
Evaluating System Robustness Against Single

Effect Upsets with Triple Modular Redundancy

Integration

Aya Khaled Galal Mohammed

A Thesis

in

The Department

of

Electrical and Computer Engineering

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Applied Science (Electrical and Computer Engineering) at

Concordia University

Montréal, Québec, Canada

October 2024

© Aya Khaled Galal Mohammed , 2024

CONCORDIA UNIVERSITY

School of Graduate Studies

This is to certify that the thesis prepared

By: Aya Khaled Galal Mohammed

Entitled: Evaluating System Robustness Against Single Effect Upsets with

Triple Modular Redundancy Integration

and submitted in partial fulfillment of the requirements for the degree of

Master of Applied Science (Electrical and Computer Engineering)

complies with the regulations of this University and meets the accepted standards with re-

spect to originality and quality.

Signed by the Final Examining Committee:

Chair/Internal Examiner
Dr. Rodolfo Coutinho

External Examiner
Dr. Mohsen Ghafouri

Supervisor
Dr. Otmane Ait Mohamed

Co-supervisor
Dr. Abdelwahab Hamou-Lhadj

Approved by
Yousef R. Shayan, Chair

Department of Electrical and Computer Engineering

2024
Mourad Debbabi, Dean

Faculty of Engineering and Computer Science

Abstract

Evaluating System Robustness Against Single Effect Upsets with Triple

Modular Redundancy Integration

Aya Khaled Galal Mohammed

Many-core Commercial-off-the-shelf (COTS) processors offer a promising solution

for meeting the performance and cost requirements of safety-critical avionics applications.

However, the increased transistor count in these processors makes them more prone to soft

errors, potentially leading to system failures. This raises challenges in integrating their use

in critical applications due to limited research on how to mitigate the radiation-induced

soft errors on open-source many-core processors. Various mitigation strategies have been

proposed, including hardware and software techniques. Despite these efforts, a significant

gap remains, largely due to the inefficient use of multi-core processor resources.

Our work addresses this gap by integrating Triple Modular Redundancy (TMR) into

OpenPiton, an open-source many-core processor while maintaining minimal time and area

overhead. This integration enhances the system’s robustness against soft errors, leveraging

unused cores for redundant threads, thus improving overall reliability. Our methodology

includes detailed implementation strategies for multi-threaded TMR, addressing key issues

such as synchronization across cores and race conditions. This study contributes to the field

by introducing a novel TMR implementation for many-core processors and advancing the

integration of fault tolerance mechanisms in complex computing environments, offering a

robust solution for critical applications.

iii

Acknowledgments

First and foremost, I wish to express my profound gratitude to God for granting me

strength, wisdom, and perseverance throughout this research.

I extend my deepest thanks to my supervisor, Dr.Otmane Ait Mohamed, for their in-

valuable guidance, support, and encouragement. Their expertise and insightful feedback

were instrumental in shaping this work and advancing my academic journey.

I am also sincerely grateful to my co-supervisor, Dr. Abdelwahab Hamou-Lhadj, for

their constructive suggestions, support, and continuous motivation. Their contributions

were crucial in refining the research and ensuring its success.

My heartfelt thanks go to my family, whose unwavering love and support have been

a constant source of strength. To my husband, Ibrahim, and my son, Adam, your Love,

patience, and encouragement gave me the motivation to complete this work. I couldn’t

have achieved this without you by my side. I love you endlessly.

I also wish to acknowledge my parents, Khaled & Dalia, for their enduring love, sup-

port, and belief in my abilities. Your sacrifices and encouragement have been a driving

force behind my achievements.

I would like to extend my gratitude to Chifa Dammak, whose work on the fault injection

framework served as a valuable baseline for my research.

To everyone who has supported and believed in me, thank you.

iv

Contents

List of Figures viii

List of Tables ix

1 Introduction 1

1.1 Motivation . 1

1.2 Multi-core Processors . 2

1.3 Radiation Effects . 3

1.4 Mitigation Techniques . 3

1.5 Problem Statement and Thesis Contributions 4

1.6 Thesis Outline . 5

2 Preliminaries 6

2.1 Single-Event Effects . 6

2.2 Reliability assessments Techniques . 8

2.2.1 Radiation Ground Testing . 9

2.2.2 Fault Injection Methods . 9

2.3 OpenPiton . 10

2.3.1 OpenPiton Processor Architecture 10

2.3.2 OpenPiton Configurability . 13

2.4 Benchmark Applications . 13

v

2.4.1 Fibonacci Series Benchmark . 14

2.4.2 Matrix Multiplication Benchmark 15

2.5 Soft Errors Mitigation Techniques . 16

2.5.1 TMR . 17

3 Multi-threaded TMR Implementation Methodology 19

3.1 Multi-threaded TMR Implementation . 19

3.2 Communication between Cores . 22

3.2.1 Memory Mapping . 22

3.2.2 Race Condition . 24

3.3 Fault Injection Framework . 28

3.4 Result Generation . 30

3.5 Summary . 31

4 Experimental Setup and Results to Evaluate the Impact of Implementing TMR

in OpenPiton Many-core on the System Reliability against SEUs 33

4.1 Environment Setup . 33

4.1.1 Running Simulation With OpenPiton 35

4.2 Experiment 1: TMR Implementation on 1-core, 2-core and 3-core system

Implementing Fibonacci Series Benchmark 38

4.2.1 Experimental Results of Fibonacci Experiment without TMR . . . 39

4.2.2 Experimental Results of Fibonacci RD Experiment with TMR . . . 40

4.2.3 Experimental Results of Fibonacci ECC Experiment without TMR 42

4.2.4 Experimental Results of Fibonacci ECC Experiment with TMR . . 43

4.3 Experiment 2: TMR Implementation on (1C, 2C, or 3C random) fault in-

jection in OpenPiton Implementing Matrix Multiplication Benchmark . . . 45

4.3.1 Experimental Results of MxM RD Experiment without TMR . . . 50

vi

4.3.2 Experimental Results of MxM RD Experiment with TMR 51

4.3.3 Experimental Results of MxM ECC Experiment without TMR . . 53

4.3.4 Experimental Results of MxM ECC Experiment 53

4.4 Conclusions . 55

4.5 Summary . 57

5 Conclusions and Future Work 59

5.1 Conclusions . 59

5.2 Future Work . 61

Appendix A 62

Appendix B 72

Bibliography 77

vii

List of Figures

Figure 2.1 classifications of Soft Errors[1] . 7

Figure 2.2 Overview of OpenPiton Architecture [2] 11

Figure 2.3 Architecture of a tile . 12

Figure 2.4 Architecture of a chipset . 12

Figure 3.1 Summarized Methodology . 20

Figure 3.2 Proposed proper synchronization approach 25

Figure 3.3 Summarized Fault injector Framework [1] 29

Figure 4.1 Thread Mapping . 37

Figure 4.2 OpenPiton Data Register . 42

viii

List of Tables

Table 2.1 OpenPiton Configurable Components [2] 13

Table 3.1 Experimental Results of MxM RD Experiment with TMR 31

Table 4.1 Binary Combination of 3C random fault injection 35

Table 4.2 Experimental Results of Fibonacci Experiment without TMR 40

Table 4.3 Experimental Results of 1C Fibonacci Experiment without TMR . . 41

Table 4.4 Experimental Results of 2C Fibonacci Experiment with TMR 41

Table 4.5 Experimental Results of 2C Fibonacci Experiment with TMR 42

Table 4.6 Experimental Results of Fibonacci Series ECC Experiment without

TMR . 43

Table 4.7 Experimental Results of 1C Fibonacci ECC Experiment with TMR . 44

Table 4.8 Experimental Results of 2C ECC Fibonacci Experiment with TMR . 44

Table 4.9 Experimental Results of 3C Fibonacci Experiment with TMR 45

Table 4.10 Experimental Results of MxM RD Experiment without TMR 51

Table 4.11 Experimental Results of MxM RD Experiment with TMR 52

Table 4.12 Experimental Results of MxM 2C RD Experiment with TMR 52

Table 4.13 Experimental Results of 3C MxM RD Experiment with TMR 52

Table 4.14 Experimental Results of MxM ECC Experiment without TMR . . . 53

Table 4.15 Experimental Results of MxM ECC Experiment with TMR 54

Table 4.16 Experimental Results of MxM 2C ECC Experiment with TMR 54

Table 4.17 Experimental Results of 3C MxM ECC Experiment with TMR 55

ix

Table 4.18 Experimental Results of RD and ECC Implementations 58

x

Chapter 1

Introduction

In this chapter, we provide a brief overview of many-core processors, TMR imple-

mentation techniques, and their effect on boosting system robustness against Single Event

Upsets (SEUs). We begin by presenting the motivation for our research. Following this,

we discuss the rationale behind the industry’s shift towards using commercial off-the-shelf

(COTS) many-core processors. We also provide an overview of the various radiation effects

on safety-critical applications and the associated challenges in enhancing their reliability

against these effects. Subsequently, we highlight our problem statement and the contribu-

tions of this thesis. We briefly explain how we exploited the vast resources of many-core

processors to implement TMR. Finally, a breakdown of the thesis chapters is provided.

1.1 Motivation

Due to the increasing complexity of industrial systems, single-core processors have

failed to achieve optimal performance. This is why the industry has shifted towards many-

core processors to meet these requirements [3]. Multi-core processors enable many activ-

ities to run simultaneously without suffering substantial performance bottlenecks, leading

to faster computations, increased productivity, and quicker response times[4].

1

Despite the significant improvements brought by multi-core processors, these advance-

ments come at a cost. Power consumption and heat dissipation are the main challenges

[5]. According to Moore’s Law, announced in 1975, the transistor count—a measure of an

electronic system’s capability—doubles every two years. The transistor count has exceeded

this limit, shrinking the channel length from 3µm in 1987 to an expected 2nm in 2025 [6].

This miniaturization has allowed the integration of multi-core processors on a single chip,

achieving outstanding performance and computational capabilities.

However, the limited robustness of multi-core processors against radiation effects has

restricted their use in many safety-critical applications such as aerospace systems, banking

systems, automated railway systems, and mission-critical embedded applications[7]. Radi-

ation effects are categorized into permanent effects, known as ”Hard Errors,” and temporary

effects, known as ”Soft Errors.” Soft errors occur more frequently than hard errors[8]. Con-

sequently, the industry is keen to assess and improve system robustness against soft errors.

A soft error can be modeled as a transient bit flip, potentially altering the system’s control

flow, which can have catastrophic consequences, especially for safety-critical systems [9].

In safety-critical systems, such as aerospace systems, boosting system reliability against

soft errors is essential due to the significant radiation effects these systems experience[8]. A

variety of techniques have been proposed to mitigate these effects, ranging from hardware

mitigating techniques to software and hybrid mitigating techniques[10].

1.2 Multi-core Processors

With the industry’s shift towards leveraging the extensive resources of multi-core pro-

cessors, we provide a more in-depth analysis of this trend. Multi-core technology has

facilitated parallel processing, enabling higher performance without increasing system fre-

quency, thus reducing application execution time.

Performance Optimization With Enhanced RISC, known as ”POWER,” is the world’s

2

first multi-core processor, launched by IBM in 2001. This innovative architecture allowed

two on-chip processors to operate collaboratively with large on-chip memories at a very

high bandwidth. Furthermore, combining four microprocessors into an 8-way module set

a new industry standard by achieving a record clock speed of 1.3 GHz [11]. While multi-

core processors offer numerous advantages, challenges such as inter-core communication

and race conditions during program execution arise[12].

1.3 Radiation Effects

Radiation effects are a major concern for the system robustness of safety-critical ap-

plications, including aircraft avionics and nuclear power plants. Radiation effects can be

classified into cumulative damage from multiple energy particles and damage caused by a

single particle[13]. Single-event effects (SEEs) result from the damage caused by a single

particle. When a charged particle passes through a device, it ionizes atoms along its path,

generating charged particles like electrons and holes. SEEs can be further classified as ei-

ther Hard SEEs, which cause permanent damage, or Soft SEEs, which are transient and can

be corrected [14]. More details will be discussed in Chapter 2.

1.4 Mitigation Techniques

Extensive research has been conducted to address the challenges posed by these ef-

fects, resulting in several mitigation techniques. These techniques can be categorized into

three groups: hardware mitigation techniques, software mitigation techniques, and hybrid

mitigation techniques.

Software mitigation techniques often involve duplicating instructions or tasks and em-

ploying dual-use Error Detection and Correction Codes (ECC). By redundantly processing

tasks or using ECC, these techniques enhance the system’s ability to detect and correct

3

errors at the software level.

Hardware mitigation techniques focus on solutions at the circuit, logic, and architectural

levels. Strategies include gate sizing, increasing capacitance, and implementing resistive

hardening. These hardware-level interventions enhance system robustness by fortifying

physical and logical components.

Hybrid mitigation techniques integrate both hardware and software approaches, com-

bining hardware-based solutions with software strategies like redundant multi-threading

and parallel processing. Hybrid techniques aim to detect and recover from soft errors more

effectively, leveraging the full potential of multi-core processors [10].

1.5 Problem Statement and Thesis Contributions

Industries, particularly in aerospace applications, have adopted commercial off-the-

shelf (COTS) processors to achieve performance and cost objectives. However, integrat-

ing multi-core COTS processors into safety-critical applications presents challenges due to

their limited robustness against radiation-induced soft SEEs. Various mitigation techniques

have been proposed, ranging from hardware to software solutions.

This thesis introduces a novel implementation of multi-threaded Triple Modular Re-

dundancy (TMR) on the OpenPiton framework. The novelty of this work lies in integrat-

ing multi-threaded TMR within a highly configurable and resource-intensive architecture

like OpenPiton[15]. Unlike conventional single-threaded TMR implementations, the multi-

threaded approach introduces unique challenges, such as synchronization, race conditions,

and parallel fault detection across multiple cores.

The primary objective of this research is to develop and integrate a multi-threaded TMR

approach tailored for OpenPiton, leveraging its architectural features to enhance error de-

tection and correction capabilities.

Additionally, this work addresses the challenge of integrating robust error mitigation

4

with OpenPiton’s scalable architecture. It ensures that the system can handle faults across

multiple cores while preserving the architectural flexibility of OpenPiton. By doing so, this

research extends the boundaries of existing fault tolerance methodologies, bridging the gap

between high-performance many-core processors and robust fault tolerance mechanisms

for real-world critical systems.

1.6 Thesis Outline

The thesis is organized as follows:

• Chapter 2 discusses various topics, including soft errors and the OpenPiton multi-

core processor used in this research. We provide an overview of the reliability as-

sessment framework employed, explore different reliability assessment techniques,

and offer a discussion on Triple Modular Redundancy (TMR) and its historical de-

velopment.

• Chapter 3 provides an in-depth discussion of the TMR (Triple Modular Redundancy)

implementation, introducing key components such as the golden model, the majority

voting mechanism, the fault injection framework, and the process of results genera-

tion. Challenges encountered during the implementation are also addressed.

• Chapter 4 presents the experimental setup and the results of various experiments.

The discussion covers the impact of TMR implementation across different cores and

benchmarks, providing detailed insights into the outcomes of each experiment.

• Chapter 5 concludes the thesis with a comprehensive summary of key findings. Sug-

gestions for future work are also provided, outlining potential directions for further

exploration and improvement.

