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A B S T R A C T   

Machine learning models are the backbone of smart grid optimization, but their effectiveness hinges on access to 
vast amounts of training data. However, smart grids face critical communication bottlenecks due to the ever- 
increasing volume of data from distributed sensors. This paper introduces a novel approach leveraging Gener
ative Artificial Intelligence (GenAI), specifically a type of pre-trained Foundation Model (FM) architecture 
suitable for time series data due to its efficiency and privacy-preserving properties. These GenAI models are 
distributed to agents, or data holders, empowering them to fine-tune the foundation model with their local 
datasets. By fine-tuning the foundation model, the updated model can produce synthetic data that mirrors real- 
world grid conditions. The server aggregates fine-tuned model from all agents and then generates synthetic data 
which considers all data collected in the grid. This synthetic data can be used to train global machine learning 
models for specific tasks like anomaly detection and energy optimization. Then, the trained task models are 
distributed to agents in the grid to leverage them. The paper highlights the advantages of GenAI for smart grid 
communication, including reduced communication burden, enhanced privacy through anonymized data trans
mission, and improved efficiency and scalability. By enabling a distributed and intelligent communication ar
chitecture, GenAI introduces a novel way for a more secure, efficient, and sustainable energy future.   

1. Introduction 

The success of smart grids, a cornerstone of a clean and reliable 
energy future, hinges on robust communication infrastructure. The ever- 
increasing volume of data from sensors and devices in these modernized 
electrical networks threatens to impede this progress. This data deluge, 
fueled by the proliferation of advanced metering infrastructure (AMI) 
and home energy management systems (HEMS), strains existing 
communication infrastructure. As the Internet of Things (IoT) connects 
everyday devices to the grid, the continuous generation of massive en
ergy datasets becomes a challenge. For example, a utility managing 
millions of customers could face an annual data intake exceeding 1 
petabyte (PB). Traditional methods rely on transmitting raw data from 
grid edge devices (e.g., smart meters, sensors) to a central server for 
processing and analysis. This approach can leverage the computational 

power of centralized servers to train very powerful machine learning 
models. These models can then be used for critical tasks like anomaly 
detection, optimizing energy use, and forecasting demand. However, 
transmitting large volumes of raw data creates significant communica
tion burdens and raises privacy concerns. The data may contain sensitive 
information about individual consumers’ energy usage patterns. 

Existing approaches to load modeling in smart grids fall into two 
main categories. 1) Model-based approaches rely on complex mathe
matical equations derived from the physical characteristics of each load. 
This requires in-depth knowledge of every device within the grid, 
making them inflexible and difficult to scale for a large number of 
diverse loads. Additionally, these models struggle to account for user 
behavior, which can significantly impact energy consumption patterns. 
2) Data-driven approaches offer a more flexible alternative. They 
leverage real-world data collected from sensors and meters to learn the 
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behavior of loads without relying on pre-defined assumptions. Tech
niques like machine learning and Generative Adversarial Networks 
(GANs) are employed in this approach. However, current data-driven 
methods have a key limitation: they primarily focus on understanding 
overall consumption patterns at the building or neighborhood level. This 
lack of granularity prevents them from capturing the behavior of indi
vidual loads, which is crucial for many advanced applications within 
smart grids. 

GenAI offers a transformative solution by enabling a paradigm shift 
towards secure distributed learning at the grid edge. This approach 
empowers intelligent agents located at the grid edge to process and 
analyze data locally. GenAI techniques can be used to generate synthetic 
data that accurately reflects real-world grid conditions, but without 
revealing any sensitive information. Then, the synthetic data generated 
by the server after model aggregation from all grid edge devices can be 
used to train task-specific machine learning models on the central 
server, incorporating information from all clients across the grid. This 
enables a collaborative approach while preserving privacy. 

