elements and finer details. Their
findings revealed that serifs on vertical stems could improve legibility at a distance. However,
low-contrast sans-serif fonts also performed well in certain situations, particularly when halation
occurred or light was projected from behind the letters.

The study generally found that open inner counters improved legibility at a distance. The
researchers suggested increasing the x-height and broadening letter shapes to address this.
Moreover, expanding the spacing between letters further enhanced readability from afar.

In [28], the authors explored using Personal Digital Assistants (PDAs) in specific Arabic

communities and investigated the appropriate fonts for these devices. They evaluated 13

20



typefaces based on six different factors, with each font standardized to a fixed size. A
normalization process was used for fonts of varying heights to maintain their aspect ratio.
Experiments were conducted to evaluate the legibility of both letters and words. The results of
the phrase legibility tests were combined with those of the letter legibility assessments to form a
comprehensive metric.

The findings indicated that the Almohanad font achieved the highest legibility score, reaching
79%. Due to their high legibility, the Script Hafs and Geeza Pro fonts are also recommended for
e-books. Given their effective performance with smaller-sized characters, Almohanad, Geeza Pro,
and Yakout Reg fonts are particularly suitable for devices with small screens, such as the iPad

Mini.
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Chapter 3. Proposed Model

Detecting license plates in complicated environments poses a significant challenge because they
are vulnerable to various external factors such as rain, dust, shadows, and fluctuating lighting
conditions. These elements can severely impact detection accuracy, creating additional hurdles
for effective LPD. Furthermore, achieving reliable license plate detection becomes even more
demanding in real-time systems, where the necessity for rapid and accurate recognition leaves
little room for error or delays. These constraints underscore the difficulty of developing an LPD
system that consistently performs under varied and unpredictable conditions.

The font style used on license plates plays a crucial role in the recognition phase of computer-
based analyses. It significantly impacts recognition accuracy, making the selection of an
appropriate font essential. Despite its importance and substantial influence on recognition
outcomes, research focusing on evaluating fonts specifically for recognition purposes still needs
to be completed in the literature. This gap suggests a need for more comprehensive studies to
understand how different font styles affect recognition accuracy and to identify the most effective
ones for automated systems.

Therefore, this study has two main objectives. First, it aims to apply Deep Learning (DL)
techniques to license plate detection and recognition of letters. Second, it seeks to assess font
characteristics within the context of license plates.

The main contributions of this work are:

1. Examine two approaches for detecting license plates and recognizing letters using
Faster-RCNNJ[2], CTC Networks[3], and YOLOJ[1] deep neural network with domain
generalization approach.

2. Conduct a qualitative assessment of the incorrect predictions made by the trained deep
learning models.

3. Perform an analytical evaluation of five fonts commonly used on license plates and

explore how typeface design can impact computer-based studies in this context.
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The remainder of this chapter is structured as follows: Section I introduces the datasets utilized in
this research, providing an overview of their composition and relevance. Section II addresses the
formulation of the license plate detection problem and outlines the implementation of the deep
learning models for this purpose. Section III explains the proposed detection model in detail,
highlighting its unique features and how it improves upon previous approaches. Finally, Section
IV presents the study conducted to evaluate various fonts used on license plates, discussing the

methodology and findings about recognition performance.

I. Datasets

The characteristics and volume of the datasets utilized significantly influence deep learning

methodologies. For this study, experiments were conducted using two distinct datasets:

1. The UFPR-ALPR dataset[29], curated by the Federal University of Paran4, encompasses a
comprehensive collection of 4,500 license plate images sourced from vehicles, including
motorcycles, cars, and public transportation within Parand, Brazil. This dataset captures the
diversity of real-world conditions by employing three distinct cameras: the GoPro Hero4
Silver, Huawei P9 Lite, and iPhone 7 Plus. It's structured to facilitate machine learning
applications with a strategic division of the data—40% is designated for training purposes,
20% for validation, and the remaining 40% for testing, ensuring a balanced distribution across
different segments. This dataset is particularly notable for its dynamic range of capture
scenarios, mirroring real-world conditions. All images are obtained from vehicles in motion
during daylight hours, which presents unique challenges for automatic recognition systems.
The proximity of the camera to the license plates varies significantly, ranging from as close as
1 meter to as far as 10 meters. Furthermore, about 30% of the images contend with varying
environmental elements such as intense sunlight, shadows, and dust. This variability is crucial
for developing and testing the robustness of automatic license plate recognition technologies
under a wide array of operational conditions. Figure 7 displays example images from this
dataset, while Figure 8 illustrates the distribution of letters and digits within the UFPR-

ALPR[29] dataset. Detailed counts for each letter and digit are provided in Table 2.
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Figure 7. Example Images from UFPR-ALPR Dataset

2. The Centre for Pattern Recognition and Machine Intelligence (CENPARMI) has curated a
dataset of license plates captured in complex environments, emphasizing the rigorous
methodology behind its creation. This dataset includes 1600 images of license plates sourced
from California and New York in the United States and Ontario and Quebec in Canada, all
photographed using a mobile phone camera. The researcher of this thesis meticulously
collected and annotated images. The CENPARMI License Plate dataset is particularly well-
suited for training advanced deep learning models due to its diverse and challenging features.

The images span a broad spectrum of lighting scenarios, ranging from harsh sunlight and
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shadowy conditions to dimly lit parking lots, presenting a significant challenge for consistent
license plate visibility. Several images feature numerous license plates, which complicates the
task of accurately detecting and recognizing each plate. The distance between the camera and
the license plates varies significantly, from as close as 1 meter to as far as 30 meters. This
disparity introduces additional complexity in detecting and focusing on the plates. Around 20%
of the images show license plates at an angle, complicating their detection and recognition due
to their non-standard orientations.
Additionally, the dataset captures images from various types of vehicles, adding further
intricacies such as different license plate sizes, vehicle distances, and a myriad of background
colours that affect the imaging conditions. These elements pose substantial challenges for license
plate detection (LPD) algorithms.
The goal is to develop deep learning models adept at managing the multifaceted nature of real-
world license plate recognition by utilizing the comprehensive and varied CENPARMI License
Plate dataset. The documentation provides a glimpse into the dataset, showcasing sample images
and the distribution of letters and digits among the collected license plates. Figure 9 presents

sample images from this dataset.

Distribution of Letters and Digits in UFPR-ALPR Dataset
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Figure 8. Letter and Digit Distributions in UFPR-ALPR
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Figure 9. Example Images from CENPARMI Dataset

II. License Plate Detection and Character Recognition

We employed two solutions for license plate detection and character recognition. Our first
solution utilized a Faster-RCNN][2] network to detect the license plate and separate it from the
image. We used a CNN-RNN architecture with CTC[3] loss and a MobileNet V3[33] backbone
to recognize the letters for the recognition task. In our second solution, we used YOLOvVS8 for
detection and recognition tasks.

Detection Task:

We conducted two experiments for the detection task:

Experiment 1: We trained and tested the Faster-RCNN[2] model on the CENPARMI dataset.
Experiment 2: We trained and tested the YOLOvV8 model on the CENPARMI dataset.
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Table 2. Distribution of Letters and Digits in UFPR-ALPR Dataset

Letters/Digits Training set Test set Validation set Total
A 1470 1530 780 3780
B 570 390 240 1200
C 120 150 60 330
D 150 60 60 270
E 120 120 60 300
F 120 30 30 180
G 90 120 30 240
H 60 90 30 180
| 240 150 30 420
J 90 120 90 300
K 90 120 30 240
L 120 150 30 300
M 180 210 150 540
N 60 30 90 180
(6] 210 120 30 360
P 180 270 60 510
Q 150 90 30 270
R 90 120 30 240
S 150 240 90 480
T 60 90 60 210
u 240 120 120 480
V 210 150 120 480
W 90 300 90 480
X 120 120 150 390
Y 240 270 90 600
z 180 240 120 540
1 690 780 330 1800
2 630 390 420 1440
3 780 540 420 1740
4 840 750 210 1800
5 630 630 420 1680
6 750 810 300 1860
7 960 600 210 1770
8 780 990 450 2220
9 630 1020 450 2100
0 510 690 390 1590
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Recognition Task:

We conducted five experiments for the recognition task:

Experiment 1: We trained our YOLOv8 model on the CENPARMI dataset and tested it on the
same dataset.

Experiment 2: We trained our YOLOvV8 model on a publicly available dataset with different
variations of license plates and tested it on the CENPARMI dataset. This experiment employed
domain generalization technique to evaluate if our model could recognize and generalize to
unseen typefaces. Our model was powerful enough to identify letters from typefaces not included
in the training set.

Experiment 3: We trained our CNN-RNN architecture with CTC loss[3] on the CENPARMI
dataset's train and test sets.