5

Chapter 2

Preliminaries

In this chapter, we provide an overview of the foundational concepts relevant to our

work. We begin with a discussion of various SEEs, followed by a review of reliability

assessment techniques. Next, we outline the framework used in this study, and introduce

the many-core processor, OpenPiton. Lastly, we examine soft error mitigation strategies,

with a focus on the TMR technique employed in our work.

2.1 Single-Event Effects

Radiation impacts the functionality of semiconductor devices in multiple ways. SEEs

are caused by a single charged particle and can be categorized into two types: destructive

effects, referred to as ”Hard Errors,” and non-destructive effects, known as ”Soft Errors.”

A comprehensive classification of SEEs is shown in Figure 2.1.

Soft errors are non-destructive and result from transient bit flips in registers or memory

cells, or transient pulses in logic cells. These errors can be easily overwritten by the system,

and their effects can disappear if properly handled. In contrast, hard errors cause permanent

damage to the circuitry. They can be triggered by Single-Event Latchup (SEL), Single-

Event Burnout (SEB), or Single-Event Gate Rupture (SEGR) .

6

Figure 2.1: classifications of Soft Errors[1]

Soft errors, being non-destructive, can vary in their impact depending on the type of

circuit affected. In combinational circuits, the effects of a soft error may disappear once

the transient bit flip or pulse dissipates. However, in memory components and sequential

logic, such errors can propagate through data states, potentially causing system failures in

critical parts of the circuitry [1].

Soft errors are generally classified into three types: Single-Event Transients (SETs),

Single-Event Upsets (SEUs), and Single-Event Functional Interrupts (SEFIs) [1].

• SETs occur as voltage spikes caused by high-energy particles, which lead to brief

fluctuations in voltage or current.

• reg shows the exact register where the faults are injected.

• SEUs are cosmic ray-induced bit flips in memory storage, which may result in a

single-bit upset (SBU) or a multiple-bit upset (MBU) as the particle passes through

multiple bits in the device.

• SEFIs are more severe, often resulting from an upset in a control bit or register that

7

disrupts the system’s functionality. These are considered the most critical form of

soft errors.

• SEFIs are more severe, often resulting from an upset in a control bit or register that

disrupts the system’s functionality. These are considered the most critical form of

soft errors.

In contrast, hard errors are destructive and cause permanent damage to the circuitry,

which cannot be corrected or overwritten by the system.

• SELs occur when a charged particle passes through the parasitic silicon-controlled

rectifier between the p-type and n-type regions of a CMOS transistor, causing a cur-

rent flow from the power supply to the ground. If left unaddressed, this can perma-

nently damage the circuit.

• SEBs are destructive breakdowns often occurring in MOSFET transistors, especially

power transistors.

• SEGRs involves damage or breakdown of the gate oxide layer in a MOSFET or

similar transistor due to a high-energy particle.

Given the critical impact that soft errors can have, especially in safety-critical applica-

tions such as aerospace, storage systems, cryptography, and embedded systems, extensive

research has been dedicated to mitigating their effects.

2.2 Reliability assessments Techniques

As mentioned before in 1.3, soft errors have critical effects on electronic systems of

safety-critical applications such as aerospace. Thus, that created many motives to mimic

the soft error effects in various ways such as Radiation Ground Testing, and Fault injections

8

2.2.1 Radiation Ground Testing

Radiation Ground Testing is regarded as one of the most accurate methods for simu-

lating soft errors. However, it is a time-consuming and costly approach. This technique

involves exposing the silicon chip to artificial radiation environments, such as proton, neu-

tron, or heavy ion beams, subjecting the system to radiation levels even higher than those

encountered in real-life outer space. As a result, it provides a more realistic assessment of

the effects of soft errors [16].

2.2.2 Fault Injection Methods

Another technique to mimic soft errors is Fault Injection at different abstraction levels

such as Hardware-Based fault injection, Software-Based fault injection, Simulation-Based

fault injection, Emulation-Based fault injection, and Hybrid fault injection.[17]

• Hardware-based fault injection is performed at the physical level by introducing

faults directly into the circuit. These faults are injected into the system’s hard-

ware through various means, such as environmental parameters, power supply dis-

turbances, or laser fault injection.

• Software-based fault injection’s primary purpose is to replicate the effects of hardware-

based fault injection by simulating the same variations in pins at the software level.

• Simulation-Based Fault Injection occurs in high-level models, thus fault injection

is done in the designing phase of the circuit. By employing several description lan-

guages, it targets various abstraction levels. It gives an overview of system reliability

at the early stages before actual hardware is manufactured.

• Emulation-Based Fault Injection depends on exploiting the Field Programmable

Gate Arrays (FPGAs) to emulate the system model, thus spending a shorter time

9

than Simulation-based Fault injections, giving the designer an opportunity to study

the actual behavior to different errors.

• Hybrid Fault Injection allows the mixing of the features of software-based fault

injection with observing the effects on the actual hardware.

2.3 OpenPiton

OpenPiton is the world’s first open-source, general-purpose, multi-threaded many-core

processor. It gained a lot of interest and focus, because of its maturity, continuous assis-

tance, and ongoing release.

OpenPiton, developed by the Princeton Parallel Group at Princeton University, ad-

dresses the gap between the high cost of industrial many-core processors and the research

community’s need for an open-source framework that is scalable, configurable, and com-

patible with various verification tools. This one-of-kind multi-core processor can scale

from one core to half a billion cores, allowing it to be used from small embedded systems

to large data centers.

This 64-bit architecture framework is based on the OpenSPARC T1 core designed by

Oracle [18], thereby benefiting from its stability, along with its supporting tools and com-

prehensive test suite available in both assembler and C languages.

2.3.1 OpenPiton Processor Architecture

Figure 2.2 illustrates the architecture of OpenPiton. This tiled-structured framework

enables the integration of multiple tiles (cores) within a single chip, with the potential for

scaling across multiple chips. Intra-chip communication is maintained through the Network

on Chip (NoC) in 2D mesh topology. NOC router can have address space up to 256 tiles in

one OpenPiton Chip

10

Figure 2.2: Overview of OpenPiton Architecture [2]

while inter-chip (off-chip) communication is facilitated by the chipset as shown in fig-

ure 2.3. The chipset logic is connected to the chip (tile array) via chip bridge as shown

in figure 2.4. The chipset logic in addition to another three NOC routers allows seamless

connection of multiple chips creating an integrated large system.

The cache architecture in OpenPiton is distributed across three levels, consisting of

private L1 and L1.5 caches for each core, and a distributed shared L2 cache. The L1 cache

is largely inherited from the industrial-grade OpenSPARC T1 and is split into a data cache

and an instruction cache. The L1 data cache is an 8KB write-through cache, featuring a

16-byte line size and 4-way set-associativity. In contrast, the L1 instruction cache follows

a similar structure but has a 32-byte line size.

Since the L1 cache uses a write-through policy, multi-core processors such as Open-

Piton may experience network-on-chip (NOC) congestion. To mitigate this, an interme-

diate cache, referred to as the L1.5 cache, was introduced. This local write-back cache

manages MESI protocol states and streamlines communication with the NOCs.

11

The L2 cache, shared across all tiles, is distributed across the system. By default, each

tile is configured with a 64KB L2 cache, maintaining 4-way set-associativity [15].

Figure 2.3: Architecture of a tile

Figure 2.4: Architecture of a chipset

12

2.3.2 OpenPiton Configurability

One of the key features that has given OpenPiton significant interest is its flexibility and

configurability, which can be tailored to suit various applications. This versatility allows

customization at multiple levels. Core configurability enables users to scale up to four

hardware threads, allowing for the adjustment of TLB size, activation of the FPU and SPU,

and customization of thread counts. Cache configurability offers options to adjust the sizes

of the L1 cache for both instructions and data. Additionally, users can configure the L1.5

and L2 caches in terms of sets and ways, providing a high degree of customization. All

configuration options are summarized in table 2.1.

Table 2.1: OpenPiton Configurable Components [2]

Hardware Component Configuration Option

Cores Per Chip 1 - 65536

Threads Per Core 1/2/4

L1 I-Cache 8/16/32KB

L1 D-Cache 4/8/16KB

L1.5 and L2 Caches way associativity

Intra-Chip Topology 2D mesh, crossbar

Inter-Chip Topology 2D mesh, 3D mesh, crossbar, butterfly

2.4 Benchmark Applications

During the fault injection simulations, we have used two well-known benchmarks:Fibonacci

series and Matrix Multiplication. These benchmarks are written in assembly language and

integrated into the OpenPiton Many-core processor simulation platform. The selection of

the benchmarks is based on how widely these programs are used in research projects and

how much processing power they consume.

13

2.4.1 Fibonacci Series Benchmark

Due to its high computational load, the Fibonacci benchmark was selected as the first

case study . The Fibonacci sequence is a classic recursive algorithm where each term is

dependent on the values of the preceding two terms. This recursive nature introduces a cu-

mulative dependency, meaning that any small error or fault in intermediate computations,

such as a fault in a register or memory cell, can propagate through the entire computation.

As the sequence grows, the impact of any such fault becomes more pronounced, making

the Fibonacci sequence particularly sensitive to errors[19]. Moreover, the Fibonacci bench-

mark represents a common workload in various applications requiring recursive computa-

tions. These include optimization problems, financial modeling, cryptography, and even

certain algorithms in computer graphics. Given its relevance and sensitivity to faults, the

Fibonacci series offers a valuable benchmark for evaluating how well a system, such as a

multi-core processor, can handle fault injection while maintaining computational correct-

ness. The pseudo-code for producing the nth element of the Fibonacci series is illustrated

in Algorithm 1.

Algorithm 1 Pseudo-code to Calculate n Elements of Fibonacci Series

fib[0] = 0

fib[1] = 1

for i = 2 → n− 1 do

fib[i] = previous number + current number

previous number = current number

current number = fib[i]

end for

14

2.4.2 Matrix Multiplication Benchmark

Matrix Multiplication (MxM) is a core operation in linear algebra and is foundational

in various domains, including scientific computing, engineering, artificial intelligence, and

machine learning. It is utilized to solve a wide range of computational problems, such

as systems of linear equations, transformations in graphics processing, and neural net-

work operations. Given its fundamental role, the correctness and efficiency of MxM are

critical in safety-critical applications like aerospace, defense, cryptography, and medical

imaging[20].

As a benchmark, MxM is particularly valuable due to its intensive memory and compu-

tational requirements. The algorithm demands significant memory access patterns and in-

tensive data manipulation, making it an ideal test case for evaluating both processing power

and memory bandwidth. Furthermore, MxM’s sensitivity to faults makes it an excellent

candidate for reliability testing. Any error in the intermediate calculations can propagate

through the entire result, potentially affecting system behavior in real-world applications.

MxM’s widespread use, coupled with its complexity and high resource demand, mo-

tivates its frequent selection as a benchmark in evaluating the reliability, fault tolerance,

and performance of computing systems, particularly in multi-core and high-performance

processors like OpenPiton [20].

The pseudo-code shown in Algorithm 2 performs an n× n matrix multiplication.

15

Algorithm 2 Pseudo-code to Calculate Matrix Multiplication of matrix X and Matrix Y

yielding in matrix Z

for i = 0 → n− 1 do

for j = 0 → n− 1 do

Z[i][j] = 0

for k = 0 → n− 1 do

Z[i][j]+ = X[i][k]× Y [k][j]

end for

end for

end for

2.5 Soft Errors Mitigation Techniques

The significant shift of safety-critical applications, such as those in aerospace, towards

the use of FPGAs and many-core processors—driven by their substantial performance and

resource advantages—has introduced a major challenge: susceptibility to soft errors. Con-

sequently, assessing their robustness against these errors and developing effective mitiga-

tion strategies has become a prominent area of research.

Extensive research has been conducted to mitigate these effects, which can be classified

into hardware, software, and hybrid-based mitigation techniques.

Hardware-based mitigation techniques primarily involve duplicating or triplicating var-

ious circuit components and incorporating additional voters or checkers. While these meth-

ods enhance system robustness, they come with significant trade-offs, including increased

overhead in terms of time, space, and power consumption.

On the other hand, Software-based mitigation techniques, also known as Software Im-

plemented Hardware Fault Tolerance (SIHFT), involve duplicating instructions executed

by the processor without requiring hardware modifications. This approach reduces costs,

16

space requirements, and power consumption overhead. However, it results in a significant

increase in memory usage and execution time.

Thus, a hybrid approach is often more appealing, as it combines the advantages of both

software and hardware techniques. This approach aims to leverage the strengths of each

method, optimizing robustness while managing costs, space, and power consumption [21].

The primary objective of this work is to propose the application of Software Imple-

mented Hardware Fault Tolerance (SIHFT) to multi-threaded many-core processors, ef-

fectively creating what can be termed Multi-Threaded TMR. This approach aims to ex-

ploit the vast often unused resources (i.e., cores) available in these processors for enhanced

fault tolerance. There have been a lot of automatic mitigation tools like Trikaya [22] and

COAST[23], however, they deal with bare-metal single-threaded codes only and they de-

pend mainly on temporal and spatial redundancy.

This work presents a novel use for TMR on applications running on top of Linux OS

with OpenPiton many-core processor, where we exploit the unused cores to implement

multi-threaded TMR that is able to mitigate the errors up to 17% in comparison when

TMR is not integrated within the OpenPiton. this will be discussed more in the upcoming

chapters.

2.5.1 TMR

TMR can be implemented in either bare-metal or commercial operating systems (OS).

Work presented in [24] has utilized bare-metal applications where no OS is used, allowing

for direct control of the hardware. Without OS overhead, system performance benefits in

terms of speed and resource utilization.

However, as system complexity increases, achieving a bare-metal implementation be-

comes more challenging. Managing all aspects of system hardware directly becomes more

difficult, and higher complexity can lead to greater error susceptibility, making the system

17

less reliable.

Alternatively, operating systems are widely used and extensively evaluated by researchers

and industry groups. As a result, OSs are expected to be nearly error-free. Consequently,

much research, such as that in [25], has shifted towards OS-based applications. This work

utilizes the Linux OS due to its robustness and the extensive research conducted on it, as

demonstrated in studies like [26].

TMR can be classified as either single-threaded or multi-threaded. Single-threaded

TMR, also known as time-based TMR, involves the sequential execution of the same task

three times on a single or different cores. A majority voting mechanism is then used to

determine the correct output. While this technique offers advantages such as low resource

usage with only one active thread and reduced implementation complexity, it has draw-

backs, including slower execution speed and increased susceptibility to errors.

In contrast, multi-threaded TMR, also known as concurrent TMR, involves the parallel

execution of the same task across multiple threads. This method is relatively immune to

errors, offering reduced execution time but at the cost of increased complexity and resource

usage [27].

In conclusion, our proposal fully leverages the threading capabilities of modern micro-

processors by distributing the execution of the same program across all available processing

cores. This approach allows multiple instances of the program to run in parallel, without re-

quiring communication between them, thus maximizing efficiency and resource utilization.

The following chapter will discuss the implementation of multi-threaded TMR in detail.

18

Chapter 3

Multi-threaded TMR Implementation

Methodology

In this chapter, we discuss the proposed multi-threaded TMR implementation on vari-

ous benchmarks running on OpenPiton. We used the fault injection framework proposed

by Dammak et al. [1] with some modifications to test the system’s reliability before and

after integrating TMR. A detailed flow of the proposed methodology is presented starting

from running the golden model, followed by integrating TMR, then injecting faults, and

subsequently, calculating the improvement percentage for each case study.