This paper proposes a novel, hybrid approach to optimize smart grid 
communication by leveraging the power of Generative Artificial Intel
ligence (see Fig. 1). While traditional methods offer powerful centralized 
learning, they create communication bottlenecks. GenAI empowers 
intelligent agents located at the grid edge to process and analyze data 
locally. We explore how GenAI techniques, such as Generative Adver
sarial Networks (GANs) and Variational Autoencoders (VAEs), can be 
employed to generate synthetic data that accurately reflects real-world 
grid conditions. This significantly reduces the need for constant 
communication with a central server, alleviating communication bur
dens and enhancing overall grid efficiency. 

This research paves the way for a more efficient and scalable smart 
grid communication architecture. By harnessing the power of GenAI, we 
can unlock the full potential of the smart grid, fostering a more resilient 
and sustainable energy future. Also this method addresses the challenge 
of data scarcity in data-driven load modeling by proposing a GenAI- 
based method for synthetic load profile generation. This method over
comes the limitations of model-based approaches, which require 
extensive knowledge of each load 

2. Literature review 

2.1. Machine learning and security considerations 

The transformative potential of machine learning for smart grids has 
been extensively explored. Existing applications, from grid disturbance 
classification Wei et al. [1], and adaptive control with fuzzy systems 
Abdali and Monjezi [2], to forecasting Maleki [3], debugging fairness 
defects in deep neural networks Monjezi et al. [4] and various industry 
applications Darabi et al. [5]; Tavasoli et al. [6]; EskandariNasab et al. 

[7]; Wang et al. [8], demonstrate how AI can optimize energy use, 
seamlessly integrate renewable energy sources, manage storage effec
tively, and ultimately enhance grid resilience (as surveyed in Ali and 
Choi [9]). This aligns with the findings by Zhao et al. [10] who highlight 
AI’s role in power load forecasting, energy use optimization, and fault 
detection, paving the way for a more efficient, reliable, and secure grid. 
As smart grid systems become increasingly complex, the ability to 
handle models of unknown systems becomes even more critical, as 
evidenced by research in multi-agent systems Jandaghi et al. [11]. 
Furthermore, advanced methods can address limitations of traditional 
approaches Borhani et al. [12], leading to better results. 

Security considerations, however, are paramount. Sakib et al. [13] 
propose several deep learning models for short-term residential load 
forecasting. The study explores various models including Convolutional 
Neural Networks (CNNs), Long Short-Term Memory (LSTM), and hybrid 
architectures like CNN-LSTM. Their findings demonstrate that the 
CNN-LSTM model achieves the best results in predicting weekly elec
tricity consumption compared to other models. Machine learning fair
ness is being investigated through hyperparameter tuning, with 
tree-based algorithms showing promise Herrera et al. [14]. 

One crucial challenge in deploying real-world machine learning for 
smart grids is imbalanced data. This occurs when there’s a significant 
difference in the number of examples between different classes. For 
instance, data representing normal grid conditions might be far more 
abundant than data signifying anomalies or faults. As discussed in Hasib 
et al. [15], there are three main approaches to address imbalanced data 
classification, data-level, algorithm-level, and ensemble methods. 
Imbalance can be addressed by modifying the data (oversampling, 
undersampling) or the learning algorithm (cost functions, class 
weights). 

The interconnected nature of the smart grid and the two-way 
communication with consumers create a complex attack surface, as 
Grammatikakis et al. [16] emphasize. Their work on a collaborative 
intelligent intrusion response framework using federated learning 
demonstrates the critical need for securing these systems while main
taining data privacy between components. Kotsiopoulos et al. [17] re
view machine learning applications in various domains, highlighting 
their potential for smart grids. They discuss Industry 4.0 and data ana
lytics, emphasizing how machine learning and deep learning can be used 
to analyze data and improve grid operations. Ahmad et al. [18] propose 
a framework for sustainable energy management that integrates smart 
grid panels with machine learning and IoT, showcasing the real-world 
application of these technologies for improved efficiency, reliability, 
and security. 