Experiment 4: We trained our YOLOvS8 model on the train and test sets of the UFPR-ALPR[29]
dataset.

Experiment 5: We trained our CNN-RNN architecture with CTC loss[3] using synthetic data as
the training set and tested it on the test set. One reason for using synthetic data was that the
UFPR-ALPR dataset needs more variations in license plates. It consists of limited tracks of

license plates, and our model needed to see more data variations to converge correctly.

III. Faster R-CNN

Faster R-CNN is a highly influential computer vision model known for its effectiveness in object
detection tasks. It represents an evolution from previous models by integrating a Region Proposal
Network (RPN) that works with a detection network to quickly and efficiently propose regions of
interest. This system allows Faster R-CNN to share computation across the entire image,
dramatically speeding up the detection process and improving accuracy. The model operates in
two main stages: first, the RPN generates region proposals[31], which are refined through the
detection network, which classifies the objects and adjusts their bounding boxes; Faster R-CNN's
ability to train end-to-end, its high accuracy, and the speed of processing makes it a popular

choice for applications ranging from surveillance systems to autonomous vehicle navigation. Its
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flexibility to handle different object sizes and robustness across varied scenarios further

underscore its utility in advanced computer vision tasks.

IV. CNN+RNN Model with CTC Loss

A CNN-RNN architecture with CTC loss[3] and a MobileNet V3[33] backbone is a sophisticated
framework for efficiently handling sequence prediction tasks such as speech and handwriting
recognition. MobileNet V3[33] is the backbone, optimizing feature extraction with its lightweight
design tailored for mobile devices, enhancing processing speed without compromising accuracy.
The RNN component is adept at managing data sequences and capturing temporal dependencies
necessary for continuous input streams. The CTC loss[3] function is integral to this architecture,
enabling the model to align input sequences with their labels dynamically. It is essential when the
timing between sequences and their corresponding labels varies. This combination makes the
CNN-RNN with CTC loss[3] a robust choice for applications requiring real-time performance

and high accuracy, including text recognition scenarios.

V. YOLO

YOLO (You Only Look Once) operates through a unified convolutional network that
simultaneously processes multiple bounding boxes and computes the likelihood of object classes
within those boxes. The process begins with YOLO examining the entire image, divided into a
grid of S x S cells[30]. Within each cell, the model predicts B bounding boxes. Each box is
defined by five specific elements: the coordinates (x, y) of the box's center, the box's height (h)
and width (w) relative to the dimensions of the entire image, and a confidence score. This
confidence score reflects the Intersection over the Union (IoU) metric, comparing the overlap
between the predicted box and any actual (ground truth) box. Furthermore, each grid cell
computes C conditional probabilities for object classes, indicating the likelihood of each class
being present within the box.

During training, YOLO's objective is to optimize the prediction of bounding boxes around

objects. It assigns responsibility to a specific bounding box predictor for each detected object.
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This responsibility is determined based on which predictor currently shows the highest IoU with
a ground truth box. This mechanism encourages a form of specialization among the predictors,
enhancing the model's accuracy and efficiency in identifying and localizing objects within an
image. Through this approach, YOLO accelerates the detection process and improves the
precision of bounding box predictions.

This work uses YOLOvV8 Nano, an enhanced version of the original YOLO.YOLOvV8 Nano
excels in fast, efficient object detection for edge devices, which is ideal for real-time
applications. This compact model leverages an anchor-free detection system for improved
accuracy across various object sizes and shapes, making it versatile for surveillance and
augmented reality tasks. Integrated with PyTorch, it allows easy customization and deployment,

balancing functionality with low computational demands.

VI. Proposed Detection Methodology using Faster R-CNN

The license plate detection task utilizes an improved Faster R-CNN[2] (Region-based
Convolutional Neural Network) model. It is renowned for its robustness and exceptional
detection accuracy under challenging conditions like varying lighting, occlusions, and diverse
plate designs. This model is built on the ResNet-101 (Residual Network) architecture, praised for
its ability to extract intricate features and hierarchical patterns in visual data. Pre-trained on
ImageNet, the backbone network balances accuracy and computational efficiency while
extracting high-level features from the input images. The Region Proposal Network (RPN)[9]
generates region proposals likely to contain license plates, refining and filtering these proposals
to reduce false positives. These proposals undergo ROI (Region of Interest) pooling and pass
through fully connected layers for precise bounding box regression and classification. The
strength of Faster R-CNN[2] lies in its innovative approach that combines region proposal with
object classification into a cohesive framework, thereby enhancing the precision of object

detection. Figure 10 illustrates a detailed schematic of the Faster R-CNN[2] architecture.
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VII. Proposed Recognition Methodology using CNN+RNN Model with CTC Loss

We developed a CNN-RNN model integrated with CTC loss[3] for the OCR task, optimized for
sequence-based recognition tasks like reading characters on license plates. This configuration
employs the MobileNetV3[33] architecture as the CNN feature extractor. It is chosen for its
lightweight yet powerful design, ensuring efficient operation on edge devices while extracting
spatial features from detected license plate images. The extracted features are processed by a
bidirectional LSTM (Long Short-Term Memory) network, capturing contextual information
across the character sequence. The CTC loss[3] function allows end-to-end training for sequence
prediction without requiring pre-segmented training data, which is crucial for handling varying
lengths and unaligned character sequences typical of license plates. This CNN-RNN framework
enhances the precision of capturing fine details from tiny images. It ensures reliable recognition
of character sequences, effectively managing the common challenge of varying sequence lengths

in text recognition tasks. Figure 11 represents the architecture of this CNN-RNN model.

VIII.Proposed Detection and Recognition Methodology using YOLOvV8

Our research stands out for its innovative use of domain generalization technique. We trained our

YOLOvVS8 nano model on a training set and tested it on unseen data. What sets us apart is our use
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of the DINO (Dlstillation with NO labels) approach [34], a self-supervised learning technique
that leverages Vision Transformers (ViT) to train models without labeling data, a novel and
cutting-edge method in the field.

DINO is a powerful general-trained model that can detect many objects. It gets a prompt and
detects the desired objects in the input image, promoting consistency in feature representation
despite varied input conditions. DINO is effective for developing rich, meaningful feature
representations that can be applied to various downstream tasks, thus reducing the reliance on
extensive labeled datasets and making better use of available unlabeled data.

We used the YOLOvV8 model to detect license plates and separate them from the image. Once the
plates were isolated, we used the YOLOvV8 model again for the character recognition task,
effectively recognizing the individual characters on the plates. This two-step process of detection
followed by recognition leverages the powerful feature extraction capabilities of YOLOvS for
both object detection and character recognition tasks.

In the YOLOv8 Nano model, there are a total of 22 convolution layers and six max pooling
layers. The convolution layers predominantly use a 3x3 kernel with a stride of 1, which is typical
for extracting complex spatial features without altering the dimensionality of the input. These
layers are instrumental in detecting various features at different levels of abstraction, from bare
edges and textures to more complex shapes and objects. Additionally, six layers utilize a smaller
Ix1 kernel with a stride of 1, primarily used for adjusting the number of feature channels, thereby
manipulating the depth of the feature maps without affecting their spatial dimensions.

The YOLOv8 Nano model is further enhanced by its six max-pooling layers, each using a 2x2
kernel with a stride of 2. These layers play a crucial role in reducing the spatial dimensions of the
feature maps by half[32], thereby significantly lowering the computation required for subsequent
layers. This strategic use of max pooling not only helps manage the computational load but also
maintains effective feature extraction capabilities, a key feature of the YOLOv8 Nano model

designed for real-time object detection in resource-constrained environments.
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Figure 11. CNN+RNN Network Architecture

IX. Model Training and Optimization and Evaluation

The detection and recognition models underwent 100 iterations or epochs during the training
phase to ensure optimal convergence and proficiency. The learning rate was set to 0.01,
determining the step size at which the stochastic gradient descent optimizer adjusted the model’s
parameters during the back-propagation process. This choice of learning rate was informed by
empirical observations and experimentation, balancing the need for stable convergence and fine-
grained parameter updates. We utilized a batch size of 64. By carefully selecting this batch size,
we aimed to balance computational efficiency and the model’s ability to generalize to varying
regions of interest within license plate images.

We evaluate our model using three key metrics: mean average precision, recall, and character
error rate. Each offers a unique perspective on performance and accuracy.

Mean average precision (MAP) is employed to assess our model's accuracy in identifying and
retrieving relevant items from a dataset. This metric averages the precision achieved at various
levels of recall, providing a holistic view of the model's performance across different retrieval
thresholds. Precision measures the proportion of relevant retrieved items, ensuring our model's

effectiveness in delivering accurate results.
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Recall determines the model's ability to capture all relevant instances within the dataset. This
metric is critical when missing a relevant instance, as it can lead to significant consequences. By
measuring recall, we ensure our model effectively identifies all potential positive cases,
minimizing the risk of oversight.