3.1 Multi-threaded TMR Implementation

In our study, we exploit the many-core processor’s vast resources to build a TMR frame-

work to enhance system reliability against SEUs. Our proposal takes advantage of the

threading capabilities of modern microprocessors by distributing the execution of the same

program across all available processing cores. This allows multiple instances of the pro-

gram to run in parallel, with no communication between them, except for a small segment

of code dedicated to stall and synchronization purposes.

19

TMR involves replicating the application three times and incorporating a simple major-

ity voter to mask any errors occurring in one of the three replicas. Due to the configurable

number of cores of OpenPiton from 1 to 500 million cores, TMR can easily be done with-

out the substantial hardware and cost overhead, as a lot of these cores remain unused for

the majority of applications.

Figure 3.1: Summarized Methodology

Figure 3.1 provides a summary of the methodology discussed in this chapter. The first

step involves running a golden model simulation, which executes the application without

20

any errors being injected. This provides a baseline for comparison with the outputs gener-

ated by the TMR framework. By comparing the error-free outputs from the Golden Model

with those from the TMR system, we can assess the system’s robustness by evaluating

the correct percentages obtained and calculating the TMR mitigation percentages. In this

golden run, only one core is instantiated with no fault injections.

Following this, TMR was implemented using OpenSPARC T1 assembly language. This

implementation involves triplicating the same benchmark application code across three

different cores and creating a majority voter in a fourth core, which is assumed to be error-

free—a valid assumption in this context. Two key aspects of TMR to be discussed in detail

are the independent execution of each application in a single thread on separate cores and

the implementation of the majority voter.

Two key aspects related to TMR that will be explored in greater detail are:

• The independent execution of each application as a single thread on separate cores,

ensures minimal interaction between cores.

• The majority voter Implementation.

These aspects are crucial for the successful implementation of TMR, as they play a pivotal

role in enhancing fault tolerance and improving overall system reliability.

In this setup, four instances of OpenPiton tiles are instantiated within the chip. Three of

these cores are designated to run identical copies of the target application concurrently. The

fourth core is reserved for implementing a majority voter mechanism. This majority voter

core operates by comparing the output values produced by the three application-running

cores and selecting the majority result—i.e., the output that appears most frequently across

the three cores. The majority voter algorithm functions as a fault tolerance measure, ensur-

ing that transient faults or errors in one of the cores do not impact the final system output, as

the most common value is assumed to be correct. The Majority voter Algorithm is shown

below:

21

Listing 3.1: Majorty Voter Algorithm

f u n c t i o n m a j o r i t y v o t e r (C o r e 0 o u t p u t , C o r e 1 o u t p u t , C o r e 2 o u t p u t) :

i f (C o r e 0 o u t p u t == C o r e 1 o u t p u t) o r

(C o r e 0 o u t p u t == C o r e 2 o u t p u t) :

re turn C o r e 0 o u t p u t

e l s e i f (C o r e 1 o u t p u t == C o r e 2 o u t p u t) :

re turn C o r e 1 o u t p u t

e l s e :

re turn error # or some d e f a u l t v a l u e / error s i g n a l

Our ultimate goal is to make each core run each thread independently of the other cores

and then allow the fourth core (the majority voter) to communicate with the other three

cores and access the outputs of each of the three cores.

3.2 Communication between Cores

3.2.1 Memory Mapping

The proposed option was that we use shared memory rather than memory passing,

meaning that if a core wants to send data to another one, it would write the data to an

address that is shared by all other cores.

The OpenPiton configuration is done in a way to make every thread run independently

on different cores where each core has a private L1 and L1.5 cache and a shared L2 cache

that can be accessed by all cores. In each Thread, the benchmark application code is writ-

ten and the output is stored in a different address in the shared global L2 cache memory.

Thereafter, The majority voter loads these three outputs and compares them and the output

will be the majority of the 3 core outputs.

A brief outline of the assembly code can be shown below:

22

Listing 3.2: Simplified Version of the assembly code

s t a r t by u s i n g f o r k

t h f o r k (t h m a i n)

t h m a i n 0 :

t h r e a d 0 run by c o r e 0

Benchmark a p p l i c a t i o n code t o be w r i t t e n h e r e

s t x $ (o u t p u t o f t h e benchmark a p p l i c a t i o n) $, $ l o c a t i o n o f L2 s h a r e d

cache memory L0

t h m a i n 1 :

t h r e a d 1 run by c o r e 1

Benchmark a p p l i c a t i o n code t o be w r i t t e n h e r e

s t x $ (o u t p u t o f t h e benchmark a p p l i c a t i o n) $, $ l o c a t i o n o f L2 s h a r e d

cache memory L1

t h m a i n 2 :

t h r e a d 2 run by c o r e 2

Benchmark a p p l i c a t i o n code t o be w r i t t e n h e r e

s t x $ (o u t p u t o f t h e benchmark a p p l i c a t i o n) $, $ l o c a t i o n o f L2 s h a r e d

cache memory L2

t h m a i n 3 :

l d x L0, $any g e n e r a l p u r p o s e r e g i s t e r g0

l d x L1, $any g e n e r a l p u r p o s e r e g i s t e r g1

l d x L2, $any g e n e r a l p u r p o s e r e g i s t e r g3

compare between t h e t h r e e o u t p u t s u s i n g M a j o r i t y v o t e r

compare v a l u e 1 wi th v a l u e 2 ,

i f (g0 = g1) , o u t p u t = g0

e l s e i f (g0=g2) , o u t p u t = g0

e l s e i f (g1=g3) , o u t p u t = g1

e l s e o u t p u t =0 # a l l t h r e e a r e mismatched

th fork macro is used to manage thread execution in OpenPiton. It begins by reading

the thread ID through the rdth id function, followed by comparing various thread masks

until the correct target thread is identified. Once identified, the corresponding instructions

23

are executed via fork expand The M4 code definition of th forkcan be shown in this code

snippet.

Listing 3.3: th fork M4 code

d e f i n e (t h f o r k , ‘

r d t h i d

f o r k e x p a n d ($1)

nop

t a T BAD TRAP

’) d n l

One problem that we faced was Race Condition, when the majority voter reads the

shared L2 Cache memory before one of the other 3 cores writes in it, as the three threads

are being run simultaneously. Thus, we had to dig deep into OpenPiton architecture.

3.2.2 Race Condition

A race condition occurs in multi-threaded systems when one thread depends on the se-

quence or timing of instructions in another thread, leading to unpredictable system behav-

ior. This issue is particularly critical in systems such as aerospace and medical applications.

In our research, to ensure proper synchronization we need to make sure that the major-

ity voter reads data only after all three cores had completed writing. Moreover, we need to

ensure that no memory loads are done during the cores storing the outputs in the memory.

The first issue was addressed by mimicking Python’s Event.set() and Event.wait() methods

using memory-based synchronization techniques in OpenSPARC T1 assembly. Event.set()

signals an event has occurred. When called, it sets an internal flag to True, meaning any

thread waiting on this event will be unblocked and allowed to continue, while Event.wait()

makes a thread wait until the event’s internal flag is True. If the flag is already set, the thread

continues immediately. If not, the thread is blocked until another thread calls event.set().

24

Figure 3.2: Proposed proper synchronization approach

The second issue was resolved by introducing memory barriers (membar #StoreLoad), en-

suring that all previous stores were completed before any subsequent loads were initiated.

The implemented proposed approach is shown in figure 3.2

To be able to implement Python’s Event.set() in OpenSPARC T1 assembly, the assem-

bly code used is as shown below :

Listing 3.4: Event.set() in OpensparcT1 assembly implementation

! d e f i n i n g g l o b a l l o c k f l a g s

. g l o b a l r e a d y f l a g 0

r e a d y f l a g 0 :

.word 0 , 0

t h r e a d 0 :

! A f t e r t h e benchmark f i n i s h e s i t s t a s k

s e t r e a d y f l a g 0 , %g3

add %g 0 , 0 x 1 , %g4

! s e t t i n g t h e f l a g t o 1

s t x %g 4 , [%g3]

! u s i n g memory b a r r i e r e n s u r i n g no f u r t h e r l o a d s a r e done u n t i l

t h e s t o r e i s f i n i s h e d f i r s t

membar # S to reLoad

25

The Python’s Event.wait() can be implemented in OpenSPARC T1 assembly as shown

below:

Listing 3.5: Event.wait() in OpensparcT1 assembly implementation

! i n t h e M a j o r i t y Vote r t h r e a d

t h r e a d 3 :

w a i t f o r r e a d y f l a g s :

! Load r e a d y f l a g s and check

s e t r e a d y f l a g 0 , %o1

l d x [%o1] , %o2

cmp %o 2 , 1

bne w a i t f o r r e a d y f l a g s ! Wait i f t h r e a d 0 i s n o t done

nop

In a nutshell, We addressed these race conditions by employing synchronization prim-

itives along with memory barriers. To synchronize threads, where the first three threads

store values in memory and the fourth thread reads these values, we ensured proper coordi-

nation between write and read operations. A ”ready flag” was used to signal when writing

was complete, allowing the reading thread to access the data safely afterward. Each thread

is assigned a specific flag variable to indicate the status of its operations. Upon completing

the data-writing operation, a thread sets its respective flag to a predefined value (e.g., 1),

indicating that the writing process has finished. Following that, the majority voter contin-

uously checks the status of these flags to determine whether the data-writing operation has

been completed by all relevant threads before proceeding with reading the data.

The following code explains the handling of the race condition.

Listing 3.6: Race condition Handling pseudo code

! d e f i n i n g g l o b a l l o c k f l a g s

. g l o b a l r e a d y f l a g 0

r e a d y f l a g 0 :

.word 0 , 0

26

. g l o b a l r e a d y f l a g 1

r e a d y f l a g 1 :

.word 0 , 0

. g l o b a l r e a d y f l a g 2

r e a d y f l a g 2 :

.word 0 , 0

t h r e a d 0 :

! A f t e r t h e benchmark f i n i s h e s i t s t a s k

s e t r e a d y f l a g 0 , %g3

add %g 0 , 0 x 1 , %g4

! s e t t i n g t h e f l a g t o 1

s t x %g 4 , [%g3]

! u s i n g memory b a r r i e r e n s u r i n g no f u r t h e r l o a d s a r e done u n t i l

t h e s t o r e i s f i n i s h e d f i r s t

membar # S to reLoad

t h r e a d 1 :

! A f t e r t h e benchmark f i n i s h e s i t s t a s k

s e t r e a d y f l a g 1 , %g3

add %g 0 , 0 x 1 , %g4

! s e t t i n g t h e f l a g t o 1

s t x %g 4 , [%g3]

! u s i n g memory b a r r i e r e n s u r i n g no f u r t h e r l o a d s a r e done u n t i l

t h e s t o r e i s f i n i s h e d f i r s t

membar # S to reLoad

t h r e a d 2 :

! A f t e r t h e benchmark f i n i s h e s i t s t a s k

s e t r e a d y f l a g 2 , %g3

add %g 0 , 0 x 1 , %g4

! s e t t i n g t h e f l a g t o 1

27

s t x %g 4 , [%g3]

! u s i n g memory b a r r i e r e n s u r i n g no f u r t h e r l o a d s a r e done u n t i l

t h e s t o r e i s f i n i s h e d f i r s t

membar # S to reLoad

! i n t h e M a j o r i t y Vote r t h r e a d

t h r e a d 3 :

w a i t f o r r e a d y f l a g s :

! Load r e a d y f l a g s and check

s e t r e a d y f l a g 0 , %o1

l d x [%o1] , %o2

s e t r e a d y f l a g 1 , %o3

l d x [%o3] , %o4

s e t r e a d y f l a g 2 , %o5

l d x [%o5] , %o6

cmp %o 2 , 1

bne w a i t f o r r e a d y f l a g s ! Wait i f t h r e a d 0 i s n o t done

nop

cmp %o 4 , 1

bne w a i t f o r r e a d y f l a g s ! Wait i f t h r e a d 2 i s n o t done

nop

cmp %o 6 , 1

bne w a i t f o r r e a d y f l a g s ! Wait i f t h r e a d 4 i s n o t done

nop

3.3 Fault Injection Framework

In the Fault Injection Framework, we have used the framework mentioned here [1].

Multiple modifications have been added to the used framework such as the fault parameters

28

generation, and the yielded results. Figure 3.3 summarizes the fault injection framework

used.

Figure 3.3: Summarized Fault injector Framework [1]

The fault injection framework is implemented in ModelSim, where OpenPiton is loaded

with the benchmark being used. Initially, various fault parameters such as injection time,

fault location, and core selection are determined. If the selected combination of fault injec-

tion parameters has been used previously, it is discarded, and a new, unused combination

is chosen. The simulation then begins, running until the specified injection time, at which

point faults are injected using the force deposit feature. This involves identifying the ran-

domly chosen bit and flipping it. The simulation then continues until completion. In the

end, critical data required for calculating the results are stored securely.

our work focuses on injecting the faults randomly either into the actual data of the

29

general-purpose registers (RD) or into the Error Correction Code (ECC) associated with

these registers (RECC). The force deposit feature is utilized to induce transient bit flips,

allowing for subsequent alterations to the affected bits. Fault injection for each case is

done for 1000 iterations.

In all of our test cases, four cores of OpenPiton are instantiated, Thereafter, fault in-

jection is done into one core (1C), two cores (2C), and a random combination of three

cores (3C Random). more details on each test case type can be found in section 4.1 which

discusses environment setup.

3.4 Result Generation

The Python script begins by uploading the saved files from the simulations, with each

iteration corresponding to a specific register file for each core. Critical data, including

injection time, fault location, core selection, and benchmark outputs, are then extracted.

A comparison is made between the benchmark outputs and the golden model (error-free)

outputs for all 1,000 iterations, resulting in the calculation of correct and false percent-

ages. Our system reliability metric, termed ”correct,” represents the number of iterations

where the majority voter outputs match the error-free outputs, as defined by the following

equation.

Correct = (
K

total no of iterations
) ∗ 100 (1)

where K= no of iterations where the majority voter outputs match with the error-free

outputs

The Python script also compiles all the extracted information into an Excel sheet. An

example of Python script used can be found in B

The table 3.1 shows a sample of the Excel sheet containing detailed info about each

30

Table 3.1: Experimental Results of MxM RD Experiment with TMR
iteration no tile reg pos val time t0 out MM result 1 MM result 2 category

0 0 25 13 1 215 1 0xh1d 0xh0a CORRECT

1 2 15 11 1 149 1 0xh01d 0xh00a CORRECT

2 0 23 62 1 151 1 0xh01d 0xh00a CORRECT

3 2 17 15 1 110 1 0xh01d 0xh00a CORRECT

..

..

996 1 18 18 1 265 1 0xh01d 0xh00a CORRECT

997 0 16 55 1 235 1 0xh01d 0xh00a CORRECT

998 2 05 34 1 38 1 0xh01d 0xh00a CORRECT

999 1 21 09 1 104 1 0xh01d 0xh0a CORRECT

iteration of the experiment:

• tile (core) shows the core where the faults are injected.

• reg shows the exact register where the faults are injected.

• pos shows the position where the bit is being flipped in the target register.

• val shows the bit value after being flipped due to fault injection.