Optimizing grid integration is another crucial aspect. Sulaiman et al. 
[19] address the challenges of integrating smart grid components into a 
large electrical power network by proposing a method using LSTM and 
recurrent Neural Networks (RNN). This exemplifies the ongoing 

Fig. 1. Overview of data synthesis with GenAI in a distributed approach. Server distributes a pre-trained model. Clients fine-tune it locally and return it. The server 
then synthesizes data using these models to train a task-specific model, all while preserving privacy. 
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research efforts to optimize smart grid operations. Furthermore, ma
chine learning empowers researchers to address specific grid challenges. 
For instance, Schieber et al. [20] delve deeper into energy-aware 
scheduling for batteryless devices, a critical aspect for optimizing en
ergy usage. Similarly, Dolatabadi et al. [21] explore the use of PMUs to 
monitor voltage in microgrids and adjust power from DGs for optimal 
voltage profiles, highlighting machine learning’s potential for real-time 
grid management. Smart grid development is influenced by various 
factors, including economics. For example, Razmi et al. [22] study how 
oil prices can indirectly impact smart grids by affecting consumption 
patterns. Torkaman et al. [23] focus on reconfiguring the power distri
bution network after faults to improve reliability, voltage profile, and 
power loss. 

2.2. Communication efficiency and data privacy 

The ever-growing volume of data in smart grids necessitates efficient 
communication protocols and robust data privacy mechanisms. The 
increasing sophistication of generative AI models, as exemplified by 
DeepFakes Zobaed et al. [24], necessitates robust data security measures 
to prevent the creation and injection of manipulated data into smart 
grids. 

Tightiz and Yang [25] addressed this challenge by investigating 
various Internet of Things (IoT) protocols. Their work analyzes the 
strengths and weaknesses of protocols like IEC 61850, MQTT, CoAP, 
DDS, AMQP, and OPC UA, considering factors like latency, bandwidth, 
security, and scalability. This analysis provides valuable insights for 
selecting the most suitable communication protocol for specific smart 
grid applications. Data privacy is another critical concern in smart grids. 
Himthani and Prakash [26] proposed a novel approach using Generative 
Adversarial Networks (GANs) to encrypt smart grid data. Their tech
nique hides this data within a cover image, offering an additional layer 
of security. 

Federated learning presents another promising approach for 
balancing communication efficiency and data privacy. This technique 
allows different clients or entities, like utility companies, to collabora
tively train models without directly sharing sensitive data. Mohamma
dabadi et al. [27] introduced a federated learning method for event 
classification in power grids using Phasor Measurement Unit (PMU) 
data. This approach not only protects privacy but also reduces the need 
for extensive data transmission, leading to faster training and improved 
communication efficiency. While federated learning offers privacy 
benefits, it can experience slow training due to device variations. To 
address this, Mohammadabadi et al. [28,29] further propose a dynamic 
tiering system in their research. This system offloads computations to a 
central server for faster training while still maintaining data privacy on 
participating devices. Their work highlights the potential for further 
optimization using GenAI within federated learning frameworks, paving 
the way for even more efficient and secure smart grid management. 

2.3. Generative AI for smart grid applications 

Machine learning offers a powerful toolkit for optimizing smart 
grids, but challenges arise when dealing with vast amounts of unlabeled 
data or limited access to high-quality data. Active learning addresses this 
by strategically selecting informative data points for labeling, reducing 
human effort, where Support Vector Machines (SVMs) can be used 
within Active Learning framework to efficiently identify informative 
data points in large datasets for labeling Jahan et al. [30]. 

GenAI, particularly Generative Adversarial Networks (GANs), are 
emerging as powerful tools for smart grid applications. Large language 
models can outperform humans on complex tasks like the GMAT exam 
Ashrafimoghari et al. [31]. Li et al. [32] propose a method using GANs to 
generate high-frequency data from low-frequency measurements. This 
high-frequency data can be instrumental for various grid management 
tasks, such as improving fault detection and optimizing energy use. 