Character error rate (CER) evaluates the model's precision at the character level. It is beneficial in
text processing tasks, like optical character or handwriting recognition. This metric quantifies the
percentage of incorrectly predicted characters, offering a granular insight into the model's
accuracy in text interpretation.

Together, these metrics provide a comprehensive assessment of our model's capabilities, from
overall accuracy in data retrieval (MAP) to thoroughness in identifying relevant items (recall) to
precision in text-based tasks (CER). This multifaceted evaluation ensures that our model

performs robustly across various dimensions of data processing.

X. Data Augmentation and Synthetic Data Generation

To enhance the recognition model's robustness, various data augmentation techniques were
employed, including rotation, perspective transform, and color channel transform. Additionally,
synthetic data was generated by combining plate backgrounds with cropped character images.
These techniques significantly increased the dataset's variability, allowing the model to learn
from various examples. The data augmentation and synthetic data generation contributed to
improved model performance, particularly in handling challenging conditions such as occlusions,
different lighting, and varied plate designs.

We used synthetic data in some experiments to investigate its impact on model performance.
Applying these augmentation techniques exposed the model to a diverse set of scenarios during
training, which is crucial for developing a resilient and generalizable recognition system. This
strategic augmentation ensured that the model could effectively manage real-world variations and
inconsistencies in license plate appearances, thus enhancing its overall accuracy and reliability in

practical applications.
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XI. Font Type Evaluation Aspects

Regarding ALPR systems, it's essential to recognize that even the most advanced segmentation

algorithms might only sometimes result in clearly recognizable characters from the segmented

portions. This issue highlights the necessity for each character to preserve its distinct integrity,

allowing it to remain identifiable despite potential shortcomings in the cropping process.

Consequently, selecting an appropriate font is crucial for successfully recognizing license plates,

including those with general plate numbers that do not conform to regular expressions.

In light of these challenges, this work introduces several vital contributions:

1.

This research investigates the characteristics of five distinct fonts: Driver Gothic,
Dreadnought, California Clarendon, Zurich Extra Condensed, and Mandatory. The
analysis of the characteristics will be comprehensive, with specific factors detailed in
Table 3 of the study[35]. This methodical examination delineates the subtle differences
and similarities that affect how easily each character can be distinguished from others,
particularly in scenarios where clarity is paramount.

This study aims to assess the impact of selected fonts within specific contexts by
analyzing five datasets: UFPR-ALPR[5], Ontario, Quebec, California, and New York
State. The evaluation will utilize a commercial Automatic License Plate Recognition
product: OpenALPR[4].

The dual result analysis in this study will encompass two key aspects. Firstly, the recall
values will be determined, focusing on the accuracy of license plate recognition by
treating the predicted license plate as either wholly correct or incorrect. Secondly, the
analysis will delve into more detailed qualitative aspects by using confusion matrices for
each character on each license plate across the datasets. These confusion matrices are
crucial as they provide a detailed view of the recognizability of each character,
highlighting specific areas where characters are most frequently misidentified or
confused.

Recommendations for Optimal Font Characteristics: Drawing from the insights gained

through our analysis, we intend to develop a series of recommendations that outline
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optimal font characteristics designed to boost recognition accuracy in real-time
applications. These recommendations will be grounded in the data derived from
evaluating various fonts across different datasets and recognition systems. By pinpointing
the specific attributes that contribute to adequate character distinction and readability, we
aim to provide actionable guidelines that can be implemented to improve the performance

of license plate recognition systems under diverse operational conditions.

Table 3. Font Type Evaluation Aspects[35]

Aspect Explanation

Similar apex Apex is defined as the juncture of a stem. If two glyphs have the apex
at the same position and design, the probability of confusion will

increase. For example, the top apex in letter A and digit 4.

Similar crossbar position Crossbar is defined as the horizontal stroke connecting two parts of a
letter form (e.g. H). if two glyphs have crossbars, then locating the

crossbars at different positions would improve their recognizability.

Similar top counter Counter is defined as the negative space fully or partially enclosed by
the stroke of a letter form. If two glyphs have top counters that look

identical, probability of confusion will increase.

Similar bottom counter If two glyphs have bottom counters that look identical, probability of

confusion will increase.

Similar bowl Bowl is defined as the fully or modified rounded forms. If two glyphs
have the bowl at the same position and design, the probability of

confusion will increase

Identical spur Spur is defined as a projection smaller than a serif, that reinforces the
point at the end of curved stroke. If two glyphs have the spur at the
same position and design, the probability of confusion will increase.

Identical ~ bottom, or Stroke is defined as any linear element that makes up a letterform. If

top horizontal stroke two glyphs have the stroke at the same position and design, the

probability of confusion will increase.

Similar diagonal stroke If two glyphs have the diagonal stroke at the same position and design,
the probability of confusion will increase (e.g., 5 and S).

Tail not clear Tail is defined as a short downward stroke. If the tail is not clear or

visible in context, it is more likely to be confused with other glyphs.
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Chapter 4. LPD Results and Analysis

In this chapter, we will present the experimental results of our study. Additionally, we provide a
detailed experimental analysis of our License Plate Recognition (LPR) system. This includes
comparing our system's performance comprehensively against leading methods in the field and
established commercial systems. The analysis aims to highlight the strengths and potential areas
for improvement in our LPR system relative to current industry standards.

For the training process of detection and recognition models, we leveraged the power of the
NVIDIA Tesla T4 GPU. The NVIDIA Tesla T4 has 16GB of GPU memory, offering substantial
computational resources and parallel processing capabilities. This GPU enabled us to accelerate

the training and optimization of our models, effectively handling large-scale datasets.

1. Evaluation Metrics

The performance of our models on the test set was evaluated using various metrics. For the object
detection model, we used average precision (AP) at different IOU thresholds, areas, and
maximum detections to gain insights into its capabilities. We employed recognition rate,
character error rate (CER), and recall ratio as evaluation metrics for the recognition model.
Additionally, confusion matrices were computed to analyze the types of errors made by the

recognition model.

II. Detection Results of Faster-RCNN Model

The detection model maintained high precision at an IoU threshold of 0.75. The model's
performance varied based on object size—the average precision needed to be computed for small
objects, indicating a lack of reliable detection. However, for medium-sized objects, the model
achieved a reliable average precision. The model excelled in detecting large objects, earning an
impressive average precision. These results demonstrate the effectiveness of our Faster-RCNN[2]
model in accurately detecting license plates in various scenarios, highlighting its potential for
real-world license plate recognition applications. The results of the detection models for four

datasets are shown in Table 4.
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Dataset AP50:95 AP75
Quebec 79.54% 94.16%
Ontario 80.37% 94.95%
New York 78% 92.14%
California 83.87% 95.72%

Table 4. AP50:95, and AP75 scores for various datasets

We found that California's detection results were the highest, while New York's were the lowest.
License plates with a white background and dark letters are more detectable than those without a
white background due to the higher contrast of colors. The higher contrast in color between the
background and the letters significantly enhances the model's ability to identify and recognize the
license plates, leading to better performance in detection tasks. This finding underscores the
importance of color contrast in the effectiveness of license plate recognition systems. Figure 12

shows some samples of the detection results by the Faster-RCNN model.

Figure 12. Detection Sample Results of Faster-RCNN Model
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III. Recognition Results of CNN+RNN Model with CTC Loss

The recognition model was evaluated on the UFPR-ALPR[29] dataset and our CENPARMI
dataset. The results indicate a significant performance improvement when using the CENPARMI
dataset, attributed to the extensive data augmentation and synthetic data generation techniques
employed during training. The results are summarized in the Table 5.

The higher recognition rate and lower Character Error Rate (CER) on the CENPARMI dataset
suggest that the model generalizes well to the varied conditions and plate designs encountered in
real-world scenarios. This highlights the effectiveness of our advanced training techniques. This
improvement is particularly noteworthy given the diversity of the CENPARMI dataset, which
includes images from different states with varying plate designs and fonts, lighting conditions,
and environmental factors.