• t0 out indicates the comparison output between the benchmark outputs and the golden

(errorfree) model, 1 if they match, 0 otherwise.

• MM result 1 MM result 2 shows the benchmark outputs.

• category is the same as t0 out (right=1),(wrong=0).

We then compare the correct percentages obtained with TMR to those achieved without

TMR implementation, generating the TMR mitigation percentages.

3.5 Summary

To provide a detailed summary of this chapter, the framework development process

begins with the creation of a golden model, which serves as an error-free baseline. This

31

model runs the benchmark application without any faults, establishing a reference for sub-

sequent comparisons. After generating this model, the benchmark application is replicated

and deployed across three separate cores in the OpenPiton platform. Each core executes

its own independent instance of the application, ensuring no inter-core interaction during

runtime. This isolation allows for individual fault injection analysis across the cores.

In addition to the three application-running cores, a fourth core is instantiated to per-

form majority voting. The majority voter algorithm compares the outputs from the three

cores and selects the most frequently occurring output, producing a TMR-masked result.

This configuration allows us to effectively mitigate faults by leveraging the redundancy

provided by TMR.

Several issues were encountered throughout the implementation, such as race condi-

tions. We addressed these issues by applying specific synchronization techniques to pre-

vent incorrect behaviors in multi-core execution. These solutions were critical in ensuring

the framework operated reliably under fault injection conditions.

We also provided an in-depth discussion of the fault injection framework, covering the

key parameters used, such as fault timing, location, type, and the technical specifications

that shaped the injection scenarios.

Finally, the chapter detailed how the results from the TMR implementation were pro-

cessed through a fault report analyzer. By comparing the outputs of the TMR system with

those from the golden model, we were able to calculate the ”correct” output percentages.

This comparison enabled us to determine the TMR mitigation percentages, offering insights

into the system’s robustness and fault tolerance. The results demonstrated how effectively

the TMR framework enhanced the system’s reliability under various fault scenarios.

32

Chapter 4

Experimental Setup and Results to

Evaluate the Impact of Implementing

TMR in OpenPiton Many-core on the

System Reliability against SEUs

In this chapter, we discuss the case studies simulated on the OpenPiton processor with

and without the TMR implementation. The tests aim to show the effect of implementing the

TMR in increasing the reliability of the many-core processor OpenPiton against radiation

effects. The chapter starts by giving detailed information about the experimental setup, a

summary of the benchmark applications used, and the yielded results from these various

experiments.

4.1 Environment Setup

The fault injection experiments were run on a Linux server with 160 CPUs clocked

at 2.4GHz and 1TB RAM. OpenPiton is operating in Asymmetric Multiprocessing mode

33

(AMP) mode during all these tests where each running core is operating independently

from the other. As mentioned before, We used the injection fault framework mentioned

here [1].

TMR is integrated in OpenPiton in such a way that the benchmark application is trip-

licated in three different cores and a majority voter is implemented in a fourth core that

we assume is error-free (which is a valid assumption). Two main aspects that we need to

consider: the independent run of the three first cores and the majority voter implementation

in a way to ensure correct synchronization between cores avoid=ing any race conditions

happening.

The results of the TMR effect on the different benchmarks are classified into two groups

according to the fault location which can be either in a general-purpose register actual data

or the Error Correction Code (ECC) of a general-purpose register. The force command

type used is deposit to mimic the soft error effect, this feature causes an instantaneous bit

flip and any external effects can cause any changes to that bit, thus mimicking soft errors

caused by radiation.

The objective of all experiments is to evaluate the impact of integrating TMR to Open-

Piton while simulating different Benchmarks on system reliability and robustness against

SEUs Faults are being injected firstly only in one core (1C), then two cores (2C), then a ran-

dom combination of three cores (3C Random). Our experiments were simulated for 1000

iterations for each different case. The first step is to simulate a simple error-free model to

get the error-free result to which we later compare our results, it is a simple 1-core simula-

tion on OpenPition.

In all experiments, The OpenPiton processor instantiates 4 cores and is set to the default

configuration of one thread per core. The only changes from one experiment to another are

the number of cores that the faults are injected into(1C, 2C, 3C Random)

In 1C, a fault is injected only in one core. In 2C fault is injected in two cores. In 3C

34

Random, a binary combination is generated from 0 to 7, where when a core is assigned 1,

a fault injection is injected randomly into it, and if it is assigned 0, no fault is injected into

it. For example, if the binary combination is 5 which translates to (101) this means both

core 0 and core 2 will have faults injected into them, while core 1 remains error-free. All

combinations are shown in 4.1.

Table 4.1: Binary Combination of 3C random fault injection
Binary combination C2 C1 C0

0 0 0 0

1 0 0 1

2 0 1 0

3 0 1 1

4 1 0 0

5 1 0 1

6 1 1 0

7 1 1 1

3C fault injection script can be found in A. The yielded results are achieved from 1000

iterations in each case study. The correct percentages achieved explain how many iterations

where the yielded result matched the golden model result out of these 1000 iterations.

The yielded results showed promising percentages of how TMR can increase the system’s

robustness.

4.1.1 Running Simulation With OpenPiton

To be able to run a simulation with the OpenPiton processor, two steps need to be

done: Building a simulation model followed by running the application(test) on a simula-

tion model A simulation Model consists of a set of design under test (DUT) Verilog files,

a set of top-level Verilog files that create a testbench environment, a list of Verilog file lists

(Flists) that specify the DUT Verilog files as well as the top-level testbench Verilog files,

35

and a list of Verilog simulator (e.g. Mentor Modelsim) command line arguments. Open-

Piton has two different simulation models: the assembly/c test simulation model known as

(The Manycore Simulation Model) and The Unit Test Simulation Model [28]. The simu-

lation type used in our work is the manycore simulation model which can be configurable.

Both the number of tiles and all cache sizes are configurable. The number of tiles can

be configured depending on the 2D mesh that one targets in the design, it can be done as

shown:

-x tiles=X TILES -y tiles=Y TILES

All caches can be configurable such as L1 data and instruction caches, L1.5 cache, and L2

cache as mentioned before in 2.3.1. This can be done as follows:

-config l1i size and -config l1i associativity

-config l1d size and -config l1d associativity

-config l15 size and -config l15 associativity

-config l2 size and -config l2 associativity

In our case study, we set them to default.

A simulation model is built by using the sims tool, in addition to the msm build ar-

gument that tells the manycore simulation model to build the simulation using Mentor

ModelSim. building the simulation can be done like this:

sims -sys=manycore -x tiles=X TILES -y tiles=Y TILES -msm build -build id=NAME

Following the building of the simulation is running the test on the simulation model. It

can be done as follows :

sims -sys=manycore -x tiles=X TILES -y tiles=Y TILES -msm run <assembly test file>

36

Since our tests use threads, mapping between the software and hardware threads is an

essential thing. In OpenPiton, each core has two hardware threads, thus each core can

handle up to two threads. Software threads can be done as follows :

-midas args=-DTHREAD COUNT=thread count

Where thread count is the number of threads that will handle your program. Thread map-

ping, by default, initiates with the first core and continues sequentially in an incremental

order. The stride number specifies how many hardware thread units are skipped between

consecutive threads. By default, it is set to 1, meaning no threads are skipped. For example,

if there are 4 threads and the stride number is set to 2, those 4 threads will be mapped to

the first hardware thread unit of the first core, the first hardware thread unit of the second

core, the first hardware thread unit of the third core, and the first hardware thread unit of

the fourth core as shown in the figure 4.1

Figure 4.1: Thread Mapping

It can be added in the run command as follows :

-midas args=-DTHREAD STRIDE=thread stride

Where thread stride is the stride number that the user can configure. following these two

arguments, another last argument must be set which is

-finish mask=mask vector

This argument is used to indicate which hardware thread units should signal a successful

completion for the test to be deemed passing. The mask vector is specified as a bit vector

in hexadecimal format.

Finally, the whole run command for simulation can be something like this :

37

sims -sys=manycore -x tiles=4 -y tiles=1 -msm run FS.s build id=fs build

-finish mask=1111 -midas args=-DTHREAD COUNT=4

-midas args=-DTHREAD STRIDE=2

To enable the automation of the framework through additional scripts, we utilize the

transcript generated from the simulation run. We then modify the vsim command line by

appending the argument -do ”script name”.

4.2 Experiment 1: TMR Implementation on 1-core, 2-core

and 3-core system Implementing Fibonacci Series Bench-

mark

In this experiment, we studied the effect of integrating TMR to OpenPiton on system

robustness against SEU when the Fibonacci Series Benchmark was used. As explained in

4.1, 1C,2C, and 3C Random experiments were done using the Fibonacci series Benchmark.

In our benchmark application, we set the Fibonacci series to get the 10 term of the

Fibonacci series expecting the last term to be 34 in decimal or 1a in hexadecimal. For

every case, reliability was evaluated across 1000 iterations, and correct percentages were

estimated by matching the majority voter results with error-free outputs from the golden-

free model.

The assembly code that is used to implement the Fibonacci series is as follows:

Listing 4.1: the Fibonacci series assembly code

1: s e t f b r e s u l t 1 , %g6

2: ! b u i l d a d d r e s s o f t h e L2 C o n t r o l Reg

3:

4: mov 0 , %l 0 ! I n i t i a l i z e te rm 0

5: mov 1 , %l 1 ! I n i t i a l i z e te rm 1

38

6: mov 8 , %o0 ! S e t t h e number o f t e r m s t o g e n e r a t e

7: l o o p 0 :

8: cmp %o 0 , 0

9: b l e end loop0

10: nop

11: add %l 0 , %l 1 , %l 2 ! te rm2 = term0 + term1

12: mov %l 1 , %l 0 ! te rm0 = term1

13: mov %l 2 , %l 1 ! te rm1 = term2

14:

15: s t x %l 1 , [%g6 +0]

16:

17: sub %o0 , 1 , %o0

18: ba loop0

19: nop

20: e n d l o o p 0 :

21: nop

22: nop

23: t a 0

In the first section of the experiment, fault injection is done randomly in the actual data

of a general-purpose register (RD)

4.2.1 Experimental Results of Fibonacci Experiment without TMR

In this section, a framework similar to the one described in 3.3 is executed without

integrating TMR into the system. Only a single core is instantiated in OpenPiton, and

fault injection is randomly applied to one bit in one register. The reliability metric ”correct”

was found to be 82.6%, indicating that out of the 1,000 iterations performed, 826 iterations

produced correct results.

The following table 4.2 indicates some of this experiment’s output samples:

39

Table 4.2: Experimental Results of Fibonacci Experiment without TMR
iteration no tile reg pos val time t0 out fb result category

0 0 17 09 1 15 0 0xh18385000 WRONG

1 0 20 61 1 7 1 0xh0022 CORRECT

2 0 18 34 1 16 1 0xh0022 CORRECT

3 0 10 52 1 21 0 0xh00 WRONG

..

..

996 0 24 40 1 16 1 0xh0022 CORRECT

997 0 11 36 1 47 1 0xh0022 CORRECT

998 0 20 54 1 38 1 0xh0022 CORRECT

999 0 21 16 1 19 0 0xh10022 WRONG

4.2.2 Experimental Results of Fibonacci RD Experiment with TMR

For the 1C scenario, where faults are injected into only one core out of the three instan-

tiated OpenPiton cores after TMR implementation

The experimental results showed improvement in the reliability of the system against

the injected fault framework, where correct metric turned out to be 96.1%, meaning out of

1000 iterations, 961 iterations where the outputs were correct.

Thus The TMR Mitigation Effect was calculated to be 13.5%. While this implemen-

tation does introduce additional time and power overhead, the mitigation benefits outweigh

these costs. Importantly, no area overhead is incurred, as the approach leverages the oth-

erwise unused resources available in multi-core processors. Table 4.7 shows a sample of

Experiment 1 output.

In the 2C scenario, faults are injected into two of the three instantiated OpenPiton cores

after TMR implementation. Given the increased severity of this fault injection, a decrease

in the correct metric is anticipated. However, in our case study, the decrease was mini-

mal (0.4%), demonstrating that TMR continues to provide robust immunity to the system.

The overall TMR mitigations effect was calculated to be 13.1%. The table 4.4 shows

Experiment 2C sample outputs.

In the 3C scenario, as detailed in Table 4.1, the experiment involves injecting faults into

40

Table 4.3: Experimental Results of 1C Fibonacci Experiment without TMR

iteration no tile reg pos val time t0 out tmr result category

0 0 21 13 1 140 1 0xh0022 CORRECT

1 1 27 17 1 53 1 0xh0022 CORRECT

2 0 08 45 1 72 1 0xh0022 CORRECT

3 2 17 49 1 10 0 0xh4488800 WRONG

..

..

996 1 29 42 1 47 1 0xh0022 CORRECT

997 0 18 47 1 183 1 0xh0022 CORRECT

998 2 07 26 1 112 1 0xh0022 CORRECT

999 0 09 63 1 52 1 0xh0022 CORRECT

Table 4.4: Experimental Results of 2C Fibonacci Experiment with TMR
iteration no tile 1 tile 2 reg 1 reg 2 pos 1 pos 2 val 1 val 2 time tile0 out tmr result category

0 1 2 19 12 57 33 1 1 58 1 0xh22 CORRECT

1 2 0 21 12 57 38 1 1 286 1 0xh22 CORRECT

2 0 2 27 1 27 6 1 1 52 1 0xh22 CORRECT

3 2 1 3 31 54 52 1 1 66 1 0xh22 CORRECT

..

..

996 0 2 5 30 57 37 1 1 312 1 0xh22 CORRECT

997 1 2 5 19 51 21 1 1 157 1 0xh22 CORRECT

998 0 1 5 1 48 62 1 1 183 1 0xh22 CORRECT

999 0 2 30 12 34 47 1 1 27 0 0x00 FALSE

one, two, or all three of the instantiated cores. This setup is designed to simulate the overall

impact of faults on the system with TMR integration. Although it might be presumed that

injecting faults into all three cores would inevitably lead to erroneous outputs, this is not

necessarily the case. The actual impact depends significantly on the timing and location

of the fault injection. If faults are introduced into non-critical registers not utilized by the

program, or if the faults are injected before the system writes to the relevant registers, the

output may remain unaffected.

This experiment also yielded favorable results, the correct metric achieved a value of

95.1%, indicating that out of 1000 iterations, 951 iterations produced correct outputs. Con-

sequently, the overall TMR mitigation effect was determined to be 12.5%, underscoring

the enhanced robustness of the system against faults achieved through the implementation

41

Figure 4.2: OpenPiton Data Register

of TMR.

The table 4.5 shows Experiment 3C sample outputs.

Table 4.5: Experimental Results of 2C Fibonacci Experiment with TMR
iteration no tile combination reg 1 reg 2 reg 3 pos 1 pos 2 pos 3 val 1 val 2 val 3 time tile0 out tmr result category

0 0 16 19 25 55 12 50 x x x 222 1 0xh022 CORRECT

1 0 15 22 20 47 14 22 x x x 86 1 0xh022 CORRECT

2 10 30 21 2 61 21 58 1 x x 105 1 0xh022 CORRECT

3 101 20 17 25 23 15 38 1 x 1 69 1 0xh022 CORRECT

..

..