However, GANs can be susceptible to a phenomenon called mode 
collapse, where the model gets stuck generating a limited set of outputs 
instead of diverse, realistic data Yeom et al. [33]; Rombach et al. [34]. 
This can hinder the generalizability and effectiveness of GAN-based 
applications in smart grids. 

To address this challenge, researchers are exploring alternative 
generative AI models to enhance communication in power systems 
Santos et al. [35]; Sajjadi Mohammadabadi [36]. Wang and Zhang [37] 
propose using stable diffusion models, which excel at generating diverse 
and high-quality data. Unlike GANs, stable diffusion models achieve this 
by iteratively adding noise to real data and then learning to remove it, 
essentially reversing the noise addition process. This technique allows 
the model to capture the underlying data distribution more effectively, 
producing more unique and representative samples that are better suited 
for real-world applications in smart grids. 

Although recent advancements in AI have improved efficiency in 
smart grids, a critical gap remains in fully harnessing GenAI for smart 
grids, particularly within distributed learning frameworks. This paper 
addresses this gap by proposing a novel method that leverages pre- 
trained GenAI models to generate synthetic data on the server-side. 
This approach facilitates privacy-preserving, collaborative training of 
machine learning models in a federated learning setting. Moreover, the 
utilization of tailored datasets generated through our method has the 
potential to enhance model performance in smart grid applications. 

3. Generative AI-powered distributed learning 

Smart grids are intelligent electricity that efficiently deliver power 
through interconnected components, as illustrated in Fig. 2. There are 
four main elements: distributed energy resources (DERs), distribution/ 
transmission network, customer network, and power system operators. 
DERs (e.g., rooftop solar panels), generate electricity, while trans
mission and distribution lines carry it to customers. These customers can 
also be producers with their own solar panels and major consumers with 
electric vehicles (EVs). Power system operators manage the entire pro
cess (see Fig. 3). 

Secure and stable data communication is vital in smart grids. It flows 
from three key sources: DERs, the distribution network, and customers, 
all reaching system operators. This data enables advanced analytics and 
machine learning to enhance grid reliability and optimize power gen
eration planning. However, the high volume generated by numerous 
sensors and devices, like high-frequency PMUs (e.g., 120 Hz), creates a 
significant communication burden. On top of the communication chal
lenges, data privacy of customers is a paramount concern in smart grids. 
This data contains information about energy consumption patterns, 
which can be exploited by malicious actors in different ways. This could 
enable targeted burglaries where thieves use insights from energy data 
to identify times when homeowners are likely to be away. 

Considering the challenges of data communication and privacy in 
smart grids, we propose a novel approach for enhancing data privacy 
while facilitating data exchange for machine learning applications. 
Unlike conventional centralized training methods, which can compro
mise privacy and incur high communication overhead, our approach 
leverages pre-trained GenAI models. These models are first fine-tune at 
each client (i.e., data collection point) before being transferred to a 
central server (i.e., smart grid operator). At the server, the fine-tuned 
models from each data collection point are used to generate synthetic 
data. This synthetic data is then used to train a global machine learning 
model. This novel method achieves two critical goals; first, it effectively 
mitigates privacy risks by ensuring clients never share their raw con
sumption data. Since the models themselves don’t contain the raw in
formation, only the knowledge learned from it, privacy concerns are 
significantly reduced. Second, this approach dramatically reduces 
communication burden. Instead of transmitting vast amounts of raw 
data from each client, only the significantly smaller, fine-tuned models 
are transferred. This minimizes bandwidth usage and improves the 
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overall efficiency of the data exchange process. 
Following the federated learning approach with Generative AI, we 

can define the optimization problem that the server aims to solve. This 
involves minimizing an objective function, represented by the following 
equation: 

minθL (x, y; θ) + λΩ(x, y; θ) (1)  

where x represents the input, y represents the target values, L (⋅) de
notes the loss function, and Ω(⋅) denotes the regularization term. The 
parameter λ controls the trade-off between fitting the training data and 
preventing overfitting. This formulation captures the server’s objective 
in the smart grid; iteratively refining model parameters to minimize a 
combined function. This function balances the model’s fit to the syn
thetic data (captured by the loss term) with its overall complexity 
(penalized by the regularization term). This approach prevents over
fitting and improves the model’s generalization to unseen data. 

