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ABSTRACT 
 

Urban Building Energy Models for District Cooling: A Data-Driven 

Approach Considering Building and Occupant Behavior Dynamics 
 

Omar Ahmed 
 

 
District cooling offers an energy-efficient solution for hot urban regions where cooling demands 

are high. Accurate and rapid predictions of cooling requirements are vital during the planning phase 

to support informed decision-making. Surrogate models, which combine physics-based simulations 

with statistical or machine learning techniques, can harness the strengths of both methods, leading 

to more accurate building energy predictions at a low computational cost. In this study, a surrogate 

model, which combines machine learning with building physics-based archetypes, is employed to 

predict the cooling energy use intensities for high-rise buildings in a mixed-use district. The 

proposed surrogate models predict the impact of building design parameters, building operation 

characteristics, and occupant-related parameters on building energy performance. High-rise 

building models, representative of the district, are created using EnergyPlus software. The detailed 

cooling load profiles of these baseline models are simulated, analyzed, and validated against 

measured data and literature benchmarks. The resulting cooling loads are then aggregated at the 

district level, providing a physics-based method for urban-scale energy prediction. Parametric 

simulations are automated in RStudio using the developed archetypes by altering key parameters 

such as building envelope characteristics, geometry, and operational parameters, including 

occupant behavior. The resulting datasets are used to train machine learning models to approximate 

the outcomes of physics-based simulations. Additionally, the trained models are integrated into a 

user-friendly interface, enabling computationally efficient predictions of cooling requirements for 

each building in the district. The developed models show excellent performance, with R² values 
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near 1 and RMSE below 0.17 kWh/m²/month on unseen data. This study demonstrates the potential 

of surrogate machine learning in predicting and optimizing building energy performance under 

different design, operation, and occupancy settings. It also provides insights into the impact of 

training dataset size on the accuracy of surrogate machine learning models.  

 
Key Words: Urban Building Energy Modeling, District Cooling, Surrogate Modeling, Machine 

Learning, Building Performance Analysis, Occupant Behavior. 
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CHAPTER 1 

 

 
1. Introduction 
 

1.1. Problem Statement 

 

As per the International Energy Agency (IEA), more than 30% of global energy consumption and 

55% of the overall electricity demand stem from the building sector [1]. The predominant 

contributors to energy use in this sector are heating and cooling, accounting for over half of the 

total energy consumption. With the ongoing trend of urbanization and the continual growth of 

urban populations, there is an anticipated further increase in energy consumption within the 

building sector. The utilization of building energy modeling is crucial for analyzing building 

performance, identifying potential energy-saving measures, and assessing the impact of diverse 

design and operational strategies on the energy efficiency of buildings, ultimately aiming to 

optimize their design and operation. In the realm of building energy modeling, it is imperative to 

account for the distinctive climatic conditions of a particular region. Achieving optimal energy 

performance necessitates a comprehensive examination of buildings, taking into consideration 

factors such as their physical footprint and the prevailing climate zone. For example, buildings 

situated in cold and arid climate zones demand different design and operational approaches 

compared to those in hot and humid climates. 

In areas characterized by hot and arid climates such as Qatar, specifically those falling under the 

Koeppen-Geiger classification of BWh climate, which refers to regions having hot and dry desert 

climates with an annual average temperature exceeding 18 ̊ C [2], a substantial portion of the 

building sector's electricity consumption is allocated to cooling functions. For Qatar, an in-depth 

analysis of the energy distribution profile revealed that the residential and commercial sectors 
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contributed 41% and 19%, respectively, to the overall electricity consumption [3]. Notably, 65 % 

of the electricity used in Qatar is used for cooling systems, with traditional air conditioning, being 

the predominant type [4]. Considering the ongoing trends of population growth, urbanization, and 

the evolving climate due to global warming, there is an anticipated growth in cooling requirements. 

Consequently, the development and implementation of cooling systems and technologies present 

substantial opportunities for energy conservation and hold valuable potential for mitigating the 

growth in electricity consumption and peak demand. 

In the Gulf Cooperation Council (GCC) region, District Cooling (DC) has emerged as a viable and 

recent cooling approach aimed at reducing overall energy consumption in buildings and mitigating 

associated environmental pollution [4]. Research indicates that district cooling systems offer the 

adoption of cost-effective and energy-efficient solutions, demonstrating enhanced operational 

flexibility and utilization of low-cost energy storage options. Furthermore, they leverage energy 

sources such as excess heat from industries and natural cooling that might otherwise remain 

untapped [5]. Owing to these advantages, Qatar has experienced substantial growth in installed DC 

plant cooling capacity, witnessing an almost two-fold increase from 562,000 TR in 2016 to 995,700 

TR in 2020 [6]. 

The precise estimation of the cooling load holds paramount importance in the design of a district 

cooling system as it directly influences the system's design, operation, and cost-effectiveness. 

However, accurately estimating the cooling load characteristics of a DCP remains a formidable 

challenge. Numerous building developers tend to overestimate the cooling consumption of 

buildings, leading to the inefficient utilization of district cooling plant capacity. This practice not 

only results in wasted resources but also has a direct impact on the comfort index within the 

conditioned indoor environment. To support decision-making for stakeholders in district cooling 

plants, there is a crucial need for accurate and quick prediction and analysis of building and district-
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level cooling energy requirements.  

Urban Building Energy Models (UBEMs) prove to be promising tools for predicting operating 

energy consumption and indoor conditions for clusters of buildings within large-scale simulations 

in diverse urban scenarios [7]. Building energy consumption prediction can generally be 

categorized into three groups. First, there is the building physical energy model, commonly referred 

to as the "white box," which is based on precise building characteristics and heat and mass balance 

formulas. Secondly, the data-driven model, also referred to as the "black box," is based on machine 

learning algorithms and building historical data. Finally, the hybrid model, sometimes known as 

the "grey box," is a methodology that combines easily accessible data with building physical 

information [8].  

Various studies have consistently demonstrated that grey-box models effectively strike a balance, 

harnessing the strengths inherent in both white-box and black-box models, and yielding superior 

prediction results [9]. However, their widespread adoption is limited due to ambiguity in their 

development methods and the lack of widely used development software for grey-box models [10].  

Regardless of the methodology followed when creating UBEMs, uncertainties stemming from 

various sources, including assumptions about occupant behavior (OB), may constrain their 

reliability and potential [11]. Despite OB being acknowledged as a main factor influencing building 

energy consumption, it is still a relatively unexplored topic in the field of UBEM. Most UBEMs 

rely on deterministic schedules and parameters for defining OB, with only a few adopting a 

probabilistic evaluation [12]. Studies have demonstrated that utilizing improper OB models can 

lead to oversizing district energy systems, which would increase investment and decrease their 

operational efficiency [11]. While relying on constant occupancy profiles is not recommended for 

applications at the urban scale, obtaining dependable information on building occupancy at an 

urban scale poses a challenge due to the cost and complexity associated with deploying numerous 
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sensing devices across the entire urban area [13].  

1.2. Research Objectives 

 

 To address the two problems discussed in section 1.1, the research has two main objectives: 

 

(1) To estimate the energy consumption of a mixed-use district, a surrogate machine learning 

model has been developed to predict the cooling energy use intensities for the three available 

building types (Residential, Commercial, and Mixed-Use). A hybrid method, combining 

representative building physics-based models and machine learning techniques is used. Twelve 

typical high-rise building archetypes are modeled to represent each building type within the 

case study area. The cooling load profiles of the baseline archetype models are simulated, 

analyzed, and validated. Following this validation, parametric simulations are conducted. For 

each building type, a total of 7,800 cases are generated by varying critical parameters related 

to the building envelope, geometry, and occupant behavior. Three neural network models, one 

for each building type, are then developed using the created input-output datasets for cooling 

energy use intensity predictions.  

 

(2) A user-friendly decision support environment is created by linking the trained machine-

learning models to an Excel sheet. This tool is used to predict the monthly cooling energy use 

intensity profile for each building in the case study district using easily definable inputs. The 

results from these individual predictions are then aggregated to obtain the district-level cooling 

energy consumption profile. By including inputs related to occupant behavior, the tool can 

more accurately represent the diversity between buildings of the same type. 
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CHAPTER 2 

 

 
2. Literature review 
 

2.1. Overview 

 

This literature review explores the current state of Urban Building Energy Modeling (UBEM) and 

its relationship with District Cooling Design. It starts by discussing District Cooling Systems 

(DCS) and their advantages in densely populated urban areas. The scope of UBEM, covering 

everything from urban planning to carbon reduction strategies, is outlined. UBEM Top-down and 

Bottom-up Methodologies are discussed, with a closer look at the Bottom-up UBEM approaches. 

Physics-based Bottom-up UBEM, leveraging heat and mass balance equations, Data-driven 

Bottom-up UBEM, involving statistical and Artificial Intelligence (AI) methods, and Hybrid 

Bottom-up UBEM models, combining simulations with machine learning or statistical approaches, 

are all elucidated, to put forward the rationale for adopting a hybrid modeling approach. To move 

closer to the research gap, occupant behavior is then identified as a major contributor to building 

energy usage before outlining the importance of its representation in building energy analysis and 

what limits its depiction in urban scale energy analysis. Finally, this section ends with pointing out 

the potential contributions from this work to areas where more research is needed in this 

interdisciplinary field. 

 

2.2. District Cooling Design 

 

Currently, the majority of global building cooling demands are satisfied by traditional on-site 

cooling systems. Cold energy is generated and distributed at the end user's location in such systems, 

whether they are smaller capacity window units or central air- or water-cooled chillers for larger 
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applications [14]. A District Cooling System (DCS) is characterized as a system that provides end 

users with chilled water from a central source for the purposes of dehumidification and space 

cooling [15]. Generally, it comprises four key components: the heat rejection system, the central 

chiller plant, the end users, and the distribution system which links the previous three together. For 

dense districts experiencing hot climatic conditions throughout the year, rapid urbanization, and 

extensive building developments, such as those found in the Gulf Cooperation Council (GCC) 

regions, District Cooling (DC) systems present several significant advantages over conventional 

cooling systems. DC requires less energy, can be integrated with several renewable and sustainable 

energy technologies, facilitates a more flexible system operation, offers affordable energy storage 

solutions, and enables the use of energy sources such as excess heat from industries and natural 

cooling that would otherwise go unused [5], [16], [17]. The cooling load is usually considered the 

most significant factor influencing the design, performance, and decision-making process related 

to DC systems. Therefore, a detailed analysis of the cooling requirements and usage patterns is 

required since they can vary significantly for diverse end users.  

Quantifying cooling loads is a preliminary step in the DC design and analysis process. Both peak 

cooling load requirements and annual cooling load profiles are needed for the design and analysis. 

Engineering standards such as ASHRAE provide a straightforward method for predicting district-

level cooling loads. Comprehensive tables for cooling load density data per unit area are provided 

for different building types. However, given their limits in terms of accuracy, these data should be 

used cautiously in the initial stages of DC planning. At the district level, many research papers 

have addressed more sophisticated cooling load calculation and analysis techniques. Actual 

measured end-user data is used in some approaches for cooling load calculation [18], [19]. 

However, these methods are only applicable to existing buildings, and even then, can often be 

missing or unavailable. For districts still in the design phase, simplified engineering approaches or 
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building performance simulation tools are commonly used for load estimation [20], [21]. To further 

clarify the scope of this work, the state-of-the-art in UBEM is presented in the following section. 

 

2.3. Urban Building Energy Modeling 

 

Urban Building Energy Modeling involves the development and analysis of a dependable building 

energy model for a cluster of buildings within an urban setting [22]. UBEM operates within a 

spatial scale ranging from a city block to a district and extends to an entire city. The focus extends 

beyond individual buildings to encompass the interactions between buildings and the impact of the 

urban microclimate [23]. UBEM serves as a valuable tool for aiding the design and optimization 

of urban buildings on a comprehensive scale, aligning with goals related to energy efficiency, 

sustainability, and resilience within urban landscapes [22]. Four main categories have been 

proposed for classifying UBEM applications [24] (Figure 1).  