One of our approach's key innovations is using a lightweight backbone inspired by
MobileNetV3[33] for the recognition model. This design choice ensures the model can run
efficiently on edge devices with limited computational resources. The lightweight architecture
reduces the model's complexity and computational cost without compromising accuracy, making

it suitable for real-time applications on devices such as smartphones, tablets, and embedded

systems.
Model Dataset Recognition Character Error Recall
Rate Rate(CER)
Our Model UFPR-ALPR 84.2% 5.3% 92.1%
Our Model CENPARMI 89.8% 4.5% 90.0%
OpenALPR UFPR-ALPR 71.7% 15.5% 55.8%
OpenALPR CENPARMI 65.5% 19.6% 80.2%

Table 5. Performance Metrics for Different Models and Datasets
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IV. State-wise Recognition Performance of CNN+RNN Model with CTC Loss

The recognition model’s performance was further analyzed using four different datasets
separately from Canada and the United States. The results for each dataset are detailed in the
Table 6.

The model demonstrated consistent performance across the different datasets, with slight
variations attributed to differences in plate designs, font styles, and environmental conditions.
California achieved the highest accuracy and the lowest Character Error Rate (CER), likely due
to more precise and consistent plate designs. New York also performed exceptionally well,

indicating that the model can handle diverse plate designs accurately.

Province/State Recognition Character Error Recall
Rate Rate(CER)

Quebec 91.6% 3.8% 91.5%

Ontario 91.6% 3.8% 91.5%

New York 80.1% 8.1% 80.6%

California 96% 2.3% 96.4%

Table 6. Performance Metrics for Different Provinces/States.

V. Detection Results of YOLOvVS8 Model

Figures 13 compare the F1-Confidence curves for the YOLOvVS8 model trained on the
CENPARMI and UFPR-ALPR[29] datasets, highlighting notable differences and similarities in
performance. For the CENPARMI dataset, the peak F1 score is 0.98 at a confidence threshold of
0.469, indicating optimal performance at a higher confidence level. The F1 score rises sharply
and stabilizes at nearly 1.0, showing robustness and reliability across a broad range of confidence
levels. This higher threshold suggests the model is more conservative and beneficial in scenarios

where high precision is crucial.
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Figure 13. F1-Confidence Curve for the YOLOv8 Model Trained on the CENPARMI Dataset on
the Left and UFPR-ALPR Dataset on the right

In contrast, the UFPR-ALPR[29] dataset shows a peak F1 score of 0.97 at a much lower
confidence threshold of 0.041. The F1 score increases quickly and plateaus at nearly 1.0, but the
optimal confidence threshold is narrower than for the CENPARMI dataset. This lower threshold
implies the model is more liberal in making predictions, which is advantageous when recall is
more critical.

Both models exhibit consistent detection performance across different license plate types, a
testament to their robustness in handling diverse data. In summary, the model trained on the
CENPARMI dataset achieves slightly higher peak performance at a higher confidence threshold.
In contrast, the model trained on UFPR-ALPR[29] performs well at a lower threshold. As these
results clearly demonstrate, the dataset's choice significantly influences the model's optimal
confidence threshold, affecting its conservativeness or liberality in predictions.

The precision-confidence curves, the main focus of this evaluation, are compared in Figure 14 for
the YOLOvS model trained on the CENPARMI and UFPR-ALPR[29] datasets. The precision-
confidence curve for the CENPARMI dataset, a standout in this analysis, exhibits excellent
performance, with precision reaching 1.00 at a confidence threshold of 0.936. This high threshold
indicates that the model maintains perfect precision across a broad range of higher confidence
levels. The initial sharp rise in precision, followed by stabilization at 1.0, demonstrates high
accuracy and very few false positives. The curve's shape suggests a robust model performing

consistently across varying confidence levels.
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Figure 14. Precision-Confidence Curve for the YOLOvS8 Model Trained on the CENPARMI
Dataset on the Left and UFPR-ALPR Dataset on the right
Similarly, the precision-confidence curve for the UFPR-ALPR[29] dataset shows high

performance, with precision also reaching 1.00 but at a slightly lower confidence threshold of
0.923. This indicates robust performance and high accuracy at a lower threshold than the
CENPARMI dataset. The steep rise and stabilization at 1.0 further underline the model's
effectiveness in minimizing false positives.

The key difference between the two datasets lies in the peak precision and corresponding
confidence thresholds. The CENPARMI dataset achieves perfect precision at a higher threshold
of 0.936, indicating a more conservative model. In contrast, the UFPR-ALPR[29] dataset
achieves perfect precision at 0.923, suggesting a slightly more lenient model. Both models
demonstrate a sharp increase in precision followed by stabilization at 1.0, with the UFPR-
ALPR[29] dataset achieving high accuracy at lower thresholds.

In conclusion, the precision-confidence curves for the YOLOvV8 model trained on both datasets
demonstrate excellent performance, with both achieving perfect precision. The CENPARMI
model reaches peak precision at a higher confidence threshold of 0.936, while the UFPR-
ALPR[29] model does so at 0.923. Both models are highly accurate and robust, with minimal
false positives, although the UFPR-ALPR[29] model is slightly more lenient in its predictions.
This reaffirms the YOLOvV8 model's overall excellent performance and its ability to adapt to
different datasets.

Figure 15 compares the precision-recall curves for the YOLOv8 model trained on the
CENPARMI and UFPR-ALPR[29] datasets. The precision-recall curve for the CENPARMI

dataset shows excellent performance, with a mean average precision (mAP) of 0.989 at a recall
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Figure 15. Precision-Recall Curve for the YOLOv8 Model Trained on the CENPARMI Dataset
on the Left and UFPR-ALPR Dataset on the right
value of 0.5.The curve maintains high precision across a broad range of recall values, staying

near 1.0 until recall approaches 1.0, where a slight drop-off occurs. This indicates that the model
is highly effective in detecting license plates, achieving a balance between high precision and
high recall. The stability of the curve across various recall levels suggests robust performance,
with the model effectively minimizing false positives while maintaining high detection rates.

The YOLOvVS model applied to the UFPR-ALPR[29] dataset also demonstrates impressive
performance, with a slightly higher mAP of 0.991 at a recall value of 0.5. Similar to its
performance on the CENPARMI dataset, the model maintains precision close to 1.0 across most
recall values, only dropping off slightly as recall approaches 1.0. This consistent performance
across different datasets underscores the model's adaptability and versatility, providing
reassurance about its ability to maintain high accuracy and minimize false positives.

When comparing the two datasets, the key differences are marginal. The model trained on the
CENPARMI dataset achieves an mAP of 0.989, while the model trained on the UFPR-ALPR[29]
dataset achieves a slightly higher mAP of 0.991. Both models maintain high precision across a
wide range of recall values, indicating strong performance in both datasets. The slight drop in
precision at higher recall values is minimal in both cases, demonstrating the models' robustness.
The subtle edge in mAP for the UFPR-ALPR[29] dataset suggests marginally better overall

performance in minimizing false positives while maintaining high recall.
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Figure 16 compares the recall-confidence curves for the YOLOv8 model trained on the
CENPARMI and UFPR-ALPR[29] datasets. The recall-confidence curve for the CENPARMI
dataset demonstrates high performance, achieving a recall of 0.99 at a confidence threshold of
0.000. The curve maintains a high recall value near 1.0 across a broad range of confidence levels,
indicating the model's effectiveness in capturing true positives with varying confidence levels. As
confidence increases, recall remains high until it declines sharply around a threshold of 0.8,
suggesting the model becomes more conservative, reducing recall as confidence increases.
Similarly, the recall-confidence curve for the YOLOvS8 model trained on the UFPR-ALPR[29]
dataset shows strong performance, with recall reaching 0.98 at a confidence threshold 0.000. The
curve maintains high recall close to 1.0 across most confidence levels, similar to the CENPARMI
dataset. The recall declines significantly at a confidence threshold of around 0.8, indicating the
model also becomes more conservative as confidence increases.

Comparing the two datasets, the CENPARMI model achieves a slightly higher recall at low
confidence thresholds (0.99) compared to the UFPR-ALPR[29] model (0.98). Both models
maintain high recall values across a broad range of confidence levels and exhibit a sharp decline
around a confidence threshold of 0.8, indicating increasing conservativeness. These results
demonstrate that both models effectively detect license plates with high recall, although the
CENPARMI model has a slight edge at lower confidence levels.