To solve Equation (1), the server requires access to all client data. 
However, in our proposed method, to preserve privacy, clients transmit 
fine-tuned generative models (instead of raw data) to the server. The 
server then utilizes these models to generate synthetic data for the 
training process. 

3.1. Synthetic data generation for smart grids 

Our proposed method addresses privacy concerns and communica
tion overhead associated with data exchange in smart grids by 
leveraging GenAI models for synthetic data generation. By fine-tuning 
pre-trained GenAI models, we can generate synthetic data that closely 
resembles real-world data distributions, eliminating the need for 
directly exchanging raw data. Several GenAI models are well-suited for 
this task, offering flexibility and scalability in generating synthetic data 
tailored to specific smart grid applications. These GenAI models can 
categorized in: (i) Generative Adversarial Networks (GANs): GANs 
consist of a generator and a discriminator network trained simulta
neously. The generator aims to create realistic data samples, while the 
discriminator distinguishes between real and synthetic data. (ii) Varia
tional Autoencoders (VAEs): VAEs are probabilistic generative models 
that learn a latent representation of the data distribution. By sampling 
from this latent space, VAEs can generate synthetic data points. (iii) 
Foundation Models: These are large, pre-trained models trained on 
massive amounts of unlabeled data. They can be fine-tuned for down- 
stream tasks, including synthetic data generation in the smart grid 
domain. Foundation models offer the potential to leverage knowledge 
from diverse data sources, potentially leading to richer and more 
informative synthetic data compared to other GenAI approaches. 

This approach offers an efficient solution for federated learning in 
smart grids by addressing both privacy and efficiency concerns. The 
synthetic data we generate preserves the statistical properties of real 
data, allowing for effective model training without compromising in
dividual privacy. Furthermore, this approach significantly reduces 
communication overhead. Instead of uploading large volumes of raw 
data, often measured in gigabytes per year from high-frequency sensors, 
consumers only need to transmit fine-tuned model to the server. This 
reduction in data size by several orders of magnitude benefits power 
system devices and resource-constrained IoT devices on the edge of the 
network. 

Given an input data point xt where t indicates timestamp, the GenAI 
model aims to create a synthetic data point, denoted by x̃t. This synthetic 
data point will resemble the original data point while preserving pri
vacy. We aim to generate a dataset of such synthetic samples, {x̃1, x̃2,…,

x̃k}, where k is the desired number of synthetic samples. These synthetic 
samples will then be used instead of raw data exchange for effective 
model training. We denote the generator model as Gen with a set of 
parameters ω, aims to approximate the underlying data distribution p 

Fig. 2. Overview of Components and Communication in a Smart Grid. Data flow from DERs, grids, and customers empowers analytics for a reliable and optimized 
grid, but managing data volume and privacy presents Challenges. 

Fig. 3. Overview of Distributed Learning using Generative Models: Leveraging 
Synthetic Data for Privacy-Preserving Training. 
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(x). This can express as: 

x̃t = Gen(t1:t− 1;ω) s.t. x̃t ≈ xt (2) 

Leveraging this formulation, each agent can fine-tune its local GenAI 
model (denoted by Geni with its specific parameters ωi) based on its own 
data. This allows for the generation of synthetic data points that are 
tailored to the specific characteristics of each agent’s data, even if the 
data distributions differ across agents (i.e., data heterogeneity). 

3.2. Synthetic diffusion data 

Our proposed method leverages GenAI models, specifically diffusion 
models, for high-quality synthetic data generation to solve Eq. (2). 
Diffusion models are a type of deep generative model trained to learn the 
underlying structure of real data distributions Sohl-Dickstein et al. [38]. 
This allows them to generate diverse and realistic synthetic samples 
compared to other methods like Generative Adversarial Networks 
(GANs) which can suffer from training instability. Additionally, diffu
sion models boast a fixed learning procedure and high-dimensional 
latent variables, leading to more accurate and more stable data gener
ation quality compared to AutoEncoder or flow-based methods Croitoru 
et al. [39]. 