 

 

Figure 1. UBEM Applications [24] 

 

1. Urban planning and new neighborhood design.  

UBEM Applications

urban planning and new 
neighborhood design

stock-level carbon reduction 
strategies

buildings-to-grid (B2G) 
integration

individual building-level 
recommendations
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Urban characteristics such as geometry, typology, shading, daylight, and urban heat island effects 

can significantly affect building energy use [25], [26]. In the context of designing new 

neighborhoods and urban planning, UBEMs are particularly valuable. An UBEM can be used in 

the preliminary design stage to explore various building massing layouts, window-to-wall ratio 

(WWR) configurations, etc., This comparative analysis helps gain insights into the relative 

performance of different planning scenarios. [27], [28] 

2. Stock-level carbon reduction strategies. 

For stock level energy and carbon reduction strategies, the potential energy savings resulting from 

specific upgrades when applied universally to buildings with similar characteristics, such as 

program type, age, category, or archetype in a district need to be comprehended. For this purpose, 

UBEMs are used for estimating energy savings by replacing existing templates with new ones that 

incorporate the upgrades. Through modeling and simulation, the results can reveal the overall 

potential for carbon reduction and energy savings across different retrofit scenarios, pinpointing 

the building types that contribute most significantly to these savings. [29], [30] 

3.  Individual building-level recommendations. 

As opposed to municipal governments and policymakers who are primarily concerned with stock-

level analyses, building owners are more focused on understanding the specific energy savings 

resulting from particular upgrades to their buildings or portfolios, to establish customized 

recommendations. To address this objective, UBEMs calibrated to the individual building level, or 

auto-calibrated building-level UBEMs can predict energy savings for individual buildings within 

a specific region based on metered annual or monthly data for the buildings under study. [31], [32], 

[33] 

4. Buildings-to-Grid (B2G) integration 
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Due to the substantial impact of buildings on the grid and the advantages of data-driven models for 

predictive and demand-responsive controls, demand response has now become a viable option for 

everyday application [34]. Buildings can function as both controllable consumers and producers of 

energy, presenting unique opportunities for building-to-grid (B2G) integration. UBEMs, which 

generate current and future hourly load profiles for buildings, appear to be an ideal complement to 

supply-side modules, enabling integrated analysis. Electrification scenarios or load control 

strategies based on pricing could be further examined using more integrated grid -building models 

to assess potential new chokepoints in the grid as the overall load increases during operations. B2G 

integration emerges as a solution to coordinate meeting this load without significantly altering the 

capacity of the existing power system. [35], [36], [37] 

The modeling procedure in UBEM is not a straightforward process and involves various challenges 

and uncertainties. Selecting the appropriate modeling procedure is highly dependent on the 

required objective and application, the scale of the model, and available data and resources. A 

number of classifications for UBEM approaches have been found in the literature, with a more 

recent and widely cited classification presented in [38] (Figure 2).  

 

2.3.1. Top-down UBEM 
 

The Top-down modeling approach is typically data-driven, employing statistical and regression 

models to explore the relationships between urban energy usage patterns and associated drivers 

such as macro and social economics as well as energy policies [39]. Because of their 

straightforward modeling approach, relatively high processing speeds, and the ready availability 

of necessary data, top-down models have found extensive use in urban building energy-related 

studies [40], [41]. However, these models are not considered suitable for in-depth analysis and 
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building-level recommendations since they regard a collection of buildings as a unified energy 

asset [39]. Furthermore, their reliance on aggregated historical data without precise spatial or 

temporal information hinders the prediction of future trends [42] and limits their ability to examine 

technological changes in current and future scenarios [12]. 

 

 

Figure 2. UBEM approach classification [38] 

 

2.3.2. Bottom-up UBEM  
 

In contrast, bottom-up models are characterized by analyzing the energy demand at the individual 

building level and consequently scaling up to the urban level. While this approach demands 

extensive disaggregated data and computational resources, it offers higher spatiotemporal 

resolution and model accuracy, which can support the decision-making processes in energy 

conservation measures and possible future scenarios [39]. Bottom-up models are also able to 

consider the dynamic interactions between buildings and the urban setting, allowing the inclusion 

of more specific building and urban environmental aspects in the model. Bottom-up models can be 

UBEM

Top-down 

Socio-
Econmic

Technical Physical

Bottom-up

Data-driven
Physics-based 
(Engineering)

Hybrdi (Data-
driven + 

Engineering)
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classified into three categories, Physics-based (Engineering), Statistical and data-driven, and 

Hybrid approaches.  

 

2.3.2.1 Physics-based (Engineering) approaches  
 

Physics-based models leverage a building's unique technological and physical characteristics, using 

heat and mass balance equations, in addition to information from heating and cooling systems, 

weather, building features, and construction details to determine energy demand [42]. These 

models are highly adaptable for evaluating scenarios related to energy efficiency and technology 

improvements. The bottom-up archetypal method has been extensively employed in the urban 

setting to evaluate the impact of adopting new technologies and energy efficiency policies [22], 

[29]. To estimate the building stock energy consumption, this method entails modeling each 

building archetype in a simulation engine and then scaling up the estimations for the regional or 

national level [43]. Building physics-derived quantitative data is a major component of these 

approaches, requiring inputs such as internal and external temperatures, HVAC system 

characteristics, building components' thermal properties (U values), internal load definitions, 

occupancy, and building schedule information [23], [44]. Additionally, these models require a 

significant quantity of technical data to predict energy usage and multiple assumptions to describe 

occupant behavior [45]. Physics-based building energy modeling research has grown rapidly over 

the last few decades. CityBES [46], CitySim [47], City Energy Analyst (CEA) [48], Urban 

Modeling Interface (UMI) [49], Open Integrated District Energy Assessment by Simulation 

(OpenIDEAS) [50], and TEASER [51] are considered the most well-known readily available tools 

used for various applications in the urban energy domain.  
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2.3.2.2 Data-driven bottom-up UBEM 
 

Data-driven models in the bottom-up approach can capture the relationships between the energy 

consumption of a building and the buildings’ characteristics along with other drivers [9]. Existing 

data sources such as survey data, building stock statistics, billing data, and socioeconomic 

parameters are leveraged for predicting building energy consumption [44]. Data-driven modeling 

typically encompasses statistical and Artificial Intelligence (AI) (machine learning) approaches 

[52]. In the statistical approach, regression techniques are employed to establish inverse 

mathematical models based on building design or operational parameter details. Linear Regression 

(LR), Non-linear Regression (NR), Multiple Linear Regression (MLR), and Conditional Demand 

Analysis (CDR) are the most frequently adopted algorithms in this method [52]. Kontokosta [53] 

utilized MLR using the New York City Energy Benchmarking (2011) dataset to predict urban 

buildings’ energy usage. Kuusela et al. [54] also applied MLR to predict energy consumption based 

on building characteristics at the neighborhood scale. Mastrucci et al. [55] adopted a graphical 

information system (GIS) based statistical approach to estimate the energy usage of residential 

urban areas. Using an autoregressive model, Dagnely et al. [56] evaluated the accuracy of linear 

regression using the ordinary least squares (OLS) and support vector machine (SVM) approaches, 

demonstrating that both approaches may deliver a performance accuracy level that is satisfactory. 

While the MLR algorithm is extensively utilized for predicting energy use due to its simplicity and 

interpretability, it faces limitations in capturing non-linear and complex patterns.  

The AI approach primarily relies on machine learning (ML) techniques to predict urban building 

energy usage by automatically detecting and learning patterns in the data. To establish the 

mathematical relationship between building energy use and significant variables such as building 

features, urban characteristics, and occupancy features, the model is trained and learns using 

historical datasets [52]. ML techniques are generally categorized into two main groups: supervised 



13  

and unsupervised learning. Supervised learning involves predicting the output by establishing a 

complex relationship between multiple features and includes regression and classification 

algorithms. Classification algorithms predict output data when the outcome is a label, such as 

building typologies or energy ratings, while regression algorithms gain knowledge from the input 

data and predict actual output values, such as energy consumption. On the other hand, unsupervised 

learning algorithms identify underlying structures, correlations, or unidentified patterns in the input 

data, such as energy usage patterns. Data-driven models are extremely useful in various urban 

energy applications, including prediction, forecasting, benchmarking, mapping, and classification 

[44]. Rahman et al. [57] applied deep recurrent neural networks to forecast medium- to long-

term electricity usage for residential and commercial buildings. Using national survey data, 

Robinson et al. [58] suggested an approach for estimating the energy consumption of commercial 

buildings by training several machine learning models (gradient boosting model, linear regression, 

support vector regression, random forest). Zhang et al. [59] presented a data-driven approach that 

considers a number of variables, including building attributes, geometry, and urban morphology, 

to estimate energy consumption and greenhouse gas emissions. Abbasabadi et al. [60] proposed an 

integrated framework for urban energy use modeling which models energy used in urban buildings 

and transportation leveraging a ML approach. Razak et al. [61] created a ML model that uses 

building design features at the early development stages to predict yearly average energy use. 

Wurm et al. [62] created a workflow employing deep learning algorithms to simulate the building 

stock heating demand. To summarize, machine learning approaches can improve the accuracy of 

urban energy use forecasting by utilizing high temporal and spatial resolution data and 

sophisticated algorithms that facilitate the capture of complicated and non-linear patterns. The 

primary challenge lies in the insufficient availability of high-quality data available in large enough 

volumes to effectively train prediction models. This underscores the need for a robust building 



14  

energy modeling approach that can reliably forecast the energy performance of whole building 

stocks, especially in the event that resources for intricate decision-making analysis are scarce. 

 

2.3.2.3 Hybrid bottom-up UBEM 
 

Hybrid models aim to mitigate the shortcomings of both data-driven and physics-based models, by 

combining various techniques to achieve the unique goals of each model. These models integrate 

elements of ML or statistical approaches with physics-based simulations to leverage the strengths 

of both approaches, incorporating factors that each model alone may not be able to capture 

comprehensively. In this approach, buildings can be modeled using their physical attributes, while 

stochastic parameters are represented using empirical distributions to account for their uncertainty 

[12]. The outputs from the physical simulations along with building metadata can then be used to 

predict building energy needs or other pertinent performance indicators. These hybrid approaches 

are often referred to as surrogate ML models. Naji et al. [63] developed three surrogate ML models 

(artificial neural network (ANN), genetic programming, and extreme learning machine (ELM)) for 

predicting the heating and cooling energy needs of a residential building in Turkey. Their findings 

emphasized the robustness and superior predictive performance of the ELM algorithm compared 

to ANN and genetic programming in predicting building energy consumption using the main 

building envelope properties. Melo et al. [64] developed surrogate models for estimating annual 

cooling loads for commercial buildings in Brazil employing five different algorithms (multiple 

linear regression (MLR), multivariate adaptive regression splines (MARS), support vector 

machines (SVM), ANNs, and Gaussian Processes (GP)), finding that ANNs outperformed the other 

algorithms on the base of normalized root mean squared error (NRMSE). Ascione et al. [65] 

generated two families of surrogate ANNs. One family assesses the energy performance of the 

existing building stock, while the other estimates the impact of energy retrofit measures. Their 
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methodology, applied to Italian office buildings, aims to predict energy consumption for space 

conditioning and occupants' thermal comfort for any member of a building category in a reliable 

and computationally inexpensive manner. Magalhães et al. [66] developed surrogate ANNs 

utilizing simulation results from ESP-r to describe the relationship between heating energy use and 

indoor temperatures for European residential buildings. Papadopoulos et al. [67] employed tree-

based ensemble methods, namely random forest (RF), gradient boosting regression trees (GBRT), 

and extremely randomized trees, along with a data set created using Ecotect, for developing 

surrogate models capable of predicting annual cooling and heating loads for residential buildings 

in Greece. Their findings emphasized the suitability of tree-based ensemble learning algorithms for 

building energy predictions, with GBRT outperforming RF and extremely randomized trees in their 

case study. Nutkiewicz et al. [32] proposed a hybrid methodology that combines simulation-based 

techniques employing the EnergyPlus tool with data-driven approaches utilizing a Convolutional 

Neural Network (CNN) model to achieve precise predictions of urban energy consumption across 

various temporal scales (hourly, daily, and monthly intervals), applied for 22 university buildings 

in California. Lopes et al. [68] developed surrogate ANNs to predict the annual cooling energy 

consumption of Brazilian office buildings. Additionally, they introduced and validated a new 

climate indicator designed to extend the applicability of their model across different climate zones. 

Jihad et al. [69] developed an ANN employing synthetic data derived from EnergyPlus simulations 

to predict heating and cooling loads for residential buildings in Morocco. Ngo [70] used simulation 

results from TRACE 700 to develop models for predicting office building cooling loads in Taiwan. 