996 0 4 2 11 37 32 43 x x x 189 1 0xh022 CORRECT

997 101 16 24 6 43 33 54 1 x 1 249 1 0xh022 CORRECT

998 11 4 2 13 62 49 43 1 1 x 93 1 0xh022 CORRECT

999 110 7 28 10 47 41 14 1 1 x 321 1 0xh022 CORRECT

4.2.3 Experimental Results of Fibonacci ECC Experiment without TMR

In the second section of the experiment, fault injection is done randomly in the Er-

ror Correction Code (ECC) of a general-purpose register. ECC is a mitigation technique

employed to detect and correct data corruption. However, the inclusion of ECC can im-

pact the system’s performance, particularly when subjected to a radiation environment. In

this segment of the experiment, bit-flips are introduced into the ECC of general-purpose

registers.

The OpenPiton data packet includes the last 8 bits designated for Error Correction Code

(ECC), as highlighted in blue in 4.2. Therefore, the fault injection will target these ECC

bits to assess the impact of errors within this specific section of the data packet.

Similarly to 4.2.1, a fault injection framework was applied to a single core instantiated

in OpenPiton, with the key difference being that faults were injected into the ECC bits. As

a result, an increase in the correct percentages was anticipated due to the restriction of fault

42

injections to specific positions inside of the registers. The correct was found to be 88.2%,

indicating that out of 1,000 iterations, 882 produced correct outputs.

The following table 4.6 indicates some of this experiment’s output samples. Note that

pos column has values equal to or greater than 64.

Table 4.6: Experimental Results of Fibonacci Series ECC Experiment without TMR
iteration no tile reg pos val time t0 out fb result category

0 0 31 64 1 38 1 0xh0022 CORRECT

1 0 09 66 1 8 0 0xh18385000 WRONG

2 0 29 69 1 44 1 0xh0022 CORRECT

3 0 07 71 1 43 1 0xh0022 CORRECT

..

..

996 0 31 64 1 27 1 0xh0022 CORRECT

997 0 06 70 0 17 1 0xh0022 CORRECT

998 0 22 69 1 43 1 0xh0022 CORRECT

999 0 08 65 1 21 1 0xh0022 CORRECT

4.2.4 Experimental Results of Fibonacci ECC Experiment with TMR

For the 1C scenario, similarly to 4.2.2 faults are injected into the ECC code of the data

packet of only one core out of the three instantiated OpenPiton cores after TMR imple-

mentation. The yielded results showed improvement in system robustness against faults,

the correct metric turned out to be 97.7%, meaning out of 1000 iterations, 977 iterations

yielded correct results. Thus The TMR Mitigation Effect was calculated to be 9.5%. We

can observe that the TMR Mitigation Effect is lower when faults are injected into the ECC

than when injected into data because ECC’s inherent complexity and its focus on detection

over correction make it more challenging for TMR to effectively mitigate errors. This con-

trasts with data, where TMR directly corrects errors, leading to a higher mitigation effect.

In the 2C scenario, faults are injected into the ECC bits of two out of the three instanti-

ated OpenPiton cores following the implementation of TMR, similar to the Fibonacci RD

experiment discussed in 4.2.2. As expected, a decrease in the correct metric was observed,

43

Table 4.7: Experimental Results of 1C Fibonacci ECC Experiment with TMR

iteration no tile reg pos val time t0 out tmr result category

0 0 15 70 1 216 1 0xh0022 CORRECT

1 2 02 68 0 67 1 0xh0022 CORRECT

2 1 21 70 1 87 1 0xh0022 CORRECT

3 1 11 67 1 32 0 0xh00 WRONG

..

..

996 1 11 67 0 128 1 0xh0022 CORRECT

997 2 31 68 1 169 1 0xh0022 CORRECT

998 1 10 67 1 166 1 0xh0022 CORRECT

999 2 17 71 1 157 1 0xh0022 CORRECT

resulting in a value of 96.1%. Consequently, the overall TMR Mitigation Effect was cal-

culated to be 7.9%. This value is lower than that observed in the Fibonacci RD experiment,

for the reasons previously mentioned.

The table 4.8 shows Experiment 2C sample outputs. Note that the values of both pos 1

and pos 2 are equal or greater than 64.

Table 4.8: Experimental Results of 2C ECC Fibonacci Experiment with TMR
iteration no tile 1 tile 2 reg 1 reg 2 pos 1 pos 2 val 1 val 2 time tile0 out tmr result category

0 2 1 23 13 64 66 0 0 207 1 0xh22 CORRECT

1 1 0 13 11 69 70 0 1 112 1 0xh22 CORRECT

2 0 2 31 03 66 70 1 1 256 1 0xh22 CORRECT

3 2 1 11 12 65 71 1 1 161 1 0xh22 CORRECT

..

..

996 2 1 29 12 70 68 1 1 136 1 0xh22 CORRECT

997 0 2 15 18 66 67 1 1 82 1 0xh22 CORRECT

998 2 0 12 24 64 70 1 1 18 0 0x00 FALSE

999 2 1 11 28 68 65 1 1 93 1 0xh22 CORRECT

In the 3C scenario, similarly to 4.2.2 , but here the experiment involves injecting faults

into the ECC bits of one, two, or all three of the instantiated cores. This experiment yielded

favorable results, demonstrating percentages that were higher than those observed in the 2C

scenario and lower than those in the 1C scenario. An increase in the correct metric is found

relative to that achieved from the 2C FS ECC Experiment, achieving 97.5%. the overall

44

TMR mitigation effect turned out to be 9.3%.

The table 4.9 shows Experiment 3C sample outputs. Note that the values of both

pos 1,pos 2 and pos 3 are equal or greater than 64.

Table 4.9: Experimental Results of 3C Fibonacci Experiment with TMR
iteration no tile combination reg 1 reg 2 reg 3 pos 1 pos 2 pos 3 val 1 val 2 val 3 time tile0 out tmr result category

0 110 26 25 16 67 66 70 1 1 x 202 1 0xh022 CORRECT

1 100 23 03 05 71 67 64 0 x x 126 1 0xh022 CORRECT

2 10 03 12 19 70 64 66 1 x x 176 1 0xh022 CORRECT

3 110 02 06 09 67 64 68 1 0 x 69 1 0xh022 CORRECT

..

..

996 0 07 01 11 70 64 69 x x x 16 1 0xh022 CORRECT

997 101 15 23 31 64 70 70 1 x 1 236 1 0xh022 CORRECT

998 11 08 13 22 68 70 69 1 1 x 164 1 0xh022 CORRECT

999 10 18 16 19 65 64 67 0 x x 98 1 0xh022 CORRECT

To assess the overhead introduced by TMR, we measured the execution time of the

FS benchmark. Before implementing TMR, the test duration was 17 seconds, while after

integrating TMR, it increased to 19 seconds. Consequently, the time overhead is calculated

to be 11%. This is remarkable, as the time overhead is minimal, and there is no additional

area overhead due to the effective utilization of the vast resources (i.e., unused threads)

available in multi-core processors.

4.3 Experiment 2: TMR Implementation on (1C, 2C, or

3C random) fault injection in OpenPiton Implement-

ing Matrix Multiplication Benchmark

In this experiment, we studied the effect of integrating TMR to OpenPiton on system ro-

bustness against SEU when the Matrix Multiplication Benchmark was used. As explained

in 4.1, 1C, 2C, and 3C Random experiments were done using the Matrix Multiplication

Benchmark.

We have implemented a matrix multiplication between matrix A 2 × 3 and matrix B

3× 1 resulting in a matrix C 3× 1.

45

Matrix A (2× 3)is as shown :

1 1 2

3 4 5

Matrix B (3× 1) is as shown:

[

5 1 2

]

The order of the matrices can be modified through the variables n,m,p where Matrix A

order is given as (n*m) and Matrix Border is given as (m*p) resulting in Matrix C with

order (n*p).

The assembly code that is used to implement Matrix Multiplication is as follows:

Listing 4.2: Matrix Multiplication assembly code

! A (2 *3) we want t o d e f i n e n =2n*m

! B (3 *1) we want t o d e i n e p=1 m*p

! and we w i l l d e f i n e m =3 c s h o u l d be n*p (2 *1)

d e f i n e A n o o f c o l u m n s 3

d e f i n e B n o o f c o l u m n s 1

d e f i n e c n o o f c o l u m n s 1

d e f i n e n 2

d e f i n e p 1

d e f i n e m 3

/ *** /

i n c l u d e ” b o o t . s ”

i n c l u d e ” p i t o n d e f . h ”

. g l o b a l main

ma in :

46

s e t m a t r i x A , %g1 ! Loop s t a r t i n g a d d r e s s

s e t m a t r i x B , %g2 ! Loop s t a r t i n g a d d r e s s

s e t r e s u l t m a t r i x , %g3 ! Loop s t a r t i n g a d d r e s s

add %g 0 , 0 x 0 , %i 0 ! Loop c o u n t e r a n

l o o p n :

cmp %i 0 , n

be d o n e l o o p n

nop

add %g 0 , 0 x 0 , %i 1 ! Loop c o u n t e r b

add %g 0 , %g 0 , %l 6 ! Sum v a r i a b l e

l o o p p :

cmp %i 1 , p

be d o n e l o o p p

nop

add %g 0 , 0 x 0 , %i 2 ! Loop c o u n t e r a b m −k c o u n t e r

l o op m :

cmp %i2 ,m

be done loop m

nop

! load A i j i 0 and i 1

mulx %i 0 , A n o o f c o l u m n s , %i 3 ! (i *no of columns*8)

mulx %i 3 , 0 x 8 ,%l 0

mulx %i 2 , 0 x 8 ,%l 1 ! (j * 8)

add %l 0 ,%l 1 ,%l 1

add %g 1 , %l 1 , %l 1

47

l d x [% l 1] , %l 3 ! we h e r e have A

! load B i j i 0 and i 1

! g e t t i n g t h e a d d r e s s o f B

mulx %i 2 , B n o o f c o l u m n s , %i 3

s l l %i 3 , 0 x 3 , %l 0

s l l %i 1 , 0 x 3 , %l 1

add %l 0 ,%l 1 ,%l 1

add %g 2 , %l 1 , %l 1

l d x [% l 1] , %l 4 ! we h e r e have B

mulx %l 4 ,%l 3 ,%l 5

add %l 6 ,%l 5 ,%l 6

! s t o r i n g C i j

! g e t t i n g t h e a d d r e s s o f c

mulx %i 0 , c n o o f c o l u m n s , %i 3

s l l %i 3 , 0 x 3 , %l 0

s l l %i 1 , 0 x 3 , %l 1

add %l 0 ,%l 1 ,%l 1

add %g 3 , %l 1 , %l 1

s t x %l 6 , [% l 1 +0]

add %i 2 , 0 x 1 ,%i 2

ba loop m

nop

d o n e l o o p m :

add %i 1 , 0 x 1 ,%i 1

ba l o o p p

nop

48

d o n e l o o p p :

add %i 0 , 0 x 1 ,%i 0

ba l o o p n

nop

d o n e l o o p n :

add %g 3 , 0 x 0 , %l 1

l d x [% l 1] , %l 5 ! we h e r e have c1

add %g 3 , 0 x 8 , %l 1

l d x [% l 1] , %l 6 ! we h e r e have c2

t a T GOOD TRAP

nop

nop

! ==========================

. d a t a

!m1 (2 *3)

! 1 , 1 , 2

! 3 , 4 , 5

. g l o b a l ma t r ix A

m a t r i x A :

! f i r s t row 1 , 1 , 2 (1 *3)

.word 0 x0 ,0x1

.word 0 x00000000 , 0 x00000001

.word 0 x00000000 , 0 x00000002

.word 0 x00000000 , 0 x00000003

.word 0 x00000000 , 0 x00000004

.word 0 x00000000 , 0 x00000005

49

. g l o b a l m a t r i x B

m a t r i x B : ! (3 *1)

! f i r s t row

.word 0 x0 ,0x5

.word 0 x0 ,0x1

.word 0 x 0 , 0x02

. g l o b a l r e s u l t m a t r i x

r e s u l t m a t r i x :

. s k i p n*p*8 ! A l l o c a t e memory f o r 2x3 e l e m e n t s (2 *1*8 b y t e s)

. e n d

For every case, reliability was evaluated across 1000 iterations, and correct percentages

were estimated by matching the majority voter results with error-free outputs from the

golden-free model.

In the first section of the experiment, fault injection is done randomly in the actual data

of a general-purpose register (RD)

4.3.1 Experimental Results of MxM RD Experiment without TMR

In this section, Fault injection is done to a single core instantiated by OpenPiton. the

Correct was 74.6%, meaning that out of 1000 iterations, only 746 iterations were correct.

This percentage is significantly lower than that obtained from the FS experiments,

which can be attributed to the complex nature of the Matrix Multiplication (MxM) bench-

mark. Unlike the FS benchmark, MxM involves loops, conditional statements, and a greater

number of instructions.

The following table 4.10 indicates some of this experiment’s output samples:

50

Table 4.10: Experimental Results of MxM RD Experiment without TMR
iteration no tile reg pos val time t0 out MM result 1 MM result 2 category

0 0 19 36 1 18 0 0xh00 0xh00 FALSE

1 0 15 15 1 12 1 0xh01d 0xh00a CORRECT

2 0 18 13 1 18 1 0xh01d 0xh00a CORRECT

3 0 07 64 1 5 1 0xh01d 0xh00a CORRECT

..

..

996 0 06 28 1 44 1 0xh01d 0xh00a CORRECT

997 0 23 56 1 45 1 0xh01d 0xh00a CORRECT

998 0 14 20 1 15 1 0xh01d 0xh00a CORRECT

999 0 13 36 1 47 1 0xh01d 0xh0a CORRECT

4.3.2 Experimental Results of MxM RD Experiment with TMR

For the 1C scenario, faults are injected into only one core out of the three instantiated

OpenPiton cores after TMR implementation.

The experimental results showed improvement in the reliability of the system against

the injected fault framework, where correct metric turned out to be 95%, meaning out of

1000 iterations, 950 iterations where the outputs were correct. This means that The TMR

Mitigation Effect was calculated to be 20.4%. This mitigation percentage is higher than

that obtained in FS benchmark Experiments which was 13.5%. This is because The matrix

multiplication process inherently involves a large number of complex instructions such as

loops, which can be more effectively protected by TMR. The distributed nature of errors

across many operations makes it easier for TMR to identify and mask the errors. The

following table 4.11 indicates some of this experiment’s output samples:

In the 2C scenario, faults are injected into two of the three instantiated OpenPiton cores

after TMR implementation. This means an expected decrease in the correct metric due to

the severity of the fault injections. The correct metric was 92.1% and The overall TMR

mitigations effect was calculated to be 17.5%.

The table 4.12 shows Experiment 2C sample outputs.

In the 3C scenario, as detailed in Table 4.1, the experiment involves injecting faults into

51

Table 4.11: Experimental Results of MxM RD Experiment with TMR
iteration no tile reg pos val time t0 out MM result 1 MM result 2 category

0 0 25 13 1 215 1 0xh1d 0xh0a CORRECT

1 2 15 11 1 149 1 0xh01d 0xh00a CORRECT

2 0 23 62 1 151 1 0xh01d 0xh00a CORRECT

3 2 17 15 1 110 1 0xh01d 0xh00a CORRECT

..

..