Once the GenAI models are trained locally, they are transmitted to 
the server. The server then leverages these models to generate synthetic 
data. This process utilizes models from all clients, resulting in diverse 
synthetic data that captures the statistical properties of the original in
formation without revealing individual client details. 

Diffusion models, distinguished from other latent variable models by 
deriving the posterior from a Markov chain, consist of two key processes: 
the diffusion process and the reverse process. The diffusion process 
gradually adds Gaussian noise to the original data, as formulated below: 

p(x1:T|x0) :=
∏T

t=1
p(xt |xt− 1), (3)  

Here, p(x1:T|x0) represents the diffusion process, where x0 is the original 
data sampled from the real data distribution p(x0). The set {xt}

T
t=1 

comprises latent variables, noisy data, sharing the same dimensionality 
as x0. t and T refer to the timestep and the total number of diffusion 
timesteps, respectively. Since the diffusion process follows a Markov 
chain structure, with p(xt) depending only on p(xt− 1), the joint distri
bution of noisy data p(x1:T) can be expressed as the product of successive 
diffusion steps. At each diffusion step, denoted by p(xt |xt− 1), the process 
takes xt− 1 as input and produces xt by adding some noise. This operation 
is defined as follows: 

p(xt |xt− 1) := N

(
xt ;

̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − ηt

√
xt− 1, ηtI

)
, (4)  

Here, ηt ∈ (0, 1) represents the noise schedule. Ultimately, as T tends to 
infinity, xT will conform to an isotropic Gaussian distribution. 

Following Wang and Zhang [37], and by defining ϵ ∼ N (0, I) as 
Gaussian noise, γt =

∏t
m=1γm, and γt = 1 − ηt, we can derive a closed 

form for the above process: 

p(xt |x0) := N
(
xt ;

̅̅̅̅
γt

√
x0, (1 − γt)I

)
,

xt :=
̅̅̅̅
γt

√
x0 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 − γt)

√
ϵ,

(5) 

The reverse process aims to denoise xt to recover x0, enabling the 
recreation of data samples from Gaussian noise. Due to the difficulty of 
directly and explicitly formulating the reverse step as in Eq. (4), we 
approximate it using a neural network model. Similar to the diffusion 
step, the reverse process is represented as D(xt− 1|xt ;ω), where D(xt− 1|xt ;

ω) denotes the reverse step implemented by the neural network. This 
step takes xt and t as inputs, estimating mean and variance of the 
Gaussian distribution. 

Given that the reverse process also conforms to a Markov chain, its 

formulation can be derived from the reverse step as follows: 

D(x0:T;ω) := D(xT)
∏T

t=1
D(xt− 1|xt ;ω), (6) 

Accurate noise estimation at each step is essential for effective 
denoising at each timestep. The objective of denoising process of the 
diffusion models can be formulated as: 

min(L (D(xt− 1|xt ;ω), p(xt− 1|xt ,x0) ) ), 1 ≤ t ≤ T, (7)  

where p(xt− 1|xt ,x0) represents the posterior conditional probability of 
the diffusion process, reflecting the ground truth of added noises. The 
objective is to minimize L , typically Kullback-Leibler divergence in 
diffusion models. 

3.3. Dataset aggregation and task model training 

After receiving the fine-tuned GenAI models Geni from all available 
clients, the server leverages them to create synthetic data for training the 
task model. We denote the set of synthetic datasets generated by these N 
models as D = D 1,D 2,…,D N. The server aggregates these datasets to 
form a combined dataset, denoted by D combined. To minimize the 
objective function defined in Equation (1), the server iteratively utilizes 
D combined and solves the function for K iterations. 