Figure 17 shows various performance metrics and loss values for the YOLOvS model trained on
the CENPARMI dataset. The train/box loss decreases steadily from around 1.0 to approximately
0.7, indicating improved bounding box predictions. The train/classification loss drops sharply
from 2.0 to about 0.5, reflecting better class prediction accuracy. Similarly, the train/DFL loss
falls from 1.1 to 0.9, showing enhanced distribution predictions. Precision during training
stabilizes close to 1.0, demonstrating high accuracy with few false positives. Recall increases
from about 0.4 to nearly 1.0, indicating the model captures most true positives with minimal
misses. Validation metrics show parallel trends: box loss decreases from 1.2 to 0.8, classification
loss from 3.0 to 0.5, and DFL loss from 1.4 to 1.0, highlighting consistent improvement on the
validation set. The mAP at IoU 0.5 rises and stabilizes near 1.0, reflecting excellent precision and

recall balance, while the mAP across IoU 0.5 to 0.95 steadily improves to around 0.8, indicating
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robust performance across varying thresholds. Overall, the model demonstrates robust, consistent

accuracy and detection quality enhancements throughout training and validation.
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Figure 16. Recall-Confidence Curve for the YOLOvVS8 Model Trained on the CENPARMI
Dataset on the Left and UFPR-ALPR Dataset on the right
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Figure 17. Various Performance Metrics and Loss Values for the YOLOvS Model Trained on the
CENPARMI Dataset
Figure 18 shows various performance metrics and loss values for the YOLOvS model trained on

the UFPR-ALPR[29] dataset. The train/box loss decreases steadily from around 1.6 to
approximately 0.6, indicating improved bounding box predictions. The train/classification loss

drops sharply from 3.0 to about 0.5, reflecting better class prediction accuracy. Similarly, the
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train/DFL loss falls from 0.95 to 0.8, showing enhanced distribution predictions. Precision during
training stabilizes around 0.96, demonstrating high accuracy with few false positives. Recall
increases sharply from about 0.4 to nearly 1.0, indicating the model captures most true positives
with minimal misses. Validation metrics show parallel trends: box loss decreases from 1.5 to
1.25, classification loss from 3.0 to 1.0, and DFL loss from 0.88 to 0.85, highlighting consistent
improvement on the validation set. The mAP at IoU 0.5 rises and stabilizes near 0.98, reflecting
excellent precision and recall balance, while the mAP across IoU 0.5 to 0.95 steadily improves to
around 0.65, indicating robust performance across varying thresholds. Overall, the model
demonstrates robust, consistent accuracy and detection quality enhancements throughout training
and validation on the UFPR-ALPR[29] dataset.

Figures 19 and 20 show YOLOVS8’s detection sample results for the CENPARMI and UFPR-
ALPRJ[29] datasets, respectively.
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Figure 18. Various Performance Metrics and Loss Values for the YOLOvS Model Trained on the
UFPR-ALPR Dataset
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Figure 20. Detection Sample Results of YOLOvS8 Model on the UFPR-ALPR Dataset

VI. Recognition Results of YOLOv8 Model

Figure 21 compares the F1-confidence curves for the character recognition task in license plates
using the YOLOv8 model trained on the UFPR-ALPR[29] and CENPARMI datasets. For the
UFPR-ALPR][29] dataset, the model achieves a peak F1 score of 0.94 at a confidence threshold of

0.412. The F1 score increases sharply up to this point, then stabilizes near 0.94 before gradually
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declining as the confidence threshold approaches 1.0. This indicates optimal performance at a
lower confidence level, achieving a good balance between precision and recall.

In contrast, the CENPARMI dataset's F1-confidence curve shows a peak F1 score of 0.93 at a
higher confidence threshold of 0.579. The F1 score rises sharply and stabilizes near 0.93 before
declining as the confidence threshold increases towards 1.0. This suggests the model requires a
higher confidence level to achieve optimal performance, effectively balancing precision and
recall. The key differences between the two datasets lie in the optimal confidence thresholds and
peak F1 scores. The UFPR-ALPR[29] model achieves a slightly higher peak F1 score at a lower
confidence threshold, indicating better performance with more liberal predictions. Both models

show robust performance, maintaining high accuracy across various confidence levels. The
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Figure 21. F1-Confidence Curve for the YOLOv8 Model Trained on the CENPARMI Dataset on
the Right and UFPR-ALPR Dataset on the Left
UFPR-ALPR[29] model is more effective at lower confidence thresholds, while the CENPARMI

model performs better at higher thresholds.

Figure 22 presents a robust comparison of the precision-confidence curves for the character
recognition task in license plates using the YOLOv8 model trained on the UFPR-ALPR[29] and
CENPARMI datasets. The precision-confidence curve for the UFPR-ALPR[29] dataset exhibits a
sharp rise in precision, stabilizing near 1.0 as the confidence threshold approaches 1.0. This
indicates that the model achieves perfect precision at high confidence levels with minimal false

positives, a testament to its robust performance.
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In contrast, the precision-confidence curve for the CENPARMI dataset exhibits a peak precision
of 0.95 at a confidence threshold of 0.966. Like the UFPR-ALPR[29] dataset, the precision rises
sharply and stabilizes near the peak value as the confidence threshold increases. However, the
peak precision is slightly lower, indicating that while the model performs well, it does not
consistently reach perfect precision.

The critical difference between the two datasets lies in their peak precision and corresponding
confidence thresholds. The UFPR-ALPR[29] model achieves perfect precision at a slightly
higher confidence threshold, indicating superior accuracy with high confidence. Both models
maintain high precision across a wide range of confidence levels, but the UFPR-ALPR[29] model
is more effective at achieving perfect precision.

It's important to note that both models demonstrate strong performance, with the UFPR-
ALPRJ[29] dataset achieving a peak precision of 1.00 at a confidence threshold of 0.980, and the
CENPARMI dataset reaching a peak precision of 0.95 at a confidence threshold of 0.966. This
indicates that both models maintain high precision across varying confidence levels, with the

UFPR-ALPR[29] model showing slightly better performance in achieving perfect precision.
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Figure 22. Precision-Confidence Curve for the YOLOv8 Model Trained on the CENPARMI
Dataset on the Right and UFPR-ALPR Dataset on the Left
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Figure 23. Precision-Recall Curve for the YOLOv8 Model Trained on the CENPARMI Dataset
on the Right and UFPR-ALPR Dataset on the Left

Figure 23 compares the precision-recall curves for the character recognition task in license plates
using the YOLOvVS8 model trained on the UFPR-ALPR[29] and CENPARMI datasets. For the
UFPR-ALPR][29] dataset, the precision-recall curve shows a high mean average precision (mAP)
of 0.972 at an IoU threshold of 0.5. The curve maintains high precision near 1.0 across a broad
range of recall values, only dropping slightly as recall approaches 1.0. This indicates that the
model performs exceptionally well, balancing high precision and recall.

In contrast, the precision-recall curve for the CENPARMI dataset exhibits a slightly lower mAP
0f 0.938 at an IoU threshold of 0.5. The curve maintains a flat precision of 1.0 until recall reaches
approximately 0.9, followed by a sharp drop in precision. This suggests that while the model
performs well with high precision, it maintains a different level of performance across the entire
recall range than the UFPR-ALPR[29] model.

The critical difference between the two datasets lies in the mAP and the behavior of the
precision-recall curve. The UFPR-ALPR[29] model achieves a higher mAP, indicating better
overall performance in balancing precision and recall. The CENPARMI model, while still

performing well, shows a more significant drop in precision as recall increases.
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In summary, the precision-recall curves clearly show the YOLOv8 model's performance. The
model trained on the UFPR-ALPR[29] dataset achieves a higher mAP of 0.972, maintaining high
precision across a broad range of recall values. In contrast, the CENPARMI model, with an mAP
of 0.938, performs well but shows a sharper decline in precision as recall increases, indicating a

slightly less robust performance than the UFPR-ALPR[29] model.
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Figure 24. Recall-Confidence Curve for the YOLOv8 Model Trained on the CENPARMI Dataset
on the Right and UFPR-ALPR Dataset on the Left

Figure 24 shows the recall-confidence curves for the character recognition task in license plates
using the YOLOvVS model trained on the UFPR-ALPR[29] and CENPARMI datasets indicate
high performance. In the UFPR-ALPR[29] dataset, the model achieves a peak recall of 0.99 at a
confidence threshold of 0.000. The curve maintains high recall near 1.0 across a wide range of
confidence levels, suggesting that the model effectively captures most true positives with varying
confidence thresholds. Recall remains high until it declines sharply around a threshold of 0.8,
indicating the model's conservativeness increases with higher confidence levels.

In contrast, the CENPARMI dataset's recall-confidence curve shows a peak recall of 0.94 at a
confidence threshold of 0.000. The curve similarly maintains high recall near 1.0 across most

confidence levels but starts to decline at a slightly higher confidence threshold around 0.8,
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Figure 25. Various Performance Metrics and Loss Values for the YOLOv8 Model Trained on the
UFPR-ALPR Dataset
reflecting a similar trend of increasing conservativeness with higher confidence levels, thus

demonstrating the models' equal reliability.

Comparing the two datasets, the UFPR-ALPR[29] model achieves a higher peak recall of 0.99 at
a low confidence threshold, initially capturing more true positives than the CENPARMI model,
which peaks at a recall of 0.94. Both models show a sharp decline in recall around a confidence
threshold of 0.8.