The performance of individual ML algorithms (ANN, linear regression (LR), support vector 

regression (SVR), and classification and regression trees (CART)) was assessed, as well as 

strategic combinations of these ML models to create ensemble models. D’Amico et al. [71] 

developed a decision-support tool capable of analyzing the energy and environmental performance 
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of Italian office buildings along their life cycle. Their tool was based on ANNs, developed using 

input-output data from TRNSYS simulations. Vázquez-Canteli et al. [72] developed a surrogate 

model for calculating the thermal losses and solar gains of urban buildings in the US leveraging 

simulation results from CitySim and two deep neural networks. Their surrogate model reduced the 

computational time by approximately 2500-fold compared to traditional urban scale simulation 

tools while maintaining a reasonable level of accuracy. Ciulla et al. [73] developed ANNs to predict 

the heating energy demand of non-residential European buildings. They created the necessary 

energy database for model training using simulations in the TRNSYS environment, adhering to 

European standards and regulations, and considered three different locations to represent various 

climatic conditions. Using meteorological data and building characteristics, Westermann et al. [74] 

devised a model that spans arbitrarily many locations for estimating heating and cooling demand 

for an office building in Canada with a bias of less than 3%. This model was developed by 

employing output data from EnergyPlus simulations alongside a deep temporal convolutional 

neural network. Lou et al. [75] leveraged TRNSYS simulation results to develop three ML models 

(ANN, SVM, and long-short-term-memory neural network) for simultaneous prediction of heating, 

cooling, lighting, and building integrated photovoltaic (BIPV) loads for an office building in the 

UK. Mui et al. [76] created a hybrid model to forecast the cooling energy consumption of 

residential buildings in Hong Kong by combining EnergyPlus and Artificial Neural Networks 

(ANN). Their hybrid model was then employed to assess how different building materials, 

construction techniques, and indoor-outdoor temperature fluctuations affect cooling energy 

consumption in a computationally inexpensive manner. Elbeltagi et al. [77] developed an ANN 

capable of predicting the energy use intensity (EUI) of Egyptian residential buildings using results 

from EnergyPlus simulations. Li et al. [78] trained ten different ML models for predicting space 

cooling and heating EUIs for both residential and non-residential buildings in China using data 
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generated via the Urban Modelling Interface (UMI) physics-based tool. Their findings demonstrate 

that surrogate ML models can accurately predict building heating and cooling energy at multiple 

scales. Lee et al. [79] utilized EnergyPlus results to develop ANNs for predicting heating loads in 

residential buildings in Korea. They trained multiple ANNs using various combinations of input 

variables, and assessed the accuracy of the models, emphasizing the significance of selecting 

appropriate input variables for effective ANN model training. Liu et al. [80] developed three 

different surrogate ML models (RF, SVM, ANN) for predicting the energy consumption of a 

university building in northern China. Their approach aimed to optimize building envelope design 

parameters, demonstrating the advantages of the RF model in their case study. Jia et al. [81] 

evaluated the performance of four ML algorithms (MLR, SVM, extreme gradient boosting (XGB), 

and ANN) in predicting the monthly cooling EUIs of high-rise residential buildings in Qatar. The 

models were developed using synthesized data from EnergyPlus simulations, with the ANN 

demonstrating superior prediction accuracy compared to the other algorithms. Santos-Herrero et 

al. [82] developed surrogate ANNs to forecast operative temperatures and energy consumption 

across various spaces within an office building situated in Spain. Ali et al. [38] evaluated the 

performance of various ML algorithms (LR, RF, gradient boosting (GB), XGB, and adaptive 

boosting (AdaBoost)) as surrogates to a BPS model in predicting building performance metrics 

across different operational scenarios. Their results highlight that while XGB outperformed the 

other algorithms in predictive accuracy, showing the highest coefficient of determination value, 

the LR model demonstrated quick training times and straightforward interpretability while 

maintaining competitive prediction accuracies.  

 

2.4. Occupant behavior modeling in building performance simulations 
 

Occupant Behavior (OB) is one of the six major drivers of building energy consumption as shown 
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in Fig. 3 [83]. OB can mainly be classified into occupancy and occupants' interaction with building 

systems (e.g., HVAC, lighting, appliances, and other energy equipment), as presented in Fig. 4 

[84]. OB defines the presence and movement of occupants as well as their interaction with building 

systems, which are conventionally represented by fixed schedules in BPS tools. However, these 

static schedules are incapable of representing the actual impact of occupant presence on building 

energy consumption and the dynamic relationship between a building and its' occupants [85], [86], 

[87]. 

 

Figure 3. The six major drivers of building energy consumption. 

 

 Although five of the six major driving factors of building energy use mentioned in Fig. 3 have 

witnessed notable progress in their accurate representation in BPS tools, it remains a challenge to 

represent OB due to its unique characteristics [88], [89], [90], [91]. First, OB is stochastic; 

occupants do not consistently repeat the exact behavior daily since their behavior is governed by 

various factors. Second, OB is diverse as occupants have varying comfort demands and tolerances, 
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which in turn causes occupants to exhibit a variety of behaviors for similar triggers. Third, OB is 

complex as it can be impacted by many components. Finally, OB has a dynamic nature which 

entails that OB is dependent on the buildings' design. For example, without analyzing the use of 

window coverings by occupants, simulation results could suggest that increasing the area of the 

window would result in increased daylight usage. However, due to glare issues, overly sized 

windows may just compel people to close curtains and rely only on electric lighting [88], [92], 

[93]. 

 

 

Figure 4. The two main categories of OB. 
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Due to the abovementioned characteristics of OB, several research groups studied how the 

uncertainty of input parameters in an OB model affects the building energy use [94], [95], [96], 

[97], [98]. For instance, a case study by Eguaras-Martínez et al. [99] demonstrated that the use of 

default occupancy schedules and the use of more realistic schedules created from actual collected 

data can cause differences of up to 30% for the heating and cooling demands of buildings. Another 

study by Li et al. [100] analyzed the electricity consumption for air-conditioning in 25 different 

apartments of a large residential building in Beijing in the summer. Although the building envelope 

was identical, the measured electricity consumption varied broadly up to a factor of ten among 

different apartments. This large variation was attributed to the air-conditioning system's operating 

mode. Apartments in which the occupants operated the AC in larger areas or for longer periods 

exhibited a higher energy consumption. The study concluded that the occupants' actions, not the 

apartments' design, were the main drivers of energy consumption. 

The development and implementation of OB models in BPS tools require a number of steps which 

are elucidated in Figure 5 [101]. Before developing an OB model, it is important to precisely 

characterize the problem or issue that it is meant to address. The appropriate level of modeling and 

the models’ balance between accuracy and applicability can then be specified based on the 

definition of this problem. For example, rather than simulating the stochastic behavior of each 

occupant individually when attempting to quantify a specific level of energy use in a large building, 

a simple model of the building as a whole would be sufficient because the stochastic nature of the 

occupants can be accounted for by statistically aggregating the energy use of a number of spaces 

[102]. On the other hand, when modeling occupants in a single zone, considering the stochastic 

nature of occupants would be more important [88]. It is well known that not all the components 

that influence OB can be accounted for and represented in an OB model, but models are generally 

created with the purpose of offering a decent estimate of OB in most cases. 
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According to Melfi et al. [103] there are three major factors that contribute to the resolution of an 

OB model, i.e., temporal, spatial, and occupancy. Temporal resolution is the level of accuracy used 

to model an event’s timing and can vary from minutes and seconds to days and hours. Spatial 

resolution is correlated with accuracy on the physical scale, and it refers for example to the model’s 

capability in predicting occupant numbers in a zone or building. How the model identifies 

individual occupants is referred to as occupant resolution, which ranges from models that are 

merely capable of determining if a space is occupied to models that are able to determine the precise 

behavior being performed by the occupant. The resolution for each of the three aspects must be 

well-defined before creating an OB model. It is also dependent on the objectives of the model and 

the issues it aims to solve. Figure 6 illustrates the resolution levels of OB models. Then, in an effort 

to comprehend the OB and learn more about the building's energy usage, data is gathered via 

sensing equipment and supplemented, if possible, with data obtained from the occupants 

themselves. Since OB models are meant to successfully explain the energy-related OB in buildings 

 

Figure 5. OB modeling, implementation, and validation sequence in BPSs. 
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other than the ones from which the data was initially gathered, the model should be able to 

accurately describe the fundamental characteristics of OB while avoiding the inclusion of any 

irregularities particular to the data source. A model is considered suitable for widespread use 

(meaning that it can be used in multiple cases by modifying certain inputs) if it’s robust, pragmatic, 

and has an acceptable number of inputs that can be easily defined [88]. 

 

In general, occupants' energy-related behavior is caused by a variety of cues referred to as "drivers" 

[104], [105]. The relationship between drives and behavior, as well as behavioral patterns and what 

motivates them throughout time, can then be examined to develop a behavioral model. In this way, 

despite OB's complex, dynamic, and interdisciplinary nature, it may be represented by quantitative 

models. These models can then be integrated within BPS tools for a more reliable representation 

of OB. The uncertainty, associated with almost every step in OB modeling, also remains an 

important aspect to be considered. The inappropriate choice of OB data collection, modeling 

technique, and integration approach can all introduce more uncertainties in the process. OB models 

can be used in conjunction with statistical techniques such as uncertainty and sensitivity analysis 

 

Figure 6. OB model resolution levels [103]. 
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to identify important factors affecting particular performance indicators (PIs), such as heating, 

cooling, and electricity demand. The variability of PIs owing to OB can be reduced by taking into 

account occupant-related uncertainty and defining PIs using probability distributions or predicted 

ranges [85], [95]. Accordingly, various OB patterns can be utilized to generate probability 

distributions for PIs, enabling more accurate predictions of building performance and its potential 

variation as demonstrated in [106], [107], [108] while minimizing OB-related uncertainty and 

maximizing the robustness of the simulation to OB.  

Although OB research has been of great interest to researchers over the past decade and noticeable 

advancements have been made in several aspects of OB such as data collection methods, modeling 

approaches, and model implementation. However, the use of OB models in BPSs is still largely 

limited to researchers rather than practitioners and users. Besides, a performance gap between 

simulated and actual energy use still exists. When it comes to urban-scale energy analysis, two 

main limitations hindering the representation of OB can be identified. 

 

Acquiring empirical statistics and large-scale occupant behavior data: More energy may be 

utilized in residential structures in urban regions as a result of the rapid modernization and 

accompanying lifestyle changes. For the development and implementation of urban policies, it is 

crucial to comprehend building energy performance beyond individual structures and at a wider 

city scale. In our review, however, only a few studies examined how OB relates to the large-scale 

building energy performance [109]. The challenge of acquiring reliable information on building 

occupancy at an urban scale is hindered by the expense and complexity of deploying numerous 

sensing devices throughout the whole urban area, while relying on constant occupancy profiles is 

not advised for urban scale applications. In order to enable further analysis in this area, more field 

surveys should be conducted due to the importance of empirical evidence and data to the study of 
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OB and the building energy performance [92], [110]. The widespread usage of urban sensing 

technologies, Internet of Things (IoT), and open city data can also be employed to better understand 

and describe OB. For the purpose of occupant tracking and locating, researchers have used datasets 

leveraging a variety of mobile signals, including cellular tower signals, GPS, Wi-Fi, and Bluetooth 

which do not require the installation of additional expensive sensors, cameras, and calibration 

equipment [111]. Further efforts should be directed towards data creation and sharing while 

standardizing data models schemas for representing the collected data in a consistent format. 

Ensuring interoperability and facilitating easy integration into various applications while 

developing practical applications is vital to showcase the real-world utility and benefits of the 

collected data, highlighting its value and potential in diverse domains and use cases [112]. 

Modeling diversity between occupants: In most cases, OB models represent all occupants in a 

similar manner. The data collected from each space, or each occupant is mixed together, thus, 

obscuring the differences among occupants. Due to the stochastic nature of OB, even in similar 

situations, different occupants may behave in different ways. The occupants' demographics such 

as age and gender also affect their actions. This diversity between occupants can only be 

represented in OB models if each occupant is considered individually [88]. Some research has also 

proposed an improved definition of “average” occupants based on categorizing occupants 

regarding activity level or typologies discovered by cluster analysis in efforts of increasing model 

accuracy [85]. 

For larger scale simulations, due to the diverse manner in which occupants of different buildings 

may behave, a significant impact on peak loads can be observed for instance due to varying 

thermostat setpoint preferences [113]. Happle et al. [114] generated several space-based diverse 

and non-diverse occupant presence models and evaluated their effects on district occupancy, 

energy demand, energy potentials, and centralized cooling supply system design. They highlighted 
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the need to consider diverse and realistic occupancy profiles in UBEM to improve the accuracy of 

energy demand predictions and support informed decision-making for urban energy systems. 

Wu et al. [115] proposed a Level of Detail (LoD) methodology to determine the proper level of 

occupant air-conditioning behavior modeling granularity considering applications related to district 

cooling. Based on their findings, different LoDs are recommended for different district cooling 

applications. Their analysis concluded that disregarding occupant diversity was only acceptable 

when assessing total district cooling demand. While for district cooling and thermal energy storage 

systems design, and for electricity-pricing strategies occupant diversity had to be considered. These 

efforts however need to be complemented with more research regarding various behaviors, 

building typologies, and applications. Furthermore, the selection of representative and sufficient 

sample sizes capable of representing diversity in OB should be analyzed [85]. 