996 1 18 18 1 265 1 0xh01d 0xh00a CORRECT

997 0 16 55 1 235 1 0xh01d 0xh00a CORRECT

998 2 05 34 1 38 1 0xh01d 0xh00a CORRECT

999 1 21 09 1 104 1 0xh01d 0xh0a CORRECT

Table 4.12: Experimental Results of MxM 2C RD Experiment with TMR
iteration no tile 1 tile 2 reg 1 reg 2 pos 1 pos 2 val 1 val 2 time t0 out tmr result 1 tmr result 2 category

0 2 0 16 7 5 9 1 1 125 1 0xh01d 0xh00a CORRECT

1 0 1 1 8 13 62 1 1 124 1 0xh01d 0xh00a CORRECT

2 1 2 1 17 6 18 1 1 262 1 0xh01d 0xh00a CORRECT

3 0 1 22 27 46 29 1 1 109 1 0xh01d 0xh00a CORRECT

..

..

996 1 2 1 24 26 32 1 1 120 1 0xh01d 0xh00a CORRECT

997 0 1 18 26 19 36 1 1 54 1 0xh01d 0xh00a CORRECT

998 1 0 18 19 30 60 1 1 242 1 0xh01d 0xh00a CORRECT

999 0 2 19 5 62 32 1 1 89 1 0xh01d 0xh00a CORRECT

one, two, or all three of the instantiated cores. This setup is designed to simulate the overall

impact of faults on the system with TMR integration.

Similarly to 4.2.2’s 3C scenario, a higher correct metric is expected in comparison

to that of MxM RD 2C experiment, achieving a value of 91.5% and the overall TMR

mitigation effect was determined to be 16.9%,

The table 4.13 shows Experiment 3C sample outputs.

Table 4.13: Experimental Results of 3C MxM RD Experiment with TMR
iteration no tile combination reg 1 reg 2 reg 3 pos 1 pos 2 pos 3 val 1 val 2 val 3 time tile0 out tmr result 1 tmr result 2 category

0 11 23 07 17 8 18 22 1 1 x 48 1 0xh0a 0xh01d CORRECT

1 111 09 07 12 48 24 14 1 1 1 248 1 0xh0a 0xh01d CORRECT

2 110 27 12 31 15 43 28 1 1 x 17 0 0xh00 0xh00 FALSE

3 10 14 19 10 22 28 8 1 x x 75 1 0xh0a 0xh01d CORRECT

..

..

996 0 27 25 8 40 7 27 x x x 212 1 0xh0a 0xh01d CORRECT

997 0 07 23 10 49 16 39 x x x 303 1 0xh0a 0xh01d CORRECT

998 1 05 22 12 14 51 46 1 x x 231 1 0xh0a 0xh01d CORRECT

999 0 22 12 09 41 30 5 x x x 38 1 0xh0a 0xh01d CORRECT

In the second section of the experiment, fault injection is done randomly in the Error

52

Correction Code (ECC) of a general-purpose register.

4.3.3 Experimental Results of MxM ECC Experiment without TMR

Similarly to 4.2.3, a fault injection framework was applied to a single core instantiated

in OpenPiton, with the key difference being that faults were injected into the ECC bits.

Similarly, an expected increase correct metric is found, as the fault injections are done

only to the 8 bits of the ECC part of the OpenPiton data packet. The correct was found to

be 79.5%, indicating that out of 1,000 iterations, 795 produced correct outputs.

The following table 4.14 indicates some of this experiment’s output samples. Note that

pos column has values equal to or greater than 64.

Table 4.14: Experimental Results of MxM ECC Experiment without TMR
iteration no tile reg pos val time t0 out MM result 1 MM result 2 category

0 0 16 69 1 2 1 0xh01d 0xh00a CORRECT

1 0 02 71 1 2 1 0xh01d 0xh00a CORRECT

2 0 21 65 1 10 0 0xh00 0xh05 FALSE

3 0 07 64 1 5 1 0xh01d 0xh00a CORRECT

..

..

996 0 05 69 0 48 1 0xh01d 0xh00a CORRECT

997 0 09 71 0 44 1 0xh01d 0xh00a CORRECT

998 0 29 67 1 56 1 0xh01d 0xh00a CORRECT

999 0 26 68 1 20 0 0xh00 0xh00 FALSE

4.3.4 Experimental Results of MxM ECC Experiment

For the 1C scenario, similarly to 4.2.4 faults are injected into the ECC code of the data

packet of only one core out of the three instantiated OpenPiton cores after TMR imple-

mentation. The yielded results showed improvement in system robustness against faults,

the correct metric turned out to be 96.9%, meaning out of 1000 iterations, 969 iterations

yielded correct results. Thus, The TMR Mitigation Effect was calculated to be 17.4%.

53

As expected and previously explained, a decrease in the TMR mitigation percentage is

expected in comparison to that of RD Experiment (20.4%).

The following table 4.15 indicates some of this experiment’s output samples. Note that

pos column has values equal to or greater than 64

Table 4.15: Experimental Results of MxM ECC Experiment with TMR
iteration no tile reg pos val time t0 out MM result 1 MM result 2 category

0 2 06 64 0 200 1 0xh1d 0xh0a CORRECT

1 0 30 71 1 163 1 0xh01d 0xh00a CORRECT

2 2 07 70 1 94 1 0xh01d 0xh00a CORRECT

3 2 02 69 0 27 1 0xh01d 0xh00a CORRECT

..

..

996 0 08 69 1 113 1 0xh01d 0xh00a CORRECT

997 1 11 67 0 250 1 0xh01d 0xh00a CORRECT

998 2 29 66 1 239 1 0xh01d 0xh00a CORRECT

999 1 25 69 1 51 1 0xh01d 0xh0a CORRECT

In the 2C scenario, similarly to 4.2.2, faults are injected into the ECC bits of two out of

the three instantiated OpenPiton cores. As expected, a decrease in the correct metric was

observed, resulting in a value of 93.1%, and the TMR Mitigation Effect was calculated to

be 13.6%.

The table 4.16 shows Experiment 2C sample outputs. Note that the values of both pos 1

and pos 2 are equal or greater than 64

Table 4.16: Experimental Results of MxM 2C ECC Experiment with TMR
iteration no tile 1 tile 2 reg 1 reg 2 pos 1 pos 2 val 1 val 2 time t0 out tmr result 1 tmr result 2 category

0 2 0 27 09 66 70 1 1 138 1 0xh0a 0xh01d CORRECT

1 1 0 21 19 65 69 1 1 15 0 000 00 FALSE

2 0 1 24 28 71 66 1 1 12 1 0x000 0x00 FALSE

3 1 0 30 27 69 71 1 0 198 1 0xh000a 0xh01d right

..

..

996 2 1 30 30 65 68 1 1 90 1 0xh0a 0xh01d right

997 2 1 06 16 66 70 0 1 133 1 0xh0a 0xh01d right

998 1 2 11 24 70 65 1 1 238 1 0xh0a 0xh01d right

999 1 0 20 16 69 66 1 0 97 1 0xh0a 0xh01d right

In the 3C scenario, similarly to 4.2.2 but the experiment involves injecting faults into

the ECC bits of one, two, or all three of the instantiated cores. An increase in the correct

54

metric is found relative to that achieved from the 2C FS ECC Experiment, achieving 95.9%.

the overall TMR mitigation effect turned out to be 16.4%.

The table 4.17 shows Experiment 3C sample outputs. Note that the values of both

pos 1,pos 2 and pos 3 are equal or greater than 64.

Table 4.17: Experimental Results of 3C MxM ECC Experiment with TMR
iteration no tile combination reg 1 reg 2 reg 3 pos 1 pos 2 pos 3 val 1 val 2 val 3 time tile0 out tmr result 1 tmr result 2 category

0 111 14 25 27 70 71 69 1 0 1 150 1 0xh0a 0xh01d CORRECT

1 110 30 19 13 69 64 66 1 0 x 83 1 0xh0a 0xh01d CORRECT

2 111 21 06 04 64 68 66 1 1 0 263 1 0xh0a 0xh1d FCORRECT

3 10 29 04 18 66 66 71 1 x x 291 1 0xh0a 0xh01d CORRECT

..

..

996 1 06 27 7 68 65 71 1 x x 220 1 0xh0a 0xh01d CORRECT

997 111 01 22 24 68 71 70 1 1 1 36 0 0xh0 0xh0 FALSE

998 100 11 19 24 69 65 68 1 x x 40 1 0xh0a 0xh01d CORRECT

999 0 23 27 16 65 69 67 1 x x 39 1 0xh0a 0xh01d CORRECT

To assess the overhead introduced by TMR, we measured the execution time of the

MxM benchmark. Before implementing TMR, the test duration was 20 seconds. After

integrating TMR, the execution time increased to 21 seconds. Consequently, the time over-

head is calculated to be 5%. This result is favorable, as there was no significant increase in

time overhead after TMR integration.

4.4 Conclusions

Multiple observations have been made based on the various experiments that have been

conducted:

• Impact of Fault Severity on the correct Metric in the 2C Scenario:

As the severity of fault injection increases in the 2C scenario, a corresponding de-

crease in the correct metric is observed. This outcome aligns with expectations,

as injecting faults into two cores introduces a higher likelihood of errors, thereby

reducing the system’s ability to produce correct results.

• Comparative Analysis of the 3C Scenario:

55

In the 3C scenario, the correct metric is higher than in the 2C scenario. This can

be attributed to the random combination of fault injections across one, two, or three

cores. Importantly, the presence of faults in all three cores does not necessarily lead

to incorrect results. The outcome depends on both the timing and the location of

the fault injections, indicating that certain faults may not impact the system’s critical

operations.

• Enhanced Correct Metric in ECC Experiments:

In the ECC experiments, an increase in the correct metric is observed, which is ex-

pected due to the restriction of fault injections to the 8 ECC bits as The data packet

comprises 64 data bits and 8 ECC bits. Since ECC bits are fewer and primarily used

for error correction, faults confined to these 8 bits have a more localized impact. On

the other hand, faults in the 64 data bits directly affect the actual information being

processed, making it more difficult for the system to recover or produce correct out-

puts. However, The TMR improvement percentage is lower in ECC case as ECC’s

inherent complexity and its focus on detection over correction make it more chal-

lenging for TMR to effectively mitigate errors. This contrasts with data, where TMR

directly corrects errors, leading to a higher mitigation effect.

• Complexity-Driven Susceptibility in MxM Benchmarks:

The correct metric for Matrix Multiplication (MxM) benchmarks is lower compared

to that of Fibonacci Sequence (FS) benchmarks due to the MxM ’s higher complexity,

greater instruction density, and increased sensitivity to faults. These factors make

MxM benchmarks more vulnerable to faults compared to the simpler and more linear

FS benchmarks.

• Higher TMR Mitigation Percentages in MxM Benchmarks:

56

Despite the increased susceptibility to errors, the overall TMR Mitigation percent-

age for MxM benchmarks is higher than that of FS benchmarks. The complexity of

MxM, which includes loops, comparisons, and more instructions, provides more op-

portunities for TMR to mitigate the errors that arise, thereby enhancing the system’s

robustness.

Based on the yielded results, TMR has shown huge improvements in system robustness

against soft errors. Enhancements of 13.5% and 20.4% in the Fibonacci series (FS) and

matrix multiplication (MxM), respectively, were achieved with the integration of TMR in

the data registers fault injection in a single core. Similarly, when the fault injection is

done in two cores simultaneously, the results showed substantial enhancement of 13.1%

and 17.5% in the FS and MxM respectively. Moreover, integrating TMR added a time

overload for FS and MxM benchmarks with an increase of 11% and 5% respectively. This

result is remarkable, as the time overhead remains minimal, and there is no additional area

overhead, thanks to the effective utilization of the extensive resources (i.e., unused threads)

available in multi-core processors.

Table 4.18 presents a comprehensive summary of the experimental results obtained

throughout this thesis.

4.5 Summary

This chapter primarily addresses the experiments conducted to evaluate the impact

of integrating Triple Modular Redundancy (TMR) on the robustness of the many-core

processor OpenPiton against Single-Event Upsets (SEUs). Two key experiments were

performed involving fault injections into two selected benchmarks—Fibonacci Sequence

(FS) and Matrix Multiplication (MxM)—without the application of the proposed multi-

threaded TMR. The benchmarks and the algorithms employed were described, followed by

57

Table 4.18: Experimental Results of RD and ECC Implementations

Experiment
FS Results (%) MxM Results (%)

Result Improvement Result Improvement

RD

No TMR 82.6 – 74.6 –

1C 96.1 13.5 95 20.4

2C 95.5 13.1 92.1 17.5

3C 95.1 12.5 91.5 16.9

ECC

No TMR 88.2 – 79.5 –

1C 97.7 9.5 96.9 17.4

2C 96.1 7.9 93.1 13.6

3C 97.5 9.3 95.9 16.4

an overview of the experimental environment with multithreaded TMR integration.

The first set of experiments involved implementing TMR on 1-core, 2-core, and 3-core

systems using the FS benchmark, targeting general-purpose data. Similarly, the second set

of experiments applied the same setup to the MxM benchmark. Both experiments demon-

strated promising results, showing an average improvement of 13.5% in FS and 20.4% in

MxM, respectively.

Additionally, the experiments investigated fault generation using a random binary com-

bination approach, where faults were injected into 1-core, 2-core, or 3-core systems. The

improvement percentages achieved were consistent with those observed in the previous ex-

periments, further validating the effectiveness of TMR integration in enhancing robustness

against SEUs.

Observations and conclusions are detailed, providing insights into each case study dis-

cussed in the thesis.

58

Chapter 5

Conclusions and Future Work

5.1 Conclusions

Recent developments in the avionics domain have demonstrated an increasing interest

in transitioning to commercial off-the-shelf (COTS) many-core processors, owing to their

promising performance and moderate power and cost efficiency. However, the scalability

of core numbers is constrained by the absence of reliability certification for many-core

COTS processors in radiation environments. Our research discussed implementing TMR

to Many-core processors OpenPiton to increase robustness against SEUs. The thesis begins

by explaining the motivation behind the industry’s transition towards commercial off-the-

shelf (COTS) many-core processors. It then provides a comprehensive overview of critical

topics, including Single Event Upsets (SEUs) and reliability assessment techniques such as

radiation ground testing, fault injection methods, and formal verification approaches.

Next, the OpenPiton framework is introduced, highlighting its extensive resources and

configurability features. This is followed by a discussion of the benchmarks employed,

such as the Fibonacci series (FS) and matrix multiplication (MxM), along with a detailed

explanation of the algorithms used to implement them. The thesis also explores various soft

error mitigation techniques, categorizing them into software-based, hardware-based, and

59

hybrid approaches. One particular focus is on the ”Multi-threaded TMR” technique, where

its implementation and the challenges encountered, such as race conditions, are thoroughly

analyzed, along with strategies for addressing these issues.

Chapter 4 goes deeper into the experimental setup, starting with the OpenPiton simu-

lation environment and progressing to the two primary case studies. The first case study

involves running simulations using the FS benchmark for fault injection across one, two,

and three cores. In this experiment, fault injections are conducted in two distinct areas:

first, in the actual data of the general-purpose registers (RD), and second, in the ECC bits

of the general-purpose registers. The second case study follows a similar approach but uses

the MxM benchmark instead.