In summary, the UFPR-ALPR[29] model demonstrates slightly better recall performance than the
CENPARMI model, with higher initial recall and robust performance across a broad range of
confidence levels. Both models, however, exhibit a similar trend of increasing conservativeness
at higher confidence thresholds, further emphasizing their robustness.

Figure 25 presents a detailed view of the training and validation metrics for the YOLOvV8 model
trained on the UFPR-ALPR[29] dataset. The train/box loss decreases from 1.4 to 0.7, indicating a
significant improvement in bounding box predictions. The train/classification loss drops sharply
from 2.0 to 0.5, reflecting a substantial enhancement in class prediction accuracy. The train/DFL
loss falls from 1.3 to 0.9, showing a marked improvement in distribution predictions. Training
precision stabilizes around 0.96, demonstrating a high level of prediction accuracy with a
minimal number of false positives. Recall increases from 0.84 to 0.94, indicating a notable
improvement in true positive detection.

In validation, the box loss decreases from 1.15 to 0.95, classification loss drops from 0.7 to 0.4,

and DFL loss falls from 1.15 to 1.05, all indicating consistent improvement. The mAP at IoU 0.5
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rises and stabilizes near 0.98, reflecting excellent precision and recall balance. The mAP across
IoU 0.5 to 0.95 improves to around 0.74, showing robust performance across varying thresholds.
The model shows vital performance improvements, decreasing losses, and high precision and
recall values. The increasing mAP scores demonstrate the model's effectiveness in detecting and
classifying license plates, maintaining robust performance across different loU thresholds.

Figure 26 displays the training and validation metrics for the YOLOv8 model trained on the
CENPARMI dataset. The train/box loss decreases from 1.4 to 0.6, indicating improved bounding
box predictions. The train/classification loss drops sharply from 5.0 to 0.5, reflecting significant
enhancement in class prediction accuracy. The train/DFL loss falls from 1.3 to 0.9, demonstrating
better distribution predictions. Training precision stabilizes around 0.9, indicating high accuracy
in predictions with few false positives, while recall increases rapidly to around 0.9, showing
improved true positive detection.

In validation, the box loss decreases from 1.1 to 0.8, classification loss drops from 4.5 to 0.5, and
DFL loss falls from 1.0 to 0.9, all indicating consistent improvement. The mAP at IoU 0.5 rises
and stabilizes near 0.98, reflecting an excellent balance between precision and recall. The mAP
across IoU 0.5 to 0.95 improves to around 0.78, showing robust performance across varying

thresholds.
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Figure 26. Various Performance Metrics and Loss Values for the YOLOvS Model Trained on the
CENPARMI Dataset
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The YOLOv8 model, when trained on the CENPARMI dataset, shows vital performance
improvements, decreasing losses, and high precision and recall values. The increasing mAP
scores demonstrate the model's effectiveness in detecting and classifying license plates.
Importantly, the model maintains robust performance across different loU thresholds, reinforcing
its versatility. The overall results indicate that the model is well-optimized and performs reliably
on the CENPARMI dataset, consistently improving training and validation metrics.

The YOLOvV8 model shows vital performance improvements on the UFPR-ALPR[29] and
CENPARMI datasets, with some differences in specific metrics. For train/box loss, both datasets
exhibit a steady decrease, with UFPR-ALPR[29] reducing from 1.4 to 0.7 and CENPARMI from
1.4 to 0.6, indicating slightly better improvements in CENPARMI. The train/classification loss
drops significantly in both datasets, from 2.0 to 0.5 for UFPR-ALPR[29] and from 5.0 to 0.5 for
CENPARMI, showing a more substantial improvement in the latter despite starting higher.

Both datasets show consistent train/DFL loss improvement, decreasing from 1.3 to 0.9. Training
precision stabilizes around 0.96 for UFPR-ALPR[29] and 0.9 for CENPARMI, indicating slightly
lower precision in CENPARMI. Recall metrics also improve, with UFPR-ALPR[29] increasing
from 0.84 to 0.94 and CENPARMI stabilizing around 0.9.

Both datasets show decreasing val/box loss in validation, with CENPARMI ending lower. The
val/classification loss drops more significantly in CENPARMI. Both datasets achieve similar high
mAP at IoU 0.5, near 0.98. However, mAP across IoU 0.5 to 0.95 improves to around 0.74 for
UFPR-ALPR[29] and 0.78 for CENPARMI, indicating slightly better performance in the latter.

In summary, both datasets show robust performance, with CENPARMI exhibiting slightly better
overall results in classification loss, box loss, and mAP across multiple IoU thresholds. The
model’s effectiveness in detecting and classifying license plates is evident in both datasets.
Figures 27 and 28 show YOLOVS8’s recognition sample results for the CENPARMI and UFPR-
ALPRJ[29] datasets, respectively.

The analysis of the performance metrics for license plate detection and recognition tasks across the
UFPR-ALPR [29] and CENPARMI datasets, as shown in Tables 8 and 9, reveals that the model
demonstrates superior efficiency with the CENPARMI dataset. For the detection task, detailed in
Table 7, the model achieved an AP50:95 score of 79.67% on the CENPARMI dataset, surpassing
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the 66.96% score on the UFPR-ALPR [29] dataset, indicating better precision and recall in
detecting license plates. In the recognition task, as illustrated in Table 8, the Character Error Rate
(CER) for CENPARMI is less than UFPR-ALPR [29], the recall rate is higher for CENPARMI at
94% compared to 91% for UFPR-ALPR [29]. This suggests that the model detects license plates
more accurately in the CENPARMI dataset and recognizes the characters within the plates more
effectively. Therefore, the model is more suitable and reliable for automatic license plate
recognition applications involving the CENPARMI dataset.
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Figure 28. Recognition Sample Results of YOLOv8 Model on the CENPARMI Dataset
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Dataset AP50:95
UFPR-ALPR 66.96%
CENPARMI 79.67%

Table 7. AP50:95 Scores for Various Datasets

Dataset Character Error Rate(CER) Recall
UFPR-ALPR 7.5% 91%
CENPARMI 3.5% 94%

Table 8. Performance Metrics for Different Models and Datasets

The recognition model’s performance was further analyzed using four different datasets

separately from Canada and the United States. The results for each dataset are detailed in the

Table 9.

The model demonstrated consistent performance across the different datasets, with slight
variations attributed to differences in plate designs, font styles, and environmental conditions.

State of New York achieved the highest accuracy and the lowest Character Error Rate (CER),

likely due to more precise and consistent plate designs.

Province/State Character Error Rate(CER) Recall
Quebec 4.5% 90%
Ontario 3.5% 93%
New York 2.9% 98%
California 3.2% 95%

Table 9. Performance Metrics for Different Provinces/States
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Chapter 5. Font Evaluation Results and Analysis

In this chapter, we present several sets of outcomes derived from evaluating various fonts
based on the recognition results of individual letters. We can draw several significant
conclusions through our confusion matrices and a detailed analysis of the task of
recognizing license plates. These insights highlight the strengths and weaknesses of
different fonts in accurately identifying individual characters, which is crucial for
improving the overall effectiveness of license plate recognition systems.

I. CNN+RNN Model with CTC Loss Results

CENPARMI Dataset: Our CENPARMI dataset includes 1600 license plates from diverse
California, New York, Ontario, and Quebec environments. Because each dataset has a unique

font, we conducted license plate detection and recognition in each province separately.

* Quebec Dataset: Based on the confusion matrix in Figure 29, we can observe the

following character confusions:
1. 'Q' and “0’:
- Often need clarification due to their similar shapes.
- The tail of the 'Q' is sometimes indistinct.
2.'6'and 'G":
- The resemblance stems from their similar curves and inner spaces.
3.'Q'and 'D":
- Confusion can occur if the tail of the 'Q' blends with its bowl, resembling a 'D.'
- This is especially true if both characters have a similar spur.
4. 'W' and 'M":

- These characters are confusing due to their similar diagonal strokes and internal

structure.
5. '6' and '4":

- These can be mistaken for each other due to similarities in their upper structures

and angles.
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Figure 29. Confusion Matrix for Quebec Province

e Ontario Dataset: Based on the confusion matrix in Figure 30, we can observe the

following character confusions:
1. 'Q' and ‘0’:

-These characters might be mistaken for each other due to their rounded bowls,

especially if the 'Q' has a subtle tail.
2. '5'and 2':
-These can be confused because of their similar upper curves and strokes.
3.'6' and ‘G’:
-These characters might look alike due to their similar shape and internal space.
4. '1" and ‘I’:
-These can be indistinguishable when depicted as simple vertical lines.
5. '4" and ‘A’:

-Similar to '1' and ',' these characters can be indistinguishable when depicted as

simple vertical lines.
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6. 'V'and ‘Y":

-These characters can appear similar if the 'Y" has a short or blended tail.
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Figure 30. Confusion Matrix for Ontario Province

e California State Dataset: Based on the confusion matrix in Figure 31, we can observe

the following character confusions:
1. 'O' and “0':

-These characters can be confused due to their similar rounded shapes.
2. 'F' and ‘E":

-These might be mistaken for each other because of their horizontal strokes, making

it hard to notice the missing middle stroke in 'F'.
3.'L'and 'T":

-These can appear similar due to their vertical and horizontal line components,

especially in bold weights.