 

2.5. Literature Review Summary 

 

Surrogate ML models integrate elements of machine learning or statistical approaches with 

physics-based simulations to leverage the strengths of both approaches. Several studies have 

repeatedly shown that these hybrid models effectively strike a balance, harnessing the strengths 

inherent in both white-box and black-box models, and achieving better prediction results [9]. 

However, their widespread adoption faces limitations due to uncertainties in their development 

methods and the absence of widely used software for grey-box models [10]. Another issue, which 

limits the potential of UBEMs is related to simplistic or inaccurate assumptions regarding OB [11]. 

OB is usually disregarded in urban-scale energy analysis, with data unavailability being the main 

reason. This work presents a user-friendly decision support environment, leveraging a hybrid 

approach, combining representative building physics-based models and machine learning 

techniques to estimate the energy consumption of a mixed-use district. The tool is created by 
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linking the trained ML models to an Excel sheet. This tool would enable the prediction of building 

cooling energy use intensity using easily definable inputs by the user. The results from these 

individual predictions are then aggregated to obtain the district-level cooling energy consumption 

profile. The diversity between buildings of the same type can be more accurately represented by 

including inputs related to occupant behavior.  
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CHAPTER 3 

 

 

3. Methodology 
 

3.1. Research Framework  

 

The research methodology is detailed in this section and can be divided into four main steps as 

illustrated in Figure 7. The initial step involves the creation of representative building archetype 

models. The cooling load profiles of these archetypes are analyzed and validated using measured 

data from the case study district to ensure their representativeness and applicability. In the second 

step, the parametric simulation process used to generate the necessary datasets is described. An R 

script automates the creation of input parameter combinations, applies these parameters to the 

building archetype models, runs the simulations, and consolidates the input parameters with the 

required outputs in CSV files for further steps. In step three, the surrogate ML models are developed, 

detailing the training, testing, and optimization processes. Finally, in the last step, the proposed 

decision support environment is tested and deployed to predict the cooling loads for each building 

in the district in a user-friendly and computationally efficient manner, before aggregating the loads 

at the district scale. It should be noted that the district-level cooling load profile is developed by 

simply aggregating the cooling load profiles of individual buildings in the district. According to the 

ASHRAE DC Guidelines and the IDEA DC Guidelines, building-to-building interactions add 

unnecessary complexity at the initial design stage of DC plants. Therefore, simple aggregation is 

considered sufficient for initial design purposes.



 

 

 

 

Figure 7. Methodology overview. 
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3.2. Case Study 

 

The Marina district, which the case study of this research is built on, is considered the downtown 

core of Lusail City, Qatar. Lusail is recognized as Qatar's primary smart and sustainable city 

project, aligning with Qatar’s long-term aspirations for sustainable development. The Marina 

district contains over 100 plots of land, intended for the construction of high-rise towers for 

residential usage, office space, or mixed-use towers ranging from 12 to 50 stories. All buildings 

must adhere to the Global Sustainability Assessment System (GSAS) 2-star rating following local 

authority requirements. To meet the cooling requirements of the Marina district, a District Cooling 

Plant (DCP) with a capacity of 92,000 tons of refrigeration (TR) was installed. A three-dimensional 

aerial shot of the district is shown in Figure 8. The selection of the Marina district for this case 

study was based on several factors, including the region's extreme climatic conditions, its 

dependence on district cooling, the prevalence of high-rise buildings, compliance with the Lusail 

City GSAS 2 Star Rating Requirements, and the current sustainability trends. 

 

 
 

Figure 8. 3D aerial view of the Marina District. 
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3.3. Building archetype development 

 

A building archetype refers to a representation of a cluster of buildings within a specific area, 

sharing comparable attributes and specifications. Archetypal segmentation simplifies the task of 

representing or modeling numerous buildings, as archetypes can encapsulate the typical energy 

characteristics of the buildings they represent [116]. The development of building archetypes 

typically involves two primary steps: classification and characterization. In the classification step, 

the building stock is segmented into homogeneous groups based on one or more classifiers of 

energy behavior. The characterization step entails defining the thermophysical characteristics, 

HVAC system specifications, and inputs describing internal loads and schedules in accordance 

with applicable codes and standards as well as pertinent literature.  

In most research, the main variables, or classifiers, used to categorize the building stock include 

the building geometry, building typology or usage, year of construction, HVAC system details, 

climatic zone of the building, and envelope thermophysical properties [117]. In the specific context 

of the Marina district, where all buildings adhere to the Lusail City GSAS 2 Star Rating Guidelines, 

were constructed during the same period, and are served by the district cooling plant, the primary 

factors considered for archetype classification were building typology and geometry. the Lusail 

City Development Guideline and the Marina District master plan were consulted to identify the 

predominant building usage typologies and geometrical variations. Three primary high-rise 

building typologies were identified: multi-unit residential buildings, commercial buildings 

comprising mainly office spaces, and mixed-use buildings incorporating residential, office, and 

retail spaces. Every floor in the residential archetypes is depicted as a single thermal zone, used for 

residential purposes. Comparably, for commercial archetypes, each floor is modeled as a thermal 

zone corresponding to office space. However, in the case of mixed-use archetypes, the allocation 

includes 10% of the space for retail, 20% for office usage, and the remaining 70% for residential 
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purposes. Accordingly, three high-rise building archetypes were initially modeled, one 

representing each of the prevalent building typologies in the district. An aspect ratio of 1:1 was 

assumed for the three archetypes, as it was the most commonly identified aspect ratio in the Marina 

District development plan. As for the number of floors and gross floor area (GFA), mean values 

were calculated from all district buildings to define them, as presented in Table 1. 

 

Table 1. Geometrical characteristics of the three initial building archetype models. 

 

Archetype Commercial Residential Mixed-use 

Number of floors 28 19 31 

Gross floor area (m2) 28,672 15,979 29,791 

 

For defining the internal loads, information from the Lusail City GSAS 2 Star Rating Guidelines 

was prioritized, being a region-specific guideline to which the district's buildings must adhere. 

When necessary, this guideline refers to ASHRAE or other applicable standards to obtain the 

required information. Table 2 illustrates the general building envelope requirements enforced for 

all buildings in the district, which were subsequently implemented in the archetypes according to 

the Lusail City GSAS 2 Star Rating Guidelines. A list of the internal load definitions used for the 

archetype development is presented in Table 2. The input parameters were initially gathered as 

ranges. Subsequently, their means were calculated and utilized in the development of the baseline 

building archetype models. Schedules for occupancy, lighting, plug loads, and infiltration were 

extracted from the "ASHRAE 90.1-2016 User’s Manual" [118] since no region-specific schedule 

information was available. To ensure the accuracy and representativeness of the created archetypes 

and the validity of the inputs used for characterizing the archetypes, the cooling load profiles were 

simulated and analyzed for the three archetypes and validated against measured data and available 

literature. 
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Table 2. Building envelope requirements as per the Lusail City GSAS 2 Star Rating Guidelines 

 

Parameter  Value  Unit  

Wall U Value  ≤0.3 W/m2K 

Roof U Value  ≤0.25 W/m2K 

Window U Value  ≤ 1.8 W/m2K 

Window/Wall Ratio 50 % 

Window Solar Heat Gain Coefficient  ≤ 0.25 NA 

Cooling Setpoint  23 ℃ 

Floor Height  4 m 

 

Table 3. Internal load definitions for the baseline archetypes 

 

Parameter Unit  Office Residential  Retail  Reference  

People definition People/m2 0.0538 0.0283 0.1605 ASHRAE 62.1-2022, 

ASHRAE 90.1 -2016 User’s 

manual 

Lighting Power 

Density 

W/m2 9 6.5 9.038 GSAS 2 Star Rating 

Guidelines, ASHRAE 90.1-

2019 

Electric Equipment 

Power Density 

W/m2 8 6.67 3.228 ASHRAE 90.1-2016 User’s 

manual 

Infiltration Rate  m3/m2s 0.00057 0.00057 0.00057 PNNL-18898 guideline 

Ventilation Rate  m3/s∙person 0.0025 0.0025 0.0038 ASHRAE 62.1-2022 

 

After analyzing and validating the results from the three initial building archetypes using available 

measurements and literature benchmarks, the Marina District development plan was used to 

identify the possible geometric variations of the buildings. In terms of geometric variations, four 

potential floor count values and three possible values for the buildings' aspect ratio for each 

building typology were identified. Thus, a total of 36 archetypes were developed, 12 archetypes 
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for each building typology, to accurately represent the building stock. The geometrical 

characteristics of all the archetypes modeled for representing the district are summarized in Table 

4.  

Table 4. Geometrical variations for the archetypes representing the case study district. 

 
 Residential Commercial Mixed-Use 

Floor number 16, 19, 21, 26 25, 28, 31, 42 15, 23, 31, 40 

Aspect ratio 1, 1.5, 2 

WWR 50 % 

 

The building energy models were developed using SketchUp and OpenStudio. A window-to-wall 

ratio (WWR), calculated as the percentage area obtained by dividing the building's glazed area by 

its wall area, of 50% was used for all models, following the Lusail city GSAS 2 Star Rating 

Guideline. Following the creation of the models’ geometry, space types, and thermal zones were 

allocated to different areas, along with the associated details describing the construction, building 

activity, internal loads, and schedules. The simulations were then executed using EnergyPlus. For 

the weather file used in the simulations, a TMY weather file from the Doha International Airport 

weather station was chosen due to the close proximity between Doha and Lusail City and their 

similar coastal climates. For cooling load calculations, the Ideal Air Loads system in EnergyPlus 

is used.  
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3.4. Parametric simulations 
 

In this step, the generated building archetype models are employed to generate the required datasets 

for training and evaluating the surrogate ML models. The variables considered for the parametric 

analysis can be broadly categorized into three groups: building thermophysical properties, 

occupant-related definitions describing building operation, and building operation schedules. For 

the first two categories, ranges are defined for each variable based on information gathered from 

relevant codes and standards, as outlined in Table 5. The selection of these variables in the 

parametric simulations was informed by a sensitivity analysis presented in a previous study 

conducted in the same case study district [81]. Due to the difficulty in determining the 

characteristics of the distribution of each variable between the set minimum and maximum values, 

a uniform distribution is used. Regarding the building operation schedules, using reference 

schedules proposed by standards like ASHRAE, which describe the aggregate temporal variations 

of internal gains, can result in repetitive internal load profiles across buildings of the same type, 

which may not accurately represent real-world diversity. To address this limitation and achieve a 

more realistic representation of occupant-related variables, probability density functions (PDFs) 

are defined for occupancy, lighting, and electric equipment usage schedules, allowing for the 

incorporation of stochastic schedules in the parametric simulations.  

ASHRAE proposes standard daily schedules describing the rates of occupancy, lighting, and 

appliance usage for various building types. Given the absence of region-specific schedules, these 

schedules are used as a starting point for defining the PDFs and introducing the desired variability 

needed for the stochastic schedule sampling. To stochastically represent occupant-related factors 

for each building, randomized schedules were created based on these reference schedules. The 

proposed reference schedules consist of blocks of hourly periods covering the 24 hours of each day 

(e.g., [01:00 – 07:00], [10:00 – 16:00]). Accordingly, a probability distribution was generated for 
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every hourly block based on the mean value suggested by the reference schedule for that block, 

along with a default coefficient of variance (CV). Following prior research on schedule 

diversification procedures, a CV of 0.2 was employed to generate the needed PDFs [44], [45]. 

Typical residential building weekday schedules, as well as the stochastic schedules employed, are 

illustrated in Figure 9.  

Table 5. Variable input ranges for the parametric simulations. 