The results of these experiments are presented with detailed observations for each. The

findings demonstrate that Triple Modular Redundancy (TMR) significantly improved the

robustness of OpenPiton against SEUs, with average improvements of 14.1% for the Fi-

bonacci series and 17.3% for matrix multiplication. However, despite these gains in relia-

bility, the use of TMR introduced a notable time overhead, calculated as 133% for FS and

150% for MxM.

We observed an increase in fault severity as the number of cores subjected to fault

injections grew. Additionally, while the correct output metric was higher in experiments

involving ECC, the TMR mitigation percentages in these experiments were lower compared

to those in the RD experiments. This can be attributed to the complexity of ECC, which

makes it more challenging for TMR to effectively mask its errors.

Another noteworthy observation is that although matrix multiplication (MxM) exhibits

lower correct output percentages, likely due to its greater complexity relative to the Fi-

bonacci series (FS), it still shows higher TMR mitigation percentages. This is because

the increased complexity of MxM provides TMR with more opportunities to mask errors

effectively.

60

5.2 Future Work

The TMR implemented in the context of this thesis presents a base for a complete

framework that can be further enhanced in the following future steps:

• Automate the framework to be able to take the c code of the application and auto-

matically change it to its assembly code where the TMR is implemented.

• Optimize the memory usage and the simulation time while using TMR.

• Using TMR for only the critical part of the code, thus a criteria for choosing the

critical variables and code snippets needs to be created.

• Extend the research to emulate these experiments using Field Programmable Gate

Arrays (FPGA).

61

Appendix A

The 3C fault injection script is given below:

! / u s r / b i n / t c l s h 8 . 5

p roc r a n d o m l i s t { l i s t } {

l i n d e x $ l i s t [exp r { i n t (r a nd () * [l l e n g t h $ l i s t]) }]

}

s e t l oop max 1000

f o r { s e t i 0} {$ i < $ loop max} { i n c r i } {

p u t s ” loop b e g i n ”

s e t fb 1 [open ” f a u l t s d e p o s i t TMR 1 4 . t x t ” r]

s e t fb 2 [open ” f a u l t s d e p o s i t TMR 2 4 . t x t ” r]

s e t fb 3 [open ” f a u l t s d e p o s i t TMR 3 4 . t x t ” r]

s e t f a u l t l i s t 1 [r e a d $ fb 1]

s e t f a u l t l i s t 2 [r e a d $ fb 2]

s e t f a u l t l i s t 3 [r e a d $ fb 3]

c l o s e $ fb 1

62

c l o s e $ fb 2

c l o s e $ fb 3

w h i l e 1 {

s e t c o m b i n a t i o n [exp r { i n t (r a nd () * 8) }]

s e t b i n a r y c o m b i n a t i o n [f o r m a t %b $ c o m b i n a t i o n]

s e t t i l e 1 [s t r i n g i n d e x $ b i n a r y c o m b i n a t i o n 0]

s e t t i l e 2 [s t r i n g i n d e x $ b i n a r y c o m b i n a t i o n 1]

s e t t i l e 3 [s t r i n g i n d e x $ b i n a r y c o m b i n a t i o n 2]

#000 N0 i n j e c t i o n −−−−−0− NO

#001 i n j e c t i o n i n c o r e 0 −−−−1−−− s i n g l e

#010 i n j e c t i o n i n c o r e 1 −−−−−2−−− s i n g l e

#011 i n j e c t i o n i n c o r e 0 and 1 −−−−3−−−−−−−−−− do ub le

#100 i n j e c t i o n i n c o r e 2 −−−4 −−− s i n g l e

#101 i n j e c t i o n i n c o r e 0 and 2 −−−5−−−−−−−−−− do ub le

#110 i n j e c t i o n i n c o r e 2 and 1−−−−6−−−−−−−−−− do ub le

#111 i n j e c t i o n i n c o r e 0 ,1 ,2 −−−7−−−−−−−−−−−−−−−− t r i p l e

i f {$ c o m b i n a t i o n == 0} {

s e t i n j e c t i o n ”1”

} e l s e i f {

s e t pos 2 f ”${ pos 2}”

}

e l s e {

}

63

s e t t i l e [r a n d o m l i s t {01 02 10 12 20 21}]

s e t t i l e 1 [s t r i n g i n d e x $ t i l e 0]

s e t t i l e 2 [s t r i n g i n d e x $ t i l e 1]

p u t s ”$ t i l e 1”

p u t s ”$ t i l e 2”

p u t s ”$ t i l e 3”

s e t r e g 1 [r a n d o m l i s t { 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31}]

s e t r e g 2 [r a n d o m l i s t { 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31}]

s e t r e g 3 [r a n d o m l i s t { 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24 25 26 27 28 29 30 31}]

s e t pos 1 [e xp r { i n t (r a nd () * 64) }]

i f {$ pos 1 < 10} {

s e t pos 1 f ”0${ pos 1}”

} e l s e {

s e t pos 1 f ”${ pos 1}”

}

s e t pos 2 [e xp r { i n t (r a nd () * 64) }]

i f {$ pos 2 < 10} {

s e t pos 2 f ”0${ pos 2}”

} e l s e {

s e t pos 2 f ”${ pos 2}”

}

64

s e t pos 3 [e xp r { i n t (r a nd () * 64) }]

i f {$ pos 3 < 10} {

s e t pos 3 f ”0${ pos 3}”

} e l s e {

s e t pos 3 f ”${ pos 3}”

}

s e t t ime [e xp r { i n t (r a nd () * 330+ 8) }]

s e t un iq l i s t 1 [l s e a r c h $ f a u l t l i s t 1 ”${ t i l e 1}${ r e g 1}${ pos 1 f }${ t ime

}”]

s e t un iq l i s t 2 [l s e a r c h $ f a u l t l i s t 2 ”${ t i l e 2}${ r e g 2}${ pos 2 f }${ t ime

}”]

s e t un iq l i s t 3 [l s e a r c h $ f a u l t l i s t 3 ”${ t i l e 3}${ r e g 3}${ pos 3 f }${ t ime

}”]

i f { ($ un iq l i s t 1 == −1) | | ($ un iq l i s t 2 == −1) | | ($ un iq l i s t 3 ==

−1) } {

s e t f a u l t l i s t 1 [l i n s e r t $ f a u l t l i s t 1 [l l e n g t h $ f a u l t l i s t 1] ”${

t i l e 1}${ r e g 1}${ pos 1 f }${ t ime }”]

s e t f a u l t l i s t 2 [l i n s e r t $ f a u l t l i s t 2 [l l e n g t h $ f a u l t l i s t 2] ”${

t i l e 2}${ r e g 2}${ pos 2 f }${ t ime }”]

s e t f a u l t l i s t 3 [l i n s e r t $ f a u l t l i s t 3 [l l e n g t h $ f a u l t l i s t 3] ”${

t i l e 3}${ r e g 3}${ pos 3 f }${ t ime }”]

b r e a k

}

}

p u t s ” p a r a m e t e r choose v a l e x c l u d e d ”

s e t remove 1 {rm − f / n f s / p r i v a t e / a / a i t / fvg / o p e n p i t o n / b u i l d / f a u l t s

d e p o s i t TMR 1 4 . t x t }

exec bash −c $ remove 1

s e t cmd f i l e 1 [l i s t echo ${ f a u l t l i s t 1} > / n f s / p r i v a t e / a / a i t / fvg /

o p e n p i t o n / b u i l d / f a u l t s d e p o s i t TMR 1 4 . t x t]

exec {*}$cmd f i l e 1

65

s e t remove 2 {rm − f / n f s / p r i v a t e / a / a i t / fvg / o p e n p i t o n / b u i l d / f a u l t s

d e p o s i t TMR 2 4 . t x t }

exec bash −c $ remove 2

s e t cmd f i l e 2 [l i s t echo ${ f a u l t l i s t 2} > / n f s / p r i v a t e / a / a i t / fvg /

o p e n p i t o n / b u i l d / f a u l t s d e p o s i t TMR 2 4 . t x t]

exec {*}$cmd f i l e 2

s e t remove 3 {rm − f / n f s / p r i v a t e / a / a i t / fvg / o p e n p i t o n / b u i l d / f a u l t s

d e p o s i t TMR 3 4 . t x t }

exec bash −c $ remove 3

s e t cmd f i l e 3 [l i s t echo ${ f a u l t l i s t 3} > / n f s / p r i v a t e / a / a i t / fvg /

o p e n p i t o n / b u i l d / f a u l t s d e p o s i t TMR 3 4 . t x t]

exec {*}$cmd f i l e 3

p u t s ” e l e m e n t added t o f a u l t s l i s t & j u s t b e f o r run t ime ”

run $ t ime us

p u t s ” a f t e r run t ime ”

s e t v a l 1 ” x ”

s e t v a l 2 ” x ”

s e t v a l 3 ” x ”

i f {$ t i l e 1 == 1} {

s e t f o r c e d i r 1 ” sim : / cmp t o p / sys tem / c h i p / t i l e 0 / g s p a r c c o r e / c o r e /

s p a r c 0 / exu / exu / i r f / i r f / bw r i r f c o r e / rd d a t a ${ r e g 1} [${ pos 1}] ”

i f { [examine − b i n a r y $ f o r c e d i r 1]==”1 ’ b 0”} {

s e t v a l 1 ”1”

} e l s e {

s e t v a l 1 ”0”

}

66

f o r c e − d e p o s i t sim : / cmp t o p / sys tem / c h i p / t i l e 0 / g s p a r c c o r e / c o r e / s p a r c

0 / exu / exu / i r f / i r f / bw r i r f c o r e / rd d a t a ${ r e g 1} [${ pos 1}] ’ b${ v a l 1}

f o r c e

}

i f { $ t i l e 2 == 1} {

s e t f o r c e d i r 2 ” sim : / cmp t o p / sys tem / c h i p / t i l e 2 / g s p a r c c o r e / c o r e /

s p a r c 0 / exu / exu / i r f / i r f / bw r i r f c o r e / rd d a t a ${ r e g 2} [${ pos 2}] ”

i f { [examine − b i n a r y $ f o r c e d i r 2]==”1 ’ b 0”} {

s e t v a l 2 ”1”

} e l s e {

s e t v a l 2 ”0”

}

f o r c e − d e p o s i t sim : / cmp t o p / sys tem / c h i p / t i l e 2 / g s p a r c c o r e / c o r e / s p a r c

0 / exu / exu / i r f / i r f / bw r i r f c o r e / rd d a t a ${ r e g 2} [${ pos 2}] ’ b${ v a l 2}

f o r c e

}

i f {$ t i l e 3 == 1} {

s e t f o r c e d i r 3 ” sim : / cmp t o p / sys tem / c h i p / t i l e 3 / g s p a r c c o r e / c o r e /

s p a r c 0 / exu / exu / i r f / i r f / bw r i r f c o r e / rd d a t a ${ r e g 3} [${ pos 3}] ”

i f { [examine − b i n a r y $ f o r c e d i r 3]==”1 ’ b 0”} {

s e t v a l 3 ”1”

} e l s e {

s e t v a l 3 ”0”

}

f o r c e − d e p o s i t sim : / cmp t o p / sys tem / c h i p / t i l e 3 / g s p a r c c o r e / c o r e / s p a r c

0 / exu / exu / i r f / i r f / bw r i r f c o r e / rd d a t a ${ r e g 3} [${ pos 3}] ’ b${ v a l 3}

f o r c e

}

67

p u t s ” f o r c e a c t i o n ”

run 200 us

p u t s ” a f t e r run 118 us ”

s e t t r [open ” t r a n s c r i p t ” r]

s e t d a t a [r e a d − nonewl ine $ t r]

c l o s e $ t r

Get t h e l a s t l i n e

s e t un iq t r [l s e a r c h − g lob [l r a n g e [s p l i t $ d a t a \n] end −1 end] ”#

Stopped * ”]

i f {$ un iq t r == −1} {

s e t s t a t e ” Hang”

} e l s e {

s e t s t a t e ” no hang ”

}

s e t e r r o r s t a t e [l s e a r c h − g lob [l r a n g e [s p l i t $ d a t a \n] end −50 end] ”*

ERROR: * ”]

i f {$ e r r o r s t a t e == −1} {

s e t s t a t e ” no e r r o r ”

} e l s e {

s e t s t a t e ”ERROR”

}

s e t d i r name ” t i l e ${ b i n a r y c o m b i n a t i o n } r e g ${ r e g 1} ${ r e g 2} ${ r e g 3}

pos ${ pos 1} ${ pos 2} ${ pos 3} v a l ${ v a l 1} ${ v a l 2} ${ v a l 3} t ime ${ t ime }”

s e t d i r ” / n f s / p r i v a t e / a / a i t / fvg / o p e n p i t o n / b u i l d /TMR 3 / r e g f i l e f a u l t s

d a t a d e p o s i t / ${ d i r name}”

s e t d i r mv ” / n f s / p r i v a t e / a / a i t / o p e n p i t o n / b u i l d /TMR 3 / r e g f i l e f a u l t s

d a t a d e p o s i t / ${ d i r name } / ”

s e t r e p name ” r e p o r t ${ d i r name } . t x t ”

s e t cmd echo [l i s t echo Hang > / n f s / p r i v a t e / a / a i t / fvg / o p e n p i t o n / b u i l d /

TMR 3 / r e p o r t s r e g d a t a d e p o s i t / $ r e p name]

s e t cmd e r r o r msg { l e s s t r a n s c r i p t | g re p ’ERROR: ’> r e p o r t e r r o r . l o g }

68

s e t cmd e r r o r name [l i s t mv / n f s / p r i v a t e / a / a i t / fvg / o p e n p i t o n / b u i l d /

r e p o r t e r r o r . l o g / n f s / p r i v a t e / a / a i t / fvg / o p e n p i t o n / b u i l d / $ r e p name]

s e t cmd e r r o r [l i s t mv / n f s / p r i v a t e / a / a i t / fvg / o p e n p i t o n / b u i l d / $ r e p

name / n f s / p r i v a t e / a / a i t / fvg / o p e n p i t o n / b u i l d /TMR 3 / r e p o r t s r e g d a t a

d e p o s i t]

i f {$ s t a t e ==”Hang ”} {

exec {*}$cmd echo

} e l s e i f {$ s t a t e == ”ERROR”} {

exec bash −c $cmd e r r o r msg

exec {*}$cmd e r r o r name

exec {*}$cmd e r r o r

} e l s e {

Save t h e r e g i s t e r f i l e and t h e L2 cache o f t h e t i l e s a t t h e end of

e x e c u t i o n

mem sa ve − o u t f i l e t i l e 0 r e g f i l e .mem / cmp t o p / sys tem / c h i p / t i l e 0 / g

s p a r c c o r e / c o r e / s p a r c 0 / exu / exu / i r f / i r f / bw r i r f c o r e / r f g −

w o r d s p e r l i n e 1

mem sa ve − o u t f i l e t i l e 1 r e g f i l e .mem / cmp t o p / sys tem / c h i p / t i l e 1 / g

s p a r c c o r e / c o r e / s p a r c 0 / exu / exu / i r f / i r f / bw r i r f c o r e / r f g −

w o r d s p e r l i n e 1

mem sa ve − o u t f i l e t i l e 2 r e g f i l e .mem / cmp t o p / sys tem / c h i p / t i l e 2 / g

s p a r c c o r e / c o r e / s p a r c 0 / exu / exu / i r f / i r f / bw r i r f c o r e / r f g −

w o r d s p e r l i n e 1

mem sa ve − o u t f i l e t i l e 3 r e g f i l e .mem / cmp t o p / sys tem / c h i p / t i l e 3 / g

s p a r c c o r e / c o r e / s p a r c 0 / exu / exu / i r f / i r f / bw r i r f c o r e / r f g −

w o r d s p e r l i n e 1

mem sa ve − o u t f i l e t i l e 0 l 2 .mem / cmp t o p / sys tem / c h i p / t i l e 0 / l 2 / d a t a wrap