For solving this optimization problem, gradient descent is a 
commonly used algorithm in machine learning models. The update rule 
for parameter θ in the gradient descent algorithm can be expressed as: 

θk+1 = θk − α∇(L (x, y; θk) + λΩ(x, y; θk)) (8)  

where α is the step size, and ∇ denotes the gradient operator. This up
date rule iteratively adjusts the parameters θ in the direction opposite to 
the gradient of the objective function, aims to convergence towards the 
optimal solution. Adjusting the step size α appropriately is crucial for 
ensuring convergence and efficiency of the optimization process. 

Training the model on the aggregated dataset D combined allows for 
effective learning while preserving the privacy of individual clients’ 
data. Additionally, incorporating data augmentation techniques further 
enhances the model’s ability to generalize and adapt to diverse 
scenarios. 

4. Experiments and discussion 

The convergence of federated learning (FL) with GenAI models opens 
exciting possibilities for enhancing smart grid functionalities. By 
leveraging synthetic data generated by GenAI models, FL can overcome 
privacy concerns and data scarcity limitations, paving the way for ad
vancements in various smart grid applications. This includes real-time 
anomaly detection in sensor data for proactive maintenance, opti
mizing demand response programs to reduce peak loads, and facilitating 
the seamless integration of renewable energy sources. In this paper, we 
will focus on the critical application of load forecasting. We aim to 
explore how GenAI-powered synthetic data can empower FL models to 
predict future energy demand with greater accuracy and efficiency, ul
timately contributing to a more reliable and sustainable smart grid. 

4.1. Experiment setting 

Data Preparation. Our experiments leverage the Pecan Street dataset 
Parson et al. [40], a well-established benchmark for residential energy 
consumption data. This dataset provides high-resolution (e.g., 1-min 
interval) measurements from a large number of households, offering a 
realistic representation of real-world load profiles. For synthetic data 
generation, we employ a U-Net model Ronneberger et al. [41] 
pre-trained on a massive dataset. U-Nets are a type of convolutional 
neural network architecture specifically designed for image 
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segmentation tasks. However, recent research has demonstrated their 
effectiveness in time series forecasting tasks as well Yin et al. [42]; 
Madhusudhanan et al. [43]. While other foundation models like GPT-3 
can be explored in future work, U-Nets offer a good balance between 
performance and computational efficiency for this application. 

For the forecasting task, we utilize a LSTM network Graves and 
Graves [44] as the core machine learning model running on the server 
side. LSTMs are well-suited for tasks involving sequential data like load 
forecasting, as they can effectively capture temporal dependencies 
within the data. 

Performance Metrics. To effectively assess the quality of the proposed 
method, particularly for time series data, we evaluate the performance 
of the methods in terms of Root Mean Squared Error (RMSE), measuring 
the disparity between individual synthetic and real samples. Accuracy is 
also considered, with predictions deemed accurate if the error is less 
than 5 %. Additionally, privacy preservation and communication effi
ciency are evaluated using various benchmarks. 

Benchmark. To demonstrate the effectiveness of our proposed 
method and compare its performance against leading approaches, we 
select the following benchmarks based on current state-of-the-art 
methods.  

1. Individual Training: Where we compare the average performance 
of clients. Each client trains its model independently without 
collaborating with others. We then average the performance across 
all clients.  

2. Centralized Training: In this scenario, all clients send their data to 
the server, and the model is trained centrally. 

3. Federated Learning: In a Federated Learning setting, clients itera
tively train the model with the assistance of the server. In each 
iteration, they send their updated model to the server for 
aggregation.  

4. GAN: A GAN-based framework proposed in El Kababji and Srikantha 
[45] for load pattern synthesis.  

5. Federated-WDCGAN: A Wasserstein deep convolutional conditional 
GAN proposed in Chen et al. [46] to generate energy consumption 
data.  

6. Conditional DM: This benchmark represents a Conditional Diffusion 
Model introduced by Wang and Zhang [37], that progressively learns 
to denoise a latent representation of the target data distribution. 