 
Parameter Unit Residential Office Retail Reference 

Wall Thermal 

Resistance 

𝑚2𝐾𝑊−1 1.75 – 3.33 1.75 – 

3.33 

1.75 – 

3.33 

Qatar Construction Standard / 

ASHRAE 90.1 2019 

Roof Thermal 

Resistance 

𝑚2𝐾𝑊−1 2.27 – 4.5 2.27 – 

4.5 

2.27 – 

4.5 

Qatar Construction Standard / 

ASHRAE 90.1 2019 

Window U Value 𝑊𝑚−2𝐾−1 1.8 - 1.9 1.8 - 1.9 1.8 - 1.9 GSAS 2 Star Rating Guideline / Qatar 

Construction Standard 

Solar Heat Gain 

Coefficient 

NA 0.25 – 

0.275 

0.25 – 

0.275 

0.25 – 

0.275 

Qatar Construction Specifications / 

ASHRAE 90.1 2019 

Occupant Density 𝑚2/person 38 - 90 1.67 - 50 2.5 – 

12.5 
ASHRAE 62.1 2019 

Lighting Power 

Density 

𝑊𝑚−2 1 – 6.5 8.5 – 9.6 3 - 9.5 GSAS 2 Star Rating Guidelines 

/ ASHRAE 90.1-2019 

Equipment Power 

Density 

𝑊𝑚−2 2 – 8 2.5 – 

21.53 

2.5 – 

21.53 

ASHRAE 90.1-2016 User’s manual 

OA Ventilation Rate 𝑙𝑠−1𝑚−2 0.3 – 0.5 0.3 – 0.6 0.3 – 0.9 ASHRAE 62.1 2019 

Infiltration Rate ACH 0.1 – 0.2 0.1 – 0.2 0.1 – 0.2 ASHRAE Fundamentals 

Cooling Setpoint 

Temperature 

̊C 23 - 26 23 - 26 23 – 26 GSAS 2 Star Rating Guidelines 

 

The Latin Hypercube Sampling (LHS) technique [119] is utilized to create randomized sets of input 

parameter combinations from the specified ranges for the various parameters. LHS is a statistical 

approach that stands out as a favorable choice for sampling procedures, especially when dealing 

with computationally demanding models [120]. This approach allows for a reduction in sample 

size while producing more reliable results compared to random sampling. An R script utilizing the 

EplusR library [121] is then utilized to automate several steps in the procedure. First, an input 

parameter combination is created by sampling a value for each of the input parameters using the 
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predefined PDFs. Secondly, the input parameter combination is passed on to the building archetype 

seed models as measures, meaning that new building energy models are created using the generated 

input parameter combination. For every input parameter combination, this process is repeated for 

all 12 archetypes of the respective building type. The created EnergyPlus models are then simulated 

to generate the monthly cooling energy consumption. The input parameter combinations, building 

type, floor number, and building aspect ratio along with the corresponding monthly cooling energy 

consumption for each one are then consolidated in a CSV file to be used in further steps. 

Additionally, the average monthly dry bulb temperature and average monthly relative humidity are 

extracted from the TMY weather file as shown in Table 6 and included in the CSV file as well. 

Previous research has shown that these two weather indicators sufficiently capture climate 

conditions in hot and humid regions [122], making them essential for developing surrogate ML 

models. The number of input parameter combinations determines how much this process would be 

repeated and the associated computational needs.  

 

Table 6. Weather indicators for describing the case study climactic conditions. 

 
Parameter  Reference 

Monthly outdoor air dry-bulb 

temperature  

(̊C)  

19.06, 19.26, 22.21, 27.30, 32.29, 34.77, 36.07, 35.78, 

33.90, 30.67, 25.80, 21.30 

TMY weather data 

for Doha 

Monthly outdoor air relative 

humidity (%) 

63.20, 59.15, 62.04, 50.07, 38.48, 41.77, 36.07, 56.85, 

52.27, 57.40, 52.56, 61.15 

TMY weather data 

for Doha 
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Figure 9. Residential building weekday reference and stochastic schedules. 
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Determining the appropriate number of samples for surrogate model creation remains an open 

research question [123]. The surrogate ML models necessitate substantial volumes of data for 

training, yet beyond a certain threshold, the inclusion of more data points might not contribute 

significantly and could, in some instances, be detrimental if it causes model overfitting. A general 

rule of thumb suggests that at least 10 LHS samples would be required for each sampled variable 

in the surrogate ML model [124], [125]. For this study, given that 13 variables are considered in 

the parametric simulations, the number of samples (input parameter combinations) should not be 

less than 130. To examine how the dataset size might impact the performance of the surrogate ML 

models, and accordingly determine the proper dataset size for each model, the augmented LHS 

function [126] was used to create 5 separate data sets with sizes of 130, 260, 390, 520, and 650 

samples which are used for training the ML models. The augmented LHS function attempts to add 

points to the design in an optimal manner, by adding points to an existing LHS while preserving 

the Latin properties of the design [126]. Accordingly, a fair comparison can be made based on the 

sample size and not the sample properties. Additionally, to ensure the representativeness of the 

data sets, separate testing and validation sets are created, each corresponding to 10 % of the training 

set size, following the same approach. This process is performed for each of the 3 building 

typologies.  

 

3.5. Model development 
 

The development of the ML models involved various steps. First, using the input-output data sets 

created from the parametric simulations, the data was pre-processed and normalized. The ML 

models are constructed using a feedforward ANN algorithm, specifically the multilayer perceptron 

(MLP). After completing the data pre-processing procedures, five models are trained for each 

building type, utilizing the different dataset sizes. The performance of each of these models is then 
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evaluated using both the test and validation sets, ensuring a robust analysis. Evaluation metrics 

such as the coefficient of determination (R2) and the root mean square error (RMSE) are utilized. 

Based on these results, the appropriate dataset size is selected to establish one MLP model per 

building typology. Then, a grid search is conducted to identify the optimal hyperparameters for 

each model. Following the grid search, the models undergo final training, employing an early stop 

mechanism to prevent the finalized models from overfitting the training data, and integrating the 

selected hyperparameters. Lastly, the finalized models are tested and evaluated using various 

performance metrics.  

 

3.5.1. Data pre-processing  
 

The data pre-processing stage involves two main steps. First, to enable comparative analysis, the 

cooling energy consumption outputs are normalized by the floor area of the respective building 

archetype models. This normalization process converts the outputs into energy intensities, 

specifically monthly cooling EUIs. These energy intensities serve as the target variables during the 

development of the ML models. Additionally, considering the target variable as the monthly 

cooling EUI, the stochastic schedules for each simulation are factored in via a weighted average to 

represent the average monthly occupancy, lighting usage, and appliance usage rates. 

Secondly, data normalization is particularly important when dealing with input data that exhibits 

significant variations. Data normalization is a crucial preprocessing step employed to scale data 

proportionally within a specific interval. This is essential to mitigate the influence of magnitude 

and units of the predicting variables, which could otherwise disrupt the model fitting process. A 

zero-mean normalization (standardization) process was used for normalizing the predicting 

variables. This process normalizes the data by adjusting it to have a mean (μ) of zero and a standard 

deviation (σ) of one as shown in Eq. 1.  



40  

𝑥′ = 
𝑥 − µ

𝜎
 (1) 

Where x′ is the new normalized value, 𝑥 is the original value, 𝜇 is the mean value, and 𝜎 is the 

standard deviation. 

 

3.5.2. Artificial neural network (ANN)  
 

An ANN is a computational model that mimics the structure and function of a biological nerve cell. 

It consists of interconnected nodes, called neurons, arranged in layers. Each neuron receives input 

signals from the neurons in the previous layer, processes this information using a transfer function, 

and produces an output signal that is transmitted to the neurons in the next layer through weighted 

connections, to create output data that are transmitted to the neurons that follow. The weights on 

these connections determine the strength of the influence of one neuron on another. During the 

training process, the ANN learns from input-output pairs provided by the training data. This 

iterative procedure adjusts the weights of the connections between neurons to minimize a 

predefined parameter, such as the sum of squared errors (SSE) or the root mean squared error 

(RMSE). By repeatedly adjusting these weights based on the errors between predicted and actual 

outputs, the network improves its ability to accurately map inputs to corresponding outputs. The 

training process concludes when a certain condition is met, such as reaching a predetermined 

maximum number of iterations, known as epochs. The model structure for an ANN is shown in 

Figure 10.  



41  

 

 

Figure 10. ANN structure with one hidden layer [127]. 

 

The most straightforward and commonly used architecture for ANNs is the feed-forward multi-

layer perceptron (MLP). It comprises an input layer that receives external data (independent 

variables), an output layer that delivers the prediction results (dependent variables), and one or 

more intermediate hidden layers connecting the input and output layers. In this study, a feed-

forward MLP model is employed, featuring three layers, including one hidden layer. To determine 

the appropriate sample size for each of the final models, 5 MLP models are trained using the 

different training set sizes, for each building type. For these models, a rule of thumb is used for 

determining the number of neurons for the hidden layer as shown in Eq. 2 [128]. 

𝑛𝐻 = 
2

3
(𝑛𝐼 + 𝑛𝑂)  (2) 

Where 𝑛𝐻 is the number of neurons in the hidden layer, 𝑛𝐼 is the number of neurons in the input 

layer, and 𝑛𝑂 is the number of neurons in the output layer. Accordingly, since the input layer 
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contains 17 neurons, and the output layer 1, 12 neurons are initially used for training the models. 

The models are trained until either the loss or score stabilizes or when the maximum number of 

epochs, set at 300, is attained. 

 

3.5.3. Performance evaluation  
 

The performance of regression-based ML models can be evaluated using various statistical metrics, 

which gauge precision, accuracy, and generalizability. For this study, the prediction accuracy of 

the models was assessed mainly via two metrics, the RMSE and the coefficient of determination 

(R2), as shown in Eq. 3 and Eq. 4 respectively. The RMSE can evaluate both the bias and the 

variance of the predicted values compared to the measured output, while R2 indicates the goodness 

of fit of the model. A higher R2 value indicates that the regression model fits the data better, 

meaning that its predicted values are closer to the actual observed values.  

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦 𝑖)

2𝑛
𝑖=1   (3) 

𝑅2 =  1 − 
∑ (𝑦𝑖− 𝑦 𝑖)

2𝑛
𝑖=1

∑ (𝑦𝑖− 𝜇)
2𝑛

𝑖=1

  (4) 

Where 𝑦𝑖 and 𝑦 
𝑖
 represent the actual and predicted values respectively, 𝑛 is the number of samples 

and 𝜇 refers to the mean of all values.  

 

3.5.4. Sample size selection  
 

Since five different models for each building typology were trained using various augmented 

dataset sizes, evaluating the impact of dataset size on model accuracy is crucial for determining the 

appropriate dataset size. This evaluation helps inform decisions about balancing computational 

efficiency and model performance. Generally, The ML models require sufficiently large datasets 
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for training. However, beyond a certain threshold, adding more data points may not improve model 

performance and could even be detrimental, potentially leading to overfitting. 

Each of the trained models was evaluated using both test and validation sets, based on the R² and 

RMSE metrics. Using both sets allowed for a more robust performance evaluation, and the results 

were averaged to provide a comprehensive assessment of model accuracy and generalizability. A 

trade-off was established to select the appropriate dataset size to reach one MLP model per 

building. For this study, it was decided that no additional samples would be needed for model 

training if performance decreased with increasing sample size, indicating overfitting, or if the 

improvement in RMSE was less than 3%. A performance increase of less than 3% was deemed 

insufficient to justify the computational burden of generating more data points for this application. 

Using this criterion, an appropriate sample size is selected for each building typology, to reach one 

MLP per building type.  

 

3.5.5. Hyperparameter tuning  
 

Hyperparameters are adjustable parameters that significantly influence the performance of ML 

models. Hyperparameter optimization or tuning involves finding a set of model hyperparameters 

that ensures optimal performance of the model, by enabling the model to better reflect the 

relationship between inputs and outputs. For this study, a full grid search technique is performed 

for tuning the hyperparameters of the models using the separate validation sets. The use of a 

separate validation set instead of the more traditional k-fold cross-validation process, decreases the 

computational burden, thus allowing for an exhausting search of all hyperparameter options. Also, 

given that the training sample is generated using LHS, the representativeness of the data set would 

have been compromised if divided into k-folds [123]. The hyperparameters used in the grid search 

process are shown in Table 7.  
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Table 7. hyperparameter values for grid search. 

 

Hyperparameter Tested values  

'hidden_layer_sizes' (4,), (16,), (35,), (245,) 

'activation' 'identity', 'relu', 'tanh', 'logistic' 

'solver' 'adam', 'sgd', 'rmsprop' 

'alpha' 0.0001, 0.001, 0.01 

'learning_rate' 'constant', 'invscaling', 'adaptive' 

'batch_size' 64, 128, 256 

 

3.5.6. Final model training  
 

After the optimal hyperparameters are configured for each of the three models, a final version is 

trained using the selected sample size for each building typology and the optimal hyperparameters. 

An early stop mechanism [129] is employed in the final training process to avoid overfitting the 

training data. This procedure consists of several steps. First, an additional validation set is created 

for each of the three models and a maximum number of iterations, 300 in this case, is defined for 

the early stop procedure. Secondly, the training process commences, and the model’s performance 

is evaluated over each iteration using the validation set after updating the weights and biases. If the 

model performance deteriorates over a predefined number of epochs, 5 in this case, the model 

training ends. Finally, the weights and biases for the iteration corresponding to the best 

performance on the validation set are adopted for the model. An illustration of the early-stop 

mechanism as presented in [123] is shown in Figure 11. Following the training of the final models, 

their performance is evaluated once more using the corresponding test sets based on the R2 and 

RMSE.  
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Figure 11. Early-stop mechanism [123]. 