/ l 2 d a t a / l 2 d a t a a r r a y / sram l 2 d a t a / ram

mem sa ve − o u t f i l e t i l e 1 l 2 .mem / cmp t o p / sys tem / c h i p / t i l e 1 / l 2 / d a t a wrap

/ l 2 d a t a / l 2 d a t a a r r a y / sram l 2 d a t a / ram

69

mem sa ve − o u t f i l e t i l e 2 l 2 .mem / cmp t o p / sys tem / c h i p / t i l e 2 / l 2 / d a t a wrap

/ l 2 d a t a / l 2 d a t a a r r a y / sram l 2 d a t a / ram

mem sa ve − o u t f i l e t i l e 3 l 2 .mem / cmp t o p / sys tem / c h i p / t i l e 2 / l 2 / d a t a wrap

/ l 2 d a t a / l 2 d a t a a r r a y / sram l 2 d a t a / ram

p u t s ”mem save ”

T r e a t m e n t a f t e r t h e s i m u l a t i o n t e r m i n a t e d

un iq comm23 and i s used t o g e n e r a t e t h e i n s t r u c t i o n f i l e and t h e r e g 01

dump w i t h o u t r e p e t i t i v e v a l u e s

p u t s ” b e f o r e t r e a t m e n t s c r i p t ”

s e t t r e a t m e n t S c r i p t {

l e s s t i l e 3 r e g f i l e .mem | g re p ’ 1 7 : ’ > t 3 r f

c a t t 3 r f > r e p o r t sim . l o g

}

exec bash −c $ t r e a t m e n t S c r i p t

p u t s ” t r e a t m e n t s c r i p t e x e c u t e d ”

s e t cmd r e p [l i s t mv / n f s / p r i v a t e / a / a i t / fvg / o p e n p i t o n / b u i l d / r e p o r t sim

. l o g / n f s / p r i v a t e / a / a i t / fvg / o p e n p i t o n / b u i l d /TMR 3 / r e p o r t s r e g d a t a

d e p o s i t / $ r e p name]

70

exec {*}$cmd r e p

}

t r a n s c r i p t f i l e ””

t r a n s c r i p t f i l e / n f s / p r i v a t e / a / a i t / fvg / o p e n p i t o n / b u i l d / t r a n s c r i p t

p u t s ” b e f o r e r e s t a r t ”

r e s t a r t − f o r c e

p u t s ” a f t e r r e s t a r t ”

p u t s ” end of loop i t e r a t i o n number $ i ”}

p u t s ” end of loop ”

e x i t

71

Appendix B

The fault analyzer python code is given below:

i m p o r t os

i m p o r t pandas as pd

a l l f i l e s = os . l i s t d i r (” / n f s / p r i v a t e / a / a i t / fvg / o p e n p i t o n / b u i l d /TMR 3 /

r e p o r t s r e g d a t a d e p o s i t / ”)

p r i n t (l e n (a l l f i l e s))

f a u l t l i s t = []

f a u l t l i s t t 0 = []

d e f s l i c e s t r i n g (f i l e name , n) :

p r i n t (” START OF NEW LOOP ”)

p r i n t (f i l e name)

p r i n t (n)

r e p o r t t i l e 1 0 0 r e g 0 5 2 2 1 6 pos 5 4 8 3 7 v a l 1 x x t ime 1 4 4 . t x t

f i l e name = f i l e name . s p l i t (’ ’)

t i l e c o m b i n a t i o n = f i l e name [2]

r e g 1 = f i l e name [3]

r e g 1 = r e g 1 [3 :]

72

r e g 2 = f i l e name [4]

r e g 3 = f i l e name [5]

pos 1 = f i l e name [6]

pos 1 = pos 1 [3 :]

pos 2= f i l e name [7]

pos 3= f i l e name [8]

v a l 1 = f i l e name [9]

v a l 1 = v a l 1 [3]

v a l 2= f i l e name [1 0]

v a l 3= f i l e name [1 1]

t ime = f i l e name [1 2]

t ime = t ime [4 : − 4]

d i r = [’ / n f s / p r i v a t e / a / a i t / fvg / o p e n p i t o n / b u i l d /TMR 3 / r e p o r t s

r e g d a t a d e p o s i t / ’ , a l l f i l e s [n]]

name = ’ ’

name= name . j o i n (d i r)

f = open (’%s ’ % name , ’ r ’)

r e p o r t l i s t = f . r e a d l i n e s ()

tmr r e s u l t = r e p o r t l i s t [0] . s p l i t (’ ’)

tmr r e s u l t = tmr r e s u l t [1]

tmr r e s u l t = tmr r e s u l t [− 1 5 :]

p r i n t (tmr r e s u l t)

73

i f ((i n t (tmr r e s u l t , 1 6) ==34)) :

t i l e 0 o u t =1

e l s e :

t i l e 0 o u t =0

i f (t i l e 0 o u t ==1) :

c a t e g o r i e = ’CORRECT’

e l s e :

c a t e g o r i e = ’FALSE’

f a u l t spe c l i s t = [t i l e combina t ion , r e g 1 , r e g 2 , r e g 3 , pos 1 , pos

2 , pos 3 , v a l 1 , v a l 2 , v a l 3 , t ime , t i l e 0 out , tmr r e s u l t , c a t e g o r i e

]

r e t u r n f a u l t spe c l i s t

f o r i i n r a n g e (l e n (a l l f i l e s)) :

f a u l t l i s t . append (s l i c e s t r i n g (a l l f i l e s [i] , i))

d f d a t a d e p o s i t = pd . DataFrame (f a u l t l i s t , columns =[’ t i l e combina t ion

’ , ’ r e g 1 ’ , ’ r e g 2 ’ , ’ r e g 3 ’ , ’ pos 1 ’ , ’ pos 2 ’ , ’ pos 3 ’ , ’ v a l 1 ’ , ’ v a l 2 ’ , ’

v a l 3 ’ , ’ t ime ’ , ’ t i l e 0 out ’ , ’ tmr r e s u l t ’ , ’ c a t e g o r i e ’])

f i l e d a t a d e p o s i t = ’ d a t a d e p o s i t f a u l t s TMR c o r e . x l sx ’

74

df d a t a d e p o s i t . t o e x c e l (f i l e d a t a d e p o s i t)

f o r j i n r a n g e (l e n (f a u l t l i s t)) :

f a u l t l i s t t 0 . append (f a u l t l i s t [j] [− 1])

t 0 r i g h t =0

t 0 wrong = 0

i f (f a u l t l i s t t 0 [k]== ’CORRECT’) :

t 0 r i g h t += 1

e l i f (f a u l t l i s t t 0 [k]== ’FALSE ’) :

t 0 wrong += 1

f a u l t l i s t t 0 t o t a l = l e n (f a u l t l i s t t 0)

t 0 r i g h t = 100 * f l o a t (t 0 r i g h t) / f l o a t (f a u l t l i s t t 0 t o t a l)

t 0 wrong= 100 * f l o a t (t 0 wrong) / f l o a t (f a u l t l i s t t 0 t o t a l)

p r i n t (’ t i l e 3 ’)

p r i n t (”CORRECT: ” , t 0 r i g h t)

p r i n t (” FALSE : ” , t 0 wrong)

75

76

Bibliography

[1] Chifa Dammak, Otmane Ait Mohamed, and Mounir Boukadoum. Seu reliability as-

sessment framework for cots many-core processors. In 2022 International Conference

on Microelectronics (ICM), pages 42–45, 2022.

[2] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou,

Alexey Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang,

Matthew Matl, and David Wentzlaff. Openpiton: An open source hardware platform

for your research. Commun. ACM, 62(12):79–87, nov 2019.

[3] Ye Liu, Shinpei Kato, and Masato Edahiro. Analysis of memory system of tiled

many-core processors. IEEE Access, PP:1–1, 01 2019.

[4] John L Hennessy and David A Patterson. Computer architecture: a quantitative

approach. Morgan kaufmann, 2017.

[5] Bryan Schauer. Multicore processors–a necessity. ProQuest discovery guides, 59,

2008.

[6] TSMC Leading Semiconductor Manufactor logic technology. https://www.

tsmc.com/english/dedicatedFoundry/technology/logic/l_2nm.

Last Accessed: August 7, 2024.

[7] Raoul Velazco, Pascal Fouillat, and Ricardo Reis. Radiation effects on embedded

systems. Springer Science & Business Media, 2007.

77

[8] Robert C Baumann. Radiation-induced soft errors in advanced semiconductor tech-

nologies. IEEE Transactions on Device and materials reliability, 5(3):305–316, 2005.

[9] R.C. Baumann. Radiation-induced soft errors in advanced semiconductor technolo-

gies. IEEE Transactions on Device and Materials Reliability, 5(3):305–316, 2005.

[10] Muhammad Sadi, Md Khan, Md Uddin, and Jan Jürjens. An efficient approach to-

wards mitigating soft errors risks. Signal Image Processing : An International Jour-

nal, 2, 10 2011.

[11] The ibm power4. https://www.ibm.com/history/power. Last Accessed:

August 11, 2024.

[12] Balaji Venu. Multi-core processors-an overview. arXiv preprint arXiv:1110.3535,

2011.

[13] Jeffrey S George. An overview of radiation effects in electronics. In 25th Inter-

national Conference on the Application of Accelerators in Research and Industry,

volume 2160, page 060002, 2019.

[14] Jeffrey S. George. An overview of radiation effects in electronics. AIP Conference

Proceedings, 2160(1):060002, 10 2019.

[15] Jonathan Balkind, Michael McKeown, Yaosheng Fu, Tri Nguyen, Yanqi Zhou,

Alexey Lavrov, Mohammad Shahrad, Adi Fuchs, Samuel Payne, Xiaohua Liang,

Matthew Matl, and David Wentzlaff. Openpiton: An open source manycore research

framework. In Proceedings of the Twenty-First International Conference on Archi-

tectural Support for Programming Languages and Operating Systems, ASPLOS ’16,

page 217–232, New York, NY, USA, 2016. Association for Computing Machinery.

78

[16] Guideline for ground radiation testing of microprocessors in the space radiation envi-

ronment ,pasadena, ca : Jet propulsion laboratory, national aeronautics and space ad-

ministration, 2008. https://trs.jpl.nasa.gov/handle/2014/40790.

Last Accessed: July 25, 2022.

[17] Haissam Ziade, Rafic A Ayoubi, Raoul Velazco, et al. A survey on fault injection

techniques. Int. Arab J. Inf. Technol., 1(2):171–186, 2004.

[18] OpenSPARC T1, Oracle Website. https://www.oracle.com/servers/

technologies/opensparc-t1-page.html. Last Accessed: July 14, 2022.

[19] Parichehr Vahidinia, Bahar Farahani, and Fereidoon Shams Aliee. Cold start in server-

less computing: Current trends and mitigation strategies. In 2020 International Con-

ference on Omni-layer Intelligent Systems (COINS), pages 1–7, 2020.

[20] Da Yan, Wei Wang, and Xiaowen Chu. Demystifying tensor cores to optimize half-

precision matrix multiply. In 2020 IEEE International Parallel and Distributed Pro-

cessing Symposium (IPDPS), pages 634–643, 2020.

[21] Antonio Martı́nez-Álvarez, Felipe Restrepo-Calle, Sergio Cuenca-Asensi,

Leonardo M. Reyneri, Almudena Lindoso, and Luis Entrena. A hardware-

software approach for on-line soft error mitigation in interrupt-driven applications.

IEEE Transactions on Dependable and Secure Computing, 13(4):502–508, 2016.

[22] Heather Quinn, Zachary Baker, Tom Fairbanks, Justin L. Tripp, and George Duran.

Robust duplication with comparison methods in microcontrollers. IEEE Transactions

on Nuclear Science, 64(1):338–345, 2017.

[23] Benjamin James and Jeffrey Goeders. Automated software compiler techniques to

provide fault tolerance for real-time operating systems. In 2021 Design, Automation

Test in Europe Conference Exhibition (DATE), pages 1452–1455, 2021.

79

[24] A. Serrano-Cases, A. Martı́nez-Álvarez, R. Possamai Bastos, and S. Cuenca-Asensi.

Bare-metal redundant multi-threading on multicore socs under neutron irradiation.

IEEE Transactions on Nuclear Science, 70(8):1643–1651, 2023.

[25] Gennaro S. Rodrigues, Felipe Rosa, Fernanda L. Kastensmidt, Ricardo Reis, and

Luciano Ost. Investigating parallel tmr approaches and thread disposability in linux.

In 2017 24th IEEE International Conference on Electronics, Circuits and Systems

(ICECS), pages 393–396, 2017.

[26] Joshua Monson, Mike Wirthlin, and Brad Hutchings. Fault injection results of linux

operating on an fpga embedded platform. pages 37 – 42, 01 2011.

[27] Andrew Milluzzi, Alan George, and Alan George. Exploration of tmr fault masking

with persistent threads on tegra gpu socs. In 2017 IEEE Aerospace Conference, pages

1–7, 2017.

[28] OpenPiton, Parallel Princeton Group Website. https://parallel.

princeton.edu/openpiton/. Last Accessed: July 14, 2022.

80

	List of Figures
	List of Tables
	Introduction
	Motivation
	Multi-core Processors
	Radiation Effects
	Mitigation Techniques
	Problem Statement and Thesis Contributions
	Thesis Outline

	Preliminaries
	Single-Event Effects
	Reliability assessments Techniques
	Radiation Ground Testing
	Fault Injection Methods

	 OpenPiton
	OpenPiton Processor Architecture
	OpenPiton Configurability

	Benchmark Applications
	Fibonacci Series Benchmark
	Matrix Multiplication Benchmark

	Soft Errors Mitigation Techniques
	TMR

	 Multi-threaded TMR Implementation Methodology
	 Multi-threaded TMR Implementation
	Communication between Cores
	Memory Mapping
	Race Condition

	Fault Injection Framework
	Result Generation
	Summary

	Experimental Setup and Results to Evaluate the Impact of Implementing TMR in OpenPiton Many-core on the System Reliability against SEUs
	Environment Setup
	Running Simulation With OpenPiton

	Experiment 1: TMR Implementation on 1-core, 2-core and 3-core system Implementing Fibonacci Series Benchmark
	Experimental Results of Fibonacci Experiment without TMR
	Experimental Results of Fibonacci RD Experiment with TMR
	Experimental Results of Fibonacci ECC Experiment without TMR
	Experimental Results of Fibonacci ECC Experiment with TMR

	Experiment 2: TMR Implementation on (1C, 2C, or 3C random) fault injection in OpenPiton Implementing Matrix Multiplication Benchmark
	Experimental Results of MxM RD Experiment without TMR
	Experimental Results of MxM RD Experiment with TMR
	Experimental Results of MxM ECC Experiment without TMR
	Experimental Results of MxM ECC Experiment

	Conclusions
	Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Appendix
	Appendix
	Bibliography