4. "7 and 'Z':
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-These might be confused when '7' has a pronounced horizontal stroke and 'Z' is

styled with straight, minimalistic angles.
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Figure 31. Confusion Matrix for California State

* New York State Dataset: Based on the confusion matrix in Figure 32, we can observe

the following character confusions:

1.

'O' and “0'":
-These characters can look very similar due to their tightly rounded shapes.
'J," 'L’ and 'T":

-These letters might be mistaken for one another due to their similar vertical strokes,

especially when 'J' has a subtle curve and 'T" has a short horizontal stroke.
'V'and 'U":

-These can be confused if 'V' has a sharp vertex resembling a 'U" without the middle

crossbar.
'X"and 'L":
-These may appear similar if 'X's diagonal strokes blend, looking like intersecting

'L's.
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5. 'M' and ‘W":

-These look like mirror images with unclear middle peaks and valleys in a condensed
font.

0.8
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Predicted

Figure 32. Confusion Matrix for New York State

UFPR-ALPR Dataset: The confusion matrix in Figure 33 highlights common character

misidentifications due to their similar appearances.
1. 'O' and “0':
-These characters can look very similar due to their tightly rounded shapes.
2.'1,'1";and 'T":

-These can be mistaken for each other when depicted as straight lines, especially if

'"T" has a short horizontal stroke.
3. 'M'and 'W'":

-These characters look alike due to their mirrored structures and bold lines.
4. 'B'and '8', 'E' and “8’:

-'B' and '8' are often mistaken for each other due to their similar bowls and counters.

Both characters feature rounded parts resembling each other, and the double loops of
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'8' can be confused with the loops of 'B' when the spacing is similar.
5.'C'and 'G":

-These might be confused if 'G's tail is subtle, making it look like 'C.'

08

06

IHGFEDCBA99876543210

Ground Truth

=
Figure 33. Confusion Matrix for UFPR-ALPR Dataset
I1. YOLOvVS8 Model

CENPARMI Dataset: We present two sets of analyses on this dataset. The CENPARMI dataset
was used for the training and testing phases in the first analysis and the confusion matrix in
shown in Figure 34. The second analysis tested the model exclusively on the CENPARMI
dataset, which it had not seen during the training phase and the confusion matrix is shown in
Figure 35. The second analysis aims to demonstrate that the YOLOv8 model is a highly efficient
OCR model capable of generalizing well. Specifically, we strive to show that it can accurately
detect letters from fonts with features it did not encounter during training. Based on the

confusion matrix in Figure 34, we can observe the following character confusions:
1. 'O' and “0':
-These characters can look very similar due to their tightly rounded shapes.

2. 'T"and 'T":

62



-These characters are often mistaken for each other when depicted as straight lines,

especially if 'T" has a short horizontal stroke.
3. 'B'and '8":
-'B' and '8' are often mistaken for each other due to their similar bowls and counters.

Both characters feature rounded parts resembling each other, and the double loops of

'8' can be confused with the loops of 'B' when the spacing is similar.

Ground Truth

ZYXWVUTSRQPONMLKJIHGFEDCBA9876543210

012345678 9ABCDEFGHIJKLMNOPQRSTUVWXYZ
Predicted

Figure 34. Confusion Matrix for CENPARMI Dataset

Based on the confusion matrix in Figure 34, we can observe the following character confusions:
1. 'O' and “0":

-The confusion between 'O’ and '0' arises from their similar bowls, as both characters

have rounded shapes that make them difficult to distinguish.
2. 'I'"and 'T":

-The characters 'I' and '"T' are often mistaken for one another because of their similar
apexes, where the vertical stems of 'I' can resemble the short horizontal stroke of 'T.'
Additionally, identical horizontal strokes at the top or bottom further contribute to

the confusion between these characters.
3. 'V'and '4":

-'V' and '4' can be confused due to their similar diagonal strokes. Both characters
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have similar angular shapes that can be confused due to identical placement and
design. The similar apexes and spurs, with the junctions and small projections of 'V'

looking like parts of '4', further add to this confusion.

4. 'F' and 'W":
-'F' and 'W' can be confused due to their similar horizontal strokes. 'F' has a
horizontal stroke at the top and middle, which can sometimes resemble the diagonal

and horizontal structure of 'W,' especially in certain font styles where the middle

stroke of 'F' is prominent.
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Figure 35. Confusion Matrix for CENPARMI Dataset

Our CENPARMI dataset includes 1600 license plates from diverse places including, California,
New York, Ontario, and Quebec environments. Because each dataset has a unique font, we

conducted license plate detection and recognition in each province separately.

* Quebec Dataset: Based on the confusion matrix in Figure 36, we can observe the

following character confusions:
1. '0' and “6’:

-The characters '0' and '6' are often mistaken for one another because of their similar
bowls, where the rounded shape of '0' can resemble the partially closed loop of '6.'

Additionally, if the tail of '6' is not clear, it can be further confused with '0.'

2. '2'and ‘4’:
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3.

4.

5.

-The characters "2' and '4' are often mistaken for one another because of their similar
apexes, where the top part of "2' can resemble the horizontal stroke of '4.
Additionally, the similar diagonal stroke in '2' and the vertical line in '4' contribute to

the confusion between these characters.
'2' and ‘9°:

-The characters 2' and '9' are often mistaken for one another because of their similar
bowls and tails, where the curved shape of "2' can resemble the loop of '9.

Additionally, if the tail of '9' is not prominent, it can be further confused with 2.’
'M' and °N’ with ‘I’:

-The characters 'M' and 'N' with 'I' are often mistaken for one another because of
their identical vertical strokes, where the stems of 'M' and 'N' can resemble the
simple vertical line of 'l.' This is particularly true in sans-serif fonts where

distinguishing elements are minimal.

'8' and ‘B’:

-The characters '8' and 'B' are often mistaken for one another because of their similar
bowls, where the two loops of '8' can resemble the top and bottom rounded forms of

'B." In fonts where these forms are symmetrical, the confusion between these

characters is further increased.

10

GFEDCBAO9876543210
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Figure 36. Confusion Matrix for Quebec Province
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e Ontario Dataset: Based on the confusion matrix in Figure 37, we can observe the

following character confusions:
1. '0' and ‘Q’:

-The characters 'Q' and '0' are often mistaken for one another because of their similar
bowls, where the rounded shape of '0' can resemble the circular form of 'Q.'
Additionally, if the tail of 'Q' is not clear or prominent, it can be further confused
with '0.'

2. '2'and ‘5°:

-The characters '5' and '2' are often mistaken for one another because of their similar
diagonal strokes, where the curved and diagonal parts of '5' can resemble the shape
of '2." In certain fonts, the top part of 'S' can also look like the horizontal stroke of '2,'

increasing the confusion.
3. 'J" and ‘4’ with ‘D’:

-The characters '],' '4,' and 'D' are often mistaken for one another because of their
similar curved shapes and tails. The top part of 'J' can resemble the vertical and
horizontal strokes of '4,' while the rounded part of 'J' and the curve of '4' can look

like the bowl of 'D,' contributing to the confusion between these characters.
4. 'D' and ‘O’:

-The characters 'O' and 'D' are often mistaken for one another because of their
similar bowls, where the circular shape of 'O’ can resemble the rounded part of 'D." If
the vertical stroke of 'D' is subtle or not prominent, it can be further confused with
VO‘V

5. '1' and ‘I’:

-The characters 'l' and 'I' are often mistaken for one another because of their
identical vertical strokes, where the simple line of '1' can resemble the line of 'I.' This
confusion is particularly prevalent in sans-serif fonts where distinguishing features

like serifs are absent.

 California: Based on the confusion matrix in Figure 38, we can observe the following

character confusions:
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4.
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Figure 37. Confusion Matrix for Ontario Province

'0' and ‘Q’ and ‘O’:

-The characters '0,' 'Q,' and 'O' are often mistaken for one another because of their
similar bowls, where the rounded shapes of '0' and 'O’ can resemble the circular form
of 'Q." Additionally, if the tail of 'Q' is not clear or prominent, it can be further
confused with '0' and 'O.'