 

3.6. Model deployment  
 

After developing the ANN models, a user-friendly decision support environment (interface) was 

created to enable straightforward and efficient prediction of the cooling EUIs of different buildings 

within the district, without requiring expertise in BPS tools or programming. This interface was 

developed in several steps. First, the scalers used for normalizing the data in the pre-processing 

phase, along with the final trained ML models are saved using the ‘Joblib’ [130] python package. 

Secondly, a Python script is written to load the saved scalers and pre-trained models and eventually 

make the predictions given a set of inputs. This Python script is linked to an Excel sheet using the 

‘xlwings’ [131] library. ‘xlwings’ is a Python package that makes it easy to call Python from Excel 

and vice versa. It allows users to interact with Excel spreadsheets using Python, enabling them to 

automate data processing, create reports, and perform complex calculations. In the Excel sheet, 

users choose the building type through a drop-down menu (residential, commercial, or mixed-use) 

and input a value for each of the 17 input parameters depicted in Figure 12. This information is 

then passed to the Python script, which scales the data and calls the appropriate ML model based 

on the defined building type, makes the prediction, and sends it back as an output in the Excel 

sheet.



 

 

 

 

Figure 12. Inputs and output of the user-friendly decision support tool. 
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3.7. Summary 
 

In this research, a surrogate ML UBEM is proposed. Initially, three physics-based archetypes, 

representing the main building typologies in the case study district, are developed. The cooling 

load profiles are simulated, analyzed, and validated for these archetypes before aggregating the 

results to the district scale. This step ensures the accuracy of the inputs used for characterizing the 

archetypes and demonstrates a common method for urban-scale building energy analysis. These 

archetypes serve as the foundation for creating surrogate ML models. The archetypes are expanded 

to consider different geometrical variations within the district, resulting in a total of 36 archetypes 

(12 per building typology). Data for training and testing the ML models is generated by automating 

parametric simulations using these archetypes. The reliance on artificial data for developing the 

ML models is due to the lack of measured data, which is especially common in the early design 

phase of urban regions. The created datasets are then used to train, test, and optimize the 

performance of three ML models, one for each building typology, capable of accurately predicting 

the monthly cooling EUI for any building in the district. Following the development of the ML 

models, a decision support environment (interface) is created by linking the trained ML models to 

a user-friendly Excel sheet. This interface allows users to input the characteristics of each building 

in the district to generate the cooling EUI profile for each building. These profiles are then used to 

create the cooling energy consumption profile for each building based on its gross floor area. 

Finally, by aggregating these building-level profiles, a district-level cooling energy consumption 

profile is generated. 
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CHAPTER 4 

 

 

4. Results and discussion 
 

4.1. Urban scale cooling load prediction of high-rise buildings in a hot and arid climate – 

An archetype-based approach 
 

This section addresses the performance evaluation of the three initial archetypes modeled to 

represent the case study district. As discussed in the methodology section, the archetype geometries 

were developed using the SketchUp plugin in OpenStudio. They were then characterized by 

defining all the necessary input parameters in OpenStudio before running the simulations via 

EnergyPlus software. For an efficient DCP design and operation, detailed and accurate building 

cooling load profiles are required to be estimated. Besides, heat gain components of buildings 

should be investigated to analyze the saving potentials of building cooling. In the literature, despite 

the availability of studies that analyzed building energy consumption under different climatic 

zones, a new contribution is still required to estimate building cooling load profiles at the district 

level. Further, heat gain components of each building archetype should be analyzed to provide 

insights into the cooling requirements of buildings. To that end, this study employed an archetype-

based approach to predict and analyze building cooling load and heat gain components at a district 

level in the hot and arid climate, using a case study of the Marina district of Lusail City, Qatar. 

Three high-rise building archetypes are developed to represent the Commercial, Residential, and 

Mixed-Use building stock of the district. The developed archetypes for this study contribute to the 

establishment of a representative building archetype library for Qatar and other regions under the 

same climatic conditions. The cooling load component and cooling energy demand profiles for the 
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archetypes are then simulated and analyzed at multiple temporal resolutions. The obtained results 

are also validated using measured cooling energy data supplied from the district cooling plant, as 

well as information from available literature before aggregating the results on the district scale. 

The developed cooling load profiles are imperative for the design and operation of the DCP and 

associated facilities. Further, by analyzing the contribution of each cooling load component at 

different time instances, energy conservation measures could be assessed realistically. 

 

4.1.1. Annual cooling energy demand profiles 
 

 The daily variation of the cooling energy demand for the three building archetypes is plotted over 

a one-year period, along with the variation in daily average outdoor dry-bulb and wet-bulb 

temperatures in Figure 13. The daily cooling demand for the archetypes ranged from 487 kWh to 

30273 kWh, 1050 kWh to 18720 kWh, and 2198 kWh to 32070 kWh for the commercial, 

residential, and mixed-use archetypes, respectively. A similar trend in the cooling energy demand 

variation is noticed for the three building archetypes despite differences in their usage, input 

parameters, and cooling demand values. Besides that, a similar trend observed between the 

temperatures and building cooling demand shows that the building cooling demand heavily relies 

on outdoor climatic conditions. The weather in Qatar can be classified as extremely hot in summer 

from May to October with more moderate weather in the winter from December to February 

whereas March, April, and November are transition months. Therefore, high cooling energy 

demands are observed in the hot summer season whereas the transition months and winter period 

show mild and low cooling demands, respectively. The correlation between the cooling demand 

and outdoor climate was demonstrated in a previous study by Gastli et al. [132] where it was 

reported that there is a linear correlation between the daily maximum electric demand and daily 
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maximum temperature in Qatar at temperatures above 22 ℃ and attributed the increased electric 

demand to increased air conditioning load.  

 

Figure 13. Annual cooling energy demand profiles for a) commercial, b) residential, and c) 

mixed-use archetypes.



51  

4.1.2. Monthly cooling load profiles 
 

The monthly cooling load breakdown for each archetype is presented in Figure 14. The results 

indicate that the heat gained from ventilation, infiltration, and convection represents the largest 

weather-dependent contributors to the cooling load. On the other hand, the use of deterministic 

occupancy, lighting, and electric equipment usage schedules results in a fixed heat gain from these 

components throughout the year which is independent of the outdoor climate. The use of accurate 

representative schedules would lead to high prediction accuracy. In our case, however, the lack of 

occupant-centric data hindered the use of region-specific schedules or occupant behavior models. 

Besides, the aggregation of the cooling load on the urban scale would account for some of the 

occupant behavior features which allows the safe assumption of the valid usage of these schedules 

at this design stage. For all three archetypes, the highest simulated cooling load is in August since 

the outdoor temperature reaches its maximum values during this month while the lowest cooling 

load is in January. For August, the largest cooling load component for the three archetypes was 

ventilation since introducing adequate outdoor air rates as per ASHRAE standard 62.1 requires a 

significant amount of cooling to lower the ventilation air temperature from the high outdoor air 

temperature to the indoor setpoint temperature. The heat gain from convection and infiltration was 

the second and third highest contributors to the cooling load, respectively, which is also due to the 

difference between the outdoor air temperature and indoor temperature setpoint. The electric 

equipment heat gain was the fourth largest contributor followed by the heat gain from solar 

radiation whereas the people and light were the lowest contributors to the cooling load. For January, 

the largest cooling load component was found to be the window solar radiation followed by the 

equipment heat gain and convection heat gain. The heat gains from occupants and lights come next 

in order where their values are fairly close while ventilation and infiltration have almost no 
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contribution to the cooling load. This can be attributed to the moderate winter temperatures in the 

region which is close to the indoor temperature setpoint.  

 

 

The cooling load is found to vary by a factor of approximately 2.5 from January to August among 

the archetypes. This large variation not only reduces the seasonal efficiency of DCPs but also 

requires a larger cooling capacity associated with an increased initial and operational cost.Several 

studies have demonstrated that Energy Conservation Measures (ECMs) can reduce these weather-

 

Figure 14. Monthly cooling load component breakdown for a) commercial, b) residential, and c) 

mixed-use building archetypes. 
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dependent cooling loads and increase the building’s resilience to outdoor climatic conditions. For 

instance, Krarti et al. [133] conducted an analysis on the effect of ECMs such as decreasing the 

infiltration rate by building a tighter building envelope, increasing the cooling setpoint which 

would reduce the ventilation load, and increasing the thermal insulation of the opaque building 

material which would result in less convective heat gains along with other ECMs to optimize the 

building energy consumption. They reported a possible energy saving of up to 47% in the case of 

Qatar by following the recommended ECMs. In another study by Andric et al. [134], increasing 

the building envelope insulation or the cooling setpoint could lead to energy savings of up to 30% 

annually. Further, Ahmed et al. [135] and Ortiz et al. [136] demonstrated in their case studies in 

New York city that changes in climatic variables have a considerable impact on building energy 

demand, with HVAC requirements being the main driver behind this increase. It was also 

mentioned that in some situations, such as during heatwaves, which are very likely to occur in the 

hot and arid climate of our case study region, the electric grid may struggle to satisfy peak demands, 

which are mostly driven by building HVAC needs. Hence, buildings should be designed and 

constructed to withstand the potential effects of climate change and be resilient to the extreme 

outdoor climate. The results of this study, along with the findings in the above-summarized 

literature, suggest the possibility of increasing building resilience to outdoor climate and illustrate 

the potential energy savings. Accordingly, the design, construction, and operation of buildings in 

hot and arid regions should target increasing building resilience to the outdoor climate and 

lessening the seasonal variation in cooling loads. 

 

4.1.3. Hourly cooling load profiles 
 

Figure 15 demonstrates the hourly breakdown of the cooling load components for the summer 



54  

design day “July 21st” which is defined by the weather file used for the simulation.  

 

 

Figure 15. Summer design day cooling load component breakdown for a) commercial, b) 

residential, and c) mixed-use building archetypes.
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Besides their role in DCP design and operation, these detailed profiles allow for investigating the 

potential for energy saving and peak load reduction of DCPs. For example, based on the results, 

solutions for minimizing ventilation rates at peak cooling loads could yield considerable energy 

savings. In that regard, Solgi et al. [137] proposed that considerable cooling energy savings can be 

achieved using night purge ventilation with phase change materials for the hot and arid climate of 

Iran. In the summer design day cooling load investigations, the ventilation, convection, and 

infiltration components of the cooling loads are observed to be highly affected by the outdoor 

temperature, resulting in a peak cooling load of 1986 kW, 932 kW, and 1704 kW at 3 pm and a 

minimum cooling load of 455 kW, 314 kW, and 432 kW at 5 am for the commercial, residential, 

and mixed-use building archetypes, respectively. It is noticed that the residential building displays 

the least variation in cooling load throughout the day, whereas the commercial building displays 

the highest variation. On the other hand, the mixed-use building displays relatively moderate 

cooling load variation. The observed cooling load variation can partially be attributed to the lower 

occupancy rate and the low variability in operation schedules of residential buildings. Residential 

buildings are modeled to almost always be occupied by a certain percentage; however, their low 

occupancy rates not only contribute less to the “people” cooling load as opposed to commercial 

buildings but also have less of an impact on the “ventilation” load since a ventilation rate per person 

is introduced in the building following the occupancy schedule. The commercial archetype, on the 

other hand, is characterized by high occupancy rates, which along with the high temperatures, 

contribute to the increase of the ventilation load when occupied. The mixed-use building falls 

between both in that regard since it’s composed of retail, commercial, and residential spaces. 

Another noticeable observation is the high impact of infiltration in the cooling load of the 

residential building even though the residential building has the smallest GFA, the lowest cooling 
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load, and the fact that all three archetypes have been modeled with the same value for the 

infiltration rates as a function of GFA. This is associated with the used infiltration schedules in the 

BEMs. For commercial and retail spaces, the higher ventilation rates, when occupied, could 

pressurize the building slightly, which would decrease the infiltration rates and, thus, the cooling 

needs associated with it. In residential spaces, however, the used schedules propose a constant 

infiltration rate, which leads to an increased cooling load associated with the infiltration. Solar 

radiation contributes to the cooling load from sunrise to sunset in the three archetypes, while the 

contribution of electric equipment, people, and lights varies depending on the building usage and 

operation schedule, causing, for example, the commercial building to have a higher contribution to 

the cooling load from people and lights when occupied compared to the other two building types.  

In Figure 16, the hourly breakdown of the cooling load components is presented for the winter 

design day “February 21st”. As in the case of the summer design day, the peak cooling load is 

reached at 3 pm for the three archetypes with values reaching 1176 kW, 526 kW, and 1081 kW, 

while the minimum cooling load was at 5 am with values of 105 kW, 110 kW, and 169 kW for the 

commercial, residential, and mixed-use archetypes, respectively. According to the results, solar 

radiation and electric equipment are the largest contributors to the cooling load on a winter design 

day, each contributing to approximately a quarter of the cooling load throughout the day. The 

window convection, along with the solar radiation, contributes to the cooling load during the 

daytime only from sunrise to sunset, while the opaque building material convection continues into 

the night due to the thermal mass of the building envelope. The cooling load contribution of the 

occupants and light follow the building operation schedule with higher people and light load in the 

commercial building when occupied, whereas a lower and more evenly distributed load is observed 

in the case of the residential and mixed-use buildings. On the other hand, ventilation and infiltration 
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have minimal contribution to the cooling load due to the moderate outdoor climate in winter, which 

allows for natural cooling of the building and sizable energy savings throughout the winter season. 