4.2. Next-day energy demand prediction 

In this experiment, we evaluate the effectiveness of our proposed 
method for next-day energy demand prediction at the individual 
household level. The server-side LSTM model is trained for 300 epochs 
using the synthetic data generated from the data of 10 homes. Fig. 4 
illustrates the performance of the LSTM model with one hidden layer in 
predicting the next-day energy demand for two sample households. The 
plot compares the predicted demand (in kWh) with the actual observed 
consumption. As evident from the figure, the proposed method achieves 

good accuracy in predicting the next-day energy demand for these 
particular households. 

4.3. Comparison to baselines 

Table 1 compares the accuracy of the proposed method with six 
existing approaches, also evaluating their Root Mean Squared Error 
(RMSE). The table shows that our method achieves better performance 
on RMSE and accuracy compared to these benchmarks. This demon
strates that synthetic data generated using our method effectively cap
tures the underlying patterns in real-world energy consumption data 
while preserving privacy. Speccifically our method offers a significant 
privacy advantage compared to the centralized approach. Unlike the 
centralized approach, which requires sharing raw client data, our 
method protects privacy by keeping all data on the client side. This al
lows for accurate predictions without compromising sensitive 
information. 

4.4. Communication efficiency 

Our proposed method offers significant advantages in terms of 
communication efficiency and privacy protection compared to tradi
tional approaches. By leveraging synthetic data generated locally at 
each household, the communication burden is reduced by 58 % 
compared to a scenario where all raw data is uploaded to the server for 
centralized training. This translates to a substantial decrease in network 
traffic and associated costs, especially for resource-constrained devices 
on the edge of the smart grid. 

Furthermore, our approach enhances privacy by eliminating the 
need for households to share their raw energy consumption data. 
Instead, only anonymized synthetic data is transmitted to the server, 
significantly reducing the risk of sensitive information leakage. This 
prevents the server or any potential adversaries from gleaning insights 
into individual consumption patterns that could be used for malicious 
purposes, such as inferring occupancy or daily routines. 

Fig. 4. Comparison of Predicted and Observed Next-Day Energy Demand for Sample Households using the Proposed Method.  

Table 1 
Comparison of performance and privacy preservation in different benchmarks 
for predicted versus observed next-day energy demand.  

Method Accuracy (%) RMSE Privacy 

Individual Training 83 2.4529 Yes 
Centralized Training 94 0.8931 No 
Federated Learning 92 1.2360 Partial 
GAN 90 1.5584 Yes 
Federated-WDCGAN 91 1.1694 Yes 
Conditional DM 93 0.9806 Yes 
Proposed Method 94 0.9026 Yes  
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5. Conclusion 

Emerging communication challenges threaten to impede the growth 
of smart grids. The ever-increasing volume of data transmitted from 
sensors and devices strains existing infrastructure, leading to bottlenecks 
and inefficiencies. Generative Artificial Intelligence presents a compel
ling solution by enabling distributed learning at the grid edge. This 
approach empowers intelligent agents, such as smart meters and 
distributed generators, to process and analyze data locally. By 
leveraging pre-trained GenAI models, these agents can generate syn
thetic data that accurately reflects real-world grid conditions. This 
synthetic data can then be used to train local machine learning models 
for critical tasks like anomaly detection, energy use optimization, and 
demand forecasting. GenAI adoption within smart grids unlocks a 
multitude of benefits. It fosters a significant reduction in communication 
burden by alleviating the need for constant communication with a 
central server. This not only frees up valuable bandwidth for essential 
grid operations but also enhances overall system efficiency. Further
more, GenAI safeguards privacy by eliminating the transmission of raw 
energy consumption data. Instead, anonymized synthetic data, preser
ving the statistical properties of real data without compromising indi
vidual details, is transmitted. This approach mitigates the risk of 
cyberattacks and protects consumer privacy. In conclusion, GenAI has 
the potential to revolutionize smart grid communication, paving the 
way for a more secure, efficient, and scalable energy infrastructure that 
underpins a sustainable future. 
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