'F' and ‘4’:

-The characters 'F' and '4" are often mistaken for one another because of their similar
horizontal strokes, where the top and middle horizontal lines of 'F' can resemble the
top part and crossbar of '4." Additionally, the vertical stroke in 'F' can be confused

with the vertical part of '4," increasing the likelihood of confusion.
'F' and ‘E’:

-The characters 'F' and 'E' are often mistaken for one another because of their similar
horizontal strokes, where the top and middle lines of 'F' can resemble the top and
middle lines of 'E.' Additionally, the bottom horizontal stroke of 'E' can be mistaken
for an incomplete or worn-out stroke in 'F,’ especially in certain fonts or handwriting

styles.
'T' and °T’:

-The characters 'I' and 'T' are often mistaken for one another because of their similar
vertical strokes, where the vertical stem of 'I' can resemble the vertical part of 'T.'

Additionally, identical horizontal strokes at the top or bottom further contribute to
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the confusion between these characters.
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Figure 38. Confusion Matrix for California State

* New York State Dataset: Based on the confusion matrix in Figure 39, we can observe
the following character confusions:
1. 'X" and ‘0’:

-The characters '0' and 'X' are often mistaken for one another because of their similar
circular and intersecting shapes. In certain fonts, the rounded form of '0' can
resemble the intersecting diagonal lines of 'X,' especially if the font style makes the

'X" appear more rounded or the '0' more angular.
2.'9"and ‘8’:

-The characters '9' and '8' are often mistaken for one another because of their similar
loops and rounded shapes. The top loop of '8' can resemble the rounded part of '9,’
and the bottom loop of '8' can create confusion, especially in fonts where the loops of

'8" are not distinctly different in size.
3.'S'and ‘6’:

-The characters '5' and '6' are often mistaken for one another because of their similar
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curved shapes and tails. The top part of '5' can resemble the upper loop of '6,' and the
curved bottom of '5' can look like the lower part of '6,' especially in fonts where

these characters are designed with similar curvature.
4. '8' and ‘A’:

-The characters '8' and 'A' are often mistaken for one another because of their similar
top and bottom sections. The two loops of '8' can resemble the triangular form of 'A;’
particularly in fonts where the loops of '8' are more angular or the 'A' is designed

with a rounded apex.

ZYXWVUTSRQPONMLKJIHGFEDCBA9876543210

BCDEFGH KLMNOPQRSTUVWXYZ
Predicted

Figure 39. Confusion Matrix for New York State

UFPR-ALPR Dataset: The confusion matrix in Figure 40 highlights common character

misidentifications due to their similar appearances.
1. 'O' and “0":
-The confusion between 'O’ and '0' arises from their similar bowls, as both characters
have rounded shapes that make them difficult to distinguish.
2. 'E' and ‘4":

- Their similar horizontal and vertical strokes can confuse 'E' and '4'. The structure of
'E" with its three horizontal lines can resemble the shape of '4', especially if the top

and middle lines are similar in design.
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3. 'C'and '9":

-'C'and '9' can be confused due to their similar bowls. The open, curved shape of 'C'
can resemble the top part of '9', especially if the tail of '9' is not pronounced or

evident.
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Figure 40. Confusion Matrix for UFPR-ALPR Dataset

4. 'M' and 'W'":

-'M' and 'W' are commonly confused because of their similar diagonal strokes; both
characters have mirrored structures and bold diagonal lines that look alike. The
identical spurs, or small projections at the ends of these strokes, also contribute to

the difficulty in distinguishing them.
5. 'B'and '8":
-'B' and '8' are often mistaken for each other due to their similar bowls and counters.

Both characters feature rounded parts resembling each other, and the double loops of

'8' can be confused with the loops of 'B' when the spacing is similar.
6. 'A'and ‘W":

-'A' and 'W' can be confused due to their similar diagonal strokes. The structure of
'A," with its pointed apex and diagonal lines, can resemble the overlapping diagonal

strokes of 'W,' especially in specific fonts where the middle strokes of '"W' are less
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pronounced.
7. 'I'and ‘1’:

- 'I"and '1" are often mistaken for one another because of their similar vertical stems.
Both characters are depicted as straight vertical lines; without additional
distinguishing features (such as serifs or hooks), they can appear nearly identical.
This similarity in shape makes it difficult to distinguish between the two, especially

in specific fonts or styles where the characters are very simplified.
8. 'J'and ‘U’:

- 'J"and 'U' can be confused due to their similar curved shapes. Both characters have
rounded bottoms, and if the tail of 'J' is subtle or the curve of 'U' is more pronounced,
they can look alike, especially in specific fonts where these characteristics are

emphasized
9. 'D'and ‘O’:

-'D" and 'O’ can be confused due to their similar rounded shapes. The curved stroke
of 'D' can resemble the rounded shape of 'O, especially in fonts where the vertical

stem of 'D' is less pronounced, making it appear more circular.
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Chapter 6. Conclusion and Future Work

This chapter concludes the thesis and provides some recommendations for future work.

I. Conclusion

Automatic License plate recognition system (ALPR) with high accuracy is challenging due to
environmental factors such as light conditions, rain, and dust. License Plate Detection (LPD) is a
significant area of study extensively explored by researchers because of its implications in
various domains such as traffic monitoring, safety, and security. Many techniques were employed
by researchers to improve the accuracy of automatic license plate detection systems including,
image processing, machine learning, and deep learning techniques. This work utilizes more
efficient deep-learning algorithms to detect license plates and recognize letters.

Moreover, font style on license plates also significantly affects the recognition tasks. Although
font evaluation is crucial and greatly impacts recognition accuracy, it has yet to be thoroughly
investigated in the existing literature. In particular, there needs to be research on the font
evaluation of Ontario provinces of Canada, California, and New York. Therefore, this work has
three main aspects. Firstly, we employed two deep-learning techniques for license plate detection,
including Faster-RCNN and YOLOv8. Secondly, we utilized two deep neural networks for
character recognition of license plates, including the CNN-RNN model with CTC loss networks
and YOLOv8. Thirdly, we assessed font characteristics within the context of license plates. This
work examines the two approaches for license plate detection and character recognition. It also
analyzes the character error rate for each dataset and each deep learning model. Moreover, it
explores and evaluates five different fonts for license plates and shows how the choice of font can
affect the readability of license plates.

What makes our approach truly stand out is the utilization of the DINO (DlIstillation with NO
labels) method, a self-supervised learning technique that employs Vision Transformers (ViT) to
train models without labeled data. This cutting-edge method not only enables the detection of
multiple objects by promoting consistency in feature representation despite varied input

conditions, but also facilitates the development of rich, meaningful feature representations that
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can be applied to various downstream tasks. By reducing the reliance on extensive labeled
datasets and making better use of available unlabeled data, DINO opens up new possibilities in
the field of machine learning.

We trained two deep-learning networks for the detection problem: Faster R-CNN and YOLOVS.
These networks were selected due to their robustness and efficiency in object detection tasks.
After extensive training and evaluation, we achieved an average precision of 95.72% on the
detection task, demonstrating the effectiveness of these models in accurately identifying and
localizing license plates in various conditions.

The license plate recognition task, a complex and challenging problem, was tackled using two
deep-learning networks. We employed the CNN-RNN model with CTC loss networks and
YOLOV8 to recognize the characters. Our analysis of the character error rates led to a significant
achievement-a 94% recall ratio for the recognition task using YOLOVS.

We used confusion matrices for the font evaluation problem to explore confusion cases.
Moreover, we compared our results with those of one of the commercial products for the optical

character recognition(OCR) task.

II. Future Work

Our future work presents novel and impactful directions that extend the current research:

We aim to tackle license plate detection in more challenging contexts by training deep learning
networks to detect plates of various sizes, styles, and font types across all vehicles, ensuring
robustness and versatility.

Our proposal includes the development of a practical benchmark/testing framework. This
framework will evaluate the performance of commercial license plate recognition products and
support multiple datasets worldwide, each with different font types. It will be easily integrated
with new datasets and products and standardize performance metrics, facilitating comprehensive
and comparative evaluation. We intend to create a standard benchmark for typographers to assess
new font types for license plate detection systems. This system will allow typographers to input
font type glyphs, which will then be automatically evaluated for their suitability in detection and

recognition models, identifying potential confusion cases.
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Given Quebec's permission for personalized license plates since 2018, we propose extending the
Quebec license plate dataset to include more personalized items.

We will collect new datasets from other Canadian provinces that allow personalized plates, such
as Ontario, Alberta, Manitoba, and Nova Scotia. We will retrain the detection network with these
new datasets and monitor performance and potential confusion cases associated with personalized

plates.
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