 

Figure 16. Winter design day cooling load component breakdown for a) commercial, b) 

residential, and c) mixed-use building archetypes. 
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4.1.4. Validation of the simulation results 
 

For validating the results obtained from the simulation of the building archetype models, measured data 

regarding the delivered cooling energy from the DCP to a residential and mixed-use building was obtained 

and compared to the simulated results, while the commercial archetype was validated against available 

benchmarks in the literature. For the commercial archetype, the annual Energy Use Intensity (EUI) was used 

as a metric for evaluating the archetype performance since no region-specific cooling EUI was reported in 

the literature.  

  

Figure 17. comparison of measured and simulated cooling energy demand for a) residential, and 

b) mixed-use building archetypes. 

 

The annual EUI for the commercial archetype was found to be 272 kWh/m2/year, which is similar to the 

reported EUI values in the region. For instance, Azar et al. [138] reported an average EUI value of 284 
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kWh/m2/year for commercial buildings in Kuwait. Another study by Alkaabi et al. [139] reported a mean 

of 280.4 kWh/m2/year for medium to high-rise office buildings in the UAE. The comparison between the 

measured and simulated results for the residential and mixed-use buildings is presented in Figure 17. A 

relatively large variation between the measured and simulated results is noticed from July 2020 to April 

2021 since this period is the commissioning phase of the DCP and buildings are not in steady operation with 

a defined usage schedule. After that period, the simulated results match well with the measurements, which 

further supports that the archetype models are representative of the building stocks in the district.  

 

4.1.5. District-level cooling energy demand profile 
 

Table 8 presents the total floor area of each building stock in the district, as well as the cooling EUIs for the 

three archetypes. By multiplying the EUI for each archetype with the corresponding total floor area of 

building stocks, the annual cooling energy demand for each building stock was obtained. The summation 

of the annual cooling energy demand of the three building stocks yields an annual building cooling energy 

consumption of about 690.7 GWh/year at the district level. In Figure 18, the daily variation of the cooling 

energy demand for the district is presented along with the daily average dry-bulb and wet-bulb temperatures 

for a year to exhibit the same correlation between the cooling energy demand and the outdoor climatic 

conditions as in the results for each individual archetype in Figure 13. 

 

Table 8. Aggregated district level cooling energy consumption. 

 

Building Type: Commercial  Residential  Mixed-Use  

Simulated cooling EUI (kWh/m2/year)  209.6 225.8 219.7 

Buildings’ total floor area in the district (m2) 1,215,545 600,174 1,367,492 

Annual cooling energy demand (kWh/year) 254,778,232 135,519,289.2 300,437,992.4 
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Figure 18. Annual cooling energy demand profile of the Marina District. 

 

4.1.6. Summary 
 

Section 4.1 presents a case study using an archetype-based approach for urban-scale energy 

prediction. This approach involves characterizing building archetypes to represent the three main 

building typologies of the district. It includes simulating the cooling load profiles to identify the 

main components of the cooling load at different temporal resolutions, which helps in identifying 

energy-saving potentials. The simulated results are validated using actual measurements and 

available literature to ensure the accuracy of the approach and the validity of the assumptions and 

inputs before aggregating the results to the district level. 

The main takeaways from this section are: 

- Based on the cooling load simulation results, the building cooling demand heavily relies on 

outdoor climatic conditions, i.e., high cooling energy demands are observed in the hot summer 

season, whereas the transition and winter periods show mild and low cooling demands, 
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respectively. 

- The monthly cooling load breakdown analysis indicates that the heat gained from ventilation, 

infiltration, and convection represents the largest weather-dependent contributors to the cooling 

load.  

− Increasing building resilience to the outdoor weather in regions with extreme climatic 

conditions can yield substantial energy savings.   

− The moderate winter temperatures of the region under study would allow the potential use of 

passive cooling strategies to minimize cooling energy needs in the winter and transition 

periods. 

In section 4.2. The developed archetypes are expanded to include other geometrical variations 

present in the case study district. These archetypes serve as the initial step for generating the data 

needed to develop the surrogate ML models. 
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4.2. Surrogate ML models for urban cooling energy consumption predictions 

 

This section describes the development of surrogate ML models for predicting the cooling EUI for 

the three building types in the case study district. After validating the performance of the three 

initial archetypes, the archetypes are expanded to include the geometrical variations identified in 

the district, resulting in a total of 36 archetypes (12 for each building type) as described in the 

methodology section. These archetypes are then used in parametric simulations with predefined 

input parameters to generate the necessary datasets for developing the ML models. The parametric 

simulations consider building thermo-physical characteristics, operational parameters, and 

occupant-related inputs, incorporating the influence of building geometry as well. Using these 

datasets, (ANNs are trained, tested, and optimized for predicting building cooling EUI. The impact 

of the training dataset size is investigated to determine the appropriate size for each model. Once 

finalized, the models are integrated into a user-friendly interface, allowing for predictions of 

building monthly cooling EUI for every building in the district, which are then aggregated to the 

district level. The developed models closely match the results from physics-based simulations but 

require only a fraction of the time and effort for predictions once trained. The results are discussed 

in the following sections. 

 

4.2.1. Surrogate ML model development and performance evaluation 
 

4.2.2. Evaluating training sample size effect on ML model performance  
 

The ANNs were developed using the ‘sklearn.neaural_networks’ module from the ‘scikit-learn’ 

Python library. After data pre-processing, five MLP models, each having a single hidden layer with 

12 neurons, were trained for each building typology using training sets of different sizes. The 

models were trained until either the loss or score stabilized or when the maximum number of 
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epochs, set at 300, was reached. Each model was then evaluated using both the corresponding test 

and validation sets. Initially, the model's performance was visually assessed by plotting predicted 

outputs against ground truth values. The predicted versus true values were plotted for both the test 

and validation sets for the residential, commercial, and mixed-use models, as shown in Figures 19, 

20 and 21 respectively. Visual evaluation of these plots indicates that all models produce accurate 

predictions, with predicted values closely aligning with the ground truth values, as shown by the 

higher density of plotted points along the line y = x. Additionally, model performance appears to 

improve proportionally with increased training set size. Subsequently, model performance was 

quantitatively evaluated using the selected performance metrics (R2 and RMSE). The performance 

metrics for both the test and validation sets were averaged for each model to provide a more reliable 

comparison of model performance concerning training sample size, as shown in Figure 22. 

The change in RMSE was used as an indicator to determine the ideal sample size for each model, 

as discussed and presented in Table 9. Using a 3% decrease in RMSE between successive sample 

sizes as a cutoff, the ideal sample sizes were identified as follows: 390 for the residential model, 

650 for the commercial model, and 520 for the mixed-use model. It can be noticed that the 

predictions of the residential models match the true values more closely, even though they require 

less data for training compared to the commercial models. The mixed-use models fall in between 

these two in terms of data requirements and prediction accuracy. This disparity can be mainly 

attributed to the ranges used in the parametric simulations for generating the training data. There 

is a wide variation in the range used for defining the occupant-related definitions for the 

commercial archetypes, particularly the occupant density and equipment power density. In 

contrast, the residential archetypes have much narrower ranges, which seems to enhance the 

learning ability of the ML models, even with a smaller amount of training data.  



 

 

 

 

Figure 19. Predicted vs true values using both test and validation sets for residential models 

 

 



 

 

 

 

 

Figure 20. Predicted vs true values using both test and validation sets for commercial models 

 



 

 

 

 

Figure 21. Predicted vs true values using both test and validation sets for mixed-use models 

 

 



67  

 

Figure 22. Average R2 & RMSE for test and validation sets using different sample sizes for a) 

residential, b) commercial, and c) mixed-Use models. 
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Table 9. Change in average RMSE for test and validation sets between models of successive 

sample size. 

 

 

 

 

 

 

 

 

 

 

  

4.2.3. Surrogate ML model hyperparameter tuning  
 

Following the selection of the appropriate sample size for each building typology model, a full grid 

search using the corresponding separate validation sets is performed to optimize the 

hyperparameters of each model. The chosen hyperparameters for each model are shown in Table 

10.  

 

Table 10. Hyperparameters of the ML models 

 

 

4.2.4. Final ML model training and performance evaluation 
 

After defining the hyperparameters, the three models undergo a final training process using the 

Decrease in RMSE Residential Commercial Mixed-Use 

From To 

130 samples 260 samples 53.15 % 47.73 % 27.50 % 

260 samples 390 samples 24.98 % 35.99 % 3.48 % 

390 samples 520 samples -20.69 % 26.56 % 3.82 % 

520 samples 650 samples -1.25 % 24.13 % -1.36 % 

Building 

Typology 

'hidden_layer_sizes

' 

'activation

' 

'solver

' 

'alpha

' 

'learning_rate

' 

'batch_size

' 

Residential (35,) ‘tanh’ ‘adam’ 0.001 ‘constant’ 256 

Commercia

l 

(35,) ‘tanh’ 'sgd' 0.0001 ‘adaptive’ 64 

Mixed-Use (35,) ‘tanh’ 'sgd' 0.0001 ‘adaptive’ 64 
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optimized settings, incorporating an early-stop mechanism to prevent overfitting. The performance 

evaluation before and after hyperparameter tuning and the early-stop mechanism is presented in 

Table 11. While the R2 score shows a modest improvement of less than 1% for all three models, 

the RMSE benefits substantially from the hyperparameter tuning. Specifically, there are 

approximate improvements of 37%, 59%, and 56% in RMSE for the residential, commercial, and 

mixed-use models, respectively. These significant enhancements underscore the value and 

importance of hyperparameter tuning in improving the performance of ANNs. All three final 

models exhibit exceptionally high R2 values, which are very close to 1, indicating that the models 

can explain nearly all the variance in the dependent variable based on the independent variables. 

This suggests that the models have an excellent fit to the data. Additionally, the RMSE remains 

below 0.17 kWh/m²/month for all three models, suggesting that the predictions are quite accurate. 

The residuals of the models are plotted as shown in Figures 23, 24, and 25. Residuals play a crucial 

role in assessing the quality of ML regression models. If the expected value of residuals deviates 

significantly from 0, it suggests that the model may exhibit systematic bias, either over-predicting 

or under-predicting the target variable. Furthermore, it is important to ensure that residuals are 

normally distributed and homoscedastic, meaning their variance remains constant over time. In 

contrast, heteroscedastic residuals imply that the model's predictive power varies across different 

sections of the data, potentially impacting the reliability of the model's predictions. For all three 

models, the residuals are normally distributed around a mean of 0, indicating their predictive 

quality.  
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Table 11. ML model performance before and after fine-tuning on the test set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23. Residual plots for the final residential ML model. 

Building Typology Metric Before Tuning After Tuning 

Residential R² 0.99964 0.99985 

RMSE 0.1584 0.1003 

Commercial R² 0.99778 0.99962 

RMSE 0.4118 0.1696 

Mixed-Use R² 0.99897 0.99980 

RMSE 0.2984 0.1314 
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Figure 24. Residual plots for the final commercial ML model. 

 

Figure 25. Residual plots for the final mixed-use ML models. 
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4.2.5. Decision support environment deployment for monthly cooling EUI predictions 
 

The building information for this study was derived from the Marina District master plan, as 

depicted in Figure 26. In this master plan, residential buildings are represented by a light yellow 

color, commercial buildings are in red, and mixed-use buildings are in orange. Key information 

such as the number of floors, aspect ratio, and gross floor area (GFA) for each building was 

obtained from the master plan. A total of 107 high-rise buildings were identified, covering the three 

main building typologies in the district: 29 residential buildings, 37 commercial buildings, and 41 

mixed-use buildings. The geometric characteristics of these buildings are detailed in Appendix 2. 

The decision support environment was then utilized to predict both the minimum and maximum 

monthly cooling EUIs for each building in the district. These EUIs were subsequently multiplied 

by the GFA of each building to obtain the monthly cooling energy consumption. For all predictions, 

a setpoint cooling temperature of 23°C, which is the standard cooling temperature for occupied 

spaces in Qatar, was used. Depending on whether the minimum or maximum cooling EUI was 

being predicted, either the upper limit or the lower limit of the parameters defined in Table 5 was 

used, taking into account the nature of each parameter. This approach ensured that the predictions 

accurately reflected the range of possible cooling energy demands for the buildings in the district. 

The minimum and maximum cooling energy consumption for the residential buildings are 

presented in Figures 27 and 28, for the commercial buildings in Figures 29 and 30, and for the 

mixed-use buildings in Figures 31 and 32, respectively. Section 4.2 evaluated the application of 

surrogate ML models to predict monthly cooling EUIs for residential, commercial, and mixed-use 

buildings at the district level. 
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Figure 26. Marina District master plan



 

 
 

Figure 27. Minimum monthly cooling energy consumption for residential buildings. 
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Figure 28. Maximum monthly cooling energy consumption for residential buildings. 
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Figure 29. Minimum monthly cooling energy consumption for commercial buildings. 
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Figure 30. Maximum monthly cooling energy consumption for commercial buildings. 
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Figure 31. Minimum monthly cooling energy consumption for mixed-use buildings. 
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Figure 32. Maximum monthly cooling energy consumption for mixed-use buildings.
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4.2.6. District-level cooling energy consumption 
 

By aggregating the results for each building, the total monthly cooling energy consumption for the 

district can be calculated, as shown in Figure 33. Instead of relying on average values, the district's 

cooling energy consumption is presented as a range, accounting for the impacts of input uncertainty. 

The district’s maximum cooling energy consumption can surpass 170 GWh in August. A narrower 

range of cooling energy consumption is observed in the winter months compared to the summer 

months. This significant uncertainty is mainly due to the wide ranges of input parameters used in 

the data generation process. To reduce this uncertainty in surrogate ML models, further efforts are 

needed to refine the input parameter distributions and reduce their variability. By obtaining more 

precise information regarding the district's design and operational parameters, the decision support 

environment can provide quick and accurate estimations of cooling energy consumption. This 

significantly aids in the sizing and operation of DCP, ensuring it is adequately equipped to meet the 

cooling demands of the district efficiently.



 

 

 

 

Figure 33. Range of total cooling energy consumption of the Marina District
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4.2.7. Summary 
 

Section 4.2 examined the application of surrogate ML models to predict the monthly cooling EUIs 

for residential, commercial, and mixed-use high-rise buildings at the district level. Parametric 

simulations were conducted using building physics-based archetype models to create the required 

datasets for developing the ML models. The effect of training dataset size on ML model 

performance was analyzed for each building typology to determine the appropriate size for each 

building model. The input parameters included climate factors (outdoor dry bulb temperature and 

relative humidity), building geometry parameters (floor number and aspect ratio), thermo-physical 

characteristics (window, wall, and roof U-values and window SHGC), building operational 

parameters (temperature setpoints, infiltration, and ventilation rates), occupant-related definitions 

(occupancy, lighting, and electric equipment densities), and occupant-related schedules 

(occupancy, lighting, and electric equipment utilization percentages). The developed models 

exhibit superior performance with R2 values close to 1 and RMSE less than 0.17 kWh/m²/month 

on unseen data, highlighting the potential of ML surrogate models in optimizing both the design 

and operation of building and district energy systems. These models offer a more comprehensive 

depiction of the factors impacting building energy performance by accounting for building design, 

building operation, and occupant behavior aspects. The proposed models were also integrated 

within a user-friendly decision support interface to facilitate their use. This decision support 

interface was then used to predict the minimum and maximum monthly cooling EUI profiles for 

each building in the district within seconds, before aggregating the results to the district level.  

 

. 
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CHAPTER 5 

 

 

5. Conclusions and future work 
 

5.1. Conclusion 
 

This study proposed a methodology to predict district-level cooling energy consumption for high-

rise buildings in a hot and arid climate. Initially, three high-rise building archetypes were developed 

to represent the main building typologies in the case study district. Their cooling load profiles were 

simulated, validated with measured data, and analyzed to identify energy-saving potential. The 

results were then aggregated to the district level. This step ensures the accuracy of the inputs used 

for characterizing the archetypes and demonstrates a common method for urban-scale building 

energy analysis. These archetypes serve as the foundation for creating surrogate ML models. The 

three initial archetypes were expanded to include different geometrical variations prevalent in the 

case study district. In total, 12 building archetypes per building typology, amounting to 36 

archetypes, were developed to represent the geometrical variations in the case study district. 

Parametric simulations were then performed to create the required datasets for ML model 

development. The ML models were subsequently trained, tested, and optimized to predict cooling 

EUIs for each of the considered building types. The input parameters for the surrogate ML models 

included climate factors (outdoor dry bulb temperature and relative humidity), building geometry 

parameters (floor number and aspect ratio), thermo-physical characteristics (window, wall, and 

roof U-values and window SHGC), building operational parameters (temperature setpoints, 

infiltration, and ventilation rates), occupant-related definitions (occupancy, lighting, and electric 

equipment densities), and occupant-related schedules (occupancy, lighting, and electric equipment 



84  

utilization percentages). The developed models consider both building design parameters and 

building operation-related parameters, incorporating occupant-related factors, as independent 

variables for making predictions, thus providing a comprehensive representation of the variables 

affecting building energy performance. The developed models exhibit superior performance, with 

R² values close to 1 and RMSE less than 0.17 kWh/m²/month on unseen data, highlighting the 

potential of ML surrogate models in optimizing both the design and operation of building and 

district energy systems. The trained ML models are then integrated with a user-friendly decision 

support environment (Excel sheet) to facilitate their usability. This decision support environment 

was used to predict the minimum and maximum monthly cooling EUI profile for every building in 

the district in a matter of seconds before aggregating the results to obtain the district-level profile. 

The tool also provides a means of investigating various design, operation, and retrofit scenarios at 

a fraction of the computational cost, compared to physics-based UBEM approaches. Incorporating 

inputs related to occupant behavior and building operation explores the potential for building 

energy predictions considering users’ activities and characteristics, allowing for a more accurate 

representation of the diversity among buildings of the same type or physical characteristics. 

 

The main contributions of this work are as follows: 

- Developing and validating building archetype models to represent the high-rise building stock 

in hot and arid climates.  

- Analyzing the cooling load profiles of the developed archetypes and investigating the energy-

saving potential of high-rise buildings in such climates.  

- Proposing an overall methodology for developing surrogate ML models to predict monthly 

cooling EUIs for high-rise residential, commercial, and mixed-use buildings in an urban setting 
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with limited data scenarios.   

- Considering both building design parameters and building operation-related parameters, 

incorporating occupant-related factors as independent variables for making predictions using 

surrogate ML models, thus providing a comprehensive representation of the variables affecting 

building energy performance. 

- Integrating the trained ML models with a user-friendly interface that facilitates straightforward 

predictions of cooling EUIs and allows for the testing of different design alternatives, thereby 

enhancing the decision-making process.  

 

5.2. Limitations and future work 
 

There exists several limitations that were encountered in this study:  

− For validating the three initial archetypes, data was available from only one residential and one 

mixed-use building, with no data available for commercial buildings. Additionally, having data 

for extended periods and from multiple buildings per typology would enhance the validation 

process and enable better calibration of the input ranges.  

− Only rectangular-shaped buildings were considered in this case study, excluding non-

rectangular building shapes. Other building shape variations should be considered in future 

works to present more comprehensive models capable of representing the high-rise building 

stock in that climatic region. 

− Due to the lack of specific details regarding HVAC system specifications, an ideal load system 

was assumed in all EnergyPlus simulations. In future research, different HVAC configurations 

should be considered to enable a more comprehensive analysis.  

− Urban microclimate effects and building-to-building interactions were not considered in this 
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study.  

− Occupant behavior schedules were based on ASHRAE standards due to the absence of region-

specific schedules or data. Incorporating region-specific occupant behavior data would further 

enhance the reliability of the models.  

− The wide ranges used for some input parameters increased the uncertainty in predictions and 

affected model performance. Efforts to calibrate input parameter ranges or conduct wide-scale 

data collection campaigns would reduce this uncertainty and enhance model accuracy and 

reliability. 
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7. Appendix 
 

Appendix 1: Marina District development plan 
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Appendix 2: Geometric characteristics for the buildings of the Marina District 
 

Building ID Building type Floor number Aspect ratio GFA (m2) 

1 Residential 20 1 18,234 

2 Residential 16 1.2 17,343 

3 Residential 20 1 18,207 

4 Residential 16 1.17 17,693 

5 Residential 20 1 18,204 

6 Residential 16 1.2 17,679 

7 Residential 21 1 18,200 

8 Residential 16 1.2 17,658 

9 Residential 20 1 16,590 

10 Residential 16 1 16,664 

11 Residential 20 1 16,541 

12 Residential 16 1 16,520 

13 Residential 23 1 15,446 

14 Residential 17 1 16,629 

15 Residential 23 1 15,446 

16 Residential 17 1 16,622 

17 Residential 29 1.44 15,201 

18 Residential 20 1 16,304 

19 Residential 29 1.44 15,201 

20 Residential 20 1 16,352 

21 Residential 25 1.44 13,512 

22 Residential 20 1 14,298 

23 Residential 25 1.44 11,823 

24 Residential 20 1 14,217 

25 Residential 12 1.13 85,158 

26 Residential 12 1.12 17,580 

27 Residential 12 1.65 18,045 

28 Residential 12 1.12 17,403 

29 Residential 12 1.12 71,404 

1 Commercial  25 1 32,753 

2 Commercial  25 1 32,753 

3 Commercial  36 1 60,876 

4 Commercial  28 1 32,981 

5 Commercial  28 1 32,956 

6 Commercial  25 1 31,462 

7 Commercial  25 1.1 31,469 

8 Commercial  36 1.27 58,160 

9 Commercial  25 1.1 31,465 

10 Commercial  25 1.1 31,367 

11 Commercial  33 1.65 29,500 

12 Commercial  33 1.65 29,496 

13 Commercial  28 1.54 50,164 

14 Commercial  28 1.65 29,488 

15 Commercial  28 1.65 29,488 

16 Commercial  28 1.65 29,476 

17 Commercial  28 1.65 29,476 
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18 Commercial  42 1.54 50,152 

19 Commercial  28 1.65 29,480 

20 Commercial  28 2.28 29,489 

21 Commercial  22 1.3 41,587 

22 Commercial  22 1.2 20,146 

23 Commercial  22 1.3 20,472 

24 Commercial  22 1.26 20,475 

25 Commercial  22 1.14 19,635 

26 Commercial  22 1 18,995 

27 Commercial  23 1.12 19,336 

28 Commercial  23 1.4 19,376 

29 Commercial  28 1.1 16,840 

30 Commercial  28 1 16,120 

31 Commercial  39 1 41,180 

32 Commercial  39 1 41,180 

33 Commercial  36 1 16,568 

34 Commercial  36 1 16,592 

35 Commercial  27 1 16,472 

36 Commercial  27 1 16,460 

37 Commercial  48 2.2 100,480 

1 Mixed-use 22 1.1 41,587 

2 Mixed-use 21 1 20,157 

3 Mixed-use 21 1.1 20,430 

4 Mixed-use 21 1.1 20,461 

5 Mixed-use 21 1 38,367 

6 Mixed-use 21 1.1 38,367 

7 Mixed-use 21 1 19,373 

8 Mixed-use 21 1 19,005 

9 Mixed-use 25 1.1 16,868 

10 Mixed-use 25 1 15,812 

11 Mixed-use 25 1.1 16,472 

12 Mixed-use 25 1 16,472 

13 Mixed-use 22 1.1 16,204 

14 Mixed-use 22 1.1 16,592 

15 Mixed-use 22 1 16,444 

16 Mixed-use 21 1.1 16,472 

17 Mixed-use 60 1.1 166,565 

18 Mixed-use 60 1.13 166,565 

19 Mixed-use 60 1.2 166,565 

20 Mixed-use 40 1.1 112,200 

21 Mixed-use 60 1 166,565 

22 Mixed-use 60 1.3 166,565 

23 Mixed-use 30 1.1 24,720 

24 Mixed-use 30 1.1 24,800 

25 Mixed-use 40 1 28,285 

26 Mixed-use 35 1 43,980 

27 Mixed-use 40 1 28,475 

28 Mixed-use 30 1 20,230 

29 Mixed-use 30 1.1 20,230 
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30 Mixed-use 40 1.14 21,228 

31 Mixed-use 40 1.35 28,844 

32 Mixed-use 40 2 32,696 

33 Mixed-use 35 1.35 49,728 

34 Mixed-use 40 1.35 49,658 

35 Mixed-use 15 1.7 24,335 

36 Mixed-use 15 1.4 24,772 

37 Mixed-use 20 1 35,400 

38 Mixed-use 20 1.12 35,128 

39 Mixed-use 20 1.22 35,140 

40 Mixed-use 40 2.5 92,708 

41 Mixed-use 30 3.5 40,460 

 


